
Data Classification using

Genetic Programming

by

Emmanuel Dufourq

Submitted in fulfilment of the academic

requirements for the degree of

Master of Science in the

School of Mathematics, Statistics, and Computer Science,

University of KwaZulu-Natal,

Pietermaritzburg

February 2015

As the candidate’s supervisor I have/have not approved this thesis/dissertation for

submission.

Name: Professor Nelishia Pillay

Signature

Date

i

PREFACE

The experimental work described in this dissertation was carried out in the School

of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal,

Pietermartizburg, from February 2013 to February 2015, under the supervision of

Professor Nelishia Pillay.

These studies represent original work by the author and have not otherwise been

submitted in any form for any degree or diploma to any tertiary institution. Where

use has been made of the work of others it is duly acknowledged in the text.

Supervisor: Professor Nelishia Pillay

Signature

Candidate: Emmanuel Dufourq

Signature

ii

DECLARATION 1 - PLAGIARISM

I, Emmanuel Dufourq (student number: 208517550) declare that

1. The research reported in this thesis, except where otherwise indicated, is my

original research.

2. This thesis has not been submitted for any degree or examination at any other

university.

3. This thesis does not contain other persons’ data, pictures, graphs or other

information, unless specifically acknowledged as being sourced from other per-

sons.

4. This thesis does not contain other persons’ writing, unless specifically acknowl-

edged as being sourced from other researchers. Where other written sources

have been quoted, then: a. Their words have been re-written but the gen-

eral information attributed to them has been referenced b. Where their exact

words have been used, then their writing has been placed in italics and inside

quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from

the Internet, unless specifically acknowledged, and the source being detailed

in the thesis and in the References sections.

Candidate: Emmanuel Dufourq

Signature

iii

DECLARATION 2 - PUBLICATIONS

DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and/or in-

clude research presented in this thesis

• Publication 1: E. Dufourq and N. Pillay, ”Incorporating Adaptive Discretiza-

tion into Genetic Programming for Data Classification,” in proceedings of

the 2013 World Congress on Information and Communication Technologies

(WICT 2013), pp. 127-133, 2013

• Publication 2: E. Dufourq and N. Pillay, ”A Comparison of Genetic Pro-

gramming Representations for Binary Data Classification,” in proceedings of

the 2013 World Congress on Information and Communication Technologies

(WICT 2013), pp. 134-140, 2013

• Publication 3: E. Dufourq and N. Pillay, ”A Preliminary Study on the Reuse

of Subtrees Within Decision Trees in a Genetic Programming Context for Data

Classification,” in proceedings of the 2013 World Congress on Information and

Communication Technologies (WICT 2013), pp. 287-292, 2013

• Publication 4: E. Dufourq and N. Pillay, ”Hybridizing Evolutionary Algo-

rithms for Creating Classifier Ensembles,” in proceedings of the 2014 Sixth

World Congress on Nature and Biologically Inspired Computing (NaBIC 2014),

pp. 84-90, 2014

Supervisor: Professor Nelishia Pillay

Signature

Candidate: Emmanuel Dufourq

Signature

iv

Abstract

Genetic programming (GP), a field of artificial intelligence, is an evolutionary algo-

rithm which evolves a population of trees which represent programs. These programs

are used to solve problems. This dissertation investigates the use of genetic program-

ming for data classification. In machine learning, data classification is the process

of allocating a class label to an instance of data. A classifier is created in order to

perform these allocations. Several studies have investigated the use of GP to solve

data classification problems. These studies have shown that GP is able to create

classifiers with high classification accuracies. However, there are certain aspects

which have not previously been investigated.

Five areas were investigated in this dissertation. The first was an investigation

into how discretisation could be incorporated into a GP algorithm. An adaptive

discretisation algorithm was proposed, and outperformed certain existing methods.

The second was a comparison of GP representations for binary data classification.

The findings indicated that from the representations examined (arithmetic trees,

decision trees, and logical trees), the decision trees performed the best. The third

was to investigate the use of the encapsulation genetic operator and its effect on

data classification. The findings revealed that an improvement in both training and

test results was achieved when encapsulation was incorporated. The fourth was an

investigative analysis of several hybridisations of a GP algorithm with a genetic algo-

rithm in order to evolve a population of ensembles. Four methods were proposed and

these methods outperformed certain existing GP and ensemble methods. Finally,

the fifth area was to investigate an ensemble construction method for classification.

In this approach GP evolved a single ensemble. The proposed method resulted in

an improvement in training and test accuracy when compared to the standard GP

algorithm.

The methods proposed in this dissertation were tested on publicly available data

sets, and the results were statistically tested in order to determine the effectiveness

of the proposed approaches.

v

Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this

research is hereby acknowledged. Opinions expressed and conclusions arrived at, are

those of the author and are not necessarily to be attributed to the NRF.

I would like to thank the Centre for High Performance Computing for granting

access to their resources.

I would also like to thank my supervisor, Professor Nelishia Pillay, for her guid-

ance, as well as my family and friends who have encouraged and supported me,

especially my parents. I would like to thank the technical staff from the School of

Mathematics, Statistics and Computer Science for their support and for enabling

me to perform my simulations.

Contents

PREFACE i

DECLARATION 1 - PLAGIARISM ii

DECLARATION 2 - PUBLICATIONS iii

Abstract iv

Acknowledgements v

Contents vi

List of Figures xii

List of Tables xv

List of Algorithms xx

1 Introduction 1

1.1 Purpose of the Study . 1

1.2 Objectives . 1

1.3 Contributions . 3

1.4 Dissertation Layout . 4

2 Genetic Programming 6

2.1 Introduction . 6

2.2 Introduction to Genetic Programming 6

2.3 Overview of the Generational GP Algorithm 7

2.4 Terminal Set . 8

2.5 Function Set . 9

2.6 Tree Based GP . 9

vi

CONTENTS vii

2.7 Initial Population Generation . 10

2.7.1 Full method . 11

2.7.2 Grow method . 12

2.7.3 Ramped half and half . 12

2.8 Fitness . 14

2.8.1 Fitness cases . 14

2.8.2 Fitness functions . 15

2.9 Selection Methods . 16

2.9.1 Fitness proportionate selection 17

2.9.2 Tournament selection . 18

2.10 Genetic Operators . 19

2.10.1 Reproduction . 20

2.10.2 Mutation . 20

2.10.3 Crossover . 20

2.11 Termination . 21

2.12 Strongly-Typed GP . 22

2.13 GP Control Models . 22

2.14 Modularisation . 23

2.14.1 Encapsulation . 24

2.14.2 Compression . 25

2.15 GP and Bloat . 26

2.16 Strengths and Weaknesses of GP . 26

2.16.1 Strengths . 26

2.16.2 Weaknesses . 26

2.17 Conclusion . 27

3 Data Classification 29

3.1 Introduction . 29

3.2 Introduction to Data Classification 29

3.3 Definitions . 30

3.3.1 Instance . 30

3.3.2 Attribute . 31

3.3.3 Class . 32

3.3.4 Data set . 32

3.3.5 Class balance . 33

3.3.6 Classifier . 33

3.4 Performance Measures . 34

3.4.1 Confusion matrix . 34

3.4.2 Sensitivity and specificity . 35

CONTENTS viii

3.4.3 Receiver operating characteristics 36

3.5 Evaluating Classifiers . 37

3.5.1 Train/test split . 38

3.5.2 K-fold cross-validation . 38

3.5.3 Leave-one-out . 39

3.5.4 Bootstrapping . 39

3.6 Previous Work on Data Classification 40

3.6.1 K-nearest neighbour . 40

3.6.2 Decision trees . 41

3.6.3 Artificial neural networks . 43

3.6.4 Näıve bayes . 43

3.6.5 Evolutionary algorithms . 44

3.7 Active Research Areas in Data Classification 46

3.7.1 Feature selection . 46

3.7.2 Missing values . 47

3.7.2.1 Discarding missing values 48

3.7.2.2 Imputation . 48

3.7.2.3 Missing values and decision trees 48

3.7.3 Ensemble classifiers . 49

3.7.4 Discretisation . 51

3.8 Software . 53

3.9 Conclusion . 54

4 GP and Data Classification 56

4.1 Introduction . 56

4.2 GP and Decision Trees . 56

4.2.1 Advantages and disadvantages of GP decision trees 60

4.2.2 Summary of the findings . 61

4.3 GP and Arithmetic Trees . 62

4.3.1 Binary classification . 62

4.3.2 Multiclass classification . 68

4.3.3 Advantages and disadvantages of GP arithmetic trees 74

4.3.4 Summary of the findings . 76

4.4 GP and Logical Trees . 77

4.4.1 Advantages and disadvantages of GP logical trees 80

4.4.2 Summary of the findings . 81

4.5 GP and Other Representations . 81

4.6 GP and Ensemble Classifiers . 83

4.6.1 Strengths and weaknesses of GP ensembles 88

CONTENTS ix

4.6.2 Summary of the findings . 88

4.7 Strengths and Weaknesses of Applying GP to Data Classification . 89

4.7.1 Strengths . 89

4.7.2 Weaknesses . 90

4.8 Conclusion . 91

4.8.1 GP for data classification . 91

4.8.2 GP representations for data classification 92

4.8.3 GP discretisation for data classification 94

4.8.4 GP encapsulation for data classification 94

4.8.5 GP ensembles for data classification 94

5 Methodology 96

5.1 Introduction . 96

5.2 Addressing the objectives . 96

5.3 Statistical testing . 98

5.4 Data Sets . 99

5.4.1 Characteristics of data sets for data classification problems . 99

5.4.2 Binary data sets . 100

5.4.3 Multiclass data sets . 106

5.4.4 Rationale behind the selected data sets 111

5.5 GP System . 113

5.6 Performance Measures . 114

5.7 Technical Specifications . 114

5.8 Conclusion . 114

6 Adaptive Discretisation for GP 116

6.1 Introduction . 116

6.2 Proposed Discretisation Methods for GP 116

6.2.1 Equal Width Intervals (EWI) 118

6.2.2 GP Evolved Intervals (GPEI) 119

6.3 Experimental Setup . 123

6.3.1 Data sets . 124

6.3.2 GP parameters . 125

6.4 Conclusion . 125

7 GP Representations for Binary Classification 126

7.1 Introduction . 126

7.2 GP Representations for Binary Classification 126

7.2.1 Arithmetic trees . 126

7.2.2 Decision trees . 127

CONTENTS x

7.2.3 Logical trees . 128

7.3 Experimental Setup . 130

7.3.1 Data sets . 131

7.3.2 GP parameters . 131

7.4 Conclusion . 132

8 GP Encapsulation for Data Classification 133

8.1 Introduction . 133

8.2 Incorporating Encapsulation into GP for Data Classification 133

8.2.1 Decision trees and encapsulation 133

8.2.2 Maintaining the most called subtrees 136

8.3 Experimental Setup . 138

8.3.1 Data sets . 139

8.3.2 GP parameters . 139

8.4 Conclusion . 140

9 Hybridising Evolutionary Algorithms 141

9.1 Introduction . 141

9.2 Proposed Hybridisation of GP and GA 141

9.2.1 GA encoding . 143

9.2.2 GA run after the last GP generation (GA-at-end) 144

9.2.3 GA run after each GP generation (GA-after-each-gen) 145

9.2.4 GA with hill climbing (GA-with-HC) 146

9.2.5 Steady state GA (SSGA-GP) 146

9.3 Experimental Setup . 150

9.3.1 Data sets . 150

9.3.2 GP and GA parameters . 150

9.4 Conclusion . 151

10 GP Ensemble Construction 152

10.1 Introduction . 152

10.2 Proposed Ensemble Construction 152

10.2.1 Selecting a tree to add to the ensemble 153

10.2.2 Ensemble evaluation . 154

10.2.3 Evaluating the GP trees using weights 155

10.2.4 Updating the weights . 158

10.3 Experimental Setup . 160

10.3.1 GP parameters . 161

10.3.2 Data sets . 161

10.4 Conclusion . 162

CONTENTS xi

11 Results and Discussion 163

11.1 Introduction . 163

11.2 GP Discretisation . 163

11.3 GP Representations for Binary Classification 168

11.4 GP Encapsulation . 173

11.5 Hybridisation of GA and GP . 176

11.6 GP Ensemble Construction . 185

11.7 Conclusion . 191

12 Conclusions and Future Work 192

12.1 Objective 1 - GP Discretisation . 192

12.2 Objective 2 - GP Representations for Binary Classification 193

12.3 Objective 3 - GP Encapsulation . 194

12.4 Objective 4 - Hybridising GA and GP 194

12.5 Objective 5 - GP Ensemble Construction 195

12.6 Conclusion . 195

Bibliography 197

Appendices 212

A User Manual 213

A.1 Program Requirements . 213

A.2 Starting the Program . 214

A.3 Selecting an Experiment to Run . 214

A.4 Starting an Experiment . 215

A.4.1 Selecting a data set . 215

A.4.2 Executing the experiment . 216

List of Figures

2.1 Illustrating nodes with different arity. 9

2.2 GP tree. 10

2.3 Illustrating the depth of each node within a tree. 11

2.4 A tree created using the full method (left), and a tree created using

the grow method (right). 12

2.5 Illustrating an initial population created using the ramped half and

half method. 13

2.6 Mutation operator, adapted from [1]. 20

2.7 Crossover operator [2]. 21

2.8 If-Then-Else function. 22

2.9 Encapsulation operator, adapted from [3]. 24

2.10 Compression operator, adapted from [4]. 25

3.1 The classification process. 30

3.2 A sample data set. The weather data set, adapted from [5]. 31

3.3 An example of a ROC graph, adapted from [6]. 37

3.4 10-fold cross-validation, adapted from [7]. 39

3.5 Example of a neuron. 43

3.6 Example of an ensemble. 49

4.1 Axis parallel and oblique decision trees, along with graphs illustrating

how the data is partitioned in the two representations. The graphs

do not represent the partitioning of the data for the corresponding

trees. 57

4.2 CheckCondition2Vars, function for an oblique decision tree. 59

4.3 Oblique tree used in the study of Shali et al. [8]. 60

4.4 Axis parallel decision tree. 61

4.5 An arithmetic tree. 62

xii

LIST OF FIGURES xiii

4.6 Illustrating how to map the output of a GP tree onto two classes using

a threshold value. In this figure, the threshold is 0.5. 63

4.7 An example of a tree created using class enumeration. 70

4.8 Representing a categorical attribute as a numerical one. 75

4.9 The IN function proposed by De Falco et al. [9]. 79

5.1 Difference in the number of attributes and instances in the binary

data sets. 111

5.2 Difference in the number of attributes and instances in the multiclass

data sets. 112

5.3 Difference in the number of classes in the multiclass data sets. . . . 112

6.1 Example of a GP tree using a decision tree representation. 117

6.2 Intervals created using EWI. 118

6.3 Intervals created using GPEI. 120

6.4 Illustrating the alter interval GO. The algorithm selected attribute 3

(highlighted in grey) for modification. 123

6.5 Illustrating the alter interval GO. The intervals for attribute 3 were

altered which resulted in three new intervals. 123

7.1 Arithmetic tree representation for GP. 127

7.2 Decision tree representation for GP. 128

7.3 Logical tree representation for GP. 128

7.4 The between GP operator for logical tree representations. 129

7.5 Creating the OUT function by preceding the between with a NOT

operator. 130

8.1 Pruning trees and adding encapsulated terminals at the leaves. . . . 135

8.2 Evaluating a tree with an encapsulated terminal. 135

9.1 Illustrating an ensemble. 144

9.2 Example of a chromosome created using SSGA-GP. The genes corre-

spond to GP trees which have been added from different GP generations.147

10.1 Ensemble with corresponding trees at each index. 153

11.1 Comparing GPEI and EWI in terms of training and test accuracy (%). 166

11.2 Illustrating the average training accuracy (%) for the different repre-

sentations. 170

11.3 Illustrating the average test accuracy (%) for the different represen-

tations. 172

LIST OF FIGURES xiv

11.4 Comparison between the average test results for the ensembles and

standard GP. 188

A.1 Main menu. 213

A.2 GP Arithmetic Representation menu. 215

A.3 Popup message which appears at the end of the run. 216

List of Tables

2.1 Fitness case for the even-3-parity problem. 15

2.2 Illustrating fitness proportionate selection. 17

3.1 Class output from figure 3.2, and the output for the simplistic classi-

fier. 34

3.2 Confusion matrix, extracted from [10]. 35

3.3 Illustrating accuracy paradox - classifier 1 confusion matrix. 35

3.4 Illustrating accuracy paradox - classifier 2 confusion matrix. 35

5.1 Pima Indians data set characteristics. 100

5.2 Sonar data set characteristics. 101

5.3 WDBC data set characteristics. 101

5.4 Parkinsons data set characteristics. 102

5.5 Mammographic data set characteristics. 102

5.6 Ionosphere data set characteristics. 103

5.7 Spectf data set characteristics. 103

5.8 Climate data set characteristics. 104

5.9 Fertility data set characteristics. 104

5.10 Monk2 data set characteristics. 105

5.11 TTT data set characteristics. 105

5.12 Balance data set characteristics. 106

5.13 Car data set characteristics. 106

5.14 Glass data set characteristics. 107

5.15 Ecoli data set characteristics. 107

5.16 Zoo data set characteristics. 108

5.17 Iris data set characteristics. 108

5.18 Wine data set characteristics. 109

5.19 Yeast data set characteristics. 109

xv

LIST OF TABLES xvi

5.20 Vehicle data set characteristics. 110

5.21 Soybean data set characteristics. 110

6.1 Sample data for an attribute. 119

6.2 Experiments conducted and their different combination of parameters. 124

6.3 Selected data sets for the adaptive discretisation experiments. . . . 124

6.4 GP parameters. 125

7.1 Characteristics of the five experiments comparing different GP repre-

sentations for binary data classification. 130

7.2 Selected binary data sets for the GP representation experiments. . . 131

7.3 GP Parameters for comparison of different GP representations for

data classification. 131

8.1 Data sets used for GP encapsulation experiments. 140

8.2 GP parameters used. 140

9.1 Selected data sets for the hybridisation experiments. 150

9.2 GP and GA parameters for the hybridisation experiments. 151

10.1 Possible functions for g(xi). 156

10.2 Different weight values and their corresponding value for g(xi). . . . 157

10.3 Illustrating how the weights are updated. Let the correct class for

some instance of data be “B”. 160

10.4 GP parameters used. 161

10.5 Data sets used for ensemble construction experiments. 162

11.1 Experiment IDs for the discretisation methods. 164

11.2 Training accuracy (%) results for the different GP discretisation meth-

ods. For each data set, the best result is highlighted in bold, and was

statistically tested with every other result. 164

11.3 Test accuracy (%) results for the different GP discretisation methods.

For each data set, the best result is highlighted in bold, and was

statistically tested with every other result. 165

11.4 Average size (number of nodes) of the best GP individuals for each

method. The smallest size for each data set is highlighted in bold. . 167

11.5 Comparison between GPEI with arity 2 and other state-of-the-art

discretisation methods. 168

LIST OF TABLES xvii

11.6 Training accuracy (%) results for the different representations. For

each data set, the best result is highlighted in bold. A “**” indicates

that the best result for the data set is statistically significant when

compared to that result. A “†” indicates a statistically insignificant

result when compared to the best result. 169

11.7 Test accuracy (%) results for the different representations. For each

data set, the best result is highlighted in bold. A “**” indicates

that the best result for the data set is statistically significant when

compared to that result. A “†” indicates a statistically insignificant

result when compared to the best result. 170

11.8 Variance amongst the different methods for each data set. 172

11.9 Average size (number of nodes) of the different representations. The

smallest result for each data set is highlighted in bold. 173

11.10Training accuracy (%) results for standard GP and the two proposed

encapsulation methods. For each data set, the best result is high-

lighted in bold, and the results for the encapsulation methods were

statistically tested with the results obtained by standard GP. A “**”

indicates that the result is statistically significant when compared to

the result obtained by standard GP without encapsulation. A “†”
indicates a stastically insignificant result compared to standard GP

without encapsulation. 174

11.11Test accuracy (%) results for standard GP and GP with the two pro-

posed encapsulation methods. For each data set, the best result is

highlighted in bold, and the results for the encapsulation methods

were statistically tested with the results obtained by standard GP.

A “**” indicates that the result is statistically significant when com-

pared to the result obtained by standard GP without encapsulation.

A “†” indicates a statically insignificant result compared to standard

GP without encapsulation. 175

11.12Comparison between the number of encapsulated terminals which

were present in the best GP individuals for the two encapsulation

methods. All the results obtained by encapsulation with maintained

list were statistically significant compared to when the list was not

used, this is denoted by “**”. 176

11.13Average training classification accuracy (%) for GA-at-end. For each

data set, the best result is highlighted in bold, and the best ensemble

result is statistically tested against the standard GP result. 177

LIST OF TABLES xviii

11.14Average test classification accuracy (%) for GA-at-end. For each data

set, the best result is highlighted in bold, and the best ensemble result

is statistically tested against the standard GP result. 178

11.15Average training classification accuracy (%). The best result for each

data set is highlighted in bold. The result for each ensemble method

was statistically compared to the result obtained by standard GP. Be-

tween each pairwise comparison, a “**” denotes that the higher result

is statistically significant. A “†” denotes statistical insignificance. . 180

11.16Average test classification accuracy (%). The best result for each data

set is highlighted in bold. The result for each ensemble method was

statistically compared to the result obtained by standard GP. Between

each pairwise comparison, a “**” denotes that the higher result is

statistically significant. A “†” denotes statistical insignificance. . . . 180

11.17Comparison of the average size of the ensembles of GA-after-each-gen

and GA-with-HC. For each data set, the larger result was statistically

compared to the other result. A “**” indicates that the result is

statistical larger than the other method. A “†” denotes a statistically

insignificant result. 182

11.18Training accuracy (%) comparison between GA-at-end and other meth-

ods found in literature. 183

11.19Test accuracy (%) comparison between GA-at-end and other methods

found in literature. 183

11.20Training accuracy (%) comparison between the proposed ensemble

methods and other methods found in literature. 184

11.21Test accuracy (%) comparison between the proposed ensemble meth-

ods and other methods found in literature. 184

11.22Training accuracy (%) results for the different ensembles and standard

GP. The best result for each data set is highlighted in bold. For

each data set, ensemble5 was statistically compared to standard GP

200 generations, ensemble 7 to standard GP 280 generations, and

ensemble9 to standard GP 360 generations. 186

11.23Test accuracy (%) results for the different ensembles and standard

GP. The best result for each data set is highlighted in bold. For

each data set, ensemble5 was statistically compared to standard GP

200 generations, ensemble 7 to standard GP 280 generations, and

ensemble9 to standard GP 360 generations. 187

11.24Training accuracy (%) comparison between the proposed ensemble

construction method and other methods found in literature. 189

LIST OF TABLES xix

11.25Test accuracy (%) comparison between the proposed ensemble con-

struction method and other methods found in literature. 189

11.26Comparison between the hybrid ensemble methods with the ensemble

construction methods. The best training and test result for each data

set is highlighted in bold. For each training and test set, a “**”

denotes that the best result is statistically significant when compared

to the other result, and a “†” denotes statistical insignificance. . . . 190

List of Algorithms

2.1 Generational GP algorithm. 7

2.2 Pseudocode for tournament selection. 18

2.3 Steady state GP. 23

6.1 Pseudocode for creating an attribute node using GPEI. 121

6.2 Alter interval genetic operator. 122

8.1 Pseudocode for encapsulation in the context of data classification. . . 134

8.2 Pseudocode of proposed GP algorithm with encapsulation. 136

8.3 Pseudocode for initialising the maintained list. 137

8.4 Pseudocode for updating the maintained list. 138

8.5 Pseudocode which selective encapsulation uses for adding terminals to

the GP trees. 139

9.1 Pseudocode of genetic algorithm for ensemble representation. 142

9.2 Pseudocode for GA mutation. 142

9.3 Pseudocode for GA one point crossover. 143

9.4 Pseudocode for GA-at-end. 145

9.5 Pseudocode for GA-after-each-gen. 146

9.6 Modified mutation GA operator. 148

9.7 Pseudocode for SSGA-GP. 149

10.1 Pseudocode for adding a tree to the ensemble. 154

10.2 Pseudocode for evaluating a GP tree. 158

10.3 Pseudocode for updating the weights. 159

xx

Chapter 1
Introduction

1.1 Purpose of the Study

Data classification techniques deal with creating classifiers which allocate a label to

data. These techniques use the existing data in order to produce these classifiers,

and once created, the classifiers are applied to new unseen data. An application

area which illustrates the purpose of data mining is the allocation of credit scores to

individuals. A credit score represents a numerical value which denotes the risk asso-

ciated to lending finance to an individual. Assume that a large database containing

relevant information about consumers and their credit behaviour is maintained, and

that through the use of data classification, a classifier is created. Provided a suitable

classifier is created, this could assist credit providers in assessing the risk involved

in providing financial support to new customers.

Various techniques have been applied to data classification, including statistical

methods such as Bayesian and regression methods, and evolutionary algorithms such

as genetic algorithms and genetic programming algorithms. Genetic programming

is inspired by nature. It has often been used to solve data classification problems

and has been successful in producing good classifiers [11]. Despite the large number

of studies which have addressed data classification by using genetic programming,

it is apparent from the literature that there are still certain areas of research which

have not been explored. These areas represent the rationale behind this dissertation

and are listed as the objectives in the following section.

1.2 Objectives

The primary objective of this dissertation is to develop, and evaluate the perfor-

mance of genetic programming in the domain of data classification, and to inves-

tigate certain areas of research which have not been previously addressed. The

1

CHAPTER 1. INTRODUCTION 2

objective of this dissertation is not to propose algorithms which will outperform all

the existing methods found in the literature, but instead, the objective is to conduct

an investigation on how several proposed genetic programming methods perform on

data classification problems. Tied in with the primary objective previously stated,

this dissertation will conduct a thorough analysis of the related literature on ge-

netic programming and data classification. Five objectives were formulated for this

dissertation and are listed below:

• Objective 1: Incorporating discretisation into genetic programming.

To determine and compare the performance of several proposed methods which

incorporate discretisation into a genetic programming algorithm. The pro-

posed methods will be applied to data sets in which the attributes are made

up of real values.

• Objective 2: Genetic programming representations for binary data classifica-

tion.

To determine the primary representations for genetic programming and data

classification, and to compare their performance in the context of binary data

classification.

• Objective 3: Creating an encapsulation genetic operator for data classification.

To incorporate, investigate and evaluate the encapsulation genetic operator in

the context of data classification. The objective is to determine whether the

performance of a genetic programming algorithm is impacted as a result of

incorporating this genetic operator.

• Objective 4: Hybridising evolutionary algorithms for classifier ensembles.

To propose, implement, and hybridise a genetic algorithm with a genetic pro-

gramming algorithm and conduct an analysis on variations of this hybridisation

in the domain of data classification.

• Objective 5: Creating a genetic programming ensemble construction method.

To propose and investigate an ensemble construction method which will create

genetic programming ensembles. The objective is to determine how a single

ensemble can be constructed using genetic programming.

CHAPTER 1. INTRODUCTION 3

1.3 Contributions

This dissertation makes the following contributions:

1. Discretisation is required when using decision trees and continuous data. There

has been no previous work which has incorporated discretisation into the ge-

netic programming algorithm. The findings of this study reveal that discreti-

sation can be successfully incorporated and that the proposed methods achieve

good results when compared to existing discretisation methods.

2. The choice of representation is an important decision to make when imple-

menting a genetic program. There has been no previous work comparing the

three major representations for binary classification. The findings of this study

show that decision trees provided the best overall accuracy; however, any of

the three representations can be used in order to achieve good results.

3. Functions are often used when writing a computer program. The encapsula-

tion genetic operator is used to achieve this purpose in the context of genetic

programming. There has not been any previous attempt to investigate the

encapsulation genetic operator for data classification problems. It was con-

cluded from the results that the encapsulation genetic operator can yield an

improvement in accuracy.

4. Based on a thorough investigation of the literature, it was found that ensemble

methods produce classification models which obtain better results than non-

ensemble approaches. This dissertation proposed four ways for combining a

genetic algorithm and genetic programming algorithm in order to improve the

accuracy of the classifiers. The proposed methods outperformed the standard

genetic programming approach. On certain data sets the proposed methods

outperformed other state-of-the-art ensemble approaches.

5. Contribution 4 proposed methods for evolving a population of ensembles. This

dissertation made another contribution to ensemble methods by proposing a

genetic programming ensemble approach which focuses on creating a single

classifier. Weights were associated to the instances of data in order to allocate

a level of difficulty to the instances. The findings revealed that the proposed

method outperformed the standard genetic programming method. The pro-

posed method further provides an alternative approach to existing boosting

algorithms.

CHAPTER 1. INTRODUCTION 4

1.4 Dissertation Layout

This section provides a summary of the chapters in this dissertation.

Chapter 2 - Genetic Programming

This chapter provides detailed descriptions about genetic programming, and sets the

foundation for this dissertation. Each process within the algorithm is thoroughly

described and analysed. This chapter also discusses the strengths and weaknesses

of genetic programming.

Chapter 3 - Data Classification

This chapter introduces the concept of data classification and describes the relevant

terminology. Previous work on data classification is discussed and details regarding

active research areas are provided.

Chapter 4 - Genetic Programming and Data Classification

Discussions regarding previous work which have used genetic programming to solve

data classification problems are presented in this chapter. The strengths and weak-

nesses of applying genetic programming to data classification are discussed.

Chapter 5 - Methodology

This chapter describes how the investigation on genetic programming and data clas-

sification will be performed, and how each objective will be met. The data sets are

described in this chapter.

Chapter 6 - Adaptive Discretisation for Genetic Programming

This chapter presents several algorithms which have been proposed in order to in-

corporate discretisation into the genetic programming algorithm.

Chapter 7 - Genetic Programming Representations for Binary Data

Classification

This chapter proposes an investigation on genetic programming representations for

binary data classification.

CHAPTER 1. INTRODUCTION 5

Chapter 8 - Genetic Programming Encapsulation for Data Classifi-

cation

Chapter 8 describes how a proposed encapsulation genetic operator can be used in

the context of data classification.

Chapter 9 - Hybridising Evolutionary Algorithms

A description of several algorithms for hybridising a genetic algorithm with a genetic

programming algorithm is discussed in this chapter. This chapter focuses on evolving

a population of ensembles.

Chapter 10 - Genetic Programming Ensemble Construction

This chapter presents an algorithm for evolving a single ensemble using genetic

programming.

Chapter 11 - Results and Discussion

Chapter 11 presents and discusses the results obtained by the investigations pro-

posed in chapters 6 to 10. The proposed methods are compared to standard genetic

programming and to other existing methods.

Chapter 12 - Conclusions and Future Work

Finally, this chapter provides a summary of the findings from the research presented

in this dissertation, and discusses how the objectives presented in chapter 1 have

been met. This chapter also describes future work which will be investigated.

Chapter 2
Genetic Programming

2.1 Introduction

This chapter introduces genetic programming and provides details and an analysis

on the different aspects of the algorithm.

Section 2.2 introduces genetic programming, this is followed by an overview of

the generational genetic programming algorithm in section 2.3. When using genetic

programming to solve a problem, a representation has to be chosen. Each repre-

sentation has its own function and terminal set, these two concepts are discussed

in sections 2.4 and 2.5 respectively. The tree based representation is discussed in

section 2.6. Three initial population generation methods are described in section

2.7, followed by a discussion on fitness in section 2.8. Two parent selection methods

are discussed in section 2.9; this is followed by section 2.10 which describes three

commonly used operators to generate offspring. Genetic programming is executed

until a certain condition is met, and this is discussed in section 2.11. The concept

of strongly-typed genetic programming is discussed in section 2.12. Control models

are highlighted in section 2.13. The concept of code reuse and modularisation is

discussed in section 2.14. Genetic programs suffer from bloat, which is described

in section 2.15. Like other evolutionary algorithms, genetic programming has its

own strengths and weaknesses; these are highlighted in section 2.16. Finally, sec-

tion 2.17 concludes this chapter and summarises the critical aspects of the genetic

programming algorithm.

2.2 Introduction to Genetic Programming

Genetic Programming (GP) was first introduced by Koza in 1992 [3] and deals with

evolving computer programs using biologically inspired methods. Each program

is represented as an individual in a population, and each individual competes for

6

CHAPTER 2. GENETIC PROGRAMMING 7

resources and survival, similar to the analogy of natural species competing for re-

sources such as food. Only the fittest or near fittest individuals survive, and they

give birth to new offspring in the hope that these offspring will be able to survive.

The process of giving birth to offspring is similar to the concept of genetic operators

(GO) which will be further discussed in section 2.10.

GP is stochastic and random in nature, and thus it cannot be guaranteed that

a solution to a problem will be found [1], nevertheless, GP has proved successful

in numerous application domains and has been used to create programs which are

better than those written by human programmers [2].

2.3 Overview of the Generational GP Algorithm

The generational GP algorithm [2] is presented in algorithm 2.1. The first step

is to randomly create the initial population of GP individuals. The size of the

population is a user defined parameter. The algorithm proceeds into a loop, and

each iteration of this loop represents a generation. The initial population is evaluated

by examining each individual in order to determine if a solution to the problem has

been found. If a solution is found, then the algorithm can terminate and output the

GP individual which solves the problem. However, if no solution exists within the

initial population, the algorithm continues. Four actions are performed during each

generation: evaluate the current population, apply the selection methods, apply the

genetic operators, and finally update the population.

Algorithm 2.1: Generational GP algorithm.

1 begin
2 Randomly create the initial population.
3 repeat
4 Evaluate the population.
5 Apply the selection methods and obtain parents.
6 Apply the genetic operators to the parents, and create offspring.
7 Replace the current population with the offspring.

8 until a solution to the problem has been found, or a termination criteria
is met ;

9 end
10 return The best individual from the population

The selection methods are applied to obtain parents for the genetic operators.

Once the parents have been obtained, the genetic operators are applied and the new

individuals - referred to as the offspring - replace the current population. In each

generation of the generational GP algorithm, the entire population is replaced by

the offspring. The new population is then evaluated and the process is repeated

CHAPTER 2. GENETIC PROGRAMMING 8

until one of the termination criteria are met.

Typically, the termination criteria is met when the maximum number of genera-

tions is reached, or once a solution to the problem has been found [3]. The algorithm

which has just been described is the generational control model. This shall be further

discussed in section 2.13. The following sections describe fundamental areas which

are related to the GP algorithm.

The even-3-parity problem will be used to assist with the description of certain

processes of the GP algorithm. This is a boolean problem (which has 3 input vari-

ables; x, y, and z) in which the task is to create a solution that can correctly output

whether a given string contains an even or an odd number of true values. The value

“true” is represented by a 1, and the value “false” is represented by a 0. Consider

the string 000, there are no 1s, thus since there are an even number of 1s, the output

is 1. Now consider the string “010”, in this case there is an odd number of 1s, thus

the output is 0.

2.4 Terminal Set

GP individuals represent candidate solutions to a problem. The problem will typi-

cally have a number of input variables which can be used to solve the problem. In

GP, the terminal set [1, 2] is made up of all the variables which are used to solve

the problem. The terminal set can also contain constants; these for example can be

integers, strings, characters, or floating point values which have some significance to

the problem domain.

Ephemeral random constants are also added to the terminal set. Whenever an

ephemeral random constant is added to the leaf node of an individual during the GP

execution, its value is randomly generated within a specified range, and this value

remains unchanged during the entire evolutionary process [1, 3]. For instance, let a

be an ephemeral random constant with a range of integer values [−1, 1]. Thus, at

any point during the evolutionary process, if a is selected from the terminal set, a

random integer value in the range of [−1, 1] will be chosen for it, and the value will

remain fixed for the duration of the GP execution. Thus, it is possible that when

terminal a is selected numerous times, different values are generated. The type and

range of the values for an ephemeral random constant are problem dependent.

Finally, any function with an arity of zero is included. Arity is the number of

arguments which a function has [2]; figure 2.1 illustrates different arity values. For

example, consider a random() function which generates random integers. Since such

a function has an arity of zero, it would be included in the terminal set. These

terminals are found at the leaf nodes in tree structures. In the case of the even-3-

parity problem, the terminal set will be made up of the three input variables, thus

CHAPTER 2. GENETIC PROGRAMMING 9

the set will be {x, y, z}.

Figure 2.1: Illustrating nodes with different arity.

2.5 Function Set

The function set contains all the functions specific to the problem domain which are

available to the GP algorithm [2]. Examples of such functions are arithmetic func-

tions, logical operators, loop statements and conditional statements. The function

set should be made up of functions which would be useful to the domain. In the case

of the even-3-parity problem, since this is a boolean problem, a possible function set

would include logical operators, such as {AND, OR, XOR}.
Below is a list of commonly used function sets extracted from [1,3].

• Arithmetic functions: {+,−,×, /}

• Mathematical functions: {sin, cos, tan, exp, square}

• Logical operators: {AND,OR,NOT}

• Conditional operators: {If − Then− Else}

2.6 Tree Based GP

As mentioned in section 2.3, the first step in the GP algorithm is to create the initial

population which is made up of GP individuals. These individuals - which are made

up of elements from the terminal and function set - need to be represented in some

manner. This section will discuss the tree based GP representation.

Trees, also known as syntax trees, are the most commonly used representation

for GP, and are made up of one or several nodes. The top most node is referred to as

the root, and the bottom most nodes are the leaves. Leaves are usually represented

by elements of the terminal set. Tree nodes which are non-leaves are represented

by elements from the function set. Trees are commonly output from a pre-order

traversal to improve readability; however, they are typically evaluated in an infix

order to ensure the correct evaluation of the mathematical or logical expressions

CHAPTER 2. GENETIC PROGRAMMING 10

which are represented by the trees. Figure 2.2 illustrates a GP based tree which

corresponds to the mathematical expression max(x+ x, x+ 3× y).

Figure 2.2: GP tree, extracted from [1].

2.7 Initial Population Generation

Once a suitable representation has been decided upon, an initial population can be

created. The initial population is referred to as generation zero. Several methods

exist for the creation of the initial population. Three common methods for creating

the initial population are the full method, the grow method, and finally the ramped

half and half method. Additional initial population generation methods for GP trees

were examined by Luke and Panait [12].

In order to maintain genetic diversity no duplicates should be created when

initialising the population; this is done in order to represent as much of the pro-

gram space as possible. Koza describes duplicate individuals in generation zero as

“unproductive deadwood” [3].

If only a small portion of the program space is being represented then the GP

algorithm may converge prematurely to a local optimum. However, if a sufficient

amount of the program space is represented then there is a greater chance of converg-

ing to the global optimum. Incidentally, if the program space being represented is

too large, then this can hinder GP’s ability to converge towards the global optimum.

Before the initial population generation is described, the term depth needs to be

defined. The depth of a node is the distance from the root node to that particular

node. The root node has a depth of 1. The maximum depth of a tree is the distance

CHAPTER 2. GENETIC PROGRAMMING 11

- in terms of the nodes - from the root of a tree to the bottom-most leaf. From figure

2.3, the tree has a maximum depth of 4. When creating the initial population for

tree structures, a maximum depth must be specified in order to limit the size of the

trees when they are created.

Figure 2.3: Illustrating the depth of each node within a tree.

2.7.1 Full method

Each individual created by the full method has the maximum possible size, in the

sense that the distance from the root node to each leaf is equal to the maximum tree

depth [3]. When creating a tree using the full method, provided that the maximum

depth has not been reached, an element from the function set is always selected.

The leaves are made up of elements of the terminal set. By using the full method,

the distance between all of the leaves and the root is equal to the maximum depth,

and consequently, all the trees in the population have the same depth. In figure 2.4,

the tree on the left illustrates the result of applying the full method when creating

a tree.

Depending on the arity of the functions, the trees might not all have the same

number of nodes. For instance, if the full method is used to create a tree using

functions of arity 2, then this particular tree will have less nodes than a tree created

using functions of arity 3. Regardless of the arity of the functions, all the leaves

within all of the trees will be at the same depth.

A consequence of the full method is that a large quantity of the trees in the

initial population will have a similar structure. Consequently, the initial population

is less diverse due to the similarity in tree structures. This lack of diversity can

result in the GP algorithm searching a restricted area of the program space, and

CHAPTER 2. GENETIC PROGRAMMING 12

thus hindering the performance of the algorithm.

2.7.2 Grow method

The grow method creates trees of different shapes and sizes [3]. When creating a

tree using this method, at each depth an element from the terminal set or from the

function set can be randomly selected. However, at the maximum depth, only an

element from the terminal set can be selected. In figure 2.4, the tree on the right

illustrates a tree which was created using the grow method.

This method benefits from the fact that trees of different sizes are created which

will result in greater diversity as opposed to the full method. Although the grow

method results in greater diversity, the method also suffers from the randomness

involved in creating the trees, which is highlighted by Poli et al. [1]. Consider

the 6-multiplexer problem; this problem has 6 input variables. In order to solve

this problem using a tree representation, all of the variables should be used. It is

possible, due to the randomness involved when creating the nodes, that the trees

created using the grow method are not sufficiently large enough to make use of all

the variables.

Figure 2.4: A tree created using the full method (left), and a tree created using the
grow method (right).

2.7.3 Ramped half and half

The ramped half and half method creates half of the initial population using the

grow method, and the other half using the full method [1]. Let size denote the

population size, and let d denote the maximum depth. Thus at each depth, a total

of size
d−1 individuals are to be created. Of these size

d−1 individuals, half of those must

be created using the grow method, and the other half using the full method. This

method of initial population generation has been proven successful and is commonly

used [1]. The reason behind this is that genetic diversity is maintained since trees

CHAPTER 2. GENETIC PROGRAMMING 13

of different shapes and sizes are created [3].

For example consider a population size of 6 and a maximum depth of 4 which

is illustrated in figure 2.5. Half of the population must be created using the grow

method, and the other half using the full method. Thus, since size = 6 and d = 4

a total of 2 individuals are to be created at each depth. Thus, the individuals are

created as follows:

• At depth 2: one tree using the grow method, one tree using the full method.

• At depth 3: one tree using the grow method, one tree using the full method.

• At depth 4: one tree using the grow method, one tree using the full method.

From the figure, the trees on the left represent those created using the grow method,

and the trees on the right were created using the full method. At a depth of 4, the

tree created using the grow method is much smaller than the one created using the

full method. This is because after the root was set to a function node, the next

created node was randomly assigned to an element of the terminal set.

Figure 2.5: Illustrating an initial population created using the ramped half and half
method.

CHAPTER 2. GENETIC PROGRAMMING 14

2.8 Fitness

In this section the concept of fitness is introduced. This is an essential part of

the GP algorithm and other evolutionary algorithms. The idea of fitness and fitness

functions is used to drive the algorithm towards the global optima. These are usually

problem dependent formulations and there are a vast amount of approaches present

in literature which deal with the concept of fitness in different ways. In this section

the fundamental ideas are presented.

2.8.1 Fitness cases

The ultimate goal of an evolutionary algorithm, including the goal of GP is to find

a solution to a problem. In order to evaluate an individual in the population, fitness

cases are required. The fitness cases represent input and output pairs to the problem

domain [2]. For instance, assume GP is used to evolve a mathematical function

given some values for the input variables, and their corresponding output value. In

this case the input and output pairs are known however, the actual mathematical

expression is unknown, and the goal of a researcher would be to create an expression

which models the data. In this scenario the input variables and their output value

represent the fitness cases.

Banzhaf et al. state that a “machine learning system goes through the training

set [or fitness cases] and attempts to learn from the examples” [2]. Hence GP must

evolve a program which is able to map the input variables onto the output variables

of those examples specified as the fitness cases.

The fitness cases must represent a sufficient amount of the problem domain since

GP will evolve solutions which meet as many of these fitness cases as possible. Thus,

if the problem domain contains an infinite number of cases, a sufficient amount of

these cases must be included, as well as those of particular interest to the problem.

For example, consider generating fitness cases in which GP is being used to create

a solution to the factorial problem. For input values greater than 1, the factorial of

the input is computed in the same manner. Two particular cases which have to be

included in the fitness cases are when the input is 0 or 1, as these both generate an

output of 1.

Table 2.1 illustrates an example of fitness cases for the even-3-parity problem.

