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ABSTRACT 
___________________________________________________________________ 
 

Amaranthus hybridus L. (Amaranthaceae family) commonly known as Pigweed, 

Imbuya, Vowa, Umfino or Isheke, is a species originating from Central America and 

Mexico which has become a delicacy as a vegetable in many countries in southern 

Africa including South Africa. Even though the nutritional and nutraceutical properties 

of A. hybridus have been documented and that it has been consumed for many 

decades by the locals in South Africa, the plant is not usually planted. It occurs as a 

volunteer crop after first rains and is often harvested from the wild, therefore its 

production levels are not known. There is limited information on the cultivation of A. 

hybridus or its improvement as compared to the commercial crops like spinach, rice, 

wheat, etc. For this plant to be introduced in commercial agriculture and developed as 

a domesticated crop, it is pertinent to find ways of improving the crop in terms of quality 

and extent of production. To this end, the current study first evaluated the optimal 

growth conditions for A. hybridus. The effect of nitrogen (N), phosphorus (P) and 

potassium deficiency, nutrient strength using Hoagland’s nutrient solution (HNS), 

watering frequency, and light intensity on growth of the crop were investigated. A 

further experiment was carried out to investigate the effect of the absence of N and 

substituting N with organic biostimulants, Smoke-water (SW) 1:500 v/v, Karrikinolide 

(KAR1) 10-6 M, Vermicompost leachate (VCL) 1:5 v/v, Kelpak®  (KEL) 10-8 M and Eckol 

(ECK) 10-8 M, on the growth of A. hybridus. The second stage of the research was to 

evaluate the effect of organic biostimulants (SW, KAR1, VCL, KEL and ECK) on the 

growth and biochemical composition of A. hybridus, with water (H2O) and gibberellic 

acid (GA) being used as the negative and positive controls respectively. The third 

stage of the research was to investigate the effect of the interaction of microorganisms, 

Bacillus licheniformis (BL) and Pseudomonas fluorescens (PF) and a biostimulant 

(KEL) on the growth and chemical composition of A. hybridus. The final stage was to 

investigate the effect of organic biostimulants on the growth of two other amaranth 

species, Amaranthus caudatus and Amaranthus retroflexus. 

In terms of the general requirements for the successful establishment of A. hybridus, 

it was observed that nitrogen, phosphorus and potassium (NPK) play a very critical 

role. The plant can grow to some extent in the presence of small amounts of P and K 

but cannot survive in the absence of N. In terms of nutrient strength, the crop achieved 
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significant growth at 50% HNS to indicate the plant grows well with the availability of 

nutrients. With regard to the experiment on water requirements, it was concluded that 

watering frequency has a strong influence on the growth of A. hybridus as most 

vegetative growth of the plant was achieved when water was applied to the plant three 

times per week. On the effect of light intensity on growth and chemical composition of 

A. hybridus, it was concluded from the results of the experiment that the crop is 

strongly light- dependent since the most significant growth was achieved at the highest 

light intensity of 600 µmol m-2 s-1. This could be due to the fact that large amounts of 

photosynthetic products are synthesised at high light intensity. This explains the 

increased growth of the crop. 

A. hybridus could not grow in the absence of N and in another investigation to try to 

replace the lack of N in the soil with biostimulants, the plant was only able to grow with 

KEL supplementing for N, i.e. in –N (HNS) + KEL. The conclusion from the experiment 

was that KEL can be used as a substitute for N when growing A. hybridus in a soil 

where the element is lacking.  

The treatment of A. hybridus with 50% HNS + biostimulants (SW, KAR1, VCL, KEL 

and ECK) at different irrigation frequencies (once, twice and thrice) resulted in 

significant effects when the plant was irrigated more than once a week. When the 

application was done twice a week, 50% HNS + SW had a significant effect on AGR 

and RGR (height) and RGR (leaf number) whilst 50% + KAR1 had a significant effect 

on both AGR and RGR (height) and RGR (leaf number). Application of treatments 

thrice a week resulted in KAR1 having a significant effect on both AGR and RGR for 

height and number of leaves. 50% HNS + KAR1 is the best treatment that can be 

applied  twice or thrice a week to increase the AGR and RGR for both the height and 

leaf number since there is bound to be more branching and more leaf formation as the 

plant grows taller. This increases the number of tender leaves being formed as they 

are suitable for human consumption as green vegetables. 

In the investigation of the effect of organic biostimulants and mode of application on 

growth and biochemical composition of A. hybridus, KAR1 significantly improved most 

growth parameters of the plant when applied via soil drenching. VCL was observed to 

enhance growth in A. hybridus as a foliar spray as it had a significant effect on most 

growth parameters of the crop. The same could be said of KEL when the biostimulants 
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were applied via a combination of soil drench and foliar spray. In terms of the 

biochemical composition of A. hybridus, KAR1, VCL and KEL significantly influenced 

the biochemical composition when applied as a foliar spray. KAR1 and VCL enhanced 

the protein content in the plant while KEL significantly increased the protein content 

and photosynthetic pigment content of A. hybridus. In terms of the mineral composition 

of A. hybridus, KEL, ECK and VCL had notable effects on nutrient levels of the crop, 

with KEL significantly improving N, Ca, Mg, K, Na, Zn, Cu and P levels. It was 

concluded that KEL is the ideal biostimulant for enhancing the mineral content of A. 

hybridus. This biostimulant boosts levels of Zn which is normally lacking in the diet 

and this is important for nutrition security. 

In the experiment to investigate the effect of organic biostimulants and mode of 

application on the antioxidant activity and phytochemical composition of A. hybridus, 

it was concluded from the results that, generally, the treatments and mode of 

application had little or no influence at all. SW applied via drenching was the only 

treatment which significantly enhanced the amount of condensed tannins in the green 

leafy vegetable. 

In the experiment to investigate the effect of the interaction of microbes and 

biostimulants on the growth and biochemical composition of A. hybridus, it was 

observed that microbes alone had no effect. Microbes were only effective in 

combination with KEL. KEL improved the growth and photosynthetic pigment content 

and PF generally enhanced the mineral content of A. hybridus. It can be concluded 

that microorganisms and KEL could work in a complementary or interactive manner to 

improve growth, biochemical composition and mineral content of A. hybridus.  

The other two species of amaranth, A. caudatus and A. retroflexus responded in a 

similar manner to A. hybridus in terms of general growth when treated with organic 

biostimulants using different application methods. They could also be harnessed to 

increase amaranth vegetable production.
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CHAPTER 1: General Introduction  
___________________________________________________________________ 
 

1.1 Introduction 

 

An estimated 9 billion people are expected to inhabit planet Earth midway through this 

century (ABRAHAM et al., 2014; KHOURY et al., 2014), feeding this huge population 

is a major global challenge. This has been aggravated by climate change, which is 

often linked with increases in both biotic and abiotic stresses, culminating in crop 

failure in many affected regions (ALEMAYEHU et al., 2015; CHENG et al., 2017). 

Many countries, particularly those in moist, hot, dry and arid regions of the world, face 

the brunt of climate change (ABRAHAM et al., 2014; GORNALL et al., 2010; 

MASSAWE et al., 2015). Besides climate change, other factors limiting crop 

production include natural resources which have been abused, increased soil erosion 

and accelerated land degradation (ARAUS et al., 2008; ASHRAF et al., 2016; 

CHENG et al., 2017; DELGADO et al., 2011). Statistical results show that nearly 795 

million humans do not have sufficient food (BURCHI et al., 2011; OGUNTOYINBO et 

al., 2016), with an estimated 2 billion people worldwide suffering from “hidden hunger” 

i.e. micronutrient deficiencies (BURCHI et al., 2011). The majority of those affected 

are found on the African continent (with the highest occurrence of “undernutrition” in 

sub-Saharan Africa) and the Indian subcontinent (MUTHAYYA et al., 2013; 

OGUNTOYINBO et al., 2016). There is a need to increase food production to meet 

the demands of the growing world population and address climate change challenges 

(ALEMAYEHU et al., 2015; MASSAWE et al., 2015). The provision of a diversity of 

food sources and agricultural systems remain the only critical premise for assuring 

future food security (FAO, 2015; MASSAWE et al., 2015). There has been a huge 

loss of genetic diversity and this also retards crop improvements and negatively affects 

sustainable agriculture (FU, 2015). About 2.7 million people worldwide die every year 

due to insufficient consumption of vegetables and fruits (KEDING, 2010) and this is 

one of the top 10 mortality risk factors (EZZATI et al., 2002). These deaths are more 

common in low and middle income countries (KEDING, 2010). A solution to this 

current epidemiological scenario calls for foods rich in nutrients which are easy to 

obtain (MAURYA and ARYA, 2018). Rampant micronutrient deficiencies, especially 

vitamin A, iron, iodine, magnesium, selenium and zinc, are responsible for diseases 
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that include cardiovascular diseases, cancer, chronic respiratory diseases and 

diabetes (KEDING, 2010), all of which are on the increase according to the World 

Health Organisation (2007). There is also a high incidence of non-communicable 

diseases globally, such as stunted growth, goitre, blindness, kwashiorkor and 

marasmus, due to the preference for simple diets with high energy content but low in 

micronutrients (MEDOUA and OLDEWAGE-THERON, 2014; NNAMANI et al., 

2015). The International Food Policy Research Institute (IFPRI) predicted an 18% rise 

in the number of children suffering from malnutrition in sub-Saharan Africa by the year 

2020 (ROSEGRANT et al., 2001), with many countries facing difficulties in solving 

under-nutrition and deficiencies of micronutrients (LOPRIORE and MUEHLHOFF, 

2003). To ensure a healthy and high-quality diet, it is imperative to consume the right 

qualities of a wide range of food categories (SCHREINEMACHERS et al., 2018). 

There is a need to promote the increased consumption of fruits and vegetables, since 

they are known to contain micronutrients which are beneficial for health. Many contain 

other non-nutrient phytochemicals linked to health maintenance and prevention of 

chronic diseases (STEINMETZ and POTTER, 1996; UUSIKU et al., 2010). This 

makes fruits and vegetables essential sources of micronutrients required for healthy 

diets (BALDERMANN et al., 2016; SCHREINEMACHERS et al., 2018). Vegetables 

contain K, which aids, in the maintenance of a healthy blood pressure. Cholesterol 

levels are controlled by fibre content of the vegetables thereby lowering the risk of 

heart diseases. The risks of birth defect are reduced by folate (folic acid), whilst skin 

and eye health is maintained by vitamin A. The health of teeth and gums and the 

absorption of iron is partially the responsibility of vitamin C (NESAMVUNI et al., 2001; 

SCHREINEMACHERS et al., 2018; YANG and KEDING, 2009). In this era of the 

AIDs pandemic, micronutrient and antioxidant rich diets are now highly recommended 

to complement HIV/AIDS therapies (ELISHA et al., 2016; YANG and KEDING, 2009). 

The WHO recommends a minimum intake of 400 g per day of fruits and vegetables to 

minimise the risks of chronic diseases (SMITH and EYZAGUIRRE, 2007). 

From a total of 10 000 edible plant species used by mankind, only a paltry 150 species 

are commercialised on a global scale. Only 12 provide 80 percent of dietary energy 

which is derived from plants. Only four species provide approximately 60 percent of 

the global protein requirement. Many plant species and varieties are classified as 

underutilised or neglected crops because of their marginalisation by both agriculture 
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and nutrition researchers (VENSKUTONIS and KRAUJALIS, 2013). One way of 

achieving sustainable agriculture is by unlocking the genetic potential of these 

underutilised crops (CHENG et al., 2017). Of concern is the regular and constant 

improvement and transformation of highly productive crops, mainly exotic crops, with 

little or nothing being done on the numerous underutilised traditional crops (also known 

as “neglected or orphan plants”) (DANSI et al., 2012; JACOBSEN et al., 2013). 

Therefore, it is imperative to value neglected and underutilised crops by placing them 

at the core of scientific research so that they can also be improved and transformed 

into highly productive crops to feed and meet the demands of humankind (DOEBLEY 

et al., 2006). Some of these crops demonstrate notable tolerance to different types of 

stress factors which include drought and heat (CHENG et al., 2017; NNAMANI et al., 

2015). The value of these underutilised and neglected crops goes far beyond being 

climate-resilient as many of them are packed with superior nutritional and nutraceutical 

attributes (CHENG et al., 2017; MOYO et al., 2013; RASTOGI and SHUKLA, 2013). 

Diversification of crops and consumption patterns to include underutilised traditional 

leafy vegetables is one of the most sustainable ways to reduce and control 

micronutrient deficiency disorders (NNAMANI et al., 2015; SALVI and KATEWA, 

2016). Neglected and underutilised crops have the potential to improve food and 

nutrition security, increasing agricultural diversification and reducing environmental 

land degradation (ALEMAYEHU et al., 2015; FOMSGAARD et al., 2011; MASSAWE 

et al., 2016). 

 

1.2 Rationale for the research 

 

One of the recommended strategies for climate change mitigation and adaptation is 

the incorporation of drought and heat stress tolerant crops into agriculture so as to 

establish different cropping systems (DELGADO et al., 2011; MORTON, 2007; 

SCHREINEMACHERS et al., 2018). KwaZulu-Natal is rich in traditional leafy 

vegetables (TLVs), which are diverse, have short growing cycles and use irrigation 

water efficiently, thereby reducing a farmer’s vulnerability to climate change effects 

(SCHREINEMACHERS et al., 2018). Despite the importance and high nutritional 

value of TLVs in household food security in rural and peri-urban KwaZulu-Natal (MODI 

et al., 2006), there is no information about the improvement and production potential 
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of TLVs in the province (LEWU and MAVENGAHAMA, 2010). There is an urgent 

need to carry out more empirical investigative research on improving the productivity, 

nutritional value, domestication and promotion of TLVs for their adoption and 

cultivation in mainstream commercial agriculture. This could go a long way in 

alleviating nutritional deficiencies among rural and peri-urban communities in 

KwaZulu-Natal (DOVIE et al., 2007; MHLONTLO et al., 2007). A number of wild plant 

species are utilised as vegetables in KwaZulu-Natal by rural and peri-urban 

communities. According to ODHAV et al. (2007), 12 out of 20 wild vegetable species 

have a mineral concentration above one percent of plant dry weight and this is much 

higher than that in exotic vegetables like cabbage and spinach. Among such wild 

traditional vegetables of superior nutritional content are the amaranths, which are one 

of the most popular TLVs which have been recommended for cultivation (ODHAV et 

al., 2007). Exploitation of local biodiversity with regards to vegetables is a practical 

and sustainable way of addressing the burden of malnutrition in rural and peri-urban 

communities (NEUGART et al., 2017). Studies have shown that TLVs have high 

energy and protein contents, are good sources of fat and also have a high fibre 

content. They also have high amounts of micronutrients such as zinc. There is minimal 

cultivation of these plants despite their vital importance, as more attention is being 

directed towards exotic species (ODHAV et al., 2007). TLVs are suitable for growing 

in areas with unfavourable weather conditions, hence the need for them to be 

explored, developed and exploited more. TLVs could be a solution to the critical state 

of food security and for meeting the nutritional and medicinal demands of an ever 

increasing human population (CHENG et al., 2017).  

Amaranths are an underutilised crop and are a cheap source of proteins, minerals, 

vitamins A and C, making them a promising crop for the future. These plants are 

currently in demand due to a change in consumer demands which now favours 

organically grown crops which are more nutritionally balanced (ALEMAYEHU et al., 

2015). The plant is normally harvested from the wild as a weed on a seasonal basis, 

since it only grows in summer (TALENI and GODUKA, 2013).  

The amaranth plant has unique nutrient composition, medicinal qualities (LAKSHMI 

and VIMALA, 2000; SHUKLA et al., 2006) and a high tolerance of drought and other 

stress factors, including diseases (BARRIO and AÑÓN, 2010). This makes it an ideal 

candidate for climate change mitigation strategies and extended use in marginal 
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agricultural land to improve agricultural systems in rural and semi-urban areas of 

KwaZulu-Natal. Amaranthus can grow on different soils and under different agro-

climatic conditions (KATIYAR et al., 2000; SUDHIR and SINGH, 2000). All these 

positive attributes substantiate the use of amaranth as a vegetable which could serve 

as a cheap, alternative source of protein and other nutrients for rural and peri-urban 

people in KwaZulu-Natal. Amaranthus is now perceived as a promising food crop due 

to its resistance to stresses like heat, drought, diseases and pests in addition to the 

high nutritional value of both its leaves and seeds (WU et al., 2000). Improvement of 

Amaranthus through research and development could go a long way in malnutrition 

elimination, health promotion and ensuring food security (ACHIGAN-DAKO et al., 

2014) for subsistence and small scale farmers in of KwaZulu-Natal and other 

provinces of South Africa. The main focus of this research was to investigate the 

effects of organic biostimulants on the growth of Amaranthus hybridus and to evaluate 

other methods of enhancing its growth and productivity. 

 

1.3 Research aims and objectives 

 

 To develop strategies to improve the nutritional value of A. hybridus through the 

use of organic biostimulants in terms of growth rate, leaf size, stem length and 

diameter; 

 To assess the effects of biostimulants on A. hybridus seed germination, 

(germination rate, seedling length and seedling weight);  

 To calculate  absolute growth and relative growth rate of A. hybridus; 

 To evaluate the effects of organic biostimulants on the biochemical composition of 

A. hybridus (protein content, chlorophyll content, carotenoids and total 

carbohydrate content); 

 To evaluate the effects of organic biostimulants on pharmacological properties of 

the traditional leafy vegetable (A. hybridus) i.e. antioxidants, total phenolic content, 

vitamins and tannins; 

 To assess the effect of mode of application of biostimulants on the growth of A. 

hybridus (drenching, foliar application and drenching/foliar application); 

 To investigate the effect of nutrient strength, (NPK) and –N + organic biostimulants 

on A. hybridus growth and, 
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 To assess both the effects of organic biostimulants and mode of application on two 

other species of Amaranthus; A. caudatus and A. retroflexus. 

 

  



  

7 
 

CHAPTER 2: Literature Review 
___________________________________________________________________ 

 

2.1 Background 

 

Since the shift of humans from hunting and gathering some many years ago and the 

introduction of the Green Revolution, agriculture has become the mainstay of food 

supply systems for mankind (HUESTON and MCLEOD, 2012) and has been mainly 

responsible for emerging civilisations and their increasing populations (MABHAUDHI 

et al., 2018a). Agriculture has evolved over time with humans gaining more knowledge 

and coming up with inventions, with the Industrial Revolution in Europe being one of 

the most notable events, which saw an advancement of farming practices and 

inventions of new farming technologies (HUESTON and MCLEOD, 2012). These 

successful scientific advancements, because of demand shaped by social and 

economic forces, caused a shrinkage of the list of crops feeding the world (HUESTON 

and MCLEOD, 2012), especially as a result of the Green Revolution. Though 

successful in most industrialised countries (such as parts of Asia, North America and 

many parts of Europe), the Green Revolution was less successful in most parts of 

Latin America and a large chunk of Asia and Africa, which are still languishing with 

chronic hunger (PINGALI, 2012). Noteworthy products of the Green Revolution are 

high-yielding crop varieties with a greater dependency on high fertilizer and water 

inputs (GOLLIN and EVENSON, 2003). The Green Revolution, though successful 

with regards to increased production, also gave rise to new challenges for mankind 

such as environmental degradation and pollution (KERR, 2012; PINGALI, 2012) and 

biodiversity loss as more forests had to be cleared to expand agricultural land 

(DUDLEY and ALEXANDER, 2017; KERR, 2012). This resulted in an increase in 

malnutrition due to a lack of diversity in the diet (GÓMEZ et al., 2013), as it brought 

homogeneity to global food supplies, with only three crops being cultivated to supply 

the world’s food energy requirements. Only a paltry 20 plant species comprise 90% of 

the world’s calories, making human diets around the world very similar (KHOURY et 

al., 2014; MASSAWE et al., 2016) with the “big three cereals”, maize (Zea mays), 

wheat (Triticum aestivum) and rice (Oryza sativum), dominating the diet (ABRAHAM 

et al., 2014; KHOURY et al., 2014). Most other crops are losing ground both 
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agriculturally and commercially (ABRAHAM et al., 2014). This is a very sad scenario 

since some of these crops favoured for intensive agriculture may not be the most 

suitable species to grow in marginal areas and may also not be able to cope with the 

current prevailing adverse weather conditions in many parts of the world caused by 

climate change (MIJATOVIĆ et al., 2013). Currently dominating the global 

Sustainable Development Agenda is the failure of the global food system to provide 

the basic food needs of the citizens of the world in an equitable manner (MABHAUDHI 

et al., 2018a; MABHAUDHI et al., 2018b). The lack of diversity in modern food supply 

systems makes them more vulnerable to shocks of both an economic and climatic 

nature due to a lack of a buffering effect and non-resilience against these risks 

(GREENBERG, 2017) and exposure to pests and diseases (PINGALI, 2012). The 

post-colonial replacement and eventual relegation of underutilised and traditional 

crops by the introduction of high yielding but input intensive exotic crops, has to some 

extent contributed to the limited success of the global food supply system 

(SEBURANGA, 2013; SHELEF et al., 2017). These crops, which used to form the 

basis of local food systems, are now in neglect, especially in sub-Saharan Africa, 

including South Africa (MABHAUDHI et al., 2018a). It is evident that conventional 

agriculture is encountering very serious limitations in the form of a decline in natural 

resources and environmental damage inflicted by current agricultural practices (LE 

MIRE et al., 2016). Urbanization and multinational food industries are further 

aggravating the situation since the majority of humans now consume processed and 

fast foods (CORDAIN et al., 2005; SANZ-CAÑADA AND  MUCHNIK, 2016; TILMAN 

and CLARK, 2014). This exacerbates the rise of excessive calorie intake and poor 

nutrition induced non-communicable diseases such as diabetes, strokes, heart attack, 

and some types of cancer (DWIVEDI et al., 2017; GREENBERG, 2017; SANZ-

CAÑADA AND  MUCHNIK, 2016). Another risk posed by the current food production 

systems is that any slight “glitch” would have far-reaching consequences like serious 

famine and even civil unrest, particularly in developing countries (DUDLEY and 

ALEXANDER, 2017). Increased crop diversification can go a long way to alleviating 

such global problems of hunger and civil unrest (BUA and ONANG, 2017). The 

cultivation of a wide variety of crops is not only a strategy to ensure sustained global 

food supplies but a tool for fighting famine, hidden hunger and “over nutrition” 

(MASSAWE et al., 2016; SANZ-CAÑADA AND  MUCHNIK, 2016). The main 

challenges facing agriculture today are; the high demand for food which is safe, rich 
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in nutrients and healthy and also the obligation to safeguard biodiversity and other 

natural resources in addition to the challenges being caused by climate change 

(DWIVEDI et al., 2017). There are mounting calls of late for diets which are diverse 

and healthy and are generally plant-based, to curb or minimise illnesses which are 

linked to poor diet (DWIVEDI et al., 2017). A diet is considered to be healthy and 

sustainable when it provides all essential nutrients, minerals and vitamins with minimal 

impact on the environment (PERIGNON et al., 2017). Out of the approximately 50 000 

edible plant species, only a mere 300 species are consumed (JACQUES and 

JACQUES, 2012). This global food consumption pattern is worrisome and authorities 

implore humans to utilise a wide range of food sources so as to fight against the ever 

growing global challenge of malnutrition and food insecurity (MASSAWE et al., 2016). 

The world should consume more of the so called underutilised or orphan crops (also 

classified as ‘minor crops’) (MASSAWE et al., 2016; MASSAWE et al., 2015). These 

so called underutilised crop plants possess resilient traits and are capable of resisting 

stresses such as drought, flooding, extreme temperatures, as well as pests and 

diseases unlike the major staples (MAYES et al., 2011). The incorporation of such 

crops into global food systems would go a long way towards addressing climate 

change challenges, in addition to tackling the problem of malnutrition facing the world 

at the moment (CHENG et al., 2017). 

It is only prudent that food systems and diets be diversified since it improves human 

health, besides having other multiple benefits such as healthy ecosystems. Much has 

been documented about the numerous benefits derived from biodiversity, such as how 

critical it is for the well-being of humans, and how adopting a food-based dietary 

diversity strategy has social, cultural economic and environmental benefits (DWIVEDI 

et al., 2017). There is a need for researchers to come up with innovative methods to 

produce more food and improve its nutritional quality but at the same time reduce the 

negative impacts of agriculture on the environment. 

 

2.1.1 Agroecology 

 
According to LE MIRE et al. (2016), agroecology involves the application of ecological 

principles to agricultural systems in the context of sustainable production. The aim is 

to optimize both the economic and environmental performances of beneficial 
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ecosystem services so as to enhance productivity and resilience of the cultivated 

ecosystems. This also goes a long way in the preservation of natural ecosystems. 

Performance maintenance can only be achieved through the development of new 

technologies that increase tolerance of plants to various abiotic and biotic stresses. 

Agroecology offers an important scientific strategy which takes cognisance of 

concerns of society concerning agriculture, the economy and particularly the 

environment (LE MIRE et al., 2016). The main aim of agroecology is making use of 

ecological principles to study and design agricultural systems reliant on interactions of 

their biophysical, technical and socioeconomic components. To this end, a lot of 

research is focussing on agroecological principles to reduce chemical inputs which 

can be harmful, and managing ecological relationships and agrobiodiversity (LE MIRE 

et al., 2016). A lot of technological tools have been developed in the past decades 

which promote sustainable agroecosystems. One such innovation is the use of 

biostimulant products as substitutes for the use of chemical fertilisers (LE MIRE et al., 

2016). This also saves energy and provide farmers with new opportunities for 

sustainable fertilization and control of pests and diseases (CALVO et al., 2014; 

MEJÍA-TENIENTE et al., 2010). 

 

2.1.2 Plant biostimulants (PBs) 

 
The world is faced with a very serious dilemma of the ever-rising human population 

which has in turn imposed pressure on agricultural land. This has led to an increased 

demand for production on a unit area and has also resulted in a shift of cultivation to 

extreme marginal areas and types of soils. High yields could be achieved by farmers 

when they also use high nutrient fertilisers but the heavy chemical fertiliser 

requirements have also brought about costs for the farmers. One of the most important 

restrictions of agricultural production worldwide is the immoderate use of fertilisers 

under non-biological stress conditions (JEWELL et al., 2010). The situation is being 

further aggravated by climate change and global warming. These have worsened the 

occurrence and severity of many stresses of a non-biological nature, such as high 

temperatures and drought, and have caused notable yield reductions in food crops. 

As scientists are looking for more advances to produce more crops for food to feed 

the ever-rising human population and benefits of harvesting from the agricultural 

economy, the agro-ecosystem and socio-economic challenges get more severe 
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(ZHANG et al., 2018). Unpredictable climate, shrinking of agricultural lands, depleting 

of natural resources, poor soil nutrition and reduced crop responses to agrochemicals 

are the major problems now being faced by farmers. This has caused an increase in 

concerns for agricultural sustainability and improving the health of plants.  

Feeding an ever increasing world population in a proper manner without upsetting the 

delicate balance of nature is the major challenge of agriculture. There is a need to 

achieve the second goal of the United Nations, the Sustainable Development goal of 

“ending hunger, achieving food security and improved nutrition and promoting 

sustainable agriculture”. Climate change and global warming effects will result in more 

environmental stress being imposed on crop plants globally (PACHAURI et al., 2014). 

Rising seas, soil erosion, salinization and desertification will consume a large chunk 

of high quality agricultural lands as climate change progresses into the 21st century. 

This calls for the need to maintain crop yields against a backdrop of reduced 

agriculturally productive land and more adverse climatic conditions since agricultural 

production has to be sustained so as to meet consumer demands. This can only be 

attained through the efficient utilization of the available resources for making and 

providing products which are healthy (COLLA and ROUPHAEL, 2015). 

The current scenario of climate change, natural resource depletion and increase in 

hunger and malnutrition, calls for sustainable agricultural production and utilisation of 

resources (SHUBHA et al., 2017). Today’s agriculture is faced with a plethora of 

challenges like a decline of natural resources and damage inflicted on the environment 

by current agricultural practices (LE MIRE et al., 2016), hence the need for the 

adoption of scientific approaches which are sustainable. Food is one of the basic 

needs of mankind and is crucial in health and development of human societies, so 

there are undesirable and disastrous outcomes caused by the extensive increases in 

both environmental degradation and continued population increase as it is inevitable 

that the current food supplies will not be able to meet world food demand in the long 

run (GAVELIENĖ et al., 2018). Scientists are looking for food production strategies 

which are sustainable and environmentally friendly because of the increased demand 

for better yields and quality of food crops (XU and GEELEN, 2018) as prompted by 

the ever increasing world population. An estimated 9.7 billion people are expected to 

inhabit planet Earth by 2050 and this compels modern agriculture to become more 

efficient in producing more food in an eco-friendly and sustainable manner 
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(ROUPHAEL et al., 2018). Food is one of the basic needs and it plays a key role in 

health and development of any society (ETESAMI and MAHESHWARI, 2018). A lot 

of research has been done to discover substances for use in crop production capable 

of improving growth of plant, productivity and quality as well as assisting plants to 

overcome stresses imposed by the environment (PARAĐIKOVIĆ et al., 2019). One 

way of achieving this is the production of fertilisation reagents of biological origin to 

minimise the use of chemical fertilisers as fertiliser usage has been the most popular 

strategy for enhancing agricultural production. With degradation of agricultural land 

and uncertainty of climate change, biostimulants promise to be a most viable and 

sustainable option (PARAĐIKOVIĆ et al., 2019).  

Biostimulant is the name given to substances and microorganisms which act on plants’ 

metabolic and enzyme processes, thereby increasing plant growth, nutrition efficiency, 

crop quality traits and environmental stress tolerance (SHUBHA et al., 2017; WOO 

and PEPE, 2018; XU and GEELEN, 2018). The European Biostimulants Industry 

Council (EBIC) defines biostimulants as “substance(s) and/or micro-organisms whose 

function when applied to plants or the rhizosphere, is to stimulate natural processes 

to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, and 

crop productivity (DU JARDIN, 2015; XU and GEELEN, 2018). Besides anti-stress 

support, growth stimulation, increasing nutrient absorption and crop productivity 

enhancement, biostimulants also assist in breaking dormancy, increase the size of 

fruits, increase root development and photosynthetic and vegetative tissue activities. 

They also increase plant vigour and uniformity, control flowering and aid fruit setting 

and ripening. All these attributes of biostimulants result in crop improvement, growth, 

development and production (BULGARI et al., 2019; PARAĐIKOVIĆ et al., 2019), 

hence the move for their inclusion in agricultural practices with the aim of reducing 

chemical inputs, enhancing productivity and reinstating the natural balance of agro-

ecosystems (WOO and PEPE, 2018). The mode of application of biostimulants 

depends on their composition and expected outcomes so they can be applied to the 

soil (drenching) or on leaf surfaces (foliar application) (KUNICKI et al., 2010). 

Plant biostimulants are normally incorporated into agricultural practices with the aim 

of reducing the use of chemical inputs, to increase production, and to re-establish the 

natural equilibrium in agro-ecosystems. The substances are also applied to enhance 

crop productivity and nutritional quality of agricultural foods. Biostimulant formulations 
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can be mixtures of different substances such as, humic and fulvic acids, protein 

hydrolysates, extracts of plants or seaweeds, silicon, chitosan, inorganic compounds, 

beneficial fungi (i.e. arbuscular mycorrhizal fungi; AMF and Trichoderma spp.) and 

plant growth-promoting bacteria (CANELLAS et al., 2015; COLLA and ROUPHAEL, 

2015; ROUPHAEL et al., 2015; YAKHIN et al., 2017). The term biostimulants is a bit 

ambiguous because not all elements mentioned in the description of biostimulant 

formulations are biological and “bio” prefix could be because of the living organism 

component and substances of biological origin. Non-organic components are also 

believed to stimulate biological processes, regulating the physiology of the plant 

metabolic processes instead, and the non-organic factors can be considered as 

positive effectors of the “biological” processes that regulate plant physiology, 

metabolism, morphology and relationships in the agro-ecosystem (PARAĐIKOVIĆ et 

al., 2019; YAKHIN et al., 2017).  

 

2.1.3 Biostimulants and vegetable production 

 
Currently, consumers and scientists the world over prefer vegetables grown 

organically because of the growing awareness for healthy and safer foodstuffs 

(DORAIS and ALSANIUS, 2015) and this has seen global organic agriculture 

doubling since 2008. By 2014, a staggering 3.5 million hectares was under organic 

cultivation and organic farming was being practised in over 87 countries (WILLER and 

LERNOUD, 2016). Reports on organic horticulture confirm that it is a system which is 

environmentally friendly and enables food production without being detrimental to the 

environment, resulting in conservation of both water and the environment with minimal 

chemical inputs (DORAIS, 2007). The major limitation of this strategy is the reduced 

yield when compared to conventional agriculture (DORAIS and ALSANIUS, 2015; 

SEUFERT et al., 2012), so more land is required to get the same amount of food as 

that produced by conventional agriculture. This encourages deforestation, as there is 

a need for more land so as to generate the same amount of food, and this 

compromises the benefits to the environment derived from organic farming 

(TREWAVAS, 2001). Therefore a better approach would be the use of biostimulants, 

which seem to be a potential and environmentally friendly strategy to increase food 

production without compromising the environment (ROUPHAEL et al., 2017b). 

According to greenhouse studies, nutrient uptake and assimilation are promoted in 
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those plants grown under biostimulant application (COLLA et al., 2015a). Factors 

which are believed to be responsible for the increase of uptake of nutrients by plants 

are; an increase in soil enzymatic and microbial activities, changes/alteration of root 

architecture as well as an enhancement in micronutrient mobility and solubility 

(COLLA et al., 2015b; ERTANI et al., 2009; LUCINI et al., 2015). 

Biostimulants influence development in all the different phases of the crop’s life cycle, 

starting from seed germination up to maturity. They improve the efficiency of the 

plant’s metabolism to induce yield increases and enhanced crop quality (COLLA et 

al., 2017a, CALVO et al., 2014). They are also known to enhance plant tolerance to 

both abiotic and biotic stress (COLLA et al., 2017a, CALVO et al., 2014). 

Biostimulants enhance plant nutrient assimilation and also increase the quality of agro-

products like sugar content, colour, fruiting, seeding, etc. They improve water use 

efficiency of plants and also foster the development of complimentary soil 

microorganisms which improves soil fertility (COLLA et al., 2017a; ROUPHAEL et al., 

2015). 

Application of biostimulants can be done directly onto the plant itself, to seeds, the soil 

or in any growing media capable of enhancing the ability of the plant to assimilate 

nutrients. Plant growth promotion resulting from better nutrient uptake caused by 

biostimulants of microbial origin are linked to several mechanisms such as supplying 

N through biological N2 fixation (COLLA et al., 2017a). They make more soil nutrients 

available for uptake by plants via the solubilisation of mineral phosphates and other 

nutrients through the production of small metal-binding molecules such as organic 

acids and siderophores and also through the release of specific enzymes like 

phosphatases (COLLA et al., 2017a; CALVO et al., 2014).  Plant access to soil 

nutrients is enhanced by the increase in volume of soil accessed by the root system 

(HAYAT et al., 2010; ROUPHAEL et al., 2015).  

Biostimulants are very different from crop inputs that have been traditionally used in 

terms of operation mechanisms as they are quite distinct from those of fertilisers. Also, 

biostimulants are very different from products used in crop protection, in that they only 

influence the plant vigour, with no direct action on either pests or diseases (CALVO 

et al., 2014). 

 



  

15 
 

2.1.4 Classification of plant biostimulants (PBs) 

 
Plant biostimulants (PBs) fall under different categories according to their influence 

and/or role in influencing plant growth. Plant biostimulants have been defined as a 

variety of substances and microorganisms which are administered to plants in order 

to increase their nutrition efficiency, abiotic stress tolerance and/or crop quality traits 

regardless of their nutrient content (DU JARDIN, 2015). 

Plant biostimulants can be used to enhance nutrient availability to those plants 

exposed to nutrient deficiency caused by lack of nutrients in the soil or poor solubility 

of the nutrients in the soil solution. Plant biostimulants can increase nutrient availability 

through increasing soil cation exchange capacity by providing N to crops and/or 

increasing the solubility of nutrients in soil (DE PASCALE et al., 2017). Humic 

substances (HS) are obtained from the chemical and biological transformation of dead 

organic matter as well as microbial metabolism (CANELLAS et al., 2015; DU 

JARDIN, 2015). HS are known to have a key role on physico-chemical parameters of 

soils and are responsible for root-growth stimulation and plant nutrition improvement 

because of soil nutrients (CANELLAS et al., 2015; DU JARDIN, 2015). Humic 

substances make nutrients available for plants by increasing the cation exchange 

capacity and buffering (neutralise) soil pH (CANELLAS et al., 2015; DU JARDIN, 

2015). Humic substances also form complexes with micronutrients (this prevents 

leaching, thereby making micronutrients more available for plants) (CHEN et al., 

2004b; GARCÍA-GIL et al., 2004). Humic substances stimulate plasma membrane 

ATPase activity, thereby increasing H+ extrusion from roots and this lowers the root 

surface pH, which triggers soil nutrient availability for improved uptake and 

translocation (CANELLAS et al., 2015). It is also believed that HS could have notable 

effects on secondary metabolism and stress alleviation (DE PASCALE et al., 2017). 

Humic substances have been shown to be effective in plant tolerance to salinity in 

tomato and okra according to TÜRKMEN et al. (2004) and PAKSOY et al. (2010) 

respectively.  

The protein hydrolysates (PH) are another group of important PBs and are actually 

mixtures of polypeptides, oligopeptides and amino acids made from partial hydrolysis 

of protein sources (SCHAAFSMA, 2009). According to COLLA et al. (2017a), they 

are found in granular or powder form as well as liquid extracts and can be applied on 
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leaves as foliar sprays or dosed near the root system. Protein hydrolysates act on 

plants by improving soil respiration, microbial biomass and activity, so that 

microorganisms can easily use amino acids and peptides as a C and N source 

(FARRELL et al., 2014). They also enhance plant nutrition by forming complexes and 

chelates between peptides/amino acids and soil micronutrients (Cu, Fe, Mn and Zn) 

making nutrients more available and easily acquired by the root system (COLLA et 

al., 2015a; DU JARDIN, 2015). Protein hydrolysates are involved in chelate formation 

with macro- (K, Ca and Mg) and micronutrients (Cu, Fe, Mn and Zn) which are used 

by industries to develop fertilisers with high nutrient use efficiency (DE PASCALE et 

al., 2017). 

Plant growth promoting fungi (PGPF) like arbuscular mycorrhiza fungi (AMF) and 

Trichoderma spp. can promote plant growth by making nutrients like N, P, and Fe 

more available (DORAIS, 2007). For this reason, different symbionts and non-

symbionts are now being used in enhancing nutrient availability to improve plant 

productivity in both conventional and organic farming (CALVO et al., 2014; HAYAT et 

al., 2010). The mechanism of how PGPF-mediated improvement to crop productivity 

still needs to be explained (DEY et al., 2004). Many PGPF can produce plant 

hormones such as auxins, cytokinins, gibberellins, ethylene and abscisic acid (HAYAT 

et al., 2010). This may explain their role in stimulating plant growth and development 

by stimulating root growth and nutrient and water uptake (auxins). Cytokinins promote 

mitotic cell division in both shoots and roots and also delay senescence. Gibberellins 

play an important role in fruit and flower formation and fruit improvement. They also 

break dormancy of vegetative organs and promote seed germination (MÉTRAUX, 

1987). Abscisic acid is responsible for plant adaptive responses to environmental 

stresses like drought, high salinity and plant development (seed maturation and 

dormancy) (MIYAKAWA et al., 2013). 

Many PGPF increase phosphate solubility in the soil, making phosphate readily 

available for uptake by plants (CANBOLAT et al., 2006). Arbuscular mycorrhizal fungi 

(AMF) act in the same manner as PGPF by enhancing the availability of phosphorus 

(ROUPHAEL et al., 2015). 

There are several factors at play when plants absorb nutrients, some of which include 

conditions of the environment, the microorganisms related to the roots of the plant and 
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lastly the species of plant. According to many studies, plant biostimulants such as 

humic substances (HS), protein hydrolysates (PHs) and seaweed extracts (SWE) are 

able to enhance root growth and development due to auxins found in most PBs. 

According to other reports, the recommended rate of PBs when applied is below 

threshold in terms of causing root stimulation by auxins (WALLY et al., 2013), thus 

attributing the root stimulation effect by biostimulants to the interaction of organic 

molecules from biostimulants with receptors on the cell membrane causing a signal 

transduction pathway through modulation of hormones within cells 

(BATTACHARYYA et al., 2015). Protein hydrolysates as plant biostimulants have 

been reported to have root stimulation effects in tomato, lettuce and corn (COLLA et 

al., 2014; COLLA et al., 2015b).  

