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ABSTRACT 

One of the major current concerns by conservationists is alien invasive plants due to their rapid spread 

and threat to biodiversity. The detection of Invasive Alien Plant Species (IAPs) can aid in monitoring 

and managing their invasion on ecosystems. In South Africa approximately 10 million hectares of 

land have been invaded. To combat this invasion, the Working for Water program was initiated in 

1995 aimed at manually removing them. Multispectral imagery can facilitate identification, assess 

removal initiatives and improve efficiency of IAP removal. The aim of this study is to determine the 

most appropriate sensor to detect three IAPs (Acacia podalyriifolia, Chromolaena odorata and Litsea 

glutinosa) and assess clearing programs of these species in two protected areas (Paradise Valley and 

Roosfontein Nature Reserves) within the eThekwini municipality, in KwaZulu-Natal province, South 

Africa using remote sensing. The three satellite sensors examined in this study included Landsat 7 

ETM+, SPOT 5 and WorldView-2. The study also assessed four image classifiers (Parallelepiped, 

Maximum Likelihood, Spectral Angle Mapper and Iterative Self Organising Data Analysis 

Technique) in the detection of the selected IAPs. These sensors and techniques were compared based 

on their level of accuracy at detecting selected IAPs. The results of the study showed that WorldView-

2 imagery and the Maximum Likelihood classifier had the highest overall accuracy (66.67%) , 

resulting in the successful classification of two (Acacia podalyriifolia and Chromolaena odorata) out 

of the three target species. This is due to the high spatial resolution of WorldView-2 imagery. This 

combination was then used to asses clearing of the selected IAPs by examining species distribution 

and density before and after clearing. Here the overall accuracies for the Paradise Valley and 

Roosfontein Nature Reserves were successful with accuracies above 85%. The density and 

distribution of all three IAPs decreased substantially in both sites except for the L. glutinosa species 

located in the Paradise Valley Nature Reserve which showed no significant decrease. These results 

show that geospatial data (especially remote sensing data) can be successfully used in both the 

detection of IAPs and the assessment of their removal. 
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PREFACE 

 
The work presented in this dissertation is the candidates own work and has not been submitted to 

another institute. This work has been supervised by Dr N.S. Ngetar and co-supervised by Dr S. 

Ramdhani. The study was conducted in the Paradise Valley and the Roosfontein nature reserves both 

located just West of Durban in the eThekwini Municipality, KwaZulu-Natal, South Africa. 

This study was undertaken to examine the potential of remote sensing as a research and management 

tool in invasion biology within the South African context. The format of this study is a series of 

individual, inter-related papers submitted or to be submitted to various Journals. The dissertation 

comprises of five chapters, three of these represent independent research articles two of which are 

under revision for publication. These include chapter three, which is submitted to the journal, 

Landscape Ecology (an international journal) and chapter four which is submitted to the South 

African Journal of Geomatics (a local South African journal). This dissertation is in line with the 

University of KwaZulu-Natal style manual; however there has been a degree of repetition due to this 

dissertation being written as a series of journal papers. In addition, the in-text referencing and 

reference list for each aligns with the authors guide for the South African Geographical Journal. The 

chapters included in this dissertation are as follows.  

 Chapter one is a general introduction to the study. 

 Chapter two serves as literature review based on what has been achieved so far in the field of 

invasive alien plant spectroscopy, current challenges and the future of remote sensing in 

invasive plant detection and analysis. 

 Chapter three examines various multispectral sensors and image classifiers in detecting three 

selected invasive species that occur in two reserves within the eThekwini municipality, 

KwaZulu-Natal Province. 

 Chapter four is the application of remote sensing to asses clearing initiatives in the two 

reserves within the eThekwini Municipality.  

 Chapter five is a general discussion of the results of chapter’s two to four. 
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1.1 Invasive alien species monitoring 

Alien plant species are those that have been moved out of their indigenous habitat into a new  

habitat (Kannan, Shackleton, & Uma Shaanker, 2013). Invasive alien plant species (IAPs) displace 

indigenous species and have detrimental environmental impacts (Bradley & Marvin, 2011). This has 

led to more importance placed by conservationists on IAPs because their rapid spread leads to 

ecosystem degradation and threatens biodiversity (Joshi, Leeuw, & Duren, 2004). After habitat 

destruction, IAP invasion is the second largest threat to global biodiversity (van Wilgen, Reyers, Le 

Maitre, Richardson, & Schonegevel, 2008). Currently land managers, ecologists and biologists 

involved in invasions by alien species usually do not have detailed knowledge of the spatial 

distribution of an IAP, therefore the detection of IAPs using remote sensing can aid in management 

efforts (He, Rocchini, Neteler, & Nagendra, 2011).  

Monitoring and assessing the environment has become more reliant on remote sensing as it has 

the capacity to assess large spatial extents and examine historic distribution of IAPs (Mutanga, van 

Aardt, & Kumar, 2009). In order to successfully remove IAPs, they need to be mapped (Rowlinson, 

Summerton, & Ahmed, 1999). Manual field surveys as a method of mapping are time consuming and 

labour intensive, remote sensing is a more feasible alternative as it can reach inaccessible locations 

and assess large areas rapidly and comprehensively (Calviño-Cancela, Méndez-Rial, Reguera-

Salgado, & Martín-Herrero, 2014).  

1.2 Detection of IAPs using remote sensing 

Remote sensing is successful at detecting IAPs as long as the target IAP exhibit distinctive 

characteristics when compared to surrounding indigenous species (Huang & Asner, 2009). The launch 

of a variety of  new sensors coupled with Geographical Information Systems (GIS) and advanced 

modelling has resulted in many methods and tools in IAP detection (Evangelista et al., 2009). 

However remote sensing techniques differ due to spatial and spectral variations of sensors (Calviño-

Cancela et al., 2014). Some of these include the use of hard classifiers such as the artificial neural 

network and maximum likelihood classifiers which provide definitive information on pixel classes, 

while others use soft classifiers such fuzzy, Bayesian and spectral mixture analysis which analyse the 

ratio of features within each pixel (Lu & Weng, 2007).  

Various satellites provide multispectral imagery, however, the choice of satellite imagery is 

dependent on spectral resolution (number of bands), spatial resolution (pixel size), spatial coverage 

(area covered by image) and the cost of images (Cuneo et al., 2009). Spatial resolution is crucial as it 

determines the target feature’s level of accuracy in terms of classification and the scale of the study. 

Finer spatial resolution increases classification accuracy but can make it difficult to separate spectral 

classes due to intra-pixel variability (He et al., 2011). Hyperspectral imagery is more useful at 
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mapping species with a low density and a scattered distribution, and therefore more effective in a 

heterogeneous community (He et al., 2011). 

Moderate spatial resolution satellites such as Landsat and SPOT are only effective at detecting 

a species if they form large stands (Huang & Asner, 2009). Other satellite imageries such as 

Quickbird and WorldView-2  are better suited at IAP detection as these are considered high spatial 

resolution multispectral data (Bradley, 2014). Worldview-2 is a very high spatial resolution sensor 

which collects data in the visible and infrared spectrum (Doody, Lewis, Benyon, & Byrne, 2014). 

However, high spatial resolution imagery may be inadequate when the spectral resolution is low, 

therefore hyperspectral imagery would be required (Huang & Asner, 2009). 

Multispectral satellite imagery is a suitable data source in mapping IAPs (Cuneo, Jacobson, & 

Leishman, 2009).  However, plant detection of a single species using remote sensing is a challenging 

task, where large scale infestations are generally easier to detect compared to small scale invasions 

(Evangelista, Stohlgren, Morisette, & Kumar, 2009). Therefore the use of remote sensing to detect 

IAPs using multispectral imagery would be feasible if the target IAP form dense stands and have 

distinct spectral signatures (Cuneo et al., 2009). 

There are two categories of spectral image classifications: supervised and unsupervised. 

Supervised classification requires training sites which are used to classify features, whereas 

unsupervised classification creates classes first and then assigns them to feature classes (Adejoke & 

Badaru, 2014). Supervised classification methods to detect IAPs include the Maximum Likelihood 

classifier, which examines the probability of a pixel belonging to specific class and assigns the pixel 

to a class (Forsyth, Gibson, & Turner, 2014). Another supervised classifier is the Spectral Angle 

Mapper which examines the similarity between ground spectra and reference spectra by calculating 

their angles in an ‘n’ dimensional plain where smaller angles indicate a closer relationship between 

spectra (Narumalani, Mishra, Wilson, Reece, & Kohler, 2009). Another pixel based classification 

method which is not commonly used for IAP detection is the Iterative Self Organising Data Analysis 

Technique which is an unsupervised classifier (Rowlinson et al., 1999). 

Time series analyses have been increasingly used to monitor the effect of IAP mitigation efforts 

(Evangelista et al., 2009) as it increases accuracy of the selected classification method, which helps 

distinguish between IAPs and indigenous species (He et al., 2011). A number of studies have been 

conducted in South Africa on IAP detection (Singh, Forbes, & Akombelwa, 2013; van den Berg, 

Kotze, & Beukes, 2014), however, many of these focused on large scale invasions that occur over 

large extents and few studies have examined detection at smaller spatial scales. 
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1.3 Invasive alien plant species in South Africa 

It is estimated that 10% of South Africa is occupied by IAPs, spreading at an estimated rate of  

between 6 - 14% per an annum (Gillson, Midgley, & Wakeling, 2012). The total area covered by IAPs 

is approximately 10 million hectares, negatively impacting on biodiversity, land productivity  and 

water resources in South Africa (Meijninger & Jarmain, 2014). It was predicted that woody IAPs 

would displace indigenous species and reduce stream flow, this led to the creation of the Working for 

Water program in 1995 (Meijninger & Jarmain, 2014), by the Department of Water and 

Environmental Affairs. This program is making continuous progress in removing invasive alien 

vegetation (Carbutt, 2012).  Invasive alien plant species also impact the economy due to the cost of 

eradication and control (Calviño-Cancela et al., 2014). Between 1995 and 2007 approximately 3.2 

billion ZAR spent on the removal of 1.6 million hectares of IAPs (van Wilgen et al., 2012). 

Implementation of mitigation strategies to combat IAPs is slow due to the lack of data on the 

spatial distribution of IAPs (Shouse, Liang, & Fei, 2013). Frequent updates on the spatial extent of 

IAPs will aid in mitigation efforts, however, it is difficult to map rapidly spreading IAPs due to the 

continuous change of their spatial extent  (Underwood, Ustin, & Ramirez, 2007). Remote sensing is 

able to map IAPs within a short time span and therefore provide frequent updates (Calviño-Cancela et 

al., 2014). Another issue related to IAP management is the uncertainty in the progress of current  

efforts to reduce IAP spread (van Wilgen et al., 2012). These control measures may not be keeping 

pace with the spread of IAPs (Gillson et al., 2012). In order to effectively manage invasion, a method 

is required to adequately assess the spatial distribution of IAPs in time and space (Calviño-Cancela et 

al., 2014). 

1.4 Study area 

In KwaZulu-Natal, the Working for Ecosystems Program which has stemmed from the 

Working for Water Program has been actively removing IAPs in small reserves in the eThekwini 

Municipality. Two of these reserves that have been targeted by the Working for Ecosystems Program 

are the Paradise Valley (29.83
o
S, 30.89

o
E) and the Roosfontein (29.86

o
S, 30.92

o
E) nature reserves 

(Figure 1).These reserves have had clearing programs initiated within them in 2011 and 2010 

respectively. Both reserves are roughly 300ha in size and form part of the KwaZulu-Natal Coastal 

Belt vegetation type (Table 1). This region receives an average of 1010 mm of rainfall annually with 

majority of rainfall occurring between November and March, and an annual average temperature of 

20.5
 o

C (Preston-Whyte, 1980). The Environmental Planning and Climate Protection Department 

(EPCPD) in conjunction with Wildlife and Environmental Society of South Africa (WESSA) 

identified these reserves as highly invaded and removal initiatives were introduced into the Paradise 

Valley and Roosfontein reserves in 2011 and 2010 respectively.  
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Table 1.1: Details of study sites 

Site Location Size Altitude Contractor Protection Vegetation Invasion 

PVNR Pinetown 317 ha 233m WESSA
#
 Fenced Coastal Belt* High 

RNR Westville 322 ha 159m WESSA
#
 Open Coastal Belt* High 

PVNR = Paradise Valley Nature Reserve, RNR = Roosfontein Nature Reserve. 

# 
WESSA = Wildlife and Environmental Society of South Africa 

* Muccina & Rutherford, 2006 
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Figure 1.1: Location of the two study sites (Paradise Valley Nature Reserve and Roosfontein Nature Reserve) within the eThekwini Municipality, located in 

KwaZulu-Natal, South Africa. 
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Three IAPs that were targeted for removal within these reserves were Acacia podalyriifolia 

A.Cunn, Chromolaena odorata (L.) R.M. King & H. Rob. and Litsea glutinosa (Lour.) C.B.Rob. 

Three are present in the Paradise Valley Nature Reserve and only two are present in the Roosfontein 

Nature Reserve (C. odorata and L. glutinosa). There is no standard method of assessing or 

quantifying the efficiency of removal effects of the selected IAPs within these reserves. Consequently, 

this study will attempt to assess the success of removal initiatives 2010 to 2015 using remote sensing 

data. 

1.5 Study aim, objectives and outcomes 

The overall aim of this study is to examine the role of remote sensing in detecting selected 

invasive alien plants and assessing removal programs in two reserves in the eThekwini Municipality. 

Objectives of the study include: 

1. Reviewing previous studies regarding the successes and challenges of utilising remote sensing 

in IAPs detection and management.  

2. To assess three types of multispectral imagery (Landsat 7 ETM+, SPOT 5 and WorldView-2) 

and four classification methods (Parallel Piped, Maximum Likelihood, Spectral Angle 

Mapper and the Iterative Self-Organizing Data Analysis Technique Algorithm) in the 

detection of three IAPs (Acacia podalyriifolia (Pearl Acacia), Chromolaena odorata (Triffid 

Weed) and Litsea glutinosa (Indian laurel)) within the Paradise Valley Nature Reserve 

(eThekwini municipality, KwaZulu-Natal, South Africa). 

3. To assess the effectiveness of clearing programs of three IAPs (Acacia podalyriifolia, 

Chromolaena odorata and Litsea glutinosa) in two protected areas within the eThekwini 

Municipality, KwaZulu-Natal, South Africa. 