In this situation the input variables are x, y, and z, and the output variable is also

illustrated. Based on the fitness cases in the example, the goal of GP is to evolve

an individual which will correctly map the three input variables onto the output

variable for each fitness case.

CHAPTER 2. GENETIC PROGRAMMING 15

x y z output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Table 2.1: Fitness case for the even-3-parity problem.

2.8.2 Fitness functions

As previously stated, the fitness cases are made up of input/output pairs, however, a

numerical measure is required in order to determine how good an individual actually

is. In other words, a measure is required to determine how close/far an individual is

from a perfect solution, and this measure can be used to compare one individual to

another. Fitness functions are used to obtain a fitness value for each GP individual.

Banzhaf et al. define fitness as a “measure used by GP during simulated evolution

of how well a program has learned to predict the output(s) from the input(s)” [2].

Additionally, the fitness value is used to determine which areas of the program

space are useful in solving the problem [1]. The raw fitness denotes the fitness of

GP individuals with respect to the problem domain [3]. Thus the raw fitness for one

problem may be different to the raw fitness in another.

The number of hits is the number of fitness cases for which an individual produces

the same output as the fitness cases. In certain cases the raw fitness is equal to the

number of hits. From this formulation, the greater the number of hits, the better

an individual is.

Since in certain problem domains, a lower raw fitness may represent a better

individual, and in other domains, a higher raw fitness represents a better individual;

an alternative measure is to use the standardised fitness. A lower numerical value

denotes a better individual when the standardised fitness is applied [3]. One way to

formulate the standardised fitness is to use the raw fitness in the following way: if

the problem is a minimisation problem (in which case a lower raw fitness represents a

better individual), then the standardised fitness is equal to the raw fitness. However

if the problem is a maximisation problem, then a higher raw fitness represents a

better individual, and thus the standardised fitness can be formulated as rawmax −
rawfitness, where rawmax denotes the maximum possible raw fitness value for the

problem [3].

Fitness functions can have either have a single objective, or multiple objectives.

CHAPTER 2. GENETIC PROGRAMMING 16

Fitness functions play an important role in guiding the GP algorithm towards the

global optimal solution. The function needs to be correctly defined in such a way

so that individuals representing weaker areas of the program space are not confused

to be stronger areas and vice versa. Additionally, the fitness function must be able

to determine near-solutions as well as solutions to the problem. Examples of fitness

functions for solving different problems are listed below:

• In a symbolic regression problem, a suitable fitness function would be the

cumulative absolute value in difference between the correct output and the

output of the individual across the fitness cases [3].

• In the case of data mining, one could define a fitness function which measures

the percentage of instances which GP is able to correctly recognise from the

fitness cases [13].

• In solving the artificial ant problem, a fitness function could be one that de-

termines the number of pieces of food which has been picked up [3].

• In solving the 11 multiplexer problem, the raw fitness was defined as the num-

ber of hits [3].

• In the game Ms. Pac-Man, the fitness function favoured higher scores by

adding the scores for the pills, power pills and ghosts eaten [14].

Multi-objective fitness functions are made up of two or more different objectives.

A GP algorithm which implements this approach is referred to as a multi-objective

genetic program (MOGP). A MOGP algorithm deals with simultaneously finding

optimal solutions in order to meet as many of the objectives as possible [1].

A simple example of a multi-objective fitness function for a maximisation prob-

lem is one which computes the number of hits, as well as the size of an individual.

For instance, fitness = rawfitness − treesize, where treesize represents the number

of nodes within a tree. Thus, GP would favour those trees with a higher number of

hits which simultaneously represent smaller trees.

2.9 Selection Methods

Selection methods allow GP to select the individuals - known as parents - which

are used to create offspring. There are numerous selection methods; however, this

section reviews two common methods, the fitness proportionate and the tournament

selection methods.

CHAPTER 2. GENETIC PROGRAMMING 17

2.9.1 Fitness proportionate selection

Fitness proportionate selection [3] is more computationally expensive when com-

pared to tournament selection as it requires additional calculations to be performed

for each individual in the population. Firstly the adjusted fitness has to be calcu-

lated. Once obtained, a normalised fitness has to be calculated. The reasons for

doing so is that it results in fitness values between 0 and 1, and the sum of all the

fitness values adds to 1. The normalised fitness is then multiplied by the number of

individuals in the population to determine the number of occurrences of each indi-

vidual in a mating pool. An individual is randomly selected from the mating pool

and is returned to be a parent.

• Adjusted fitness:

a(i, t) = 1
1+s(i,t)

where s(i, t) corresponds to the standardised fitness. The standardised fitness

transforms the raw fitness of an individual in such a way that a lower value represents

a fitter individual. In the situation where a lower value represents a fitter individual,

i.e. a minimisation problem, then s(i, t) = r(i, t) where r(i, t) is the raw fitness.

Otherwise, if the problem is a maximisation problem, then s(i, t) = rmax − r(i, t),
where rmax is the maximum possible fitness for the problem.

• Normalised fitness:

n(i, t) = a(i,t)∑M
k=1 a(k,t)

where M corresponds to the population size.

Individual Standardised
Fitness

Adjusted
Fitness

Normalised
Fitness

Number
of Occurrences
in Mating Pool

Tree 1 30 0.03 0.09 0.34 ≈ 0

Tree 2 15 0.06 0.17 0.69 ≈ 1

Tree 3 5 0.17 0.49 1.94 ≈ 2

Tree 4 10 0.09 0.26 1.03 ≈ 1

Total 0.35 1.00 4

Table 2.2: Illustrating fitness proportionate selection.

Table 2.2 illustrates how the fitness proportionate selection method is applied.

The first step is to compute the adjusted fitness (column 3), and then to compute

the normalised fitness (column 4). The number of occurrences (column 5) that each

tree will appear in the mating pool is determined by multiplying the normalised

CHAPTER 2. GENETIC PROGRAMMING 18

fitness with the population size, in this case the population size is 4. The number of

occurrences are rounded up, and from the example, the mating pool is {tree 2, tree

3, tree 3, tree 4}. Parents are then randomly selected from the mating pool.

A disadvantage of fitness proportionate selection is that an individual with a high

normalised fitness will appear several times in the mating pool, and consequently

there is a greater probability that it will be selected several times. Furthermore,

individuals with a low normalised fitness will never be selected. By selecting the

same individual to be the parent, this will result in a loss of diversity due to the fact

that the same parents will be used repeatedly. This could further lead to premature

convergence.

2.9.2 Tournament selection

Tournament selection [2] is dependent on the tournament size. A subset of individ-

uals is created by randomly selecting individuals from the population; the size of

this set is equal to the tournament size. The fitness of each individual in the subset

is calculated and the fittest individual is returned. This fittest individual which

is returned represents the parent which will then be used to create offspring. The

pseudocode for tournament selection is presented in algorithm 2.2.

Algorithm 2.2: Pseudocode for tournament selection.

input : tournament size

output: A GP individual

1 begin

2 for i← 1 to tournament size do

3 random individual ← randomly select an individual from the GP

population.

4 if i = 1 then

5 best individual ← random individual

6 end

7 else

8 Compare best individual and random individual and store the one

with the higher fitness to best individual.

9 end

10 end

11 return best individual

12 end

The tournament size dictates the selection pressure [2]. If the tournament size is

small then there is a small amount of selection pressure. The opposite can be said for

a large tournament size whereby it results in a greater amount of selection pressure.

CHAPTER 2. GENETIC PROGRAMMING 19

A large tournament size leads to an elitist GP algorithm which could converge

prematurely to a local optimum. Tournament selection is a commonly used selection

method. In comparison to the fitness proportionate method, tournament selection

benefits from the fact that a selection pressure can be used. If the tournament size is

selected correctly, then tournament selection will maintain diversity and additionally

drive the GP algorithm towards a solution. Additionally, tournament selection does

not require the extra computations involved in calculating the adjusted fitness and

the normalised fitness.

2.10 Genetic Operators

Genetic operators (GOs) represent the search operations which are used by the GP

algorithm. Koza [3] mentions that if two programs are capable of solving a certain

problem to a certain extent, then there are some useful parts within those two

programs that contribute to the program’s performance. Thus Koza states that by

recombining random parts of the parents the resulting programs may be even better

at solving the problem [3].

GOs are used to combine, alter or duplicate the genetic material from the parents

to obtain offspring. Typically, the initial population will contain individuals which

are not able to solve the problem at hand. GOs are thus applied to these individuals

in the hope that they will drive the population towards a solution. Thus the GOs

are used to transform the population [2]. These offspring are of different shapes

and sizes when compared to their parents. The parents are obtained by a selection

method as described in section 2.9.

Each genetic operator can be categorised as being a local or a global search

operator. A global search operator allows an evolutionary algorithm to explore

different areas of the program space. On the contrary, a local search operator is one

which makes use of exploitation to examine the surrounding areas of the program

space in which the evolutionary search is currently situated. GP makes use of

the GOs to traverse the program space using exploration and exploitation. The

application rate of the GOs will affect the evolutionary process. If a large amount

of global search is used, then the GP algorithm will jump to random areas of the

program space and may never have an opportunity to converge towards the global

optimum. Conversely, if a large amount of local search is applied, then the GP

algorithm may end up being stuck in a local optimum and not have an opportunity

to explore other areas of the program space.

The three most common GOs are the crossover, mutation, and reproduction

operators. Koza [3] presents additional operators (permutation, editing, and deci-

mation) which can be applied to GP; however, these will not be examined in further

CHAPTER 2. GENETIC PROGRAMMING 20

detail.

2.10.1 Reproduction

The reproduction operator copies a parent across to the next generation by simply

duplicating the individual and making no alterations to it [1–3]. The reproduction

operator is a local operator since it makes no alterations to the parent being copied

across.

2.10.2 Mutation

The mutation operator [1–3] creates an offspring by mutating a single parent as

follows. A mutation point, p, is randomly selected in the parent, and the subtree

rooted at the point is removed. A new randomly generated subtree is inserted at

point p. Mutation can cause trees to grow rapidly and thus pruning is used to ensure

that individuals do not grow beyond a certain size. Pruning is achieved by replacing

any function node at the maximum tree depth with a terminal node. Mutation is

a global operator due to the fact that random subtrees are created at the mutation

points which can result in a significant difference between the offspring and the

parent. Consequently, the mutation operator does not promote convergence. Figure

2.6 illustrates the mutation operator.

Figure 2.6: Mutation operator, adapted from [1].

2.10.3 Crossover

The crossover operator creates two new offspring which are formed by taking parts

(genetic material) from two parents [3] [2]. The operator selects two parents from

the population based on a selection method. A crossover point is then randomly

selected in both trees, say point p1 and p2, from tree t1 and t2 respectively. The

CHAPTER 2. GENETIC PROGRAMMING 21

crossover then happens as follows: the subtree rooted at p1 is removed from t1 and

inserted into the position p2 in t2. The same logic applies to the point p2; the

subtree root at the point is removed from t2 and inserted into the place of p1 in t1.

Figure 2.7 illustrates the crossover operator. Crossover promotes convergence and

is a local search operator.

Figure 2.7: Crossover operator [2].

2.11 Termination

Koza states that the GP “paradigm parallels nature in that it is a never-ending

process” [3]. This obviously is not feasible, hence the GP algorithm should terminate

once a success predicate is met. The success predicate can be defined in different

ways however the most common one is to find a solution which has a hits ratio of

100%, i.e. a perfect solution to the problem. The success predicate can be problem

dependent [1] and thus defined differently from one problem to another. However

in certain problem domains, aiming for a perfect solution is not reasonable, hence

once a near-solution is found the GP algorithm can terminate.

CHAPTER 2. GENETIC PROGRAMMING 22

2.12 Strongly-Typed GP

Strongly-typed genetic programming [15] enforces constraints on the nodes within a

representation. A type is allocated to the terminals and functions, and consequently,

this guarantees that syntactically correct trees are evolved. Strongly-typed GP will

ensure that during the initial population generation and application of the GOs, the

types of the functions and terminals are respected and not violated. Additionally,

strongly-typed GP reduces the size of the program space by limiting the different

combinations of functions and terminals [15].

The If-Then-Else function is one which requires strongly-typed GP. This function

is illustrated in figure 2.8, and each of the three arguments can be assigned a type.

The If-Then-Else function has an evaluation (the If part) and two consequences

(the Then and Else parts) which are executed respectively based on the evaluation.

Assume a boolean type is assigned to the If part as illustrated in figure 2.8; as a

result of strongly typed GP, the If part should always return a boolean type and

this enforcement cannot be violated. Thus variables x and y have to be boolean

types.

When applying GOs to strongly-typed GP, it must be ensured that the assigned

types are not violated. Thus assume in figure 2.8 that the terminal x is selected as

a mutation point, it must be ensured that the new subtree at this point will return

a boolean value. If the assigned types are violated, then the trees would be invalid.

Figure 2.8: If-Then-Else function.

2.13 GP Control Models

There are two major control models which can be used when implementing a GP

algorithm, a generational control model and a steady-state control model [2]. The

models control the population and how they evolve. The generational control model

CHAPTER 2. GENETIC PROGRAMMING 23

was presented in section 2.3. In this model, at each generation, the entire current

population is replaced with a new one which is obtained by applying the GOs.

In a steady-state control model, there are no explicit generations [2]. Algorithm

2.3 illustrates a steady-steady GP algorithm [2]. A fixed population size is preserved

throughout the execution of the algorithm. The algorithm iterates several times by

randomly selecting a subset of individuals from the population and replacing those

individuals with the offspring. These iterations are referred to as generations. A

generational equivalent is when the subset of individuals is equal to the population

size [16].

Individuals with a low fitness are replaced by the offspring, and in comparison

to a generational GP model, the entire population is not replaced with a new popu-

lation. This replacement is referred to as the replacement strategy. The replacement

strategy is essentially an inverse selection method, such as an inverse fitness propor-

tionate selection, or inverse tournament selection. In an inverse selection method,

the worse individuals are returned.

Algorithm 2.3: Steady state GP.

1 begin
2 Randomly create the initial population.
3 repeat
4 Randomly select individuals from the population to take part in a

tournament.
5 Evaluate those individuals.
6 Obtain the winner(s).
7 Apply the genetic operators to the winner(s).
8 Replace the losers in the tournament with the offspring created.

9 until a termination criteria is met ;

10 end
11 return The best individual from the population

2.14 Modularisation

Several operators have been designed in such a way that they can preserve parts of

the GP individual. These preserved parts can then be further reused within other

individuals. The goal in this approach is to capture good building blocks so that

the GOs cannot alter these building blocks. Two of the methods described in this

section are GOs which achieve modularisation.

CHAPTER 2. GENETIC PROGRAMMING 24

2.14.1 Encapsulation

Koza [3] defined the encapsulation operator as one which selects a subtree from

a tree and gives it a name. This named subtree (encapsulated function) can be

referenced by other individuals in future generations. A single parent is obtained

using a selection method, then a random function node is selected from the parent.

Since a function node does not have an arity of zero it means that the function node

has a subtree. This subtree is removed from the parent and is given a name, say

E0, and is stored in memory. The deleted subtree in the parent is replaced with the

encapsulated function E0. These encapsulated functions are added to the terminal

set and have an arity of zero. The next time the encapsulation operator is executed

the new encapsulated function will be named E1, and similarly each encapsulated

function will be named in a numerically ordered manner. When a tree is evaluated,

if an encapsulated function is present, this subtree represented by the encapsulated

function is called from memory, thus the encapsulation operator does not affect the

evaluation of a tree.

Koza states that the encapsulated functions are “no longer subject to the poten-

tially disruptive effect of crossover” [3], and thus this operator is useful in preserving

good building blocks. However from the original definition of the encapsulation op-

erator made by Koza, there is no mention on how the good building blocks are

selected. The building blocks are randomly selected and hence there is no guarantee

that the GP algorithm will preserve good building blocks. Figure 2.9 illustrates

the encapsulation operator. The dashed lines represent the subtree which is encap-

sulated when the multiplication function is selected. The tree on the right is the

result of the encapsulation operator whereby the original subtree is replaced with

the terminal E0.

Figure 2.9: Encapsulation operator, adapted from [3].

CHAPTER 2. GENETIC PROGRAMMING 25

2.14.2 Compression

Modular acquisition was also investigated by Angeline and Pollack [4]. A com-

pression operator was developed which compresses a part of a tree up to a certain

depth. A random subtree is selected up to a randomly selected depth d, and this

selected portion of the tree is removed from the original tree and replaced with a

new function. If the nodes at depth d have an arity of zero, then this operation

is identical to the encapsulation operator [17]. However, it may occur that there

are additional functions or terminals which are at a lower depth than the selected

portion, in this case, all of the extra branches that are below the selected portion

are used as arguments to the new function.

Each created compressed function is allocated a name, say Ci, and these functions

are added to the function set. Angeline and Pollack point out that through the use

of compression, the functions created are made up of a “higher level of abstraction

from the components which comprise it” [4]. In a similar fashion to encapsulation,

the compression operator protects the subtrees from the destructive operators.

Figure 2.10 illustrates the compression operator. In this instance, the dashed

lines represent the subtree which was randomly selected with a cut-off depth of 2

from the or function. The tree on the right illustrates the result of the compression.

Since in this case there were additional branches extending from the cut-off depth,

these elements have been added as arguments to the newly created function. The

new function has an arity of 3.

Figure 2.10: Compression operator, adapted from [4].

CHAPTER 2. GENETIC PROGRAMMING 26

2.15 GP and Bloat

Before introducing the concept of bloat, introns should be discussed. Introns are

defined as redundant code in GP individuals which have no overall affect towards its

fitness [1]. An intron does not directly affect the survivability of the GP individual

[2]. Examples of introns in prefix notation are, (AND 1 1), (MOVE-UP MOVE-

DOWN), (OR 0 0). Bloat occurs when the individuals in a GP population grow

uncontrollably to their maximum tree depth. The exponential growth of introns

leads to bloat [2]. Bloat will most certainly occur if no measure is installed to

prevent it. Introns clearly have an effect on bloat however it can be argued that the

exponential growth of introns acts as global protection [2]. The crossover operator

can have a destructive effect if it removes good parts from a GP individual. The

destructive effect is reduced if the crossover operator removes an intron from a tree

instead of a good building block. As the GP algorithm iterates, the individuals

get fitter, and eventually the GP algorithm will find it difficult to further improve

individuals. Once bloat occurs, the GP algorithm will struggle to improve the fitness

of the current best individual found so far. Thus, it can be argued that introns have

a positive effect on individuals, however, they consequently lead to bloat nonetheless.

Luke and Panait [18] discussed several methods for controlling bloat.

2.16 Strengths and Weaknesses of GP

2.16.1 Strengths

• Since GP relies on randomness and uses a random seed on each execution of

the algorithm, a different solution can be obtained on each run.

• GP evolves programs which in turn resemble computer programs. Thus the

GP solutions are often easily understood and executable.

• Little prior knowledge of the problem domain is required. Once a set of fit-

ness cases has been obtained, and suitable functions and terminals have been

formulated, GP is then able to evolve solutions.

• Several areas of the GP algorithm can be parallelised in order to speed up the

computational time.

2.16.2 Weaknesses

• GP suffers from the large amount of parameters which need to be optimised

for different problem domains.

CHAPTER 2. GENETIC PROGRAMMING 27

• GP can suffer from large run times, especially if there are a large number of

fitness cases which can slow down the evaluation of the population.

• Premature convergence is one of the major issues with GP. The lack of genetic

diversity and destructive effects of the crossover operator can result in the GP

algorithm getting stuck in a local optima.

• There is no guarantee that GP will find the global optimum solution to a given

problem due to the random nature of the GP algorithm.

There are ways of addressing the some of shortcomings of GP. When dealing with

a large number of fitness cases, the evaluation phase of the GP algorithm tends to

be a bottleneck, and thus a possible solution is to parallelise the evaluation phase.

Harding and Banzhaf [19] make use of a graphics processing unit to speed up the

evaluation. A successful investigation by Ciesielski and Mawhinney [20] showed that

a similarity replacement - where similar individuals in the population were replaced

with a new random individual - resulted in a greater number of solutions; thus

dealing with the issue of premature convergence. When running a GP algorithm, if

solutions to the problem are not found, then experimenting with the GP parameters

can improve the algorithm’s ability to find a solution.

2.17 Conclusion

This chapter provided a description of the GP algorithm. The generational GP

algorithm was presented and each process of the algorithm was described. When

implementing GP, one has to first consider which representation is most suitable

for the problem. This chapter described the tree based GP representation. Once

a representation has been chosen, the initial population has to be created. Three

initial population generation methods were described, with the ramped half and

half being the most commonly used method. The choice of the method will affect

the structure of the trees and can impact the diversity amongst the population.

When the initial population has been created, the individuals have to be evaluated.

The evaluation is carried out using a fitness function and fitness cases. The fitness

cases need to be selected in such a way as to sufficiently represent the problem

domain. The fitness function will vary depending on the problem domain. Parents

are required in order to create offspring. Two selection methods were discussed, and

the tournament selection method allows one to have flexibility over the selection

pressure. In order for GP to explore the program space, GOs are applied to the

parents to create offspring. Three GOs were discussed and their effects on the

evolutionary process were highlighted. A combination of crossover and mutation

can permit GP to make use of exploration and exploitation to traverse the program

CHAPTER 2. GENETIC PROGRAMMING 28

space. In GP, modularisation can be achieved using encapsulation or compression;

these two GOs were described in this chapter. Two well-known control models

were described. Although GP suffers from several disadvantages, it has been used

in numerous studies and has been proven successful in solving a vast number of

problems [1, 2].

Chapter 3
Data Classification

3.1 Introduction

This chapter first introduces data classification in section 3.2, and then provides

clarification of terminology pertaining to data classification in section 3.3. Details on

performance measures and how the data is used to evaluate classifiers are presented

in sections 3.4 and 3.5 respectively. Section 3.6 describes other methods which have

previously been applied to data classification. A discussion on active research areas

in data classification is presented in section 3.7. Existing software which can be used

for data classification is highlighted in section 3.8. Finally, section 3.9 concludes this

chapter.

3.2 Introduction to Data Classification

In machine learning, data classification is a technique whereby a classifier is created

in order to allocate a class label to an instance of data [10]. The data is made up

of several attributes (for example blood type) and each attribute has corresponding

values (for example A+, AB-, O+). Alpaydin [21] describes a credit scoring example

in which the data includes information about customers (for instance, income and

profession) and, for this data, the objective is to create a classifier which is able

to correctly classify the customers within the data as either low-risk or high-risk

customers. In supervised learning, a classifier is built from known instances and

their corresponding class, and in turn a classifier should be able to predict the class

for unseen instances.

A number of problems can be formulated as classification problems. Applications

of classification include:

• credit scoring [22]

29

CHAPTER 3. DATA CLASSIFICATION 30

• image recognition [23]

• medical diagnosis [24]

• handwritten character recognition [25]

Figure 3.1 outlines the overall classification process. Initially, the data has to be

collected in some manner; this can be achieved in a number of ways, such as con-

ducting a survey or recording values from a device. The data is then combined to

create a data set. Pre-processing steps such as feature selection is then performed

if necessary. A training set is created from the data set, and then a classifier is

developed. Once the classifier has been developed, it is evaluated on a test set. This

chapter deals with providing an overview of the processes - from the creation of the

training set, to the evaluation of the classifiers.

Figure 3.1: The classification process.

3.3 Definitions

The following section presents several definitions of terms which are commonly used

in data classification. A sample data set is presented in figure 3.2 in order to assist

with the explanations.

3.3.1 Instance

An instance represents an entity described by one or more attributes [26]. Instances

are typically visually represented as rows within a data set, and an example of an

CHAPTER 3. DATA CLASSIFICATION 31

instance is presented by the bold rectangle in figure 3.2. For this particular instance

shown in the figure, the value for outlook is “Sunny”, the value for temperature is

“Hot”, the value for humidity is “High”, and the value for windy is “True”, and

finally, the output for this instance, being whether or not to play, is “No”. An

instance contains a value for each attribute, and a value for the class.

Figure 3.2: A sample data set. The weather data set, adapted from [5].

3.3.2 Attribute

An attribute, or feature, can be described as a variable which represents a particular

characteristic of a data set [10,26]. An attribute can be either numerical or categor-

ical. Numerical attributes can be categorised as being either discrete or continuous.

Discrete values usually consist of integers, whereas continuous attributes consist of

real valued numbers. Categorical attributes, on the other hand, are made up of a

finite set of values which “puts objects into categories, e.g. the name or colour of

an object” [10]. A categorical attribute could be made up of integer values; how-

ever, they should have no mathematical significance [10]; these integer values should

merely be labels.

For instance, height, age, or gender, are possible examples of attributes, and in

turn these attributes will have values of a different type; continuous values, integer

values, and categorical values respectively. Since the height attribute is continuous,

and assuming the values were measured to two decimal places, then typical values

could include 150.33, 185.65, or 191.22. Since gender is a categorical attribute, there

are two possible values for this attribute; male or female. The attributes are visually

represented as columns within a data set; as seen in figure 3.2. This data set has

four attributes, namely, Outlook, Temperature, Humidity, and Windy.

CHAPTER 3. DATA CLASSIFICATION 32

3.3.3 Class

A class is the target output for each instance of data. In data classification, the

goal of a machine learning algorithm is to predict the class through the use of the

attributes. The class should be thought of as an output value, whereby a machine

learning algorithm uses all the attributes as input. From the sample data set in

figure 3.2, the classes are “Yes” and “No”.

An instance of data typically contains a single class; however, this may not always

be the case. When more than one class is present, these instances are referred to as

multi-labelled instances [5]. In this case, an instance can belong to more than one

class.

3.3.4 Data set

A data set refers to the complete set of instances of data [10]. A data set consists of

a number of instances of data which are in turn built up of several attributes. Each

instance of data has a class value and thus a data set has several classes. A binary

data set is one with only two classes. In a classification task, when a binary data set

is used, the machine learning task is then referred to as binary classification. When

a data set consists of more than one class, the machine learning task is referred to

as multiclass classification. In figure 3.2 the data set is represented by the dotted

lines, i.e. the entire table of data is the data set. For this data set, the task is thus

to determine whether or not to play some game based on the weather conditions.

There are two classes, no and yes.

Data sets play a vital role in the development of data classification algorithms and

also in the comparison between different algorithms. There are several repositories

available for researchers to use in order to test their algorithms. One of the most

commonly used one is the UCI machine learning repository [27]. To this date, the

repository contains over 200 data sets for classification.

It is common practice that when a new algorithm is developed, researchers will

compare the performance of the algorithm on several data sets in the UCI machine

learning repository [10]. However, if a new classifier performs well on certain data

sets, this does not necessarily imply that the algorithm is good [10] and thus a

researcher should take care as to test the performance over several data sets.

When a class within a data set is known, applying data mining techniques to

such a data set is known as supervised learning. Conversely, applying data mining

techniques to a data set without a known class is referred to as unsupervised learning.

CHAPTER 3. DATA CLASSIFICATION 33

3.3.5 Class balance

The class balance of a data set refers to the number of instances within each class

and the ratio between them [28]. If there are approximately an equal number of

instances in each class, then the data set is said to be well-balanced. An imbalanced

data set is one whereby one or more classes have a number of instances significantly

smaller than the number of instances in the other classes. Assume, for instance, that

for particular a data set, 90% of the instances specify class A as the output, and

10% specify class B, then this data set is considered to be imbalanced. Imbalanced

data sets increase the complexity of the data classification process due to the fact

that more data is available for one class, and thus learning from such a data set will

result in a bias towards the majority class [29].

From figure 3.2, in the class column, one can see that there are 3 no labels

(approximately 43% of the total data), and 4 yes labels (approximately 57% of the

total data), thus it can be said that this data set is well-balanced.

3.3.6 Classifier

A classifier is an algorithm that can discriminate between several classes [26]. Clas-

sifiers are created in the hopes that they are able to correctly allocate class labels

to as many instances of data as possible. Let x consist of a vector representing the

value of each attribute for an instance of data, thus xi = {xi,0, xi,1, ..., xi,n} where n

represents the total number of attributes within a data set, and xi,j represents the

value of instance i for attribute j. Let wi correspond to the class value for the ith

instance of data.

The goal of a machine learning algorithm is to create some function φ whereby

φ(xi) = wi [26]. The function φ can be represented in various ways, for example

through the use of mathematical mappings, decisions, or logical rules. An example

of a simplistic classifier which is based on the data set in figure 3.2 would be:

IF outlook = rainy THEN don’t play

ELSE play

The output from the simplistic classifier in comparison to the data set is illus-

trated in table 3.1. An instance is correctly classified when the class value matches

the output of the classifier. The simplistic classifier is able to correctly classify 3

instances, the third, sixth, and the seventh. The ultimate goal is thus to create a

classifier which is able to correctly classify all of the instances of data within the

data set.

CHAPTER 3. DATA CLASSIFICATION 34

Instance Class - Play Simplistic classifier output

1 No Yes

2 No Yes

3 Yes Yes

4 Yes No

5 Yes No

6 No No

7 Yes Yes

Table 3.1: Class output from figure 3.2, and the output for the simplistic classifier.

3.4 Performance Measures

Performance measures are used to interpret the quality of a classifier. In this section

several performance measures will be described.

3.4.1 Confusion matrix

The confusion matrix “describes how well a classifier can recognise different classes”

[7] and provides a way of obtaining a breakdown of the performance of the classifier.

This breakdown clearly illustrates how many instances of data from a particular

class, say x, were classified as being class x and how many of them were classified as

another class [10]. The confusion matrix can be used to determine the performance of

classifiers for both binary and multiclass classification problems. Table 3.2 illustrates

the layout of a confusion matrix for a binary classification problem.

There are four terms which are used when using a confusion matrix, these terms

are defined below [7, 10]. In the following definitions the two classes are labelled

positive and negative.

• True Positive (TP): these are instances from the positive class that have been

correctly classified as being positive.

• True Negative (TN): these are instances from the negative class that have been

correctly classified as being negative.

• False Negative (FN): these are instances from the positive class that have been

incorrectly classified as being negative.

• False Positive (FP): these are instances from the negative class that have been

incorrectly classified as being positive.

CHAPTER 3. DATA CLASSIFICATION 35

Correct classification
Classified as

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 3.2: Confusion matrix, extracted from [10].

A confusion matrix can be generalised to analyse the performance of classifiers

which are created for multiclass problems. In this case, if there are c classes, a c by

c table is created, and index (i, j) represents the number of instances from class i

that have been classified as class j [7].

From the terms defined above, it is possible to define additional performance

measures. The first is the accuracy measure, and is defined as the the following

percentage: the total number of correctly classified instances divided by the total

number the instances in the data set [7,10]. For a binary classification problem the

accuracy is defined as [7]:

Accuracy(classifier) = TP+TN
TP+TN+FP+FN

It is also common practice to report on the error rate, which is defined as [7]:

Error(classifier) = 1−Accuracy(classifier)

3.4.2 Sensitivity and specificity

The accuracy measure described above can suffer from a flaw which can have a sig-

nificant impact based on the nature of the classification task. For instance, consider

creating a classifier for determining whether or not individuals have a medical issue

or not.

Classified positive Classified negative

Positive instances 10 20

Negative instances 20 50

Table 3.3: Illustrating accuracy paradox - classifier 1 confusion matrix.

Classified positive Classified negative

Positive instances 0 30

Negative instances 0 70

Table 3.4: Illustrating accuracy paradox - classifier 2 confusion matrix.

Classifier 1, illustrated in table 3.3, results in an accuracy of 60% whereas classi-

fier 2, illustrated in table 3.4, has an accuracy of 70%. Thus one would assume that

classifier 2 is more promising than the other. However, classifier 2 is of no use in the

CHAPTER 3. DATA CLASSIFICATION 36

medical domain, as it does not correctly classify any of the cases pertaining to the

medical issue since none of the individuals who had the medical issue were classified

as true positive. This problem is known as the accuracy paradox. In order to deal

with this, two additional performance measures are presented, the sensitivity and

specificity measures.

The sensitivity represents the percentage of positive instances that were correctly

classified as being positive [7, 10] and is defined as,

Sensitivity(classifier) = TP
TP+FN

The specificity represents the percentage of negative instances that were correctly

classified as being negative [7, 10] and is defined as,

Specificity(classifier) = TN
FP+TN

3.4.3 Receiver operating characteristics

Receiver Operating Characteristics (ROC) [6] graphs are commonly used when cre-

ating a classifier for binary classification. A ROC graph plots the FP rates on the x

axis and the TP rates on the y axis. An example of a ROC graph is illustrated in

figure 3.3. When a classifier is applied to a test set, the corresponding TP and FP

rates can be obtained and represented as one point on the ROC graph. Points from

multiple different classifiers that have been evaluated on the same test set may be

plotted on the same ROC graph, providing a way to visually compare their perfor-

mance. In an ideal situation, a classifier will generate a point at (1.0, 0.0), denoted

as point “x” in the figure, which represents a TP rate of 100% and a FP rate of 0%

implying that all the instances were correctly classified. The worst situation is rep-

resented by the point (0.0, 1.0) whereby the TP rate is 0% and the FP rate is 100%

and consequently all the instances have been incorrectly classified. The line y = x

is represented by random guessing, and any point on the line represents a classifier

which guesses the positive class x% of the time. Any point below this line, such

as point “p”, represents a classifier which is worse than random guessing [6, 10, 26].

Thus generally speaking, a point which is located to the top-left of another point

represents a better classifier [10]. Typically a single point in a ROC space is not used

in literature when comparing performance; instead a ROC curve is constructed. A

complete description on how to create ROC curves is presented by Fawcett [6].

CHAPTER 3. DATA CLASSIFICATION 37

Figure 3.3: An example of a ROC graph, adapted from [6].

3.5 Evaluating Classifiers

The predictive accuracy of a classifier can be measured by determining how well

the classifier is able to predict the class valuesh describes several applications of GP

which for instances of data which were not used during the training of the algorithm

[10]. Evaluating the performance of a classifier based solely on the data which was

used for training will result in an optimistic performance; such an evaluation is

not a good indicator of the true performance [5, 7]. In order to correctly assess the

performance of a classifier, two sets of data have to be created from the original data

set, a training set and a test set. In terms of the accuracy measure, the training

accuracy is the percentage of correctly classified instances in the training set divided

by the total number of instances in the training set, and the test accuracy is the

percentage of correctly classified instances in the test set divided by total the number

of instances in the test set [10].

The training set is used by the machine learning algorithm to create the classifier

[5]. The test set is then used to evaluate how good the prediction of the classifier

actually is [26]. The training and test set must not contain overlapping instances;

additionally, the test set should not be used whilst creating the classifier [5]. When

the training and test set are combined together, they should form the original data

set. There are several methods for creating the training and test sets and these

methods are described in subsections that follow.

CHAPTER 3. DATA CLASSIFICATION 38

3.5.1 Train/test split

In this approach (also referred to as the holdout method), the data set is simply split

into two sets, a training set and a test set. The classifier is created using the training

set and then the test set is used to predict the accuracy of the classifier. Typically,

the training set consists of 2/3 of the data and the remaining 1/3 is allocated to the

test set [7, 10, 26]. Since the splitting of the data is performed randomly, it is thus

possible that one of the two sets is not sufficiently representative of the problem [5].

For instance, consider a highly imbalanced data set, it is possible that the training set

does not contain a single instance of the minority class. Consequently, an algorithm

trained on this data set will perform poorly when attempting to classify instances

from the minority class. In order to overcome this, stratification can be applied.

This ensures that each of the two sets contain an equal number of instances from

each class.

3.5.2 K-fold cross-validation

The k-fold cross-validation method begins by splitting the data set into k -folds of

equal (approximately equal) size, and running the algorithm k times using each fold

as a test set exactly once and the remaining (k-1) folds as the training set [7,10,26].

Each fold should be disjoint from each other [7] and if the total number of instances

in the data set is not completely divisible by k then the last folds should contain

fewer instances [10].

Figure 3.4 illustrates the 10-fold cross-validation method. Each square represents

a fold and there are a total of 10 folds. The black square represents the test set,

whereas the grey squares collectively represent the training set. The folds used for

testing are selected in sequential order thus allowing each fold to be used once for

testing whilst the remaining folds are used for training. When applying this method,

the value of k is commonly selected to be 10 as this has been shown to yield the best

evaluation estimate [5, 10, 26]. Witten et al. [5] point out that performing the 10-

fold cross-validation method once is insufficient, and that multiple runs would lead

to a more reliable performance estimate. In other words, the process of randomly

creating the folds should be repeated several times, and in each turn the 10-fold

cross-validation method should be applied.

CHAPTER 3. DATA CLASSIFICATION 39

Figure 3.4: 10-fold cross-validation, adapted from [7].

3.5.3 Leave-one-out

The leave-one-out method (also known as N-fold cross-validation, or jack-knifing),

is similar to the k-fold cross-validation method, however, in this case the value of

k is equal to the number of instances in the data set and hence each instance is

used once for testing [5, 7, 10, 26]. The name leave-one-out arises from the fact

that a fold is created for each individual instance of data, and for each run of the

algorithm, only one instance of data (the one which is left out) is used for testing,

while the remaining N-1 instances are used for training. Bramer [10] points out that

this method is not suitable for large data sets due to the amount of computational

time required to execute all the runs. Bramer, however, further mentions that this

method is more suitable for very small data sets because it allows as much data as

possible to be used for training.

3.5.4 Bootstrapping

The bootstrapping method makes use of random sampling with replacement [5,7]. In

this approach, the training set is created by randomly sampling (with replacement)

the instances from the original data set. Due to the fact that the sampling is done

with replacement, duplicate instances may occur in the training set. The sampling

is continued until the number of elements in the training set is equal to the number

of instances in the original data set. Once the training set has been created, the

test set is made up of all the instances from the original data set which were not

added to the training set. For example, let a data set have the following instances

CHAPTER 3. DATA CLASSIFICATION 40

represented by numbers, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Suppose a training set is

constructed as follows, {2, 2, 2, 5, 6, 6, 6, 7, 10}, then the test set is {1, 3, 4, 8, 9}.

3.6 Previous Work on Data Classification

The sections above described various aspects of data classification and defined crucial

terminology pertaining to the domain of classification. This section will describe

existing techniques which are commonly used when dealing with data classification

tasks.

3.6.1 K-nearest neighbour

The K-nearest neighbour (k-NN) [30, 31] algorithm is a simplistic machine learning

algorithm which can be used to solve data classification problems. The value of k

is a user defined parameter. Each instance is represented as a point in a multi-

dimensional space. The dimensionality of this space is defined to be the same as the

number of attributes within the data set. A new instance of data, say instance x, is

allocated a class by placing it into the space, and finding k points which are closest

to the point x. The closest points are usually found using the Eucledean distance

formula.

Assume k is 3, and let points {a, b, c} be the closest instances to point x. Since

each point already in the space has a class; the class for point x is computed by the

mode of the classes from points a, b, and c. Thus to summarise, a new instance is

added to the space, then its k nearest neighbouring points are found, and the mode

of the classes is computed based on the these points. Finally, the mode is allocated

to the new instance.

This algorithm is simple to implement and fine tune; however, a shortcoming of k-

NN is that a large amount of computation will take place if the number of attributes

is large. k-NN is also hindered by imbalanced data sets. Points in the minority class

will typically be surrounded by points from the majority class. Assume a new point

is added for which the correct classification is the minority class; there is a greater

probability that the neighbours are from the majority class.

In order to overcome some of the limitations of the k-NN, several variations to

the original method have been investigated. Voulgaris and Magoulas [32] proposed

five variations of the k-NN algorithm which do not simply consider the neighbours.

The proposed methods evaluate the neighbours using properties of the data set.

V-kNN attempts to optimise the value of k for each instance prior to testing, and

then uses these values when classifying new instances. CB-kNN was proposed in

order to overcome the issue of class balance; W-kNN makes use of an index in

order to weight the attributes based on their usefulness. DB-kNN makes use of

CHAPTER 3. DATA CLASSIFICATION 41

an additional property defined as the structural density, this property takes into

account the number of neighbouring points and the volume of the neighbourhood.

DB-kNN evaluates the quality of the neighbours as a combination of CB-kNN and

W-kNN. The proposed methods outperformed the standard k-NN algorithm.

Bao et al. [33] propose a modification of the k-NN algorithm by combining multi-

ple k-NN classifiers in order to improve the accuracy of the algorithm; this proposed

approach was called KNN-DC. Each classifier uses a different distance function, and

computes k neighbours for each function. All of the k neighbours are combined, and

a majority vote is used to determine the class for the test instances. KNN-DC was

tested using 3 to 6 different functions on 21 data sets from the UCI repository, and

the findings indicated that, when all 6 functions were used, KNN-DC was the best

performing method.

Another modification to the k-NN algorithm is presented by Parvin et al. [34]

whereby the validity of each instance in the training set is computed. The validity

for an instance i is computed as the number of neighbours which have the same

class as i, divided by the value of k. In order to determine the class for instances

in the test set, a weight is associated with the neighbours. The weight takes into

consideration the distance between each test point and the neighbours, as well as

the validity of the neighbours. The modified approach was tested on 9 data sets and

generally outperformed the standard k-NN algorithm.

k-NN is often criticised for the large computational effort when evaluating the dis-

tance between all training instances and each test instance. Suguna and Thanushkodi

[35] proposed GKNN which makes use of a genetic algorithm to overcome the com-

putational requirement. In this approach, a fixed number of training instances are

selected from the training set, and the distance between the training instances and

test instances is computed as a fitness value. The genetic algorithm performs op-

timisation and the instances are classified as a result. This method benefits from

the fact that fewer distance computations are performed since not all of the training

instances are used for the distance computation.

3.6.2 Decision trees

Decision trees are a commonly used method to generate models which represent

classifiers [21]. Decision trees are made up of a tree based structure. The top most

node within a decision tree is called the root node. The bottom most nodes are the

leaves and represent the classes. Each node within the decision tree which is not

a leaf node represents an attribute, and branches connect the attributes together.

A decision tree is traversed in a top-down manner from the root, until a leaf node

is reached. During the traversal, each attribute is evaluated and the corresponding

branch is traversed. In order to classify an instance from the test set, the root node

CHAPTER 3. DATA CLASSIFICATION 42

is first evaluated. Each attribute is evaluated based on the corresponding value from

the test instance, and from the evaluation, the corresponding branch is traversed.

The test instance is classified based on the value of the leaf. Decision trees represent

rules and relationships which are easy to understand [36].

Kotsiantis [37] states in a review that there are two major procedures that must

be followed when making use of decision trees for classification. The first procedure

is one which deals with the construction of the decision tree. This procedure starts

off with an empty tree, and an attribute is added one at a time. Whenever an

attribute is added it essentially splits the training data into several parts based on

the attribute. Thus, the goal is to select the attribute which will be best at discerning

between the instances of each class. The attributes are added in turn until finally a

leaf is added which represents a class. The second procedure is that of classification

which represents the decision tree traversal from the root to a leaf node.

Two commonly used algorithms for creating decision trees are ID3 [38] and C4.5

[31, 39]. ID3 is a greedy search algorithm which makes use of a statistical property,

known as information gain, in order to decide on which attribute to select during

the execution of the ID3 algorithm. At first, the information gain for each attribute

is computed and the one with the highest information gain is selected as the root.

This process is repeated for each branch. Once an attribute has been selected

and added to the tree, this choice is never altered, and thus ID3 is susceptible to

converging toward a local optimum solution. C4.5 benefits from four improvements

over ID3 [31]. Firstly, C4.5 is able to handle missing values. Secondly, C4.5 is able

to create decision trees for both continuous and categorical attributes. Thirdly, it is

able to handle attributes with different weights, and finally C4.5 attempts to reduce

the size of the decision tree by applying prunning.

A review on creating decision trees using evolutionary algorithms is presented

by Barros et al. [40]. The authors point out that evolutionary algorithms benefit

from the fact that they can escape from local optima when evolving decision trees.

Additionally Barros et al. state that evolutionary algorithms have the advantage

of being able to easily deal with multi-objective functions. Using more than one

objective function can impact the evolution of the decision trees. For instance, an

evolutionary algorithm can attempt to minimise the tree size and maximise the ac-

curacy. Or alternatively, minimise the tree size and maximise the sensitivity of the

decision tree. Algorithms like ID3 or C4.5 do not naturally handle multi-objective

functions. Barros et al. however discuss that evolving decision trees is computation-

ally expensive and leads to long training times. The authors further mention that

a disadvantage of evolutionary algorithms is the large number of parameters which

need to be fine-tuned.

