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Abstract

Over the years, Single biometrics has been the most preferred authentication method

used in enhancing security of real-world applications over traditional methods. This

is because a biometric trait cannot be stolen or forgotten by the user. Regardless

of the advantages that this method presents, it also has its limitations. The per-

formance of single biometric systems is usually affected by the environment, user

mode as well as physiological defects. Given these forseen defects, multi-biometric

systems have been introduced in order to reduce the effect by combining more than

one modality for recognition. When considered as a classification problem, the per-

formance of both multi-biometric and single biometric systems are impaired by the

large class imbalance between the genuine and impostor scores obtained from multi-

ple matchers. This is because, the number of genuine scores available in the training

data is proportional to number of users in the database, while the number of im-

postor scores is proportional to the square of the number of users in the database.

Resultantly therefore, classification is highly likely to favor the impostor class as the

genuine scores are under-represented in the training data.

This thesis builds on the aforementioned gaps and focuses on fusion schemes inorder

to solve issues encountered with single biometrics and the large class imbalance

problem in biometrics. This research priviledged face and iris modalities because

face templates are non-intrusive during acquisition and iris templates are distinct,

accurate, stable over time and located at the face region. This means that the cost

acquisition is reduced as a single sensor can be used for this purpose.

Inorder to achieve the research objective, local and global feature extraction algo-

rithms were employed on both face and iris images to extract feature vectors. Local

Binary patterns, sub-pattern Principal Component Analysis and modular Principal

Component Analysis were used as local methods, Principal Component Analysis

and Linear Discriminant Analysis were used as global methods. Experimental re-

sults obtained for individual face and iris sub-system shows that local methods

perform better on face images, while global methods perform better for iris images.

To show the effectiveness of multi-biometric systems in this research, a hybrid fu-

sion scheme that combines three classifiers based on feature and score level with

a decision level fusion rule is proposed. The first two classifiers were built by per-

forming fusion at feature level with all feature extraction algorithms, while the third

classifier was built by performing fusion at score level using a local and global fea-
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ture extraction algorithm. Experimental outcome revealed that the hybrid fusion

scheme outperformed its unimodal systems and comparable to other fusion schemes

in literature, attaining recognition accuracy of 96.34% and EER of 1.7%.

Furthermore, to proffer solutions to the issue of large class imbalance in biometric

data, a serial fusion methodology using Binary Particle Swarm Optimization (BPSO)

and Incremental Relevance Vector Machines (iRVM) is proposed. Face recognition

is first performed using optimal features obtained from BPSO algorithm, then iris

images corresponding to top-k matchers of the face images are selected and used to

generate the genuine and impostor scores for classification with iRVM. The serial

fusion scheme is used to lower the number of impostor scores, thereby lessening

the effect of large class imbalance on the biometric data, While iRVM provides the

capability to train data in batches. The results obtained shows that the proposed

scheme produced improved performance over its unimodal systems with recognition

accuracy of 99.06% and EER of 0.47%.



Contents

Declaration i

Declaration 1: Plagiarism ii

Dedication iii

Acknowledgements iv

Abstract v

Abbreviations xi

List of Included Articles xiii

List of Figures xiii

List of Tables xvii

1 Introduction and background 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure of Biometric Systems . . . . . . . . . . . . . . . . . . . . . 2

1.3 Multi-biometric systems . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Performance of biometric systems . . . . . . . . . . . . . . . . . . . . 8

1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2 Information Fusion in Multi-Biometric Systems 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Fusion in parallel mode . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Score-level fusion . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Feature-level fusion . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Sensor-level fusion . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 Rank-level fusion . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.5 Decision-level fusion . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.6 Hybrid fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.7 Nature Inspired algorithm based fusion . . . . . . . . . . . . . 41

2.3 Fusion in serial mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Feature Extraction Algorithms 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Global methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . 49

3.2.2 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . 50

3.3 Local methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Local Binary Pattern Histogram . . . . . . . . . . . . . . . . . 52

3.3.2 sub-pattern PCA (spPCA) . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Modular PCA (mPCA) . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Iris recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



3.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Face datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.2 Iris datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Hybrid Fusion at Feature, Score and Decision level 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Proposed hybrid fusion scheme . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Feature level fusion of face and iris vectors . . . . . . . . . . . 67

4.2.2 Score level fusion of local and global methods . . . . . . . . . 68

4.2.3 Decision level fusion . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Serial fusion using BPSO and iRVM 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Proposed serial fusion scheme . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Feature selection with BPSO . . . . . . . . . . . . . . . . . . . 81

5.2.2 Relevance Vector Machines (RVM) . . . . . . . . . . . . . . . 82

5.2.3 Incremental Relevance Vector Machines (iRVM) . . . . . . . . 84

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Summary, Conclusions and Future work 93



6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Machine learning approach . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Hybrid fusion approach . . . . . . . . . . . . . . . . . . . . . . 95

6.3.3 Fusion mode approach . . . . . . . . . . . . . . . . . . . . . . 95

References 105



Abbreviations

ACO Ant Colony Optimization

ANN Artificial Neutral Network

ATM Automated Teller Machine

BLPOC Band Limited Phase Only Correlation

BPSO Binary Particle Swarm Optimization

BSA Back-tracking Search Algorithm

CCD Centroid Contour Distance

CGJD Complex Gabor Jet Descriptor

DCT Discrete Cosine Transform

2DLDA Dimensional Linear Discriminant Analysis

DNA DeoxyriboNucleic Acid

2DPCA Dimensional Principal Component Analysis

DTCWT Dual Tree Complex Wavelet Transform

DWT Discrete Wavelet Transform

EA Evolutionary Algorithm

EER Equal Error Rate

FAR False Acceptance Rate

FES Fuzzy Expert Systems

FLD Fisher Linear Discriminant

FRR False Rejection Rate

GA Genetic Algorithm

GAR Genuine Acceptance Rate

GMM Gaussian Mixture Model

xi



GOH Gradient Oriented Histogram

HTER Half Total Error Rate

ID Identification

iGRVM increamental Granular Relevance Vector Machines

IOM Iris On the Move

IR Imbalance Ratio

iRVM increamental Relevance Vector Machines

KNN K-Nearest Neighbor

LDA Linear Discriminant Analysis

LBPH Local Binary Pattern Histogram

mPCA modular Principal Component Analysis

NI Nature Insipered

n gs number of genuine scores

n ims number of imposter scores

NNC Nearest Neighbor Classifier

PCA Principal Component Analysis

PDM Propability Deformation Model

ROC Receiver Operating Characteristic

ROI Region Of Interest

RR Recognition Rate

RVM Relevance Vector Machines

SIFT Scale Invariant Feature Transformation

spPCA subpattern Principal Component Analysis

SVM Support Vector Machines

TER Total Error Rate



List of Included Articles

Articles in Peer-reviewed Conference Proceedings

1. V. Azom; A.O. Adewumi; J.R. Tapamo, ”Face and Iris biometrics person iden-

tification using hybrid fusion at feature and score-level,” in Pattern Recogni-

tion Association of South Africa and Robotics and Mechatronics International

Conference (PRASA-RobMech), pp.207-212, 26-27 Nov. 2015

doi: 10.1109/RoboMech.2015.7359524 URL: http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=7359524&isnumber=7359478

Articles under review for peer review journal

1. V. Azom; A.O. Adewumi; J.R. Tapamo, Jules-Raymond, ”Face and Iris bio-

metrics person identification using hybrid fusion at feature and score-level”,

submited to Journal of Computer vision and image understanding, Elsevier.

2. V. Azom; A.O. Adewumi; J.R. Tapamo, ”Score fusion of face and iris bio-

metrics : A case of a serial fusion using BPSO and iRVM”, submitted to

Transactions on Pattern Analysis and Machine Intelligence, IEEE.

xiii

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7359524&isnumber=7359478
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7359524&isnumber=7359478


List of Figures

1.1 Structure of a biometric system . . . . . . . . . . . . . . . . . . . . . 3

1.2 Operating modes for biometric systems (Jain et al., 2007), Key:

Xf andXT represent the feature vectors of the probe image and stored

templates and SN represents matching score set . . . . . . . . . . . . 4

1.3 Types of Multi-biometric systems (Jain et al., 2004) . . . . . . . . . . 8

1.4 Genuine and Imposter score distribution (Jain et al., 2005) . . . . . . 9

1.5 Score distribution of genuine and imposter scores from a face and iris

matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Categories of information fusion for multi-biometrics systems in par-

allel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Parallel fusion architecture . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Types of fusion in Multi-biometric systems, Key: S-Level = Sensor-

level fusion, F-Level = Feature level fusion, M-Level = Matching

score fusion, D-Level = Decision level fusion; FU = Fusion, MM =

Matching Module, DM = Decision Module, A/R = Accept/Reject . . 17

2.4 An example of DWT multi-sensor fusion for a face and palm-print

image (Kisku et al., 2010) . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Feature-score fusion hybrid . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Score-decision fusion hybrid . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Feature-decision fusion hybrid . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Architecture for fusion in serial mode . . . . . . . . . . . . . . . . . . 45

3.1 Mean image of the training set . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Sample of eigenfaces computed from training set . . . . . . . . . . . . 50

3.3 Sample of fisher faces computed from training set . . . . . . . . . . . 51

3.4 Basic LBPH operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiv



3.5 Extended LBP (8,2) oeprator . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Images divided in sub-patterns of spPCA . . . . . . . . . . . . . . . . 53

3.7 Dividing an image into 3× 3 block for mPCA . . . . . . . . . . . . . 54

3.8 Iris image captured with noise due specular light . . . . . . . . . . . . 56

3.9 Binary iris mask (a) and Segmented iris image (b) . . . . . . . . . . . 57

3.10 Iris normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Computing coordinate points (Xr
i , Y

r
i ) . . . . . . . . . . . . . . . . . 58

3.12 Mapping of iris image to rectangular rubber sheet . . . . . . . . . . . 59

3.13 ROC curves for face uni-modal system . . . . . . . . . . . . . . . . . 61

3.14 ROC curves for iris uni-modal system . . . . . . . . . . . . . . . . . . 62

3.15 Plot of FRR and FAR against different system operating points for

LBPH face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.16 Plot of FRR and FAR against different system operating points for

LDA Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Proposed hybrid fusion scheme, Key: FU = Feature level fusion, SU

= Score level fusion, DU = Decision level fusion . . . . . . . . . . . . 67

4.2 Feature fusion of face and iris vectors, Key: P,L,LB,SP,M represent

features from PCA, LDA, LBP, spPCA and mPCA respectively . . . 68

4.3 Score level fusion LBPH face and LDA iris . . . . . . . . . . . . . . . 69

4.4 Plot of FRR and FAR against different system operating points Face-

FV vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Plot of FRR and FAR against different system operating points Iris-

FV vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Plot of FRR and FAR against different system operating points pro-

posed hybrid fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 ROC curves for Multi-biometric systems . . . . . . . . . . . . . . . . 75

4.8 ROC curves comparing the proposed scheme with other fusion schemes 76



5.1 A serial fusion architecture for face and iris biometrics . . . . . . . . 80

5.2 An example PSO bit particle . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Block diagram showing training process for iRVM, RV is Relevance

Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 ROC for different k top-matchers of the proposed system . . . . . . . 89

5.5 Comparsion of iRVM with SVM classifiers . . . . . . . . . . . . . . . 90



List of Tables

1.1 Comparsion of different modalities based on their characteristics (Ra-

madan et al., 2015), Key: H:High,M:Medium,L:Low . . . . . . . . . . 6

2.1 Score level fusion methods in biometrics . . . . . . . . . . . . . . . . 27

2.2 Feature level fusion methods in biometrics . . . . . . . . . . . . . . . 31

2.3 Sensor level fusion methods in biometrics . . . . . . . . . . . . . . . . 33

2.4 Rank level fusion methods in biometrics . . . . . . . . . . . . . . . . 35

2.5 Decision level fusion methods in biometrics . . . . . . . . . . . . . . . 38

2.6 Hybrid fusion methods in biometrics . . . . . . . . . . . . . . . . . . 41

2.7 NI algorithms based fusion methods in biometrics . . . . . . . . . . . 44

2.8 Summary of serial fusion in biometrics . . . . . . . . . . . . . . . . . 46

3.1 Recognition rates for uni-modal systems. . . . . . . . . . . . . . . . . 60

3.2 Error rates for uni-modal systems. . . . . . . . . . . . . . . . . . . . . 60

4.1 Recognition rates for multi-modal systems. . . . . . . . . . . . . . . . 70

4.2 Recognition rates for multi-modal systems. . . . . . . . . . . . . . . . 70

4.3 Comparison of recognition rates for state-of-the-art fusion schemes

with proposed scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Recognition Rate for proposed hybrid fusion and other methods over

10 runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Result of statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Distribution genuine and imposter scores in parallel mode . . . . . . . 87

5.2 Distribution genuine and imposter scores in serial mode . . . . . . . . 87

5.3 Training and test set for face and iris scores . . . . . . . . . . . . . . 88

5.4 Recognition rate for all k top-matchers . . . . . . . . . . . . . . . . . 88

xvii



5.5 Time taken for different learning classifiers . . . . . . . . . . . . . . . 89

5.6 Equal Error Rate for proposed hybrid fusion and other methods over

10 runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Result of statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 91



Chapter 1

Introduction and background

1.1 Introduction

Personal identification refers to a process of associating a set of attributes to an

individual for recognition purposes. In designing a system that manages the identity

of an individual population, care needs to be taken in defining and creating a set

of specific attributes that are distinct to each individual. Therefore, the ways of

identifying a person can be divided into three categories (Nandakumar, 2008):

• What you know for example passords, identity number.

• What you have for example token key and ID card.

• Who you are that is face, voice and finger-print patterns.

While both the first and second category are widely used in most security applica-

tions, they still fall short when it comes to ”high risk” security applications. This

is because passwords, token keys and identification numbers can be stolen or even

forgotten by a user. This limitation has prompted experts to shift their preference

towards the third category which uses physical attributes of a person for authenti-

cation purposes. This is because a person’s physical trait cannot be easily stolen

or misplaced by the user. It is upon this premise that studies on biometric systems

have been pursued.

Biometrics is the measurement of using human physiological and behavioural traits

such as face, Iris, retina, finger-print, palm-print, hand-geometry, DNA, signature,

odour, gait and handwriting amongst others for authentication purposes (Jain et al.,

2007). A single biometric system stores distinct features of each individual which

differentiates a genuine user from an impostor. With this system, one’s physical

presence is a pre-requisite before authentication process can be completed. These

characteristics make single biometrics preferable to traditional methods such as pass-

words and token keys because hardly can a person’s physical attributes be misplaced,

stolen or forgotten.

1



Section 1.2. Structure of Biometric Systems Page 2

In practical applications, biometric systems have been widely used for the following

purposes (Griaule, 2014):

• Forensic applications: used for collecting evidence such as fingerprints in crime

scene for identification of criminals. In surveillance, it is used for monitoring

very busy places for any abnormal and suspicious behaviour.

• Government applications: digital biometric information can be included in

identification documents issued by the government which include a driver’s

license, voter’s Identity card and national identity card.

• Commercial applications: financial services represent the high risk areas, there-

fore biometric information can be used in ATMs, online banking systems and

mobile banking systems to provide more security to customer assets.

• Immigration: biometrics is used to identify individuals for travel documents

like border crossing and international passports.

1.2 Structure of Biometric Systems

Every biometric system requires a physical attribute of an individual, which it pre-

processes and then extracts a set of features known as templates that are reserved in

a database during the enrollment phase. In the authentication phase, a user presents

his/her claimed identity known as the probe, which is compared with templates in

the database to determine if a user is genuine or an impostor. In the following list

below modules that make a biometric system are described as shown in Figure 1.1.

• Acquisition module

This module is made up of sensors that capture the image of the biometric

trait. This module plays a crucial role in terms of system performance, as

capturing images with devices of poor quality or under poor environmental

conditions will affect the accuracy of the system.

• Pre-processing module

In this module, images captured are either enhanced or the region of interest is

extracted through, a process known as segmentation for example performing

histogram equalization on face image to improve its contrast and extracting a

iris and pupil region in an eye image (Jain et al., 2007).
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Figure 1.1: Structure of a biometric system

• Feature extraction module

After the image has been pre-processed, significant details associated to the

image are extracted either in form of one-dimension feature vector or set of

key-points descriptors that best describe the image. These features are stored

as templates in the biometric database as they are expected to be distinct and

invariant to the probe image.

• Matching module

In this module, the difference between the features obtained from the probe

and stored templates is conducted to find the best match amongst the stored

templates that is most similar the probe image.

There are two states in which a biometric system can operate namely; verification

and identification state as displayed in Figure 1.2 (Ramadan et al., 2015). With ver-

fication mode, a user’s probe image is matched with only his/her template reserved

in the biometric database and if the match score is less than the system threshold,

the user’s request is accepted. Otherwise, it is declined. In the identification state,

the user’s identity is found by matching the his/her probe image against all tem-

plates in the database. The template with the lowest match score that is less than

the specified system threshold is termed as the claimed identity.
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Figure 1.2: Operating modes for biometric systems (Jain et al., 2007),
Key: Xf and XT represent the feature vectors of the probe image and stored tem-
plates and SN represents matching score set
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1.3 Multi-biometric systems

A biometric system that uses a single biological or physical trait for authentication

is known as a unimodal system. In the design of unimodal system, the choice of

biological traits is often determined based on the following criteria (Mehrotra, 2014):

• universality : every person has a biological trait that can be enrolled into the

system.

• permanence : the trait does vary with aging.

• uniqueness : the biological trait is distinct for every individual.

• collectability : the ease of acquiring the individual trait.

• performance : refers to the accuracy achieved by the system.

• acceptability : preference in the user community.

