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ABSTRACT 

Beyond the provision of nourishment, one of the most significant applications of plant 

physiological properties to human existence is their use in the production of medicinal 

compounds, with more than 50% of synthetically produced medications derived either 

directly or indirectly from these plant metabolites. The plants that produce these metabolites 

provide the readily available and inexpensive remedies utilized by South African traditional 

healers. Harvesting from wild populations lack legislative regulation, causing several plants 

to become threatened or endangered, thus it is essential that ex-situ methods of conservation 

be employed to ensure the sustainability of South African Traditional Medicine (SATM). In 

vitro cultivation under aseptic environmental conditions enables the mass production of 

genetically identical plantlets which are devoid of pathogens, developmental deformities, or 

physiological irregularities. Though it is not economically feasible to conserve all SATM 

plants by micro-propagation, these in vitro methods have extended our understanding of the 

physical, physiological, biochemical, and genetic components involved in the production of 

medicinal metabolites. Defined by their low levels throughout the plant, these metabolites 

accumulate at high concentrations in reserved cells or organs. The three distinct secondary 

metabolite groups differ in their chemical formation and biosynthetic pathway, yet their 

functions within the plant may overlap. Furthermore, the production of these metabolites in 

response to environmental stress is highly co-ordinated relative to the plants developmental 

phase, and the availability of limited resources.  

Phenolic compounds are predominant in all higher plants, with the preservation of phenolic 

compounds through natural selection due to the versatility of their chemical formation and 

functional nature. These metabolites are prevalent in various plants of SATM, including 

Eucomis autumnalis, due to their anti-microbial, anti-inflammatory, antioxidant, and anti-

carcinogenic capacity. In vitro micro-propagation of E. autumnalis has provided for the 

sustainable conservation of this over exploited Hyacinthaceae species. The intricate nature of 

phenolic compound chemical composition and biosynthetic pathways has curbed the 

synthetic production of these metabolites for commercial gain. Therefore, the induction of 

phenolic compound production by in vitro methods has been extensively studied.  

Following photosynthesis, the shikimic acid pathway induces a deviation from the primary 

metabolism of carbon, resulting in the production of aromatic amino acids. Phenylalanine 

ammonia-lyase (PAL) exclusion of the ammonia results in the production of a variety of 
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phenolic compound derivatives, categorized as phenyl-propanoids. Thus, PAL serves as the 

breaching point between the primary and secondary metabolism, and is the determinant 

enzyme of the phenyl-propanoid pathway. The responsiveness of PAL activity to the effect of 

environmental alteration has promoted the development of various biotechnological methods 

which aim to optimize the production of these desired metabolites. Therefore, the aim of this 

dissertation was to enhance the production of phenolic compounds in response to 

environmental change, using E. autumnalis as a model for the potential application of these 

methods to other medicinally important plant species. 

Provided that secondary metabolite production may be induced in vitro by the metabolic 

processes involved in cellular differentiation and specialization, E. autumnalis callus cultures 

were established under in vitro conditions. Solitary specialized plant cells produce a mass of 

undifferentiated plant tissue devoid of any organization. These simplified homogeneous 

callus cell formations develop in response to the reduction in function specific, 

morphological and developmental specialization of plant tissues. Callogenesis is dependent 

on plant growth regulators (PGR’s) and light exposure. However, variation in auxin-to-

cytokinin concentrations and the intensity of light exposure influence the rate of callus 

growth. Callus cultured on MS media supplemented with 2,4-Dichlorophenoxy acetic acid  

(2,4-D) produced greater volumes of callus over the eighty-four-day growth period. However, 

exposure to the high light intensity of 1.53 µmol m-2 s-1 resulted in the necrosis of callus cells 

within the eighty-four-day growth period. Furthermore, the addition of kinetin (KIN) 

increased the callus volume of 2,4-D cultures. On the other hand, the addition of KIN to 

picloram (PIC) cultures reduced the callus growth rate and volume. Overall, the optimum 

callus volume was obtained from cultures exposed to the lower light intensity of 0.75 µmol 

m-2 s-1, though cultures exposed to 0.00 µmol m-2 s-1 had fewer incidences of callus culture 

browning. Though 2,4-D cultures produced greater volumes of callus, these cultures were 

mostly compact in their formation which restricted the inner cells from accessing oxygen, 

resulting in cell death. Furthermore, PIC cultures produced friable callus which is most 

advantageous for the proliferation of callus cultures. 

These variations in the callus culture environment also influenced the production of phenolic 

compounds by E. autumnalis callus cultures. Subsequent to the eighty-four-day callus growth 

period, the phenolic content of the above mentioned callus cultures was determined using a 

modified Folin-C assay. In callus cultures which were exposed to 0.00 µmol m-2 s-1 light, PIC 

cultures produced a greater phenolic content than 2,4-D cultures with the concentration of 
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2,4-D having no significant effect on the phenolic content. Alternatively, the PIC 

concentration of 15 µM produced a significantly greater phenolic content than 10 µM and   

20 µM PIC cultures, however the additional supplementation of 2,5 µM KIN reduced this 

influence of PIC concentration on the production of phenolic compounds. Furthermore, 

exposure of callus cultures to variations in the light intensity resulted in three main effects. 

First, an increase in light intensity resulted in a corresponding rise in phenolic production, 

where raised light intensities speed up the rate of carbon fixation by photosynthesis, 

providing ample quantities of carbon resources for phenolic production. Furthermore, the 

increase in light intensity implies that these cultures are exposed to higher quantities of UV 

radiation, thus enhancing the production of phenolic compounds which absorb these harmful 

UV wavelengths. However, the second main effect observed in these callus cultures implies 

that phenolic compounds are not the only secondary metabolites which are produced in 

response to elevated UV exposure. Several callus cultures produced a significantly greater 

phenolic content when exposed to the lower light intensity of 0.75 µmol m-2 s-1, than cultures 

exposed to the higher 1.53 µmol m-2 s-1 light intensity. This is potentially due to the 

preferential production of alkaloid metabolites which absorb all wavelengths of the light 

spectrum, resulting in the limitation of carbon resources for phenolic production. Finally, the 

third main effect observed in E. autumnalis callus cultures was caused by an interaction 

between PGR and light intensity. The phenolic content of callus cultured on 15 µM PIC +  

2,5 µM KIN and 20 µM PIC + 2,5 µM KIN supplemented MS media, which were exposed to 

light intensities of 0.00 µmol m-2 s-1 and 1.53 µmol m-2 s-1 produced greater phenolic contents 

than cultures exposed to 0.75 µmol m-2 s-1. This is potentially due to the photo-degradation 

potential of synthetically produced auxin-like PGR’s, as both 2,4-D and PIC should 

theoretically inhibit the production of secondary metabolites. Where PIC cultures exposed to 

the lower light intensity of 0.75 µmol m-2 s-1 produced a reduced phenolic content which was 

substantially increased by the photo-degradation of PIC at the higher light intensity of 1.53 

µmol m-2 s-1. 

Though phenolic production is influenced by the environmental conditions of in vitro 

cultures, the induction of phenyl-propanoid pathway derived phenolic production may be 

enhanced by the acceleration of PAL activity in response to thermal stress. These phenolic 

compounds provide a short-term mechanism of thermo-tolerance. Thermal incline in plant 

cells has an adverse effect on the chloroplasts and mitochondrial enzymes which regulate the 

production and removal of reactive oxygen species (ROS). Metabolic processes accelerate 
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under thermal stress conditions, which result in the accumulation of ROS among other 

metabolites. ROS accumulation in the cell cytoplasm function as heat stress signals 

provoking the acceleration of PAL activity, which stimulates the production of scavenging 

enzymes. This amplification of PAL activity induces the production of phenyl-propanoid 

pathway derived phenolic compounds, which are quintessential to the acclimation of plant 

cells exposed to thermal stress, as these phenolic compounds increase the antioxidant 

capacity of plant cells. Callus samples and in vitro cultured plantlets were sub-cultured into 

suspension media supplemented with their respective PGR combinations. These suspension 

cultures and in vivo plants were exposed to thermal stress simulations of 30 ºC, 35 ºC, and 40 

ºC. The accumulation of phenolic content in each sample was determined over a 20 hr period. 

Thermal incline enhanced the production of phenolic compounds in callus cultures and in 

vitro cultured plantlets, however once the thermal threshold of these cultures was breached 

this production of phenolic compounds was reduced. Furthermore, abiotic heat stress is 

determined by both thermal incline and the duration of exposure to the elevated temperature. 

Thermal incline induces the rapid production of phenolic compounds, subsequently reducing 

over time. Due to the ephemeral nature of this thermal stress mechanism, the production of 

phenolic compounds by in vitro cultured plantlet leaves becomes completely diminished 

following the initial surge in response to thermal incline. Alternatively, the phenolic content 

of callus cultures is reduced following the initial surge in production, however a low phenolic 

content is retained throughout the 20 hr exposure period, providing a mechanism of sustained 

thermo-tolerance. The level of thermo-tolerant phenolic production, and the rate at which this 

thermo-tolerance level is achieved varied between PGR combinations. However, both 

thermal incline beyond the cultures thermal threshold, and the additional supplementation of 

KIN resulted in reduced thermo-tolerance levels which were obtained rapidly. Callus cultures 

maintained a relatively constant production of phenolic compounds in response to thermal 

stress, while the phenolic content produced by the leaves of in vitro cultured plantlets 

duplicated that of the callus cultures. Finally, the leaves of whole in vivo plants demonstrated 

a lack of significant correlation between phenolic compound production and thermal stress.  
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CHAPTER 1: LITERATURE REVIEW 

1.1. Medicinal properties of plants 

Plants serve as the primary producers of the hierarchical food chain, offering all life forms a 

seemingly infinite supply of nourishment (WALLACE et al., 1996a), in the form of food and 

drink (SCHRIPSEMA et al., 1996). However, humans have relied on plants for centuries 

beyond the scope of their provision as primary producers (SIDHU, 2010). In addition to the 

use of plant fibres within human and animal diets, the physiological components of some 

plants have resulted in their use for the production of various materials, including their 

incorporation into construction supplies (SCHRIPSEMA et al., 1996). Industries have also 

explored the pigments and chemical elements of plants for their aroma, taste, and potential 

for harm against both humans and agricultural pests (SCHRIPSEMA et al., 1996). One of the 

most significant applications of plant physiological properties to human existence, other than 

the provision of nourishment, is their use in the production of medicinal compounds 

(SCHRIPSEMA et al., 1996; SIDHU, 2010). The first use of medicinal plants by humans is 

estimated to have been approximately 60 000 years ago according to palaeontological studies 

(ELGORASHI et al., 2003). Plants are essential donors toward global health (CALIXTO, 2000) 

accommodating the primary healthcare of almost 80% of the global populace (AFOLAYAN 

and ADEBOLA, 2004). Despite the majority of western or modern medicinal drugs being 

produced synthetically in the laboratory (CALIXTO, 2000), over 50% of these are either 

derived or pure natural commodities (ELDEEN et al., 2005). Furthermore, approximately 25% 

of these drugs are derived either directly or indirectly from natural plant products (CALIXTO, 

2000; ELDEEN et al., 2005). Though synthetic chemistry, combinatorial, and molecular 

modelling to improve synthetic medication development has been extensively researched 

lately; the use of plant medicinal metabolites for human health care remains invaluable 

(NCUBE et al., 2012a). Furthermore, research regarding medicinal plants has surpassed that of 

traditional medicines since the 1980’s, during which time the harvesting of metabolites, of 

pharmaceutical importance, has promoted numerous innovations in production technology of 

medicinal significance (SIDHU, 2010). 

1.2. South African Traditional Medicine 

In South Africa medicinal plants provide the needs for approximately twenty-seven million 

people (FENNELL et al., 2004b; STREET et al., 2008b). Believed to be the origin of modern 
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man, southern Africa boasts an extensive account of how plants have been utilized by 

humans (NIGRO et al., 2004), which influenced various aspects of the African culture and 

tradition significantly (FENNELL et al., 2004b). In addition to the cultural importance of 

traditional remedies, these plants aid in providing readily available and inexpensive 

treatments (FENNELL et al., 2004a; STREET et al., 2008b). Though these traditional methods 

may be the only affordable or available remedies found in the rural sectors of southern Africa 

(JÄGER and VAN STADEN, 2000), approximately 60% of the South African population 

(ELGORASHI et al., 2003; NCUBE et al., 2011; TAYLOR et al., 2003), and 80% of urban 

residing African people, particularly people of Zulu heritage, will confer with a traditional 

healer following a consultation with a medical physician of modern or western training 

(ELGORASHI et al., 2003; JÄGER et al., 1996). This has resulted in an estimated 350 000 

people employed in traditional healing practices greatly exceeding the 250 000 people 

employed by western medicinal practices (JÄGER and VAN STADEN, 2005). The World 

Health Organisation (WHO) determined that traditional medicine methods are extensively 

dependent on the passing of information (RUKANGIRA, 2001), gathered over many years 

(TAYLOR et al., 2003), onto the next generation (RUKANGIRA, 2001), ensuring that tradition 

remains and thus being of greater cultural and spiritual significance (TAYLOR et al., 2003). 

Given that such a large portion of the South African population favour traditional healing 

methods over modern medications (FENNELL et al., 2004b; STREET et al., 2008b) the 

growing concern for the conservation of these plants used by traditional healers is not 

surprising. Per annum, South Africans harvest approximately 19 500 tonnes of medicinal 

plants from their natural habitats (STREET et al., 2008a), resulting in these natural medicinal 

sources becoming severely reduced due to their extensive exploitation (AFOLAYAN and 

ADEBOLA, 2004; FENNELL et al., 2004a). Rural communities of southern Africa benefit 

greatly from traditional healing methods beyond the facility of medicinal and spiritual 

therapy, as the gathering of medicinal plants among other natural resources for medicinal 

markets also provides employment for many (AFOLAYAN and ADEBOLA, 2004). The absence 

of co-ordination and constraint in the collection of medicinal plants (AFOLAYAN and 

ADEBOLA, 2004; MOYO et al., 2011) has resulted in the haphazard gathering of plants from 

their natural habitats (AFOLAYAN and ADEBOLA, 2004) with little effort put toward 

sustaining these wild populations (MOYO et al., 2011).  
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1.3. The significance of medicinal plants 

The extinction of a plant species is subject to a combination of ecological, environmental and 

anthropogenic pressures (NCUBE et al., 2015). Given the majority of South African medicinal 

plants are harvested (NIGRO et al., 2004), devoid of regulation or restraint (MOYO et al., 

2011), from wild populations (NIGRO et al., 2004) it is essential that methods of conservation 

be employed to alleviate this reliance on naturally occurring populations (AFOLAYAN and 

ADEBOLA, 2004). In-situ methods of conservation are based on maintaining the species 

within its natural habitat (KASAGANA and KARUMURI, 2011). However, the implementation 

of current legislation regarding the control of wild population harvesting in South Africa 

remains deficient (AFOLAYAN and ADEBOLA, 2004; MOYO et al., 2011). Regardless of these 

anthropogenic pressures, limitations of the transformed ecosystem are enforced, resulting in 

the tedious attempt of habitat restoration (WOCHOK, 1981). Thus, in-situ methods are only 

suitable for plant species that are threatened but not yet in danger of extinction. Alternatively, 

ex-situ conservation is preferable for endangered species, as this incorporates various 

methods of preserving the genetic diversity of the species and / or the population independent 

of its natural environment (KASAGANA and KARUMURI, 2011). In addition to the 

establishment of botanical gardens, and gene banks, these methods involve the storage of 

DNA, pollen, and seeds (KASAGANA and KARUMURI, 2011; NIGRO et al., 2004). However, 

micro-propagation in terms of in vitro plantlet establishment, is paramount to the ex-situ 

conservation of plants (AFOLAYAN and ADEBOLA, 2004; MOYO et al., 2011; NCUBE et al., 

2015; NIGRO et al., 2004).  

In vitro plant tissue propagation is the establishment of plantlets within an antiseptic 

environment (KASAGANA and KARUMURI, 2011). Successful cellular proliferation (SIDHU, 

2010) is dependent on the regulation of various environmental factors (KOZAI et al., 1997), 

including temperature, pH, and the quantity of nutrients (SIDHU, 2010). Culturing under 

aseptic conditions enables mass production of genetically identical plantlets that are devoid of 

pathogens and do not bear any developmental or physiological abnormalities (HUSSAIN et al., 

2012; KASAGANA and KARUMURI, 2011; KOZAI et al., 1997). Cultivation in sterilized 

vessels diminishes the risk of contamination, further permitting their transportation and 

storage (KASAGANA and KARUMURI, 2011). Additionally, the rapid growth rate and 

acclimatization of in vitro cultures (KASAGANA and KARUMURI, 2011; KOZAI et al., 1997) 

have provided an efficient method for the conservation and growth of various plant species 

(NCUBE et al., 2015). 
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The benefits of in vitro plant tissue culture surpass those of traditional vegetative 

reproduction (KOZAI et al., 1997). Micro-propagation enables the conservation of plant 

populations that face certain constraints which vegetative reproduction methods could not 

accommodate (KASAGANA and KARUMURI, 2011). These include plant populations where 

the probability of seed germination and growth is negligible (ABOEL-NIL, 1997; KASAGANA 

and KARUMURI, 2011), where there is a deficiency of seeds (KASAGANA and KARUMURI, 

2011; WOCHOK, 1981), or where there is a lack of appropriate pollinator availability for the 

species (KASAGANA and KARUMURI, 2011).  

Plant tissue culture has been implemented within various industries including forestry, 

ornamental markets, horticulture, and agriculture (WOCHOK, 1981), paying particular 

attention to crops of commercial value (ABOEL-NIL, 1997). However, given that private 

industries have undertaken the majority of these efforts (WOCHOK, 1981), research toward 

medicinal plant micro-propagation has lagged behind that of plant species which are more 

economically valuable to these businesses (ABOEL-NIL, 1997). Globally, these industries 

have focused primarily on the use of micro-propagation techniques for the mass production 

of whole plantlets (HUSSAIN et al., 2012; NIGRO et al., 2004), providing the foundation for 

further plant biotechnological research (MATKOWSKI, 2008; NIGRO et al., 2004; ROUT et al., 

2000).   

The study and use of micro-propagation methods for the conservation of economically 

significant plants in South Africa has been extensive (MOYO et al., 2011), relative to 

improving medicinal plant market values in addition to ex-situ preservation of the plants 

(NIGRO et al., 2004). It is believed, that in vitro mass production of medicinal plants in South 

Africa could alleviate the detrimental harvesting of entire natural populations by providing an 

alternative and sustainable source of these plants for traditional medicine markets 

(AFOLAYAN and ADEBOLA, 2004). However, the feasibility of implementing such methods 

of conservation to all South African medicinal plants remains limited (KOZAI et al., 1997). In 

2009, the IUCN Red List assessment determined that roughly 10% (2 062 plant species) of 

South African indigenous vascular plants are used by traditional healers (WILLIAMS et al., 

2013). Slow plantlet growth rates and high acclimatization mortality, in addition to workforce 

expenses discourage the use of in vitro methods for the mass production of South African 

medicinal plants (KOZAI et al., 1997). Thus conservation efforts need to concentrate on 

indigenous species that are under threat of extinction, of which eighty-two species are of high 

conservation concern, ninety-eight species occurring in their natural habitats, and two species 
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that have been eliminated from their natural habitats (WILLIAMS et al., 2013). Provided that 

in-situ methods of conservation cannot be applied to all of these threatened species, 

conservation efforts need to be established ex-situ (KASAGANA and KARUMURI, 2011). Bulk 

production of plantlets by in vitro methods may not be economically viable for all species 

(KOZAI et al., 1997), though an effective establishment of micro-propagation procedures 

have enabled further investigations into the plants physical, physiological, biochemical and 

genetic constituents (NCUBE et al., 2015).  