There are a number of issues to be clarified with regards to this study. In chapter three only the 

Paradise Valley Nature Reserve was examined as it contained all three of the selected species and 

therefore ideal to test the three sensors and four classifiers at IAP detection. Training site development 

in chapter four for the L. glutinosa species differed from chapter three as; training sites developed 

from field GPS points taken in 2015 (chapter three) produced low producer’s accuracy. This could 

have resulted from the clearing of the species, as stands that were present were not homogenous. 

Imaging spectroscopy in South Africa is not widely used and is relatively new field when 

dealing with vegetation (Mutanga et al., 2009). Remote sensing may provide an effective means for 

the future mapping of invasions which can provide insight for adequate mitigation strategies both at 

provincial and national levels (van den Berg et al., 2014). Results from this study will provides a 

method that could be standardised in detecting prominent IAPs which would be more time efficient 

than field studies (Carbutt, 2012) and further aid the assessment of IAP removal programs.  
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2.1 Abstract 

Invasive alien plants species (IAPs) pose a threat to agriculture, water resources, biodiversity and 

human welfare. Remote sensing is a powerful tool for detecting IAPs which could help decision 

makers manage alien plant invasion. Various types of sensors and techniques have been used in this 

field of research with various successes, however, challenges abound. There is paucity of literature 

discussing sensor types and their suitability for IAP detection. A review of the importance of IAP 

management, the role of remote sensing in IAP detection, different sensor capabilities, successes in 

IAP spectroscopy and challenges was conducted. The spatial and spectral resolutions of sensors are 

crucial factors to consider in the process of sensor selection. Multispectral sensors are suitable in 

detecting IAPs where stands are homogenous, facilitating change detection.  On the contrary, 

hyperspectral sensors are better equipped to detect individual species within a heterogeneous 

landscape. Detection of sub-canopy invaders remains a major challenge in the field of IAP remote 

sensing. There is room for future research in increasing the spatial resolution of freely available 

imagery to reduce cost. 

Key words: Invasive alien plants species, remote sensing, detection, multispectral, hyperspectral 
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2.2 Introduction 

Globally invasive alien plants (IAPs) threaten biodiversity (Higgins, Richardson, Cowling, & 

Trinder-Smith, 1999), agriculture and human welfare (van den Berg, Kotze, & Beukes, 2014) and are 

the second largest threat to biodiversity (van Wilgen, Reyers, Le Maitre, Richardson, & Schonegevel, 

2008).  These IAPs accomplish this by altering soil nutrient content, habitat suitability for indigenous 

species and ecosystem function (Higgins et al., 1999). In South Africa approximately 10 % of the 

country is occupied by alien vegetation, and control measures are not keeping pace with their spread 

(Gillson, Midgley, & Wakeling, 2012). Therefore in order to employ adequate mitigation strategies 

frequent monitoring of IAPs are required (Hamada, Stow, Coulter, Jafolla, & Hendricks, 2007). 

Spectroscopy (remote sensing) can be an effective tool for mapping, monitoring and managing 

IAPs (Cuneo, Jacobson, & Leishman, 2009). The aim of remote sensing is to extract information on 

IAPs without physical contact with the ground (Huang & Asner, 2009). There are various sensors 

used that differ in spatial resolution, spectral resolution, spatial extent and temporal resolution 

(Bradley, 2014). In terms of spectral resolution, two broad categories of sensors are utilised for IAPs 

detection which are multispectral and hyperspectral sensors. Each has its successes and challenges. 

Multispectral sensors exhibit a large bandwidth and a small number of spectral bands, however, offer 

a large range of spatial scales and are easily accessible. On the contrary, hyperspectral sensors have 

smaller bandwidths and a larger number of continuous spectral bands but are more difficult to access 

(He, Rocchini, Neteler, & Nagendra, 2011; Underwood, Ustin, & Ramirez, 2007). Research has also 

been directed at detecting IAPs that occur within other vegetation and sub-canopy invaders. This 

includes the use of sensors such as Light Detection and Ranging (LiDAR) in conjunction with other 

sensors to detect IAPs. LiDAR uses infrared wavelengths to measure distance between features and 

the sensor, allowing for the study of the three dimensional structure of IAPs (Huang & Asner, 2009).  

The mitigation of IAPs impacts has become an important component in conservation. In order 

to adequately deal with IAP control and management, accurate spatial information on their 

distribution in time and space is required. Remote sensing provides a time and cost effective approach 

of mapping IAPs (Tsai & Chen, 2004). This article discusses IAP concerns, the role remote sensing in 

IAP detection, different sensor capabilities, successes in IAP spectroscopy and challenges.  

2.3 Invasive alien plants, concerns and monitoring 

One of the major current concerns of conservationists, natural resource managers and ecologists 

is the spread of IAPs  (Joshi, de Leeuw, & van Duren, 2004). Alien species are those that have been 

moved intentionally or unintentionally out of their indigenous habitat into a new habitat (Kannan, 

Shackleton, & Uma Shaanker, 2013). However, to be considered an IAP the species must be able to 

propagate throughout the landscape with or without facilitation (Asner et al. 2008). Invasion occurs in 



14 

 

three stages, the initial being the  arrival of the species followed by its establishment and finally, its 

integration into the environment (Mack, Von Holle, & Meyerson, 2007).  

2.3.1 Concerns 

Invasive alien plants are considered one of the primary contributors to biodiversity loss and a 

major contributor to species extinction, because of their rapid spread (Joshi et al., 2004). Factors 

which influence the spread of IAPs include life history, the environment and disturbances (Carbutt, 

2012). Historically, IAPs have the ability to outcompete and displace indigenous vegetation due to 

their superior dispersal and reproductive traits (Joshi et al., 2006), leading to the degradation of  

pristine habitats (Higgins et al., 1999). Environmental factors include, changes in global climate and 

an increase in anthropogenic activities which contribute to disturbances, facilitating the spread of 

IAPs (van Wilgen et al., 2008). Humans act as a dispersal agent for IAPs as they move flora beyond 

their natural barriers. This has become more pronounced due to an increase in trade and travel 

(Carbutt, 2012). Disturbances such as anthropogenic induced vegetation removal and increased runoff 

facilitate invasion by altering ecosystem processes, freeing resources and reducing indigenous 

competitors (Carbutt, 2012). 

An assessment of global ecosystems indicates that 60% of ecosystem services were declining 

due to IAPs and their impacts (van Wilgen et al., 2008). This has engendered the use of IAPs presence 

and distribution as indicators of ecosystem health (Miao, Patil, Heaton, & Tracy, 2011). The estimated 

global cost of  managing and repairing damages caused by IAPs is approximately 137 billion dollars 

annually (Huang & Asner, 2009). This includes control methods employed which are either 

mechanical, chemical or biological (Higgins et al., 1999).  

Predicting the likelihood of invasion would allow for managers to be more prepared and 

efficient at managing invasion (Bradley & Marvin, 2011). The adoption of preventive rather than 

reactive approaches (which are often too late) is favoured (Higgins et al., 1999). Alien species that are 

not currently invasive may be facilitated by current invasive species to become invasive, therefore 

ideal management strategies should target both existing and emerging invaders (Carbutt, 2012). 

South Africa has a high climatic variability and topography which has resulted in high species 

diversity, richness and endemism (Stuckenberg, Münch, & van Niekerk, 2014). Invasive alien plants 

pose a risk to this biodiversity as they have an adverse effect on ecosystems (Carbutt, 2012). 

Approximately 10 million hectares of land has been invaded (Meijninger & Jarmain, 2014) and 

currently 379 alien species are declared invaders in South Africa (NEMBA, 2016).  To combat this 

issue the Department of Water affairs and Forestry initiated the Working for Water program which 

aims at removing IAPs (Rowlinson, Summerton, & Ahmed, 1999). Removal methods are usually 

chemical or mechanical. This program was initiated in 1995 and aims to preserve water resources, 
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safeguard biodiversity and create employment (Meijninger & Jarmain, 2014). The capital spent in 

mitigating IAPs in South Africa between 1998 and 2008 was estimated at approximately three billion 

rand (van Wilgen et al., 2008), which impacts the country’s economy (Calviño-Cancela, Méndez-Rial, 

Reguera-Salgado, & Martín-Herrero, 2014). 

2.3.2 Monitoring invasive alien plants 

Field surveys used to map IAPs provide limited information, and are labour intensive and time 

consuming (Calviño-Cancela et al., 2014). Other issues with field surveys include bias due to 

researcher misclassifying species, lack of temporal data and field workers are too few for 

comprehensive mapping to be achieved (He et al., 2011). Remote sensing provides a more feasible 

alternative as it can obtain information from inaccessible areas and is capable of assessing large areas 

rapidly and comprehensively (Calviño-Cancela et al., 2014), including the historic extent of IAPs 

(Mutanga, van Aardt, & Kumar, 2009). Field studies should not be replaced entirely with remote 

sensing, rather both methods complement each other in IAP mapping (He et al., 2011). For example, 

remote sensing can identify stands of homogenous species. However, some species composition are 

difficult to determine using remote sensing, and require field studies (Asner, Jones, Martin, Knapp, & 

Hughes, 2008). 

There is a need for tools that can simultaneously determine species expansion and monitor 

invaded areas (Mack et al., 2007). Remote sensing techniques and GIS (Geographical Information 

Systems) are suitable tools which can accomplish this and furthermore map species distributions 

which will aid in removal and management efforts (Rowlinson et al., 1999). The advancements in 

remote sensing have allowed for the detection of subtle changes in the environment and vegetation at 

a species level (Mutanga et al., 2009). For adequate management strategies to be applied, historic 

records of invasion are needed (Mack et al., 2007). This can be achieved via remotely sensed high 

spatial and temporal resolution imagery.   

2.4 Invasive alien plants and remote sensing 

Remote sensing is the observation of features without any physical contact which includes 

digital image processing and mapping (Rowlinson et al., 1999). These techniques analyse variations 

in reflectance spectra of features and differ due to a specific sensors spatial and spectral resolution 

(Calviño-Cancela et al., 2014). Spatial resolution refers to pixel size (Stuckenberg et al., 2014), while 

spectral resolution refers to the  number, range, breath and contiguous nature of wavelengths of light. 

Thus a high spectral resolution would have many wavelengths bands and a contiguous coverage 

(Mutanga et al., 2009). 
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2.4.1 Remote sensing of vegetation 

Light absorption by vegetation produces a unique reflectance spectral signature which is 

influenced by leaf biochemistry (He et al., 2011) and canopy structure (Asner, Jones, et al., 2008; 

Cuneo et al., 2009). Leaf biochemistry refers to the chlorophyll content, lignin, cellulose and 

structural carbohydrate molecules, whereas canopy structure refers to leaf/branch size, orientation and 

density (Underwood et al., 2007). Solar radiation interacts with leaf properties in different ways which 

is dependent on wavelength. Absorption is high in the visible spectra due to pigments (eg, chlorophyll 

a and b) and in the mid infrared (MIR) due to water content, while reflectance is high in the near 

infrared (NIR) due to spongy mesophyll (Shouse, Liang, & Fei, 2013). These properties allow for the 

spectral differentiation between species and in some cases spectral signatures of IAPs may be unique 

to the signature of indigenous species (He et al., 2011). This differentiation is attributed to both 

physiological and biological variation (Asner, Knapp, et al., 2008).  

Optical and imaging sensors employed in the detection of IAPs include multispectral and 

hyperspectral sensors (Calviño-Cancela et al., 2014). Multispectral sensors examine broad reflectance 

bands at various regions within the electromagnetic spectrum. These regions include visible and 

infrared wavelengths (near infrared to far infrared) used mainly to distinguish between broad land 

classes (Joshi et al., 2004). Due to the low spectral resolution (fewer bands) of  multispectral sensors 

it is difficult to distinguish between species (Calviño-Cancela et al., 2014). Hyperspectral sensors 

have a large number of narrower spectral bands within the electromagnetic spectrum and are used 

more often to distinguish between species (Joshi et al., 2004). Due to its high spectral resolution, 

hyperspectral sensors are able to detect subtle differences in spectra between species and is an 

efficient tool for IAP mapping and monitoring (Calviño-Cancela et al., 2014; Mutanga et al., 2009; 

van der Meer, de Jong, & Bakker, 2002). 

2.4.2 Mapping IAPs using GIS and remote sensing 

The integration of remote sensing and GIS has been used historically in mapping plant and 

vegetation distributions. This practice  has increased recently with  focus shifting to mapping IAPs 

(Joshi et al., 2004). This current shift toward IAP mapping using these geospatial technologies has 

been enhanced by advancement in sensor development, spatial statistics and modelling (Evangelista, 

Stohlgren, Morisette, & Kumar, 2009). There are a number of data sources offered which include 

multispectral data, synoptic view, multi-temporal coverage (Joshi et al., 2004) and hyperspectral data 

(He et al., 2011).  

Land managers, ecologists and biologists involved in the study of  plant invasions usually do 

not have detailed maps of the study area (He et al., 2011). Effective mapping of  IAPs extent and 

determining the risk they pose for future invasions and impact requires an accurate study of species 

distributions (Joshi et al., 2004), and an insight into density and impacts of IAPs (van den Berg et al., 
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2014). These maps are required to aid in mitigating impacts, optimising control and predicting spread 

(Evangelista et al., 2009) at both a national and provincial level (van den Berg et al., 2014). However, 

plant species are not homogenously distributed in a particular environment, and more realistic maps 

should be created exhibiting the discontinuous patterns of their distributions (Joshi et al., 2004).  

When undertaking  remote sensing studies, spectral, spatial and temporal resolution needs to be 

considered (Stow et al., 2004). Spatial resolution is crucial as it determines the level of accuracy of 

feature detection, with a finer spatial resolution increasing classification accuracy (He et al., 2011). 

Spatial resolution of sensors can be improved by pan sharpening imagery. Pan sharpening involves 

fusing a high spatial, low spectral resolution greyscale panchromatic image with a low spatial, high 

spectral resolution image to produce a single image with an improved spectral and spatial resolution 

(Yuhendra, Alimuddin, Sumantyo, & Kuze, 2012). Various techniques have been proposed for pan 

sharpening images, which are usually user and sensor specific (Yuhendra et al., 2012; Zhang & 

Mishra, 2012). Pan sharpening an image would therefore increase spatial resolution which in turn will 

improve the reliability of classification results (Forsyth, Gibson, & Turner, 2014). 