In Table 1.1 shows the comparison of different modalities based on six characteristics

explained above. A critical look at this table shows that, if a face biometric system is

to be designed, the performance of the system will be affected by inter-class variance

as not all facial templates will be distinct, this can occur when facial templates of

identical twins or related individuals are captured. For example father and son,

are captured during enrollment (Jain et al., 2004). More so, the shape and texture

of the human face changes as one ages, making the permanence for this modality

to be low. Similarly, considering the design of a fingerprint biometric system, the

enrollment process can be affected by the problem of non-universality in cases where

the fingerprint patterns cannot be captured for example elderly people have faded

or damaged fingerprint samples that prevent the use of biometric systems. This is

also true with other individuals, like manual labourers whose fingerprints are rarely

usable (Nandakumar, 2008). In general, from Table 1.1 none of the single biometric

systems are completely able to meet real world requirements, however when one or

more of these templates are combined, they can be able to compliment the short-

comings of one another.

Therefore, a system that combines information presented by multiple sensors, algo-

rithms, samples and traits is known as a multi-biometric system (Ramadan et al.,

2015). This can be achieved by fusing multiple biometric templates of the same
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Table 1.1: Comparsion of different modalities based on their characteristics (Ra-
madan et al., 2015), Key: H:High,M:Medium,L:Low
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Face H L M H L H
Finger-print M H H M H H

Hand-geometry M M M H M M
Hand-vein M M M M M H

Iris H H H M H L
Voice-print M L L M L H

DNA H H H L H L
Gait M L L H L H

indivdual, or multiple samples of the same biometric, which can improve the perfor-

mance of the system and prevent circumvention. Multi-biometric systems offer the

following advantages as compared to single biometric systems (Jain et al., 2007):

• Multi-biometric systems provide solution to the issue of non-universality expe-

rienced in single biometric systems as it creates a certain degree of flexibility,

that allows the user to be authenticated with another biometric, if one is not

available. As an example, if a fingerprint pattern of a user cannot be captured,

the iris or another biometric can be used to authenticate the user.

• Multi-biometric systems reduce circumvention from intruders in the sense that

more than one biometric trait will have to be spoofed simultaneously before the

system can be compromised. This capability makes multi-biometric systems

non-susceptible to spoof attacks as compared to single biometric systems.

• Multi-biometric systems tackle the noise present in a biometric image. They

provide the capability to combine a noisy image with the less noisy one, thereby

enhancing the performance of the system. For example consider a face-iris

multi-modal system, often times the image of the face biometric could be

affected by poor illumination or bad camera quality. Combining the noisy

face image with more accurate biometric such as the iris will enhance system

performance.
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• Multi-biometric systems allow indexing of large databases in order to reduce

the search time. For example, the face images can be used to find the first

top matchers which can then be used to make the final decision against an iris

database.

Multi-biometric systems depend on templates obtained from multiple single biomet-

ric systems. Based on the type of biometric, multi-biometric systems can be divided

into six classes namely:

• Multi-sensor system

This system makes use of more than one sensor to capture same biometric

trait of an individual. For example, different positions of a 2D face image can

be captured and then combined into a 3D model for recognition (Kisku et al.,

2010).

• Multi-algorithm system

In this system, more than one feature extraction algorithms are employed to

obtain the salient information from the same biometric of an individual. For

example using minutiae 1 and texture based feature extraction algorithm for

finger-print recognition (Jain et al., 2007).

• Multi-instance system

This system combines different sample of the same biometric for example com-

bining the right and left iris samples of an individual for recognition or com-

bining the left and right thumb prints for recognition. This is often referred

as multi-unit system in literature (Mehrotra et al., 2012).

• Multi-sample

A system that captures multiple samples of the same biometric of an individ-

ual. For example capturing different facial expressions and positions for a face

recognition system (Jain et al., 2007).

• Multi-modal

This combines biometric evidences of one or more biological trait of an indi-

vidual, for example combining face and iris templates of the same individual,

combining fingerprint and iris templates (Azom et al., 2015).

1minutiae refers to significant features that describe a fingerprint image for example the ridge
patterns of a fingerprint image
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Figure 1.3: Types of Multi-biometric systems (Jain et al., 2004)

• Hybrid system The hybrid system incorporates more than one of the five

systems described above. That is a system can both be multi-algorithmic and

multi-modal at the same time (Jain et al., 2007; Azom et al., 2015).

Figure 1.3 shows a diagrammatic representation of the different multi-biometric

systems just described above.

1.4 Performance of biometric systems

Consider a biometric system made up of N users with m images captured equally

for each enrolled user In where n = 1, 2, · · · , N . if T = {T1, T2, · · · , Ti} define

the operating thresholds of the system and let X = {X1, X2, · · · , XQ} represent

the feature sets stored in the database. Authentication at operating threshold Ti is

performed for a probe image P by first obtaining its feature set XP and calculating

the similarity Si with every feature set in X. The system then makes its final
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Figure 1.4: Genuine and Imposter score distribution (Jain et al., 2005)

decision using equation 1.4.1

Let Si = ‖XP −XQ‖ for Q = 1, 2, · · · , N

if n0 = argmin
i

Si, then P =

genuine, if Sn0 < Ti,

impostor, otherwise.

(1.4.1)

From the above equation Si (where i is the index of a feature template in database) is

said to be a genuine score if feature sets XP and XQ belongs to the same individual,

otherwise it is called impostor score. The number of genuine scores and number

of impostor scores are calculated as in equation 1.4.2, if one probe image of each

user In is used for each attempt (Rattani and Tistarelli, 2009). Figure 1.4 shows

the score distribution for both genuine and impostor attempts, as is revealed the

two bell shaped curves overlap and the region of this overlap defines the FAR and

FRR described below. In an ideal biometric system this two curves will not overlap,

however this is difficult to achieve in real-life scenarios as there is no 100% accurate

biometric system.

number of genuine scores = N ×m

number of imposter scores = N × (N − 1)×m
(1.4.2)

In general, the performance of a biometric system is determined by its recognition

and error rates which are described as follows:

• Recognition Rate (RR) This is the percentage of correctly identified probe

images fed into the biometric system and also known as the rank-1 recognition

rate. The rank-k recognition rate refers to the number of correctly matched
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templates that are contained in the top-k matchers selected from the database.

The formula is defined below:

RR =
Rk

N
(1.4.3)

where k represent the number of top-matchers selected and N represent the

number of images in the database.

• False Rejection Rate (FRR) It is defined as the proportion of genuine

users that were wrongly classified as impostors by the system. it generally

calculated as the proportion of the genuine scores that are greater than the

operation threshold Ti.

• False Acceptance Rate (FAR) It is defined proportion of impostors who

were wrongly classified as genuine users. It is often calculated as the proportion

of impostor scores that are less than the operating threshold Ti.

• Genuine Acceptance Rate (GAR) The proportion of genuine users cor-

rectly identified by the biometric system and it is calculated as 1− FRR.

• Equal Error Rate (EER) is the point where FRR is equal to the FAR. In

general, the lower the EER the more accurate the system becomes.

• Total Error Rate (TER) is the sum of the FRR and FAR. The minimium

value of this error is expressed as 2×EER. The lower the minimum TER the

more accurate the system becomes.

• Receiver Operating Characteristics Curve This is the curve that shows

the performance of the system at different thresholds. it is a plot of the FRR

or GAR against the FAR.

The accuracy of a biometric system deployed to production environment can also

be expressed in the form ”FRR 1%@FAR 1/10000” or ”GAR 99%@FAR 1/10000”

. This means that at the operating threshold the system, 1%(99%) of the genuine

users are rejected(accepted), considering one out of ten thousand imposter attempts

is accepted as a match.
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1.5 Problem Statement

Although biometrics are generally preferred over traditional systems and have been

deployed in real-life applications, there are still a number of challenges associated

with it and these need to be addressed as no ideal biometric system has been

achieved. These issues include:

• Non-universality : If a biometric system is able to capture the trait of every

individual in its population, then it is said to be universal. However, not all

biometric systems are universal as it is very difficult to capture fingerprints

of the population made up of elderly people and manual workers (Eskandari

et al., 2013). More so, it will be difficult to obtain good quality of iris images

from people who have eye ailments such as glaucoma and cataract among

others. This leads to high TER of the biometric system.

• Noisy data: This is mainly a result of poor sensor quality or environmental

conditions. The performance of biometric systems depends to a large extent,

on the quality of input trait. Therefore, poor maintenance of sensors may lead

to poor image quality due to the presence of dirt remains (Islam, 2014). Also

the illumination conditions present at the point of capture may also affect the

quality of the biometric, if the illumination conditions are poor, there is a high

likelihood of capturing poor quality images.

• Inter-class variance: occurs when there is an overlap between templates of

users within the biometric population. In biometrics, feature templates ob-

tained from each individual are meant to be unique, however this is not always

the case as two identical twins and genetically related individuals (e.g father

and son) can be registered in a face recognition system (Nandakumar, 2008).

This increases the FAR of the system.

• Intra-class variance: templates stored in databases exhibit large variation ei-

ther due to improper interaction between the user and sensor or some other

changes in environmental conditions. This usually occurs for a face recogni-

tion system when the facial expression present in the probe image vary from

that stored in the database (Fathima et al., 2014). There are also cases where

face texture changes, a good example being the presence of wrinkles, which

emerge when one ages. Normally, features extracted from users are meant to

be invariant to these changes, however this is not always the case.
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Figure 1.5: Score distribution of genuine and imposter scores from a face and iris
matcher

• Large population size: Most biometric systems deployed in real-life environ-

ments involves large population and the FAR of the system increases as the

database grows. This means the accuracy and throughput of the system is

adversely affected when population size is large.

• Large class imbalance: From equation 1.4.2 it is seen that number imposter

scores greatly encompasses the genuine scores as number of users increase

(Mehrotra, 2014). This means that during classification, the impostor class

becomes highly favoured as compared to the genuine class. This decreases the

accuracy of prediction for the genuine class, which in turn increase the FAR of

the system. Figure 1.5 shows the distribution of genuine and impostor scores

for face and iris matcher showing how the genuine scores are under-represented

as compared to the impostor scores.

The research questions examined in this research are outlined as:

• How can multi-biometric systems be used to reduce effects of noisy data, illu-

mination, inter/intra-class variance that affect the accuracy of single biometric

systems?

• Which viable techniques are capable of training biometric data with large class

imbalance?
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1.6 Research objectives

The above research challenges are addressed to enhance the performance of multi-

biometric systems. The research objectives are:

• Develop a fusion technique that will reduce the effects of non-universality, inter

and intra-class variance experienced with unimodal systems.

• Develop a fusion technique that reduces the effect of large class imbalance

between the genuine and impostor scores in the biometric data.

1.7 Thesis contribution

This thesis seeks to tackle two issues from the ones outlined in the previous section.

First, the issue faced by single biometric systems is addressed using a hybrid fusion

methodology, while serial fusion strategy is proposed to address the issue of large

class imbalance and population size. Major contributions of this research include:

• A hybrid fusion methodology that combines three classifiers built on feature

and score level of fusion using a decision level fusion rule is proposed. first,

feature fusion is performed using five standard global and local feature extrac-

tors for face and iris modalities separately. Secondly, weighted score fusion

is performed between a global feature extractor for face and local feature ex-

tractor for iris. These three classifiers are combined to determine the claimed

identity using a majority voting rule.

• In order to solve the problem of large population and imbalance class a serial

fusion with BPSO and iRVM as a classifier is proposed. First the use of serial

fusion reduces the number of imposter scores by selecting top matchers from

the face unimodal system while iRVM is used to train the biometric data

as it arrives in batches. BPSO has been used to select optimal mix of local

and global feature extractors for improving the rank k recognition rate of face

biometric system.

1.8 Thesis outline

This thesis is made up six chapters whose layout is given below:
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Chapter 2 : Information fusion in multi-biometric systems

This chapter provides a literature review of biometric systems. These are split

based fusion techniques using parallel and serial architecture. First, research works

based on fusion techniques in parallel mode are explored according to the following

branches: (a) score level fusion (b) feature level fusion (c) rank level fusion (d)

decision level and (e) fusion based on Nature-Inspired (NI) algorithms. Then finally

review works on serial fusion to conclude the chapter.

Chapter 3 : Feature Extraction Algorithms

The five standard feature extraction algorithms are discussed in this chapter. The

algorithms have been divided into local and global methods. These methods extract

feature vectors describing the texture and shape information from the face and iris

images.

Chapter 4 : Hybrid fusion at feature, score and decision level

This chapter proposes the hybrid fusion methodology that combines three levels

of fusion to determine the claimed identity. Herein, the formation of the three

classifiers is discussed with experimental results showing the performance of the

proposed scheme against other fusion methods in literature.

Chapter 5 : Serial fusion using BPSO and iRVM

The proposed serial fusion scheme using BPSO and iRVM are the point of discussion

in this chapter. First, the advantages of serial fusion over parallel fusion is high-

lighted and the architecture along with algorithms utilised are discussed. Finally,

simulation results are presented and discussed.

Chapter 6 : Conclusion and Future Work

Chapter 6 is the conclusion. In this chapter I review the research outputs, that is

the achievements and limitations of the study. Recommendations for future research

are presented.



Chapter 2

Information Fusion in

Multi-Biometric Systems

2.1 Introduction

The success of multi-biometric systems depends on its design approach and its de-

sign depends on the type of fusion scheme employed. The thrust in this section

is to discuss multi-biometric systems in literature based on parallel and serial ar-

chitecture. Under the parallel architecture, works implemented with the following

fusion schemes (a) score level fusion (b) feature level fusion (c) sensor level fusion

(d) rank level fusion (e) decision level fusion (f ) hybrid fusion and (g) fusion based

on NI algorithms are considered as shown in Figure 2.1. Mean while works under

serial architecture are also reviewed. Finally results obtained from the research both

under parallel and serial architecture are reported.

Figure 2.1: Categories of information fusion for multi-biometrics systems in parallel
mode

15
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2.2 Fusion in parallel mode

In this fusion mode, all modalities used for biometric fusion are processed simulta-

neously and combined at a later fusion stage. Figure 2.2 shows the general archi-

tecture for fusion in parallel mode. According Sanderson and Paliwal (2002) this

fusion mode can be classified into two groups namely:

• fusion before matching

• fusion after matching

Such classification is necessary because the amount of information present in biomet-

ric templates reduces as it progresses to the matching module as shown in Figure

2.3. As the names imply, fusion before matching occurs when the templates are

combined before getting to the matching module, while fusion after matching is

quite the opposite. The first group includes fusion at sensor level and feature level,

while the second group includes fusion at score level, rank level and decision level.

Below, a description of studies conducted under these groups of fusion schemes are

discussed.

Figure 2.2: Parallel fusion architecture

2.2.1 Score-level fusion

In this section, research based on the different categories of score level of fusion are

discussed. Work on transformation-based methods are reviewed first, ensued by the
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Figure 2.3: Types of fusion in Multi-biometric systems, Key: S-Level = Sensor- level
fusion, F-Level = Feature level fusion, M-Level = Matching score fusion, D-Level
= Decision level fusion; FU = Fusion, MM = Matching Module, DM = Decision
Module, A/R = Accept/Reject

density-based methods and consequently classifier-based methods.

2.2.1.1 Transformation-based methods

In this method, matching scores evaluated from each modality are rescaled to the

same domain usually in the interval [0, 1] using normalization techniques and then

combined with fusion rules. The commonly used fusion rules in literature include

sum, product, minimum, maximum, mean and median rule which are discussed

below (Fakhar et al., 2011; Eskandari et al., 2014; Connaughton et al., 2011).

Let s = [s1, s2, · · · , sJ ] denote the score vectors for each uni-modal system J for the

ith sample. Where i = [1, 2, · · · , N ] and N represents the number of probe samples,

while k = [1, 2, · · · , J ] uni-modal systems. Let mi represent the combined match

score belonging to the ci membership class for the ith sample. Therefore, fusion rules

can be defined as follows:

(a) Sum-rule

Calculates the sum of the similarity scores from each modality. It performs

better when the confidence levels obtained from all modalities are similar or

with less variations (Duin, 2002; Eskandari et al., 2014).

m =
J∑
k=1

sk (2.2.1)

(b) Product-rule
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Takes the product of the similarity scores obtained from each modality. This

rule performs better if the modalities are un-correlated, as it assumes reliable

confidence estimates from each modality. It however, fails when at least one

of the match scores is equal to zero (Duin, 2002).

m =
J∏
k=1

sk (2.2.2)

(c) Min-rule

Picks the minimum matching score obtained from each modality as the best

match for the probe image.

m = minJk=1sk (2.2.3)

(d) Max-rule

Picks the maximum matching score obtained from each modality as the best

match for the probe image. However, this fails if any of the modalities are over

trained than others skewing the final decision to the outcome of a particular

modality. (Duin, 2002; Connaughton et al., 2011).

m = maxJk=1sk (2.2.4)

(e) Weighted sum-rule

This combines matching scores from different modalities based on their noise

levels. It does this by assigning weights to each scores obtained from each

unimodal system to make its final decision (Eskandari and Toygar, 2014).