According to PACHOLCZAK et al. (2016) and VERNIERI et al. (2006), SWE stimulate 

rhizogenesis and root growth when applied to plants or cuttings. In essence SWE are 

mixtures of bioactive compounds such as polysaccharides, fatty acids, 

phytohormones, vitamins and mineral nutrients (BATTACHARYYA et al., 2015). 

HERNÁNDEZ-HERRERA et al. (2014) discovered a vigorous root growth-promoting 

effect from polysaccharide-enriched extracts. 

Anecdotes strongly support the idea that PBs are able to enhance uptake of nutrients 

through improvement of nutrient uptake activity by the root system, and applications 

of HS, PHs or SWE are reported to up-regulate genes encoding for nutrient transport 

(DE PASCALE et al., 2017). A good observation was made with Brassica napus when 

it was treated with humic acids and there was stimulation of root growth and increased 

uptake of N and sulfate due to upgrading of genes in roots which encode for nitrate 

transporters (BnNRT1.1 and BnNRT2.1) and transporters for sulfate (BnSultr1.1 and 

BnSultr1.2) (JANNIN et al., 2012).  

Many technological ideas have been brought to the fore with the aim of improving 

sustainable agriculture by drastically minimizing the amount of fertilisers and other 

chemicals used. One of the most exciting strategies for reducing the use of chemicals 

and enhancing crop resistance to stress of an abiotic nature such as nutrient 

deficiency is the employment of biostimulants such as SWE. The incorporation of 

biostimulants in agricultural production can drastically minimise the use of synthetic 
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fertilisers since they can increase yields and enhance crop production with no harm to 

the environment (KHAN et al., 2009; SHARMA et al., 2014). 

There has been wide-spread acceptance of the application of SWE in horticulture 

(BATTACHARYYA et al., 2015). Special attention should be given to SWE such as 

those made from brown macroalgae especially; Ascophyllum nodosum, Ecklonia 

maxima, Durvillea potatorum and Macrocystis pyrifera. These brown macroalgae 

species are known to be vital sources of polysaccharides, phenolic compounds, 

osmolytes like mannitol and phytohormones, which include abscisic acid, auxins, 

brassinosteroids, cytokinins and gibberellins (BATTACHARYYA et al., 2015; 

PAPENFUS et al., 2013; STIRK et al., 2014). Scientists have been able to identify 

and quantify many of these growth regulators from E. maxima (Kelpak®) as the 

chemicals responsible for stimulating growth in different agricultural crops 

(PAPENFUS et al., 2013; STIRK et al., 2004). KEL has been documented to have 

beneficial effects in many horticultural crops, ornamentals, trees and 

monocotyledonous crops and also cuttings. A number of researchers have recorded 

that microalgae, when applied either via foliar spray or through drenching, can 

stimulate both physiological and biochemical responses in plants. Plant responses 

include enhanced root and shoot growth, influence on flowering time, increase plant 

productivity and nutritional quality as well as mobilization of both macro- and 

micronutrients (BATTACHARYYA et al., 2015; CRAIGIE, 2011). According to 

CRAIGIE (2011), ROUPHAEL et al. (2017a) and ROUPHAEL et al. (2015), there was 

improved tolerance to adverse conditions such as heat and drought stress by plants 

to which A. nodosum and E. maxima had been applied. Phlorotannins like 

phloroglucinol and its derivative Eckol, isolated from E. maxima, are major compounds 

found in SWE which also stimulate growth. Eckol has been reported to improve growth 

of maize in terms of elongation of both shoots and roots and seminal roots. Eckol was 

also reported to act like auxins in mung beans where it increased root number, 

elongation of shoots and weight of seedlings. From these reports it is clear that Eckol 

can play a key role in enhancing agricultural productivity (RENGASAMY et al., 

2015b). SWE enhance root and shoot growth, improve nutrient uptake, enhance 

flower formation and fruit setting, and this translates into increased yields, delay of 

senescence and confers longer shelf life to fruits (CROUCH and VAN STADEN, 1994; 

KHAN et al., 2009). In addition, plants also have improved resistance to attacks by 
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insects and pathogens and to drought and frost stress (CRAIGIE, 2011; CROUCH 

and VAN STADEN, 1994; KHAN et al., 2009). According to CRAIGIE (2011), 

CROUCH and VAN STADEN (1994) and KHAN et al. (2009), the application of SWE 

is usually done at low application rates through drenching or foliar spray, so the many 

benefits derived are not as a result of an increase in macro- and micronutrients found 

in the extract. The physiological responses are caused by plant growth regulators 

(PGRs) and other active compounds such as oligomers and polysaccharides which 

work at very low concentrations (CROUCH and VAN STADEN, 1994; KHAN et al., 

2009). A liquid extract marketed as Kelpak® is prepared by a cell burst method from 

the kelp Ecklonia maxima (Osbeck) Papenfus, harvested on the west coast of South 

Africa.  

Biostimulants from algal biomass contain a wide range of different molecules such as 

phytohormones (cytokinin, auxins, gibberellins, brassinosteroides, ethylene, and 

abscisic acids) (LANGE and LANGE, 2006; WERNER and SCHMÜLLING, 2009; 

ZHAO et al., 2010) amino acids (COLLA et al., 2017b; HOQUE et al., 2007) and 

polyamines. Phytohormones were reported as the putative ingredients present in SWE 

(FUELL et al., 2010; KHAN et al., 2009; STIRK and VAN STADEN, 2014). Besides 

these hormones, there are also carbohydrates like alginate, fucoidan, betaines and 

proteins and minerals present in algal extracts, all of which support plant growth 

(SHARMA et al., 2014).  

Biostimulants can also be made from wastes from food and agricultural industries (XU 

and GEELEN, 2018) like vermicompost. Vermicompost, by definition, is organic 

matter produced by worms (SHARMA et al., 2014). This technique of 

vermicomposting has been extensively utilised to alleviate accumulation of wastes 

from plants, food wastes, as well as sludge from sewage (ALLARDICE et al., 2015; 

DOMÍNGUEZ et al., 2010). The technique also gets rid of disease-causing organisms 

found in manure such as faecal coliforms, species of the Salmonella genus, enteric 

viruses, as well as helminthes (EDWARDS et al., 2010), making it a more sustainable 

waste management strategy which reduces environmental contamination. 

Biostimulants can be obtained from vermicompost, which can be used in plant growth 

media, an amendment of soil, to replenish nutrients and improve resistance against 

abiotic stress (AREMU et al., 2012; AREMU et al., 2014; CHINSAMY et al., 2013). 

AREMU et al. (2015) demonstrated the presence of the PGRs, cytokinins, auxins, 
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abscisic acid, gibberellins and brassinosteroids in leachate of garden waste 

vermicomposted commercially. This may explain the biostimulatory activity of 

vermicompost, because of these substances which possess phytohormonal activity.  

Vermicomposting is vital in sustainable agriculture and recycling of nutrients since it is 

a cheap method of managing wastes which can be scaled up (YADAV and GARG, 

2013). The strategy enables farmers to recycle wastes from their activities, making 

use of both plant materials and animal manure. In addition, wastes which are suitable 

are converted into organic fertilisers for crop improvement to enhance yields as well 

as amending soils (LAOSSI et al., 2010; VAN GROENIGEN et al., 2014). 

From all the attributes discussed above on the importance, benefits and roles of 

biostimulants, they could be harnessed in the improvement and commercial 

production of underutilised and often neglected crop plants like traditional leafy 

vegetables (TLVs) so as to ameliorate problems of hunger and malnutrition bedevilling 

the African continent, particularly sub-Saharan Africa. 

 

2.2 Global hunger and malnutrition challenges 

 

The major challenges faced by the world today are malnutrition, poor health, hunger 

and in some cases starvation (BALDERMANN et al., 2016). According to the Food 

and Agriculture Organisation (FAO), an estimated 800 million people are currently 

afflicted with food and nutrition insecurity (DA SILVA, 2014). Over a third of the world’s 

population is estimated to experience micronutrient deficiency (hidden hunger) 

(TONTISIRIN et al., 2002) a scenario that has been overlooked by most policy makers 

(VINCETI et al., 2013). The well-being of over 2 billion people worldwide is threatened 

by malnutrition, with pregnant women and children being the most affected resulting 

in failure to resist infections, impairments of foetal and child growth and acute cerebral 

development (ASARE-MARFO et al., 2013). This scenario is more prevalent among 

low income earners, food insecure and vulnerable households in those countries 

which are still developing due to lack of access to a variety of foods or ignorance of a 

suitable diet. This gives rise to numerous incidences of infectious diseases within the 

population, since there is a very close association between malnutrition and disease 

(BALDERMANN et al., 2016). The vicious cycle of underdevelopment is as a result 
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of dietary deficiency because of its impediments on health, ability to learn as well as 

productivity particularly on the most vulnerable groups (WHO, 2006). The lack of 

micronutrients and poor nutrition is responsible for nearly half of the annual deaths of 

children under the age of five, which is about 3.1 million mortalities. According to 

KENNEDY et al. (2003), the issue often persists without being noticed in communities, 

despite having far reaching impacts on human growth, functioning of the immune 

system and brain development.  

Nutritional insecurity is prevalent amongst the majority of Africans because of a 

deficiency of essential vitamins and minerals in the diet, caused by the insufficient 

consumption of fruits and vegetables (AFARI-SEFA et al., 2012), despite the 

continent being endowed with a high diversity of underutilised vegetables and fruits 

known to be rich sources of nutrients (BUA and ONANG, 2017). This contributes 

immensely to the high figures for malnutrition which increases non-communicable 

diseases globally (HALL et al., 2009; MOKDAD et al., 2018). Scientists and policy 

makers are now seeking alternative strategies to enhance agricultural production and 

increase biodiversity ecosystem services. Such strategies could enhance crop yields 

and profits (GARIBALDI et al., 2017). There is not a lot of documentation on the link 

between nutrition and developments in agriculture which are responsible for diet 

inadequacies being experienced at the moment (KADIYALA et al., 2014; PINGALI, 

2012). There have been great losses of biodiversity in agricultural food systems 

because of the focus on increasing yields of some staple cereals by the Green 

Revolution (MELDRUM et al., 2018). It is unsustainable in the long term to rely on a 

few major crops, since this comes with agronomic, ecological, nutritional and 

economic risks (EBERT, 2014).  

Neglected and underutilised vegetables and fruits have the potential to play a pivotal 

role in food security by providing a diet rich in the essential nutrients. The high levels 

of micronutrients in TLVs could make a significant contribution to nutritional security if 

they are incorporated in the diet (KEATINGE et al., 2011) since they can contribute 

both micronutrients and bioactive compounds (SMITH and EYZAGUIRRE, 2007). 

Many countries on the African continent are failing to address issues to do with under-

nutrition and shortages of micronutrients in the diet (LOPRIORE and MUEHLHOFF, 

2003). Empirical evidence has shown the many benefits associated with TLVs, which 

include their superior micronutrient content, useful medicinal properties as well as 
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agronomic advantages like short growth periods (ready to harvest 3-4 weeks after 

planting for some crops), as well as low input requirements. This could make TLVs 

crucial to food and nutrition security in many parts of Africa, especially in times of 

famine and natural disasters, two scourges haunting sub-Saharan Africa (HUGHES, 

2008). The African continent is rich in edible traditional vegetables, amongst which, 

the amaranth is known to be one of the most nutritious, and this has been attributed 

to its high protein and lysine content, an amino acid not found within most of the 

cereals (MAUNDU et al., 2009; MLAKAR et al., 2009a). TLVs have been neglected 

in terms of research and investment, despite the numerous attributes they possess. 

The main constraints of production cited include; poor seed quality, absence of 

production technologies and poor strategies for marketing and processing (DINSSA 

et al., 2013). 

Much attention is now being given to micronutrient malnutrition due to its recognition 

as a global disease threat. Several non-specific physiological disorders which include 

non-resistance to infections, problems in metabolism and slow and retarded physical 

and mental development are caused by micronutrient deficiencies. The severity and 

frequency of micronutrient deficiencies is more pronounced in poor communities, even 

though they can also be a menace to public health in some industrialised countries 

(FLYMAN and AFOLAYAN, 2006; GLETSU-MILLER and WRIGHT, 2013; 

VENSKUTONIS and KRAUJALIS, 2013). The lack of iron, iodine, vitamin A and zinc 

was acknowledged as the world’s most serious risk factors with regards to health in 

the 2000 World Health Report. Problems associated with deficiencies in the diet are 

actually immense when it comes to designing control strategies and prevention of 

diseases like malaria, HIV/AIDS, tuberculosis and certain chronic diseases resulting 

from diets which are not balanced (WHO, 2000). According to SOETAN et al. (2010) 

mineral nutrients present in body tissues and fluids are key in maintaining certain 

physicochemical processes which are vital for life. With regards to the human body’s 

mineral nutrient requirements, there are major secondary micro or trace minerals, 

nutrient minerals and organic nutrients deemed essential and they are all present in 

foods derived from plants. Although most foods have mineral nutrients, they are found 

in different amounts, with some having higher amounts of certain minerals and for this 

reason recommended doses vary (JIMOH et al., 2018). By definition, a dietary 

requirement is the minimum continuing intake of a particular nutrient required to 
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maintain a defined level of the nutritive need of an individual (SUTHERLAND et al., 

1998). The daily nutritional requirements for humans are dependent on sex, size, age 

and occupation. Vegetables are a vital component of any balanced diet (AGTE et al., 

2000) and their nutritional value varies according to the plant part consumed. Health 

promoting ingredients in vegetables such as vitamins, amino acids, as well as sugars, 

have been acknowledged for their benefits to man as far as health is concerned, with 

other substances in vegetables previously ignored, now being recognised and given 

due attention (RAI et al., 2012). Plants such as TLVs now offer the potential hope of 

reclaiming “lost” dietary requirements to fill the nutrient vacuum afflicting many 

vulnerable populations globally (BUA and ONANG, 2017; HAWKESWORTH et al., 

2010).  

Many people rely on staple crops, mainly rich in carbohydrates, most of which are 

often micronutrient deficient and lacking nutrients which are vital for human health. 

Essential nutrients required by humans in the diet include vitamins A, C and E and 

iron, zinc and iodine (AFARI-SEFA et al., 2012), hence the increase in malnutrition in 

parts of sub-Saharan Africa, where it is causing ill health in children and contributing 

to stunting and mortality (AFARI-SEFA et al., 2012). This sad scenario can only be 

addressed by increased consumption of fruits and vegetables to attain a balanced diet. 

According to KEATINGE et al. (2011) the continued lack of vegetable and fruit 

consumption the world over has very serious effects on health of humans and this 

adversely affects the attainment of a number of the Millennium Development Goals 

(MDGs). Ironically, African food systems make up the richest sources of biodiversity 

and are also good sources of beta-carotene (CHWEYA and EYZANGUIRE, 1999). It 

is imperative to diversify diets with vegetables since they assist with biofortification by 

making available diets which are not only nutritious but are also balanced (TOLEDO 

and BURLINGAME, 2006; UUSIKU et al., 2010; VAN RENSBURG et al., 2014). 

 

2.3 Traditional Leafy Vegetables (TLVs) 

 

2.3.1 Definition for Traditional Leafy Vegetables (TLVs) 

 
VAN RENSBURG et al. (2007a) define traditional leafy vegetables (TLVs) as plant 

species whose leafy parts include young succulent stems, flowers and young fruit and 
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are utilised as a vegetable. Other authors define TLVs as plants that have been 

cultivated or grown within communities for many years, whose leaves, immature green 

pods, stems, roots, seeds, flowers, fruits or even bark are accepted by the society to 

be consumed as vegetables (KIMIYWE et al., 2007; NGUNI and MWILA, 2007; 

SEEISO and MATERECHERA, 2014; TALENI and GODUKA, 2013). Some authors 

consider them as plants whose parts such as leaves, fruits as well as roots are deemed 

acceptable and utilised as vegetables by rural, peri-urban and urban communities by 

virtue of custom, habit or tradition (CHWEYA and EYZAGUIRRE, 1999; LEWU and 

MAVENGAHAMA, 2010; MUHANJI et al., 2011). The presence of several classes of 

active compounds like carotenoids, and polyphenols in TLVs means that they can be 

further defined as food-medicine (GUARRERA and SAVO, 2013). GOCKOWSKI et 

al. (2003), define TLVs as those that have been domesticated or cultivated in Africa 

for several centuries. According to ETÈKA et al. (2010), TLVs are those cultivated in 

specific regions or continents and include those indigenous to Africa and introduced 

species which now form part of the local diet. These vegetables are adapted to specific 

locations geographically, becoming part of the local culture (MABHAUDHI et al., 

2017). TLV consumption has been practised for many centuries by many rural 

communities on the African continent, so it is a tradition. There are approximately 1 

000 different indigenous and naturalised vegetable species that can be used in dietary 

diversification, attainment of food security and subsequent improvement in livelihoods 

of people in sub-Saharan Africa (TOWNS and SHACKLETON, 2018). 

Malnutrition, also known as “hidden hunger”, is responsible for health problems such 

as high mortality and low economic productivity in tropical Africa (BIESALSKI, 2013). 

Emphasis is now being given by WHO-FAO nutritionists that a portion of different 

vegetables has to be consumed on a daily basis to achieve a balanced diet, especially 

for children, and women who are pregnant (GRUBBEN et al., 2014). In comparison 

with the recommended intake, vegetable consumption, which is a cheap and available 

source of micronutrients, is low and it is imperative that projects on food and security 

in Africa focus more on promoting the cultivation of vegetables for health purposes 

(GRUBBEN et al., 2014). The scourge of “hidden hunger" is quite alarming in sub-

Saharan Africa, according to a report by a team of hunger experts who embarked on 

a global investigation into how incidences of malnutrition had implications on health 

and economic growth. Stunting of growth and anaemia caused by a deficiency of iron 
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and vitamin A were used as indices in the research (MUTHAYYA et al., 2013). Signs 

of malnutrition and hunger were not clearly visible, hence the term “hidden hunger”. 

“Hidden hunger” usually has lifelong and debilitating effects on health, productivity and 

mental development and mainly affects women of reproductive age as well as children. 

Globally, the most common micronutrient and vitamin deficiencies are those of iron, 

zinc, vitamin A, iodine and folate, but deficiencies of vitamin B12 and other B vitamins 

are also common (GRUBBEN et al., 2014). 

Among the top ten factors which contribute to mortality on a global scale is the low 

intake of vegetables and fruits (EZZATI et al., 2002). Cereal-based and nutrient-poor 

diets are the order of the day for the poor who have little or no access to animal foods, 

fruits and vegetables in most developing countries (HOTZ and GIBSON, 2007).  

Many TLVs found on the African continent are high sources of important nutrients such 

as folate, iron, zinc, proteins and dietary fibre. They also demonstrate a better water 

use efficiency in comparison with exotic vegetable species (MASEKO et al., 2017). 

The main aim of dietary diversification, together with nutrition education, is to improve 

production, availability, access to affordable foods and the use of food with a nutrient 

diversity and which is available throughout the year (AFARI-SEFA et al., 2012). 

Another positive characteristic of vegetables is the high diversity among TLVs. In 

addition to nutrition improvement they also add colour, flavour and texture to meals 

and this makes food more attractive and palatable (AFARI-SEFA et al., 2012; 

MELDRUM et al., 2018). Of great importance would be the exploitation of the 

agronomic and yield potential of TLVs since this could go a long way in food and 

nutrition security in addition to livelihood strategies for communities under threat from 

migration, civil disorder as well as diseases like HIV-AIDS (BUA and ONANG, 2017). 

It has also been observed that TLVs require less labour and economic inputs 

compared to other global vegetables. Based on their nutritional value and adaptation 

to local conditions, there is now literature supporting the notion that the increased 

production and consumption of TLVs could go a long way towards supporting 

nutritional security and income (LEGWAILA et al., 2011; VAN JAARSVELD et al., 

2014). Few TLVs have been domesticated or semi-domesticated and the majority 

grow as weeds (MOLINA et al., 2014; RUBATZKY and YAMAGUCHI, 2012). To this 

end, more research should be done to explain and support the roles and potential of 

particular species since a lot of information on relationships between nutritional yields, 
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water availability and soil quality still needs to be explored. Additionally, information 

on consumer preferences and incorporation into value chains needs to be researched 

and explored (MELDRUM et al., 2018). The promotion of TLVs is generally hindered 

by the lack of information because just like many other neglected and underutilised 

crops, there is limited research and breeding efforts on TLVs. In addition, germplasm 

characterisation and species distribution is not known for TLVs (GALLUZZI and 

LÓPEZ NORIEGA, 2014). Useful species may be overlooked due to lack of 

information, and poor awareness, through neglect and underutilisation (MELDRUM et 

al., 2018). On a global scale the trend is a general decline in the use of TLVs and this 

jeopardises their future and also minimises the delivery of benefits to society 

(MELDRUM and PADULOSI, 2017). Most TLVs are neglected and underutilised as 

there is no comprehensive information on cultivation practises, since most are 

regarded as weeds (BUA and ONANG, 2017; MELDRUM et al., 2018). 

 

2.3.2 The history of the use of Traditional Leafy Vegetables (TLVs) in South Africa 

 
The consumption of TLVs in South Africa is as old as history, because the Khoisanoid 

people who inhabited southern Africa about 120 000 years ago depended mostly on 

gathering wild plants for their livelihoods (FOX and NORWOOD YOUNG, 1982; 

PARSONS, 1993). When the Bantu-speaking tribes settled in South Africa some 2 000 

years ago they also relied on harvesting wild leafy vegetables, making hunting and 

edible plant collection vital activities in their food system, especially in times of crop 

failure or death of livestock herds due to natural disasters (BUNDY, 1988; PEIRES, 

1982). This made wild plants and animals the only components of the diet for the 

hunter-gatherer cultures (BHARUCHA and PRETTY, 2010). The knowledge and 

practice of TLV collection has always been a female domain, both historically and in 

contemporary South Africa (MBHENYANE, 2017; VAN RENSBURG et al., 2004). 

Evidence shows that men only get involved when a particular plant species becomes 

domesticated and starts to be grown as a crop, particularly when it is produced 

commercially (VAN AVERBEKE and JUMA, 2006). According to MODI et al. (2006) 

and VAN RENSBURG et al. (2004), there is still continued collecting and cultivation 

of leafy vegetables by African people in sub-Saharan Africa, including South Africa, 

despite the modification of food consumption patterns of locals by western influences 

(VAN RENSBURG et al., 2007b). The pattern of consumption is variable and 
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dependent on poverty status, degree of urbanization, distance to markets of fresh 

produce and season (MBHENYANE, 2017; VORSTER et al., 2002). According to 

VORSTER et al. (2002), the consumption of vegetables collected from the wild as 

weeds is inversely proportional to the income of the household, with poor households 

using them more than rich ones due to lack of finance to buy conventional vegetables 

from markets. The consumption of food from the wild is part of the safety net used by 

rural people in coping with poverty, disaster and other life stresses (RUBAIHAYO, 

1997; SHACKLETON et al., 2000). The majority of these people consume traditional 

foods as they are believed to reduce the risk of certain ailments (MAKUSE and 

MBHENYANE, 2011). The increased use of wild food like TLVs can be a result of 

several factors, such as drought, loss of employment or demise of the breadwinner, 

as well as social strife (DOVIE et al., 2002; SHACKLETON, 2003; VORSTER and 

JANSEN VAN RENSBURG, 2005). 

In contemporary South Africa, TLVs have been labelled as weeds since the 1960s by 

both research and extension workers, with households being encouraged to produce 

food similar to those sold in the shops. It is because of this negative perception that 

people are not willing to use or conserve foods they label “poverty foods”, a term 

coined to describe TLVs by many communities (BUA and ONANG, 2017; MASEKO 

et al., 2017). 

For many years, agricultural research in South Africa concentrated mainly on 

commercial large scale agriculture and mono-culture systems, but there has been a 

shift of focus of late towards small-scale and subsistence farmers but still focussing 

on the common commercial crops (VORSTER, 2007). The Brundtland Commission 

identified three types of agriculture based on how agro-ecological and socioeconomic 

factors interact, namely; industrial, green revolution and resource-poor agriculture 

(WCED, 1987). Unfortunately most countries in sub-Saharan Africa are found in the 

resource-poor category, relying mainly on rain-fed marginal soils for growth 

(VORSTER, 2007). Associated with resource-poor agriculture are farming systems 

which are complex and exposed to risk, thus farmers use different methods to survive 

(VORSTER, 2007).  

Resource-poor farmers in South Africa practise subsistence farming using both 

traditional and conventional methods (VORSTER et al., 2007). It is only recently that 
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the value of indigenous knowledge of traditional crops as a survival strategy for rural 

people has been acknowledged by research. Extension personnel still treat TLVs as 

weeds and criticise farmers for failing to keep weed populations under control 

(VORSTER et al., 2007), which they label not worthy of the space they occupy (BUA 

and ONANG, 2017). From the wild, different plant parts are harvested as food and 

these include, leaves, stems, tubers, rhizomes, roots, flowers, fruits, gums, nuts, 

cereals, berries and legumes. 

South Africa is a country endowed with a high biodiversity of both plants and animals, 

with some of these plants being used for many purposes by locals. Some of these 

uses include; food, shelter, fuel, medicine and tools (VAN WYK and GERICKE, 2000). 

The wild vegetables in South Africa possess remarkable nutritious qualities in the form 

of macro- and micronutrients, minerals and vitamins (LEWU and MAVENGAHAMA, 

2010; VAN DEN HEEVER, 1995). TLVs not only play an important role in the diet but 

also support the local economy and provide excellent environmental services such as 

an increase in biodiversity, reduced pollution, pest management (FRISON, 2016) and 

are an integral part of African traditional medicine (PADULOSI et al., 2013). Of great 

concern is the underutilization of TLVs in South Africa (VORSTER and JANSEN VAN 

RENSBURG, 2005). The average South African consumes about 200 g of fruits and 

vegetables on a daily basis, which falls far short of the WHO recommended daily intake 

of 400 g per day. Traditional leafy vegetables have a long utilisation history by local 

communities across Africa (MOYO et al., 2013) but there has been a marked decline 

in their consumption and utilisation of late by the locals, due to the emergence of exotic 

vegetables.  Traditional leafy vegetables are commonly known as ‘imfino’ in isiZulu / 

isiXhosa, ‘morogo’ in seSotho / sePedi and ‘muhuro’ in Tshivenda (VAN DER WALT 

et al., 2009; VAN RENSBURG et al., 2007b). In South Africa, just like in many rural 

communities in Africa, vegetables are mainly used to supplement the diet usually 

consisting of staples like cassava, maize, millet, sorghum and wheat (MAROYI, 2013). 

It is known that plant material consumption is a fundamental requirement for the well-

being of mankind (MOYO et al., 2013; SALVI and KATEWA, 2016; 

SCHREINEMACHERS et al., 2018) since the dietary requirements for bio-available 

micronutrients and phytochemicals are obtained via consumption of leafy vegetables 

(MOYO et al., 2013; SALVI and KATEWA, 2016; UUSIKU et al., 2010). Most of these 

vegetables are seasonal and usually in abundance during the rainy season. Their 



  

29 
 

consumption is vital in achieving a balanced diet, thereby preventing the chronic 

effects of “hidden hunger”. According to SALVI and KATEWA (2016) and YAHIA 

(2010), results from epidemiological research show that a high intake of plant-derived 

products in the diet results in a reduced risk of various chronic conditions such as 

cancer, neurodegenerative and cardiovascular ailments (BUA and ONANG, 2017; 

WHO, 2015; SCHREINEMACHERS et al., 2018). 

In the past few years there has been a recognition of the nutritional and cultural 

importance of TLVs in South Africa. This has resulted in their being incorporated into 

the core business of the Agricultural Research Centre (ARC), a national centre for 

research in South Africa. The Agricultural Research Council Roodeplaat, together with 

the Vegetable and Ornamental Plant Institute, are now concentrating on improvement, 

distribution and the conservation status of TLVs. There is a need for active promotion, 

use and conservation of TLVs so as to increase production in order to tap into their 

potential contribution towards food security in South Africa. 

More than 100 different types of TLV species are known in South Africa but only a 

handful of these are being utilised (VAN RENSBURG et al., 2007a). The commonly 

consumed ones include Corchorus olitorius (jute mallow), Amaranthus cruentas 

(pigweed), Citrullas lanatus (bitter melon), Vigna unguiculata (cowpea), Cleome 

gynandra (spider plant), Cucurbita spp. (pumpkin) and Brassica rapa subsp. chinensis 

(non-heading Chinese cabbage). These TLVs are known by different vernacular 

names in their cultural areas and they are utilised differently according to different 

authors (MAVENGAHAMA, 2013; VAN RENSBURG et al., 2007b). 

One of the most commonly consumed TLV in South Africa is the amaranth from the 

Amaranthaceae family, which consists of a number of species found growing in many 

different parts of the country (MAVENGAHAMA et al., 2013; OELOFSE and VAN 

AVERBEKE, 2012). The main amaranth species found growing in South Africa include 

A. thunbergii, A. greazicans, A. spinosas, A. deflexus, A. hypochondriacus, A. viridus 

and A. hybridus (MAVENGAHAMA et al., 2013; OELOFSE and VAN AVERBEKE, 

2012). These amaranth groups thrive well in harsh climatic conditions although 

flowering can be induced by long dry spells, thereby reducing plant yield 

(MAVENGAHAMA et al., 2013; OELOFSE and VAN AVERBEKE, 2012). 
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2.3.3 Utilization of Traditional Leafy Vegetables (TLVs) 

 
There has been a marked reduction in the use of TLVs in South Africa (NESAMVUNI 

et al., 2001; VAN WYK, 2005) despite their high nutritive value and high potential as 

cash crops (MASEKO et al., 2017). The reason for the decline in utilisation of TLVs is 

consumer preferences, with locals preferring exotic vegetables (VAN RENSBURG et 

al., 2004), so there is variable use of these vegetables currently. There are a number 

of factors contributing to this state of affairs with regards to adoption of TLVs by locals. 

People do not cultivate TLVs since most of them are gathered from the wild, cultivated 

fields and from land left fallow (MAVENGAHAMA, 2013; VENTER et al., 2007) and 

harvesting of TLVs mainly involves women. Furthermore, the youth associate the 

consumption of TLVs with poverty, and have coined TLVs as food for the poor during 

hard times (TALENI and GODUKA, 2013; VORSTER et al., 2002). The other reason 

for the non-cultivation of TLVs is the loss of local knowledge about them (MODI et al., 

2006). Some of them are unpalatable due to poor preparation methods, so they are 

shunned by the young. Also youths are not knowledgeable about which species to 

collect and sometimes they confuse them with poisonous species (MAVENGAHAMA 

et al., 2013). 

Current trends of harvesting TLVs are not sustainable since there is no control over 

their availability. The increase in promotion and use needs to match with propagation 

or cultivation, otherwise there would be a problem of overharvesting from the wild 

which could lead to species extinction (LEWU et al., 2007; MAVENGAHAMA, 2013). 

The best way forward is to try and incorporate TLVs in the current cropping systems, 

hence the need to carry out more research in order to come up with appropriate 

methods for the production of these crops so as to meet supply and demand 

(MASEKO et al., 2017). 

The ability of TLVs to thrive in adverse conditions makes them potential candidates 

for use in enhancing world food production (SWART et al., 2005). The other positive 

attributes of TLVs is their low input requirements for their production compared with 

exotic crops and in addition to this, they are generally very resistant to pathogens. 

Therefore they are cost effective in terms of chemicals and pesticides. These crops 

are also more tolerant to both abiotic and biotic stresses than other crops 

(ADEBOOYE and OPABODE, 2004; OKENO and CHEBET, 2003). They could be a 
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worthwhile and profitable substitution of other crops in the fight against malnutrition, 

since they can increase nutrient uptake (TESFAYE et al., 2016). TLVs have a great 

potential to be utilised for enhancing food and nutrition security since they do not need 

a great deal of water (MASEKO et al., 2017). 

An estimated 11.1 million males and 12.5 million females of 15 years or older had a 

below average intake of vegetables and fruits in the year 2000 in South Africa (ROSE 

and CHARLTON, 2002; SCHNEIDER et al., 2007). The fruit intake for these groups 

was half the World Health Organisation’s recommended daily intake of 400 g of 

vegetables and fruits (WHO, 2003), which can prevent non-communicable diseases 

caused by malnutrition or hidden hunger (LOCK et al., 2005; VAN JAARSVELD et 

al., 2014). According to LABADARIOS et al. (2011), the least consumed foods by 

adults in South Africa are the vitamin A-rich vegetables and fruits, eggs and legumes 

and this reduces variety in the diet resulting in wide spread micronutrient deficiencies 

of vitamin A, iron and zinc. 

Despite their acclaimed importance with regards to nutrient value, there is very little 

domestication and no large-scale commercial cultivation of TLVs in South Africa 

(DEPARTMENT OF AGRICULTURE, 2013). There are several reports of the 

cultivation of TLVs on a subsistence scale by rural communities in South Africa, mostly 

in the Limpopo and KwaZulu-Natal Provinces (UUSIKU et al., 2010; VAN 

RENSBURG et al., 2007a). According to VAN DER HOEVEN et al. (2013), TLVs 

provide essential nutrients required for human health in the same manner as 

conventional vegetables with some of the TLVs having superior amounts of the 

essential nutrients than the conventional vegetables (RAMOS et al., 2013). 

TLVs have been part of the daily livelihoods of the African people for many centuries 

and they were mainly harvested from the wild and at little cost, which made people 

assume that they would always remain part of their lives. The trend was that the 

responsibility and knowledge would be passed on to younger generations by aged 

ladies and in this manner, seeds of certain species were conserved. Sadly, such 

systems are currently non-existent due to social, political and economic factors (VAN 

RENSBURG et al., 2007a). In terms of occurrence, TLVs can either be cultivated, 

semi-cultivated, weedy or wild crops with ecological, social and cultural values 

(OLASANTAN, 2007; THAMAGA-CHITJA et al., 2011). 
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Of global interest is food production, utilising fewer resources, so as to ensure food 

security for the ever rising world population. Concerns about food security were raised 

at the Hot Springs Conference convened by the Food and Agriculture Organisation in 

1943 from which the definition evolved. The World Food Summit of 2006 came up with 

the most recent definition of food security as: ‘a situation that exists when all people, 

at all times, have physical, social and economic access to sufficient, safe and nutritious 

food that meets their dietary needs and food preferences for an active and healthy life’ 

(FAO, 2006). In order to come up with a proper definition of food security there are 

four aspects which are taken into account viz, food availability, access, utilisation and 

stability (FAO, 2006). There is a close link between food security and agriculture. 

According to HART (2009), South Africa as a country is food secure at national level, 

but not secure at the level of households. Incorporation of TLVs in the diet could go a 

long way in alleviating problems of micronutrient deficiency. 

Investment has been centred mainly on cereal crops with very negligible investment 

on TLV crop development (SCHREINEMACHERS et al., 2018). The current 

production of vegetables runs short in meeting the needs of the human population 

(SIEGEL et al., 2014) with poorly developed vegetable value chains thereby limiting 

accessibility to consumers (BANDULA et al., 2016; CHAGOMOKA et al., 2014). A 

major priority challenge to policy makers is to facilitate access to vegetables at an 

affordable price, since populations are more reliant on exotic foods bought from the 

shops (HAWKES and FANZO, 2017; MILLER et al., 2016). There is now recognition 

for the need for nutrition-sensitive agriculture and food with calls for increased 

vegetable production through new approaches such as horticulture, home gardens, 

urban and peri-urban agriculture, agroforestry and school-feeding programmes 

(SINGH and DWIVEDI, 2017). 

There is perpetual pressure on agricultural production as the world population 

increases in size and affluence and demand keeps on outpacing supply (AFARI-SEFA 

et al., 2012; EBERT, 2014). The impact on agriculture is wide-spread because of 

intensive agriculture, hence there is an urgent need for a global change to alternative 

farming approaches to guarantee food security and nutrition, as well as provision of 

social and economic equity and also conserve and maintain ecosystem services which 

support agriculture. 
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A lot of attention is now being given to traditional vegetables as important components 

of African diets due to the recognition of the medicinal properties of their non-bioactive 

compounds (AYODELE, 2005; LIU, 2013; OKENO and CHEBET, 2003). In sub-

Saharan Africa TLVs have been used as ingredients in traditional soups taken with 

carbohydrate staple foods (CHWEYA and EYZAGUIRRE, 1999). 

According to Plant Resources of Tropical Africa (PROTA), there are approximately 

6376 indigenous African plants considered useful, of which 397 comprise vegetables 

(GRUBBEN and DENTON, 2004). There is an estimated 20 leafy vegetables of 

nutritional importance found in Africa which are usually used in daily diets (GUARINO, 

1997). Research has demonstrated the synergistic effect played by TLVs as 

nutraceuticals since they possess both nutritional and medicinal attributes (SMITH 

and EYZAGUIRRE, 2007). 

Evidence of a comparison of starchy staple crop production and vegetable production 

shows that it is more profitable to cultivate vegetables since they provide more 

opportunities for employment and income-generation, in addition to enhancing the 

commercialization of the rural sector (WEINBERGER and LUMPKIN, 2007). It is now 

well documented that TLVs such as amaranth (Amaranthus spp.), cow pea leaves and 

pods (Vigna unguiculata), African nightshade (Solanum scabrum and S. villosum) and 

spider plant (Cleome spp.) have a superior micronutrient content as well as being rich 

in antioxidants (YANG and KEDING, 2009) and health promoting phytochemicals. 

Vegetables are also known to restore the balance of beneficial bacteria responsible 

for decomposition found in the human gut because of their antibiotic and prebiotic 

properties (AFARI-SEFA et al., 2012; ERASTO et al., 2004; VELURI et al., 2004). 

Increased consumption of vegetables and other different food stuffs can also reduce 

chronic diseases, hence the repeated calls for increased vegetable and fruit 

consumption because they contain non-nutrient phytochemicals known to prevent 

chronic diseases (AFARI-SEFA et al., 2012; STEINMETZ and POTTER, 1996). It is 

for the same reason that recommended micronutrient and antioxidant rich diets work 

hand in hand with medicinal therapies in the fight against HIV-AIDS (FRIIS, 2006). 
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2.3.4 Current status, utilisation and production of Traditional Leafy Vegetables (TLVs) 

in South Africa 

 
According to FRD (1992) South Africa is a country of national food sufficiency and can 

export food but ironically hunger and malnutrition are still rife in both rural and urban 

areas. The solution to this dilemma lies in the incorporation of traditional vegetables 

and fruits in daily diets because of their potential to make significant contributions to 

both calorie and nutrient content of diets (KUCICH and WICHT, 2016).  

Fruit and vegetable scarcity in the diet is responsible for vitamin A deficiency 

responsible for blindness and even death in young children in many parts of the African 

continent (OKIGBO, 1990). Taking in an excess of at least seven portions per day of 

fruits and vegetables greatly lowers the risk of mortality, yet many poor South Africans 

have very low or zero intake of fruits and vegetables, running the risk of “hidden 

hunger” (KUCICH and WICHT, 2016). Colonisation worsened the dietary patterns of 

local South Africans with nutritionally superior traditional crops being slowly displaced 

by cash crops. This is very unfortunate for rural communities and places poor rural 

children at a greater risk of malnutrition (CHIVENGE et al., 2015; FRISON et al., 

2005). 

South Africa as a nation has always been faced with the problem of food insecurity at 

household levels rather than chronic malnutrition (FABER and WENHOLD, 2007), 

with 21.5% of its population living under the poverty datum line (PDL). The problem of 

food insecurity is further compounded by water scarcity and population growth, which 

are also rife in South Africa (ODHAV et al., 2007). Food insecurity is a result of the 

lack of a variety of food, lacking fruits and vegetables in particular, leading to a plethora 

of chronic diseases such as high incidents of lower respiratory infections and acute 

chronic diarrhoea. This affects children in the long run, resulting in poor mental 

development, leading to poor academic ability and also stunted growth (VAN 

RENSBURG et al., 2004). This problem can be alleviated by the consumption of TLVs 

since they offer an affordable and nutrient rich alternative (MASEKO et al., 2017). 

Among TLVs are some that are known to be rich sources of vitamins, minerals and 

antioxidants as well as anticancer factors for health maintenance and disease 

prevention (ABUKUTSA-ONYANGO, 2003). They could make a difference in poor 

rural communities who cannot afford to buy vegetables from the local markets 
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(MASEKO et al., 2017). Most of these communities are found living in marginal areas 

with critical water challenges with high crop failure due to drought and heat stress. 