The classification of images has been improved by using time series analyses (He et al., 2011) 

and the use of indices such as the normalised difference vegetation index (NDVI) and the soils 

adjusted vegetation index (SAVI) (Haby, Tunn, & Cameron, 2010). The NDVI is a commonly used 

index that combines the visible and NIR bands to enhance the signal of photosynthetic vegetation 

(Huang & Asner, 2009). While the SAVI reduces the effect of soil reflection which in turn increases 

accuracy of classification results (Qi, Chehbouni, Huete, Kerr, & Sorooshian, 1994). 

2.5 Multispectral 

Several studies have used  multispectral sensors for the detection and mapping of IAPs (Joshi et 

al., 2004). An important factor to consider when utilising multispectral data is spatial scale (Huang & 

Asner, 2009). 

2.5.1 Successes with multispectral data 

Spatial resolution, among others, is an important determining factor in IAP classification 

accuracy. Higher spatial resolution imagery such as IKONOS, GeoEye-1 and Quickbird produce more 

accurate IAP classification results (He et al., 2011) as opposed to coarse spatial resolution sensors 

such as AVHRR (Advanced very high resolution radiometer) and MODIS (Moderate resolution 

imaging spectrometer). These coarse spatial resolution imagery are mainly used to monitor spread but 

have an increased chance of error if there are multiple IAPs present (Bradley, 2014; Huang & Asner, 

2009). However, the MODIS sensor has enhanced spectral and spatial capabilities when compared to 

AVHRR, and is more suited for land cover change studies (Stow et al., 2004). Despite their poor 
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spatial resolutions they have a high temporal resolution (ie. the return time of the satellite allows for 

frequent mapping of a region)(Huang & Asner, 2009; Mutanga et al., 2009). 

Moderate spatial resolution sensors such as ASTER (Advanced space borne thermal emission 

and reflective radiometer), SPOT (Satellite Pour l’Observation de la Terre) and Landsat are not able 

to detect IAPs within a heterogeneous vegetation type and are only effective when targeting 

homogenous stands over a large area (Huang & Asner, 2009). The recent Landsat series of sensors 

(eg. Landsat 5 TM and Landsat 7 ETM+) are commonly used for IAP detection and mapping and 

have a 40 year record of data which is free, however, due to its moderate spatial resolution it is 

difficult to map individual species (Gavier-Pizarro et al., 2012). Landsat 5 TM  used in a study to 

assess biodiversity was not able to differentiate between semi-natural, natural and alien vegetation due 

to its moderate spatial resolution (Stuckenberg et al., 2014). In another study, Landsat 7 (a moderate 

spatial resolution imagery) was successful used to detect a target IAP, however, this invader formed 

dense stands (Cuneo et al., 2009).  

Spatial resolution of multispectral imagery has improved (He et al., 2011). Higher spatial 

resolution sensors  such as IKONOS, Quickbird and WorldView (Bradley, 2014; Stow et al., 2004) 

are significantly more accurate than medium spatial imagery (Shouse et al., 2013). The use of high 

spatial resolution imagery results in accurate detection of IAPs. High spatial resolution multispectral 

data is only useful in detecting IAPs if the target species exhibit unique phenological attributes for 

example a unique inflorescence (Evangelista et al., 2009). These sensors are suitable for detecting 

IAPs when spectral resolution is low, however, this may not be feasible for large areas because of cost 

of imagery (Huang & Asner, 2009). It is possible that in smaller areas, high spatial resolution 

multispectral imagery like Quickbird multispectral imagery is more applicable than Hyperion 

hyperspectral imagery due to spectral mixing (He et al., 2011). Some high spatial resolution 

multispectral sensors such as IKONOS may not be suitable for mapping IAPs at a species level where 

there is a high degree of intra species variability (He et al., 2011). A study conducted in southern 

Australia using Quickbird experienced difficulty in separating Pinuss radiata (an invasive alien 

species) from other species in the same environment. The P.radiata species was better detected in the 

NIR than the visible spectrum but was only successful in certain areas (Haby et al., 2010). 

2.5.2 Challenges of multispectral data 

 High spatial resolution multispectral imagery increases classification accuracy but spectral 

classes are difficult to separate. If a pixel is smaller than the feature, this could lead to inaccuracies for 

example a tree may cover many pixels, therefore spectra may vary between the bark and leaves (He et 

al., 2011). Higher spatial resolution imagery allows for more robust mapping of the environment but 

freely available  satellites cannot compete with the high spatial resolution of commercial high 

resolution satellites (Johansen, Phinn, & Witte, 2010). Technically, variations in brightness caused by 
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terrain can also cause inaccuracies (Cuneo et al., 2009), as well as information is lost due to 

reflectance of vegetation being averaged across pixels (Mutanga et al., 2009).  

Multispectral sensors are generally spectrally too coarse to identify plants at a species level (He 

et al., 2011) as multiple species may share the same spectral signature and therefore high spectral 

resolution imagery is more efficient (Miao et al., 2011). Multispectral imagery is applicable when 

there is a large study area and the species form dense stands and have distinct traits (He et al., 2011). 

Multispectral analyses has been used successfully to detect invasive species that are unique to their 

environment, however, when IAPs are spectrally similar to indigenous species, hyperspectral data and  

complex image analysis techniques should then be applied (Asner, Knapp, et al., 2008). A common 

issue in IAP detection is that taller species may obstruct invasive alien shrubs and thus induce biased 

classification  results, this is opposed to dense monotypic species stands which are easier to detect and 

result in a greater accuracy (Joshi et al., 2004).  

2.6 Hyperspectral 

Hyperspectral sensors gather information via narrow bands in the visible, NIR and MIR 

spectrum, (band widths are usually small (5-10nm) and 150-300 bands). Some sensors support sub-

nano meter ranges (He et al., 2011). This high spectral resolution data is commonly used to assess and 

monitor environmental changes at specific wavelengths to allow for spectral characteristics of a 

feature to be determined which are aimed at solving specific issues (Mutanga et al., 2009). 

Hyperspectral remote sensing data has been around for the last 30 years and has been effective in 

examining the spatial extent of IAPs. There are a number of  studies which have used hyperspectral 

imagery to examine spatial extent and dispersal of IAPs from local to global scales (He et al., 2011). 

2.6.1 Successes of hyperspectral data   

Hyperspectral data is either collected using a sensor or by the use of a spectrometer. 

Hyperspectral data is obtained from both airborne and spaceborne sensors (Mutanga et al., 2009). 

Commonly used hyperspectral sensors in IAP detection include AVIRIS (Airborne visible/infrared 

imaging spectrometer), CASI (Compact airborne spectrographic imager), HyMAP, Hyperion (Huang 

& Asner, 2009) and AISA (Airborne imaging spectrometer for application) because of their high 

spectral resolution (He et al., 2011). Hyperion is less commonly used for studying IAPs as it has a 

poor spatial resolution (Huang & Asner, 2009). 

Hyperspectral data, in conjunction with high spatial resolution data can detect detailed spectral 

variations between species (Shouse et al., 2013). This allows for detection at a species level, for 

example invasive species have higher nitrogen and chlorophyll content (Asner, Jones, et al., 2008) 

and can be detected using hyperspectral sensors. Hyperspectral sensors capture information such as 

variations in leaf water, nitrogen, chlorophyll, lignin and carotenes content to provide a unique 
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spectral signature for each species, however, these characteristics often can vary over environmental 

gradients (He et al., 2011). A typical example would be leaf water content which is in a constant state 

of flux due to variations in rainfall (Asner, Jones, et al., 2008).  

 Hyperspectral sensors also can asses canopy properties such as specific leaf area (SLA), leaf 

area index (LAI), branch/stem architecture and leaf angle (Asner, Jones, et al., 2008). These 

properties are used to discriminate between indigenous and alien invasive vegetation, for example the 

rapid growth rate that IAPs exhibit, result in higher LAI values (Asner, Jones, et al., 2008). These 

qualities may allow hyperspectral sensors to detect IAPs within a vegetation type, where lower 

spectral resolution sensors are only able to detect IAPs in homogenous landscapes (Shouse et al., 

2013). 

The advantage of hyperspectral data is that detailed species specific spectral profiles are 

developed, which can be used to examine species presence, species abundance,  the relationship 

between indigenous and invasive alien species and ecosystem nutrient fluxes (Huang & Asner, 2009). 

Hyperspectral imagery results in a higher classification accuracy than multispectral imagery even 

when the spatial resolution of the hyperspectral image is degraded (Underwood et al., 2007). Higher 

spectral resolution imagery is able to detect IAPs with low density and a scattered distribution, which 

is a major challenge for multispectral imagery. Flowering and senescence can cause a larger variation 

in spectral signature of individuals of the same species (He et al., 2011) resulting in classification 

errors. A fusion of multispectral and hyperspectral imagery, resulted in the discrimination  of guava 

(Psidium guajava) from other classes which include both green and dry vegetation (Walsh et al., 

2008). 

2.6.2 Challenges of hyperspectral data 

Taller indigenous species my obstruct IAPs found at lower vegetation strata. This is a common 

challenge for both multispectral and hyperspectral sensors. Most hyperspectral sensors are airborne 

sensors and therefore have a small coverage (He et al., 2011).  Hyperspectral imagery of a fine spatial 

scale is acquired from air borne sensors, however these sensors are expensive to use as it requires the 

sensor to be flown over the intended study area (Calviño-Cancela et al., 2014). Additionally high 

spectral and spatial resolution imagery causes variation within a species when an individual of the 

species occupies an area larger than a pixel leading to inaccuracies (He et al., 2011). Plants at 

different development stages exhibit different spectral signatures, so there would be high intra-species 

variability which can create an underestimation (Joshi et al., 2004). Therefore the accurate detection 

of IAPs from hyperspectral data is uncertain due to inter- and intra- spectral variability (Huang & 

Asner, 2009). New techniques to solve this problem are being used such as spectral unmixing (Hestir 

et al., 2008). 
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Hyperspectral data comes in large volumes due to the large number of bands, which are time 

consuming to process (He et al., 2011). Patterns in the data of hyperspectral images are difficult to 

distinguish. To mitigate this issue, sophisticated algorithms are used (Huang & Asner, 2009) which 

can become taxing for non remote sensing specialists to perform (He et al., 2011).  Hyperspectral 

remote sensing is an underused tool in the fields of conservation and invasion biology, as in certain 

circumstances it is not at the desired scale. In addition, there is a lack of interdisciplinary training 

between geographers (traditional practitioners of GIS and Remote sensing) on the one hand and 

biologists on the other hand (He et al., 2011). 

2.7 Other detection approaches and challenges 

2.7.1 Sub-canopy detection 

Management of IAPs is best done in the early stages of invasion, however, detection may be 

difficult due to invaders being sparse and occupying the sub-canopy (Ghulam, Porton, & Freeman, 

2014). Conventional remote sensing currently has been restricted to mapping canopy dominant 

species, as these determine the spectral signature. This is a limitation as 67 of the worlds 100 worst 

invaders are sub-canopy invaders (Joshi et al., 2006). In the forest, sub-canopy invaders are difficult 

to detect. The use of multiple sensors such as multi-angle sensors can determine the forest vertical 

profile, and IAPs can be indirectly detected (Ghulam et al., 2014; Huang & Asner, 2009). 

One of the proposed methods of detecting sub-canopy invaders is when there is a temporal 

variation in senescence between the invader and the canopy species. When canopy species are bare, 

the sub-canopy species can be detected. Another method employed for IAP detection within 

indigenous vegetation is to take into consideration the vegetation dynamics of an area. This can be 

tracked via time series analysis using high temporal resolution imagery (Huang & Asner, 2009) which 

will infer on the presence of an IAP. Time series analysis is extensively used for studying land cover 

change due to invasion and assessing mitigation efforts (Evangelista et al., 2009). The detection of 

herbaceous and understory species remains a challenge even with the use of the latest and highest 

quality sensors (Huang & Asner, 2009). 

2.7.2 Indirect detection 

The invasion of an area by IAPs alters environmental conditions which can be detected using 

satellite imagery (He et al., 2011). This indirect method of IAP detection examines the relationship 

between the target species, its climatic envelope and its environment, then predicts the potential 

spread of the species by utilising a bioclimatic envelope model which follows the assumption that 

climatic variables determine species distribution (Joshi et al., 2006).  
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By detecting the variation in climatic variables, one can predict the presence of a sub-canopy 

invader, an example of this would be examining variations in light intensity to infer about the 

presence of Chromolaena odorata as light intensity is correlated to its reproductive and life history 

traits. Areas with insufficient light intensity are occupied with young or sterile individuals of C. 

odorata with low seed production. Predicting an IAPs potential distribution will be beneficial when 

planning mitigating strategies as invasion may increase in some regions and decrease in others. 

However, this study concentrated on a single vegetation type which was dominated by a single 

canopy species. Mapping canopy density can result in a number of classes instead of a continuous 

variable which would have an adverse effect on the accuracy of the model (Joshi et al., 2006). 

2.7.3 Light Detection and Ranging (LiDAR) 

Optical remote sensing can detect IAPs but does not deliver any information on vegetation 

structure. Light Detection and Ranging (LiDAR), which is an active remote sensing technique  

provides information on vegetation structure (Hantson, Kooistra, & Slim, 2012). Light detection and 

ranging utilises infrared wavelengths to measure distance between the feature and the sensor, to allow 

for information on the three dimensional structure of vegetation to be obtained, (for example height 

and biomass) (Huang & Asner, 2009). This sensor sends a pulse towards a feature and uses the time 

taken for the pulse to be reflected and returned to calculate height of the features, allowing for DEM’s 

(digital elevation model) to be produced (Hantson et al., 2012). The LiDAR sensor alone is not 

efficient at detecting IAPs when there are little physical structural variations (height, leaf area index 

and biomass) between indigenous and invasive species. Rather these sensors can be used in 

conjunction with hyperspectral image to differentiate between vegetation canopies (Huang & Asner, 

2009). This is achieved by using the hyperspectral data to compare spectral signatures and LiDAR 

data to compare species attributes, for example, variations in species height coupled with pixel based 

classification, will overcome intra species variability and increase classification accuracy (Naidoo, 

Cho, Mathieu, & Asner, 2012). In order to successfully combine LiDAR and hyperspectral data, data 

needs be collected at the same time period (Asner, et al. 2008).  