CHAPTER 3. DATA CLASSIFICATION 43

3.6.3 Artificial neural networks

Artificial neural networks (ANN) were inspired by the human brain and represent

a network of neurons combined together in order to learn from data [10, 41–43].

Essentially, ANN deals with the computation of the output from all of the neurons

within the network. A neuron can be described as an “information-processing unit”

[44] which has several input variables along with a weight associated with each

input variable. The neuron performs a function on the input values and produces

an output. Figure 3.5 illustrates an example of a neuron. Haykin [44] describes

a neuron as having three major components, the inputs and their corresponding

weights, an adder which is responsible for adding all the inputs and their weights,

and finally an activation function which outputs a value within a finite range, usually

between 0 and 1. The most common activation function is a sigmoid function.

Figure 3.5: Example of a neuron.

An ANN can be made up a single or multiple layers. In a multilayer feed forward

network, the input variables are connected to a hidden layer. The hidden layer itself

can have additional layers. In a fully connected network, each neuron within one

particular layer is connected to each neuron within the next layer. A comparison of

neural networks for binary classification is presented in [45].

3.6.4 Näıve bayes

Näıve Bayes classifiers are probabilistic methods based on Bayes theorem. These

classifiers have performed well [10,41,42]. This method relies on the assumption that

for a given classification prediction, the value for a particular attribute is unrelated

to the values of the other attributes, i.e. each attribute contributes independently

to the probability of a particular classification [10]. Näıve Bayes classifiers combines

the prior probability with the conditional probabilities gained from the training

instances in order to compute the posterior probability that a given test instance

belongs to a particular class [10]. Näıve Bayes classifiers are hindered by the fact

that they can only be applied to categorical attributes, thus continuous attributes

CHAPTER 3. DATA CLASSIFICATION 44

have to be converted into categorical attributes in order to use them. A detailed

example is provided by Bramer [10].

For class ci the posterior probability is computed as,

P (ci)×
n∏

j=1

P (aj = vj |class = ci)

where P (ci) denotes the prior probability, aj denotes the attribute for j =

1, 2, . . . , n, and vj denotes the attribute values for the test instances for j = 1, 2, . . . , n.

Bramer [10] mentions that for a particular class, if the number of instances having

a particular attribute value is small, then this will result in a poor estimate in the

posterior probability.

3.6.5 Evolutionary algorithms

There are additional methods which can be applied to the task of data classification

other than the techniques described in the sections above. Surveys on techniques

for data classification include [36, 46–48]. Although there are a wide variety of

algorithms which can be applied to data classification, there is no single method

which obtains the best results across any given data set. Each method has its

own strengths and weaknesses, and members of the machine learning community

are constantly enhancing the current state-of-the-art methods by improving on the

existing limitations and weaknesses.

Evolutionary algorithms (EAs) [49] represent algorithms which are population

based, stochastic in nature, and make use of operators to alter the individuals within

the population. EAs iterate several times, and during each iteration, operators are

applied to the population to create offspring, which in turn are evaluated using some

fitness function, and finally individuals are selected to be placed in the population

for the next iteration. Surveys on EAs and their application to classification is

presented by Freitas [50,51].

Freitas points out two advantages for using EAs, the first being that EAs are

robust search methods which can perform a global search within a solution space,

and the second being that EAs are flexible algorithms. The flexibility arises from

the fact that there are several aspects of the algorithm for which one is free to

incorporate their own implementation. The representations used for an individual,

the fitness function and evaluation of the individuals, and the genetic operators are

areas of EAs which can be adapted to the problem domain, thus providing flexibility

to the researcher. On the other hand, Freitas mentions that EAs are computationally

expensive methods which can result in long execution times; a long execution time

can further be affected by the size of the data set. Consider a data set with thousands

CHAPTER 3. DATA CLASSIFICATION 45

of instances, and a population size of 1000 individuals. If each individual within the

population is evaluated on each of the instances, it is clear that this will hinder the

execution time significantly. It is however possible to overcome this by parallelising

the implementation.

Genetic algorithms (GAs) [52] have also been applied to the task of data clas-

sification. The most significant difference between a GP algorithm and a GA, is

that a GP algorithm searches a program space, whereas a GA searches a solution

space. The two EAs therefore implement different representations. A GP algorithm

typically evolves a population of parse trees which represent programs, whereas a

GA evolves a population of chromosomes. Freitas [50, 51] discusses how GAs can

be used to solve data classification problems. There are two principle ways in order

to represent a GA chromosome for classification, namely the Pittsburgh and the

Michigan-style approach. In the Pittsburgh approach, one individual represents a

set of rules, and in the Michigan approach an individual represents a single rule.

A rule is typically in the form “if condition then class”, whereby the condition can

represent a combination of several logical operators such as “AND” or “OR”. One

approach for encoding the conditions is as follows. Assume a data set has categorical

attributes, and let one of the attributes be named X having these possible values {x,

y, z}, then it is possible to represent this condition using three bits respectively for

each of those values, where a value of “1” denotes that the attribute value is used,

and “0” denotes that the attribute value is not used. Thus, a condition of “101”

would represent the rule, X = “x” OR X = “z”.

Freitas [51] mentions three ways of assigning the class to the rules. The first

approach is to encode the class into the chromosome and to allow the algorithm

to evolve the best choice for the class for each particular chromosome. The second

approach is to run the entire algorithm x number of times, where x represents the

total number of classes. Each class is picked in turn, and during each repetition, that

class is assigned to every rule. Thus, the best rule for each class is evolved during a

repetition. The third approach is to select the class for the rules in a deterministic

manner, for instance to pick the class which will result in the highest fitness for a

particular individual.

Freitas mentions that “the power of GP is still underexplored” [50] and that “an

important research direction is to better exploit the power of GP” [50]. Freitas’ work

was published in 2008 and many studies have addressed GP in the context of data

classification since then; however, GP and data classification still remains an active

area of research as will be noted in the following chapter.

CHAPTER 3. DATA CLASSIFICATION 46

3.7 Active Research Areas in Data Classification

The primary task involved in data classification is to create a classifier which can

accurately allocate a class to instances of data. Typically, a better method is one

which achieves the highest possible number of correct classifications. However, there

are additional subproblems which form part of active research areas in data classi-

fication. This section will review studies which have addressed these subproblems.

3.7.1 Feature selection

A data set may not always contain attributes which are useful for building classifiers.

Attributes can be described as relevant, irrelevant, or redundant. Relevant features

are those which are useful to a classifier in predicting class values. Irrelevant features

consist of features which can be removed from the data set and will cause no effect

to the construction of a classifier [53] as they do no contribute to the accuracy of a

classifier [26]. Redundant features are those which can be removed from the data

set as there exists another feature which can be used in its place. When a data set

contains a significant amount of irrelevant and redundant attributes the performance

of a classifier may in turn be hindered, and thus feature selection methods are applied

prior to the construction of a classifier [5]. Feature selection, or attribute selection,

is defined “as a process of finding a subset of features, from the original set of

features” [26]. Once a feature selection method has been applied, the expectation is

that a classifier built upon the reduced data set will perform better [5].

There are three main categories of feature selection methods, filter, wrapper,

and embedded methods. Filter methods are those which are applied prior to the

construction of the classifier. Once the features have been obtained they serve

as input for the construction of the classifier [54]. Features are selected without

taking into consideration the performance of these on the classification task [5, 26,

54]. Filter methods are not as computationally expensive as wrapper methods [26].

Wrapper methods use a classification algorithm to determine how good the selected

features are by measuring their performance [53]. In this approach several subsets

of features are created and these subsets are evaluated by constructing a classifier.

Search methods are used in order to obtain the optimal subset [53]. Embedded

methods combine the search for an optimal subset of features and the construction

of the classifier into a single process [53] and are computationally less expensive than

wrapper methods [54]. Saeys et al. [54] present a taxonomy for the three methods,

and Liu and Yu [55] present a generalisation of the three algorithms.

There exists a vast quantity of literature available on this topic. For the remain-

der of this section several methods will be reviewed to present an overview of feature

selection methods and their application to data classification.

CHAPTER 3. DATA CLASSIFICATION 47

Pujari and Gupta [56] make use of the Pearson Chi-square measure to determine

useful features. The Ionosphere data set was used and a list of features that were

used is presented. A total of 20 attributes were considered useful and 14 attributes

were considered less useful and were omitted. An ensemble model which in turn

used CART, CHAID and QUEST (decision tree algorithms) was implemented. The

results show that when the useful attributes are used there was an improvement in

accuracy in certain methods.

GAs have also been applied to the feature selection problem. The work of Yang

and Honavar [57] used GAs to encode chromosomes having a length equal to the

number of attributes. The genes consisted of 0’s and 1’s and if a 1 is encoded then

that attribute was selected. The selected attributes were then used as input for a

neural network. The neural networks were evaluated using a fitness function which

took into account the accuracy and a cost associated with classifying each attribute

present. A comparison was made between using the accuracy only as opposed to

using both the accuracy and a cost; the latter obtained better results. There was a

reduction of approximately 50% in the number of attributes and the accuracy was

better than in the case when all attributes were used.

Jacob and Ramani [58] implemented several feature extraction techniques. The

breast tissue data set was used and there was a reduction from 9 attributes to 3

when the ReliefF feature selection algorithm was used.

Relief [59] is a commonly used filter feature selection algorithm. This method is

used to obtain relevant features from binary classification problems. Given a sample

of instances, a random instance is selected, say x, and two additional instances are

obtained. The first is called the near hit, a randomly selected instance (within a

certain Euclidean distance) from the same class as instance x, and the second is

called the near miss, which is a randomly selected instance from the opposite class

to instance x. A feature weight vector is computed based on the instance x, the near

hit, and near miss. This feature weight vector is updated in order to determine those

features which are relevant or not based on a threshold value. Relief is executed in

linear time thus making it a rapid filter method. ReliefF [60] is an extension of Relief

and is able to handle multiclass problems as well as noisy and incomplete data [53].

The original Relief algorithm finds a single random near hit and near miss, whereas

ReliefF benefits from selecting several near instances from each class and thus can

handle noisy data by averaging those values, and additionally cater for multiclass

problems.

3.7.2 Missing values

Missing data in data sets is problematic, and a decision needs to be made as to how

this will be addressed. There can be several reasons for data to be missing, such

CHAPTER 3. DATA CLASSIFICATION 48

as malfunctioning measuring equipment, or a respondent refusing to answer certain

questions in a survey, or possibly even due to the fact that a questionnaire was too

long and a respondent chose to stop midway [5] [61]. Typically missing values can

be handled in two ways: to discard them, or to impute values in the place of the

missing values.

3.7.2.1 Discarding missing values

A simplistic approach to handling missing data is to discard those instances or

features from the data set [10, 26, 62]. This approach has consequences as it could

affect the reliability of the results [10] and should only be applied when the amount of

missing data is relatively small in compared to the size of the data set [10,26,62,63],

and when the missing data is “missing completely at random” [62, 64]. Discarding

instances containing missing values is not considered to be a recommended approach

[10].

3.7.2.2 Imputation

Imputation methods are used to compute a substitute value for the missing data [61].

There are several approaches and these will be briefly discussed here. The first

approach is to simply obtain the mean value for each attribute that contains a

missing value, and to replace the missing values with the mean [10, 26]. If the

attribute is numerical, then the statistical mean is computed, however if the attribute

is nominal then the statistical mode is calculated. Cios et al. [26] describe another

approach named hot deck imputation. In this method the most similar instance to

the one with a missing value is found and used to replace the missing values.

Imputation methods can be categorised as being either a single or a multiple

imputation method. Additional single imputation methods are discussed in [61].

McKnight et al. [61] point out that single imputation methods tend to be problematic

and introduce bias. The alternative is to use multiple imputation methods which

generate more than one imputation value.

3.7.2.3 Missing values and decision trees

Statistical approaches represent one way of dealing with missing values, however

there are alternative methods which can be applied when using machine learning

algorithms for classification problems. When dealing with decision trees, the traver-

sal is based upon the value of the attribute, and thus when a value is missing the

question becomes - which branch to choose?

Twala et al. [65] developed missingness incorporated in attributes (MIA). One

of three choices is made when creating a split within a branch. For some cut-off

CHAPTER 3. DATA CLASSIFICATION 49

point P and an attribute value x, whereby a decision as to which branch to select

is currently being decided for x, one of the following options can be applied:

• Follow left branch if x ≤ P or x is a missing value, otherwise follow right

branch

• Follow right branch if x > P or x is a missing value, otherwise follow left

branch

• Follow left branch if x is missing, otherwise follow right branch

This method can also be applied to nominal values whereby the comparison is now

to check if x ∈ P or x /∈ P . Twala [66] compared several techniques for dealing with

missing values when using decision trees.

3.7.3 Ensemble classifiers

An ensemble is defined as a set of classifiers which are used to classify data by

combining their individual decisions to produce a final classification decision for

each instance of data [67, 68]. Figure 3.6 illustrates an example of an ensemble

classifier. Several independent classifiers are created from the training data, and

their output is combined in order to allocate a class to the instances of the test

data. Instead of creating a single classifier which is responsible for classifying an

entire data set on its own; an ensemble benefits from the fact the several classifiers

work together in order to solve the classification problem.

Figure 3.6: Example of an ensemble.

CHAPTER 3. DATA CLASSIFICATION 50

The most common ensemble methods are bagging and boosting. Bootstrap ag-

gregating (bagging) was introduced by Breiman [69]. This method starts by creating

multiple new training sets by resampling the original training data with replacement.

Thus, the new training sets can have duplicate instances of data, and additionally,

there can be several instances in common amongst the sets. Breiman’s implemen-

tation of bagging proceeded as follows. Breiman split each data set into a training

set which consisted of 90% of the data, and the remaining 10% was placed into the

test set. The training set was then used to create 50 new training sets by randomly

selecting instances - with replacement - and adding them to each new training set.

For each of the 50 created training sets, a classifier was constructed using 10-fold

cross-validation. Each classifier was then applied to the test set to predict the class

values for each instance. Each of the 50 classifiers placed their vote, and the class

with the highest relative majority became the class for that specific test instance;

this was performed for each instance in the test set. The entire process of evolving

the 50 classifiers and evaluating them on the test set was repeated 100 times, and

the results indicate that bagging reduces the misclassification rate.

Furthermore, Breiman investigated the effect of the size of the new training sets.

In the experiments described above, the new training sets were the same size as

the original training set. Thus, if the original training set had 100 instances, 50

new training sets were created having 100 instances each. When new training sets

were created consisting of double the size of the original training set there was no

improvement in the results. Additionally, the quantity of new training sets that

were needed to be created was examined, and the results show that there was no

significant reduction in misclassification rate when more than 25 sets were used.

Boosting algorithms [70,71] allocate weights to the instances in the data set, and

use those weights to train the classifiers. Initially all the weights have an equal value,

and they are modified as the learning algorithm iterates. During each iteration a

classifier is built. The construction of the classifier is influenced by the weights.

The concept behind this algorithm is to allocate the weights based on the difficulty

the classifiers have in allocating the correct class label to an instance of data. If

an instance of data is correctly classified, it receives a lower weight, on the other

hand, those instances which are difficult to classify receive a higher weight. Thus,

during each iteration the weights influence the construction of the next classifier;

by creating one which will be biased towards those instances which were harder to

classify by the previous classifier. The performance of each classifier will affect how

the next classifier is constructed based on the influence of the weights. Boosting

is typically used to create an ensemble of weak classifiers; although, this may not

always be the case.

Freund and Schapire proposed AdaBoost [31, 70, 72] which is a commonly used

CHAPTER 3. DATA CLASSIFICATION 51

boosting algorithm for creating ensembles. Each instance is allocated a weight of
1
n where n represents the number of training instances. The algorithm iterates for

several rounds, and during each round, a classifier is trained based on the current

weights of the instances. The error is computed between the correct output and

the output obtained by the classifier, and it is then used to update the weights in

such a way that they are normalised. An instance which is misclassified receives a

greater weight. Once all the weights have been updated, the next round is executed

and a new classifier is created. Liu et al. [73] proposed BoostGA which evolves

a population of rule conditions using a genetic algorithm. BoostGA is based on

AdaBoost and is run over several rounds. During each round a classifier is created

and the weights are updated. The proposed method was tested on two data sets

and the BoostGA improved the classification accuracy.

3.7.4 Discretisation

Certain classification algorithms, such as ID3, cannot directly handle continuous val-

ued attributes; instead they can only handle categorical data [74]. In order for these

algorithms to work with data sets containing numerical attributes, these attributes

need to be transformed in such a way that the algorithm is presented with dis-

crete and finite intervals. Discretisation is the process of transforming a continuous

attribute into a discrete one with a finite number of intervals [74, 75]. Discretisa-

tion is essentially needed when dealing with decision trees since each node in the

tree should branch out based on the data. It is not feasible to create a branch for

each continuous value as this may result in nodes having hundreds of branches, and

consequently creating a massive search space for the learning algorithm.

An interval is created by a cut-off point. Liu et al. [75] define a cut-off point, as

a single real value within the continuous values for an attribute which separates the

values into two intervals. Let x be a cut-off point, then if the minimum value for an

attribute is a and the maximum value is b applying x to the attribute will result in

[a, x) and [x, b]. The order in which the open interval is allocated is not an issue,

thus instead the algorithm could split the data into [a, x] and (x, b]. An algorithm

can further split those two intervals into additional intervals, and so on.

A recent survey by Garcia et al. [74] provides a complete and thorough taxon-

omy of discretisation methods. A comparison network of discretisation methods is

presented, and the methods which are most compared in literature are equal width,

equal frequency, chiMerge [76], MDLP, and ID3 [77]. A comparison the performance

of 30 discretisation methods with 6 classifiers on 40 data sets from the UCI machine

learning repository was performed. The authors state that the best performing

methods are the chiMerge, MDLP, distance, chi2 [78], and modified chi2 [79]. Chi2

is an enhancement to the original chiMerge algorithm. Garcia et al. state that a

CHAPTER 3. DATA CLASSIFICATION 52

conclusion as to which discretisation method is the best cannot be made. The re-

search of Garcia et al. serves as a baseline for comparison when new methods are

created and can also serve as a starting point for researchers wanting to implement

discretisation in their machine learning algorithms. Garcia et al. [74] present an

overview of the main characteristics of a discretiser which is briefly listed here:

• Static discretisation is one which is done before the learning algorithm is ap-

plied. It is independent from the creation of the classifier. On the other hand,

dynamic discretisation takes place while the classifier is being created.

• Univariate discretisation considers a single attribute at a time to create the

intervals, whilst multivariate discretisation takes all the attributes into con-

sideration.

• When the class labels are not taken into consideration the method is referred

to as unsupervised. A supervised discretisation algorithm is one which takes

the class label into consideration.

• A discretiser which is based on splitting selects the best cut-off points amongst

all the possible ones to create intervals. On the other hand merging consists

of removing cut-off points and consequently merge two adjacent intervals.

Several researchers have investigated the use of entropy based discretisation in order

to obtain the cut off-points for the intervals. The entropy is used to evaluate the cut

off-points and is applied recursively on each attribute until some stopping criteria

is met. Hacibeyoglu et al. [80] implemented an entropy based discretisation method

using k-NN, Näıve Bayes, C4.5 and CN2 classification algorithms. Candidate cut-off

points were selected and used to split the data for a particular attribute into two

sets. A formula is then used to determine which cut-off point is most suitable. This

formula computes the entropy of these two sets by taking into consideration the

instances of the attribute for each class. Once a suitable cut off-point is obtained

this procedure is applied recursively on each attribute until some stopping criteria

is met. The classification algorithms were tested on 6 data sets using all the original

attributes and compared to the discretized attributes. On each data set, the four

classification algorithms were applied, and on 19 of the 24 cases there was an im-

provement when using the discretized attributes. A maximum improvement of 26%

was observed when using the k-NN algorithm on the Statlog (Heart) data set.

In the survey of Kotsiantis and Kanellopoulos [81] the term Adaptive Discretisa-

tion Intervals (ADI) is presented. ADIs alter the intervals during the evolutionary

process, and was first introduced by Bacardit and Garrell [82] where a GA was used.

In the approach of Kotsiantis and Kanellopoulos, a chromosome was made up of

CHAPTER 3. DATA CLASSIFICATION 53

micro-intervals. A micro-interval represented an interval. Two operations were per-

formed, merging and splitting. Merging consisted of combining two micro-intervals

whereas splitting consisted of randomly selecting a micro-interval to create two new

intervals. Additionally a multi-adaptive approach was examined where an attribute

can contain a different number of micro-intervals thus allowing the evolutionary pro-

cess to select the most suitable number of micro-intervals for each attribute. The

proposed method was tested on 8 data sets. The adaptive approaches obtained

higher classification accuracies on 6 data sets when compared to a simple uniform

width interval approach and to the method of Fayyad and Irani [83]. Bacardit and

Garell further improved the research in [84] where uniform and non-uniform width

intervals are allowed. This new approach ADI2, outperformed the original approach.

Anguilar-Ruiz et al. [85] present a comparison between three evolutionary algo-

rithms (HINDER, ECL, GAssist) which evolve the intervals along with classification

rules. A total of 6 discretisation methods were applied to the three evolutionary al-

gorithms, including ID3 [77], Fayyad and Irani [83], USD, and a random discretiser.

The random discretiser selects a random subset of midpoints within the values of an

attribute. It obtained the lowest average accuracy and also resulted in the most num-

ber of cut off points. The best results were obtained using ID3, Fayyad and Irani’s

approach, and USD. The research of Bacardit and Garell [82,84] and Anguilar-Ruiz

et al. [85] both present adaptive discretisation techniques applied to evolutionary

algorithms and serve as a comparative study for future research in adaptive discreti-

sation.

3.8 Software

There are two open source computer programs which are of particular interest in the

domain of data mining and classification, these are Weka and KEEL. These programs

allow researchers to make use of a wide number of data mining algorithms. These

algorithms include classification, clustering, feature selection and pre-processing al-

gorithms. A list of available software for data mining tasks is presented in [86].

Witten et al. defined Weka (Waikato Environment for Knowledge Analysis) as

“a collection of state-of-the-art machine learning algorithms and data pre-processing

tools” [5] developed at the University of Waikato. Weka [87] contains a large num-

ber of classification algorithms. Amongst the available types of algorithms Weka

contains Bayes classifiers, trees, classification rules, functions and other machine

learning algorithms. Weka is commonly used by the machine learning community

and references to Weka are often found in literature when comparing algorithms.

When a new method is developed, the results obtained by this new method can be

compared to those obtained by an algorithm in Weka. This comparison can serve

CHAPTER 3. DATA CLASSIFICATION 54

as an initial estimate of the quality and performance of the new algorithm.

KEEL [86, 88] is an open source software and, similarly to Weka, is a software

written in Java to allow researchers to perform data mining operations. This software

has a number of built in evolutionary algorithms. Additionally in a similar manner

to Weka, KEEL is able to perform pre-processing tasks such a feature selection.

There exists a number of additional computer programs for data mining which

have been developed in a variety of programming languages other than Java, such

as scikit-learn [89] which was developed in Python.

3.9 Conclusion

This chapter describes and covers the main areas of data classification. In supervised

learning, a vast number of real world problems can be formulated as classification

problems, such as determining which candidate will win a presidential election based

on data collected through surveys, and by mining other sources of information. Clas-

sification problems can be formulated as being either binary or multiclass problems.

Classifiers are created from the data sets. Each data set is made up of numerous

instances, which have attributes and a class. Creating a classifier using an im-

balanced data set is significantly more challenging since a classifier will be biased

towards the majority class. The performance of classifiers can be determined using

different performance measures, with accuracy being the most commonly used mea-

sure. There are several ways of separating data sets for training and testing. These

methods vary both in complexity and computational effort required to evaluate the

classifiers. The train/test split is computationally inexpensive as a single training

set is created. However, this method can be affected by the way the data is ran-

domly split. In order to overcome this, the stratified holdout can be performed. The

k-fold cross-validation and the leave-one-out methods are significantly more compu-

tationally expensive in comparison to the train/split method; however, the 10-fold

cross-validation is frequently used, as the performance across multiple runs are aver-

aged thus decreasing the variation in the results. When dealing with data sets which

contain a smaller number of instances, the leave-one-out approach is recommended

in order to train the classifier on as many instances as possible.

Data classification has been investigated using a variety of techniques. In this

chapter several of the existing methods have been presented. Common methods

for data classification include K-nearest neighbour, decision trees, artificial neural

networks, Näıve Bayes and genetic algorithms. Data classification has been an active

area of research over the years and is still being investigated.

Active areas of research include feature selection, missing values, ensembles and

discretisation. Feature selection is often performed as a pre-processing step and deals

CHAPTER 3. DATA CLASSIFICATION 55

with determining which of the attributes are most useful for the classification task.

Data sets which contain missing values present a challenge in creating accurate

classifiers. A simple way of handling such data sets is to compute the average

value for each attribute, and to replace each missing value with the corresponding

attribute average. Creating ensembles is another active area of research. Researchers

that have used ensembles have shown that these classifiers often outperform single

classifier methods.

When a data set is made up continuous valued attributes, discretisation is re-

quired to transform the continuous data into intervals when creating a decision tree.

The intervals are most commonly created using statistical measures. Studies have

shown that intervals can be created during the training phase. In terms of evolution-

ary algorithms, discretisation has only been used with GAs. Finally, this chapter

introduced common software packages for data classification.

Chapter 4
Genetic Programming and Data

Classification

4.1 Introduction

The previous two chapters focused on applying GP and data classification individ-

ually. This chapter reviews previous studies on GP which were applied to data

classification problems. A GP representation has to be chosen before using GP to

solve any type of problem. Three common GP representations have been used in

previous data classification studies. Each of these representations use different func-

tion and terminal sets, and are applied to the task of data classification in different

ways. Sections 4.2, 4.3, and 4.4 describe how GP has been used to evolve trees using

the three major representations for data classification. This is followed by section 4.5

which describes other GP representations which have been used in the literature. In

the previous chapter, ensembles were described as methods which usually produced

classifiers with greater accuracy compared to non-ensemble methods. Studies which

have used GP to evolve classifier ensembles are described in section 4.6. The appli-

cability of GP to data classification presents certain advantages and disadvantages,

these are discussed in section 4.7. Finally, this chapter is concluded in section 4.8.

4.2 GP and Decision Trees

Recent studies in GP which have made use of decision trees generally categorise these

trees as being either axis parallel or oblique decision trees [40]. In the following

explanations, let x and y represent two attributes in some data set. Figure 4.1

illustrates the two types of decision trees. Axis parallel decision trees have a single

attribute at each non-leaf node within the decision tree. Thus, during the evaluation

56

CHAPTER 4. GP AND DATA CLASSIFICATION 57

of each of these trees, only a single attribute is tested at a time and a decision as to

which branch to follow is made. Axis parallel decision trees are the most commonly

used decision tree representation. Let two classes be represented using + and −, thus

in figure 4.1, the two graphs below the decision trees illustrate how data is partitioned

in the case of axis parallel and oblique decision trees; these graphs however do not

represent the corresponding trees in the figure. In the case of axis parallel decision

trees, the data is partitioned into spaces which are parallel to the axes. For oblique

trees on the other hand, the data is partitioned into spaces according to the linear

combination of the attributes.

Oblique decision trees, also referred to as linear multivariate trees, can have

more than one linear attribute at each non-leaf node [90]. For instance, a non-leaf

node may be made up of the decision x + y < 1 as illustrated in figure 4.1. For

such decisions, if the linear expression is evaluated to true, then the left branch is

followed, and if the expression is evaluated to false then the right branch can be

followed.

Figure 4.1: Axis parallel and oblique decision trees, along with graphs illustrating
how the data is partitioned in the two representations. The graphs do not represent
the partitioning of the data for the corresponding trees.

Tur and Guvenir [91] made use of GP to evolve a population of 100 axis parallel

decision trees. The fitness function considered both the size in terms of the number

CHAPTER 4. GP AND DATA CLASSIFICATION 58

of nodes, and the accuracy of the classifier. Furthermore, the fitness function made

use of weights to select whether the size or accuracy had a greater impact on the

fitness of a tree. The method was applied to a single binary classification problem.

In order to validate the proposed method, the data set was split with 69% of the

instances in the training set, and 31% of the instances in the test set. In this study,

the attributes formed the function set, and the classes formed the terminal set.

From the studies examined in the review by Espejo et al. [92], it is apparent that

researchers commonly use a fitness function which takes into consideration both the

accuracy and size of the decision trees. In the study conducted by Shirasaka and

Zhao [93], GP was used to evolve 200 axis parallel decision trees over 500 generations.

The size of the decision trees was not used in the fitness function; it was, however,

used when comparing individuals during selection. If two trees had the same fitness,

then the smallest tree was considered the better individual. The purpose of this

research was to emperically determine the performance of GP decision trees on a

character recognition data set, and the findings revealed that the decision trees

obtained good results.

Koza [94] shows how GP can be used to evolve 300 axis parallel decision trees

when solving the Saturday Morning problem presented by Quinlan [38]; this problem

is a binary classification problem. As in other work, such as the study by Khoshgof-

taar and Seliya [95], the function set and terminal set was composed of the attributes

and classes respectively. For each non-leaf node in the population, a single attribute

is compared to a constant using the < operator. In this study, 1000 axis parallel

decision trees are evolved over 200 generations. Additional parameters include a

crossover rate of 60%, a mutation rate of 30%, and a reproduction rate of 10%. The

fitness proportionate selection method was used. There was no attempt at optimis-

ing the GP parameters. The proposed GP approach was tested on a single binary

data set, and in order to validate the model, the training data contained 66% of the

total instances, and the test set contained 34%. A similar approach of representing

the non-leaf nodes was proposed by Wang et al. [96]. GP was used to evolve 900

axis parallel decision trees over 50 generations. Each non-leaf node had an arity of

2, and was in the format attribute ≤ constant.

Estrada et al. [97] use GP to evolve a population of 1000 axis parallel trees

over 60 generations. Once again, the attributes formed the function set, and the

classes formed the terminal set. The fitness function considered both the accuracy

and the size of the GP individuals in terms of the number of nodes. Tournament

selection with a size of 7 was used. A 90% mutation rate was used, along with a 10%

reproduction rate. The GP classifiers were validated using 10-fold cross-validation

on data which was generated by the authors.

Oblique decision trees were used by Bot and Langdon [98]. In order to ex-

CHAPTER 4. GP AND DATA CLASSIFICATION 59

press the linear combination of attributes, three functions were used in the function

set, namely CheckCondition1Var, CheckCondition2Vars, and CheckCondition3Vars.

CheckCondition2Vars is illustrated in figure 4.2. The first two pairs of nodes denote

the coefficients and attributes, c1 denotes the coefficient for attribute x1, and c2

denotes the coefficient for attribute x2. The node val denotes the value to which

the linear combination is being compared to in the expression c1x1 + c2x2 ≤ val.

Finally, r1 and r2 denote which branch to follow next based on whether the expres-

sion has been evaluated to true or false. A steady state GP was evolved over 1000

generations with a population size of 200 individuals. Tournament selection with a

size 7 was used. The evolved trees were validated using 10-fold cross-validation and

tested on four data sets from the UCI repository.

Figure 4.2: CheckCondition2Vars, function for an oblique decision tree.

Shali et al. [8] used GP to evolve 200 oblique decision trees over 100 generations.

In comparison to the study by Bot and Langdon, Shali et al. did not encode a

new type of node to express linear combinations. Instead, mathematical functions

{+,−,×, /, ln,√}, two logical functions NAND and NOT, and the relational oper-

ator ≤, were used in order to represent the linear expressions. These functions and

the relational operator formed the function set. Each node within the decision tree

represents a linear expression, with two branches extending from each node. The

left branch is followed if the expression is evaluated to false, and the right branch

is followed if the expression is evaluated to true. An example of a linear expression

is given by X + 2
√
Y ≤ W , where X, Y, and W are numerical attributes for some

classification problem; figure 4.3 illustrates the expression.

The classes formed the terminal set. The evolved classifiers were validated using

5-fold cross-validation on 19 data sets from the UCI repository. Tournament selec-

tion with a size of 15 individuals was used. The fitness function made use of the

gain ratio measure and took the size of the trees into consideration. Crossover was

applied with a probability of 0.65, and mutation with a probability of 0.2.

CHAPTER 4. GP AND DATA CLASSIFICATION 60

Figure 4.3: Oblique tree used in the study of Shali et al. [8].

4.2.1 Advantages and disadvantages of GP decision trees

The primary advantage of decision trees when evolving classifiers using GP is the

simplicity involved in understanding the evolved classifiers. At each node within

the tree, a decision needs to be made as to which branch to follow based on the

evaluation of that node. Thus, if a path from the root node to a leaf node is made,

it is possible to evolve a sequence of basic “rules”. For instance, consider the decision

tree in figure 4.4. It is possible to create the following four rules:

• If X is true, AND Y is true, then class 1

• If X is true, AND Y is false, then class 2

• If X is false, AND Z is true, then class 3

• If X is false, AND Z is false, then class 1

From these four rules it is possible to combine the first and the last as they both

output the same class. This can assist in discovering rules for complicated data sets

whereby the classifier itself can provide some knowledge from the rules. Oblique

decision trees are not as easily comprehensible as axis parallel decision trees, due

to the fact that the linear combination of attributes makes it more challenging to

interpret the classifier.

Another advantage of decision trees is that only a single path from the root to

a leaf node is required. Since not every node within the decision tree has to be

evaluated, this can result in rapid evaluations. The amount of time required to

evaluate a decision tree is dependent on its depth; shorter trees are evaluated more

quickly as there is a shorter path from the root to a leaf node, and the converse

holds for decision trees with a large depth.

CHAPTER 4. GP AND DATA CLASSIFICATION 61

Figure 4.4: Axis parallel decision tree.

Discretisation is required in order to deal with continuous data when a decision

tree is evolved [74]. This additional step represents a disadvantage as it results in

further complexity which the other representations do not suffer from. Decision

trees can handle categorical attributes naturally and are often used when data sets

contain only categorical data. Decision trees suffer from the problem of overfitting,

whereby the trees can grow very large and become too specific to the training data

during the evolutionary process. As a consequence, the trees will generally perform

well on the training data and poorly on the testing data.

4.2.2 Summary of the findings

When using GP to evolve decision trees, the axis parallel decision tree represen-

tation is commonly used. This representation is simple to implement and offers

easy interpretability. From the work presented in this section, the function set is

commonly composed of the attributes within the data sets, and the terminal set is

composed of the classes. In terms of the GP parameters, selection methods, and ge-

netic operators, there is no consistency between the previous studies. For instance,

the population size varies from 100 to 1000. In terms of the initial population gen-

eration method, only the work of Bot and Langdon [98] mentioned the use of the

ramped half and half method. In the other studies there were no details about the

initial population generation method. There was no discussion as to how the GP

parameters were obtained. Certain studies made use of the train/split validation,

others used 5- and 10-fold cross-validation, and in other studies there is no men-

tion as to how the classifiers were validated. There is no consistency in the number

of data sets used, and in certain studies the data sets were not publicly available

CHAPTER 4. GP AND DATA CLASSIFICATION 62

ones. The primary aspect to be extracted from the previous studies is that decision

trees are easily interpreted, and consequently they are the favoured representation

as researchers are easily able to understand the classification models evolved.

4.3 GP and Arithmetic Trees

This section will review those studies which make use of both GP and arithmetic

trees, also referred to as discriminant functions, to evolve classifiers for classification

problems. Arithmetic trees represent mathematical expressions which can discrimi-

nate between classes. Figure 4.5 illustrates an example of an arithmetic tree. When

evolving decision trees using GP, there is no need to change the GP algorithm in

order to use either binary or multiclass data sets. When using arithmetic trees how-

ever, changes to the GP algorithm are required when switching between the use of

binary and multiclass data sets, and thus the two cases are reviewed separately.

Figure 4.5: An arithmetic tree.

4.3.1 Binary classification

Etemadi et al. [99] use GP to evolve arithmetic trees for a binary classification

problem in terms of bankruptcy prediction. A 0/1 rounding threshold with a value

of 0.5 was applied in the following manner. For a particular instance of data, if a

tree outputs a value greater or equal to the rounding threshold, then that instance

of data is classified as a bankrupt firm, otherwise the instance is classified as a non-

bankrupt firm. The researchers do not mention how the rounding threshold value

of 0.5 was obtained. Figure 4.6 illustrates the 0/1 rounding approach. Different

threshold values may be used, and it is also possible to use a different range of

values other than 0 and 1. For instance, it is possible to use a range of −∞ to ∞
with a threshold value of 0.

CHAPTER 4. GP AND DATA CLASSIFICATION 63

Figure 4.6: Illustrating how to map the output of a GP tree onto two classes using
a threshold value. In this figure, the threshold is 0.5.

Additionally, in the study of Etemadi et al. the function set that was used was

{+,−,×, ˆ, NOT,LT}. The NOT operator has an arity of one and is applied to

an attribute. It returns the result obtained by subtracting the attribute from 1.

The LT operator has an arity of 2 and is applied to two variables. It returns a

value of 1 if the first attribute is smaller than the second attribute, and if not, 0

is returned. The attributes and constants formed the terminal set. The data set

was split with 72% of the instances in the training set, and 28% in the test set.

Crossover was applied with a probability of 0.6 and mutation with a probability of

0.06. No further details regarding other GP parameters were given. The proposed

GP approach was compared to a multiple discriminant analysis model developed by

the authors; GP obtained better accuracy.

Gray et al. [100] evolved GP trees in order to classify brain tumours. GP was

tested on a single binary data set, and a threshold of 0 separated the output of the

trees. For a given tree, a positive output represented the non-meningioma class,

and a negative output represented the meningioma class. The function set used

was {+,−,×, /, tan,myAND,myOR,myNOT}, where the logical operators return

either 0 or 1 based on their logical evaluation. The researchers point out that the

tan function was not present in the best individual and that only three attributes

were present. This indicates that GP is indirectly able to perform the task of feature

selection and to make use of the most relevant attributes. The fitness proportionate

selection method was used, and the population was generated using the ramped

half and half method. The terminal set was composed of the attributes. Two

experiments were performed on a single data set which is not publicly available. In

the first experiment, the entire data set was used as the training set, while the second

experiment used 87% of the data for training, and the remaining 13% for testing.

Seven hundred trees were evolved over 41 generations in the first experiment, and

CHAPTER 4. GP AND DATA CLASSIFICATION 64

200 were evolved over 20 generations in the second. There is no mention as to why

the population size and the number of generations were varied. The standardised

fitness was used as a measure of fitness, and was defined as the total number of

instances minus the total number of correctly classified instances.

Bhowan et al. [101] evolved 500 GP trees over 50 generations in order to solve

classification problems with unbalanced data sets. A threshold value of 0 was chosen

to distinguish between the two classes. The function set used was {+,−,×, /, if}.
Attributes and random constants formed the terminal set. The if function takes

three arguments which represent three branches in the node. The first argument

is evaluated, and the second branch is followed if the argument is evaluated to a

negative value, and the third branch is followed otherwise. Crossover, mutation and

elitism [102] had application rates of 60%, 35% and 5% respectively. Tournament

selection with a size of 7 was used. The proposed approach was tested on six publicly

available data sets from the UCI repository, with 50% of the data used for testing.

Hennessy et al. [103] investigate the use of GP to evolve 2000 trees over 50

generations for a binary classification task of determining whether or not a solvent

is present in a mixture of solvents in Raman spectra. The data set used had 1024

attributes and only 24 instances. The training set contained 58% of the instances of

data, and the remaining 24% was used for testing. The function set {+,−} was used.

Hennessy et al. state that other functions could have been used; however the two

selected functions were sufficient in order to achieve high accuracy. The attributes

formed the terminal set. A threshold value of 0 was applied in order to map the

output of an individual to either presence or absence of a solvent. The fitness

function chosen takes two aspects into consideration. The first is the classification

accuracy, and if all the training instances are correctly classified, the second aspect

is examined. This second aspect is a measure of certainty, and is determined by

finding the minimum absolute value of the output on all the training instances for

a given individual. The authors do not compare the performance of the proposed

approach without the measure of certainty, thus it is unclear as to whether or not

the measure of certainty impacted the overall performance of the GP algorithm.

The work by Li and Ciesielski [104] shows that by modifying the function and

terminal set, GP can be applied to different problem domains. In this study, GP

is used to evolve 100 trees over 2000 generations in order to distinguish between

squares and circles within an image classification context. This dissertation does

not deal with image processing. Image classification is a data classification problem

in the sense that each pixel in the image can be converted into numerical data. Li

and Ciesielski investigate the use of loops. A loop takes three arguments, where the

first two correspond to positions within an image, and the third corresponds to a

function which will be applied to the data between the two positions. Two loop func-

CHAPTER 4. GP AND DATA CLASSIFICATION 65

tions were researched, namely the PlusMethod and the MinusMethod function. For

example, if the loop is executed with positions 10 and 15 on a particular image using

the PlusMethod function, then the result will be a numerical value representing the

sum of pixels between those two positions. The function set was {+,−, ForLoop},
where + and − denote mathematical addition and subtraction. The terminal set

used was {RandDouble,RandPosition, P lusMethod,MinusMethod} where Rand-

Double generates a random double between 0 and 100, and RandPosition generations

a random integer between 0 and 255. Mutation had an application rate of 28%, with

crossover and elitism having rates of 70% and 2% respectively. The initial popu-

lation was generated using ramped half and half with a maximum tree depth of 7.

The fitness proportionate selection method was used. A threshold value of 0 was

applied, whereby a positive output from a GP individual represented a square, and

a negative output represented a circle. The images did not come from a benchmark

data set, but were instead generated.

GP has been applied to the classification task of determining if two proteins

interact or not in [105]. Garcia et al. evolved 1000 trees over 50 generations. The

maximum tree depth was set to 17 and tournament selection of size 7 was used.

Accuracy was used as the fitness function. Crossover, mutation, and reproduction

had an application rates of 50%, 40% and 10% respectively. Preliminary runs were

performed in order to optimise the parameters. A threshold value of 0.5 was applied

when comparing two proteins using the following formulation:

if(function) ≥ 0.5 then the two proteins interact functionally,

else the proteins do not interact

whereby the parameter “function” defined in the if statement represents a GP

tree. The function set was {+,−,×, /,≥}, and the terminal set was composed of

the the attributes, along with an ephemeral random constant (ranging from [0, 1]).

The data set was split evenly with 50% of the data used for training and 50% for

testing.

Agnelli et al. [106] use GP to evolve 5000 trees over 50 steady state generations

in order to classify segments from 102 scanned documents. Segments of images and

text were extracted from these documents resulting in a total of 821 instances of

data. The aim was to distinguish between textual and a graphic segments. The trees

were trained to allocate a positive value for image segments and a negative value for

text segments, thus the threshold was set to zero. The GP approach was tested on

a single data set and obtained high classification accuracy. The initial population

was generated using the ramped half and half method, with a maximum tree depth

of 17. Tournament selection with a size of 7 was used. Crossover had an application

CHAPTER 4. GP AND DATA CLASSIFICATION 66

rate of 90%, and mutation 10%. The function set was {+,−,×, /, 2x, if}, unary

minus, and an ephemeral random constant in the range of [0, 11]. The attributes

formed the terminal set.

A population of 4000 GP trees were evolved over 100 generations by Topon

and Iba [107]. In this study GP was applied to a binary classification problem in

order to distinguish between systemic sclerosis and normal biopsies. Arithmetic

trees were evolved using the function set {+,−,×, /, ˆ,√}. The attributes formed

the terminal set. Each individual represented a rule in the form of if (expression

≥ 0) then systemic sclerosis, else normal. The initial population was created using

the ramped half and half method, with a maximum depth of 7. The probability of

applying crossover was 0.9, mutation 0.1, and reproduction 0.1. The fitness function

took into consideration the correlation between the tree’s output and the correct

output. Greedy over-selection [3] was used when selecting parents for the crossover

operator. When several individuals are considered as a parent using greedy over-

selections, the fittest individuals have a greater chance of being selected over the

other individuals. The algorithm was tested on a single data set having 27 instances;

81% of the instances were used for training and 19% for testing.

Arcanjo et al. [108] evolved 100 GP trees over 50 generations. In this proposed

method a sigmoid function maps the output from a tree onto a range of (0, 1). A

threshold value of 0.5 was chosen so as to discriminate between the two classes by

determining if the result of the sigmoid function is less or greater than the threshold.

