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ABSTRACT 

 

Ongoing concerns about the efficient and sustainable utilisation of South Africa’s water 

resources have resulted in much interest regarding the water use of different land uses within 

a catchment. Research has been focussed on water use by different dryland vegetation, in 

particular commercial forestry which has been declared a Stream Flow Reduction Activity for 

which a water use license is required for production. Consequently, concerns about the water 

use of other dryland crops have lead to a need to quantify water use by other land uses, 

particularly sugarcane.  

 

In this document, previous research focussed on water use by sugarcane is reviewed and 

summarised, together with an experiment where an energy balance approach has been used to 

quantify water consumption in the form of total evaporation for an area of sugarcane 

production in the KwaZulu-Natal Midlands with an assessment of the seasonal variability of 

this water consumption for a period of 1 year. The study was performed using a Large 

Aperture Scintillometer to measure sensible heat flux, whilst all other energy balance 

components, as well as rainfall, soil moisture and other climatic data were obtained using 

standard methods. Total evaporation was estimated from latent heat flux which was derived as 

a residual of the energy balance. 

 

Total evaporation varies over the year with substantially higher values occurring in summer in 

response to high energy and water availability. Over the year, the crop used approximately 

630mm of water which equates to 53% of rainfall at the site. The two main factors affecting 

the seasonal variability of water use by sugarcane are net radiation and soil moisture content. 

In the wetter months when soil moisture is readily available, net radiation limits total 

evaporation. In the drier months, soil moisture is not as readily available, and limits total 

evaporation. Air temperature and relative humidity proved to also be important considerations 

in their effect on total evaporation. 

 

The total evaporation estimates obtained could be compared to a baseline (grassland) and used 

in simulations for a better understanding of the stream flow reduction potential of sugarcane 

and the seasonal variability thereof.  
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PART 1: LITERATURE REVIEW AND PLANNING 

 

1. INTRODUCTION 

 

According to McKenzie and Bhagwan (1999), there has been a growing realisation that 

increasing water demands are not sustainable and that if this growth in demand is not dealt 

with, South Africa will face a water crisis in the near future. Since the release of the National 

Water Act (1998) in South Africa, there has been increased pressure placed on water users to 

justify their allocations and use. The largest water user from a land use perspective is 

commercial timber. This has resulted in a large body of research focussed on quantifying 

water use by timber which includes a large amount of modelling for predictive purposes. 

Models have been extensively verified and results have been extrapolated from experimental 

sites to operational areas in South Africa. The most recent research is a set of Stream Flow 

Reduction Tables used to estimate water use of commercial Afforestation for all the potential 

timber growing areas in South Africa (Gush et al., 2001). There is however, much concern 

regarding the accuracy and implementation of these tables as, according to Gush et al. (2001), 

weaknesses in the simulation of low flows were revealed. This research undertaken by Gush 

et al. (2001) has resulted in further research on water use by other potential Stream Flow 

Reduction Activities (SFRAs). One of these potential SFRAs is sugarcane. According to 

Schmidt (1997), water use by sugarcane will have to be compared against other land uses in 

terms of reducing stream flow under rainfed/dryland conditions.  

 

Methods in estimating total evaporation (Et) have advanced considerably in the past decade. 

Most of the advances are based upon the energy balance where total evaporation is derived 

from the latent heat of evaporation. Amongst these advances has been the emergence of 

scintillation as a method to measure average sensible heat flux, a vital component of the 

energy balance, over an area. The area of measurement may differ in size as well as 

incorporate different vegetation types. Scintillation has been compared to other techniques 

commonly used for total evaporation estimates, and the results obtained by scintillation have 

been found to be accurate relative to measurements by the other instruments (Savage et al., 

2004). The mathematical formulae used to derive sensible heat flux using scintillation are 

rather complex. The scintillometer provides a vital component of the shortened energy 

balance (sensible heat), with path averaged heat fluxes of up to 10 km being measured. This 
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sensible heat component is then used in conjunction with corresponding soil heat flux and net 

radiation data to yield a latent heat flux component of the shortened energy balance and 

hence, an estimate of total evaporation. 

 

In this dissertation, a study is described in which the evaporative water use of sugarcane was 

estimated using the scintillation technique and where, in addition to sensible heat flux being 

measured with a scintillometer, the remaining components of the energy balance as well as 

soil water content have been measured for one year, from October 2004 to September 2005. 

The aims and objectives of this study were therefore to: 

 

 become familiar with equipment used in this specific energy balance analysis, 

especially the scintillometer 

 provide estimates of water use by dryland sugarcane for a period of one year 

 provide insight into the seasonal variability of this water use by an improved 

understanding of the limits to total evaporation, with the assistance of Automatic 

Weather Station (AWS) data 

 examine the streamflow reduction potential of dryland sugarcane production  

 

The application of the scintillation technique and the conclusions drawn may aid in decision-

making, as knowledge and data obtained improves the support base for decisions related to 

the declaration, monitoring and management of SFRAs in South Africa.  

 

This document is divided into three parts: 

 literature review and planning 

 methodology 

 results – total evaporation estimation from sugarcane 
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2.  STREAM FLOW REDUCTION ACTIVITIES IN SOUTH AFRICA 

 

Accurate estimation of reference evaporation is necessary for the estimation of actual 

evaporation for both irrigation design purposes and water resources management (Abezghi, 

2003). A recent proposal in South Africa is for there to be a shift towards how land use 

impacts upon both ―blue water‖ or water flow in a stream and ―green water‖ which focuses on 

the primary process of evaporation losses from an area of a catchment (Calder et al., 2004).  

 

South Africa is a water scarce country and it is for this reason that it is necessary to 

understand the partitioning of water within the hydrological cycle. A focus of this is to 

understand how much water certain crops utilize through evaporation and transpiration when 

growing. The loss of water in this gaseous phase makes up the largest component of the water 

loss from an area in semi arid regions (Metelerkamp, 1992). 

 

According to the National Water act of 1998, a stream flow reduction activity (SFRA) is 

defined as any activity ―that is likely to reduce the availability of water in a water course to 

the Reserve; or to meet international obligations; or to other water users significantly.‖ 

(NWA, 1998) The concept of SFRA has been described as an ―innovative concept‖ and forms 

the basis for a land and water policy instrument used in addressing issues of equity, economic 

efficiency and ecology (Calder et al., 2004). In terms of the National Water Act, commercial 

forestry is the only declared SFRA (DWAF, 2003) where it is listed as such under Section 36 

of the Act.  

 

A brief history of SFRA declaration is examined in the next sections followed by a review of 

the present issues surrounding SFRA declarations. 
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2.1  History of SFRA Declaration: Afforestation Permit System (APS) 

 

From 1972 until 1995 commercial forestry was regulated through an Afforestation Permit 

System (APS) (Act No. 72 of 1968) (DWAF, 2003). The reasons for the implementation of 

this APS were (DWAF, 2003): 

 

 commercial forestry covers only 1 % land area but uses 7% to the country‘s water use; 

 commercial plantation forestry is a permanent change in land use from relatively low 

water use veld to a higher water use crop; 

 afforestation of upper catchments resulted in down-stream rivers drying up, which 

lead to conflict between foresters and down-stream users, and 

 the Department of Forestry deemed that the APS was in the best interests of the 

country as a whole.   

 

Consequently, in order for a timber grower to plant trees, between 1972 and 1995, a permit 

had to be obtained before the establishment of commercial plantations on new land or land 

which after harvesting had not been planted to timber for a period exceeding 5 years (Gush et 

al., 2001). Quantification of water use by afforestation for the APS was initially based on a 

model developed by Nanni in 1970 and later improved upon by incorporating additional 

catchment experimental data by Van der Zel (1995). Some of the major shortcomings of the 

APS were (DWAF, 2003): 

 

 regulation was based on reductions in Mean Annual Runoff (MAR) at a large 

catchment scale. Therefore basic needs and ecological requirements at smaller scales 

downstream were not considered. Other factors such as water demand and supply, 

impact on available water were also not considered; 

 decision-making did not involve local participants, and 

 the APS restricted forestry in favour of other uses which may have been far less 

efficient and used the water less beneficially. 
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2.2  Introduction of the SFRA Licensing Scheme  

 

Hydrological assessment continued and resulted in a change in the appropriate legislation. In 

the 1990‘s streamflow reduction quantification was further improved by the development of 

two independent estimation techniques. Firstly there was the development of streamflow 

reduction curves/equations, which were developed by the Council of Scientific and Industrial 

Research (CSIR). These recognised the significance of low-flows when managing water 

resources as well as the need to account for climatic differences, management practices and 

different tree genus (Gush et al., 2001). There was also a need to incorporate updated 

streamflow data from afforested catchments collected from five nation-wide paired catchment 

studies. Secondly, the ACRU agrohydrological modelling system which had been developed 

by the then, Department of Agricultural Engineering at the University of Natal was applied to 

provide estimates of stream flow reduction at sites where experimental data were not 

available. This model is able to simulate streamflow, total evaporation, and land 

cover/management and abstraction impacts on water resources at a daily time step (Schulze, 

1995). The ACRU model requires input data comprising daily rainfall as well as other 

climate, soils, and land cover data (Gush et al., 2001). 

 

It was proposed that the above two techniques could compliment each other and resulted in a 

joint research project between the CSIR and members of the ACRU research team between 

1999 and 2000. The outcome of this effort was the development of a national set of tables 

providing estimates of stream flow reduction for each Quaternary Catchment in South Africa, 

for eucalypt, pine and wattle tree types (Gush et al., 2001).   

   

2.3  Stream Flow Reduction Activities Declaration   

 

The Department of Water Affairs and Forestry (DWAF) in South Africa has maintained an 

interest in the understanding of water use by many different vegetation types. At present 

(2006), only commercial forestry has been declared a SFRA in terms of the NWA of 1998. 

There has, however, been increased pressure to consider other crops as SFRAs on the basis of 

their estimated or perceived water use. According to Anon (2006), the National Water Act 

proposes licensing of consumptive uses of water that result in streamflow reduction and 

requires that such uses be estimated with an acceptable degree of accuracy. Various studies 

that were commissioned to identify other potential SFRAs concluded that these should be 
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limited to dryland crops (DWAF, 2003). There is thus a need to investigate the water use of 

these crops. Dryland sugarcane has been at the forefront of investigations and some studies 

and public perception have suggested that it could be considered an SFRA, and has hence 

been targeted for declaration by the Department of Water Affairs and Forestry (DWAF, 

2003). 

 

There are however many difficulties encountered in declaring a land use to be an SFRA. One 

of these uncertainties is in the definition of an SFRA as stated in Part Four of Chapter Four of 

the National Water Act of 1998, in which the Minister must ―consider the extent to which the 

activity significantly reduces the water availability in the watercourse.‖ There is much 

concern with the meaning of the word ―significant‖ in the Act. At present there is still much 

debate surrounding SFRAs and how control could be gained over the limited water resources 

in South Africa, in the best possible way.  

 

Anon (2006) states that evaporation is responsible for the majority of competitive uses of 

water, yet its exact quantification remains elusive. It is thus important to continue the 

investigative process using new, more advanced techniques. However, there are many 

uncertainties in the estimation of evaporation due to a lack of proof brought about by accurate 

field measurements. In this project, water use by dryland sugarcane was estimated using 

recently developed technology known as scintillation. It was therefore important to assess any 

previous research which focussed on the consumptive water use by sugarcane. In the past, 

there has been a fair contribution in terms of research based upon both understanding and 

estimating water use by sugarcane using various techniques. These are discussed in the 

following section.   
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3.  PREVIOUS RESEARCH ON THE WATER USE OF SUGARCANE 

 

In the recent past, there have been a number of attempts undertaken in terms of assessing the 

water use by sugarcane and the potential impacts of sugarcane on water resources. These 

range from practical field experimentation to theoretical assumptive work.  

 

Van Antwerpen et al. (1996) discussed the complexity in estimating root water use in 

sugarcane. Van Antwerpen et al. (1996) after Philip (1966), described the uptake of water 

through roots as a dynamic physical continuum which can be divided into a demand and 

supply component. Philip (1966) also stated that the rate of non-limiting soil water depletion 

by plants is primarily controlled by the atmospheric demand in combination with 

characteristic plant and soil properties. However, under limited water conditions, supply to the 

soil-plant-atmosphere continuum is controlled by the soil-root characteristic (Hillel, 1982). 

Some of these ideas are discussed further in this dissertation (Section 3.4 of Part 3) with 

regard to understanding the limits to the total evaporation processes.  

 

Smithers et al. (1997) investigated the impacts of grassland, forestry and sugarcane on runoff 

at the Umzinto research catchments in KwaZulu-Natal using a modelling approach.  

According to Smithers et al. (1997), there is a lack of accurate data and knowledge of the 

influence of sugarcane production on the water resources of a catchment. Smithers et al. 

(1997) also state that a cost effective and efficient method of assessing the impact of a crop on 

water resources is to develop credible simulation models.  These models should be able to 

simulate the runoff response from a catchment as well as be sensitive to catchment 

characteristics such as land cover, management practices and soil characteristics. Smithers et 

al. (1997) stated that an alternative to modelling is long term field monitoring 

experimentation which is often costly, time consuming and site specific. Notwithstanding, in 

this dissertation, accurate field data has been collected, analysed and then compared to 

simulations of total evaporation for different crops, using the ACRU model. 

 

Schmidt (1997) investigated the impacts of sugarcane production on water resources. 

According to Schmidt (1997), water use by sugarcane will have to be compared to other land 

uses in terms of the reduction in streamflow under rainfed conditions. Schmidt (1997) also 

states that the impact of sugarcane on streamflow depends on its location within the river 
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catchment as well as the soil and slope conditions, stage of crop growth, management 

practices and the local climate. Approximately 70% of the land under sugarcane production is 

along the coastal belt of KwaZulu-Natal near the outlet of catchments and within 30 

kilometres of the sea. Therefore, most of the runoff entering streams in these areas enter the 

Indian Ocean (Schmidt, 1997).  However, the hydrological impact of different land uses has 

to be quantified for decisions to be made with regard to land use impacts on water resources, 

especially in sensitive catchments where there are many competing water users (Schmidt, 

1997).  

 

Bezuidenhout et al. (2006), estimated the water use of commercial sugarcane in South Africa. 

According to this study water use of rainfed sugarcane has come under the spotlight in South 

Africa largely as a result of changes in legislation and a focus on SFRAs as highlighted 

previously. 

 

The concern raised by Bezuidenhout et al. (2006), is that an influential study undertaken by 

Kruger et al. (2000), adopted a methodology whereby candidate SFRAs were determined 

based upon comparing potential total evaporation rates from the identified crops to 

corresponding Acocks veld types. Kruger et al. (2000) reported that potential total 

evaporation for sugarcane was approximately 1400 mm per annum and was compared to a 

country wide average of potential evaporation for Acocks veld types of approximately 1100 

mm per annum. This approach could be useful in this research using the data presented in this 

dissertation.  

 

Bezuidenhout et al. (2006) state that the potential total evaporation of a crop assume ideal 

growing conditions with no soil water limitations. In reality, this rarely occurs. For example, 

if 700 mm of water was available in the soil profile for a year, both sugarcane and Acocks 

veld types would consume close to 700 mm as their annual potential total evaporation, are 

1400 mm and 1100 mm respectively. Bezuidenhout et al. (2006) therefore conclude that 

actual water use and potential hydrological impacts of different crops is complex and largely 

dependant on the specific environmental limitations imposed. Thus, to base a crops effect on 

stream flow reduction on potential total evaporation of a crop and comparing it to the 

potential total evaporation from the original vegetation, is concluded by Bezuidenhout et al. 

(2006), as not realistic and fundamentally flawed. Rather, the key question should be to find 

out the actual total evaporation from sugarcane for the regions in which the crop is grown 
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relative to what it replaces or will be replaced by. In this dissertation, this key question is 

answered for dryland sugarcane in the KwaZulu-Natal Midlands, albeit for a one year study 

period.  

 

Bezuidenhout et al. (2006) undertook an investigation whereby historical regional sugarcane 

production records for South Africa were used in conjunction with a robust relationship 

between sugarcane yield and actual total evaporation, developed by Thompson in 1976. They 

concluded that the mean water use of sugarcane at an industry scale was 598 mm per annum 

which amounts to approximately 40 % of the mean annual potential total evaporation for a 

full vegetative canopy calculated with the Penman-Monteith equation (McGlinchey and 

Inman-Bamber, 1996) and included irrigated areas. Water use by rainfed sugarcane amounted 

to approximately 36% of the mean annual potential total evaporation. Clearly, the difference 

between actual and potential total evaporation for sugarcane is a critical issue in assessing 

water use of sugarcane.  

 

Burger (1999) compared evaporation measurements above commercial forestry and sugarcane 

canopies in the KwaZulu-Natal Midlands using the Bowen ratio system. She concluded that 

during the winter of 1997, mature sugarcane consumed 2.8 mm.day
-1

.Acacia and Eucalyptus 

canopies over this same period consumed 2.4 mm.day
-1

 and 1.8 mm.day
-1

 respectively. 

According to Burger (1999), these differences resulted from changes in the leaf area indices 

and canopy reflection coefficients. The increase in canopy height of the Acacia and Eucalypt 

tree species over the next year (measured in winter 1998), resulted in increased evaporation 

rates of 4.9 mm.day
-1

 and 5.4 mm.day
-1

 for Acacia and Eucalyptus respectively.  

 

According to Burger (1999), physiological maturity and high canopy resistance of the 

sugarcane during the summer of 1997 and winter of 1998 contributed to the lower evaporation 

rate measured to be 2.1 mm.day
-1

 and 3.7 mm.day
-1

 respectively. Over this same period, no 

stress conditions were visible for Acacia (3.7 mm.day
-1

 and 4.9 mm.day
-1

 respectively) and 

Eucalyptus (4.3 mm.day
-1

 and 5.6 mm.day
-1

 respectively) for summer 1997 and winter 1998. 

This was assumed to be a result of the ability of deep rooted trees to reach water supplies not 

available to the sugarcane. The research undertaken by Burger (1999) took place at the same 

site as that undertaken in this project which allow for an increased credibility when comparing 

results. Total evaporation estimates from dryland sugarcane obtained by Burger (1999), using 
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the Bowen ratio system compare well to the total evaporation estimates presented in this 

dissertation as discussed in Section 3.4 of Part 3. 

 

It has thus been seen that in the past, there has been a range of research focussed on 

understanding and estimating water use by sugarcane and the consequential effects of its 

production on water resources in South Africa. Much of this undertaken research in terms of 

both water use and the seasonal variability thereof was confirmed in the study reported in this 

dissertation. Some of the limits to total evaporation discussed above were evident in this 

research and are discussed in Section 3.4 of Part 3. In this project, total evaporation has been 

estimated for dryland sugarcane using an energy balance approach. It is thus important to 

understand the theory behind estimating total evaporation using an energy balance approach.  
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4. TOTAL EVAPORATION ESTIMATION USING AN ENERGY 

BALANCE APPROACH 

 

Water evaporates from soil and plant surfaces and transpires through the plant to satisfy an 

atmospheric demand (Clark, 1989). The combination of these processes is termed ―total 

evaporation‖. Evaporation and transpiration occur simultaneously and there is no easy way of 

distinguishing between the two processes (Allen et al., 1998). Evaporation is defined as the 

physical process whereby a liquid or a solid substance is transformed to the gaseous state 

(Savage et al., 1997), with the evaporation of water occurring everywhere in the hydrological 

cycle, from rain, land, water surfaces as well as from vegetation in the form of transpiration 

(Savage et al., 2004). There is thus a dynamic state within the soil-plant-atmosphere 

continuum. The sources of energy in the soil-plant-atmosphere system include (Savage et al., 

2004): 

 

 solar energy during the day and long wave or terrestrial radiant energy at night; 

 heat energy carried into the area by wind (advected energy); 

 heat energy stored by vegetation and in land masses; 

 heat energy stored in water bodies. 

 

The most important of these energy sources is usually solar energy (Savage et al., 2004). The 

surface energy balance, driven by solar energy, is examined in more detail as follows.  

 

The surface layer is the lowest part of the atmospheric boundary layer (Meijninger, 2003). In 

this layer turbulent exchange of energy and mass takes place between the earth‘s surface and 

the atmosphere. Evaporation of water into the atmosphere is controlled by factors both at the 

evaporating surface and above it (Metelerkamp, 1992). The amounts of water available as 

well as the soil characteristics play an important role regarding the supply of water to the soil 

surface (Metelerkamp, 1992). Furthermore, the vegetation type and its stage of growth will 

also affect the amount of transpiration occurring.  The primary energy input to the system is 

solar radiation (Clark et al., 1989; Savage et al., 2004), and it has a significant influence on 

total evaporation. Some of this solar radiation is reflected while the remaining energy 

reaching the surface is either absorbed or converted into other energy forms (Clark et al., 

1989).  Therefore the net radiation or radiation balance is defined as the sum of the incoming 
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short and long wave radiation, less the reflected short wave and emitted long wave radiation 

(Savage et al., 2004). The net radiation provides the driving force behind the energy balance. 

It is also important to understand that the energy arriving at the surface must equal the energy 

leaving the surface for the same time period (Allen et al., 1998). The simplified version of the 

energy balance equation for an evaporating surface can be written as (Allen et al., 1998; 

Meijninger, 2003): 

 

Rn – H – LvE – G = 0, therefore 

Rn = H + LvE + G                  (4.1) 

 

where:  

Rn = net radiation 

H = sensible heat flux density 

LvE = latent heat flux density 

G = soil heat flux density 

 

According to Allen (1998), all fluxes of energy should be considered when deriving an energy 

balance equation. It is important to note that in Equation 4.1, only vertical fluxes are 

considered and the net rate of energy transfer horizontally by advection is ignored. The 

equation should thus be applied to extensive homogenous vegetative areas (Allen et al., 

1998). 