A caveat of LiDAR sensors is that signal pulses cannot penetrate certain canopies, which 

compromises vertical accuracy.  When vegetation senesces occurs in colder months, LiDAR signals 

are not accurately reflected, therefore creating a challenge in determining tree heights (Hantson et al., 

2012). 
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2.8 Future Research and Challenges 

Challenges for future research in remote sensing IAP detection should include methods to 

increase the accuracy of image classification, the development of simple models to determine impacts 

of IAPs and techniques to estimate spread (van Wilgen et al., 2008). Currently remote sensors and 

techniques are unable to determine species composition from spectral signatures (Asner, Jones, et al., 

2008). Plant detection of a single species within a vegetation type is still a challenging task when 

IAPs do not form dense stands (Evangelista et al., 2009). The detection of an IAP  on a regional scale 

is problematic because of cost and inadequate resources (Joshi et al., 2006). 

The development of models to depict future spread is a crucial research area. Various models 

have been developed; which use climatic and topographic variables as inputs to infer on future extent 

of IAPs (He et al., 2011). An example of this is the Maximum Entropy model which proved the most 

accurate at predicting the spread of IAP Lantana camara (Neena & Joshi, 2013). Another study based 

in China, successfully predicted the distribution of Eupatorium adenophorum using the genetic 

algorithm for rule-set production. These models can serve as an early warning system to alert mangers 

to areas prone to invasion (Zhu, Ma, Sang, Li, & Ma, 2007).  Spatial modelling of invasion risk will 

also allow for assessing areas where environmental variables are in a state of flux due to climate 

change (Stohlgren et al., 2010). However, the incorporation of hyperspectral data into model 

development is currently not well researched (He et al., 2011). The integrated use of sensors with 

various spectral and spatial capabilities to detect IAPs is not feasible in some countries due to limited 

resources (Huang & Asner, 2009).   

South Africa’s heterogeneous vegetation results in many challenges when applying remote 

sensing techniques to detect IAPs. The field of imaging spectroscopy of vegetation is still relatively 

new in South Africa (Mutanga et al., 2009). More research needs to be undertaken to study IAPs 

using these innovative approaches and technologies for the purpose of natural systems conservation 

(Shouse et al., 2013). It would be beneficial to develop regional scale protocols/techniques to detect 

IAPs as the dynamics of invasive vary from place to place. Sensors and techniques used would also 

vary from region to region and would be dependent on various factors such as resource availability, 

terrain, IAPs present and vegetation type (Joshi et al., 2004). 

2.9 Conclusion 

Remote sensing is a valuable tool as spatial information on IAP distribution allows policy 

makers to apply adequate mitigation strategies (Joshi et al., 2005). Both multispectral and 

hyperspectral sensors are useful at detecting IAPs (Bradley, 2014). Multispectral data is more 

generalised and involves broader categories and therefore is useful at mapping species that form 

distinguished homogenous stands (Huang & Asner, 2009) and species that have distinct 
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characteristics (Cuneo et al., 2009). Hyperspectral data can isolate individual bands which can be used 

to answer specific questions which include mapping IAPs (Mutanga et al., 2009). High spectral and 

low spatial resolution imagery is effective for mapping IAPs that form monotypic stands. Whereas 

high spectral and high spatial resolution is useful for mapping IAPs in a heterogeneous community 

where species are scattered (He et al., 2011). Spatial resolution affects the accuracy and precision of 

IAP detection, and as spatial resolution decreases so does accuracy (Shouse et al., 2013).  

Predicting the potential distribution will aid in determining invasion risk (Joshi et al., 2006), 

however this approach would have to be species specific and will be time consuming. Detection of an 

IAP using remote sensing is possible as long as the target IAP exhibits novel characteristics when 

compared to the indigenous species (Huang & Asner, 2009). One of the major challenges still faced is 

mapping a single IAP species in a heterogeneous landscape. Future research should include detection 

methods that are not resource demanding which still maintain a high level of accuracy. 
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CHAPTER THREE 

DETECTING THREE INVASIVE ALIEN PLANT SPECIES USING 

MULTISPECTRAL IMAGES. A COMPARATIVE ANALYSIS OF FOUR 

CLASSIFIERS 
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3.1 Abstract 

Invasive alien plants (IAPs) are a major concern because of their negative environmental impacts. 

Remote sensing can be used as a robust tool in the detection and mapping of IAPs. This study 

examined the use of three multispectral images and four classifiers in the detection of three IAPs 

(Acacia podalyriifolia, Chromolaena odorata and Litsea glutinosa). The four classifiers used were: 

Parallelepiped, Maximum Likelihood, Spectral Angle Mapper and the Iterative Self Organising Data 

Analysis Technique. Species identification and classification were performed on pan-sharpened 

images. Two of the three images were obtained from moderate spatial resolution sensors (Landsat 7 

ETM+ and SPOT 5) and the third from a high spatial resolution sensor (WorldView-2). The most 

appropriate bands for spectral differentiation between species are the red and infrared bands. High 

spatial resolution imagery (WorldView-2) was the best for adequately detecting two of the selected 

species (A. podalyriifolia and C. odorata), using the Maximum Likelihood classifier. The study shows 

that there is a potential for detecting and mapping certain IAPs using high spatial resolution 

multispectral imagery and the Maximum Likelihood classifier.                                                                                                                                                                                                                                                                                                          

Keywords: Invasive alien plants, remote sensing, spatial resolution, spectral resolution, classifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  

32 

 

3.2 Introduction 

Analysing the  spatial distribution of invasive alien plants (IAPs) is a field attracting increasing 

attention (Bradley, 2014). The rapid increase and spatial expansion of IAPs has caused irreversible 

damage across a number of habitat types because of their ability to alter ecosystem processes and the 

population dynamics of indigenous species present (Underwood, Ustin, & Ramirez, 2007). To 

accurately assess the impacts of IAPs with the view of  applying effective control measures, 

comprehensive mapping of these species is a necessary requirement (Bradley, 2014). Mapping can aid 

in the management of  invasions as it can provide the location of  IAPs and further indicate their 

residence time (Trueman, Standish, Orellana, & Cabrera, 2014). Remote sensing is a tool, which has 

revolutionised mapping as advances in this geospatial technology can now provide information on 

species location, composition and structure (Asner, Hughes, et al., 2008; Trueman et al., 2014). 

However, the use of this technology is restricted due to the high cost of fine resolution imagery 

(Trueman et al., 2014).  

Imaging spectroscopy using appropriate spatial and spectral resolutions has allowed for the 

identification and mapping IAPs (Schaepman et al., 2009). Early uses of multispectral imagery in the 

detection of IAPs were employed successfully, however, the requirement for accurate detection 

included that the target species was phenotypically distinct  from other species and formed large dense 

stands (Cuneo, Jacobson, & Leishman, 2009; Underwood et al., 2007). 

Spatial resolution and scale are other important factors in mapping the spatial distribution of  

IAP invasions, for example fine spatial resolution, large scale imagery is more useful at local level 

applications while coarse spatial resolution, small scale imagery is better suited at a regional level (Lu 

& Weng, 2007). Frequent re-evaluations of the spatial extent of IAPs is deemed essential for 

mitigation efforts (Underwood et al., 2007). Remote sensing can provide frequent re-evaluation as it is 

able to map accessible and inaccessible areas (Underwood et al., 2007) at a greater frequent sensor 

return time (high temporal resolution) (Huang & Asner, 2009).   

Image classification is the technique used to assign pixels of a remotely sensed image into 

categories based on either their spectral signature or similarities in  texture (Calviño-Cancela, 

Méndez-Rial, Reguera-Salgado, & Martín-Herrero, 2014). Spectral signature development for image 

classification is the most commonly used method for detecting IAPs (Bradley, 2014). Image 

classification for the detection of IAPs is still a challenge due to sensor types, different image 

resolutions, the large number of image pre-processing tasks and the selection of an appropriate 

classifier (Lu & Weng, 2007). When considering which image type is most applicable for a study, the 

spectral resolution (number of bands), spatial extent (image scale), spatial resolution (pixel size) and 

temporal resolution (data acquisition frequency) needs to be taken into account (Bradley, 2014). 

Images covering large spatial extent (small scale) usually have low spatial resolution (Bradley, 2014) 
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which results in an impaired accuracy in terms of the location of features (Thenkabail et al., 2003). On 

the contrary, images covering small areas (large scale) have finer spatial resolution, enabling the 

detection of features at finer details including early infestations of IAPs. However, the temporal 

coverage may be limited. High spectral resolution imagery (many spectral bands) can allow for more 

accurate spectral separation of individual species as opposed to low spectral resolution imagery (few 

spectral bands) (Bradley, 2014).  

There are two approaches when selecting image types for IAPs detection, one is high spatial 

and low spectral resolution, the other is high spectral but lower spatial resolution (Underwood, Ustin, 

& DiPietro, 2003). There is  a trade-off between spectral and spatial resolution, for example SPOT 5 

imagery has been used to map IAPs in the past and has a spatial resolution of 10m (Everitt, Yang, 

Fletcher, & Deloach, 2008), but has only 4 bands (low spectral resolution) (Trueman et al., 2014). 

Landsat 7 ETM+ imagery on the other hand has an improved spectral resolution due to the availability 

of more bands (Thenkabail et al., 2003), but possess a spatial resolution of 30m (Key, Warner, 

McGraw, & Fajvan, 2001). These moderate spatial resolution multispectral images may not be very 

effective for detecting IAPs (Huang & Asner, 2009). WorldView-2 (4 band imagery used in this 

study), though having a low spectral resolution has a higher spatial resolution (1.8m) and can be used 

to distinguish between indigenous vegetation and IAPs (Mazus & Chimboza, 2015). Pan-sharpening 

methods can be applied to both spatial and spectral properties of an image by merging a panchromatic 

high spatial resolution image with a moderate spatial resolution multispectral image (Chaves, Sides, & 

Anderson, 1991) to increase the accuracy of  IAP detection in a previously moderate spatial resolution 

image. 

The selection of an appropriate classifier is determined by the availability of classification 

algorithms, spatial resolution of imagery, time constraints and the user’s needs (Lu & Weng, 2007). 

Two methods of spectral image classifications are: supervised and unsupervised. Supervised 

classification requires training sites which are used to classify features, whereas unsupervised 

classification creates classes first and then assigns them to feature classes (Adejoke & Badaru, 2014). 

Supervised image classification is commonly applied to remotely sensed data, with an adequate 

number of training sites (Stuckenberg, Münch, & van Niekerk, 2014). Two commonly used 

supervised classifiers in the detection of IAPs are the Maximum Likelihood classifier (ML) which 

utilises a statistical method that assigns pixels into classes by examining the probability of each pixel 

belonging to a class (Doody, Lewis, Benyon, & Byrne, 2014). The other classifier is the Spectral 

Angle Mapper (SAM) classifier which uses an algorithm that examines the relationship between 

reference spectra and the image’s spectra and uses the angle of the result in this relationship to 

perform the classification, with smaller angles equating to a closer relationship (Doody et al., 2014). 

The Parallelepiped classifier is a non-parametric classifier that is not commonly used. It is based on 

Boolean logic and uses thresholds to subset pixels into classes (Hamada, Stow, Coulter, Jafolla, & 
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Hendricks, 2007). An unsupervised classifier that has been used for IAPs detection is the Iterative Self 

Organising Data Analysis Technique (ISODATA) which groups classes based on iterations (ie. which 

are divisions between clusters of pixel values that are plotted graphically) (Mazus & Chimboza, 

2015).  

This study attempts to determine the most accurate image type and classifier for the detection 

of three prominent IAPs namely, Acacia podalyriifolia A.Cunn (Pearl Acacia)., Litsea glutinosa 

(Lour.) C.B.Rob (Indian Laurel)., and Chromolaena odorata (L.) R.M. King & H. Rob (Triffid 

Weed), that occurs in the Paradise Valley Nature Reserve (eThekwini, KwaZulu-Natal, South Africa).  

All three IAPs chosen for this study are category 1b invasive (NEMBA, 2016). Category 1b species 

under the National Environmental Management: Biodiversity Act no. 10 of 2004 are prohibited from 

being imported, bred , translocated or sold in South Africa, furthermore permits are required to keep 

these plants (NEMBA, 2016). Acacia podalyriifolia is an Australian large shrub species, characterised 

by silver grey leaves and yellow flowers. Chromolaena odorata is an American species, which is 

characterised as a small shrub with white flowers, which forms dense thickets (Henderson, 1995). In 

KwaZulu-Natal C. ordata is considered as one of the most dominant IAPs (Stow et al., 2004).  Litsea 

glutinosa species is a  tropical Asian tree species, categorised by ever green leaves and yellow-orange 

flowers (Henderson, 1995).  

This study compares and assesses the capabilities of three remotely sensed images in the 

detection of the above IAPs, namely two moderate range spatial resolution images (Landsat 7 ETM+ 

and SPOT 5) and one high spatial resolution image (WorldView-2). The classifiers used for each 

image type included the Parallelepiped (PP), Maximum Likelihood (ML), Spectral Angle Mapper 

(SAM) and the Iterative Self Organising Data Analysis Technique (ISODATA). The intended 

outcome of this study is to determine which method is best suited for change detection analysis where 

IAP eradication programs are implemented to asses clearing (chapter four).  