The threshold value was determined through experimentation. The function set was

{+,−,×, /}. The attributes and an ephemeral random constant (ranging between

-9 to 9) were used as the terminal set. The initial population was created using the

full and grow method with a maximum depth of 5. Tournament selection with a

size of 3 was used. Crossover had an application rate of 85%, and mutation 5%;

elitism was also used. The GP approach was tested on 8 data sets taken from the

UCI repository.

Zhang and Wong [109] investigate the use of online simplification. Simplification

is used in order to reduce the complexity of the classifier by reducing the number of

nodes. This allows the classifier to be interpreted more easily and therefore allows

for faster processing. It can be applied after or during the evolutionary process. The

simplification process was achieved through simplification rules which were defined

prior to the evolutionary process. An example of such a rule is to reduce “a – 0”

to “a”. Each tree is travered recursively with the simplification being applied to

each node. Further investigation included the frequency at which the simplification

should be applied. The function set used was {+,−,×, /, if}, and the attributes

along with ephemeral random constants formed the terminal set. Five hundred trees

were evolved over 50 generations using GP. The initial population was created using

CHAPTER 4. GP AND DATA CLASSIFICATION 67

the ramped half and half method, with a maximum tree depth of 6. Crossover

had an application rate of 60%, mutation 30%, and reproduction 10%. The fitness

proportionate selection method was used. Accuracy was used as the fitness function.

Two data sets from the UCI repository were used; namely, WDBC and spectf. The

10-fold cross-validation was applied to validate the classifiers. Due to the random

nature of GP, a total of 50 independent runs were performed. The proposed method

was compared to a GP approach without simplification, neural networks, Näıve

Bayes, decision trees, nearest neighbour, and the nearest centroid classifier. The

results show that the proposed GP method with online simplification obtained a

higher classification accuracy than the other methods. Furthermore, the proposed

method showed a reduction in the total number of nodes. Finally, the researchers

point out that simplification should not be applied at every generation, but with

intervals ranging from 2-5 generations.

Several methods for creating threshold values for binary classification were ex-

plored by Fitzgerald et al. [110]. The traditional threshold approach was compared

to eight other proposed threshold approaches. The proposed methods allow GP to

decide upon the threshold value instead of setting a fixed threshold prior to the

evolutionary process. Amongst the eight methods, the Optimised Individual Class

Boundaries (OICB) performed well in terms of achieving a high accuracy. OICB

uses a boundary search algorithm which attempts to find the best boundary by par-

titioning the output values and exploring different threshold values until the most

suitable ones are found. Each individual can choose its polarity based on its mis-

classification error. For the following explanation, assume that there are two classes,

positive and negative, for a binary data set.

In binary decomposition, tress output a value greater or smaller than the thresh-

old, and this output is then mapped to a class. In a typical situation, this mapping is

determined in advance. Fitzgerald et al. define this as the polarity. Typically when

a threshold of zero is used, a tree that outputs a negative value will have its out-

put correspond to the negative class, and a tree which outputs a positive value will

correspond to the positive class. This is defined in advance and remains unchanged.

In terms of the tree output, the polarity is defined in accordance to whether the

instances of the positive class are above or below the threshold. A negative po-

larity is where instances from the negative class are situated below the boundary

value. Fitzgerald et al. proposed OICB+, where, in this approach, an individual

can alter its polarity so as to obtain a smaller misclassification error. The proposed

methods used steady state GP with a population size of 500 trees evolved over 60

generations. The function set was given by {+,−,×, /}, and the attributes formed

the terminal set. Crossover had an application rate of 80%, and mutation 20%.

Tournament selection with a size of 5 was used. The initial population was created

CHAPTER 4. GP AND DATA CLASSIFICATION 68

using the ramped half and half method. The traditional static threshold approach

obtained the highest training accuracy on four out of the six data sets from the UCI

repository. However, on the test set, the traditional threshold approach was out-

performed by the eight proposed boundary methods. OICB+ obtained statistically

significant results that outperformed the traditional threshold approach. OICB+

offers additional flexibility to the overall algorithm in comparison to the threshold

approach and stands out as a novel approach for using arithmetic trees for binary

classification.

4.3.2 Multiclass classification

Muni et al. [111] evolve multitree GP individuals in which each individual contains

a tree that represents an expression for each class. Thus, for a data set with three

classes, each GP individual will have three trees, one for each of the classes. Each

tree within an individual is designed to output a positive value when an instance of

data belongs to that particular class, and a negative value when an instance does

not belong to that class. Thus, it can be thought of as a positive output is meant to

represent a “belong to” signal. A tree representing class i within an individual should

output the “belong to” signal when evaluating instances of data from class i. One of

three cases can arise when evaluating a GP individual on an instance of data x. The

first case is when a single tree (say from class i) outputs a positive value (output ≥
0), and the trees representing the remaining classes output a negative value. The

output of the GP individual for the instance of data x is thus class i. Two additional

cases may arise namely, where more than one tree outputs a positive value, or no

tree outputs a positive value. The researchers modified a heuristic proposed by

Kishore et al. [112] to allocate a class label to instances which have a conflict. The

function set was {+,−,×, /}. The attributes and an ephemeral random constant

(ranging from 0 to 10) formed the terminal set. The GP approach was tested on five

data sets, and the parameters were not consistent on the data sets. The population

size varied from 300 to 700, the number of generations varied from 10 to 520, and

the maximum tree depth varied from 10 to 13. For four data sets, the results were

validated using 10-fold cross-validation. The train/test split was utlised on one data

set in order to compare the results obtained by GP to another study which made

use of a train/test split. Parents were selected using tournament selection with a

size of 7. The probability of applying crossover, mutation and reproduction were

0.75, 0.15 and 0.1 respectively.

One significant advantage of the approach proposed by Muni et al. is that a

single GP run is required to evolve a solution for a multiclass problem. Another

commonly used approach when using GP to evolve solutions for multiclass problems

is to use binary decomposition; this is explained as follows. For a multiclass problem

CHAPTER 4. GP AND DATA CLASSIFICATION 69

having c classes, a total of c GP runs are performed. Each run is simplified to a

binary classification problem. Let a binary problem have two classes a and b, and

let some data set have 3 classes {1, 2, 3} for which binary decomposition is applied.

The GP runs will be performed as follows:

• In the first GP run, a = {1}and b = {2, 3}.

• In the second GP run, a = {2}and b = {1, 3}.

• In the first GP run, a = {3}and b = {1, 2}.

Formally, let the classes for a multiclass problem be {c1, c2, . . . , cn} where n repre-

sents the number of classes. Then for each GP run i, one class corresponds to ci,

and the other class corresponds to the set {cj | i 6= j, j = 1, 2, . . . n}.
Several GP representations were investigated by Loveard and Ciesielski [113] for

binary and multiclass classification problems. Five representations were proposed,

namely, binary decomposition, static range selection, dynamic range selection, class

enumeration, and evidence accumulation. In the context of this study, the ranges

represent a set of values which are used to map the tree output to a class. The

ranges are separated using threshold values.

For static range selection the values of the ranges were intuitively chosen, for

example in the Thyroid data set, the ranges were chosen to be [-∞, -1), [-1, 1), and [1,

∞]. The authors mention that there is no optimal way of deciding upon the ranges.

The function set for this representation was {+,−,×, /, if,≤,≥,=, between}, and

the attributes along with a constant represented the terminal set.

The dynamic range selection allows the class ranges for each individual in the

population to be dynamically determined. A range of [−250, 250] was used as a

maximum bound. Thus for example, a 3 class problem could have ranges [-250,-50),

[-50, 100) and [100, 250]. A subset from the training set is used to determine the

ranges for an individual. The same function and terminal set was used as for the

static range selection.

The class enumeration representation makes use of the same function and ter-

minal set as in the previous representations; however, class enumeration introduces

a new element to the function and terminal set. A new if statement is added to

the function set. This if statement has an arity of 3. The first argument represents

a boolean type and uses inequality operators to compare attributes and constants.

The second or third argument is executed based on the output of the first argument.

The second and third argument returns a class type. This class type is the new

element which is added into the terminal set, and is used to represent one of the

classes available to the data set. Strongly-typed GP was used in such a way that the

first argument of the if statement can only be of type boolean, and that the second

CHAPTER 4. GP AND DATA CLASSIFICATION 70

Figure 4.7: An example of a tree created using class enumeration.

and third argument can either be the if statement or a class. Figure 4.7 illustrates

an example of how the if statement is used.

The evidence accumulation representation involves a certainty vector which is

created for each individual in the population. The certainty vector stores a numerical

value for each class represented by a position in the vector, thus position 1 in the

vector corresponds to class 1, position 2 corresponds to class 2, and so on. A tree

can add or subtract a value to any position in the vector by using a new terminal,

AddToClass[x](y), which adds the value y (y ranges from −1 to 1) to the class in

position x. In addition to the AddToClass function, the root node of every individual

was a BLOCK node, this node has an arity between 2 and 4. An individual is

evaluated by sequentially traversing each branch from the BLOCK node. This

representation does not output a value however the class with the highest certainty

value is the output class. The population size used varied from 500 to 1000, and

the trees were evolved over 50 generations. Elitism and crossover had an application

rate of 10% and 90% respectively. The fitness proportionate selection method was

used. The maximum initial population depth was 6, and maximum depth during

evolution was set to 17. On four of the data sets having less than 1000 instances, the

10-fold cross-validation method was used to evaluate the classifiers, the train/split

method was used for the two larger data sets. The five representations were tested

on six data sets from the UCI repository, namely, WBC, Bupa, Pima, Pixel, Thyroid,

and Vehicle. The binary decomposition and the dynamic range selection approaches

CHAPTER 4. GP AND DATA CLASSIFICATION 71

obtained the lowest mean error rate.

Zhang and Ciesielski [114] use GP to detect objects in images. 20 features were

extracted from each image in the data which represented the attributes for the data

set. Those attributes and a constant formed the terminal set. The function set

that was utilised was {+,−,×, /}. Each tree outputted a real value which was

then mapped onto one of the classes. In order to create a set of boundaries for

each class, a threshold T was utilised. The boundaries were computed as follows,

[(i−1)×T, i×T] for i = 1, 2, . . . n where n denotes the number of classes. Thus, the

boundary for the first class was [0, T], and the boundary for the second class was

[T, 2T]. The value of T was set to 100, and there are no details as to how this value

was chosen. GP was tested on three data sets, of which one was generated, and

the other two were obtained through photographs. The GP parameters were not

consistent for the three data sets. The population size varied from 100 to 500, the

maximum tree depth varied from 8 to 20, and the maximum number of generations

varied from 100 to 250. The GOs were crossover, mutation, and elitism, and they

had different application rates for each data set. The rationale behind these different

parameters was not provided. The proposed GP algorithm obtained better results

than a neural network which was applied to the same data sets.

Smart and Zhang [115] evolved arithmetic trees to compare static and dynamic

range methods for image classification. Four statistical measures were obtained from

the images and represented the terminal set. The function set that was utilised was

{+,−,×, /, if}. Two dynamic range selection methods were created in order to

map the output of a tree onto some class. The first was the centred dynamic range

selection (CDRS) method which calculates the centre of each class. The centre of

the class is computed by evaluating each tree in the population on the training

data. The boundaries which separate each class are obtained by calculating the

midpoint between the centre of each class. Once the boundaries are calculated, each

individual in the population is evaluated again based on the new boundaries. The

second method was the slotted dynamic range selection, this is similar to the dynamic

range selection represented in [113] except the slots varied from [-25, 25] with slots at

each 0.5 step, thus resulting in 100 slots. The population size varied from 300 to 500,

and the maximum tree size varied from 5 to 6. No rationale behind the variation

in parameters was provided. The maximum number of generations was set to 50.

Crossover, mutation, and reproduction had an application rate of 50%, 30% and

20% respectively. The proposed methods were tested on five image data sets having

3, 4 and 5 classes. These data sets were generated by the authors. The results show

that the dynamic methods obtained a higher classification accuracy, furthermore

the CDRS method obtained the best results. A similar comparison between static

and dynamic range selection was studied by Song et al. [116]. The results of this

CHAPTER 4. GP AND DATA CLASSIFICATION 72

study once again shows that dynamic methods obtain a higher classification accuracy

than static range methods. Song et al. applied the proposed GP method to texture

classification.

Multiclass image classification is achieved in a single GP run by the proposed

method of Smart and Zhang [117]. Similar to binary decomposition, several binary

sub-problems are constructed based on the total number of classes for a particular

data set. Each combination of binary sub-problems was considered in a single GP

run, and a fitness function based on the distribution distance of each pair was used.

The distribution distance is calculated through the mean and standard deviation

of the outputs of each program for a particular class. The distribution distance

measures the separability between two classes. A large value represents a good

separability between two classes. The individuals in the population are examined to

determine which class it separates the best. For each generation, all of the binary pair

sub-problems are considered and the individual which can best separate the pair is

compared to the current “expert”. If an individual is able to separate the pair better

than the expert, it will replace the current expert. Furthermore, once an expert

obtains a distribution distance value lower than a user specified threshold, that

particular binary problem is then considered to be solved. Consequently, individuals

in the population no longer have to solve that specific binary problem. Thus, a

program is only required to be able to distinguish between a pair of classes in order

to obtain a high fitness. A probability function is used to combine all the experts

together before applying it a the test set. GP evolved 500 trees over 40 generations.

The initial population was created using the ramped half and half method. The

maximum tree depth was set to 7. The function set was {+,−,×, /, if}, and the

attributes, along with a constant formed the terminal set. Crossover, mutation, and

reproduction had application rates of 60%, 30% and 10% respectively.

Jabeen and Baig [118] proposed a two stage learning approach using GP to evolve

a population of 600 trees. A population of trees is evolved in a binary decomposition

manner for each class. For each class in a data set, a GP run is executed, and the final

population for each class is stored. Given an instance of data x, and a tree belonging

to class i, if the tree outputs a positive value, then instance x belongs to class i. A

negative output implies that a particular instance does not belong to the class which

the tree represents. When more than one tree belonging to different classes, output a

positive value, then there is a conflict, i.e. an instance of data belongs to more than

one class. In the first stage of the proposed method, the initial population is created

using ramped half and half. The function set was {+,−,×, /}, and the terminal set

was formed using the attributes and an ephemeral random constant. The fitness

function made use of the true positives and true negatives. When two individuals

had the same accuracy, the smaller tree was selected. Crossover, mutation, and

CHAPTER 4. GP AND DATA CLASSIFICATION 73

reproduction were used as GOs and had application rates of 50%, 25%, and 25%

respectively.

The second stage of the proposed method evolves a population of chromosomes.

The chromosomes were structured as follows. For a n class classification problem,

the size of the chromosome corresponds to n. Referring to the final populations in

stage one, position 1 in the chromosome corresponds to a tree from class 1, position 2

in the chromosome corresponds to a tree from class 2, and so on. The chromosomes

were initialised as follows. One tree from each of the populations in stage 1 is chosen

using tournament selection. Thus, for position 1 in the chromosome, tournament

selection is applied to the population representing class 1, and the chosen tree is

added to position 1. This is repeated for each class. The population of chromosomes

is evolved over 50 generations. In stage 2, the fitness function considered both the

accuracy and the number of conflicts, thus creating a preference for chromosomes

which have a high accuracy and a small number of conflicts. The proposed method

was tested on 5 publicly available data sets (Iris, Wine, Vehicle Silhouettes, Glass,

and Yeast) and achieved better results when compared to a binary decomposition

method. The rationale behind the two stages was to reduce the amount of conflicts

which occurs from the standard binary decomposition approach.

Silva and Tseng [119] used 500 GP trees in order to classify seafloor habitats.

In this study 7 attributes were used on a 5 class problem (algae, australis, sand,

sinuosa, and reef). The initial population was created using the ramped half and

half method with a maximum depth of 5. There was no limit on the growth of the

trees during the GP evolution. The function set was {+,−,×, /}. The attributes

formed the terminal set. Crossover, mutation, and reproduction had probabilities

0.5, 0.5, and 0.1 respectively. Two methods were investigated. The first approach

was a pairwise separation between the classes. In the first run, GP was used to

separate sand and algae, sand and austrailis, sand and sinuosa, and finally, sand

and reef. Then in the second run, reef was separated from the remaining classes as

done in the first run. This was repeated for each class. The pairwise separations

could be performed in any order.

The second approach performed a similar separation to binary decomposition.

For each class i, the aim was to find a tree which would separate class i from the

remaining classes, and then to ignore class i in the next run. In the first instance,

a tree had to be evolved to separate sand from the remaining classes. In the second

run, a tree was evolved to separate reef from the other classes, except sand. This

process was repeated for each class. Since this approach excludes the class previously

used, the order in which the classes are chosen will impact the final classification

model. In binary decomposition, the order in which the multiclass problem is con-

verted into a set of binary problems has no impact on the final model, because in

CHAPTER 4. GP AND DATA CLASSIFICATION 74

each case one class is compared to all the other classes, and this is repeated for

every class. There was no discussion as to the order in which the separations were

performed; however, the authors mention that sand was chosen first since it was

easily separated from the other classes in the first approach.

One drawback of binary decomposition is that for a particular instance of data,

several trees can output a positive value for that instance, and as a consequence,

the instance will be classified as a number of different classes. Chien et al. [120]

investigate an approach in order to minimise the number of conflicts. In this study,

GP is used to evolve arithmetic trees using the function set {+,−,×, /}. In this case,

a n class problem is run n times using the proposed methods to create n functions,

one for each class. The functions are then combined together in a decision tree to

create the final classification model. The researchers point out that the functions

cannot be added to the decision tree in any order. By adding functions in any order,

a situation can arise where a high level function (one closest to the root) has a high

misclassification rate, and consequently, that function will output a positive value

for many instances which do not belong to that particular class which is represented

by that function. This situation can be avoided if another function with a low

misclassification rate is placed at the root. The precision and recall measures are

used in order to determine the order of the functions. The functions were first sorted

according to their precision, and should a tie occur, according to their recall. A

function with a high precision rate has a lower misclassification rate. For a function

f and class i, the precision and recall are defined as follows:

precision(f) = number of instances which are correctly classified by f and that belong to class i
number of instances classified by f

recall(f) = number of instances which are correctly classified by f and that belong to class i
number of instances in class i

The proposed GP approach evolved 1000 trees over 10000 generations. Five

publicly available data sets taken from the UCI repository were used for experimen-

tation, namely, Iris, WBC, BUPA, Vehicle Silhouettes, and Pima Indians.

4.3.3 Advantages and disadvantages of GP arithmetic trees

When using GP to evolve arithmetic trees the function set is made up of mathemat-

ical functions, and thus arithmetic trees are able to naturally create classifiers for

data sets having numerical attributes. One significant difference with decision and

arithmetic trees, is that with the latter discretisation is not needed when dealing

with numerical attributes. However, if GP is used to evolve arithmetic trees for

data sets containing categorical attributes, then a problem is encountered as math-

ematical functions cannot be applied to categorical data. Two ways of addressing

this issue were proposed by Lovelard and Ciesielski [121]. Both of these proposed

CHAPTER 4. GP AND DATA CLASSIFICATION 75

methods added new terminals which would allow GP to use mathematical functions

on categorical attributes. Based on the proposed approach, the function set remains

unchanged, and terminals to cater for categorical data are added to the terminal set

using one of two methods. The first method allocates an integer to each value that a

categorical attribute can take. For example, the categorical attribute gender could

be converted to a terminal with the following property, male=0, and female=1. Once

this conversion takes place, the gender terminal can now be used with mathematical

functions. Thus, the expression gender + 1 would represent a valid GP tree and is

illustrated in figure 4.8. For a given instance of data, when the gender terminal is

encountered, the corresponding value is returned based on the conversion. Thus, if

for a particular instance the value of gender is “female”, then the output of the tree

will be 2.

Figure 4.8: Representing a categorical attribute as a numerical one.

The second approach converted the categorical attribute into binary terminals.

For example, the following two terminals could be created, male = 1, not male =

0 ; and, female = 1, not female = 0. Thus for each categorical attribute, a binary

terminal is created for each possible value.

A significant difference in the evaluation of an arithmetic tree and a decision

tree is that when a decision tree is evaluated only a single path from the root to

a leaf node is traversed. When evaluating an arithmetic tree, every single node

within the tree has to be traversed in order to evaluate the entire expression. Thus,

evaluating arithmetic trees which have a large depth will result in slower execution

times. The second major drawback of arithmetic trees is that additional complexity

is encountered when dealing with multiclass classification problems. It is simpler to

evolve decision trees for multiclass classification problems, the only difference be-

CHAPTER 4. GP AND DATA CLASSIFICATION 76

tween a binary classification problem to a multiclass one, is that additional terminals

are added to the terminal set when using decision trees for multiclass classification

problems.

4.3.4 Summary of the findings

Based on the studies reviewed, when evolving arithmetic trees the attributes are used

as the terminal set. There are differences in the function set amongst the various

studies, however typically the set {+,−,×, /} is commonly used. The if statement

is used in 33.33% of the studies; however, there has been no study comparing the

performance of the evolved classifiers when this function is present and absent. This

summary describes the findings for binary and multiclass classification.

In the case of binary classification, evolving GP trees is simpler as a thresh-

old value can discriminate between the two classes. This simple approach is easy

to implement and has been successfully used in the various studies. Typically a

threshold of 0 has been used. Based on the studies reviewed, the population size

varied from 100 to 5000 trees, and no conclusion as to what the optimal population

size should be set to can be made. The number of generations varied from 41 to

2000. The ramped half and half method was used in six studies, and there was no

mention of the initial population generation method in the remainder of the studies.

Crossover, mutation, and reproduction were used, with crossover having the high-

est application rate, followed by mutation and then reproduction. Both the fitness

proportionate and tournament selection methods were equally used. Tournament

selection was used with sizes varying from 5 to 7. The number of data sets used in

the studies varied from 1 to 8. In certain cases the data sets were generated by the

authors, and in other cases the data sets are not made publicly available. In such

cases it is difficult to compare the performance of new methods to those studies.

The train/test split performance measure was most commonly used throughout the

studies reviewed, and the 10-fold cross-validation method was used in one study.

In certain cases no detail was provided as to which approach was used to measure

the performance of the proposed algorithms. The 10-fold cross-validation method is

generally the most commonly used method across studies using GP for data classi-

fication, however this method is also more time consuming than the train/test split

approach. It is unclear as to why most of the studies used the train/test split.

In the case of multiclass classification, evolving GP trees using an arithmetic tree

representation involves more complexity than for binary data sets. Either a binary

decomposition approach is used, or a method allowing a single tree to perform

multiclass classification is proposed. In the case of binary decomposition, n GP

runs are required for a n class problem. In the case where n is large, this can result

in large computation times, especially if in addition the data set has a large number

CHAPTER 4. GP AND DATA CLASSIFICATION 77

of instances. Furthermore, clashes arise when using binary decomposition whereby

numerous trees can output a positive value indicating that a particular instance

belongs to numerous classes. This has been addressed using statistical measures

[120] and evolutionary algorithms [118]. Regardless of the extra number of runs

required, and the additional complexity involved in conflict resolution, this approach

has been used several times and remains a simple strategy in order to perform

multiclass classification. In the case where binary decomposition is not used, static or

dynamic range selection has been employed. The static range selection is the simplest

approach; however there is no way of determining the optimal thresholds for each

class. Dynamic range selection methods have led to better performance, however

the implementation of this approach involves additional complexity. There was a

variation in GP parameters across the studies dealing with multiclass classification.

The population size varied from 100 to 1000, and the number of generations varied

from 10 to 1000. There is little to no detail regarding the parent selection methods

used. Similar to studies addressing binary classification, crossover, mutation, and

reproduction were the most used GOs with crossover having the highest application

rate, followed by mutation, and then reproduction. The 10-fold cross-validation and

train/test split were both used as performance measures, however, in certain studies

there was no mention as to which method was used. There was no consistency in

the number of data sets used for testing, these varied between 3 and 5. In certain

cases the data sets were generated, and in others they were obtained from the UCI

repository.

4.4 GP and Logical Trees

This section reviews studies which have used GP to evolve logical trees. Logical

trees are composed of boolean operators, and they output a value of true or false.

Kuo et al. [122] evolved logical trees using GP. The function set that was used was

{AND,OR,NOT,>,≥, <,≤, If −Then, If −Then−Then−Else}. The terminal

set was made up of the values that each attribute could take, for example, an

attribute having values {A,B,C} would result in those three values being added

to the terminal set. Furthermore, the classes were added to the terminal set, and

could only appear in the second or third branch of the if statements. Two genetic

operators were developed to resolve the issues of redundancy and subsumption. The

eliminator operator was proposed in order to identify duplicate rules within any

given tree (redundancy), if duplicates were found, then the deepest duplicated rule

within the tree was removed. The merge operator attempted to remove rules that

subsume another by examining if two rules had the same classes, and if the attributes

of one was a subset of the other (subsumption). The fitness function computed the

CHAPTER 4. GP AND DATA CLASSIFICATION 78

accuracy and complexity of each tree. For a particular tree t, the complexity of t was

defined as the ratio between the number of nodes within t, and the average number of

nodes within all the trees in the the initial population. The proposed GP algorithm

was evolved over 500 generations and applied to a binary classification problem. The

data set was split with 70% of the data being allocated to the training set, and 30%

to the test set. Crossover, mutation, elimination, and merge had probabilities of

0.9, 0.02, 0.8, and 0.8 respectively. The proposed GP approach outperformed C5.0

and a standard GP algorithm. Standard GP did not make use of the eliminator and

merge operators, and thus indicating the usefulness of those two operators.

De Falco et al. [9] evolved 2000 trees over 30 generations. A binary decomposition

approach was used. The function set utilised was {AND,OR,<,≤, >,≥, IN,OUT}.
The IN and OUT functions take 3 arguments each and are used to represent internal

and external intervals respectively; figure 4.9 illustrates the IN function. The IN

function outputs true if the value of the attribute is within the range of the lower and

upper bound, and outputs false otherwise. The attributes formed the terminal set.

Since a binary decomposition approach was used, a method was proposed in order to

resolve conflicts between the classifiers. Each tree corresponds to a logical rule which

is represented by a boundary in Euclidean space. To illustrate this, consider a two

dimensional space, thus two trees represent two rectangular boundaries within the

space. The surroundings of each boundary are referred to as a frontier. Thus in order

to resolve conflicts, the distance between the points in Euclidean space is computed,

however there are no further details regarding this proposed method. The fitness

function took the accuracy, tree depth, and number of nodes into consideration.

The initial population was created using the ramped half and half method and a

maximum initial depth of 5. The maximum tree depth allowed during evolution

was set to 7. Crossover, mutation, and reproduction had application rates of 80%,

10% and 10% respectively. Tournament selection with a size of 50 was used. The

proposed GP algorithm was evaluated on six data sets from the UCI repository,

namely, WBC, Diabetes, Heart Disease, Horse Colic, Glass, and Australian Credit

Approval. For each data set, 75% of the data was allocated to the training set, and

the remaining 25% allocated to the test set. Thirty GP runs were performed for

each data set using different seeds.

CHAPTER 4. GP AND DATA CLASSIFICATION 79

Figure 4.9: The IN function proposed by De Falco et al. [9].

In the two previous studies, the terminal set was made up of attributes. In the

study of Eggermont et al. [123], the terminal set consisted of atoms. Each atom had

an attribute, one inequality {>,<}, and a constant between 0 and 1. For example,

an atom cam be represented as X > 0.4, where X is an attribute in some data set.

The authors proposed subatomic mutation, this operator selects a node within a tree,

and if that node is an atom, then either the variable or the constant is modified.

For this study the function set was {AND,OR,NAND,NOR}. A population size

of 2000 was initialised using ramped half and half with a maximum tree depth of 5.

Crossover and subatomic mutation had probabilities of 0.9 and 0.1 respectively. The

proposed GP approach was tested on 4 binary data sets, namely, Australian Credit,

German Credit, Heart Disease, and Pima. The k -fold cross-validation method was

used with values of k varying from 9 to 12. No rationale behind the variation in the

values of k was provided.

A binary decomposition approach is also investigated by Tan et al. [124] whereby

n GP runs are performed for an n class problem. The logical trees form rules in

the following format: if antecedents then class. In this study, the antecedents are

made up of functions and terminals. The function set was {AND,NOT}, and the

terminal set represented all the values for each attribute. Unlike the other studies,

Tan et al. enforced a constraint which ensured that for a given tree, once a value

has been selected for a particular attribute, another value for that same attribute

cannot be selected. For example, assume some attribute i has values {1, 2, 3}, and

the value of “1” is used within a particular tree, the constraint ensures that another

value for attribute i cannot be selected. This was enforced to reduce redundancy.

The population size varied from 10 to 100, and the number of generations from 10

to 50. The initial population was generated using the ramped half and half method.

Crossover, mutation, reproduction, and elitism were applied with probabilities 0.9,

0.1, 0.1, and 0.05 respectively. The GP approach was tested on 9 binary and mul-

CHAPTER 4. GP AND DATA CLASSIFICATION 80

ticlass data sets from the UCI repository, namely, Weather, Contact-Lenses, Zoo,

Breast Cancer, Monk1,2,3, Mushroom, and Nursery. 66% of the instances was allo-

cated to training, and 33% to testing. Thirty GP runs were performed on each data

set.

GP was applied to a medical data set consisting of 165 attributes and 12 classes

for chest pain diagnosis in the study of Bojarczuk et al. [125]. Binary decomposition

was also used, thus GP was run 12 times in order to create a classifier for each class.

The rules were encoded in the form, if antecedent then class, and the antecedent is

represented by a GP tree. The function set was composed of {AND,OR,NOT},
and the attributes represent the terminal set. Five hundred GP individuals were

evolved over 50 generations. The initial population was generated using the ramped

half and half method with an initial maximum depth of 10. The maximum tree

depth during evolution was set to 17. The fitness function made use of the sen-

sitivity and specificity (refer to chapter 3, section 3.4.2), and also the number of

nodes within a tree. Parents were selected using the fitness proportionate selection

method. Crossover and reproduction were applied with probabilities of 0.9 and 0.1

respectively. The data set was split into a training set containing 65% of the data,

and 35% was allocated to the test set. Ten GP runs were performed for each class;

the proposed GP algorithm outperformed the C5.0 algorithm.

4.4.1 Advantages and disadvantages of GP logical trees

Evolving logical trees using GP has the benefit of being able to handle both numerical

and categorical data fairly simply in comparison to decision trees or arithmetic trees.

With decision trees, discretisation is required in order to use numerical attributes,

and in order to use categorical attributes when evolving arithmetic trees, one has to

convert those categorical attributes into numerical ones. When using the right func-

tion set it is possible to cater for either categorical or numerical attributes. A typical

function set to handle numerical attributes is {AND,OR,NOT,<,>}, whereas for

categorical data a suitable function set is {AND,OR,NOT,=}. Through the use

of the equal operator, it is possible to make use of categorical attributes.

An additional significant advantage of evolving logical trees is the fact that the

trees are highly interpretable to a researcher. This is further accentuated when sim-

ple logical functions are used, such as {AND,OR,NOT}. Including functions such

as {NAND,NOR,XOR} will increase the complexity in terms of interpretability

since those functions are not as trivially understood compared to the simpler ones.

Interpreting logical trees is easier than interpreting arithmetic trees.

Logical trees and arithmetic trees share a common disadvantage. Every single

node within the tree for both representations has to be traversed in order to output

the classification result. This can affect the GP run time especially if large trees

CHAPTER 4. GP AND DATA CLASSIFICATION 81

are used, and additionally, if a large data set is used. Similarly to arithmetic trees,

additional complexity is encountered when evolving logical trees for multiclass clas-

sification problems. Typically, binary decomposition can be used to solve this issue,

however this means running the GP algorithm numerous times depending on the

number of classes.

4.4.2 Summary of the findings

GP has been used to evolve logical trees in several studies. The logical functions

{AND,OR,NOT} have been used as the function set, and the terminal set was

composed of the attributes. Similarly to evolving arithmetic trees, it is simpler to

evolve logical trees for binary classification problems due to the fact that no conflict

resolution method has to be put in place. When dealing with multiclass classification

problems, the binary decomposition approach has been used [124, 125] successfully.

It is however possible to make use of the conflict resolution approaches which were

proposed for evolving arithmetic trees as discussed in the previous section. The GP

parameters varied from one study to another. The population size varied from 500 to

2000, and the number of generations from 30 to 500. In four studies, the ramped half

and half method was used to create the initial population with a maximum depth

varying from 5 to 10; this method has been used in most of the reviewed studies.

This study shall thus make use of it to generate the initial population. The maximum

allowed depth during the evolutionary process varied from 7 to 17. Since the studies

reviewed in this section made use of generational GP, this study will also make use

of it. Similar to studies using GP and the two previously discussed representations,

the accuracy and complexity of the trees was used as the fitness function. This

study will take into account the accuracy and complexity of the trees when evolving

logical trees. Both the tournament and fitness proportionate selection methods have

been used for evolving logical trees. However, the tournament selection method has

generally been used more often when solving data classification problems and thus

will be used in this study. Crossover and mutation were the most commonly used

GOs with crossover having the highest application rate; this study will also make

use of a similar setting.

4.5 GP and Other Representations

The three most common GP representations for data classification were reviewed in

sections 4.2, 4.3, and 4.4, however there are other studies which investigated alter-

native representations. Eggermont et al. [126] proposed an atomic representation

which is slightly different to the one described in their previous study [123] which

was reviewed in section 4.4. Each atom is defined in terms of an attribute, an opera-

CHAPTER 4. GP AND DATA CLASSIFICATION 82

tor, and a value. The atoms are combined into a tree structure. Three variations of

the atomic representation were investigated. The differences in these representations

were in the way the numerical attributes were dealt with.

In the first GP representation, each possible value for an attribute was assigned

to an atom using the < operator. For an attribute having 100 possible values

{0, 1, . . . , 99} there would be 100 atoms, i.e. attribute < 0, attribute < 1 and so on.

This representation suffers from the fact that the search space is extremely large.

The second GP representation used the gain and gain ratio measures in order to

obtained thresholds. The thresholds were obtained in order to reduce the number of

atoms used. In this representation atoms formed partitions in the form of attribute <

threshold1, attribute ∈ [threshold1, threshold2), and attribute ≥ threshold2. The

first atom to partition an attribute used the < operator, the last atom used the

≥ operator, and the atoms in between used two threshold values. A maximum

of 5 partitions were allowed per attribute, and thus, this reprentation significantly

reduces the search space since a given atom within a tree can have a maximum of 5

branches.

The third GP representation made use of clustering, more specifically the K-

means algorithm. Clustering was performed on the values of a single attribute at a

time. The number of atoms corresponded to the number of clusters. Each atom is

in the form attribute ∈ [mini,maxi], where mini and maxi are the upper and lower

bounds for cluster i.

For each representation, a population of 100 trees were evolved over 99 genera-

tions. The ramped half and half method was used to create the initial population.

The fitness function used the misclassification rate, and the number of nodes as a tie

breaker. The selection method was tournament selection with a size of 5. Ten GP

runs were performed on each data set for the proposed representations. The repre-

sentations were tested on 5 data sets from the UCI repository, namely, Australian

Credit, German Credit, Pima Indians, Heart, Ionosphere, and Iris. The performance

of the proposed representations were compared to C4.5, a simple GP algorithm, and

two evolutionary algorithms. The proposed representations outperformed the stan-

dard GP representation in certain cases.

Jabeen and Baig [127] presented a novel approach for dealing with mixed at-

tributes (data sets having both categorical and numerical attributes) for binary

classification. The proposed method consisted of a two layer approach, an outer layer

and an inner layer. For the outer layer, the function set was {AND,OR,NOT},
and the terminals of the outer layer corresponded to the inner layer trees. Two types

of inner layers were used, a logical and an arithmetic one. The function sets for the

logical and arithmetic layers were {AND,OR,NOT} and {+,−,×, /} respectively.

For the logical layer, the terminals were composed of the categorical attributes along

CHAPTER 4. GP AND DATA CLASSIFICATION 83

with an “=” or “ 6=” sign, for example gender=’female’. The arithmetic inner layer

used the numerical attributes as terminals. The initial population of 600 trees

was created using the ramped half and half method, and evolved over 250 gener-

ations. Crossover, mutation and reproduction had application rates of 50%, 25%,

and 25% respectively. The proposed method was tested on 5 data sets from the UCI

repository, namely, Japanese Credit, Australian Credit, German Credit, Heart, and

Hepititus. Five executions of the 10-fold cross-validation method were performed on

each data set.

The two studies described in this section propose representations which are not

similar to the common ones. Furthermore, these two methods are able to handle

data sets having both categorical and numerical attributes.

4.6 GP and Ensemble Classifiers

This section reviews studies which have used GP to evolve ensembles. Ensembles

were described in chapter 3, section 3.7.3. Adaboost has been applied to data clas-

sification using GP by Idris et al. [128]. In this study, GP and Adaboosting are

combined for a binary classification problem, churn prediction. In this implemen-

tation the GP individuals are evolved in such a way as to focus on the instances

which were misclassified by the previous base classifier. For each class a number of

GP classifiers were evolved. Initially the weights were set to a fixed value. The first

base classifier was evolved and the weights were updated. The second base classifier

had the task of focusing on those instances which the previous base classifier was

not able to correctly classify. For each class a weighted score was calculated and the

class with the highest score was the resulting class.

Thomason and Soule [129] proposed two ensemble methods, Orthogonal Evolu-

tion of Teams (OET1) and OET2. Steady-state GP was used to evolve ensembles

made up of arithmetic trees. For both of proposed methods, each ensemble had

a fixed size N, and each individual in the ensemble assumed a position i where

i = 1, 2, . . . , N . In OET1 parent selection is performed on the individuals, and the

replacement is done on the teams. An empty ensemble e1 is created, and individuals

are added into e1 as follows. Individual i is added to e1 by performing tournament

selection on all of the individuals in position i for all of the ensembles. A second

empty ensemble e2 is created in a similar way as e1. Crossover and mutation are

applied to e1 and e2, and the fittest is chosen for the next generation by replacing

the weakest offspring in the population of ensembles.

In OET2, selection was performed on the teams and replacement on the indi-

viduals. Tournament selection was applied to the population of ensembles and two

parents were selected. Two offspring were created using crossover and mutation. In

CHAPTER 4. GP AND DATA CLASSIFICATION 84

a similar way to OET1, for each position i within the ensembles, the weaker indi-

viduals at position i in the ensemble population were replaced by those at position

i in the offspring.

An ensemble was evaluated as follows. Each individual in an ensemble outputs a

real value number which is mapped to a class. If a tree outputs a value outside the

range of the available classes, then it is classified as “I don’t know” (IDK). The fitness

of each individual takes into consideration the number of correctly and incorrectly

classified instances as well as the number of IDK instances. Each individual in an

ensemble casts a vote which is weighted between 0 and 1 according to its fitness.

The individual with the highest weight is used as the classification result for the

ensemble.

Zhang and Bhattacharyya [130] proposed an ensemble approach where subsets

from large data sets were created in order to reduce the amount of memory required

to evolve classifiers, and also to speed up the evolutionary process. Ten subsets were

randomly created (with replacement) from a data set, and three types of classifiers

were created for each subset, namely, a GP classifier, a decision tree, and a logistic

regression model. For each type, the corresponding classifiers were combined into

an ensemble, thus for each type, an ensemble of 10 individuals was created. The

classification output of each ensemble was computed by obtaining the output of each

individual in the ensemble and applying a majority vote. The effect of the number

of subsets was investigated, and the findings revealed that the classification accuracy

improved as more subsets were used; however, this change was less noticeable beyond

10 subsets.

A similar approach to reduce the amount of memory required to evolve classifiers

for large data sets was investigated by Folino et al. [131]. The proposed method,

BagCGPC, makes uses of bags similar to bagging (defined in chapter 3). In this study

a data set is partitioned into smaller subsets and GP subpopulations are trained on

the subsets. A classifier is evolved for each subset and majority voting based on

the output of each classifier is used to classify the test cases. Each subpopulation

is evolved on a processor and the experiments are run in parallel. The proposed

method was applied to 5 data sets from the UCI machine learning database and

obtained a small error rate on the Cens data set which contains a relatively large

number of instances. The results were not as significant on the other four data sets

which contained fewer instances. Folino et al. [132] further investigated the effect

of the size of the ensemble and the results reveal that smaller ensembles perform

better than larger ones.

Iba [133] proposed two GP methods, BagGP and BoostGP based on bagging

and boosting respectively. For each method, ten subpopulations were created and

used to solve several machine learning problems. The instances were classified by

CHAPTER 4. GP AND DATA CLASSIFICATION 85

determining the class having the highest number of votes from the individuals in the

ensembles. The findings reveal that when compared to a standard GP approach,

BagGP performed better in terms of mean square errors. The results also reveal

that the proposed methods evolved smaller trees in terms of the number of nodes

than in the standard GP approach. The major difference between this work and

Folino et al. [131] is that Iba did not implement parallel programming.

Augusto et al. [134] implemented a coevolutionary multi-population approach

based on bagging and boosting. The populations were evolved in parallel and im-

plemented a semi-island model approach whereby the populations apply genetic

operators amongst themselves independently. Furthermore, based on a defined mi-

gration rate, genetic material between the individuals from different populations

take place. The proposed method, Coevolutionary Multi-population Genetic Pro-

gramming (CMGP) is similar to boosting in the sense that hard instances of data

apply pressure to the classifiers. This was achieved through coevolution competi-

tion where a subpopulation of classifiers competed with a subpopulation of data

instances. An individual from a subpopulation of classifiers was selected, and an

instance of data from a subpopulation of instances was selected. If the classifier was

able to correctly classify the instance, then the individual’s fitness was increased

and the weight of the instance was decreased. However if the instance was incor-

rectly classified, then the weight associated with that instance was increased and the

fitness of the individual was decreased. In this manner, the harder instances were

selected more often in a similar way to boosting. Additionally, each individual was

assigned a confidence measure to allow a fitter individual to have a more significant

vote when the ensemble was evaluated. CMGP was experimented with several en-

semble sizes varying from 1 to 31. Each ensemble corresponded to a population and

evolved a classifier. The proposed methods were tested on 7 data sets from the UCI

repository, and the results show that for certain ensemble sizes, CMGP obtained

lower error rates when compared to bagging and boosting. The findings also reveal

that on 6 data sets, a lower error was obtained for boosting when a larger ensemble

was employed, a similar observation was made for bagging on 4 data sets.

Paul et al. [135] used GP to create ensembles made up of arithmetic trees. In

the study binary and multiclass problems were dealt with separately. For binary

classification problems, a single threshold value of 0 was used to differentiate between

the output of a tree, and x rules were created by running the GP x times. A

majority vote was then applied to determine the class for test cases. For multiclass

classification problems, x rules were created for each class by running GP x number

of times. Thus if a classification problem had three classes and a value of x = 2,

then a total of 6 rules were created, i.e. two for each class. The test cases were

evaluated as follows. Each rule belonging to class Ci casted a vote, if a positive

CHAPTER 4. GP AND DATA CLASSIFICATION 86

output was obtained then the total votes for Ci was incremented by one, conversely,

a negative output incremented the total votes against Ci. The ratio of positive

to negative votes for each class was then calculated, and the one corresponding

to the highest ratio was selected as the predicted class. An investigation on the

optimal value of x was performed. The proposed method was tested on one binary

and one multiclass gene expression data set. The results show that the highest

accuracy was obtained when x was set to the number of instances in the training

set. The proposed GP method outperformed a kNN classifier. Paul and Iba [107] also

observed that the best accuracy was obtained when the number of GP individuals

in an ensemble was equal to the number of training instances. In this study there

were 22 training instances. GP was used to evolve ensembles made up of arithmetic

trees, and additional experiments were performed for which ensembles were made

up of logical trees. Both representations obtained 100% classification accuracy when

the training data was equal to the entire data set.