Further investigation of these physical, physiological, biochemical and genetic elements has 

led to the discovery and continued study of the metabolites produced (MOYO et al., 2011; 

NCUBE et al., 2015; NIGRO et al., 2004; ROUT et al., 2000). These may be derived from the 

metabolic processes involved in cellular differentiation and specialization in vitro (NCUBE et 

al., 2015), though their production is not limited to in vitro conditions, as they are also 

synthesized in vivo in response to environmental or ecological strain (TAIZ and ZEIGER, 

2010). In South African research, plant biotechnological tools have focused on conservation 

in vitro, and the production of medicinally valuable metabolites (MOYO et al., 2011), 

particularly from the medicinally utilized Hyacinthaceae (AFOLAYAN and ADEBOLA, 2004; 

STREET et al., 2007).  

1.4. Eucomis autumnalis in South African Traditional Medicine 

Some of the most frequently utilized medicinal plants of southern Africa include the bulbous 

plants (ZSCHOCKE et al., 2000) of the family Hyacinthaceae (CHEESMAN et al., 2010; 

STREET et al., 2007). Providing an array of bioactive metabolites (LOUW et al., 2002) 

approximately 14% of plants sold in South African medicinal plant markets are of the 

Hyacinthaceae family (AFOLAYAN and ADEBOLA, 2004). Fourteen species of the 

Hyacinthaceae family have been identified to contain biological properties pertaining to the 

treatment of urinary or venereal diseases, gastro-intestinal diseases, respiratory infections, 

headaches and fever, swellings or growths and joint pains, and skin, bruises, sprains and 

fractures (LOUW et al., 2002). Though the medicinal potential of various Hyacinthaceae 

species still requires further investigation (LOUW et al., 2002), species of the Eucomis genus 

have been investigated extensively with regard to their medicinal metabolites (AULT, 1995; 

CHEESMAN et al., 2010; MOYO et al., 2011).  

Previously belonging to the family Liliaceae (LOUW et al., 2002), the categorisation of 

various Hyacinthaceae species overlap in their taxonomy (SPARG et al., 2002). For example, 
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the Eucomis genus has been classified within the Hyacinthaceae family (AFOLAYAN and 

ADEBOLA, 2004; MOYO et al., 2011) however, the species Eucomis autumnalis falls under 

the family Asparagaceae (NDHLALA et al., 2012). The majority of Eucomis species that have 

been documented originate from southern Africa (LOUW et al., 2002; TAYLOR and VAN 

STADEN, 2001a, 2001b), including the subspecies, Eucomis autumnalis autumnalis,             

E. autumnalis amaryllidifolia, and E. autumnalis clavata (TAYLOR and VAN STADEN, 2001b) 

which are all exploited in South African traditional medicine relative to their local 

availability (TAYLOR and VAN STADEN, 2001c).  

The vertical raceme of compact yellow-green, pale-green (Figure 1.1 C), or white flower 

arrangement (CHEESMAN et al., 2010; LOUW et al., 2002; TAYLOR and VAN STADEN, 2001b, 

2001c, 2001d) capped with green bracts mirror the appearance of pineapples, resulting in 

Eucomis plants being frequently referred to as Pineapple lilies (LOUW et al., 2002; NDHLALA 

et al., 2012; TAYLOR and VAN STADEN, 2001b, 2001d). Additionally, the Greek origins of 

the genus’ label, Eucomis, describes the crown of bracts atop the inflorescence (LOUW et al., 

2002; TAYLOR and VAN STADEN, 2001b). These inflorescence stalks (Figure 1.1 B) are 

protruding from a rosette of elongated leaves (NDHLALA et al., 2012; TAYLOR and VAN 

STADEN, 2001d) which are both generated by concentrically layered (Figure 1.1 A), egg-

shaped bulbs (CHEESMAN et al., 2010; NDHLALA et al., 2012; TAYLOR and VAN STADEN, 

2001b), located below the soil surface (TAYLOR and VAN STADEN, 2001b).  
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Figure 1.1: The morphology of Eucomis autumnalis plant features, (A) concentrically 

layered bulb, (B) inflorescence stalk protruding from a rosette of elongated 

leaves, (C) vertical raceme of white-green flowers topped by a crown of green 

bracts. (Photos B and C were provided by Mrs Alison Young, Chief Horticulturalist of the 

University of KwaZulu-Natal botanical gardens). 

These deciduous geophytes (AFOLAYAN and ADEBOLA, 2004; AULT, 1995; LOUW et al., 

2002; NDHLALA et al., 2012; TAYLOR and VAN STADEN, 2001b, 2001d), remain dormant 

during the winter months following their summer season growth phase (AULT, 1995; 

TAYLOR and VAN STADEN, 2001b, 2001c, 2001d). Requiring nutrient rich soils and either 

A B 
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complete or partial exposure to solar radiation (TAYLOR and VAN STADEN, 2001c) Eucomis 

species thrive in the moderately moist grasslands of southern Africa (NDHLALA et al., 2012; 

TAYLOR and VAN STADEN, 2001b). However, excessive harvesting of these plants has 

restricted their availability (TAYLOR and VAN STADEN, 2001b, 2001d; ZSCHOCKE et al., 

2000) to isolated grassland regions of higher elevations of the Drakensberg along South 

Africa’s north-eastern coast line (TAYLOR and VAN STADEN, 2001b). Though South African 

legislature aims to secure the sustainability of all Liliaceae (TAYLOR and VAN STADEN, 

2001c), various Eucomis species rank as threatened (TAYLOR and VAN STADEN, 2001d). 

Given that Eucomis autumnalis (subspecies autumnalis) is targeted the most by South 

African traditional healers (CHEESMAN et al., 2010; TAYLOR and VAN STADEN, 2001a; 

ZSCHOCKE et al., 2000), unregulated and uncontrolled harvesting of wild populations has 

resulted in their declining status of conservation (DZEREFOS and WITKOWSKI, 2001; 

NDHLALA et al., 2012; TAYLOR and VAN STADEN, 2001c). The collection of entire plants or 

solely the bulbs (AFOLAYAN and ADEBOLA, 2004; DZEREFOS and WITKOWSKI, 2001; 

ZSCHOCKE et al., 2000) provide approximately seventy-three tonnes of Eucomis autumnalis 

material to “muthi” markets annually (STREET et al., 2007).    

Various attempts have been made by subsistence farmers to grow these plants as a substitute 

source for South African “muthi” markets (TAYLOR and VAN STADEN, 2001d). However, 

cultivation from seeds is a tedious process requiring a minimum of three years for the plants 

to achieve maturity, thus in vitro methods provide a more rapid means of bulk cultivation 

(TAYLOR and VAN STADEN, 2001c). Beyond the mass production of vulnerable plant species, 

plant biotechnological tools can be exercised for the production of desired medicinal 

metabolites (ROUT et al., 2000). 

1.5. Secondary metabolites in plants 

These compounds of pharmaceutical value are derived from the plants secondary metabolic 

pathways (GIULIETTI and ERTOLA, 1999; ROUT et al., 2000). Plants produce an assortment 

of organic compounds that do not appear to serve toward the plant’s primary functions 

(NCUBE et al., 2012b; TAIZ and ZEIGER, 2010), such as the division and elongation of cells, 

storage, respiration, and propagation (BOURGAUD et al., 2001).  

The definition of secondary metabolites has been investigated and altered over the years 

(VERPOORTE, 2000). Initially known as metabolites which oppose the primary metabolism, 

they were later thought to be the ‘end-products’ of nitrogen metabolism (BOURGAUD et al., 
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2001; GIULIETTI and ERTOLA, 1999). However, it is currently understood that not all 

secondary metabolites are derived from nitrogen based metabolic pathways (TAIZ and 

ZEIGER, 2010). More recently, these metabolites were distinguished by their features 

(BOURGAUD et al., 2001). These compounds are highly concentrated (WINK, 1999) yet they 

generally have diminished abundances (BOURGAUD et al., 2001; WINK, 1999). Believed to be 

waste products for a period of time (VERPOORTE, 2000; WINK, 1999) it would be anticipated 

for these metabolites to be stored in senescent organs or cells, given that plants lack the 

ability to excrete waste products (WINK, 1999). However, these metabolites are produced and 

stored in reserved organs or cells (BOURGAUD et al., 2001; GIULIETTI and ERTOLA, 1999). 

Furthermore, by definition waste products are only synthesized following primary metabolic 

processes (WINK, 1999), however, these metabolites are synthesized, undergo transformation 

and are accumulated throughout various developmental stages (GIULIETTI and ERTOLA, 

1999). These metabolites were later defined as products or intermediates derived from 

various primary metabolites (NCUBE et al., 2012b; VERPOORTE, 2000) by a greater array of 

pathways that deviate from primary metabolism (VERPOORTE, 2000), which entails the 

biosynthesis of proteins, lipids, and carbohydrates (TAIZ and ZEIGER, 2010). 

Where primary metabolism remains constant throughout the plant kingdom, secondary 

metabolites differ among plant genera, and occasionally between species (TAIZ and ZEIGER, 

2010; VERPOORTE, 2000). Biosynthesis of these metabolites was initially thought to be 

inadvertent (GIULIETTI and ERTOLA, 1999) however, these metabolic processes that deviate 

from the plants primary metabolism (NCUBE et al., 2012b; TAIZ and ZEIGER, 2010) are 

substantially co-ordinated relative to the plants development (NCUBE et al., 2012b). These 

secondary metabolites are classified, based on their chemical formation, into three categories 

consisting of terpenes, nitrogen-containing compounds and phenolic compounds (TAIZ and 

ZEIGER, 2010). Beyond the fundamental aspects of plant growth and reproduction (TAIZ and 

ZEIGER, 2010) these compounds function toward protecting the plant, and attracting 

pollinators (TAIZ and ZEIGER, 2010; WINK, 1999). Sexual reproduction in flowering plants 

requires pollination and dispersal by wind or more commonly by insect pollinators 

(WALLACE et al., 1996b). Various secondary compounds serve as visual cues for pollinators 

in the form of pigments (BOURGAUD et al., 2001) and ultraviolet (UV) guides (WALLACE et 

al., 1996b). Several secondary metabolites possess elements capable of retaining UV 

radiation (BOURGAUD et al., 2001) serving a dual functionality in protecting the plant against 

the harmful effects of UV radiation (WINK, 1999) and in attracting pollinators such as bees 
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(WALLACE et al., 1996b). Though the three categories of secondary metabolites differ in 

their chemistry, each category is not limited in their function  (TAIZ and ZEIGER, 2010). For 

example, terpene compounds of Arabidopsis thaliana flowers serve toward pollinator 

attraction, however these terpenes also function in anti-herbivory protection by means of 

volatile mixtures (KLIEBENSTEIN, 2004). Additionally, the defensive capacity of these 

metabolites provide protection against further damage by herbivores and microbial organisms 

(TAIZ and ZEIGER, 2010; WINK, 1999).  

1.5.1. Secondary metabolite response to stress 

Based on the study of secondary metabolite composition and function, these metabolites have 

been further defined as those that secure an organisms survival, serving an interactive 

function between the organism and the surrounding environment (NCUBE et al., 2012b; 

VERPOORTE, 2000). The stationary nature of plants prevents them from fleeing when 

environmental influences become less than favourable for their primary function of plant 

growth (NCUBE et al., 2013a). Thus, secondary metabolites are believed to be essential to the 

plants ability to adjust to their ever changing environment (MOYO et al., 2011; NCUBE et al., 

2012b). Secondary metabolites function in plant defence against biotic (WINK, 1999) and 

abiotic environmental stresses (NCUBE et al., 2012b). 

Chemical defence mechanisms have been inherited by plants (MOYO et al., 2011; TAIZ and 

ZEIGER, 2010), subject to natural selection and evolutionary processes (TAIZ and ZEIGER, 

2010). This evolutionary ‘arms race’ persists due to the diverse variation in the secondary 

metabolite profiles (WINK, 1999). Production of these defensive secondary metabolites put a 

high demand on the plants limited resources (CRONIN and HAY, 1996), thus allocation of 

resources is substantially co-ordinated, relative to when and where these chemical defenders 

are synthesized and stored within the plant (WINK, 1999). For example, cyanogenic 

glycosides discourage insect and herbivore feeding by producing toxic hydrogen cyanide gas 

when broken down (TAIZ and ZEIGER, 2010). However, cyanogenesis is substantially 

demanding on nitrogen resources, therefore when soil nutrition is limited, plants alternatively 

allocate carbon, rather than nitrogen resources, to secondary defence metabolite production 

(NCUBE et al., 2012b). The two leading concepts of plant chemical defence are the optimal 

defence theory (ODT) and the growth-differentiation balance hypothesis (GDBH) (CRONIN 

and HAY, 1996). Given that the primary objective is to defend tissues that are vulnerable to 

herbivory or microbial infection (WINK, 1999), ODT motivates for the preferential protection 
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of developing tissues over that of the older specialized tissues, that are favoured by the 

GDBH (CRONIN and HAY, 1996). Though juvenile tissues contribute significantly to plant 

fitness (WINK, 1999), the biosynthesis of these defence chemicals is limited to dedicated cells 

of differentiated tissues (GIULIETTI and ERTOLA, 1999). Furthermore, despite the greater 

abundance of secondary metabolites often occurring in juvenile developing plant tissues, as 

suggested by ODT, this does not oppose the GDBH (CRONIN and HAY, 1996), as these 

metabolites are often synthesized within specialized cells and transferred via the phloem 

throughout the plant (CRONIN and HAY, 1996; WINK, 1999). However, translocation and 

concentration of these defensive metabolites in juvenile tissues becomes detrimental to the 

plants growth and development when environmental stress is lacking (CRONIN and HAY, 

1996). The transport of these metabolites through the phloem (WINK, 1999), provides a mode 

of metabolite transfer between specialized organs (CRONIN and HAY, 1996), subsequently 

guarding these plants from the harmful effects of sucking insects (WINK, 1999). 

Plant defence against biotic stress consists of three key mechanisms that are prompted by 

tissue wounding by herbivores, and / or microbial infection (WINK, 1999). The first consists 

of boosting the production and storage of defensive metabolites that are present (WINK, 

1999). These are often located in external organs of the plant, and provide instant release of 

deterrents (WINK, 1999), though some of these potentially prevent wounding or infection by 

means of advertising their toxicity in glandular hairs (TAIZ and ZEIGER, 2010). The second 

is predominantly induced by microbial infection, giving rise to novel metabolites that possess 

anti-microbial properties (WINK, 1999), many of which are iso-flavonoids (TAIZ and 

ZEIGER, 2010), however the efficacy of these novel metabolites is not limited to microbial 

deterrence (WINK, 1999). The third entails the combination of hydrolysing enzymes and pre-

fabricated allelo-chemicals by means of the wound induced breakdown of specialized tissues 

(WINK, 1999). This activation of allelo-chemicals, often results in the release of plant 

volatiles that either attract natural enemies of the intruder, or signal response mechanisms in 

surrounding plants (WINK, 1999). 

Allelo-chemicals also participate in response to various abiotic environmental stresses 

relative to competition between plants (TAIZ and ZEIGER, 2010). Several phenolic 

compounds, may be released into the soil (TAIZ and ZEIGER, 2010) in attempt to impede the 

germination and development of seeds (BOURGAUD et al., 2001; WINK, 1999), or 

alternatively to poison another plant (BOURGAUD et al., 2001). This allelopathic behaviour in 
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plants is essential to their evolutionary fitness in the plants battle for access to limited light, 

nutrient, and water resources (TAIZ and ZEIGER, 2010).  

The ability to sense, signal, and respond to abiotic stress (DE KLERK, 2007; NCUBE et al., 

2013b) is exhibited throughout the plant kingdom, however the susceptibility and mode of 

response to climatic pressures differ between plant species (NCUBE et al., 2013b). Stress 

intensity in conjunction with the plants genotype and growth phases are the primary 

components that determine the manner in which the plant identifies and responds to 

environmental stress (AGARWAL and ZHU, 2005). Various anatomical and physiological 

alterations in plants have evolved, including the adaptation of life cycles and the production 

of seeds and buds that are capable of dormancy, to facilitate the plants survival during 

anticipated periods of unfavourable environmental conditions, such as drought or frigid 

winters (DE KLERK, 2007). Alternatively, cross-linked pathways stimulate physiological 

(NCUBE et al., 2013b) and biochemical reactions in plants that are subjected to sudden abiotic 

pressures (DE KLERK, 2007), resulting in the generation of defensive secondary metabolites 

(DE KLERK, 2007; NCUBE et al., 2013b). Distinct abiotic stress factors, stimulate explicit 

modification of metabolic processes that are pertinent in the plants response to the distinct 

abiotic stress (AGARWAL and ZHU, 2005). Climatic or abiotic environmental stress response 

mechanisms, primarily affect the quantity and quality of the secondary metabolites that are 

produced (NCUBE et al., 2012b). 

Though various secondary metabolites are produced in response to each of these 

environmental stress factors (NCUBE et al., 2012b), these different forms of abiotic stress are 

frequently inflicted on plants in a concurrent or simultaneous manner (AGARWAL and ZHU, 

2005). Thus, plants have developed intricate stress signalling pathway complexes that 

intersect within the stem nodes, potentially affecting the plants abiotic stress perception 

capability (AGARWAL and ZHU, 2005). Though the various above mentioned abiotic stress 

factors may induce the production of factor specific secondary metabolites, each of these 

stress factors are known to result in the production of reactive oxygen species (ROS) (NCUBE 

et al., 2012b). However, in addition to this accumulation of ROS, the secondary metabolites 

produced in response to these abiotic stress factors function in the scavenging of ROS (DE 

KLERK, 2007). 

Given that the fixation of carbon during photosynthesis is essential to the livelihood of plants, 

the ability to detect various ranges of the light spectrum was acquired by plants (NCUBE et 
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al., 2012b). However, various wavelengths of UV radiation are harmful to the plants 

photosynthetic processes (BOURGAUD et al., 2001), thus the biosynthesis of several secondary 

metabolites have been established to deter the effects of destructive UV wavelengths (NCUBE 

et al., 2012b; WINK, 1999). Exposure to severe light intensities and/or UV radiation (NCUBE 

et al., 2012b; TAIZ and ZEIGER, 2010), influences the production of various secondary 

metabolites (NCUBE et al., 2012b). These metabolites absorb both harmful UV and functional 

wavelengths (NCUBE et al., 2012b; TAIZ and ZEIGER, 2010). For example; selected tetra-

terpene compounds are produced in cells capable of photosynthesis as auxiliary pigments 

(TAIZ and ZEIGER, 2010) that prevent photo-oxidation (SINHA, 2004; TAIZ and ZEIGER, 

2010) in chloroplasts by absorbing surplus radiation (SINHA, 2004). Furthermore, the 

production of several phenolic compounds in epidermal cells corresponds with amplified 

exposure to UV-B radiation, indicating that biosynthesis of these metabolites is induced by 

light stress (TAIZ and ZEIGER, 2010). These compounds include the furocoumarins  

(BOURGAUD et al., 2001) and flavonoids of the plant stems and leaves (TAIZ and ZEIGER, 

2010). In addition to this stress imposed on the plants (NCUBE et al., 2012b), UV radiation is 

involved in the formation of ozone (O3) (WALLACE et al., 1996c). Exposure to high 

quantities of ozone has opposing effects on the different groups of secondary metabolites, 

where phenolic content is reduced, terpene is amplified (NCUBE et al., 2012b).  

Soil stress involves several interacting properties (RAMÍREZ-RODRÍGUEZ et al., 2005), with 

the levels of chemical precursors in the soil controlling secondary metabolite production 

(NCUBE et al., 2012b; RAMÍREZ-RODRÍGUEZ et al., 2005). Certain metabolites are expelled 

into the rhizosphere, influencing the selective absorption of nutrients in addition to improving 

the nutrients ability to dissolve (RAMÍREZ-RODRÍGUEZ et al., 2005). These metabolites 

prevent the uptake of phyto-toxic heavy metals (DE KLERK, 2007; RAMÍREZ-RODRÍGUEZ et 

al., 2005), while improving the solubility of deficient nutrients (RAMÍREZ-RODRÍGUEZ et al., 

2005). For example, variations in soil nitrogen content have demonstrated different secondary 

metabolite responses (MOYO et al., 2011). Provided primary metabolic functions of growth is 

prioritized above secondary metabolic processes, the concentration of certain metabolites 

regulates secondary metabolite biosynthesis (NCUBE et al., 2012b).  