 

Sensible heat flux density (H) can be defined as the warming of the air by the underlying 

surface (Meijninger, 2003). Therefore, the heat transfer is brought about by the temperature 

difference between two surfaces such as the plant surface and the atmospheric environment 

(Clark et al., 1989). Latent heat flux density (LvE) is the proportion of net radiation that is 

used to evaporate any water that may be present at the surface (plant or soil). Soil heat flux 

density (G) refers to the proportion of net radiation which is transferred into the soil 

(Meijninger, 2003).  

 

The latent heat flux (LvE) component which represents the total evaporation fraction of the 

energy balance can be derived from the energy balance equation if all other components are 

known. Net radiation (Rn) and soil heat fluxes (G) can be measured or estimated using 

measured climatic parameters. Measurements of the sensible heat (H) are more complex and 
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cannot be easily measured as sensible heat flux estimates require accurate measurements of 

temperature gradients above the surface (Allen et al., 1998).  

 

The energy balance can be linked to the hydrological water balance by the evaporative term. 

The size of each of the fluxes is determined by the atmospheric and surface properties for the 

period of interest. For example, in a dry area, soil heat and sensible heat fluxes consume most 

of the available energy while latent heat flux is dominant in wetter areas (Meijninger, 2003). 

When there is sufficient water available for a crop, as evaporation proceeds, so the 

surrounding air becomes increasingly saturated and the evaporation process will slow down if 

the moist air is not transferred to the atmosphere. The replacement of saturated air with drier 

air depends greatly on wind speed as this would provide the transport mechanism for the 

moist air. Solar radiation, air temperature, air humidity and wind speed are thus important 

climatological parameter considerations, when assessing total evaporation (Allen et al., 1998).  

 

In this project, the energy balance approach described above was used to estimate total 

evaporation by dryland sugarcane. Net radiation was measured using a net radiometer and soil 

heat flux was measured using a soil thermometer approach. Sensible heat, being more 

complex in its estimation, can be estimated using various techniques. These include the 

Bowen ratio, Eddy covariance, and the surface renewal techniques. Savage et al. (2004) 

performed a practical comparative study of the measurement of sensible heat flux from 

January 2003 until November 2004 above an open and mixed grassland community near 

Pietermaritzburg using these techniques, as well as a surface layer scintillometer. These 

techniques were compared by running concurrent field experiments. Savage et al. (2004) 

concluded that the twenty minute measurements of sensible heat flux using the different 

techniques compared well and were in good agreement for much of the time. A dual beam 

large aperture scintillometer was used to estimate the sensible heat flux component of the 

energy balance in this project. This is a relatively new technique used in the estimation of 

total evaporation from any particular land use or combination of land uses. This technique is 

discussed in terms of its hydrological applicability in South Africa in Chapter 6 with a 

detailed review of the scintillation technique in Chapter 5. 
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5.  REVIEW OF THE SCINTILLATION TECHNIQUE 

  

5.1  The Scintillation Phenomenon  

 

Details of sensible heat flux computation are not addressed in this study. This study will just 

give a brief overview of the scintillation technique as this is sufficient for the purposes of this 

research. For a more comprehensive overview, Savage et al., (1997), Meijninger, (2003) and 

Savage et al. (2004) should be consulted. 

 

Electromagnetic radiation passes through the atmosphere and is distorted by a number of 

processes such as scattering and absorption by constituent gases and atmospheric particles of 

the atmosphere, which remove energy from the beam and thus lead to attenuation 

(Wageningen University and Research Centre, 2003; Meijninger, 2003). The most important 

mechanism which influences the propagation of electromagnetic radiation, are small changes 

in the refractive index of air (n). These changes lead to intensity fluctuations in transmitted 

electromagnetic radiation. These fluctuations are known as scintillations (Meijninger, 2003). 

An example that clearly shows the distortion of wave propagation by the turbulent atmosphere 

is the twinkling of stars. This is, the light source is constant but it is distorted to the viewer by 

atmospheric turbulence described as the existence of three-dimensional air motions or eddies, 

which have sizes ranging between millimetres to tens of metres (Wageningen University and 

Research Centre, 2003). Atmospheric turbulence is the most effective transport mechanism 

for many scalar quantities, including those making up the energy balance such as sensible heat 

(H) and water vapour (LvE). These eddies transport both heat and water vapour with their 

refractive indices differing from the surrounding area, hence resulting in refractive index 

fluctuations or scintillations (Meijninger, 2003; Wageningen University and Research Centre, 

2003). Opportunities to utilize the scintillation phenomenon have lead to the development of a 

range of instruments which attempt to measure these fluctuations.  

    

5.2  Scintillation Measurement Principle  

 

A scintillometer is an instrument consisting of a transmitter and a receiver (Figure 5.1). It 

functions over a horizontal path by emitting a beam of light (electromagnetic radiation) from 

the transmitter towards the receiver, which is able to detect scintillations. According to 
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Savage et al. (2004), a scintillometer consists of a light source of known wavelength usually 

directed over some horizontal distance to a receiver.  

 

 

Figure 5.1: Simple illustration of the scintillation technique (Kite and Droogers, 2000b) 

 

The structure parameter of the refractive index of air (Cn
2
) provides the expression of the 

detected scintillations. It therefore describes the atmosphere‘s ability to transport sensible heat 

and water vapour. The output from the scintillometer is a path-averaged value of the structure 

parameter integrated over the optical path. This structure parameter is considered a 

representation of the ―turbulent strength‖ of the atmosphere (Meijninger, 2003). This is 

calculated using the following equation (Meijninger, 2003): 

 

Cn
2
 = 4.48

2
ln A  D

7/3 
L

–3
                   (5.1)

                  

where:  

Cn
2 

= structure parameter of the refractive index of air 

D = aperture diameter 

L = path length 

2
ln A  = variance of the logarithm of amplitude fluctuations 

 

It is also important to note that Cn
2 

is path-averaged according to a spatial weighting function. 

Therefore, scintillations produced by turbulence near the path centre contribute more to the 

path-averaged Cn
2
 (Meijninger, 2003). This is discussed further in Section 3.2.1 of Part 3. It is 

also important to note that the air passing through the emitted beam of light has often 

originated from an upwind area. It is thus important that this air passing the emitted beam 

originated over the vegetative cover which is being researched. 

 

Transmitter Receiver 
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Scintillations are a result of both temperature (CT
2
) and humidity (CQ

2
) fluctuations within the 

atmosphere. Both CT
2
 and CQ

2 
can be derived from the structure parameter of the refractive 

index of air (Cn
2
) (Meijninger, 2003). According to Hill (1997), structure functions provide 

the basis for scintillometry. CT
2
 and CQ

2 
are based upon deviations of air temperature and 

humidity respectively. It can be shown that the relative contribution of these two fluctuations 

to the fluctuations of the refractive index is dependant on the wavelength of the emitted beam 

(Meijninger, 2003). Temperature fluctuations dominate at the visible and near-infrared 

wavelengths. The contribution of humidity increases toward radio wavelengths at the upper 

end of the scale (Meijninger, 2003). Thus, by selecting a specific wavelength, the 

scintillations are either produced more by temperature or humidity fluctuations which is an 

important consideration in the choice of instrument used, to be described in Section 5.4 

(Meijninger, 2003). 

 

Using the structure parameters of temperature and humidity, one is able to derive sensible 

heat and water vapour fluxes, respectively from a scintillometer. This is done using the 

Monin-Obukhov Similarity Theory (MOST).  

              

5.3  Monin-Obukhov Similarity Theory (MOST)   

 

The lower 10% of the planetary boundary layer is known as the surface layer (Meijninger, 

2003). In this zone, vertical fluxes of momentum and conservation scalars (temperature and 

humidity) are nearly constant with height (Meijninger, 2003). The Monin-Obukhov Similarity 

Theory (MOST) provides the linkage from the structure parameters of temperature and 

humidity, to the surface fluxes of H and LvE within the surface layer (Meijninger, 2003). 

Assuming stationary conditions with a horizontal homogeneous surface, MOST describes the 

relationship as follows:  (Meijninger

 

2

*
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Q

Q

)(C dz
= 

2

*
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T

T
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)

L
(

Ob

dz
f                 (5.2)

               

Where: 

CQ
2
 = Structure parameter of humidity 

CT
2
  = Structure parameter of temperature 

Z  = Scintillometer height above the surface 
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d  = Displacement 

Q*  = Absolute humidity scale 

T*  = Temperature scale 

LOb  = Obukhov length 

LOb is defined by the following equation (Meijninger, 2003): 

 

*

2

*
Ob

T

T
L

vgk

u
                  (5.3)

                   

Where:  

kv = Von Karman constant 

T* = temperature scale 

u*  = friction velocity 

g = gravitational acceleration 

T = absolute air temperature 

 

The concept of blending height is also an important consideration with regard to MOST. 

MOST was developed for a stationary atmospheric surface layer over horizontally 

homogeneous terrain (Green, 2001). As air flows over an area that has a variety of vegetative 

surfaces, it will be affected in different ways and to different extents. Surface roughness, 

surface temperature and soil water content could all differ depending on the crop grown 

(Meijninger, 2003).  The question thus arises as to how MOST can be applied to obtain an 

path-averaged sensible heat flux without violation. As air flows from one vegetation to the 

next, an internal boundary layer forms. This results in a number of internal boundary layers 

developing within the surface layer. At a certain level at which the top of the highest internal 

boundary layer is reached, the signatures of the individual internal boundary layer mix as a 

result of turbulence (Meijninger, 2003).  This level is known as the blending height. The 

blending height can be defined as the level at which the individual surface element begins to 

vanish and internal boundary layers merge (Meijninger, 2003). According to Savage et al. 

(2004), the blending height can be defined as the height above which there is horizontal 

homogeneity by turbulent mixing of fluxes. The blending height will differ depending on the 

horizontal scale of the inhomogeneities (Mason, 1988; cited by Meijninger, 2003). It has been 

noted by Meijninger (2003) that the blending height increases with increasing horizontal scale 

of heterogeneity and instability.   
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A scintillometer that is placed below this blending height will only detect fluxes from the 

individual vegetation types (Meijninger, 2003), and thus not satisfy the assumption of 

homogeneity of cover (Savage et al., 2004). Turbulence would thus not be in equilibrium with 

the local vertical gradients or structure parameters and would result in a violation of MOST. 

On the other hand, MOST is applicable to a scintillometer placed above the blending height 

with heterogeneous vegetation (Meijninger, 2003). However, Savage et al. (2004) states that 

―the sensors cannot be too far removed from the surface or else they will be out of the region 

affected by the surface condition‖. 

 

5.4 Common/Commercially Available Scintillometers 

 

This scintillation method is used to provide path averaged surface fluxes at spatial scales from 

100‘s of metres to approximately 10 km. There are a number of types of scintillometer 

available commercially. These scintillometers differ in design according to the type of data 

which is to be collected. Among commercially available types of scintillometers are: 

 

 radio wave scintillometers; 

 surface layer scintillometers; 

 large aperture scintillometers. 

Radio Wave Scintillometers (RWS) are commercially available but not widely used. With this 

technique a radio wave is created whenever a charged object accelerates with a frequency that 

lies in the radio frequency (RF) portion of the electromagnetic spectrum.  This type of 

scintillometer is most sensitive to humidity fluctuations (Meijninger, 2003). It is thus more 

suited to obtain water vapour fluctuations than temperature fluctuations. However, this is not 

commonly used due to its expensive components and time-consuming maintenance 

(Meijninger, 2003). Radio Wave Scintillometers operate at path lengths of approximately 2.2 

km (Savage et al., 2004).  

Surface layer scintillometers (SLS) are instruments targeted for short path lenghs, capable of 

optically measuring both heat flux and momentum flux in the case of the dual beam version 

where the laser beam is split into two parallel beams (Scintec, 2003b). Fluctuations in the 

refractive index caused by thermal changes in the air influence the intensity of the laser light 

reaching the receiver. These variations are evaluated to yield the turbulent information 
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(Scintec, 2003c). The SLSs developed by Scintec, Germany, are highly sensitive and allow 

for even the lowest fluxes and turbulence levels to be measured (Scintec, 2003b). SLSs 

operate at path lengths between 50 and 250 metres (Scintec, 2003d; Savage et al., 2004). The 

main advantage of the SLS is its application in the measurement of detailed surface energy 

budgets (Scintec, 2003d). A major disadvantage however, is that they are affected by strong 

turbulence which is referred to as saturation (Savage et al., 2004), which occurs at path 

lengths of about 250 metres (Meijninger, 2003). 

Large Aperture Scintillometers (LASs) are able to operate at much longer path lengths than 

SLSs, typically 500 to 5000 m, but with some instruments up to 10000 m. These LASs are 

also the most common and widely used scintillometer due to the desire for flux measurements 

at the catchment scale. The ability of the LAS to operate at large scales makes them more 

applicable to hydrological research and remote sensing than SLSs. They are used when there 

is a need to estimate atmospheric turbulence or heat flux over an extended area and have also 

proved to be a practical method in measuring integrated heat fluxes over a mixed canopy 

(Hemakumara et al., 2003). The large aperture of the instrument allows for the emitter and 

receiver to be placed far apart but still allow for sufficient signal to be transferred. According 

to Meijninger (2003), saturation is known to increase with an increase in path length as 

turbulence is often intense and scattering occurs more than once. Therefore, with the 

increased path length at which these instruments operate, there is a need to increase the size of 

the aperture (Meijninger, 2003). According to Meijninger (2003), ―when the aperture size of 

the receiver is larger than the scale of the optically most effective eddies, the receiver will 

average out fluctuations of the received signal over the aperture area.‖ This process known as 

aperture averaging thus leads to reduced intensity fluctuations (Meijninger, 2003). Scintec in 

Germany has provided a large range of both SLSs and LASs which have been widely used in 

meteorological and hydrological studies. Such an instrument was available for this project and 

is described below. 
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5.5  The BLS 900 Scintillometer 

 

The BLS 900 is a LAS made by Scintec (Germany) which has a dual beam (Figure 5.2).  

 

 

 

 

 

 

Figure 5.2: Scintec BLS 900 Transmitter (left) and Receiver (right) (Scintec, 2003a) 

 

According to Scintec (Scintec, 2003a), the BLS900 optically measures atmospheric 

turbulence, heat flux and crosswind over spatial scales of up to 5 kilometres. It contains two 

disk shaped arrays of 450 light emitting diodes (LEDs). The crosswind speed is determined 

from the ―time lagged cross-covariance between the signals of the two beams‖. Due to the 

large transmitting and receiving apertures, saturation and inner scale effects are eliminated. 

The BLS 900 was used in this project for the measurement of sensible heat flux. Some 

advantages of the BLS 900 include (Scintec, 2003a): 

 

 minimal transmitter alignment is required; 

 accurate and informative data is obtained; 

 low noise by using a large number of LED sources; 

 insensitive to transmitter vibration; 

 relatively low power consumption; 

 receiver alignment monitor indicates a need for receiver realignment. 

 

The BLS 900 consists of a dual beam. According to Scintec (2003a), ―by evaluating the 

scintillation from two separate sources, the instrument corrects for transmission changes, 

increasing the accuracy of the measurement results‖. The Scintec BLS series scintillometers 

not only allow for the measurement of turbulence, but also provide the wind speed 

perpendicular to the optical path.       
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The BLS 900 scintillometer was used in this project to provide the sensible heat flux 

component of the energy balance for dryland sugarcane production. The project was 

undertaken in order to provide a better understanding of water use by sugarcane and the 

seasonal variability thereof. This better understanding is intended to assist water management 

authorities in decision making especially with regard to the consideration and possible 

declaration of SFRAs in South Africa. 
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6. ISSUES ASSOCIATED WITH THE PRACTICAL APPLICATION OF 

THE SCINTILLOMETER IN HYDROLOGICAL STUDIES 

 

6.1  Flux Measurements over Heterogeneous Terrain   

 

The natural landscape is heterogeneous with variations of interactions between the soil, plant 

and atmosphere system and can thus be considered as being in a dynamic  state (Allen, 2000; 

cited by Hemakumara et al., 2003). Surface fluxes of sensible heat and total evaporation are 

important in many atmospheric processes and can be measured with reasonable accuracy over 

homogeneous areas (Meijninger et al., 2003). The scintillation technique is one of the few 

techniques that can provide fluxes at scales of several kilometres (Meijninger et al., 2003). 

The fact that the scintillometer performs at relatively large spatial scales suggests that the 

beam can transmit over undulating heterogeneous terrain (Green, 2001).  

 

The scintillation technique could prove to be useful in future hydrological research, and can 

include flux measurements over heterogeneous vegetation canopies. This could benefit 

hydrological understanding at a national scale in terms of an integrated water resources 

management perspective. There is thus a need to use appropriate field techniques, capable of 

incorporating this landscape heterogeneity. The use of scintillation provides a useful 

opportunity in this regard. According to Hemakumara et al. (2003) ―the device is a practical 

method to measure integrated heat fluxes over a mixed canopy‖.  

 

6.2  Scintillation as a Tool for Meteorological Research 

 

Meteorology generally deals with processes greater that 1 km on a spatial scale (Green, 2001). 

This includes weather forecasting and changes to climate. Sensible heat fluxes at spatial 

scales of greater than 1 km are often important components of meteorological models (Green, 

2001). Scintillometers can thus aid meteorological research due to the scales at which they 

operate.   
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6.3  Scintillation and Remote Sensing 

 

It has been said (Green, 2001) that the most important feature of scintillometry is that it 

bridges the gap in spatial scales from point measurement systems to the several kilometre 

pixel resolution which is demanded by meso-scale atmospheric models, satellite imagery and 

catchment hydrology. There is a well recognised need to spatially describe total evaporation 

in hydrological studies (Hemakumara et al., 2003). Satellite imagery and other interpretation 

tools have allowed for such estimates (Moran et al., 1994; cited by Hemakumara et al., 2003). 

There is, however, a need to obtain independent spatially averaged estimates of both 

evaporation and transpiration fluxes at the scale of satellite imagery in order to benchmark 

satellite imagery estimates (Hemakumara et al., 2003). 

 

With the use of a LAS, path averaged surface fluxes at spatial scales up to 10 km may be 

obtained. This is similar to the pixel size of many remote sensing applications as well as the 

grid boxes of numerical models (Meijninger et al., 2003; Kongo and Jewitt, 2006). There is 

thus scope for the two approaches to be linked. Scintillation is able to provide observed data 

at large scales for heterogeneous vegetation. Remote sensing by satellite provides images at a 

catchment scale. There is thus potential for practical application of remote sensing to basin 

scale water balance studies, by incorporating averaged total evaporation estimates over a large 

area (Hemakumara et al., 2003) and validating such estimates with the use of observed data 

from a scintillometer. Therefore, calibration of one method against another is possible. This 

could enhance the management of water in South Africa.  

 

Hemakumara et al. (2003) compared total evaporation estimates for a specified area obtained 

from both a Large Aperture Scintillometer (LAS) and remotely sensed data. Field 

observations from the scintillometer were compared with SEBAL estimates derived from 

NOAA satellite images, which were acquired during the same period of time (Hemakumara et 

al., 2003). The results from this study showed that the satellite images ―compared well‖ with 

the observed scintillometer data.  

 

 It is important to recognise that the net radiation and soil heat flux components of the energy 

balance used in the estimation of total evaporation described in Chapter 4 are measured at a 

smaller source area and point source area respectively. This issue of mixing measurements for 

different spatial scales is one of the shortcomings of this method of estimating total 
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evaporation. Therefore, it is important to obtain estimates of net radiation and soil heat flux 

which are representative of the area from which the sensible heat flux component was 

obtained. 

 

6.4 Scintillation and Water Management 

 

―Increasing competition between industry, agriculture and human consumption for water 

resources is forcing water resource authorities to improve their management techniques‖ 

(Green, 2001). According to Meijninger (2003), ―the demand for reliable information of the 

components of the energy and water balance of land surfaces on a spatial scale of water sheds, 

river basins, and up to the scale of countries is increasing.‖  It is widely accepted that water 

resources management strategies should be formulated at river basin scale (Hemakumara et 

al., 2003). For this to be successful, it is necessary to understand how hydrological processes 

operate at these scales (Hemakumara et al., 2003). According to Bloschl and Sivapalan 

(1995), details of the operation of hydrological processes at a catchment scale are important. 

The processes involved are often complicated as they vary in both space and time. Simulation 

models are available to help develop and refine our understanding of these processes 

(Hemakumara et al., 2003). However, most of these models require calibration by the 

incorporation of sufficient field data. Hydrological models can be run with different levels of 

data, although the overall data requirements are higher than the other methods (Kite and 

Droogers, 2000a). These models are often tested using point-source data with high accuracy 

and then extrapolated to regional scales which then cover a larger area with reduced accuracy 

(Hemakumara et al., 2003). Mixed vegetation types over an area provide complexities at the 

basin scale in terms of assessing the validity of total evaporation losses extrapolated from 

point to basin scale (Hemakumara et al., 2003). 

 

Therefore, scintillation offers an opportunity for total evaporation to be estimated over both 

homogeneous and heterogeneous vegetation surfaces at river basin scale, at which water 

management decisions are more sensible. Hydrological research is often focussed upon water 

use by individual vegetation types produced in the agricultural sector to improve the 

understanding of potential impacts of certain crops on water resources.  
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PART 2: METHODOLOGY 

 

1. SITE AND PROCEDURAL DESCRIPTION 

 

1.1 Research Site and Instrumentation Network 

 

The research catchment for this project is located near Greytown in the KwaZulu-Natal 

Midlands adjacent to the Council for Scientific and Industrial Research (CSIR) Two Streams 

experimental catchment at which, for a number of years, both water and energy balance 

research has been undertaken by the CSIR. The research site lies at a latitude and longitude of 

29.20 
o 

S and 30.67
 o

 E respectively and is considered to be representative of dryland 

sugarcane production in the KwaZulu-Natal Midlands. The research transect, position of the 

AWS relative to the transect, and surrounding areas are illustrated in Figure 1.1. 