3.3 Methods and materials 

3.3.1 Study site 

The Paradise Valley Nature Reserve is located in the eThekwini Municipality (29.83
o
S, 30.89

o
E) just 

west of the city of Durban (KwaZulu-Natal, South Africa).  The reserve is roughly 300ha in size, 

vegetation on site includes forest, thicket, and grassland. The average yearly temperature in this 

region is 20.5
o
C with a variation of 8.3

o
C.The maximum and minimum temperatures are in February 

and July respectively. The average rainfall is approximately 1010mm per an annum, with the majority 

of rainfall occurring between November and March (Preston-Whyte 1980). The Wildlife and 

Environmental Society of South Africa (WESSA) and the Environmental Planning and Climate 

Protection Department (EPCPD) initiated clearing programs of IAPs in the reserve since 2011. 
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3.3.2 Image processing 

Field data supplied by the Wildlife and Environmental Society of South Africa 

(WESSA) were created in spring (September to November), therefore images used in this 

study were obtained in September 2010 and 2015 for the purpose of consistency. Landsat 7 

ETM+ images were acquired from the United States Geological Survey (USGS), while SPOT 

5 and WorldView-2 were obtained from the South African National Space Agency (SANSA) 

(Table 3.1). All imagery was received geometrically corrected. Landsat 7 ETM+ images were 

supplied as single band images while SPOT 5 and WorldView-2 were supplied as image 

composites. The Landsat bands were stacked excluding band 6a, band 6b (thermal bands) and 

band 8 (panchromatic band) (Evangelista, Stohlgren, Morisette, & Kumar, 2009). Sensor 

fallout necessitated that, images were then de-striped by running the focal analysis tool 

multiple times using the mean function. The DN (digital number) values of images from all 

three sensors were then converted into surface reflectance (Naidoo, Cho, Mathieu, & Asner, 

2012).  This image pre-processing was performed in ERDAS Imagine (2013/2015) and ENVI 

(5.2). A single subset containing the study site was clipped from each of the three sensor images in 

ArcMap (ArcGIS 10.2). 

Table 3.1: Characteristics of imagery used in this study. 

 Earth Explorer is the United States Geological Survey’s online sensor imagery database.                               

 SANSA is the South African National Space Agency, a South African government funded satellite 

imagery data source. 

Image spatial resolution for the three set of images were improved through pan-sharpening 

using ERDAS Imagine (2013). Landsat 7 ETM+ images were pan-sharpened using a Hyperspherical 

Color Sharpening (HCS) algorithm with a smoothing filter of seven and the process area operator with 

intersection (Tu, Hsu, Tu, & Lee, 2012). The Brovey transform (BT) method (Kimothi & Dasari, 

2010) was applied to SPOT 5 imagery. WorldView-2 imagery was pan-sharpened using a subtractive 

Imagery Spatial 

resolution 

Pan-

sharpened 

Spectral 

resolution 

Spectral range Temporal 

availability 

Data source 

 

Landsat 7 ETM+ 30m 15m 7 bands 450 -1250nm 1999-

present 


Earth 

Explorer 

SPOT 5 10m 5m 4 bands 480-1750nm 2002-

present 


SANSA 

Worldview 2 1.8m 0.5m 4 bands 450-895nm 2009-

present 

#
SANSA 
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resolution merge with a centre value of 17 and a pan contribution weight of 1.00 as the imagery was 

4-band, so both a high and low pass filter was applied (Zhang & Mishra, 2012). 

 3.3.3 Spectral signature development 

Training sites were identified  using both the field data and spectral reflectance from high 

resolution imagery (WorldView-2) (Lu & Weng, 2007). Field data collection was species dependent 

as some species had been subjected to eradication in the field by clearing, therefore only certain 

species were present to serve as training sites. Polygons of the target IAPs digitised from field data by 

WESSA prior to clearing were used as guides to create 12 training sites each for both A. podalyriifolia 

and C. odorata using the WorldView-2 imagery. The training sites for L. glutinosa were created by 

digitising 10 polygons on the 2015 WorldView-2 imagery using GPS points collected in the field 

(Evangelista et al., 2009). All training sites on WorldView-2 for the three species were created in 

ArcMap (Pu & Landry, 2012) and then imported into ERDAS, where spectral signatures were 

produced for image classification. On the study site, L. glutinosa was the dominant species among 

others in the training sample. 

The creation of spectral signatures for each image type was proceeded by the calculation of 

univariate statistics (mean and standard deviation) for each spectra. These data was then used to create 

spectral profiles using the mean pixel value of each band for each class (Forsyth, Gibson, & Turner, 

2014). Furthermore, to determining spectral variability,  the coefficient of variation (CV) was also 

calculated to determine the variability in the data sets (Kimothi & Dasari, 2010). Coefficient of 

variation (CV) is expressed as: 

    
  

    
                                                                                                                      [1] 

The CV values were represented as percentages that indicate the variation within the spectral 

signature. An IAP class that exhibits a low CV value when compared to other classes, indicates that it 

is easier to discriminate that particular class from  the other selected classes (Kimothi & Dasari, 

2010).  

3.3.4 Image classification 

Image classification was performed in ERDAS using four classifiers. This included three 

supervised classifiers namely one non-parametric classifier (PP), two parametric classifiers (ML and 

SAM) and, an unsupervised classifier (ISODATA). Only two species (A. podalyriifolia and C. 

odorata) were identified and classified using the ISODATA classifier, as the location of L. glutinosa 

on the 2010 imagery was not apparent. 
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The Landsat 7 ETM+ imagery was classified using a Maximum Likelihood classifier followed 

by a threshold of 0.05 to remove non-target features. Non-target features have the tendency to 

introduce error in classification requiring the application of an appropriate threshold. However, this 

resulted in only two (A. podalyriifolia and C. odorata) of the three IAPs classes being identified. The 

same threshold value was applied to the spectral angle mapper classifier and produced the same result. 

The PP classifier failed to identify L. glutinosa as well. 

The same three supervised classification methods were performed on both SPOT 5 and 

WorldView-2 imagery, with different threshold values for the ML and SAM classifier because the 

0.05 threshold did not correctly identify the three target IAPs. To overcome this predicament, the 

SPOT 5 ML classifier was performed at a threshold of 0.075 and the SAM classifier using a threshold 

of 0.035. Thresholds of 0.025 and 0.035 were applied to the WorldView-2 ML and SAM classifiers 

respectively.  

The ISODATA unsupervised classifier was performed on the three types of imagery using a 

minimum of 30 classes and 60 maximum iterations to allow for an adequate number of classes to be 

created. Only A. podalyriifolia and C. odorata was detected in the unsupervised classification, as L. 

glutinosa did not form homogenous stands making pixel classes difficult to distinguish. 

3.3.5 Accuracy assessment 

Verification of classified results was conducted by overlaying sampled pre-clearing IAP 

locations provided by WESSA on WorldView-2 imagery.  One hundred (100) such sampled  points 

were imported into ERDAS and each assigned a reference value for accuracy assessment 

(Stuckenberg et al., 2014).  An accuracy assessment was run, defining the producer’s accuracy, user’s 

accuracy, overall accuracy and the Kappa statistic (Everitt et al., 2008). Typically overall classifier 

accuracies should be over 85% whereas both producer’s and user’s classification accuracies of a 

single species should be above 70% to be considered a successful classification (Everitt et al., 2008). 

User’s accuracy measures the percentage area which is correctly classified (Underwood et al., 2003). 

The producer’s accuracy shows how accurately each individual class was classified (Doody et al., 

2014). Furthermore, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) were 

also calculated (Kumar & Sahoo, 2012). The MAE and RMSE are similar and are used to determine 

classifier performance with lower values closer to zero indicating a better performance (Kumar & 

Sahoo, 2012). 

The Kappa statistic (Fleiss, Cohen, & Everitt, 1969), MAE and RMSE (Willmott & Matsuura, 

2005) equations are expressed as follows: 

Kappa = 
          

       
                                                                                                                  [2] 
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MAE =   
 

 
             
 
                                                                                                  [3] 

RMSE =  
 

 
             

  
                                                                                             [4] 

The Kappa statistic uses multivariate techniques derived from an error matrix to indicate the 

accuracy of the classification (Doody et al., 2014). Values from 0 to 0.4 being a moderate agreement, 

0.4 to 0.8 a substantial agreement and above 0.8 an excellent agreement (Kumar & Sahoo, 2012).  

3.4 Results 

3.4.1 Spectral signature development 

The spectral signature profile graphs (Figure 3.1a) represent the spectral separation of the three 

selected IAPs. The mean of the spectral signatures for each species indicated that the Landsat 7 ETM+ 

imagery spectra for L. glutinosa differed from the other two species (A. podalyriifolia and C. odorata) 

in the NIR (near infrared) and SWIR2 (short wave infrared) bands.  Acacia podalyriifolia and 

Chromolaena odorata discriminated against each other only in the SWIR2 band, however within this 

band these two spectra exhibited relatively high CV values indicating that there is a high intra spectra 

variation. Lower CV values are preferable (Kimothi & Dasari, 2010) as it indicates a better 

discrimination of a separate class from other classes. The development of spectral signatures from the 

SPOT 5 imagery (Figure 3.1b) also indicated that the L. glutinosa species differed from the other two 

species in the green, red and short wave infrared, with very little discrimination evident between A. 

podalyriifolia and C. odorata. The spectral signature of C. odorata had low CV values in the SWIR 

band indicating this band can be used as a means to determine separation. The WorldView-2 imagery 

indicated similar patterns to the other two image types, with L. glutinosa displaying a spectrally 

distinct signature (Figure 3.1c) from the other two species in the red and infrared bands. However, the 

higher L. glutinosa CV values in the visible bands resulted in a poor discrimination of this species 

from other species. The distinction between A. podalyriifolia and C. odorata is evident in the red band 

that is contrary to the spectral signatures of the other two images (Landsat 7 ETM+ and SPOT 5). 
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Figure 3.1: Spectral signature differentiation in three different image types (a = Landsat 7 ETM+, b = 

SPOT 5 and c = WorldView-2) for three alien plant species (Ap = Acacia podalyriifolia, Co = 

Chromolaena odorata, Lg = Litsea glutinosa). Pixel values displayed on the graph represent means ± 

SD (NIR = near infrared, SWIR = shortwave infrared). 

3.4.2 Image classification 

The thematic maps of detected IAPs (Figure 3.2) classified from three selected remotely sensed 

images are overlaid on an aerial photo of the study site. All four classifiers failed to identify L. 

glutinosa on the Landsat 7 ETM+. The three supervised classifiers (PP, ML and SAM) used on SPOT 

5 and Worldview-2 imageries identified all three target species. The ISODATA classifier could not be 

used on the three images to identify L. glutinosa because the exact location of L. glutinosa could not 

be determined on the 2010 imagery.  
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Figure 3.2: Classification results of three selected 2010 image types using four selected classifiers on 

three selected IAPs (Ap = Acacia podalyriifolia,, Co = Chromolaena odorata, Lg = Litsea glutinosa) 

in the Paradise Valley Nature Reserve. Classifiers:  PP = Parallelepiped, ML = Maximum Likelihood, 

SAM = Spectral Angle Mapper, ISO = Iterative Self-Organising Data Analysis Technique. Imagery: 

LS = Landsat 7 ETM+, SP = SPOT 5 and WV = WorldView-2.
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3.4.3 Accuracy assessment 

The accuracy assessment of the four classifiers (Table 3.2) indicate that overall classification 

accuracy is unsuitable (below 85%) (Everitt et al., 2008) for all image types and classifiers, therefore 

no method successfully detected all three target species. The ML classification performed on 

WorldView-2 imagery did produce a moderate accuracy (67%). This is further supported by the 

moderate agreement indicated by the Kappa statistic of the WorldView-2 ML classifier (0.57) and 

relatively low values for MAE (33) and RMSE (38).  

Table 3.2: Overall accuracy of four classifiers for detecting three IAPs. 

  Overall 

accuracy (%) 

Kappa MAE RMSE 

Landsat 7 ETM+ PP 18.33 0.0392 81.67 85.68 

 ML 16 0.1021 84 86.02 

 SAM 32.33 0.0587 67.67 75.12 

 ISO 19.5 0.0272 80.5 81.8 

SPOT 5 PP 12.33 0.0283 87.67 89.12 

 ML 31.67 0.1723 70 73.26 

 SAM 13 -0.0454 87 87.99 

 ISO 35.50 0.0190 64.5 68.31 

WorldView-2 PP 4 0.027 96 96.13 

 ML 66.67 0.5702 33.33 38.22 

 SAM 38.33 0.2912 61.67 65.53 

 ISO 98 0.2177 62 64.85 

Values represent overall accuracy, Kappa coefficient, Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE). Classifier abbreviations are as follows, PP = Parallelepiped, ML = Maximum 

Likelihood, SAM = Spectral Angle Mapper, ISO = Iterative Self Organising Data Analysis Technique
. 

The Landsat 7 ETM+ imagery produced poor accuracy using all four classifiers for all the 

species (Table 3.3), except for the ML classifier, which had both good user’s classification accuracy 

(100 %) and Kappa values (1.00) for C. odorata. The SAM also produced a moderate Kappa value 

(0.71) and a good producer’s accuracy (77%) for A. podalyriifolia. In the SPOT 5 imagery, the ML 

classifier produced a substantial accuracy at detecting A. podalyriifolia with a Kappa value above 0.4 

(indicating a substantial agreement or accuracy) and user’s accuracies (above 70%). In WorldView-2 

imagery classification, the ML classifier was successful in detecting A. podalyriifolia and C. odorata 

(producer’s and user’s accuracy above 70% and high Kappa values above 0.8), while L. glutinosa 

showed a substantial Kappa value (Kappa = 0.93) and a high user’s accuracy (95%). The ISODATA 
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classifier produced high user’s accuracy (93%) and a high Kappa value (0.87) in the detection of C. 

odorata. 

Table 3.3: Accuracy assessment of four classifiers and three imagery types at detecting the three IAPs 

individually.  

   Producer’s 

accuracy (%) 

User’s 

accuracy (%) 

Kappa 

coefficient 

Landsat 7 ETM+ PP Ap 55 40.74 0.1111 

  Co 0 0 0 

  Lg 0 0 0 

 ML Ap 42 80.77 0.7115 

  Co 6 100 1 

  Lg 0 0 0 

 SAM Ap 77 40.53 0.7079 

  Co 20 31.75 -0.0238 

  Lg 0 0 0 

 ISO Ap 34 61.82 0.2364 

  Co 5 35.71 -0.2857 

  Lg n/a n/a n/a 

SPOT 5 PP Ap 35 43.21 0.1481 

  Co 2 28.57 -0.0714 

  Lg 0 0 0 

 ML Ap 55 73.33 0.6 

  Co 40 48.78 0.2317 

  Lg 0 0 0 

 SAM Ap 31 31 -0.035 

  Co 8 15.69 -0.2647 

  Lg 0 0 0 

 ISO Ap 58 51.79 0.0357 

  Co 13 52 0.04 

  Lg n/a n/a n/a 
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Table 3.3 ……Continued 

WorldView-2 PP Ap 0 0 0 

  Co 1 100 1 

  Lg 11 100 1 

 ML Ap 85 100 1 

  Co 74 100 1 

  Lg 41 95.35 0.9302 

 SAM Ap 35 97.22 0.9583 

  Co 67 100 1 

  Lg 13 92.86 0.8929 

 ISO Ap 19 86.36 0.7273 

  Co 57 93.44 0.8689 

  Lg n/a n/a n/a 

Values were generated by using ERDAS Imagine 2013/2015 to perform an accuracy assessment. 