Environments devoid of moisture impose multiple stress factors on plants, commonly 

associated with salinity stress (NCUBE et al., 2013b), and generally triggered by thermal 

pressures, where elevated temperatures may result in drought (NCUBE et al., 2012b). 

Furthermore salinity stress induced by osmotic stress promotes ROS production thus 
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inflicting oxidative stress (BOTELLA et al., 2005; MOYO et al., 2011). Plants incorporate 

multiple metabolic response mechanisms protecting against UV radiation damage and 

desiccation (NCUBE et al., 2012b), predominantly by phenolic compounds (DE KLERK, 2007; 

NCUBE et al., 2012b, 2013b).  

Abiotic heat stress in plants has a significant negative effect on agricultural and natural 

environments (WANG et al., 2003), with marked consequences for the global production of 

crops (HALL, 2001) and medicinal plants used by South African traditional healers. Heat 

tolerance can be defined by a plants ability to produce developmental and economic yield 

under high temperatures; however heat stress is determined by the intensity, temporal extent, 

and the rate at which the temperature increases, as a multifaceted event (WAHID et al., 2007). 

Plant heat stress tolerance mechanisms fluctuate relative to the tissue structure and consist of 

long-term adaptations of an evolutionary base, and short-term avoidance or temporary 

adaptations (WAHID et al., 2007). Chronic exposure of plants to heat stress provokes various 

morphological, anatomical, biochemical, phenological, physiological, and molecular 

responses (NCUBE et al., 2012b; WAHID et al., 2007). Morphological amendments prompted 

by high temperatures directly influence the prevailing physiological processes, indirectly 

transforming the direction of developmental processes (WAHID et al., 2007). This is caused 

by the inhibition of cellular elongation, the localization of cellular division stimulation, and 

the adjustment to cellular differentiation status (POTTERS et al., 2007). Crop yield is 

diminished due to the discernible effect of pro-longed heat stress on reproductive activities, 

though the extent of such modifications may vary with the phenological phase and plant 

species (WAHID et al., 2007). The gravity of potential damage to crops (WAHID et al., 2007), 

and medicinal plants may be determined by the phenological phase at which the plant is 

exposed to heat stress (WAHID et al., 2007). The sessile nature of plants restricts heat stress 

responses, thus heat stress tolerance is dependent on systems of cellular and physiological 

acclimation and defence (WAHID et al., 2007). The restoration of damaged tissue, protection 

and homeostasis; post heat stress event; are resultant of signalling processes and transcription 

controls which are activated by means of primary stress signals (WAHID et al., 2007). Heat 

stress manipulates energy distribution and carbon metabolism enzyme activities, reducing the 

photosynthetic competence of C3 plants more than C4 plants (WAHID et al., 2007). Due to 

chlorophyll a and b degradation in the chloroplast stroma, carbon metabolism is reduced 

more in young leaves than fully developed leaves (WAHID et al., 2007).  
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Declining thermal conditions stimulate phenolic production and integration into the plant cell 

walls (NCUBE et al., 2012b; RIVERO et al., 2001; WAHID et al., 2007) as a mechanism of 

acclimation (RIVERO et al., 2001). Conversely, thermal incline prompts the generation of 

ROS (DE KLERK, 2007; NCUBE et al., 2012b) inducing atmospheric photochemical reactions 

of volatile organic compounds (VOC’s), which stimulate the activity of enzymes involved in 

ROS scavenging processes (NCUBE et al., 2012b). These VOC’s include isoprenoids which 

are discharged from the plant leaves, protecting photosynthetic processes and organelles from 

the harmful effects of ROS (WAHID et al., 2007). For instance, the vulnerability of thylakoid 

membranous lipids to ROS injury is diminished by photo-protective carotenoids that enable 

the compaction of membranous lipids to prevent absorption of harmful compounds into the 

thylakoids (WAHID et al., 2007). 

Secondary metabolites are categorized by their biosynthetic pathways (BOURGAUD et al., 

2001), due to the deviation of particular enzymes from the primary metabolism of carbon 

(BALASUNDRAM et al., 2006; TAIZ and ZEIGER, 2010). These chemical compounds can be 

divided into three main functional groups (BOURGAUD et al., 2001; NCUBE et al., 2012b; 

TAIZ and ZEIGER, 2010). The three principle groups are terpenes, phenolic compounds and 

nitrogen-containing compounds, which include alkaloids (TAIZ and ZEIGER, 2010). Each 

group is derived from primary carbon metabolism (TAIZ and ZEIGER, 2010) and their 

biosynthesis can be easily provoked (BOURGAUD et al., 2001) however the type of secondary 

compound produced is extensively dependent on, the expression of their tissue-, organ-, or 

developmental- pathways and the specific biosynthetic enzyme that induces their synthesis 

(WINK, 1999). 

1.6. Phenolic compounds in medicinal plants 

Terpenes, phenolic compounds and nitrogen-containing compounds each exhibit distinct 

pharmaceutical potential (GIULIETTI and ERTOLA, 1999; TAIZ and ZEIGER, 2010), in 

addition to their operation within the plant relative to chemical protection and signalling 

(WINK, 1999). The versatile nature of these secondary metabolites motivated their 

preservation through natural selection (WINK, 1999), however the most prevalent of these, 

throughout vascular plants, are the phenolic compounds (BOURGAUD et al., 2001). These 

compounds produce lignin (BOURGAUD et al., 2001) which provide stems and vascular 

tissues with structural rigidity (TAIZ and ZEIGER, 2010). Additionally, these metabolites are 

prevalent in the secondary metabolism and exhibit medicinal potential (DIAS et al., 2016). 
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1.6.1. Medicinal capacity of phenolic compounds 

Heterogeneous in nature, this collection of secondary metabolites consists of approximately 

1000 chemically distinct compounds (TAIZ and ZEIGER, 2010). The diversity of these 

metabolites accounts for their various functions within the plants primary and secondary 

metabolism (VALAVANIDIS and VLACHOGIANNI, 2013) though great attention has recently 

been attributed to the broad scope of phenolic pharmacological qualities (AL-NUMAIR et al., 

2012). Phenolic compounds are prevalent in numerous sunscreen products, given that the 

aromatic rings absorb potentially harmful UV-B radiation (VERMERRIS and NICHOLSON, 

2008). Additionally, the insoluble nature of certain phenolic compounds (TAIZ and ZEIGER, 

2010), including octyl-methylcinnamate, are incorporated into various water-proof sunscreen 

products (VERMERRIS and NICHOLSON, 2008). However, current water-proof sunscreens 

favour alternative compounds that reflect rather than absorb harmful radiation, that 

potentially induce epidermal irritation (VERMERRIS and NICHOLSON, 2008). In addition to 

their prominent bioactivity (DIAS et al., 2016), flavonoids provide a significant portion of the 

phenolic compound group (TAIZ and ZEIGER, 2010). These metabolites provide multiple 

bioactive agents (NCUBE et al., 2012b), that are metabolically and physiologically 

advantageous (FARINAZZI-MACHADO et al., 2012). However, pharmaceutical research 

concentrates on their anti-microbial, anti-inflammatory, antioxidant, and anti-carcinogenic 

potential (VALAVANIDIS and VLACHOGIANNI, 2013).  

Anti-microbial bioactivity of phenolic compounds entails defence against viral, bacterial, and 

fungal infection. Phenol metabolites were initially utilized for their anti-microbial potential in 

antiseptic treatments (VERMERRIS and NICHOLSON, 2008). However, given that phenolic 

compounds denature proteins (ANYANWU, 2012), the presence of high phenol concentrations 

in anti-septic treatments had an adverse impact on live tissues (VERMERRIS and NICHOLSON, 

2008). E. autumnalis has been found to produce these anti-microbial metabolites, particularly 

with regard to bacterial infection of the leaves, roots and bulbs (LOUW et al., 2002). 

Alternatively, low phenol concentrations in throat lozenges provide an oral anaesthetic for 

pain related to inflammation (VERMERRIS and NICHOLSON, 2008). Following damage or 

microbial contamination of human tissues, membranous phospholipids release arachidonic 

acids that provide a substrate for cyclo-oxygenase (COX) enzymes (RICCIOTTI and 

FITZGERALD, 2011). COX-1 enzymes are present at all times in small amounts, which aid in 

the production of cyto-protective prostaglandins (FAWOLE et al., 2009; GAIDAMASHVILI and 
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VAN STADEN, 2006), particularly in terms of gastro-intestinal ailments (FAWOLE et al., 2009; 

RICCIOTTI and FITZGERALD, 2011), for which E. autumnalis decoctions are utilized by 

South African traditional healers (LOUW et al., 2002). This anti-inflammatory activity could 

be achieved through the inhibition of COX enzymes by phenolic compounds found in          

E. autumnalis (JÄGER and VAN STADEN, 2005). These phenolic compounds result in a post 

transcriptional regulatory mechanism that leads to the expression of specific genes that down-

regulate inflammatory gene expression (TAIZ and ZEIGER, 2010). COX enzymes functioning 

as inflammatory intermediaries are supressed by several flavonoid variants, including 

condensed tannins and gallotannins (FAWOLE et al., 2010). 

However, these anti-inflammatory procedures become diminished in the presence of ROS, 

where these COX inhibitors also serve as antioxidants by means of radical scavenging 

(FAWOLE et al., 2010). Glycosylation of these flavonoids reduces their reactive potential by 

donating electrons or hydrogen elements to free radical species (RICE-EVANS et al., 1997), 

impeding the peroxidation of membranous lipids (FENNELL et al., 2004b); in addition to 

increasing their solubility, further enabling the absorption of free radicals into the vacuoles 

(RICE-EVANS et al., 1997). Though these flavonoid groups are paramount to anti-oxidative 

functions, the majority of cinnamic and / or benzoic polyphenols also retain anti-oxidative 

properties (MATKOWSKI, 2008; VALAVANIDIS and VLACHOGIANNI, 2013), reducing DNA 

damage caused by free radicals and ROS (VALAVANIDIS and VLACHOGIANNI, 2013).  This 

defence against oxidative activities by the various phenolic compounds deter the progression 

of degenerative diseases (MONAJJEMI et al., 2012). 

The anti-inflammatory and antioxidant qualities of phenolic intermediaries in medicinal 

plants have been extensively studied relative to their anti-tumour potential and the 

development of novel anti-carcinogenic treatments (VALAVANIDIS and VLACHOGIANNI, 

2013). Where COX enzymes result in the formation of inflammatory prostaglandins, COX-2 

inhibitors function to reducing inflammation, with the additional potential for limiting the 

growth and dispersal of carcinogen initiating proliferative diseases (RICCIOTTI and 

FITZGERALD, 2011). These investigations have provided epidemiological confirmation that 

phenolic compounds guard against vascular diseases, cardiac diseases, and certain 

carcinogenic forms, in addition to alleviating the frequency of chronic diseases, specifically 

neurodegenerative diseases (VALAVANIDIS and VLACHOGIANNI, 2013).  

 



 

18 

 

1.6.2. Biosynthesis of phenolic compounds in plants 

Given the intricate nature of phenolic metabolite structures and their biosynthetic pathways 

(BALASUNDRAM et al., 2006; TAIZ and ZEIGER, 2010), the synthetic production of these 

compounds for commercial profit has not yet been achieved (GIULIETTI and ERTOLA, 1999; 

ROUT et al., 2000). Thus, various biotechnological methods have been developed to optimize 

the production of these desired metabolites (MOYO et al., 2011; NIGRO et al., 2004).  

Phenolic compounds are derived from the primary metabolism of carbon that follows 

photosynthesis (TAIZ and ZEIGER, 2010). Though there are several variations in the 

biochemical pathways that result in their formation (BALASUNDRAM et al., 2006; TAIZ and 

ZEIGER, 2010), the phenolic compounds which this study is focused on, are derived from the 

shikimic acid pathway (TAIZ and ZEIGER, 2010). This shikimic acid pathway is provoked by 

the presence of erythrose-4-phosphates that are derived from primary carbon metabolism by 

means of the pentose phosphate pathway (BALASUNDRAM et al., 2006; TAIZ and ZEIGER, 

2010). This shikimic acid pathway results in the formation of aromatic gallic amino acids, 

which produce hydrolysable tannins (TAIZ and ZEIGER, 2010); and aromatic phenylalanine 

amino acids (BALASUNDRAM et al., 2006; TAIZ and ZEIGER, 2010). The more complex 

production of simple phenolic cinnamic acids, coumarins and benzoic acid derivatives 

involves the removal of ammonia from the phenylalanine by means of the phenylalanine 

ammonia-lyase (PAL) enzyme that branches between primary and secondary metabolism 

(TAIZ and ZEIGER, 2010). PAL is the determinant enzyme of the phenyl-propanoid pathway 

(RIVERO et al., 2001), that leads to the production of flavonoids and ultimately anthocyanins 

(TAIZ and ZEIGER, 2010). Following the PAL induced exclusion of ammonia from 

phenylalanine; trans-cinnamic acid binds with a hydroxyl group to form p-coumaric acid that 

binds with acetyl co-enzyme A to produce p-coumaroyl-CoA (TAIZ and ZEIGER, 2010). The 

development of these simple phenolic compounds (TAIZ and ZEIGER, 2010) is better known 

as the phenyl-propanoid pathway (RIVERO et al., 2001) as deviation from each simple 

phenolic compound results in the production of a variety of phenyl-propanoids (TAIZ and 

ZEIGER, 2010).  

Of the phenyl-propanoid metabolites, the binding of p-coumaroyl-CoA and malonyl-CoA 

molecules results in the fabrication of flavonoids (HASSAN and MATHESIUS, 2012; TAIZ and 

ZEIGER, 2010). The malonyl-CoA molecules consist of carboxylated acetyl-CoA (DOWNEY 

et al., 2006). This is followed by chalcone synthase to produce chalcones that later lose 
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hydrogen to form flavanones (TAIZ and ZEIGER, 2010). Further elaboration of these 

flavonoid compounds result in the biosynthesis of pro-anthocyanins (BOGS et al., 2005) as the 

final product of the phenyl-propanoid pathway (DOWNEY et al., 2006; TAIZ and ZEIGER, 

2010). The binding of a hydroxyl group to flavanones produce di-hydro-flavonols, after 

which the binding of more hydroxyl groups determine the exact form of the anthocyanin 

(TAIZ and ZEIGER, 2010). 

1.6.3. Phenolic compound production as a response mechanism to stress 

Given that the quantity of desired metabolites that are initially produced is minimal (DIAS et 

al., 2016), the economic feasibility of in vitro secondary metabolite generation has been 

questioned (GIULIETTI and ERTOLA, 1999; MOYO et al., 2011). However, advances in 

biotechnological devices have enabled structured genetic (MOYO et al., 2011) and 

environmental modification to optimize the production of desired metabolites (NIGRO et al., 

2004). In vitro methods of phenolic production have been established, based on the 

understanding of their biosynthetic pathways (NCUBE et al., 2013a; NIGRO et al., 2004). 

Pharmaceutically valuable phenolic compounds are produced following the phenyl-propanoid 

pathway (DIAS et al., 2016) in which PAL activity is readily influenced by various culture 

environment conditions (TAIZ and ZEIGER, 2010). Though PAL is frequently activated by 

biotic contamination (DIAS et al., 2016; TAIZ and ZEIGER, 2010), this activity also responds 

to a variety of chemical and physical abiotic pressures (DIAS et al., 2016).  

Various plant pathogens have been shown to stimulate the production of furocoumarins 

(BOURGAUD et al., 2001), phenolic compounds derived from the p-coumaric acids through 

the addition of a furan ring (TAIZ and ZEIGER, 2010). Pathogenic infection or herbivory by 

invertebrates have prompted furocoumarin production in the roots, stalks and leaves of 

several plants relative to the incident location on the plant (BOURGAUD et al., 2001; DIAS et 

al., 2016). Primarily designed to guard against infection and herbivory (DIAS et al., 2016; 

TAIZ and ZEIGER, 2010), these phenolic derivatives become highly phototoxic once exposed 

to UV-A radiation (TAIZ and ZEIGER, 2010). However, in vitro methods of cultivation 

eliminate stress caused by microbes and herbivory, as the sample explants and the culture 

apparatus are decontaminated and sterilized prior to cultivation (SIDHU, 2010). 

The biotechnological methods used to chemically induce phenolic production in plants 

incorporate the manipulation of plant growth regulators (PGR’s) (DIAS et al., 2016), which 

are integrated into the Murashige and Skoog (MS) nutrient growth medium used to propagate 
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plants in vitro (ROUT et al., 2000; SAAD and ELSHAHED, 2012). Within the primary 

metabolism, auxins prompt the initiation of shoot and root development, callogenesis, and 

somatic embryogenesis (SAAD and ELSHAHED, 2012). Though organic indole-3-acetic acid 

(IAA) is prevalent in natural habitats, these auxins are reactive to light and heat (SAAD and 

ELSHAHED, 2012), thus synthetically developed 2,4-Dichlorophenoxy-acetic acid (2,4-D), 

naphthalene-acetic acid (NAA), and picloram (PIC) are better suited to in vitro initiation of 

callogenesis and non-zygotic embryogenesis (BEYL et al., 2015; SAAD and ELSHAHED, 

2012). Auxins generally restrain secondary metabolite production due to a lack of cellular 

specialization (LUCZKIEWICZ et al., 2014). NAA has been demonstrated to enhance alkaloid 

production rather than phenolic production in Tabernaemontana divaricate (VERPOORTE et 

al., 1999). On the other hand, the production of anthocyanins and antraquinones in Daucus 

carota and Morinda citrifolia is prevented entirely by 2,4-D (LUCZKIEWICZ et al., 2014). 

The impact of synthetically produced PIC, on phenolic production is not yet fully understood, 

though PIC promotes the accumulation of alkaloids in Leucojum aestivum callus (PTAK et al., 

2013). Yet iso-flavone generation by Genista tinctoria is promoted by these auxins when in 

conjunction with cytokinin supplementation (LUCZKIEWICZ et al., 2014). The promotion of 

phenolic metabolite generation appears to be influenced more by the presence of both 

cytokinins and auxins, as demonstrated in the roots and leaves of Merwilla plumbea (DIAS et 

al., 2016).  

Nutrient limitation induces an increase in PAL activity (TAIZ and ZEIGER, 2010) where the 

combination and concentration of available nutrients regulate the rate of phenolic production 

(NCUBE et al., 2012b). The carbon / nitrogen balance hypothesis (CNB) indicates that a 

limitation of nitrogen availability corresponds with a surplus storage of carbon molecules 

(NCUBE et al., 2012b). Furthermore, the allocation of nitrogen and carbon resources to the 

primary and secondary metabolite production remains balanced (DIAS et al., 2016). Where 

restricted nitrogen levels correspond with a surplus availability of carbon, resulting in carbon 

allocation to secondary metabolite production and nitrogen allocation to primary metabolism 

use (NCUBE et al., 2012b). This allocation of surplus carbon to secondary metabolism leads 

to abundant phenolic production and storage (NCUBE et al., 2012b).  

The last form of phenolic metabolite production stimulation consists of physical provocation, 

which occasionally combine with certain chemical factors, but never incorporates biotic 

elements of elicitation (DIAS et al., 2016). For example, the limitation of nitrogen resources, 

and inclined heavy metal levels promote ROS formation, sparking the production and storage 
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of various medicinally valuable phenolic compounds, particularly relevant to their anti-

oxidative bioactivity (KOVÁČIK et al., 2007). These responses differ relative to the plant 

species, and the chemical structure of the heavy metal causing the reaction (DIAS et al., 

2016). For instance; Camellia sinensis callus induces lignin and flavonoid production when 

exposed to cadmium; Vitis vinifera tissues amplify synthesis and storage of anthocyanin 

compounds in response to magnesium (DIAS et al., 2016). Furthermore, copper induces 

phenolic and particularly flavonoid production in Apium graveolens leaves, Psoralea cinerea 

fruits (BOURGAUD et al., 2001) and Panax ginseng root cultures (DIAS et al., 2016). 