TLVs are ideal crops for cultivation in marginal areas (VAN AVERBEKE et al., 2012) 

since they are known to be tolerant to stresses like drought, pests and diseases. Other 

additional attributes of TLVs are their adaptation to low-input agriculture compared to 

their exotic counterparts like Swiss chard. This makes them a potential food source 

for under privileged inhabitants of marginal areas who practice low-input agriculture 

(MASEKO et al., 2017; MAUNDER and MEAKER, 2007; VAN RENSBURG et al., 

2004). 

Local people in South Africa used to eat diets of meat, milk, wild cereals and wild 

plants, but the reality of late, for most South Africans, is what the Pedi proverb states 

“Meat is a visitor, but ’morogo’ a daily food”, meaning that meat is only eaten when 

there is a visitor in the home (WALDMANN, 1980). The use of traditional leafy 

vegetables in communities has been noted in several studies of foods from the wild 

carried out from 1936 to 1982.  

Research is required to ascertain the extent of the use and conservation status of 

TLVs in South Africa. Research is needed to establish the extent of the use, 

conservation status and awareness of the plants. The main aim is promotion of the 

use of TLVs via better preparation, enhanced consumption, processing, landrace 

improvement and genetic diversity control, adding science technologies on indigenous 

knowledge where required. 

According to CHENG et al. (2017), traditional vegetables are increasingly becoming 

more relevant in relation to global health and diet trends which clamour for ‘gluten-

free’ and ‘super foods’ diets. The introduction of an uncommon food crop to local 

people is not easy since the people have the tendency of choosing what they know 

rather than what could add more value. This is the challenge with the introduction and 

adoption of TLVs in diets because of their limited documentation and non-

consideration in mainstream research (JAENICKE and VIRCHOW, 2013; NAYLOR 

et al., 2004). 

One of the most important TLVs in South Africa is the amaranth and despite its high 

nutritious and nutraceutical properties very little if nothing has been done in terms of 

its improvement and commercial cultivation, with only a few pockets of the population 
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carrying out subsistence cultivation of this TLV. Most of it is harvested from the wild 

as a weed and sold on the local markets and on road sides. The amaranth is a crop 

with features which allows it to acclimatise and thrive in unfavourable and rapidly 

changing climatic conditions (ABRAHAM et al., 2014; MASSAWE et al., 2007). The 

crop’s adaptation to the socio-economics of the region could make it a favourite with 

both farmers and locals (JAENICKE, 2011). 

 

2.4 The amaranth 

 

The Mayan civilisation of South America was recorded to be the first to domesticate 

Amaranthus, according to historical evidence. Another piece of evidence suggests that 

the Aztec civilisation in Mexico used amaranths as a staple food they called ‘huahtli’ 

(LEHMANN, 2018; SAUER, 1950). The belief of the Aztecs was that the plant 

possessed magical attributes giving it strength and as such the plant grain was used 

in religious practices. The practice was ended in the 1500s by the Spanish 

conquistadors who banned the cultivation of Amaranthus as a way to suppress the 

culture and religion of the Aztecs (RASTOGI and SHUKLA, 2013). 

One of the oldest known edible vegetables (dating back to a Tehuacan puebla Mexico 

in about 4000 BC) is the amaranth according to the earliest archaeological records 

(SINGHAL and KULKARNI, 1988). Historically, amaranth (Amaranthus spp.) has 

been consumed by many civilizations such as the Incas, Mayas and Aztecs who used 

it as a staple food. Amaranth is the collective name given to about 60 members of the 

genus Amaranthus of the Amaranthaceae, whose members are mainly used as grains 

and leafy vegetables (BRENNER et al., 2000; RAY and ROY, 2008). The amaranths 

are found in the tropics, subtropical and temperate regions of the world (SAUER, 

1976). Amaranth is native to Central and South America and is believed to have been 

first domesticated by the Aztecs as a crop 8000 years ago. It has been extensively 

used as a green vegetable in tropical regions (BRENNER et al., 2000). Amaranth is a 

crop which grows fast with low production costs, thus making it an inexpensive leafy 

vegetable to produce. The vegetable is often linked with the term ‘poor man’s food’ 

and is mainly cultivated in summer, unlike most green vegetables, and was often the 

only available vegetable on the market (SINGH and WHITEHEAD, 1996). Amaranths 

are C4 plants and grows well under stresses of heat and drought and is also known to 
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be tolerant to stresses such as high salinity, acidity and alkalinity, making it unique 

and suitable for subsistence agriculture (ACHIGAN-DAKO et al., 2014). They have 

the potential to improve health and curb malnutrition (MAUGHAN et al., 2011). To 

optimally grow the plant, it requires fertile and well drained soils of a loose nature with 

a pH > 6 (GRUBBEN and DENTON, 2004). The vegetable amaranth grows well at 

temperatures above 25 °C. 

Even though the amaranths have been neglected for many years, they have recently 

been rediscovered as a promising food crop, mainly due to their resistance to heat, 

drought, diseases and pests. The nutritional value of both the seeds and leaves is 

excellent and superior compared to most plants under commercial cultivation 

(HAUPTLI and JAIN, 1977; RASTOGI and SHUKLA, 2013; VENSKUTONIS and 

KRAUJALIS, 2013). 

Although the value of amaranth is both as a grain and vegetable, it is generally 

classified as a pseudo-cereal since it is not a ‘true cereal’ like maize or wheat. 

Caryophyllales is the order to which amaranth belongs and the family is 

Amaranthaceae, with Amaranthus being the genus. The botanical genus name, 

Amaranthus is derived from a Greek word “amarantos”, which means “unfading” 

because it has long lasting flowers. About 400 amaranth species are known worldwide 

with the majority being classified as weedy species (SUMA et al., 2002). Of special 

mention is Amaranthus retroflexus, known to be one of the worst weeds in the world 

(BRESSANI et al., 1993). The amaranth is a multipurpose crop since it can be used 

as a source of grain and tasty leafy vegetable of superior nutritional value and can 

also be used ornamentally because of the attractive colour of its inflorescence 

(BREENE, 1991; MLAKAR et al., 2009b). Hence it is used as food for both human 

and animals as a leafy vegetable, for ornamental purposes and forage. 

As a C4 crop, the amaranth grows fast and is well adapted to different soil types and 

climates and has a higher atmospheric carbon conversion rate to plant sugars than 

C3 plants. The crop can achieve optimal growth in warm conditions making it a 

summer growing plant (MASEKO et al., 2017). Its good performance under adverse 

conditions makes it one of the few major crops which are resilient to climate change 

(RASTOGI and SHUKLA, 2013). The amaranth is mostly cultivated for its seeds/grain 

in India and as a green leafy vegetable in Africa (RASTOGI and SHUKLA, 2013). 
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2.4.1 Taxonomic classification of amaranths 

 
Kingdom – Plantae 

Division – Magnoliophyta 

Class – Magnoliopsida 

Order – Caryophyllales 

Family – Amaranthaceae 

Genus – Amaranthus 



  

39 
 

 

 
Fig. 2.1: Amaranthus hybridus grown in the greenhouse at UKZN Botanical Gardens. 
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2.4.2 Distribution of Amaranthus 

 
Amaranthus is distributed worldwide and is found in temperate, subtropical and 

tropical climates with a total of about 400 species in existence (SUMA et al., 2002). In 

India there are about 20 cultivated/wild species. Native to south and Central America 

are some grain species of Amaranthus (GRUBBEN and VAN SLOTEN, 1981), and 

some are native to the European, Asian, African and Australian continents (BECKER 

et al., 1981; TEUTONICO and KNORR, 1985). 

 

2.4.3 Nutritional value of amaranths 

 
The lysine content of amaranth is twice that found in wheat and thrice that in maize. A 

lot of attention is being paid to the genus Amaranthus in many countries because of 

the superior nutritional value of some species, which makes them an important source 

of food as either a vegetable or grain. Leaves of amaranths have a protein content of 

17.5 to 38.3% dry matter with lysine making up 5% (AYODELE and SHITTU, 2013). 

Significant levels of vitamin A and C are present in the leaves and amaranths contain 

a vitamin C, calcium and niacin content which is three times that found in spinach. 

There is 18 times more vitamin A, 13 times more vitamin C, 20 times more calcium 

and 7 times more iron (GUILLET, 2004) in Amaranthus compared with lettuce. The 

crop is highly nutritious and can grow well on marginal lands, since it can withstand 

hot and dry conditions. Amaranth species, besides having nutritional properties, are 

also known to have medicinal properties and some species are known to be good 

sources of flavonoids which have antioxidant properties. Just like most TLVs, 

amaranth cultivation in South Africa is very rare since locals have the belief that the 

plant grows naturally (MAVENGAHAMA et al., 2013). 

Below is a summary of why the amaranth should be seriously considered for 

improvement, adoption and cultivation by people in KwaZulu-Natal and South Africa 

as a whole: 

 It is cheap to grow by resource poor locals in rural areas. 

 It is easy to establish and harvest. 

 Takes a short period to mature, producing many seeds. 



  

41 
 

 Has a superior nutritive value consisting of proteins of high quality and contains 

lysine and methionine; minerals and vitamins, and fibres needed in the diet. 

 Has good taste and is capable of being used uncooked, cooked or ground as flour. 

 Has multiple uses in the diet as green vegetables, oil, flour and food for animals. 
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CHAPTER 3: Effects of nutrient strength, nitrogen, 

phosphorus and potassium (NPK) deficiency, irrigation 

frequency and light intensity on the growth and biochemical 

composition of Amaranthus hybridus L. 
___________________________________________________________________ 

 

3.1 Introduction 

 

One vital component of food security is the ability of any food to supply almost all the 

essential nutrients (MAVENGAHAMA et al., 2013). This makes wild plants such as 

the amaranths important, hence, their consideration as ‘safety nets’ or food sources in 

emergencies (RAMDWAR et al., 2017; SHACKLETON et al., 2006). Climate change 

effects are exerting pressure on the production of exotic crops currently under 

commercial agriculture. There is, therefore, an urgent need to incorporate wild and 

neglected plant species like the amaranths into mainstream agriculture (RASTOGI 

and SHUKLA, 2013). Wild edible plants are known for their resilience to stresses and 

plant diseases, unlike exotic crops, making them better adapted to climate change 

effects (FEYSSA et al., 2011; VORSTER et al, 2007). There is also a need to preserve 

edible plants like the wild amaranths to prevent them from going extinct as a result of 

human activities (RAMDWAR and SIEW, 2017). 

The utilization of chemically reactive nitrogen fertilisers has resulted in immense 

benefits as far as agricultural productivity and food security is concerned (FOWLER 

et al., 2013). Despite these benefits, this form of food production is a typical case of 

‘the tragedy of commons’ as described by the late Garrett Hardin in his 1968 seminal 

paper. Individual farmers act in rational pursuit of fulfilling their self-interest but at the 

same time sacrificing the long-term viability of a shared resource, which in this case is 

the environment, for short-term gain. The subsequent consequence is a disaster in a 

society which operates on the notion of freedom of the ‘commons’ because 

environmental pollution affects everyone (HARDIN, 1968). Any individual farmer aims 

to maximise short-term economic yields through the over-application of N fertilisers 

and this can cause long-term damage to the environment. Global climate change is a 

consequence of such irresponsible actions. Excess N is known to pollute the air, soil 

and water, and also increases emissions of greenhouse gases with adverse effects 
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on the biodiversity and functioning of ecosystems. Of all the reactive N in fertilisers 

applied to increase crop yields, only a fraction is consumed as food with the rest 

remaining in the environment. 

The situation is quite dire in sub-Saharan African countries where the soils are 

characterised by reduced organic matter content and low fertility, coupled with a 

deficiency of essential macro and micro-elements (TILMAN et al., 2002). On the other 

hand, the use of organic manure has many shortcomings which include low nutrient 

content, slow decomposition, and different nutrient compositions depending on the 

organic materials, compared to chemical fertilisers. Despite these disadvantages, 

organic manure has multiple benefits such as balanced nutrient supply, including 

micronutrients, increased soil nutrient availability due to increased soil microbial 

activity, decomposition of harmful elements, improvements of both soil structure and 

root development and increased soil water availability (MALERBA and CERANA, 

2018). Organic manure derived from animal by-products has been utilised to alleviate 

problems of environmental contamination and reduction of plant productivity as a 

result of the excessive and constant use of chemical fertilisers (HAN et al., 2016). 

Among the limiting nutrients to plant production, N and phosphorus (P) are the most 

prominent. Smallholder farmers cannot use fertilisers to their maximum potential 

because of the exorbitant costs. Nutrients such as N and P become limiting for efficient 

food production (SARWAR et al., 2012). The race is now on for modern agriculture to 

search for new strategies that could enable a reduction in the utilization of chemical 

inputs without compromising crop yield or farmers' income (MAFAKHERI and 

ASGHARI, 2018). Nitrogen is a vital nutrient in agriculture, and life in general, in that 

it is a key limiting nutrient for many crops as well as in numerous aquatic and terrestrial 

ecosystems.  

Fertilizer usage has continually increased globally due to declining arable land and 

loss of fertility (OUYANG et al., 2018) with farmers applying it via soil (for plant roots 

uptake) or leaves (foliar uptake) as well as in aquatic environments to promote both 

plant and fruit growth. Of particular concern in environmental quality management are 

N and P because they are lost via several pathways including surface runoff, 

subsurface flow of water and wind erosion. Also gaseous emissions of N can be 

deposited by atmospheric precipitation (PIETRZAK, 2013). A healthy environment can 
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only be achieved by reducing the accumulation of pollutants in agroecosystems and 

refraining from the use of toxic chemicals, particularly synthetic fertilisers and chemical 

pesticides.  

Water is another crucial requirement for plant growth with different plant species 

having specific water requirements. There is a need for studies to investigate the 

minimum water requirements for neglected and underutilised plants like the 

amaranths. In this way, water could be saved in the advent of drought which happens 

to be a critical threat in this era of climatic change (GODFRAY et al., 2010b; WANG 

and FREI, 2011). Adequate and relevant water-saving strategies are required to curb 

the effects of water shortages and severe drought on food security in a world faced 

with an ever-increasing population (WEI et al., 2016), particularly in arid and semi-arid 

areas. One primary environmental concern in agriculture is the use of fresh water for 

irrigation (POSTEL et al., 1996) since water resources are threatened by the 

increased water demand in agriculture, with climate change worsening, and the gap 

between water availability and demand (AFZAL et al., 2016).  

The major consumer of available freshwater globally is irrigated agriculture, “gobbling” 

an estimated 70% of available freshwater supplies (EVANS and SADLER, 2008). 

There is a general opinion that there is usually a wastage of water in agriculture and 

that its use is extremely inefficient (HSIAO et al., 2007). Crop yields in semi-arid 

environments are very low with only a small percentage of available water being 

utilised. Normally, rain fed crops use 15% to 30% of precipitation (WALLACE, 2000), 

compared to the 13% to 18% used by irrigated crops in similar environments 

(WALLACE and GREGORY, 2002), with low values of 5% of available water-use 

being reported in western Africa (ROCKSTRÖM and FALKENMARK, 2000). Hence, 

the calls for agricultural efficiency in water-use which has been defined as the ability 

to produce the desired effect with minimal effort, expense and minimal water wastage 

(JENSEN, 2007; PEREIRA et al., 2012).  

Farmers are now improving irrigation strategies so that they provide crops with exact 

water requirements (MORILLE et al., 2013). Many studies show short interval 

irrigation events improve both crop growth and development (MEKONNEN et al., 

2012). Optimal water management and increased crop yield in areas with scarce water 

resources can only be achieved with control or timing of irrigation scheduling. 



  

45 
 

The outcome of the worldwide climate change has brought about the expansion of 

extreme meteorological events such as dry seasons (PENALBA and RIVERA, 2013). 

These are adversely affecting agricultural systems. Drought happens to be the most 

dynamic and worst abiotic stress affecting plant growth and development. It limits the 

productivity of crop plants depending on duration and intensity of the drought stress 

and stage of development of the plant as well as its genotype (DRESSELHAUS and 

HÜCKELHOVEN, 2018; IRMAK et al., 2000; PATTERSON, 1995; SHAO et al., 

2009). If there is a lack of water in any crop’s growing environment, there is the 

potential for a decrease in the yield and profitability of the crop. It causes detrimental 

effects on both the physiological and biochemical processes of the crop plant (ANJUM 

et al., 2017; RICCARDI et al., 2016; YANG et al., 2019). According to ARBEX DE 

CASTRO VILAS BOAS et al. (2017), much interest has been generated of late to 

improve fruit and vegetable quality sustainably to meet future food requirements and 

tackle environmental stress caused by climate change.  

Other critical environmental factors affecting crop physiology and biochemistry are 

light intensity and quality (YANG et al., 2018). A slight increase or decrease in light 

intensity can have a significant influence on leaf morphology and structure (WU et al., 

2017). According to comparative studies done earlier, low light conditions detrimentally 

impact on plant growth since they cause a decrease in root, stem, leaf and whole plant 

dry matter. They also affect the rate of photosynthesis, transpiration and stomatal 

conductance and stem diameter (MIELKE and SCHAFFER, 2010; WANG et al., 

2009; YANG et al., 2017). Crops have also been observed to produce smaller and 

thinner leaves in low light conditions than in full sunlight (WU et al., 2017). 

Temperature and light intensity are climatic conditions with a strong influence on 

growth, yield and nutritional quality of vegetables (SAVVAS and PASSAM, 2002). 

According to HUNTER and BURRITT (2004), the growth-promoting effect of light only 

operates within a specific range of light intensities. According to HANGARTER (1997), 

light plays a critical role in the growth and development of a plant. Plant growth and 

photosynthetic efficiency are regulated by quality, quantity and direction (SYSOEVA 

et al., 2010).  

Several studies have associated the accumulation of phytochemicals in plants with 

genotype, light conditions and environmental temperature as well as irrigation and 

fertilisation (KOPSELL and KOPSELL, 2008; MOU, 2009; PÉREZ‐BALIBREA et al., 
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2008). Photosynthetic energy is solely derived from light and this makes it a vital signal 

from the environment responsible for photosynthetic biosynthesis and photo-

morphogenesis (CHEN et al., 2004a). Light triggers a wide range of signals and 

information for morphogenesis and several physiological processes in plants (CHEN 

et al., 2004a). Light characteristics such as the composition of the spectrum 

(wavelengths), intensity, duration and direction all have significant effects on plant 

growth and development including the process of photosynthesis (KOZAI, 2016). A 

correlation between phytochemical biosynthesis and accumulation and the amount of 

photosynthates has been reported in plants, and this makes light conditions of vital 

importance for optimising the accumulation of phytochemicals (BIAN et al., 2015). 

According to KOZAI (2016) plants respond differently according to the lighting 

environment, season, genotype, cultivation practices and many other factors. All 

plants have their optimal light intensity ranges for growth, hence too high or too low 

light intensities affect morphology, photosynthetic physiology, and subsequently 

secondary metabolite production of plants (PAN and GUO, 2016). It is essential to 

cultivate crops under optimal light intensity to maximise growth, development and yield 

(PAN and GUO, 2016).  

In a bid to promote the cultivation of Amaranthus hybridus, experiments were carried 

out to investigate the effects of nitrogen, phosphorus and potassium (NPK) 

deficiencies, nutrient strength, irrigation frequency and light intensity on the growth of 

A. hybridus. A further experiment was carried out to investigate the effects of N 

deficiency plus organic biostimulants on the growth of A. hybridus.  

 

3.2 Materials and methods 

 

3.2.1 Site of experiments 

 
Pot experiments were conducted in the 2018 growing season in a greenhouse at the 

University of KwaZulu-Natal (UKZN) Botanical Garden (290 37.55' S; 300 24.13' E), 

Pietermaritzburg Campus, KwaZulu-Natal Province, South Africa.  
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3.2.2 Plant material 

 
Amaranthus hybridus seeds were obtained from McDonalds Seed Company in 

Pietermaritzburg, South Africa. All the treatments in this investigation were arranged 

in a randomized complete block design. 

 

3.2.3 Effect of nutrient strength on Amaranthus hybridus growth under 

greenhouse conditions 

 

The main aim of this experiment was to investigate and establish the optimal nutrient 

requirement for the growth and development of A. hybridus. To this end, the 

Hoagland’s nutrient solution (HNS) of different strengths was tested to establish the 

optimal concentration at which the vegetable could thrive. 

 

3.2.3.1 Seed germination and transplantation 

 
See11ds of A. hybridus were sown in brown polyvinyl chloride pots of 10 cm diameter 

filled with acid-washed, white, sterilised sand. Seedlings were treated with three 

different concentrations (50, 25 and 12.5%) of HNS (ARNON and HOAGLAND, 

1952). The respective treatments of 50 mL were applied once a week per pot as a soil 

drench for three weeks. The sand was hydrated regularly to prevent water stress. Leaf 

number and plant height were recorded after first, second and third weekly 

applications for each plant. The plants from the three treatments were harvested at 

the termination of the experiment after four weeks. The plants were uprooted, excess 

soil and water were removed from the roots using paper towels. Subsequently, 

different growth parameters (leaf number, shoot length) were recorded. After recording 

these parameters, the leaves and roots were separately placed in brown paper bags 

and oven-dried at 70°C for 72 h, after which, plant material was weighed to determine 

dry weight. Absolute Growth Rate (AGR) and Relative Growth Rate (RGR) were 

calculated using the collected data based on the following formulae: 

AGR = n2 – n1/ t2 – t1 [yields (n = number of leaves or plant height) average slope over 

that time (t) interval] and RGR = In n2 – In n1/ t2 – t1 [yields (n = number of leaves or 

plant height) constant slope (t = time interval) during logarithmic (In) phase].  
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3.2.4 Effect of NPK deficiency on Amaranthus hybridus growth under 

greenhouse conditions 

 

3.2.4.1 Preparation of Hoagland’s nutrient solution 

 
Hoagland’s nutrient solution was prepared to mimic nutrient deficiencies as follows; 

half-strength solution with N, P and K served as the control (ARNON and 

HOAGLAND, 1952) and half-strength solution without N, P or K served as the nutrient 

deficiency treatments. 

 

3.2.4.2 Treatments 

 
Fifteen pots were arranged in three rows (5 pots in each row) and being tiny seeds, 

an undefined number of A. hybridus seeds were sown into the pots. The pots were left 

in the greenhouse for seeds to germinate. After five days, the resulting seedlings were 

thinned out to three seedlings per pot and the remainder were transplanted into 

another 50 PVC pots of the same size (10 mm diameter) filled with sterile white sand. 

All the pots were irrigated manually with 100 mL of half-strength HNS and left for a 

week for the transplanted seedlings to establish, before commencement of different 

drenching treatments of NPK, –N, –P, and –K as described in Section 3.3.1. Each 

treatment had five replicates with three plants in each pot. The treatments were 

applied once a week for three weeks from the time of seedling establishment. Data 

were collected weekly after the first application. 

Plants were harvested after four weeks and the following parameters were measured; 

shoot length (mm) and number of leaves. Subsequently, the plant material was dried 

at 70°C for a week in an incubator for dry weight measurements. 

 

3.2.5 Effect of different watering frequencies on growth of Amaranthus hybridus 

 

Optimal water management and increased crop yield in areas of limited water 

resources can only be achieved through accurate control of irrigation scheduling. 

Hence, the main objective of this study was to investigate the effects of different 
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watering frequencies on the growth, physiology and biochemical composition of A. 

hybridus. 

 

3.2.5.1 Seed germination and transplantation 

 
The seeds used for this experiment were sown in germination trays. Seedlings were 

allowed to grow for two weeks, and at the two-leaf stage, seedlings were transplanted 

to experimental pots (15 cm diameter) filled with the soil of the following composition 

[bark, compost, limestone, ammonium nitrate and NPK (2:3:2) and sand)] (KULKARNI 

et al., 2006). There were four replicates for each treatment. Seedlings were given two 

weeks to establish before irrigation frequency treatments were applied and 

commencement of growth assessed. 

 

3.2.5.2 Treatments and plant maintenance 

 
For the determination of the effects of watering frequency on growth of A. hybridus, 

pots were arranged on a bench in a greenhouse at 24 ± 2 °C. On a weekly basis, three 

levels of watering frequency of once, twice and thrice were applied with pots receiving 

100 mL at each watering level. 

 

3.2.5.3 Determination of plant growth traits 

 
Plant growth traits were determined using methods described in Section 3.2.3.1. 

 

3.2.6 Effect of light intensity on growth, chlorophyll and biochemical content of 

Amaranthus hybridus 

 

The current study was aimed at investigating the effects of light intensity on the growth, 

chlorophyll and nutritional content of A. hybridus. 

 

3.2.6.1 Seedling establishment 

 
Seeds of Amaranthus were first germinated in 10 cm diameter PVC pots containing 

garden soil under greenhouse conditions. Upon germination, the seedlings from the 

pots were thinned by transplanting them in other pots full of soil, leaving three plants 
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in every pot, resulting in 40 pots having approximately 120 seedlings of A. hybridus. 

The seedlings were watered and allowed to establish under greenhouse conditions. 

Upon establishment, the seedlings were exposed in the garden to midday light 

intensities of 600, 450, 300 and 150 μmol m−2 s−1. The first set of 30 seedlings was 

covered by a single layer of 1 mm green mesh net which represented a light intensity 

of 600 μmol m−2 s−1. The next set was covered by two layers of green mesh net 

representing 450 μmol m−2 s−1 .The third set of seedlings was covered with three layers 

and the fourth set with 4 layers representing 300 and 150 μmol m−2 s−1 respectively. 

The plants were allowed to grow under these conditions following all the cultural 

practices. They were watered twice a week throughout the experiment. The following 

parameters; the number of leaves and plant height, were measured and recorded at 

different light intensities every two weeks for six weeks. The freshly harvested material 

was analysed for total chlorophyll, carotenoid, protein and starch content. 

 

3.2.6.2 Chlorophyll content evaluation 

 
The photosynthetic pigments [Total chlorophyll (a + b) and carotenoids] were 

estimated by the methods of LICHTENTHALER (1987) as described by AMOO et al. 

(2014). One-hundred milligrams of fresh leaf material was ground with 5 mL ice-cold 

acetone with a pinch of sand washed with acid (BDH Chemicals Ltd, England). The 

resultant solution was filtered using Whatman No. 1 filter paper and centrifuged 

(Hettich Universal, Tuttlingen, Germany) at 3000 g for 10 min at ambient room 

temperature. The absorbance of the solution was read at 470, 645 and 662 nm using 

a UV-visible spectrophotometer (Varian Cary 50, Australia). Chlorophyll and 

carotenoid content were calculated as; 

Chlorophyll a = 11.23A662 – 2.04A645  

Chlorophyll b = 20.13A645 – 4.19A662 

Chlorophyll a + b = 7.05A662 + 18.09A645 

Total carotenoids = (1000A470 –1.90Chla–63.14Chlb)/214 

 

3.2.6.3 Protein content evaluation 

 
Total protein was estimated using bovine serum albumin (BSA) as a standard 

(BRADFORD, 1976). Two-hundred milligrams of the sample was taken and 
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homogenized in an ice-chilled mortar and pestle with 6 mL ice-cold phosphate-buffer 

saline (PBS) [8 g NaCl (137 mM), 0.2 g KCL (2.7 mM), 1.44 g NA2HPO4 (10 mM), 0.24 

g KH2PO4 (1.8 mM) in 1 l of dH2O(pH 7.2)]. The homogenate was centrifuged at 15000 

RCF(g) for 15 min at 4 °C. One-hundred microliter samples were pipetted out into test 

tubes and the volume made up to 1 mL in all test tubes with PBS. One millilitre 

Bradford dye was added to all the test tubes. The contents of the test tubes were 

mixed by vortexing and allowed to stand for 5 min. The red dye turns blue as it binds 

protein. Absorbance was recorded at 595 nm against a control. 

 

3.2.6.4 Carbohydrate content evaluation 

 
Total carbohydrate was estimated according to the method of SADASIVAM and 

MANICKAM (2008) with minor modifications. Two-hundred milligrams of plant 

material (leaf) were weighed and hydrolysed by keeping in a boiling water bath for 3 h 

with 5 mL 2.5 N hydrochloric acid (HCl) and then cooled to room temperature. The 

hydrolysed plant material was neutralized with solid sodium carbonate until the 

effervescence ceased. The volume was made up to 5 mL by adding distilled water and 

centrifuged at 10000 RCF(g). One-hundred microlitre of the supernatant was taken 

and the volume was made up to 1 mL with distilled water before adding 4 mL of 

anthrone reagent. The test tubes were heated in a boiling water bath for 8 min and 

were cooled rapidly in running tap water. The absorbance was read at 630 nm as the 

colour changed from green to dark green. A standard curve was prepared using 0-100 

µg glucose. 

 

3.3. Statistical analysis 

 

The data obtained for different parameters were statistically analysed using one-way 

analysis of variance (ANOVA) to observe significant differences. The significance of 

the differences among the treatment means was evaluated by the Duncan’s Multiple 

Range Test (DMRT) at 5% level of probability according to GOMEZ and GOMEZ 

(1984). 
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3.4 Results 

 

3.4.1 Effect of nutrient strength on the growth of Amaranthus hybridus 

 
Nutrient strength had a notable influence on the general growth of A. hybridus. Nutrient 

strength had a significant influence on AGR and RGR of both leaf number and plant 

height at the highest tested concentration of 50% compared to the lowest 

concentration of 12.5% (Fig. 3.1 A and B). The nutrient strength did not show any 

notable influence on RGR for height of the plants. The notable influence of nutrient 

strength has been visually depicted in Fig. 3.2 A and B. In these figures, the plants 

treated with 50% HNS showed more prolific growth followed by those grown at 25% 

HNS with the least growth being observed at 12.5% HNS (Fig. 3.2 A and B). These 

results clearly show that the availability of nutrients has a substantial influence on the 

growth of A. hybridus. 

 

3.4.2 Effect of NPK deficiency on the growth of Amaranthus hybridus 

 
The results show notable influences on both AGR and RGR for both number of leaves 

and height of plants. NPK and –N had an influence on AGR and RGR in terms of leaf 

number of A. hybridus with the other treatments (–P and –K) showing significantly 

lower values (Fig. 3.1 C) to mean that lack of these nutrients have a negative effect in 

terms of AGR and RGR of A. hybridus. In terms of the AGR for the height of the plant, 

none of the treatments had an influence with the exception of –K, (Fig. 3.1 D). All the 

treatments had no significant effects on the RGR for the height of plant (Fig. 3.1 D). 

In the absence of K, the height of plant (AGR) increased significantly compared to the 

other treatments (Fig. 3.1 D). Fig. 3.2 C and D shows the effect of NPK deficiency on 

A. hybridus plants grown under greenhouse conditions.
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Fig. 3.1: Effect of nutrient strength, nutrient deficiency and watering frequency on absolute growth rate (AGR) and relative growth 

rate (RGR) of Amaranthus hybridus. Bars of absolute growth rate and relative growth rate in each graph with different letter(s) are 

significantly different according to Duncan’s multiple range test (P < 0.05).
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3.4.3 Effect of watering frequency on the growth of Amaranthus hybridus 

 
From the results shown in Fig. 3.1 E and F, it is evident that watering frequency had 

a notable influence on the vegetative growth of A. hybridus. The results show a gradual 

increase in the growth of A. hybridus as watering frequency increases from once, to 

twice and thrice a week. The highest and significant improved growth was recorded at 

a watering frequency of thrice a week for AGR for both leaf number and height (Fig. 

3.1 E and F). Watering frequency did not affect the RGR for both leaf number and 

height (Fig. 3.1 E and F). Plants irrigated three times a week exhibited maximum 

growth in terms of the number of leaves and height. There was a gradual increase in 

plant size as irrigation frequencies increased (Fig 3.2 E and F). 

 

3.4.4 Effect of light intensity on growth of Amaranthus hybridus 

 
The growth of A. hybridus was significantly influenced by light intensity (Fig. 3.3). Both 

the AGR and RGR were significantly improved for both leaf number and plant height 

at a light intensity of 600 μmol m−2 s−1 (Fig. 3.3 A-D). At 450 μmol m−2 s−1 light intensity, 

AGR and RGR were significantly greater than at 300 and 150 μmol m−2 s−1 light 

intensities for plant height (Fig. 3.3 B and D). Fig. 3.4 shows A. hybridus plants grown 

under four light intensities. 
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Fig. 3.3: Effect of light intensity on the absolute growth rate (AGR) and relative growth 

rate (RGR) of Amaranthus hybridus. Symbols in each graph with different letter(s) are 

significantly different according to Duncan’s multiple range test (P < 0.05). 
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3.4.5 Effect of light intensity on the photosynthetic pigments and biochemical 

composition of Amaranthus hybridus  

 

The effect of varying light intensities on the biochemical composition of A. hybridus is 

shown in Table 3.1. Results indicate that the different light intensities did not seem to 

have any notable influence on the amount of Chlorophyll a since the values obtained 

were statistically not significantly different when compared to each other. Light 

intensity of 300 μmol m−2 s−1 improved the content of Chlorophyll b as well as 

Chlorophyll a + b (Table 3.1). Other light intensities generally showed increasing levels 

but were not significantly different to the lowest light intensity of 150 μmol m−2 s−1 in 

terms of chlorophylls. Light intensities of 450 and 600 μmol m−2 s−1 enhanced the 

content of carotenoid, protein and carbohydrate compared to the lowest light intensity 

tested in A. hybridus (Table 3.1). Although there was an increment in the carotenoid, 

protein and carbohydrate contents with light intensity of 300 μmol m−2 s−1 and above, 

only the protein content was significantly lower at the lowest light intensity. These 

results indicate that light intensity has an influence on both photosynthetic pigments 

and biochemical composition of A. hybridus. 
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Table 3.1: Effect of light intensity on the biochemical composition of Amaranthus hybridus. 
 

 

Mean values (± SE) in a column with different letter(s) are significantly different according to Duncan’s multiple range test (P < 0.05). 

 

Light intensity 
μmol m−2 s−1 

Chlorophyll a 
µg g-I FW 

Chlorophyll b 
µg g-I FW 

Chlorophyll a + b  
µg g-I FW 

Carotenoids 
µg g-I FW 

Proteins  
µg g-I FW 

Carbohydrates 
µg g-I FW 

150 770 ± 25 a 73 ± 20 b 844 ± 47 b 207 ± 30 b 7.1 ± 0.31 b 25.8 ± 1.77 c 

300 855 ± 106 a 338 ± 30 a 1194 ± 137 a 239 ± 8 b 12.5 ± 0.18 a 42.5 ± 10.6 bc 

450 915 ± 44 a 189 ± 42 b 1104 ± 83 ab 301 ± 14 a 11.0 ± 1.39 a 57.2 ± 11.9 ab 

600 868 ± 34 a 160 ± 42 b 1029 ± 73 ab 334 ± 8 a 12.2 ± 0.64 a 77.3 ± 8.46 a 
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3.5 Discussion  

 

3.5.1 Effect of nutrient strength on the growth of Amaranthus hybridus 

 
The growth of A. hybridus was influenced by the amount of nutrients applied, as 

evidenced by the plants grown under the three different nutrient strengths used for the 

investigation (Fig. 3.1 A and B). Maximum growth was observed when the plants were 

treated with 50% HNS. The results from this experiment concur with those obtained 

by KANG and IERSEL (2004) when they worked with sub-irrigated Salvia splendens, 

where shoot and total dry weight and leaf area increased significantly when HNS 

concentration was increased from 0.125 to 1.0X HNS concentration. The possible 

explanation raised is that the increase in these parameters could have been attributed 

to carbon allocation within the plant. This could be the same scenario operating in the 

current investigation with A. hybridus. Also, these results are in agreement with those 

obtained in lettuce plants with increasing electroconductivity (EC) levels by SUBLETT 

et al. (2018) and those of ABOU-HADID et al. (1995) and KANE et al. (2006) on 

Allium cepa where 50% HNS produced higher total biomass and edible biomass than 

plants grown in other solutions. AYI et al. (2019) obtained similar results with 

Alternanthera philoxeroides where the growth of the plants were affected by the lack 

of nutrients. This resulted in the relative growth rates of plant fresh weight (RGRFW) 

and plant stem height (RGRH) of plants growing in 5% strength standard Hoagland’s 

solution being lower than those of plants growing in 50% and 100% strength solutions. 

According to CHAPIN (1991) there are notable examples of plant responses to 

deficiencies of different resources and the responses could be morphological or 

physiological. The most important responses are those which support an increase in 

resource uptake and efficient use of limited resources (HERMANS et al., 2006; 

POORTER et al., 2009). Normally plants tend to improve root production and 

enlarging the root environment interface when there is limited nutrient availability to 

allow for maximum uptake of nutrients (HERMANS et al., 2006). 
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3.5.2 Effect of nutrient treatment (NPK) deficiency on the growth of Amaranthus 

hybridus 

 
It was evident that A. hybridus cannot grow well in the absence of P and K since it only 

showed some growth in plant height but not in terms of number of leaves. The most 

significant growth for leaf number was achieved when all three mineral elements 

(NPK) were present (Fig. 3.1 C). NPK and –N enhanced the AGR for leaf number but 

all treatments had no influence on RGR of the height of the plant. These results confirm 

that all three mineral elements (NPK) are critical for the growth and development of 

plants. The results of this investigation show that A. hybridus generally cannot grow 

well in the absence of P and K (Fig. 3.1 C and D and Fig. 3.2 C and D). The limited 

growth of A. hybridus in this research could be explained in the following manner; 

although HNS lacking P and K were applied to the plant, the plants managed to grow 

making use of the scant minerals found in the sand in which the seedlings where 

grown. According to CARSTENSEN et al. (2018) and MALHOTRA et al. (2018), P is 

an essential macronutrient whose deficiency limits plant growth and productivity. 

Phosphorus is known to be a structural component of biochemicals such as nucleic 

acids, sugars and lipids, and also plays a vital role in the developmental processes of 

plants at both cellular and whole plant level. These processes include seed 

germination, seedling establishment, root, shoot, flower and seed development, 

photosynthesis, respiration and N fixation (MALHOTRA et al., 2018). Plants are 

believed to undergo different adaptations in terms of morphology, physiology and 

biochemistry in response to P deficiency (MALHOTRA et al., 2018). According to 

FRYDENVANG et al. (2015), research has shown effects of P deficiency on electron 

transport to photosystem I (PSI), although the underlying mechanisms are not known. 

P is a key element found in compounds such as ATP, NADPH, nucleic acids, sugar 

phosphates and phospholipids, all of which are involved in photosynthesis. This goes 

a long way in confirming that any marginal shortage of P can have serious 

consequences on the growth and development of a plant (WHITE and HAMMOND, 

2008). Consequently, even marginal P deficiency has a major impact on plant growth 

and development (CARSTENSEN et al., 2018). An estimated 30% of the global arable 

soils lack P and require artificial fertilisers to enhance crop yields (MACDONALD et 

al., 2011), so the research provides evidence that A. hybridus has limited growth in 
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soils with a low P content since they could not increase in both height and number of 

leaves as demonstrated in this investigation (Fig. 3.1 C and D). 

A. hybridus was seen to increase in height in treated sandy soil treated with K-deficient 

½ strength HNS but not for number of leaves and this again shows the vital role played 

by K in plant growth. Potassium happens to be the second most abundant element 

absorbed by plant roots, after N (SINGH et al., 2018). Potassium is one of the key 

elements required for plant growth (CAKMAK, 2005; WANG et al., 2013) since it snot 

only forms a constituent of the plant structure but also has a regulatory function in 

many biochemical processes involved with protein synthesis, carbohydrate   

metabolism, and activation of enzymes (HASANUZZAMAN et al., 2018). Several 

physiological processes depend on K, such as stomatal regulation and 

photosynthesis, so its shortage can lead to malfunctions of many physiological and 

biochemical processes (TU et al., 2017). Any deficiency in K results in limitation of 

growth and yield in crop plants due to the adverse impairment of key processes in 

plants such as cell turgidity, cell-elongation, transport of assimilates and activation of 

enzymes, all which has to do with water relations (PETTIGREW, 2008; RÖMHELD 

and KIRKBY, 2010). In the current investigation, A. hybridus was unable to grow well 

in K-deficient ½ strength HNS- treated soils although it still managed to increase in 

height. This goes a long way to show the resilience of the plant under different abiotic 

stresses. SINGH et al. (2018) investigated the effects of K on soybean growth and 

they reported that K-deficiency limited soybean growth traits more than 

photosynthesis. In this research, A. hybridus showed variable growth responses in soil 

HNS lacking K. 