Therefore a modality with less noise level will have higher weight as compared

to those with high noise levels.

m =
J∑
k=1

wksk

where

J∑
k=1

wk = 1

(2.2.5)

(f) Triangular-norms

Triangular norms is a commutative, associative, monotonous operation T :

[0, 1]× [0, 1]→ [0, 1]. It has been applied in fuzzy logic, fuzzy control systems
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and artificial intelligence systems (Yang et al., 2012). There are three t-norms

equations which can be divided into two groups and they are described below

(Yang et al., 2012):

• non-parametric

Einsteins product : T (s1, s2) =
s1s2

(2− (s1 + s2 − s1s2)
Hamacher : T (s1, s2) =

s1s2
(s1 + s2 − sis2)

(2.2.6)

• parametric

Frank : T (si, si+1) =



TM(s1, s2) = min(s1, s2) if p = 0

TP (s1, s2) = s1, s2 if p = 1

TL(s1, s2) = max(s1 + s2 − 1, 0) if p = inf

logp(1 + (P s1−1)(P s2−1)
(p−1) otherwise

(2.2.7)

Where p is a parameter in the range [0,∞] that determines the fusion operation

to perform as seen above. With this is method any two scores si and si+1 can be

fused by performing T (si+1, si) if more than two scores exist, a further fusion

operation T (si+2, T (si, si+1)) performed with third score si+2. Therefore final

fused score sf is obtained from equation 2.2.8

sf = T (si+2, T (si, si+1)) (2.2.8)

(g) Score-normalization methods

Prior to applying the above fusion rules, normalization techniques are applied

to the matching scores obtained from each uni-modal system to rescale them

to a domain [0, 1] Jain et al. (2007). This is because matching scores from

different modalities might not be similar in terms of their score distributions.

For example a matcher might produce a similarity score, while another may

produce a dissimilarity score. Furthermore, the match scores may not be in

the same range e.g a face system producing match scores in range [−1, 1] and

finger-print gives match scores in range [50, 100]. Combining this systems using

any of the fusion rules mentioned will not produce accurate results, hence the

need for normalization. A couple of normalization techniques used in literature

include:
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• Min-Max method

s′k =
sk −Min

Max−Min
, where k = 0, 1 · · · k (2.2.9)

Where Min and Max are minimum and maximum value of the matching

score vector obtained from each modality. s′k and sk are the normalized

score and corresponding matching score (Wang et al., 2011).

• Tanh method

s′k =

{
tanh

(
0.01

(
Sk − µgh
σgh

))
+ 1

}
(2.2.10)

where µgh and σgh represent the mean and standard deviation of the set

of matching scores (Jain et al., 2005).

• Z-score

s′k =
sk − µ
σ

(2.2.11)

where µ and σ represent the mean and standard deviation of the set of

matching scores (Aly et al., 2013).

• Decimal scaling

This can be applied to individual scores from different modalites in dif-

ferent logarithmic scale (Jain et al., 2005).

s′k =
sk

10n
(2.2.12)

where n = log10max(s)

• Median Absolute Deviation (MAD)

s′k =
sk −median

MAD
(2.2.13)

where MAD = median(|sk −median|) (Ross and Govindarajan, 2005)

• Double sigmoid function

s′k =

 1
1+exp(−2((sk−t)/r1))

ifsk < t

1
1+exp(−2((sk−t)/r2))

otherwise
(2.2.14)

where t is the system threshold, r1 and r2 denote the extreme regions in

which the double sigmoid function is linear (Jain et al., 2005).

These fusion rules together with score normalization techniques have been applied
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for biometric fusion in literature, which will be explored during the course of this

review. Ramli et al. (2011), studied the performance of sum-rule and weighted-sum

rule on a multi-instance and multi-modal system. The multi-instance system was a

combination of different verbal samples of the same individual for voice recognition,

while multimodal was constructed by using both voice and face samples. SVM

(Support Vector Machines) was used as the matching algorithm for both voice and

face uni-modal systems, while matching scores obtained were combined using both

sum and weighted sum rule. Results obtained from their experiments revealed that

weighted sum rule outperformed sum rule for both multi-instance and multi-modal

system. In another study, Connaughton et al. (2011) researched a multi-modal

system of face and iris templates using a multi-sensor approach. The videos obtained

from the three different IOM (Iris On the Move) sensors were stitched together to

obtain a single unit. Both Viola Jones and modified Daugman’s algorithm were used

to extract features from the respective biometric templates (Viola and Jones, 2004;

Daugman, 2004). Match scores from each modality were normalized and combined

using weighted sum rule.

The first attempt to merge face and iris traits using an efficient feature extraction al-

gorithm based on steerable pyramids (S-P) was investigated by (Fakhar et al., 2011).

The S-P bands captured intrinsic geometric frameworks of face and Iris to compute

the feature parameters (mean variance, energy or entropy) from each modality. The

city block distance was used to compute matching scores of face and iris images

obtained from FERET (The Face Recognition Technology) and CASIA (Chinese

Academy of Sciences’ Institute of Automation) biometric database after which both

biometric templates were combined using the sum rule score fusion technique pre-

processed by Z-score and Min-Max normalization (Phillips et al., 1998; Tieniu and

Zhenan, 2010). Hanmandlu et al. (2011) proposed the use of triangular-norms for

biometric score fusion for palm-print, hand-vein and hand geometry traits. Gabor

wavelets were used to extract features for the first two traits while an independent

component analysis was used for the last trait. Two sets of databases were used to

validate this scheme, a self-acquired and chimeric dataset constructed from PolyU

(Palmprint, hand vein and hand-geometry) database. The authors were able to show

that the method performed better that min, mean and sum rule fusion scheme.

Yang et al. (2012) presented a multi-instance finger-vein recognition system using

LBPH (Local Binary Patten Histogram) to extract features from two fingers of the

same individual. Both sum rule and triangular-norms were used to combine match

scores of each finger-vein instance. Results obtained by the authors showed that
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triangular-norms rule performed better than sum-rule, as it considers the uncertainty

in the relationship of different modalities. Similarly, Wang et al. (2013a) proposed a

novel fusion scheme by merging dual iris, visible and thermal face images. The 1D

Log-Gabor filter was used to extract features from the dual iris images while CGJD

(Complex Gabor Jet Descriptor) was used to improve the feature representation

of visible and thermal face images. The match scores were fused using a variant

of triangular-norms to obtain the final decision. The results were validated using

CASIA Iris-thousand and NVIE (Natural Visible and Infrared facial Expression)

visible and thermal face database (Wang et al., 2010). The EER’s obtained from

the proposed scheme outperformed other fusion schemes in literature.

Sim et al. (2014) employed weighted score fusion to fuse scores from face and iris

traits based on their weights availability. While, Principal component analysis and

neural networks were used for feature extraction for face and iris template. Their

results were validated using a self-acquired dataset UTMIFM (Universiti Teknologi

Malaysia Iris and Face Multimodal), UBIRISv2 (University of Beira IRIS version 2)

and ORL biometric databases (Proenca et al., 2010; Ahonen et al., 2004; Tan et al.,

2010). The author’s findings showed that the recognition rate obtained from the

self-acquired dataset performed better than the chimeric dataset constructed using

UBIRISv2 and ORL. A new approach for a multi-modal system of finger vein and

geometry was explored by (Asaari et al., 2014). The authors proposed a new feature

representation and matching algorithm for finger geometry and vein respectively.

First, a BLPOC (Band Limited Phase Only Correlation) algorithm invariant to noise

and occlusion was used to evaluate the match scores of the finger-vein images. While

new geometric features for finger geometry images were generated by combining

finger width with the CCD (Centeroid Contour Distance). Weighted sum rule was

applied as the fusion scheme for combining match scores. Results of the author’s

experiment were validated using a self-acquired database of 123 users, which showed

that the proposed scheme was able to attain an improved performance rate and

processing time as compared to other methods in the literature.

Eskandari and Toygar (2014) proposed a face-iris multi-modal biometrics system by

integrating features from local and global feature extraction algorithms for each face

and iris sub-system. Matching scores were rescaled using Tanh method and fused

using weighted sum rule. The proposed scheme was validated using ORL, FERET,

BANCA and CASIA datasets and results achieved showed improved recognition ac-

curacies as compared to its unimodal and other multi-modal systems in literature

(Bailly-Bailliere et al., 2003). Recently, Yong et al. (2015) proposed a novel method
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by merging both the left and right palm-print for human recognition. Three match-

ing scores were generated as the first two consisted of scores obtained from both the

left and right palm-print subsystem while the third score was generated by comput-

ing the similarity between left and right palm-print of the same individual using a

specialized algorithm developed by the authors. Finally, the three matching scores

were combined using weighted sum rule to calculate final fused score.

Farmanbar and Toygar (2015a) presented a multi-modal system that employed face

and palm-print biometric. Local Binary Pattern was used to obtain features from the

face and palm-print biometric while Backtracking Search Algorithm (BSA) was used

to evaluate the optimal values for each feature that produced the best recognition

rate. Match scores obtained from the selected feature vectors were combined at

score level to determine the claimed identity. Experimental results demonstrated

significant improvement for the proposed scheme when compared to the uni-modal

systems.

2.2.1.2 Classifier based methods

In this approach, match scores retrieved from each modality are concatenated into a

d−dimensional vector, the classifier takes the score vector as an input to determine

if the user belongs to the genuine or impostor class. A description of some of these

classifiers that have been employed in literature are given below:

(a) Support Vector Machines

SVM is a popular machine learning algorithm that creates a hyperplane in a

multi-dimensional space (Vatsa et al., 2008). The success of SVM lies in its

ability to perform both linear or non-linear classification. In linear form, the

goal of SVM is to create a straight-line boundary that accurately separates

the two classes. Linear form SVM can also be extended to its non-linear form

through the application of the appropriate kernel function for dimension reduc-

tion (Woo and Kim, 2006). Consider a set of scores x with class membership

yi ∈ {−1, 1}, SVM represents a hyperplane that separates the two classes as:

• linear form

~w.~x+ b = 0 (2.2.15)

• non-linear form

~w.ϕ(~x) + b = 0 (2.2.16)
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where ~w represents the vector of weights and ϕ(~x) represents a kernel function.

(b) Relevance Vector Machines

RVM is a model with an identical form to SVM that employs Bayesian infer-

ence (Tipping, 2001; Tran and Le, 2015). One of the most preferred feature of

RVM is that, it is capable of making probabilistic predictions from the learned

model using relatively fewer kernel functions as compared to SVM. Generally

the RVM model is described as follows:

y(x,w) = wTφ(x) (2.2.17)

where x is the input vector, w is the vector of weights, φ(x) is a set of basis

functions and y is the output.

(c) Artificial Neutral Networks

ANN are artificial Intelligence systems that mimic the human nervous system.

It is presented as a system of interconnected neutrons which exchange informa-

tion with one another. it is made up of an input layer which takes the training

data as input, hidden layer in which the learned model is developed from the

training data and an output layer which provides prediction value in the case

of regression or prediction class in the case of classification (Cristianini and

Shawe, 2000).

Popular machine learning classifiers have been adapted in the field of biometrics

with improved performances recorded, a description of some works in literature that

explored these methods follows.

Wang and Han (2009) presented a score fusion methodology using support vector

machines. They achieved this by concatenating scores retrieved from both face and

iris modalities and passed them as features to SVM to determine if the user was

genuine or an impostor. Results obtained by the authors showed that equal error

rate for the proposed scheme performed better than other fusion techniques like

sum, product and fisher rule. Similarly, the study of four algorithms for biometric

score fusion was conducted on XM2VTS face-voice database (Messer et al., 1999;

Damousis and Argyropoulos, 2012). The algorithms studied by the authors include

GMM (Gaussian Mixture Models), SVM, ANN and FES (Fuzzy Expert Systems)

with SVM (lowest half total error rate) performing better than other three algo-

rithms and other fusion methods in the literature.
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Mehrotra et al. (2012) presented a biometric matching score fusion using relevance

vector machines (RVM) for a multi-unit iris recognition system. They used RVM

to estimate posterior probabilities for both left and right iris scores. The final

fusion was done by performing weighted score fusion to determine the probability

of the prediction. Results obtained showed that RVM had better generalisation

properties than SVM during classification. Eskandari et al. (2013) presented a new

score fusion methodology using face and Iris biometrics. They used five local and

global feature extractors to obtain scores from face and iris individually and passed

the concatenated scores as feature vectors into an SVM classifier. ORL, BANCA,

CASIA and UBRISv2 database were used to validate their scheme, which was better

than the accuracy obtained for feature level fusion (Bailly-Bailliere et al., 2003).

Mehrotra (2014) also proposed iGRVM for multi-unit iris recognition. The authors

introduced the concept of incremental learning and granular computing, in order to

handle class imbalance in biometrics score set. The fusion methodology used was

the same as that in (Mehrotra et al., 2012). The results obtained showed that the

classifier was capable of training with a large population and high-class imbalance

between the genuine and imposter scores.

2.2.1.3 Density based methods

The core of this method is based on performing statistical test with prior estimation

of the probability density functions of the match scores. Let S represent a random

variable that a score is obtained from a matcher. Then the probability distribution

functions for the genuine and impostor scores Fgen(s) (with fgen(s) density function)

and Fimp(s) (with fimp(s) density function) are defined as:

Fgen(s) = P (S ≤ s | S is genuine)

Fimp(s) = P (S > s | S is an impostor)
(2.2.18)

Two statistical hypothesis are defined namely H0: meaning that score S represents

an impostor and H1 represents a genuine user. The probability of not accepting

H0 when H1 is holds is known as the FAR, while the probability of not accepting

H1 when H0 is holds is known as FRR (Nandakumar, 2008). Using Nerman-person
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thoerem, a likelihood ratio test is performed as follows:

P (Ψ(S) = 1 | H0) = α

Ψ(S) =

1, when fgen(s)

fimp(s)
> η

0, when fgen(s)

fimp(s)
< η

(2.2.19)

where Ψ is the test, η is the system threshold and α is the level of test Ψ.

This approach is often preferred over fusion schemes under transformation and clas-

sifier based categories in that no score normalization technique is required. However

to obtain improved performance with this approach the probability density functions

of the genuine and impostor scores have to be estimated accurately (Mehrotra, 2014).

Below a description of recent works based on these methods and their contribution

to literature.

Nandakumar (2008) proposed a fusion technology based on Neyman-Pearson the-

orem for combining multiple biometric matchers. The likelihood ratio was used to

maximize the GAR at any desired false acceptance rate. GMM estimated the prob-

ability density function of the genuine and impostor scores. The method was able

to consistently achieve high recognition rate for the different biometric database

without any parameter tuning. In another study, Vatsa et al. (2008) proposed a

hybrid framework of likelihood ratio test and SVM for score level fusion of face

biometrics. The probability density functions of the match scores were estimated

by assuming they are Gaussian distributed, then the likelihood ratio was computed

and used as an input for SVM. The results obtained by the authors showed that the

proposed scheme achieved improved accuracy as compared to sum rule and SVM

fusion method.

Qian and Veldhuis (2013) estimated the likelihood ratios of biometric scores of se-

lected points in the individual ROC curves to construct the naive Bayes classifier.

The use of the selected points in ROC diminished the overhead cost of the algorithm

as compared to computing the density distribution function of the genuine and im-

poster scores.This fusion scheme performed better than the one based on SVM and

GMM.

Table 2.1 shows the summary of results of literature reviewed above on score level

fusion.
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Table 2.1: Score level fusion methods in biometrics

Year Literature Approach Modality Database Results

Transformation-based methods

2011 Ramli et al. (2011)

sum,
weighted sum

rule face and voice

self
acquired
dataset

sum:
EER:0.2778%,

2.0261%
EER:0.0563%,

1.9904%

2011 Connaughton et al. (2011)
weighted sum

rule face and iris

self
acquired
dataset Acc: 93.2%

2011 Fakhar et al. (2011) sum rule face and iris
FERET

and CASIA Acc: 99.17%

2011 Hanmandlu et al. (2011) t-norms

palm-print,
hand vein and
hand-geometry

PolyU
and IITD GAR: 99.7%

2012 Yang et al. (2012)
sum-rule

and t-norms finger-veins SDUMLA-HMT
EER: 1.42%,
EER: 1.26%

2013 Wang et al. (2013a) t-norms

dual iris,
visible and

thermal face
CASIA

and NVIE EER: 0.0289%

2014 Sim et al. (2014)
weighted sum

rule face and iris

self acquired,
UBIRISv2
and ORL

GAR: 97%,
GAR: 96%

2014 Asaari et al. (2014)
weighted sum

rule
finger

geometry and vein Self acquired EER: 1.78%

2014 Eskandari and Toygar (2014)
weighted sum

rule face and iris

ORL,FERET
CASIA and
UBIRISv2 EER: 0.5%

2015 Yong et al. (2015)
weighted sum

rule palm-print
PolyU and

IITD EER:0.53%

2015 Farmanbar and Toygar (2015a)
BSA and
sum rule

face and
palm-print

FERET and
PolyU Acc: 99.17%

Classifier-based methods

2009 Wang and Han (2009) SVM face and iris
ORL

and UBIRISv2 EER: 0.35%

2012 Damousis and Argyropoulos (2012)
SVM,GMM

FES and ANN face and voice XM2VTS

HTER: 0.25%,
HTER: 0.51%
HTER: 0.45%
HTER: 0.5%

2012 Mehrotra et al. (2012) RVM dual iris CASIA Acc: 98.81%

2013 Eskandari et al. (2013) SVM face and iris

ORL,FERET
CASIA and
UBIRISv2 Acc: 98.25%

2014 Mehrotra (2014) iGRVM dual iris
BATH and

CASIA
GAR: 47.83%,
GAR: 17.28%

Density-based methods

2008 Nandakumar (2008)
likelihood ratio

with GMM Multimodal

NIST
match score

and XM2VTS
GAR: 99.1%,
GAR: 98.7%

2008 Vatsa et al. (2008)
likelihood ratio

with SVM Face Mixture GAR: 94.98%

2013 Qian and Veldhuis (2013)
Naive Likelihood
Ratio via ROC Face FRGC EER: 1.75%
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2.2.2 Feature-level fusion

In this section, works in literature that have employed fusion at feature level for

consolidating evidence obtained from different modalities are discussed. Different

strategies for combining features have been explored and they are discussed below:

Consider a multi-biometric system consisting of J modalities such that k = 1, 2, · · · , J
and i = 1, 2, · · · , N where N is the number of probe samples for each k modality.