Finally, the two leading forces of abiotic physical stress in plants, that promote phenolic 

compound production, are light intensity and temperature (DIAS et al., 2016). Light induced 

phenolic biosynthesis has been demonstrated by the leaves and stems of Eucalyptus 

camaldulensis, where a sixteen hour photoperiod amplified the concentration of  phenolic 

compounds exceeding those acquired from plants cultured in complete darkness (DIAS et al., 

2016). A lack of light exposure diminishes flavonoid quantity, however this is due to the 

reduced fixation of carbon which limits the production of all carbon based metabolites 

(DOWNEY et al., 2006). Photo-receptive cells detect variations in solar radiation wavelengths 

(NCUBE et al., 2012b), inducing the production of several phenolic compounds in response to 

increased UV radiation exposure (DIAS et al., 2016; SEIBERT et al., 1975). These range from 

the simple phenolic metabolites, furocoumarins (BOURGAUD et al., 2001), to the complex 

polyphenol derivatives, flavonoids including anthocyanins (DIAS et al., 2016; DOWNEY et al., 

2006; NCUBE et al., 2012b). UV radiation exposure increases furocoumarin content produced 

by the leaves, roots, and stalks of Ruta graveolens, Glehnia littoralis, and Apium graveolens 

respectively (BOURGAUD et al., 2001). Though these furocoumarins among other simple 

phenolic compounds are produced in response to UV-A exposure (DIAS et al., 2016), UV-B 

radiation provokes the synthesis of more complex polyphenols (NCUBE et al., 2012b; TAIZ 

and ZEIGER, 2010). UV-B radiation has a crippling effect on photosynthetic processes, and 

genetic transcription and translation (NCUBE et al., 2012b). Phyto-receptive cryptochrome 

proteins (DIAS et al., 2016) located in the leafs upper epidermal cells (NCUBE et al., 2012b; 

TAIZ and ZEIGER, 2010) induce an assortment of morpho-anatomical responses to UV solar 

irradiation, including the amplified generation of flavonoids and their derivatives (DIAS et al., 

2016). Flavonoids and their derivatives are present and serve toward vascular plant primary 

metabolism (DOWNEY et al., 2006). For example anthocyanins, employ the shorter red, pink, 

purple, and blue wavelengths as pollinator attractants, where flavones and flavonols retain 
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UV-B radiation as nectar guides for pollinators (TAIZ and ZEIGER, 2010). These 

anthocyanins provide the coloration of grapes, however these anthocyanins are dependent on 

light for their biosynthesis (DOWNEY et al., 2006), thus a raised flavonoid content 

corresponds with an amplified exposure to light (CORDELL, 2014; DOWNEY et al., 2006). In 

their secondary metabolic capacity, these phenyl-propanoid derivatives (NCUBE et al., 2012b) 

permit photosynthetically active visible wavelengths to permeate, while absorbing harmful 

UV-B wavelengths, accumulating in stem and leaf epidermal cells (NCUBE et al., 2012b; 

TAIZ and ZEIGER, 2010). These flavones and flavonols have exhibited a magnified synthesis 

in response to a heightened UV-B detection (TAIZ and ZEIGER, 2010).  

Though reduced exposure to solar radiation may limit flavonoid generation due to the lack of 

carbon fixation, flavonoid production could be induced relative to the raised humidity caused 

by shading (DOWNEY et al., 2006). Shading may induce the production of anthocyanins 

stored in the leaves (DOWNEY et al., 2006) however, their production is reduced in red apple 

reproductive organs when exposed to heat (WAHID et al., 2007). These anthocyanins 

diminish the osmotic capacity of the leaves (WAHID et al., 2007) resulting in high osmotic 

stress, relative to salinity stress (BOTELLA et al., 2005; MOYO et al., 2011) which follow 

heat-induced drought conditions (NCUBE et al., 2012b). However, this osmotic stress could 

be alleviated by shading, given that shading increases humidity (DOWNEY et al., 2006). 

Thermal incline results in the acceleration of metabolic procedures which correspond with 

metabolic accumulation, however breach of a plants thermal threshold would either diminish 

or block these metabolic processes (DOWNEY et al., 2006). This heat stress induces the 

generation of phenolic hypericin and hyperforin in response to the elevated  activity of 

peroxidase (NCUBE et al., 2012b). The amplified action of PAL is believed to be the primary 

mechanism employed in response to thermal stress, stimulating the biosynthesis of phenolic 

compounds while simultaneously reducing their oxidative potential (RIVERO et al., 2001; 

WAHID et al., 2007), by means of diminishing the activity of polyphenol-lyase and 

peroxidase (WAHID et al., 2007).  

However, this initiation of phenolic compound production is not limited to the elevation of 

thermal conditions but also in the case of reduced temperatures (NCUBE et al., 2012b). The 

influence of thermal incline correlates with high light intensities (TAYLOR and VAN STADEN, 

2001d), as is evident in grapes, where shading reduced the fruit temperature by 

approximately 10 ºC (DOWNEY et al., 2006).  In this instance, phenolic production is induced 

by the increased activation of PAL, resulting in the integration of these compounds, including 
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anthocyanins, into the cellular walls (NCUBE et al., 2012b) of sugarcane and rose leaves 

(WAHID et al., 2007). The variation in effects of thermal abiotic heat stress may be observed 

diurnally, with plants that cool each evening producing a much greater anthocyanin 

accumulation in comparison to those that retain their heat throughout the evening (DOWNEY 

et al., 2006). Overall, the lack of optimal biomass accumulation in plants results in the 

production of secondary metabolites (DOWNEY et al., 2006; RIVERO et al., 2001). 

1.7. Aims and objectives 

The stationary nature of plants prevents them from fleeing when environmental influences 

become less than favourable for their primary function of growth (NCUBE et al., 2013a). 

Regular diurnal and seasonal alterations to environmental conditions may result in minor 

changes in the plant's primary metabolism (NCUBE et al., 2013a). However, once 

environmental conditions push beyond the parameters of the plant's routine metabolic 

fluctuations, the metabolic procedures may become influenced by cross-linked stress 

response pathways (NCUBE et al., 2013a). This is based on the presumption that the ability to 

recognise, indicate, and respond to the presence of environmental stress factors, is encoded in 

all plants (NCUBE et al., 2013b). However, though primary metabolism remains constant 

throughout the plant kingdom, the production of secondary metabolites (TAIZ and ZEIGER, 

2010; VERPOORTE, 2000) is dependent on the parameters of the stress mechanisms imposed 

on the plant, and may vary among plant species (NCUBE et al., 2013a). 

Tissue culture methods provide a controlled environment (SAAD and ELSHAHED, 2012) that 

may restrict or boost metabolic pressures (NIGRO et al., 2004). Biotic stress incursion is 

eliminated through various biotechnological strategies, including decontamination and 

sterilization of the explant samples and culture apparatus (SIDHU, 2010). Nutrient resource 

variation across cultures is reduced due to the fundamental MS basal growth medium, which 

provides all mineral ions required for explant culture success (ROUT et al., 2000; SAAD and 

ELSHAHED, 2012). Prior to solidification of the growth medium, the pH is adjusted to 5.8, 

followed by a final media sterilization by high pressure and temperature in an autoclave 

(TAYLOR and VAN STADEN, 2001c). Culture rooms are maintained at 25 ºC ± 3 ºC, with a 

sixteen hour light to eight hour dark cycle. This extensive regulation of environmental factors 

has made it possible to investigate the influence of specific environmental stress factors on a 

plants response mechanisms. 
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The aim of this study was to get a plant to produce phenolic compounds, the secondary 

metabolite group that is most prevalent in vascular plants, in response to stress, using the 

medicinal plant species Eucomis autumnalis, as a model for potential application of these 

methods to numerous endangered medicinal plants. 

The objectives of this study were to: 

 Establish in vitro tissue culture and callogenesis of E. autumnalis, the model species, 

under standard culture environmental conditions. Observing how variations in the 

PGR concentrations and combinations influence the rate of callus growth under three 

distinct light intensity settings; 

 Determine how these PGR and light intensity variation influence the quantity of total 

phenolic compounds produced by callus of the model species; and 

 Investigate how variations in the extent and the duration of thermal stress, may 

influence the total phenolic content of E. autumnalis callus, in vitro cultured tissue 

samples, and the leaves of intact plants in vivos.  
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CHAPTER 2: PROPAGATION METHODOLOGY 

2.1. Introduction 

Humans have relied on plants for centuries beyond the scope of their provision as primary 

producers, particularly in terms of their chemistry related to their medicinal properties 

(SIDHU, 2010). Plants are essential donors toward global health (CALIXTO, 2000) 

accommodating the primary healthcare of almost 80% of the global populace (AFOLAYAN 

and ADEBOLA, 2004). Despite the majority of western / modern medicinal drugs being 

produced synthetically in the laboratory; approximately a quarter of these drugs are derived 

either directly or indirectly from natural plant products (CALIXTO, 2000). Medicinal plants 

possess a number of biological properties in addition to their ornamental and horticultural 

allure (NAIR et al., 2013). In South Africa these medicinal plants provide for approximately 

twenty-seven million people (FENNELL et al., 2004a; STREET et al., 2008b). In addition to 

the cultural importance of traditional remedies, these plants aid in providing readily available 

and inexpensive treatments (FENNELL et al., 2004b; STREET et al., 2008b). However, the 

extensive exploitation of these natural medicinal sources has resulted in the drastically 

reduced abundance of these plants (FENNELL et al., 2004a).  

The natural sources of medicinal plants used by South African traditional healers have been 

extensively exploited (AFOLAYAN and ADEBOLA, 2004; FENNELL et al., 2004a) due to the 

lack of regulation and restraint (MOYO et al., 2011) of harvesting from wild populations 

(NIGRO et al., 2004). Given the limitations associated with the restoration of exploited 

habitats (WOCHOK, 1981) and the lack of harvesting regulation (AFOLAYAN and ADEBOLA, 

2004; MOYO et al., 2011), the maintenance of a species within its natural habitat by in-situ 

methods (KASAGANA and KARUMURI, 2011) does not provide a sustainable means of 

medicinal plant conservation in South Africa. Ex-situ conservation methods preserve a 

species and / or population’s genetic diversity, independent of the natural habitat (KASAGANA 

and KARUMURI, 2011). The in vitro establishment of plantlets by micro-propagation is the 

dominant method of ex-situ conservation (AFOLAYAN and ADEBOLA, 2004; MOYO et al., 

2011; NCUBE et al., 2015; NIGRO et al., 2004).  

2.1.1. In vitro tissue propagation 

Plant cultivation in vitro is the “cloning” of plant organs, tissues, or cells (HUSSAIN et al., 

2012) within an aseptic environment (KASAGANA and KARUMURI, 2011). This aseptic 
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environment is vital in the successful establishment of tissue cultures in vitro as a diverse 

range of micro-organisms infect the exterior and interior of plant samples collected from the 

natural environment (ROUT et al., 2000). Though in vitro methods could theoretically be 

utilized for the cultivation of any plant species (DIAS et al., 2016), sterilization procedures 

differ at the plant species and organ levels. Eucomis autumnalis was selected as the model 

species for this study given that the sterilization protocols and successful micro-propagations 

of this species had already been established (TAYLOR and VAN STADEN, 2001e).  

2.1.2. In vitro propagation of callus 

The first “true” botanical tissue culture that was established between 1934 and 1935 resulted 

in the rapid production of callus cultures (DIAS et al., 2016). Defined as the disorganized 

accumulation of undifferentiated plant tissue (HUSSAIN et al., 2012; IKEUCHI et al., 2013; 

SIDHU, 2010; TAYLOR and VAN STADEN, 2001e) callus is produced by solitary specialized 

plant cells (IKEUCHI et al., 2013; KRISHNAMURTHY, 2015) that have either been exposed to 

some form of biological infection, or have suffered injury (IKEUCHI et al., 2013; TAYLOR 

and VAN STADEN, 2001e). Essentially, function specific morphological and developmental 

specialization becomes reduced, resulting in a simplified homogeneous callus cell formation 

(SIDHU, 2010). These callus cells are often totipotent (IKEUCHI et al., 2013) which enables 

organogenesis (HUSSAIN et al., 2012) with the callus structure presenting partial shoot, root, 

or embryonic cellular specialization (IKEUCHI et al., 2013). However, in vitro production of 

callus does not necessarily result in organ generation, but may develop either a compact or 

friable callus structure, completely devoid of cellular specialization (IKEUCHI et al., 2013). 

This friable callus can be effortlessly fragmented, yet compact callus maintains a firm 

structure due to their high lignin content (TAYLOR and VAN STADEN, 2001e). The in vitro 

production of callus is subject to several environmental conditions (HUSSAIN et al., 2012), 

that influence the structure and rate of callus development. 

2.1.3. Culture environment 

Increased regulation of culture environmental conditions have reduced the prevalence of 

physiological, pathological and morphological issues that were associated with conventional 

in vitro propagation environments (KOZAI et al., 1997). These micro-environment controls 

promote cellular multiplication and vegetative growth in an attempt to achieve an optimal 

production rate (SIDHU, 2010). Elements of the cultivation environment that influence 
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propagation include biological contaminants, ventilation, light intensity (KOZAI et al., 1997), 

pH, thermal radiation, and mineral concentration (KOZAI et al., 1997; SIDHU, 2010).  

Micro-organism contamination is eradicated by decontaminating and sterilizing explant 

samples and equipment (SIDHU, 2010). Potential biological contamination is further limited 

as culture vessel ventilation is reduced. An optimal pH of 5.8 has been established for in vitro 

plant tissue propagation (TAYLOR and VAN STADEN, 2001c). Thermal radiation is retained at 

25 ºC ± 3 ºC in special culture growth rooms (VAN STADEN et al., 1991). A Murashige and 

Skoog (MS) nutritional growth medium (MURASHIGE and SKOOG, 1962) used for in vitro 

plant tissue culture consists of various, functionally distinct, chemical compounds (ROUT et 

al., 2000; SAAD and ELSHAHED, 2012) that are required for the explant to thrive. The in vitro 

propagation of callus cultures however requires modification of these environmental controls. 

The plant growth regulator (PGR) groups, auxin and cytokinin, have been broadly 

investigated and utilized for the in vitro induction of callogenesis (IKEUCHI et al., 2013; 

TAYLOR and VAN STADEN, 2001e). Furthermore, these plant hormones regulate 

organogenesis and the production of specialized plant cells by undifferentiated callus cultures 

(HAMIDEH et al., 2012; HUSSAIN et al., 2012; IKEUCHI et al., 2013), with endogenous auxin-

to-cytokinin ratios influencing the type of organogenesis that occurs (HUSSAIN et al., 2012; 

IKEUCHI et al., 2013). 

Initiation of E. autumnalis callogenesis required a high auxin concentration (BALDI et al., 

2009; TAYLOR and VAN STADEN, 2001e). Synthetically produced naphthalene-acetic acid 

(NAA), and 2,4-Dichlorophenoxy-acetic acid (2,4-D), and the naturally occurring indole-3-

acetic acid (IAA) are the three primary auxin variants used in plant tissue culture (SAAD AND 

ELSHAHED, 2012). All three function to stimulate the enlargement and division of cells 

within tissue and cell suspension cultures (BEYL et al., 2015; SAAD and ELSHAHED, 2012). 

However, the physical and chemical progression of the metabolism, and the displacement 

through plant tissue differs among the variants (SAAD and ELSHAHED, 2012). When 

incorporated into in vitro plant culture media, IAA regulates the specialization of cells that 

produce xylem and phloem, and the quantity of sieve and tracheid elements (ALONI, 1980), 

thus the IAA-equivalent compounds, 2,4-D and picloram (PIC) (LUCZKIEWICZ et al., 2014) 

are better suited for the propagation of E. autumnalis callus. Both 2,4-D and PIC have 

demonstrated effective production of totipotent callus cultures (FITCH and MOORE, 1990). 

Furthermore, addition of a low cytokinin, kinetin (KIN), concentration has demonstrated 
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improved callus growth in various plant species (LUCZKIEWICZ et al., 2014; STANLY et al., 

2011; TAYLOR and VAN STADEN, 2001e). Synthetically manufactured KIN stimulate the 

division of cells (HUSSAIN et al., 2012), aiding in the accumulation of callus cell cultures. 

The second culture environment element believed to influence callus development is light 

intensity. In their natural environment plants are dependent on solar radiation for various 

essential metabolic and morphological processes (ECONOMOU and READ, 1987; STANLY et 

al., 2011). The effects of light exposure on callus culture biomass differ relative to the 

intensity and quality of the light source, as well as the duration of exposure (ECONOMOU and 

READ, 1987). The spectrum of wavelengths emitted by light determines the quality of the 

light source (ECONOMOU and READ, 1987) with modern light emitting diodes (LED) 

enabling a cost effective means of manipulating photo-morphogenesis by exposing cultures 

to specific wavelengths (KOZAI et al., 1997). However, fluorescent tube lighting remains the 

most common form of lighting in growth rooms, exposing cultures to a broad array of 

wavelengths (ECONOMOU and READ, 1987; KOZAI et al., 1997) which accommodate in vitro 

propagation requirements (KOZAI et al., 1997). Furthermore, the duration of exposure to 

these wavelengths also influence culture photo-morphogenesis, and differ greatly between 

species (ECONOMOU and READ, 1987; KOZAI et al., 1997). For example, the propagation and 

preservation of Zingiber zerumbet callus cultures is dependent on their uninterrupted 

exposure to light (STANLY et al., 2011), alternatively Falcaria vulgaris callus thrived in 

complete darkness (HAMIDEH et al., 2012). A ratio of sixteen hours light to eight hours dark 

exposure has been maintained for conventional propagation of plant species (KOZAI et al., 

1997). However, manipulations of this light-to-dark ratio are known to alter the development 

of particular organs (ECONOMOU and READ, 1987; KOZAI et al., 1997). Finally, light 

intensity, previously referred to as the illuminance of light (ECONOMOU and READ, 1987) or 

the photosynthetic photon flux density (PPFD) (KOZAI et al., 1997), is measured as the 

quantity of photosynthetically active radiation (PAR). The source, quality, and intensity of 

light exposure stimulate species-specific responses, which often differ between the organs 

and the type of tissue cultured (ECONOMOU and READ, 1987). In this chapter, the quality and 

duration of light exposure were not manipulated, retaining the conventional use of fluorescent 

tube lights that were set on a sixteen hour light to eight hour dark cycle, with the light 

intensity being the only component of light exposure that was altered. 
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2.2.Materials and Methods 

Whole plants of Eucomis autumnalis were potted and placed in the botanical garden 

greenhouse (G12) located at the University of KwaZulu-Natal (UKZN) Agricultural campus, 

Pietermaritzburg, South Africa (29º 62’ 47” S, 30º 40’ 40” E). 

2.2.1. In vitro tissue propagation 

Following the sterilization protocol set out by TAYLOR and VAN STADEN (2001e), leaf 

samples, devoid of wilting or disease damage, were excised from greenhouse plants and 

rinsed under running tap water. Following a 5 min, 70% ethanol immersion samples were 

placed in 0.2% Benlate® (C23H26Cl3N5O5S) solution for 10 min. Finally, a 20 min submersion 

in 1.75% sodium hypochlorite (NaClO) was used to sterilize the leaf samples followed by a 

repeated distilled water rinse. These leaves were then cut into 1 cm2 which were placed onto 

full strength MS (MURASHIGE and SKOOG, 1962) growth medium, supplemented with 30 gℓ-

1 sucrose and 0.1 g ℓ-1 myo-inositol (C6H12O6). These cultures were left to grow in culture 

rooms of a 1.53 µmol m-² s-ˡ light intensity set for a sixteen hour light to eight hour dark 

cycle, maintaining a constant temperature of 25 ºC ± 3 ºC.  

 

Figure 2.1: Sixteen-week-old Eucomis autumnalis plantlets cultured on Murashige and 

Skoog (MS) growth media devoid of plant growth regulator (PGR) 

supplementation.  

2.2.2. Propagation of the callus 

The leaves of plantlets grown in vitro (as seen in Figure 2.1) on PGR free MS media were 

cut into 1 cm² samples of leaf tissue. The upper epidermal layer of 1 cm2 leaf samples were 
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then placed on fresh MS media supplemented with the various PGR concentrations and 

combinations (Table 2.1). 