Nitrogen is the most abundant mineral element absorbed by plant roots from the soil 

and its balance in the environment is vital for the maintenance of life (WEATHERS et 

al., 2016). It is not surprising that A. hybridus could not achieve much growth in terms 

of plant height in the absence of N since it is a vital element in nucleic acids such as 

DNA and RNA, the two most important of all biological molecules, vital for all living 

organisms. The lack of N in plants causes a failure to produce amino acids required 

for protein synthesis and plant growth. BRADY et al. (2010) and RAZAQ et al. (2017) 

found that Acer mono plant seedlings treated with N fertilizer exhibited significantly 

greater levels of Chlorophylls a and b and carotene as well as greater height of plants 

and diameter of root (P < 0.05) than the untreated ones. VAN AVERBEKE et al. 
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(2007) investigated the growth and yield response of Solanum retroflexum Dun. 

(nightshade) and Brassica rapa L. subsp. chinensis (non-heading Chinese cabbage) 

to N, P and K availability in the soil. S. retroflexum was found to be more sensitive to 

N availability in the soil and required sufficient N to attain optimal growth. In addition 

to N, the production of the crop also required adequate supplies of P and K. An 

optimum availability range for N and K was identified for B. rapa, including a critical 

level of availability for P. CHEN et al. (2018) obtained similar results when they 

measured growth and photosynthetic parameters in Eustoma grandiflorum (Raf.) 

Shinn where the height of plants, number of nodes and leaf area were all reduced 

under NPK deficiencies. All the above reports demonstrate how critical the elements 

NPK are, with regards to plant growth and production. These reports concur with 

findings of this investigation. A. hybridus could not achieve optimal growth for both 

height and growth in the absence of N, P and K. 

 

3.5.3 Effect of watering frequency on the growth of Amaranthus hybridus 

 
Generally, water management is key to obtaining high yields and conservation of 

irrigation water within the different growth stages of crop plants (WANG et al., 2017). 

Little water or excess water can affect plant growth negatively since plants require the 

proper moisture content in the soil (BERTOLINO et al., 2019; CHILUNDO et al., 

2016). The results of the investigation showed that watering frequency had a marked 

influence on the AGR of A. hybridus. There was a gradual increase in the AGR even 

though not significant for once and twice a week frequencies. The watering frequency 

was highly significant on the AGR of A. hybridus for both leaf number and height when 

applied thrice a week, as can be seen in Fig. 3.1 E and F, and Fig. 3.2 E and F. The 

results of this experiment are in agreement with the results obtained with mini Chinese 

cabbage (Brassica pekinensis cv. “Lvguan F1”) when an investigation was carried out 

on the effect of irrigation level and irrigation frequency by XIANG et al. (2019). In this 

investigation, both irrigation frequency and level had a significant effect on the growth 

and yield of the mini Chinese cabbage. Similar results were obtained by ISLAM et al. 

(2018) on wheat (Triticum aestivum L.) when they investigated the effect of irrigation 

levels on the crop, where they established that the irrigation level and time had a strong 

influence on morphology, growth and yield. The results also coincide with those of 

KHOKHAR et al. (2010) who reported a higher spike length in wheat irrigated five 
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times per week. Also, findings of NGWAKO and MASHIQA (2013) indicated that 

continuous irrigation of wheat during the growth stages has a positive effect on the 

yield of grain. This indicated that when irrigation water increased, yield also increased 

to a certain point. SENYIGIT and KAPLAN (2013) also concluded that when irrigation 

water increased, so does the yield up to a certain extent, and when the amount of 

irrigation water is more than that required by the plant, the yield of lettuce decreased. 

All these findings support the results of the current investigation in which increased 

watering frequency was observed to improve the vegetative growth of A. hybridus. 

 

3.5.4 Effect of light intensity on growth and biochemical composition of Amaranthus 

hybridus 

 
The results of the above investigation show the significant effects of light intensity on 

the growth and biochemical composition of A. hybridus, as can be seen for light 

intensities 600 and 450 μmol m-2 s-1 (P < 0.05) and then at 300 and 150 μmol m-2 s-1. 

The results are in agreement with those of PAN and GUO (2016) where Epimedium 

pseudowushanense B.L.Guo, a medicinal plant, was exposed to five different levels 

of light intensity and leaf dry biomass was highest under Level 4 (90.9 ± 2.5 μmol m-

2s-1) associated with the highest net photosynthetic rate. Leaf areas were higher under 

low light intensities to maximise light absorption. Light as the original source of energy 

for plant photosynthesis and growth signals a wide range of signals and growth and 

information for morphogenesis and many other physiological processes (CHEN ET 

AL. 2004).  Different characteristics of light such as spectral composition 

(wavelengths), intensity, duration and direction can influence plant growth and 

development (NAOYA ET AL., 2008). Higher light intensities resulted in more 

branches than low light intensities and the explanation could be that with more light, 

more photosynthesis occurred, thereby stimulating the plant to grow more branches 

and more leaves. Light intensity has a big influence on many different characteristics 

of plants which include leaf area, number of branches and water content (DAI et al., 

2009). Differences in plant morphology for different species are a function of 

adaptations to varied light environments (ALERIC and KIRKMAN, 2005). FAN et al. 

(2013b) and TANG et al. (2015) studied the growth and leaf development in tomato 

plants under different light intensities and the results showed that fresh weight, dry 

weight, stem diameter and health index were higher in plants grown under 450 and 
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550 μmol m-2 s-1 than those grown under 300 μmol m-2 s-1. This again demonstrates 

the effect of light intensity on growth of plants and concurs with the trend obtained in 

the current investigation even though plants for the current investigation did not grow 

well at 300 μmol m-2 s-1. A further investigation was carried out by NGUYEN et al. 

(2019) on Spinacia oleracea L. to investigate the effect of four different light intensities 

(90, 140, 190 and 240 μmol m-2 s-1) on the growth, photosynthesis and leaf 

microstructure of spinach. Plant height, leaf number, leaf area, Chlorophyll a, 

Chlorophyll a + b and photosynthetic capacity were observed to increase with 

increasing light intensity. 

Results from this investigation (Table 3.1) show that light intensity influences the 

amounts of chlorophyll, carotenoids, proteins and carbohydrates in A. hybridus when 

exposed to different light intensities. Findings from this investigation support those 

obtained by FENG et al. (2018) on soybean where different light intensity treatments 

affected the chlorophyll and carotenoid content of the crop. The amount of pigments 

increased as light intensity increased. According to the same authors, there is a direct 

relationship between chlorophyll and carotenoids and alterations in light intensity and 

this concurs with results of the present investigation. Results from this investigation 

are similar to those reported by WITTMANN et al. (2001) in Fagus sylvatica and aspen 

(Populus tremula), and FAN et al. (2018) in soybean intercropped with maize, in which 

there was an increase in chlorophyll content as light intensity was increased. The 

current results differ from results reported by LI et al. (2014) in sorghum. LI et al. 

(2014) claimed that a reduction in light intensity resulted in an increase in chlorophyll, 

which is opposite to results from the current investigation. 

Increase in light intensity enhances the rate of photosynthesis, stomatal conductance, 

levels of intercellular carbon dioxide and the rate of transpiration. The promotion of 

growth in the crop could be a result of the increased gain of carbon due to the 

improvement of photosynthetic parameters (LIAO et al., 2006). The increase in 

carbohydrates as light intensity increases is due to an improvement of the assimilation 

rate of carbon dioxide (sucrose and starch production) in response to the improvement 

of morphological parameters and enzymatic activities involved in the process (FENG 

et al., 2018). Also, plant responses to changes in light intensity vary from one variety 

to another and between crop species (FENG et al., 2018). Similar results were 

obtained by POORTER et al. (2019) where they determined how 70 traits related to 
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plant anatomy, morphology, chemistry, physiology, growth and reproduction are 

affected by daily light integral (DLI; mol photons m-2 d-1). POORTER et al. (2019) also 

observed that the carbohydrate content increased with an increase in DLI. From a 

database of 500 experiments involving 760 plant species, they were able to determine 

dose-response curves and discovered that most of the traits increased with DLI in a 

saturating way with some increasing by ten‐fold over the DLI range of 1-50 mol m-2 d-

1. These results are further supported by MONOSTORI et al. (2018) in hexaploid 

wheat (T. aestivum ssp. aestivum cv. ‘Mv Kikelet’) where elevated light intensities 

achieved using LEDs enhanced the rate of photosynthesis, the number of tillers, 

biomass and yield. According to FAN et al. (2013b), blue and red irradiations play a 

vital role in photosynthesis and also stimulate the biosynthesis of chlorophyll and 

carotenoids. This could be another explanation of the results obtained in this 

investigation.  Results demonstrate the dynamic nature of light intensity to which plant 

species respond and change at differing time scales, and from season to season 

(ASSMANN and WANG, 2001). All these illumination dynamics have also been 

observed in major crop species such as soybean (Glycine max; PEARCY et al. (1997), 

rice (Oryza sativa; NISHIMURA et al. (2000) and maize (Zea mays; WANG et al. 

(2008) through experiments and modelling approaches (SLATTERY et al., 2018). 

It can be concluded that light intensity influences the amount of chlorophyll and 

carotenoids in A. hybridus, as shown by the results of the current investigation. There 

was a substantial increase in all the photosynthetic pigments assessed to show that 

as light intensity was increased it also enhanced the rate of photosynthesis, resulting 

in increased amounts of photosynthates. 
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CHAPTER 4. Effects of organic biostimulants on the growth 

and biochemical composition of Amaranthus hybridus L. 
 

 

4.1 Introduction 

 

By definition, biostimulants are substances and microorganisms that have been 

discovered to regulate plant growth in a number of ways (TARANTINO et al., 2018). 

Research has shown their ability to enhance the following parameters in plants; plant 

growth, nutrition efficiency, abiotic stress tolerance and crop quality traits (VAN 

OOSTEN et al., 2017). These positive attributes of biostimulants could be used to 

promote the commercial cultivation of neglected and underutilised traditional leafy 

vegetables such as Amaranthus hybridus. Many neglected and underutilized 

vegetables have the potential to bring diversity in human diets and increase levels of 

food production thereby bringing about agro- and horti-food systems, which are more 

sustainable and resilient (BALDERMANN et al., 2016). Traditional vegetables are 

cheaper and rich sources of vitamins and other health-promoting nutrients (BUA and 

ONANG, 2017). Vegetable consumption confers palatability and taste to diet, thereby 

enhancing appetite. Vegetables also provide fibre which is an important component of 

a balanced diet. Vegetables have many health benefits since most of them are known 

to be rich sources of secondary metabolites, which play a crucial role in the prevention 

of diseases. It is for this reason that plants (fruits and vegetables) are also valued for 

their medicinal attributes in many cultures where they play a pivotal role in folklore 

medicine (BUA and ONANG, 2017).  

The main cause of the development and progression of a number of diseases is 

oxidative stress (KASOTE et al., 2015). Several metabolic reactions in the human 

body produce free radicals such as reactive oxygen species (ROS) as by-products 

with undesirable effects (RAVIMANNAN and NISANSALA, 2017). Plants are able to 

produce a variety of secondary metabolites classified as antioxidants that can alleviate 

oxidative damage caused by ROS. Antioxidants attenuate ROS-induced oxidative 

damage by inhibiting the oxidation of oxidizable substrates found at concentrations 

much lower than the substrate (RAVIMANNAN and NISANSALA, 2017). Plants are 

rich sources of antioxidants and two-thirds of global plant species are believed to have 
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medicinal value, with most having excellent antioxidant attributes (KRISHNAIAH et 

al., 2011). An antioxidant is defined as a substance that protects the oxidation of 

substrates which can be oxidised when its concentration is lower than that of an 

oxidizable substrate. Antioxidants work individually or in synergy in enhancing cellular 

defences against oxidative stress caused by various ROS and reactive nitrogen 

species (RNS) (LÜ et al., 2010; YOUNG and WOODSIDE, 2001). There are two main 

categories of antioxidants; natural enzymatic and non-enzymatic. Natural enzymatic 

antioxidants include enzymes such as superoxide dismutase (SOD), (located in 

chloroplasts, mitochondria, peroxisomes and/or the cell wall) and catalases (located 

in peroxisomes). Vitamin E, Vitamin C, butylated hydroxytoluene (BHT), BHA 

butylated hydroxyanisole (BHA), carotenoids, glutathione and its derivatives, phenolic 

compounds, flavonoids and alkaloids fall under non-enzymatic and/or synthetic 

antioxidants (ALSCHER et al., 2002; MOUSSA et al., 2019). Superoxide dismutases 

(SOD) constitute the first line of defence against ROS in plant cells (ALSCHER et al., 

2002). They are responsible for the removal of charged oxygen molecules (O2
-) from 

mitochondrial compartments where they are produced. Charged oxygen molecules 

(O2
-) are not able to pass through the phospholipid membranes (TAKAHASHI and 

ASADA, 1983). 

Antioxidants have been discovered to reduce chronic health disorders such as cardiac 

problems, aging process and also cancers associated with the respiratory tract, 

alimentary canal, lungs, bladder and breast (HAJHASHEMI et al., 2010; HARASYM 

and OLEDZKI, 2014). The main focus of workers in the fields of functional foods and 

nutraceuticals is now centred on the detection of secondary metabolites which are 

beneficial to health and which act as antioxidants (LUIS et al., 2006).  

1. The objective of this study was to investigate the effects of various 

biostimulants, [smoke-water (SW), smoke-isolated karrikinolide (KAR1), 

seaweed-based Kelpak® (KEL), earthworm-derived vermicompost leachate 

(VCL) and a seaweed-isolated bioactive compound eckol (ECK)] and the 

method of application on growth and biochemical composition of A. hybridus in 

order to promote its adoption and cultivation in mainstream crop production. As 

part of this investigation, the effect of biostimulants + nutrients on the growth of 

the plant was also investigated. Also in the same investigation, the effect of 

organic biostimulants and the method of application on antioxidant activity was 
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assessed. Antioxidants which were targeted in this research were; total 

phenolics, condensed tannins, flavonoids and beta-carotene oxidation. 

 

2. 4.2 Materials and methods 

 

3. 4.2.1 Site of experiment 

 
4. The seed germination experiments were carried out under laboratory conditions 

using an incubator in the Research Centre for Plant Growth and Development 

and the pot experiment was carried out in a greenhouse at the University of 

KwaZulu-Natal (UKZN) Botanical Garden, Pietermaritzburg Campus (290 

37.55' S; 300 24.13' E). 

 

4.2.2 Plant material 

 

Amaranthus hydridus seeds were obtained from McDonalds Seed Company in 

Pietermaritzburg, South Africa. 

 

4.2.3 Seed germination experiments 

 
Seeds were first subjected to different temperatures and light conditions and treated 

with different biostimulants to determine optimal germination. Twenty-five seeds were 

placed in 65 mm plastic Petri dishes lined with two sheets of Whatman No. 1 paper 

and moistened with 3 ml of different concentrations of biostimulants; SW 1:500 v/v , 

KAR1 10-6 M, VCL 1:5 v/v, KEL 0.8% and ECK 10-8 M, GA 10-8 M and water were used 

as the positive and negative controls respectively and incubated in plant growth 

chambers at 25 ± 2 °C under 16:8 fluorescent tube light (80 µmol m-2 s-1) and dark 

conditions. Another set was subjected to 24 h dark. Seeds treated with biostimulants 

were placed in light-proof wooden boxes and inspected daily under green “safe light” 

(0.3 µmol m-2 s-1). This experiment was carried out for 14 days with seed germination 

being recorded daily. The seed was considered germinated when radicles had 

protruded 2 mm.  
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4.2.4 Biostimulants and chemicals 

 
Smoke-water and KAR1 solutions were prepared according to previously described 

methods (BAXTER et al., 1994; FLEMATTI et al., 2004; VAN STADEN et al., 2004; 

GUPTA et al., 2020). Kelpak® [Kelp Products International (Pvt) Ltd, Simon’s Town, 

South Africa] was supplied by the company and was prepared as prescribed on the 

product label. Vermicompost leachate was purchased from Wizzard Worms (a 

commercial supplier), Greytown, South Africa and ECK was extracted, isolated and 

identified from the ethyl acetate fraction of the seaweed Ecklonia maxima 

(RENGASAMY et al., 2016a). Gibberellic acid (GA) and water (C) were used as the 

positive and negative controls respectively. Fifty percent Hoagland Nutrient solution 

was prepared using the method described by ARNON and HOAGLAND (1952). Folin 

and Ciocalteu phenol reagent, gallic acid (3,4,5-trihydroxibenzoic acid), vanillin (4-

hydroxyl-3 methoxybenzaldehyde), catechin, DPPH (2,2-diphenyl-1-picryl hydrazyl), 

rhodanine, β-carotene, and diosgenin were obtained from Sigma-Aldrich Co. 

(Steinheim, Germany); ferric ammonium sulfate, sodium nitrite, sodium hydroxide, 

aluminium chloride, sodium hydrogen carbonate, BHT, and potassium ferricyanide 

from BDH Chemicals Ltd (Poole, England); harpagoside from Extrasynthèse (Genay, 

France); trichloroacetic acid, ascorbic acid (ASC), Tween 20 (polyoxyethylene 

sorbitan monolaurate, surfactant), ferric chloride, chloroform, n-butanol and methanol 

from Merck KGaA (Darmstadt, Germany). All chemicals used in the assays were of 

analytical grade. 

 

4.2.5 Experimental design and greenhouse conditions 

 
Amaranthus seeds were sown directly in 15 cm diameter pots containing potting soil 

mixture (described in Chapter 3, Section 3.5.1). Upon germination, the seedlings were 

thinned leaving a single seedling in each experimental pot and were grown in a 

completely randomised design with 15 replicates per treatment. After 14 days of 

seedling growth, the biostimulants were applied once a week with three different 

modes of application viz. drenching (50 ml), foliar spray [with a handheld spray bottle 

to the solution (2 to 3 drops of Tween 20 were added) runoff point] and a combination 

of drenching and foliar spray. The pots were placed on a metal bench in a greenhouse 

with an average midday photosynthetic photon flux density ranging from 550-600 µmol 
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m-2 s-1 at 24 ± 2 °C with 60 ± 5% relative humidity. All experimental pots were monitored 

on a daily basis. The seedlings were irrigated twice weekly with water except on the 

day of biostimulant treatment. The number of leaves and plant height were recorded 

on the seventh, fourteenth and twenty-first day. The plants were harvested after six 

weeks and the number of leaves and roots were counted, shoot and root length were 

measured, fresh/dry weight was recorded for both shoot and root. The leaf area was 

measured using a leaf area meter (Li-3100, LI-COR Inc., Lincoln, NE, USA) and stem 

thickness with Vernier callipers. Photosynthetic pigments (chlorophylls and 

carotenoids), proteins and carbohydrates were determined at harvest as described in 

the previous chapter. Plants were dried in an oven (Memmert, UF55plus, Germany) 

at 50°C for determining shoot and root dry weight. Absolute growth rate, relative 

growth rate and leaf area ratio was calculated (WAREING and PHILIPS, 1981) as 

follows:  

 

Absolute Growth Rate (AGR) 

AGR = dn/dt 

         = n2 - n1/t2 - t1 

 

Relative Growth Rate (RGR) 

RGR= dn/dt × 1/n 

         = ln n2 - ln n1/t2-t1 

 

Where n1 and n2 = number, size (height, leaf area) at time t1 and t2  

ln = natural logarithm  

 

Leaf area ratio (LAR) 

Over any time interval, LAR = LA2 – LA1/ W2 – W1 

 

Where LA = Leaf area and W = plant dry weight  
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4.3 Antioxidant activity assays 

 

4.3.1 Ferric cyanide (Fe3+) Reducing Antioxidant Power (FRAP)  

 
The FRAP assay described by PULIDO et al. (2000) was used to determine the 

antioxidant potential of A. hybridus extracts. A potential antioxidant reduces ferric ion 

(Fe3+) to the ferrous ion (Fe2+). The ferric ion reagent consists of 20 mmol.L-1 TPTZ (2, 

4, 6-tripyridyl-s-triazine) in 40 mmol.L-1 HCl, 20 mmol.L-1  FeCl3·6H2O and 300 mmol.L-

1 acetate buffer pH 3.6 in the ratio of 1:1:10. 900 µL of FRAP reagent was added to 30 

µL of sample extract and the mixture was made up to 1 mL with distilled water. The 

reaction mixture solution was vigorously shaken and incubated for 30 min before 

reading the absorbance at 517 nm. Methanol solutions of FeSO4·7H2O were prepared 

as a standard curve between 10 to 100 µmol.L-1. Results were expressed as mmol 

Fe2+ equivalents per gram of dry extract. 

 

4.3.2 DPPH (1-1-diphenyl-1picryhydrazyl) radical scavenging activity 

 
The ability of both water and methanolic extracts of A. hybridus treated with different 

biostimulants to scavenge the DPPH radical was estimated using the method 

described by KARIOTI et al. (2004) with some modifications. Sample extracts or 

standard antioxidants were made by suspending in 50% methanol to known 

concentrations starting with highest concentration at 50 mg/mL. Each sample was 

diluted with 735 µL of 50% methanol and then added to 750 µL (50 µM in methanol) 

of freshly prepared methanolic DPPH solution (0.1 mM) in a brown Schott bottle, 

making a final volume of 1.5 mL. The reaction was performed under dim light and 

incubated in a dark room for 30 min. The absorbance of the mixture was recorded at 

517 nm with absolute methanol as the blank using a Varian Cary 50 UV-visible 

spectrophotometer (Varian, Australia) so as to measure the discolouration of the 

purple colour of DPPH. Ascorbic acid and BHT, which are standard antioxidants, were 

used as the positive controls. The negative control was prepared by replacing the 

sample extract with 50% methanol. To complete background correction of sample 

absorbance (DPPH absent), absorbance readings for methanol only were subtracted 

from corresponding readings obtained with DPPH present. Assays were performed in 
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triplicate. The following formula was used to calculate the free radical scavenging 

activity (RSA): 

%RSA = 100 x 1- AE/AD 

In which AE is the absorbance of the reaction mixture containing the sample extract or 

standard antioxidant and AD is the absorbance of the negative control. The normalised 

logarithmic regression curve derived from the plot data was used to calculate the IC50 

values. Using the formula by SCHERER and GODOY (2009), the DPPH antioxidant 

activity was further expressed as the antioxidant activity index (AAI). 

AAI= Final DPPH concentration/EC50  

 

4.3.3 β-carotene-linoleic acid (BCA) model system 

 
Methods described by AMAROWICZ et al. (2004) were used to determine the coupled 

inhibition of β-carotene and linoleic acid oxidation. The procedure involved the 

dissolving of dried A. hybridus extracts and BHT (positive control) in 50% aqueous 

methanol to a known concentration of 7 mg/mL. β-carotene was dissolved in 10 mL of 

chloroform in a brown Schott bottle with the excess chloroform being allowed to 

evaporate under vacuum. This resulted in a thin layer of β-carotene being formed. 

Linoleic acid (200 µL) and Tween 20 (2 mL) were immediately added to the thin layer 

of β-carotene and mixed with aerated distilled water (497.8 mL) to give a final 

concentration of 20 µg/mL of βeta-carotene. Vigorous agitation of the reaction mixture 

produced an orange-coloured emulsion caused by saturated oxygen. The emulsion 

(4.8 mL) was dispensed in a test tube then samples of A. hybridus extracts or BHT 

(200 µL, 7 mg/mL) were added giving a final concentration of 280 µg/mL of reaction 

mixture. Absorbance at 470 nm of reaction mixture was immediately measured at time, 

t = 0 with Tween 20 as the blank. At 30 min intervals, subsequent absorbance readings 

were taken for 180 min with samples being incubated at 50°C in a water bath. The 

negative control was prepare replacing sample extract with 50% methanol. The rate 

of β-carotene bleaching was calculated using the equation: 

Rate of β-carotene bleaching = [ln (At = 0 /At = t] x 1/t 

Where At = 0 is emulsion absorbance at 0 min; At=t is absorbance at time, t (30, 60, 90, 

120 min). Calculated average rates of β-carotene bleaching was based on rates at 30, 
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60 and 90 min. The antioxidant activity (ANT) of the sample was then determined using 

the calculated average rate and expressed as a percentage using the formula: 

%ANT = (R control – R sample / R control) x 100 

Where R control and R sample are the respective average β-carotene bleaching rates of 

negative control and plant extracts. To further express the antioxidant activity of 

sample extracts, the oxidation rate ratio (ORR) was calculated using the formula: 

ORR = R sample / R control   

The antioxidant activity (AA) was calculated according to BRACA et al. (2003) based 

on the coupled inhibition of β-carotene and linoleic acid oxidation against a negative 

control at t= 60 min and t = 120 min, using the following formula: 

%AA = [1- (A0 – At) / (A00- A0t)] x 100 

Where A0 is the initial absorbance of sample before incubation; At is absorbance at 

time t = 60 and 120 min for sample extract; A00 and A0t represent the absorbance of 

the negative control at start of incubation and at time t = 60 and 120 min respectively. 

%ANT, ORR and % AA were then calculated 

 

4.4 Quantification of polyphenolic compounds 

 

4.4.1 Total flavonoid content determination  

 
The aluminium chloride colorimetric assay of MAKKAR et al. (2000) was used to 

measure the total flavonoid content. The different A. hybridus filtrates of 250 µL were 

individually diluted with distilled water in a test tube to attain a 1 mL volume. To the 

mixture, 5% (w/v) sodium nitrate (75 µL), 10% (w/v) aluminium chloride (75 µL), 1 M 

sodium hydroxide (500 µL) and 0.6 mL of distilled water were also added. The 

reference compound used was Catechin (CA). The absorbance of the reaction mixture 

was measured immediately at 510 nm using a Cary UV-visible spectrophotometer 

(Varian, Australia) with 50% aqueous methanol as the blank. A standard calibration 

curve was obtained using the same procedure described above for the A. hybridus 

filtrates, to the standard solution of CA. Samples were done in triplicate. The total 

flavonoid content was expressed as mg/mL Catechin equivalent (CAE) per mg/g DW 
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of crude extracts of the different treatments of A. hybridus. CAE values were 

expressed as X ± SE of the performed triplicate reactions. 

 

4.4.2 Total phenolic content determination 

 
The Folin-Ciocalteu (Folin-C) colorimetric method of SINGLETON and ROSSI (1965) 

was used to determine the total phenolic contents (TPC) spectrophotometrically. 

Choice of method was due to its high sensitivity and that it is reproducible (MAKKAR 

et al., 2007). A reaction mixture containing 50 µL of sample filtrates, 950 µL of distilled 

water, 500 µL of 1N Folin-C phenol reagent and 2.5 mL of 2% (w/v) sodium carbonate 

was made. Reaction mixture was incubated at room temperature for 40 min. The 

standard for this reaction was (0.1 mg/mL) gallic acid, using 50% aqueous methanol 

as the blank. The absorbance of the reaction mixture was measured at 725 nm using 

a Cary UV-visible spectrophotometer (Varian, Australia). The assay was done in 

triplicate. Applying the same procedure to the standard solution of gallic acid a 

standard curve was obtained. The total phenolic content was expressed as mg/mL 

gallic acid equivalents (GAE) with the GAE values being given as X ± SE of the three 

replicates done. 

 

4.4.3 Determination of condensed tannins 

 
Condensed tannins were quantified using the method described by (MAKKAR et al., 

2000) with minor modifications. To 500 µL of each sample, 3 mL of butanol-HCl 

reagent (95:5 v/v) were added followed by the addition of 0.1 mL of ferric reagent 

(0.2% [w/v] ferric ammonium sulfate in 2N HCl). The mixture was further vortexed and 

incubated in a boiling water bath for 1 h. The standard for this method was cyanidin 

chloride (CC). The absorbance of the mixture after incubation was measured at 550 

nm using a Cary UV-visible spectrophotometer (Varian, Australia) with an unheated 

mixture of 500 µL, butanol-HCl reagent (3 mL) and ferric reagent (100 µL) as the blank. 

The assay was done in triplicate with condensed tannins being expressed as cyanidin 

chloride equivalent mg/mL (CCE) per mg/g DW of crude extracts. 
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4.5 Statistical analysis 

 

The quantification of all parametric data was done in replicate and results presented 

as mean ± standard error. Mean value comparison was computed using one-way 

analysis of variance (ANOVA) using SPSS for Windows (SPSS, Version 24.0. Armonk, 

New York, USA). Duncan’s multiple range test was utilised for statistical significance 

(P ≤ 0.05) to separate the mean values. General analysis of variance was computed 

for main effects and their interactions. 

 

4.6 Results  

 

4.6.1 Effect of biostimulants on Amaranthus hybridus growth 

 
Different organic biostimulants and different methods of application of the 

biostimulants influence the growth of A. hybridus in many different ways as shown in 

Table 4.1. Application of the different organic biostimulants via drenching resulted in 

only two organic biostimulants enhancing the growth in some parameters of A. 

hybridus. KAR1 significantly improved the shoot length, shoot fresh weight and the dry 

shoot weight of the plant (390 ± 26 mm, 6.723 ± 0.03 and 0.878 ± 0.006 g) respectively. 

KEL notably improved the number of leaves (20.7 ± 2.2). Most of the treatments had 

a negative influence on growth parameters and yielded lower values compared to the 

control. Foliar application of VCL on A. hybridus resulted in a significant increase in 

most of the growth parameters. VCL increased leaf area, fresh shoot and root weights 

and dry shoot weight. Most of the biostimulants affected the growth of A. hybridus in 

a negative manner for some parameters with some having no or minimal improvement 

for other parameters. The third method of application was a combination of both 

drenching and foliar application and again for this treatment, only two biostimulants 

yielded positive results by improving some of the growth parameters. VCL increased 

the  root length (47.1 ± 3.4 mm), leaf area (84.2 ± 7.7), both shoot and root fresh weight 

(4.865 ± 0.015  and 0.880 ± 0.016) g respectively as well as shoot dry weight (1.338 

± 0.022 g). On the other hand, KEL significantly improved all the parameters under 

observation apart from shoot length, yielding; 22.2 ± 3.0 for leaf number, 6.0 ± 1.7 for 

root number, 45.3 ± 6.2 mm for root length, 3.9 ± 0.04 mm for stem thickness, 86.9 ± 
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15.0 cm2 for leaf area, 4.893 ± 0.009 g for shoot fresh weight, 1.052 ± 0.010 g for root 

fresh weight, 0.882 ± 0.011 g for shoot dry weight and 0.320 ± 0.013 g for root dry 

weight. The effects of the other treatments were generally either neutral and did not 

differ from the control or yielding negative values which were lower than the control. 
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Table 4.1: Effect of different applications of biostimulants on the growth of Amaranthus hybridus at 24 ± 2 °C under greenhouse conditions. The plants were 

harvested after 6 weeks (n = 5; rep = 3). [Control, C; Smoke-water, SW; Karrikinolide, KAR1; Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK; 

Gibberellic acid, GA]. 

 

 
Mean values (± SE) in a column for each application with different letter(s) is significantly different according to Duncan’s multiple range test (P < 0.05).

Treatment Leaves (no.) Root (no.) Shoot length 
(mm) 

Root length 
(mm) 

Stem 
thickness 
(mm) 

Leaf area 
(cm2) 

Shoot fresh 
weight (g) 

Root fresh 
weight (g) 

Shoot dry 
weight (g) 

Root dry weight 
(g) 

Drenching           

Control 17.4 ± 1.7 ab 4.5 ± 0.7 a 301 ± 24.4 b 51.0 ± 3.2 a 4.4 ± 0.3 a 61.9 ± 11.4 a 5.066 ± 0.041 c 0.895 ± 0.014 a 0.466 ± 0.013 b 0.318 ± 0.015 a 

SW 1:500 (v/v) 13.9 ± 1.4 b 3.7 ± 0.6 a 312 ± 34.9 ab 39.6 ± 4.1 b 4.2 ± 0.1 a 61.6 ± 6.2 a 4.467 ± 0.020 e 0.488 ± 0.007 d 0.524 ± 0.006 c 0.194 ± 0.001 c 

KAR1 (10-6 M) 16.6 ± 1.0 ab 4.4 ± 0.4 a 390 ± 26.4 a 51.0 ± 3.4 ab 4.2 ± 0.1 a 83.3 ± 10.0 a 6.723 ± 0.031 a 0.871 ± 0.008 a 0.878 ± 0.006 a 0.265 ± 0.003 b 

VCL 1:5 (v/v) 15.7 ± 0.8 b 4.9 ± 0.6 a 282 ± 25.6 b 47.1 ± 2.3 ab 3.8 ± 0.1 a 68.7 ± 6.2 a 4.847 ± 0.024 d 0.631 ± 0.017 c 0.636 ± 0.010 b 0.205 ± 0.002 c 

KEL (0.8%) 20.7 ± 2.2 a 4.7 ± 0.8 a 313 ± 33.9 ab 43.5 ± 3.2 ab 4.3 ± 0.1 a 65.2 ± 9.1 a 5.446 ± 0.028 b 0.785 ± 0.010 b 0.620 ± 0.004 b 0.240± 0.006 bc 

ECK (10-8 M) 15.1 ± 1.5 b 3.8 ± 0.5 a 272 ± 24.2 b 43.3 ± 2.7 ab 3.6 ± 0.1 a 65.8 ± 9.9 a 4.553 ± 0.022 e 0.539 ± 0.008 d 0.625 ± 0.006 b 0.211 ± 0.005 c 

GA (10-6 M) 15.7 ± 1.2 b 3.2 ± 0.5 a 288 ± 25.9 b 44.0 ± 3.1 ab 3.5 ± 0.1 a 54.6 ± 11.3 a 4.593 ± 0.029 e 0.622 ± 0.012 c 0.591 ± 0.002 b 0.225 ± 0.003 bc 

Foliar           

Control 26.0 ± 2.3 ab 8.4 ± 1.2 ab 386 ± 30.0 ab 46.8 ± 2.6 bc 4.9 ± 0.01 a 78.3 ± 10.6 b 9.388 ± 0.030 b 0.945 ± 0.010 d 1.184 ± 0.004 b 0.297 ± 0.001 ab 

SW 1:500 (v/v) 23.1 ± 2.4 abc 6.4 ± 1.0 ab 401 ± 38.4 ab 50.6 ± 4.0 ab 5.1 ± 0.01 a 92.1 ± 14.5 ab 9.528 ± 0.021 b 1.409 ± 0.017 c 1.259 ± 0.011 ab 0.316 ± 0.006 ab 

KAR1 (10-6 M) 19.2 ± 1.2 c 5.3 ± 0.8 b 320 ± 31.2 b 46.6 ± 2.7 bc 4.1 ± 0.02 a 67.9 ± 10.0 b 6.403 ± 0.017 c 0.940 ± 0.006 d 0.830 ± 0.011 c 0.225 ± 0.001 c 

VCL 1:5 (v/v) 27.8 ± 2.3 a 8.9 ± 1.6 a 478 ± 24.5 a  56.2 ± 1.9 a 5.0 ± 0.03 a 116 ± 16.5 a 10.647 ± 0.026 a 1.687 ± 0.020 a 1.338 ± 0.022 a 0.337 ± 0.009 a 

KEL (0.8%) 22.2 ± 1.6 abc 5.6 ± 0.8 ab 322 ± 33.6 b 39.0 ± 3.0 c 4.4 ± 0.03 a 61.5 ± 8.1 b 6.251 ± 0.030 c 0.942 ± 0.010 d 0.630 ± 0.009 d 0.237 ± 0.009 c 

ECK (10- 8 M) 20.8 ± 2.1 bc 7.3 ± 1.1 ab 395 ± 34.3 ab 45.2 ± 2.7 bc 5.2 ± 0.04 a 96.8 ± 13.0 ab 9.594 ± 0.051 b 1.531 ± 0.018 b 1.169 ± 0.014 b 0.306 ± 0.006 ab 

GA (10-6 M) 19.4 ± 1.6 c 5.0 ± 0.7 b 322 ± 30.4 b 45.1 ± 3.3 bc 4.4 ± 0.03 a 62.3 ± 9.6 b 5.651 ± 0.023 d 0.943 ± 0.003 d 0.706 ± 0.011 d 0.272 ± 0.008 bc 

Drenching and 

Foliar 
          

Control 13.3 ± 1.2 b 2.7 ± 0.4 b 227 ± 22.7 ab 32.9 ± 3.7 b 2.9 ± 0.01 b 52.3 ± 6.7 c 3.514 ± 0.045 c 0.514 ± 0.010 d 0.445 ± 0.009 c 0.193 ± 0.006 bc 

SW 1:500 (v/v) 13.6 ± 1.2 b 2.4 ± 0.5 b 222 ± 27.0 ab 29.3 ± 3.3 b 3.0 ± 0.02 b 45.5 ± 7.4 c 3.242 ± 0.023 d 0.486 ± 0.006 d 0.386 ± 0.007 c 0.190 ± 0.002 bc 

KAR1 (10-6 M) 16.2 ± 1.4 b 2.3 ± 0.4 b 261 ± 16.8 ab 38.0 ± 2.3 ab 3.0 ± 0.02 b 59.1 ± 7.4 bc 4.262 ± 0.018 b 0.740 ± 0.020 c 0.436 ± 0.006 c 0.232 ± 0.009 bc 

VCL 1:5 (v/v) 14.4 ± 0.6 b 2.2 ± 0.3 b 297 ± 18.7 a 47.1 ± 3.4 a 3.4 ± 0.01 ab 84.2 ± 7.7 ab 4.865 ± 0.015 a 0.880 ± 0.016 b 0.668 ± 0.016 b 0.242 ± 0.005 b 

KEL (0.8%) 22.2 ± 3.0 a 6.0 ± 1.7 a 296 ± 31.2 a 45.3 ± 6.2 a 3.9 ± 0.04 a 86.9 ± 15.0 a 4.893 ± 0.009 a 1.052 ± 0.010 a 0.882 ± 0.011 a 0.320 ± 0.013 a 

ECK(10-8 M) 14.6 ± 1.1 b 2.1 ± 0.4 b 197 ± 27.0 b 32.0 ± 2.5 b 2.7 ± 0.02 b 51.9 ± 11.7 c 3.368 ± 0.023 cd 0.465 ± 0.009 d  0.384 ± 0.004 c 0.202 ± 0.002 bc 

GA (10-6 M) 15.7 ± 1.1 b 1.9 ± 0.3 b 288 ± 25.9 a 29.0 ± 2.7 b 1.9 ± 0.01 c 33.5 ± 5.0 c   2.238 ± 0.021 e 0.314 ± 0.015 e 0.242 ± 0.006 d 0.180 ± 0.010 c 
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4.6.2 Effect of different application methods of biostimulants on the growth of 

Amaranthus hybridus 

 
The statistical and graphical analysis of combined results of plant dry and fresh weight 

and plant height and of leaf number, plant height and leaf area ratio are shown in Fig. 

4.1 and 4.2 respectively. The KAR1 drenching significantly increased plant height, 

plant fresh and dry weight compared to both negative (water) and positive (GA) control 

(Fig. 4.1). Similar results were obtained when VCL was applied via the leaves (foliar 

application) which significantly improved the height of the plant and plant fresh weight 

and dry weight. Results of a combination of drenching and foliar application show the 

significant influence of VCL and KEL on plant height and plant fresh weight (Fig. 4.1) 

as well as the significant improvement on plant height, plant fresh weight and plant dry 

weight by KEL (Fig. 4.1) compared to the control. The following parameters, leaf 

number, plant height and leaf area ratios were used to calculate AGR and RGR and 

from the results obtained in Fig. 4.2, KEL applied via both drenching and combined 

drenching and foliar application had a significant influence on the AGR as shown in 

Fig. 4.2. Plant height per week was increased by KAR1 application via drenching.  

 





  

81 

 

Fig. 4.2: Effect of different organic biostimulants on the absolute and relative growth 

rate (leaf number and plant height) and leaf area ratio of Amaranthus hybridus at 24 ± 

2°C under greenhouse conditions. The plants were harvested after six weeks (n = 5; 

rep = 3). [Control (water), C; Smoke-water, SW; Karrikinolide, KAR1; Vermicompost 

leachate, VCL; Kelpak®, KEL; Eckol, ECK; Gibberellic acid, GA]. 

 

4.6.3 Effect of different organic biostimulants and method of application on the 

biochemical (pigments, proteins and carbohydrates) composition of Amaranthus 

hybridus 

 
Foliar application generally showed better results compared to the other methods of 

application (Fig. 4.1), when considering the enhancement of morphological 

parameters, hence the estimation of biochemicals was done for foliar application only. 
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Chlorophyll, carotenoid, protein and carbohydrate contents were assessed. Results of 

biochemical estimations are summarised in Table 4.2.
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Table 4.2: Effect of foliar application of biostimulants on the chlorophyll, carotenoid, protein and carbohydrate content of Amaranthus 

hybridus at 24 ± 2 °C under greenhouse conditions. The plants were harvested after 6 weeks (n = 5; rep = 3). [Control, C; Smoke-

water, SW; Karrikinolide, KAR1; Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK; Gibberellic acid, GA]. 