Let Xik is the feature vector of the ith sample for kth modality and Zi be the result-

ing feature vector after fusion for ith sample . Therefore Zi can be obtained based

following methods:

(a) Feature concatenation

The fused feature vector is obtained by simply combining features from each

modality (Ross and Govindarajan, 2005; Kumari and Suma, 2014). Therefore

Zi is computed as:

Zi = [Xi1, Xi2, · · · , Xik] (2.2.20)

(b) Feature update

This method is used when features are of the same modality and obtained from

the same feature extraction algorithm. The J number of features for each N

samples are averaged to obtain the final fused vector Zi (Jain et al., 2007)

Zi =
1

J

J∑
k=1

Xik (2.2.21)

(c) Sum/Weighted sum rule

In these methods, the final fused vector Zi is obtained by performing an equal

or weighted sum of feature vectors from each modality (Wang et al., 2011).

Zi =
J∑
k=1

Xik or

J∑
k=1

wkXik

where

J∑
k=1

wk = 1

(2.2.22)

(d) Complex feature fusion

This is often used when two modalities are to be combined. Here, the feature

sets obtained from each modality is represented in the form of a complex
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number. If the dimension of one feature vector is larger than other, the smaller

feature vector is padded with zeros until its dimension equals its counterpart

(Wang et al., 2013b). below describes the format for complex feature vector.

Zi = wXi1 + (1− w)Xi2j for k = 1, 2 (2.2.23)

It should be noted that prior to performing feature level fusion, the process of

normalisation discussed in section 2.2.1.1 will have to be carried out as individual

feature values may exhibit significant variation in range and distribution (Ross and

Govindarajan, 2005). Prior research where these feature level fusion techniques for

biometric recognition have been employed are explored below.

(Ross and Govindarajan, 2005) presented a feature level scheme based on hand and

face biometrics. Feature extraction was done by extracting unique geometric mea-

surements from the hand biometric while LDA (Linear Discriminant Analysis) was

used for face biometric. The two feature sets from each biometric were concate-

nated, followed by feature selection to optimise the feature set that will provide the

best performance. Results showed that scheme proposed by authors performed bet-

ter than fusion at match score using MSU (Michigan State University) multi-modal

database (Ross and Govindarajan, 2005). Wang et al. (2011) proposed a face-iris

multi-modal system using feature level fusion. Feature sets from both the face and

iris biometrics were obtained using PCA (Principal Component Analysis) and Gabor

filter respectively, followed by Z-score normalization to rescale feature set into the

same domain. Three types of feature level fusion schemes were tested in the course

of their experiment and these include concatenation, sum and weighted sum rule,

with the feature concatenation method having the best performance. Ramachandra

et al. (2012) presented a dual bimodal system based on face and fingerprint traits.

Fingerprint images were pre-processed to find the ROI (Region Of Interest), followed

by the DTCWT (Dual Tree Complex Wavelet Transform) algorithm to obtain fea-

tures as the high and low-frequency components of the fingerprint ROI. Similarly,

ROI for the face images were obtained and features were extracted as coefficients of

frequency bands using Haar wavelets. Both features were merged to form a fused

feature vector while the euclidean distance was used to evaluate the match score

between the fused feature vector and the stored templates in the database. Exper-

imental results obtained by authors showed the EER was lower for their proposed

scheme compared to its unimodal systems.

A complex feature fusion strategy was proposed by Wang et al (Wang et al., 2013b)

based on visible and thermal face biometric. 2DPCA and 2DLDA were applied for
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extracting feature sets from both modalities and then combined using a weighted

complex fusion method described above. Experimental results revealed that the

proposed feature level scheme performed better than some fusion schemes in liter-

ature. A novel algorithm for fusing features using an SVM classifier was presented

in (Gawande et al., 2013). Haar wavelet transform was used to obtain feature sets

from both the iris and fingerprint modality, with Mahalanobis distance used to find

top-match feature sets as compared to the probe sample. The values of the individ-

ual feature sets were normalised with the Tanh method to ensure equal contribution

to fusion and combined using feature update for both iris and fingerprint biometrics.

The fused feature vector was passed as an input to be trained by an SVM classifier.

From the authors’ simulation results, they were able to show that their proposed fu-

sion scheme was able to obtain higher recognition accuracy and lower false rejection

rate as compared to other existing approaches.

Chin et al. (2014) developed a biometric template protection technique for finger-

print and palm-print based on feature level fusion. The authors used Gabor filter to

extract a feature set from both modalities and then merged to form a fused feature

vector. The fused vector was then transformed into a binary template using ran-

dom tilling and 2N discretisation scheme. Results obtained by the authors showed

that the proposed scheme had improved performance as compared to its uni-modal

counterparts, while still providing template security. Muhammad et al. (2015) pro-

posed a non-stationary feature fusion scheme based on face and palmprint images.

Features from the individual modality were extracted using DCT algorithm to ob-

tain local descriptors for both face and palmprint images. The authors combined

features sets obtained from DCT (Discrete Cosine Transform) to form fused feature

vector, which was trained using a GMM to obtain its probability density function.

Experimental results obtained by the authors showed that the proposed technique

outperformed existing feature, matching and decision level fusion schemes.

Table 2.2 shows the summary of results of literature reviewed above on feature level

fusion.

2.2.3 Sensor-level fusion

This fusion scheme employs multiple sensors to capture single or multiple traits of

the same individual which are consolidated to form a single image. At this level

of fusion, the performance of the system is expected to be better than other levels

fusion because of the availability of pixel information of the biometric image (Kisku
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Table 2.2: Feature level fusion methods in biometrics

Year Literature Approach Modality Database Results

2005 Ross and Govindarajan (2005) Concatenation
hand

and face MSU
ROC

analysis

2011 Wang et al. (2011)

Concatenation,
weighted sum
and sum rule face and iris

ORL, FERET
and CASIA

EER: 1.94%
EER: 2.5%
EER: 4.22%

2012 Ramachandra et al. (2012) Concatenation
face and

fingerprint
PIDB

and PODB EER: 0.13%

2013 Wang et al. (2013b)
Complex

fusion face NVIE Acc: 97.38%

2013 Gawande et al. (2013) Feature update
iris,

and finger-print
CASIA

and Self acquired GAR: 94%

2014 Chin et al. (2014) Concatenation
finger-print

and palm-print
FVC,

and PolyU EER: 1.64%

2015 Muhammad et al. (2015) Concatenation
face,

and palm-print
ORL,FERET

and palm-print Acc: 99.7%

et al., 2010). Below is a multisensor biometric fusion technique used in literature:

(a) Discrete Wavelet Transform (DWT)

DWT decomposes an image repeatedly into different frequency levels, which

contains transform values known as wavelet coefficients. At each level, it breaks

down the image into frequency bands categorised as low-low, low-high, high-

low, high-high bands (Kisku et al., 2010). The low-low bands represent the raw

information about the image while the other three band show sharp changes

in gradients such the edges, lines and boundaries. At the nth level the image

is decomposed as :

In−1 = ILLn + ILHn + IHHn + IHLn (2.2.24)

Most studies that have employed sensor-level fusion have its foundation based on

wavelet transform, however, several variants of this method which include DWT with

PSO (Particle Swarm Optimization) and DWT with Monotonic-Decreasing Graph

(MDG) have been developed to improve its performance (Raghavendra et al., 2009;

Kisku et al., 2009). The next set of paragraphs provides brief descriptions of some

research work done on biometrics.

Raghavendra et al. (2009) proposed a novel sensor level fusion scheme based on face

and palmprint images. Wavelet transform was used to decompose the images of the

two modalities while PSO was used to select the optimal mix of wavelet coefficients
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Figure 2.4: An example of DWT multi-sensor fusion for a face and palm-print
image (Kisku et al., 2010)

from both face and palmprint images to produce the final fused image.The authors

used Kernel Discriminant Analysis to extract features from the fused image and NNC

(Nearest Neighbor Classifier) to obtain match scores. The authors demonstrated the

efficacy of the proposed scheme through simulation, which revealed improved perfor-

mance over match-score fusion. Another variant of wavelet transform was presented

by Kisku et al. (2009) using the face and palmprint biometric. The authors approach

was to combine multi-spectral images at different resolutions which was fused into a

single image revealing a richer complementary image. After sensor fusion, features

were extracted using SIFT (Scale Invariant Feature Transform) and recognition was

done by matching the fused probe sample and fused template through a recursive

decent tree transversal method. Experimental results showed that the proposed

scheme outperformed its unimodal face and palmprint systems.

Raghavendra et al. (2011) presented a novel sensor fusion scheme based on PSO

using visible and infra-red face images. PSO was used to pick the best mix of

weights to perform a weighted linear combination of wavelet coefficients from both

types of face images. The authors again used PSO to obtain an optimal collection of

features from the visible and infra-red image. Results obtained from experiments by
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Table 2.3: Sensor level fusion methods in biometrics

Year Literature Approach Modality Database Results

2009 Raghavendra et al. (2009) DWT with PSO
face

and palm-print
FRGC

and PolyU GAR: 94.26%

2009 Kisku et al. (2009)
DWT with

MDG
face

and palm-print
FRGC

and PolyU Acc : 98.19%

2011 Raghavendra et al. (2011) DWT with PSO face
FRGC

and IRVI Acc: 99.7%

the authors revealed that the proposed scheme was able to show stability to changes

in environmental conditions and with better performance than that of score level

technique.

Table 2.3 shows the summary of results of works reviewed above on sensor level

fusion

2.2.4 Rank-level fusion

This level of fusion involves assigning ranks to every registered template (high rank

indicates a good match) and final rank is obtained by consolidating ranks from dif-

ferent modalities. different techniques applied for fusion at rank level are described

below:

(a) Highest rank

The fused rank of the user is computed as the lowest rank obtained from

individual modalities (Monwar et al., 2013).

(b) Borda count

Is an election method used to rank options or candidates according to the best

match criteria. In a multi-modal system, it is used to select the best match

of scores from uni-modal systems by sorting all scores and giving the highest

rank to the best match (Radha and Kavitha, 2012).

(c) Weighted Borda count

In this Borda count is extended by assigning weights to each matchers ac-

cording to their performance. These weights are computed by using logistic

regression (Kumar and Shekhar, 2011).

(d) Bucklin majority voting
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This is a voting scheme in which a candidate with the highest median rating is

chosen as the winner for the first choice votes. If otherwise the second choices

are added to first choice votes and the candidate with the highest vote is taken

as the winner and then again the procedure is repeated (Kumar and Shekhar,

2011) .

(e) Nonlinear weighted rank

This is a combination of ranks from different matcher that are non-linear

weighted.

The following set of paragraphs describes works in literature that have explored the

above methods. Kumar and Shekhar (2011) proposed a new non-linear weighted

rank fusion scheme and presented a comparative study of this fusion scheme against

other existing rank level fusion scheme like the Borda count, weighted Borda count,

highest rank and Bucklin majority voting. Their multi-biometric system was based

on multiple representation of palmprint matching scores and results obtained from

their experiments revealed that the proposed non-linear weighted method outper-

formed other existing rank fusion schemes studied by the authors. Radha and

Kavitha (2012) developed a multi-modal system which employed fingerprint and

iris biometric. Features from each modality were extracted using FLD (Fisher Lin-

ear Discriminant) and combined using weighted Borda count rank fusion scheme for

the determining the claimed identity. Simulation results obtained by the authors

revealed that the performance of the multi-modal system outperformed uni-modal

counter-parts.

A study of biometric fusion at the rank level, between facial thermograms and ear,

was carried out by (Kumar et al., 2012). A self-acquired database was constructed

by the authors by capturing images of the first modality with the aid of an infra-red

camera and the second modality was captured using an ordinary digital camera.

Features set obtained from each modality was extracted using Haar wavelets and

SIFT respectively. Weighted Borda count rank fusion method was employed for

consolidating ranks obtained both modalities and results indicated that the pro-

posed system provided better performance than unimodal systems. Monwar et al.

(2013) proposed the use of ocular biometrics (iris and retina scan) to tackle occlu-

sion and illumination encountered during iris recognition. The authors studied the

performance of rank level fusion on three ocular matching algorithms namely, PDM

(Probability Distribution Model), modified SIFT (m-SIFT) and GOH (Gradient

Oriented Gradient). The authors also demonstrated from the results they obtained,
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that the application of existing rank fusion methods could lead to an improved

performance rate.

The first attempt to apply fusion at rank level on cancellable biometrics was done

by (Paul and Gavrilova, 2014). Multiple random projections were generated from

the feature sets of each modality and were stored as templates in the database,

then rank level fusion was applied to combine ranks obtained from each modality

to determine the claimed identity during recognition. The authors presented a per-

formance analysis of their proposed scheme with improved performance rate over

unimodal systems. In another study, Talebi and Gavrilova (2015) proposed a novel

reinforcement scheme for rank fusions based on frontal face, profiles face and ear

images. The authors presented the rank-reinforcement approach using prior proba-

bility distribution of templates in the training data. Before performing rank fusion

for recognition, the prior probability distribution is used to improve the rank list of

each biometric matcher. The authors demonstrated that their proposed scheme had

the capbility to enhance the performance rates of existing rank fusion schemes.

Table 2.4 shows the summary of results of works reviewed above on rank level fusion.

Table 2.4: Rank level fusion methods in biometrics

Year Literature Approach Modality Database Results

2011 Kumar and Shekhar (2011)

Highest rank,
Borda count,

Weighted
Borda count,

Bucklin
majority voting,
and nonlinear
weighted rank palm-print NIST BSSR1

Acc: 100%
Acc: 94.97%
Acc: 96.32%
Acc: 99.81%
Acc: 100%

2012 Radha and Kavitha (2012)
Weighted

Borda count
finger-print

and iris
FVC2000

and CUHK ROC analysis

2012 Kumar et al. (2012)
Weighted

Borda count face and ear Self acquired GAR: 98%

2013 Monwar et al. (2013)

Highest rank,
Borda count
and plural

voting Ocular FOCS
ROC

analysis

2014 Paul and Gavrilova (2014) Border count
face

and ear

FERET,
VIDTIMIT,

AT& T
and USTB Acc: 84%

2015 Talebi and Gavrilova (2015) Rank-reinforcement
face

and ear
FERET and

USTB
ROC

analysis
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2.2.5 Decision-level fusion

In this level of fusion, each modality performs its own feature extraction and match-

ing process, after which the outputs are combined to obtain the final decision. This

fusion scheme together with score level fusion have generated most interest in the

academia as less information is conveyed during the fusion process (only class labels

are combined) (Jain et al., 2004). Different methods have been used to combine

class labels for decision fusion, a brief description is given below:

(a) Boolean operation

Set of ”AND” or ”OR” based rules are used to make the final decision consid-

ering output from different classifiers (Tao and Veldhuis, 2009).

(b) Majority voting

With this technique, the correct class label with the highest median rating is

selected as the claimed identity. In the case of a tie, the correct class label

with the highest score is chosen as the claimed identity. (Islam, 2014).

(c) Average voting

Each classifier computes the confidence average for every class and the class

with the highest value is selected as the claimed identity (Islam, 2014; Fridman

et al., 2015). See equation 2.2.25

Q(x) = arg
N

max
j=1

(1

k

k∑
i=1

yij(x)
)

(2.2.25)

where N represents the number classes and yij represents the output of the ith

classifier for the jth class.

(d) Maximum voting

In this technique the class with the highest overall score is selected as the

claimed identity (Islam, 2014; Wanas, 2003). Where N represents the number

classes and yi represents the output of the ith classifier and x is the input.

Q(x) = arg
k

max
i
yi(x) (2.2.26)

(e) Nash voting
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Each classifier assigns a number in the interval [0, 1] to each candidate and the

compares the product for all classifier values for each candidate. The highest

value is the a winner (Wanas, 2003).Where N represents the number classes,

yij represents the output of the ith classifier for the jth class and x is the input.

Q(x) = arg
N

max
j=1

k∏
i

yij (2.2.27)

In the following paragraphs, a brief description of some studies that have employed

the above voting schemes is given. Marcialis and Roli (2006) presented a multi-

algorithm face recognition system using PCA and LDA. The predicted class labels

obtained from both algorithms were combined by fusion at decision level to provide

the final output. The average voting scheme was used as a fusion method, as sim-

ulation results revealed that the proposed recognition rate was comparable to best

face matchers in literature. Veeramachaneni et al. (2008) designed a decision fusion

scheme incorporating Likelihood Ratio Test (LRT) and Chair Varshney rule (CVR)

for closely related classifiers. Both LRT and CVR was used to find the optimal

threshold point and decision rule by minimizing the system error. Their scheme was

validated on a biometrics score dataset revealing the importance of adding correla-

tion structure in building classifiers for multi-biometric systems.

Tao and Veldhuis (2009) proposed a optimised ”AND” and ”OR” rule-based deci-

sion scheme. They showed that optimising the threshold values of the classifiers of

individual modalities provided substantial improvements to the performance of the

fusion system by balancing matching scores from individual classifiers. The benefit

of such is that the matching score normalisation process performed in other fusion

schemes will not be required, thus reducing the risk of dropping the performance

of component classifiers considering significant differences in their individual per-

formance. Experimental results showed improvements over original classifiers that

were fused, with results comparable with other conventional fusion schemes.

Table 2.5 shows the summary of results of works reviewed above on decision level

fusion.

2.2.6 Hybrid fusion

This fusion method combines two or more levels of fusion in order to determine

the claimed identity. In general, hybrid fusion multi-biometric systems are built
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Table 2.5: Decision level fusion methods in biometrics

Year Literature Approach Modality Database Results

2006 Marcialis and Roli (2006)
Average
voting face

Yale
and ORL Acc: 97.3%

2008 Veeramachaneni et al. (2008)
LRT

and CVR
face

and finger-print BSSR1 EER : 0.0847%

2009 Tao and Veldhuis (2009)

”AND”
and

”OR” rule face FRGC
EER: 0.015%
EER:0.003%

by combining two or more classifiers based on any of the fusion scheme discussed

above. Architecture of hybrid fusion schemes that have been studied in literature

are described below:

(a) Feature-score hybrid Here more than one multiple feature extraction al-

gorithms are applied on each individual modality to extract features, which

are combined to form a fused feature vector. Matching scores obtained are

combined using any of the schemes discussed in section 2.2.1 (Farmanbar and

Toygar, 2015b). Figure 2.5 shows a general architecture for this type of hybrid

fusion.