 

 
 

Figure 1.1: Satellite image of the research site illustrating the transect, transmitter, receiver, 

AWS, and surrounding area (Google Earth, 2006). 

 

 N 400 m 

 scale 
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At the start of the field work, it was recognised that in order to meet the outcomes of the 

project, there was a need to measure the following simplified energy balance components 

accurately: 

 

 Net radiation 

 Soil heat flux 

 Sensible heat flux 

 

There were numerous issues in terms of temporal spatial scale which needed to be considered 

as the above listed energy balance components range from instantaneous point measurements 

to average conditions across the study transect. Therefore data up-scaling in terms of both 

space and time needed to be done in the most credible method possible.  

 

It was also recognised that additional information which could contribute to the project in 

terms of interpreting total evaporation results was the change in soil water content over time 

throughout the transect. Soil water content data that were obtained are not only used in the 

estimation of soil heat flux, but also assist in the interpretation of when soil water content 

limits the total evaporation process. Primary data in the form of AWS data were also 

fundamental to the project, in that solar radiation, air temperature, relative humidity and wind 

speed all assist in the interpretation of daily total evaporation estimates, as well as in the 

identification of any anomalies which may exist in the scintillometer estimate of sensible heat 

and subsequent total evaporation estimate using the shortened form of the energy balance 

equation.  

 

Consequently, a network of instruments throughout the research site was established as 

illustrated by Figure 1.2.  
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Figure 1.2: Cross section showing network of instrumentation (not to scale). 

 

Figure 1.1 and Figure 1.2 illustrate the 1.62 km transect over which the scintillometer was set 

up. The cross-section (Figure 1.2) shows the small valley-type transect, over/on which the 

instrumentation was set up. An AWS - where solar radiation, wind speed, air temperature and 

relative humidity were measured, is located near to the transmitter of the scintillometer. Five 

Time Domain Reflectometry (TDR) access tubes were installed at different sites along the 

transect, and used to estimate soil water content. Soil thermometers were installed at two sites 

across the transect. The instrumentation and their application and installation are described in 

greater detail in the appropriate sections below. 

 

The site was visited weekly over the period October 2004 to September 2005 in order to 

maintain the network of instruments and download data. Solar radiation, air temperature, 

relative humidity, wind speed and wind direction data are collected at the AWS by the CSIR 

approximately every two weeks. Net radiation data was collected from a nearby site, by the 

CSIR. Vegetative changes within the catchment were documented and a photographic record 

was maintained.  

 

There were a number of issues/problems encountered in the data collection component of the 

project which resulted in data loss. These were a result of instrument malfunction, depleted 

batteries, removal of instruments which were occasionally needed elsewhere, as well as late 

Transmitter 
 

Receiver 
1.62 km 

AWS 

Key: 

 
 = Small Farm Dam 

  = TDR Access Tube  

  = Soil Thermometers 

AWS = Automatic Weather Station 

             = Scintillometer Optical Path 
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installation of certain instrumentation. These are best illustrated by Table 1.1 which indicates 

the duration for which the various instruments successfully logged data.  

 

Table 1.1:  Gantt chart illustrating the duration of successful instrument data capture 

Date Oct-04 Nov-04 Dec-04 Jan-05 Feb-05 Mar-05 Apr-05 May-05 Jun-05 Jul-05 Aug-05 Sep-05

Equipment

Net Radiometer

Scintillometer

Hobo Soil Thermocouples

MCS Soil Thermometers 1

MCS Soil Thermometers 2

TDR Moisture Sensor

Rainfall

Reliable Total Evaporation  

 

From Table 1.1, it is evident that the first half of the project was more problematic than the 

second half in terms of data loss. The major problem over this duration was the lack of soil 

heat flux data brought about by malfunctioning Hobo soil thermometers. This therefore 

affected the total evaporation estimation as the soil heat flux provides an important 

component of the energy balance. Another problem in the first half of the project was the lack 

of soil water content data as the TDR moisture sensor was only available from late April 2005 

following the identification of an instrument malfunction and subsequent repair thereof.  

 

1.2 Crop Management at the Research Site  

 

As highlighted in Part 1, the intention of this project was to investigate water use by 

sugarcane at a site which is representative of dryland sugarcane production in the KwaZulu-

Natal Midlands. It was therefore important to assess the management practices undertaken at 

the research site to ensure that the management represents the ‗norm‘. Harvesting of the 

sugarcane at the research site occurred over the milling season from May until December. 

 

The sugarcane grown at the research site is harvested approximately every 20 months. It is 

replanted approximately every 5 to 6 cuttings. Therefore, replanting of a field takes place after 

approximately 8 to 10 years. This is considered to be the ‗norm‘ in the inland high altitude 

dryland sugarcane production areas.  

 

The sugarcane produced at the research site is burnt rather than greencane harvested. Burning 

sugarcane is still a common practise within sugar production in South Africa although the 

drive towards greencane harvesting is being promoted. Conventional tillage is a common 
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practice on the farm when sugarcane is replanted. Land preparation is performed using 

conventional rippers, mouldboard ploughs and disc ploughs. Conservation tillage is practised 

to a lesser extent. At the land preparation phase, a chemical such as Roundup (Glyphosate) is 

applied at approximately 8 litres per hectare killing both the present sugarcane as well as any 

weeds. Furrows are then ―drawn‖ a few weeks later and sugarcane is planted with no land 

preparation taking place, using conventional methods.  

 

Fertilizer at the site is also applied, with the methods and amounts being typical of dryland 

sugarcane production in the area. To date, granular fertilizer has been used. There may 

however be a shift to liquid application in the near future. The common granular application 

method is performed using tractor drawn broadcast application equipment. This method 

allows for the even spreading of the fertilizer throughout the field. Fertilizer is applied to 

ratoon cane shortly after harvest (1 - 4 months), depending on the season. Common inorganic 

fertilizers applied to ratoon sugarcane on the farm are 5:1:5 or 4:1:6 (The ratios indicating 

Nitrogen, Phosphorus and Potassium). Common application rates for these three elements if 

5:1:5 was taken for example, would be approximately 120 kg Nitrogen and Potassium per 

hectare, and 24 kg Phosphorus per hectare. Micronutrients such as Zinc are also essential in 

sugarcane production and are included in these mixtures when purchased from fertilizer 

suppliers.  

 

For plantcane, these ratios differ slightly with a dual application a common practice. 

Sugarcane is commonly planted with 2:3:4 (N, P, and K) at rates of approximately 44 kg N, 

66 kg P, and 88 kg K per hectare, placed in the furrow with the sugarcane. A follow up 

application when the plantcane has established is common. The follow up application would 

typically comprise 2:0:3 and rates of approximately 60 kg N and 90 kg K per hectare.  

 

Herbicides are applied to sugarcane shortly after harvest or planting as illustrated in Figure 

1.3 and are applied using a tractor and a spray-rig. Four to eight lines (inter-rows) are 

commonly covered during application (Figure 1.3). A number of chemicals are usually 

applied including both pre-emergent and post-emergent herbicidal chemicals. These may 

differ considerably depending on the weeds present, sugarcane variety grown, as well as the 

farmer‘s preference. A common combination and rates of chemicals applied at the research 

site on ratoon sugarcane per hectare are: 
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 3 litres Velpar (Hexazinone – pre and post emergent) 

 2 litres Diuron (Diuron – pre and post emergent) 

 0.5 litres Gramoxone (Paraquat – post emergent) 

 

These chemicals have detrimental effects on the growth of the sugarcane for a short period of 

time. The leaves are often yellow following a large application of for example, Gramoxone. 

This can affect photosynthesis of the sugarcane for a period of up to 12 weeks.  

 

 

Figure 1.3: Common application technique of herbicides to sugarcane. 

 

Over the experimental season October 2004 until September 2005, a common management 

practice adopted on the research farm is the burning of excess ‗trash‘ or vegetative material 

which remains after harvest has taken place. The amount of vegetation remaining after harvest 

is determined by the conditions in which the sugarcane was burnt. For example, if there was 

heavy dew/recent rainfall, the excess vegetation or trash would not have burnt as well as when 

conditions were drier. If this was the case, the remaining vegetation would often be burnt 

shortly after harvest. The main reason for this is to ‗clean‘ the field. This is done so as to 

reduce weed growth by improving the effectiveness of the applied herbicides and fertilizers.  

 

The sugarcane varieties grown at the research site are changing considerably at present and 

will continue to do so with the release of numerous new varieties by the South African 

Sugarcane Research Institute (SASRI). New varieties have been developed which may differ 

in terms of both yield and sucrose, with certain varieties better suited for different areas. The 

sugarcane variety N12 is the predominantly grown variety on the research farm.  
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2.  THE ENERGY BALANCE 

 

In this project total evaporation was estimated using an energy balance approach as described 

in detail in Section 4 of Part 1. Each of the instruments used in the energy balance approach, 

and the calibration thereof, are discussed in more detail below.  

 

2.1 Net Radiation 

 

According to Clark et al. (1989), net radiation can be defined as the difference between 

downward and upward (total) radiation. It is therefore the difference between total incoming 

and total outgoing radiation (including both short wave and long wave components). Net 

radiation is typically measured by a net radiometer. A number of radiometers were used in 

this project to quantify this component.  

 

2.1.1. MCS radiometers 

 

For the estimation of short wave surface reflection, Mike Cotton Systems (MCS) 155 

pyranometers were used. The sensor consists of a solar cell fitted in a waterproof housing 

with a cosine corrected radiation aperture. It is important to note that the spectral response of 

the MCS 155 radiation sensor does not cover the full range of the solar spectrum. From 

Figure A1 in Appendix A1, the MCS 155 sensors cover wavelengths ranging from 

approximately 0.3 to 1.2µm. The error introduced is of the order of 5% under most conditions 

of natural daylight (Cotton, 2004a). The spectral response curve as well as calibration curves 

for both incoming and outgoing radiation against a Kipp and Zonen CM3 pyranometer for 

two MCS radiometers are given in Appendix A. The reflection measurements obtained could 

however be in error as there is a shift in wavelength (spectral response) when these sensors 

are inverted. This is due to the calibration of silicon diode sensors taking place under 

cloudless skies. With regard to the acknowledged error in the MCS 155 readings, it is 

important to consider that these results were not used in the estimation of total evaporation in 

this project. 
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2.1.2 CSIR radiometers 

 

Data from two radiometers (maintained by the CSIR) in the near vicinity of the research site 

were available for this project. A solarimeter, measuring total incoming solar radiation which 

is located at the CSIR AWS, was to be used together with site specific reflectivity coefficients 

to estimate net radiation. The solarimeter data were, however, believed to be erroneous and 

since the instrument could not be located for re-calibration these data were discarded.  

 

A net radiometer, providing the difference between total incoming and total outgoing 

radiation is located over a grassed riparian zone at an adjacent site, where a Bowen ratio 

system has been set up. Although this measurement arrangement was not ideal, the grassed 

riparian zone was assumed to accurately represent sugarcane in terms of its effects on 

incoming solar radiation. This aspect is discussed further in Section 1.1 of Part 3.   

 

2.1.3 Reflection coefficient 

 

According to Allen et al. (1998), ―a considerable amount of solar radiation reaching the 

earth‘s surface is reflected. This fraction of the solar radiation reflected by the surface is 

known as the reflection coefficient.‖ This reflection is highly variable for different incident 

angles or surface slopes and also varies for different surfaces. For example, freshly fallen 

snow can have a reflection coefficient of 0.95 (highly reflective) while values of 0.05 for a 

wet bare soil are typically measured. According to Allen et al. (1998), ―a green vegetation 

cover has a reflection coefficient of about 0.20 – 0.25.‖ 

 

The MCS radiometers were used to estimate the reflection coefficient over varying sugarcane 

canopies. These canopies differed in terms of colour, age, incident angle and density thus 

producing reflection coefficients ranging from approximately 0.13 to 0.28, depending on the 

state of vegetation present. The results of this analysis are found in Section 3.2.3 of Part 3. 

 

2.2 Soil Heat Flux 

 

According to Allen et al. (1998), soil heat flux is defined as the energy that is utilized in 

heating the soil. Soil heat flux is positive when the soil is warming and negative when the soil 

is cooling. Anon (1999) stated that soil heat flux can often consume 5 to 15% of the energy 
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from net radiation under a vegetative canopy and significantly more where canopy cover is 

incomplete. According to Burger (1999), in her experiment at a nearby site, soil heat flux 

comprised up to 40% of net radiation at both Acacia and Eucalypt field experiment sites 

whilst the sugarcane field experiment site accounted for approximately 10% of net radiation. 

The difference was due to shade provided by the vegetation canopies (Burger, 1999). 

 

In this project, soil heat flux density (G) was estimated using soil thermometers and estimates 

of soil heat capacity according to the method described by Blight, (2002).   

 

G = zg(∆T)CG ρG                      (2.1) 

 

where: 

 zg = depth of soil heated (m) 

 ∆T = the average measured increase in soil temperature over depth zg  (
o
C) 

 CG = the specific heat of the soil (kJ.kg
-1

.
o
C

-1
) 

 ρG = bulk density of the soil (kg.m
-3

)  

 

Savage et al., (1997) also used the same technique to estimate the heat energy flux density for 

soil depths of up to 80 mm, and added this to soil heat flux plate measurements, which were 

used to estimate soil heat flux below 80 mm. The soil heat flux comprises approximately 10% 

of the energy balance. Therefore, a small error induced in the calculation of soil heat flux 

would not have a significant effect on the greater energy balance.  

 

2.2.1 Soil temperature 

 

Soil temperature was measured using a set of two thermometers from October 2004 to 

September 2005. These data were logged using a Hobo logger in the early stages of the 

project and were later replaced by new MCS soil thermometers (Appendix B). The 

thermometers were buried at depths of 50 mm and 250 mm respectively below the surface. 

According to Blight (2002), the depth to which soil is heated is usually between 200 and 250 

mm. It was thus assumed that no heating of the soil took place below a depth of 250 mm.  
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All soil thermometers were calibrated against mercury measurements. The site within the 

sugarcane field selected for the installation of the soil thermometers was chosen to represent 

‗average‘ vegetative conditions for the area. This represents a vegetative average in terms of 

both yield and age. The age of the sugarcane in which the thermometers were placed was 

approximately 12 months and upon harvesting at approximately 20 months, would yield 

approximately 80 tons per hectare. The thermometers were moved when necessary to 

maintain these average vegetative conditions.  

 

In this project, one set of Hobo soil thermometers was used initially, with two sets of MCS 

soil thermometers installed in the latter stages. All of these soil thermometers were calibrated 

against a mercury thermometer. A linear trend line has been fitted to the data plots for both 

sets of MCS thermometers. Calibration took place over a range of temperatures from 

approximately 5 to 45
o
C. Calibration curves are shown in Appendix B.  

 

2.2.2 Specific soil heat capacity 

 

The specific soil heat capacity (kJ.kg
-1

.
o
C

-1
) is conventionally taken as (Blight, 2002 after 

Campbell Scientific, 1987): 

 

CG = CGd + wCw                    (2.2) 

 

where  

 CGd = specific heat capacity of the dry soil particles 

 Cw = specific heat capacity of water 

 w = gravimetric water content of the soil 

 CGd has a value of approximately 0.85 kJ.kg
-1

.
o
C

-1
 

 Cw has a value of approximately 4.19 kJ.kg
-1

.
o
C

-1
 

 

Cw is much larger than CGd. Therefore it is important to have good estimates of soil water 

content. According to Savage et al. (1997), this is a major disadvantage of using this method. 

In this project, however, reliable soil water content measurements were taken weekly for 

much of the project period. The analysis of these is found in Section 3.1 of Part 3. 
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2.2.3 Soil bulk density 

 

Soil bulk density is required in the calculation of soil heat flux as shown by equation 2.1 in 

Section 2.2. This was estimated at selected representative sites within the catchment. Samples 

were obtained by using a core sampler which was placed into undisturbed soil within the soil 

profile and then analysed at the School of Bioresources Engineering and Environmental 

Hydrology soil laboratory at the University of KwaZulu-Natal. The density was found to be 

approximately 1390 kg.m
-3

. The procedure undertaken in the estimation of the soil density is 

explained and illustrated in Appendix B8. 

 

2.2.4 Soil water content 

 

Soil water content is required in the calculation of soil heat flux. This was obtained from 

gravimetric sampling in the early stages of the research period and Time Domain 

Reflectometry (TDR) soil water content measurements in the latter stages. Results are 

presented in Section 3.1 of Part 3. Specific details on the TDR soil water content sensor are 

found in Appendix D and the monitoring of soil water content is described in the following 

section. 

  

2.3 Sensible Heat Flux 

 

Surface flux of sensible heat occurs as the air is warmed by the underlying land surface 

(Meijninger, 2003). In this project, the sensible heat flux component of the energy balance 

was measured using a BLS 900 Large Aperture Scintillometer (LAS). Specific details on the 

transmitter, receiver and signal processing unit (SPU), are found in Appendix C. 

 

2.3.1 The scintillometer 

 

The transmitter was located on a fire lookout tower on the Mondi Seven Oaks Estate (Figure 

C1) with a power supply connected to the national grid. A regulator converts this 220V AC 

power into 12V DC at which the scintillometer operates. The transmitter has a high power 

demand and ideally needs to be located near a power source such as this. The receiver uses far 

less power than the transmitter and can be powered by batteries. Photographic illustrations 

taken of the instrument at the research site can be found in Appendix C.  
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2.3.2 Selection of appropriate data resolution 

 

The BLS 900 scintillometer logs minute averages of sensible heat. Figure 2.1 illustrates the ‗1 

minute data‘ logged at the site using the data viewing software which is provided by the 

manufacturer. For the purposes of this project, these data were then aggregated up to more 

meaningful hourly time steps, so that the sensible heat component data corresponded to the 

remaining energy balance component data collected at the site. The outcome of this was thus 

a smoother daily trend of sensible heat after hourly averages were determined, rather than 

highly variable minute measurements, as depicted in Figure 2.1.  

 

 

 

Figure 2.1: 1 minute sensible heat data for 17 November 2004. 

 

A problem encountered with the collection of sensible heat data, were large ‗spikes‘ in the 

data overnight, especially just before dawn. It was concluded that the cause of these spikes 

was condensation of water vapour on the scintillometer‘s receiving lens. This resulted in the 

refraction of the electromagnetic radiation emitted by the transmitter and thus 

inaccuracies/anomalies in the sensible heat flux data obtained. Typical recorded data are 

presented in Figure 2.1 and were useful in identifying this problem. In Figure 2.1, these 

periods have been labelled as spurious spikes. For these late evening/early morning periods, 

the sensible heat is expected to be negligible. The daytime period did, however, provide good 

data with logical trends of sensible heat evident in Figure 2.1, peaking at around midday.  

 

Spurious spikes Spurious spikes 
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2.4 Latent Heat Flux 

 

Latent heat flux was determined as the residual of the shortened energy balance equation. 

Latent heat flux can be derived by making it the subject of the energy balance equation. 

Therefore:   

 

LvE = Rn  - H - G                   (2.3) 

 

where:  

Rn = net radiation (W.m
-2

) 

H = sensible heat flux density (W.m
-2

) 

LvE = latent heat flux density (W.m
-2

) 

G = soil heat flux density (W.m
-2

) 

 

Hourly averages for Rn, H, and G were determined for the duration of the project. For each 

hour, the evaporative term (LvE) was determined. This was then plotted and the area under 

the latent heat flux curve was integrated to provide a quantitative estimate of total evaporation 

in mm.day
-1

. This analysis is expanded upon in Section 2 of Part 3.  
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3. SOIL WATER CONTENT BALANCE 

 

3.1 Rainfall 

 

The rainfall measured for the duration of the project from October 2004 until September 

2005, is represented and discussed in the results Section i.e. Section 3.1 of Part 3. It is 

however useful to examine historical rainfall records for the area so that the current analysis 

can be better understood in terms of whether or not the rainfall experienced for a particular 

year is typical or not.  Daily rainfall data have therefore been obtained from the CSIR for the 

period from November 1999 to August 2005. Figure 3.1 illustrates monthly total rainfall data 

from 3 separate rain gauges located at the Two streams research catchment. 

 

A general indication of the seasonal rainfall distribution is shown for the period from 

November 1999 until August 2005. The period over which energy fluxes were recorded was 

October 2004 until September 2005. From Figure 3.1, it is evident that a similar seasonal 

rainfall pattern took place over this period, although monthly summer totals were higher than 

previous years. The maximum monthly total rainfall occurred in December 2004 with 

approximately 300 mm falling. This rainfall pattern typically results in the recharge of the 

water table and subsequent runoff resulting in the filling of dams in the early summer. It was 

observed that a small dam (Figure 1.2) within the catchment was full by the end of November 

2004 and was still overflowing in September 2005. This is thought to be a result of the good 

rains experienced over the summer and early winter months and a relatively high water table 

level throughout the season. From Figure 3.1, it can be said that the rainfall experienced over 

the hydrological year of interest is above the long term average rainfall for the research site by 

approximately 200 mm. A basic water balance calculated for the researched year can be found 

in Section 3.4.4 of Part 3.  
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Figure 3.1: Rainfall data from the Two Streams study area at three gauging sites adjacent to 

the research transect for the period November 1999 to August 2005. 