 

 
Mean values (± SE) in a column with different letter(s) is significantly different according to Duncan’s multiple range test (P < 0.05). 

 

Table 4.3: Analysis of variance for comparing different application methods for the growth of Amaranthus hybridus with different biostimulants 

(P < 0.05).  

 

Treatment comparison Plant height (mm) Plant fresh weight (g) Plant dry weight (g) 

 difference t-value significant difference t-value significant difference t-value significant 

Foliar vs Drenching 1.234 0.650 no 3.619 7.733 yes 0.444 5.908 yes 
Foliar vs Drenching and Foliar   10.635 5.641 yes  5.004 10.691 yes 0.586 7.796 yes 

Drenching vs Drenching and Foliar   9.400 4.950 yes 1.385 2.958 yes 0.142 1.887 no 

Treatment 
 

Chlorophyll a  
µg/g FW 

Chlorophyll b  
µg/g FW 

Chlorophyll a + b  
µg/g FW 

Carotenoids 
µg/g FW 

Proteins  
µg/g FW 

Carbohydrates  
µg/g FW 

Control 444 ± 0.09 f 129 ± 0.36 f 573 ± 0.43 f 135 ± 0.04 f 18.4 ± 1.37 c 465.6 ± 9.24 a 

SW 1:500 (v/v) 515 ± 0.22 d 131 ± 0.32 e 647 ± 0.51 d 139 ± 0.04 e 22.7 ± 1.26 bc 170.1 ± 0.78 d 

KAR1 (10-6 M) 427 ± 0.31 g 117 ± 0.70 g 545 ± 1.00 g 139 ± 0.19 e 34.8 ± 4.13 a 102.4 ± 0.85 f 

VCL 1:5 (v/v) 636 ± 0.30 b 168 ± 0.28 b 804 ± 0.58 b 177 ± 0.04 c 39.6 ± 1.85 a 157.1 ± 1.10 e 

KEL (0.8%) 641 ± 0.71 a 172 ± 0.22 a 813 ± 0.61 a 197 ± 0.10 a 33.3 ± 0.92 a 208.0 ± 1.38 b 

ECK (10-8 M) 487 ± 0.88 e 147 ± 0.17 d 634 ± 0.76 e 181 ± 0.29 b 26.7 ± 1.66 b 203.8 ± 0.94 b 

GA (10-6 M) 584 ± 1.49 c 157 ± 0.42 c 742 ± 1.11 c 164 ± 0.28 d 21.7 ± 1.20 bc 186.2 ± 1.27 c 
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From the results in Table 4.2, it can be observed that treating plants with KEL and 

VCL significantly augmented Chlorophyll (a, b and a + b) content as well as 

carotenoids and proteins in comparison to water control and the positive control, GA3. 

KAR1 also increased the protein content (34.8 ± 4.13 µg/g) in A. hybridus with KEL on 

the other hand, significantly improving the carotenoid content of the plant (197 ± 0.10 

a). The carbohydrate content was, however, significantly decreased in all the tested 

biostimulants when compared with the control. 

With reference to Table 4.3, it can be concluded that A. hybridus growth was 

significantly enhanced when the different biostimulants used in this study were applied 

via foliar application. The fresh weight and dry weights of the plant were more 

improved in foliar application compared with drenching, and drenching and foliar 

treatment. 

 

4.6.4 Effect of biostimulants on the mineral composition of Amaranthus hybridus 

 
The effects of organic biostimulants on the mineral composition of A. hybridus was 

also assessed in this study. Table 4.4 is a summary of the results of the investigation. 

Most of the treatments did not have any notable positive effects on the mineral 

composition of A. hybridus. KEL had the most significant effect on a number of mineral 

elements when compared with the negative control C (water). It significantly improved 

the content of the following mineral elements, N, calcium (Ca), magnesium (Mg), K, 

sodium (Na), zinc (Zn), copper (Cu) and P (Table 4.4). The effect of KEL on N, Na, 

and Cu was the same as that of GA, the positive control. VCL significantly improved 

the Zn and Mn content of A. hybridus compared with both controls and ECK 

significantly increased the aluminium content of the plant but slightly increased the Na 

and Cu content even though the increase was not significant. Other treatments 

increased the content of some minerals but the increment was not significant. KAR1 

increased the levels of Ca, Mg, Na, Cu and Al. SW slightly increased the Na and Al 

content (Table 4.4).  
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Table 4.4: Effect of biostimulants on mineral element composition Amaranthus hybridus. [Control, C; Smoke-water, SW; Karrikinolide, KAR1; 

Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK; Gibberellic acid, GA]. 

 

Treatment 
Nitrogen  
(%) 

Calcium  
(%) 

Magnesium 
(%) 

Potassium 
(%) 

Sodium  
(mg kg-1) 

Zinc  
(mg kg-1) 

Copper  
(mg kg-1) 

Manganese 
(mg kg-1) 

Iron  
(mg kg-1) 

Phosphorus 
(%) 

Aluminium 
(mg kg-1) 

Control 2.55 ± 0.02 b 1.17 ± 0.01 e 0.52 ± 0.01 c 6.33 ± 0.04 d 604 ± 97 bc 56.5 ± 0.70 d 4.80 ± 1.30 b 153 ± 0.78 d 252 ± 7.14 a 0.94 ± 0.02 bc 103 ± 7.2 b 

SW 2.28 ± 0.04 e 1.23 ± 0.01 d 0.52 ± 0.00 c 6.80 ± 0.06 c 842 ± 61 abc 55.9 ± 0.79 d 4.56 ± 1.10 b 163 ± 0.69 c 172 ± 2.55 b 0.87 ± 0.03 bc 112 ± 4.9 ab 

KAR1 2.38 ± 0.01 d 1.37 ± 0.01 b 0.58 ± 0.01 b 7.14 ± 0.07 b 837 ± 128 abc 62.2 ± 0.00 c 6.32 ± 1.39 ab 147 ± 0.14 e 182 ± 5.02 b 0.97 ± 0.03 b 117 ± 12.1 ab 

VCL 2.40 ± 0.04 cd 1.20 ± 0.01 de 0.53 ± 0.00 c 5.65 ± 0.02 e 558 ± 58 c 69.8 ± 0.05 b 5.63 ± 1.01 ab 223 ± 0.15 a 146 ± 1.43 cd 0.87 ± 0.04 bc 60 ± 1.51 c 

KEL 2.79 ± 0.03 a 1.47 ± 0.01 a 0.64 ± 0.01 a 8.38 ± 0.08 a 989 ± 66 a 71.6 ± 0.69 a 9.06 ± 1.32 a 179 ± 1.26 b 157 ± 2.96 c 1.09 ± 0.04 a 98 ± 3.6 b 

ECK 2.48 ± 0.02 bc 1.29 ± 0.01 c 0.53 ± 0.00 c 7.24 ± 0.06 b 879 ± 91 ab 56.1 ± 0.15 d 6.41 ± 0.71 ab 148 ± 0.69 e 139 ± 3.66 d 0.91 ± 0.03 bc 127 ± 7.3 a 

GA 2.81 ± 0.02 a 1.36 ± 0.02 b 0.58 ± 0.01 b 7.24 ± 0.05 b 898 ± 104 ab 56.8 ± 0.41 d 7.50 ± 0.76 ab 144 ± 1.20 f 117 ± 2.57 e 0.84 ± 0.04 c 50 ± 0.6 c 
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4.6.5 Effect of application frequency of biostimulants + 50% HNS (nutrients) on growth 

of Amaranthus hybridus 

 
A. hybridus was exposed to biostimulants + 50% HNS irrigation regime of once, twice 

and thrice a week. Results of this experiment are summarised in Table 4.5. Irrigation 

of treatments of the plant once a week had no effect on the leaf number of A. hybridus 

with all treatment having the same effect as the control. KEL had a significant effect 

on both shoot and root length (71.9 ± 5.9 and 35 ± 4.1 mm) respectively, and also on 

both shoot and root fresh weights, (648 ± 73 and 79 ± 12 mg) respectively. KAR1 

significantly improved root length and root fresh weight (34 ± 4.1 mm and 89 ± 11 mg) 

respectively and ECK only significantly improved the root fresh weight (83 ± 6 mg) 

compared with the control. The remaining treatments had little effect on the growth 

parameters. Irrigation of the plant twice a week resulted in SW significantly increasing 

all the growth parameters; leaf number, shoot length, root length, shoot fresh and root 

fresh weight (7.0 ± 0.4, 118 ± 11, 81.2 ± 9 mm, 1.067 ± 99 and 428 ± 89 mg) 

respectively. KAR1 significantly increased shoot length (119 ± 7.3 mm) and this was 

much higher than the control. ECK significantly enhanced the root length of the plant 

(78.6 ± 4.8 mm). When plants were irrigated thrice a week, SW and VCL only 

significantly improved the shoot length whilst KAR1 had a significant effect on all the 

growth parameters except leaf number (Table 4.5).  
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Table 4.5: Effect of application frequency of  biostimulants + 50% HNS on growth of 

Amaranthus hybridus [Control, C; Smoke-water, SW; Karrikinolide, KAR1; 

Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK]. 

 

 
Main effects and their interactions for the growth of A. hybridus are summarised in the 

ANOVA Table 4.6. 

  

Treatment 
 

Leaf  
(no.) 

Shoot length  
(mm) 

Root length  
(mm) 

Shoot fresh  
weight (mg)  

Root fresh  
weight (mg) 

Once a week 

Control 4.8 ± 0.6 a  58.1 ± 7.2 b 25 ± 4.0 c 306 ± 53 bc 40 ± 5 b 

SW 1:500 v/v 4.3 ± 0.3 a 46.9 ± 4.0 b 25 ± 3.2 bc 224 ± 10 bc 34 ± 3 b 

KAR1 (10-6 M) 4.5 ± 0.4 a 57.7 ± 3.8 b 34 ± 4.1 ab 294 ± 30 bc 89 ± 11 a 

VCL 1:5 v/v 4.5 ± 0.3 a 51.9 ± 2.9 b 27 ± 3.5 abc 211 ± 21 c 40 ± 3 b 

KEL 0.8% 5.3 ± 0.7 a 71.9 ± 5.9 a 35 ± 4.1 a 648 ± 73 a 79 ± 12 a 

ECK (10-8 M) 5.0 ± 0.3 a 54.0 ± 3.4 b 34 ± 3.7 abc 325 ± 28 b 83 ± 6 a 

Twice a week 

Control 5.7 ± 0.3 bcd 79.5 ± 5.9 b 53.2 ± 6.5 c 408 ± 43 c 188 ± 13 b 

SW 1:500 v/v 7.0 ± 0.4 a 118 ± 11 a 81.2 ± 9.8 a 1.067 ± 99 a 428 ± 89 a 

KAR1 (10-6 M) 6.3 ± 0.3 ab 119 ± 7.3 a 73.6 ± 6.1 ab 686 ± 60 b 261 ± 21 b 

VCL 1:5 v/v 5.0 ± 0.4 d 93.2 ± 9.2 b 57.3 ± 8.1 bc 479 ± 46 c 161 ± 17 b 

KEL 0.8% 5.4 ± 0.3 cd 89.2 ± 6.5 b 73.8 ± 7.4 ab 490 ± 47 c 225 ± 28 b 

ECK (10-8 M) 6.0 ± 0.1 bc 86.4 ± 5.1 b 78.6 ± 4.8 a 501 ± 41 c 143 ± 43 b 

Thrice a week 

Control 6.1 ± 0.5 a 99.5 ± 12.9 b 67.5 ± 9.1 bc 726 ± 121 b 242 ± 45 b 

SW 1:500 v/v 6.4 ± 0.5 a 142.9 ± 11.6 a 85.4 ± 9.6 b 803 ± 50 b 255 ± 46 b 

KAR1 (10-6 M) 6.6 ± 0.6 a 164.5 ± 14.8 a 129.5 ± 13.2 a 1.191 ± 117 a 467 ± 103 a 

VCL 1:5 v/v 7.1 ± 0.7 a 147.5 ± 14.2 a 83.1 ± 8.9 b 797 ± 108 b 204 ± 34 b 

KEL 0.8% 6.0 ± 0.5 a 83.6 ± 9.7 b 43.1 ± 7.4 c 667 ± 70 b 116 ± 10 b 

ECK (10-8 M) 6.5 ± 0.6 a 99.5 ± 12.0 b 65.9 ± 11.2 bc 272 ± 40 c 256 ± 35 b 
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Table 4.6: General analysis of variance with main effects and their interactions for the 

growth of Amaranthus hybridus with different biostimulants [Control; Smoke-water 

1:500 (v/v); Karrikinolide (10-6 M); Vermicompost leachate 1:5 (v/v); Kelpak® (0.8%); 

Eckol (10-8 M); Gibberellic acid (10-6 M)].  

 

 

From the ANOVA Table 4.6, it is noted that for leaf number, treatment (T) had no 

significant effect but frequency had a significant effect (P < 0.01) on leaf number. The 

interaction of treatment (T) x frequency (F) did not have a significant effect on the 

number of leaves of the plant. Considering plant height, treatment alone, frequency 

alone and the interaction of the two, treatment and frequency (T x F) were all significant 

(P < 0.01) on the height of the plant. A similar trend was observed on plant fresh 

weight. All the three treatments, T, F and F x T had a significant influence (P < 0.01) 

on plant fresh weight. 

The relative and absolute growth of the plants were further calculated and the yield is 

summarised in Fig. 4.3. 

Source of variation Degree of 

freedom 

Sum of 

squares 

Mean 

squares 
Variance F-probability 

      

Leaf (no.)      

Treatment  (T) 5  4.809  0.962  0.41  0.840 

Frequency (F) 2 104.080  52.040  22.32 <.001 

T X F 10 43.551  4.355  1.87  0.052 

Residual 182 (16) 424.251  2.331     

Total 199 (16) 564.000       

      

Plant height (mm)      

Treatment  (T) 5 103104  20621  10.73 <.001 

Frequency (F) 2 497329  248665  129.35 <.001 

T X F 10 157775  15778  8.21 <.001 

Residual 182 (16) 349885  1922     

Total 199 (16) 029063       

      

Plant fresh weight (mg)      

Treatment  (T) 5  5.41581  1.08316  12.44 <.001 

Frequency (F) 2 12.56909  6.28455  72.17 <.001 

T X F 10 10.70491

  

  

  

 

1.07049

  

  

 

12.29 <.001 

Residual 113 (85) 9.83963  0.08708     

Total 130 (85) 27.94062       
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Fig. 4.3: Effect of irrigation frequency of biostimulants + 50% HNS on the absolute 

and relative growth rate (leaf number and plant height) and leaf area ratio of 

Amaranthus hybridus at 24 ± 2 °C under greenhouse conditions. The plants were 

harvested after six weeks (n = 5; rep = 3). [Control, C; Smoke-water, SW 1:500 (v/v); 

Karrikinolide, KAR1 (10-6 M); Vermicompost leachate, VCL 1:5 (v/v); Kelpak®, KEL 

(0.8%); Eckol, ECK (10-8 M)]. 

 

From Fig. 4.3, it can be noted that for plants irrigated once per week with biostimulants 

+ 50% HNS, all treatments did not have an increased effect on AGR for leaf number 

with the control yielding a higher AGR than all other treatments. All treatments had no 

significant influence on both AGR and RGR for leaf number and height compared to 

the control (Fig. 4.3 A and B). SW and KAR1 were the only treatments with a significant 
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effect on AGR for leaf number of plants irrigated twice a week compared to the control 

(Fig. 4.3 C). In terms of the RGR for leaf number, SW and KAR1 significantly increased 

the RGR for leaf number. SW and KAR1 also significantly improved the AGR for height 

when plants were irrigated twice a week and only SW significantly enhanced the RGR 

for height (Fig 4.3 D). The AGR for leaf number and height was significantly increased 

by KAR1 when plants were irrigated thrice a week compared to the control (Fig. 4.3 E 

and F). 

 

4.6.6 Effect of –N + biostimulants on the absolute growth rate (AGR) of Amaranthus 

hybridus 

 
In another investigation, the effect of applying HNS lacking N + biostimulants was also 

assessed and the results of this investigation are shown in Fig. 4.4. From the results 

it is evident that all treatments did not have a significant improved effect on AGR for 

both leaf number and height of the plant but it can also be noted that all the treatments 

had a negative effect on AGR of leaf number although there was a slight increase in 

–N + KEL treated plants. The increase was closer to the positive control but not 

significantly (Fig. 4.4 a). Fig. 4.4 b illustrates the amaranths plants growing under 

different –N + biostimulant concentration regimes. 
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4.7 Effect of organic biostimulants on antioxidant activity of Amaranthus 

hybridus 

 

The effect of different biostimulants and methods of application on the antioxidant 

activity was also evaluated in this research. In this regard, several assays were carried 

out with harvested plant material to assess the antioxidant activity of A. hybridus 

exposed to different biostimulants and different methods of application. 

 

4.7.1 β-Carotene/linoleic acid oxidation of crude methanolic extracts of Amaranthus 

hybridus 

 
The β-carotene oxidation was assessed on both water and crude methanolic extracts 

of A. hybridus for the three methods of application to establish their ability in preventing 

or delaying the coupled oxidation of β-carotene and linoleic acid. Results of this 

investigation are shown in Table 4.7. The average rate of β-carotene bleaching, %ANT 

was significantly high in VCL, KAR1 and SW (94 ± 4.0, 84 ± 3.9 and 80 ± 2.1%) 

respectively under the drenching method. These values are comparable with the value 

obtained for the standard control, BHT (82.6 ± 1.14%) (Table 4.7). The corresponding 

ORR associated with antioxidant capacity for the same mode of application 

(drenching) ranged from 0.06 ± 0.04 - 0.39 ± 0.07 making VCL and KAR1 the most 

active since they had the lowest significant ORR values (0.06 ± 0.04 and 0.16 ± 0.04) 

respectively (Table 4.7). Furthermore, the antioxidant activity (AA) based on the 

inhibition of β-carotene oxidation was determined at t = 60 and t = 120 min and this 

ranged from 20. ± 2.54 to 100 ± 8.39 and from 23 ± 3.02 to 90 ± 12.9 respectively 

under drenching (Table 4.7). From the results of the investigation, most treatments 

showed a high β-carotene oxidation with the lowest value being 61 ± 6.8 and 61 ± 5.2 

for the control (C) and ECK respectively. 

When the treatments were applied via foliar application, the average rate of antioxidant 

activity (%ANT) was significantly high for KEL , 97 ± 2.9 with SW, ECK, and KAR1, (87 

± 2.2, 85 ± 1.7 and 79 ± 0.6%) respectively having values which were also comparable 

with BHT (80.16 - 0.19%) but not significantly different statistically when compared 

with the control (C). The ORR ranged from 0.05 ± 0.02 to 0.32 ± 0.09. The highest 

activity was found in KEL, SW and ECK which had low values of ORR (0.05 ± 0.02, 
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0.13 ± 0.02 and 0.15 ± 0.02) respectively. The determination of AA based on β-

carotene oxidation inhibition was also calculated at t = 60 and t = 120 min and was 

seen to vary from 62 ± 4.64 to 99 ± 0.84 for t = 60 min and from 33 ± 2.14 to 73 ± 5.79. 

KEL had the highest AA60 and AA120, (99 ± 0.84 and 73 ± 5.79). KAR1 had a high 

AA60 (95 ± 3.47) whilst and ECK had 79 ± 5.55, but all these elevated values were 

not statistically different from the controls. The same parameters were established for 

drenching and foliar application where the highest %ANT was obtained with SW, ECK 

and KEL (86 ± 4.80, 85 ± 3.3 and 81.23 ± 6.0) respectively and again the values were 

comparable with BHT (80.16 ± 0.19). The values for AA60 were not significantly 

different from the positive control but were significantly higher than the negative control 

(Table 4.7). Antioxidant activity was also high for the combination of drenching and 

foliar spray. The value for ORR for drenching and foliar application was determined 

and it ranged from 0.14 ± 0.07 to 0.42 ± 0.03 making SW and ECK the most active at 

ORR ( 0.14 ± 0.07 and 0.15 ± 0.04) respectively. The AA at t = 60 min ranged from 53 

± 2.13 to 88 ± 3.56 and for t = 120 min it ranged from 44 ± 4.01 to 82 ± 7.52.  
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Table 4.7: Effect of organic biostimulants and mode of application on β-carotene oxidation of water extracts of Amaranthus hybridus. 

 

Mode of 
application  

Treatment β-carotene Oxidation 

%ANT ORR AA60 AA120 

 Control 61 ± 6.8 fg 0.39 ± 0.07 ab 43 ± 5.15 g 29 ± 3.82 ef 

 SW 80 ± 2.1 bcde 0.20 ± 0.02 cdefg 88 ± 3.31 abc 55 ± 2.94 bcdef 

 KAR1 84 ± 3.9 abcd 0.16 ± 0.04 defgh 89 ± 1.84 abc 68 ± 1.36 abc 

Drenching VCL 94 ± 4.0 ab 0.06 ± 0.04 gh 100 ± 8.39 a 75 ± 9.59 abc 

 KEL 75 ± 6.0 cdef 0.25 ± 0.06 bcde 62 ± 21.3 defg 90 ± 12.9 a 

 ECK 61 ± 5.2 fg 0.39 ± 0.1 ab 20 ± 2.54 h 23 ± 3.02 f 

 GA 63 ± 0.1 fg 0.38 ± 0.00 ab 50 ± 2.15 fg 65 ± 3.50 abcd 

 Control 80 ± 3.3 bcde 0.20 ± 0.03 cdefg 79 ± 1.55 abcd 61 ± 10.53 abcde 

 SW 87 ± 2.2 abc 0.13 ± 0.02 efg 92 ± 3.85 ab 61 ± 5.57 abcde 

 KAR1 79 ±0.6 bcde 0.21 ± 0.02 cdef 95 ± 3.47 a 33 ± 2.14 def 

Foliar Spray VCL 71 ± 7.0 defg 0.29 ± 0.07 abcd 71 ± 7.63 bcde 51 ± 14.69 bcdef 

 KEL 97 ± 2.9 a 0.05 ± 0.02 h 99 ± 0.84 a 73 ± 5.79 abc 

 ECK 85 ± 1.7 abcd 0.15 ± 0.02 defg 79 ± 5.55 abcd 64 ± 5.57 abcd 

 GA 68 ± 8.9 efg 0.32 ± 0.09 abc 62 ± 4.64 defg 69 ± 19.69 abc 

 Control 58 ± 0.9 g 0.42 ± 0.01 a 58 ± 3.06 efg 44 ± 4.01 cdef 

 SW 86 ± 4.8 abcd 0.14 ± 0.02 defg 88 ± 3.56 abc 59 ± 8.05 abcde 

 KAR1 69 ± 2.6 efg 0.31 ± 0,14 abc 53 ± 2.13 efg 82 ± 7.52 ab 
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Drench/Foliar VCL 71 ± 5.2 defg 0.29 ± 0.32 abcd 69 ± 9.80 cdef 69 ± 10.86 abc 

 KEL 81 ± 6.0 bcde 0.19 ± 0.06 cdefg 85 ± 3.28 abc 60 ± 23.69 abcde 

 ECK 85 ± 3.3 abcd 0.15 ± 1.20 defg  81 ± 3.89 abcd 78 ± 12.44 abc 

 GA 75 ± 0.8 cdef 0.25 ± 0.22 bcde 68 ± 1.67 cdef 61 ± 3.56 abcde 

 BHT 81.60 ± 1.84 bcde 0.170 ±  0.01 cdef 69.± 5.43 cdef 56.80 ± 2.31 bcdef 

      

Values represent mean ± of three replicates. Different letters in same column indicate significant differences at 5% level of 

significance. Control= Water, SW= Smoke-water, KAR1= Karrikinolide, VCL= Vermicompost leachate, KEL= Kelpak®, ECK= Eckol, 

GA = Gibberellic acid and BHT= butylated hydroxyl-toluene. %ANT= Antioxidant activity was calculated using rate of β-carotene 

bleaching at t= 60 and 120 min, ORR= oxidation rate ratio with stronger activity being associated with low value of ORR. AA60 and 

AA120 = % antioxidant activity of extracts or BHT at t= 60 or 120 min.  
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4.7.2 DPPH activity of methanolic and water extracts of Amaranthus hybridus 

 
The antioxidant activity of both methanolic and water extracts of A. hybridus treated 

with different organic stimulants applied via three different methods of application was 

determined by the DPPH radical scavenging activity assay. These results are recorded 

in Table 4.8. There was a wide variation of antioxidant activity as depicted by the 

results in Table 4.8, with RSA values differing according to extracts used, with 

methanolic extracts generally having low values and water extracts showing more 

potent radical scavenging activity (Table 4.8). Methanolic extracts under drenching 

had RSA activity ranging from 42.71 ± 1.47 to 64.18 ± 2.02 and IC50 values ranging 

from 0.1967 ± 0.01 to 0.3327 ± 0.02. VCL had the least significant RSA value which 

fell below those of the controls. On the other hand, water extracts generally exhibited 

high values of radical scavenging activity across all three modes of application ranging 

from 45.85 ± 0.71 to 94.69 ± 0.18 (Table 4.8). The highest values of radical scavenging 

activity were shown by the control and SW under a combination of drenching and foliar 

spray (94.69 ± 0.18 and 90.43 ± 0.15) respectively. The high values of RSA of water 

extracts were not statistically significant but were comparable with the standards ASC 

and BHT (90.65 ± 0.43 and 97.08 ± 2.65) respectively. IC50 values of water extracts 

across modes of applications and treatments ranged from 0.1648 ± 0.01 to 0.4044 ± 

0.01 (Table 4.8). Generally, there were no statistically significant differences in IC50 

values between treatments and across modes of applications except for KAR1 (foliar) 

methanolic extracts, which had significantly lower values of IC50 compared with the 

control (0.1967 ± 0.01 and 0.1932 ± 0.00) respectively (Table 4.8).   
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Table 4.8: DPPH (1-1-diphenyl-1-picryhdrazyl) radical scavenging activity (RSA) and IC50 (half maximal inhibitory concentration) 

values for methanolic and water extracts of Amaranthus hybridus. 

 

Mode of application Treatment DPPH 

%RSA (MeOH) IC50 %RSA (H2O) IC50 

 

 

 

Drenching 

 

Control 55.03 ±1.64 cdefg 0,2525 ± 0.01 cdef 83.56 ±2.11 bc 0,1648 ± 0.01 f 

SW 64.18 ± 2.02 bc 0,2488 ± 0.01 cdefg 86.56± 1.44 b 0,1904 ± 0.01 ef 

KAR1 46.43 ± 2.20 ghij 0,2852 ± 0.03 abcd 86.02 ± 6.24 b 0,4044 ± 0.01 a 

VCL 42.71 ± 1.47 ij 0,1967 ± 0.01 fghijk 86.60± 1.59  b 0,2118 ± 0.03 de 

KEL 48.30± 1.02 fghij 0,3327 ± 0.02 a 86.67± 1.59  b 0,2491 ± 0.01 bcd 

ECK 51.02± 0.34 defghi 0,2113 ± 0.01 efghi 86.95 ± 1.56 b 0,2675 ± 0.02 bc 

GA 51.06 ± 2.21defghi 0,2279 ± 0.01 defgh 87.31± 2.20  b 0,2690 ± 0.01 bc 

 

 

 

 

Foliar 

 

     

Control 39.12 ± 0.82 j 0,2658 ± 0.02 bcde 87.31 ± 1.33 b 0,2653 ± 0.01 bc 

SW 50.31 ± 2.32 efghi 0,2859 ± 0.02 abc 86.39 ± 0.49 b 0,2527 ± 0.01 bcd  

KAR1 57.84 ± 3.36 cde 0,1932 ± 0.00 ghijk 86.05 ± 0.50 b 0,2687 ± 0.01 bc 

VCL 61.20 ± 8.59 bcde 0,2778 ± 0.02 abcd 79.47± 0.17 c 0,2478 ± 0.02 bcd 

KEL 50.29± 3.69 efghi 0,2889 ± 0.03 abc 86.40 ± 0.17 b 0,2658 ± 0.03 bc 

ECK 50.20 ± 3.61 efghi 0,2471 ± 0.03 cdefg 86.05 ± 0.30 b 0,2736 ± 0.02 bc 

GA 47.56± 1.73 fghij 0,2741 ± 0.03 bcd 86.57± 0.69 b 0,2659 ± 0.01 bc 
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Drenching and foliar 

 

Control 61.93± 0.49 bcd 0,1893 ± 0.01 hijk 94.69 ± 0.18 a 0,2255 ± 0.02 cde 

SW 77.27 ± 0.99 ab 0,3151 ± 0.02 ab 90.43 ± 0.15 ab 0,2501 ± 0.01 bcd 

KAR1 58.14 ± 2.50 cdef 0,2770 ± 0.01 abcd 87.74± 2.59  b 0,3737 ± 0.01 a 

VCL 58.05 ± 0.89 cdef 0,2164 ± 0.01 efghi 58.05 ± 0.29 e 0,2642 ± 0.01 bc 

KEL 45.85 ± 2.72 hij 0,2953 ± 0.01 abc 45.85 ± 0.71 f 0,2399 ± 0.01 bcd 

ECK 69.04± 6.27 ab 0,1588 ± 0.01 jk 69.04 ± 0.97 d 0,2843 ± 0.01 b 

GA 57.08 ± 4.21 cdefg 0,1664 ± 0.03 ijk 57.08± 0.93 e 0,2691 ± 0.01 bc 

 ASC 89.65 ± 0.30 a 0.08± 0.148 l 90.65 ± 0.43 ab  0. 032 ±0.02 

BHT 85.41 ± 0.99 ab 0.15±  0.08 jk 97.08 ±  2.65 a  0. 031 ± 0.01 

 
Values represent mean ± of three replicates. Different letters in same column indicate significant differences at 5% level of 

significance. Control= Water, SW= Smoke-water, KAR1= Karrikinolide, VCL= Vermicompost leachate, KEL= Kelpak®, ECK= Eckol, 

GA = Gibberellic acid, ASC= Ascorbic acid and BHT= butylated hydroxytoluene.
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4.7.3 Ferric-cyanide (Fe3+) reducing antioxidant power (FRAP) results 

 
To evaluate the antioxidant potential of both water and aqueous crude methanolic 

extracts of A. hybridus on their ability to reduce ferricyanide (Fe3+) complexes in 

solution to the ferrous form (Fe2+), the ferric-reducing power assay was employed. 

According to NDHLALA et al. (2014), a strong antioxidant reduces Fe3+ complexes 

resulting in Perl’s Prussian blue colour change that is detected by a spectrophotometer 

at absorbance 630 nm. The dose-dependent ferric-reducing powers of both 

methanolic and water extract samples and the positive control (BHT) are presented in 

Fig. 4.5 A, B and C and Fig. 4.6 A, B and C respectively. In this study, antioxidant 

activity varied depending on treatment and method of application. Methanolic extracts 

from the drenching method had a significant lower antioxidant activity which was far 

below that of the standard solution, BHT. Antioxidant activity of methanolic extracts 

among treatments were not significantly different from each other for the drenching 

method (Fig. 4.5 A). Methanolic extracts from foliar application method had an 

antioxidant activity significantly lower than that of the positive control (GA). There were 

no significant differences in antioxidant activity among treatments under foliar 

application (Fig. 4.5 B). There was no notable antioxidant activity in methanolic 

extracts from drenching and foliar applications. The highest antioxidant activity was 

observed for BHT (Fig. 4.5 C). A similar trend was also observed on water extracts of 

A. hybridus, with all the treatments showing a significantly low antioxidant activity 

compared with BHT, the standard solution (Fig. 4.6 A, B and C). SW and VCL, under 

drenching application, had the lowest antioxidant activity (Fig. 4.6 A). A similar trend 

was observed in foliar spray although KAR1 had a high but not significant antioxidant 

activity. KEL demonstrated the least significant antioxidant activity (Fig. 4.6 B). The 

differences in antioxidant activity for most of the other remaining treatments were not 

statistically significant (Fig. 4.6 B). Antioxidant activity among treatments under 

combined drenching and foliar application was significantly different with ECK 

exhibiting an elevated antioxidant activity (Fig. 4.6 C). Consequently, both methanolic 

and water extracts of A. hybridus did not have a major influence on the antioxidant 

activity of the leafy vegetable according to the FRAP assay. 
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amount of total phenolic content (0.536 ± 0.017) (Fig. 4.7). Total phenolic content was 

slightly elevated in the controls under drenching and drenching combined with foliar 

application (Fig. 4.7). Differences in total phenolic content between treatments and 

mode of application were found to be not statistically different for most of the 

treatments. 
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Fig. 4.7: Total phenolic content of methanolic extracts of Amaranthus hydridus. Values indicate mean ± SE of three replicates and 

different letters between treatments indicate significant differences at 5% level of significance. CD= Control (drenching), SWD = 

Smoke Water (drenching), KARD = Karrikinolide (drenching), VCLD= Vermicompost leachate (drenching), KELD= Kelpak® 

(drenching), ECKD= Eckol (drenching) and GAD= Gibberellic acid (drenching). Same treatments with F= Foliar spray. Same 

treatments with DF= Drenching and foliar spray.
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4.7.5 Effect of organic biostimulants and mode of application on total flavonoids 

content (TFC) in Amaranthus hybridus 

 
Fig. 4.8 shows the total flavonoid content (TFC) of methanolic extracts of A. hybridus. 

Among all treatments and mode of application, the highest amount of flavonoid content 

was found in the control (10.752 ± 1.024) under drenching and foliar application. This 

was followed by ECK (9.210 ± 0.824) under drenching which was also statistically 

significant compared to the other treatments. The organic biostimulants and their 

mode of application seem to have had little effect on the total flavonoid content of A. 

hybridus (Fig. 4.8). The lowest statistically significant amounts of flavonoids were 

found in the control (foliar application) (4.423 ± 0.293), VCL, KEL and ECK all under 

a combination of drenching and foliar application (4.666 ± 0.146, 4.788 ± 0.040 and 

4.666 ± 0.107) respectively compared to the other treatments (Fig. 4.8). Generally, 

differences in flavonoid content among treatments (organic biostimulants) and mode 

of application in terms of total flavonoid content were found to be not statistically 

significant. 

 

4.7.6 Effect of biostimulants and mode of application on condensed tannins in 

Amaranthus hybridus 

 

The butanol-HCL assay was employed in the determination of quantities of condensed 

tannins in methanolic extracts of A. hybridus treated with different organic 

biostimulants. Results of this investigation are shown in Fig. 4.9. The highest amounts 

of condensed tannins were obtained in SW (2.745 ± 0.630) under drenching 

application and this was statistically significant compared with all the other treatments. 

Also, elevated amounts of condensed tannins were observed in ECK (1.690 ± 0.243) 

under drenching application although not statistically significant overally (Fig. 4.9). The 

general trend showed no significant differences in amounts of condensed tannins due 

to treatment and mode of application (Fig. 4.9). 
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Fig. 4.8: Total flavonoid content of methanolic extracts of Amaranthus hydridus. Values indicate mean ± SE of three replicates and 

different letters between treatments indicate significant differences at 5% level of significance. CD= Control (drenching), SWD= 

Smoke water (drenching), KARD= Karrikinolide (drenching), VCLD= Vermicompost leachate (drenching), KELD= Kelpak® 

(drenching), ECKD= Eckol (drenching) and GAD= Gibberellic acid (drenching). Same treatments with F= Foliar spray. Same 

treatments with DF= Drenching and foliar spray.
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Fig. 4.9: Condensed tannins of methanolic extracts of Amaranthus hybridus. Values indicate mean ± SE of three replicates and 

different letters between treatments indicate significant differences at 5% level of significance. CD= control (drenching), SWD= Smoke 

water (drenching), KARD = Karrikinolide (drenching), VCLD= Vermicompost leachate (drenching), KELD= Kelpak® (drenching), 

ECKD= Eckol (drenching) and GAD= Gibberellic acid (drenching). Same treatments with F= Foliar spray. Same treatments with DF= 

Drenching and foliar spray.

Condensed tannins

C
D
S
W

D

K
A
R
D

V
C
LD

K
ELD

E
C
K
D

G
A
D C

F
S
W

F

K
A
R
F

V
C
LF

K
ELF

E
C
K
F

G
A
F

C
D
F

S
W

D
F

K
A
R
D
F

V
C
LD

F

K
ELD

F

E
C
K
D
F

G
A
D
F

0

1

2

3

4

c
d

e

a

c
d

e

b

b
c
d

d
ec

d
eb
c
d

e

e
c
d

e

b
c

c
d

e

c
d

ec
d

e
c
d

e

c
d

e

c
d

e

c
d

e
c
d

eb
c
d

e

c
d

e
Treatments

C
o

n
d

e
n

s
e
d

 t
a
n

n
in

s
 (

m
g

 C
C

E
/g

D
W

)



  

109 
 

4.8. Discussion 

 

4.8.1 Effect of biostimulants on Amaranthus hybridus growth  

 
The best concentration of different biostimulants for growth study was selected based 

on promotory effects on seed germination and seedling growth of A. hybridus from 

preliminary experiments carried out prior to this study. Under greenhouse conditions, 

the foliar application of VCL generally showed an increase in several growth 

parameters of A. hybridus seedlings compared to other biostimulants. In combined 

drenching and foliar treatment, most of the growth parameters with KEL treatments 

were significantly higher compared to the control, GA and other tested biostimulants 

(Table 4.1). KAR1 drenching treatment significantly increased plant height and 

fresh/dry weight compared to the water control, positive GA control and other tested 

biostimulants when results of shoot and root were combined and analysed (Fig. 4.1; 

Table 4.1). These results were similar for foliar VCL and combined drenching and 

foliar KEL treatments (Fig. 4.1). General analysis of variance shows that different 

biostimulant concentrations and mode of applications used in this experiment had a 

significant effect on A. hybridus plants (Table 4.2). However, the only exception was 

for plant height where treatments did not have a significant effect. KEL treatment 

improved absolute and relative growth rates of leaf number in drenching and combined 

drenching and foliar application (Fig. 4.2). For plant height, KAR1 drenching and 

combined drenching and foliar treatment were significantly effective. VCL treatment 

with foliar and combined drenching and foliar treatment showed an increment in 

absolute growth rate. However, no significant difference with relative growth rate was 

observed (Fig. 4.2). Foliar application of biostimulants was effective in increasing the 

leaf area ratio. 

Plants have been discovered to exhibit a wide range of responses when exposed to 

different organic biostimulants. VCL, KEL and KAR1 were effective in improving some 

of the growth parameters of A. hybridus plants. It has been shown that Chinese 

cabbage (Brassica rapa cv. Bonsai) treated with VCL resulted in increased fresh/dry 

weight and leaf area (PANT et al., 2009). Foliar application of VCL improved quality 

and yield of strawberry (Fragaria × ananassa) fruit (SINGH et al., 2010). A. hybridus 

plants, when treated with KEL, both foliar as well as drenching, showed improved 
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growth. A study done in vitro has reported that the root-growth-promoting activity of 

KEL was effective when applied on cultured tomato roots (FINNIE and VAN STADEN, 

1985). In another study, wheat plants treated with KEL showed an increase in root: 

shoot dry mass (NELSON and VAN STADEN, 1986). Vermicompost leachates and 

KEL have been shown to enhance growth and yield and alleviate different biotic and 

abiotic stresses (AREMU et al., 2015). This has been attributed to the presence of 

plant growth regulators (PGRs) such as cytokinins, polyamines, abscisic acid, indole 

acetic acid, brassinosteriods and gibberellins (AREMU et al., 2015; PAPENFUS et 

al., 2013; STIRK et al., 2004; STIRK et al., 2014). Treatment of tomato (Solanum 

lycopersicum), okra (Abelmoschus esculentus) and bean (Phaseolus vulgaris) seeds 

with KAR1 exhibited a significant improvement in seedling length and growth 

compared to water control (VAN STADEN et al., 2006). Foliar application of KAR1 to 

the seedlings of okra and tomato significantly improved their growth (KULKARNI et 

al., 2006; KULKARNI et al., 2007). Number of leaves and shoot height were promoted 

in KAR1-treated maize (Zea mays) seedlings (VAN STADEN et al., 2006). It has been 

speculated that there may be interactions between KAR1 and gibberellins, auxin and 

strigolactones, which results in stimulating plant growth (LIGHT et al., 2009). These 

interactions between PGRs and KAR1 are being extensively researched.  