Pappa and Freitas [136] use a two stage approach for creating ensembles. The

first stage uses GP to evolve a population of rule induction algorithms. Then the

last population is used in the second stage to create rules that are combined into

an ensemble. Two methods for combining the votes of individuals in the ensembles

were investigated. The first, Rules-Ens Maj, was based on a majority vote. The

second, Rules-Ens Fit, was based on a fitness weighed voting approach; the weights

were determined by the fitness of each individual in an ensemble. Furthermore,

two approaches for creating the ensembles were examined. In the first approach,

the entire last population from the first stage was used as candidates to create an

ensemble. In the second approach, ensembles could only be created using a subset

of individuals from the last population. Two methods for creating the subset were

investigated, and individuals were selected based on their fitness. The first method

selected the best 10 individuals, and the second selected the best 5 and worst 5. The

latter was proposed as it naturally promotes greater diversity by combining the best

5 and worst 5 individuals in the population. The methods were tested on 5 data sets

from the UCI repository, and the ensembles were compared to the best single rule

induction algorithm in the population. Creating the ensembles using the best 5 and

worst 5 individuals from the last population yielded the best results. This method

obtained statistically significant better results than the single best GP individual on

2 data sets.

Lichodzijewski and Heywood [137] used linear GP [1] to evolve individuals which

represented bidding behaviours. The bid is used to determine which individual

in an ensemble can allocate a class. The individuals in the ensembles are called

learners, and an ensemble needs at least two learners. Each learner on its own does

not represent a complete solution unlike the other ensemble methods previously

CHAPTER 4. GP AND DATA CLASSIFICATION 87

discussed. In this work, three populations are evolved, a population of learners,

ensembles and points. The population of points represent subsets of the training

data. The outcome of the evolutionary algorithm is an ensemble made up of of

several learners. Each learner which represents a bidding behaviour by placing a bid

on the test data, and the individual which obtains the highest bid allocates the class

to the test data. The proposed approach was tested on 3 publicly available data sets

and was outperformed by two other methods, a learning classifier system [138] and

a support vector machine [139].

Bhowan et al. [101] investigated three methods to reduce negative effects of biased

individuals within an ensemble for binary classification problems. The first approach

used a weighted majority vote which was based on an individual’s fitness. Thus an

individual with a weak fitness had a small contribution to the final decision; the

converse applies to individuals with a strong fitness. The second approach involved

removing those individuals from an ensemble that had an accuracy of less than 50%

on either the majority or minority class. The third approach was based on Off-

EEL [140]. Off-EEL consists of two phases, in the first phase the classifier is evolved

according to some algorithm, and the last population is then used by sorting the

individuals according to their fitness from best to worst. The selection then proceeds

by iterating through the sorted list and taking the best individual in the list and

adding it to the ensemble. This proceeds until the sorted list is empty. Bhowan et

al. then evaluate all of the ensembles using a majority vote, and the best ensemble

is output. Only odd sized ensembles are used in order to avoid a tie between the

classes. The proposed methods were tested on 6 publicly available unbalanced data

sets. The weighted vote and Off-EEL methods obtained better results than the

single objective GP approach, as well as obtained better results when compared to

Näıve Bayes and SVM classifiers.

Liu and Xu [141] evolve individuals which consist of sub-ensembles (SE). The

proposed method is applied to multiclass classification problems and each SE evolves

trees for a class. Thus for a n class problem, there are n SE s. Since a tree is evolved

for each class, this representation allows an individual to deal with a multiclass

problem in a binary decomposition manner. The researchers make use of a diversity

measure which is based on the feature subset and the size of an individual. Ad-

ditionally a greedy algorithm was implemented to promote the diversity amongst

the ensembles. The greedy algorithm places all the SEs in a list, and in the first

step removes the SE s which do not exhibit large diversity. In the second step, the

algorithm attempts to increase the diversity of the SE s by exchanging those trees

which exhibit little diversity on their own. This procedure is repeated several times

until no further improvement can be achieved. The class output by each individual

in the SE was combined using a weighted majority vote based on accuracy.

CHAPTER 4. GP AND DATA CLASSIFICATION 88

4.6.1 Strengths and weaknesses of GP ensembles

The most significant advantage of using ensembles to evolve GP trees is the im-

provement in classification accuracy over a standard GP approach. This advantage

has been reported in [101,133], and furthermore, GP based ensembles outperformed

other classification methods in [101, 128, 134, 135, 137, 140, 141]. GP based ensem-

ble approaches have successfully been used to achieve high classification accuracy

and is a recommended approach for solving data classification problems. The sec-

ond advantage is that implementing an ensemble for GP can be achieved without

having to modify the entire system; this was demonstrated by Gagné et al. [140]

whereby ensembles were created using the final population. Evolving ensembles

leads to improvement in the evolved classifiers, however there is a challenge one has

to face when implementing ensembles. Espejo et al. point out that when evolving

ensembles, one concern is the way in which the individual members of the ensem-

ble are combined together in order to produce a single classification output. From

the literature reviewed, majority voting has typically been employed to address this

issue.

4.6.2 Summary of the findings

Based on the studies reviewed in this section, there was no consistency in the number

of data sets used for evaluation of the proposed ensemble methods, these varied from

1 to 6 per study. For the majority of the studies the selected data sets were obtained

from the UCI repository. This dissertation will make use of a larger number of data

sets than the ones used by studies in this section. In terms of the GP algorithm the

following findings were obtained. In terms of the initial population, studies reported

the use of the ramped half and half method in [101,128,129,135,141] whereas in the

other studies the details regarding the exact initialisation method were not provided.

In this dissertation the ramped half and half method will be used to create ensem-

bles. Crossover, mutation, and reproduction were used in [128, 136], elitism was

included in [101], whereas crossover and mutation were used in [129, 130, 134, 141].

Crossover had the highest application rate, followed by mutation and then repro-

duction. This dissertation will make use of the crossover and mutation operators as

these have successfully been used in evolving GP ensembles, and furthermore similar

application rates will be used as a guide for parameter tuning. Tournament selection

was employed in [101, 129, 134, 136]. Accuracy based fitness functions were success-

fully implemented in [128–130,135,136], and this dissertation will also make use of a

similar function. There was little consistency in the number of GP generations and

the population size, with values ranging from 20 to 150, and 51 to 4000 respectively.

The evolved classifiers were validated using different methods, the train/test split

CHAPTER 4. GP AND DATA CLASSIFICATION 89

was used in [101, 129, 130], cross-validation was used in [128, 134, 136, 141], and the

leave-one-out method in [135].

The output of each individual in the ensemble has to be combined together in

order to produce a single class for each instance of data. Based on the studies

reviewed, this was achieved by using a majority vote [101,130,131,136,142–145], or

a weighted majority vote [128, 129, 134, 136, 141, 146]. The majority vote approach

represents a simple approach which has successfully been used in several studies

to combine individual outputs, and consequently this dissertation will make use of

this approach. The number of individuals within an ensemble has to be defined.

Brameier and Banzhaf [147] investigated the effects of the size of the teams evolved

and the results reveal that there is no significant improvement when more than four

individuals are present in an ensemble. Further investigation regarding the effects

of the ensemble size would provide useful to researchers constructing GP ensembles.

4.7 Strengths and Weaknesses of Applying GP to Data

Classification

This section highlights some of the strengths and weaknesses of solving data classi-

fication problems using GP. The key points were extracted from [11,92,148].

4.7.1 Strengths

• Accuracy: the review of Espejo et al. [92] investigated 66 papers which com-

pared GP to another technique. From these GP outperformed the other meth-

ods in 54.72% of the comparisons.

• Interpretability: GP is able to evolve classifiers which are easy for a human

to understand. Decision trees are the simplest to understand, and thus data

miners can benefit from this and understand why certain classifications are

made. Since the classifiers evolved by GP are easily interpreted, and the

relationship between the attributes and the classification output is understood,

GP evolved classifiers have been referred to as a white box method. Classifiers

created using black box methods on the other hand do not offer as much

interpretability, such as neural networks. A classifier created using neural

networks provides little insight into the relationships between the attributes

and the classification output.

• Automatic feature selection: through the use of a fitness function and the

concept of fitness, GP is able to indirectly perform the task of feature selec-

tion by using only those attributes which contribute to improved fitness and

CHAPTER 4. GP AND DATA CLASSIFICATION 90

thus ignoring those that have no impact on fitness. This avoids an additional

method to be put in place for feature selection.

• Stochastic search: GP is stochastic in nature, and thus this randomness can

prevent the search algorithm from getting stuck in local optima. Greedy search

algorithms are susceptible to converging towards local optimum areas of the

search space, whereas GP combines both exploration and exploitation to cover

a large area of the search space.

• Variety in solutions: in conjunction with the previous point, the randomness

involved in GP leads to a variety of solutions to be found after each run.

Thus it is possible - after a few GP runs - that a better solution is found in

comparison to the previous ones. The variety in the solutions can result in tree

classifiers of different shapes and sizes. Combining these different classifiers

can be used to create an ensemble.

• Solutions in the form of a computer program: GP evolved classifiers represent

computer program-like solutions. Thus the solutions evolved can readily be

applied to additional unseen data.

• Fast execution: since the solutions are in the form of a computer program, the

solutions can be applied to unseen data and produce a classification output

rapidly.

• Flexibility: GP benefits greatly from its flexibility. Additional fitness functions

can be created in order to improve the quality of the classifiers, for instance a

fitness function can be extended to favour smaller trees, and thus leading to

greater interpretability. The genetic operators can be modified, or additional

ones can be included.

4.7.2 Weaknesses

• Evaluation: when using GP, each individual within the population has to be

evaluated after each generation. This can be extremely time consuming in the

domain of data classification due to the large training sets, since for each tree

in the population, all the training instances have to be processed by each tree.

Consider a training set with 1000 instances and a population size of 500, after

each generation there will be 500,000 evaluations done.

• Introns: introns are a well-known issue when applying GP to any domain.

Introns affect the interpretability of the classifiers evolved by adding extra

CHAPTER 4. GP AND DATA CLASSIFICATION 91

functions and terminals which increase the complexity of the classifiers. Ad-

ditionally, introns eventually lead to bloat which further hinders the time to

execute a generation.

• Number of parameters: chapter 2 discussed the issue that GP faces in terms of

having a large number of parameters. Preliminary runs are usually performed

in order to fine tune the parameters. However, as previously mentioned, due

to the large execution time which arises from large training sets, it results in

a very lengthy process to fine tune the parameters for classification.

• Premature convergence: it was previously mentioned that the variety in the GP

classifiers can be beneficial, but simultaneously this causes a problem. Despite

the fact that GP benefits from its ability to search a large space, nonetheless

GP also suffers from premature convergence toward local optimums. Thus,

there is no guarantee that GP will always find an optimal classifier to several

data sets from different problem domains. In fact, from the literature it can

be noticed that the global optimum solution is seldom found.

Using GP to evolve classifiers has several strengths and weaknesses. GP greatly

benefits from its ability to search a large space, but is severely hindered by long exe-

cution times and premature convergence. Similar to any other method which could

be applied to the task of data classification, there is no method which will obtain

the best results for every data set. Nevertheless, GP has been used in numerous

studies and continues to present itself as an algorithm worth investigating due to its

previous successes.

4.8 Conclusion

This chapter presented previous studies which used GP for the task of data classi-

fication. The chapter first discussed studies addressed GP representations for data

classification. This will followed by a discussion on GP ensemble methods for data

classification. The strengths and weaknesses of applying GP to data classification

were then highlighted. The remainder of this conclusion provides a summary of the

sections reviewed in this chapter, and provides the rationale behind the investiga-

tions which will be performed based on existing work. The next chapter will describe

how each of the objectives listed in chapter 1 will be met based on the justifications

provided below.

4.8.1 GP for data classification

Based on the findings of the studies reviewed in this chapter, the following ob-

servations were made regarding the GP implementations. Not all the studies re-

CHAPTER 4. GP AND DATA CLASSIFICATION 92

viewed mention which initial population generation method was used. However

the ramped half and half method was reported in [9, 98, 100, 101, 104, 106, 107,

109, 110, 117–119, 123–129, 135, 141]. This dissertation will also make use of the

ramped half and half method since it has successfully been used in previous studies

and provides greater diversity as discussed in chapter 2. The tournament selec-

tion [8, 97, 98, 101, 105,106, 108, 111, 118,126, 129, 134,136] and fitness proportionate

selection [95,100,104,109,113,125] were the two most commonly used parent selection

methods. Tournament selection was successfully used in a large number of studies

reviewed in this chapter. As was discussed in chapter 2, this method applies selec-

tion pressure whereas fitness proportionate does not. This method will be used in

this dissertation given its popularity and flexibility. Crossover, mutation, and repro-

duction where the three GOs which were used the most. Typically, when those were

used, the crossover had the highest application rate, followed by mutation, and then

reproduction, this was observed in [9,101,105,113,118,127,135], where these selected

studies used different representations and these also include studies investigating en-

sembles. This dissertation will make use a similar setting for the GOs. The fitness of

the GP individuals were mostly obtained using the accuracy as well as the a measure

of complexity such as the size of the individuals, studies which made use of those two

measures as a fitness function include [91, 93, 97, 122], alternative fitness functions

include the gain ratio measure in [8], or the sensitivity and specificity in [125]. The

classification accuracy has been widely employed and this dissertation will also make

use of a similar fitness function by taking into consideration the accuracy and the size

of the GP individuals. The two most used methods for evaluating the performance of

the evolved GP classifiers were k -fold cross-validation [8,97,98,109,111,113,127,134]

and the train/test split method [91, 99, 105, 122, 125]. The most common value for

k was 10. The train/test split method is computationally less expensive than k -fold

cross validation, however only a single test set is used and it is possible that the test

set contains instances of data which are easier to classify. Thus, this dissertation

will also make use of the 10-fold cross-validation as this method allows each fold

to be used as a test set which will lead to more reliable results. The remaining

subsections describe the findings obtained for the different areas of GP and data

classification which have been drawn out from the literature. The details provided

in this subsection will be applied to the objectives justified below.

4.8.2 GP representations for data classification

Linked to the first objective of this dissertation, the three major GP representations

for data classification reviewed in this chapter were decision trees, arithmetic trees,

and logical trees. Studies for each of these representations were analysed, and there

has been no study which has attempted to compare the performance of these GP

CHAPTER 4. GP AND DATA CLASSIFICATION 93

representations for data classification. Thus, this dissertation will perform a com-

parison of the three representations. New researchers in the field of GP and data

classification may not know which representation to select given the choice of the

three. This serves as the rationale behind this objective. By addressing this objec-

tive, new researchers will be able to decide which is the most suitable representation

based on the comparison.

Based on the studies reviewed, the following findings were made. Each of these

representations makes use of a different function and terminal set. Decision trees use

the attributes as functions, and classes and terminals. Decision trees have frequently

been used in the literature, and a significant advantage of this representation is that

it offers high interpretability. The evaluation is performed by starting at the root

node, and following a path to a leaf node by deciding on which branch to follow.

Arithmetic trees use mathematical functions as the function set, and the at-

tributes as the terminal set. For binary classification problems, a threshold value

of zero is often used to map the output of a tree to one of the classes. In the case

of multiclass classification, static ranges can be used to map the output onto the

classes; however, there have been studies which made use of dynamic ranges. An-

other approach is to make use of binary decomposition and to run the GP algorithm

the same number of times as there are classes. For each class i, the evolved GP

trees represent a classifier which outputs one of two possible values, a value which

denotes that an instance belongs to class i, or a value which denotes that an instance

does not belong to class i. Each of the classifiers are then combined together to pro-

duce a final classification model. This however provides the additional complexity of

dealing with clashes when two or more classifiers output that a particular instance

belongs to all of them.

When evolving logical trees using GP, the function set is made up of logical func-

tions, and the terminal set is made up of the attributes. When dealing with numerical

attributes, inequalities are usually added to the function set, and the equal sign can

be added to the function set when dealing with categorical attributes. Similar to

evolving arithmetic trees using GP, logical trees require that binary decomposition

is used in order to handle multiclass classification problems.

From the reviewed studies, the following aspects have been drawn out and will be

used in this dissertation. Decision trees will make use of the attributes as the function

set, and the terminal set will be composed of the classes. A static threshold value of

0 will be used when evolving arithmetic trees as this approach has successfully been

implemented in the studies reviewed. This threshold approach will be extended and

used with logical representations in order to provide a simple means of discriminating

between two classes. Mathematical functions will be used as the function set for

arithmetic trees, and the terminal set will be composed of the attributes. Logical

CHAPTER 4. GP AND DATA CLASSIFICATION 94

functions will be used as the function set for logical trees, and the terminal set will

be composed of the attributes. Additionally, the findings presented in section 4.8.1

will be used in order to implement the three representations.

4.8.3 GP discretisation for data classification

Decision trees can easily be applied to data sets which are made up of categorical at-

tributes; however, discretisation is required when dealing with numerical attributes.

Based on the studies reviewed, the existing work has dealt with using discretisation

methods prior to the GP run. In terms of incorporating discretisation into evolu-

tionary algorithms, the only attempts where those that made use of ADIs and GAs.

There has been no research which combines discretisation into the GP algorithm,

thus this dissertation will investigate the combination. This is the second objective

of this dissertation. Based on the studies which have investigated ADIs, this dis-

sertation will propose methods for adapting the intervals during the evolutionary

process. The findings presented in section 4.8.1 will be used in order to implement

the proposed methods.

4.8.4 GP encapsulation for data classification

Chapter 2 discussed the use of modularisation in order to reuse subtrees during the

evolutionary process. Programmers often tend to write functions which encapsulate

a piece of code that can be reused several times during the execution of the program.

In the context of GP, the encapsulation genetic operator was proposed by Koza to

achieve a similar task. This genetic operator selects a subtree within a larger tree

and encapsulates it, and thus preserving the subtree from the destructive effects of

the crossover operator. There has been no previous work which has attempted to

incorporate modularisation to the GP algorithm for data classification. This disser-

tation shall thus investigate the use of the encapsulation GO in the context of data

classification in order to determine whether this can enhance the performance of the

classifiers. This objective will also determine if, in the context of data classification,

the encapsulation operator will preserve the subtrees from the destructive effects of

the crossover operator previously mentioned. This represents the third objective of

this dissertation. The findings discussed in section 4.8.1 will be used to implement

the proposed GP encapsulation approach.

4.8.5 GP ensembles for data classification

An approach to improving the accuracy of the classifiers is to use GP to evolve ensem-

bles. From the literature reviewed, it is apparent that evolving ensemble classifiers

can outperform the standard GP approach. Researchers have investigated different

CHAPTER 4. GP AND DATA CLASSIFICATION 95

approaches as how to use GP for evolving ensembles. These vary from creating

ensembles at the end of the GP execution using the final population, and other

approaches whereby the ensemble is evolved during the GP execution. Typically

bagging or boosting algorithms can be used with GP in order to create ensembles.

A hybridisation between evolutionary algorithms has not previously been investi-

gated in the context of data classification, and thus this investigation serves as the

rationale behind the fourth objective. The final objective is to propose a new GP

boosting for creating ensembles. The rationale behind this approach is to propose

a new method which makes use of a simple approach to use weights in order to

allocate a measure of difficulty to the training data. Furthermore, objectives 4 and

5 provide a means of comparing the performance of a population of ensembles to

a single evolved ensemble. There has been no previous attempt at such a compar-

ison. The overall issue when evolving ensembles is how to combine the individual

classifier outputs into a single final output; typically a majority vote has been used.

This dissertation will thus also make use of a majority vote approach. Furthermore,

the findings discussed in section 4.8.1 will be used to implement the proposed two

ensemble approaches.

Chapter 5
Methodology

5.1 Introduction

This chapter presents the methodology which will be used to address the objectives

stated in chapter 1. Section 5.2 describes how each of the objectives outlined in

chapter 1 will be achieved. The statistical testing which shall be used in this dis-

sertation is detailed in section 5.3. Section 5.4 describes the characteristics of the

21 data sets used in this dissertation, and additionally provides the rationale for the

selected data sets. The overall GP system which will be used in this dissertation

is provided in section 5.5. Section 5.6 discusses how the experiments were run and

how the results were obtained. Section 5.7 provides details regarding the technical

specifications. Finally, this chapter is concluded in section 5.8.

5.2 Addressing the objectives

Based on the implementations of GP for data classification found in the literature,

a generational GP algorithm will be implemented. This GP algorithm for data

classification shall serve as a baseline approach, and the additional methods which

shall be proposed in the following objectives will consequently be compared to this

baseline approach. The objectives of this dissertation are listed below along with a

discussion on how these objectives will be addressed. Furthermore, for each of the

objectives described, the results will be statistically tested in order to determine the

effectiveness of the proposed methods. The statistical tests are detailed in section

5.3.

• Objective 1: Incorporating discretisation into GP.

In order to fulfil this objective, discretisation will be incorporated into the

GP algorithm. From the literature reviewed in the previous chapter, it is

96

CHAPTER 5. METHODOLOGY 97

apparent that the idea of incorporating discretisation into a GP algorithm has

yet to be proposed, and thus, various ways of incorporating discretisation into

a GP algorithm will be tested on publicly available data sets which contain

only real-valued attributes. The performance of each of the methods will be

investigated and compared to one another using statistical tests. Additionally,

the proposed methods will be compared to other discretisation methods found

in the literature.

• Objective 2: GP representations for data classification.

The previous chapter presented several studies on each of the three represen-

tations, however there has been no study comparing the three. In order to

fulfil an investigation on the three commonly used representations, the three

GP representations will be implemented and tested on publicly available data

sets, and a comparison between each of the three will be made. This compar-

ison will include determining which of the representations obtains the highest

training and testing accuracy, and additionally, to compare the size of the

evolved representations. Due to the fact that logical trees can only output

two values, true or false, this representation can only be applied to binary

classification problems. Thus, in order to compare the representations, these

methods will only be compared to each other on binary classification problems.

Statistical testing will be applied to the results in order to provide a detailed

comparison of the performance of the representations.

• Objective 3: Encapsulation genetic operator and data classification.

In order to accomplish this objective, the encapsulation genetic operator will

be included as an additional operator in the baseline GP algorithm. This ap-

proach will be investigated and the findings analysed in order to determine

the effect of the encapsulation operator. Since this represents the initial at-

tempt at applying the encapsulation genetic operator in a GP algorithm for

data classification, the proposed approach will be refined in order to deter-

mine additional ways of enabling the encapsulation operator to improve the

performance of the classifiers. When the encapsulation operator is applied

to GP, encapsulated terminals are created and added to the trees. Thus the

number of encapsulated terminals in the evolved classifiers will be measured

in order to determine if the number of encapsulated terminals impact the GP

trees. The proposed approach will be tested on several publicly available data

sets. The results of the proposed encapsulation approach will be statistically

compared to the results of the standard GP algorithm without encapsulation

(the baseline algorithm) in order to verify the effectiveness of the proposed

method.

CHAPTER 5. METHODOLOGY 98

• Objective 4: Hybridising evolutionary algorithms for classifier ensembles.

Existing studies detailed in the previous chapter revealed that ensemble meth-

ods have proven themselves superior to single classifier methods. However,

there has been no attempt to hybridise GP with another evolutionary algo-

rithm in order to create ensembles. This objective will be fulfilled by creating

various hybridisations of the GP algorithm with a genetic algorithm in or-

der to evolve a population of ensemble classifiers. By introducing the genetic

algorithm there are additional parameters which need to be fine-tuned, and

these will be optimised on selected data sets. Ensembles of different sizes will

be investigated in order to determine the optimal ensemble size. The perfor-

mance of these various hybridisations will be compared to each other on several

publicly available data sets, and additionally compared to the baseline GP al-

gorithm in order to determine whether the proposed methods can outperform

the baseline approach. The results will be statistically tested. Finally, the

proposed hybridisations will be compared to other ensemble methods found in

literature.

• Objective 5: GP and ensemble construction.

Both objectives 4 and 5 deal with investigating methods which create ensem-

bles, however, this objective differs from objective 4 in the number of ensembles

that are considered. In objective 4, the goal was to hybridise two evolutionary

algorithms in order to evolve a population of classifier ensembles and output

the best ensemble at the end of the run. This objective, on the other hand,

focuses on creating a single ensemble classifier which is output at the end of the

GP run. In order to meet this objective, the GP algorithm must incrementally

add trees to a single ensemble. Thus, a proposed method for adding trees will

be investigated. This will be done by incorporating weights similar to the way

they are used in boosting methods. The results for each ensemble size will

be investigated and compared to each other. The results from the proposed

method will be statistically compared to the results from the baseline GP ap-

proach, and additionally, the proposed method will be compared to ensemble

methods found in the literature. The proposed approach will be tested on

several publicly available data sets. Furthermore, the ensembles proposed in

objective 4 will be compared to the proposed method in this objective.

5.3 Statistical testing

According to the central limit theorem [149], as the sample size increases, the distri-

bution of the sample means approaches a normal distribution. A sample size greater

CHAPTER 5. METHODOLOGY 99

than 30 is sufficient to achieve a normal distribution. Thus, if more than 30 GP runs

are performed for each data set, then enough results will be collected to ensure that

statistical tests can be conducted.

In this dissertation, when a comparison between methods is conducted, the z-

test will be applied with α = 0.05. Assume two classification methods A and B are

being compared, with means µA and µB respectively. The first step is to formulate

the null and the alternative hypothesis as follows:

H0 : µA = µB

Ha : µA > µB

When applying the z-test, a p-value is computed and compared to the value

of α [150]. If the p-value is less than α then the decision is to reject the null

hypothesis, and consequently method A outperforms method B. Conversely, if the

p-value computed is greater than or equal to α, then the decision is to accept the

null hypothesis, and consequently the two classification methods have the same mean

performance.

5.4 Data Sets

This section describes the data sets that are used throughout this dissertation.

Eleven binary data sets and ten multiclass data sets were selected from the UCI

machine learning repository [27].

5.4.1 Characteristics of data sets for data classification problems

A data set is generally described using the following characteristics:

• Number of attributes

• Number of instances

• Number of classes

• Class balance

While it is true that the actual data dictates the complexity of a data set, the

characteristics of the data sets also have an impact on the difficulty to create an

accurate classifier. It is trivial to create a classifier if for a data set, all the instances

belonging to class A have attributes made up of negative values, and all the instances

of class B have attributes made up of positive values. Clearly in this situation, the

data itself renders the task of creating an accurate classifier simple.

CHAPTER 5. METHODOLOGY 100

Assuming the data itself is not trivially separable into the correct classes, then

the characteristics of the data sets impact the difficulty involved in creating accurate

classifiers. For instance, large data sets which contain over thousands of instances

can increase the complexity of the classification task.

The class balance can significantly impact the complexity involved in creating

classifiers in the case of highly unbalanced data sets. This imbalance can result in the

classifier being biased towards the majority classes; consequently which reduces the

accuracy on the minority classes [29,151]. The issue of class imbalance is observed in

both binary and multiclass classification problems. Medical diagnosis problems are

typically formulated as a binary classification problem whereby the class of interest

is often the minority class [29]; thus data sets which are unbalanced are of interest.

Finally, the number of attributes can impact the complexity of a data set. Data

sets which contain a large number of attributes are affected by the curse of di-

mensionality [152]. As the number of attributes increases, the dimensionality of

the problem increases, and consequently creating accurate classifiers becomes more

challenging.

Based on the various characteristics of data sets for classification problems; sev-

eral data sets were selected in such a way as to address the different characteristics.

The selected data sets are presented in the following subsections.

5.4.2 Binary data sets

The eleven binary data sets are described below:

Pima Indians Diabetes (Pima Indians)

Class balance

Instances 768

Attributes 8, continuous

Classes 2

Table 5.1: Pima Indians data set characteristics.

CHAPTER 5. METHODOLOGY 101

Connectionist Bench - Sonar, Mines vs. Rocks (Sonar)

Class balance

Instances 208

Attributes 60, continuous

Classes 2

Table 5.2: Sonar data set characteristics.

Breast Cancer Wisconsin - Diagnostic (WDBC)

Class balance

Instances 569

Attributes 30, continuous

Classes 2

Table 5.3: WDBC data set characteristics.

CHAPTER 5. METHODOLOGY 102

Parkinsons

Class balance

Instances 195

Attributes 22, continuous

Classes 2

Table 5.4: Parkinsons data set characteristics.

Mammographic Masses (Mammographic)

Class balance

Instances 961

Attributes 5, numerical

Classes 2

Table 5.5: Mammographic data set characteristics.

CHAPTER 5. METHODOLOGY 103

Ionosphere

Class balance

Instances 351

Attributes 34, continuous

Classes 2

Table 5.6: Ionosphere data set characteristics.

SPECTF Heart (Spectf)

Class balance

Instances 267

Attributes 44, numerical

Classes 2

Table 5.7: Spectf data set characteristics.

CHAPTER 5. METHODOLOGY 104

Climate Model Simulation Crashes (Climate)

Class balance

Instances 540

Attributes 18, continuous

Classes 2

Table 5.8: Climate data set characteristics.

Fertility

Class balance

Instances 100

Attributes 9, continuous and numerical

Classes 2

Table 5.9: Fertility data set characteristics.

CHAPTER 5. METHODOLOGY 105

MONK’s Problems (Monk2)

Class balance

Instances 432

Attributes 6, numerical

Classes 2

Table 5.10: Monk2 data set characteristics.

Tic-tac-toe (TTT)

Class balance

Instances 958

Attributes 9, categorical

Classes 2

Table 5.11: TTT data set characteristics.

CHAPTER 5. METHODOLOGY 106

5.4.3 Multiclass data sets

The ten multiclass data sets are described below:

Balance Scale (Balance)

Class balance

Instances 625

Attributes 4, numerical

Classes 3

Table 5.12: Balance data set characteristics.

Car Evaluation (Car)

Class balance

Instances 1728

Attributes 6, categorical

Classes 4

Table 5.13: Car data set characteristics.

CHAPTER 5. METHODOLOGY 107

Glass Identification (Glass)

Class balance

Instances 214

Attributes 9, continuous

Classes 6

Table 5.14: Glass data set characteristics.

Ecoli

Class balance

Instances 336

Attributes 7, continuous

Classes 8

Table 5.15: Ecoli data set characteristics.

CHAPTER 5. METHODOLOGY 108

Zoo

Class balance

Instances 101

Attributes 16, numerical

Classes 7

Table 5.16: Zoo data set characteristics.

Iris

Class balance

Instances 150

Attributes 4, continuous

Classes 3

Table 5.17: Iris data set characteristics.

CHAPTER 5. METHODOLOGY 109

Wine

Class balance

Instances 178

Attributes 13, continuous

Classes 3

Table 5.18: Wine data set characteristics.

Yeast

Class balance

Instances 1484

Attributes 8, continuous

Classes 10

Table 5.19: Yeast data set characteristics.

CHAPTER 5. METHODOLOGY 110

Statlog Vehicle Silhouettes (Vehicle)

Class balance

Instances 846

Attributes 18, numerical

Classes 4

Table 5.20: Vehicle data set characteristics.

Soybean Large (Soybean)

Class balance

Instances 307

Attributes 35, numerical

Classes 19

Table 5.21: Soybean data set characteristics.

CHAPTER 5. METHODOLOGY 111

5.4.4 Rationale behind the selected data sets

Figure 5.1 illustrates the difference between the number of attributes and instances

within the binary data sets. These data sets are made up of different characteristics;

although certain of these data sets may have a similar number of attributes, they

distinguish themselves in the number of instances. For instance, the Fertility and

Pima Indians data sets have a similar number of attributes, however the Pima

Indians data set has over seven times the number of instances. The selected binary

data sets range in the number of instances; from 100 to 916, and additionally there

is a variety of attribute dimensionality from 5 to 60. Additionally, certain data sets

are well-balanced whilst others are imbalanced. Mammographic contains missing

numerical values which will be dealt with by imputing each missing value with the

corresponding attribute median in which the missing value is found.

The data sets were selected in such a way as to represent different data classifica-

tion application areas (for example life, physical, and social), and they were selected

to contain data sets of dissimilar characteristics. Selecting data sets with similar

characteristics would imply that the GP algorithm would be evaluated on problem

specific domains, and consequently, the results would not be a true representation

of the performance of the proposed methods.

Figure 5.1: Difference in the number of attributes and instances in the binary data
sets.

Figures 5.2 and 5.3 illustrate the differences in the number of attributes, instances

and classes within the multiclass data sets. Similarly to the binary data sets, these

CHAPTER 5. METHODOLOGY 112

data sets have different characteristics. The selected multiclass data sets range in

the number of instances from 101 to 1728, and additionally, range in the number of

attributes from 4 to 35. The number of classes varies from 3 to 19. Soybean contains

missing categorical values which will be dealt with by imputing each missing value

with the mode for each attribute. The selected data sets thus represent different

problems with unique challenges in terms of the characteristics described in section

5.4.1.

Figure 5.2: Difference in the number of attributes and instances in the multiclass
data sets.

Figure 5.3: Difference in the number of classes in the multiclass data sets.

In the domain of data classification and machine learning, there is no rule of

thumb to determine how many data sets should be used in a study in order to

CHAPTER 5. METHODOLOGY 113

evaluate the performance of an algorithm. McDermott et al. [153] surveyed 183

articles in which 20.2% of them were related to data classification. The findings

point out that on average only 3.5 data sets were used per article in studies related to

data classification. From the literature surveyed in this dissertation, it was apparent

that there is a lack of consistency in the number of data sets used in previous studies.

It was thus determined that these selected data sets represent a sufficient amount

of problems, in terms of their varying characteristics, in order to investigate the

objectives of this dissertation.

5.5 GP System

Unless otherwise stated, the generational GP algorithm will be implemented for all

of the proposed methods. This was defined in algorithm 2.1. The ramped half and

half method will be used to generate the initial population, this was discussed in

section 2.7. Tournament selection will be used to select the parents for the GOs,

and this was presented in algorithm 2.2. When a parent is to be selected for a GO,

the tournament selection method is executed twice and thus two individuals are

obtained. These two individuals are first compared in terms of accuracy, and the

one with the highest accuracy is returned. If they have the same accuracy, then the

number of nodes within each individual is compared, and the one with the smallest

number of nodes is returned. Should they both have the same accuracy, and the

same number of nodes, then the individual to be returned is selected at random.

Crossover and mutation will be used, and these were described in sections 2.10.3

and 2.10.2 respectively. The GP crossover operator makes use of hill climbing in

the following manner: the operator runs for 10 attempts and, on each attempt,

performs crossover on the original parents. The resulting offspring are examined on

each attempt, and if the training accuracy is improved, the fitter of the two offspring

is then returned. If there is no improvement across the ten attempts, then the fitter

of the two original parents is returned. Accuracy will be used as the fitness function,

and was defined in section 3.4. Section 5.6 describes how the GP system will be run

and how the results will be collected.

This dissertation will make use of a multithreaded architecture in order to deal

with the issue of large runtimes. In order to achieve this, the GOs will be performed

in parallel based on the number of threads allocated to the task. For each execution

of a GO, if n offspring are to be created, and t threads are allocated, then each

thread will create n
t offspring in parallel. For instance, if 8 threads are allocated,

and 800 offspring are to be created using a GO, then each of the 8 threads will be

responsible for creating 100 offspring in parallel. This will lead to shorter runtimes

than creating the offspring sequentially.

CHAPTER 5. METHODOLOGY 114

5.6 Performance Measures

Due to the random nature of the GP algorithm, several runs of the proposed methods

need to be run. The randomness may cause the GP algorithm to not perform

consistently across all runs, and thus a total of fifty runs will be executed in order to

obtain a sufficient amount of results. Additionally, by performing a large number of

runs, in this case fifty, there is enough data to apply statistical tests in order to verify

the statistical significance of the results. In order to determine the performance

of the evolved GP classifiers on the data sets, the 10-fold cross-validation will be

implemented as follows:

1. Randomly create 10 folds from the original data.

2. Use one fold for testing and the remaining 9 folds for training. Repeat this

process ten times ensuring that each fold is used exactly once for testing while

the remaining folds are used for training.

3. Repeat steps 1 and 2 five times.

Following the implementation described above, a total of fifty GP classifiers are

created for each data set. The average classification accuracy on the training and

test data is recorded and averaged across the fifty runs. A random seed is created

for each GP run.

5.7 Technical Specifications

The algorithms proposed in this dissertation were written in Java 1.6 using Netbeans

7.3. The technical specifications of the computer used to develop the proposed

algorithms are as follows: Intel Core i7-3630QM @ 2.4GHz with 8GB RAM running

Windows 8.1. The statistical tests were performed using Microsoft Excel 2010. The

simulations were performed on the Center for High Performance Computing.

5.8 Conclusion

This chapter describes the methodology which will be used to achieve the objectives

described in chapter 1. Based on the literature reviewed in chapter 4, it was observed

that there was no consistency between studies regarding the data sets selected. Fur-

thermore, no rationale was provided for the selected data sets in the existing studies.

The data sets which will be used in order to determine the effectiveness of the pro-

posed algorithms were described in this chapter; along with an explanation on how

the statistical tests will be conducted. Data sets with varying characteristics were

CHAPTER 5. METHODOLOGY 115

selected in order to represent a variety of data classification problems. The overall

proposed GP system details were presented. Finally, the method for determining

the performance of the proposed algorithms was presented.

Chapter 6
Incorporating Adaptive Discretisation

into Genetic Programming for Data

Classification

6.1 Introduction

GP using a decision tree representation has been used numerous times for data

classification problems when the attributes are categorical. One of the shortcomings

of decision trees is that they cannot directly handle continuous data. Discretisation,

discussed in chapter 3 section 3.7.4, is often required as a pre-processing step in order

to apply algorithms to data sets having continuous data. This chapter investigates

how GP can incorporate adaptive discretisation for data sets containing continuous

attributes.

Two approaches for incorporating discretisation into the GP algorithm are de-

scribed in section 6.2. Furthermore, section 6.2 describes a new GO for altering

the intervals dynamically. Section 6.3 describes the experimental setup, lists the

data sets which will be used for testing, and provides details on the GP parameters.

Finally, section 6.4 concludes this chapter.

6.2 Proposed Discretisation Methods for GP

When GP is applied to data classification using a decision tree representation, each

node within the tree represents an attribute and the leaf node represents the class

value.

An example of such a GP tree is illustrated in figure 6.1. In this case the attribute

represents categorical data and a branch is created for the two possible values, male

116

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 117

and female. This example also illustrates the shortcoming of decision trees when

dealing with continuous data since creating a branch for each numerical value would

not be feasible.

Figure 6.1: Example of a GP tree using a decision tree representation.

Two major approaches were developed in order to determine which discretisation

method is most effective. The first creates intervals of equal width and those intervals

remain constant throughout the GP execution; this approach was named Equal

Width Intervals (EWI). The second approach creates random intervals and alters

those intervals during the GP execution; this approach was named GP Evolved

Intervals (GPEI). Thus the approaches serve as a comparison between a static and

a dynamic interval approach.

An arity has to be specified when creating intervals in order to split them. Two

approaches were investigated, a fixed and a varying approach, in order to examine

the effect that the arity of the nodes has on the proposed discretisation methods. The

fixed arity approach sets an arity, and each node in the GP decision trees has to take

on that arity. The arity is never changed during the execution of the GP algorithm.

The varying arity approach allows GP to randomly select the arity during execution

of the GP algorithm. In this approach, the GP algorithm randomly selects the arity

of a node when it is being created. Nodes are created during initial population

generation and when the mutation operator is applied. The rationale behind this

approach was to determine whether decision trees with a fixed arity at every node

results in the same classification accuracy as trees created with nodes of varying

arity values. In this research, the minimum arity was 2 and the maximum was 4,

thus when the varying arity was applied, GP could select an arity of 2, 3, or 4 when

creating a node. In both approaches, the number of intervals created for a node is

equal to the node’s arity.

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 118

6.2.1 Equal Width Intervals (EWI)

The EWI approach creates intervals of equal width depending on the arity of the

node. The intervals are created by taking the minimum and maximum values for an

attribute and dividing by the selected arity. The selected arity values for EWI are 2,

3, and 4. Values larger than 4 were not selected in order to prevent GP from creating

large trees, and to consequently restrict the search space. EWI can be used with

either the fixed or varying arity method. In the case where EWI is used with the

fixed arity approach, intervals of equal width are created based on the set arity. In

the case where EWI is used with the varying arity method, intervals of equal width

are created based on the arity chosen by GP when creating each node. Since each

attribute in a data set may have a different range of values, the intervals for each

attribute node have the following structure: the lower bound of the first interval has

to be the same value as the minimum value for the attribute. The upper bound of

the last interval must be equal to the maximum value of the attribute.

An example of intervals created by the EWI approach is given in figure 6.2, the

arity used in this example is 3, and the data used to create the intervals is presented

in table 6.1. Each interval has an equal length of 2.0 units. The evaluation of the

attribute is as follows:

• if 0 ≤ attribute data < 2.0 then visit left branch

• if 2 ≤ attribute data < 4.0 then visit left branch

• if 4 ≤ attribute data ≤ 6.0 then visit left branch

In the case of the fixed arity method, the GP trees are initialised to the fixed arity

value, and the intervals are never altered during the GP algorithm. In the case of

the varying arity method, the GP trees are initialised based on the arity chosen by

GP, and the intervals are also never altered during the GP algorithm.

Figure 6.2: Intervals created using EWI.

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 119

In the following discussion the terms lower and upper bound are used. Consider

the interval [a, b], a represents the lower bound and b represents the upper bound.

From the example in figure 6.2 the lower bound in interval 1 is closed, as well as

the upper bound in interval 3. Between two adjacent intervals, say interval x and

interval y in numerical order, the upper bound of interval x should be open, and the

lower bound of interval y should be closed as can be seen between interval 1 and

interval 2, and interval 2 and interval 3 in figure 6.2.

Attribute data

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Table 6.1: Sample data for an attribute.

6.2.2 GP Evolved Intervals (GPEI)

The GPEI approach allows the GP algorithm to randomly create intervals based

on the arity of each node. In this approach, the GP algorithm is allowed to create

intervals of any size for a particular attribute that must adhere to the following:

• The lower bound of the first interval has to be the same value as the minimum

value for the attribute.

• The upper bound of the last interval must be equal to the maximum value of

the attribute.

• The intervals should be disjoint from each other.

• There should be no gap between intervals, i.e. the intervals are disjoint from

each other but represent a continuous flow between the values of adjacent

intervals and no discontinuity should exist between adjacent intervals.

Provided that the algorithm follows the above mentioned rules, it is free to create

any cut-off point for an interval. These cut-off points are selected randomly during

the execution of the GP algorithm when a node is being created, i.e. when a node

is being added to the decision tree. Nodes are created during initial population

generation, and when the mutation operator is applied. When a node is created,

the intervals for that node are also created. Once a node has been created along

with its intervals, these values can be changed using the alter interval GO which is

described below.

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 120

An example of an interval created using GPEI is shown in figure 6.3.

Figure 6.3: Intervals created using GPEI.

The pseudocode for the GPEI approach is presented in algorithm 6.1. Two

general observations about this approach are made below:

• When the GP algorithm is executed several times, the intervals for nodes

representing the same attribute may be different.

• If a decision tree contains several nodes for a particular attribute, the intervals

may be different for each of them.

In step 2 of the GPEI pseudo-code the reason for selecting arity values between 2

and 4 is due to the fact that a value greater than 4 would render the GP program

search space large and would affect the algorithm’s ability to find a solution. The

remainder of this section presents a new GP operator called alter interval. This GO

was created in order to allow the GP algorithm to randomly select a node within a

tree and to alter the interval in such a way as to improve the accuracy of that tree.

Since the method for creating the GPEI is random in nature it cannot guarantee

that a new random interval will improve the accuracy. For this reason, hill climb-

ing was incorporated in an attempt to improve the accuracy of the tree over ten

attempts. At each attempt, a random interval is created and if the accuracy of the

tree is improved, then the hill climbing halts and the tree is returned by the GO.

If the accuracy is not improved, then another new random interval is created until

all ten attempts are exhausted. Preliminary trial runs were performed and revealed

that hill climbing improved the performance of the algorithm. The pseudocode for

the alter interval GO is presented in algorithm 6.2. The hill climbing mechanism is

executed in steps 9 to 12 in algorithm 6.2.

The alter interval GO only selects a single node and alters that node’s interval.