Values are representative of each species detected for each classifier. Classifier abbreviations are as 

follows, PP = Parallelepiped, ML = Maximum Likelihood, SAM = Spectral Angle Mapper, ISO = 

Iterative Self Organising Data Analysis Technique. Species abbreviations are as follows Ap = Acacia 

podalyriifolia, Co = Chromolaena odorata, Lg = Litsea glutinosa). 

3.5 Discussion 

In a landscape with heterogeneous vegetation cover in a largely urban matrix, a major challenge 

in remote sensing is distinguishing between IAPs and indigenous vegetation due to the similarity in 

their spectral signatures in the NIR and visible portions of the electromagnetic spectrum (Narumalani, 

Mishra, Wilson, Reece, & Kohler, 2009). In this study, L. glutinosa produced distinct spectra from A. 

podalyriifolia and C. odorata in the red and infrared bands of SPOT 5 and WorldView-2 imagery 

(Figure 3.1b and 3.1c). These two species have a unique leaf pigmentation when compared to other 

plant species, as leaf pigmentation is commonly used to identify IAPs (Bradley, 2014). Overall, the 

Landsat 7 ETM+ spectral signatures were poor as all three species were difficult to distinguish as the 

spatial resolution of the Landsat 7 ETM+ imagery is coarse. Acacia podalyriifolia and Chromolaena 

odorata showed little spectral separation in the SPOT 5 image (Figure 3.1b). These species have a 

different leaf pigmentation when compared to other species (Bradley, 2014), in the visible bands. 

Furthermore SPOT 5 does not acquire reflectance in the blue band. The blue band is sensitive to 

changes in chlorophyll and is considered the best band in tree species discrimination (Key et al., 

2001), and therefore is useful in discriminating between  A. podalyriifolia and C. odorata. Thus, the 

absence of the blue band in SPOT 5 imagery may explain the poor discrimination observed in C. 
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odorata and A. podalyriifolia. Chromolaena odorata  species exhibited low CV values in the SWIR, 

which is determined by the biochemical content of the species (Underwood et al., 2007) indicating 

that this band may be ideal at separating this species from other species. 

The spectral signatures developed from the WorldView-2 imagery indicate that the best band to 

discriminate IAPs from indigenous species is the red band. In addition to this, the red band was able 

to distinguish between A. podalyriifolia and C. odorata. This is the case because species identification 

is based on reflectance in the red and the NIR band (Haby, Tunn, & Cameron, 2010).In two of the 

three image types (Landsat 7 ETM+ and WorldView-2),  the infrared bands were the most successful 

in differentiating between IAPs due to the IAPs tendency to exhibit an increased reflectance compared 

to indigenous species in the NIR band and the SWIR (Asner, Knapp, et al., 2008). This explains why 

in this study, spectral differentiation between A. podalyriifolia and C. odorata was evident in the 

SWIR regions of the Landsat 7 ETM+ imagery (Figure 3.1a).  

The development of spectral signatures is site specific as a spectral signature developed for an 

IAP may not be suitable at detecting the same species in another location as the spectral similarity  

deteriorates with an increase in distance between sites due to location, season and environmental 

conditions (Laborte, Maunahan, & Hijmans, 2010; Ustin & Santos, 2000). For example dry and 

senesced vegetation may have a considerable spectral variation when compared to healthy vegetation 

(Bradley, 2014). Consequently, the development of a universal spectral signature for a species 

irrespective of season may be challenging and possibly not feasible. 

Overall classification accuracies were unsuccessful across the three multispectral images and 

four classifiers. This was supported by the study done on the detection of the IAP Giant Reed 

(Aurundo donax) where overall accuracies were also below 85% (Everitt et al., 2008). The 

classification accuracy of individual species indicates a number of high user’s accuracy and Kappa 

coefficient values but low producer’s accuracy values. Producer’s accuracy is important for the 

management of IAPs as it indicates the proportion of IAPs that are not detected (Müllerová, Pergl, & 

Pyšek, 2013). Producer’s accuracies above 70 are considered as successful classifications when 

examining individual species accuracies (Everitt et al., 2008). Only WorldView-2 imagery was able to 

successfully detect A. podalyriifolia (78% producer’s accuracy) and C. odorata (90% producer’s 

accuracy) (Table 3.3) using the ML classifier. These results are supported by the study done on the 

detection of Giant Reed (Aurundo donax) which showed that imagery with higher spatial resolution 

increased detection accuracy (Everitt et al., 2008). The SAM produced poor classification results due 

to overlapping IAP spectral classes as it is a linear model (Rashmi, Addamani, & Ravikiran, 2014).   

The poor IAP classification in Landsat 7 ETM+ is due to its coarse spatial resolution, compared 

to imagery from finer spatial resolution imagery like SPOT 5 and WorldView-2. However, Landsat 7 

ETM+ has more spectral bands which has resulted in more refined vegetation mapping at a regional 
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level (Narumalani et al., 2009; Thenkabail et al., 2003) when fused or pan-sharpened with higher 

spatial resolution imagery.  

The poor detection of L. glutinosa in all three remotely sensed images could be attributed to the 

fact that, the spectral signature of L. glutinosa was developed from 2015 images composed of 

heterogeneous stands. Such stands of  IAPs  with similar reflectance would be difficult to detect 

unless they form dense monotypic stands  (Bradley, 2014; Hestir et al., 2008). On the contrary, the 

stands of A. podalyriifolia and C. odorata were relatively homogenous, facilitating the creation of 

training sites, signature development and IAP classification. Overall, poor accuracies resulting from 

different classifications could also be due to presence of shadows  in the images (Leckie, Jay, 

Gougeon, Sturrock, & Paradine, 2004). Object/texture based classification could potential improve the 

classification accuracy of this species (Müllerová et al., 2013). 

3.6 Conclusion 

The detection of prominent IAPs is an essential process to assist in their  management 

(Trueman et al., 2014).  This study in harmony with studies done elsewhere has revealed that the 

visible and infrared bands are appropriate in detecting IAPs. The main objective of this study was to 

determine the most accurate remotely sensed imagery and classification method for detecting three 

selected IAPs. The ML classifier applied on WorldView-2 imagery produced the best results with 

suitable identification and classification accuracies for both A. podalyriifolia and C. odorata. Thus 

based on producer’s accuracy of above 70%, was found in only one spectral image (WorldView-2) 

that was successful at classifying two species (A. podalyriifolia and C. odorata). Species specific 

detection is usually rare, and dependent on dominant species and its spatial extent (Bradley, 2014). 

This method of classification will be used in change detection analyses to assess clearing initiatives of 

the three target species pre-and post-clearing in chapter four. 

Invasive alien plant invasions in South Africa are increasing (van Wilgen et al., 2012) and land 

managers need to take into consideration all IAPs present in the landscape (Trueman et al., 2014). 

Therefore future studies  using remote sensing in IAP detection should include all IAPs and time 

series analysis (Bradley, 2014). Periodic classification of a species can result in an indication of the 

rate of spread of a species, after which  land managers can choose to target faster spreading species 

(Trueman et al., 2014).  

Remote sensing is an underutilised tool in the detection and management of IAPs. There is a 

need for more collaborative efforts between remote sensing scientists and ecologists when dealing 

with IAPs. Selecting an appropriate image type will be dependent on the scale of the study (Bradley, 

2014). Future research in this field should include hyperspectral spectral imagery in conjunction with 

high spatial resolution imagery to allow for increased accuracy in the classification of IAPs. Remotely 
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sensed imagery with moderate spatial resolution such as the Landsat and SPOT sensors are not 

suitable for the detection of individual species at a local scale. 
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CHAPTER FOUR 

THE ASSESSMENT OF INVASIVE ALIEN PLANT SPECIES 

REMOVAL PROGRAMS USING REMOTE SENSING AND GIS IN 

TWO SELECTED RESERVES IN THE ETHEKWINI MUNICIPALITY, 

KWAZULU-NATAL 
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4.1 Abstract 

The occupation of natural environments by invasive alien plant species (IAPs) are a growing threat to 

ecosystems. This has resulted in the creation of government-based initiatives to mitigate invasion, 

however there has been little progress towards assessing these initiatives. Remote sensing is a 

commonly used tool in the detection of IAPs; even so, there has also been little research towards its 

use as a tool to assess mitigation efforts. This study aims to assess the clearing initiatives of three 

IAPs which are Acacia podalyriifolia (Ap), Chromolaena odorata (Co) and Litsea glutinosa (Lg) in 

two nature reserves (Paradise Valley and Roosfontein) within the eThekwini municipality, KwaZulu-

Natal, South Africa using remote sensing. To achieve this, image classification using the Maximum 

Likelihood was performed on both sites before and after clearing to compare density, distribution and 

area cover. All species were successful detected in both Reserves on both the 2010 and 2015 imagery 

except L. glutinosa in the Paradise Valley reserve in 2010. User’s and producer’s accuracy for A. 

podalyriifolia and C. odorata species (Paradise valley) and C. odorata and L. glutinosa (Roosfontein) 

was more than 70% in both 2010 and 2015, which is above agreed standards.  The occurrence and 

area cover of all species in both reserves decreased substantially except L. glutinosa in Paradise 

Valley, which experienced only a slight decrease in area. Remote sensing is a suitable tool in the 

assessment of IAP removal strategies. Further research should consider early detection of IAPs in 

preventing spread.  

Key words: Invasive alien plant species, remote sensing, species detection, removal assessment. 
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4.2 Introduction 

Invasive alien plants affect human health, agriculture, forestry and biodiversity (Richardson & 

van Wilgen, 2004). They impact on ecosystems by displacing  indigenous vegetation and changing 

ecosystem functions (Loh & Daehler, 2008). This leads to a reduction in the genetic variation of an 

environment due to localised extinction of endemic species. Invasion also has subtle socio-economic 

impacts such as interrupting the supply of ecosystem goods and resource availability for indigenous 

species by consuming large quantities of resources (Vilà et al., 2010). 

Interest in the field of IAPs is growing with an increase in funds dedicated to dealing with 

invasion, however IAPs continue to expand (D’Antonio, Jackson, Horvitz, & Hedberg, 2004). The 

control of IAPs involve both reducing the introduction of new species and the management of current 

IAPs (van Wilgen et al., 2012). Therefore regular monitoring of IAPs is required to manage invasion 

effectively and efficiently, which in turn requires methods that can detect IAPs rapidly and precisely 

(Müllerová, Pergl, & Pyšek, 2013). Field surveys can be used to map IAPs, however these are 

inefficient over larger areas (Malahlela, Cho, & Mutanga, 2015). Aerial photographs have been 

successful to an extent as they are able to detect IAPs which are unique to other surrounding 

vegetation (Lass et al., 2005). Remote sensing is an ideal tool to be used in detecting IAPs as it can be 

employed in a variety of habitats (Lass et al., 2005), map species over large extents (Calviño-Cancela, 

Méndez-Rial, Reguera-Salgado, & Martín-Herrero, 2014) and detect vegetation at a species level 

(Mutanga, van Aardt, & Kumar, 2009).  

Individual IAPs can be  detected using remote sensing due to variations in their reflectance 

patterns in certain portions of the electromagnetic spectrum (Rocchini et al., 2015). Multispectral 

imagery can be applied successfully to map IAPs however these species would need to have unique 

reflectance patterns when compared to indigenous species (Cuneo, Jacobson, & Leishman, 2009). 

Remote sensing has been applied successfully in mapping invasive trees and shrubs. Herbaceous 

species can also be detected if they form dense stands and are spectrally distinct from other species 

within their environment (Müllerová et al., 2013). 

In South Africa IAP intervention strategies have been employed nationally and have mitigated 

the impacts of invasion (van Wilgen et al., 2012). Despite the application of these removal strategies, 

the abundance and impact of IAPs is still increasing (Müllerová et al., 2013). The Working for Water 

program is a national program initiated by the South African government aimed at the control of IAPs 

(van Wilgen et al., 2012). This program was initiated in 1995 and between 1995 and in 2007 cleared 

1.6 million ha of IAPs at the cost of ZAR 3.2 billion (van Wilgen et al., 2012).  The program employs 

chemical, biological and physical removal strategies (van Wilgen et al., 2012) and is one of the largest 

IAP removal initiatives globally (Richardson & van Wilgen, 2004). Without these clearing initiatives, 

areas that experienced 22% invasion could become completely invaded within three decades (Le 
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Maitre et al., 2002). One of the major concerns with these clearing programs is the lack of an effective 

system for evaluating and monitoring the success of removal (van Wilgen et al., 2012).  

Protected areas are a corner stone in terms of conservation and are designed to reduce 

biodiversity loss; however, these areas need to be maintained. The detection of changes in abundance 

of plant species within these areas will aid in maintenance (Nagendra et al., 2013). Also in smaller 

reserves density and abundance of IAPs are important factors to consider (Richardson & van Wilgen, 

2004) to aid in mitigation. Change detection examines the differences between images of the same 

area at different time periods (Coppin & Bauer, 2009). Remote sensing is a powerful tool used for 

change detection (Kerr & Ostrovsky, 2003), due to the frequent return time of satellites (Singh, 1989), 

also referred as high temporal resolution (Bradley, 2014).  

This study aims to investigate the use of remote sensing for mapping IAPs and assessing 

clearing programs of three IAPs namely, Acacia podalyriifolia A.Cunn (Pearl Acacia)., Litsea 

glutinosa (Lour.) C.B.Rob (Indian Laurel)., and Chromolaena odorata (L.) R.M. King & H. Rob 

(Triffid Weed) in two reserves (Paradise Valley and Roosfontein) within the eThekwini municipality. 

This was achieved by initially classifying WorldView-2 imagery before and after clearing using a 

Maximum Likelihood (ML) classifier and then producing distribution and abundance maps for each 

species. These maps were then compared to determine the success of clearing each species.  