 

4.8.2 Effect of biostimulants on the biochemical composition of Amaranthus hybridus 

 
Chlorophyll, carotenoid, protein and carbohydrate contents of A. hybridus were 

calculated for foliar application, as it showed better results than the other two 

applications in enhancing morphological parameters (Table 5.3). KEL- and VCL-

treatment significantly augmented the levels of chlorophylls (a, b and a + b), 

carotenoids and proteins in comparison to the water control, positive control GA and 

other tested biostimulants. However, carbohydrate content was significantly 

decreased in all tested biostimulants compared to the control. These results are in 

agreement with those obtained for spinach (Spinacia oleracea), where all the tested 

plant growth biostimulants significantly increased total chlorophyll, carotenoids and 

protein content (KULKARNI et al., 2019). Similarly, biostimulants enhanced the 

efficiency of photosynthesis and other physiological processes, which resulted in 

improved growth of tomato and snap bean (HERNÁNDEZ-HERRERA et al., 2014; 

SEIF et al., 2016). Chlorophyll increase in treated plants could be attributed to 
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nutrients such as N and Mg present in biostimulants, which are essential for 

chlorophyll synthesis (YAKHIN et al., 2017). Another explanation for increased 

chlorophyll content would be the ability of biostimulants to efficiently translocate water 

and mineral supply to plants (ABBAS, 2013). Carotenoid content was significantly 

enhanced in all tested biostimulants in comparison to water control and the positive 

control GA. Carotenoids are an important component of the plants as they have the 

capacity to augment antioxidant activity (HAN and XU, 2014). Higher carotenoid 

content recorded with biostimulants indicates that A. hybridus plants may have better 

nutritive value with greater antioxidant capacity. Similarly, increased protein content 

indicates that the rate of protein synthesis was higher in A. hybridus plants. This could 

be due to the ability of the biostimulants to efficiently mobilize the uptake of N, which 

is correlated with protein synthesis (ABBAS, 2013). The negative effects of GA could 

be explained by the fact that the analysis was done at the end of the experiment when 

plants were harvested, six weeks after planting. The plant could be using more 

carbohydrates resulting in some imbalance and maybe if the analysis was done 

between stages of data collection, i.e. after every 2 weeks, a different result could 

have been obtained. One other explanation could be the soil nutrients, the crop variety 

used or the different watering regimes could have affected carbohydrate production in 

the plant. We feel more work needs to be done to ascertain what could be the cause 

of the reduction in carbohydrates in the crop. Maybe the GA could have caused some 

changes in the biochemical activity of crop which negatively affected carbohydrate 

production, but this still need to be investigated. 

Biostimulants used in the present study stimulated the growth of A. hybridus when 

applied as a foliar treatment. The use of biostimulants in agriculture is attributed to 

macro- and micronutrients as well as amino acids, vitamins, cytokinins, auxins and 

abscisic acid (HERNÁNDEZ-HERRERA et al., 2014). This influences plant cell 

metabolism resulting in better growth and yield (CROUCH and VAN STADEN, 1993a; 

STIRK et al., 2004). According to STEPHENSON (1974), some of the biostimulants 

may contain a precursor of elicitor compounds that stimulate germination, growth and 

plant health (HERNÁNDEZ-HERRERA et al., 2014). The synergistic interactions of 

these components from biostimulants illustrate their beneficial properties in crop 

production. The results of this experiment provide vital information on the utilization of 

biostimulants for commercial cultivation of A. hybridus.  
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4.8.3 Effect of organic biostimulants and mode of application on antioxidant activity 

and phytochemical composition of Amaranthus hybridus 

 
The total phenolic, flavonoid and condensed tannin content in methanolic extracts of 

A. hybridus treated with different biostimulants using three methods of application 

were determined using various methods. For total phenolic content, it was observed 

that the controls had the highest amounts of total phenolics. Organic biostimulants 

such as SW and ECK under drenching application had enhanced amounts of total 

phenolics although the amounts were not statistically significant as they were lower 

than the control. Foliar application of VCL yielded significant lower amounts of total 

phenolic content. The differences in total phenolic content between treatments and 

mode of application of treatments were not statistically significant. A similar result was 

observed in the total flavonoid content within treatments and mode of applications and 

again the control had the highest amount of flavonoid content. The general trend was 

a decrease in flavonoid contents, with all treatments having values lower than that of 

the control (C) when VCL, KEL and ECK were applied via a combination of drenching 

and foliar application. For condensed tannins, there was also generally no significant 

differences in the amount of condensed tannins with the exception of SW applied via 

drenching which significantly enhanced the content of condensed tannins in A. 

hybridus. The results of the investigation are supported by those obtained by 

RENGASAMY et al. (2016) in cabbage (Brassica oleracea var. capitata) in which the 

total phenolics, total flavonoids and condensed tannins were found to be lower in 

plants treated with ECK at time of harvesting. In another study on maize treated with 

ECK, there was a significant increase in the amount of total phenolics but the amount 

of total flavonoids and condensed tannins did not change (RENGASAMY et al., 

2015b). Results from this investigation concur with those of PEREIRA et al. (2019) on 

spinach on effects of biostimulants application on nutritional quality and bioactive 

properties of the plant. High amounts of total phenolic compounds were found in the 

control. In the same investigation, β-carotene was also enhanced in tomato plants with 

low concentrations of saffron extract. In another study on tomato by COLLA et al. 

(2017a), neither total phenols nor total ascorbic acid levels were influenced by the 

application of biostimulants and this concurs with the results from the current 

investigation. Similar results were also obtained when differences in tomato quality 
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were tested with or without treatment using Stimplex® (a liquid seaweed extract), a 

biostimulant. The results showed that there was no significant difference in the content 

of total phenolics among cultivars treated with Stimplex®. Control plants had 

significantly higher DPPH scavenging activity than that in the Stimplex®-treated 

tomatoes. There was also no significant difference in reducing power among different 

treatment groups (SIDHU et al., 2017). The foliar application of legume-derived protein 

hydrolysate (LDPH) to baby lettuce resulted in enhanced antioxidant activity in baby 

lettuce (Lactuca sativa) leaves (DI MOLA et al., 2019). This could be a result of the 

stimulation of key enzymes involved in antioxidant homeostasis in cells coupled with 

assimilation of macro and micronutrients in biostimulant-treated plants. This could 

have resulted in the synthesis of amino acids, phenylalanine and tyrosine (COLLA et 

al., 2017a; COLLA et al., 2015b). KHOULATI et al. (2019) had different results from 

those of this investigation when tomato plants treated with a biostimulant via foliar 

application resulted in significant improvements (P ˂ 0.05) in amounts of polyphenols, 

flavonoids and condensed tannins. Only SW increased the amount of condensed 

tannins in this investigation. Brassica oleraceae cultivars treated with Ascophyllum 

nodosum extracts, resulted in enhanced amounts of total phenolics and total 

flavonoids (LOLA-LUZ et al., 2013), and this does not concur with response from A. 

hybridus in the current investigation. 

 

4.9. Conclusions 

 

The mode of application of liquid supplements to the crops is crucial for economic 

returns. Three modes of application of biostimulants at very low concentrations were 

studied on A. hybridus, a leafy vegetable. KAR1, VCL and KEL showed better growth 

performance with drenching, foliar and combined drenching and foliar applications 

respectively.  However, the best results were achieved with foliar application of VCL, 

showing a significant effect on both the growth and biochemical parameters of A. 

hybridus. Major biochemical components such as carotenoid and protein were 

improved with all tested biostimulants. This suggests that not only will some 

biostimulants have an effect on the growth but they may also influence the nutritional 

components of a crop plant. These biostimulants are eco-friendly and can be used in 

low concentrations and in combination with inorganic fertilisers. These biostimulants 
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should be seriously considered as a worthwhile production strategy for traditional leafy 

vegetables such as A. hybridus for increasing the yield and nutritive value of the crop. 
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Chapter 5: Effects of microorganisms and biostimulants on 

the growth and biochemical composition of Amaranthus 

hybridus L. 
___________________________________________________________________ 

 

5.1 Introduction 

 

Modern agriculture is facing emerging threats such as a rapid population increase, 

global warming and environmental pollution. All these threats have impacted 

negatively on food production worldwide (JI et al., 2019). Sustainable and eco-friendly 

approaches are now required to address challenges of increased global food demand, 

decrease in arable lands and resources and several environmental pressures caused 

by climate change (BARGAZ et al., 2018; TILMAN et al., 2017). Even though 

macronutrients such as N, P, K and sulfur (S) found in mineral fertilisers are important 

in agriculture, microorganisms play a vital role in crop production through N2 fixation, 

P solubilization and production of phytohormones. Agriculturally-beneficial 

microorganisms also play an indirect role through the production of antimicrobial 

compounds and elicitation of induced systemic resistance (BARGAZ et al., 2018; 

SINGH, 2016).  

Plants interact with a wide variety of soil-inhabiting organisms in different ways, either 

competitive, exploitative, neutral, commensal or mutualistic (BONKOWSKI et al., 

2009; JACOBY et al., 2017). Both plants and microorganisms benefit in such a 

symbiotic relationship.There are an estimated 20 000 plant species that cannot survive 

without symbiotic associations with microorganisms (VAN DER HEIJDEN et al., 

2008). These associations have been in existence for the past 450 million years, since 

the ancestral plant lineages first colonized land (HASSANI et al., 2018). The 

association involves plants being a source of nutrition and a habitat for the 

microorganisms and in return, the plants get numerous benefits from the microbes. 

Some of these benefits include growth promotion and stress reduction (HARDOIM et 

al., 2008). Plant-microbe interactions are of vital importance for the growth of plants 

under adverse climatic conditions. This should be taken into consideration when 

designing novel strategies targeting yield improvement and stress resistance in crop 

plants (KORENBLUM and AHARONI, 2019).  
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Soil microbiomes have been manipulated to optimize crop productivity since 300 BC 

(FINKEL et al., 2017). Deposition of organic litter by plants and their metabolic 

activities alters both the physical and chemical properties of the soil and the plants get 

nutrients from the soil. Direct benefits plants derive from microorganisms include 

controlling hormone signalling and resistance to pathogens, with the plants 

communicating with the microorganisms via metabolites exuded by the roots 

(JACOBY et al., 2017). This relationship is illustrated in Fig. 5.1 below. 

 

 

Fig. 5.1: An illustration of how plants interact with microorganisms and the soil. 

Source: JACOBY et al. (2017). 

 

There is a wide variety of microorganisms which interact in a beneficial way with plants 

and these include arbuscular mycorrhizal fungi (AMF) or plant growth-promoting 

rhizobacteria (PGPR) (TODESCHINI et al., 2018).Some of these microorganisms 

could be exploited in the production of efficient biofertilisers. The plant growth-

promoting traits are due to the presence of phytohormones, siderophores, amino acids 

and polysaccharides, all of which enhance plant growth (TODESCHINI et al., 2018). 

There are a wide range of benefits to plant health that are derived from 

microorganisms. Some of these include suppression of diseases (RITPITAKPHONG 

et al., 2016), priming of plant immune systems (VAN DER ENT et al., 2009), inducing 
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systemic resistance (ZAMIOUDIS et al., 2015), increasing the acquisition of nutrients 

(VAN DER HEIJDEN and HARTMANN, 2016), tolerance of abiotic stresses (ROLLI 

et al., 2015), coping with variations in environmental conditions (HANEY et al., 2015) 

and establishment of mycorrhizal associations (GARBAYE, 1994).  

There is a great need for the production of microbial-based bio-formulations that work 

in a complementary and synergistic manner with mineral fertilisers to increase plant 

performance (BARGAZ et al., 2018). Nutrients can limit yields of plants, for example, 

Fe and Zn can be found in abundance in soils but in forms that are not available for 

crops (BACKER et al., 2018). Several strains of bacteria can enhance the availability 

of Fe by producing siderophores (organic acids) (AHMED and HOLMSTRÖM, 2014). 

The same siderophores can also control pathogenic microorganisms by limiting the 

availability of Fe to the microorganisms (AHMED and HOLMSTRÖM, 2014; SAHA et 

al., 2016). For example, cotton yield was increased when PGPRs were combined with 

compost and NPK fertilizer (KHALIQ et al., 2006) and long-term PGPR application in 

combination with compost enhanced straw biomass, grain yields, and grain nutrition 

of wheat (HU and QI, 2013). PGPR could also contribute to ecosystem recovery when 

inoculated with plants (ARMADA et al., 2018; MAJEED et al., 2018). The 

predominant plant growth-promoting bacteria are Pseudomonas and Bacillus species 

(RADHAKRISHNAN et al., 2017). Rhizophagus irregularis (formerly Glomus 

intraradices), Bacillus amyloliquefaciens and Pseudomonas fluorescens (the most 

extensively studied species) (VÁZQUEZ et al., 2000) are usually used as commercial 

soil additives because of their ability to promote plant growth (XIE et al., 2018). AgriLife 

(India) has developed a commercial formulation of Acidithiobacillus ferroxidans, a zinc-

mobilising bacterium. This has been shown to enhance the uptake of Zn, thereby 

increasing yield in a number of crops including rice (SHAKEEL et al., 2015), soybean 

and wheat (RAMESH et al., 2014). 

Natural seaweed extracts have been used to partially replace conventional synthetic 

fertilisers (SHARMA et al., 2014). The seaweed extracts are used as biostimulants in 

agriculture where they are known to enhance crop productivity. One such seaweed 

extract is Kelpak® (KEL), derived from Ecklonia maxima (Osbeck) Papenfuss, a brown 

kelp, commonly known as “sea bamboo” that is harvested on the west coast of South 

Africa (ANDERSON et al., 2007). The growth-promotory effects of KEL on a number 

of agricultural crops is well documented (BECKETT et al., 1994; CROUCH and VAN 
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STADEN, 1992; PAPENFUS et al., 2013; RENGASAMY et al., 2015a). KEL is 

effective when applied at low concentrations, suggesting that elicitor compounds such 

as plant hormones are the active ingredients. Plant hormones such as auxins, 

cytokinins, gibberellins and brassinosteroids (STIRK et al., 2004; STIRK and VAN 

STADEN, 2014), polyamines (putrescine and spermine) (PAPENFUS et al., 2012) 

and a phlorotannin (eckol) (RENGASAMY et al., 2015a) have been identified in KEL.  

Plants often face growing challenges in adverse environmental conditions, such as 

water deficit or excess, high light intensity, low or high temperature, salinity, heavy 

metals, UV rays, insect and pest attacks (BERWAL and RAM, 2018). Such stresses 

induce many metabolic changes, such as the occurrence of an oxidative stress which 

adversely affects the plant’s growth and development (DÍAZ-VIVANCOS et al., 2008) 

resulting in crop failure. Abiotic stresses increase the production of reactive oxygen 

species (ROS) which has cytotoxic effects (BERWAL and RAM, 2018). Superoxide 

dismutases (SODs) are ubiquitous metalloenzymes that form the first line of defense 

against ROS (TAKAHASHI and ASADA, 1983). SOD is one of the most effective 

components of a plant’s cell antioxidant defense system against ROS toxicity 

(FRIDOVICH, 1986).  

With increased interest is organic-based agriculture and the need to minimize fertilizer 

use, the potential to combine the application of PGPRs and plant-based biostimulants 

such as KEL to improve the growth, yield and quality of crops needs to be investigated. 

This study was therefore carried out to determine the effect of PGPRs (Bacillus 

licheniformis and Pseudomonas fluorescens) applied in combination with the 

seaweed-based biostimulant KEL on the growth, biochemical composition and SOD 

activity of A. hybridus L.  

 

5.2 Materials and methods 

 

5.2.1 Site of the experiment 

 
The experiment was carried out in a greenhouse at the University of KwaZulu-Natal 

(UKZN) Botanical Garden, Pietermaritzburg Campus (290 37.55′ S; 300 24.13′ E), 

South Africa. 

 



  

119 
 

5.2.2 Bacterial inoculum 

 
Bacillus licheniformis (ATCC 12759) and Pseudomonas fluorescence (ATCC 13525) 

were purchased from The American Type Culture Collection (ATCC). Bacterial 

inoculum was prepared by culturing B. licheniformis and P. fluorescence in 200 mL 

Mueller-Hinton (MH) broth on an orbital shaker at 35°C and 27°C respectively for 2 

days. The optical density was measured at 660 nm by spectrophotometer (Varian Cary 

50 UV-Vis Spectrophotometer, Australia) to achieve uniform populations of bacteria of 

108 colony-forming units (CFU) per mL. The inoculum was centrifuged at 5 000 g for 

10 min (4°C) (Avanti J-E Centrifuge, Beckman Coulter, Inc., California, USA) and the 

pellet was rinsed with distilled water to remove traces of MH broth. A bacterial 

suspension was made using distilled water so that the absorbance value was 1.0 when 

measured at 660 nm.  

 

5.2.3 Pot trial 

 
A. hybridus seeds were purchased from McDonald’s Seed Company, 

Pietermaritzburg, South Africa. New pots (15 cm diameter) were filled with 242 g 

autoclaved garden soil (described in Chapter 3, Section 3.5.1). Seeds were sown in a 

nursery to raise seedlings and after seven days (two-leaf stage), three healthy 

seedlings were transplanted into a pot (15 cm diameter) with five pots per treatment. 

Pots were arranged on a metal bench in a greenhouse with a daily maximum and 

minimum temperature of 22 ± 3°C and 15 ± 2°C, respectively, and midday light 

intensity of 500 - 600 µmol m-2 s-1. A randomized pot trial was carried out in which the 

interactions between B. licheniformis, P. fluorescence and Kelpak® (KEL) were 

investigated and compared to a control treatment with/without B. licheniformis, P. 

fluorescence and KEL application. Seven days after transplanting, the seedlings were 

treated with either 10 mL bacterial inoculum per pot or 10 mL KEL (1% v/v) per pot 

applied to the soil around the plants. For the combination treatments, KEL (1% v/v) 

was incorporated into the 10 mL bacterial inoculum. The treatments were as follows: 

control (distilled water), distilled water + B. licheniformis, distilled water + P. 

fluorescence, KEL (1% v/v) + B. licheniformis, KEL (1% v/v) + P. fluorescence and 

KEL (1% v/v). A second and third application of these solutions was done 2 and 4 

weeks later. The seedlings were irrigated twice weekly with water (100 mL) for the 
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duration of the pot trial except on the day of treatment. Plants were harvested 6 weeks 

after sowing. Fresh weights of roots and shoots (combined leaf and stem material) 

and leaf area (measured with a leaf area meter LI-31000, LI-COR Inc., Nebraska, 

USA) were recorded as a measure of growth. Fresh material (leaf) was randomly 

harvested from the five pots to make three replicates of each treatment for biochemical 

analyses. 

 

5.2.4 Determination of total chlorophyll and carotenoid content 

 
This was carried out as described in Chapter 3, Section 3.6.2. 

 

5.2.5 Protein content evaluation 

 
This was carried out as described in Chapter 3, Section 3.6.3. 

 

5.2.6 Carbohydrate content evaluation 

 
This was carried out as described in Chapter 3, Section 3.6.4. 

 

5.2.7 Superoxidase dismutase (SOD) activity 

 
The SOD enzyme activity of leaf protein was assayed by measuring its ability to inhibit 

the photochemical reduction of nitroblue tetrazolium (NBT) using the method of 

GIANNOPOLITIS and RIES (1977). The reaction mixture (3 mL) consisted of 50 mmol 

phosphate buffer (7.8 pH), 13 mmol methionine, 75 μm NBT, 2 μmol riboflavin, 50 

μmol EDTA and 100 μL of crude enzyme extract (protein). Tubes were vortexed and 

were subjected to illumination under 20 W fluorescent tubes. The reaction was allowed 

to proceed for 15 min and the tubes were kept in the dark. The absorbance of the 

reaction mixture was taken at 560 nm. One enzyme unit was defined as the amount 

of enzyme which causes 50% inhibition of NBT photoreduction. The enzyme activity 

was expressed as Unitsμg-1 FW. 
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5.2.8 Mineral element analysis 

 
The nitrogen (N) content was determined by the method of (DUMAS, 1831) using a 

LECO-Truspec CNS analyser and the other minerals viz. aluminium (Al), iron (Fe), 

manganese (Mn), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), sodium (Na), 

phosphorus (P) and potassium (K) were determined using inductively coupled plasma 

- optical emission spectrometry (ICP-OES), VISTA-MPX. For the determination of N, 

the milled plant material was kept in an oven at 110°C overnight. The following day 

the samples were cooled in a desiccator for 30 min and then 0.125 g samples were 

weighed. The samples were introduced and burnt in a module consisting of an electric 

furnace working at a temperature of 950 °C. For the determination of Al, Fe, Mn, Zn, 

Cu, Ca, Mg, Na, P and K, 0.5 g milled samples were weighed and placed in crucibles 

(crucibles were preheated overnight in an oven set at 110°C and were cooled in a 

desiccator and weighed) in an oven set at 110°C for 2 h. Crucibles with the samples 

along with blanks were arranged in order and placed into a furnace set at 450°C for 4 

h. After 4 h, the furnace was opened and allowed to cool off. Subsequently, crucibles 

were removed from the furnace and cooled. Samples were then digested where a few 

drops distilled water was added, followed by addition of 2 mL concentrated HCI to 

each sample. The samples were slowly evaporated to dryness in a water bath in a 

fume hood. Then 25 mL of freshly prepared 1:9 HCl solution was added to each 

sample and stirred with a glass rod. The samples were filtered through Advantec 5B: 

90 mm diameter filter papers into clean sample crucibles. The filtrate was diluted with 

de-ionized water, ratio 5:20 and the diluted solution was analysed for elements in the 

ICP-OES system. The calibration standards were treated similarly. The raw data from 

the ICP-OES was taken for further calculations using dry-matter determined earlier as 

well as the sample weight. All sample vials, sample crucibles, and glassware were 

cleaned by soaking in 10% (v/v) HNO3 and rinsed with deionized ultrapure water (Milli-

Q, Millipore, Bedford, MA) before use. The appropriate standards were prepared by 

dilution of each pure element standard within the concentration range of the elements 

in the samples. The results were obtained from triplicate measurements. 
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5.3 Statistical analysis 

 

The quantification of all parametric data was done in triplicate and results presented 

as mean ± standard error. Mean value comparison was computed using one-way 

analysis of variance (ANOVA) using GenStat 18th Edition. Duncan's multiple range test 

was used for statistical significance (P < 0.05) to separate the mean values. Graphs 

were plotted using Sigma Plot for Windows Version 11. 

 

5.4 Results 

 

5.4.1 Effect of Bacillus licheniformis, Pseudomonas fluorescens and Kelpak® on the 

growth of Amaranthus hybridus 

 
B. licheniformis and P. fluorescens caused a major decline in the growth of A. hybridus 

compared to the control plants. The overall application of microorganisms alone on A. 

hybridus had a deleterious effect on the growth and development of the plant. In 

contrast, Kelpak® had a beneficial effect of plant growth with significantly higher values 

recorded in these plants compared to the control treatment (Fig. 5.2 D, E and F). 

Application of KEL in combination with the rhizobacteria overcame the negative effect 

of the microorganisms. The combined treatment of KEL + P. fluorescens showed a 

significant positive effect on most of the growth parameters (leaf number, root length, 

both shoot and root fresh weights and leaf area) compared to A. hybridus control plants 

and to a lesser extent, when combined with B. licheniformis (Fig. 5.2 A, C, D, E and 

F, respectively). The results of the study are supported by ANOVA where 

microorganisms alone had no significant influence on the leaf number (Table 5.1). 

Only treatment (T) and the interaction of microbes (M) and T (M x T) had a significant 

effect on leaf number (P < 0.05). Microbes (M) alone, T and the interation of M and T 

(M x T) had a significant influence on leaf area (Table 5.1). Microbes alone showed 

no significant influence on the height of A. hybridus plant while notable significant 

effects where observed due to T and the interaction of M and T (M x T). The fresh 

weight of A. hybridus was significantly influenced by the microbes, treatment and their 

interactions (Table 5.1). 
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5.4.2 Effect of Bacillus licheniformis, Pseudomonas fluorescens and Kelpak® on the 

biochemical composition and antioxidant enzyme superoxide dismutase (SOD) of 

Amaranthus hybridus 

 
B. licheniformis and P. fluorescens treated plants had a significantly lower Chlorophyll 

a content compared to the control plants while KEL treated plants yielded significantly 

higher Chlorophyll a. Although not as high as the KEL treated plants, KEL + B. 

licheniformis and KEL + P. fluorescens treated plants showed a significant increase in 

the amount of Chlorophyll a compared to the plants treated with microbes alone. 

However, control plants were not significantly different from these treatments (Table 

5.2). None of the treatments showed any significant influence on Chlorophyll b 

production apart for the significant decrease in B. licheniformis treated plants (Table 

5.2). For Chlorophyll a + b and carotenoid content, the same trend was apparent as 

with Chlorophyll a where the KEL treated plants showed the most significant increase, 

PGPR caused a significant decrease and the combined treatments caused increased 

levels although not significantly different to the control plant (Table 5.2). 

B. licheniformis and P. fluorescens treated plants had a significant decrease in protein 

and carbohydrate content while the KEL treatment had no significant effect. Protein 

and carbohydrate levels were similar to the control plants for the combination 

treatments (Table 5.2). 

All the treatments significantly reduced the activity of SOD compared to A. hybridus 

control plants with the combination treatments having significantly low activity (Table 

5.2). 
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Table 5.1: Analysis of variance for comparing different treatments and interactions for 

the growth response of Amaranthus hybridus (P ˂ 0.05). 

Source of variation 

 

Degree of 
freedom 

Sum of 
squares 

Mean 
squares 

Variance 

 

F-probability 

 

Leaf (no.)      

Microbes (M) 1  14.02  14.02  0.86  0.356 

Treatment (T) 5  445.15  89.03  5.45 < 001 

M X T  4  445.15  111.29  6.88 < 001 

Residual 114  1844.80  16.18     

Total 119  2303.97      

      

Leaf area (cm2)      

Microbes (M) 1  1381.5  1381.5  4.65  0.033 

Treatment (T) 5  14778.5  2955.7  9.95 < 001 

M X T  4  14778.5  3694.6  12.55 < 001 

Residual 114  33572.1  294.5   

Total 119  49732.2    

      

Plant height (mm)      

Microbes (M) 1  16951  16951  2.73  0.101 

Treatment (T) 5  131155  26231  4.22 < 001 

M X T  4  131155  32789  5.32 < 001 

Residual 114  702386  6161   

Total 119  850492    

      

Plant fresh weight (g)      

Microbes (M) 1  3.6407  3.6407  3.95  0.049 

Treatment (T) 5  34.2282  6.8456  7.44 < 001 

M X T  4  34.2282  8.5571  9.38 < 001 

Residual 114  104.0319  0.9126   

Total 119  141.9008    
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Table 5.2: Effect of Bacillus licheniformis, Pseudomonas fluorescens and Kelpak® on photosynthetic pigments, biochemical and 

superoxide dismutase enzyme (SOD) content of Amaranthus hybridus after 6 weeks. 

 

 
Mean values (± SE) in a column with different letter(s) is significantly different according to Duncan’s multiple range test (P ˂ 0.05). 

 

Treatment 
 

Chlorophyll a  
(µg g-1 FW) 

Chlorophyll b  
(µg g-1 FW) 

Chlorophyll a + b  
(µg g-1 FW) 

Carotenoid 
(µg g-1 FW) 

Protein  
(µg g-1 FW) 

Carbohydrate  
(µg g-1 FW) 

SOD  
(Unit mg-1 FW) 

Control 919 ± 90 b 283 ± 38 a  1202 ± 60 b 255 ± 12 b 9.5 ± 0.12 a 210 ± 34 ab 0.041 ± 0.007 a 

BL 329 ± 60 d 148 ± 20 b 478 ± 80 c 112 ± 14 d 3.5 ± 0.26 c  131 ± 14 c 0.025 ± 0.001 b 

PF 753 ± 21 c 250 ± 6 a 1004 ± 26 b 212 ± 3 c 6.1 ± 1.49 b 154 ± 4 bc 0.012 ± 0.003 cd 

KEL 1129 ± 66 a 297 ± 20 a  1426 ± 86 a 298 ± 16 a 9.3 ± 0.37 a 204 ± 26 abc 0.020 ± 0.003 bc 

KEL + BL 992 ± 54 ab 256 ± 12 a 1249 ± 67 ab 278 ± 9 ab 10.6 ± 0.75 a 267 ± 30 a 0.007 ± 0.001 d 

KEL + PF 925 ± 92 ab 254 ± 28 a 1179 ± 120 b 254 ± 18 ab 8.9 ± 0.95 a 179 ± 10 bc 0.005 ± 0.001 d 
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5.4.3 Effect of Bacillus licheniformis, Pseudomonas fluorescens and Kelpak® on the 

mineral composition of Amaranthus hybridus 

 
The mineral composition in A. hybridus varied with different treatments (Table 5.3). 

Plants treated with P. fluorescens generally had the highest mineral content with 

significantly higher Ca, Mg, K, P, Zn and Mn content and significantly lower Fe and Al 

compared to the control plants while N and Cu were similar to the control plants (Table 

5.3). In contrast, KEL treated plants had significantly higher K and P and significantly 

lower N, Ca, Fe and Al compared to the control plants while Mg, Zn, Cu and Mn were 

similar (Table 5.3). The combination treatment of KEL + B. licheniformis generally 

decreased the mineral composition (K, P, Zn, Fe and Al) compared to the KEL 

treatment with only N and Ca increasing in the combination treated plants and Mg, Cu 

and Mn being similar in both treatments (Table 5.3). For mineral analysis only effective 

combinations showing good activity were selected for further analysis. 
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Table 5.3: Effect of Bacillus licheniformis (BL), Pseudomonas fluorescens (PF) and Kelpak® on the mineral composition of Amaranthus 

hybridus. 

 

 
Mean values (± SE) in a column with different letter(s) is significantly different according to Duncan’s multiple range test (P < 0.05).   

 

 

Treatment Nitrogen Calcium  Magnesium  Potassium  Phosphorus   Zinc  Copper Manganese Iron Aluminium 

(%) (mg kg-1) 

Control 2.06 ± 0.01 a 0.93 ± 0.0 b 0.44 ± 0.01 b 5.06 ± 0.02 d 0.43 ± 0.01 c  40.1 ± 0.81 b 4.53 ± 0.14 a 97 ± 0.95 b 549 ± 13.7 a 172 ± 8.2 a 

KEL 1.65 ± 0.02 c 0.89 ± 0.0 c 0.42 ± 0.01 b 5.52 ± 0.02 b 0.66 ± 0.02 a  40.5 ± 0.41 b 4.19 ± 0.70 a 109 ± 0.10 b 264 ± 5.0 b 148 ± 6.8 b 

KEL + BL 1.86 ± 0.01 b 0.92 ± 0.0 b 0.43 ± 0.01 b 5.35 ± 0.02 c 0.51 ± 0.02 b  36.4 ± 0.42 c 4.02 ± 0.16 a 105 ± 1.09 b 221 ± 5.3 c 88 ± 4.10 c 

PF 1.96 ± 0.06 ab 1.06 ± 0.0 a 0.50 ± 0.01 a 6.26 ± 0.03 a 0.57 ± 0.02 b  43.8 ± 0.69 a 5.03 ± 0.51 a 116 ± 0.67 a 246 ± 5.1 bc 140 ± 6.7 b 
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5.5 Discussion 

 

There are numerous environmental and public health issues generated by 

conventional agricultural practices, particularly the use of chemical fertilisers. Hence, 

there is a need for approaches or strategies which are eco-friendly involving the 

inclusion of biostimulants and microorganisms in agriculture (GANGWAR et al., 2017; 

MISHRA et al., 2017). There is a need to create a balance between the needs of the 

future generations and the currently available natural resources because of the 

continued exploitation of available resources in response to a general population 

increase (MISHRA et al., 2017). The most promising eco-friendly approach for 

sustainable agriculture involves harnessing plant growth-promoting rhizobacteria 

(PGPRs), endo- and ecto-mycorrhizal fungi, cyanobacteria and numerous other useful 

microorganisms present in the soil (GANGWAR et al., 2017) along with biostimulants 

such as KEL. Soil fertility is partly a function of the diversity of microorganisms and 

their functions (ANSARI and AHMAD, 2019). Interactions between the different 

species of soil microbes are responsible for maintaining the microbial dynamics 

(SØRENSEN et al., 2005). According to ANSARI and AHMAD (2019), two organisms 

can interact either positively, negatively or in a neutral manner even though it is 

believed that PGPRs were correctly named since they are beneficial bacteria with 

regards to their positive role in plant growth (SHANK et al., 2011). The PGPRs are 

present in the soil and stimulate plant growth in many ways. They often work in 

association with roots or leaves or inside tissues of the plant (GLICK, 2012). Among 

the PGPRs there is a wide variety of microbes belonging to genera Pseudomonas, 

Rhizobium, Azotobacter, Klebsiella, Enterobacter and Bacillus, to mention only a few 

(AHEMAD and KIBRET, 2014). According to DU JARDIN (2015), biostimulants are 

substances or microorganisms which are applied to crop plants to improve nutrition 

efficiency, tolerance of abiotic stress and/or quality of the crop. The objective of the 

current research was to investigate the combined effects of some microorganisms 

(Bacillus licheniformis and Pseudomonas fluorescens) and the seaweed biostimulant 

KEL on the growth and biochemical composition of A. hybridus grown under 

greenhouse conditions. The information obtained could be utilised to explain the 

effects of PGPRs and KEL on this leafy vegetable.  
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5.5.1 Effect of Bacillus licheniformis, Pseudomonas fluorescens and Kelpak® on the 

growth of Amaranthus hybridus 

 
Results from the present investigation showed that KEL, a seaweed-based 

biostimulant, influenced growth in A. hybridus and this supports the reports of DU 

JARDIN (2015) on the role of biostimulants on plant growth. Biostimulants enhance 

nutrient uptake, support the growth of crop plants and also improve crop tolerance to 

abiotic stresses (DROBEK et al., 2019). Biostimulants stimulate nutritional processes 

of the plant, resulting in the efficient use of nutrients by the plant, tolerance to abiotic 

stresses, improvement of crop quality traits, availability of nutrients present in the soil 

and rhizosphere, and breakdown of soil organic compounds (CARADONIA et al., 

2019). The positive and significant response of A. hybridus to the application of KEL 

could be due to the presence of various phytohormones, polyamines and the 

phlorotannin eckol that are present in KEL (PAPENFUSS et al., 2012; RENGASAMY 

et al., 2015a; STIRK et al., 2004; 2014). Similarly, KEL- treated okra seedlings had a 

significant increase in shoot length, the thickness of stem, leaves and root numbers 

as well as fresh weight under deficiencies of both P and K (PAPENFUS et al., 2013).  

The two rhizobacteria used in the present study had a negative effect on growth of A. 

hybridus. This is contrary to other reports where PGPRs such as Pseudomonas 

fluorescens have potential to be used as an eco-friendly and sustainable tool in 

modern agriculture. For example, P. fluorescens significantly enhanced yields in rice 

(Oryza sativa) and improved resistance against pathogens (NEHAL, 2015). 

Fluorescent Pseudomonas-FAP2 and Bacillus licheniformis were able to interact 

positively in biofilm mode, resulting in an improvement in the growth and 

photosynthetic attributes of wheat plants (ANSARI and AHMAD, 2019). The positive 

contribution of Pseudomonas in plant growth is attributed to its ability to produce 

cytokinins and gibberellins (gibberellic acid) (AMUTHARAJ et al., 2013; NEHAL, 

2015). The negative effects of the inoculation could be explained by the fact that 

maybe the bacterial strains used in the researcher are generally not conducive to the 

development of the crop. It is known that PGPR-activity is species-specific and it could 

be that the two strains used are not the best species for promoting growth in A. 

hybridus (FIGUEIREDO ET AL., 2011; ROSIER, 2018). There is need for further 
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research test more strains of PGPR on the crop maybe we can get the most ideal 

strain for the growth promoting role. 

However, the combination treatment of the PGPR and KEL used in the present study 

resulted in a significant improvement in the growth of A. hybridus, indicating positive 

interactions between the rhizobacteria and seaweed extract.  

 

5.5.2 Effect of Bacillus licheniformis, Pseudomonas fluorescens and Kelpak® on the 

biochemical composition of Amaranthus hybridus 

 
KEL treatments had a positive effect on the chlorophyll and carotenoid content of A. 

hybridus. Plant-based biostimulants and seaweed extracts promote the biosynthesis 

of chlorophyll or minimise its breakdown, resulting in an increase in the green colour 

of the leaves (ABBAS and AKLADIOUS, 2013). Leaf colour is an important parameter 

of quality in leafy vegetables like A. hybridus since greenness is more appealing to 

consumers. Increasing the chlorophyll of a plant is advantageous to the plant since it 

translates into increased photosynthetic activity within the leaves (BULGARI et al., 

2019). Enhanced concentrations of chlorophyll and carotenoids have been observed 

in rocket (Eruca sativa) (VERNIERI et al., 2005), lettuce (Lactuca sativa) and endive 

(Cichorium endivia) (BULGARI et al., 2014) when treated with biostimulants. An 

increase in photosynthetic pigment, phytochemicals and myrosinase activity was also 

observed in cabbage treated with ECK, a phenolic compound isolated from Ecklonia 

maxima, a brown seaweed used in making KEL (KHAN et al., 2009). Contrary to 

positive reports of increased pigment content in plants whose roots had been 

inoculated with PGPRs of the genera Pseudomonas, Bacillus and Azotobacter (BABU 

et al., 2015), chlorophyll and carotenoid content decreased in A. hybridus treated with 

B. licheniformis and P. fluorescens in the present study. However, the combined 

treatments with KEL improved the pigment content, indicating mutualistic interactions 

between the rhizobacteria and seaweed extract. 

Both the PGPR and KEL treatments reduced SOD levels in A. hybridus, indicating 

stress reduction in the plants. Results concur with those of wheat inoculated with 

Pseudomonas putida, a thermo-tolerant microbe, resulting in an increased tolerance 

to heat stress. Inoculated plants had low ROS generation with lower levels of 

expression of ROS response genes such as SOD, ascorbate peroxidase, and catalase 
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(ALI et al., 2011). Biostimulants are able to counteract environmental stresses such 

as water deficit, soil salinization, and exposure to sub-optimal growth temperatures in 

many ways (DU JARDIN, 2015; VAN OOSTEN et al., 2017). This results in the 

improvement of plant performance, increases plant growth and productivity 

(BULGARI et al., 2019). The combination treatments of PGPR + KEL significantly 

reduced SOD activity compared to the single treatments in A. hybridus, indicating a 

synergistic effect of these treatments. 

 

5.5.3 Effect of Bacillus licheniformis, Pseudomonas fluorescens and Kelpak® on the 

mineral composition of Amaranthus hybridus 

 
P. fluorescens treatment enhanced the content of most mineral elements in A. 

hybridus with the exception of N, Cu, Fe and Al. KEL and a combination of KEL + B. 

licheniformis treatments only improved the K and P content in A. hybridus but had a 

significant negative influence on the content of most of the other minerals quantified. 

These results are not in agreement with those documented for other plant species 

treated with KEL. Significant increases in yield and concentration as well as amounts 

of Ca, K and Mg were recorded in leaves of lettuce treated with KEL (CROUCH et al., 

1990). Microtubers of potatoes (Solanum tuberosum) had high amounts of Mg, Cu, 

Fe, Zn and Ni when treated with KEL (WIERZBOWSKA et al., 2015).  

The increase in mineral content in A. hybridus treated with P. fluorescens is in 

agreement with other studies. For example, the seeds of radish (Raphanus sativus) 

inoculated with Bacillus subtilis and P. fluorescens resulted in significant increases of 

P, N, K, Mg and Ca in roots and leaves of the plants (MOHAMED and GOMAA, 2012). 

When broccoli (Brassica oleracea L., var. italica) roots were inoculated with PGPRs, 

there was an increase in amounts of chlorophyll along with mineral elements (N, K, 

Ca, S, P, Mg, Fe, Mn and Zn) content (YILDIRIM et al., 2011). A significant increase 

in nutrient content of N, P, K, Ca and Mg, occurred in greenhouse-grown tomato plants 

(Solanum lycopersicum) inoculated with different combinations of PGPRs, 

(Pseudomonas, Azotobacter and Azosprillum) (SHARAFZADEH, 2012). Similar 

results were obtained in banana plants treated with PGPRs, where there were 

significant increases in N, P, K, Ca and Mg (VAYSSIÈRES et al., 2009). PGPRs 

possess mechanisms that are involved in N fixation, solubilizing phosphate and 
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synthesis of phytohormones, all of which enhance the availability of nutrients and 

enabling their absorption by plants (ARORA et al., 2012; BHARDWAJ et al., 2014). 