2.2.2.1. Source of plant growth regulators 

2,4-Dichlorophenoxy acetic acid (2,4-D) was purchased from BDH Biochemicals Ltd. 

(Poole, England), while picloram (PIC) and kinetin (KIN) were purchased from Sigma-

Aldrich (Steinheim, Germany). 

Table 2.1: Combinations and concentrations of plant growth regulators (PGR’s) 

supplemented Murashige and Skoog (MS) media used for the initiation of 

Eucomis autumnalis callogenesis. 

PGR concentration 

2,4-D (µM) PIC (µM) KIN (µM) 

10 0 0 

15 0 0 

20 0 0 

10 0 2,5 

15 0 2,5 

20 0 2,5 

0 10 0 

0 15 0 

0 20 0 

0 10 2,5 

0 15 2,5 

0 20 2,5 

 

Twelve replicates of each PGR treatment were equally divided between the three separate 

tissue culture growth rooms of differing light intensity, each maintaining a constant 25 ºC    

(± 3 ºC) temperature. The three light intensity treatments were (i) complete darkness at 0.00 

µmol m-² s-ˡ, (ii) low light intensity at 0.75 µmol m-² s-ˡ, and (iii) high light intensity at 1.53 

µmol m-² s-ˡ maintaining a sixteen hour light to eight hour dark cycle. For twelve weeks the 

volume of callus growth was calculated for each treatment replicate, with the mean volume 

per PGR and light intensity treatment calculated in fourteen-day increments. The volume was 

calculated by multiplying the length, width, and height of the largest callus segment, using a 
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standard ruler. Growth curves for each PGR combination and concentration exposed to each 

light intensity treatment were compiled, displaying the volume of callus growth measured in 

fourteen day increments. The callus growth rate was measured as the volume (cm3) of callus, 

not including the leaf tissue from which the callus originated. However, these measurements 

would only account for the quantity of callus cultured, disregarding the callus type and 

quality. Observed alterations in the callus morphology, such as browning, and callus type 

were noted. 

2.2.3. Data Analysis 

The R2 and the slope values of each growth curve (Table 2.2) were determined using linear 

regression analyses of log transformed data (HUSSEIN et al., 2016). The R2 value indicates 

how close the data is to the fitted regression curve. Variations between growth curve slope 

values were then compared using a two-way analysis of variance (ANOVA), with a 

significant effect having a p-value < 0.05. Furthermore, the total volume of callus cultured 

over the eighty-four-day growth period was then compared between PGR and light intensity 

treatments using a two-way ANOVA, with a significant variation indicated at p = 0.05. A 

Duncan’s Multiple Range test was then used to separate treatment means that were 

significantly different. All statistical analyses were processed using IBM SPSS version 24, 

and all growth curves were compiled using GraphPad Prism® version 5.02. 

2.3. Results and Discussion 

2.3.1. Influence of culture environment on callus growth curves 

The growth of E. autumnalis callus presented in Figure 2.2 and Figure 2.3, follows a 

sigmoidal growth curve design. In mathematical terms this curvilinear growth consists of 

logarithmic, linear and senescence phases (KRISHNAMURTHY, 2015) however, these three 

phases are broken down further to better describe the different phases of plant callus growth. 

The initial lag phase (HUSSEIN et al., 2016), is characterized by the marginal increase in the 

callus volume (HUSSEIN et al., 2016; KHANPOUR-ARDESTANI et al., 2015; TAN et al., 2010), 

commencing with a zero callus volume (HUSSEIN et al., 2016) at day zero. In vitro 

propagated leaf tissue is sub-cultured onto MS media supplemented with the various PGR’s 

required to induce the production of callus. During this lag phase, plant cells reduce their 

cellular specialization to form simplified homogeneous callus cells (SIDHU, 2010), making 

provision for the multiplication and division of callus cells (CHAWLA, 2002; GASPAR et al., 

1996). The second phase of growth is exponential, resulting in a pattern of logarithmic callus 
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growth (KRISHNAMURTHY, 2015; SOOMRO and MEMON, 2007). During this exponential 

growth phase, callus cell proliferation and multiplication rapidly increases (CHAWLA, 2002; 

KHANPOUR-ARDESTANI et al., 2015; TAN et al., 2010) until the maximum rate of cellular 

division is achieved (CHAWLA, 2002). The third phase of growth is linear 

(KRISHNAMURTHY, 2015), maintaining a relatively constant rate of callus growth 

(KHANPOUR-ARDESTANI et al., 2015; SOOMRO and MEMON, 2007), however cellular 

multiplication becomes reduced with the increasing callus growth resultant of cellular 

enlargement rather than cellular division (CHAWLA, 2002). The fourth phase of callus growth 

models a progressive deceleration of cell division and elongation (CHAWLA, 2002), until all 

forms of callus growth are terminated during the fifth and final stationary growth phase 

(CHAWLA, 2002; KHANPOUR-ARDESTANI et al., 2015). This stationary phase illustrates the 

asymptote of callus growth, during which the rate of growth is zero (HUSSEIN et aL., 2016) 

yet the abundance and size of callus cells remain unaltered (CHAWLA, 2002). These 

deceleration and stationary stages of callus growth mark the initiation of cellular senescence 

(KRISHNAMURTHY, 2015), ultimately resulting in cellular death unless the callus is sub-

cultured onto fresh growth medium. The lag phase of E. autumnalis callus growth was 

observed within the first fourteen days of exposure to the new culture environment (Figure 

2.2 and Figure 2.3). Leaf explants became bloated and produced soft white hairy structures, 

similar to that of Centella asiatica (TAN et al., 2010), following which callus formation was 

initiated. These callus cells acclimated to their modified culture environment, resulting in the 

stunted rate of callus growth observed (Figure 2.2 and Figure 2.3). Furthermore, the 

subsequent exponential, linear, decelerating, and stationary phases of callus growth are 

moulded by the culture environment. The influence of culture environment on growth phase 

progression was evident in 2,4-D, and 2,4-D + KIN cultures (Figure 2.2).  

The impact of culture environment on callus growth curves was determined by the 

comparison of R2 and slope values (Table 2.2) calculated by regression analyses. Light 

intensity was determined to have a significant (p = 0.0001) effect on slope values across PGR 

combinations, where callus slope values of 1.53 µmol m-2 s-1 < 0.75 µmol m-2 s-1 >           

0.00 µmol m-2 s-1 (Table 2.2). However, the initial growth of samples exposed to a light 

intensity of 1.53 µmol m-2 s-1 was greater than samples exposed to 0.75 µmol m-2 s-1 (Figure 

2.2). This increase in growth rate corresponded with an accelerated progression of growth 

phases. Callus growth curves overall (Figure 2.2 and Figure 2.3) reflected the lag, 

exponential, linear, decelerating, and stationary phases of callus development, within the 
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eighty-four day growth period. However, 2,4-D, and 2,4-D + KIN cultures exposed to a light 

intensity of 1.53 µmol m-² s-ˡ (Figure 2.2) progressed beyond the stationary growth phase, 

displaying cellular necrosis after seventy days, with the exception of 15 µM 2,4-D + 2.5 µM 

KIN (Figure 2.2 D) where cellular decay was first observed on the fifty-sixth day. The 

combined growth phase progression and slope values of 1.53 µmol m-2 s-1 exposed 15 µM 

2,4-D + 2.5 µM KIN, and 20 µM 2,4-D + 2.5 µM KIN cultures, resulted in the moderate 

deviation of observed growth curves from fitted regression curves (Table 2.2).  
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Figure 2.2: The influence of light intensity on the growth rate of E. autumnalis callus 

cultured on MS media supplemented with (A) 10 µM 2,4-D, (B) 10 µM 2,4-D + 

2,5 µM KIN, (C) 15 µM 2,4-D, (D) 15 µM 2,4-D + 2,5 µM KIN, (E) 20 µM 

2,4-D, and (F) 20 µM 2,4-D + 2,5 µM KIN. 
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Figure 2.3: The influence of light intensity on the growth rate of E. autumnalis callus 

cultured on MS media supplemented with (G) 10 µM PIC, (H) 10 µM PIC +  

2,5 µM KIN, (I) 15 µM PIC, (J) 15 µM PIC + 2,5 µM KIN, (K) 20 µM PIC, 

and (L) 20 µM PIC + 2,5 µM KIN. 
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Table 2.2: The R2 and slope values for growth curves of callus cultured on MS media 

supplemented with various PGR combinations and concentrations and cultured 

under the three light intensity treatments. 

 0.00 µmol m-² s-ˡ 0.75 µmol m-² s-ˡ 1.53 µmol m-² s-ˡ 

PGR R2 Slope  R2 Slope  R2 Slope  

10 µM 2,4-D 
0.972 (2.8) 

1.982 

(±0.084) 
0.927 (2.8) 

1.683 

(±0.071) 
0.836 (16.4) 

1.071 

(±0.118) 

15 µM 2,4-D 
0.948 (5.2) 

2.108 

(±0.124) 
0.945 (5.5) 

1.533 

(±0.092) 
0.865 (13.5) 

1.121 

(±0.111) 

20 µM 2,4-D 
0.968 (3.2) 

2.045 

(±0.093) 
0.981 (1.9) 

1.708 

(±0.059) 
0.892 (10.8) 

0.884 

(±0.077) 

10 µM 2,4-D +  

2,5 µM KIN 
0.955 (4.5) 

2.181 

(±0.118) 
0.954 (4.6) 

1.946 

(±0.107) 
0.930 (7.0) 

1.106 

(±0.076) 

15 µM 2,4-D +  

2,5 µM KIN 
0.957 (4.3) 

2.455 

(±0.130) 
0.950 (5.0) 

1.876 

(±0.108) 
0.725 (27.5) 

0.629 

(±0.097) 

20 µM 2,4-D +  

2,5 µM KIN 
0.909 (9.1) 

1.958 

(±0.155) 
0.956 (4.4) 

1.861 

(±0.100) 
0.565 (43.5) 

0.877 

(±0.192) 

10 µM PIC 
0.934 (6.6) 

1.889 

(±0.125) 
0.913 (8.7) 

1.519 

(±0.117) 
0.904 (9.6) 

1.077 

(±0.088) 

15 µM PIC 
0.755 (24.5) 

2.116 

(±0.301) 
0.986 (1.4) 

1.442 

(±0.042) 
0.955 (4.5) 

1.162 

(±0.063) 

20 µM PIC 
0.974 (2.6) 

1.802 

(±0.074) 
0.963 (3.7) 

1.394 

(±0.069) 
0.966 (3.4) 

1.040 

(±0.049) 

10 µM PIC +  

2,5 µM KIN 
0.904 (9.6) 

1.511 

(±0.123) 
0.942 (5.8) 

0.822 

(±0.051) 
0.892 (10.8) 

1.191 

(±0.104) 

15 µM PIC +  

2,5 µM KIN 
0.988 (1.1) 

1.821 

(±0.051) 
0.988 (1.1) 

1.495 

(±0.042) 
0.967 (3.3) 

1.117 

(±0.051) 

20 µM PIC +  

2,5 µM KIN 
0.922 (7.8) 

1.566 

(±0.133) 
0.946 (5.4) 

1.104 

(±0.066) 
0.962 (3.8) 

1.102 

(±0.055) 

R2 values represent the deviation of more than 25% from the fitted regression curve (% deviation), n = 18. Slope 

values represent the rate of callus growth over the eighty-four-day growth period (± Std. Error).  
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Callus cultured on PIC + KIN supplemented MS media exhibited significantly lower (p = 

0.061) slope values than 2,4-D; 2,4-D + KIN; with the exception of cultures exposed to a 

1.53 µmol m-2 s-1 light intensity. Furthermore, the addition of KIN to PIC cultures resulted in 

considerably lower final callus volumes (Figure 2.4).  

2.3.2. Influence of auxin-to-cytokinin ratio on callus   

It has been well established that the exogenous supplementation (BEYL et al., 2015) of plant 

growth regulators is essential for in vitro callus induction (TAN et al., 2010). High auxin 

concentrations (TAYLOR and VAN STADEN, 2001e), stimulate cellular enlargement and 

division, in addition to the configuration of meristems, regulating the development of either 

specialized organs or callus (GASPAR et al., 1996). Naturally derived plant growth hormones, 

including IAA, exhibit less stable effects in in vitro environments (SAAD and ELSHAHED, 

2012) than synthetically produced 2,4-D and PIC herbicides (FITCH and MOORE, 1990; 

GASPAR et al., 1996). The comparable auxin-like properties (FITCH and MOORE, 1990) of 

these PGR’s, substitute for the growth hormones produced naturally in plants (BEYL et al., 

2015).  
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Figure 2.4: The effect of auxin concentration and the addition of KIN on E. autumnalis 

callus growth. The final callus volume (mean ± SE) cultured on (M) 2,4-D, and 

(N) PIC supplemented MS media. 

2,4-D cultures produced significantly greater final callus volumes (p = 0.001) than PIC 

cultures (Figure 2.4). Remarkably, Merwilla plumbea callus cultured on PIC supplemented 

MS media produced a greater quantity of friable embryogenic callus than 2,4-D cultures 
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(BASKARAN and VAN STADEN, 2012). Though 2,4-D is predominantly used for the in vitro 

induction of callogenesis (HAMIDEH et al., 2012) the regeneration of totipotent Saccharum 

callus cells was better maintained by PIC cultures, and not by 2,4-D cultures (FITCH and 

MOORE, 1990). This effect was influenced further by auxin concentration, displaying a 

positive correlation effect between 2,4-D concentration and final callus volume (Figure 2.4 

M), and a negative correlation effect between PIC concentration and final callus volume 

(Figure 2.4 N). High concentration 2,4-D and PIC supplemented MS media have been used 

to produce friable embryonic callus of Drimia robusta (BASKARAN and VAN STADEN, 2014), 

and Merwilla plumbea (Lindl.) Speta (BASKARAN and VAN STADEN, 2012). Though the 

propagation of somatic embryos is advantageous to various fields of plant biotechnology 

research (BASKARAN and VAN STADEN, 2014), friable callus lacking organ regeneration is 

preferable for the repetitive proliferation of callus cultures (IKEUCHI et al., 2013). 20 µM  

2,4-D supplemented E. autumnalis cultures produced an off-white velvety compact callus 

(Figure 2.5 P), devoid of any organ regeneration (IKEUCHI et al., 2013), with more compact 

callus formations developing at lower concentrations (Figure 2.5 Q). These compact callus 

formations darken with the increased level of compaction as inner cells lack access to 

oxygen, resulting in callus browning, due to cellular necrosis. However, the accelerated 

growth rate achieved by 2,4-D cultures (Figure 2.2) exposed to a 1.53 µmol m-2 s-1 light 

intensity expressed an inclination toward the production of specialized cells (Figure 2.5 R) 

similar to that of Leucojum aestivum callus, cultured on 2,4-D supplemented MS media and 

exposed to high light intensities, which resulted in the induction of somatic embryogenesis 

(PTAK et al., 2013). On the other hand, 10 µM PIC supplemented MS media developed a 

yellow friable callus structure (Figure 2.5 S) with the increase in PIC concentration 

producing a lower volume of yellowed callus (Figure 2.5 T). 
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Figure 2.5: Forty-eight-day-old Eucomis autumnalis callus cultured on PGR supplemented 

MS media displaying formations of (P) velvety partially compact callus (20 µM 

2,4-D, exposed to 0.75 µmol m-2 s-1), (Q) compact callus (10 – 15 µM 2,4-D, 

exposed to 0.75 µmol m-2 s-1), (R) nodular callus (10 – 20 µM 2,4-D, exposed to        

1.53 µmol m-2 s-1), (S) yellowing friable callus (10 µM PIC, exposed to        

0.75 µmol m-2 s-1), and (T) yellowed friable callus (15 – 20 µM PIC, exposed to        

0.75 µmol m-2 s-1). 

The discoloration of these callus cultures was reduced by the additional supplementation of a 

low concentration cytokinin. Benzyl adenine (BA) is the most prominent synthetic cytokinin 

used in plant biotechnology, however the undesirable remnant effects associated with 

acclimatization (MASONDO et al., 2014) resulted in the use of synthetically produced KIN 

instead. These cytokinins regulate cellular division in conjunction with the supplemented 

auxin (GASPAR et al., 1996; HUSSAIN et al., 2012). This interaction allows for the in vitro 

manipulation of plant morphology, with a balanced cytokinin-to-auxin ratio resulting in the 

production of callus (HUSSAIN et al., 2012). The addition of KIN to 2,4-D supplemented 
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cultures produced significantly greater quantities of callus, maintaining the positive 

correlation between 2,4-D concentrations and the final volume of callus produced (Figure 2.4 

M). Furthermore, incline in 2,4-D concentration resulted in reduced callus browning, with 

cultures exposed to 1.53 µmol m-2 s-1 light intensity presenting lower levels of compaction 

(Figure 2.5 R) and nodular formations of callus (SOOMRO and MEMON, 2007). PIC 

supplemented cultures produced a reduced final callus volume (Figure 2.4 N), with a 

marginal effect of the additional KIN supplementation on callus formation. The reduced final 

volume of callus occurs when cytokinin concentrations are low relative to the auxin 

concentration, yet high cytokinin and low auxin concentrations boost the production of callus 

(LUCZKIEWICZ et al., 2014). 

2.4. Conclusions 

This chapter aimed to determine how variation in light intensity and auxin-to-cytokinin ratios 

would influence the production of E. autumnalis callus from leaf explants. Ensuring that all 

elements of the culture environment remained constant, E. autumnalis callus cultures were 

initiated on MS media supplemented with various auxin-to-cytokinin ratios, and were 

exposed to three light intensity treatments.  

High light intensity (1.53 µmol m-2 s-1) exposure resulted in rapid exponential and linear 

growth of 2,4-D and 2,4-D + KIN cultures (Figure 2.2), though this rate of growth was 

greatly reduced in PIC and PIC + KIN cultures (Figure 2.3). The accelerated growth rate 

achieved by 2,4-D cultures (Figure 2.2) exposed to a light intensity of 1.53 µmol m-2 s-1 

would appear to be advantageous, however these cultures rapidly progressed beyond the 

stationary growth phase resulting in cell necrosis. On the other hand, exposure to the lower 

light intensity (0.75 µmol m-2 s-1) and the zero light exposure (0.00 µmol m-2 s-1) growth 

curves progressed through exponential, linear, and decelerating growth phases within the 

eighty-four-day growth period, absent of cellular decay.  

Optimum callus volumes were obtained from cultures exposed to a 0.75 µmol m-2 s-1 light 

intensity (p = 0.0001). Though 0.00 µmol m-2 s-1 cultures produced lower volumes of callus, 

the absence of light exposure reduced callus browning, providing a suitable environment for 

the preservation of friable callus (TAYLOR and VAN STADEN, 2001e). 
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CHAPTER 3: INFLUENCE OF CULTURE ENVIRONMENT ON 

PHENOLIC PRODUCTION 

3.1. Introduction 

The application of biotechnological methodologies, particularly those regarding the in vitro 

propagation of medicinal plants utilized by South African traditional healers could serve 

toward resolving the issue of their declining abundance (AFOLAYAN and ADEBOLA, 2004). 

However, beyond the mass production of vulnerable plant species (HUSSAIN et al., 2012; 

NIGRO et al., 2004), plant biotechnological tools can be used to promote the production of 

desired medicinal metabolites (NIGRO et al., 2004; ROUT et al., 2000).  

Though in vitro methods for botanical conservation are expensive (KOZAI et al., 1997), these 

methods allowed biotechnologists to study and better understand the physical, physiological, 

biochemical and genetic components of these plants (NCUBE et al., 2015). Investigation of 

these botanical elements enables the study of plant metabolites (MOYO et al., 2011; NCUBE et 

al., 2015; NIGRO et al., 2004; ROUT et al., 2000) produced in response to various 

environmental stimuli (TAIZ and ZEIGER, 2010). Studies under in vitro conditions have 

determined that these metabolites are produced by cellular differentiation and specialization 

processes derived from the plants primary metabolism (NCUBE et al., 2015).  