The alter interval GO is a local search operator since the structure of the tree is not

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 121

Algorithm 6.1: Pseudocode for creating an attribute node using GPEI.

input: input tree
output: input tree containing a new attribute node

1 begin
2 Randomly select an attribute within the function set. Create the

attribute random attr.
3 Allocate an arity value, arity, for random attr.
4 If the fixed arity method is used then set the arity based on the user

parameter.
5 If the varying arity method is used then ranomly select an arity between 2

and 4 inclusively.
6 Initialise empty intervals based on the arity value determined in step 2.
7 Set the leftmost interval to have a lower bound value equal to the

minimum value for random attr
8 Set current to the value obtained in step 7.
9 random = random real number between current and max value for

random attr. random cannot be equal to the max value for random attr
10 Create an interval between current and random.
11 Set current to random.
12 Steps 9 to 11 created the first interval. Repeat these steps to create the

remaining intervals
13 Set the rightmost interval to have an upper bound value equal to the

maximum value for random attr.
14 end

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 122

affected, and since the search is focused on a single node.

Algorithm 6.2: Alter interval genetic operator.

input: input tree
output: A tree with a new random interval for an attribute node.

1 begin
2 parent ← TournamentSelection();
3 parent copy ← CreateCopy(parent);
4 random node ← RandomNodeFromTree(parent copy);
5 original interval ← CopyInterval(random node);
6 if random node 6= terminal node then
7 busy ← 0;
8 initial accuracy ← ComputeAccuracy(parent copy);
9 while new accuracy ≤ initial accuracy AND busy 6= 10 do

10 random node ← CreateRandomInterval (random node);
11 new accuracy ← ComputeAccuracy (parent copy);
12 busy ← busy + 1;

13 end

14 end
15 if new accuracy < initial accuracy then
16 random node ← SetInterval(original interval);
17 end

18 end

Figures 6.4 and 6.5 illustrate a node which has been modified by the alter interval

GO. From the figures, attribute 3 was selected, and it has an arity of 3. The lower

bound of the first interval is not changed, neither is the upper bound of the last

interval. Typically when a researcher makes use of GP to solve a problem the

crossover and mutation operators are used. Since the crossover operator is a local

search operator, a small percentage of its application rate can be allocated to the

alter interval operator as it is also a local search operator, allowing the GP algorithm

to make use of the three operators.

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 123

Figure 6.4: Illustrating the alter interval GO. The algorithm selected attribute 3
(highlighted in grey) for modification.

Figure 6.5: Illustrating the alter interval GO. The intervals for attribute 3 were
altered which resulted in three new intervals.

6.3 Experimental Setup

Eight experiments were run, each consisting of a unique combination of methods in

order to investigate the performance of the proposed adaptive discretisation meth-

ods. The proposed discretisation methods implemented the GP system described in

section 5.5. The initial population generation, selection methods, fitness evaluation

and GOs were implemented as described in that section. The results were obtained

using the approach described in section 5.6. The experiments are listed along with

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 124

their combination of characteristics in table 6.2, and represent every possible com-

bination between the GPEI and EWI methods, with the fixed and varying arity

methods.

ID Description Arity GPEI Varying Arity

1 GPEI varying arity n/a true true

2 GPEI arity 2 2 true false

3 GPEI arity 3 3 true false

4 GPEI arity 4 4 true false

5 EWI arity 2 2 false false

6 EWI arity 3 3 false false

7 EWI arity 4 4 false false

8 EWI varying arity n/a false true

Table 6.2: Experiments conducted and their different combination of parameters.

Experiments 1 to 4 used the GPEI approach whereas experiments 5 to 8 used

EWI. The column labelled “arity” denotes the arity used for that experiment, in

the case where a number is present this means that a fixed arity was used, and in

the case where “n/a” is present it means that the GP algorithm randomly selected

the arity as described previously. The columns “GPEI” and “varying arity” denote

whether or not GPEI and the varying arity approach was used. A value of “true”

means it was applied, and “false” means it was not applied to that experiment. For

instance, experiment ID 3 corresponds to an experiment in which the arity for all the

GP trees is set to 3, and the GP algorithm alters the intervals during the execution.

6.3.1 Data sets

Twelve binary and multiclass data sets were used to examine the performance of

the proposed methods; the data sets are listed in table 6.3. These data sets were

selected as they represent binary and multiclass classification problems, and have

varying characteristics. Further details about the data sets were presented in chapter

5.

Ecoli Sonar

Fertility Spectf

Glass Vehicle

Ionosphere WDBC

Iris Wine

Pima Indians Yeast

Table 6.3: Selected data sets for the adaptive discretisation experiments.

CHAPTER 6. ADAPTIVE DISCRETISATION FOR GP 125

6.3.2 GP parameters

The GP parameters used throughout all the experiments in this chapter are listed

in table 6.4. The crossover operator application rate varied depending on whether

or not the alter interval operator was used. These parameters were determined

empirically through trial runs.

GP Parameter Value

Population Size 700

Parent Selection Method-
arithmetic

Tournament selection,
size 7

Initial Population Maximum
Tree Size

7

Initial Population
Generation Method

Ramped half and half

Maximum Offspring Size 7

Crossover
Application Rate

If GPEI was not used: 70%
If GPEI was used: 60%

Mutation Application Rate 30 %

Alter Interval
Application Rate

If GPEI was not used: 0%
If GPEI was used: 10%

Maximum Number of
Generations

200

GP Model Generational model

GP Tree Representation Decision trees

Table 6.4: GP parameters.

6.4 Conclusion

This chapter investigates the incorporation of an adaptive discretisation mechanism

into the GP algorithm for data classification. Two methods were examined. EWI

creates intervals of equal width, whereas GPEI allows GP to evolve the intervals.

A new GO was proposed in order to alter the intervals dynamically during the

execution of the GP algorithm. Both of these methods could use either a fixed arity

which was set in advance, or let GP select the arity each time a node is created.

Discretisation has not previously been incorporated in the GP algorithm, and thus

the proposed algorithms represent a novel approach.

Chapter 7
Comparing Genetic Programming

Representations for Binary

Classification

7.1 Introduction

The first decision to make when implementing a GP algorithm for data classifica-

tion is to decide upon a GP representation. Chapter 4 discussed previous studies

which made use of three principle representations, namely arithmetic trees, logical

trees, and decision trees. In previous studies, researchers provided no justification

for their choice of representation when using GP for data classification. This imme-

diately leads to several questions. Why was a particular representation selected over

another? Does a particular representation result in classifiers which obtain higher

accuracies? These questions are the rationale behind the investigation proposed in

this chapter.

This chapter compares the three major representations in the context of GP and

binary data classification. The representations are described in section 7.2. This is

followed by the experimental setup in section 7.3 which describes the function and

terminal set which will be used for each representation, as well as the data sets used.

Finally, this chapter is concluded in section 7.4.

7.2 GP Representations for Binary Classification

7.2.1 Arithmetic trees

Arithmetic trees represent mathematical expressions which can discriminate between

classes. In the case of binary classification, one tree can discriminate between two

126

CHAPTER 7. GP REPRESENTATIONS FOR BINARY CLASSIFICATION 127

classes using a threshold value. The function set consists of mathematic operators

such as +,−,×, /, log, tan, exp. Leaf nodes represent attributes whereas the non-

left nodes are the mathematical operators. A tree represents a single mathematical

expression which outputs a single real valued number. The output is then compared

to a threshold value. Assume a classification problem has classes “a” and “b”. If

the output is less than the threshold value, then the class value “a” is the resulting

classification value for that particular tree. If the output is greater than or equal

to the threshold value, then the class value “b” is the classification value. Thus, in

this representation, the tree does not directly encode the class in the representation.

Figure 7.1 illustrates an example of a GP arithmetic tree for data classification. In

the example x20 represents attribute 20 within the data set, similarly x4 and x15

represent attributes 4 and 15 respectively. There are two mathematical functions

in this example, the addition and multiplication operators. The tree represents the

following expression (x20 × x4) + x15.

Figure 7.1: Arithmetic tree representation for GP.

7.2.2 Decision trees

Decision trees do not represent an expression like arithmetic trees. Decision trees

represent a path from the root node to one leaf node. Each node within the tree

represents one attribute and the leaf nodes represent one class. When a decision

tree is traversed, a choice as to which branch will be visited next is determined

by the attribute. Figure 7.2 illustrates a simple decision tree. The root node is the

attribute temperature. Thus for any instance in a data set if the temperature value is

“Hot”, the left node is visited next, and if the temperature value is “Cold”, then the

right node is visited next. The classes are directly encoded in the tree. In figure 7.2,

when the left branch is visited, a leaf node is reached and the classification output

is “Class 1”, and similarly if the right branch is visited, the classification output is

CHAPTER 7. GP REPRESENTATIONS FOR BINARY CLASSIFICATION 128

“Class 2”. The GP decision trees will make use of GPEI discussed in chapter 6, and

a fixed arity of 2 will be used.

Figure 7.2: Decision tree representation for GP.

7.2.3 Logical trees

Logical trees can be evaluated using a similar threshold approach which is used with

arithmetic representations. A logical tree outputs either true or false since it is

made up of logical operators. Assume a classification problem has classes “a” and

“b”. The threshold approach for logical trees can be achieved as follows: if a tree

outputs true, then the classification output is class “a”, and if a tree outputs false,

then the output is class “b”. This allows a single tree to discriminate between two

classes in a similar manner to arithmetic trees. Figure 7.3 illustrates an example of

a logical tree. The tree first checks if x20 is less than x4. Then the tree checks if

x8 is greater than x12. The logical OR operator is applied to the result of the two

comparisons.

Figure 7.3: Logical tree representation for GP.

Typically inequality functions are used with this representation. A between func-

CHAPTER 7. GP REPRESENTATIONS FOR BINARY CLASSIFICATION 129

tion was proposed in order to allow an attribute to be compared to two values simul-

taneously. The between function takes three parameters of which the first parameter

is always an attribute, and the other two parameters can be attributes or constants.

The function is defined as follows:

between (x, y, z) =
true, if y ≤ x ≤ z,
false, otherwise.

Figure 7.4 illustrates an example of the between node.

Figure 7.4: The between GP operator for logical tree representations.

Thus, from figure 7.4, the tree will return true if the value of x4 is greater than x2

and simultaneously smaller than 20.2. De Falco et al. [9] used a similar function to

the proposed between function in this study. De Falco et al. proposed two functions,

IN and OUT, which compare an attribute with two range values. These functions

also take three parameters. The OUT function checks if an attribute is outside the

range of the two parameters, and the IN function checks if an attribute in within the

range of the two parameters. In this study, the OUT function can be achieved by

preceding the between function with a NOT operator as illustrated in figure 7.5. De

Falco et al. do not determine whether or not these additional functions are useful

in evolving classifiers. A comparison of the performance of the proposed method

without these two additional functions was performed.

CHAPTER 7. GP REPRESENTATIONS FOR BINARY CLASSIFICATION 130

Figure 7.5: Creating the OUT function by preceding the between with a NOT
operator.

7.3 Experimental Setup

Five experiments were carried out in order to compare the three different represen-

tations; but also to compare how certain elements of the function set impact the

performance of the GP algorithm. Table 7.1 lists the five experiments along with

their function and terminal sets. The arithmetic-with-if and arithmetic-without-if

experiments were performed in order to determine the usefulness of the if state-

ment. Similarly, logical-with-between and logical-without-between were conducted to

investigate the difference in performance when the between function is and is not

used. The representations implemented the GP system described in section 5.5.

The initial population generation, selection methods, fitness evaluation and GOs

were implemented as described in that section. The results were obtained using the

approach described in section 5.6.

Representation Function Set Terminal Set

Arithmetic-with-
if

+,−,×, / Attributes

Arithmetic-
without-if

+,−,×, /, if,<
,>

Attributes

Decision tree Attribute Classes

Logical-with-
between

AND,OR,NOT,
<,>

Attributes and
random constants

Logical-without-
between

AND,OR,NOT,
Between,<,>

Attributes and
random constants

Table 7.1: Characteristics of the five experiments comparing different GP represen-
tations for binary data classification.

CHAPTER 7. GP REPRESENTATIONS FOR BINARY CLASSIFICATION 131

7.3.1 Data sets

Ten binary publicly available data sets were used to compare each of the GP repre-

sentations for binary data classification; these are listed in table 7.2. These data sets

were selected as they have varying characteristics in terms of number of instances,

number of attributes and class balance. Additional details about the data sets were

presented in chapter 5.

Climate Parkinsons

Fertility Pima Indians

Ionosphere Spectf

Mammographic Sonar

Monk2 WDBC

Table 7.2: Selected binary data sets for the GP representation experiments.

7.3.2 GP parameters

The GP parameters which were used throughout all the experiments in this chapter

are listed in table 7.3. These parameters were determined empirically through trial

runs.

GP Parameter Value

Population Size 700

Parent Selection Method Tournament selection, size 7

Initial Population Maximum
Tree Size

7

Initial Population Generation
Method

Ramped half and half

Maximum Offspring Size 7

Crossover Application Rate
70% (for arithmetic and
logical representations)
60% (for decision trees)

GPEI Application Rate (for
decision trees only)

10 %

Mutation Application Rate 30 %

Maximum Number of
Generations

200

GP Model Generational model

Table 7.3: GP Parameters for comparison of different GP representations for data
classification.

CHAPTER 7. GP REPRESENTATIONS FOR BINARY CLASSIFICATION 132

7.4 Conclusion

This chapter proposed a comparison in the performance of three major GP represen-

tations for binary data classification. The three most commonly used representations

are arithmetic trees, decision trees, and logical trees. Each representation uses a dif-

ferent function and terminal set. Researchers often select a representation without

providing a rationale behind their choice. Furthermore, researchers who are new

to the field of GP and data classification have no means of determining which GP

representation to use, due to the fact that there has not previously been a com-

parison between the GP representations for binary data classification. Typically,

researchers use similar function sets when using an arithmetic or logical tree repre-

sentation, however, there are studies which have made use of additional functions

such as the if and between function. This chapter proposed five experiments in or-

der to compare decision trees, arithmetic trees, and logical trees. Furthermore, the

experiments are proposed in order to determine the usefulness of the if and between

functions.

Chapter 8
Incorporating GP Encapsulation

Within Decision Trees for Data

Classification

8.1 Introduction

This chapter serves as a an investigation of the encapsulation genetic operator when

used with GP for data classification. Section 2.14.1 described and illustrated the

encapsulation operator. There has been no previous attempt at investigating this

GO in the context of data classification and thus serves as the rationale behind this

study. The proposed encapsulation methods for data classification are discussed in

section 8.2. Section 8.3 describes the experimental setup, and finally section 8.4

concludes this chapter.

8.2 Incorporating Encapsulation into GP for Data Clas-

sification

8.2.1 Decision trees and encapsulation

The encapsulation operator typically selects any element of the function set within

a parse tree and encapsulates the subtree located at that position. In the context of

decision trees, this is achieved by randomly selecting an attribute node. Encapsu-

lating a node representing a class will be of no particular benefit. The pseudocode

for the encapsulation operator in the context of data classification is presented in

algorithm 8.1.

Incorporating the encapsulation operator for classification results in changes to

133

CHAPTER 8. GP ENCAPSULATION FOR DATA CLASSIFICATION 134

Algorithm 8.1: Pseudocode for encapsulation in the context of data classifi-
cation.

1 begin
2 Select a random tree T within the current GP population.
3 Select a random attribute node within the tree.
4 Remove the subtree located at the random attribute node and store it in

memory.
5 Allocate an encapsulated terminal name to the removed subtree. Initially

named E0, then E1, and so on.
6 Add the encapsulated terminal to the terminal set.
7 Within T, replace the subtree with the encapsulated terminal.

8 end

steps 4 and 6 within the standard GP algorithm (refer to algorithm 2.1 in chapter

2). In this study the encapsulation operator is applied after every second generation.

Applying the operator at each generation would result in a large number of encap-

sulated nodes which would consequently impact the performance of the algorithm.

Additional trial runs were performed and revealed that applying the operator at

every second generation led to improved results. The following changes are made to

step 6 in the standard GP algorithm. For odd generations, only the crossover and

mutation genetic operators are applied. For even generations, the encapsulation op-

erator is applied in addition to crossover and mutation. The encapsulation operator

is performed before crossover and mutation so that the latter two GOs can make

use of the newly created encapsulated terminals.

The mutation operator selects a random tree and a random mutation point

within that tree. It then creates an entirely new subtree at that point. Given the

fact that the encapsulation operator is performed prior to mutation, the mutation

operator can then add the new encapsulated terminals to the subtrees. Similarly,

the crossover operator exchanges subtrees within two randomly selected parents,

and if the resulting offspring are larger than a certain specified depth the trees are

pruned. By pruning the trees, any function node at the maximum specified depth

is replaced with a terminal node. Since the encapsulated terminals are added to

the terminal set, it is thus possible that these terminals which are added during

the pruning process can be one of the new terminals created by the encapsulation

operator.

Figure 8.1 illustrates a tree which has been pruned. The tree on the left, which

was produced by crossover or mutation has a depth of 4. If the maximum depth

permitted is 3, all the leaves below the horizontal line have to be pruned. Removing

all the nodes below the horizontal line results in an invalid tree because attributes

cannot be leaves. Thus, the two attributes at depth 3 have to be replaced with ter-

CHAPTER 8. GP ENCAPSULATION FOR DATA CLASSIFICATION 135

minals. The tree on the right is the result of the pruning process. From the original

tree, the left attribute at depth 3 was replaced with an encapsulated terminal, and

the right attribute at depth 3 was replaced with a class.

Figure 8.1: Pruning trees and adding encapsulated terminals at the leaves.

Step 4 (the evaluation phase in algorithm 2.1) in the standard GP algorithm is

modified to cater for the encapsulated terminals. When a tree is evaluated, and if

an encapsulated terminal is reached, the subtree corresponding to that terminal is

evaluated. For example, if the following tree is evaluated: temperature E0 class2,

when the left branch is visited the algorithm will then proceed by evaluating the

subtree corresponding to E0.

It is possible that the algorithm encapsulates a subtree which already contains

an encapsulated terminal. The evaluation process will evaluate all the encapsulated

terminals recursively until a class is reached. For instance, some tree may have a

reference to subtree E5, and E5 may in turn have a reference to subtree E6.

Figure 8.2: Evaluating a tree with an encapsulated terminal.

Assume the left tree in figure 8.2 is evaluated, and if the left branch is visited,

the algorithm will then proceed by evaluating the corresponding subtree represented

CHAPTER 8. GP ENCAPSULATION FOR DATA CLASSIFICATION 136

by the terminal E0. If the subtree E0 evaluates to “class 2”, then the classification

output for the left tree is “class 2”. An outline of the modified GP algorithm with

encapsulation is presented in algorithm 8.2.

Algorithm 8.2: Pseudocode of proposed GP algorithm with encapsulation.

1 begin
2 Create initial population.
3 Evaluate the initial population.
4 generation ← 0.
5 while generation ¡= generation max do
6 generation ← generation + 1.
7 Apply selection methods.
8 If odd generation, apply crossover and mutation using current

terminal set.
9 If even generation, apply encapsulation, and add newly created

terminals to the terminal set.
10 Evaluate the current population. If an encapsulated terminal is

encountered, then call the corresponding subtree.
11 end
12 return Best solution found.

13 end

8.2.2 Maintaining the most called subtrees

The proposed algorithm of incorporating encapsulation to the GP algorithm pre-

sented in section 8.2.1 allows the GP algorithm to select from a large list of encap-

sulated terminals. When the number of encapsulated terminals is very large, this

can hinder the performance of the GP algorithm as a large terminal set increases

the GP program space. In order to overcome this problem, another method is pro-

posed which maintains a list of encapsulated terminals, this new proposed method

is named selective encapsulation. Details about this enhanced proposed method are

discussed below.

The list of encapsulated terminals is initialised the first time the encapsulation

genetic operator is called. The maintained list has one user defined parameter, max,

which allows the researcher to control the maximum size of the list. The process of

initialising the list is illustrated in algorithm 8.3. In section 8.2.1 all the encapsulated

nodes are kept in memory and added to the terminal set; however, in this proposed

method only certain elements are kept in the maintained list. In this chapter the

term memory represents all the encapsulated terminals created throughout the GP

run. Encapsulated terminals in the memory are never deleted. The maintained

list contains certain encapsulated terminals from the memory. However unlike the

memory, terminals in the maintained list can be removed. When the encapsulation

CHAPTER 8. GP ENCAPSULATION FOR DATA CLASSIFICATION 137

operator is applied, the newly created encapsulated terminals are automatically

added to the memory, but not necessarily to the maintained list. The maintained

list is updated by removing encapsulated terminals from the list, and adding new

ones.

Algorithm 8.3: Pseudocode for initialising the maintained list.

1 begin
2 for Each encapsulated terminal E in the current population do
3 if there are less than max elements in the maintained list then
4 Insert the encapsulated terminal E into the maintained list.
5 end
6 else
7 Insert the encapsulated terminal E into memory but not into the

maintained list.
8 end

9 end

10 end

Algorithm 8.4 presents the pseudocode for updating the maintained list. The

list is updated after the encapsulation genetic operator is executed, in this chapter

this is performed after every second GP generation.

For a given encapsulated terminal, the number of calls is determined by com-

puting the number of times that encapsulated terminal is called within the entire

current population. Assume E0 is a terminal which is found in five trees in the

current population, then E0 has a total of five calls. When the list is updated, an

encapsulated terminal which is not in the list, and has the most number of calls is

selected. This process only deals with encapsulated terminals which are currently

present in the population. For instance, if the terminal E44 had a large number of

calls in the previous population but is not found in the current population, then

E44 is not considered as a potential terminal to be selected. Thus, the process finds

all the encapsulated terminals within the current population which are not in the

maintained list, and determines which one has the highest number of calls. The next

step (step 4 in algorithm 8.4) is to determine which encapsulated terminal within the

list is called the least within the current population. Finally in step 5, the terminal

which is called the least within the list is then replaced with the terminal outside

the list which is called the most. Both of the encapsulated terminals remain within

memory; however, the terminal which was previously in the maintained list is no

longer in the list. Thus, after every second GP generation, one terminal leaves the

list and another one enters the list.

After the initial population generation, terminals are only added to trees when

the mutation operator is executed, or when trees are pruned. Algorithm 8.5 il-

CHAPTER 8. GP ENCAPSULATION FOR DATA CLASSIFICATION 138

Algorithm 8.4: Pseudocode for updating the maintained list.

1 begin
2 Determine the encapsulated terminal in memory which is not in the

maintained list, and that has the most number of calls in the current
population. Call this memTerm.

3 If no element in step 1 is found, then determine the encapsulated terminal
in memory that has the most number of calls within the current
population. Call this memTerm.

4 Determine the encapsulated terminal within the maintained list which has
the least number of calls. Call this listTerm.

5 Swap memTerm with listTerm, i.e. memTerm is now part of the
maintained list, and listTerm is no longer part of the maintained list,
however listTerm is still in memory.

6 end

lustrates how terminals are selected and added to trees when the maintained list

approach is incorporated into the GP algorithm.

If there are no encapsulated terminals in memory, then classes are used as termi-

nals. When the selective encapsulation approach is used, there is a 60% probability

that one of the encapsulated terminals from the list is selected. The value of 60% was

chosen in such a way so as to slightly bias the algorithm towards selecting terminals

from the list, and additionally a value of 60% does not completely bias the choice

towards only selecting from the list. Thus, there is a higher probability that GP will

select from a smaller range of encapsulated terminals which have been called fre-

quently in the recent population. This contrasts from the initial approach described

in section 8.2.1 whereby the GP algorithm can select any encapsulated terminals

in memory. This proposed method results in two additional parameters, however,

these parameters help further control the method by enabling the GP algorithm to

select certain useful encapsulated nodes.

8.3 Experimental Setup

Three experiments were proposed in order to investigate the effects of including the

encapsulation GO in GP for data classification problems. The first experiment was a

baseline study which did not include the encapsulation operator, this was referred to

as the GP encapsulation method. The second experiment, selective encapsulation,

included the encapsulation operator; however, there was no restriction as to how

GP could use the encapsulated terminals. The algorithm was thus able to select

any encapsulated terminal. The third experiment was the selective encapsulation

approach which included the encapsulation operator, and the maintained list with

a maximum size of ten encapsulated terminals. The value of ten was determined

CHAPTER 8. GP ENCAPSULATION FOR DATA CLASSIFICATION 139

Algorithm 8.5: Pseudocode which selective encapsulation uses for adding
terminals to the GP trees.

1 begin
2 if there are no encapsulated terminals then
3 Return a random class.
4 end
5 else
6 Randomly decide whether to select a class or an encapsulated

terminal.
7 if select a random class then
8 Return a random class.
9 end

10 else
11 One of the two events will occur:
12 With 60% probability, return a random encapsulated terminal

from the maintained list.
13 With 40% probability, return a random encapsulated terminal

from memory.
14 end

15 end

16 end

through additional trial runs.

Other than algorithms described in this chapter, the overall GP system remained

unchanged, and the GP system for the proposed methods was implemented as de-

scribed in section 5.5. The initial population generation, selection methods, fitness

evaluation and GOs were implemented as described in that section. The results

were obtained using the approach described in section 5.6. GP decision trees was

the selected representation for the proposed methods, namely GPEI with arity 2,

and this approach was defined in chapter 6.

8.3.1 Data sets

Twelve publicly available data sets were used to investigate the proposed encapsu-

lation GO, these are presented in table 8.1. These data sets were selected as they

represent binary and multiclass classification problems, and have varying character-

istics. Additional details about the data sets were presented in chapter 5.

8.3.2 GP parameters

The GP parameters which were used throughout all the experiments in this chapter

are presented in table 8.2. These parameters were determined empirically through

trial runs.

CHAPTER 8. GP ENCAPSULATION FOR DATA CLASSIFICATION 140

Climate Pima Indians

Ecoli Sonar

Fertility Spectf

Glass WDBC

Ionosphere Wine

Iris Yeast

Table 8.1: Data sets used for GP encapsulation experiments.

GP Parameter Value

Population Size 700

Parent Selection Method
Tournament selection of size

7

Maximum Initial Population Tree
Size

7

Maximum Offspring Size 4

Initial Population Generation
Method

Ramped half and half

Crossover Rate 60%

Mutation Rate 30%

Alter Interval Rate 10%

Encapsulation Rate 1% every 2nd generation

Maximum Number of Generations 200

GP Model Generational model

Function Set Attributes

Terminal Set
Classes, and encapsulated

terminals

Table 8.2: GP parameters used.

8.4 Conclusion

This chapter proposes a novel investigation on the effects of the encapsulation GO

for GP in the context of data classification. Two approaches were proposed in order

to make use of the encapsulation operator. The first makes use of the encapsulation

operator without any restrictions on how the GP algorithm can use the encapsu-

lated terminals. GP is able to select any encapsulated terminal without being biased

towards which ones to select. The second approach, selective encapsulation, makes

use of a maintained list of encapsulated terminals, and the GP algorithm selects ter-

minals from the maintained list with a 60% probability. The goal behind the second

approach is to maintain a list of encapsulated terminals which are frequently used

within the GP population, and thus bias the algorithm to select those encapsulated

terminals from the list. The proposed methods will be applied to twelve publicly

available data sets.

Chapter 9
Hybridising Evolutionary Algorithms

for Creating Classifier Ensembles

9.1 Introduction

Instead of creating a single classifier which is responsible for classifying an entire

data set, one can also make use of an ensemble. Ensembles were discussed in section

3.7.3, and GP ensembles were discussed in section 4.6.

In this chapter, a genetic algorithm (GA) [52] is hybridised with a GP algorithm

in order to create classifier ensembles. This research is aimed at investigating differ-

ent hybridisation approaches to combine a GP with a GA. Four different approaches

are proposed in order to assess the effectiveness of the hybridisation of these two

evolutionary algorithms. The proposed ensemble methods provide an alternative

to conventional boosting methods which are typically incorporated into the GP al-

gorithm for ensemble construction. The four proposed methods are described in

section 9.2. Section 9.3 describes the experimental setup, and finally, section 9.4

concludes this chapter.

9.2 Proposed Hybridisation of GP and GA

Four different approaches were examined in order to determine the effects of hybri-

dising the GA with the GP algorithm. The pseudocode for the GA algorithm used

in this study is presented in algorithm 9.1. The two GA genetic operators which

will be used are presented in algorithms 9.2 and 9.3 , representing mutation and one

point crossover respectively.

141

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 142

Algorithm 9.1: Pseudocode of genetic algorithm for ensemble representation.

input: generation max: maximum number of GA generations

1 begin

2 Create an initial population of chromosomes repsented as ensembles.

3 Evaluate the initial population.

4 generation ← 0.

5 while generation ≤ generation max do

6 generation ← generation + 1.

7 Select parents.

8 Perform mutation.

9 Perform one point crossover.

10 Replace current population with offspring.

11 end

12 end

Algorithm 9.2: Pseudocode for GA mutation.

input : probability: probability of which a gene within a chromosome is

mutated

input : parent chromosome: parent chromosome obtained using tournament

selection

input : length: length of parent

input : final GP population: the final population of GP trees

output: A child chromosome which has been mutated.

1 begin

2 Create an empty chromosome (child) with length equal to length.

3 for i← 0 to length do

4 if GenerateRandomDouble ¡ probability then

5 random GP tree ← GetRandomGPTreeFrom(final GP population)

6 AddTreeToPosition (random GP tree, i)

7 end

8 else

9 AddTreeToPosition (GetGeneFromParentChromosome (i), i)

10 end

11 end

12 return child

13 end

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 143

Algorithm 9.3: Pseudocode for GA one point crossover.

input: probability: probability of which the crossover operator will be applied

input: parent1 chromosome: parent chromosome obtained using tournament

selection

input: parent2 chromosome: parent chromosome obtained using tournament

selection

input: length: length of parent chromosomes

output: A child chromosome.

1 begin

2 Create an empty chromosome (child1) with length equal to length.

3 Create an empty chromosome (child2) with length equal to length.

4 if GenerateRandomPosition ¡ probability then

5 crossover point ← GenerateRandomPosition(length)

6 for i← 0 to length do

7 if i < crossover point then

8 In child1, set the gene at position i, with the gene at position i

in parent1 chromosome

9 In child2, set the gene at position i, with the gene at position i

in parent2 chromosome

10 end

11 else

12 In child1, set the gene at position i, with the gene at position i

in parent2 chromosome

13 In child2, set the gene at position i, with the gene at position i

in parent1 chromosome

14 end

15 end

16 end

17 return The child with the highest trainning accuracy.

18 end

9.2.1 GA encoding

In this study, a chromosome represents an ensemble. Each gene corresponds to a GP

decision tree which represent classifiers on its own.. Figure 9.1 illustrates an example

of a chromosome. From the figure, part (1) illustrates the GA representation with

a chromosome length of three. The correspondence of each gene to a GP decision

tree is illustrated in part (2).

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 144

Figure 9.1: Illustrating an ensemble.

In previous studies, a weighted approach is often used, whereby certain members

of the ensemble have a greater impact on the final output of the chromosome due

to their weight. In this study, however, each tree in the ensemble has an equal vote.

A chromosome is evaluated on a particular instance of data as follows. Each tree

within the chromosome is evaluated on the instance of data, and the statistical mode

of all the individual tree outputs is computed. For example, if the outputs for some

chromosome of length 3 on an instance of data are {class1, class2, class1}, then the

output of the chromosome is “class1 ” because that is the statistical mode of the

tree outputs. Chromosomes in this study have an odd length in order to reduce

the complexity of dealing with clashes. A chromosome is evaluated on each of the

instances of data, and the final accuracy of the chromosome is computed as the total

number of instances which it correctly classifies.

9.2.2 GA run after the last GP generation (GA-at-end)

The first approach, GA-at-end, represents the initial attempt at hybridising the GA

with the GP algorithm. In this approach the GA is only executed once the GP

algorithm has completed (after step 8 in chapter 2, algorithm 2.1). The GA makes

use of the final GP population, and is initialised by randomly creating ensembles in

which the genes correspond to GP trees from the last GP generation. The GA is then

run for several GA generations, and the best ensemble is output. Several different

ensemble sizes will be compared (namely 3, 5, 7, 9 and 11) in order to determine

which ensemble size is the most successful. When a particular ensemble size is

used, the chromosomes will not change size during the execution of the hybridised

algorithm. Thus, when GA-at-end is run with an ensemble size of 7, the size of

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 145

each chromosome is initialised to 7, and additionally the chromosomes maintain a

size of 7 during the GA run. Mutation and one point crossover will be used for this

approach. The pseudocode for GA-at-end is presented in algorithm 9.4.

Algorithm 9.4: Pseudocode for GA-at-end.

input: Ensemble size
output: An ensemble represented by a GA chromosome

1 begin
2 Perform a run of the GP algorithm.
3 Initialise the GA chromosomes with size equal to ensemble size.
4 Randomly select trees from the final GP population and add the trees to

the initialised chromosomes.
5 Perform a run of the GA algorithm.
6 Output the best chromosome found during the GA algorithm.

7 end

9.2.3 GA run after each GP generation (GA-after-each-gen)

In GA-at-end, the GA optimisation is only performed after the final GP generation.

It is possible that an ensemble with higher accuracy can be obtained using GP trees

from any generation and not specifically the last GP generation. In this second

hybridisation approach, the GA ensemble optimisation is performed after each GP

generation; this approach is consequently named GA-after-each-gen.

In GA-after-each-gen the GA is initialised after step 7 in algorithm 2.1 (chapter

2). Upon initialising the GA, the algorithm is free to select any chromosome size

from the set {3, 5, 7, 9, 11}. Once a size is chosen, all the chromosomes for that

specific GA run are to be initialised to that particular size. The chromosome sizes

are not altered during a GA execution. For instance, if the algorithm selects a size

of 5, then all the chromosomes are initialised to that size, and the chromosomes

maintain a size of 5 during the GA optimisation. After the next GP generation, the

GA is reinitialised, and once again free to select any size. Similarly to GA-at-end,

GA-after-each-gen makes use of mutation and one point crossover.

Since the GA is executed afresh after each GP generation, the genes are made

up of GP trees from the current GP generation. The GA is run for a certain

number of GA generations, and the best chromosome for each GA run is stored in

memory. Once the GP algorithm has completed, the chromosome with the highest

training classification accuracy found in memory is output as the final classifier .

The pseudocode for GA-after-each-gen is presented in algorithm 9.5.

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 146

Algorithm 9.5: Pseudocode for GA-after-each-gen.

output: An ensemble represented by a GA chromosome
1 begin
2 i ← 0
3 Perform GP generation i.
4 Randomly select an esemble size from {3, 5, 7, 9, 11}.
5 Initialise the chromosomes with the size selected in step 3.
6 Randomly select trees from GP generation i and add the trees to the

initialised chromosomes.
7 Perform the GA algorithm.
8 Store the best chromosome (found in step 6) in memory.
9 i ← i + 1

10 Repeat steps 3 to 9 until i generations are completed.
11 Output the chromosome in memory which has the highest training

accuracy.
12 end

9.2.4 GA with hill climbing (GA-with-HC)

An extension of GA-after-each-gen is proposed whereby hill climbing is incorporated

into the GA’s recombination operator (one point crossover); this approach is named

GA-with-HC. The recombination operator is applied to two GA parent chromosomes,

and two offspring are consequently created. In GA-with-HC, the recombination

operator is repeated five times, and if during these five attempts, one of the two

offspring has a higher classification accuracy than both of the parents, then that

offspring is returned. However, if none of the offspring result in a higher classification

accuracy after the five attempts, then the best of two parents is returned. Similarly

to GA-after-each-gen, the GA in GA-with-HC is initialised and run after each GP

generation.

Before hill climbing is performed, a copy of the parent chromosomes is made,

and thus at each attempt, the offspring chromosomes are generated from the original

parents. Hill climbing is incorporated in order to determine if it will impact the

performance of the overall method. Trial runs were performed in order to determine

the optimal number of times that hill climbing should be applied, and the most

optimal value was found to be five.

9.2.5 Steady state GA (SSGA-GP)

In this approach, a steady state GA (SSGA) model will be used to create ensem-

bles which contain GP trees from different GP generations; this approach is named

SSGA-GP.

In the previously proposed approaches in this study, the chromosomes are made

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 147

up of GP trees from one particular GP generation. In GA-at-end, the chromosomes

are made up of GP trees from the final GP generation. In GA-after-each-gen and

GA-with-HC, the chromosomes are made up of GP trees from each GP generation

respectively. For instance, in GP generation 4, the chromosomes are made up of GP

trees strictly from the GP population in generation 4. Thus, SSGA-GP proposes

an alternative approach where the chromosomes can be made up of GP trees from

several different GP generations.

For this hybridisation of GP with GA, two separate populations are maintained

and coevolved simultaneously. The GP population is responsible for driving the

evolution of the GP trees. The GP algorithm implemented corresponds to the

standard GP algorithm, and the GP crossover and mutation operators are performed

in the conventional way. The SSGA population is maintained separately. The SSGA

population maintains the chromosome ensembles in which each gene corresponds to

GP trees from different GP generations. It is possible that a chromosome may

contain several GP trees from the same GP generation. The SSGA population

remains fixed in terms of the number of chromosomes within the population.

Figure 9.2 illustrates an example of a SSGA-GP chromosome from the GA pop-

ulation, whereby the genes correspond to GP trees from different GP generations.

In this example, gene 1 corresponds to a tree from GP generation 13; gene 2 cor-

responds to a tree from GP generation 4, and so on. The initial SSGA population

is created after step 2 in algorithm 2.1 (chapter 2) with genes corresponding to ran-

domly selected GP trees from the initial GP population. Since the chromosomes

represent ensemble classifiers, the chromosomes are evaluated by determining the

class for each GP tree in the chromosome on an instance of data, and computing

the statistical mode of the class outputs. The statistical mode represents the final

classification for a chromosome on an instance of data, and the classification accu-

racy is then used to determine the fitness of the chromosome.

Figure 9.2: Example of a chromosome created using SSGA-GP. The genes corre-
spond to GP trees which have been added from different GP generations.

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 148

In order to add a GP tree from the GP population to the SSGA-GP chromo-

somes, a variation of the GA mutation genetic operator is proposed, and is named

the modified mutation operator. The pseudocode for the modified mutation opera-

tor is presented in algorithm 9.6. This operator allows GP trees from different GP

generations to be added to the chromosomes.

Algorithm 9.6: Modified mutation GA operator.

1 - arithmetic

input: GP and GA population

output: GA chromosome offspring

2 begin

3 parent ← TournamentSelection(current GA population);

4 parent fitness ← EvaluateEnsemble(parent);

5 attempt ← 0;

6 repeat

7 attempt ← attempt + 1;

8 copy ← CopyChromosome (parent);

9 random position ← RandomInteger (copy length);

10 random tree ← GetRandomTree (GP Population);

11 copy ← ReplaceTreeAtPosition (random position, random tree);

12 new fitness ← EvaluateEnsemble(copy);

13 if new fitness > parent fitness then

14 return copy

15 end

16 until attempt 6= 10;

17 return parent

18 end

The pseudocode for SSGA-GP is presented in algorithm 9.7. The modified mu-

tation operator implements hill climbing by attempting to improve the classification

accuracy of the offspring ten times. For each of the ten attempts, a copy of the

original parent chromosome is made. Thus, once this operator is performed, if the

accuracy of the chromosome is improved, the resulting offspring will contain one tree

from the current GP population.

Since SSGA-GP makes use of a SSGA, a replacement strategy must be defined.

The replacement strategy implemented is the inverse tournament selection method.

This is performed in a similar manner to the tournament selection, however in the

inverse tournament selection the chromosome with the lowest ensemble accuracy is

returned.

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 149

Algorithm 9.7: Pseudocode for SSGA-GP.

input: ensemble size

input: num gen: total number of GP generations to perform before applying

the modified mutation operator

input: num offspring: total number of offspring to create using modified

mutation operator

input: num replace: total number of chromosomes to replace using inverse

tournament selection

output: An ensemble represented by a GA chromosome

1 begin

2 Create the initial GP population.

3 Initialise the GA chromosomes (with size = ensemble size) by randomly

selecting trees from the initial GP population.

4 Perform num gen number of GP generations.

5 Perform the modified mutation GA operator on the GA population and

create num offspring offspring.

6 Perform the inverse tournament selection and repalce num replace

chromosomes in the GA population with the offspring created in step 5.

7 Evaluate all the GA chromosomes and store the chromosome with the

highest trainning accuracy in memory.

8 Repeat steps 4 to 7 until the maximum number of GP generations has

been met.

9 Output the chromosome which obtained the highest trainning accuracy.

10 end

After each GP generation, the modified mutation operator is executed. This

operator generates offspring chromosomes which may contain GP trees from the

current GP population, and then the offspring replace the weaker chromosomes

within the SSGA population. The number of offspring to replace is a user defined

parameter.

In terms of GOs, the crossover and mutation operators are responsible for op-

timizing the GP population of GP classifiers, whereas the modified mutation GA

operator is responsible for optimizing the SSGA population of GA chromosome en-

sembles. SSGA-GP does not make use of GA crossover or the conventional GA

mutation; only the modified mutation operator is applied in order to investigate the

effectiveness of this operator.

Trial runs were performed, and it was determined that for SSGA-GP the optimal

chromosome ensemble size is 7. Thus, SSGA-GP initialises the chromosomes to a size

of 7 and the modified mutation operator replaces a single gene within a chromosome,

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 150

which consequently ensures that the chromosomes remain with a size of 7.

9.3 Experimental Setup

Four experiments were performed in order to examine how effective the GA would

be at increasing the classification accuracy when incorporated to the GP algorithm.

GA-at-end performed a GA run at the end of the GP run, GA-after-each-gen per-

formed a GA run after each GP run, GA-with-HC was similar to GA-after-each

however used hill climbing in the GA recombination operator, and finally SSGA-GP

coevolved a GP and a GA population. For the proposed hybridisations, the initial

GP population generation, GP selection methods, GP fitness evaluation and GP

GOs were implemented as described in section 5.5. The results were obtained using

the approach described in section 5.6. GP decision trees was the selected represen-

tation for the proposed methods. For data sets made up of numerical attributes,

GPEI with arity 2 was used, this approach was defined in chapter 6.

9.3.1 Data sets

Twelve publicly available data sets were used to examine the performance of the

proposed methods. These data sets were selected as they represent binary and

multiclass classification problems, and have varying characteristics. The selected

data sets are listed in table 9.1. Further details about the data sets were presented

in chapter 5.

Balance Parkinsons

Climate Pima Indians

Ecoli Sonar

Fertility Soybean

Ionosphere Spectf

Iris WDBC

Table 9.1: Selected data sets for the hybridisation experiments.

9.3.2 GP and GA parameters

Table 9.2 presents the GP and GA parameters for the proposed experiments in this

chapter. These parameters were determined empirically through trial runs.

CHAPTER 9. HYBRIDISING EVOLUTIONARY ALGORITHMS 151

Parameter Value

GP Population size 700

GP Parent Selection Method Tournament selection of size 7

GP Initial Population
Maximum Tree Size

7

GP Initial Population
Generation Method

Ramped half and half

Maximum GP Offspring Size 7

GP Crossover Rate 70%

GP Mutation Rate 30%

Maximum Number of GP
Generations

700

GP Model Generational model

GP Function Set Attributes

GP Terminal Set Classes

GA Population size 1000

GA Parent Selection Method GA-at-end, GA-after-each and GA-with-HC :
Tournament selection of size 7

SSGA-GP : Inverse tournament selection of size
7

GA Initial Population
Generation Method

Randomly select GP trees based on hybrid
method

GA Recombination Rate GA-at-end, GA-after-each and GA-with-HC :
50%

SSGA-GP : 0%

GA Mutation Rate GA-at-end, GA-after-each and GA-with-HC :
30%

SSGA-GP : 100% (Modified mutation)

Number of individuals to
replace from the SSGA

population in SSGA-GP

30

Maximum Number of GA
Generations

GA-at-end : 200
GA-after-each and GA-with-HC : 20

Table 9.2: GP and GA parameters for the hybridisation experiments.

9.4 Conclusion

This chapter proposes four methods which hybridise GA and GP in order to evolve a

population of ensembles. The first method executes the GA at the end of the GP run.

The second executes the GA after each GP generation, the third proposed method

is an extension of the second method and incorporates hill climbing to the GA

recombination operator. The last proposed method investigates the hybridisation of

steady state GA model and GP. The proposed methods will be tested on 12 publicly

available data sets.

Chapter 10
Ensemble Construction for Data

Classification using Genetic

Programming

10.1 Introduction

This chapter presents an ensemble construction method which creates a single GP

ensemble. This approach differs to the approach described in chapter 9 since in this

algorithm GP only creates a single ensemble as opposed to evolving a population of

ensembles.