 

3.2 Soil Water Content Measurement 

 

It is well recognised that available soil water content can limit total evaporation in regions 

with seasonal rainfall patterns (Calder, 1998). Consequently, the measurement of soil water 

content was an important part of this project. However, a problem with the TDR instrument in 

the early stages of the project and difficulties in obtaining regular (i.e. less than weekly) 

gravimetric samples means that it is necessary to infer soil water content patterns through 

analysis of the available rainfall records. Notwithstanding, soil water content estimates were 

obtained both gravimetrically and with the use of a TDR instrument, described in more detail 

in Appendix D, and these proved to be useful in the analysis of results in terms of 

understanding water use by sugarcane and the seasonal variability thereof. A number of 

gravimetric samples were also taken over the season. These were important in the early stages 

of the project where TDR data were not available, and can be found in Section 3.1 of Part 3.   
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PART 3: RESULTS - TOTAL EVAPORATION ESTIMATION FROM 

SUGARCANE 

 

In Part 3, the assumptions made in estimating the energy balance at the site are explained and 

the data are then presented and analysed. Some conclusions regarding the water use of 

sugarcane and the representation of this site are then drawn. 

 

1. ASSUMPTIONS MADE IN THE ANALYSIS OF RESULTS 

 

A number of simplifying assumptions were necessary in the process of analysing results. In 

some cases, these were the results of shortcomings in the equipment used, and in others to 

simplify the data necessary to resolve the energy balance.   

 

Firstly, condensation observed on the receiving lens of the scintillometer resulted in sensible 

heat flux estimates being erroneous at times. This occurred some early mornings and evenings 

and resulted in refraction of the transmitter‘s emitted electromagnetic radiation. Under these 

circumstances, sensible heat flux recordings were estimated to be excessively high. Thus, 

these evening estimates as well as the remaining evening energy balance component estimates 

were omitted from the analysis. Each day‘s data were examined manually to identify the 

condensational effect, with poor data subsequently being deleted. Anomalies were typically 

found between 6 pm and 6 am. It was thus assumed that: 

 

 The anomalies in the sensible heat flux data are a result of the condensation on the 

scintillometer‘s receiving lens 

 Such periods were accurately identified 

 No evaporation took place over this period 

 

Secondly, all the energy balance components needed to be collected simultaneously for total 

evaporation estimates to be made. Therefore, if there was a problem with any of the 

instruments in estimating a component of the energy balance, the remaining data were not 

useable. It was thus important to ensure that any instrumental problems were solved as soon 

as possible. A number of instrument problems occurred over the summer period in the 

estimation of both the sensible heat flux and soil heat flux (Table 1.1 of Part 2). This resulted 
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in fewer daily evaporation estimates than desired over these months making analysis more 

difficult. These aspects will be discussed in more detail in the appropriate sections.  

 

Thirdly, it is also necessary that components of the energy balance are measured and analysed 

at corresponding time steps. For the analyses, data were accumulated and averaged at an 

hourly time step. It was thus important to ensure that each hour of the energy balance 

component data were correlated. This was assumed to be the case. 

 

Fourthly, the net radiation data used in this project was obtained from a nearby site in a 

riparian zone where a Bowen ratio system was operational. Grass and weeds grow in this 

Riparian Zone, as shown by Figure 1.1. A major assumption of the project is that the short 

wave reflection as well as long wave radiation from this riparian zone is similar to an average 

for the sugarcane transect. According to McGlinchey and Inman-Bamber (1996), the 

reflection coefficient from sugarcane is 0.228. Clark et al. (1989), state that a value of 0.23 is 

often used for green grass/green crops.  According to Allen et al. (1998) a green vegetation 

cover has a reflection coefficient of about 0.20 to 0.25 and for the green grass reference crop, 

is assumed to have a value of 0.23. In Section 3.2.3, the reflection coefficient from the 

sugarcane site was estimated for varying canopies and found to be approximately 0.23 for a 

full canopy. Thus, the short wave reflection from the nearby grass site is assumed to be 

similar to that of the sugarcane.   

 

Fifthly, there is a complication with matching scales of measurement in such research. Some 

components of the energy balance collected provide a weighted path average (sensible 

component) while others provide a point estimate (soil component) or over a more localised 

area (net radiation component). It has therefore been assumed the data obtained at the point 

estimates are representative of the catchment or transect as a whole, unless specified 

otherwise.  
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Figure 1.1: Net radiometer on a Bowen ratio system at a nearby site 
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2. METHOD OF ANALYSIS 

 

In this project, large amounts of data were collected. It was thus important to display these 

data in an understandable manner and group them appropriately. Ultimately, the goal of this 

study was to estimate the daily total evaporation of sugarcane. Thus, the output of the data 

analyses are presented as estimates of daily actual (total) evaporation for representative 

periods in each month. All components of the energy balance are shown in order to illustrate 

the methodology used and assumptions made. Actual daily total evaporation estimates have 

been tabulated in Section 3.3. The total evaporation in mm.day
-1

 was estimated by converting 

the latent heat of evaporation from W.m
-2

 into a quantitative daily estimate in mm.day
-1

. In 

this study, as the focus is on studying the water balance in sugarcane growing areas in the 

context of the possible declaration as an SFRA (Section 3.5), an approach has been taken 

whereby all energy balance components are expressed as mm of water equivalents. This may 

be considered unusual in the context of energy balance studies, but given the hydrological 

focus of this study, it is considered appropriate and was done for comparisons to be drawn 

between energy balance components data. This is similar to the approach followed by 

Hemakumara, 2003 as well as Aase and Wright (1972) (Table 2.1).  

 

Table 2.1: Millimetre equivalents for energy balance components in a study undertaken by 

Aase and Wright in1972 (Aase and Wright., 1972). 
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Investigations done by Aase and Wright (1972) took place in order to assess total evaporation 

to net radiation ratios over rangeland vegetation, as well as ratios between evaporation pan 

and net radiation taking place over the same evaporation pan. Table 2.1 illustrates the 

expression of these energy balance investigations in millimetre equivalents. Energy balance 

component data analysis took place at hourly time steps which were then summed to produce 

daily evaporative estimates. For the purposes of this research, it was necessary to compare the 

total evaporation estimated to the corresponding net radiation measurement (in mm 

equivalents) in order to give a broad indication of the proportion of the energy balance met by 

the latent heat flux component. This was done to assist in the understanding of the seasonal 

variability of water use by the sugarcane when considered in conjunction with the soil 

moisture content. According to Aase and Wright (1972), ―the upper limit of total evaporation 

can be predicted from knowledge of the net radiation available to the surface‖. Aase and 

Wright (1972) also state that for this upper limit to be reached there needs to be no shortage of 

water as well as an absence of advective heat transfer which can affect the sensible heat flux 

estimate, depending on the conditions upwind of the crop. In this project, it has been assumed 

that the effect of advection is limited due to the surrounding areas consisting largely of the 

same crop. Hemakumara et al. (2003) followed a similar approach in comparing the total 

evaporation to the net radiation with an evaporative fraction being calculated by dividing the 

daily total evaporation by the daily total net radiation and assessing this fraction considering 

the soil moisture content. Rainfall/soil water content was therefore recognised as being an 

important consideration and likely limitation to total evaporation in the analysis of results. 

Daily rainfall as well as soil water content estimates taken over the project duration are 

tabulated in Section 3.1. Air temperature and relative humidity are also tabulated to assist in 

the understanding of the results presented. These data were obtained from the Two Streams 

AWS with values from 1pm being used for daily analysis as this was assumed to provide a 

good representation of daily conditions. Each month‘s results are discussed separately and 

then summarised in Section 3.4. All summarised data from each month were tabulated and 

plotted. Although all daily data are presented, for selected months, a period of 4-5 days has 

been selected as ‗representative‘ of that month with the energy balance component and 

primary data being displayed in more detail to aid in understanding the link between primary 

data and the energy balance. These data were then summarized, plotted and discussed in order 

to draw conclusions, regarding the consumption of water by sugarcane presented in Section 

3.4. 
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3.  PRESENTATION OF RESULTS 

  

In the tables presented in Section 3, the following abbreviations are used:   

 DOY = Day of year 

 LvE = Latent heat flux component (mm of water equivalents)  

 Rn = Net Radiation component (mm of water equivalents
 
) 

 H = Sensible heat flux component (mm of water equivalents) 

 G = Soil heat flux component (mm of water equivalents) 

 Ta = Air temperature at 1pm (
o
C) 

 RH = Relative humidity at 1pm (%) 

 Rainfall = Daily rainfall (mm) 

 NA = Data not available 

 

3.1 Soil Water Content Balance 

 

The availability of soil water content is vital to processes such as evaporation and 

transpiration, and thus proved to be a fundamental component of this research. Rainfall for the 

year will thus be examined and related to soil water content measurements and estimates 

which took place over the duration of the project. 

 

3.1.1 Rainfall and soil water content samples 

 

Available soil water content is closely related to the rainfall pattern.  Figure 3.1 displays daily 

rainfall for the period October 2004 to September 2005 and provides an important part of the 

interpretation of results in Section 3. A 5-day moving average has also been plotted to provide 

a smoother trend of average rainfall. A typical KwaZulu-Natal Midlands rainfall distribution 

pattern is evident for the study site with significant summer rainfall, peaking in December 

2004, followed by a dry winter with very little rain falling between April 2005 and August 

2005. Gravimetric soil water content samples were taken over the duration of the project. 

These have been converted into volumetric soil water content equivalents for comparative 

purposes with the TDR data discussed in Section 3.1.2. It is unfortunate that only six soil 

water content samples were taken over the period October 2004 – June 2005, after which a 

significant amount of soil water content measurements were taken using the TDR soil water 
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content sensor. The six samples taken do however give a good indication of the seasonal 

changes in soil water content replicating the rainfall trend in Figure 3.1, peaking in January 

2005.  

 

 

Figure 3.1: Daily rainfall and soil water content samples taken over the period October 2004 

to September 2005 

 

3.1.2 TDR soil water content measurements 

 

Measurements were taken at weekly intervals with this instrument (Appendix D) for the 

period 26 April 2005 until the 19 September 2005, yielding volumetric water content. Five 

TDR measuring sites/nests were established at different points across the transect. These can 

be seen in the cross section shown in Figure 1.2 of Part 2. Unfortunately, the first of these 

nests was not found upon return to the field site due to its position not being clearly identified. 

Measurements were taken at depths 0.3, 0.6, 0.9 and 1.2 m at the remaining four sites. Figure 

3.2 is a summary of the results obtained. For each measured day, soil water content is 

averaged over the four depths at each nest whilst in Figure 3.3, soil water content for each 

measured day at a depth of 0.3 m is plotted and provides some differences when compared to 

the depth-averaged soil water content.  
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TDR Soil Moisture (Depth Averaged) and Rainfall
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Figure 3.2: Depth-averaged TDR soil water content measurements for nests 2 to 5 for the 

period April to September 2005 

 

From Figure 3.2, there appears to be clear differences in soil water content between the 

different nests. Some trends are however evident. The general trend in all nests is a decrease 

in soil water content over the illustrated period and a clear response to the rainfall events In 

the analysis of the energy balance, the soil water content estimates obtained at nest 5 were 

used in the calculation of soil heat flux density as this access tube is located a few metres 

from the soil thermometers (Figure 1.2 of Part 2). Therefore, soil heat flux density 

calculations are assumed to be most accurate using soil water content estimates from nest 5.  

 

Nest 2 is located on a relatively steep slope. This may have resulted in an increased surface 

runoff contribution rather than through flow if compared to nest 5 which is located on 

relatively flat topography as illustrated by Figure 1.2 of Part 2. This increased slope of nest 2 

could result in less infiltration and more water draining away compared to the lesser slopes 

and correspondingly lower soil water content content. Nests 3 and 4 are located on similar 

slopes with nest 3 located near the valley bottom and nest 4 located at the mid-slope. Similar 

soil water content contents were evident at these sites. The access tube at nest 4 was burnt 

when the sugarcane was harvested in April 2005 but was repaired by mid May.  
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TDR Soil Moisture (30cm) and Rainfall
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Figure 3.3: TDR soil water content measurements at 0.3 m for nests 2 to 5 for the period April 

to September 2005  

 

Figure 3.3 provides a more erratic soil water content pattern than Figure 3.2. This reflects the 

variability of soil water content in the upper soil profile as it undergoes a number of wetting 

and drying cycles moving through the upper 0.3 m of the soil profile. Relatively small rainfall 

events result in changes in soil water content at this shallow depth. A seasonal trend is evident 

from the plots, with the soil water content lowest just after mid winter (July). The effects of 

individual rainfall events are clearly identified due to the short time taken for the moisture to 

reach a depth of 0.3 m. For example, on the 12 August 2005 (highlighted in Figure 3.3), soil 

water content seemed to peak at all nests following a rainfall event. This is confirmed by 

Table 3.15 (August 2005 monthly analysis) and the rainfall plotted in Figure 3.3 with 

approximately 25 mm falling over the three days prior to this (9 to 11 August, 2005). The 

effect of this rainfall on the depth averaged soil water content measurement in Figure 3.2 is 

more lagged and less pronounced due to the time taken for seepage down the soil profile as 

well as the distribution of this water though this profile. 
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3.2  Path Weighting Function for the Energy Balance Components – Incorporation 

and Significance Testing 

 

In this project, Rn and G have been estimated at a localised source area and point source area 

respectively whilst H has been estimated using a weighted average across the entire transect. 

According to Savage et al. (2004), the spatial scales of the measurements of the energy 

balance components differ due to the nature of their measurement. In order test the 

significance of this weighting function on the other components of the energy balance, A 

similar weighted distribution across the transect for Rn and G, and thus a weighted estimate 

for LvE was produced. This was done for selected days when the weighted distribution was 

thought to have its largest impact on the energy balance components. The estimated weighted 

LvE values, were then compared to the LvE estimates obtained using the point estimates of 

Rn and G, in order to test the significance of incorporating the weighted energy balance 

component distribution. 

 

3.2.1 Sensible heat flux 

 

Estimating the sensible heat flux component of the energy balance (H) is computationally 

complicated. It is important to understand that sensible heat fluxes measured by the 

scintillometer are not point estimates, but rather line-averaged values across the transect. 

Sensible heat flux is thus a spatially weighted function describing the contribution of different 

regions of the propagation path. Figure 3.4 illustrates the weighted normal distribution of 

sensible heat flux with an increased contribution near the path centre, and a negligible 

contribution near the transmitter and receiver of the scintillometer (Scintec, 2004).  
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Figure 3.4: Spatial weighting for the sensible heat flux component of the energy balance 

(Scintec, 2004). 

 

3.2.2 Dynamic vegetation distribution 

 

The research transect has a length of 1.62 km. As the objective of this exercise was to obtain 

an equal weighting distribution for Rn, G, and H across the transect, Rn and G had to match 

the distribution of H. Figure 3.4 was thus examined carefully and it was decided to divide the 

total transect length into four equal quarters, each comprising approximately 400 m. The areas 

under each quarter of the curve in Figure 3.4 was determined and found to comprise 

approximately: 

 11% 

 39% 

 39% 

 11% 

 

Rn and G also vary according to the condition of the vegetation at the estimation point. In 

terms of Rn, both short wave reflection and long wave re-radiation could be affected by the 

state of vegetation. The change in long wave re-radiation brought about by a change in 

vegetation has not been considered in section of 3.2 of the project as its contribution is 

thought to be relatively insignificant. Should this contribution be significant, the path 
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weighted estimate of Rn could be erroneous. The fraction of solar radiation reflected by the 

surface, commonly known as the reflection coefficient, could be considerably affected by the 

vegetative state at the surface. For example, after harvest, a bare soil would be present which, 

if moist, can have a reflection coefficient of as low as 0.05 or 5% (Allen et al., 1998). The 

reflection coefficient can also be as high as 0.3 or 30% for a full sugarcane canopy. Trials 

were set up at the site to determine this variability (Section 3.2.3) and incorporate it into the 

weighting of Rn over the transect.   

 

The soil heat could also be considerably affected by the state of the vegetation at the point of 

estimation and although the soil heat flux contribution to the energy balance is small, was also 

considered as G measured under a dense sugarcane canopy could be considerably less than G 

measured at a bare surface after harvest has taken place.  

 

In order for the weighting function to be incorporated into calculations of both Rn and G, it 

was important to consider each of the four equal quadrants as described above. Photographs 

of the catchment were taken weekly indicating any vegetation changes brought about by crop 

harvest. This information has been summarized in Table 3.1 with the state of the vegetation 

across the transect and its variability over time being tabulated. Percentages indicate that the 

proportion of vegetation remaining i.e. not harvested. From Table 3.1, it is evident that the 

largest proportion of the sugarcane harvested across the transect, took place near the centre. It 

can also be seen that for much of the research period, complete vegetation cover is present. 

This is a result of the ‗off season‘ when sugarcane is not harvested. The off season generally 

runs from December through until April, depending on the sugar mill to which the sugarcane 

is sent.  

 

Table 3.1: Vegetation cover across the transect and its variability over time. 

Date 0 km-0.4 km 0.4 km-0.8 km 0.8 km-1.2 km 1.2 km-1.6 km 

October 2004 - April 2005 100% 100% 100% 95% 

May 2005 100% 100% 55% 95% 

June 2005 100% 100% 40% 95% 

July 2005 90% 50% 5% 96% 

August 2005 - September 2005 70% 50% 10% 90% 
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3.2.3 Net radiation 

 

Two solar radiometers were used to estimate the reflection coefficient of the sugarcane 

present across the transect. These were calibrated against a pyranometer as described in 

Appendix A. One of these was faced upwards, to measure the total incoming shortwave 

radiation, and the other was faced downwards to measure total shortwave radiation reflected 

at the surface. This was done at four different sites, all with differing vegetative 

characteristics for a period of 1 to 3 days at each site. One of these was a matter of days after 

harvest thus providing reflection from a bare soil. Unfortunately, due to instrument failure, 

measurements from this site were found to be erroneous. At another site, the reflection 

coefficient was measured a few weeks after the crop was harvested with ratooning 

commencing. The remaining two of the four, had a full vegetative canopy. The difference 

between these two was the colour and density of the crop surface. The three sites at which 

reliable reflection coefficient measurements took place will be discussed. 

 

3.2.3.1 Reflection coefficient: site 1 

 

Figure 3.5 shows the reflection coeffcient being measured over a dense green sugarcane crop. 

The density of a sugarcane crop is closely related to yield and a dense crop as shown in Figure 

3.5 would yield approximately 90 tons per hectare upon harvest. This sugarcane was planted 

approximately one year prior to the measurements.  

 

 

Figure 3.5: Reflection coefficient estimation over a dense green sugarcane canopy. 
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From Figure 3.6, the reflection coefficient measured at this site was high averaging 

approximately 0.25 (25%) over the three day period of measurements. The effect of the angle 

of incidence on the reflection coefficient estimates is clearly seen in Figure 3.6 with the least 

surface reflection occurring at midday when the sun is perpendicular to the land surface. 

 

 

Figure 3.6: Reflection coefficient over a dense green canopy of sugarcane 

 

3.2.3.2 Reflection coefficient: site 2 

 

From Figure 3.7, it is evident that the canopy density for this site is less than that of Figure 

3.5. The crop is also drier than that of Figure 3.5 due to the crop being slightly older with 

evidence of crop senescence. Figure 3.7 thus indicates a lower reflection coefficient measured 

over a less dense, older crop, which is probably more representative of average sugarcane for 

the area.   
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Figure 3.7: Reflection coefficient estimation over a dry sugarcane canopy 

 

One would assume higher reflection from this site when compared to that of Figure 3.5. 

However, the measured reflection coefficient for this 2 to 3 day period showed a slightly 

lower reflection coefficient than the sugarcane represented in Figure 3.5. Average reflection 

coefficient for the measured period was approximately 0.2 (20%) (Figure 3.8). This site 

would yield approximately 70 tons per hectare upon harvest, which is significantly less than 

that of Figure 3.5. It can therefore be assumed that reflection coefficient is not only affected 

by the colour of the crop, but also the density of the crop at the surface.   

 

 

Figure 3.8: Reflection coefficient over a less dense dry sugarcane canopy 
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3.2.3.3 Reflection coefficient: site 3 

 

A single day‘s reflection coefficient was measured at a site where harvested sugarcane had 

been ratooning for approximately 4 to 6 weeks (Figure 3.9).  

 

 

Figure 3.9: Reflection coefficient estimation over ratooning sugarcane 

 

The result showed an reflection coefficient of approximately 0.13 (13%) as illustrated in 

Figure 3.10. Thus, for the purposes of the integration of a weighted distribution, a reflection 

coefficient of 0.1 (10%) will be assumed immediately after harvest. The incident radiation 

reflection is less evident in Figure 3.10 when compared to that of Figures 3.6 and 3.8 due to 

there being less surface vegetative cover and an increased proportion of bare soil at the 

surface.  
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Figure 3.10: Reflection coefficient over harvested sugarcane, after 6 to 8 weeks ratoon 

growth. 

 

3.2.4 Application of the weighting function 

 

Based on the analysis above it was decided to apply the weighting function to Rn for selected 

days from July – September 2005 and then compare this weighted Rn distribution to the point 

source estimate. This was only done from July-September 2005, as this is the period over 

which significant crop harvesting took place. It is important to note that in this analysis, there 

were only two vegetative states utilized i.e. full canopy or no canopy. No intermediate stage 

of growth was selected due to the complexity of incorporating this into the analysis. However, 

the reflection coefficient immediately after harvest was gradually increased from 0.1 (10%) in 

July 2005 as ratooning commenced to 0.13 (13%) in September 2005 to incorporate results 

obtained from Figure 3.10, which had ratooned to a similar vegetative state. It was decided to 

assign the full canopy with a reflection coefficient of 0.23 (23%) after averaging estimates 

obtained from Figures 3.6 and 3.8.  