Figure 2.5: Feature-score fusion hybrid

(b) Score-decision hybrid

In this method, multiple score sets are generated for each modality either from

multiple normalisation techniques or feature extraction algorithms. The match

scores are fused and the claimed identity for each modality is determined. The

final output is based on combining the class labels using any decision level

fusion rule discussed in section 2.2.5. Figure 2.6 shows a general architecture

for this type of hybrid fusion.
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Figure 2.6: Score-decision fusion hybrid

(c) Feature-decision hybrid

This method is similar to the feature-score hybrid up until the matching stage,

as the claimed identity is determined individually and the class labels are

combined using a voting scheme or boolean operation to make the final decision

as shown in 2.7.

Figure 2.7: Feature-decision fusion hybrid

Below are recent works that have employed the above hybrid fusion techniques. Tao

and Veldhuis (2008) proposed a score-decision hybrid fusion method. The authors

enhanced the framework by providing an adaptability feature of switching between

the two modes of fusion. The Receiver Operating Curves from components of match-

ing scores were generated, with the optimal operating combined with ”AND” or

”OR” rule to provide the final output (Kekre et al., 2011). The authors presented a

hybrid multi-modal system of face and iris traits using multiple feature extraction

algorithms. Multiple feature extraction algorithms including 1D transform of row

& column mean, Kekere wavelet and Kekere’s Fast Codebook Generation (KFCG)

were applied on the iris biometric, while Kekere’s wavelet was used to extract fea-

tures for the face biometric. The features obtained from the iris biometric were
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combined together form the first classifier while features from the face biometric

were combined with the fused iris feature vector to form the second classifier. The

third classifier being the feature set from the face biometric. KNN algorithm was

used to determine the class labels for finding the claimed identity for each classifier

constructed. Finally the class labels were combined at decision level to obtain the

final output.The proposed scheme outperformed its uni-modal counterparts.

The first attempt, of presenting a multi-biometric system that combined 3D tem-

plates of the ear and face at feature and score level was proposed by (Islam et al.,

2013). Feature level fusion was performed by pairing face features with the most

similar ear features while scores obtained after matching were fused using a closed

iterative algorithm combined with weighted sum rule. Results obtained by authors

showed that the proposed hybrid scheme was able to attain high-performance rate

on large datasets. Fathima et al. (2014) studied a multi-sensor, multi-algorithm

and multi-fusion based biometric system using face, finger-print and iris. Multiple

sensors were used to capture the biometric images , with face images captured from

visible and infra-red cameras were combined at sensor level to form fused face image.

Multiple feature extraction algorithm such as Block-Independent Component Anal-

ysis (B-ICA), Kalman filter, DCT and FLD were applied on visible face images to

obtain match scores, which was fused at score level to form the first classifier. While,

B-ICA, Information orientation and Gabor filter were used as feature extraction al-

gorithm on thermal face, finger-print and iris respectively to form the other three

classifiers. Final scores from the four classifiers were combined at decision level us-

ing dynamic weighted function to determine the claimed identity. Simulation results

improved performance of the proposed scheme over other fusion methods.

Islam (2014) proposed a new fusion approach for multi-unit iris recognition at fea-

ture and score level. He developed four Markov model classifiers based on feature

and score level fusion of left-right iris templates along with individual matchers of

left and right iris sub-system. After which the classifiers were combined with a

voting rule to determine the claimed identity. Experimental results obtained by

the authors show that the robustness of the proposed scheme were more efficient as

compared to similar works in literature. Similarly, a hybrid fusion based on feature

and score level using palmprint and face biometrics was proposed by (Farmanbar

and Toygar, 2015b). The proposed method combined both local and global fea-

tures of each modality using LBPH, Log-Gabor filter, PCA, and LDA, while, match

scores obtained from feature concatenation of each modality were combined using

sum rule. Simulations conducted by the authors showed significant improvement of
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Table 2.6: Hybrid fusion methods in biometrics

Year Literature Approach Modality Database Results

2008 Tao and Veldhuis (2008)
Score-decision

hybrid
face and

finger-print NIST BSSR1
ROC

analysis

2011 Kekre et al. (2011)
Feature-decision

hybrid
face

and iris
CVRPFD

and Phoneix Acc: 99%

2013 Islam et al. (2013)
Feature-score

hybrid face and ear UND-FRGC Acc: 98.4%

2014 Fathima et al. (2014)
Score-decision

hybrid

face,
finger-print

and iris

Self acquired,
self acquired,

CASIA Acc:78.55%

2014 Islam (2014)
Feature-score

hybrid iris CASIA
ROC

analysis

2015 Farmanbar and Toygar (2015b)
Feature-score

hybrid
face and

palm-print
FERET

and PolyU
Acc: 98.75%
Acc: 99.06%

the proposed method over other multi-modal systems.

Table 2.6 shows the summary of results gathered in the studies reviewed above on

decision level fusion.

2.2.7 Nature Inspired algorithm based fusion

NI algorithms are an evolutionary approach to learning, in which computing algo-

rithms mimic social behaviours of natural beings for example ants and birds. In

general NI algorithms have been applied to computing processes for optimisation

purposes. In biometrics, NI algorithms are basically used for feature selection, se-

lecting optimal fusion rules and minimising error rates to improve accuracy and

speed of the recognition process. Therefore, popular NI algorithms used in biomet-

rics and successes reported in the literature are explored. Examples include:

(a) Genetic Algorithms (GA)

Genetic algorithm belongs to a set of evolutionary algorithms (EA) which

generate optimal solutions to search problems by mimicking the process of

natural selection (Giot and Rosenberger, 2012). It initializes a population at

the beginning of the process and evaluates each member of the population

using a fitness function to determine the probability of selection in creating

the next generation of off-springs. The process continues until a solution that

satisfies minimum criteria is met.

(b) Particle Swarm Optimization (PSO)
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It is a computational procedure that provides an optimal solution by improving

the candidate solution to meet measured criteria. It was developed by Kennedy

and Eberhart to imitate the social behavior of birds in the flock and means

in which they exchange information to solve optimization problems (Kennedy

and Eberhart, 1995; Adewumi and Arasomwan, 2014, 2015). More of PSO

will be discussed in chapter four.

(c) Ant Colony Optimization (ACO)

It is one of the artificial intelligence techniques for solving complex optimiza-

tion problems. It mimics the social behavior of ants in finding their way

to-and-fro from a food source to their colony. The logic of the algorithm fol-

lows the manner ants walking to, and from, a food source, as they deposit

chemical substances called pheromones. Other ants follow the path in which

concentration of pheromones is strongest. This forms a pheromone trail that

directs other ants to the food source (Saleh and Alzoubiady, 2014).

In the forthcoming section, a report on the performance of the algorithms explored

above and how they have been applied in literature is discussed. Altun et al. (2008)

proposed a multi-modal system based of fingerprint and iris biometric. They em-

ployed a feed-forward neural network for feature extraction of both modalities, due

the size of the fused feature vector, GA was applied to pick the optimal set of fea-

tures that effectively speed up and improve the recognition rate. The test results

obtained from simulation by the authors showed the feature selection process im-

proved both the accuracy and speed of the recognition process. The performance

improvement of biometric systems by combining their error rates was proposed by

(Giot et al., 2010). The authors focused on using GA to learn optimal parameters of

score level fusion schemes for improving computation time and accuracy. They also

proposed an algorithm for the EER of each uni-model system, which was used was as

a fitness function for the GA to optimise the parameters of score fusion techniques

like weighted sum and product rule. Simulation results reveal that the proposed

scheme reduced the computation time and EER.

Genetic programming for multi-biometric systems was presented by (Giot and Rosen-

berger, 2012). They proposed the use of GA to select the optimal score fusion

schemes (discussed in 2.2.1), in order to determine the claimed identity. The pro-

posed scheme was compared with other fusion schemes like weighted-sum and SVM

and it was found that its performance was similar or better than other fusion meth-

ods in literature when tested on different biometric datasets. Roy and Kamel (2012)
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proposed a new adaptive multi-modal biometric fusion algorithm which is a com-

bination of Bayesian decision fusion and PSO. Bayesian decision was used to fuse

decision obtained from each individual modality while PSO was used to find the op-

timal system operating point (Threshold) that gives the desired system performance

and achieve the required security level. Results obtained showed that the proposed

system achieved the desired security level.

Khalifa et al. (2013) used Choquet integral and GA in the design of a multi-biometric

system made up of face, fingerprint, and palm-print. They used the GA to obtain

the optimal sets of fuzzy measurements from the Choquet integral for performing

biometric score fusion of match scores. Results obtained by the authors revealed

that the proposed scheme’s EER was lower than other fusion schemes in literature as

well its uni-modal counter-parts. An adaptive multi-modal system using PSO to au-

tomatically obtain the desired system performance based security level requirements

was presented by (Aly et al., 2013). This was achieved by using PSO to dynamically

select the optimal fusion rule which minimised the global cost of both rejecting a

genuine user and accepting an impostor. The proposed scheme was validated using

iris, fingerprint, and finger-knuckle, and results showed that multi-modal systems

performed better than their uni-modal counter-part.

Eskandari et al. (2014) presented a face-iris multi-modal system using local and

global feature extractors like LBPH, mPCA, spPCA, LDA, PCA respectively. PSO

was used for feature selection to obtain the sets of local and global features that will

give the best recognition rate for the face biometric. Match scores of the optimally

fused face vector were combined with match scores of LBPH iris feature vector

at score level using weighted sum rule. Results obtained by the authors showed

performance improvement for the proposed system as compared to other similar

works in literature. Gogoi and Bhattacharyya (2014) presented an efficient method

for decision level fusion of fingerprint and iris using ACO. Match scores were obtained

from both modalities and ACO was used to select the optimal parameters and fusion

rule to derive the best system performance. Results obtained by the authors show

that the proposed system performed satisfactorily after been tested on a public

available dataset.

Canuto et al. (2015) investigated the importance of an optimised ensemble on can-

cellable multi-biometric systems using face and voice templates. They used bio-

hashing, interpolation and BioConvolving algorithms to convert the features set

obtained from face and voice biometric into encrypted templates. Afterwards GA

was used for feature template selection to perform feature fusion and weight selec-
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tion for biometric score fusion. Results showed that the inclusion of GA into the

ensemble system improved its accuracy. In another study, (Amioy and Ajay, 2015)

presented an adaptive multi-modal system using ACO for selecting key parameters

like weights, decision threshold, and fusion rule, in order to obtain the desired sys-

tem performances in accordance to changes in security levels. The proposed scheme

employed a weighted product and sum rule for fusion and validated the scheme us-

ing multiple biometric sets including Palmprint-iris, face-voice, and fingerprint-face.

Results presented by authors showed that the proposed adaptive scheme operated

at a lower error rate comapared to other studies recoreded in literature.

Table 2.7 shows the summary of results of works reviewed above on NI algorithm

based fusion techniques.

Table 2.7: NI algorithms based fusion methods in biometrics

Year Literature Approach Modality Database Results

2008 Altun et al. (2008)
GA

and ANN
finger-print

and iris

self
acquired
dataset Acc: 99:3%

2010 Giot et al. (2010)

GA and
Weighted

sum,
product rule

face and
keystroke

AR
and

GREYC EER: 0.07%

2012 Giot and Rosenberger (2012)

GA,
Weighted sum
product rule

face
and finger-print

BSSR1
and BANCA

HTER :0.4%
HTER:0.075%

2012 Roy and Kamel (2012)
PSO and

Baysian rule

face,
iris and

gait features
ORL,CASIA-iris
and CASIA-gait GAR: 96.40%

2013 Khalifa et al. (2013)

GA and
Choqet
integral

face,
finger-print

and palm-print

face94,
HKPU,

and HFR EER: 0.46%

2013 Aly et al. (2013) PSO

iris,
finger-print and
finger-knuckle

CASIA,
PolyU and

self-acquired

GAR: 97.12%
GAR: 98.33%
GAR: 98.58%

2014 Eskandari et al. (2014)

PSO and
weighted sum

rule face and iris

FERET,
BANCA

UBIRISv2
and ORL Acc: 97.5%

2014 Gogoi and Bhattacharyya (2014)

ACO,
”AND”

and ”OR”
iris and

finger-print
CASIA

and FVC EER:0.01%

2015 Canuto et al. (2015)

GA
sum,

K-NN and SVM face and voice
AR

and TIMIT

Acc: 96.86%
Acc: 95.13%
Acc: 94.67%

2015 Amioy and Ajay (2015)

ACO,
weighted sum,
and product

face,
palm-print,

iris,
and finger-print

IITD,
BSSR1 and
XM2VTS

ROC
analysis
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2.3 Fusion in serial mode

This mode of fusion processes modalities in sequence rather than processing simulta-

neously as in the case parallel fusion. An extent of flexibility in terms of processing

is introduced as the first biometric can be used to authenticate the user based on

its confidence level without considering the second modality (Zhang et al., 2014).

Furthermore, only images similar to the probe image are considered when processing

the second modality, which improves the accuracy of the system (Ramadan et al.,

2015). Figure 2.8 shows the general architecture for fusion in a serial mode using

two modalities sequentially. Below are works under this fusion mode and they are

discussed in the following paragraphs.

Figure 2.8: Architecture for fusion in serial mode

Marcialis and Roli (2007) proposed a serial fusion scheme consisting of the face and

fingerprint matchers. The authors proposed a lower and upper threshold at zeroFRR

to ensure genuine users are not rejected and zeroFAR to ensure impostors are not

accepted. The two threshold values were used to determine if the second biomet-

ric will be required to find the claimed identity. This was achieved by evaluating

whether the match score of the first biometric was greater than the upper threshold

in which the user will be termed as genuine. In cases where the match score was less

than the lower threshold, the user was termed as an impostor, otherwise, the second

biometric is called up to make the final decision. Simulation results revealed that

the sequential fusion of fingerprint and face performed better than that of face and

fingerprint systems. A novel serial fusion scheme with a mathematical model for

combining two sequential matchers was proposed by (Marcialis et al., 2009). The

authors derived analytical relationships between the fused system and the individ-

ual matchers to predict the best sequence of unimodal systems that will provide

the best trade-off between the performance of the system and the verification time.

Simulation results validated with different multi-modal databases were compared

with fusion schemes in parallel mode.
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Table 2.8: Summary of serial fusion in biometrics

Year Literature Approach Modality Database Results

2007 Marcialis and Roli (2007)
Threshold

comparison
face and

finger-print
AR and

FVC2000-DB2
ROC

analysis

2009 Marcialis et al. (2009)
Threshold
analysis

face and
finger-print

AR and
FVC2000-DB2

ROC
analysis

2010 Marcialis et al. (2010)

ROC and
error

estimation
analysis

face and
finger-print NIST BSSR1

ROC
analysis

2014 Zhang et al. (2014)

semi-
supervised
learning

face,
finger-print

and gait SDUMLA

Acc:96.4%
Acc: 98.6
Acc:99.0

Marcialis et al. (2010) presented a theoretical framework for a serial fusion of mul-

tiple unimodal systems for performance rating. The authors used the error rates

(FRR and FAR) within the ROC curves of each matcher to analytically select the

best sequence of unimodal systems that will provide the best accuracy. Also con-

sidering that the ROC curves were affected by error due to bad estimation of the

error rates for each matcher, the authors proposed a mathematical model for the

estimation of errors to accurately provide the level of acceptability of the system.

A novel serial multi-modal system using semi-supervised learning was proposed by

(Zhang et al., 2014). The basic concept behind the framework was to use more

user acceptable traits at the beginning of the process chain and improve weaker

traits using semi-supervised learning. This was achieved by coupling relationships

between weaker and stronger traits. The proposed system was based on two pro-

totype biometric traits; face-fingerprint and gait-fingerprint. Results obtained from

simulation showed that the proposed system possessed the capability to boost user

convenience and system performance.

Table 2.8 shows the summary of results from the works reviewed above for fusion in

serial mode.

2.4 Summary

Different fusion schemes for combining two or more biometrics in order to improve

accuracy have been proposed in several studies. Hybrid systems, are perceived to

perform better than single fusion schemes because they combine two more levels of

fusion to provide the final output while NI based algorithms increase computation

speed by reducing the dimension of feature vectors. In the review, it emerged that



Section 2.4. Summary Page 47

most hybrid systems are hinged on the combination of two levels of fusion to de-

termine the claimed identity. In cognizance of that, this study proposes a hybrid

fusion mechanism for face and iris biometrics that combines fusion at more than just

two levels, including feature, score, and decision level. Furthermore, most studies

reviewed only propose a parallel architecture in which both modalities are processed

simultaneously; with less work on serial fusion. More so, serial fusion has not been

used to tackle the problem of large class imbalance (to best of my knowledge) of

biometric data in literature . Therefore, a serial fusion mechanism using BPSO and

(iRVM which solves the problem of large class imbalance by reducing the number

of impostor scores is proposed.



Chapter 3

Feature Extraction Algorithms

3.1 Introduction

Prior to the fusion of multiple pieces of evidence from different modalities, feature

extraction will have to be performed to select the salient information in the biometric

image. In most cases, a two-dimensional image is reduced to a one-dimensional

feature vector or a set of keypoint descriptors that are stored as templates in the

biometric database. This chapter therefore is an exploration of feature extraction

algorithms used for obtaining respective features from face and iris modality. A face

and iris modality has been chosen for this research work because face images are

non-intrusive and iris traits are accurate and stable over time. Moreover, the iris is

located on the face region, therefore, a single sensor can be used to capture both

modalities reducing the time and cost of acquisition. Here, five standard feature

extraction algorithms are considered and they are divided into two groups namely:

local and global methods (Eskandari et al., 2014).