The ensemble construction method is introduced in section 10.2. Details on how

a GP tree is selected to be added into the ensemble is discussed in section 10.2.1.

A description of how the ensemble is evaluated is presented in sections 10.2.2 and

10.2.3. Each instance is allocated a weight, section 10.2.4 describes how the weights

are updated. The experimental setup is presented in section 10.3. Finally, section

10.4 concludes this chapter.

10.2 Proposed Ensemble Construction

This section describes the proposed ensemble construction method. The ensemble

is a list of GP classifier trees which vote in order to classify instances of data within

a data set. This proposed ensemble construction deals with creating one ensemble

during one GP run. A tree is added to the ensemble after a certain number of GP

generations. At the end of the GP run, the ensemble is output and evaluated on

the test set. This section describes how the ensemble is represented, and how a tree

is added to the ensemble. Furthermore, this section describes how weights are used

152

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 153

Figure 10.1: Ensemble with corresponding trees at each index.

to train the GP individuals, and how these weights are updated. Additionally, this

section provides a discussion on how the GP trees and the ensemble are evaluated.

Figure 10.1 illustrates an example of an ensemble where the ensemble size is three.

At each index the corresponding GP tree is illustrated. Each tree represents a

classifier. In this study two different GP tree representations are used on different

data sets. Arithmetic trees are used when the data set contains numerical attributes,

and decision trees are used when the data set contains nominal text and discrete

integer values.

10.2.1 Selecting a tree to add to the ensemble

Initially, the ensemble is empty and trees are added to the ensemble after a certain

number of generations. A user defined parameter, addFrequency, determines after

how many GP generations a new tree is added to the ensemble. The pseudocode

for adding a tree to the ensemble is illustrated in algorithm 10.1. Before selecting a

tree to add to the ensemble, the current fitness of the ensemble is computed as this

current fitness will be compared to the fitness of the ensemble after a new tree is

added.

When a tree is to be added to the ensemble the tournament selection method

is performed on the current GP population. The tree which is selected as a result

of tournament selection is then added to the ensemble and the new fitness of the

ensemble is computed. This fitness is then compared to the ensemble’s previous

fitness. In the case where the ensemble was previously empty, the tree which results

in the highest ensemble accuracy is simply added to the ensemble.

During each iteration of this algorithm, a single candidate tree is temporarily

added to the ensemble in order to compute the new fitness. If the new fitness is

greater than the current fitness, then a reference to the candidate tree is stored as

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 154

a best candidate. The algorithm is iterated 20 times, and if a best candidate is

found, then that candidate is permanently added to the ensemble. If there is no

best candidate tree then the original ensemble is returned. The weights are then

updated regardless of whether or not a tree has been added into the ensemble. This

is further discussed in section 10.2.3.

Algorithm 10.1: Pseudocode for adding a tree to the ensemble.

input: ensemble
output: ensemble with an additional tree if a suitable candidate is found. If

no such tree is found, then the original ensemble is returned
1 begin
2 tries ← 0;
3 max tries ← 20;
4 best candidate ← null;
5 current fitness ← EvaluateEnsemble(ensemble);
6 repeat
7 tries ← tries + 1;
8 candidate tree ← TournamentSelection(20);
9 ensemble ← AddCandidateIntoEnsemble(candidate tree);

10 new fitness ← EvaluateEnsemble(ensemble);
11 if new fitness > current fitness then
12 best candidate ← candidate tree;
13 current fitness ← new fitness;

14 end
15 ensemble ← RemoveCandidateFromEnsemble(candidate tree);

16 until tries < max tries;
17 if best candidate 6= null then
18 ensemble ← AddCandidateIntoEnsemble(best candidate);
19 else
20 ensemble ← AddCandidateIntoEnsemble(candidate tree);
21 end

22 end

10.2.2 Ensemble evaluation

An ensemble is evaluated on a particular instance of data as follows. Each tree

within the ensemble is evaluated on the instance of data, and the statistical mode

of all the individual tree outputs is computed. For example, if the outputs for some

ensemble of length 3 on an instance of data are {class1, class1, class2}, then the

output of the ensemble is “class1 ” because that is the statistical mode of the tree

outputs. Let some instance of training data be labelled with class “B”, thus if the

output of an ensemble of length 3 is {B,A,B}, then the ensemble correctly classifies

the instance of data since the statistical mode is “B”. However, if the output of an

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 155

ensemble of length 3 is {A,A,A}, then the ensemble misclassifies the instance of

data. Ensembles in this study have an odd length in order to reduce the complexity

of dealing with clashes. An ensemble is evaluated on each instance of data, and the

final accuracy of the ensemble is computed as the total number of instances which

it correctly classifies.

10.2.3 Evaluating the GP trees using weights

In this study a weight is allocated to each instance of data in the training set. The

weights represent how easy or difficult an instance of data is for the ensemble to

classify. A negative weight implies that the ensemble is not able to correctly classify

a particular instance of data. A weight of zero implies that there is a clash amongst

the individuals within the ensemble, for example if the output of the ensemble for

a particular instance is {class1, class2} then there is a clash. A positive weight

implies that the ensemble is able to correctly classify a particular instance of data.

Initially the weights are all set to a value of 0.

The magnitude of the weight denotes how well or how badly the ensemble can

classify an instance of data. For instance, a weight of “5” implies that the ensemble is

better at classifying an instance of weight “1”. A weight of “-5” denotes an instance

which is much harder to classify than one which has a weight of “-1”. Section 10.2.4

describes how the weights are computed.

GP trees are evaluated according to the whether or not it correctly classifies an

instance of data. For a GP tree, if an instance of data is correctly classified, then

the weight of that particular instance is considered for the tree’s fitness calculation,

otherwise it does not contribute to the fitness of the tree. The evaluation of GP

trees are computed as follows:

n∑
i=1

f(xi)

where i represents instance i, and n represents the number of instances in the

training set. The function f(xi) is defined as follows:

f(xi) =

0 if GP tree incorrectly evaluated instance i

g(xi) if GP tree correctly evaluated instance i

The function g(xi) has to be constructed in such a way that it caters for three

cases. The cases are defined as follows.

• First case: the weight is negative.

• Second case: the weight is equal to 0.

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 156

• Third case: the weight is positive.

Negative weights have a greater impact on the fitness. A greater fitness implies that

a GP tree is a better classifier. Since a negative weight represents an instance of

data which is difficult to classify, a GP tree gains a greater fitness when it correctly

classifies one of the difficult instances. The more challenging an instance is, the

greater its impact on the fitness. This consequently results in the GP algorithm

focusing on classifying the difficult instances whilst still taking into account the

instances which are considered easy.

In order to justify the choice of the function g(xi) several functions were exam-

ined. These functions take into account the magnitude of the weight in such a way

as to reward a GP tree if it is able to correctly classify an instance of data. GP trees

should receive a constant increment in fitness on those instances of data which are

easily classified by the ensemble. This is done so that the GP algorithm can focus

on optimising the GP trees on the instances which the ensemble could not correctly

classify. Thus, let g(xi) = 1 when an instance of data is correctly classified by a GP

tree for which the weight is positive (third case).

Possible functions
for g(xi)

Resulting g(xi) value

First case: W = -1 Second case: W = 0

|W | 1 0

|W |+ 1 2 1

|W |+ 2 3 2

|W |+ 3 4 3

Table 10.1: Possible functions for g(xi).

Table 10.1 illustrates four candidate functions for g(xi). For this discussion let

the weight for the first case be “-1” and the weight for the second case be “0”. The

first function g(xi) = |W | is not suitable because g(xi) is equal to 1 for both the

first and third case. Such a function would equally reward an instance of data which

was previously incorrectly classified, and a instance which was previously correctly

classified. The same argument applies for the function g(xi) = |W |+1, this function

is not suitable because correctly classified instances having a weight of 0 are equally

rewarded as those instances in the third case. The function g(xi) = |W | + 2 is

suitable because each of the cases are rewarded differently. The first case receives

a reward of 3, the second case receives a reward of 2, and the third case always

receives a reward of 1. Increasing the value which is added to W is not necessary

(for example g(xi) = |W |+3) as this will simply add a greater bias towards instances

which were previously incorrectly classified, and consequently instances which fall

under third case have a smaller impact. The final formulation for the function g(xi)

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 157

is as follows:

g(xi) =

|W |+ 2 if W < 0 (first case)

2 if W = 0 (second case)

1 if W > 0 (third case)

Table 10.2 illustrates different weight values and the corresponding value for

g(xi). From the table, it is clear that correctly classifying instances with negative

weights will greater impact the fitness of the trees, than correctly classifying in-

stances with positive weights. The more negative the weight, the greater the impact

on the fitness. For weights greater than zero, the impact on the fitness is constant

regardless of magnitude of the weights. The pseudocode for the evaluation of GP

trees is illustrated in algorithm 10.2.

Weight, W Case Value forg(xi)

-3 1 | − 3|+ 2 = 5

-2 1 | − 2|+ 2 = 4

-1 1 | − 1|+ 2 = 3

0 2 |0|+ 2 = 2

1 3 1

2 3 1

3 3 1

Table 10.2: Different weight values and their corresponding value for g(xi).

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 158

Algorithm 10.2: Pseudocode for evaluating a GP tree.

input: A GP tree t

output: The fitness of t

1 begin

2 fitness ← 0;

3 for each instance i in the training set do

4 DetermineEnsembleOutput (t);

5 if t was correctly classified then

6 if weighti > 0 then

7 fitness ← fitness + 1;

8 else

9 fitness ← fitness + |weighti|+ 2;

10 end

11 end

12 end

13 return fitness

14 end

10.2.4 Updating the weights

The weights are only updated when a new tree is added into the ensemble. The

ensemble is evaluated on each instance of data in the training set and the weights

are updated based on the ensemble’s ability to correctly, or incorrectly, classify each

instance. The algorithm for updating the weights is presented in algorithm 10.3.

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 159

Algorithm 10.3: Pseudocode for updating the weights.

input: intances of training data, and corresponding weight, weighti, for

instance i

output: weights updated for each training instance

1 begin

2 for each instance i in the training set do

3 sum ← 0;

4 for each tree t in the ensemble do

5 DetermineTreeOutput (t);

6 if t was correctly classified then

7 sum ← sum + 1;

8 else

9 sum ← sum− 1;

10 end

11 end

12 if sum > 0 then

13 if weighti ¡ 0 then

14 weighti ← 1;

15 else

16 weighti ← weighti + 1;

17 end

18 else

19 if weighti ¿ 0 then

20 weighti ← −1;

21 else

22 weighti ← weighti − 1;

23 end

24 end

25 end

26 end

Lines 12 to 17, and 18 to 23, describe how the weights are updated when the

ensemble correctly and incorrectly classifies an instance respectively. The weights

cannot just be incremented or decremented based on the performance of the ensemble

as it is possible that the weights are updated incorrectly. The additional checks in

order to correctly update the weights are presented in lines 13 to 15, and 19 to 21.

Table 10.3 illustrates the need for lines 13 to 15. In this illustration, an ensemble of

size 5 is constructed where each line in the table illustrates the state of the ensemble

in terms of the tree outputs for some instance of data. Let class “B” represent

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 160

the correct classification. When the third individual is added to the ensemble, the

classification is incorrect, and when the fourth individual is added to the ensemble,

the classification results in a clash. In both cases the weight is decremented since the

ensemble has not correctly classified the instance. However, when the fifth individual

is added, the ensemble now correctly classifies the instance (since the mode is B).

If the weight was incremented by 1, then the new weight would be “-3”, and this

weight would be incorrect since the ensemble correctly classifies the instance. Thus,

the weight is reset to 1. Lines 19 to 21 describe a similar logic. Once the weights

are updated the GP algorithm continues to train with the new weights.

Tree output in
ensemble

Weight (after
updating)

Sum Classification

A -1 -1 Incorrect

A, A -2 -2 Incorrect

A, A, B -3 1 Incorrect

A, A, B, B -4 0 Incorrect (clash)

A, A, B, B, B 1 1 Correct

Table 10.3: Illustrating how the weights are updated. Let the correct class for some
instance of data be “B”.

10.3 Experimental Setup

Seven experiments were performed in order analyse the performance of the proposed

ensemble construction methods. The first three experiments, namely ensemble5, en-

semble7 and ensemble9, examined different ensemble sizes and had a fixed ensemble

size of 5, 7, and 9 respectively. After every 40 generations (parameter determined

through trial runs) a tree was added to the ensemble, thus in ensemble5, a tree

was added to the ensemble in generations 40, 80, 120, 160, and 200. In order to

determine how the ensemble construction method compared to the standard GP al-

gorithm three additional experiments were performed. The standard GP experiment

were stdGP200, stdGP280, and stdGP360, which ran the standard GP algorithm for

200, 280, and 360 generations respectively. These corresponded to the number of

generations for ensemble5, ensemble7 and ensemble9. Additionally, these experi-

ments used identical GP parameters as the ensemble experiments, and thus allowed

for a comparison between standard GP and the proposed ensemble methods to be

made.

Other than algorithms described in this chapter, the overall GP system remained

unchanged, and the GP system was implemented as described in section 5.5. The

initial GP population generation, GP selection methods, GP fitness evaluation and

GP GOs were implemented as described in that section. The results were obtained

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 161

using the approach described in section 5.6. Decision trees were evolved when the

data sets had categorical attributes, and arithmetic trees were evolved when the

data sets had numerical attributes.

10.3.1 GP parameters

The GP parameters used throughout all the experiments in this chapter are pre-

sented in table 10.4. These parameters were determined empirically through trial

runs.

GP Parameter Value

Population Size 700

Parent Selection Method
Tournament selection of size

7

Maximum Initial Population Tree
Size

7

Initial Population Generation
Method

Ramped half and half

Crossover Rate 70%

Mutation Rate 30%

Maximum Number of Generations
Ensemble5 : 200
Ensemble7 : 280
Ensemble9 : 360

Add Frequency 40 generations

GP Model Generational model

Function Set (arithmetic trees) +,−,×, /
Function Set (decision trees) Attributes

Terminal Set (arithmetic trees) Attributes

Terminal Set (decision trees) Classes

Table 10.4: GP parameters used.

10.3.2 Data sets

The 12 data sets which were used for the experiments are presented in table 10.5.

Data sets which have continuous and categorical attributes were investigated, and

additionally binary and multiclass data sets were selected. Further details about the

data sets were presented in chapter 5.

CHAPTER 10. GP ENSEMBLE CONSTRUCTION 162

Balance Iris

Car Pima Indians

Climate Soybean

Ecoli TTT

Fertility WDBC

Ionosphere Zoo

Table 10.5: Data sets used for ensemble construction experiments.

10.4 Conclusion

This chapter proposes a GP ensemble construction method for data classification.

In this approach a single ensemble is created during the evolutionary process. The

ensemble approach adds individuals into the ensemble by performing hill climbing in

order to find an individual which will increase the overall accuracy of the ensemble.

The algorithm focuses on instances of data which are more challenging to classify

through the use of weights. A weight is allocated to each instance of data, a positive

weight represents an instance which is easy to correctly classify, and a negative

weight represents an instance which is difficult to correctly classify. The fitness

function takes into consideration the magnitude of the weights. Thus, the fitness

function rewards the ensemble when it correctly classifies instances of data which

have previously been challenging to classify. The weights for each instance are

updated based on the ensemble’s ability to classify them.

Chapter 11
Results and Discussion

11.1 Introduction

Chapters 6, 7, 8, 9 and 10 proposed several GP and data classification topics for

investigation. This chapter presents and discusses the results obtained by the pro-

posed methods on those topics. Statistical testing was performed for all of the results

obtained. Details regarding the statistical tests are described in chapter 5, section

5.3. In the results presented in this chapter, a “**” symbol indicates statistical

significance, and a “†” symbol indicates statistical insignificance. For each section,

the average performance of the algorithm along with the standard deviation of each

method across all of the data sets is presented. Section 11.2 discusses the results

obtained by incorporating discretisation into the GP algorithm. A discussion on GP

representations for binary data classification is presented in section 11.3. The results

obtained by the GP encapsulation methods are presented in section 11.4. Section

11.5 discusses the performance of the different methods which hybridised GA and

GP. The results obtained by the ensemble construction method are presented in

section 11.6. Finally section 11.7 concludes this chapter.

11.2 GP Discretisation

The results for the GP discretisation experiments are presented in tables 11.2 and

11.3. The experiment IDs are defined in table 11.1.

GPEI approach with a fixed arity of 2, obtained the highest overall training

accuracy with a value of 87.88%. This approach obtained the best result on 7 out

of the 12 data sets. On 4 of these, the results obtained by the GPEI with arity 2

were statistically significant when compared to every other approach. In the case of

163

CHAPTER 11. RESULTS AND DISCUSSION 164

ID Experiment ID Experiment

1 GPEI with varying arity 5 EWI with arity 2

2 GPEI with arity 2 6 EWI with arity 3

3 GPEI with arity 3 7 EWI with arity 4

4 GPEI with arity 4 8 EWI with varying arity

Table 11.1: Experiment IDs for the discretisation methods.

Glass and WDBC, GPEI with arity 2 failed to achieve statistical significance against

only one other method. The next best approach on the training data was the GPEI

method with varying arity which obtained an average of 87.20%, and obtained the

best result on 2 data sets. The approach which resulted in the weakest average

training performance was EWI with arity 2.

Data set
Experiment ID

1 2 3 4 5 6 7 8

Ecoli 89.06
**

89.63 88.76
**

87.84
**

78.79
**

83.72
**

82.56
**

84.38
**

Fertility 95.58
†

95.58
†

95.18
†

93.87
**

94.47
**

93.38
**

92.84
**

95.78

Glass 77.50
†

78.31 76.54
**

74.13
**

60.45
**

73.41
**

72.24
**

75.94
**

Ionosphere 97.08 96.42
**

96.93
**

96.73
**

88.62
**

96.00
**

96.89
**

96.71
**

Iris 98.90
**

99.21 99.21 99.04
†

79.87
**

97.30
**

93.51
**

98.40
**

Pima Indians 81.78 81.44
†

81.70
†

81.12
**

70.92
**

79.36
**

81.59
†

81.74
†

Sonar 92.42
**

94.70
**

93.66
**

91.53
**

85.62
**

96.11
†

95.99
†

96.52

Spectf 90.96
†

90.30
†

91.00 90.01
**

79.99
**

79.95
**

80.61
**

80.80
**

Vehicle 71.87
**

72.84 72.04
**

67.82
**

61.94
**

68.28
**

69.93
**

71.91
**

WDBC 97.26
**

97.52 96.94
**

96.46
**

94.12
**

96.49
**

97.34
†

97.29
**

Wine 99.01
**

99.63 98.88
**

98.19
**

93.60
**

97.96
**

99.16
**

99.01
**

Yeast 54.93
**

59.03 54.29
**

50.94
**

40.82
**

55.05
**

52.98
**

55.39
**

Average 87.20
±13.45

87.88
±12.57

87.09
±13.65

85.64
±14.70

77.43
±16.37

84.75
±13.93

84.64
±14.14

86.16
±13.67

Table 11.2: Training accuracy (%) results for the different GP discretisation meth-
ods. For each data set, the best result is highlighted in bold, and was statistically
tested with every other result.

CHAPTER 11. RESULTS AND DISCUSSION 165

In terms of the test results, GPEI with arity 2 also achieved the highest average

performance. This method had an average accuracy of 78.38% and obtained the

best result on 6 data sets. On the Yeast data set, GPEI with arity 2 was statisti-

cally significant against every other method. GPEI with arity 2 obtained statistical

significance against 6 methods on the Ionosphere and Vehicle data sets. Similar to

the training results, the next best method was GPEI with varying arity, which ob-

tained an average test accuracy of 77.18%; however, this method did not obtain the

best result on any data set. Once again, EWI with arity 2 resulted in the weakest

accuracy on the test data.

Based on the findings from the test data, GPEI with arity 2 was the best overall

method obtaining the highest average, the lowest standard deviation across all of

the data sets, and this method obtained the best result on 6 data sets.

Data set
Experiment ID

1 2 3 4 5 6 7 8

Ecoli 82.06
†

82.83 79.04
**

80.86
†

75.35
**

76.65
**

75.25
**

76.89
**

Fertility 80.20
†

81.00
†

81.60
†

84.40 80.00
**

82.00
†

82.60
†

81.20
†

Glass 61.91
†

63.17
†

63.55 60.05
†

49.27
**

60.72
†

57.09
**

60.33
†

Ionosphere 89.68
†

90.93 87.86
**

88.15
**

83.80
**

87.12
**

84.15
**

87.17
**

Iris 94.40
†

95.07
†

95.07
†

93.60
†

76.53
†

96.00 89.87
†

94.93
†

Pima Indians 72.05
†

73.38 73.05
†

71.58
**

65.21
**

73.20
†

72.50
†

72.08
†

Sonar 70.97
†

73.00 69.70
**

68.90
**

67.51
**

71.05
†

69.82
†

69.48
**

Spectf 77.85
†

76.54
**

76.65
**

76.48
**

78.97
†

78.97
†

78.89
†

79.05

Vehicle 64.58
†

65.52 63.40
**

59.61
**

55.06
**

61.25
**

60.11
**

63.10
**

WDBC 93.32
†

93.99
†

93.39
†

93.07
†

92.30
**

92.97
†

93.42
†

94.02

Wine 87.75
**

89.41
†

88.22
†

87.26
**

84.93
**

90.46 87.78
**

89.46
†

Yeast 51.39
**

55.69 50.94
**

48.01
**

38.83
**

51.82
**

49.77
**

51.42
**

Average 77.18
±13.42

78.38
±12.78

76.87
±13.41

76.00
±14.61

70.65
±15.99

76.85
±13.90

75.10
±13.79

76.59
±13.80

Table 11.3: Test accuracy (%) results for the different GP discretisation methods.
For each data set, the best result is highlighted in bold, and was statistically tested
with every other result.

CHAPTER 11. RESULTS AND DISCUSSION 166

Figure 11.1: Comparing GPEI and EWI in terms of training and test accuracy (%).

Figure 11.1 illustrates the comparison between the GPEI and EWI methods.

The figure reveals that for both training and testing, GPEI outperformed the corre-

sponding EWI method. In terms of training, GPEI with varying arity outperformed

the corresponding EWI method by 1.04%, and GPEI with arity 2 outperformed

the corresponding EWI method by 10.45%. GPEI with arity 3 outperformed its

corresponding EWI method by 2.34%, and finally, GPEI with arity 4 outperformed

its corresponding EWI method by 1.00%. Similarly, in terms of the test results,

GPEI with varying arity outperformed the corresponding EWI method by 0.59%.

The largest difference was once again achieved when an arity of 2 was used. GPEI

with arity 2 outperformed the corresponding EWI method by 7.73%. The smallest

difference, of 0.02%, was achieved when an arity of 3 was used. Finally, GPEI with

arity 4 outperformed its corresponding EWI method by 0.89%.

The GPEI approaches randomly create intervals with no guidance on how to cre-

ate these intervals, and yet the results reveal that even with this randomness driving

the search, the GPEI approach is still able to outperform the EWI approaches. Com-

pared to other approaches found in the literature which use additional information

to create the intervals, for instance entropy based methods, the results obtained in

this section show that randomness in selecting intervals can be successful.

Table 11.4 presents the average tree size for each experiments on all the data

sets. The size is measured in terms of the number of nodes in the best GP tree

for each method, a smaller value denotes a better result. The lowest average was

obtained by the EWI with arity 2. The next lowest average result was obtained by

GPEI with arity 2. These results are to be expected since both methods have the

least number of branches for each node within the evolved trees. GPEI with arity 2

CHAPTER 11. RESULTS AND DISCUSSION 167

obtained the smallest result on 4 data sets whereas EWI with arity 2 obtained the

smallest result on 6 data sets. The GPEI methods obtained an average size of 79.03

nodes, and the EWI methods obtained an average size of 83.89 nodes.

Data set
Experiment ID

1 2 3 4 5 6 7 8

Ecoli 67.60
**

34.88
**

84.04
**

140.76
**

29.32 92.86
**

150.92
**

67.34
**

Fertility 45.64
**

27.32 49.18
**

78.28
**

29.32
†

54.52
**

125.24
**

53.96
**

Glass 64.48
**

39.24
**

77.02
**

143.56
**

35.64 81.76
**

144.84
**

82.34
**

Ionosphere 61.96
**

25.04 71.62
**

137.64
**

25.20
†

78.70
**

175.56
**

76.58
**

Iris 22.84
**

16.02
**

32.80
**

50.60
**

10.00
**

7.60 15.56
**

24.28
**

Pima
Indians

107.54
**

47.88
**

105.28
**

215.56
**

30.16 113.62
**

299.00
**

154.64
**

Sonar 69.70
**

47.60
†

94.90
**

177.48
**

46.04 120.52
**

221.16
**

123.76
**

Spectf 64.14
**

35.52
**

74.44
**

100.44
**

14.48
†

13.18 35.88
**

24.76
**

Vehicle 121.60
**

55.04 143.50
**

255.08
**

57.32
†

145.66
**

297.96
**

154.84
**

WDBC 36.98
**

28.84
**

51.22
**

94.36
**

20.88 53.88
**

109.72
**

50.72
**

Wine 32.80
**

11.48 42.06
**

82.88
**

30.00
**

44.96
**

65.00
**

36.96
**

Yeast 85.52
**

51.56
**

97.78
**

191.72
**

33.16 117.28
**

153.48
**

95.74
**

Average 65.07 35.04 76.99 139.03 30.13 77.05 149.53 78.83

Table 11.4: Average size (number of nodes) of the best GP individuals for each
method. The smallest size for each data set is highlighted in bold.

Since GPEI with arity 2 obtained the best average training and test accuracies, it

was compared to other discretisers. Table 11.5 presents the results obtained by other

discretisation techniques alongside the results obtained by the GPEI with arity 2.

Other studies used different cross-validation techniques and may not have attempted

to optimise their algorithm and parameters, thus this comparison serves as a means

of determining an estimation on how well GPEI with arity 2 can perform. GPEI with

arity 2 was compared with Lui et al. [75] which implemented C4.5 and 9 discretisation

methods, Bacardit and Garrell [84] which implemented GAssist and reported on

results obtained by ID3, and also reported on Fayyad and Irani’s discretisation

method [83], Hacibeyoglu et al. [80] report on k-NN, Näıve Bayes, and C4.5, and

CHAPTER 11. RESULTS AND DISCUSSION 168

finally a study on ADIs by Bacardit and Garrel [154]. These studies were discussed

in chapter 3, section 3.7.4. The comparison indicates that GPEI with arity 2 is

competitive with other state-of-the-art discretisation methods. GPEI with arity 2

did not outperform other discretisation methods on Glass, Vehicle and Wine. On

the other data sets, the proposed GP discretisation method was able to outperform

some of the existing methods.

Data set

Test accuracy (%) of
other

state-of-the-art
methods

Test accuracy
(%) of GPEI
with arity 2

Iris
88.77 – 95.99 [75]
93.30 – 95.30 [80]

95.07

Ionosphere

88.10, 93.30, 89.50 [84]
88.02 – 91.48 [75]

92.70 [154]
87.50 – 93.40 [80]

90.93

Glass
67.89, 65.80 [154]
77.57 – 97.69 [75]

63.17

Pima Indians
73.10, 75.30 [154]
62.30 – 77.09 [75]

73.38

Sonar
76.40, 74.80, 72.65 [84]

71.50, 74.30 [154]
73.00

Vehicle
66.70, 73.60 [154]
66.67 – 72.10 [75]

65.52

WDBC
76.40, 74.80, 72.65 [84]

94.00, 93.70 [154]
93.99

Wine
93.00, 94.10 [154]
92.05 – 93.22 [75]
95.00 – 98.30 [80]

89.41

Table 11.5: Comparison between GPEI with arity 2 and other state-of-the-art dis-
cretisation methods.

11.3 GP Representations for Binary Classification

The training and test results for the GP representation experiments are presented in

tables 11.6 and 11.7 respectively. For each data set, statistical tests were performed

by comparing the performance of each of the representations. The representation

which obtained the best result for a particular data set was statistically compared

to the other representations. In terms of training accuracy, decision trees obtained

the highest average accuracy, with an average of 92.40%, and obtained the lowest

standard deviation. Decision trees obtained the best result for 5 data sets, and

for 4 of these, the results were statistically significant when compared to all the

CHAPTER 11. RESULTS AND DISCUSSION 169

other representations. In the case of the WDBC data set, the results obtained by

decision trees was not statistically significant when compared to arithmetic-with-if.

The second best method was arithmetic-with-if, which had an average of 90.13%.

This representation obtained the best result on two data sets. Arithmetic-without-

if obtained the weakest average training accuracy with an average of 88.96%, and

obtained the highest standard deviation.

Arithmetic-
without-if

Arithmetic-
with-if

Logical-
with-

between

Logical-
without-
between

Decision
Trees

Climate 97.42 † 97.43 96.64 ** 97.19 † 96.86 **

Fertility 95.20 ** 95.96 94.09 ** 93.40 ** 95.87 †
Ionosphere 95.83 ** 95.97 ** 98.06 97.96 † 96.42 **

Mammo-
graphic

80.64 ** 80.85 ** 82.13 ** 81.87 ** 82.72

Monk2 81.94 ** 87.46 ** 79.25 ** 77.07 ** 91.50

Parkinsons 91.99 ** 92.24 ** 89.85 ** 89.61 ** 95.31

Pima
Indians

74.94 ** 75.79 ** 77.94 ** 78.75 ** 81.92

Sonar 87.84 ** 90.05 ** 94.04 † 94.88 94.70 **

Spectf 86.62 ** 88.31 ** 91.96 89.58 ** 91.15 †
WDBC 97.20 ** 97.28 † 95.32 ** 95.60 ** 97.52

Average 88.96
±7.46

90.13 ±
6.92

89.93 ±
7.05

89.59 ±
7.35

92.40 ±
5.42

Table 11.6: Training accuracy (%) results for the different representations. For each
data set, the best result is highlighted in bold. A “**” indicates that the best result
for the data set is statistically significant when compared to that result. A “†”
indicates a statistically insignificant result when compared to the best result.

In terms of the training data, there was a difference in performance between

the results obtained by the two arithmetic representations and by the two logical

representations, in the sense that in 9 out of the 10 data sets, they produced dis-

similar performance. This can be visualised in figure 11.2. Both of the arithmetic

representations produced higher results than the two logical representations on Fer-

tility, Monk2, Parkinsons, and WDBC. Whereas on Ionosphere, Mammographic,

Pima Indians, Sonar and Spectf the opposite performance is observed, i.e. both of

the logical representations outperformed the two arithmetic representations. These

observations were not present for the Climate data set as all of the representations

produced similar results.

CHAPTER 11. RESULTS AND DISCUSSION 170

Arithmetic-
without-if

Arithmetic-
with-if

Logical-
with-

between

Logical-
without-
between

Decision
Trees

Climate 94.33 94.15 † 92.15 ** 92.78 ** 90.78 **

Fertility 82.00 † 82.20 † 84.20 † 84.80 80.20 **

Ionosphere 88.71 ** 88.94 ** 92.02 92.01 † 90.93 †
Mammo-
graphic

79.52 † 79.64 † 79.93 79.73 † 79.29 †

Monk2 76.68 ** 79.68 ** 75.89 ** 73.43 ** 88.76

Parkinsons 86.70 84.72 † 84.83 † 85.17 † 86.69 †
Pima

Indians
69.30 ** 69.29 ** 73.67 † 73.96 73.62 †

Sonar 72.47 † 74.30 † 75.16 † 75.28 73.00 †
Spectf 77.77 76.87 † 75.97 † 76.83 † 76.58 †
WDBC 95.15 94.76 † 92.76 ** 92.51 † 93.99 **

Average 82.26
±8.34

82.46
±7.89

82.66
±7.22

82.65 ±
7.45

83.38 ±
7.35

Table 11.7: Test accuracy (%) results for the different representations. For each data
set, the best result is highlighted in bold. A “**” indicates that the best result for
the data set is statistically significant when compared to that result. A “†” indicates
a statistically insignificant result when compared to the best result.

Figure 11.2: Illustrating the average training accuracy (%) for the different repre-
sentations.

CHAPTER 11. RESULTS AND DISCUSSION 171

There are no apparent characteristics within the data sets that would stand out as

a possible reason for this difference in performance between the arithmetic and logical

representations. The data sets for which the arithmetic representations performed

better have attributes varying from 9 to 30, and the total number of instances vary

from 100 to 569. Whereas the attributes vary from 5 to 44 for data sets on which the

logical representations performed better, and the number of instances vary from 208

to 961. Furthermore, the data sets for which the representations produced dissimilar

performance have similar class balance. Since the characteristics of the data sets are

similar, no conclusion can be made as to why the representations perform differently.

The training performance of the decision trees did not show any particular trend

when compared to the arithmetic and logical representations.

In terms of the test data, decision trees obtained the highest average with a value

of 83.38%, and obtained the second lowest standard deviation. Furthermore, decision

trees had the best result for the Monk2 data set, and this result was statistically

significant against all the other methods for this data set. Logical-with-between was

the next best method, with an average test accuracy of 82.66%. Arithmetic-without-

if performed the weakest and obtained the highest standard deviation, however

it had best result on 3 data sets. Both of the logical representations performed

similarly with only a 0.01% difference in average performance.

Based on the findings from the test data, decision trees was the best overall

representation. Decision trees obtained the highest average and the second lowest

standard deviation across all of the data sets.

Figure 11.3 graphically illustrates the test results for the different representa-

tions. Both of the arithmetic representations outperformed the logical representa-

tions on the Climate and WDBC data sets. On the other hand, on the Fertility,

Ionosphere, Pima Indians and Sonar, both of the logical representations outper-

formed the arithmetic ones. By combining the findings from the training and test

results the following observations are made. The arithmetic representations outper-

formed the logical representations on the WDBC data set in terms of both training

and testing. The logical representations outperformed the arithmetic ones on the

Ionosphere, Sonar and Pima Indians data sets in terms of training and testing.

CHAPTER 11. RESULTS AND DISCUSSION 172

Figure 11.3: Illustrating the average test accuracy (%) for the different representa-
tions.

The variance in the average accuracy is presented in table 11.8. All of the

representations obtained similar test results on the Mammographic and Spectf. The

variances in the performance of the different methods were not consistent. This

indicates that the different representations perform differently for various data sets.

Data sets Training variance Testing variance

Climate 0.10 1.73

Fertility 1.01 2.73

Ionosphere 0.94 2.08

Mammographic 0.62 0.05

Monk2 28.30 28.35

Parkinsons 4.23 0.79

Pima Indians 6.02 4.78

Sonar 8.08 1.28

Spectf 3.70 0.34

WDBC 0.86 1.10

Table 11.8: Variance amongst the different methods for each data set.

Table 11.9 presents the average size for the different representations. The size of

the best GP individual was recorded for each representation, and the results were

averaged across the 50 GP runs for each data set.

CHAPTER 11. RESULTS AND DISCUSSION 173

Arithmetic-
without-if

Arithmetic-
with-if

Logical-
with-

between

Logical-
without-
between

Decision
Trees

Climate 26.88 28.42 33.94 37.72 35.32

Fertility 26.64 28.34 28.36 21.54 19.76

Ionosphere 35.56 37.10 45.18 41.90 25.04

Mammo-
graphic

30.32 37.38 46.40 45.26 44.64

Monk2 43.48 70.30 30.58 37.24 65.66

Parkinsons 29.12 33.12 26.68 21.04 26.00

Pima
Indians

41.08 49.20 31.90 43.14 51.24

Sonar 30.28 38.48 50.36 53.30 47.60

Spectf 33.16 43.46 45.72 36.68 38.60

WDBC 25.72 32.70 30.84 30.06 28.84

Average 32.22 39.85 37.00 36.79 38.27

Table 11.9: Average size (number of nodes) of the different representations. The
smallest result for each data set is highlighted in bold.

Arithmetic-with-if resulted in the largest average size, with a value of 39.85

nodes. The smallest average size was obtained by the arithmetic-without-if. By in-

cluding the if statement, the average tree size was always larger than those without

it, with an average increase of 7.63 nodes. Although the if statement increased the

overall complexity of the trees, this did not hinder the performance of the represen-

tation, since there was an average improvement in both training and testing when

compared to arithmetic-without-if. Including the between statement did not increase

the average size of the trees as drastically as the inclusion of the if statement. Adding

the between statement increased the average tree size by an average of 0.21 nodes.

Decision trees resulted in the second largest average size with an average of 38.27

nodes. This represents an average of 6.05 nodes larger than arithmetic-without-if.

Despite the decision tree representation being larger than arithmetic-without-if, it

obtained a higher average performance.

11.4 GP Encapsulation

In this section, standard GP refers to standard GP without the encapsulation op-

erator. Tables 11.10 and 11.11 present the training and test accuracy for the two

proposed encapsulation methods. For each data set statistical tests were performed

by comparing the performance of the encapsulation methods with standard GP.

CHAPTER 11. RESULTS AND DISCUSSION 174

Data sets
Standard GP

without
encapsulation

GP
encapsulation

method

Selective
encapsulation

Climate 96.86 96.88 † 96.71 †
Ecoli 89.63 90.67 ** 90.26 **

Fertility 95.58 95.33 ** 94.76 **

Glass 78.31 81.22 ** 79.58 **

Ionosphere 96.42 98.17 ** 97.37 **

Iris 99.21 99.57 ** 99.61 **

Pima Indians 81.92 83.35 ** 82.15 **

Sonar 94.70 96.45 ** 94.99 **

Spectf 91.15 93.20 ** 91.91 **

WDBC 97.52 97.93 ** 97.64 †
Wine 99.63 99.63 † 99.46 †
Yeast 59.03 61.55 ** 61.01 **

Average 90.00 ± 11.83 91.16 ± 11.10 90.45 ± 11.28

Table 11.10: Training accuracy (%) results for standard GP and the two proposed
encapsulation methods. For each data set, the best result is highlighted in bold, and
the results for the encapsulation methods were statistically tested with the results
obtained by standard GP. A “**” indicates that the result is statistically significant
when compared to the result obtained by standard GP without encapsulation. A
“†” indicates a stastically insignificant result compared to standard GP without
encapsulation.

In terms of training, the standard GP algorithm obtained the lowest overall

accuracy and the highest standard deviation, but obtained the best result on 2 data

sets, namely Fertility and Wine. In the case of the Fertility data set, standard

GP obtained statistically significant results when compared to the encapsulation

methods; however, on the Wine data set the best result was statistically insignificant

in comparison to the other approaches. The GP encapsulation method obtained

an overall average of 91.16% across all the training data sets, which represents an

improvement in accuracy of 1.16% over standard GP. The GP encapsulation method

obtained the lowest standard deviation on the training data. Furthermore, this

method obtained statistically significant results on 10 data sets when compared to

standard GP, 8 of which were the best result. On the remaining 2 data sets, Climate

and Wine, it also achieved the best the results but were statistically insignificant.

CHAPTER 11. RESULTS AND DISCUSSION 175

Data sets
Standard GP

without
encapsulation

GP
encapsulation

method

Selective
encapsulation

Climate 90.78 90.70 † 90.78 †
Ecoli 82.83 82.48 † 82.55 †

Fertility 81.00 79.60 ** 80.80 †
Glass 63.17 64.92 † 64.17 †

Ionosphere 90.93 90.42 † 90.32 †
Iris 95.07 94.67 † 94.67 †

Pima Indians 73.62 73.02 † 72.78 **

Sonar 73.00 72.41 † 72.41 †
Spectf 76.58 75.98 † 77.11 †
WDBC 93.99 94.06 † 94.16 †
Wine 89.41 90.94 † 90.09 †
Yeast 55.69 56.12 † 56.62 **

Average 80.51 ± 12.54 80.44 ± 12.36 80.54 ± 12.28

Table 11.11: Test accuracy (%) results for standard GP and GP with the two pro-
posed encapsulation methods. For each data set, the best result is highlighted in
bold, and the results for the encapsulation methods were statistically tested with
the results obtained by standard GP. A “**” indicates that the result is statistically
significant when compared to the result obtained by standard GP without encap-
sulation. A “†” indicates a statically insignificant result compared to standard GP
without encapsulation.

Selective encapsulation made use of the maintained list and this approach ob-

tained an overall training average of 90.45% which is better than standard GP by

0.45%. Selective encapsulation obtained the best result on the Iris data set, and

this result was statistically significant when compared to standard GP. Although

selective encapsulation did not obtain the best result on as many data sets as the

GP encapsulation method, selective encapsulation obtained a statistically better re-

sult on a total of 9 data sets when compared to standard GP. The findings reveal

that both of the GP encapsulation methods obtain a better training accuracy than

standard GP.

In terms of the test results, the selective encapsulation approach obtained the

highest overall accuracy with a value of 80.54% and obtained the best result on

3 data sets, this however was only statistically significant on the Yeast data set.

Selective encapsulation outperformed standard GP on 5 data sets, and furthermore

obtained the lowest standard deviation. The GP encapsulation method obtained

the best result on 2 data sets, and outperformed standard GP on 4 data sets; these

were however not statistically significant. The GP encapsulation method obtained

the lowest overall test accuracy. Standard GP obtained the best result on 7 test

data sets, and achieved an overall average of 80.51%. This method ranked second

CHAPTER 11. RESULTS AND DISCUSSION 176

best, however, obtained the highest standard deviation.

Based on the test data, the three methods obtained similar performance, how-

ever, the selective encapsulation method obtained the highest average accuracy along

with the lowest standard deviation.

After each GP run, the number of encapsulated terminals which were present

in the best GP tree was recorded. Table 11.12 presents the average number of

encapsulated terminals which were found in the best GP individuals for each of the

data sets. Selective encapsulation made use of the maintained list, whereas the GP

encapsulation method did not. When the maintained list was not used the average

number of encapsulated terminals in the best GP tree was 48.46. There was a

considerable reduction when the maintained list was used, with an average of 28.64

encapsulated terminals. Furthermore, these results were statistically significant for

every data set thus confirming that the selective encapsulation method reduces the

number of encapsulated terminals in the trees. Reducing the number of encapsulated

terminals implies that the complexity of the tree is also reduced.

Data set Without Maintained
List

With Maintained
List

Climate 45.74 27.60 **

Ecoli 49.98 30.84 **

Fertility 32.22 17.88 **

Glass 52.04 32.52 **

Ionosphere 45.56 24.64 **

Iris 24.14 11.92 **

Pima Indians 72.36 41.18 **

Sonar 55.44 35.68 **

Spectf 61.24 32.50 **

WDBC 40.72 23.18 **

Wine 28.12 18.52 **

Yeast 73.98 47.27 **

Average 48.46 28.64

Table 11.12: Comparison between the number of encapsulated terminals which were
present in the best GP individuals for the two encapsulation methods. All the
results obtained by encapsulation with maintained list were statistically significant
compared to when the list was not used, this is denoted by “**”.

11.5 Hybridisation of GA and GP

Tables 11.13 to 11.16 present the results for the proposed hybrid ensemble methods.

The training results and test results are presented separately. The best training and

test results for each data set are highlighted in bold. Statistical tests were used to

CHAPTER 11. RESULTS AND DISCUSSION 177

compare the results obtained by the ensemble method to the standard GP approach

in order to determine the effectiveness of the proposed methods.

Data set
Ensemble Size Standard

GP3 5 7 9 11

Balance 96.77 96.76 96.76 96.76 96.76 96.81 †
Climate 97.77 97.96 98.04 98.05

**
98.03 97.71

Ecoli 82.54
**

82.46 82.22 82.07 81.94 77.39

Fertility 96.18 96.42
†

96.24 96.11 96.04 95.98

Ionosphere 96.30 96.65 96.82 96.88
**

96.83 95.67

Iris 96.92 96.96
**

96.90 96.81 96.73 81.94

Parkinson 92.32 92.76 92.92 92.93 92.94
†

92.56

Pima
Indians

75.79 76.18 76.26 76.29
**

76.15 75.31

Sonar 89.14 89.64 89.85
**

89.80 89.69 87.75

Soybean 79.60 79.59 79.59 79.60 79.59 80.06 †
Spectf 87.75 88.22 88.42 88.44

**
88.41 87.34

WDBC 97.54 97.69 97.74 97.76
†

97.69 97.20

Average 90.72
± 7.74

90.94
± 7.74

90.98
± 7.75

90.96
± 7.75

90.90
± 7.77

88.81 ±
8.34

Table 11.13: Average training classification accuracy (%) for GA-at-end. For each
data set, the best result is highlighted in bold, and the best ensemble result is
statistically tested against the standard GP result.