  

Rn for a full canopy was taken from the point source estimate at the CSIR site. With known 

reflection coefficient estimates for both bare and full canopy conditions, Rn for a bare 

vegetative condition in this project was estimated using the following equations: 
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Rn bare = R incoming (1-reflection coefficient bare) 

R incoming = Rn sugar / (1-reflection coefficient sugar) 

Therefore: Rn bare = [Rn sugar / (1-reflection coefficient sugar)] * (1-reflection coefficient bare)  

 

where:  

Rn bare= Net radiation for bare vegetative cover 

Rn sugar = Net radiation for full canopied vegetative cover 

R incoming = Incoming solar radiation at the earth‘s surface 

Reflection coefficient bare = Reflection coefficient for bare vegetative cover 

Reflection coefficient sugar = Reflection coefficient for full canopied vegetative cover 

 

These values of Rn sugar and Rn bare were used in calculating the weighted Rn distribution for 

typical days in July, August and September 2005. For each 400 metre section of the transect, 

with its attributed weighting function value (0.11 or 11% for section 1, 0.39 or 39% for 

section 2 etc), the proportion of vegetation present and absent (taken from Table 3.1) was 

multiplied by the Rn sugar and Rn bare values. This analysis was done quantitatively with Rn 

represented in mm.day
-1

. The new weighted quantitative estimates for each of the four 

sections was then summed to provide a weighted daily total for each day analysed as 

represented in Table 3.2. This method used in the estimation of Rn for both bare and 

vegetated surfaces could be erroneous due to the incoming and outgoing infrared radiation 

being neglected, as highlighted in Part 1 Section 2.1.1. Consequently, these results were not 

used in the estimation of total evaporation, but only to provide a means of comparison 

between Rn obtained over the riparian area and Rn for the sugarcane crop. As described in 

more detail in Sections 3.2.5.2 and 3.2.6 all estimates of evaporation reported herein are based 

on Rn measured using the CSIR net radiometer as described in Part 1 Section 2.1.2. 

 

Table 3.2: Quantitative weighted Rn values (mm.day
-1

) over the transect for one 

representative day in each month. 

Date 0 km-0.4 km 0.4 km-0.8 km 0.8 km-1.2 km 1.2 km-1.6 km Weighted Total Point Est. 

14/7/2005 0.234 0.884 0.946 0.231 2.295 2.090 

6/8/2005 0.402 1.463 1.541 0.391 3.795 3.500 

12/9/2005 0.551 2.002 2.100 0.537 5.189 4.820 

 

From Table 3.2, it is evident that the weighted Rn total is slightly higher than the Rn 

estimated at the point source. This is a result of less reflection of incoming solar radiation 
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taking place at the surface once the sugarcane had been harvested. The solar radiation 

available for distribution in the energy balance is thus increased where the reflection 

coefficient is less. It is important to understand which other energy balance components are 

affected as a result.  

 

3.2.5 Soil heat flux 

 

Two sets of soil thermometers were installed across the transect. One of these sets was placed 

under a sugarcane canopy which was assumed to represent average canopy density for the 

transect. The second set of soil thermometers was placed near the transect centre on 13 July 

2005, after the sugarcane had been harvested on 14 June 2005. 

 

3.2.5.1 Comparison of two datasets 

 

Approximately three months of soil heat flux data were obtained from both sites, allowing for 

a good comparison to be made between heat fluxes under a sugarcane canopy, and the post-

harvest site. From Figure 3.11, it is evident that the soil heat fluxes measured at site 2, with no 

canopy, were significantly higher than those measured at site 1 which had a full canopy. On 

average, soil heat fluxes were 2.75 times greater where there was no canopy.  

 

 

Figure 3.11: Comparison in G using data from soil thermometers from site 1 and 2 
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3.2.5.2 Weighted distribution 

 

The results presented in Figure 3.11 proved to be useful in adjusting G to incorporate a 

weighted distribution. This was incorporated in the same manner as Rn. For the same selected 

days in July, August and September 2005, a quantitative estimate of G, for both full canopy 

and no canopy was determined. These were then multiplied by the proportion of vegetation 

present or absent (Table 3.1) for each 400 metre section, and summed together to yield a 

quantitative weighted distribution for G.  

 

Table 3.3: Quantitative weighted G values (mm.day
-1

) over the transect for one representative 

day in each month. 

Date 0km-0.4km 0.4km-0.8km 0.8km-1.2km 1.2km-1.6km Total Point Est. 

14/7/2005 0.032 0.170 0.231 0.030 0.463 0.260 

6/8/2005 0.054 0.215 0.289 0.039 0.598 0.310 

12/9/2005 0.055 0.234 0.309 0.045 0.643 0.360 

 

From Table 3.3, it is evident that the weighted G total are higher than the G estimated at the 

point source taken from the set of soil thermometers located under the average vegetative 

canopy. This is a result of less energy reaching the soil surface and thus available to 

contribution to the energy balance in the form of soil heat flux for the full canopy. Where 

there is no canopy, more of the incoming solar radiation reaches the soil surface and thus 

contributes more to the soil heat flux component of the energy balance than under the full 

canopy.  

 

3.2.6 Summary of the effect of incorporating a weighted distribution 

 

Although only three months (July-September 2005) of soil heat flux estimates were available 

from both sets of soil thermometers, it must be noted that this was the critical period when 

sugarcane harvesting took place. Prior to this, localised and a point estimate for both Rn and 

G respectively is deemed sufficient in the analysis of results, with the whole transect 

comprising of a full canopy. Table 3.4 provides a summary of the vegetation changes over the 

transect for one representative day in each month.  
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Table 3.4: Summary of weighted distribution of energy balance components for the selected 

days 

 Date 0km-0.4km 0.4km-0.8km 0.8km-1.2km 1.2km-1.6km  

Vegetative Cover Oct 2004 - April 2005 100% 100% 100% 95%  

 May 2005 100% 100% 55% 95%  

 Jun 2005 100% 100% 40% 95%  

 Jul 2005 90% 50% 5% 96%  

 Aug 2005 - Sep 2005 70% 50% 10% 90%  

H weighting Function  11 39 39 11 Total (mm.day-1) 

H Weighted Distribution 14 July 2005 0.122 0.433 0.433 0.122 1.110 

G Weighted Distribution 14 July 2005 0.032 0.170 0.231 0.030 0.463 

Rn Weighted Distribution 14 July 2005 0.234 0.884 0.946 0.231 2.295 

LvE Weighted Distribution 14 July 2005 0.079 0.281 0.282 0.079 0.722 

H Weighted Distribution 06 August 2005 0.185 0.655 0.655 0.185 1.680 

G Weighted Distribution 06 August 2005 0.054 0.215 0.289 0.039 0.598 

Rn Weighted Distribution 06 August 2005 0.402 1.463 1.541 0.391 3.795 

LvE Weighted Distribution 06 August 2005 0.162 0.593 0.596 0.166 1.517 

H Weighted Distribution 12 September 2005 0.211 0.749 0.749 0.211 1.920 

G Weighted Distribution 12 September 2005 0.055 0.234 0.309 0.045 0.643 

Rn Weighted Distribution 12 September 2005 0.551 2.002 2.100 0.537 5.189 

LvE Weighted Distribution 12 September 2005 0.284 1.019 1.042 0.281 2.626 

 

The incorporation of a weighted distribution of Rn and G results in an increased estimate of 

these two, relative to the point measurements. The weighted distribution function has also 

been applied to the estimates of H. These new estimates for the three selected days have thus 

been used to assess the significance of any changes to LvE. Table 3.5 illustrates the difference 

in LvE estimates calculated using Rn and G from both point and weighted values. Although 

Rn and G were both higher for the weighted distribution, their relative increases are similar. It 

is apparent that the effect which the increases have on LvE is negligible. Table 3.5 indicates 

that the greatest difference between the two occurred on 12 September 2005, with a difference 

of 0.076 mm.   

  

Table 3.5: Comparison between LvE from weighted distribution and point source 

Date Total Weighted (mm.day
-1

) Total Point Est. (mm.day
-1

) 

14 July 2005 0.722 0.720 

06 August 2005 1.517 1.510 

12 September 2005 2.626 2.550 

 

Based on the 3 selected days, it can be concluded that the difference between analysis based 

on weighted and point source estimates on LvE, are insignificant. Thus, in the further analysis 

of results, point source estimates of Rn and G have been used.  
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3.3 Monthly Data Analysis 

 

In this Section, data and results for each of the months analysed are presented. 

 

3.3.1 October 2004 

 

A major problem encountered in October 2004 was a lack of soil heat flux data. However, a 

number of days with good net radiation and sensible heat data were available. Thus it was 

decided to average the daily soil heat fluxes totals obtained from November 2004 and 

September 2005 in the analysis of the data for October 2004. This was done so as to make use 

of the available net radiation and sensible heat flux data and thereby provide a full year of 

data from October 2004 through to September 2005. Each day in October 2004 therefore has 

the same soil heat flux estimate (0.29 mm.day
-1

). This is based on an assumption that the 

contribution of soil heat to the energy balance is relatively small for this month. 

 

Table 3.6: Summary of analysed data for October 2004  

Date LvE (mm) Rn (mm)  G (mm)  H (mm) Rainfall (mm) 

2004/10/08 0.41 1.69 0.29 0.99 2.6 

2004/10/09 3.01 7.09 0.29 3.78 0.2 

2004/10/10 0.21 4.45 0.29 3.96 0.2 

2004/10/11 0.12 2.75 0.29 2.34 1.2 

2004/10/12 0.70 3.90 0.29 2.91 0.8 

2004/10/13 0.71 3.40 0.29 2.40 1.2 

2004/10/14 2.70 6.43 0.29 3.44 0.4 

2004/10/15 2.66 6.59 0.29 3.64 0.0 

2004/10/16 2.17 6.49 0.29 4.03 0.0 

2004/10/17 1.73 6.07 0.29 4.04 10.6 

Average 1.442 4.886 0.29 3.153 1.72 

 

Unfortunately, no primary data from the AWS was available for this period to aid in the 

interpretation of results. It is, however, evident from Table 3.6 as well as Figure 3.12 that the 

sensible heat component (H) contributes significantly to the energy balance. Over the 

tabulated duration, averaged sensible heat comprises approximately 65% of averaged net 

radiation with averaged latent heat comprising a mere 30% of average net radiation.  This is 

assumed to be as a result of a lack in soil water content limiting the latent heat contribution. 

Unfortunately soil water content measurements are not available to October 2004 to verify 
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this assumption. From Table 3.6 however, it is evident that minimal rainfall occurred over this 

period. 

 

 

 

Figure 3.12: Daily summary of energy balance components from 8 to 17 October 2004 

 

Figure 3.12 and Table 3.6 show that there is a significant amount of energy available in the 

form of net radiation. For the tabulated duration, the quantitative average estimate of net 

radiation is 4.89 mm.day
-1

.  
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3.3.2 November 2004 

 

18 days in November 2004 were analysed and a number of differences were noted when 

compared to October 2004. 

 

Table 3.7: Summary of analysed data for November 2004  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2004/11/11 16.12 101.30 0.48 1.90 0.16 1.26 0.2 

2004/11/12 28.20 45.94 3.34 6.67 0.65 2.67 0.0 

2004/11/13 30.88 26.90 3.07 7.24 0.55 3.61 0.0 

2004/11/14 21.50 80.20 0.89 2.62 0.03 1.73 0.2 

2004/11/15 20.41 83.80 1.52 5.84 0.29 4.03 0.0 

2004/11/16 20.35 83.00 1.18 7.47 0.36 5.93 0.2 

2004/11/17 31.79 31.13 2.84 7.33 0.68 3.81 0.2 

2004/11/18 29.29 49.42 2.01 5.87 0.41 3.44 0.0 

2004/11/19 27.80 58.57 1.56 6.62 0.28 4.78 85.2 

2004/11/20 28.66 49.43 2.22 7.14 0.52 4.40 8.0 

2004/11/21 23.21 64.63 0.38 1.22 0.03 0.81 5.0 

2004/11/22 12.60 100.70 0.75 1.36 -0.21 0.81 15.2 

2004/11/23 18.95 81.80 NA NA NA NA 18.8 

2004/11/24 17.43 83.10 2.18 4.56 0.31 2.07 5.2 

2004/11/25 29.90 26.11 4.81 7.77 0.65 2.31 0.2 

2004/11/26 22.56 72.70 2.10 5.63 0.34 3.19 2.4 

2004/11/27 25.73 67.26 1.67 5.63 0.31 NA 4.2 

2004/11/28 27.78 47.28 4.39 6.56 0.55 1.62 6.0 

2004/11/29 26.73 46.65 3.68 5.14 0.48 0.98 2.0 

Average 24.20 63.15 2.17 5.37 0.36 2.79 8.05 

 

Incoming energy in the form of net radiation increased relative to October 2004 reaching a 

maximum quantitative estimate of 7.77 mm on November 25. Average net radiation average 

increased from 4.89 mm.day
-1

 in October to 5.37 mm.day
-1

 in November. This is a result of an 

increased energy as mid summer approaches. A large rainfall event (85.2mm) occurred on the 

19 November with a number of smaller events occurring thereafter. This contributed to an 

increased soil water content (Figure 3.1), and therefore an increased latent heat flux 

contribution to the energy balance. Quantitative average daily latent heat increased from 1.44 

mm.day
-1

 in October to 2.17 mm.day
-1

 in November. The sensible heat flux contribution on 

the other hand decreased from 3.15 mm.day
-1

 in October to 2.79 mm.day
-1 

in November. It is 

suggested that this shift from sensible heat to latent heat was brought about by increased soil 
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water content. This is supported by Figure 3.1 which illustrates the increase in soil water 

content following rainfall over this period. 

 

Figure 3.13: Daily summary of energy balance components from 11 to 29 November 2004 

 

From Figure 3.13, the significance of soil water content brought about by rainfall, is evident. 

There is a definite shift in the contribution of the energy balance components from sensible 

heat to latent heat following rainfall. Eighty five mm of rain fell on the 19 November which is 

assumed to have provided a significant amount of moisture to the soil profile illustrated in 

Figure 3.1. This allowed for increased evaporation from the surface as well as crop 

transpiration and resulted in large amounts of total evaporation on days such as 25, 28 and 29 

November. Relative humidity and air temperature were also conducive to high total 

evaporative losses on these days. The effect of air temperature and relative humidity on total 

evaporation should not be overlooked.  

 

Analysis of Figures 3.14 and 3.15 shows that total evaporation, as expected, is closely 

correlated with net radiation, air temperature and the inverse of relative humidity.  
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Energy Balance for 12-16 November 2004
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Figure 3.14: Energy balance components for 12 to 16 November 2004. Figures at the top 

represent daily Et estimates in mm.day
-1 

 

The distribution of energy amongst the energy balance components for the period 12 -16 

November in energy terms of Watts per square metre (W.m
-2

) is illustrated in Figure 3.14. 

The area under the latent heat flux curve was integrated to provide the daily total evaporation 

indicated on the Figure. For the period 12-16 November the highest total evaporation 

estimates are 3.34 and 3.07 mm.day
-1 

(12 and 13 November 2004 respectively). These days 

also record the highest air temperatures (approximately 31
o
C) and lowest relative humidity 

(approximately 30%) as illustrated by Figure 3.15.  
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Primary Data for 12-16 November 2004
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Figure 3.15: Primary data plots for 12 to 16 November 2004 

 

Only 73 mm of rain had fallen by this stage since the start of October 2004 (Figure 3.1). From 

Figure 3.14 it can be seen that the sensible heat flux component forms a significant portion of 

net radiation possibly attributed to an assumed lack of soil water content in the profile and 

hence the inability to meet the atmospheric demand in the form of latent heat. On 12 and 13 

November, the latent component is noticeably higher than 14-16 November due to the lack in 

atmospheric moisture as shown by the low relative humidity values shown in Figure 3.15. 

Thus it is concluded that the combination of high air temperature and low relative humidity 

resulted in this higher proportion of latent heat. These trends are evident in Table 3.7. Soil 

heat flux on these days was significant, reaching values of 200 W.m
-2

. This can be attributed 

to the lack of soil water content reducing the evaporative cooling effect. The result is a large 

range of average soil temperature as shown by the change in average soil temperature in 

Figure 3.15. The rapid decline in soil heat flux after the peak in the afternoon occurs when the 

soil begins to radiate more heat than it receives from solar radiation and hence a negative flux 

is recorded.  
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3.3.3 December 2004 

 

In December 2004, only 7 days were analysed. This was due to a lack in soil heat flux data 

from 7 December 2004 until 19 January 2005. This lack in data resulted as a consequence of a 

problem experienced with the Hobo soil thermometer logger. The scintillometer was also 

removed for security reasons from December 20, 2004 until January 19, 2005. However, 

sufficient days in December were analysed for trends to be evident. 

  

Table 3.8: Summary of analysed data for December 2004  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2004/12/01 26.95 50.43 3.48 5.54 0.58 1.48 0.2 

2004/12/02 22.48 73.70 1.43 4.77 0.35 2.99 0.0 

2004/12/03 28.64 45.12 3.09 7.61 0.76 3.76 0.0 

2004/12/04 32.06 31.83 4.14 7.24 0.66 2.44 0.0 

2004/12/05 32.01 35.06 NA NA NA NA 13.4 

2004/12/06 29.47 42.18 2.27 4.92 0.38 2.27 49.6 

2004/12/07 22.18 78.40 1.17 1.46 0.07 0.22 27.4 

Average 27.68 50.96 2.60 5.26 0.47 2.19 12.94 

  

There are noticeable changes from November brought about by the increased air temperature 

and increased soil water content resulting from increased rainfall. Average air temperature for 

the analysed period in December was 27.68 degrees which is significantly higher than the 

average for November which was 24.2 degrees. Quantitative average net radiation for the 

tabulated duration in December is 5.26 mm.day
-1

 which is similar to that experienced in 

November (5.37 mm.day
-1

). The proportion of the energy balance met by the latent heat flux 

component is however, higher, averaging 2.6 mm.day
-1

 in December as opposed to a 2.17 

mm.day
-1

 in November. Sensible heat flux has been reduced from 2.79 mm.day
-1

 in 

November to 1.88 mm.day
-1

 in December. Soil heat flux has increased slightly from 0.36 

mm.day
-1

 in November, to 0.4 mm.day
-1

 in December. Significant rainfall events occurred 

from the 5-7 December (Figure 3.16). The effect of this rainfall on the energy balance is not 

evident due to a shortage of energy balance data after this period. 
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Figure 3.16: Daily summary of energy balance components from 1 to 7 December 2004 

 

Total evaporation reached a maximum on 4 December (4.14mm) for this period. Figure 3.17 

shows that the maximum net radiation for 1-4 December 2004 was very similar to that of 12-

16 November 2004 (Figure 3.14), with similar relative humidity. The sensible heat flux 

contributions are lower in December than in November. Latent heat flux on the other hand 

was higher in December than in November. This increase in total evaporation is a result of 

increasing soil water content as confirmed by Figure 3.1 with good rain falling in late 

November resulting in increased soil water content content. Soil heat flux is also very high 

over this period reaching over 200 W.m
-2

. According to Figure 3.17, the lowest total 

evaporation occurred on 2 December (1.43mm). On this particular day, relative humidity 

dropped to approximately 75% at mid day. Air temperatures remained low reaching a 

maximum of approximately 23
o
C. This low air temperature resulted in a low average soil 

temperature and hence a low soil heat flux contribution (0.35mm) i.e. the combination of a 

high relative humidity and low air temperatures reduces the latent heat flux contribution to the 

energy balance.  
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Energy Balance  for 1-4 December 2004
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Figure 3.17: Energy balance components for 1 to 4 December 2004. Figures at the top 

represent daily Et estimates in mm.day
-1 

 

According to Table 3.8, the maximum total evaporation over the 7 day period was 4.14mm 

and occurred on a day when the temperature was 32.06
o
C day. Examination of data obtained 

from the AWS showed that there were other days in December which experienced similar 

maximum air temperatures and relative humidity. It is therefore suggested that this value of 

4.14 mm.day
-1

 could have been exceeded in the period when no measurements were available, 

especially since soil water content is likely to increase after rainfall events during the month, 

resulting in an increased contribution of latent heat to the energy balance. 
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Primary Data for 1-4 December 2004
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Figure 3.18: Primary data plots for 1 to 4 December 2004 

 

3.3.4 January 2005 

 

Due to security reasons the Scintillometer was removed over the festive season and returned 

in mid January. This resulted in a shortage of sensible heat flux data for early January.  Only 8 

days were analysed in January. This is unfortunate, especially since these days are not 

considered to be very representative of climatic conditions for this time of year. Some 

interesting results were obtained even though there was a shortage of data for this period. It is 

unfortunate that limited data are available for this period as this is a key period for this 

research. 

 

Table 3.9: Summary of analysed data for January 2005  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2005/01/19 24.27 64.09 1.80 2.75 -0.17 1.12 0.2 

2005/01/20 26.00 65.46 4.05 6.66 0.39 2.21 3.8 

2005/01/21 19.06 88.90 2.64 3.44 0.11 0.69 14.6 

2005/01/22 21.92 90.70 2.22 5.20 0.26 2.72 1.8 

2005/01/23 17.94 103.30 0.95 1.10 -0.11 0.27 6.6 

2005/01/24 21.97 78.90 2.30 5.74 0.37 3.06 2.2 

2005/01/25 21.71 92.40 1.65 3.43 0 1.78 4.6 

2005/01/26 17.03 99.30 0.60 1.21 -0.07 0.69 6.2 

Average 21.24 85.38 2.03 3.69 0.10 1.57 5.00 
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Average air temperatures for January represented in Table 3.9 were lower than expected for 

this time of year. The analysed days are therefore thought to be cooler than the average in 

January, reaching a maximum air temperature of only 26
o
C, at 1pm on 20 January 2005. 

Using the daily maximum measured air temperature from the site, the analysed days in Table 

3.9 from 19-26 January 2005 averaged 23.8
 o

C. The daily maximum measured air temperature 

from the site for 1-8 January 2005 for example, was 27
 o

C. This is a significant difference in 

air temperature.  