The local feature extraction methods used in this study extract features based on a

sub-region defined within the image rather than considering the image as a whole.

This operation is repeated across the whole image until all the sub-features are

extracted. Global feature extraction methods, on the other hand, operate on the

image as a whole to extract features for recognition. One of the main merits of using

local feature extractors is that it is robust to partial illumination and occlusion that

may occur at some regions in the image.

This chapter unfolds as follows; First a description of the global and local feature

extractors is given, followed by, a description of techniques employed for face and

iris recognition. The face and iris datasets used are also described, along with the

data protocol used for performing experiments and finally, experimental results for

the individual face and iris system are presented.

48
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Figure 3.1: Mean image of the training set

3.2 Global methods

3.2.1 Principal Component Analysis (PCA)

In general, images are of high dimension given that they are represented in two

dimension space of size m× n. Therefore, for every image, there lies mn number of

pixels in that space, in which only a few number of pixels carry useful information.

Therefore, PCA is used to transforms a group of correlated variables to a smaller

group of uncorrelated variables (Martinez and Kak, 2001). The logic behind this

method is to maximise the total scatter of the centered images in the training set.

Given a set of N training samples of images I1, I2, I3, · · · , IN . PCA algorithm is

computed as follows:

1. Convert the set training samples to row vectors x1, x2, · · · , xN

2. Compute the mean of the column vectors. The mean image of the training set

is given in Figure 3.1

µ =
1

N

N∑
i=1

xi (3.2.1)

3. Calculate the covariance matrix S

S =
1

N

N∑
i=1

(xi − µ)(xi − µ)T (3.2.2)

4. Compute the eigenvectors and eigenvalues of the covariance matrix S

Svi = λivi for i = 1, 2, · · · , N (3.2.3)
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where v and λ are eigenvectors and eigenvalues respectively.

5. Select the eigenvectors or eigenfaces corresponding to the largest p eigenvalues.

Figure 3.2 shows samples of eigenfaces computed.

Figure 3.2: Sample of eigenfaces computed from training set

6. Compute the projections or principal components Y

Yi = [v1, v2, · · · , vp]T (xi − µ) (3.2.4)

where Yi represents the feature vector for image Ii

A feature vector of 1× p dimension is obtained, where p ≤ N and N is the number

of training set.

3.2.2 Linear Discriminant Analysis (LDA)

LDA is similar to PCA in the sense that both try to project data into a given

vector space. Unlike PCA, LDA attempts to model the class difference inherent

in the training data. It acheives this by maximising variance between classes and

minimising varinace within classes or in simple terms; it clusters similar classes

together and seperates different classes far away from each other. (Martinez and

Kak, 2001).

Given a set of N training samples of images I1, I2, I3, · · · , IN with image class

1, 2, · · · , C. LDA algorithm is computed as follows:

1. We convert the set training samples to row vectors x1, x2, · · · , xN with image

vectors from C classes defined as X = {X1, X2, · · · , XC}

2. Compute PCA on the dataset to project data to (N − C) dimension space.
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3. Compute the total mean of all images in dataset and mean of images for each

class.

µ =
1

N

N∑
i=1

xi

for i ∈ {1, 2 · · · , C}

µi =
1

|Xi|
∑
xj∈Xi

xj

(3.2.5)

4. Compute the within-class and between-class scatter matrix Sw and Sb

Sw =
C∑
i=1

∑
xj∈Xi

(xj − µi)(xj − µi)T

Sb =
C∑
i=1

(µi − µ)(µi − µ)T

(3.2.6)

5. Find the projection matrix W such that maximizes the class separability.

argmax
W

|W TSbW |
|W TSwW |

(3.2.7)

where W is computed as W = W T
ldaW

T
pca (projects samples to (C−1) dimension

space. Where Wlda and Wpca are LDA and PCA eigenvectors.

A feature vectors of size 1× (C − 1) is obtained, where C represents the number of

classes inherent in the data. Figure 3.3 shows an example of fisher faces computed

for the face biometric.

Figure 3.3: Sample of fisher faces computed from training set
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3.3 Local methods

3.3.1 Local Binary Pattern Histogram

The basic concept of LBPH is an 8-bit or 16-bit operator used on an area of the

image (3 × 3 or 9 × 9) such that the neighboring pixels greater in value than the

center pixel are assigned a value of 1, otherwise 0 is assigned (Ahonen et al., 2004).

Then the histogram is constructed for labels to be used as texture descriptors. A

basic LBP operator is shown in Figure 3.4

Figure 3.4: Basic LBPH operator

After this text descriptor was developed, it was noticed that fixed neighborhood

could not efficiently describe details of different scales. Therefore, the operator was

extended to use the circular neighborhood as shown in Figure 3.5 (Ojala et al.,

2002). A circle with specified radius is defined within every block of the image in

which the sampling points (neighbors) are located at the edge of the circle. For every

Figure 3.5: Extended LBP (8,2) oeprator

neighborhood defined within the image it is generally described as (P,R), where P is

the number sampling points on the circle and R is the radius of the circle. For given

point (xc, yc) the new values for the neighboring pixels (xp, yp) can be calculated as

follows:

xp = xc +Rcos(
2πp

p
)

yp = xc +Rsin(
2πp

p
)

(3.3.1)

Finally, spatial histograms are generated as feature vectors of size (1×N ×K) are
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obtained, where N represents the number of the training set and K represents the

number partitions (Azom et al., 2015).

3.3.2 sub-pattern PCA (spPCA)

This is a variant of PCA in the sense that images are first turned into row vectors

and divided into k sub-patterns (Liu and Lu, 2012). PCA is then performed on each

sub-pattern group of the training set. Below describes the step by step process for

Figure 3.6: Images divided in sub-patterns of spPCA

implementing spPCA:

Given an N training set of images I1, I2, I3, · · · , IN of size m× n

1. convert every image in the training set in row vectors x1, x2, · · · , xN

2. divde the images in the training set into K sub-patterns as shown in Figure

3.6
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3. Compute the jth sub-pattern mean as :

µj =
1

N

N∑
i=1

xij for j = 1, 2, · · · , K (3.3.2)

4. Compute the jth sub-pattern covariance matrix as :

Sj =
1

N

N∑
i=1

(xij − µj)(xij − µj)T (3.3.3)

5. Then select the jth sub-pattern eigenvectors v
(j)
1 , v

(j)
2 , · · · , v(j)p with the largest

eigenvalues.

6. Since image Ii is partitioned into sub-patterns {xi1, xi2, · · · , xiK}. also the fea-

ture vector Yi corresponding to image Ii will be partitioned into sub-patterns

{Yi1, Yi2, · · · , YiK}. Therefore:

Yij = [v
(j)
1 , v

(j)
2 , · · · , v(j)p ]T (xij − µj) (3.3.4)

A feature vector of 1× p dimension is obtained for every sub-pattern group. where

p ≤ N and N is the number of the training set.

3.3.3 Modular PCA (mPCA)

This is also a variant of PCA that divides the image into blocks and then performs

PCA on the set of divided images as shown in Figure 3.7 (Liu and Lu, 2012). mPCA

is implemented as follows:

Figure 3.7: Dividing an image into 3× 3 block for mPCA

Given an N training set of images I1, I2, I3, · · · , IN of size m× n

1. Divide every image Ii of size m× n into blocks of size p× q
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2. Reshape each block into a mn
pq

row vector xij

3. Compute the mean of all blocks for all images in the training set

µ =
1

N × p× q

N∑
i=1

p×q∑
j=1

xij (3.3.5)

4. Compute the covariance matrix S as :

S =
1

N × p× q

N∑
i=1

p×q∑
j=1

(xij − µ)(xij − µ)T (3.3.6)

5. Then select the eigenvectors v1, v2, · · · , vp with the largest eigenvalues.

6. The we compute the feature vectors Yij by projecting sample xij to the eigen-

space.

Yij = [v1, v2, · · · , vp]T (xij − µ) (3.3.7)

A feature vector of 1× p dimension is obtained for every sub-pattern group. where

p ≤ N and N represents the number of the training set.

3.4 Face recognition

Both local and global feature extraction algorithms have been applied to the face

to obtain shape and texture based features. For the global methods, eigenvectors

belonging to non-zero eigenvalues are extracted for computing feature vectors of the

global methods. With regards to local methods, N = 9 partitions have been used

for computation purposes. Meaning that each image in the training set was divided

into 3 × 3 block. For the LBPH method, we have employed the (P,R) circular

neighbourhood operation. In this study, P = 8 and R = 1. Finally, Euclidean

distance was employed in calculating match scores between the test and training

images using equation 3.4.1
N∑
j=1

‖ X − Yj ‖2 (3.4.1)

where X represents the projection of the test sample Yj is the projection of the jth

image in the training set for j = 1, 2, · · · , N and N represents the number of images

in the training data.
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3.5 Iris recognition

Iris images are retrieved under different conditions for example under visible and

infra lights, which determine the level of noise in these images. However, in ideal

situations, the iris and pupil boundaries form a uniform concentric circles, in which

using an edge map together with Hough transform works perfectly (Sim et al., 2014).

However, this is not always the case as most iris images are captured with noise due

to specular light and occlusion by the eyelids. In order to provide a solution to this

problem, first, noise due to specular light and occlusion will have to be removed

and secondly, the iris and pupil boundaries will then be extracted as contours. In

achieving this, two pre-processing techniques will have to be undertaken, namely:

3.5.1 Segmentation

In this study, the iris and pupil boundary are extracted the Viterbi algorithm (Su-

tra et al., 2012). Owing to the existence of noise due specular light in the iris

image, the white holes present in the pupil (as shown in Figure 3.8) were filled us-

ing morphological opening. After which the pupil became the darkest region in the

eye image, therefore, pupil center (xp, yp) was roughly estimated. This guided the

search for Viterbi algorithm to estimate the sequence of radii {R1, R2, · · · , Rn} and

{θ1, θ2, · · · , θn} that accurately defined the pupil contour. Once the pupil contour

was defined least square fitting was applied to define the pupil circle (the accurate

pupil center was determined). Furthermore, the accurate pupil center was used as a

rough estimate for the Viterbi algorithm to find the accurate iris contour and its was

found using the same method employed for finding the pupil center. Once the iris

center was determined, an iris mask was built to extract the iris concentric circles

from the eye image (as shown Figure 3.9).

Figure 3.8: Iris image captured with noise due specular light

Prior to applying Viterbi algorithm, anisotropic smoothing was performed to pre-

serve important edges followed by a Sobel filter to create an edge map. After the
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pupil and iris contour estimation, the noise due to the occlusion of the eyelashes

was removed by using Full Width at Half Maximum (FWHM) based on Gaussian

density function (Sutra et al., 2012). Pixel Ii,j is an occlusion if:

| Ii,j − µ |= 2.35σ (3.5.1)

Where µ and σ refers to the mean and variance of the pixel intensities of the

(a) (b)

Figure 3.9: Binary iris mask (a) and Segmented iris image (b)

segmented iris image.

3.5.2 Normalisation

In this process, Daugman’s rubber sheet model was adopted, as it remaps and

unwrap the iris template from cartesian coordinates to a non-concentric polar coor-

dinates (Daugman, 2004). Coarse pupil and iris contours are detected using Viterbi

algorithm by selecting the minimum number of noisy points and angles that define

a closed contour.

(a) extracted iris image

(b) normalized rectangular iris sheet

Figure 3.10: Iris normalization

Let L and B represent the length and breadth of the rectangular sheet. compute
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θi ∈ [0, 2π] such that:

θi = 2π
i

B
, i = 0, 1 · · ·B (3.5.2)

Let (xp, yp, φp) and (xr, yr, φr) represent coordinate points of the coarse pupil and

iris contours respectively where x and y are coordinate point of the radius relative

to the center and φ is the angle of non-regular sampling. An estimate (Xr
i , Y

r
i )

corresponding to θi for two nearest points s, s + 1 as shown in Figure 3.11. The

(Xr
i , Y

r
i ) are computed as follows:

Xr
i = (1− α)xsr + αxs+1

r (3.5.3)

Y r
i = (1− α)ysr + αys+1

r (3.5.4)

α =
θi − φsr
φs+1
r − φsr

(3.5.5)

The same process is carried out to estimate the pupil points (Xp
i , Y

p
i ) corresponding

to θi. In Figure 3.12 a displays the mapping of the extracted iris in cartesian co-

ordinate to polar coordinates. The normalised iris image can be passed to any

of the feature extraction algorithms described above to obtain its feature vectors.

Moreover, euclidean distance in equation 3.4.1 is employed to obtain match scores

for the iris modality.

Figure 3.11: Computing coordinate points (Xr
i , Y

r
i )

3.6 Datasets

In order to validate the above methods, two face datasets and an iris dataset were

employed . Also a chimeric dataset was constructed from these three datasets to
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Figure 3.12: Mapping of iris image to rectangular rubber sheet

test the proposed fusion schemes which will be discussed in chapter four and five.

brief description of datasets used in this study is provided underneath.

3.6.1 Face datasets

ORL and Feret database has been used to construct both training and test face

data (Ahonen et al., 2004; Phillips et al., 1998). ORL contains 10 images each for

40 subjects. Each subject has images of size 112 × 92 with a different pose, facial

expression, and illumination conditions. The Feret database contains thousands

of images of size 512 × 768, also with varying illuminations and poses angle. The

images selected from Feret dataset were resized to that of its ORL counterpart using

a bi-cubic interpolation. The face database was constructed by combining ORL and

Feret dataset in the ratio 1:5 that is the ORL dataset makes up one fifth of the face

database. A mixed face dataset made of four images each for 200 users (total of 800

images) have been constructed. Here we have used three images for training and

the rest for testing.

3.6.2 Iris datasets

The CASIA iris-interval database contains images of the left and right iris of 249

subjects captured under the infra-red light (Tieniu and Zhenan, 2010). Here, 200

users have been selected from the database and constructed the training and test

set same as the face database.
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3.7 Experimental results

As mentioned earlier the two groups of feature extraction methods have been applied

on both face and iris modality and the performance of each unimodal system has

been expressed in terms of recognition accuracy and equal error rate.

Table 3.1: Recognition rates for uni-modal systems.

RR for face and iris (%)

Method ORL/FERET CASIA

PCA 70.38 72.36

LDA 69.96 84.56

LBP 76.13 83.87

spPCA 71.88 75.92

mPCA 76.15 77.13

Table 3.1 displays the recognition rate for both modalities. It is evident that the local

feature extraction methods like LBP and mPCA (bold numbers) performed better

than other methods for face recognition, while LDA, a global method produced the

best performance for iris recognition. This is because local methods operate on

sub-regions in the images rather the whole image as with global methods, making

it robust to varying illuminations and partial occlusion present in an image, which

is prominent with face images. It is seen that for both modalities, the variants of

PCA (spPCA and mPCA) perform better than the parent method PCA, because

both spPCA and mPCA both operate on sub-regions of an image rather than the

whole image in case of PCA.

Table 3.2: Error rates for uni-modal systems.

Error rates for face and iris (%)

Method ORL/FERET CASIA

EER min. TER EER min. TER

PCA 0.148 0.296 0.136 0.272

LDA 0.150 0.300 0.077 0.154

LBP 0.119 0.238 0.081 0.162

spPCA 0.141 0.282 0.120 0.240

mPCA 0.119 0.238 0.119 0.238
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Table 3.2 shows the EER and minimum TER (twice the EER) for every feature

extraction algorithm, once again LBP and mPCA had the lowest EER for face

unimodal system while LDA obtained the lowest EER for the iris unimodal system.

The ROC curve showing the performance of both modalities at different system

operating points as shown in Figure 3.13 and 3.14 are provided. For the face uni-

modal system, the area under the curve for both LBP and mPCA is lower than

all other methods confirming that both methods give the best performance for face

recognition. Likewise, for the iris uni-modal system, the area under the curve for

LDA is lower than any other method used.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

FAR

F
R

R

PCA
LDA
LBP

spPCA
mPCA

Figure 3.13: ROC curves for face uni-modal system

Figure 3.15 and 3.16 shows plots of FRR and FAR against the system threshold

operating points for the best matchers LBPH for face and LDA for Iris. In the two

plots it is evident that the graphs for FRR and FAR intersect and this point of

intersection defines the EER of the system. As seen from Figure 3.15 the point of
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Figure 3.14: ROC curves for iris uni-modal system
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Figure 3.15: Plot of FRR and FAR against different system operating points for
LBPH face

intersection falls between 0.1 and 0.2 as the EER of LBP face is given as 0.119 as

shown in Table 3.2, while from Figure 3.16 the point of intersection falls between 0

and 0.1 as the EER for LDA iris is given as 0.077 as shown in Table 3.2.

3.8 Summary

This chapter has given a description of feature extraction algorithms used to ex-

tract features from the face and iris. Also described the pre-processing methods

in segmenting the iris patterns from an eye image. Finally, experimental results of

the local and global feature extraction algorithms on the individual modalities are

presented and it is shown that local methods perform best for face modality as they

are more robust to varying illuminations and partial occlusions that may occur in
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Figure 3.16: Plot of FRR and FAR against different system operating points for
LDA Iris
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some regions in the image, while global methods perform best for the iris modality.



Chapter 4

Hybrid Fusion at Feature, Score

and Decision level

4.1 Introduction

The core of this chapter, is to present and discuss the proposed hybrid fusion which

combines three level of fusion namely; the feature, score, and decision level fusions.