4.3 Methods 

4.3.1 Study site 

The Paradise Valley (29.83
o
S, 30.89

o
E) and Roosfontein (29.86

o
S, 30.92

o
E) Nature reserves are 

located in the eThekwini municipality just west of the city of Durban (KwaZulu-Natal, South Africa), 

within close proximity to one another. Both reserves are roughly 300ha in size and include grasslands, 

thicket and forest vegetation. This region receives an average of 1010mm of rainfall annually with a 

majority of the rainfall occurring between November and March. The average annual temperature of 

20.5
 o

C (Preston-Whyte, 1980). The Environmental Planning and Climate Protection Department 

(EPCPD) in conjunction with Wildlife and Environmental Society of South Africa (WESSA) initiated 

clearing programs in the Paradise Valley and Roosfontein nature reserves in 2011 and 2010 

respectively.  
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4.3.2 Field data collection and image processing 

Field data for the classification IAPs were supplied by WESSA, these were created in spring 

therefore WorldView-2 (4 band) images of both 2010 and 2015 were purchased from SANSA (South 

African National Space Agency) for September of their respective years for the purpose of 

consistency. The time of image acquisition is crucial as species differ spectrally due to seasonal 

variations (Lass et al., 2005). Selecting images for the same time of year will reduce sun angle 

distortions and spectral distortions caused by phenotypic variation of species (Mas, 1999). These 

images were then pan sharpened using a subtractive resolution merge, with a sharpening centre value 

of 17, a pan contribution weight of 1 as these were 4 band images (Zhang & Mishra, 2012).  

One of issues related to satellite image acquisition  is cloud cover (Kerr & Ostrovsky, 2003). 

The 2015 imagery had a significant amount of cloud cover (14.6%) over the Roosfontein site. Cloud 

correction was done using ATCOR 3 extension for ERDAS Imagine 2015. Initially solar zenith and 

solar azimuth was calculated then a DEM of the study area was created in ArcMap using 2m contours 

all of these were input into ATCOR 3 as part of the haze removal process. The correction module was 

run with a 35 cloud threshold and a 9 water threshold to remove haze. Thereafter a haze reduction tool 

from ERDAS was applied to further sharpen the image. The DN (digital numbers) of both the 2010 

and 2015 images were then converted to top of atmosphere reflectance values by a conversion model 

created using  the spatial model editor in ERDAS Imagine (Miao, Patil, Heaton, & Tracy, 2011). 

Three species (A. podalyriifolia, C. odorata and L. glutinosa) in the Paradise Valley Nature 

Reserve and two species (C. odorata and L. glutinosa) in the Roosfontein Nature Reserve were 

classified for the purpose of this study. Only two species were classified in the Roosfontein Nature 

Reserve as A. podalyriifolia occurred in negligible quantities. Training sites were created using 60 

samples with 12 samples representing each IAP in each reserve. These were developed by digitizing 

polygons of each IAP on high resolution 2010 WorldView-2 imagery with the aid of field data 

provided by WESSA. These polygons were then imported into ERDAS imagine where spectra was 

extracted to be used for image classification. 

4.3.3 Image classification 

A Maximum Likelihood classifier was performed on imagery of both sites from 2010 and 2015 

to detect the selected IAPs as in comparison to other classifiers (parallelepiped, unsupervised and the 

spectral angle mapper) resulted in the highest classification accuracy (Doody, Lewis, Benyon, & 

Byrne, 2014). The Maximum Likelihood classifier uses mean reflectance to determine the probability 

of a pixel belonging to a certain class (Lass et al., 2005). The threshold for the classification of the 

imagery was defined with 2 degrees of freedom and a 0.025 confidence level. Thereafter a post 

classification comparison approach was used where 2010 and 2015 individually classified images 

were compared (Singh, 1989).  
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Verification of the 2010 classified results was conducted by overlaying sampled pre-clearing 

IAP locations provided by WESSA on WorldView-2 imagery. One hundred (100) such sampled  

points were imported into ERDAS and each assigned a reference value for accuracy assessment 

(Stuckenberg, Münch, & van Niekerk, 2014). Furthermore, accuracy  verification of the 2015 imagery 

was determined using points obtained in the field (Sarma et al., 2008). This was achieved by 

purposive  random sampling; 10 locations were selected for each species at  each study area and were 

given priority based on ease of site access (Underwood, Ustin, & DiPietro, 2003). In the Paradise 

Valley Nature Reserve the L. glutinosa species was not sampled as there was no change between the 

pre and post classification clearance.  

An accuracy assessment was run on 2010 and 2015 imagery for both sites, defining the overall 

accuracy, user’s accuracy, producer’s accuracy and the Kappa statistic. For a classification to be 

regarded as successful an overall accuracy of 85% is required and for individual species, accuracies 

should be 70% and over (Everitt, Yang, Fletcher, & Deloach, 2008). Kappa values from 0 to 0.4 are 

regarded as a moderate agreement, with 0.4 to 0.8 as a substantial agreement and above 0.8 an 

excellent agreement. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were also 

calculated, these are similar indices which determine the performance of a classification, with values 

closer to zero indicating better performance (Y. Kumar & Sahoo, 2012). Multiple accuracy 

assessments indices were calculated as recommended  due to each index having its own strengths and 

weaknesses (Foody, 2002).  

4.3.4 Spatial distribution and density of IAPs 

Distribution and density maps were created for both sites using the fishnet grid method (Vieira, 

Finn, & Bradley, 2014) in ArcMap 10.2. Initially grids representing quadrats measuring 5 by 5m 

(Johansen, Phinn, & Witte, 2010) were created and used to determine the spatial distribution and 

density of each IAP using a point grid density analysis method (van den Berg, Kotze, & Beukes, 

2014). However this resulted in maps which did not adequately reveal the densities of the selected 

IAPs due to the small quadrat size. In order to reveal these densities, different fishnet sizes (grid sizes) 

were experimented and a quadrat size of 50 by 50m (a grid size of 100 by 100m is also recommended 

(ESRI, 2014)), proved adequate for revealing IAP densities pre-and post-clearance (Figures 4.1 and 

4.2) that corroborated image classification accuracies (Tables 4.2 and 4.3). Density of species was 

categorised into low (4% - 33%), moderate (34%  - 66%) and high density (67% - 100%) (van den 

Berg et al., 2014), density below 4% were considered errors of commission (Borak, 1999). This was 

represented by intensity of quadrat colour; quadrats with higher colour intensity indicate a higher 
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species density. The area coverage of each IAP before and after clearing was calculated for both sites 

to aid change detection and determine the success of IAP removal program.  

4.4 Results 

Overall classification accuracy in the year 2010 for Paradise Valley (72%) and Roosfontein 

(82%) (Table 4.1)  were unsuccessful considering the 85 % acceptable threshold for  overall accuracy 

(Everitt et al., 2008). However, the RMSE and MAE values in 2010 for Roosfontein were lower than 

the Paradise valley values, indicating higher classification accuracy. Overall classification accuracy in 

the year 2015 was successful for both study sites with accuracies 85% and above, with very low 

RMSE and MAE values. 

Table 4.1: Overall accuracy of the Maximum Likelihood classifier performed on both sites in 2010 

and 2015. 

 Year Overall 

accuracy (%) 

Overall 

Kappa 

MAE RMSE 

Paradise Valley 2010 72.33 0.6272 27.67 28.63 

 2015 100 1 0 0 

Roosfontein 2010 81.5 0.6864 18.5 18.51 

 2015 85 0.7 1.5 1,58 

Individual user’s and producer’s accuracies above 70% have been recommended for successful 

image classification  (Everitt et al., 2008). In the classification performed in 2010 Paradise Valley 

reserve A. podalyriifolia and C. odorata were both successfully detected with user’s and producer’s 

accuracies above 70% (Table 4.2), except for L. glutinosa (63%), representing the lowest classified 

species (Foody, 2002). Both C. odorata and L. glutinosa were successfully detected in the 

Roosfontein reserve with user’s and producer’s accuracies higher than 70%. Individual Kappa values 

for all species in both reserves were excellent (above 0.8) besides L. glutinosa in the Paradise Valley 

reserve (0.73).  

Table 4.2: Individual accuracy assessment of classified IAPs in 2010 

  Producer’s 

accuracy (%) 

User’s accuracy 

(%) 

Kappa 

coefficient 

Paradise Valley Ap 81 98.78 0.9817 

 Co 73 100 1 

 Lg 63 81.82 0.7273 

     

Roosfontein Co 81 100 1 

 Lg 82 98.8 0.9759 
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Abbreviations are as follows Ap = Acacia podalyriifolia, Co = Chromolaena odorata and Lg = Litsea 

glutinosa. 

Individual user’s and producer’s accuracies of the 2015 imagery produced similar results to the 

2010 imagery in both reserves. The two IAPs, A. podalyriifolia and C. odorata in the Paradise valley 

reserve and C. odorata and L. glutinosa in the Roosfontein reserve (Table 4.3) produced accuracies 

above 70% (Everitt et al., 2008). Individual Kappa values were excellent (0.8 and above) for all 

species in both reserves besides C. odorata in the Roosfontein reserve (0.6). 

Table 4.3: Individual accuracy assessment of classified IAPs in 2015 

  Producer’s 

accuracy (%) 

User’s accuracy 

(%) 

Kappa 

coefficient 

Paradise Valley Ap 100 100 1 

 Co 100 100 1 

     

Roosfontein Co 80 80 0.6 

 Lg 90 90 0.8 

Abbreviations are as follows Ap = Acacia podalyriifolia, Co = Chromolaena odorata and Lg = Litsea 

glutinosa. 

Figure 4.1 represents a comparative distribution and density of three selected IAPs between 

2010 and 2015. Density of species is represented by intensity of quadrat colour; quadrats exhibiting 

higher colour intensity indicate a higher species density. The figure shows that in 2010 A. 

podalyriifolia was concentrated towards the centre of the reserve, whereas 2015 shows a decrease in 

extent and density of the species. In 2010, C. odorata was found throughout the map, whereas in 2015 

C. odorata density decreased across the map and exhibits a definite decrease in occurrence and 

density. The 2010 and 2015 imagery showed L. glutinosa abundantly distributed across both maps 

with very little to no indication of a decrease in occurrence or density between 2010 and 2015. 
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Figure 4.1: Comparative IAP distribution maps for 2010 and 2015 in the Paradise Valley nature 

reserve. IAPs (Ap = A. podalyriifolia, Co = C. odorata and Lg = L. glutinosa). Density of species is 

represented by intensity of quadrat colour, (low = 4-33%, moderate = 34-66% and high = 67-

100%). 

Figure 4.2 represents the density and distribution of the two selected species in the Roosfontein 

Nature Reserve between the years of 2010 and 2015.  The C. odorata species in 2010 was spread 

throughout the reserve, whereas in 2015 there was a significant decrease in its occurrence, with only 

small isolated patches located in the centre of the reserve. The occurrence of L. glutinosa in 2010 is 

mainly towards the West and South of the reserve, whereas in 2015 there is a decrease in occurrence 

and density of the species in the East but a persistent occurrence in the North West of the reserve. 
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Figure 4.2: Comparative IAP distribution maps for 2010 and 2015 in the Roosfontein nature reserve 

IAPs (Co = C. odorata and Lg = L. glutinosa). Density of species is represented by intensity of 

quadrat colour, (low = 4-33%, moderate = 34-66% and high = 67-100%). 

Table 4.3 presents the percentage change in hectares (ha) of each species in both reserves. 

Positive values (+) indicate an increase in area cover of IAP, while negative values (-) indicate a 

decrease in area cover.  In the Paradise Valley reserve, A. podalyriifolia and C. odorata both showed a 

high percentage decrease in area cover (81.6 % and 94.7% respectively). The L. glutinosa species also 

decreased in cover but with a much lower percentage (8.42%). In the Roosfontein nature reserve, C. 

odorata cover decreased significantly by 98.9%, while L. glutinosa decreased by 66.4%. 
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Table 4.3: Invasive alien plant percentage change in area cover between IAPs 2010 and 2015 in the 

Paradise Valley and the Roosfontein nature reserves. 

  Area 2010 (ha) Area 2015 (ha) Percent change 

Paradise Valley Ap 12.23 2.25 -81.63 

 Co 47.11 2.49 -94.72 

 Lg 129.76 118.83 -8.42 

     

Roosfontein Co 107.17 1.16 -98.92 

 Lg 39.58 13.29 -66.42 

Abbreviations:  Ap = Acacia podalyriifolia, Co = Chromolaena odorata and Lg = Litsea glutinosa. 

4.5 Discussion 

Overall accuracies of the classification (Table 4.1) of the 2010 imagery indicate unsuccessful 

classification results as all were below 85%; however, the 2015 resulted in successful classification 

for both reserves. The 2010 result was supported by the study done on the detection of the IAP Giant 

Reed (Aurundo donax) where overall accuracies were also below 85% (Everitt et al., 2008).  The 

accuracy assessment results of individual species in both 2010 (Table 4.2) and 2015 (Table 4.3) for 

both reserves were successful (above 70%) (Everitt et al., 2008) for all species except L. glutinosa 

(63%) in the 2010 imagery for the Paradise Valley Reserve which was the lowest classified species. 

Classification of multispectral imagery can result in high accuracies; however large commission 

errors may exist due to poor spectral resolution (Rocchini et al., 2015). The successful classification 

of A. podalyriifolia is due to its leaves exhibiting dense velvety hairs (Henderson, 1995), this surface 

texture affects the reflection of radiation resulting a unique spectral signature compared to other 

vegetation present (Kumar, Schmidt, Dury, & Skidmore, 2002). The C. odorata species has been 

successfully detected in other studies using WorldView-2 imagery (Malahlela et al., 2015). The L. 

glutinosa species is noted to occur in heterogeneous stands when compared to the other two selected 

species (A. podalyriifolia, and C. odorata) which form dense monotypic stands and is therefore more 

difficult to detect (Bradley, 2014). Therefore, Hyperspectral imagery could  be more suitable at 

detecting L. glutinosa (Rocchini et al., 2015).  

 The majority of errors produced when conducting field surveys resulted from seedlings of the 

species. The distribution and density maps allow us to analyse the change in occurrence and density of 

the selected IAPs  between 2010 and 2015 (van den Berg et al., 2014) which is useful at assessing risk 

(Joshi et al., 2006). Invasive alien plant density and cover patterns  are important factors to consider 

when applying clearing initiatives (Forsyth, Gibson, & Turner, 2014; van Wilgen et al., 2012) to 

prioritise for clearing and help asses clearing. 