 

 

Figure 3.19: Daily summary of energy balance components from 19 to 26 January 2005 

 

Good rains occurred in January and contributed to an increase in soil water content (Figure 

3.1) and therefore the major limit to total evaporation for the tabulated period is considered to 

be incoming radiation. Figure 3.19 indicates the significant proportional contribution the 

latent component has made to the energy balance. However, there is a reasonable sensible 

heat contribution showing that radiation is not entirely limiting. Soil heat flux is much lower 

than it was for November and December indicating that the cooling effect of evaporation from 

the soil and crop. Soil heat flux reached a maximum of approximately 100 W.m
-2

. The low 

range in diurnal air temperatures could possibly also contribute to the low range in diurnal 

average soil temperatures illustrated in Figure 3.21. 
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Energy Balance for 20-24 January 2005
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Figure 3.20: Energy balance components for 20 to 24 January 2005. Figures at the top 

represent daily total evaporation estimates in mm.day
-1 

 

These lower temperatures experienced are most likely due to the insulation of clouds with net 

radiation reaching a maximum of 650 W.m
-2

 on 20 January 2005, and fluctuating throughout 

the day depending on cloud cover as shown by Figure 3.20. On January 23, the net radiation 

is well below the daily average for the graphed period, reaching a maximum of only 180 

W.m
-2

. 

Primary Data for 20-24 January 2005
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Figure 3.21: Primary data plots for 20 to 24 January 2005. 
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On 20 January, 4.05 mm evaporated due to the lower relative humidity and higher air 

temperature, compared to the other days illustrated by Figure 3.21. It is likely that evaporation 

for a specific day at this time of the year could be significantly higher than this if air 

temperature was higher and relative humidity was lower. Air temperature reached just over 26
 

o
C on 20 January whereas air temperatures reached approximately 31

 o
C and 33

 o
C for days in 

November and December 2004 respectively. Relative humidity on 20 January dropped to 60% 

at midday whereas for days in November and December 2004, relative humidity dropped as 

low as 30%. Thus, if days with air temperature and relative humidity such as this, had been 

recorded in January 2005, total evaporation would have been significantly higher than 4.05 

mm.day
-1

.  

 

3.3.5 February 2005 

 

Unfortunately, there are no total evaporation estimates for February. A power surge in the 

power supplied to the transmitter while the scintillometer was being used at another site, 

resulted in an internal component of the transmitter malfunctioning. Scintec (Germany) were 

consulted and the new part was delivered and replaced by March 2005. This unfortunate 

situation is a major downfall of the data collection aspect for project i.e. a lack of total 

evaporation estimates over the mid summer period.  
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3.3.6 March 2005 

 

11 days were analysed in March 2005. After 14 March, soil heat flux estimation was found to 

be erroneous due to faulty soil thermometers. These 11 days did however, prove to be 

sufficient for typical values to be obtained.  

 

Table 3.10: Summary of analysed data for March 2005  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2005/03/03 18.90 92.20 0.34 2.29 0.04 1.91 2.2 

2005/03/04 19.86 75.60 1.41 3.79 0.18 2.20 1.0 

2005/03/05 24.82 58.61 2.49 5.49 0.50 2.50 0.0 

2005/03/06 28.43 49.64 3.16 5.50 0.53 1.81 0.0 

2005/03/07 20.66 79.20 0.43 1.52 0.04 1.27 6.8 

2005/03/08 24.66 62.15 2.02 4.47 0.24 2.45 3.4 

2005/03/09 22.00 78.30 NA NA 0.32 3.08 3.4 

2005/03/10 27.07 58.81 2.94 4.21 0.10 1.17 26.2 

2005/03/11 13.59 88.40 1.55 2.35 -0.04 0.83 5.4 

2005/03/12 19.15 64.08 2.89 6.43 0.39 3.16 0.0 

2005/03/13 21.07 72.00 2.14 5.65 0.35 3.15 0.0 

2005/03/14 15.60 99.10 0.23 1.06 0.03 0.80 4.4 

Average 21.32 73.17 1.78 3.89 0.22 2.03 4.40 

 

Within these 11 days, there was a high climatic variability. For example, air temperatures at 

1pm varied from as low as 13.59
 o

C on 11 March to as high as 28.43
o
C on 6 March.  Average 

daily total evaporation in the form of latent heat for the month was 1.78mm where the 

sensible heat contributed over the period was 2.03mm. It is assumed that as conditions dry 

out, the sensible component comprises a correspondingly larger proportion of the energy 

balance than the latent component. 

 

 



 75 

 

Figure 3.22: Daily summary of energy balance components from 3 to 14 March 2005 

 

A significant amount of rain fell over the analysed period with 26.2mm falling on 10 March 

(Figure 3.22). This autumn rainfall following good summer rainfall allowed for good crop 

growth well into the drier winter months and hence resulted in a relatively large proportional 

contribution of latent heat to the energy balance. Air temperature for this period is 

substantially lower than that of mid-summer. Average air temperature at 1pm for March 2005 

was 21.32
 o

C, whereas for December 2004 it was 27.68
 o

C. Relative humidity for this period 

was relatively high averaging at 73.17 % at 1pm, possibly limiting total evaporation. 
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Energy Balance for 4-8 March 2005
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Figure 3.23: Energy balance components for 4 to 8 March 2005. Figures at the top represent 

daily total evaporation estimates in mm.day
-1 

 

The highest total evaporation estimate for March occurred on March 6 with 3.16mm 

evaporating. This day also experienced the highest air temperature and lowest relative 

humidity (Table 3.10) thus contributing to this increase total evaporation. 
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Figure 3.24: Primary data plots for 4 to 8 March 2005. 

 

Total evaporation estimates for March 4-8 (Figure 3.23) are very similar to those obtained for 

January 20-24 (Figure 3.20).  Net radiation reaches a peak of approximately 600 W.m
-2

 as 
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evident in Figure 3.23. Net radiation was slightly higher for this period in March compared to 

January due to less cloud cover. This resulted in higher maximum air temperatures than for 

January and the cooler season resulted in lower minimum air temperatures. This contributed 

to a higher soil heat flux proportion than experienced in January. The limiting factor to the 

evaporation process is thus thought to be a combination of both incoming radiation and a 

drying soil profile for March 2005 as confirmed by soil water content estimates in Figure 3.1.   

 

3.3.7 April 2005 

 

Ten days were analysed in April 2005. Prior to 21 April, soil heat flux data were still 

erroneous due to faulty soil thermometers. However, from April 2005 until September 2005, 

the climate variability from day to day is relatively small when compared to the daily 

variability over the summer period. On April 20, new calibrated soil thermometers were 

installed as indicated by Table 1.1 of Part 2, and proved to be more reliable than the previous 

soil thermometers.  

 

Table 3.11: Summary of analysed data for April 2005  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2005/04/21 13.76 88.70 0.18 0.78 0.01 0.58 0.0 

2005/04/22 20.90 55.63 2.83 4.30 0.25 1.22 0.0 

2005/04/23 21.28 55.95 1.53 2.38 0.18 0.67 0.0 

2005/04/24 20.38 64.11 1.76 3.27 0.25 1.26 0.2 

2005/04/25 14.83 61.84 1.41 2.82 0.05 1.36 0.2 

2005/04/26 11.30 99.30 0.49 1.03 0.03 0.51 1.4 

2005/04/27 14.80 75.60 0.65 2.54 0.19 1.70 0.2 

2005/04/28 19.41 59.86 1.38 3.85 0.20 2.27 0.0 

2005/04/29 17.06 63.58 1.90 3.90 0.20 1.81 0.0 

2005/04/30 17.10 68.31 1.40 3.87 0.19 2.28 0.0 

Average 17.08 69.29 1.35 2.87 0.16 1.37 0.20 

 

Net radiation for this period averaged 2.87 mm per day with a maximum evaporation of 2.83 

mm occurring on 22 April. Average daily total evaporation in the form of latent heat for the 

month was 1.35 mm where the sensible heat contributed over the period was a similar amount 

(1.37 mm). Soil heat flux contributes an insignificant amount of 0.16 mm on average for the 

period.  
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Figure 3.25: Daily summary of energy balance components from 21 to 30 April 2005 

 

As winter approaches, there is a shift to a lower incoming radiation with net radiation 

reaching a maximum of approximately 500 W.m
-2

 as opposed to over 700 W.m
-2

 in 

November/December 2004. This has also resulted in lower air temperatures shown in Table 

3.11 averaging 17.08
o
C at 1 pm for the month. The latent component of the energy balance as 

a proportion of net radiation is still significant indicating that sufficient soil water content is 

available for the crop to meet much of the atmospheric demand. This is confirmed by the soil 

water content illustrated in Figure 3.1. This contribution is expected to shift from latent heat 

to sensible heat as mid winter approaches with a drying out soil profile. 

 

3.3.8 May 2005 

 

From May 2005 until the completion of the fieldwork in September 2005, all equipment 

functioned well with very few days where data were not available. Where gaps in energy 

balance data exist, the scintillometer did not produce data due to the atmospheric conditions 

not being conducive towards measurements. (e.g. 18 to 22 May 2005).  This increased data 

collection allowed for a more representative analysis of data for this period with monthly 

averages being calculated from significantly more days than the mid-summer months.  
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Table 3.12: Summary of analysed data for May 2005  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2005/05/01 22.53 36.64 2.50 4.25 0.26 1.49 0.0 

2005/05/02 18.80 70.50 0.92 2.88 0.23 1.73 0.0 

2005/05/03 20.87 57.89 1.71 3.57 0.22 1.63 0.0 

2005/05/04 22.73 45.32 2.18 3.40 0.21 1.01 6.2 

2005/05/05 21.06 56.37 3.01 3.85 0.22 0.62 4.2 

2005/05/06 23.34 32.70 1.96 3.18 0.21 1.02 0.0 

2005/05/07 19.20 51.88 1.98 3.63 0.22 1.42 0.0 

2005/05/08 19.90 69.19 1.21 3.52 0.23 2.07 0.2 

2005/05/09 22.86 39.41 1.89 3.30 0.21 1.21 0.2 

2005/05/10 24.10 39.05 NA NA 0.11 0.52 0.4 

2005/05/11 26.35 27.25 2.10 3.50 0.25 1.15 0.0 

2005/05/12 24.74 28.52 2.18 3.52 0.25 1.09 0.0 

2005/05/13 24.18 29.94 1.55 3.07 0.23 1.29 0.0 

2005/05/14 14.38 92.00 0.22 0.79 0.06 0.52 0.0 

2005/05/15 20.52 52.17 2.48 3.42 0.16 0.78 0.2 

2005/05/16 19.52 53.78 1.55 3.39 0.18 1.66 0.0 

2005/05/17 23.72 26.21 1.70 3.22 NA NA 0.0 

2005/05/18 24.92 20.87 NA NA NA NA 0.0 

2005/05/19 16.69 78.90 NA NA NA NA 0.2 

2005/05/20 15.48 89.60 NA NA NA NA 1.6 

2005/05/21 22.74 50.53 NA NA NA NA 0.2 

2005/05/22 22.92 31.30 NA NA NA NA 0.2 

2005/05/23 23.75 29.48 1.80 3.14 0.22 1.12 0.0 

2005/05/24 8.76 78.10 0.39 0.62 -0.05 0.28 0.2 

2005/05/25 15.28 62.84 0.49 2.55 0.21 1.85 0.2 

2005/05/26 17.36 51.88 1.74 3.32 0.21 1.37 0.2 

2005/05/27 23.05 29.39 1.60 3.11 0.25 1.26 0.0 

2005/05/28 17.78 73.40 0.79 2.98 0.21 1.98 0.0 

2005/05/29 21.28 47.68 1.65 2.96 0.20 1.10 0.0 

2005/05/30 18.32 55.16 1.21 3.08 0.18 1.70 0.0 

2005/05/31 18.14 32.33 1.62 3.05 0.16 1.27 0.2 

Average 20.49 49.69 1.62 3.09 0.19 1.25 0.58 

 

During May 2005, net radiation averaged 3.09mm per day, reaching a peak on 5 May (3.85 

mm). The contribution of latent heat to the energy balance proved to be higher than the 

sensible heat contribution. Average latent heat for the period was 1.62 mm whereas sensible 

heat was 1.25 mm. Soil heat flux again comprised an insignificant portion of the energy 

balance. Air temperature is higher than that observed in April 2005, averaging at 20.49
 o

C at 

1pm. 
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Figure 3.26: Daily summary of energy balance components from 1 to 31 May 2005 

 

Net radiation is low reaching a maximum of approximately 400 W.m
-2

 for the period as the 

sun is approaching the Southern hemisphere winter solstice. There is thus a lower amount of 

energy available for distribution amongst the energy balance components. Soil heat flux is 

low at this stage attributed to lower amounts of energy available to heat the soil compared to 

the summer months. Moist soils as confirmed by Figure 3.1 which illustrates rainfall and 

measured soil water content, combined with a lower atmospheric demand in the form of net 

radiation resulted in the latent flux still comprising a large proportion of the energy balance, 

even though total evaporation estimates are low. This general trend is once again evident for 

the plotted period with the highest total evaporation occurring on the days when air 

temperature is the highest and relative humidity the lowest. Air temperatures are however 

significantly lower than the summer months with average May temperature around 20.5
o
C.  
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3.3.9 June 2005 

 

Data were obtained for June 1 to 30 allowing a more representative analysis of these data.  

 

Table 3.13: Summary of analysed data for June 2005  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2005/06/01 24.61 29.22 1.69 2.84 0.26 0.89 0.0 

2005/06/02 23.36 20.82 1.59 2.67 0.22 0.87 0.0 

2005/06/03 24.67 20.28 1.19 2.22 0.22 0.82 0.2 

2005/06/04 23.81 23.30 1.31 2.66 0.24 1.11 0.2 

2005/06/05 14.45 51.52 1.39 2.84 0.11 1.33 0.0 

2005/06/06 16.18 51.06 1.33 2.98 0.19 1.47 0.2 

2005/06/07 23.58 27.64 1.17 2.39 0.24 0.97 0.0 

2005/06/08 25.22 24.21 1.49 2.73 0.23 1.01 0.0 

2005/06/09 16.35 72.80 0.71 2.21 0.09 1.41 1.0 

2005/06/10 13.48 52.42 0.98 2.56 0.07 1.51 0.2 

2005/06/11 19.52 26.71 1.06 2.56 0.19 1.32 0.0 

2005/06/12 21.15 35.14 1.61 2.49 0.26 0.63 0.0 

2005/06/13 16.09 69.10 1.29 2.51 0.13 1.09 0.0 

2005/06/14 18.38 29.45 1.03 2.56 0.16 1.36 0.0 

2005/06/15 14.66 46.35 0.95 2.88 0.17 1.76 0.0 

2005/06/16 19.94 25.66 1.20 2.71 0.2 1.30 0.2 

2005/06/17 19.86 26.63 1.17 2.71 0.23 1.30 0.0 

2005/06/18 22.12 20.79 0.99 2.52 0.23 1.30 0.0 

2005/06/19 24.74 19.51 1.29 2.30 0.22 0.79 0.0 

2005/06/20 15.73 68.39 0.57 2.07 0.15 1.34 0.0 

2005/06/21 13.79 87.70 NA NA 0.11 1.24 8.6 

2005/06/22 12.17 99.60 0.33 1.06 0.1 0.64 5.0 

2005/06/23 17.08 62.60 2.07 3.01 0.15 0.79 0.2 

2005/06/24 18.23 51.54 1.83 2.86 0.18 0.84 0.2 

2005/06/25 21.25 33.33 1.48 2.83 0.22 1.13 0.0 

2005/06/26 22.07 25.80 1.02 1.98 0.21 0.76 0.0 

2005/06/27 20.27 36.41 1.30 2.78 0.19 1.28 0.0 

2005/06/28 8.87 77.90 0.21 0.60 0.02 0.37 0.2 

2005/06/29 17.11 48.30 1.69 2.98 0.19 1.10 0.0 

2005/06/30 22.70 24.14 1.54 2.82 0.22 1.06 0.0 

Average 19.05 42.94 1.22 2.49 0.18 1.09 0.54 

 

During June 2005, net radiation averaged 2.49mm per day, reaching a peak on 23 June (3.01 

mm). The contribution of latent heat to the energy balance once again proved to be higher 

than the sensible heat contribution. Average latent heat for the period was 1.22 mm whereas 

average sensible heat was 1.09 mm. Soil heat flux again comprised an insignificant portion of 

the energy balance averaging 0.18 mm. Air temperature is lower than that observed in May 

2005, averaging at 19.05
 o
C at 1pm. 
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Figure 3.27: Daily summary of energy balance components from 1 to 30 June 2005 

 

Typical net radiation values for June 2005 reached a maximum of approximately 340 W.m
-2

 

which is low compared to values of up to 750 W.m
-2

 in November and December 2004.  

 

It is interesting to note that after the rainfall events on 21 and 22 June 2005, there is a definite 

shift towards an increased proportional contribution of latent heat the energy balance. This is 

brought about by increased soil water content, clearly evident in the soil water content 

measurements obtained towards the end of June in Figure 3.2 and 3.3, allowing for a larger 

portion of the incoming net radiation to be converted into energy of the latent heat form, 

rather than sensible and soil heat flux forms. 
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3.3.10 July 2005 

 

A full month‘s data were obtained in July 2005. 

 

Table 3.14: Summary of analysed data for July 2005  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2005/07/01 14.12 49.30 0.76 2.19 0.10 1.33 0.0 

2005/07/02 15.28 46.36 1.23 3.01 0.15 1.63 0.0 

2005/07/03 11.14 74.10 0.35 1.38 0.14 0.88 0.0 

2005/07/04 13.39 68.39 1.45 2.38 0.15 0.79 0.0 

2005/07/05 19.24 41.24 0.95 2.58 0.21 1.42 0.0 

2005/07/06 18.04 49.60 0.74 2.42 0.21 1.48 0.0 

2005/07/07 16.99 56.06 0.96 2.50 0.19 1.35 0.2 

2005/07/08 16.94 47.28 1.20 2.70 0.19 1.32 0.2 

2005/07/09 18.75 38.83 1.22 2.78 0.19 1.36 0.2 

2005/07/10 22.39 17.86 1.63 3.07 0.24 1.19 0.0 

2005/07/11 20.96 20.06 1.00 2.31 0.20 1.11 0.0 

2005/07/12 22.74 17.03 1.42 2.95 0.25 1.28 0.0 

2005/07/13 22.66 20.29 0.98 2.49 0.24 1.28 0.0 

2005/07/14 21.96 20.81 0.72 2.09 0.26 1.11 0.0 

2005/07/15 18.62 36.85 0.97 2.46 0.19 1.31 0.4 

2005/07/16 15.23 55.60 1.11 2.92 0.18 1.64 0.2 

2005/07/17 17.40 50.40 NA NA 0.18 NA 0.2 

2005/07/18 21.15 19.68 1.34 2.89 0.20 1.35 0.0 

2005/07/19 23.87 19.03 1.12 2.76 0.26 1.38 0.0 

2005/07/20 19.69 26.56 0.80 1.76 0.27 0.69 0.0 

2005/07/21 17.65 44.57 0.87 3.17 0.21 2.09 0.0 

2005/07/22 17.65 53.56 0.82 3.29 0.19 2.29 0.0 

2005/07/23 23.47 27.78 1.34 3.19 0.19 1.66 0.0 

2005/07/24 25.47 17.37 1.52 3.26 0.26 1.48 0.0 

2005/07/25 28.84 9.18 1.34 3.21 0.27 1.60 0.0 

2005/07/26 16.87 61.89 0.54 2.88 0.19 2.15 0.0 

2005/07/27 16.88 42.19 1.02 3.32 0.10 2.19 0.2 

2005/07/28 15.70 55.97 0.35 2.53 0.19 1.99 0.0 

2005/07/29 23.08 22.37 1.48 3.34 0.24 1.62 0.2 

2005/07/30 24.34 20.17 1.07 3.24 0.27 1.90 0.0 

2005/07/31 17.58 55.44 0.68 3.19 0.19 2.32 0.0 

Average 19.29 38.25 1.03 2.74 0.20 1.51 0.06 

 

During July 2005, net radiation averaged 2.74 mm per day, reaching a peak on 29 July (3.34 

mm). There is a definite shift as the month progresses, towards an increase in energy available 

in the form of net radiation. This is understandable with the mid-winter solstice having past a 

month prior to this.  The contribution of latent heat to the energy balance is lower than the 

sensible heat contribution. Average latent heat for the month was 1.03 mm whereas sensible 

heat was 1.51 mm, which is a significant difference. Soil heat flux again comprised an 
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insignificant portion of the energy balance, averaging at 0.2 mm. Average air temperature is 

slightly higher than that observed in June 2005 (19.29
o
C at 1pm) 

 

 

Figure 3.28: Daily summary of energy balance components from 1 to 31 July 2005 

 

From Figure 1.29, it is evident that with the progression of the month, there is a shift towards 

an increased proportional contribution of sensible heat to the energy balance, relative to the 

remaining energy balance components. This is closely related to the increased energy 

available in the form of net radiation as time progressed, as well as the moisture availability 

within the soil profile. From Figure 1.29 it can be seen that no rain fell during the month of 

July resulting in a drying soil profile. This is once again confirmed by the decreasing soil 

water content measured over July in Figure 3.2 and 3.3. Therefore, the increase in net 

radiation was unable to be met by energy in the latent form and was thus met by energy in the 

form of sensible heat. 
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Energy Balance for 18-22 July 2005
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Figure 3.29: Energy balance components for 18 to 22 July 2005. Figures at the top represent 

daily total evaporation estimates in mm.day
-1 

 

Figure 3.29 illustrates the decrease in net radiation when compared to the summer months, 

reaching a maximum of approximately 400 W.m
-2

 for the plotted period. This is however 

higher than that of June 2005, indicating the passing of mid-winter, and the approach of 

summer. On 21 and 22 July, the sensible heat component comprises the majority of net 

radiation, whilst on 18 and 19 July, latent heat and sensible heat contribute approximately 

equal proportions to a similar net radiation to that of 20 and 21 July. The difference between 

these varying contributions is best explained by examining the primary data in Figure 1.31. 
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Figure 3.30: Primary data plots for 18 to 22 July 2005. 
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For 18 and 19 July, air temperature was relatively high compared to the remaining days 

reaching a maximum of approximately 25
o
C which is possibly associated with Berg wind 

conditions. These same days also experience the lowest relative humidity dropping as low as 

20%. On the other hand, day 21 and 22 July experienced colder temperatures reaching a 

maximum of approximately 20
 o

C. Relative humidity for these same days also only dropped 

to as low as approximately 40%. The combination of this lower air temperature and high 

relative humidity thus limited the amount of energy converted to the latent heat form, and 

resulted in an increased sensible heat contribution to the energy balance, as depicted by Figure 

3.30. 