3.1.1. Plant secondary metabolites 

Primary metabolic functions and pathways are standard in all plants (TAIZ and ZEIGER, 

2010), with secondary metabolites produced as either intermediaries or final products, 

derived from the primary metabolites (NCUBE et al., 2012b; VERPOORTE, 2000) which are 

products of protein, lipid, and carbohydrate biosynthesis (TAIZ and ZEIGER, 2010). Given 

that these deviations from the primary metabolism are diverse (VERPOORTE, 2000) the 

presence and biosynthesis of these secondary metabolites vary among plant genera and 

species (TAIZ and ZEIGER, 2010). Furthermore, the production and accumulation of these 

metabolites often differ between a plants organs and cells (BOURGAUD et al., 2001; 

GIULIETTI and ERTOLA, 1999), demonstrating a substantial co-ordination of metabolic 

deviation from a plants primary metabolism (NCUBE et al., 2012b; TAIZ and ZEIGER, 2010) 

relative to the different phases of the plants development (GIULIETTI and ERTOLA, 1999; 

NCUBE et al., 2012b). 
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These variations among plant genera, species (TAIZ and ZEIGER, 2010), organs, and cells 

(BOURGAUD et al., 2001; GIULIETTI and ERTOLA, 1999) are determined by the metabolites 

function, relative to the surrounding environment (NCUBE et al., 2012b; VERPOORTE, 2000). 

These functions of the secondary metabolism include the attraction of pollinators (TAIZ and 

ZEIGER, 2010; WALLACE et al., 1996b; WINK, 1999) by pigmented secondary metabolites 

(BOURGAUD et al., 2001), though the majority of secondary metabolites provide a defensive 

mechanism against abiotic (NCUBE et al., 2012b) and biotic stress (WINK, 1999). However, 

secondary metabolite production depletes the plants limited resources (CRONIN and HAY, 

1996), resulting in the allocation of resources dependent on when and where these defensive 

metabolites are required (WINK, 1999). Thus the synthesis and collection of these secondary 

metabolites vary within a plants organs and cells (BOURGAUD et al., 2001; GIULIETTI and 

ERTOLA, 1999). 

Characterised by their diminished abundance throughout the plant (BOURGAUD et al., 2001; 

WINK, 1999) these metabolites are accumulated in reserve cells or organs (BOURGAUD et al., 

2001; (BOURGAUD et al., 2001; GIULIETTI and ERTOLA, 1999) at high concentrations 

(WINK, 1999). These organic compounds are further classified as terpenes, nitrogen-

containing compounds, or phenolic compounds based on their chemical structure (TAIZ and 

ZEIGER, 2010). Of these three groups, phenolic compounds are predominant in vascular 

plants (BOURGAUD et al., 2001; TAIZ and ZEIGER, 2010), producing numerous bioactive 

agents with medicinal capacity (DIAS et al., 2016). 

3.1.2. Biosynthesis of phenolic compounds 

Phenolic compounds consist of an aromatic ring and one or more hydroxyl groups, and range 

from simple to highly polymerized compounds (TAIZ and ZEIGER, 2010). These 

phytochemicals are produced by means of several pathways which deviate from primary 

carbon metabolism following photosynthesis (BALASUNDRAM et al., 2006; NCUBE et al., 

2012b; TAIZ and ZEIGER, 2010; VERPOORTE, 2000). Following the first pathway, 

respiration converts glucose (C6H12O6) into pyruvate (CH3COCOO), where carbon dioxide 

(CO2) is then released in the mitochondrial matrix by pyruvate decarboxylation, producing 

acetyl co-enzyme A (C23H38N7O17P3S), from which miscellaneous phenolic compounds are 

derived following the malonic acid pathway (DOWNEY et al., 2006; TAIZ and ZEIGER, 2010). 

However, this process is of minimal significance to the production of phenolic compounds in 

higher plants as this pathway is typical of bacterial and fungi (TAIZ and ZEIGER, 2010). In 
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higher plants however, two deviations from primary metabolism of carbon occur 

(BALASUNDRAM et al., 2006; NCUBE et al., 2012b; TAIZ and ZEIGER, 2010; VERPOORTE, 

2000), resulting in the production of phenolic compounds following the shikimic acid 

pathway (BALASUNDRAM et al., 2006; TAIZ and ZEIGER, 2010). The first involves the 

glycolytic conversion of glucose (C6H12O6) into phosphoenol-pyruvate (C3H5O6P) (TAIZ and 

ZEIGER, 2010). The second involves the pentose phosphate pathway formation of erythrose-

4-phosphate (C2H9O7P) (BALASUNDRAM et al., 2006; TAIZ and ZEIGER, 2010). These simple 

carbohydrate precursors (C3H5O6P and C2H9O7P) produce the aromatic amino acid, 

phenylalanine (C9H11NO2), following the shikimic acid pathway (BALASUNDRAM et al., 

2006; TAIZ and ZEIGER, 2010). Furthermore, an ammonia (NH3) molecule is removed by 

phenylalanine ammonia-lyase (PAL) to yield cinnamic acids (C9H8O2) (TAIZ and ZEIGER, 

2010). Thus, production of phenolic compounds in higher plant is induced by PAL (TAIZ and 

ZEIGER, 2010). 

3.1.3. Factors influencing the production of phenolic compounds 

Doubt has been cast over the economic feasibility of extracting phenolic compounds 

produced  by plants (GIULIETTI and ERTOLA, 1999; MOYO et al., 2011) due to the initial 

production of these desired metabolites yielding negligible quantities (DIAS et al., 2016). 

Furthermore, deviation from the primary metabolism of carbon is not unique to the 

production of phenolic compounds (TAIZ and ZEIGER, 2010). The biosynthesis of each 

secondary metabolite group is dependent on the developmental, organ, or tissue phase at 

which a specific biosynthetic enzyme triggers the primary metabolism deviation (WINK, 

1999). For example, phenolic compound production is dependent on the PAL enzyme 

induced deviation from the primary carbon metabolism, following photosynthesis 

(BALASUNDRAM et al., 2006; NCUBE et al., 2012b; TAIZ and ZEIGER, 2010; VERPOORTE, 

2000). Understanding of these biosynthetic pathways has enabled enhanced in vitro 

production of phenolic compounds (NCUBE et al., 2013a; NIGRO et al., 2004), by means of 

modifying the culture environment (NIGRO et al., 2004). 

The biosynthesis of phenolic compounds is effortlessly triggered (BOURGAUD et al., 2001) as 

the condition of the culture environment induces an instant effect on the activity of PAL 

(TAIZ and ZEIGER, 2010). Though biotic infection is often used to stimulate PAL activity 

(DIAS et al., 2016; TAIZ and ZEIGER, 2010), the simulation of various physical and / or 
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chemical abiotic stressors have also demonstrated a significant effect on PAL activity (DIAS 

et al., 2016). 

In vitro cultivation systems enable the optimal regulation of PAL activity stimuli within the 

culture environment (SIDHU, 2010). Decontamination of the culture equipment and explant 

samples prior to cultivation (SIDHU, 2010) regulate the amplification of PAL activity by 

biotic contamination (DIAS et al., 2016; TAIZ and ZEIGER, 2010). PAL activity stimulation 

by the limited availability of nutrients (TAIZ and ZEIGER, 2010) was standardized by the use 

of a constant strength MS media (ROUT et al., 2000) with the standardization of culture room 

temperature preventing the stimulation of PAL activity, based on the production of phenolic 

compounds in response to thermal stress (RIVERO et al., 2001; WAHID et al., 2007). 

This chapter aimed to determine how variation in the combination and concentration of 

PGR’s, and light intensity influenced the phenolic content of E. autumnalis callus. Light is an 

integral component of the plants primary metabolism, providing the energy required for 

carbon fixation during photosynthesis (ECONOMOU and READ, 1987; NCUBE et al., 2012b; 

STANLY et al., 2011). However, the effect of light exposure on plant metabolism is dependent 

on the duration, intensity, and quality, or range of wavelengths that the plant is exposed to 

(ECONOMOU and READ, 1987). Exposure to different wavelengths of the light spectrum 

enables the manipulation of plant photo-morphogenesis (KOZAI et al., 1997) in addition to 

influencing the plants metabolic responses. Wavelengths ranging from 400-700 nm are 

absorbed by photosynthetic organelles to form ATP (TAIZ et al., 2014) for the photosynthetic 

fixation of carbon (ECONOMOU and READ, 1987; NCUBE et al., 2012b; STANLY et al., 2011; 

TAIZ et al., 2014). However, cultures are exposed to a wider range of wavelengths emitted 

from white light fluorescent tubes (ECONOMOU and READ, 1987; KOZAI et al., 1997). 

Exposure to wavelengths of less than 400 nm has a deleterious effect on photosynthetic 

systems (BOURGAUD et al., 2001) thus defensive secondary metabolite production is induced 

(NCUBE et al., 2012b; WINK, 1999). Given that plants are exposed to the full spectrum of 

solar radiation, the ability to detect certain ranges of the light spectrum has developed in 

plants (NCUBE et al., 2012b). This chapter examined how phenolic compound production was 

influenced by the intensity of light exposure in conjunction with the effect of PGR variation. 

Auxins generally promote primary metabolic growth (SAAD and ELSHAHED, 2012) while 

simultaneously inhibiting the production of secondary metabolites (LUCZKIEWICZ et al., 

2014). However, this inhibition of secondary metabolite production by auxins is reversed by 
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the additional supplementation of cytokinins  promoting secondary metabolite production 

(LUCZKIEWICZ et al., 2014). 

3.2.  Materials and Methods 

Following a four month period in which the primary callus growth rate was determined (as 

described in section 2.2), modified Folin-Ciocalteu (Folin-C) assays were used to establish 

the quantity of phenolic compounds which were produced by Eucomis autumnalis callus that 

was cultured on MS media supplemented with various PGR concentrations and combinations, 

and exposed to light intensities of 0.00 µmol m-2 s-1, 0.75 µmol m-2 s-1, and 1.53 µmol m-2 s-1  

(described in section 2.2.2). Three callus samples per PGR*light intensity were randomly 

selected, with the phenolic content determined for three replicates of each sample. Thus, nine 

replicates per PGR*light intensity treatment were assessed for phenolic content. An average 

phenolic content was determined for each sample, providing three mean values of phenolic 

content for each PGR*light intensity treatment. This method of sampling reduced errors 

based on sampling bias and errors encountered during the phenolic assays. 

3.2.1. Assessing phenolic content 

Samples were placed in pill vials, frozen in liquid nitrogen and put in a freezer set at - 20 ºC 

for 24 hrs. These samples were then dried in a Virtis Freeze-drier and crushed into a powder 

which was then dissolved in 50% methanol at a ratio of 10 mℓ (50% methanol) for every     

50 mg crushed callus sample. Extraction entailed sonication for 20 min on ice, followed by 

filtration through Whatman No. 1 filter paper, under vacuum. The quantity of phenolic 

compounds was then assessed by means of the modified Folin-Ciocalteu (Folin-C) assay. 

50 μℓ extract was dissolved in 950 μℓ distilled water, followed with 500 μℓ of 50% Folin-C 

reagent, and 2,5 mℓ of 2% sodium carbonate (Na2CO3) was added  in a dark room. Following 

a 30 min incubation in a dark cupboard under ambient room temperature of 25 ºC (± 3 ºC), 

absorbance was read at 725 nm (NCUBE et al., 2013a), using a Genova Plus 

Spectrophotometer. These values were then compared to a standard 1 mℓ solution of     

(5.8782 µM) gallic acid, 950 μℓ distilled water, 500 μℓ Folin-C reagent, and 2,5 mℓ of             

2% Na2CO3 that was also incubated at room temperature in a dark cupboard for 30 min 

(NCUBE et al., 2013a). Absolute concentrations of phenolic compounds are expressed as 

gallic acid equivalents (GAE) (FAWOLE et al., 2010; NCUBE et al., 2013a) per gram dry 

weight (NCUBE et al., 2013a). 
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3.2.2. Data Analysis 

Callus samples were randomly selected from replicates of each PGR and light intensity 

treatment. A two-way ANOVA was used to compare the quantity of phenolic compounds 

produced by callus cultured under the various PGR combinations and the three light intensity 

treatments. Given that the data was positively skewed, a log transformation was used to 

obtain a normal distribution of the residuals. A Duncan’s Multiple Range Test (DMRT) was 

used to separate the means of homogeneous subset groups which differed at p = 0.05. All 

analyses were performed using IBM SPSS Statistics for Windows, version 24; and all graphs 

were compiled using GraphPad Prism® version 5.02. 

3.3. Results and Discussion 

3.3.1. Effect of light exposure on the phenolic content 

Light intensity was found to have a significant overall effect (p = 0.0001) on the production 

of phenolic compounds, with exposure to light intensities of both 0.75 µmol m-2 s-1, and   

1.53 µmol m-2 s-1 demonstrating an amplified production and accumulation of phenolic 

compounds by most cultures (Figure 3.1). However, the addition of 2,5 µM KIN to 15 µM 

and 20 µM PIC cultures resulted in a reduced phenolic production and accumulation when 

exposed to 0.75 µmol m-2 s-1 (Figure 3.1D).  

Disregarding the intensity of light exposure, the observed increase in phenolic content for 

cultures exposed to light (Figure 3.1) was anticipated, given the number of species that have 

also expressed increased phenolic accumulation when exposed to light (DIAS et al., 2016; 

NCUBE et al., 2012b). Phenolic compound biosynthesis is dependent on a PAL induced 

deviation from primary carbon metabolism, following photosynthesis (BALASUNDRAM et al., 

2006; NCUBE et al., 2012b; TAIZ and ZEIGER, 2010; VERPOORTE, 2000). Furthermore, the 

production of these secondary phenolic metabolites is limited by the allocation of available 

carbon resources (WINK, 1999), obtained from the fixation of carbon by photosynthetic 

processes, which require exposure to light (CORDELL, 2014; DOWNEY et al., 2006; NCUBE et 

al., 2012b). Therefore, cultures exposed to 0.00 µmol m-2 s-1 light suffer a reduced 

availability of carbon resources derived from photosynthesis (DOWNEY et al., 2006). Sucrose 

derived carbon resources, provided by the MS growth medium (SAAD and ELSHAHED, 2012), 

enabled the limited production of phenolic compounds by cultures devoid of light exposure 
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(Figure 3.1). However, the phenolic content of 0.00 µmol m-2 s-1 light intensity cultures did 

not demonstrate consistency between PGR treatments (Figure 3.1). 

3.3.2. Influence of auxin-to-cytokinin ratios on phenolic content 

The effect of PGR manipulation on E. autumnalis callus growth (described in section 2.3), 

determined that 2,4-D, PIC, and KIN influenced the morphology (LUCZKIEWICZ et al., 2014; 

SIDHU, 2010) of E. autumnalis callus (Figure 2.5, of section 2.3). However, these 

synthetically produced plant growth hormones (BEYL et al., 2015) have demonstrated a 

regulatory effect on the production of secondary metabolites (DIAS et al., 2016; 

LUCZKIEWICZ et al., 2014; PTAK et al., 2013) derived from the phenyl-propanoid pathway 

(LUCZKIEWICZ et al., 2014), including phenolic compounds. The influence of PGR 

concentration and combination on phenolic production and accumulation was established by 

callus cultures that were exposed to a 0.00 µmol m-2 s-1 light intensity (Figure 3.1). 

Both 2,4-D and PIC are synthetically produced herbicides which imitate the properties of 

naturally occurring auxins (BEYL et al., 2015; LUCZKIEWICZ et al., 2014; TU et al., 2001). 

However, the effect of these auxin-like PGR’s on phenolic production differs greatly, with 

PIC cultures producing a substantially higher phenolic content than 2,4-D cultures (Figure 

3.1). This reduced phenolic content of 2,4-D cultures (Figure 3.1 A and B) is not exclusive to 

the model species (E. autumnalis), as 2,4-D appeared to terminate the production of 

secondary metabolites (SIDHU, 2010) in Daucus carota, Morinda citrifolia (LUCZKIEWICZ et 

al., 2014), Leucojum aestivum (PTAK et al., 2013), and Cathranthus roseus (SIDHU, 2010). 

Alternatively, the phenolic content of Leucojum aestivum did not significantly differ between 

2,4-D and PIC cultures (PTAK et al., 2013), as opposed to the substantially greater phenolic 

content obtained from PIC supplemented E. autumnalis callus cultures over 2,4-D cultures 

(Figure 3.1).  

The addition of cytokinin to the roots and aerial segments of Merwilla plumbea, and callus 

cultures of Vitis vinifera resulted in an increased production of phenolic compounds (DIAS et 

al., 2016). However, in E. autumnalis this increase in phenolic content was only observed 

when 2,5 µM KIN was added to 10 µM and 20 µM PIC callus cultures which were exposed 

to a light intensity of 0.00 µmol m-2 s-1 (Figure 3.1 C and D). This cytokinin induced increase 

in phenolic content was only achieved by Cathranthus roseus callus cultures that were 

initiated on an auxin rich medium which was later replaced by an auxin free medium 

containing a low cytokinin concentration (SIDHU, 2010). The addition of 2,5 µM KIN to 
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callus cultured under a 0.00 µmol m-2 s-1 light intensity, resulted in a slight yet significant (p 

= 0.0001) reduction in the phenolic content of 2,4-D (Figure 3.1 A and B), and 15 µM PIC 

(Figure 3.1 C and D) supplemented cultures. The phenolic content of 10 µM PIC cultures 

exposed to a light intensity of 0.00 µmol m-2 s-1 was raised slightly by the addition of 2,5 µM 

KIN, however a significant (p = 0.0001) increase in phenolic content was only achieved by 

the addition of  2,5 µM KIN to 20 µM PIC cultures under 0.00 µmol m-2 s-1  (Figure 3.1 C 

and D).  

In the absence of exposure to light, variations in the concentration of 2,4-D failed to influence 

phenolic production (p = 0.172) significantly (Figure 3.1 A and B). The addition of 2,5 µM 

KIN significantly (p = 0.0001) reduced the phenolic content of 2,4-D cultures, with the 

concentration of 2,4-D having no significant (p = 0.229) effect (Figure 3.1 A and B). On the 

other hand, the concentration of PIC cultures exhibited a significant (p = 0.0001) effect on the 

phenolic content, with the greatest phenolic content (9.4715 GAE ± 0.2068) obtained from  

15 µM PIC callus cultures (Figure 3.1 C and D). However, this significant effect of PIC 

concentration on phenolic content was not maintained when 2,5 µM KIN (p = 0.078) was 

added (Figure 3.1  C and D). Though the effect of auxin concentration did not influence 

phenolic content in cultures exposed to a 0.00 µmol m-2 s-1 light intensity (Figure 3.1), 

however the effect of auxin concentration on phenolic content is substantially influenced by 

the intensity of light exposure (Figure 3.1). 
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3.3.3. Effect of PGR and light intensity variation on phenolic content  
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Figure 3.1: The influence of light intensity on the (mean ± SE) phenolic content produced by 

E. autumnalis callus cultured on (A) 2,4-D, (B) 2,4-D + 2,5 µM KIN, (C) PIC, 

(D) PIC + 2,5 µM KIN supplemented MS media. Phenolic content is measured as 

gallic acid equivalents (GAE). 