Microbial enzymes tend to increase the accumulation of bioavailable forms of 

macronutrients present in the soil and crops (KUAN et al., 2016). All the above reports 

concur with findings from the current research since P. fluorescens individually 

enhanced the content of most of the mineral elements with the exception of Fe and Al 

where it had adverse effects.  

 

5.5.4 Benefits of combination treatments 

 
The present study demonstrated the benefit of applying a combination treatment of 

PGPR and a seaweed extract. KEL improved the growth parameters of the leafy 

vegetable A. hybridus and increased the pigment content, thus improving the 

greenness and palatability of the leaves. PGPR improved the mineral content of the 

leaves, thus improving its nutritional value. This is an important consideration when 

addressing the issues of hidden hunger. In addition, all treatments decreased the SOD 

levels, indicating reduced stress levels. The lowest SOD levels were measured in the 

plants treated with the combination treatments, indicating additive effects between the 

PGPR and seaweed extract. 

Several experimental studies have demonstrated similar additive and synergistic 

effects of different plant biostimulants combined with PGPR to promote growth and 

productivity of plants (BETTONI et al., 2014; ROUPHAEL and COLLA, 2018). 

Examples of such beneficial attributes include the significant increases in plant height 

and branching for humic acid and seaweed extract sprayed on groundnut plants in 

comparison to the untreated control. The combined applications of both PGPRs 

together with seaweed extracts and humic acid demonstrated a synergistic interaction 

on the groundnut plants with a superior increase in general growth (PRAKASH et al., 

2014). Plant improvement was associated with the enhancement of N uptake and the 

subsequent synthesis of chlorophyll which increased the rate of photosynthesis, 

thereby triggering the movement of the photosynthates to the sinks (PRAKASH et al., 

2014). A similar result was observed in onion seedlings treated with humic acid and 

an inoculum of Rhizophagus intraradices, which resulted in a significant increase in 

root dry weight and carotenoids of 43.9 and 12.1% for humic acid and 29.6 and 57.1% 
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for mycorrhiza respectively. There was a synergistic effect when both humic acid and 

mycorrhiza fungi were applied resulting in both parameters measuring 106.7 and 

123.6% respectively (BETTONI et al., 2014). The increase in crop performance was 

attributed to an increase in the availability of nutrients caused by the synergistic action 

of humic acid and mycorrhizal fungi when they were applied in combination. 

Mycorrhizal fungi and humic acid had a similar synergistic effect when applied in 

combination on ryegrass, a perennial plant in which root biomass and chlorophyll 

biosynthesis were enhanced compared to either application alone (NIKBAKHT et al., 

2014). A similar response was also observed in micropropagated pineapple plantlets 

due to the synergistic action of vermicompost and PGPR, which significantly enhanced 

both shoot dry weight and leaf area (ROUPHAEL and COLLA, 2018).  

 

5.6 Conclusions 

 

Microorganisms and biostimulants such as Kelpak® can work in a complementary and 

interactive manner to improve the growth, biochemical composition and mineral 

content of the highly nutritious but neglected leafy vegetable, A. hybridus. Kelpak® 

overcame the detrimental effects of microorganisms when applied alone by 

neutralising negative effects of the microorganisms. Hence to improve the general 

growth performance of A. hybridus it is necessary to include both microorganisms and 

Kelpak®. The total chlorophyll and carotenoid content were enhanced by this 

synergism, which improves the size and quality of the leaves thereby enhancing 

production of the crop. Greenness is a parameter of quality and palatability for most 

leafy vegetables including A. hybridus. This is important as it would improve consumer 

preferences for the vegetable, since it would be more appealing to any would be 

consumer by its greenness. Also, the mineral content of the vegetable was increased 

for most minerals and this is of vital importance, as this goes a long way in addressing 

the issues of hidden hunger. It can be concluded that microbes and biostimulants 

could be used as an eco-friendly approach to improve the production and mineral 

content of indigenous leafy vegetables such as A. hybridus  
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CHAPTER 6: Effect of organic biostimulants on growth of 

Amaranthus caudatus L. and Amaranthus retroflexus L. 

_________________________________________________________ 

 

6.1 Introduction 

 

The burden being faced by agriculture today is the intense demand for increased food, 

feed and biofuel production against a backdrop of a decline in natural resources to 

meet the needs of the projected nine billion inhabitants expected to be on the planet 

by the year 2050 (GODFRAY et al., 2010b). It is imperative that agricultural production 

increase by 70% to cater for the projected 40% increase in global population 

(BRUINSMA, 2009; TOPWAL and AGARAWAL, 2018). The green revolution has 

favoured a limited number of crops, ignoring some key crops (KHOURY et al., 2014). 

The few crops favoured for cultivation are not nutrient sufficient since they lack 

essential nutrients and vital vitamins to provide a balanced diet. This has resulted in 

more than two billion people the world over languishing from malnutrition (CHENG et 

al., 2017). Underutilised crops have the potential to provide food, feed and vitamins to 

the increasing population (EBERT, 2010). There is a need to incorporate crops with a 

more balanced nutrient composition in mainstream agriculture to improve diversity in 

diet and food quality for the fight against starvation and hidden hunger. The amaranth 

has potential to be used as an alternative food grain in many parts of the world. It 

happens to be one of the few multipurpose crops underutilised as it produces grain, 

leafy vegetables, fodder and improved dietary supplements more than the 

conventional staple crops (MLAKAR et al., 2009a).  

The amaranths are a group of plants from the genus Amaranthus of the 

Amaranthaceae family from the order Caryophyllales. The plants are known to be 

adaptable to different environmental stresses such as extreme temperatures, drought 

and low input cultivation (HUERTA-OCAMPO et al., 2009). They are also more 

competitive than many other crops due to their short life-cycle and easy adaptation to 

new environments (NORMAN, 1992). The genus is native to America and valued for 

the quality of its leaves and grain, which are much appreciated for their high nutritional 

attributes and superior mineral content (SAUER, 1950). This has led to the evolution 

of the amaranth as an essential food crop in South America, Mexico, Africa, parts of 
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Asia and Europe, as well as in Australia (STALLKNECHT and SCHULZ-

SCHAEFFER, 1993).  

The amaranth is classified as a pseudo-cereal since it is not a cereal such as wheat, 

corn, rice or barley. Amaranths leaves have an excellent chemical composition and a 

mild taste, similar to that of spinach, which makes it a proper leafy vegetable 

(AMICARELLI and CAMAGGIO, 2012). In terms of its consumption, it may be eaten 

raw as a salad, cooked and mixed with other vegetables or as a puree base for sauces 

and as a spice when dried, or as a soup with some greens and cereals.  Some combine 

it with flour cereals to make noodles and pizzas. Amaranths constitute the mainstay of 

traditional cuisine in the Caribbean. According to the NATIONAL RESEARCH 

COUNCIL (1984), grain amaranths such as Amaranthus caudatus, A. 

hypochondriacus and A. cruentus can synthesize two amino acids, methionine and 

lysine, in high proportions and this gives them a superior nutritional value compared 

to other cereal grains. All parts of the amaranth plant are edible and in addition they 

have medicinal properties and are used to treat many nonsurgical diseases. The 

multiple benefits derived from the amaranth have led to the re-emergence of these 

plants as crops of immense value as they are also used as sources of energy the world 

over (MLAKAR et al., 2010). All the above consolidates the vital role played by the 

amaranths in food and nutrition security (UUSIKU et al., 2010).  

There are mainly three types of grain amaranth species, with two of these, A. cruentas 

L. and A. hypochondriacus L., originating from Central and North America and the 

other one, A. caudatus L., from South America (LIGHTFOOT et al., 2017; STETTER 

et al., 2017). In terms of the nutritional content of the amaranth grain, it has a crude 

protein content of 13.1-21.0%, consisting of the easy to digest albumins and globulins 

(50-60% of total protein), glutelins (20.8%) and prolamines (12%) (KONISHI et al., 

1985; ZHELEZNOV et al., 1997). According to KAUR et al. (2010), there is a variation 

in the amount of proteins found amongst amaranth species and varieties including the 

weedy species reportedly having higher amounts of proteins, amino acids and other 

nutrients when compared with the cultivated species (ANDINI et al., 2013; SHUKLA 

et al., 2010). The high nutritional and pharmaceutical attributes of amaranth have seen 

them being preferred as wheat substitutes in diets of celiac disease patients in the 

USA and Europe (ANGEL HUERTA-OCAMPO and PAULINA BARBA DE LA ROSA, 

2011; TOSI et al., 2001) since it is a gluten-free ingredient of bread, pasta and other 
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confectionery products (ALVAREZ‐JUBETE et al., 2009). According to BHAT et al. 

(2015) and SÁNCHEZ‐MARROQUÍN et al. (1987), treated seeds of amaranths can 

be taken as instant drinks, with water or milk, or can be added to bread, tortillas, 

cookies or other preparations. Amaranth seed flour from grain amaranth such as A. 

caudatus is gluten-free and can be utilised in the improvement of both the nutritional 

value and digestibility of several cereal products to enhance the quality of protein, fat 

amount and amino acid profile (BRESSANI et al., 1992).  

Amaranth seeds are gluten-free and this is the best-known health benefit of the grain, 

even though there are also several other medically-active compounds present in 

amaranths that have been reported. The nutraceutical properties of amaranths are 

attributed to the presence of a mixture of tocopherols, 0.3-0.4% phytosterols and 4-

6% squalene in its oil (KHAMAR and JASRAI, 2014; LOZANO-GRANDE et al., 

2018). They also contain rich amounts of bioactive flavonoids (RASTOGI and 

SHUKLA, 2013). Oil from amaranth seed is known to be the best plant-based source 

of squalene (a triterpene), a very strong antioxidant which prevents premature skin 

aging by preventing cell-damage (KHAMAR and JASRAI, 2014; LOZANO-GRANDE 

et al., 2018). Other compounds present in amaranths with anti-inflammatory and anti-

cancerous effects include saponins, tannins, phenols, flavonoids, cardiac glycosides, 

steroids and triterpenoids (REYAD-UL-FERDOUS et al., 2015). Hence, this explains 

the global use of amaranth in traditional medicines for various ailments (KUMAR et 

al., 2012).  

Amaranthus caudatus is both a vegetable and grain plant that is fast-growing and 

produces high yields, whose tender leaves are consumed in soups and stews. The 

young shoots can be dried to be utilised later as fodder (GRUBBEN and VAN 

SLOTEN, 1981). According to PETER and GANDHI (2017), concentrates of leaf 

protein can be used to feed children and people in need of high amounts of protein. 

According to PACIFICO et al. (2008), the leaves and seeds of Amaranthus retroflexus 

L. (redroot pigweed) have been used for many centuries as sources of food by the 

local people of North and South America, Asia, Africa and Europe.  

Both the amaranth species can be consumed as vegetables and grains because of 

their excellent nutritional and nutraceutical properties. The inclusion and adoption of 

these two amaranth species in mainstream agriculture in southern Africa, particularly 



  

138 
 

in South Africa, could go a long way in addressing the challenges of nutrition insecurity 

and hunger which are rampant in the region. This study aimed to evaluate the effects 

of organic biostimulants and the mode of application of the biostimulants on the growth 

and biochemical composition of A. caudatus and A. retroflexus. 

 

6.2 Materials and methods 

 

6.2.1 Site of experiment 

 
The experiment was carried out in a greenhouse at the University of KwaZulu-Natal 

(UKZN) Botanical Garden, Pietermaritzburg Campus (290 37.55′ S; 300 24.13′ E), 

South Africa. 

 

6.2.2 Biostimulants and chemicals 

 
These were prepared as described in Chapter 4, Section 4.2.4. The seeds of one 

genotype of A. caudatus and one genotype of A. retroflexus were acquired from 

Poland. 

 

6.2.3 Seed growth assays 

 
This was carried out as described in Chapter 4, Section 4.2.4. 

 

6.2.4 Experimental design and greenhouse conditions 

 
This was carried out as described in Chapter 4, Section 4.2.5. 

 

6.2.5 Determination of photosynthetic pigments  

 
This was carried out as described in Chapter 3, Section 3.6.2. 
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6.3 Statistical analysis 

 

The quantification of all parametric data was done in replicates and results presented 

as mean ± standard error. Mean value comparison was computed using one-way 

analysis of variance (ANOVA) using SPSS for Windows (SPSS, Version 24.0. Armonk, 

New York, USA). Duncan’s multiple range test was used for statistical significance (P 

≤ 0.05) to separate the mean values. General analysis of variance was computed for 

the main effects and their interactions. 

 

6.4 Results 

 

6.4.1 Effect of organic biostimulants and mode of application on Amaranthus caudatus 

 
The effects of biostimulants and mode of application were investigated and the results 

were analysed. Table 6.1 shows the effects of different organic biostimulants and 

mode of application on the growth of A. caudatus. From the results it can be observed 

that generally, the application of biostimulants via drenching, foliar and a combination 

of both drenching and foliar application, did not yield notable effects on some growth 

parameters of A. caudatus, with the exception of a few treatments. When the 

biostimulants were applied via drenching there were no significant effects on leaf 

number, shoot and root fresh weight of the plant but SW and KEL had a significant 

influence on shoot length compared to the control. Significant influences were also 

recorded for SW and KEL for root length compared to control (Table 6.1). Stem 

thickness was significantly influenced by all the biostimulants compared to the control. 

However, KAR1, VCL and ECK reduced the stem thickness compared to GA, the 

positive control. SW and KEL showed similar effects on stem thickness to GA (Table 

6.1). SW and GA were the only treatments with a significant influence on leaf area 

compared to the control. The application of biostimulants via foliar treatment had no 

notable influence on the growth parameters of A. caudatus (Table 6.1) except for all 

the treatments decreasing stem thickness. When the same biostimulants were applied 

via a combination of drenching and foliar application, there was generally no significant 

effect on most of the growth parameters with the exception of VCL, which had a 
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significant influence on root length compared to both controls and other biostimulants 

(Table 6.1). 

The ANOVA table for A. caudatus (Table 6.2), is a summary of the different treatments 

on the amaranth. The results of the ANOVA table indicated that in terms of leaf 

number, the interactions of application (A), concentration (C) and treatment (T) (A x C 

x T) had a significant effect. A similar interaction was obtained for plant height. Only A 

was significantly effective (P < 0.001) for plant fresh weight. Stem thickness of A. 

caudatus was significantly affected by all the variables i.e. A, C, T and their interactions 

(Table 6.2). The same ANOVA table shows that A and T were significantly effective 

for the leaf area. 
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Table 6.1: Effect of different applications of biostimulants on the growth of Amaranthus caudatus at 24 ± 2 °C under greenhouse conditions. The 

plants were harvested after 6 weeks (n=5; rep =3. [Control, C; Smoke-water, SW; Karrikinolide, KAR1
 ; Vermicompost leachate, VCL; Kelpak®, KEL; 

Eckol, ECK; Gibberellic acid, GA]. 

 

Mean value (± SE) of each application in a column with different letter(s) is significantly different according to Duncan’s multiple range test (P < 

0.05). 

Treatment 
 

Leaf  
(no.) 

Shoot length 
(mm) 

Root length 
(mm) 

Shoot fresh weight 
(g) 

Root fresh  
weight (g) 

Stem thickness 
(mm) 

Leaf area  
(cm2) 

Drenching        
Control 14 ± 0.5 a 341 ± 20 c 48 ± 4.9 c 5.62 ± 0.65 ab 0.518 ± 0.044 abc 2.8 ± 0.2 c 66 ± 7.6 c 

SW 1:500 (v/v) 14 ± 0.7 a 514 ± 53 a 70 ± 10.2 ab 7.02 ± 0.94 a 0.691 ± 0.107 a  4.7 ± 0.2 a 108 ± 6.1 a 

KAR1 (10-6 M) 13 ± 0.8 a 345 ± 48 bc  63 ± 8.4 abc 4.65 ± 0.79 b 0.364 ± 0.074 c 3.8 ± 0.1 b 65 ± 8.8 c 

VCL 1:5 (v/v) 13 ± 1.5 a 350 ± 44 bc 47 ± 7.9 c 6.30 ± 0.38 ab 0.445 ± 0.049 bc  3.6 ± 0.2 b 65 ± 11.2 c 

KEL (0.8%) 12 ± 0.9 a 504 ± 54 a 80 ± 12.7 a 7.30 ± 1.25 a 0.617 ± 0.137 ab 4.3 ± 0.3 a 83 ± 11.4 bc 

ECK (10-8 M) 13 ± 0.6 a 422 ± 53 abc 61 ± 6.6 bc 5.30 ± 0.88 ab 0.328 ± 0.061 c 3.4 ± 0.2 b 68 ± 11.0 c 

GA (10-6 M) 14 ± 0.8 a 455 ± 64 ab 61 ± 5.7 bc 6.40 ± 1.54 ab 0.630 ± 0.197 ab 4.7 ± 0.4 a 101 ± 17.3 ab 

Foliar        

Control 15 ± 1.5 a 488 ± 77 a 64 ± 9.6 a 8.46 ± 1.82 a  0.765 ± 0.155 a 5.5 ± 0.2 a 90 ± 16.9 a 

SW 1:500 (v/v) 13 ± 0.6 a 404 ± 41 a 54 ± 3.6 a 5.70 ± 0.94 a 0.453 ± 0.078 ab 3.1 ± 0.3 c 71 ± 9.5 a 

KAR1 (10-6 M) 13 ± 0.6 a 432 ± 50 a 52 ± 7.4 a 5.38 ± 0.83 a 0.353 ± 0.049 b 3.6 ± 0.1 c 81 ± 11.0 a 

VCL 1:5 (v/v) 14 ± 0.7 a 450 ± 42 a 55 ± 6.5 a 4.69 ± 0.81 a 0.312 ± 0.045 b 3.9 ± 0.1 bc 72 ± 8.4 a 

KEL (0.8%) 15 ± 0.7 a 524 ± 42 a 62 ± 4.2 a 7.41 ± 0.93 a  0.545 ± 0.086 ab 4.2 ± 0.2 bc 104 ± 11.3 a 

ECK (10-8 M) 14 ± 0.7 a 408 ± 52 a 50 ± 4.7 a 5.11 ± 1.23 a 0.425 ± 0.134 b  3.9 ± 0.3 bc 85 ± 15.6 a  

GA (10-6 M) 12 ± 0.9 a 436 ± 53 a 65 ± 7.8 a 5.92 ± 1.30 a 0.423 ± 0.124 b 4.5 ± 0.3 b 89 ± 19.8 a 

Drenching and Foliar        

Control 13 ± 0.7 ab 442 ± 33 a 53 ± 3.1 bcd 5.53 ± 0.84 a 0.419 ± 0.090 a 3.6 ± 0.2 a 75 ± 9.5 ab 

SW 1:500 (v/v) 13 ± 0.6 b 340 ± 37 a 57 ± 3.2 bc 3.19 ± 0.53 b 0.201 ± 0.034 b 2.7 ± 0.1 d 51 ± 8.8 b 

KAR1 (10-6 M) 15 ± 0.4 a 419 ± 30 a 44 ± 4.2 cd 4.11 ± 0.47 ab 0.218 ± 0.027 b 2.9 ± 0.1 cd 64 ± 5.8 ab 

VCL 1:5 (v/v) 12 ± 0.5 b 415 ± 41 a 85 ± 8.1 a 5.11 ± 0.89 ab 0.405 ± 0.072 a 3.4 ± 0.1 ab 68 ± 10.8 ab 

KEL (0.8%) 13 ± 0.5 b 432 ± 36 a 60 ± 4.5 b 4.33 ± 0.86 ab 0.270 ± 0.053 ab 2.9 ± 0.1 cd 63 ± 8.0 ab 

ECK (10-8 M) 13 ± 0.8 b 371 ± 42 a 42 ± 5.2 d 4.01 ± 0.62 ab 0.240 ± 0.034 b 2.9 ± 0.1 cd 57 ± 7.7 ab 

GA (10-6 M) 12 ± 0.4 b 415 ± 33 a 54 ± 1.9 bcd 4.97 ± 0.63 ab 0.318 ± 0.038 ab 3.2 ± 0.1 bc 82 ± 6.1 a 
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Table 6.2: Analysis of variance for comparing different application methods for the 

growth of Amaranthus caudatus with different biostimulants (P ˂ 0.05). 

  

Source of variation 
 

Degree 
of 
freedom 

Sum of 
squares 
 

Mean 
squares 
 

Variance 
 
 

F-probability 
 
 

Leaf (no.)      
Application (A) 2  19.480  9.740  1.46     0.235 

Concentration (C) 5  53.164  10.633  1.59     0.164 

Treatment (T) 1  14.760  14.760  2.21     0.139 

A x C x T 12  181.538  15.128  2.26  < 0.010 

Residual 224  1496.806  6.682   

Total 244  1765.750  7.237   

      

Plant height (mm)      

Application (A) 2  93086  46543  2.01     0.136 

Concentration (C) 5  230554  46111  1.99     0.081 

Treatment (T) 1  26554  26554  1.15     0.285 

A x C x T 12  522133  43511  1.88  < 0.038 

Residual 224  5187402  23158   

Total 244  6059729  24835   

      

Plant fresh weight (g)      

Application (A) 2  209.518  104.759  11.06 < 0.001 

Concentration (C) 5  97.601  19.520  2.06    0.071 

Treatment (T) 1  17.703  17.703  1.87    0.173 

A x C x T 12  165.318  13.777  1.46    0.143 

Residual 224  2120.858  9.468   

Total 244  2610.998  10.701   

     

 

 

 

Stem thickness (mm) 

 

     

Application (A) 2  0.490685  0.245343  54.94 < 0.001 

Concentration (C) 5  0.078299  0.015660  3.51 < 0.005 

Treatment (T) 1  0.085810  0.085810  19.21 < 0.001 

A x C x T 12  0.678635  0.056553  12.66 < 0.001 

Residual 224  1.000336  0.004466   

Total 244  2.333765  0.009565   

      

Leaf area (cm2)      

Application (A) 2  16928  8464  6.66 < 0.002 

Concentration (C) 5  7665  1533  1.21    0.307 

Treatment (T) 1  6329  6329  4.98 < 0.027 

A x C x T 12  25642  2137  1.68    0.072 

Residual 224  284498  1270   

Total 244  341063  1398   
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6.4.2 Effect of organic biostimulants and mode of application on chlorophyll and 

carotenoid content of Amaranthus caudatus 

 
The general effects of organic biostimulants and mode of application on photosynthetic 

pigments of A. caudatus are summarised in Table 6.3. 

 

Table 6.3: Effect of organic biostimulants and mode of application on chlorophyll and 
carotenoid content of Amaranthus caudatus at 24 ± 2 °C under greenhouse conditions. 
The plants were harvested after 6 weeks (n = 5; rep = 3) [Control, C; Smoke-water, 
SW; Karrikinolide, KAR1; Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK; 
Gibberellic acid, GA]. 
 

 
Mean value (± SE) of each application in a column with different letter(s) is significantly 

different according to Duncan’s multiple range test (P < 0.05). 

 

Treatment 
 

Chlorophyll a  
µg g-1 FW 

Chlorophyll b  
µg g-1 FW 

Chlorophyll a + b 
µg g-1 FW 

Carotenoid 
µg g-1 FW 

Drenching     

Control 550 ± 0.7 b 143 ± 0.2 b 694 ± 0.4 b 169 ± 0.2 c 

SW 1:500 (v/v) 427 ± 0.1 d 101 ± 0.4 c 529 ± 0.3 d 131 ± 0.1 e 

KAR1 (10-6 M) 452 ± 6.5 c 124 ± 10.9 b 577 ± 17.4 c 148 ± 0.2 d  

KEL 0.8% 553 ± 0.4 b 139 ± 0.3 b 692 ± 0.1 b 182 ± 0.1 b   

ECK (10-8 M) 344 ± 9.0 e 132 ± 14.7 b 476 ± 24.4 e 101 ± 0.2 f 

VCL 1:5 (v/v) 649 ± 0.2 a 258 ± 0.2 a 908 ± 0.2 a 210 ± 0.1 a 

GA (10-6 M) 238 ± 0.1 f 62 ± 0.1 d 300 ± 0.1 f 77 ± 0.1 g 

Foliar     

Control 510 ± 5.0 b 145 ± 8.3 b 656 ± 13.4 b 163 ± 0.2 b 

SW 1:500 (v/v) 425 ± 0.1 d 110 ± 0.1 b 535 ± 0.2 c 146 ± 0.2 c 

KAR1 (10-6 M) 264 ± 0.1 e 65 ± 0.3 c 330 ± 0.2 d 89 ± 0.1 e  

KEL 0.8% 219 ± 0.1 f 58 ± 0.1 c 278 ± 0.2 d 80 ± 0.1 g 

ECK (10-8 M) 581 ± 18.4 a 260 ± 30.6 a 841 ± 49.1 a 164 ± 0.3 a 

VCL 1:5 (v/v) 471 ± 13.3 c 243 ± 20.8 a   714 ± 34.2 b 122 ± 0.2 d 

GA (10-6 M) 237 ± 0.1 f 63 ± 0.2 c 301 ± 0.3 d 87 ± 0.2 f 

Drenching and Foliar     

Control 285 ± 0.9 c 76 ± 0.1 b 361 ± 0.1 b 92 ± 0.2 c 

SW 1:500 (v/v) 177 ± 0.1 f 46 ± 0.3 d 223 ± 0.3 d 55 ± 0.1 g 

KAR1 (10-6 M) 394 ± 0.6 a 94 ± 0.4 a 488 ± 0.2 a 132 ± 0.2 a 

KEL 0.8% 242 ± 0.1 d 57 ± 0.2 c 300 ± 0.2 c 83 ± 0.1 d 

ECK (10-8 M) 162 ± 1.9 g 43 ± 4.1 d 205 ± 6.1 e 61 ± 0.5 f 

VCL 1:5 (v/v) 234 ± 0.9 e 58 ± 2.0 c 292 ± 2.9 c 81 ± 0.1 e 

GA (10-6 M) 291 ± 0.2 b 71 ± 0.1 b 362 ± 0.3 b 105 ± 0.1 b 
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From Table 6.3 it can be observed that organic biostimulants and their mode of 

application did not affect yield much in terms of the chlorophyll and carotenoid content 

of A. caudatus. Under the drenching application, only VCL significantly enhanced the 

amount of Chlorophyll a, Chlorophyll b, Chlorophyll a + b and carotenoids (Table 6.3). 

For foliar application, only ECK significantly influenced the content of chlorophylls and 

carotenoids. The influence of VCL applied via foliar spray was observed for 

Chlorophyll b content (243 µg g-1 FW) which was significantly enhanced compared 

with the control. The other treatments applied via foliar spray lowered the content of 

photosynthetic pigments. Significant increments in both chlorophylls and carotenoid 

content were observed for KAR1 applied via a combination of drenching and foliar 

spray. All other treatments yielded values which were much lower than the control. 

 

6.4.3 Effect of organic biostimulants and mode of application on absolute growth rate 

(AGR) and relative growth rate (RGR) of Amaranthus caudatus 

 
For this investigation, the absolute and relative growth rates of A. caudatus were 

calculated to establish the effects of organic biostimulants and mode of application on 

the plant. Fig. 6.1 shows the effects of organic biostimulants and their mode of 

application on both the absolute growth rate (AGR) and relative growth rate (RGR) of 

A. caudatus. The effects were quite varied as could be seen from the figure. When the 

biostimulants were applied via drenching, there was no significant effect on both AGR 

and RGR in terms of the number of leaves and plant height of A. caudatus as shown 

in Fig. 6.1 A and D. On application of the same biostimulants via foliar spray their 

effects were not significant on the leaf number of the plant (Fig. 6.1 B) but were 

significantly effective for the height of the plant Fig. 6.1 E (P < 0.05). 

On application of the biostimulants via a combination of drenching and foliar spray, 

(Fig. 6.1 C and F), there was a significant effect on AGR for number of leaves in A. 

caudatus (Fig. 6.1 E) (P < 0.05) but there was no effect on the RGR. Considering plant 

height, the biostimulants had a significant effect on both AGR and RGR (P < 0.05) 

(Fig. 6.1 F). 
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Fig. 6.1: Effect of organic biostimulants using different application methods on the 

absolute and relative growth rate (leaf number and plant height) of Amaranthus 

caudatus at 24 ± 2 °C under greenhouse conditions. The plants were harvested after 

6 weeks (n = 5; rep = 3) [Control, C; Smoke-water, SW; Karrikinolide, KAR1; 

Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK; Gibberellic acid, GA]. 

Treatment

C SW KAR VCL KEL ECK GA

0.0

0.2

0.4

0.6

0.8

L
e

a
f 

n
u

m
b

e
r 

(w
e

e
k

-1
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

Absolute growth rate (AGR)

Relative growth rate (RGR)

Drenching

Foliar

Drenching & Foliar

Treatment

C SW KAR VCL KEL ECK GA

0

2

4

6

8

10

12

14

P
la

n
t 

h
e

ig
h

t 
(m

m
 w

e
e

k
-1
)

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14 Drenching

Foliar

Drenching & Foliar

NS

AGR P < 0.05

 P < 0.05

P < 0.05

NS NSA

B

C

D

E

F



  

146 
 

 

6.4.4 Effect of organic biostimulants and mode of application on the growth of 

Amaranthus retroflexus 

 
The effects of organic biostimulants and the mode of application of these biostimulants 

were also investigated on another amaranth species which is frequently consumed 

both as a grain and a leafy vegetable. Table 6.4 shows a summary of the results of 

the effect of biostimulants on various growth parameters of A. retroflexus. In the 

drenching treatment, it was observed that all the biostimulants had a significant 

influence on leaf number compared to the control, with the exception of VCL which 

increased leaf number but not significantly. All the biostimulants had no significant 

influence on shoot length even though the longest increment was recorded for ECK 

(Table 6.4). Root length was negatively affected by the treatments. A similar trend was 

observed for both shoot and root fresh weights with the exception of SW, which 

showed similar effects to the control for shoot fresh weight. The other biostimulants 

applied via drenching significantly reduced both growth parameters (Table 6.4).  

The foliar application of biostimulants on A. retroflexus plants did not generally yield 

notable effects on most growth parameters of the plant, except in a few cases. Most 

treatments did not have much influence on both leaf number and shoot length of the 

plant, however SW significantly increased shoot fresh weight compared to the control 

(Table 6.4). SW, KEL and ECK applied via foliar spray significantly enhanced the fresh 

weight of root compared to the control. Plants under a combination of drenching and 

foliar application treatments were not influenced much by most of the organic 

biostimulants in terms of leaf number and root length (Table 6.4). All the biostimulants 

generally lowered the shoot length of the plant compared to the control when applied 

via a combination of drenching and foliar spray. Similar results were also obtained for 

root fresh weight with SW, KAR1, VCL and ECK treatments. KEL significantly 

influenced the root fresh weight of the plant (Table 6.4). 

The ANOVA (Table 6.5) shows how the different treatments affected growth 

parameters in A. retroflexus. It can be noted that leaf number was significantly 

influenced by concentration (C) (P < 0.024). Plant height was significantly influenced 

by both mode of application (A), (P < 0.001) and concentration (C), (P < 0.046). Plant 

height was also notably influenced by the interaction factors (A x C x T), (P < 0.001).
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Table 6.4: Effect of different applications of biostimulants on the growth of Amaranthus retroflexus at 24 ± 2 °C under 
greenhouse conditions. The plants were harvested after 6 weeks (n = 5; rep = 3. [Control, C; Smoke-water, SW; 
Karrikinolide, KAR1; Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK; Gibberellic acid, GA]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mean value (± SE) of each application in a column with different letter(s) is significantly different according to Duncan’s 
multiple range test (P < 0.05).  

Treatment 
 

Leaf 
(no.) 

Shoot length 
(mm) 

Root length 
(mm) 

Shoot fresh  
weight (g) 

Root fresh  
weight (g) 

Drenching      
Control 3.1 ± 0.3 b 154 ± 10 ab 50 ± 3.6 a 0.999 ± 0.057 a 0.188 ± 0.040 a 

SW 1:500 (v/v) 6.1 ± 0.8 a 161 ± 5 ab 35 ± 2.8 b 0.924 ± 0.112 a 0.064 ± 0.002 b 

KAR1 (10-6 M) 6.3 ± 1.0 a 152 ± 10 ab 30 ± 2.1 b 0.588 ± 0.058 b 0.026 ± 0.003 bc 

VCL 1:5 (v/v) 5.2 ± 0.6 ab 140 ± 13 b 30 ± 2.9 b 0.398 ± 0.071 bc 0.022 ± 0.001 bc 

KEL (0.8%) 6.8 ± 1.1 a 172 ± 9 ab 35 ± 3.1 b 0.263 ± 0.020 c 0.015 ± 0.001 c 

ECK (10-8 M) 6.5 ± 0.9 a 176 ± 8 a 35 ± 3.3 b 0.562 ± 0.136 b 0.025 ± 0.001 bc 

GA (10-6 M) 7.0 ± 0.9 a 164 ± 12 ab 48 ± 4.6 a 0.431 ± 0.107 bc 0.031 ± 0.003 bc 

Foliar      

Control 5.4 ± 0.5 ab 137 ± 7 ab 41 ± 3.0 a 0.699 ± 0.112 b 0.021 ± 0.002 c 

SW 1:500 (v/v) 3.7 ± 0.4 b 110 ± 11 b 34 ± 4.6 a 0.909 ± 0.111 a  0.030 ± 0.004 b 

KAR1 (10-6 M) 6.0 ± 0.5 a 133 ± 7 ab 34 ± 3.3 a 0.814 ± 0.054 ab 0.026 ± 0.001 bc 

VCL 1:5 (v/v) 5.6 ± 0.6 ab 142 ± 6 a 43 ± 2.6 a 0.359 ± 0.075 c 0.024 ± 0.001 bc 

KEL (0.8%) 4.7 ± 0.5 ab 137 ± 9 ab 38 ± 3.6 a 0.535 ± 0.070 bc 0.032 ± 0.002 b 

ECK (10-8 M) 6.3 ± 0.6 ab 137 ± 5 ab 40 ± 3.5 a 0.694 ± 0.108 b 0.055 ± 0.002 a 

GA (10-6 M) 5.5 ± 0.6 ab 154 ± 7 a 42 ± 5.0 a 0.581 ± 0.075 bc 0.052 ± 0.006 a 

Drenching and Foliar      

Control 5.0 ± 0.3 a 157 ± 10 a 53 ± 3.7 a 0.980 ± 0.098 b 0.040 ± 0.003 c 

SW 1:500 (v/v) 5.6 ± 0.6 a 139 ± 7 abc 50 ± 5.0 a 1.177 ± 0.077 ab 0.060 ± 0.006 abc 

KAR1 (10-6 M) 5.1 ± 0.7 a 151 ± 7 ab 47 ± 4.8 a 0.930 ± 0.146 b  0.055 ± 0.008 abc 

VCL 1:5 (v/v) 4.5 ± 0.4 a 122 ± 6 c 43 ± 5.6 a 0.989 ± 0.137 ab 0.044 ± 0.003 bc 

KEL (0.8%) 5.4 ± 05 a 128 ± 8 bc 51 ± 2.5 a 1.431 ± 0.140 ab 0.075 ± 0.005 a 

ECK (10-8 M) 5.0 ± 0.7 a 118 ± 12 bc 46 ± 5.2 a 0.958 ± 0.135 ab 0.054 ± 0.010 abc 

GA (10-6 M) 6.3 ± 0.7 a 138 ± 10 abc 49 ± 4.0 a 1.712 ± 0.314 a 0.062 ± 0.011 ab 
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Table 6.5: Analysis of variance for comparing different application methods for the 

growth of Amaranthus retroflexus with different biostimulants (P ˂ 0.05). 

 

 

 

The fresh weight of the plant was significantly influenced by most of the applications 

except the treatment (T). According to the ANOVA results, the application had a 

significant influence on the fresh weight of A. retroflexus (P < 0.001) and so did the 

concentration (C) (P < 0.001). The interaction of A x C x T also had a significant 

influence on the fresh weight of the plant (P < 0.001). 

The effect of organic biostimulants and mode of application on photosynthetic 

pigments was also investigated and the results are shown in Table 6.6. VCL applied 

via drenching had a significant and positive influence on the amount of both 

chlorophylls and carotenoids in A. retroflexus compared to the control (Table 6.6).  

 

Source of variation 
 

Degree of 
freedom 

Sum of 
squares 

Mean 
squares 

Variance 
 

F-probability 
 

Leaf (no.)      

Application (A) 2  15.941  7.971  1.41    0.246 

Concentration (C) 5  74.843  14.969  2.65 < 0.024 

Treatment (T) 1  4.014  4.014  0.71    0.400 

A x C x T 12  114.579  9.548  1.69    0.070 

Residual 230  1298.750  5.647   

Total 250  1508.127  6.033   

      

Plant height (mm)      

Application (A) 2  18293  9146  8.30 < 0.001 

Concentration (C) 5  12676  2535  2.30 < 0.046 

Treatment (T) 1  4247  4247  3.85    0.051 

A x C x T 12  27640  2303  2.09 < 0.018 

Residual 230  253518  1102   

Total 250  316375  1265   

      

Plant fresh weight (mg)      

Application (A) 2  17.7342  8.8671  55.63 < 0.001 

Concentration (C) 5  4.7008  0.9402  5.90 < 0.001 

Treatment (T) 1  0.3709  0.3709  2.33    0.128 

A x C x T 12  11.8096  0.9841  6.17 < 0.001 

Residual 230  36.6586  0.1594   

Total 250  71.2740  0.2851   
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Table 6.6: Effect of organic biostimulants and mode of application on chlorophyll and 

carotenoid content of Amaranthus retroflexus at 24 ± 2 °C under greenhouse 

conditions. The plants were harvested after 6 weeks (n = 5; rep = 3) [Control, C; 

Smoke-water, SW; Karrikinolide, KAR1; Vermicompost leachate, VCL; Kelpak®, KEL; 

Eckol, ECK; Gibberellic acid, GA]. 

 

 
Mean value (± SE) of each application in a column with different letter(s) is significantly 

different according to Duncan’s multiple range test (P < 0.05).      

 

  

Treatment 
 

Chlorophyll a 
µg g-1 FW 

Chlorophyll b  
µg g-1 FW 

Chlorophyll a + b  
µg g-1 FW 

Carotenoid 
µg g-1 FW 

Drenching     

Control 700 ± 11.8 e 233 ± 18.2 c 933 ± 30.0 e 213 ± 1.2 d 

SW 1:500 (v/v)  758 ± 10.5 d 267 ± 16.8 bc 1026 ± 27.3 d 213 ± 0.3 d 

KAR1 (10-6 M) 1025 ± 9.5 b 357 ± 3.1 a 1383 ± 6.5 b 293 ± 1.0 b 

KEL (0.8%) 826 ±15.8 c 300 ± 23.8 b 1126 ± 39.5 c 231 ± 1.6 c 

ECK (10-8 M) 486 ± 0.4 g 157 ± 0.4 d 643 ± 0.1 g 155 ± 0.1 f 

VCL 1:5 (v/v) 1155 ± 0.5 a 394 ± 0.9 a 1549 ± 1.5 a 334 ± 0.1 a 

GA (10-6 M) 549 ± 0.3 f 173 ± 0.4 d 723 ± 0.2 f 160 ± 0.2 e 

Foliar     

Control 928 ± 0.7 f 325 ± 0.1 ab 1254 ± 0.7 c 252 ± 0.2 d 

SW 1:500 (v/v)  981 ± 0.9 e 301 ± 0.3 b 1282 ± 0.7 c 269 ± 0.2 c  

KAR1 (10-6 M) 1017 ± 0.3 b 307 ± 0.7 b 1324 ± 0.3 b 283 ± 0.2 b 

KEL (0.8%) 1128 ± 0.1 a 355 ± 0.5 a 1484 ± 0.6 a 316 ± 0.1 a  

ECK (10-8 M) 1001 ± 3.6 c 339 ± 30.5 ab 1340 ± 27.1 b 279 ± 9.0 bc 

VCL 1:5 (v/v) 994 ± 0.4 d 320 ± 0.2 ab 1315 ± 0.3 b 285 ± 0.1 b 

GA (10-6 M) 554 ± 0.3 g 190 ± 0.1 c 745 ± 0.2 d 167 ± 0.1 e 

Drenching and Foliar 
F li  

    

Control 817 ± 0.2 g 292 ± 0.9 e 1109 ± 0.7 g 239 ± 0.1 g 

SW 1:500 (v/v)  1101 ± 0.8 a 343 ± 0.6 a 1445 ± 0.2 a 306 ± 0.2 b 

KAR1 (10-6 M) 884 ± 0.5 e 296 ± 0.7 d 1180 ± 0.2 e 268 ± 0.2 c 

KEL (0.8%) 947 ± 0.3 c 296 ± 0.4 d 1243 ± 0.1 d 256 ± 0.1 d 

ECK (10-8 M) 1021 ± 0.9 b 335 ± 0.3 b 1357 ± 0.6 b 309 ± 0.2 a 

VCL 1:5 (v/v) 875 ± 0.3 f 288 ± 0.6 f 1164 ± 0.4 f 250 ± 0.1 f 

GA (10-6 M) 939 ± 0.4 d 313 ± 1.0 c 1252 ± 0.5 c 255 ± 0.3 e 
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The Chlorophyll a content was significantly increased by SW, KAR1, KEL and VCL 

treatments compared to both controls, with VCL yielding the highest amount. Three of 

the biostimulants (KAR1, KEL, and VCL) also significantly increased the Chlorophyll b 

content compared with the control (Table 6.6). The total Chlorophyll (a + b) content 

was significantly influenced by SW, KAR1, KEL and VCL applied via drenching. 