 

3.3.11 August 2005 

 

For August 2005, a full month of energy balance component data were obtained. The primary 

data obtained from the AWS on the other hand provided data until 18 August after which no 

data is available due to it being deleted. 
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Table 3.15: Summary of analysed data for August 2005  

Date Ta (
o
C) RH (%) LvE (mm) Rn (mm)  G (mm) H (mm) Rainfall (mm) 

2005/08/01 19.38 46.12 1.71 3.39 0.22 1.46 0.0 

2005/08/02 22.98 19.96 1.51 3.37 0.27 1.60 0.0 

2005/08/03 12.73 89.70 0.36 1.72 0.13 1.23 0.0 

2005/08/04 18.72 46.58 1.74 3.58 0.21 1.63 0.0 

2005/08/05 26.60 16.53 1.45 3.34 0.29 1.60 0.0 

2005/08/06 24.76 20.64 1.51 3.50 0.31 1.68 0.0 

2005/08/07 28.49 13.48 1.29 3.48 0.31 1.88 0.0 

2005/08/08 27.21 12.72 1.30 3.54 0.31 1.93 0.0 

2005/08/09 15.56 67.96 0.20 1.99 0.14 1.66 3.8 

2005/08/10 10.17 100.00 0.10 0.34 -0.03 0.27 21.4 

2005/08/11 18.36 58.01 2.30 3.97 0.20 1.48 0.2 

2005/08/12 19.04 47.24 1.55 3.72 0.22 1.95 0.2 

2005/08/13 24.99 22.59 2.27 3.94 0.23 1.44 0.0 

2005/08/14 22.48 37.13 2.97 4.08 0.23 0.88 0.0 

2005/08/15 13.43 95.80 NA NA 0.02 0.63 2.8 

2005/08/16 8.12 99.80 0.28 0.73 0 0.45 2.6 

2005/08/17 20.22 55.10 2.98 3.89 0.25 0.65 0.0 

2005/08/18 18.26 28.29 1.45 4.11 0.19 2.47 0.0 

2005/08/19 NA NA 3.20 4.58 0.22 1.17 0.0 

2005/08/20 NA NA 1.94 4.02 0.25 1.83 0.2 

2005/08/21 NA NA NA NA 0.19 1.96 0.0 

2005/08/22 NA NA 2.39 3.94 0.29 1.26 0.0 

2005/08/23 NA NA 1.55 4.38 0.16 2.67 0.0 

2005/08/24 NA NA 1.41 4.40 0.27 2.73 0.0 

2005/08/25 NA NA 0.93 4.48 0.27 3.27 0.2 

2005/08/26 NA NA 3.41 4.69 0.21 1.07 0.0 

2005/08/27 NA NA NA NA 0.06 1.98 0.2 

2005/08/28 NA NA 0.77 2.72 0.20 1.76 0.2 

2005/08/29 NA NA 1.94 3.92 0.35 1.63 0.0 

2005/08/30 NA NA 2.17 3.47 0.31 0.98 0.0 

2005/08/31 NA NA 0.74 3.45 0.24 2.47 0.0 

Average 19.53 48.76 1.62 3.46 0.21 1.60 1.03 

 

During August 2005, net radiation averaged at 3.46 mm, reaching a peak on 26 August (4.69 

mm). Once again, there is a definite shift as the month progresses, towards an increase in 

energy available in the form of net radiation attributed to the approach of summer. The 

contribution of latent heat to the energy balance is virtually equal to the sensible heat 

contribution. Average latent heat for the month was 1.62 mm with sensible heat contributing 

1.60 mm. Soil heat flux again comprised an insignificant portion of the energy balance, 

averaging at 0.21 mm. Average air temperature is slightly higher than that observed in July 

2005 (19.53
o
C at 1pm).  
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Figure 3.31: Daily summary of energy balance components from 1 to 31 August 2005 

 

Berg wind conditions occurred over the period 7-10 August. Air temperatures dropped rapidly 

from extremely warm to cold and relative humidity increased to 100%, followed by 

approximately 25 mm of rainfall. These occurrences are typical for this area at this time of the 

year. The effect of increased soil water content brought about by rainfall is once again evident 

by observing Figure 3.31. Prior to the rainfall event (21.4mm) on 10 August, the sensible and 

latent heat contributions are approximately equal. However, immediately after the rainfall 

event, the latent heat contribution appears to be significantly higher than the sensible heat 

contribution. This continued until approximately 22 August after which this reverses to a 

higher sensible heat contribution than latent heat contribution. This is a result of a drying out 

soil profile after the rainfall on 10 August. 
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3.3.12 September 2005 

 

The field work component was completed in September 2005 with energy balance data being 

obtained until 20 September.  

 

Table 3.16: Summary of analysed data for September 2005  

Date LvE (mm) Rn (mm) G (mm) H (mm)  Rainfall (mm) 

2005/09/01 1.03 2.18 0.09 1.07 0.8 

2005/09/02 2.19 4.93 0.26 2.48 0.2 

2005/09/03 2.02 4.83 0.35 2.45 0.0 

2005/09/04 2.64 4.66 0.32 1.70 0.0 

2005/09/05 NA NA 0.04 0.70 1.2 

2005/09/06 NA NA -0.05 0 9.8 

2005/09/07 0.18 0.76 0.10 0.47 3.8 

2005/09/08 1.95 5.48 0.26 3.27 0.0 

2005/09/09 2.67 5.22 0.40 2.15 0.0 

2005/09/10 1.91 4.74 0.37 2.46 0.0 

2005/09/11 1.08 4.87 0.32 3.48 0.0 

2005/09/12 2.55 4.82 0.36 1.92 0.0 

2005/09/13 0.68 1.08 0 0.41 3.8 

2005/09/14 2.02 5.13 0.28 2.84 0.8 

2005/09/15 2.51 4.97 0.39 2.07 0.0 

2005/09/16 NA NA NA NA 0.0 

2005/09/17 2.51 5.32 0.43 2.38 0.0 

2005/09/18 NA NA NA NA 0.0 

2005/09/19 2.36 5.16 0.39 2.41 0.0 

2005/09/20 1.01 4.78 0.26 3.51 0.2 

Average 1.83 4.31 0.25 1.99 1.03 

 

During September 2005, net radiation averaged 4.31 mm per day, reaching a peak on 8 

September (5.48 mm). The contribution of latent heat to the energy balance is slightly less 

than the sensible heat contribution. Average latent heat for the month was 1.83 mm with 

sensible heat contributing 1.99 mm. Soil heat flux again comprised an insignificant portion of 

the energy balance, although it increased slightly when compared to that obtained in the 

winter months, averaging 0.25 mm.  
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Figure 3.32: Daily summary of energy balance components from 1 to 31 July 2005 

 

Air temperatures are thought to have increased considerably since mid winter brought about 

by an increased net radiation. The sensible component of this is still high due to the increasing 

atmospheric demand not being able to be met by the soil water content and hence latent heat 

component. The increase in soil heat flux is thought to be primarily a result of increased air 

temperatures.  
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3.4 Summary/Discussion of Results 

 

Each month has been examined by looking at a detailed energy balance and primary data and 

noting changes at a daily/monthly time step. The effects of the change in net radiation as well 

as the change in soil water content on total evaporation have been noted to be significant in 

Section 3.3. In the context of the stated aims in Section 1 of Part 1, it is important that these 

smaller temporal effects (daily/monthly) are summarised to produce a longer record and a 

broader (seasonal/annual) understanding of the changes in both primary data and energy 

balance component data. 

 

3.4.1 Average daily total evaporation and net radiation estimates 

 

Each month analysed in this project consisted of a number of daily estimates of total 

evaporation. This differed from month to month depending on the availability of the required 

energy balance data. This meant that for certain months (December 2004 and January 2005), 

only a few daily total evaporation estimates were possible. However, the majority of months 

have a large number of daily total evaporation estimates. Figure 3.33 shows a simple average 

of each month‘s daily quantitative estimates of net radiation and latent heat based on the 

number of days analysed in that month. The months with few analysed days, hold more 

uncertainty than months with more analysed days. For example, in January 2005, only 8 of 

the possible 31 days were analysed due to a lack of energy balance data. Had more days been 

analysed, a more representative total evaporation and net radiation estimate would have been 

possible. Air temperatures of these 8 days are very low and may not give a good 

representation of average conditions in January. This needs to be taken into account in 

interpreting the results presented in this section. The summarised data has been expressed in 

mm equivalents.  
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Figure 3.33: Average daily total evaporation and net radiation data in mm equivalents. 

 

The pattern is typical of southern hemisphere summer rainfall area with substantially more 

evaporation occurring in the summer where soil water content limits the evaporation process 

less than in the winter months. Net radiation is also at a peak for these months. Thus, the 

combination of both the increased atmospheric demand in the form of Net radiation and the 

presence of water in the soil profile during summer, lead to higher total evaporation losses.  It 

can be said that Net radiation and available soil water content provide the basis for total 

evaporation and that in line with the concepts of Calder (1999), soil water content provides 

the primary limit to evaporation. According to Muchow et al. (1994), the three main climatic 

elements which affect crop growth are net radiation, temperature and rainfall. Seasonal 

variability of these components will thus affect the seasonal variability of total evaporation. 

Total evaporation, as expected, was lowest in mid winter over the June/July months. 

Considering Figure 3.33 in three different sections aids the consideration of net radiation and 

soil water content and their impact on total evaporation. 

 

1) In November 2004, the atmospheric demand in terms of net radiation is high, averaging 

5.37mm/day. At this stage of the season, the soil profile is relatively dry following winter. 

The crop and soil are thus not able to meet this demand and hence the average actual total 

evaporation for this period is only approximately 2.17 mm/day. In December 2004, good rains 

had fallen resulting in a increased soil water content in the soil profile. This resulted in more 

of the atmospheric demand being met. The average demand for the days analysed in 
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December is virtually the same as that for November 2004 averaging at 5.26 mm/day. A large 

difference is however, noticed in the actual total evaporation which occurred, averaging 2.6 

mm/day. The increased actual total evaporation is brought about by an increase in available 

moisture in the soil. A similar trend is evident for January 2005 as available soil water content 

was still high as a result of rainfall over that period (Figure 3.1). The atmospheric demand 

was slightly lower than for November/December. However, it must be noted that the days 

analysed may not be a good representation of climatic conditions in January. None the less, 

much of this 3.69 mm/day demanded was met by values of 2.03 mm/day in actual total 

evaporation as described in Section 3.3.4. 

 

2) From March 2005 until June 2005, the atmospheric demand decreased slightly with actual 

total evaporation decreasing by the same proportion. This is expected with the winter solstice 

occurring on June 21. Over this duration, total evaporation comprised approximately 50 % of 

net radiation. Soil water content got progressively drier over this period (Figure 3.1) with net 

radiation also decreasing (Figure 3.33). The combination of this decreasing demand and the 

drying soil profile resulted in the same proportion of net radiation being met by total 

evaporation. This shows that the availability of moisture cannot merely be compared from one 

month to the next but needs to be considered in conjunction with the net radiation demand. 

 

3) From July 2005 until September 2005, there is a definite shift towards increased net 

radiation. This is seen by the rapid climb in the net radiation presented in Figure 3.33. Total 

evaporation on the other hand did not show a corresponding increase for this period. This is 

due to a lack in soil water content (Figure 3.1). In September 2005, only 42 % of net radiation 

was met by total evaporation. Soil water content is believed to be a major determining factor 

in the amount of total evaporation occurring at this time, a conclusion supported by Figure 3.1 

in conjunction with Figure 3.33.  

 

It is concluded that the availability of soil water content is the major factor limiting 

evaporation in the late winter/early summer months whilst it is not the major limit during the 

mid/late summer and early winter months. The reason for this is the accumulation of water in 

the soil profile over the rainy season. As winter approaches, this supply is gradually depleted 

resulting in a soil profile which is unable to meet the atmospheric demand in the early 

summer where net radiation is substantially higher than in the winter months. Once 
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spring/summer rainfall begins to raise the water table and increase the soil water content, so 

to, the proportion of net radiation which is met by total evaporation, increases. 

 

3.4.2 Maximum daily total evaporation and net radiation estimates 

 

Figure 3.34 indicates days on which maximum total evaporation and net radiation, rather than 

averages, were selected from within each month. 
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Figure 3.34: Maximum daily total evaporation losses and Net Radiation in mm equivalents. 

 

A similar pattern was found when compared to that in Figure 3.33. The difference between 

Figure 3.34 and Figure 3.33 is that total evaporation and net radiation are substantially higher 

in Figure 3.34. Another major difference is that the proportion of net radiation being met by 

total evaporation is substantially higher when using these maximums. The reason for this is 

that on these days selected, air temperature was high and relative humidity low allowing for 

the latent heat component to comprise a large proportion of the net radiation. These 

maximums are significant in that they provide insight into the potential total evaporation rates 

of sugarcane. It also becomes useful to understand how much water sugarcane consumes 

under for example, irrigated conditions where soil water content is not a limiting factor to 

total evaporation.  
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3.4.3 Annual summary of energy balance and primary data 

 

In Figure 3.35, energy balance component data is plotted for each day on which data were 

obtained for the period October 2004 until September 2005. Figure 3.35 therefore gives an 

indication of the periods when there was a problem in terms of data capture. All available data 

are plotted, including times when a complete energy balance data set was not available. It is 

also important to consider that all energy balance data analysis took place using data obtained 

over the period of daytime hours. This was done as it was recognised that an energy balance 

approach is driven by energy from the sun and hence sunshine hours. The evening data 

obtained for the energy balance components was thus ignored especially since the sensible 

heat flux component was erroneous as explained in Section 2.3.2 of Part 2. 

 

 

Figure 3.35: Annual summary of energy balance data 

 

Net radiation was the most consistently available data. Soil heat flux and sensible heat flux 

data are not as consistently available due to equipment malfunction over certain periods. 

Consequently, the energy balance could not be completed and thus latent heat flux data are 

missing for certain periods. The problem periods occurred over the summer from December 

2004 until April 2005, after which there were very few gaps in the data as depicted by the 
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density of data points from May 2005 onwards. It is important to note that for the period 

December 8 until December 19, soil heat flux was assumed by taking an average from 

December 1 until December 7. This was done as sensible heat flux data were available and 

proved to be useful as this period was thought to be vital one due to the lack of data over the 

summer period. In the following section, these data will be discussed in the light of the energy 

balance component seasonal variability and how this relates to water used by sugarcane. For 

clarity, primary data in the form of average air temperature, average relative humidity and 

rainfall are plotted in Figure 3.36. Good seasonal variability/trends are evident. 
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Figure 3.36: Annual summary of primary data (RH, Ta, and rainfall)  

 

Both average relative humidity and average air temperature follow the same trend, peaking 

around January 2005, which is also when the majority of rainfall fell. These two variables 

then dropped steadily until about July 2005, when rainfall was also at a minimum. Average 

air temperature dropped from approximately 20
o
C in mid-summer to approximately 13.5

 o
C in 

mid-winter. Relative humidity dropped from approximately 92% in mid-summer to 

approximately 60% in mid-winter. These two variables, when combined with the availability 

of soil water content, affect the distribution of the energy balance components considerably. 

In theory, for increased total evaporation to occur, there needs to be sufficient soil water 
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content available, high air temperature, and low relative humidity. This would allow the latent 

heat flux component to meet much of the atmospheric demand which is in the form of net 

radiation. The seasonal variability of energy balance components in Figure 3.35 reflect limits 

imposed by these parameters. 

 

Figure 3.35 shows that net radiation follows a typical seasonal incoming radiation trend, 

peaking in mid-summer and dropping steadily until mid-winter, thereafter climbing once 

again as summer approaches. It is interesting to note the variability of net radiation within the 

seasons in terms of its range. From Figure 3.35 it is evident that there is a great range over the 

summer period as seen by the scattered data points. Over the winter period this range is 

significantly less, as seen by the density of data points. This indicates the variability of 

atmospheric conditions over summer and their relative consistency over winter.  

 

From Figure 3.35 it seems that soil heat flux contributes a relatively minor component to the 

energy balance. It does however, follow a seasonal trend, peaking in early November 2004, 

and dropping as winter approaches. After having considered the component which drives the 

energy balance (net radiation), and the insignificance of the soil heat flux contribution, the 

seasonal variability of the remaining sensible and latent flux contributions are vital to this 

research in terms of understanding seasonal variability of water use by sugarcane.  

 

Figure 3.35 shows that sensible heat flux peaks in the late winter and early summer months, 

with the maximum contribution occurring around September through to November. Over this 

period, a significant amount of energy (net radiation) is available for distribution amongst the 

energy balance components. Soil water content is often limited over this period for this type 

of climate, as is the case in this scenario with minimal rain falling over this period. This 

meant that the available energy could not be significantly consumed by processes such as 

evaporation and transpiration, hence resulting in an increased sensible heat flux contribution. 

From Figure 3.35, sensible heat flux then decreases steadily through the summer, into the 

winter. From Figure 3.35, it can be seen that the sensible heat flux contributes more to the 

energy balance than the latent heat flux from approximately June until mid November. 

 

From Figure 3.35 it can also be seen that the latent heat flux contributes more to the energy 

balance than the sensible heat flux from approximately mid November until the end of May. It 

is evident that the latent heat flux seasonal trend follows that of net radiation, peaking in mid-
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summer with an average of approximately 3 mm.day
-1

 dropping steadily until July with an 

average of approximately 1.2 mm.day
-1

. It is therefore somewhat dependant upon the energy 

available in the form of net radiation. However, the latent heat flux seasonal trend also 

follows a similar pattern to that of rainfall shown in Figure 3.36. Soil water content is 

dependant upon rainfall, and is the source of water used in the evaporation of surface moisture 

(soil and crop surface) as well as transpiration from the sugarcane. It can thus be said that the 

contribution of latent heat flux to the energy balance is also dependant upon the availability of 

soil water content. Therefore, where adequate soil water content is available, the latent heat 

flux will contribute significantly to the energy balance. From Figure 3.36, average air 

temperature and average relative humidity should also be considered in the light of their effect 

and possible seasonal contribution to total evaporation. High air temperature and low relative 

humidity result in increased total evaporation. On days when this occurs and adequate soil 

water content exists, total evaporation, or the contribution of latent heat flux to the energy 

balance, is high. Average air temperature is affected by the amount of incoming solar 

radiation. Relative humidity, however, has proved to limit the amount of total evaporation. 

From Figure 3.36 it is evident that relative humidity is higher in summer than in winter. In the 

summer period, energy in the form of net radiation and soil water content are not limited. 

Therefore, if relative humidity was low for this period, the latent heat flux contribution to the 

energy balance would contribute a vast majority. Therefore, relative humidity can often limit 

the amount of total evaporation over this period.  
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3.4.4 Accumulated rainfall and energy balance component data plots 

 

In Figure 3.37, the energy balance components as well as rainfall have been represented in the 

form of accumulated plots from October 2004 until September 2005. This was done to give an 

indication of the annual proportional contributions of the energy balance components. 
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Figure 3.37: Accumulated plot of net radiation, latent heat flux, sensible heat flux, soil heat 

flux and rainfall. 

 

It is important to note that for these accumulated plots in Figure 3.37, due to there not being a 

complete daily data set for the period, daily means were calculated for each month, using the 

available data to produce the accumulated plots. The accumulated rainfall plot is also useful in 

that it gives an indication of total rain which fell, and when it fell, for this period. From Figure 

3.37 it is evident that approximately 1200 mm fell over the period suggesting that a 

significant amount of moisture was added to the soil profile. Although this was totalled over a 

hydrological year, when compared to previous Mean Annual Precipitation (MAP), it was on 

average, 200 mm higher as discussed in Section 3.1 of Part 2. For the same period, net 

radiation totalled approximately 1400 mm. Latent heat flux totalled approximately 630 mm 

and proved to be similar to the sensible heat flux total of approximately 680 mm. Soil heat 

flux, however, was significantly less, totalling approximately 80 mm over the season.  
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With the energy balance approach undertaken in this project, it was important to accurately 

estimate net radiation, sensible heat flux and soil heat flux so that estimates of total 

evaporation from sugarcane in the form of latent heat flux could also be accurate. If this is so, 

it is evident from Figure 3.37 that the contributions of sensible heat and latent heat are very 

similar, contributing approximately 49% and 45% of net radiation respectively. Therefore 

45% of the energy which was available in the form of net radiation was converted into latent 

heat, and thus used to evaporate moisture at the surface (crop/soil) or crop transpiration. 