As images pass through different modules in a biometric system, the level of in-

formation extracted from the image decreases, therefore, fusion at feature level is

expected to give that best accuracy, as it contains more information about each

modality. However, this is always not the case as features may contain redundant

values that reduce the recognition accuracy (Ross and Govindarajan, 2005). Fusion

at score level contains less information about modalities as only scores (scalar value)

are combined, however, provides the capability to combine modalities at different

noise levels present in each modality (Eskandari and Toygar, 2014). Decision level

fusion contains the least information about modalities because it only captures the

class labels, but it is often preferred because it is easy to implement (Tao and Veld-

huis, 2009). These three fusion level can be combined to form a hybrid fusion scheme

which compensates for the shortcomings of individual fusion methods to enhance

the performance of multi-biometric systems.

Hybrid fusion mechanisms have been studied in literature (mostly based on two

levels) and produced promising results as they harness the capabilities of different

levels of fusion to produce the final result (Fathima et al., 2014; Islam, 2014; Far-

manbar and Toygar, 2015b). This chapter commences with a description of the

proposed hybrid fusion and this is ensued by a presentation of the results obtained

from the experiment. Results obtained from comparing the proposed scheme with

other fusion mechanisms in literature will make the conclusion.

66
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Figure 4.1: Proposed hybrid fusion scheme, Key: FU = Feature level fusion, SU =
Score level fusion, DU = Decision level fusion

4.2 Proposed hybrid fusion scheme

Figure 4.1 shows the architecture for the proposed fusion scheme.For the individual

face and iris modality, the five feature extraction algorithms discussed in chapter

three are applied. Feature level fusion is then performed for each modality on the

feature vectors obtained from the five methods to form the first two classifiers. Next

a weighted score level fusion using matching scores retrieved from LBPH for face

and LDA for Iris is performed to form the third classifier. Outputs obtained from

each of the classifiers is then fused at decision level using the majority voting rule to

determine the claimed identity (genuine or imposter user). In the following sections,

the stages involved in building the proposed scheme are outlined.

4.2.1 Feature level fusion of face and iris vectors

After performing the pre-processing and feature extraction stages for both face and

Iris biometric templates, feature level fusion is performed for each of the face and Iris

templates separately. Considering that the magnitude and dimensions of features

obtained from each feature extraction methods might not be same. Z-score normal-

isation technique discussed in chapter two (equation 2.2.14) has been employed to



Section 4.2. Proposed hybrid fusion scheme Page 68

bring all feature values into the same range. For spPCA and mPCA methods each

image in the training data is divided into nine sub-patterns and a 3×3 block respec-

tively. Therefore, nine feature vectors per image are obtained from this methods,

together with single feature vector each from PCA, LDA, and LBPH to bring the

total number for feature vectors after fusion to twenty-one as shown in Figure 4.2.

Figure 4.2: Feature fusion of face and iris vectors, Key: P,L,LB,SP,M represent
features from PCA, LDA, LBP, spPCA and mPCA respectively

Let Xi and Yi represent features extracted from face and Iris respectively; where

i = 1, 2 · · ·N where N refers to the number of features extracted from each methods.

In this study N = 21, as single feature vectors are obtained per image for PCA,

LDA and LBPH methods, while nine feature vectors per image are each extracted

for spPCA and mPCA methods. Then the fusion of feature vectors Zf and ZI for

face and Iris respectively are expressed as:

Zf = {X1, X2 · · ·XN} and ZI = {Y1, Y2 · · ·YN} In order to perform recognition on

this method we consider two instances of the fused face vectors Z1f = {X11, X12, · · ·X1N}
and Z2f = {X21, X22, · · ·X2N}. An average Euclidean distance d is obtained as:

d =
S1 + S2 + · · ·+ SN

N
(4.2.1)

Where S1 = ‖ X21 −X11 ‖2 and SN = ‖ X2N −X1N ‖2 The process is also per-

formed for the iris template, then NNC is now used for classification.

4.2.2 Score level fusion of local and global methods

Score level of fusion is implemented based on LBPH for face and subspace LDA

for Iris because of their performance on the individual unimodal systems. Weighted

score fusion has been employed at this stage and it is computed as follows:(Eskandari
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Figure 4.3: Score level fusion LBPH face and LDA iris

and Toygar, 2014)

WS = WF × SF +WI × SI , where WF +WI = 1 (4.2.2)

Where WF and WI represents the reliability of each template towards the fusion

process. The weights W is evaluated as follows:

W =
1

EERi∑N
i=1

1
EERi

for i = 1, 2, · · · , N (4.2.3)

Where N represents the number of matchers. In this case N = 2, the first weight

WF for face is computed with EER obtained for the LBPH matcher (see Table 3.2)

and that of iris WI is computed using EER obtained form LDA matcher. Prior

to combining the scores, each score set from both LBPH and LDA matchers are

rescaled using Tanh normalisation discussed in section 2.2.1.1

4.2.3 Decision level fusion

In order to merge the three classifiers generated by feature and score level fusion,

a majority voting decision rule is used to combine the class labels obtained from

the classifiers. It picks the class label with highest median rating as the claimed

identity.
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4.3 Experimental results

In this section, results based on the proposed hybrid fusion scheme discussed above

are presented. The face and iris datasets used in section 3.6 are used to construct

a chimeric multi-modal dataset of 200 users to validate the hybrid fusion scheme.

The metrics for the training and test data is similar to that of unimodal systems

discussed in section 3.6. The performance of the system has been expressed in terms

of Recognition Rate (RR %)and Equal Error Rate (EER) as shown Table 4.1.

Table 4.1: Recognition rates for multi-modal systems.

Method RR (%)

Face-fused vector (Face-FV) 79.14

Iris-fused vector (Iris-FV) 82.56

Weighted-Score fusion (W-score) 94

Proposed hybrid scheme 96.3

The proposed method outperforms any other feature or score level fusion techniques

because it combines information from three different classifiers using the voting

method to make the final decision. This is in constrast to other methods which

make a decision based on either the feature level fusion or score level fusion. The

proposed system takes advantage of the rich information inherent in feature fusion

and ability to combine modalities based on noise level through weighted score fusion

to enhance the overall performance of the system. More so, the experiment above

indicates that fusing feature vectors with face and iris does not necessarily improve

performance of unimodal systems. This is evidenced by comparing the recognition

rates obtained for face and iris-fused vector in Table 4.1 and with top performers

like LBPH and LDA in Table 3.1

Table 4.2: Recognition rates for multi-modal systems.

Error rates for multi-biomtric systems

Method EER min TER

Face-fused vector (Face-FV) 0.104 0.208

Iris-fused vector (Iris-FV) 0.088 0.176

Weighted-Score fusion (W-score) 0.022 0.044

Proposed hybrid scheme 0.017 0.034
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Figure 4.4: Plot of FRR and FAR against different system operating points Face-FV
vector
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Figure 4.5: Plot of FRR and FAR against different system operating points Iris-FV
vector
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Figure 4.6: Plot of FRR and FAR against different system operating points proposed
hybrid fusion
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Table 4.2 shows the EER’s and min TER’s for the multi-biometric systems, as in-

dicated the proposed hybrid scheme obtained the lowest EER as compared other

multi-biometric systems, exhibiting its superiority. Furthermore, Figure 4.4, 4.5

and 4.6 shows the plot of FRR and FAR against the system operating threshold,

the point were the two graphs intersect defines the EER of the Face-FV, Iris-FV and

proposed hybrid fusion scheme. However, the point intersection for the proposed

hybrid fusion scheme (Figure 4.6) is lower than that of Face-FV (Figure 4.4) and

Iris-FV (Figure 4.5), showing that both FRR and FAR were reduced as compared

to Face-FV and Iris-FV. The ROC curves for the multi-biometric systems presented

above are also given in Figure 4.7. As seen the area under the curve of the pro-

posed system is smaller than the curve of any other method, showing that proposed

scheme gives the best performance at different operating points of the system. It

should be noted that the recognition of the proposed algorithm is performed of-

fline in the sense that output (including feature template, scores and class labels)

of every algorithm combined have been stored in the system and only retrieved by

the proposed algorithm upon request. This takes care of any time concerns on the

proposed algorithm.

Finally, the performance of the proposed hybrid fusion scheme is compared with

the other fusion schemes as seen in Figure 4.8 with the proposed giving the best

performance in term recognition accuracy and error rate over these fusion schemes

because it combines three levels of fusion to determine the claimed identity, while

other methods use a single or at most double fusion rule. It should be noted that

fusion compared here has been implemented to compare with the proposed scheme

due the variation in database size used in this research compared to the original

research papers.

Table 4.3: Comparison of recognition rates for state-of-the-art fusion schemes with
proposed scheme.

Method RR (%)

Sum-rule (Fakhar et al., 2011) 94.95

Product-rule Eskandari et al. (2014) 94.86

Weighted-sum rule Sim et al. (2014) 93.93

triangular-norm rule Hanmandlu et al. (2011) 94.75

Feature-score hybrid Farmanbar and Toygar (2015b) 91.58

Proposed hybrid fusion scheme 96.3
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Figure 4.7: ROC curves for Multi-biometric systems

4.4 Statistical Analysis

The aim of the statistical analysis is formally conclude at 95% confidence level (

α = 0.05) that the proposed hybrid fusion scheme performs better than some fusion

schemes in literature as shown in Table 4.3. Here, a paired t-test is used as the

number of samples is less than 30. Furthermore, the selection of training and test

set have been randomized for each simulation of the fusion schemes and results

shown in table 4.4.

(a) Parameters

proposed hybrid fusion: X1 = 96.3%, n1 = 10, S1 = 0.106

sum rule, product rule, Weighted sum rule, T-norms rule, Feature-score hybrid

: X2 = 94.95, 94.86, 93.93, 94.75, 91.58, n2 = 10,
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Figure 4.8: ROC curves comparing the proposed scheme with other fusion schemes

S2 = 0.563, 0.625, 0.991, 0.715, 1.827

Where X1 and S1 represents the average and variance of the recognition rate

for the proposed hybrid fusion scheme.

X2 and S2 represents the average and variance of the recognition rate for any

sum rule, product rule, Weighted sum rule, T-norms rule, Feature-score hybrid

(b) Hypothesis

Let H0 define the null hypothesis and H1 define the alternate hypothesis,

where H0 as the measure of changing from any of the fusion rule in T 4.3 to

proposed hybrid fusion scheme, and H1 is what is expected to be true, if the

null hypothesis does not hold.

H0 : X1 = X2

H1 : X1 > X2
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Table 4.4: Recognition Rate for proposed hybrid fusion and other methods over 10
runs

trials Proposed(%) Sum rule(%) product rule(%) Weighted-sum(%) T-norms(%) Feature-score(%)
1 96.63 96.37 96.2 96.04 96.28 94.43
2 96.17 94.10 94.09 93.69 94.15 90.11
3 96.87 95.69 95.69 94.75 95.6 93.33
4 96.65 95.19 95.36 93.91 95.08 91.17
5 96.07 94.51 94.33 93.51 94.41 90.16
6 95.88 94.16 94.08 93.07 94.11 91.04
7 95.96 94.38 94.19 93.53 94.09 91.51
8 96.14 94.48 94.14 92.44 93.52 91.23
9 96.25 95.52 95.51 94.58 95.39 90.95
10 96.38 95.15 94.98 93.80 94.90 91.89

Mean
1 96.3 94.95 94.86 93.93 94.75 91.58

Variance
1 0.106 0.563 0.625 0.991 0.715 1.827

Table 4.5: Result of statistical analysis

values
Proposed

vs Sum rule
Proposed

vs product rule
Proposed

vs Weighted-sum
Proposed

vs T-norms
Proposed

vs Feature-score
p-value 9.93× 10−5 7.46× 10−6 3.45× 10−6 1.33× 10−5 2.079× 10−5

t-stat 8.109 8.404 9.235 7.813 12.896

H1 is true iff, X1 −X2 > 0

(c) Calculation of t-statistic

The t-statistic is calculated to test the above hypothesis. The formula is given

by:

T =
d
SD√
n

(4.4.1)

where d represents mean of the difference X1 − X2 and SD is the standard

deviation of the difference X1 −X2

From Table 4.5 it is seen the following p-values calculated by comparing the proposed

hybrid fusion scheme with sum, product, weighted-sum, t-norm and feature-score

hybrid fusion rule is less than α = 0.05 (confidence level)in each case. Based on

this criteria, the null hypothesis H0 is rejected, therefore it can be concluded that

at 95% confidence level that results produced by the proposed hybrid fusion scheme

is statistically significant.
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4.5 Summary

This chapter was aimed at discussing the hybrid fusion methodology at feature,

score and decision level. The hybrid fusion involved a combination of classifiers

based on feature and score level fusion with a decision level fusion scheme. The

performance of the system was evaluated and it was revealed that proposed system

obtained improved performance as compared to its unimodal systems and other

fusion methods studied in literature.



Chapter 5

Serial fusion using BPSO and

iRVM

5.1 Introduction

In literature, a fusion of multi-biometric systems is often implemented in parallel

mode that is two or more modalities are processed simultaneously and then combined

either at feature, score, decision or rank level of fusion. The acquisition time for

multi-modal systems during identification is sometimes not favorable in terms user

convenience as each modality will have to be captured before recognition whereas

on the other hand, serial fusion is a cascaded approach that processes modalities

in sequence. The advantage of this fusion approach over the parallel mode is that

the total number of modalities used before the next modality is reduced which in

turn provides a balance between verification time, performance and acceptability

(Ramadan et al., 2015). Although, this fusion mode has been poorly investigated

literature, some work in this area show promising results for further research (Mar-

cialis et al., 2009; Zhang et al., 2014).

It is generally assumed in biometrics that the training data is available all at once and

might not change with time, leading to high recognition rates. However, according

to Mehrotra (2014) these assumptions are faulted due the following reasons:

• The training data may increase with time as users are enrolled into the system

in batches.

• Data classification in multi-biometrics involves making a binary decision be-

tween genuine and impostor score sets. However, biometric training data have

a high rate of class imbalance between the genuine and the impostor scores.

In biometrics, the number of genuine scores is O(n) (n is the number of users)

is always under-represented when compared to the number of impostor scores

that is O(n2) as seen in Figure 1.5. Large class imbalance is said to occur in

training data when the imbalance ratio IR is greater than 100 (Garcia and

79
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Herrera, 2009) :

IR =
N−

N+
(5.1.1)

Where N− represents the number of negative samples in this study impostor scores,

while N+ represents number of positive samples in this study genuine scores.

A serial fusion methodology using BPSO and Incremental Relevance Vector Ma-

chines (iRVM) is proposed in this chapter (Kennedy and Eberhart, 1997; Mehrotra,

2014; Arasomwan and Adewumi, 2014). Here, the serial fusion mechanism reduces

the number impostors scores prior to the selection of the second modality, thereby

reducing the effect of large class imbalance, while iRVM provides the capability to

train biometric data in batches. Finally, BPSO is used for feature selection to find

the best possible mix of local and global features that produce the best accuracy.

This layout of this chapter is presented as follows— Section 5.2 the architecture

of proposed serial fusion is presented, along with feature selection techniques and

iRVM formulation. Finally in Section 5.3, results from a simulation of the proposed

scheme are presented in detail.

5.2 Proposed serial fusion scheme

Figure 5.1: A serial fusion architecture for face and iris biometrics

Figure 5.1 shows the system structure for the proposed serial fusion scheme. First the

face images are pre-processed using histogram equalisation to improve the contrast

of the face images. Afterwards, features are extracted using global and local methods

alluded to in chapter three. Performing feature fusion with feature vectors obtained

each algorithm to form a fused feature vector of large dimension. Considering that

some features might be redundant and not contributing to the recognition accuracy,

BPSO is employed to select the optimal mix of local and global features that will
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provide the best accuracy. The selected features are combined at feature level and a

euclidean distance is used to obtain match scores. The iris images corresponding to

the top-k matchers are selected and pre-processed as in section 3.5 and LBP feature

extractor is used to obtain the feature vectors for the iris images. The genuine

and impostor scores are computed and they are passed as features to trained by the

iRVM classifier. The iRVM classifier makes a binary decision either to accept user as

genuine or reject the user an impostor. It also provides the Relevance Vectors(RVs)

which concatenated with data of the next training batch. Below is a description of

different modules that make up the proposed system architecture.

5.2.1 Feature selection with BPSO

PSO was first presented by Kennedy and Eberhart in 1995 (Kennedy and Eberhart,

1995). It is a nature inspired algorithm that mimics the social behaviour of birds

in a flock. Each particle (representing a bird in flock) is considered as point in n-

dimensional feature space. The ith particle is represented as Xi = {xi1, xi1, · · · , xid}
where d represents the number of feature extraction algorithms used. Each particle

has the memory to hold its best position visited during the search process and its

denoted as pbest ( the position with best fitness). The particle’s position amongst all

the population that has the best fitness is denoted as global best gbest. The velocity

of the ith particle is denoted as vi = {vi1, vi1, · · · , vid} and it is updated at each

iteration using equation 5.2.1

vid = wvid + c1× rand()(pid − xid) + c2× rand()(pgd − xid) (5.2.1)

xid =

1, if 1
1+exp−vid

> c1()

0, otherwise.
(5.2.2)

Where w represents the inertia weight and set 1 to balance global and local explo-

ration. Accelerations c1 and c2 represents stochastically the pull of each particle

toward the global and local best positions, these values has been set as 2. rand() is

a random value uniformly distributed in the interval [0, 1]. At the end of iteration,

if xid = 1 then all the features for the dth feature extraction algorithm are chosen,

otherwise it not chosen as shown in Figure 5.2.

10 particles have chosen with 20 iterations performed. Here, the fitness function is
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Figure 5.2: An example PSO bit particle

to maximize the rank-k identification rate as in equation 5.2.3

E =
Rk

N
(5.2.3)

where E is the rank-k recognition rate, Rk is the number of correctly matched labels

in the selected k-top matchers and N refers to the number of images in the database.