The application of biostimulants via foliar spray resulted in all the biostimulants 

significantly enhancing the Chlorophyll a content in A. retroflexus. KEL had the highest 

yield of Chlorophyll a. The total Chlorophyll (a + b) content was significantly enhanced 

by most of the biostimulants compared to both controls except for SW, which was not 

significantly different from the control (Table 6.6). All biostimulants significantly 

influenced the carotenoid content of A. retroflexus with KEL yielding the highest 

amount compared to both controls (Table 6.6). Further treatment of A. retroflexus with 

biostimulants via a combination of drenching and foliar application resulted in the 

biostimulants significantly enhancing the Chlorophyll a content compared to the 

control. The highest amount of Chlorophyll a was recorded for SW. A similar trend was 

observed with Chlorophyll b although VCL showed a significantly lower amount of 

Chlorophyll b compared with the negative control. The total Chlorophyll (a + b) content 

was significantly enhanced by the biostimulants (SW, KAR1, KEL, ECK), with the 

highest amount being recorded for SW, compared to the control (Table 6.6). All the 

biostimulants applied via a combination of drenching and foliar treatment significantly 

increased the carotenoid content with ECK yielding the highest amount of carotenoids 

(Table 6.6).  

 

6.4.5 Effect of biostimulants and mode of application on the absolute growth rate 

(AGR) and relative growth rate (RGR) of Amaranthus retroflexus 

 
The effects of different organic biostimulants on the AGR and RGR in terms of the 

number of leaves and height of A. retroflexus were varying as can be observed in Fig. 

6.2. Amaranthus retroflexus treated with biostimulants via drenching significantly 

increased AGR and RGR for number of leaves (P < 0.05) as shown in Fig. 6.2 A. 

However, it was not the same for the height of the plant as shown in Fig. 6.2 D, where 

the biostimulants had no significant effect on both AGR and RGR for height of the 

plant. 
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The application of the biostimulants via foliar spray yielded the results as shown in 

Fig. 6.2 B and E, where treatments had no significant influence on both the AGR and 

RGR in terms of the number of leaves and height of A. retroflexus. The application of 

biostimulants via a combination of drenching and foliar application on the plant had 

significant effects on both AGR and RGR (P < 0.05) for leaf number (Fig. 6.2 C) but 

had no significant effects on plant height in terms of AGR and RGR (Fig. 6.2 F). 
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Fig. 6.2: Effect of organic biostimulants and different application methods on the 

absolute and relative growth rate (leaf number and plant height) of Amaranthus 

retroflexus at 24 ± 2 °C under greenhouse conditions. The plants were harvested after 

6 weeks (n = 5; rep = 3) [Control, C; Smoke-water, SW; Karrikinolide, KAR1; 

Vermicompost leachate, VCL; Kelpak®, KEL; Eckol, ECK; Gibberellic acid, GA]. 

Treatment

C SW KAR VCL KEL ECK GA

0.0

0.2

0.4

0.6

0.8

L
e

a
f 

n
u

m
b

e
r 

(w
e

e
k

-1
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

Absolute growth rate (AGR)

Relative growth rate (RGR)

Drenching

Foliar

Drenching & Foliar

Treatment

C SW KAR VCL KEL ECK GA

0

2

4

6

8

10

12

14

P
la

n
t 

h
e

ig
h

t 
(m

m
 w

e
e

k
-1
)

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14 Drenching

Foliar

Drenching & Foliar

NS

 P < 0.05

NS P < 0.05

NS

NS

A

B

C

D

E

F



  

153 
 

 

6.5 Discussion 

 

Eco-friendly strategies are now being sought in modern agriculture which could be 

used in the promotion of growth in crops to increase productivity (XU and GEELEN, 

2018) but at the same time reducing their agricultural carbon footprint (DIAS et al., 

2016; FOLEY et al., 2011). For many years, agriculture has relied on chemical 

fertilisers and pesticides which also pose a threat to the health of mankind and even 

to the environment (CHIAIESE et al., 2018). In addition to this conundrum, the use of 

chemical fertilisers has become more expensive due to their continued depletion as 

the world demand for these resources soars (CHIAIESE et al., 2018). Also, the rising 

concerns raised by mankind against their use are tilting against their continued use in 

agriculture as legal frameworks are getting tighter by the day (COLLA and 

ROUPHAEL, 2015; YAKHIN et al., 2017). 

 

6.5.1 Effect of organic biostimulants and mode of application on growth of Amaranthus 

caudatus  

 
It can be seen that biostimulants and the mode of application also affects the general 

growth of the amaranths, A. caudatus. It was evident that SW and KEL, applied as soil 

drenches, had significant effects on some growth parameters of the amaranths. KEL 

significantly improved shoot and root length (504 ± 54 mm and 80 ± 12.7 mm) 

respectively, shoot fresh weight (7.30 ± 1.25 g) and stem thickness (4.3 ± 0.3 mm). 

ECK and KAR1 enhanced shoot length of A. caudatus. These results are similar to 

those found in ornamental pepper plants (Capsicum annuum L.) treated with a 

biostimulant called Stimplex® as either a soil drench or foliar spray. The application of 

Stimplex®, a commercial biostimulant product, usually used for the promotion of plant 

growth, significantly improved the height of the plants, number of leaves, leaf area, 

shoot fresh and dry weight and root fresh and dry weight when compared with the 

control plants (OZBAY and DEMIRKIRAN, 2019). Stimplex® is a concentrate 

extracted from the seaweed, Ascophyllum nodosum. Seaweeds and their extracts are 

known to stimulate growth and development in plants, improve yield and early 

maturity, improve plant resistance to environmental stresses, improve quality of fruit 
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and also increase fruit setting in horticultural crops grown conventionally or organically 

(CROUCH and VAN STADEN, 1992; NANDWANI et al., 2015). KEL, also a 

concentrate from the seaweed Ecklonia maxima, was used in this investigation and 

produced results similar to those of Stimplex® which emphasizes the notion that 

seaweed extracts stimulate growth and development, as observed in A. caudatus and 

A. retroflexus. Several studies have shown the effects of seaweed extracts on growth 

and yield of many horticultural plants. This is because they contain traces of some 

mineral elements, vitamins, amino acids, auxins, cytokinins, as well as natural 

chelating agents like mannitol, fucoidins and alginic acid. The extracts also stimulate 

plants to produce their natural growth substances such as auxins and cytokinins which 

stimulate both cell division and cell elongation, giving rise to larger root systems which 

improve both plant growth and yield (CROUCH et al., 1992; CROUCH and VAN 

STADEN, 1993b; DU JARDIN, 2015; SPANN and LITTLE, 2010; STIRK et al., 

2003). Seaweed extracts have been reported to have significantly improved growth, 

enhanced yield and quality in grapes (NORRIE, 2006). Similar findings have been 

reported in apple (BASAK, 2008) and olives (CHOULIARAS et al., 2009). According 

to ABDEL-MAWGOUD et al. (2010) watermelon responded in the same manner when 

treated with the same seaweed extracts. SARHAN (2011) reported the same on 

cucumber and MATTNER et al. (2013) on broccoli, FAN et al. (2013a) on spinach 

and NANDWANI et al. (2015) on eggplant. Similar results were reported by WEBER 

et al. (2018) and ZERMEÑO-GONZÁLEZ et al. (2015b) on maize and HERNÁNDEZ-

HERRERA et al. (2014) and ALI et al. (2016) on tomato. We still do not have any 

information from the literature on the effect of biostimulants and application methods 

on A. caudatus. 

Just like seaweed extracts, smoke-derived bioactive compounds have also stimulated 

growth and productivity promotion in many horticultural crops. SW was reported to 

enhance leaf number in spinach (Spinacea oleracea L.) (KULKARNI et al., 2019). The 

results from this research are in agreement with these results. SW significantly 

improved shoot length (514 ± 53 mm), shoot and root fresh weight (7.02 ± 0.94 g and 

0.691 ± 0.107 g) respectively, stem thickness (4.7 ± 0.2 mm) and leaf area (108 ± 6.1 

cm2). Fire and smoke have been utilised in traditional agricultural systems for many 

centuries. Smoke and seaweed extracts are organic biostimulants which are being 

utilised for enhancing growth and productivity in many agricultural crop plants such as 
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spinach and okra (KULKARNI et al., 2011; KULKARNI et al., 2019; PAPENFUS et 

al., 2013). Ornamental pepper (Capsicum annuum L.) treated with Stimplex® showed 

the highest increase in stem diameter (OZBAY and DEMIRKIRAN, 2019). The current 

results on A. caudatus concur with these previous studies on the effects of 

biostimulants on growth of crop plants. In Table 6.1, the stem thickness was 

significantly enhanced by the drenching application of the biostimulants. SW, KAR1 

and KEL increased the shoot length in A. caudatus when applied via drenching. This 

is in agreement with results obtained from ornamental pepper (Capsicum annuum L.) 

treated with Stimplex® (OZBAY and DEMIRKIRAN, 2019). According to ROUSSOS 

et al. (2009) the growth of plants treated with biostimulants, particularly those derived 

from seaweeds, could be attributed to the significant amount of auxins, cytokinins and 

betaines, present in seaweeds which influence cell division during the early stages of 

growth and development in plants.  

Vermicompost leachate applied as a drench, ECK applied as a foliar spray and KAR1 

applied as a combination of drenching and foliar spray significantly increased the 

chlorophyll and carotenoid content of leaves of A. caudatus (Table 6.3). These results 

are also in agreement with those reported by OZBAY and DEMIRKIRAN (2019) in 

ornamental pepper where Stimplex®, a seaweed extract applied either as foliar spray 

or substrate drench was observed to significantly increase the leaf chlorophyll content 

of C. annuum. The above-mentioned biostimulants i.e. VCL, ECK, and KAR1, applied 

either by drenching, foliar spray or a combination of both, significantly increased 

chlorophyll and carotenoid contents in A. caudatus. These findings concur with those 

of previous studies where biostimulants were reported to have significantly enhanced 

the chlorophyll and carotenoid contents in plants (BLUNDEN et al., 1996; FAN et al., 

2013a; SPINELLI et al., 2010). The presence of cytokinin-like effects and betaines 

found in seaweed could be responsible for this effect (WHAPHAM et al., 1993). 

Extracts of A. nodosum were reported to increase the chlorophyll content in leaves of 

tomato, bean, wheat, barley and maize in comparison with control plants (BLUNDEN 

et al., 1996). The increased chlorophyll and carotenoids of the plants could be 

attributed to the presence of betaines present in seaweed extracts (MACKINNON et 

al., 2010). Betaines are not included among the known classical plant hormones but 

are present in seaweeds and their extracts with a higher transcription of betaine 

aldehyde dehydrogenase being reported in A. nodosum (FAN et al., 2013a). Many 
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studies have shown that biostimulants like seaweed extracts generally enhance 

vegetative growth in many horticultural crops (ARTHUR et al., 2003; HERNÁNDEZ-

HERRERA et al., 2014; KUMARI et al., 2011; YILDIZTEKIN et al., 2018; ZODAPE 

et al., 2011). An increase in both root and shoot length and fresh weight was also 

reported by KUMARI et al. (2011) in tomato plants treated with liquid seaweed 

extracts applied via drenching and foliar application. The same was reported for 

spinach where its fresh weight was significantly increased (FAN et al., 2013a). 

Seaweed extracts applied to broccoli notably increased the biomass for both shoots, 

leaf area, and stem diameter of the crop (MATTNER et al., 2013). According to 

ZERMEÑO GONZALEZ et al. (2015a), the application of organic fertilisers via 

drenching and foliar application caused a significant increase in plant height, stem 

diameter and plant dry weight of maize plants. Macro- and microelements, vitamins, 

amino acids, auxins and cytokinins, which are growth-promoting substances, 

constituents of seaweed extracts could be responsible for the beneficial attributes of 

biostimulants, especially those derived from seaweeds like KEL. These substances 

enhance cell metabolism resulting in increased growth in plants treated with these 

biostimulants (CRAIGIE, 2011; CROUCH and VAN STADEN, 1993b; NORRIE and 

KEATHLEY, 2005). According to KHAN et al. (2011), the increase in cytokinin-like 

responses in Arabidopsis thaliana treated with Stimplex® is an indication that seaweed 

extracts have compounds contributing to the cytokinin-like activity. Cytokinins are 

responsible for cell division and proliferation of the cells as well as enhancing sink 

activity of roots culminating in the stimulation of growth (NELSON and VAN STADEN, 

1984). Evidence provided by RAYORATH et al. (2008) suggests that the enhanced 

growth in plants treated with extracts from A. nodosum is due to the ability of the 

extracts to regulate the concentration and translocation of auxins.  

 

6.5.2 Effect of organic biostimulants and mode of application on growth of Amaranthus 

retroflexus 

 
The results from this investigation showed that biostimulants such as SW, KAR1, KEL 

and ECK, applied on A. retroflexus via drenching significantly stimulated some growth 

parameters. SW, KAR1, KEL and ECK enhanced leaf numbers in the plant (Table 6.4). 

When treated with biostimulants via the foliar application, KAR1, VCL and ECK also 

had a very significant effect on different growth parameters of A. retroflexus. KAR1 



  

157 
 

significantly influenced leaf number, (6.0 ± 0.5), VCL increased the length of the shoot, 

(142 ± 6 mm), whilst SW significantly increased the fresh weight of the shoot, (0.909 

± 0.111 g). The influence of ECK was observed on the fresh weight of roots, (0.075 ± 

0.006 g). These results concur with those of VAN STADEN et al. (2006) in which SW 

and KAR1 significantly (P < 0.05) improved seedling growth in maize, okra and bean, 

as well as increasing both root and shoot lengths of all the seedlings when compared 

with the control. The roots of KAR1-treated seedlings of tomato were 10 times longer 

than control roots, whereas those of okra and bean increased three times compared 

to the control (VAN STADEN et al., 2006). From these results, it seems the 

compounds found in smoke could be responsible for the stimulation of either cell 

elongation and/or division. According to BROWN (1993), enhanced vigorous growth 

was observed in young seedlings of Erica sp., a species from the Asteraceae family, 

treated with smoke. Similarly, the same effect was reported on seeds of the fire-climax 

grass, Themeda triandra. Vigorous and healthy growth was observed, though not 

statistically significant (BAXTER and VAN STADEN, 1994). Seedling height was also 

significantly increased in grasses (BLANK and YOUNG, 1998) and in indigenous 

medicinal plants (SPARG et al., 2005) treated with both aerosol smoke and smoke 

water. THOMAS and VAN STADEN (1995) and DREWES et al. (1995) have 

investigated the importance and role of SW using crops such as celery and lettuce 

respectively. MODI (2002), demonstrated that smoke pre-treated seeds gave rise to 

significantly more vigorous seedlings, which were much heavier and taller compared 

to untreated ones making use of indigenous methods of storing maize cobs. In another 

study carried out by TAYLOR and VAN STADEN (1996), it was reported that smoke 

extracts stimulated the formation of roots in Vigna radiata to indicate the significant 

role played by smoke extracts in root formation. Plants grown via drenching application 

of SW (maize, okra and been) exhibited significant improvements in shoot fresh and 

dry weights of these crops compared with the control. KAR1 was applied via drenching 

and significantly enhanced (P < 0.05) the height of maize shoots. This again 

demonstrates that SW and KAR1 promote post-germination plant growth (VAN 

STADEN et al., 2006). Leaf development in maize plants was also significantly 

improved by smoke treatments (VAN STADEN et al., 2006). The growth-promoting 

effects of SW and KAR1 could be explained by studies of VAN STADEN et al. (2000), 

which reported the possible interaction of SW with gibberellins, cytokinins, abscisic 

acid and ethylene in seeds which are both photoblastic and thermo-dormant. Other 
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researchers, such as SENARATNA et al. (1999) and GARDNER et al. (2001), 

suggested that the active principle(s) of the role of smoke in plant growth is similar to 

that of other PGRs.  

KEL and ECK are both derived from seaweed extracts whose growth-promoting 

effects have been explained and supported in the previous section on A. caudatus 

(CRAIGIE, 2011; CROUCH and VAN STADEN, 1993b; NORRIE and KEATHLEY, 

2005) hence they demonstrated similar effects on A. retroflexus as shown in our 

results. 

 

6.5.3 The effect of organic biostimulant and mode of action on chlorophyll and 

carotenoid contents of Amaranthus caudatus and Amaranthus retroflexus 

 
The application of organic biostimulants via drenching resulted in VCL significantly 

increasing both the chlorophyll and carotenoid content of A. caudatus with KEL having 

a significant influence on the carotenoid content (Table 6.3). The foliar application of 

organic biostimulants resulted in two biostimulants, ECK significantly increasing the 

chlorophyll and carotenoid content and VCL significantly enhancing the carotenoid 

content compared to the control in A. caudatus (Table 6.3). Combining both drenching 

and foliar application resulted in KAR1 significantly increasing the chlorophyll and 

carotenoid content of A. caudatus. Organic biostimulants were applied via drenching, 

foliar spray and a combination of both. KAR1 and VCL applied via drenching had 

significant effects on chlorophyll and carotenoid contents. KAR1 significantly improved 

the amount of Chlorophyll b, (357 ± 3.1 µg g-1 FW) and also increased the total 

chlorophyll content, Chlorophyll a + b, (1383 ± 6.5 µg g-1 FW) but not statistically 

significantly. VCL improved, in a significant manner, the chlorophyll and carotenoid 

contents of A. retroflexus, Chlorophyll a (1155 ± 0.5 µg g-1 FW), Chlorophyll b (394 ± 

0.9 µg g-1 FW), Chlorophyll a + b (1549 ± 1.5 µg g-1 FW) and carotenoid (334 ± 0.1 µg 

g-1 FW) (Table 6.6). Results obtained from this investigation are similar to those 

reported by AYYOBI et al. (2013) who obtained tall plants with high amounts of 

Chlorophyll a, Chlorophyll b, total chlorophyll and carotenoids in peppermint plants 

(Mentha piperita L., Lamiaceae) treated with vermicompost and vermiwash. The same 

plants also exhibited the highest total plant fresh weight and leaf fresh weight (AYYOBI 

et al., 2013). Research has shown that the use of vermicompost in agriculture is a 
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very common and widespread practice with numerous benefits to soil and vegetables 

(GUTIÉRREZ-MICELI et al., 2007; OLFATI et al., 2009; SHABANI et al., 2011). 

Several greenhouse and field studies, carried out to investigate the effects of 

vermicompost on cereals and legumes, vegetables and other field crops have 

confirmed its beneficial effects on the growth of plants (AYYOBI et al., 2014; CHAN 

and GRIFFITHS, 1988; KOCHAKINEZHAD et al., 2012). The explanation for these 

positive attributes of vermicompost can be explained by the way it is formed. There 

are certain species of earthworms capable of degrading organic materials into fine 

particles by digesting them in the gizzard (NDEGWA and THOMPSON, 2001) and 

according to evidence by SUTHAR (2010), secretions from earthworms consist of 

plant hormones such as cytokinins, auxin, amino acid, vitamins, and enzymes which 

could have been obtained from the interactions between microbes and earthworms. 

All this information supports the results obtained in this investigation where the organic 

biostimulant VCL increased the chlorophyll and carotene content of A. retroflexus 

significantly.  

In another greenhouse experiment by FAN et al. (2014), humic acid (HA) applied as 

a foliar application significantly increased the rate of photosynthesis, chlorophyll 

content, and shoot and root biomass of chrysanthemum (Chrysanthemum 

morifolium R.). Enhancement of the leaf chlorophyll content could be the bioregulators 

affecting the balance between photorespiration and photosynthesis in plants (ABOU 

EL-YAZIED and MADY, 2011; OLAIYA, 2010). Dry yeast applied to field bean plants 

was also reported to significantly increase the amount of Chlorophyll a, b and total 

chlorophyll (PRUD'HOMME et al., 1992). CRISTIANO et al. (2018) also obtained 

similar results when snapdragon (Antirrhinum majus L.) was treated with an animal-

derived biostimulant, which caused a significant increase in morphological and 

qualitative traits of the plant. The physiological parameters enhanced by biostimulant 

applications include the rate of photosynthesis, rate of transpiration and stomatal 

conductance. This resulted in an elevated carbon assimilation efficiency (CRISTIANO 

et al., 2018). The authors concluded that applying small doses of biostimulants to 

potted snapdragon as a part of a fertilising regime improves the quality of the crop in 

an agriculturally sustainable manner. In another experiment by FAROUK et al. (2012), 

all the biostimulants tested, particularly thiamine, increased the following growth 

parameters in tomato plants; shoot length, number of branches, number of leaves, 
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both shoot fresh and dry weight and leaf area significantly. The same biostimulants, 

increased the N, K, P and chlorophyll as well as total carbohydrate content in the 

shoot. The overall yield of tomato was also higher than that of the control plants 

(FAROUK et al., 2012). 

 

6.6 Concluding remarks 

 

Both amaranths, A. caudatus and A. retroflexus also responded to organic 

biostimulants and mode of application in the same way as A. hybridus. SW, KAR1, 

KEL and ECK applied via drenching significantly improved some growth parameters 

in both A. caudatus and A. retroflexus as could be observed in the results of this 

investigation. The chlorophyll and carotenoid content of A. caudatus was significantly 

enhanced by the drenching application of VCL and KEL respectively. The application 

of biostimulants via foliar application resulted in VCL and ECK significantly enhancing 

the photosynthetic pigments in A. caudatus. The application of KAR1 by a combination 

of both application methods significantly enhanced the chlorophyll and carotenoid 

content of A. caudatus. KAR1 and VCL applied via drenching also significantly 

enhanced the content of photosynthetic pigments in A. retroflexus. Results from this 

investigation validate the potential of organic biostimulants and mode of application 

for the improvement and promotion of the cultivation of Amaranthus species. 
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Chapter 7: General conclusion 
_________________________________________________________ 

 

The main challenge being encountered in attaining the United Nations Sustainable 

Development Goals (UN-SDGs) are; poverty elimination, absence of hunger and good 

health and well-being and maximisation of food production using scant natural 

resources in a sustainable manner (GODFRAY et al., 2010a). The major concern is 

the sustained cultivation of modern crops which require high-inputs against a 

background of limited resources and diminishing quality and availability of the two key 

inputs for agricultural productions i.e. water and land (EBERT, 2014; MLAKAR et al., 

2009b). Climate change is negatively affecting the quality and availability of these 

critical resources and thereby impeding food production (SOARES et al., 2019). 

Future crop productivity is being hampered by climate change effects which include; 

poor crop yields, desertification, deforestation, erosion, water quality degradation and 

water resource depletion. All the aforementioned factors go a long way in 

compromising global food security (ARAUS et al., 2008; BURRITT, 2019; DELGADO 

et al., 2011). The situation has been further aggravated by increases in energy prices 

which resulted in the subsequent increases in the cost of agricultural inputs. To meet 

the global food demand for the ever-rising human population in 2050, food production 

needs to be increased by 70%. The cultivation of low-resource intensive, resilient and 

nutritionally rich crops is vital for both the sustainability of the environment and well-

being of mankind (STALLKNECHT and SCHULZ-SCHAEFFER, 1993). The only 

premise to achieve this is the establishment of more diverse cropping systems. There 

is a need to domesticate the undomesticated wild and neglected crops so as to be 

able to make use of the natural traits they possess of efficiently using natural resources 

like N, P, water and land. According to MASSAWE et al. (2016), neglected and 

underutilised wild plants are a treasure trove for food security. The inclusion of drought 

and heat stress-tolerant crops as an adaptation to climate variability and pressure from 

new pests and diseases promises to curb food and nutrition insecurity (DELGADO et 

al., 2011; MORTON, 2007). These promise the attainment of food security for the 

future since they are of superior nutritional value and adaptable to adverse 

environmental conditions (VAVILOV, 1951). There is a big shift in attention towards 
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underutilised crops as the way forward to increase food production and attain global 

food security and to mitigate the negative effects of climate change. 

Currently there is a shift in consumer demands in favour of organically grown crops 

which are more nutritiously balanced and thus more interest is now being placed on 

species like amaranths. In order to mitigate the effects of climate change, the 

amaranth is a very suitable candidate and needs to be investigated more since they 

promise to be potential crops to grow in marginal agricultural lands and can improve 

arid and semi-arid agricultural systems in southern Africa. Both leaf and seed 

production of Amaranthus could be used to address the issue of food security 

(FOMSGAARD et al., 2011). Amaranthus has a unique nutrient composition and 

inherent tolerance to drought and heat stress, so the promotion of its consumption and 

cultivation could go a long way in addressing the effects of climate change and 

assuring food and nutrition security. The nutritional attributes of the amaranth have 

placed them in high demand by certain groups of consumers like athletes, 

malnourished children and diabetes and coeliac patients. In terms of antioxidant 

capacity, amaranth is ranked among the top five leafy vegetables and contains 

substantial amounts of L-ascorbic acid, β-carotene, polyphenol, anthocyanins and 

lutein (WALTER, 2001). 

The consumption of amaranths such as A. hybridus in southern Africa is generally 

limited by virtue of the fact there is no commercial cultivation of the plant. The leafy 

vegetable is mainly harvested during the rainy season, from the wild, where it grows 

like a weed. There is not much literature about the adoption, incorporation and 

commercial production of the plant in mainstream agriculture.   

This research has been motivated by a sudden interest and attention being given to 

the amaranths globally due to their nutritional and nutraceutical properties. The plant 

is already consumed as a vegetable (Morogo) but on a small scale in rural and peri-

urban areas in several provinces of South Africa. 

The first phase of the investigation was aimed at assessing the general requirements 

for the successful establishment of A. hybridus. From the experiments carried out, 

several conclusions were made with regards to the responses of A. hybridus to 

different factors. On the effects of NPK on A. hybridus, it was clearly concluded that 

the crop can grow well morphologically in the presence of small amounts of P and K 
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but cannot survive when N is lacking. The next stage was to investigate the effects of 

nutrient strength where the crop was treated with, 50%, 25% and 12.5% Hoagland’s 

Nutrient Solution (HNS) and from the results of the investigation it was concluded that 

significant growth was achieved at 50% HNS. A further investigation was carried out 

to establish if the watering frequency has an influence on the growth of A. hybridus. It 

was observed that the more water that is applied to the plant (3x/week) the greater the 

vegetative growth though not very different from (2x/week).  

The effect of light intensity was also investigated via an experiment in which A. 

hybridus seedlings were exposed to different light intensities of 150, 300, 450 and 600 

µmol m-2 s-1. From the results of this investigation, it could be concluded that A. 

hybridus growth is light-dependent, with the most significant growth being achieved at 

100% light intensity. So when growing A. hybridus, it requires maximum exposure to 

light to achieve optimal vegetative growth and this could be explained by, that at a  

maximum light intensity, there will be maximum photosynthesis in the plant resulting 

in large amounts of photosynthates being synthesized, causing better growth. 

Since A. hybridus could not thrive in the absence of N, a further investigation was 

carried out by treating A. hybridus with –N (HNS) + biostimulants and from the results 

obtained it was concluded that A. hybridus can only grow when treated with –N (HNS) 

+ KEL. In this situation it could be concluded that KEL can be used to supplement A. 

hybridus for N in the event that the element is lacking in the soil.  

A. hybridus was treated with 50% HNS + biostimulants at different irrigation 

frequencies namely (once, twice and thrice) a week. The AGR and RGR were 

calculated and the effect on growth was further assessed as shown in Fig. 4.4 and 

Fig 4.5 respectively. Irrigation of the plant once a week did not yield any significant 

effects of 50% HNS + biostimulants in both AGR and RGR on the height of the plants 

but in terms of leaf number by most treatments. 50% HNS + ECK had a notable 

improvement on RGR although most of the biostimulants had no effect on both AGR 

and RGR on the number of leaves of the plant when irrigation was done once a week. 

From these results it can be concluded that irrigating the plant once a week is not 

economically viable as it does not result in optimal growth of A. hybridus.  

When the same treatments were performed twice a week, SW had a significant effect 

on AGR and RGR (height) and on RGR (leaf number). KAR1 had a significant effect 
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on both AGR and RGR (height) and RGR (leaf number). Application of the treatments 

thrice a week resulted in KAR1 having a significant effect on both AGR and RGR for 

both height and number of leaves for A. hybridus. From these results, it was revealed 

that KAR1 + 50% HNS is the biostimulant which could be applied on A. hybridus twice 

or thrice a week so as to enhance both the AGR and RGR for both plant height and 

leaf number. The plant grows taller with more branching resulting in more leaves being 

formed and tender leaves which can harvested for human consumption.  

An evaluation of the effect of irrigation frequency on various growth parameters of A. 

hybridus with 50% HNS is summarised in Table 4.5. When the plants were irrigated 

once a week, 50% HNS + KAR1 had a significantly enhanced fresh weight of roots (89 

± 11 g) and 50% HNS + KEL had significant effects on several growth parameters like, 

shoot and root length (71.9 ± 5.9 and 35 ± 4.1 mm) respectively and also on both shoot 

and root fresh weight (648 ± 73 and 79 ± 12 g) respectively. ECK + 50% HNS also 

had a notable influence on root fresh weight (83 ± 6 g) when irrigated once a week.  

Irrigation of the crop twice a week resulted in SW having significant effects on several 

growth parameters of the plant. Effects were observed on leaf number (7.0 ± 0.4), 

shoot and root length (118 ± 11 and 81.2 ± 9.8 mm) respectively and again on both 

shoot and root fresh weight (1.067 ± 99 and 428 ± 43 g) respectively. Root length (78.6 

± 4.8 mm) was significantly influenced when ECK + 50% HNS was applied to A. 

hybridus twice a week.  

The irrigation of the crop three times a week resulted in SW + 50% HNS influencing 

only the length of the shoot (142.9 ± 11.6 mm). KAR1 + 50% HNS had significant 

effects on both shoot and root length (164.5 ± 14.8 and 129.5 ± 13.2 mm)  respectively 

and on both shoot and root fresh weight (1.191 ± 117 and 467 ± 103 g) respectively. 

Also observed was the significant effect of VCL + 50% HNS on shoot length (147.5 ± 

14.2 mm). The general conclusion made from these results is that the effect of 

irrigation frequency of 50% HNS + biostimulants on A. hybridus is biostimulant 

dependent with KAR1, SW and KEL being the main effective biostimulants.  

The effects of different biostimulants and mode of application on the growth and 

biochemical composition of A. hybridus under greenhouse conditions was 

investigated. The results in Table 4.1, are a summary of the effect of the organic 

biostimulants and the mode of application on the growth of A. hybridus. Results from 
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the growth experiments of A. hybridus treated with biostimulants via different modes 

of application show that SW applied via a soil drench had a significant influence on 

stem thickness and leaf area. Likewise KAR1 applied via drenching also influenced 

significantly shoot length (390 ± 26.4 mm), stem thickness (4.2 ± 0.1 mm), leaf area 

(83.3 ± 10.0 cm2), both shoot and root fresh weight (6.723 ± 0.0031 g and 0.871 ± 

0.008 g) respectively  and shoot dry weight (0.878  ± 0.006 g). The application of KEL 

had a significant influence on the number of leaves (20.7 ± 2.2) in A. hybridus. From 

these results we can conclude that the mode of application influences the growth of 

the amaranth crop since from all the 5 biostimulants only KAR1 significantly influenced 

most growth parameters in A. hybridus, making it the biostimulant of choice when 

treating A. hybridus via drenching application. 

Results from the foliar application of biostimulants did not yield much and only, VCL 

had a significant effect on most growth parameters of A. hybridus. The influence of 

VCL was observed for number of leaves (27.8 ± 2.3), root number (8.9 ± 1.6), both 

shoot and root length (478 ± 24.5 and 56.2 ± 1.9 mm) respectively. It significantly 

increased, leaf area (116 ± 16.5 cm2), both shoot and root fresh weight (10.647 ± 0.026 

and 1.687 ± 0.020 g) respectively and shoot and dry weight (1.338 ± 0.022 and 0.337 

± 0.009 g) respectively compared to the control (Table 4.1). VCL is the only 

biostimulant which can sustain and enhance the growth of A. hybridus when applied 

as a foliar spray as could be observed from the results presented in Table 4.1.  

The application of the same biostimulants via a combination of both methods, 

drenching and foliar spray resulting in VCL having a significant influence on both shoot 

and root length (297 ± 18.7 and 47.1 ± 3.4 mm) respectively. KEL increased 

significantly most growth parameters of A. hybridus. Significant increases were 

observed for both leaf and root number (22.2 ± 3.0 and 6.0 ± 1.7) respectively, both 

shoot and root length (296 ± 31.2 and 45.3 ± 6.2 mm) respectively, stem thickness 

(3.9 ± 0.04 mm), leaf area (86.9 ± 15.0 cm2), both shoot and root fresh weight (4.893 

± 0.009 and 1.052 ± 0.010 g) respectively and finally on both shoot dry weight (0.882 

± 0.011 g) and root dry weight (0.320 ± 0.013 g) (Table 4.1). It was concluded that 

KEL applied via a combination drenching/foliar spray had a significant influence on the 

growth of A. hybridus. 
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In another set of experiments, A. hybridus was treated with the same 5 biostimulants 

via foliar spray and after 6 weeks the plants were harvested and biochemical tests 

were conducted to establish the chlorophyll, protein and carbohydrate content of the 

plant. The results are shown in Table 4.2. From these results it was observed that 

KAR1, VCL and KEL significantly influenced the biochemical composition of A. 

hybridus. KAR1 significantly increased the protein content (34.8 ± 4.13 µg-1 FW) of the 

crop compared to both the negative and positive controls. The influence of VCL was 

observed again on the amount of proteins in the amaranth plant (39.6 ± 1.85 µg-1 FW). 

KEL recorded significant influences on Chlorophyll a (641 ± 0.71 µg-1 FW), Chlorophyll 

b (172 ± 0.22 µg-1 FW), total Chlorophyll (a + b) (813 ± 0.61 µg-1 FW), carotenoid 

content (197 ± 0.10 µg-1 FW) and proteins (33.3 ± 0.92 µg-1 FW). In terms of enhancing 

the biochemical composition of A. hybridus via foliar application, KEL is the most 

appropriate biostimulant to use. 

Table 4.4 is a summary of the effects of organic biostimulants on A. hybridus mineral 

composition. From the results it could be observed that some of the biostimulants used 

in this investigation did not have any significant effects on nutrient levels of the crop 

except for KEL, ECK and VCL. From these 3 biostimulants the greatest effect on 

nutrient levels was realised with KEL which significantly improved the levels of N, Ca, 

Mg, K, Na, Zn, Cu and P. KEL is the ideal biostimulant for enhancing the mineral 

composition of A. hybridus and it is very important especially for nutrition security since 

it boosts the levels of nutrients like zinc which are normally lacking in the diet.  

Another investigation was carried out to evaluate the effect of organic biostimulants 

and the mode of application on the antioxidant activity and phytochemical composition 

of A. hybridus. From the results of the investigation it was concluded that, generally, 

treatments and mode of application did not influence the antioxidant activity and 

phytochemical composition of both methanolic and water extracts of A. hybridus. Only 

SW (Fig. 4.10), applied via drenching had a significant influence on the amount of 

condensed tannins in the leafy vegetable. In some instances, antioxidant activity and 

phytochemical composition significantly decreased upon application of biostimulants 

(Fig. 4.9). 

In another experiment, the effect of the interaction of microbes and biostimulants on 

growth and biochemical composition of A. hybridus was investigated. Effects of KEL 



  

167 
 

alone, BL and PF alone and combinations of KEL + BL and KEL + PF on the growth 

and biochemical composition of A. hybridus were investigated and Fig. 5.1 shows the 

effects of microbes and biostimulants on the crop. The results show that KEL had a 

significant effect on most growth parameters (Fig. 5.1 D and E; Fig. 5.1 B and F). 

Also, the significant effects were recorded on leaf number (Fig. 5.1 A), shoot fresh 

weight (Fig. 5.1 D) both shoot and root length (Fig. 5.1 B and C) and in A. hybridus 

treated with KEL + PF. In the same manner notable effects were recorded for shoot 

length (Fig. 5.1 B) and leaf area (Fig. 5.1 F) when the plant was treated with KEL + 

BL. These results illustrate the synergistic activities of microbes and biostimulants on 

A. hybridus especially when the microbes alone had no effect but were only effective 

when they were in combination with the biostimulant KEL. These positive synergistic 

interactions of microbes and biostimulants could be harnessed so as to improve the 

growth and productivity of A. hybridus.  

In terms of the biochemical composition, KEL + BL significantly influenced the 

carbohydrate (267 ± 30 µg g-1 FW) content more than the control, KEL (204 ± 26 µg g-

1 FW) alone and BL (131 ± 14 µg g-1 FW) alone. This again is another demonstration 

of synergistic interactions between microbe and biostimulant and this could also be 

utilised to improve productivity in amaranths.    

These synergistic and mutualistic interactions between PGPR and biostimulants 

promise to be a worthwhile strategy in modern agriculture. Microorganisms and 

biostimulants such as KEL can work in a complementary and interactive manner to 

improve the growth, biochemical composition and mineral content of the highly 

nutritious but neglected leafy vegetable, A. hybridus. KEL improved the growth and 

photosynthetic pigment content. The size and greenness of the leaves are important 

parameters for most leafy vegetables including A. hybridus. The mineral content of the 

vegetable was increased for most minerals when treated with PF and this is of vital 

importance, as this goes a long way in addressing the issues of hidden hunger. 

Treatment with the two bacterial strains and KEL caused a decrease in SOD, 

suggesting stress reduction in A. hybridus. This was a synergistic effect with 

significantly lower SOD levels in the plants where the combination treatments were 

applied. It can be concluded that microbes and biostimulants could be used in 

combination as an eco-friendly approach to improve the production and mineral 

content of traditional leafy vegetables such as A. hybridus.  
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7.1 Concluding remarks 

 

Any successful production and adoption of A. hybridus into mainstream agriculture 

should take into cognisance most of the aspects investigated in this research. Factors 

such as the type of biostimulant being used and how it is applied on the plant are 

important since it was observed from the experiments that the plant responds in 

different ways depending on the nature of the biostimulant and part of the plant to 

which it is applied. The plant responded in terms of the general growth parameters, 

photosynthetic pigments (chlorophylls and carotenoids) and carbohydrates. Also the 

other two species of amaranths, A. caudatus and A. retroflexus responded in the same 

manner in terms of the general growth parameters, when treated with biostimulants 

applied via the three modes of applications. The drenching application of KAR1 and 

the foliar application of VCL on A. hybridus significantly influenced most of the growth 

parameters in the plant. The application of biostimulants on A. hybridus via a 

combination of drenching and foliar spray resulted in KEL significantly increasing the 

most growth parameters of the plant. In terms of light requirements, results from the 

same research show that A. hybridus grows well at maximum light intensity since that 

is where there is maximum photosynthesis leading to the production of more 

photosynthates for the enhanced plant growth. Results from this investigation show 

that generally biostimulant treatments and mode of application did not have any 

positive influence on antioxidant activity and phytochemical composition of A. hybridus 

with some of the treatments decreasing both antioxidant activity and phytochemical 

composition. It was also observed in this research that combining microorganisms and 

biostimulants is an eco-friendly approach in improving the growth and mineral content 

of A. hybridus. From these results it can be concluded that the promotion, 

improvement and subsequent adoption of A. hybridus into the mainstream or 

commercial agriculture can be achieved via the use of organic biostimulants taking 

cognisance of the role they play in the plant and how best the biostimulant can be 

applied.  
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