 

Water use by sugarcane therefore varied seasonally due to limits to the evaporative process in 

the form of both radiation and moisture limitations. These seasonal changes in total 

evaporation have been discussed. They are however, depicted by the slopes of the lines 

representing the energy balance components in Figure 3.37. Four distinct slopes are evident 

over time: 

 

1.  October 2004 – December 2004 

2. January 2005 – March 2005 

3. April 2005 – July 2005 

4. August 2005 – September 2005 

 

In general, the changes in slope occur for all the energy balance components. The steepest of 

these are for periods 1 and 4, indicating substantial daily additions to the energy balance 

components when compared to the lesser slopes for periods 2 and 3. From Figure 3.37, period 

3 shows the gentlest gradient, indicating significantly less daily additions to the energy 

balance components when compared to periods 1 and 4. The slope gradients are a direct result 

of the combination of moisture availability and solar energy. Therefore, in spring and 

summer, when significant amounts of moisture and solar energy are available, there are 

significant daily additions to the energy balance components, resulting in the steeper slopes. 

In autumn and winter, when moisture availability and solar radiation are limited, daily 

contributions are less, resulting in more gentle slopes.   

 

From Figure 3.35 it has been seen that water use by sugarcane varies seasonally depending 

upon the amount of energy supplied in the form of net radiation, the availability of soil water 

content, as well as the average relative humidity. From the accumulated plots of the energy 

balance components in Figure 3.37, the latent component contributed approximately 630 mm 
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to the energy balance. Therefore, the water consumption by the sugarcane present at the 

research catchment was approximately 630 mm for the period from October 2004 until the 

end of September 2005. The majority of this was consumed over the summer months. When 

this amount consumed by the sugarcane is compared to the amount of rain which fell over the 

same period, amounting to approximately 1194 mm, it is evident that the crop did not use a 

significant amount. Approximately 564 mm was not consumed by the sugarcane, which 

suggests that a large amount of water contributed either to groundwater through seepage, or 

stream flow through surface runoff. It must be considered however, that much of this rainfall 

was event based and hence fell over a very short time period. For example, 85.2 mm falling 

on 19 November 2004. This would have resulted in a large amount of surface runoff, and 

hence immediate stream flow contribution, and would thus not have been available for crop 

growth. A large proportion of the rain fell over the summer and contributed to increased soil 

water content. Soils would thus often be near saturation, in terms of water content, which 

results in surface runoff if a significant amount of rain fell. Therefore, a large proportion of 

the 564 mm which was not consumed by the sugarcane could have runoff the surface as a 

result of a few large rainfall events over the summer period, especially if the events were in 

quick succession. It can be postulated that had this rain fallen more evenly, more of this 1194 

mm would have been consumed by sugarcane growth.  

 

In this dissertation, water use by sugarcane has been quantified with the seasonal variability 

thereof, better understood. The question still remains however, as to the stream flow reduction 

potential of dryland sugarcane production. In order for this to be answered, a comparison 

between water use by sugarcane and a baseline is required.  
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3.5 Stream Flow Reduction Potential of Sugarcane 

 

Energy balance data from one year (October 2004 to September 2005) has been obtained and 

could prove to be useful in assessing the stream flow potential of sugarcane. This would 

require comparison with a baseline (grassland) and then used in a modelling approach. 

Although this is beyond the scope of this project, the following times of the year (season) 

should be considered important with regard to understanding the stream flow potential of 

sugarcane. 

 

From the data presented in this dissertation, the response of the crop following rainfall has 

been rapid and has been highlighted on numerous occasions. Therefore, the response of the 

crop with the onset of spring rains and the effect on total evaporation will need to be 

compared closely to the baseline and used in the verification/validation of the model. 

 

The maximum total evaporation from the crop over the summer is also important as this 

indicates the maximum potential evaporation from the crop due to non-limiting soil moisture 

and maximum demand in terms of solar radiation. One of the major weaknesses in this project 

was the lack of critical data over the December/January period due to unforeseen 

circumstances.  

 

The data presented in this research is detailed enough for this to be undertaken. It should 

however be noted that there will be uncertainties as the data obtained is for a single year and 

the representativeness of this data for this area has not been confirmed due to the scope of this 

research. Further research of this nature should be undertaken or a number of years in the 

future for stronger conclusions to be drawn in this regard. 
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4. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

 

The aims and objectives highlighted in the introduction have been met in this study. In this 

dissertation, comprehensive results have been presented based upon an energy balance 

approach using a scintillometer, in the estimation of water use by dryland sugarcane for one 

year resulting in an improved understanding of the water use by dryland sugarcane and the 

seasonal variability thereof. Streamflow reduction potential of sugarcane has also been 

discussed. 

 

Total evaporation varies significantly over the year with substantially more evaporating over 

summer than winter. Consequently, the maximum total evaporation estimates are significantly 

higher in summer than winter. This is brought about by the major limits to total evaporation 

varying seasonally. The two main limits identified in this research are net radiation and soil 

water content. As expected, net radiation provides the driving force to total evaporation and 

fluctuates depending on the time of year. The availability of soil water content also varies 

seasonally and has proved to be a limiting factor to total evaporation for some of the year. In 

the wetter (late) summer months and early winter months however, when soil water content is 

readily available, soil water content limits total evaporation less than in the late winter and 

early summer. In these months with a wetter soil profile (late summer/early winter), net 

radiation is more of a limiting factor to total evaporation than soil water content. In the late 

winter and especially the early summer, net radiation increases significantly. Soil water 

content on the other hand is at its lowest at this time following the dry season, and is thus a 

major limit to total evaporation. The effect of relative humidity should not be overlooked and 

can also limit total evaporation. 

 

In this project, the sugarcane grown in the area studied was estimated to have utilized 630 mm 

of the 1194 mm which fell as rainfall, proving to be approximately 53% of the available 

moisture. Thus, a significant amount of rainfall was not consumed by sugarcane. This is 

possibly due to the nature of the rainfall being strongly event based over the study period, 

therefore resulting in increased surface runoff.  

 

The atmospheric demand assessed in the form of net radiation for the year was 1392 mm 

equivalents. Therefore, approximately 45% of the energy which was available in the form of 
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net radiation was converted into latent heat, and thus used to evaporate moisture at the surface 

(crop/soil) or crop transpiration.  

 

A number of problems were encountered in terms of instrumentation in this project. The 

results presented in this dissertation could have been improved upon by the use of a net 

radiometer at the sugarcane site instead of using data from a nearby site over riparian 

vegetation. The TDR soil moisture sensor was problematic in the early stages of the project 

and resulted in the inferring of soil moisture from rainfall data instead. Soil moisture was also 

only measured weekly and it would have been beneficial if this was measured at a daily time 

step. Consistency of instruments used for the duration of the project would have resulted in 

more credible results, especially if these operated without malfunctioned and thus result in a 

complete data set.  

 

In terms of future recommendations, this research could be improved upon in various ways in 

the near future. According to Savage et al. (2004), the energy balance components of net 

radiation and soil heat flux density in estimating latent energy flux density from measured 

sensible heat flux density, is important and will need to be considered in more detail in future 

energy balance based research. The scintillometer is a relatively new technique used in the 

estimation of sensible heat flux and will require further refining and testing in the near future 

in order to improve the credibility of this technique in energy balance research. In order to 

provide further insight into the water use by sugarcane and the seasonal variability thereof, as 

well as to verify the results presented in this dissertation, it would be beneficial to establish a 

similar study to the one discussed in this dissertation over both drier and irrigated sugarcane 

crops. Comparisons made would assist in further understanding the limits to total evaporation 

under these extreme cases, and provide insight into transpiration limitations brought about by 

vegetative characteristics under non-limited soil water content conditions. The actual 

measured total evaporation estimates presented in this dissertation could be used for 

modelling purposes. The total evaporation estimates obtained could be compared to a baseline 

(grassland) and used in simulations for a better understanding of the stream flow reduction 

potential of sugarcane and the seasonal variability thereof.  
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APPENDICES 

 

Appendix A: MCS Radiometer Calibrations   

 

Two MCS radiometers were used in this study. Both of these were calibrated against a Kipp 

and Zonen CM3 pyranometer where calibration took place both with the pyranometer 

orientated upward (Figure A4) and downward (Figure A7) in order to obtain a calibration 

equation for both incoming and outgoing radiation. The spectral response curve for the MCS 

radiometers is illustrated below in Figure A1. The CM3 has a flat spectral sensitivity from 

0.305 to 2.8µm. This instrument therefore detects a wider spectral range than the MCS 

radiometers. Long wave radiation range is usually considered to extend up to 50µm.  

Unfortunately there is no spectral response curve available for the CM3.  

 

A1: Spectral Response for the MCS Radiometers 

 

The spectral response for the MCS radiometers is illustrated by Figure A1. 

 

 

Figure A1: Spectral response of the MCS 155 radiation sensor (Cotton, 2004a) 
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A2: Calibration of Mike Cotton Systems (MCS) Radiometers for Incoming Radiation 

 

A linear trend line has been fitted to the upward calibration of both radiometers illustrated in 

Figure A2. The linear fit accurately represents the data points as indicated by R
2
 values of 

0.9984 and 0.9991 for each of the radiometers. The calibrations indicate that a single unit 

logged on the MC system (y axis) represents approximately 20 W.m
-2

.  
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Figure A2: Incoming calibration of MC radiometers against a Kipp and Zonen CM 3 

pyranometer.  

 

In Figure A2, MC represents Mike Cotton, the manufacturer of the radiometers. Ch5 and Ch6 

represent the channel of the Mike Cotton Systems logger.  

 

An assumption in the calibration of these instruments is that the Kipp and Zonen pyranometer 

accurately records incident solar radiation for the given spectral range. For the calibrated time 

period, with the application of the correction factor derived from the gradient of the linear 

trend lines, the day-time trend/pattern is satisfactory as illustrated by Figure A3. A sunny day 

was selected in April 2005, which was thought to represent average conditions for this time of 

the year, in this compaison. This resulted in a good range and distribution of radiation for that 

day. Incoming solar radiation for the specified spectral distribution was estimated at 10 

minute averages.  
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Figure A3: Incoming radiation comparison between MCS radiometers (MC Ch5 and MC 

Ch6) and a Kipp and Zonen pyranometer. 

 

From Figure A3 it is evident that there are two periods in which no data were logged. These 

appear at 7:10am as well as 12:30-12:40pm. The reason for this is that data over these periods 

was erroneous due to a shadow being cast over the radiometers, hence affecting the radiation 

recorded. In this project, due to limitation of available finances, it was decided to use cheaper 

instruments as the primary data source (Mike Cotton Systems) and to calibrate these against 

more expensive ones (Kipp and Zonen). Reliable calibration coefficients were then fitted to 

estimates of radiation, measured in the field by cheaper instruments.  
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Figure A4: Calibration of the MCS radiometers (middle and right) with a Kipp and Zonen 

CM3 pyranometer (left) for incoming radiation. 

 

A3: Calibration of Mike Cotton Systems (MCS) Radiometers for Outgoing Radiation 

 

Calibration of the MCS radiometers for outgoing radiation (downward facing) took place in 

the same way. The only difference is that the radiometers were inverted in order to detect 

radiation reflected from the surface (Figure A7). It is important to note that the radiometers 

were only able to detect the spectral distribution in the ranges described previously and 

illustrated by Figure A1. As this does not include the long wave component, it is important to 

note that these radiometers were only used in the estimation of the reflection coefficient 

which, according to Allen et al. (1998), is the fraction of solar radiation reflected by the 

surface. The wavelengths which are commonly reflected at the surface, fall within the range 

of spectral response wavelengths illustrated in Figure A1. 
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Figure A5: Calibration of MC radiometers against a Kipp and Zonen CM 3 pyranometer. 

 

It was again assumed that the Kipp and Zonen pyranometer records accurate solar radiation 

for the given spectral range. For the calibrated time period, with the application of the 

correction factor, the day-time trend/pattern is satisfactory as illustrated by Figure A5. 

Incoming solar radiation for the specified spectral distribution was again averaged over a 10 

minute period.  
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Figure A6: Radiation comparison between MCS radiometers and a Kipp and Zonen 

pyranometer. 
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Data plots of the outgoing calibration in Figure A5 are more scattered than those from the 

incoming calibration in Figure A2 with lower R
2
 values of 0.9911 and 0.9841 for channel 5 

and 6 respectively. This is however to be expected given fewer data points and the difference 

is thus thought to not be practically significant. From Figure A7, it is evident that the 

vegetation, over which the radiometers were placed, was grass. Although numerous obstacles 

and trees/shrubs are noted in Figure A7, the area in the local vicinity beneath the instruments 

was grass. Thus the reflection coefficient estimates obtained at this calibration site are not 

important, but the calibration correction factors are vital. These were assumed to be as 

measured. 

 

 

Figure A7: Outgoing calibration of the MCS radiometers (left and right) with a Kipp and 

Zonen pyranometer (middle) 

 

A4: Comments 

 

The MCS logger used in this project houses 10 channels, where channels 5 and 6 host the 

radiometers. The above calibrations were applied in the determination of the reflection 

coefficient or reflected solar radiation. For this, the incoming calibration of the MCS channel 

5 was used and the outgoing MCS channel 6 calibration. The MCS channel 5 was thus 

positioned facing upward and with the MCS channel 6 positioned facing downward. The 

reflection coefficient or short wave reflection was then determined by calculating the 

proportion of outgoing radiation, relative to the amount of incoming radiation at a 

corresponding wavelength. 
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However, there are some uncertainties in the determination of the far infrared wavelengths 

within the project. As stated above, the wavelengths measured by the Kipp and Zonen 

pyranometer, against which the MCS radiometers were calibrated, range between 305 to 2800 

nm. Thus, the incorporation of long wave radiation of wavelengths 2800 nm to 100 000 nm, 

are not included in the calibration of the instruments.  
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Appendix B: Soil Heat Flux  

 

B1: Soil Thermometer Installation 

 

Good contact was kept between the soil thermometers and the soil. This was done by first 

digging a hole with a spade and then inserting the soil thermometers into the sidewall of the 

hole as illustrated in Figure B1. The soil was then replaced and packed to the original density. 

The remaining length of cable between the logger and thermometers was kept cool 

underground to avoid heating from the sun. Data were logged every 30 minutes at both depths 

of 50 and 250 mm. 

 

 

Figure B1: Installation of soil thermometers/thermocouples 

 

B2: Soil Thermometer Data Downloading 

 

For the period October 2004 to March 2005, HOBO soil thermometers were used to log a 

potential difference or voltage. These were calibrated prior to installation in the field. The 

calibration equation can be seen in Section 2.2.1.2. Two sets of MCS soil thermometers were 

used in the latter stages of the project. The first set of thermometers was installed in mid April 

2005, with the second set being installed in mid June 2005. This is illustrated in Figure 1.3 of 

Part 1. These MCS soil thermometers logged temperature after having been factory calibrated. 

Downloading of data took place weekly, using a laptop as shown in Figure B2. The loggers 

were placed in water proof boxes so as to prevent moisture from entering the logger and thus 

affecting the data. 
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. 

 

Figure B2: Transferral of data from a MCS soil thermometer logger onto a laptop. 

 

B3: MCS Soil Thermometers Specifications 

 

The MCS soil temperature logger is a low cost 2 channel data logger used for the 

measurement of soil temperature. It can be programmed to record average, minimum and 

maximum values at a set recording rate. For the purposes of this project, 30 minute average 

temperatures were recorded. The micro-power design allows the logger to run unattended for 

one to two years from a single Lithium Battery, depending on the recording rate. The logger is 

protected from extreme climatic conditions in a splash proof PVC casing (Figure B3). 

According to Cotton (2004b), the logger is well suited to record data in agricultural 

experiments.  

 

 

 

Figure B3: Two-channel soil temperature thermometers and MCS logger. 



 121 

B4: MCS Soil Thermometer Calibration – Set 1 

 

From Figure B4, the soil thermometers proved to be accurate when compared to the mercury 

thermometer. This is confirmed by R
2
 values of 0.9996 and 0.9995 for channel 1 and 2 

respectively. The factory calibration coefficients were thus confirmed.  
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Figure B4: Calibration of MCS soil thermometers 1 against a mercury thermometer for the 

range 5-45
 o
C. 

 

B5: MCS Soil Thermometer Calibration – Set 2 

 

The second set of soil thermometers also proved to log temperatures accurately with R
2
 values 

of 0.9994 and 0.9993 for channel 1 and 2 respectively. The calibration represented in Figure 

B5 was thus not used in the analysis of data collected but show that the temperatures recorded 

were accurate and thus also confirm the factory calibration. 
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Calibration of MCS Soil Thermometers 2
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Figure B5: Calibration of MCS soil thermometers 2 against a mercury thermometer for the 

range 5-45
o
C.  

 

B6: Hobo Soil Thermometer Specifications 

 

The HOBO soil thermocouples were used over the period November 2004 to March 2005, 

and logged 30 minute averages of potential difference (voltage). These potential differences 

were then calibrated against a mercury thermometer for temperatures ranging from 

approximately 6
o
C up to approximately 86

o
C. A calibration curve was thus produced for this 

range of temperatures. It was however decided to focus on the lower range of temperatures, 

from 6
o
C up to 35

o
C, as this is more realistic in terms of soil temperatures and resulted in a 

more accurate calibration which has been represented in Figure B6.   

 

B7: Hobo Soil Thermometer Calibration 

 

From Figure B6, it is evident that the calibration coefficients obtained provide a good 

representation of actual soil temperatures with a good linear fit indicated by having a R
2
 value 

of 0.9941. This once again proved that the temperatures logged were accurate. The calibration 

represented in Figure B6 was thus used with high confidence in the conversion of the 

estimated potential difference to soil temperatures. 
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Figure B6: Calibration of HOBO thermocouples against a mercury thermometer for the range 

6 to 35
o
C.  

 

B8: Soil Density 

 

Excess soil was cut off with a hacksaw (Figure B7) leaving only the core sampler filled with 

undisturbed soil from the profile. The volume of the core sampler was measured as well as the 

mass of soil within the sampler once oven dried. This allowed for the calculation of soil bulk 

density in the laboratory. 

 

 

Figure B7: Method used in the estimation of soil bulk density. 
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Appendix C: Sensible Heat Flux 

 

C1: Scintillometer Transmitter 

 

The BLS 900 transmitter emits radiation through 924 light emitting diodes (LED). Two round 

cases each house a disk with 444 infrared and 18 red LED‘s. The transmitter can be operated 

at four different frequencies as seen in Table C1. The pulse rate of 125 Hz produces 

maximum accuracy and allows for the measurement of transverse wind speed. Although 

running the transmitter at 125 Hz results in large power consumption, the availability of a 

constant power supply meant that the transmitter was operated at this maximum frequency to 

provide maximum accuracy for the duration of the project (Scintec, 2004). 

 

Table C1: Options for frequency rates at which the transmitter operates (Scintec, 2004). 

Rate 

Frequency 

(Hz) 

1 1 

2 5 

3 25 

4 125 

 

 

Figure C1: BLS 900 transmitter (left) and fire tower on which it was mounted (right) 
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C2: Scintillometer Receiver 

 

The receiver is able to run for approximately 7 to 10 days on two 96Ah batteries in parallel. 

Batteries were therefore changed weekly and the instrument re-launched and re-aligned. Data 

collection took place at the receiver and was logged at one minute intervals. The receiver was 

bolted onto a strong box, in which the signal processing unit (SPU) is located, as were the 

batteries (Figure C2). The data were transferred onto a laptop on a weekly basis. 

 

At the receiver, radiation is collimated by a plan convex lens onto 2 photodiodes. The receiver 

was mounted on a 3 axis positioning device which was used during alignment of the 

instrument. A telescope is also mounted on the receiver and was used for aligning with the 

transmitter (Scintec, 2004). 

 

 

Figure C2: BLS 900 receiver (left) and strong box (right) 

 

C3: Scintillometer Signal Processing Unit 

 

The signal processing unit (SPU) or logger for the BLS 900 has two plugged-in cards. The 

signal processing card filters, demodulates and digitises the received signals and the 

microprocessor card evaluates and stores the converted data. The microprocessor also controls 

the communication to a PC via a serial interface (Scintec, 2004). 
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Figure C3: Signal Processing Unit for the BLS 900 scintillometer. 

 

The SPU operates using a ‗loop storage‘ system whereby the RAM capacity allows for 

storage of up to 4 weeks. Once the storage capacity is exceeded by the amount of data, the 

first data points are overwritten.  

 

One of the major shortfalls of the BLS 900 is that the data are stored in a 2 Mbyte volatile 

RAM. This means that if power is cut or battery voltage drops too low, all data are lost. This 

proved to be a slight problem with valuable data being lost at the inception of the project in 

October 2004. Consequently, the field procedure was changed to allow for the replacing of 

batteries every 7 to 10 days to ensure that data would not be lost. After power to the SPU was 

removed, all data stored were deleted as well as the program which the SPU used to operate. 

Therefore, upon reconnection of recharged batteries, the SPU program was transferred from 

the laptop to the SPU. This therefore formed part of the weekly download and re-launching 

procedure. 

 

The BLS 900 has independent air temperature and atmospheric pressure sensors. The data 

measured by these sensors are used in the calculation of sensible heat flux. The atmospheric 

pressure and air temperature were read 20 times per minute with averaged values being used 

in the heat flux calculation (Scintec, 2004). The sensible heat flux component is calculated 

using internal computation recalibration routines. Details of sensible heat flux computation 

are not addressed in this study.  
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Appendix D: TDR Soil Water Content Sensor 

 

A Time Domain Reflectometry method was used to estimate volumetric moisture content at 

the experimental site. The TRIME-FM TDR model was used in this study (Figure D1). This is 

a portable moisture measurement instrument, which has been developed for mobile field use. 

According to Imko (2001), the measuring of soil water content with Time Domain 

Reflectometry is now a well established method. A measuring accuracy of ± 2 vol.-% is 

possible, provided that soil and access tube are in close contact (Imko 2001). 

 

 

Figure D1: TRIME-FM and access tube used to estimate volumetric soil water content 

content. 
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