Once the optimal features have been determined, feature level fusion is performed

using technique outlined in section 4.2.1 to obtain a fused feature vector. Below in

algorithm 1 shows pseudo-code for how BPSO is applied for feature selection.

Algorithm 1 BPSO algorithm

1: for each i : P intialize population of swarm along with their velocity and position
do

2: Fitness = Rank-k recognition rate for Xi from eq 5.2.3
3: if Fitness > BestFitness of the ith particle
4: Update the BestFitness of the ith particle
5: Pi = Xi

6: if Fitness > GlobalBestFitness
7: Update the GlobalBestFitness
8: Pg = Xi

9: for j = i : d do
10: Update vid using eq 5.2.1
11: Update xid using eq 5.2.2
12: end for
13: end for

5.2.2 Relevance Vector Machines (RVM)

In this section, the RVM algorithms are presented for a classification problem, which

forms building blocks for iRVM that will be discussed in the next section. RVM

model which provides sparse solutions comparable to SVM using fewer basis func-
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tions was first proposed by (Tipping, 2001). The model exploits Bayesian learning

framework to provide accurate probabilistic predictions on classification problems.

Although SVM is considered as an advanced technique for regression and classifica-

tion, it still suffers from the following demerits (Tipping, 2001):

• Predictions made by SVM are not probabilistic, because it outputs a binary

value for classification. Considering that conditional probability provides in-

formation on the uncertainty of predictions made by the classifier

• The number of support vectors is quite large, which increase as the size of

dataset increases.

• SVM requires tunning of the regularization parameter ”C” during the training

phase.

• The kernel function must pass the test of Mercer’s condition.

On the other hand, RVM is a fully probabilistic classifier which introduces prior

probabilities over each weight governed by a set of hyperparameters. Due to its

sparse nature, the number of relevance vectors required to perform classification is

relatively small, hence reducing the testing time. RVM also requires fewer parame-

ters to be optimized during the training phase.

According to Tipping (2001) RVM is of the form:

y(x,w) = wTφ(x) (5.2.4)

where x is the input vector, w is the vector of weights,φ(x) is a set of basis functions

and y is the output. RVM is a probabilistic classifier that does not suffer from the

limitation of SVM listed above according to (Tipping, 2001). It considers weights

with non-zero values and these weights are called the relevance vectors. RVM is

perceived to perform better than SVM in terms of classification as it uses fewer

kernel functions.

Given an input-target pair {xn, tn}Nn , a two class Bernoulli distribution is required to

predict the posterior probability of class labels given the input x. The generalization

of the linear model is performed by using a sigmoid function σ(y) = 1/(1 + e−y) to

y(x),the likelihood ratio can be given as:

P (t|w) =
N∏
n=1

σ{y(xn, w)}tn [1− σ{y(xn, w)}]1−tn (5.2.5)
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The aim of RVM is to estimate the most probable weight wMP that maximises the

likelihood ratio as defined in equation 5.2.5. This is achieved by using the laplacian

approximation method. Then wMP can be defined as (Tipping, 2001):

Σ = (φTBφ+ A)−1 (5.2.6)

wMP = ΣφTBt (5.2.7)

where A = diag(α1, α2, · · · , αn), and B = diag(β1, β2, · · · , βn) are diagonal of matri-

ces with α a vector of hyper-parameters and βn = σ{y(xn)}[1− σ{y(xn)}]. Σ is the

posterior convariance matrix over weights centered at wMP . The hyper-parameters

αi and β are updated as :

αi =
γi

w2
MP (i)

where γi ≡ 1− αiΣii

(5.2.8)

where wMP (i) is the ith posterior mean weight as computed from 5.2.7 and Σii is

the ith diagonal of the posterior convariance matrix computed in 5.2.6, also βi is

updated as :

β =
N −

∑
i γi

‖ t− φw ‖2
(5.2.9)

The convergence criteria to stop the iteration is given below:

δ =
∑
i

αn+1
i − αi (5.2.10)

Termination of the algorithm stops when δ < δτ where δτ is the threshold value.

Finally to predict a new value x′ , the output y is computed as : 5.2.11

y = wTMPφ(x′) (5.2.11)

Below the algorithm for RVM is presented in algorithm 2.

5.2.3 Incremental Relevance Vector Machines (iRVM)

In real life applications, training data arrives in batches i.e as new users are captured

into the system, both the old and new data is retrained to provide a model for

recognition. Resultantly therefore, the training time will continue to increase as

the number of users increase. RVM alone will not be suitable as matrix inversion

become a costly operation with a large dataset.
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Algorithm 2 RVM algorithm

1: Input the training set of scores vector s with dimension d and labels t
2: Generate the basis function φ = [φ(x1), φ(x2), · · · , φ(xn)]
3: initialize δτ , α and β
4: for δ > δτ do
5: A = diag(α) and B = diag(β)
6: Σ = (φTBφ+ A)−1

7: wMP = ΣφTBt
8: γi ≡ 1− αiΣii

9: αi = γi
w2

MP (i)

10: β =
N−

∑
i γi

‖t−φw‖2

11: δ =
∑

i α
n+1
i − αi

12: end for
13: Output relevance vectors R = x(wMP (index))

When a new batch arrives, iRVM uses only the relevance vectors obtained from the

training phase of the old batch, to be trained along with the new batch (Mehrotra,

2014). This approach is built on the assumption that only relevance vectors required

to make an accurate prediction and other training samples from the old batch can

be safely removed (Tipping, 2001). The concatenation of relevance vectors with the

new training batch helps to improve the decision boundary and avoids over-fitting.

a step by step process is given below:

• Step1 : Use RVM to train the initial data T1 and obtain the relevance vectors

RV1

• Step2 : When a new training batch T2 arrives, the relevance vectors RV1

obtained from the last training phase is concatenated with T2 to form the new

training data (T2 ⊕RV1). Where ⊕ represents concatenation.

• Step 3: The operation RVM-Train((T2 ⊕ RV1)) is carried out on the new

dataset to obtain the new relevance vector RVi with weights wi.

• Step 4: The above steps are repeated for training batch Ti for i = 1, 2, 3, 4, · · · ,m
where m is the number of incremental training batches. See Figure 5.3

The iRVM model can be described as :

y = wTMPφ(Tm ⊕RVm−1) (5.2.12)

The algorithm for iRVM is presented in algorithm 3.
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Figure 5.3: Block diagram showing training process for iRVM, RV is Relevance
Vectors
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Algorithm 3 iRVM algorithm

1: Input the training set batch Tm with data labels tm
2: for each batch m of the training set do
3: Tm = Tm ⊕ Rm−1 // concatenate new training batch with RV’s from the

previous training batch
4: Rm = RVM(Tm, tm)
5: end for
6: Output relevance vectors Rm

5.3 Experimental results

This section was aimed at presenting the results obtained through simulation. The

same face and iris dataset used in chapter three were used to validate the proposed

scheme. The genuine and impostor scores that were generated and passed to the

iRVM classifier, Table 5.1 shows the individual number of genuine, impostor scores

and IR before serial fusion is applied for face and iris modality. It is revealed that

there is a large class imbalance between the genuine and impostor scores, therefore,

classification based on these scores is likely to favor the impostor class. The ta-

ble shows the distribution of the genuine and impostor scores after the iris images

corresponding to the top-k face matchers have been selected, these values given for

different values of k. It also seen at k = 100 all the genuine scores are selected with

reduced number of impostor scores with IR of 50 which less than 100 (required for

large class imbalance) as in equation 5.1.1. The scores in Table 5.2 are divided into

test and training data, here 67% of the scores have been used for training and rest

for test as seen Table 5.3.

Table 5.1: Distribution genuine and imposter scores in parallel mode

Modality Genuine scores Imposter scores IR

face 600 119400 199
iris 600 119400 199

Table 5.2: Distribution genuine and imposter scores in serial mode

Modality k top-matchers Genuine scores Impostor scores IR

iris 25 597 8892 15
iris 50 597 16947 28
iris 75 597 23943 40
iris 100 600 30297 50
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Table 5.3: Training and test set for face and iris scores

Training set Testing set

Method k top-matchers genuine impostor genuine impostor

Iris 25 400 5958 197 2934
Iris 50 400 11354 197 5593
Iris 75 400 16041 197 7902
Iris 100 402 20299 198 9998

Table 5.4: Recognition rate for all k top-matchers

k top-matchers RR (%)

25 96.78
50 98.82
75 99
100 99.06

Simulation using the above training and test set has been performed with three

times random cross validation. Futhermore, the training set has been divided into

ten batches to perform incremental learning with iRVM. The performance of the

proposed serial fusion scheme based on the top-matchers selected are shown Table

5.4, obviously the best accuracy is obtained for k = 100 as contains all the genuine

scores needed for classification. Figure 5.4 shows the ROC curves for different top-

matchers and again the lowest EER is obtained when k = 100. The performance

of the proposed scheme with an iRVM classifier is compared with using SVM and

RVM classifiers (Vapnik, 1999; Tipping, 2001). As revealed in Table 5.5, the pro-

posed scheme with iRVM performs better than RVM classifier, while its ROC curve

intersects with that of the SVM classifier, meaning that at some operating points the

propsed scheme with iRVM performs better, while at some other point SVM clas-

sifier performs better. However, the training time required to fit a model is longer

than that of SVM (RVM the longest) because of the costly matrix computations

associated with RVM training process. iRVM takes less training time as compared

to RVM because the data is trained in batches rather than being considered as a

whole. Contrarily, SVM takes more time for making prediction as more SV’s are

used while iRVM and RVM takes lesser time for testing because few RV’s are used

for prediction. Finally, Figure 5.5 shows the ROC curve to compare the peformance

of the proposed serial fusion with iRVM and SVM classifier with the lowest EER

obtained for the iRVM classifier.
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Figure 5.4: ROC for different k top-matchers of the proposed system

Table 5.5: Time taken for different learning classifiers

Approach RR(%) Training time (secs) Testing time (secs) SV’s\RV’s

SVM 99 272 5.37 471
RVM 98.25 1892 0.026 20

proposed 99.06 386 0.025 20

5.4 Statistical Analysis

The aim of the statistical analysis is formally conclude at 95% confidence level (

α = 0.05) that the proposed serial fusion scheme outperforms other classifiers in

literature as shown in Table 5.5. Here, a paired t-test is used as the number of

samples is less than 30. The EER has been used as the metric to perform this test.
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Figure 5.5: Comparsion of iRVM with SVM classifiers

(a) Parameters

SVM and RVM : X1 = 0.00545, 94.86, n2 = 10,

S2 = 2.05× 10−8, 5.38× 10−8

proposed serial fusion scheme: X1 = 0.0048, n1 = 10, S1 = 6.88× 10−8.

X1 and S1 represents the average and variance of the EER for SVM and RVM

classifiers.

Where X2 and S2 represents the average and variance of the EER for the

proposed serial scheme.

(b) Hypothesis

Let H0 define the null hypothesis and H1 define the alternate hypothesis, where

H0 as the measure of changing from proposed serial fusion scheme to fusion
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Table 5.6: Equal Error Rate for proposed hybrid fusion and other methods over 10
runs

trials Proposed SVM RVM
1 0.0047 0.0053 0.0087
2 0.0047 0.0056 0.0087
3 0.0043 0.0053 0.0085
4 0.0046 0.0053 0.0088
5 0.0047 0.0055 0.0087
6 0.0048 0.0056 0.0087
7 0.0046 0.0053 0.0081
8 0.0047 0.0056 0.009
9 0.0051 0.0054 0.0086
10 0.0047 0.0056 0.0087

Mean
1 0.00469 0.00545 0.00865

Variance
1 6.88× 10−8 2.05× 10−8 5.38× 10−8

Table 5.7: Result of statistical analysis

values
SVM

vs proposed
RVM

vs proposed
p-value 3.99× 10−7 2.66× 10−12

t-stat 11.950 46.103

using SVM or RVM classifier , and H1 is what is expected to be true, if the

null hypothesis does not hold.

H0 : X1 ≤ X2

H1 : X1 > X2

H1 is true iff, X1 −X2 > 0

(c) Calculation of t-statistic

The t-statistic is calculated to test the above hypothesis using equation 4.4.1.

From Table 5.7 shows the results for the pair t-test for SVM and RVM classifiers

against proposed serial fusion scheme. This comparison has been done in the reverse

case as compared to section 4.4 because the EER is used as a metric for the test

rather than the recognition rate. The p-values obtained shows that it is less than

α = 0.05 for both cases, meaning that the null hypothesis is not accepted. This

shows that EER obtained in both cases is greater than the EER of the proposed

serial fusion, Therefore the results obtained for the proposed is statistical significant.
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5.5 Summary

This chapter proposed a serial fusion methodology using BPSO and iRVM. First the

optimal mix of local and global feature was obtained using the BPSO algorithm and

the face recognition was performed to obtain the top-k matchers. The iris images

corresponding with the top-k matchers are selected and used to obtain the genuine

and impostor scores for classification with iRVM classifier. The peformance of the

proposed scheme was compared with other classifiers like SVM and RVM. The best

performance was obtained with the proposed fusion scheme using iRVM, however

the training time was higher than that of the SVM classifier. Findings indicate that

proposed scheme is capable of reducing the effects of imbalance data and changes

in training data.



Chapter 6

Summary, Conclusions and Future

work

6.1 Summary

A lot of research dedicated towards improving the accuracy of the single biometric

system has been conducted. To achieve this, concerted efforts have been made to

minimise the drawbacks associated with the single biometric system through fusion

of more than one modality. In this research, work based on serial and parallel archi-

tectures and have been reviewed, alongside with fusion schemes employed. However,

fusion schemes in parallel mode, with improved performance over its unimodal sys-

tems were given more attention. it was gathered that, fusion schemes under this

mode have some limitations such as inconveniences caused to the user when cap-

turing multiple biometric templates, an increase in processing time and imbalanced

dataset. In order to address these challenges associated with parallel fusion, a serial

fusion has been proposed because it allows sequential fusion of two or more matchers

which provides a balance between processing time and performance of the biomet-

ric system. Nonetheless, promising as it may, this fusion mode has not received

adequate scholarly attention. Thus, two fusion schemes based on both the parallel

and serial modes have been proposed in this study. First, a hybrid fusion scheme

(parallel mode) that combines fusion at the feature, score and a decision level for

face and iris modality. Results obtained from experiments performed on this scheme

shows performance improvement over non-hybrid fusion schemes. Secondly, a serial

fusion using BPSO and iRVM is presented, which reduces the problem of imbalance

dataset during classification and allows for incremental learning on encountering

new batch of data.

To measure the performance of the two techniques, three different datasets namely,

ORL face, FERET face and CASIA iris have been employed. For the first set, local

and global feature extraction methods for individual face and iris modality are used

for experiment. Results revealed that local feature method provides the best accu-

racy of face recognition while the global feature methods give the best performance
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for iris recognition. The next set of experiments were performed on the hybrid

scheme with recognition accuracy of 96.34% and EER of 1.7% showing improved

performance over non-hybrid methods on the same dataset. Lastly, simulation re-

sults on the proposed serial fusion obtained a recognition rate of 99.06% and EER

of 0.47%, revealing improved performance over other fusion scheme alongside the

proposed hybrid fusion scheme.

6.2 Conclusion

The urgent need for more research into serial fusion schemes cannot be over-emphasized

as promising results have been obtained in previous works based on this fusion

scheme. Furthermore, a hybrid method of the nature-inspired algorithm with ma-

chine learning techniques applied on this can improve performance. One of the

two major issues affecting the performance of multi-biometric systems include the

rapidly changing training data (leading to large training data) and class imbalance

inherent in training data. Therefore, the need to develop adaptive fusion schemes

that can handle changes in training data and reduce the effect of class imbalance

inherent in the training data. In this research, two fusion schemes have been pre-

sented a hybrid fusion scheme in parallel mode and sequential fusion of face and

iris modalities using BPSO and iRVM. The outcome from the hybrid fusion showed

performance improvement over single fusion schemes. The serial fusion using a hy-

brid of nature-inspired algorithm and machine learning technique revealed that it

was capable of handling changes in training data and reduce the effect of class im-

balance. The results obtained from simulation showed improved performance over

other fusion schemes.

6.3 Future work

There are different areas that show room for enhancing the accuracy of multi-

biometric systems and during the course of this research, these areas have been

identified and categorized into three groups, which are discussed below:
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6.3.1 Machine learning approach

Machine learning methods have proved to be more effective when classifying a user

as genuine or an impostor for biometric systems. Academic work reviewed, shows

that trained classifiers provide better performance than that transformation-based

methods. However, this approach is mostly affected by class imbalance problem

and change in training data size. In this research, serial fusion together with iRVM

were used to tackle this problem. It was, however noticed that the training time

for iRVM was slow and more so sets of experiments had to be conducted to select

the best number of top-matchers for the iris template. This is not so favourable,

as biometric systems are real-time applications. The imperative therefore will be

investigating how the training time of iRVM can be reduced and propose techniques

that automatically select the top-matchers for the iris image. Furthermore, it would

be important to investigate the performance of multi-biometric systems using semi-

supervised learning methods in the advent of unlabeled training data given that ,

supervised learning methods have mostly been used for classifying genuine users and

impostors.

6.3.2 Hybrid fusion approach

In this study, a hybrid fusion at the feature, score, and decision level was inves-

tigated. However, there are little or no works reported on hybrid systems based

on sensor-feature, sensor-score, sensor-feature-score and feature-score-rank level of

fusion schemes. Research into this method will evaluate their performance against

existing hybrid systems.

6.3.3 Fusion mode approach

Although serial fusion schemes have been poorly investigated in literature, it will

be interesting to study their performance in both serial and parallel mode. Given

that only a few studies based on this dual mode have been conducted, systems

can combine the flexibility of serial based methods and rich information content of

parallel based systems to improve performance rates.
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