The A. podalyriifolia species, a woody invasive species, experienced a large decrease in 

percentage cover within the Paradise Valley Nature Reserve. This implies the ongoing clearing 

programs were successful in this reserve. Furthermore, those pixels that were detected as A. 
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podalyriifolia in the 2015 imagery appear to be errors of commission (false positives) (Calviño-

Cancela et al., 2014). Even though the clearing of this woody IAP species has been successful in this 

reserve, their removal IAPs could facilitate the recruitment of other IAPs (Loh & Daehler, 2008). 

 The shrub species C. odorata is indigenous to Central and North America, it has an 

allelopathic effect which inhibits seedling recruitment of indigenous species (Malahlela et al., 2015). 

In both the Paradise Valley and the Roosfontein nature reserves it has experienced a large decrease in 

percent cover (more than 90%) also indicating successful clearing as with A. podalyriifolia in the 

Paradise Valley Nature Reserve. The clearing of L. glutinosa, which is a tree species, in the Paradise 

Valley reserve, has made very little progress, whereas clearing of this species in the Roosfontein 

reserve reduced the percentage cover by almost two thirds (66.5%), and eradicated the species 

towards the East of the reserve. 

In the Paradise Valley reserve, the failure in clearing L. glutinosa could have resulted from 

clearing of other IAPs. Manual clearing can disturb soil and therefore facilitate invasion by other IAPs 

(Flory & Clay, 2009). Chemical removal may inhibit the growth of entire functional groups including 

indigenous species (Flory & Clay, 2009), therefore promoting growth of IAPs belonging to other 

functional groups. 

Further research should consider early detection of IAPs as prevention of spread is more cost 

effective than combating invasion, therefore remote sensing can be applied as an early detection tool 

to effectively combat invasion (D’Antonio et al., 2004). Once a species become established, it is 

difficult to reduce their spread and almost impossible to halt invasion. It is easier to deal with areas 

that are in the initial stages of invasion as there is no seed bank present (Müllerová et al., 2013). The 

means to detect IAPs in South Africa maybe available, however in addition to the high cost of 

imagery remote sensing is not a well-established field. Furthermore, government has limited resources 

and battles with a host of issues such as crime, poverty and service delivery, therefore IAP eradication 

may not be regarded as a priority. To reduce cost of detection a predictive modelling approach is 

suggested at aiding in the removal of IAPs (Richardson & van Wilgen, 2004), as patterns of past 

invasions can be used to predict future invasion (Bradley & Mustard, 2006). 

4.6 Conclusion 

This paper aimed to examine the role of remote sensing in assessing clearing programs within 

two nature reserves (Paradise Valley and Roosfontein), with the goal to asses previous removal 

programs and facilitate planning towards future removal programs. This study found that when 

considering the user’s and producer’s accuracy of both 2010 and 2015 imagery in these reserves only 

L. glutinosa in the Paradise Valley Nature Reserve was the lowest classified species. The assessment 

of the removal program showed mostly positive results as two IAPs (A. podalyriifolia, and C. 
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odorata) in the Paradise Valley Nature Reserve and two IAPs (C. odorata and L. glutinosa) in the 

Roosfontein Nature Reserve showed a large decrease in spatial extent.  

While the majority of the results are positive it is not known what species have replaced those 

that have been removed. This study did show that remote sensing is able to assess removal programs, 

thereby highlighting its use a tool to aid in mitigation efforts. Worldview-2 imagery proved successful 

in detecting target IAPs; however, a higher spectral resolution sensor will result in higher accuracies. 

There is a need to establish methods to assess removal programs of IAPs in South Africa. There has 

been a significant amount of research within South Africa in IAP detection using remote sensing; 

however, the application of this tool is not very wide spread. 
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CHAPTER FIVE 

THE ROLE OF REMOTE SENSING IN INVASIVE ALIEN PLANT 

DETECTION AND ASSESSMENT OF REMOVAL INITIATIVES: A 

SYNTHESIS 
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5.1 Introduction 

Though considered as the second greatest threat to global biodiversity (van Wilgen, Reyers, Le 

Maitre, Richardson, & Schonegevel, 2008), IAP detection and mapping, is still considered a challenge 

to an extent, this can be tackled through geospatial technology like remote sensing (Cuneo, Jacobson, 

& Leishman, 2009). There have been a number of studies focused on mapping IAPs both globally and 

nationally (Hantson, Kooistra, & Slim, 2012; Joshi, Leeuw, & Duren, 2004; Trueman, Standish, 

Orellana, & Cabrera, 2014). However, few of these studies have focused on smaller protected  areas 

(nature reserves) (Götmark & Thorell, 2003). The spread of IAPs in protected reserves (if not 

monitored) can lead to serious negative conservational impacts such as a loss of biodiversity. In South 

Africa, there have been government initiatives to remove IAPs, however; the success of such removal 

efforts has not been thoroughly investigated. Moreover, remote sensing technology has not been well 

explored as a tool to asses such removal programs. 

The objectives of this study were: 

 To examine the relevant literature, and gain an understanding of the successes and challenges 

relative to invasive alien plant spectroscopy. 

 To assess three types of multispectral imagery (Landsat 7 ETM+, SPOT 5 and WorldView-2) 

and four classification methods (Parallel piped, Maximum Likelihood, Spectral Angle 

Mapper and the Iterative Self-Organizing Data Analysis Technique Algorithm) at the 

detection of three IAPs (Acacia podalyriifolia (Pearl Acacia), Chromolaena odorata (Triffid 

Weed) and Litsea glutinosa (Indian Laurel)) within the Paradise Valley Nature Reserve of the 

eThekwini Municipality in KwaZulu-Natal of South Africa). 

 To asses clearing programs of three IAPs (Acacia podalyriifolia, Chromolaena odorata and 

Litsea glutinosa) within two protected areas (Paradise Valley and Roosfontein) within the 

eThekwini Municipality in KwaZulu-Natal of South Africa. 

5.2 Invasive alien plant spectroscopy 

Remote sensing is a valuable tool as spatial information on IAP distribution allows policy 

makers to apply adequate mitigation strategies (Joshi & Leeuw, 2005). Chapter two discussed the 

concerns of IAPs, the role remote sensing plays in IAP detection and the successes and challenges of 

various sensors used in this field of research. 

 This chapter indicates that multispectral and hyperspectral sensors are useful at detecting IAPs 

(Bradley, 2014). Multispectral data involves broader categories and is useful at mapping species that 

form distinguished homogenous stands (Huang & Asner, 2009) and species that have distinct 

characteristics (Cuneo et al., 2009). Hyperspectral data consists of  individual bands that can be 

isolated (Mutanga, van Aardt, & Kumar, 2009) that would increase classification accuracy of IAPs in 
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a heterogeneous community where the respective IAPs are scattered (He, Rocchini, Neteler, & 

Nagendra, 2011). Spatial resolution needs be considered as it affects the accuracy of IAP detection, 

because as spatial resolution decreases, so too does accuracy (Shouse, Liang, & Fei, 2013).  

Remote sensing is an effective  tool to assess the effects of IAPs on the ecosystem (Miao, Patil, 

Heaton, & Tracy, 2011). Detection of  IAPs, using remote sensing is possible as long as the target IAP 

exhibits novel characteristics when compared to the indigenous species (Huang & Asner, 2009). The 

mapping of a single IAP species in a heterogeneous landscape still remains a challenge (Evangelista, 

Stohlgren, Morisette, & Kumar, 2009). In addition, there is  a lack of interdisciplinary training 

between geographers (traditional practitioners of GIS and Remote sensing) on the one hand and 

biologists on the other hand (He et al., 2011). 

5.3 IAPs detection methods, sensors and classifiers 

The detection of prominent IAPs is an essential process to assist in their management (Trueman 

et al., 2014).  Chapter three assessed the use of three sensors and four classifiers at detecting three 

prominent IAPs. The main objective in this chapter (paper) was to determine the most accurate 

remotely sensed imagery and classification method for detecting three selected IAPs. The outcome 

from this chapter would be used in chapter four as to assess removal programs of the three selected 

species. 

Results from this chapter, reveal that the visible and infrared bands are appropriate in detection 

of IAPs. The Maximum Likelihood Classifier applied on WorldView-2 imagery produced the most 

accurate results with suitable identification and classification for both A. podalyriifolia and C. 

odorata, based on the producer’s accuracy above 70% (Table 5.1). The results are significant as 

specific species detection is usually rare, dependent on dominant species and its spatial extent 

(Bradley, 2014). This method of classification was used in change detection analysis, to assess the 

effectiveness of clearing initiatives of the three target species before and after clearing in chapter four. 

Table 5.1: Accuracy assessment of the Maximum likelihood classifier performed on WorldView-2 

imagery for detecting three IAPs in the Paradise Valley Nature Reserve (2010).   

 User’s 

accuracy (%) 

Producer’s 

accuracy (%) 

Kappa 

coefficient 

Ap 100 85 1 

Co 100 74 1 

Lg 95.35 41 0.9302 

Species abbreviations: Ap = Acacia podalyriifolia, Co = Chromolaena odorata, Lg = Litsea 

glutinosa). 
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The selection of an appropriate image type is dependent on the respective scale of the study 

area (Bradley, 2014). Future research in this field should include hyperspectral imagery in conjunction 

with high spatial resolution imagery to allow for increased accuracy in the classification of IAPs. This 

study also concluded that remotely sensed imagery with moderate spatial resolution, such as the 

Landsat and SPOT sensors, are not suitable for the detection of individual species at a local scale.  

5.4 Assessment of removal strategies within two protected areas 

In South Africa, there has been a significant proportion of resources and capital invested in the 

removal of IAPs. Chapter four examined the role of remote sensing, in assessing clearing programs 

within two nature reserves (Paradise Valley and Roosfontein), with the objective of comparing images 

pre- and post- IAP removal, to inform planning and management of future removal programs.  

In the results, all selected IAPs were successfully detected in the 2010 and 2015 imageries 

based on user’s and producer’s accuracy above 70%, except L. glutinosa in the Paradise Valley 

reserve, which was the lowest classified species. Further assessment showed  that two IAPs (A. 

podalyriifolia, and C. odorata) in the Paradise Valley  Nature Reserve and two IAPs (C. odorata and 

L. glutinosa) in the Roosfontein Nature Reserve have been successfully removed to a large extent 

(substantially decreasing in area cover, for example Ap (82%), Co ( 95% and 99%)  (Table 5.2). 

 

Table 5.2: IAP percentage change in area cover between IAPs 2010 and 2015 in the Paradise Valley 

and the Roosfontein nature reserves.  

  Area 2010 (ha) Area 2015 (ha) Percent change 

Paradise Valley Ap 12.23 2.25 -81.63 

 Co 47.11 2.49 -94.72 

 Lg 129.76 118.83 -8.42 

     

Roosfontein Co 107.17 1.16 -98.92 

 Lg 39.58 13.29 -66.42 

Abbreviations are as follows Ap = A. podalyriifolia, Co = C. odorata and Lg = L. glutinosa. Positive 

(+) values represent an increase in percent change a negative (-) represents a decrease in percent 

change. 

While the majority of the results are positive it is unknown which species have replaced those 

that have been removed. Chapter four highlights the potential of remote sensing as a tool to assess 

removal programs. Worldview-2 imagery (high spatial resolution) proved successful in detecting 

target IAPs. There is a need for those who deal with invasion for future research to allow for the 

establishment of methods to assess removal programs of IAPs in South Africa.  

5.5 Conclusion 

The purpose of this study was to determine suitable methodologies to detect three IAPs 

occurring within two reserves in the eThekwini Municipality and then apply the method to assess 
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removal of the target species. The conclusions here are based on both the detection of the IAPs and 

the assessment of removal programs for these species. 

The results validate the inability of freely available multispectral imagery to detect IAPs and 

confirm high spatial resolution imagery (WorldView-2) as a better alternative though only two of the 

three selected species were detected successfully. Furthermore, the results support the use of the 

Maximum Likelihood classifier at detecting IAPs. It has been proven that appropriate remotely sensed 

imagery can assist not only in the detection of IAPs but also in assessing the removal in time and 

space. 

This study has brought to light the success and challenges of clearing initiatives in the two 

selected reserves, with success dependent on species and location. The method used in this study can 

allow for the detection and assess clearing of these IAPs in other areas. This will allow land mangers 

to rethink clearing methods of persisting IAPs to allow for successful clearing. Furthermore, clearing 

methods applied to successfully removed IAPs can be applied to other areas that contain these 

species.   

  

5.6 Recommendations for future research 

Invasion by IAPs is increasing in South Africa (van Wilgen et al., 2012) and land managers 

need to take account of all IAPs present in the landscape (Trueman et al., 2014) when considering 

mitigation efforts. Therefore future studies using remote sensing to detect IAPs to aid in control  

should include all IAPs present in the targeted study site and time series analysis (Bradley, 2014). 

Periodic classification of a species can result in an indication of the rate of spread of a species, after 

which land managers can choose to target faster spreading species first (Trueman et al., 2014).  

Remote sensing is an effective tool to assess the effects of IAPs on ecosystems (Miao et al., 

2011). The next step would be to identify areas that are in their initial stages of invasion and target 

these areas to reduce spread (Walsh et al., 2008). Thereafter research is needed to determine the 

vulnerability of areas to invasion, by examining spatial configuration of IAPs and landscape 

conditions, areas can then be identified that can be potentially invaded and therefore protected (Huang 

& Asner, 2009).  

More specific to South Africa, research needs to be undertaken to study IAPs using remote 

sensing for the purpose of natural systems conservation (Shouse et al., 2013). It would be beneficial to 

develop local scale protocols/techniques to detect IAPs as the dynamics of invasion vary from place to 

place. Sensors and techniques used would also vary from region to region and would be dependent on 
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various factors such as resource availability, terrain, IAPs present and vegetation type (Joshi et al., 

2004). 

Other future research recommendations 

 The use of image fusion techniques to improve spatial resolution of sensors as there are many 

freely available sensors that are sufficient in spectral resolution but have a poor spatial 

resolution.  

 Sub-pixel analysis and spectral unmixing for more detail IAP detection and classification. 

 Conduct research to allow for the general discrimination between invaded and non invaded 

region so as to identify areas at risk of IAP invasion. 

 Research on the effects of IAP clearing on biodiversity. 

 Assessment of cooperation between stakeholders involved in the management programs 

within the reserves. 
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