Exposure to light resulted in an overall increase in phenolic content (Figure 3.1), suggesting 

that photo-receptive cryptochrome proteins in callus cells identified an increased exposure to 

harmful UV radiation (DIAS et al., 2016; LILLO et al., 2008; NCUBE et al., 2012b; TAIZ and 

ZEIGER, 2010). Though cultures only require light wavelengths of 400-700 nm for 

photosynthesis (ECONOMOU and READ, 1987; NCUBE et al., 2012b; STANLY et al., 2011; 

TAIZ et al., 2014; TAIZ and ZEIGER, 2010), the white light fluorescent tubes used in culture 

rooms emit a broader range of the light spectrum (ECONOMOU and READ, 1987; KOZAI et 

al., 1997), thus exposing cultures to 280-400 nm wavelengths of UV radiation (DIAS et al., 

2016; NCUBE et al., 2012b; TAIZ and ZEIGER, 2010). Furthermore, light intensity does not 

influence the spectral range of light exposure but rather the amount of light energy that callus 

cultures were exposed to per sec (TAIZ et al., 2014). Thus, an incline in light intensity results 

in the increased exposure of callus cultures to both photosynthetic and harmful wavelengths 

(BOURGAUD et al., 2001). The defensive mechanism employed by plants exposed to UV light 
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entails the synthesis of secondary metabolites which absorb these deleterious wavelengths 

(DIAS et al., 2016; NCUBE et al., 2012b; SEIBERT et aL., 1975; TAIZ and ZEIGER, 2010; 

WINK, 1999). Phenolic compounds provide an optimal protective function, filtering 

wavelengths through to photosynthetic cells, while simultaneously blocking further 

infiltration of deleterious UV wavelengths (NCUBE et al., 2012b; TAIZ and ZEIGER, 2010). 

This positive correlation between light intensity and the accumulation of phenolic compounds 

was exhibited by 15 µM 2,4-D (Figure 3.2 A), 15 µM and 20 µM PIC (Figure 3.2 C),  and 

10 µM PIC + 2.5 µM KIN (Figure 3.2 D) cultures.  

This increased exposure to UV light induced the phenyl-propanoid derived (NCUBE et al., 

2012b) production of phenolic compounds (DIAS et al., 2016; SEIBERT et al., 1975). 

However, secondary metabolites produced in response to UV light exposure do not consist 

solely of phenolic compounds (DIAS et al., 2016; SEIBERT et al., 1975). Thus, phenolic 

content of 10 µM PIC (Figure 3.2 C), 10 µM and 20 µM 2,4-D (Figure 3.2 A), and 2,4-D + 

2,5 µM KIN (Figure 3.2 B) cultures increased significantly (p = 0.0001) under a               

0.75 µmol m-2 s-1 light intensity, with further increase in light intensity to 1.53 µmol m-2 s-1 

yielding a reduced phenolic content. The production of alternative defence metabolites, such 

as alkaloids (MAKKAR et al., 2007), would result from the allocation of carbon resources to 

alkaloid production over phenolic production (WINK, 1999). However, the absorption of 

harmful UV wavelengths by these defensive alkaloids does not allow for the selective 

filtration of wavelengths required for photosynthesis (NCUBE et al., 2012b; TAIZ and 

ZEIGER, 2010). Therefore, it is possible that at the lower light intensity of 0.75 µmol m-2 s-1 

fewer UV absorbing metabolites were present, allowing for a limited level of photosynthetic 

carbon fixation to occur (CORDELL, 2014; DOWNEY et al., 2006; NCUBE et al., 2012b), 

increasing the availability of carbon resources, providing for carbon allocation to phenolic 

compound production (WINK, 1999).  

Finally, the reduction in phenolic content from 0.00 µmol m-2 s-1 to 0.75 µmol m-2 s-1, 

followed by a substantial increase in phenolic content at 1.53 µmol m-2 s-1 light intensity 

observed for 15 µM PIC + 2,5 µM KIN, and 20 µM PIC + 2,5 µM KIN supplemented callus 

cultures (Figure 3.2 D), could be explained by the combined effect of PGR and light intensity 

treatments. High 2,4-D and PIC concentrations should inhibit the production of secondary 

metabolites (DIAS et al., 2016; LUCZKIEWICZ et al., 2014; PTAK et al., 2013; TU et al., 2001), 

however both of these synthetically produced PGR’s (BEYL et al., 2015) have demonstrated a 

susceptibility to photo-degradation as in vivo herbicides, with 2,4-D exhibiting rapid 
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acceleration of degradation in an in vitro environment (TU et al., 2001). This rapid 

degradation of 2,4-D in vitro (TU et al., 2001) could possibly explain why 15 µM 2,4-D +  

2,5 µM KIN, and 20 µM 2,4-D + 2,5 µM KIN supplemented callus cultures (Figure 3.2 B), 

did not express a reduction in phenolic content of 0.75 µmol m-2 s-1 cultures and marked 

increase in 1.53 µmol m-2 s-1 cultures, similar to that of PIC (Figure 3.2 D). The low phenolic 

content of 15 µM and 20 µM PIC + 2,5 µM KIN cultures exposed to 0.75 µmol m-2 s-1 

(Figure 3.2 D), displayed the minor potential of PIC degradation by photolysis (TU et al., 

2001). However, the amplified production of phenolic compounds obtained from these 

cultures exposed to a light intensity of 1.53 µmol m-2 s-1 (Figure 3.2 D) demonstrates the 

positive correlation between light intensity and the capacity of PIC to be degraded by 

photolysis (TU et al., 2001).  

3.4. Conclusions 

Variation in PGR and light exposure influence the production and accumulation of phenolic 

compounds under in vitro culture conditions (TAYLOR and VAN STADEN, 2001a). This 

chapter aimed to determine how the variation in PGR concentration and combination 

influenced the production of phenolic content of callus cultures exposed to three light 

intensity treatments. Three responses to light intensity were observed, with the concentration 

and combination of PGR having a significant effect on callus phenolic content. The 

concentration of 2,4-D had no effect on callus phenolic content, though the additional 

supplementation of 2,5 µM KIN significantly reduced phenolic production by these cultures. 

Furthermore, PIC concentration demonstrated an effect on callus phenolic content, though the 

addition of 2,5 µM KIN diminished this effect. Overall, PIC supplemented callus cultures 

produced greater quantities of phenolic compounds than 2,4-D cultures, however the intensity 

of light exposure demonstrated a significant effect on this phenolic production. First, an 

increase in light intensity was shown to increase phenolic production, presumably in response 

to the increase in UV radiation exposure. The phenolic compounds produced under these 

circumstances absorb harmful UV radiation while simultaneously allowing the filtration of 

wavelengths used by photosynthesis. This results in the fixation of carbon resources which 

are required for phenolic production. Alternatively, the increased exposure to harmful UV 

radiation under the 1.53 µmol m-2 s-1 light intensity, may induce the preferential production of 

alkaloids. These secondary metabolites however, absorb all wavelengths, preventing the 

photosynthetic fixation of carbon, further limiting the availability of carbon resources for 

phenolic production. This resulted in the optimal phenolic content being produced by callus 
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cultures exposed to the lower light intensity of 0. 75 µmol m-2 s-1, with 1.53 µmol m-2 s-1 

cultures producing lower phenolic contents. Finally, due to the inhibition of secondary 

metabolite production by synthetic 2,4-D and PIC, the phenolic content of all the callus 

cultures should have been reduced. However, 2,4-D and PIC are susceptible to photo-

degradation by photolysis, which enabled the production of phenolic compounds by these 

callus cultures. Exposure of 15 µM PIC + KIN and 20 µM PIC + KIN cultures to the low 

light intensity of 0.75 µmol m-2 s-1 demonstrated this inhibition of secondary metabolite 

production. However, exposure to the higher light intensity of 1.53 µmol m-2 s-1 caused the 

degradation of PIC, resulting in an increased phenolic production.  
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CHAPTER 4: EFFECT OF THERMAL STRESS ON PHENOLIC 

PRODUCTION 

4.1.Introduction 

Exposure to thermal stress has a substantial undesirable effect on native and agricultural 

plants (WANG et al., 2003), with adverse effects on global crop yields (HALL, 2001; WAHID 

et al., 2007) impeding the pursuit of sustainable food production (DUBEY, 1994). Given that 

plant development and growth are permanently impaired by extensive thermal stress (WAHID 

et al., 2007), plants have developed numerous response mechanisms (NCUBE et al., 2012b; 

WAHID et al., 2007), which enable thermo-tolerance (WAHID et al., 2007). Thermo-tolerance 

is defined as the ability of a plant to survive (NAGAO et al., 1990) and produce profitable 

yields under potentially fatal thermal conditions (WAHID et al., 2007). The mechanisms 

employed by plants exposed to chronic thermal stress are dependent on the plants morpho-

anatomical, phenological, and physiological state (LARKINDALE et al., 2005; NCUBE et al., 

2012b; WAHID et al., 2007). Furthermore, thermo-tolerance consists of long-term adaptation 

and short-term avoidance mechanisms (WAHID et al., 2007). Long-term adaptations enable 

the sustainability of a species under continual thermal stress (WAHID et al., 2007). These long 

term adaptations predominantly influence the reproductive functions in plants, having a 

substantial effect on crop yields (WAHID et al., 2007). On the other hand, short-term thermo-

tolerance allows for the rapid, yet temporary, assimilation of plant cells to thermal stress 

events (LARKINDALE et al., 2005). These ephemeral thermal stress response mechanisms are 

predominantly anatomical, or physiological in form, though the provocation of these response 

mechanisms is not limited to thermal stress (AGARWAL and ZHU, 2005; NCUBE et al., 2012b; 

WAHID et al., 2007). For example, anatomical response mechanisms, which primarily 

influence photosynthetic organelles, correspond to drought stress (NCUBE et al., 2012b; 

WAHID et al., 2007); and physiological response mechanisms to thermal stress are often 

mirrored by osmotic / water stress responses (WAHID et al., 2007). Disregarding these 

thermal stress response mechanisms, the quintessential mechanism of abiotic stress response 

in plants has been attributed to the activity of PAL (WAHID et al., 2007). 

4.1.1. Influence of thermal stress on metabolic processes 

The deleterious impact of thermal stress in plant cells is due to the sensitivity of 

photosynthetic processes to heat (LARKINDALE et al., 2005; WAHID et al., 2007). Plant cell 
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temperature increases with the elevation of atmospheric temperature, or in response to direct 

thermal radiation exposure (DOWNEY et al., 2006). This thermal incline enhances the 

permeability of the plasma membrane (WAHID et al., 2007) as raised temperatures accelerate 

molecular movement through the plasma membrane (WALLACE et al., 1996d) of mesophyll 

cells. Subsequent deactivation of chloroplast and mitochondrial enzymes (WAHID et al., 

2007) hamper photosynthetic processes (LARKINDALE et al., 2005; WAHID et al., 2007), and 

reduce energy (WAHID et al., 2007). This disruption of photosynthetic and mitochondrial 

processes prevent the regulation of reactive oxygen species (ROS) generation and abstraction 

(AGARWAL and ZHU, 2005), resulting in the accumulation of these deleterious compounds 

(DE KLERK, 2007; WAHID et al., 2007). Independent of regulatory mechanisms, ROS 

accumulation results in the irrevocable fatality of cells, organs, and whole plants (AGARWAL 

and ZHU, 2005), due to the oxidative destruction of lipids, DNA and proteins (AGARWAL 

and ZHU, 2005; LARKINDALE et al., 2005; WAHID et al., 2007).  

4.1.2. Phenolic production induced by ROS 

ROS assist the promotion and preservation of short-term thermo-tolerance assimilation 

(WAHID et al., 2007), given that ROS accumulation denotes the detection of thermal stress 

(AGARWAL and ZHU, 2005; DE KLERK, 2007; LARKINDALE et al., 2005; WAHID et al., 

2007). Peroxidation of pigments and lipid membranes (WAHID et al., 2007) promotes the 

production of active oxygen species-scavenging enzymes (NCUBE et aL., 2012b), including 

phenolic compounds which express antioxidant potential (NCUBE et al., 2012b; WAHID et al., 

2007). Furthermore, superoxide dismutase (SOD) overexpression influences the production 

of phenolic compounds due to the deterioration of cell wall lignin (WAHID et al., 2007). 

Therefore, the antioxidant capacity of plant cells is amplified by the production of phenolic 

compounds in response to thermal incline (WAHID et al., 2007). This chapter was aimed to 

determine if thermal stress influences the quantity of phenolic compounds produced by E. 

autumnalis callus cultures, in vitro cultured leaf tissue samples, and the leaves of whole in 

vivo plants. 

4.2.  Materials and Methods 

Whole in vivo plants, sixteen-week-old in vitro cultured plantlets, and eighty-four-day-old 

callus cultures (described in section 2.2) were exposed to three thermal stress treatments. 

Furthermore, the leaf samples of both in vitro cultured plantlets and in vivo plants were 

separated into upper and lower segments. The comparison of phenolic contents between these 
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leaf segments may provide information regarding the possible transportation of these 

defensive metabolites from the site of biosynthesis (CRONIN and HAY, 1996; WINK, 1999) to 

the location of the cells which require metabolic defence. The upper and lower segments of 

leaf samples were determined by halving the length of each leaf, from the bulb to the apex of 

the leaf. Subsequent samples were collected from separate leaves, given that tissue injury 

may influence the production of phenolic metabolites. 

4.2.1. Thermal stress simulation 

Sixteen-week-old E. autumnalis plantlets and eighty-four-day-old callus cultures were sub-

cultured into 100 mℓ Erlenmeyer flasks (BALDI et al., 2009) containing 30 mℓ in autoclave 

sterilized MS suspension media. The suspension media for the callus cultures were 

additionally supplemented with the respective PGR combinations (as described in section 

2.2.2.1). These cultures were then placed under a constant (125 rpm) stirring condition to 

prevent anaerobic fermentation (LEVA et al., 2012), in growth rooms of a constant 25 ºC (± 3 

ºC) temperature, 0.75 µmol m-2 s-1 light intensity, and sixteen hour light / eight hour dark 

cycling for twelve days (BALDI et al., 2009). Following this assimilation period these 

suspension cultures were exposed to three thermal stress temperatures simulated using a 

Gallenkamp Orbital Incubator, which provided the continuous suspension shake of 125 rpm 

(BALDI et al., 2009), in addition to maintaining a constant thermal stress of the specified 

temperature. Furthermore, the thermal stress of in vivo plants was simulated using Convirons 

(Controlled environments Ltd, Winnipeg, Manitoba, Canada), which also maintained a 

constant temperature of the specified thermal stress treatment, yet these samples did not 

require shaking / stirring. Samples were exposed to temperatures of 30 ºC, 35 ºC, and 40 ºC; 

for a total duration of twenty hours. Samples were collected in hourly increments for the first 

five hours, following which, heat shock treatments were imposed by removing samples from 

the thermal stress environment for 30 min, placing samples in a cool room of 25 ºC (± 3 ºC), 

following which samples were returned to the thermal stress environment for five hours. This 

was repeated four times over a total 20 hr period. The phenolic content was determined (as 

described in section 3.2.1) for each sample exposed to the different temperatures for various 

durations. 

4.2.2. Data Analysis 

Three samples were randomly selected from each PGR replicate for each temperature 

treatment following the specified exposure durations. The phenolic content of samples 
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collected at the specified durations of exposure to 30 ºC, 35 ºC, and 40 ºC thermal treatments, 

were compiled for callus cultures (Figure 4.2), in vitro cultured leaf tissue samples, and 

leaves of whole in vivo plants (Figure 4.4). Two-way ANOVA’s were used to compare how 

each thermal stress treatment influenced the quantity of phenolic compounds produced by 

each callus PGR combination (Figure 4.1), in vitro cultured tissue samples (Figure 4.3 A), 

and leaves of whole in vivo plants (Figure 4.3 B). Log transformations were used to obtain a 

normal distribution of residuals, where the data was positively skewed. Duncan’s Multiple 

Range Test’s (DMRT) were used to separate the means of homogeneous subset groups which 

differed at p = 0.05, for each sample type (callus PGR combination, in vitro cultured tissue 

sample, and leaves of whole in vivo plants). All analyses were performed using IBM SPSS 

Statistics for Windows, version 24, and all graphs were compiled using GraphPad Prism® 

version 5.02.  

4.3. Results and Discussion 

Provided that thermal stress signalling by ROS (DE KLERK, 2007; NCUBE et al., 2012b; 

WAHID et al., 2007) accelerates PAL activity (DOWNEY et al., 2006; RIVERO et al., 2001; 

WAHID et al., 2007), the production and accumulation of phenolic compounds should 

correlate with thermal stress exposure (DIAS et al., 2016; DOWNEY et al., 2006; 

LUCZKIEWICZ et al., 2014; NCUBE et al., 2012b; PTAK et al., 2013; WAHID et al., 2007). 

These phenolic compounds assist the thermo-tolerance of plants as deterrents of oxidative 

stress (NCUBE et al., 2012b, 2011; WAHID et al., 2007). However, this thermo-tolerance 

mechanism is not exclusively dependent on the severity (temperature) of thermal stress 

(NCUBE et al., 2012b; WAHID et al., 2007). The production of phenolic compounds in 

response to thermal stress is dependent on; the severity, and duration of heat exposure 

(LARKINDALE et al., 2005; NCUBE et al., 2012b; WAHID et al., 2007), and varies relative to 

the plants phenological phase (NCUBE et al., 2011; WAHID et al., 2007). 

4.3.1. Influence of thermal stress on phenolic content of callus 

The control measure of phenolic content produced by callus prior to thermal stress (25 ºC, 

Figure 4.1 and 0 hr, Figure 4.2) was obtained from callus suspension cultures following a 

twelve day assimilation period (BALDI et al., 2009). 

Thermal stress of E. autumnalis callus cultures had a significant (p = 0.0001) effect on 

phenolic content, with a thermal incline of 5-10 ºC provoking the production and 
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accumulation of phenolic compounds as a thermal stress response mechanism (WAHID et al., 

2007). Overall, the phenolic content of  callus cultures exposed to 30 ºC ≥ 35 ºC > 40 ºC >  

25 ºC (Figure 4.1). Breach of thermal threshold diminishes the production of phenolic 

compounds (DOWNEY et al., 2006) due to the inhibition of rubisco activation during the 

calvin cycle (WAHID et al., 2007) resulting in the reduced fixation of carbon (CORDELL, 

2014; DOWNEY et al., 2006; NCUBE et al., 2012b; WAHID et al., 2007). Thus the thermo-

tolerance of a sample is reduced at temperatures above the thermal threshold (WAHID et al., 

2007). The thermal threshold of E. autumnalis callus cultures was established at 30 ºC, with 

the exception of 2,4-D cultures which produced a greater phenolic content at 35 ºC (Figure 

4.1). This is due to the effect of the culture environment on the samples sensitivity to thermal 

stress (HAVAUX, 1992; LARKINDALE et al., 2005; WAHID et al., 2007).  
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Figure 4.1: Influence of thermal stress temperature on the mean (± SE) phenolic content 

produced by callus cultures. Phenolic content is measured as gallic acid equivalents 

(GAE). 

Synthetic 2,4-D and PIC inhibit the production of phenyl-propanoid derived phenolic 

compounds (DIAS et al., 2016; LUCZKIEWICZ et al., 2014; PTAK et al., 2013). The inhibitory 

activity of PIC > 2,4-D in callus suspension cultures, therefore the phenolic content of 2,4-D 

> PIC, with the additional supplementation of KIN having opposing effects on phenolic 
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production (2,4-D + KIN ≥ 2,4-D > PIC > PIC + KIN; at 25 ºC). The exposure of PIC 

cultures to a thermal incline of only 5 ºC from 25 ºC caused a substantial increase in phenolic 

compound production and accumulation (Figure 4.1). However, this amplified phenolic 

production in response to thermal incline was substantially greater in PIC cultures than 2,4-D 

cultures (Figure 4.1). This suggests that the inhibition of phenolic production by PIC is 

significantly reduced by thermal incline, resulting in a significantly greater phenolic 

production by PIC callus cultures exposed to elevated temperatures. Furthermore, the 

influence of thermal incline on phenolic production over time (Figure 4.2) by callus cultures 

differs between PGR combinations. 
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Figure 4.2: Influence of temperature and duration of exposure on the mean phenolic content 

of callus. Phenolic content measured in gallic acid equivalents (GAE). 

The production and accumulation of phenolic compounds is significantly (p = 0.0001) 

affected by thermal incline within the first hour of exposure (Figure 4.2). This is due to the 

chemical nature of this response mechanism, as metabolic thermo-tolerance provokes an 

instantaneous response to thermal incline (POLLOCK et al., 1993). Subsequent to this initial 

surge, phenolic accumulation is reduced (Figure 4.2), denoting the ephemeral nature of this 

thermo-tolerance mechanism (LARKINDALE et al., 2005). However, this thermo-tolerance is 

maintained in correlation with the increasing duration of thermal stress exposure (Figure 

4.2), and does not completely dissipate (LARKINDALE et al., 2005), with the exception of PIC 

+ KIN cultures exposed to 30 ºC (Figure 4.2). LARKINDALE et al. (2005) suggests that 

response metabolite accumulation would completely dissipate within twenty-four hours 
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leaving the cell with no mechanism of thermo-tolerance. However, the retention of phenolic 

content over time (Figure 4.2) suggests that continuous exposure to thermal stress, continued 

to produce ROS which is regulated by the persistent production of phenolic compounds, 

maintaining the thermo-tolerance of these cultures. However, this may also be due to the 

reduced activity of PAL over time, caused by thermal damage of the biosynthetic pathway 

(LOAIZA-VELARDE et al., 1997). 

The additional supplementation of KIN reduced the variability in phenolic content of 2,4-D 

and PIC cultures exposed to 35 ºC (Figure 4.2). Though phenolic production in Merwilla 

plumbea and Vitis vinifera cultures was enhanced by the additional supplementation of KIN 

(DIAS et al., 2016), thermal incline resulted in the diminished production of phenolic 

compounds (Figure 4.2), as cytokinin content is reduced by thermal stress (WAHID et al., 

2007). Though the secretion of phenolic compounds into the culture medium might explain 

the variability in phenolic content observed in cultures exposed to 30 ºC (GAOSHENG and 

JINGMING, 2012), the volatilization potential of 2,4-D and PIC may also influence this 

variability (TU et al., 2001). The volatilization of these PGR is simply the conversion of their 

liquid form into vapour, which is stimulated by the acidic pH and abundance of moisture in 

these suspension cultures (TU et al., 2001). Vaporized 2,4-D and PIC is retained within the 

culture vessel, yet the inhibition of secondary metabolite production by these PGR’s is 

alleviated (SIDHU, 2010).  

4.3.2. Influence of thermal stress on phenolic content of leaves 

The susceptibility of plant cells to thermal stress differs between developmental phases 

(WAHID et al., 2007). Leaf segments of in vitro cultured plantlets produced and accumulated 

phenolic compounds in response to thermal incline up to a thermal threshold of 35 ºC, with 

plantlet cultures exposed to 40 ºC producing a significantly (p = 0.003) lower phenolic 

content (Figure 4.3 A). This thermal threshold corresponds with that of callus cultured on 

2,4-D supplemented MS media (Figure 4.1), the phenolic content of in vitro cultured plantlet 

leaves duplicates that of the callus cultures.  
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Figure 4.3: Influence of thermal stress temperature on the mean (± SE) phenolic content, 

produced by (A) in vitro cultured plantlet leaf segments, and the (B) leaf 

segments of whole in vivo plants. In vitro plantlets were cultured on PGR free MS media 

under a constant light intensity of 0.75 µmol m-2 s-1, and in vivo plants were not subjected to any 

pre-treatment of PGR or exposure to various light intensities. Phenolic content measured in 

gallic acid equivalents (GAE). 

Though callus formations lack developmental and morphological specialization (SIDHU, 

2010), and in vitro cultured plantlets have developed cellular specialization, the production of 

phenolic compounds in response to thermal incline does not differ between phenological 

phases (WAHID et al., 2007). However, the quantity of phenolic compounds produced by in 

vitro cultured plantlet leaves (Figure 4.3) duplicated that of the callus cultures (Figure 4.1). 

Furthermore, both callus and plantlets have been cultured in vitro under extensively regulated 

environmental conditions (HUSSAIN et al., 2012). Due to the lack of exposure to the 

numerous forms of environmental stress (NCUBE et al., 2012b) these samples have not 

acquired long-term environmental stress response mechanisms (LARKINDALE et al., 2005) 

prior to the simulated thermal stress treatment. Furthermore, though the variation between 

phenolic content of upper and lower in vitro cultured leaf segments (Figure 4.3) did not 

differ significantly (p = 0.119), thermal incline influences the metabolic processes of leaves 

and bulbs, in a source (leaves) to sink (bulb) mechanism of phenolic compound translocation 

(WAHID et al., 2007). 
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Figure 4.4: Influence of temperature and duration of exposure on the mean phenolic content 

of in vitro cultured plantlet leaves and leaves of whole in vivo plants. In vitro 

plantlets were cultured on PGR free MS media under a constant light intensity of                    

0.75 µmol m-2 s-1, and in vivo plants were not subjected to any pre-treatment of PGR or exposure 

to various light intensities. Phenolic content measured in gallic acid equivalents (GAE). 

Phenolic content of in vitro cultured plantlets was substantially increased by thermal stress 

initiation (Figure 4.4) denoting the metabolic foundation of thermal stress response 

(POLLOCK et al., 1993). Furthermore, subsequent to this accumulation of phenolic 

compounds, phenolic content was depleted (Figure 4.4) due to the extended duration of 

thermal stress exposure reducing the activity of PAL (LOAIZA-VELARDE et al., 1997).  

On the other hand, in vivo leaf samples exposed to the various temperatures failed to produce 

a discernible pattern of phenolic production or accumulation in response to thermal incline 

(Figure 4.3 B) or duration of exposure to thermal stress (Figure 4.4). Due to the fact that in 

vivo plants are exposed to numerous environmental stresses prior to the thermal stress 

simulation (HAVAUX, 1992), these plants presumably possess inherent long-term stress 

response mechanisms (LARKINDALE et al., 2005), which would deter the production of 

metabolites that deplete limited resources (ECONOMOU and READ, 1987; NCUBE et al., 

2012b; STANLY et al., 2011). Furthermore, the phenolic content of upper and lower leaf 
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segments of these plants do not significantly differ (Figure 4.3 B), though phenolic tannin 

production is known to increase in response to osmotic stress (NCUBE et al., 2012b, 2011) 

which is induced by thermal stress in natural environments (HAVAUX, 1992). 

4.4.  Conclusions 

Metabolic processes accelerate under thermal stress conditions (DOWNEY et al., 2006), which 

result in the accumulation of ROS among other metabolites (DE KLERK, 2007; DOWNEY et 

al., 2006; NCUBE et al., 2012b; WAHID et al., 2007). ROS accumulation in the cell cytoplasm 

(WAHID et al., 2007) function as heat stress signals (AGARWAL and ZHU, 2005) provoking 

the acceleration of PAL activity (RIVERO et al., 2001; WAHID et al., 2007). This 

amplification of PAL activity induces the production of phenyl-propanoid pathway derived 

phenolic compounds (DIAS et al., 2016; LUCZKIEWICZ et al., 2014; NCUBE et al., 2012b; 

PTAK et al., 2013; WAHID et al., 2007), which are quintessential to the acclimation of plant 

cells exposed to thermal stress (RIVERO et al., 2001; WAHID et al., 2007). 
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CHAPTER 5: GENERAL CONCLUSIONS 

5.1. Influence of the in vitro culture environment 

Biotechnological tools such as in vitro plant culture have enabled the mass production of 

endangered species, including the model species Eucomis autumnalis. Furthermore, in vitro 

methods have been used to improve the production of desired metabolites, as the 

manipulation of a culture environment either enhances or inhibits metabolic pressures which 

influence the induction of secondary metabolite production. The enhanced production of 

desired phenolic compounds, derived from the phenyl-propanoid pathway, is dependent on 

the activity of phenylalanine ammonia-lyase (PAL) which is vulnerable to environmental 

influence. Thus, in vitro culture methods provide the ideal condition for environmentally 

induced phenolic compound production, due to the rigorous regulation of the culture 

environment. Provided that secondary metabolite production may be induced in vitro by the 

metabolic processes involved in cellular differentiation and specialization, callus cultures of 

E. autumnalis were established under in vitro conditions. 

Variation in the culture environment had a significant effect on the growth, morphology and 

phenolic content of E. autumnalis callus cultures. The rate of callus growth was greatest for 

cultures exposed to a light intensity of 1.53 µmol m-2 s-1, followed by the lower light intensity 

of 0.75 µmol m-2 s-1 with the slowest callus growth rate obtained from cultures exposed to a 

0.00 µmol m-2 s-1 light intensity. However, the final volume of most callus cultures exposed 

to the lower light intensity of 0.75 µmol m-2 s-1 succeeded that of the higher light intensity 

(1.53 µmol m-2 s-1) following an exposure duration of seventy to eighty-four days, with the 

exception of 10 µM PIC + 2,5 µM KIN and 20 µM PIC + 2,5 µM KIN cultures (Figure 2.2 

and Figure 2.3). These cultures exposed to the higher light intensity of 1.53 µmol m-2 s-1 

produced a lower final callus volume than the lower light intensity (0.75 µmol m-2 s-1) 

cultures as cultures exposed to 1.53 µmol m-2 s-1 achieved a maximum growth rate sooner 

than cultures exposed to the lower light intensity of 0.75 µmol m-2 s-1. Due to this rapid 

progression of callus growth in 1.53 µmol m-2 s-1 callus cultures, the final callus volumes 

were substantially reduced due to cellular necrosis.  

This was substantially evident in 2,4-D cultures exposed to a 1.53 µmol m-2 s-1 light intensity. 

This rate of callus growth was accelerated by the increase in 2,4-D concentration  with the 

additional supplementation of 2,5 µM KIN further accelerating this growth rate across all 
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three light intensity treatments. This acceleration in growth rate was mirrored by the final 

callus volume which was measured subsequent to the eighty-four-day growth period (10 µM 

2,4-D < 15 µM 2,4-D ≤ 10 µM 2,4-D + 2,5 µM KIN < 20 µM 2,4-D < 15 µM 2,4-D +        

2,5 µM KIN < 20 µM 2,4-D + 2,5 µM KIN). 2,4-D cultures exposed to a 1.53 µmol m-2 s-1 

light intensity produced nodular compact callus, with cultures exposed to lower light 

intensities of 0.75 µmol m-2 s-1, and 0.00 µmol m-2 s-1 producing compact callus which 

potentially restricted the inner cells from accessing oxygen, subsequently resulting in cell 

death.  

Alternatively, increasing PIC concentrations subsequently reduced the rate of callus growth, 

with the additional supplementation of 2,5 µM KIN further diminishing the rate of callus 

growth, which was reflected by the final callus volumes acquired following the eighty-four-

day growth period (20 µM PIC + 2,5 µM KIN < 15 µM PIC + 2,5 µM KIN < 20 µM PIC <        

10 µM PIC + 2,5 µM KIN ≤ 15 µM PIC < 10 µM PIC). The effect of light intensity and PIC 

concentration on the callus growth rate and final volume was substantially reduced compared 

to the 2,4-D cultures. These reduced callus volumes of PIC cultures were obtained due to the 

friable nature of the callus, resulting in multiple smaller formations as opposed to the singular 

mass formation of the compact callus. 

The phenolic content of callus cultures exposed to these culture environment variations was 

determined subsequent to the eighty-four-day growth period. The phenolic content of callus 

cultures was significantly influenced by certain variations in the PGR combination and 

concentration, and by exposure to the three light intensities. Callus phenolic content was not 

dependent on 2,4-D concentration, yet the additional supplementation of 2,5 µM KIN 

reduced the phenolic content of 2,4-D cultures significantly. On the other hand, the phenolic 

content of PIC cultures was influenced by concentration, though this effect was diminished 

by the addition of 2,5 µM KIN. In general, the greater phenolic content was obtained from 

PIC cultures, however, phenolic production was substantially influenced by the intensity of 

light exposure. An increase in exposure to UV radiation was assumed when cultures were 

exposed to amplified light intensities, potentially resulting in the enhanced production of 

phenolic compounds. These compounds permit the filtration of photosynthetic wavelengths 

while simultaneously absorbing UV radiation which is harmful. Through photosynthesis 

carbon resources become fixed, providing for the production of phenolic compounds further. 

However, this production of phenolic compounds was reduced when cultures were exposed 
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to the 1.53 µmol m-2s-1 light intensity, as the elevated exposure to harmful UV radiation 

potentially induced the preferential production of alternative secondary metabolites such as 

alkaloids. Such metabolites prevent the filtration of all wavelengths to photosynthetic 

processors, halting the fixation of carbon resources, thus limiting the production of phenolic 

compounds. Therefore, a light intensity of 0.75 µmol m-2 s-1 was determined to result in the 

optimal production of phenolic compounds in callus cultures. Given that synthetic auxin 

substitutes such as 2,4-D and PIC inhibit the production of secondary metabolites, a reduced 

phenolic production was anticipated, however these auxin substitutes are broken down by 

photolysis, which enabled phenolic production. This inhibition of phenolic production was 

observed in 15 µM PIC + KIN and 20 µM PIC + KIN cultures exposed to the light intensity 

of 0.75 µmol m-2 s-1, though this inhibition effect was reduced at 1.53 µmol m-2 s-1 due to the 

photo-degradation of the PIC, resulting in a greater phenolic content. 

The production of high callus volumes and low phenolic contents by 2,4-D callus cultures 

demonstrates the prioritization of primary metabolic growth over the production of protective 

secondary metabolites which is typically induced by auxin-like PGR’s. However, PIC 

cultures produced low callus volumes which contained high concentrations of phenolic 

compounds. This could possibly be due to the morphological character of each callus culture. 

The compact callus formations of 2,4-D cultures restricts the inner cells access to oxygen 

among other resources which are required for the production of phenolic compounds. 

However, the friable formation of PIC callus cultures provided for the effortless acquisition 

of required resources. Furthermore, in the event of phenolic production in response to 

elevated UV radiation exposure, the compact formation of 2,4-D callus cultures demonstrate 

a restricted photosynthetic capability of the inner cells, thus fixed carbon resources would be 

limited, resulting in the preferential synthesis of alternative protective metabolites. 

5.2. Stimulating phenolic compound production by heat stress 

Despite the susceptibility of in vitro cultures to their environment, the production of phenolic 

compounds derived from the phenyl-propanoid pathway may be enhanced by thermal stress. 

The chloroplasts and mitochondrial enzymes responsible for the production and removal of 

reactive oxygen species (ROS) are adversely influenced by thermal incline. ROS among 

other metabolites are accumulated under thermal stress due to the acceleration of metabolic 

processes. PAL activity accelerates when ROS accumulates in the cell cytoplasm, stimulating 

the production of scavenging enzymes. Furthermore, the accelerated activity of PAL induces 
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the production of phenolic compounds via the phenyl-propanoid pathway. These phenolic 

compounds elevate the plant cells antioxidant capacity, and are thus quintessential to plant 

cell acclimation under thermal stress conditions. Over a 20 hour period the accumulation of 

phenolic compounds was determined for callus, and leaves of intact in vivo plants and in vitro 

cultured plantlets. The phenolic content of callus cultures and the leaves of in vitro cultured 

plantlets was increased by thermal incline, though breach of the thermal threshold resulted in 

reduced phenolic production. Furthermore, abiotic heat stress is dependent on thermal incline 

and exposure duration, resulting in a rapid production of phenolic compounds, providing a 

response mechanism of thermo-tolerance. However, this thermo-tolerance mechanism is 

short-lived, resulting in the subsequent reduction in phenolic compound production. The 

ephemeral nature of this thermal stress response mechanism is evident in the complete 

reduction of phenolic content produced by in vitro cultured plantlet leaves subsequent to an 

initial surge in phenolic production. On the other hand, subsequent to an initial surge, the 

phenolic content of callus cultures declined, yet was retained throughout the 20 hour period 

of thermal stress exposure, sustaining the cultures thermo-tolerance. However, callus culture 

PGR combinations influenced the rate at which thermo-tolerance was achieved, and the level 

of thermo-tolerant phenolic production. A rapidly achieved level of thermo-tolerance was 

reduced in callus cultures by both the additional supplementation of KIN, and the breach of 

thermal threshold. Though thermal stress resulted in a relatively constant phenolic compound 

production in callus cultures, this phenolic content was duplicated by that of the in vitro 

cultured plantlet leaves, where the leaves of intact in vivo plants failed to display any 

significant relationship between thermal stress and the production of phenolic compounds. 

5.3. Enhancing the production of phenolic compounds 

The manipulation of in vitro culture environments has influenced the production of these 

desired medicinal metabolites. Though the greatest quantity of phenolic compounds produced 

was obtained from in vitro cultured plantlet leaves, the in vitro production of callus cultures 

remains valuable. Callus cultures could be used as a source for the proliferation of more 

callus and/or the growth medium could be manipulated to initiate organogenesis and whole 

plantlet growth in vitro. Furthermore, the exposure of callus cultures to environmental 

variation demonstrated a significant effect on phenolic compound production. Given that the 

manipulation of culture environments has influenced the production of phenolic compounds 

in callus cultures, further research is required to determine if this physiological response is 
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transferred from pre-treated totipotent callus to the plantlets produced by these callus 

cultures. Though 2,4-D has been preferentially used for the induction of medicinal plant 

callogenesis, the morphological characteristics of these callus cultures has hampered their 

sustainability, proliferation ability, and enhancement of phenolic production. Alternatively, 

callus cultured on PIC supplemented MS media were friable, which is ideal for callus 

proliferation, and produced significantly greater quantities of phenolic compounds, which 

were substantially increased in response to thermal manipulation. The friable nature of these 

PIC cultures became problematic in the collection of samples as the callus often broke apart 

during extraction from the suspension medium. The difficulty in separating the callus from 

suspension medium meant that phenolic assays may have been assessing the quantity of 

phenolic compounds of the callus and any phenolic compounds which may have been 

released into the suspension media. On the other hand, if 2,4-D cultures released any phenolic 

compounds into the suspension media, the ease of separating the callus from the medium 

meant that the phenolic content was assessed for the callus alone. This could easily be 

corrected in future studies by assessing the phenolic content of the callus and the medium. 

Furthermore, the sustainability of callus cultures was greatest in the absence of light 

exposure. Therefore, despite the rapid production of small phenolic quantities by 2,4-D callus 

cultures, the gradual accumulation of phenolic compounds produced by PIC callus cultures is 

favoured. The results of this dissertation determined that biotechnological methods of in vitro 

manipulation may be used to enhance the production of secondary metabolites in medicinal 

plants. However, extensive knowledge and understanding of the desired plant species micro-

propagation protocol, and the secondary metabolite pathways of biosynthesis are required.  
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APPENDIX 1 – MURASHIGE AND SKOOG (1962) BASAL GROWTH 

MEDIUM COMPOSITION 

 

Nutrient component 

Mass (g) /  

1 ℓ stock 

Vol. stock (mℓ/ℓ) 

final medium 

MACRO-NUTRIENTS 

Ammonium nitrate (NH3NO3) 165.0 10 

Potassium nitrate (KNO3) 95.0 20 

Calcium chloride (CaCl2.2H2O) 44.0 10 

Magnesium sulphate (MgSO4.7H2O) 37.0 10 

Potassium phosphate (KH2PO4) 17.0 10 

MACRO-NUTRIENTS 

EDTA disodium salt dehydrate (NaFeEDTA) 4.0 10 

Boric acid (H3BO4) 0.62 10 

Zinc sulphate heptahydrate (ZnSO4.7H2O) 0.860 10 

Potassium iodide (Kl) 0.083 10 

Manganese sulphate monohydrate (MnSO4.4H2O) 2.230 10 

Sodium molybdate (NaMoO4.2H2O) 0.025 10 

Copper sulphate pentahydrate (CuSO4.5H2O) 0.0025 10 

Cobalt chloride (CoCl2.6H2O) 0.0025 10 

VITAMINES 

Thiamin HCl (B1/Aneurine) 0.01 10 

Niacine (Nicotinic acid) 0.05 10 

Pyridoxine HCl (B6) 0.05 10 

Glycine 0.2 10 

Myo-inositole 0.1 - 

CARBOHYDRATE   

Sucrose 30 - 
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APPENDIX 2 –CHEMICAL STRUCTURE OF PLANT GROWTH 

REGULATORS USED IN THIS STUDY 

 

       2,4-Dichlorophenoxy acetic acid              Picloram 

 

 

     Kinetin 
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APPENDIX 3 – PHENOLIC COMPOUND PRODUCTION IN PLANTS 

 

(adapted and modified from: DIAS et al., 2016) 
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