GA-at-end was the first proposed method at investigating the use of hybridising

the GA with the GP algorithm. Tables 11.13 and 11.14 present the training and

test results for GA-at-end respectively. Ensemble sizes of 3, 5, 7, 9, and 11 were

investigated in order to determine which size would yield the best ensemble. An

ensemble size of 3 did not perform as well as the other ensemble sizes for both the

training and test data sets. GA-at-end with a size of 3 obtained the weakest training

accuracy in comparison to the other ensemble sizes, with an average accuracy of

90.72%. Nonetheless, this method was 1.91% better in terms of training accuracy

than standard GP, and also obtained a lower standard deviation than standard GP.

However, GA-at-end with a size of 3 did not obtain the weakest average test accuracy

when compared to the other ensemble sizes. This method obtained a better average

CHAPTER 11. RESULTS AND DISCUSSION 178

than sizes 9 and 11. Furthermore, for both the training and test sets, GA-at-end

obtained a higher average accuracy for each ensemble size in comparison to standard

GP.

Data set
Ensemble Size Standard

GP3 5 7 9 11

Balance 68.64 68.77 68.77 68.77 68.74 68.83 †
Climate 94.11 93.96 93.89 94.11 94.30

†
93.52

Ecoli 77.91 78.02 77.78 77.72 77.84 80.94 **

Fertility 81.00 82.00 83.60
†

81.60 81.80 80.60

Ionosphere 90.43 90.88
†

90.60 90.60 90.03 90.13

Iris 94.13 94.27
†

94.27
†

93.73 94.13 93.47

Parkinsons 86.37 86.06 86.26 86.46
†

86.07 84.42

Pima
Indians

69.74 69.45 69.51 69.95
†

69.63 68.85

Sonar 75.47 74.88 75.69
†

74.24 75.09 72.40

Soybean 72.49 72.36 72.49 72.56 72.49 72.96 †
Spectf 75.62 75.46 75.24 75.54 75.23 76.15 †
WDBC 94.90 94.76 95.04

†
94.83 95.01 94.66

Average 81.73
± 9.86

81.74
± 9.93

81.93
± 9.91

81.68
± 9.87

81.70
± 9.90

81.41 ±
9.77

Table 11.14: Average test classification accuracy (%) for GA-at-end. For each data
set, the best result is highlighted in bold, and the best ensemble result is statistically
tested against the standard GP result.

In terms of training, as the size of GA-at-end was increased from 3 to 7, the

average accuracy improved for all of the data sets. For each of the different sizes

investigated, the average training accuracy was higher than standard GP. The results

indicate that GA-at-end with a size of 7 resulted in the best training accuracy with

an average of 90.98%; which represents an improvement of 2.17% on the standard

GP approach. Standard GP obtained a higher classification accuracy than GA-

at-end when trained on the Soybean and Balance data sets; these result however

were not statistically significant. On 7 of the 12 data sets, GA-at-end obtained a

statistically significant best result when compared to standard GP.

Similar to the improvement in the average training results as a larger ensemble

size was used; such an improvement was also present in the average test results when

CHAPTER 11. RESULTS AND DISCUSSION 179

the ensemble size was increased from 3 to 7. However, beyond a size of 7, there was a

reduction in average test performance. GA-at-end with sizes of 9 and 11 performed

worse than with a size of 7. This suggests that although increasing the ensemble size

improves the average test accuracy of the classifiers, this improvement is no longer

noticed when the ensemble is too large. This effect could be due to the fact that

adding extra trees to the ensemble increases the overall complexity of the ensemble.

The ensemble size which produced the most consistent test results was that of

size 7, which obtained the best result on 4 data sets (Fertility, Iris, Sonar, and

WDBC), and an average of 81.93% across all of the test data sets. This represents

an improvement of 0.52% when compared to the average test accuracy of standard

GP. However, GA-at-end with a size of 7 obtained the second highest standard

deviation in terms of the test data. GA-at-end, in general, outperformed standard

GP on 8 test sets; however, these results were not statistically significant.

The training and test accuracies of GA-after-each-gen are presented in tables

11.15 and 11.16 respectively. This method obtained an average training accuracy

of 92.17% which represents an improvement of 3.36% over standard GP. GA-after-

each-gen outperformed standard GP on all 12 of the data sets, and these results

were statistically significant for 10 data sets. GA-after-each-gen obtained the best

result on 2 data sets. Furthermore, when compared to GA-at-end, GA-after-each-

gen obtained a higher average training accuracy. GA-after-each-gen outperformed

standard GP in terms of the test accuracy on 8 data sets, with an average improve-

ment of 0.25%. GA-after-each-gen obtained a statistically significant result on the

Ecoli test data set, and statistically insignificant results on 10 data sets. GA-after-

each-gen obtained a higher average test accuracy than GA-at-end with sizes 9 and

11.

In GA-after-each-gen, the GA was able to create ensembles of different sizes.

Every time the GA was run after each GP generation, the ensemble size was ran-

domly selected from {3, 5, 7, 9, 11}. The average sizes of the ensembles for each data

set are presented in table 11.17. The average size was 7.45 which is close to the

best performing method for the GA-at-end which was 7. The smallest ensemble

size was 4.92 for the Balance data set, and the largest was 9.00 for the Climate

data set. Despite the average size of the ensembles evolved for the Climate data set

being large, GA-after-each-gen when compared to standard GP, was able to obtain

a better training and test accuracy of 0.96% and 0.89% respectively on that data

set.

The training and test accuracies of GA-with-HC are presented in tables 11.15

and 11.16 respectively. Similar to the performance of GA-at-end and GA-after-each-

gen, the GA-with-HC ensemble obtained better training results when compared to

the standard GP approach. This ensemble method obtained an average training

CHAPTER 11. RESULTS AND DISCUSSION 180

Data set GA-
after-

each-gen

GA-
with-
HC

SSGA-
GP

Standard
GP

Balance 97.07 † 97.07 † 93.40 ** 96.81

Climate 98.67 ** 98.81 ** 98.72 ** 97.71

Ecoli 83.95 ** 85.00 ** 81.90 ** 77.39

Fertility 97.49 ** 97.47 ** 96.27 † 95.98

Ionosphere 97.83 ** 98.05 ** 97.66 ** 95.67

Iris 98.98 ** 98.99 ** 98.50 ** 81.94

Parkinsons 94.55 ** 94.64 ** 94.74 ** 92.56

Pima Indians 77.27 ** 77.36 ** 77.77 ** 75.31

Sonar 91.23 ** 92.59 ** 92.19 ** 87.75

Soybean 80.58 † 80.51 † 70.51 ** 80.06

Spectf 90.15 ** 90.15 ** 91.95 ** 87.34

WDBC 98.27 ** 98.41 ** 98.19 ** 97.20

Average 92.17 ±
7.66

92.42 ±
7.58

90.98 ±
9.24

88.81 ±
8.34

Table 11.15: Average training classification accuracy (%). The best result for each
data set is highlighted in bold. The result for each ensemble method was statistically
compared to the result obtained by standard GP. Between each pairwise comparison,
a “**” denotes that the higher result is statistically significant. A “†” denotes
statistical insignificance.

Data set GA-
after-

each-gen

GA-
with-
HC

SSGA-
GP

Standard
GP

Balance 69.48 † 70.28 † 73.05 ** 68.83

Climate 94.41 † 94.19 † 94.11 † 93.52

Ecoli 78.20 ** 78.98 † 77.32 ** 80.94

Fertility 82.00 † 82.00 † 82.80 † 80.60

Ionosphere 90.76 † 90.59 † 90.93 † 90.13

Iris 93.47 93.73 † 92.93 † 93.47

Parkinsons 84.05 † 85.25 † 86.07 † 84.42

Pima Indians 69.06 † 69.66 † 69.34 † 68.85

Sonar 73.91 † 74.81 † 74.22 † 72.40

Soybean 74.26 † 72.70 † 61.91 ** 72.96

Spectf 76.13 † 74.48 † 74.58 † 76.15

WDBC 94.76 † 95.29 † 94.52 † 94.66

Average 81.71 ±
9.66

81.83 ±
9.72

80.98 ±
10.82

81.41 ±
9.77

Table 11.16: Average test classification accuracy (%). The best result for each data
set is highlighted in bold. The result for each ensemble method was statistically
compared to the result obtained by standard GP. Between each pairwise comparison,
a “**” denotes that the higher result is statistically significant. A “†” denotes
statistical insignificance.

CHAPTER 11. RESULTS AND DISCUSSION 181

accuracy of 92.42% which represents an improvement of 3.61% when compared to

standard GP. GA-with-HC outperformed standard GP on every data set, of which 10

of these were statistically significant and 2 results were not. Furthermore, GA-with-

HC outperformed GA-after-each-gen in terms of average training accuracy by 0.25%.

GA-with-HC obtained a higher accuracy than standard GP on 9 test data sets with

an average improvement of 0.42% when compared to standard GP. However, these

test results were not statistically significant. There was an average improvement

of 0.12% when using GA-with-HC in comparison to GA-after-each-gen for the test

data sets. GA-with-HC obtained the lowest standard deviation on the training data

when compared to standard GP and the other ensemble methods.

The average size of the ensembles evolved during GA-with-HC are presented

in table 11.17. GA-with-HC obtained an average size of 7.98 across all the data

sets. This represents an increase in size of 0.53 in comparison to GA-after-each-

gen. Similar to the performance of GA-after-each-gen, the smallest average size was

obtained on the Balance data set. Statistical tests were performed on the sizes of

the ensembles, and GA-with-HC created ensembles which were statistically larger

than GA-after-each-gen on 5 data sets. Although GA-with-HC resulted in larger

ensembles on average, this method was still able to obtain better test results than

GA-after-each-gen which created smaller ensembles.

GA-after-each-gen and GA-with-HC are similar methods with the exception that

the latter implements hill climbing. The results indicate that better results are

achieved by incorporating hill climbing into the algorithm. The results from table

11.17 also suggest that for certain data sets a larger ensemble is required to obtain

a high training accuracy. On the Balance, Ecoli, Fertility and Soybean data sets,

both GA-after-each-gen and GA-with-HC created small ensembles, whereas both

methods created large ensembles for Climate, Spectf, Ionosphere, Parkinsons, Pima

Indians, Sonar, Spectf and WDBC. This indicates that setting a fixed ensemble size

may not result in the most optimal training accuracy. Nonetheless, based on the

results from GA-at-end, GA-after-each-gen and GA-with-HC, the findings show that

the best results are obtained when an ensemble size of 7 is used.

SSGA-GP employs the use of a steady-state GA model whereby the ensembles

had a fixed size of 7. The training and test accuracies of SSGA-GP are presented

in tables 11.15 and 11.16 respectively. Once again similarly to the other three

ensemble methods, SSGA-GP outperformed the standard GP on all the training

data sets except on Balance and Soybean. SSGA-GP, however, obtained a higher

standard deviation on the training data when compared to standard GP.

Where SSGA-GP outperformed standard GP on the training data, the results

were statistically significant for all of the data sets except in the case of the Fer-

tility data set. SSGA-GP obtained an average training accuracy of 90.98% which

CHAPTER 11. RESULTS AND DISCUSSION 182

represents an improvement of 2.48% when compared to standard GP. SSGA-GP

outperformed the standard GP approach on 7 test data sets, and obtained a sta-

tistically significant better result on the Balance data set. The remainder of the

best test results were not statistically significant, and standard GP outperformed

SSGA-GP on the Soybean and Ecoli test data with statistical significance. Further-

more, SSGA-GP was outperformed by standard GP on Iris, Spectf, and WDBC ;

these results were not statistically significant. The average test accuracy for SSGA-

GP was 0.48% weaker than standard GP. SSGA-GP did not perform as well as the

other proposed ensemble methods on the test data, and furthermore, it obtained the

highest standard deviation.

The results revealed that based on the test data, GA-at-end with a size of 7

obtained the highest overall test accuracy and produced the best result on 3 data

sets, however, this method had the third highest standard deviation.

Data set GA-
after-

each-gen

GA-
with-
HC

Balance 4.92 † 4.56

Climate 9.00 9.60 **

Ecoli 5.32 6.96 **

Fertility 6.08 † 5.80

Ionosphere 8.84 9.60 **

Iris 7.04 7.68 †
Parkinsons 8.80 † 8.59

Pima Indians 7.84 9.40 **

Sonar 8.20 9.12 **

Soybean 6.12 † 5.88

Spectf 8.56 9.60 †
WDBC 8.64 8.96 †
Average 7.45 7.98

Table 11.17: Comparison of the average size of the ensembles of GA-after-each-gen
and GA-with-HC. For each data set, the larger result was statistically compared to
the other result. A “**” indicates that the result is statistical larger than the other
method. A “†” denotes a statistically insignificant result.

CHAPTER 11. RESULTS AND DISCUSSION 183

Data set
Ensemble Size Other

methods3 5 7 9 11

Ionosphere 96.30 96.65 96.82 96.88 96.83 92.40 [13]

Iris 96.92 96.96 96.90 96.81 96.73 98.10 [13]

Parkinson 92.32 92.76 92.92 92.93 92.94 86.60 [13]

Pima
Indians

75.79 76.18 76.26 76.29 76.15 72.20 [13]

Sonar 89.14 89.64 89.85 89.80 89.69 79.00 [13]

Spectf 87.75 88.22 88.42 88.44 88.41 81.90 [13]

Table 11.18: Training accuracy (%) comparison between GA-at-end and other meth-
ods found in literature.

Data set
Ensemble Size

Other methods
3 5 7 9 11

Balance 68.64 68.77 68.77 68.77 68.74 91.68 [155]
90.29 [155]
94.40 [8]

Ecoli 77.91 78.02 77.78 77.72 77.84 82.44 [8]

Ionosphere 90.43 90.88 90.60 90.60 90.03 88.50 [13]
85.40–90.52 [13]

82.00, 91.06 [155]
86.30, 89.91 [136]

92.30 [8]
92.30 [126]

Iris 94.13 94.27 94.27 93.73 94.13 96.00, 96.60 [13]
94.80, 95.53 [155]

95.33 [8]
97.90 [126]

Parkinsons 86.37 86.06 86.26 86.46 86.07 84.30 [13]

Pima
Indians

69.74 69.45 69.51 69.95 69.63 68.60 [13]
68.30–75.75 [13]

73.70 [126]

Sonar 75.47 74.88 75.69 74.24 75.09 73.30 [13]
38.40–72.42 [13]

74.38, 74.87 [136]

Spectf 75.62 75.46 75.24 75.54 75.23 77.60, 83.20 [13]

Table 11.19: Test accuracy (%) comparison between GA-at-end and other methods
found in literature.

CHAPTER 11. RESULTS AND DISCUSSION 184

Data set GA-
after-

each-gen

GA-
with-
HC

SSGA-
GP

Other
methods

Ionosphere 97.83 98.05 97.66 92.40 [13]

Iris 98.98 98.99 98.50 98.10 [13]

Parkinsons 94.55 94.64 94.74 86.60 [13]

Pima Indians 77.27 77.36 77.77 72.20 [13]

Sonar 91.23 92.59 92.19 79.00 [13]

Spectf 90.15 90.15 91.95 81.90 [13]

Table 11.20: Training accuracy (%) comparison between the proposed ensemble
methods and other methods found in literature.

Data set GA-
after-

each-gen

GA-
with-
HC

SSGA-
GP

Other methods

Balance 69.48 70.28 73.05 91.68 [155]
90.29 [155]
94.40 [8]

Ecoli 78.20 78.98 77.32 82.44 [8]

Ionosphere 90.76 90.59 90.93 88.50 [13]
85.40–90.52 [13]

82.00, 91.06 [155]
86.30, 89.91 [136]

92.30 [8]
92.30 [126]

Iris 93.47 93.73 92.93 96.00, 96.60 [13]
94.80, 95.53 [155]

95.33 [8]
97.90 [126]

Parkinsons 84.05 85.25 86.07 84.30 [13]

Pima
Indians

69.06 69.66 69.34 68.60 [13]
68.30–75.75 [13]

73.70 [126]

Sonar 73.91 74.81 74.8174.22 73.30 [13]
38.40–72.42 [13]

74.38, 74.87 [136]

Spectf 76.13 74.48 74.58 77.60, 83.20 [13]

Table 11.21: Test accuracy (%) comparison between the proposed ensemble methods
and other methods found in literature.

Tables 11.18 to 11.21 presents a comparison between the results obtained using

the ensemble methods proposed in this dissertation with those results obtained using

other GP methods found in Jabeen and Baig [13], Pappa and Freitas [136], Shali

et al. [8], Eggermont et al. [126], Tan et al. [124], and AdaBoost Näıve Bayes and

CHAPTER 11. RESULTS AND DISCUSSION 185

bagging Näıve Bayes found in Kotsiantis and Pintelas [155]. It is not possible to

directly compare the performance of the proposed methods in this dissertation to

other approaches, due to the fact that other studies may have used different cross-

validation techniques and/or different GP parameters, and also due to the fact that

other studies may not have attempted to further optimise the performance of their

algorithms. However, this comparison serves as an estimation of the performance of

the proposed methods to other state-of-the-art methods. The comparison indicates

that the proposed methods are able to perform better than other methods on certain

data sets in terms of both training and testing.

11.6 GP Ensemble Construction

The training and test accuracy results for the proposed ensemble construction ap-

proach are presented in tables 11.22 and 11.23 respectively. Three ensemble sizes

were tested, namely, ensemble5, ensemble7 and ensemble9 which correspond to 200,

280 and 360 GP generations respectively. The three ensemble methods obtained a

higher overall average training accuracy than standard GP. The difference between

the average ensemble accuracies and standard GP were 1.75%, 2.46% and 3.33% for

ensemble5, ensemble7 and ensemble 9 respectively. The findings indicate that the

training accuracy improves as a larger ensemble is used. The ensembles obtained

statistically better training results on all the data sets except in the case of Balance

and Soybean. Ensemble9 obtained the best result on 11 out of the 12 data sets of

which 10 of these results were statistically significant.

Similar to the training results, the test results indicate that the ensembles pro-

duce classifiers which are superior to standard GP. The average test accuracy for

each ensemble was higher than the results obtained by standard GP. Ensemble9

obtained the highest average test accuracy, with a value of 85.88% which represents

an improvement of 2.11% over standard GP with 360 generations.

Furthermore, ensemble9 obtained the best result on 4 data sets and 2 of these

were statistically significant. Ensemble7 had a higher overall test accuracy when

compared to standard GP with 280 generations, and obtained the best result on 3

data sets; these were statistically significant. On certain data sets, standard GP

outperformed its corresponding ensemble method. On Balance, Ecoli and Soybean

standard GP with 200 generations outperformed ensemble5. Additionally, standard

GP with 360 generations outperformed ensemble9 on 5 data sets, these results were

not statistically significant.

Based on the test data, ensemble9 obtained the highest overall average accuracy,

and the best result on 4 data sets. This method ranked 4th best in terms of standard

deviation, however, the standard deviation was lower than that of ensemble5 and

CHAPTER 11. RESULTS AND DISCUSSION 186

Data sets
Ensemble Size Standard GP Generations

5 7 9 200 280 360

Balance 89.43 92.42 94.63 92.40
**

93.70
**

95.10
**

Car 89.15
**

94.46
**

95.36
**

79.69 81.90 78.86

Climate 97.72
**

97.91
**

98.20
**

96.59 96.90 96.71

Ecoli 90.63
**

91.96
**

92.71
**

89.60 89.91 90.46

Fertility 95.29
**

96.24
**

96.93
**

93.96 93.91 94.04

Ionosphere 95.85
**

96.42
**

96.70
**

93.04 93.62 93.29

Iris 99.72
**

99.91
**

99.94
**

99.30 99.38 99.23

Pima Indians 75.16
**

75.91
**

76.32
**

72.79 72.93 72.91

Soybean 70.54 73.74 77.21
†

72.91
**

75.87
**

76.61

TTT 96.50
**

98.48
**

99.35
**

90.22 91.07 91.85

WDBC 97.24
**

97.54
**

97.75
**

96.54 96.65 96.47

Zoo 99.89
**

99.89
**

100.00
**

99.12 99.54 99.60

Average 91.43
± 9.46

92.91
± 8.83

93.76
±8.23

89.68
± 9.44

90.45
± 8.88

90.43
±9.12

Table 11.22: Training accuracy (%) results for the different ensembles and standard
GP. The best result for each data set is highlighted in bold. For each data set,
ensemble5 was statistically compared to standard GP 200 generations, ensemble 7
to standard GP 280 generations, and ensemble9 to standard GP 360 generations.

CHAPTER 11. RESULTS AND DISCUSSION 187

Data sets
Ensemble Size Standard GP Generations

5 7 9 200 280 360

Balance 73.12 71.94 72.03 75.00
**

74.85
**

73.66
†

Car 86.87
**

92.07
**

92.80
**

78.71 80.52 77.06

Climate 94.41
†

94.70
**

94.56
†

93.70 93.52 93.89

Ecoli 81.24 82.06 81.98 83.81
**

82.25
†

83.60
†

Fertility 82.60
†

82.40 83.00
†

81.60 82.40 80.80

Ionosphere 90.65 † 91.62
**

91.39
**

89.44 88.77 88.77

Iris 94.80
†

95.07
†

94.93 94.27 94.27 95.20
†

Pima Indians 68.91
†

68.33
†

67.34 68.09 68.25 67.94
†

Soybean 64.35 66.70 71.21
†

67.05
†

71.14
**

69.63

TTT 88.64
**

90.17
**

91.57
**

84.55 84.30 84.47

WDBC 95.54
†

95.89
**

95.53
**

94.87 94.72 94.52

Zoo 94.47 94.69
†

94.27 94.47 92.67 95.67
†

Average 84.63
± 10.78

85.47
± 10.97

85.88
± 10.47

83.80
±10.05

83.97
±9.16

83.77
±10.10

Table 11.23: Test accuracy (%) results for the different ensembles and standard GP.
The best result for each data set is highlighted in bold. For each data set, ensemble5
was statistically compared to standard GP 200 generations, ensemble 7 to standard
GP 280 generations, and ensemble9 to standard GP 360 generations.

CHAPTER 11. RESULTS AND DISCUSSION 188

ensemble7.

Figure 11.4 graphically illustrates the difference in average accuracy between the

ensembles and standard GP in terms of the test results. Given that the ensembles

and standard GP pairs ran for the same number of generations, it is apparent from

the figure that creating ensembles lead to an overall improvement in accuracy. There

is no significant difference when comparing the computational effort between the

proposed ensemble method and standard GP. The only additional processing which

occurs in the ensemble method is the evaluation of the ensemble on the training

data, and the updating of the weights. Since a new tree is added to the ensemble

every 40 generations, this has little impact on the overall computational effort.

Figure 11.4: Comparison between the average test results for the ensembles and
standard GP.

Tables 11.24 and 11.25 present a comparison between the results obtained using

the ensemble methods proposed in this dissertation with the results obtained using

other GP methods found in Jabeen and Baig [13], Pappa and Freitas [136], Shali

et al. [8], Eggermont et al. [126], Tan et al. [124], and AdaBoost Näıve Bayes and

bagging Näıve Bayes found in Kotsiantis and Pintelas [155]. It is not possible to

directly compare the performance of the proposed methods in this dissertation to

other approaches, due to the fact that other studies may have used different cross-

validation techniques and/or different GP parameters, and also due to the fact that

other studies may not have attempted to further optimise the performance of their

algorithms. However, this comparison serves as an estimation of the performance

of the proposed methods to other state-of-the-art methods. The comparison re-

CHAPTER 11. RESULTS AND DISCUSSION 189

veals that the proposed ensemble methods are able to perform just as well as other

methods. In terms of the test results, the proposed ensemble method was able to

outperform 3 studies on the Ionosphere data set, 1 study on the Iris data set and 2

studies on the Pima Indians data set.

Data sets
Ensemble Size Other

methods5 7 9

Ionosphere 95.85 96.42 96.70 92.40 [13]

Iris 99.72 99.91 99.94 98.10 [13]

Pima Indians 75.16 75.91 76.32 72.20 [13]

Table 11.24: Training accuracy (%) comparison between the proposed ensemble
construction method and other methods found in literature.

Data sets
Ensemble Size

Other methods
5 7 9

Balance 73.12 71.94 72.03
91.68 [155]
90.29 [155]
94.40 [8]

Ecoli 81.24 82.06 81.98 82.44 [8]

Ionosphere 90.65 91.62 91.39

88.50 [13]
85.40–90.52 [13]

82.00, 91.06 [155]
86.30, 89.91 [136]

92.30 [8]
92.30 [126]

Iris 94.80 95.07 94.93

96.00, 96.60 [13]
94.80, 95.53 [155]

95.33 [8]
97.90 [126]

Pima Indians 68.91 68.33 67.34
68.60 [13]

68.30–75.75 [13]
73.70 [126]

Zoo 94.47 94.69 94.27
95.07, 97.23 [155]

89.10 [8]
100.00 [124]

Table 11.25: Test accuracy (%) comparison between the proposed ensemble con-
struction method and other methods found in literature.

Table 11.26 presents a comparison between the best results obtained by the en-

semble methods created by the hybridisation of GA and GP in section 11.5, and

the best results obtained using the ensemble construction approach in this section.

The ensemble methods created by the hybrid approach obtained the best result on

7 training sets of which 6 were statistically significant results. Furthermore, the

CHAPTER 11. RESULTS AND DISCUSSION 190

Data set Method Result
(%)

Method Result
(%)

Balance
Train GA-with-

HC
97.07 ** Ensemble9 94.63

Test SSGA-GP 73.05 Ensemble5 73.12
†

Climate
Train GA-with-

HC
98.81 ** Ensemble9 98.20

Test GA-at-end 94.30 Ensemble7 94.70 †

Ecoli
Train GA-with-

HC
85.00 Ensemble9 92.71 **

Test GA-with-
HC

78.98 Ensemble7 82.06 **

Fertility
Train GA-after-

each-gen
97.49 ** Ensemble9 96.93

Test GA-at-end-
7

83.60 † Ensemble9 83.00

Ionosphere
Train GA-with-

HC
98.05 ** Ensemble9 96.70

Test SSGA-GP 90.93 Ensemble7 91.62 †

Iris
Train GA-with-

HC
98.99 Ensemble9 99.94 **

Test GA-at-end-
5 and

GA-at-end-
7

94.27 Ensemble7 95.07 †

Pima Indians
Train SSGA-GP 77.77 ** Ensemble9 76.32
Test GA-at-end-

9
69.95 ** Ensemble5 68.91

Soybean
Train GA-after-

each-gen
80.58 ** Ensemble9 77.21

Test GA-after-
each-gen

74.26 ** Ensemble9 71.21

WDBC
Train GA-at-end-

9
97.76 † Ensemble9 97.75

Test GA-with-
HC

95.29 Ensemble7 95.89 **

Table 11.26: Comparison between the hybrid ensemble methods with the ensemble
construction methods. The best training and test result for each data set is high-
lighted in bold. For each training and test set, a “**” denotes that the best result
is statistically significant when compared to the other result, and a “†” denotes
statistical insignificance.

CHAPTER 11. RESULTS AND DISCUSSION 191

hybrid approach obtained the best result on 3 test sets of which 2 were statisti-

cally significant. The ensemble construction approach obtained the best result on 2

training sets, both of which were statistically significant. Additionally, the ensemble

construction approach obtained the best result on 6 test sets of which 2 were sta-

tistically significant. The results reveal that no single method can obtain the best

result across all of the different data sets. GA-after-each-gen on the Soybean data

set was however able to obtain the best result for both the training and test set.

The results obtained from the hybridisation of GA with GP obtained more statisti-

cally significant results. The proposed hybridisation methods were able to obtain a

greater number of best results on the training data, whereas the proposed ensemble

construction methods obtained a greater number of best results on the test data.

11.7 Conclusion

This chapter presented and discussed the results obtained for the proposed GP and

data classification investigations. The first investigation was to incorporate discreti-

sation into the GP algorithm. Eight methods were investigated and based on the

findings, GPEI with arity 2 produced the overall best results and EWI with arity

2 performed the weakest overall. The chapter then presented the results obtained

by the 5 GP representations for binary data classification. The findings revealed

that decision trees performed the best, and that arithmetic-without-if obtained the

weakest results. This was followed by a discussion on the performance of the 2

proposed encapsulation methods. The results indicated that including the encapsu-

lation GO leads to an improvement in classification accuracy. The initial encapsula-

tion approach obtained the highest overall average on the training data, whereas the

selective encapsulation approach performed the best on the test data. The results

for the 4 GA and GP hybrid methods were then discussed. The results revealed

that GA-with-HC obtained the best performance on the training data, and that

GA-at-end with size 7 obtained the best test accuracy. GA-at-end with a size of 3

performed the weakest on the training data, and SSGA-GP performed the weakest

on the test data. Finally, the performance of the ensemble construction methods

were analysed. When compared to standard GP, ensemble9 obtained the best overall

performance, and amongst the proposed ensemble construction methods, ensemble3

obtained the weakest overall performance. Furthermore, a comparison between the

hybridisation methods and the ensemble construction methods was conducted. The

findings revealed that the hybrid methods performed better on the training data,

and the ensemble construction methods performed better on the test data. The next

chapter lists the objectives of this dissertation and discusses how the objectives were

met based on the findings reported in this chapter.

Chapter 12
Conclusions and Future Work

This chapter summarises the findings of this dissertation and provides a conclusion to

each of the different areas of GP and data classification which have been researched.

The objectives were discussed in chapter 1 and each section below discusses how each

objective was met, concludes the findings of each objective, and provides details on

how each objective can be extended for future investigations. The objectives of this

dissertation are listed below:

• Objective 1: Incorporating discretisation into GP.

• Objective 2: GP representations for binary data classification.

• Objective 3: Creating an encapsulation genetic operator for data classification.

• Objective 4: Hybridising evolutionary algorithms for classifier ensembles.

• Objective 5: Creating a GP ensemble construction method.

12.1 Objective 1 - GP Discretisation

Several experiments were performed in order to determine whether incorporating

discretisation into the GP algorithm would be successful. Two major approaches

were proposed: EWI, which created intervals of equal width based on the attribute

data, and GPEI, which allowed GP to evolve the intervals during the evolutionary

process. Furthermore, two methods for selecting the arity of the nodes were pro-

posed. The fixed arity approach set a constant arity for all the nodes within the

GP trees, and the varying arity approach which allowed GP to select the arity of

the node during the evolutionary process. The proposed approaches were tested

on 12 publicly available data sets. GPEI performed better than EWI indicating

that evolving the intervals during the evolutionary process yields better results than

192

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 193

using fixed intervals which are not altered. The results revealed that the GPEI

with arity 2 performed well and obtained competitive classification accuracies when

compared to other discretisation methods found in the literature. GPEI with fixed

arity 2 performed the best overall when compared to the other proposed methods,

and thus discretisation can successfully be incorporated into the GP algorithm using

that approach. The results therefore revealed that randomly altering the intervals

during the execution of the GP algorithm can improve the classification accuracy of

the classifiers evolved.

Instead of replacing the intervals of the nodes within the trees with new ones as

is done in the proposed GPEI method, future work will determine whether altering

the arity of existing nodes during the execution of the algorithm can improve the

performance of the algorithm.

12.2 Objective 2 - GP Representations for Binary Clas-

sification

This study compared the performance of three major representations for GP and

binary data classification. A total of five variations of these representations were

proposed in order to determine which representation and function set would yield

the best results. The representations were tested on 10 publicly available binary

data sets.

Decision trees obtained the highest overall average when compared to the other

GP representations investigated; however, this representation did not always obtain

the best result. The results revealed that there was an improvement in overall

accuracy when the if function was included in the function set for arithmetic trees.

Furthermore, the results revealed that adding the between function in the function

set for logical trees can improve the overall accuracy of this representation.

The rationale behind this study was that researchers did not provide sufficient

justification for their choice of representations. This study empirically showed that

researchers investigating the domain of GP and binary data classification can select

any of the three major representations, and obtain good results on both the training

and test set.

There was no consistency between the arithmetic and logical representations.

When one performed well the other did not, and thus future research will aim at

determining the cause for such an observation. Future research will also include

extending this study to multiclass classification problems in order to determine which

representation is the most suitable.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 194

12.3 Objective 3 - GP Encapsulation

This study served as an investigation into the effects of the encapsulation GO for GP

in the context of data classification. Two encapsulation methods were investigated,

the first made use of the encapsulation operator without any restrictions on how the

GP algorithm could use the encapsulated terminals. The second approach, selective

encapsulation, made use of a maintained list of encapsulated terminals, and the GP

algorithm selected terminals from the maintained list with a 60% probability. The

two proposed methods were tested on 12 publicly available data sets. The findings

showed that both of the proposed methods improved the average training accuracy,

and that selective encapsulation improved the average test accuracy when compared

to a standard GP approach without encapsulation.

The outcome of this study showed that the inclusion of the encapsulation op-

erator has the potential to improve the classification accuracies of models created

using GP, and thus suggesting that GP modularisation is a promising area of in-

vestigation for future research. Future research includes investigating the effect of

the encapsulation GO when arithmetic and logical trees are used, as this study only

investigated the use of encapsulation on GP decision trees. In this study, the list

was updated based on the number of times the encapsulated terminals were called,

and thus future research will include an investigation on updating the list based on

the performance of the encapsulated terminals, instead of the number of times they

are called within the population.

12.4 Objective 4 - Hybridising GA and GP

This study investigated the hybridisation of a GA with a GP algorithm for creating

classifier ensembles. Four methods were proposed, and were tested on 12 publicly

available data sets. The first approach, GA-at-end, being the most simple of the

four, showed that by executing a GA on the final GP population, it is possible to

create ensembles which obtain higher classification accuracies than the best standard

GP individual. The training results obtained by GA-at-end outperformed the single

best GP tree on all the data sets except for 2. Standard GP outperformed GA-at-end

on 4 data sets.

The results for GA-after-each-gen also reveals the effectiveness of running a GA

for a small number of generations after each GP generation. GA-with-HC improved

the training and test results when compared to GA-after-each-gen. SSGA-GP did

not perform as well as the other three ensemble methods. The best ensemble method

for each data set was compared to other GP and ensemble methods found in litera-

ture. The findings revealed that the proposed hybrid methods are able to produce

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 195

competitive results when compared to other state-of-the-art ensemble methods.

The four proposed methods for creating ensembles provide an alternative ap-

proach to creating classifier ensembles which do not make use of bagging or boost-

ing approaches. This study shows that a simplistic approach without the need for

weighted votes can improve the classification results. Based on the findings from this

study, it is possible for a researcher to hybridise GA and GP, and as a consequence

improve the accuracy of the evolved classifiers. Future work will examine the effect

of using different tree representations simultaneously within a single chromosome,

thus permitting the chromosome to be constructed using various GP representations.

12.5 Objective 5 - GP Ensemble Construction

This study proposed a GP ensemble construction method which evolved only one

ensemble throughout the evolutionary process. This differed from the fourth objec-

tive since the hybrid approaches evolved a population of ensembles. Three ensemble

sizes were examined in order to determine the effect that the ensemble size has on

the performance of the algorithm. Weights were allocated to the training instances

so that the algorithm could focus on correctly classifying instances of data which

were more challenging. The proposed ensemble was tested on 12 publicly available

data sets. The findings revealed that for all sizes, the proposed ensemble method

outperformed standard GP on the training and test data. Furthermore, the results

indicated that a larger ensemble can obtain better training accuracy than a smaller

one. The results revealed that an ensemble size of 9 yielded the best overall results.

The hybrid approaches, from the previous objective, were compared to the ensem-

ble construction approach, and the results indicated that the hybridised approaches

obtained a greater number of statistically significant results than the ensemble con-

struction method. Furthermore, the hybridised approaches performed better on

the training data, whereas the ensemble construction methods performed better on

the test data. Similar to the future work for the 4th objective, future research for

this study will investigate the use of creating ensembles using more than one GP

representation.

12.6 Conclusion

This chapter described how the objectives of this dissertation were met. For each

objective, several methods were proposed and where possible, the proposed methods

were compared to existing GP methods. This dissertation investigated areas of GP

and data classification which have not previously been researched.

Dealing with missing values, feature selection, imbalanced data sets, and mixed

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 196

attributes are issues which have generally been addressed on their own. Future

research will include proposing a GP algorithm which will be able to cater for all

the previously described issues in a single GP run. This will ultimately enable the

algorithm to be able to cater for any data set. Furthermore, proposing new parallel

architectures for GP and data classification will be researched in order to speed up

the evolutionary process.

Bibliography

[1] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic Pro-

gramming. Lulu Enterprises, UK Ltd, 2008.

[2] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin, Genetic program-

ming: an introduction: on the automatic evolution of computer programs and

its applications. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1998.

[3] J. R. Koza, Genetic programming: on the programming of computers by means

of natural selection. Cambridge, MA, USA: MIT Press, 1992.

[4] P. J. Angeline and J. Pollack, “Evolutionary module acquisition,” in Proceed-

ings of the second annual conference on evolutionary programming, pp. 154–

163, 1993.

[5] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 3rd ed., 2011.

[6] T. Fawcett, “An introduction to roc analysis,” Pattern Recogn. Lett., vol. 27,

pp. 861–874, June 2006.

[7] T. Borovicka, M. Jirina Jr, P. Kordik, and M. Jirina, “Selecting representative

data sets,” Advances in Data Mining Knowledge Discovery and Applications.

Intech, 2012.

[8] A. Shali, M. Kangavari, and B. Bina, “Using genetic programming for the

induction of oblique decision trees,” in Machine Learning and Applications,

2007. ICMLA 2007. Sixth International Conference on, pp. 38–43, Dec 2007.

[9] I. De Falco, A. Della Cioppa, and E. Tarantino, “Discovering interesting clas-

sification rules with genetic programming,” Applied Soft Computing, vol. 1,

no. 4, pp. 257–269, 2002.

197

BIBLIOGRAPHY 198

[10] M. Bramer, Principles of data mining. Springer, 2007.

[11] H. Jabeen and A. R. Baig, “Review of classification using genetic program-

ming,” International journal of engineering science and technology, vol. 2,

no. 2, pp. 94–103, 2010.

[12] S. Luke and L. Panait, “A survey and comparison of tree generation algo-

rithms,” in Proceedings of the Genetic and Evolutionary Computation Confer-

ence (GECCO-2001), pp. 81–88, 2001.

[13] H. Jabeen and A. R. Baig, “Depthlimited crossover in gp for classifier evolu-

tion,” Comput. Hum. Behav., vol. 27, pp. 1475–1481, Sept. 2011.

[14] E. Galvan-Lopez, J. M. Swafford, M. O’Neill, and A. Brabazon, “Evolving a

ms. pacman controller using grammatical evolution,” in Applications of Evolu-

tionary Computation, vol. 6024 of Lecture Notes in Computer Science, pp. 161–

170, Springer Berlin Heidelberg, 2010.

[15] D. J. Montana, “Strongly typed genetic programming,” Evolutionary compu-

tation, vol. 3, no. 2, pp. 199–230, 1995.

[16] K. E. Kinnear, Jr., ed., Advances in Genetic Programming. Cambridge, MA,

USA: MIT Press, 1994.

[17] J. R. Koza, Genetic programming II: automatic discovery of reusable programs.

Cambridge, MA, USA: MIT Press, 1994.

[18] S. Luke and L. Panait, “A comparison of bloat control methods for genetic

programming,” Evol. Comput., vol. 14, pp. 309–344, Sept. 2006.

[19] S. Harding and W. Banzhaf, “Fast genetic programming on gpus,” in Proceed-

ings of the 10th European Conference on Genetic Programming, EuroGP’07,

(Berlin, Heidelberg), pp. 90–101, Springer-Verlag, 2007.

[20] V. Ciesielski and D. Mawhinney, “Prevention of early convergence in genetic

programming by replacement of similar programs,” in Evolutionary Computa-

tion, 2002. CEC ’02. Proceedings of the 2002 Congress on, vol. 1, pp. 67–72,

May 2002.

[21] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 2nd ed., 2010.

[22] S. Sakprasat and M. Sinclair, “Classification rule mining for automatic credit

approval using genetic programming,” in Evolutionary Computation, 2007.

CEC 2007. IEEE Congress on, pp. 548–555, Sept 2007.

BIBLIOGRAPHY 199

[23] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Two-tier genetic pro-

gramming: towards raw pixel-based image classification,” Expert Systems with

Applications, vol. 39, no. 16, pp. 12291 – 12301, 2012.

[24] K. Tan, Q. Yu, C. Heng, and T. Lee, “Evolutionary computing for knowledge

discovery in medical diagnosis,” Artif. Intell. Med., vol. 27, pp. 129–154, Feb.

2003.

[25] A. Teredesai and V. Govindaraju, “Issues in evolving gp based classifiers for

a pattern recognition task,” in Evolutionary Computation, 2004. CEC2004.

Congress on, vol. 1, pp. 509–515 Vol.1, June 2004.

[26] K. J. Cios, L. A. Kurgan, W. Pedrycz, and R. W. Swiniarski, Data Mining:

A Knowledge Discovery Approach. Springer Science+ Business Media, LLC,

2007.

[27] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[28] A. Karahoca, Advances in Data Mining Knowledge Discovery and Applica-

tions. InTech, 2012.

[29] R. Longadge, S. Dongre, and L. Malik, “Class imbalance problem in data

mining: Review,” International Journal of Computer Science and Network,

vol. 2, no. 1, 2013.

[30] E. Fix and J. L. Hodges Jr, “Discriminatory analysis-nonparametric discrimi-

nation: consistency properties,” tech. rep., DTIC Document, 1951.

[31] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.

McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand,

and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst.,

vol. 14, pp. 1–37, Dec. 2007.

[32] Z. Voulgaris and G. D. Magoulas, “Extensions of the k nearest neighbour

methods for classification problems,” in Proceedings of the 26th IASTED In-

ternational Conference on Artificial Intelligence and Applications, AIA ’08,

(Anaheim, CA, USA), pp. 23–28, ACTA Press, 2008.

[33] Y. Bao, N. Ishii, and X. Du, “Combining multiple k-nearest neighbor classi-

fiers using different distance functions,” in Intelligent Data Engineering and

Automated Learning - IDEAL 2004 (Z. Yang, H. Yin, and R. Everson, eds.),

vol. 3177 of Lecture Notes in Computer Science, pp. 634–641, Springer Berlin

Heidelberg, 2004.

BIBLIOGRAPHY 200

[34] H. Parvin, H. Alizadeh, and B. Minati, “A modification on k-nearest neighbor

classifier,” Global Journal of Computer Science and Technology, vol. 10, no. 14,

2010.

[35] N. Suguna and K. Thanushkodi, “An improved k-nearest neighbor classifi-

cation using genetic algorithm,” International Journal of Computer Science

Issues, vol. 7, no. 2, pp. 18–21, 2010.

[36] A. Bharathi and E. Deepankumar, “Survey on classification techniques in data

mining,” International Journal on Recent and Innovation Trends in Comput-

ing and Communication, vol. 2, pp. 1983–1986.

[37] S. Kotsiantis, “Decision trees: a recent overview,” Artificial Intelligence Re-

view, vol. 39, no. 4, pp. 261–283, 2013.

[38] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp. 81–106,

Mar. 1986.

[39] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1993.

[40] R. Barros, M. Basgalupp, A. C. P. L. F. De Carvalho, and A. Freitas, “A

survey of evolutionary algorithms for decision-tree induction,” Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

vol. 42, pp. 291–312, May 2012.

[41] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc.,

1 ed., 1997.

[42] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001

workshop on empirical methods in artificial intelligence, vol. 3, pp. 41–46,

2001.

[43] G. Zhang, “Neural networks for classification: a survey,” Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 30,

pp. 451–462, Nov 2000.

[44] S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle

River, NJ, USA: Prentice Hall PTR, 2nd ed., 1998.

[45] P. Jeatrakul and K. Wong, “Comparing the performance of different neural

networks for binary classification problems,” in Natural Language Processing,

2009. SNLP ’09. Eighth International Symposium on, pp. 111–115, Oct 2009.

BIBLIOGRAPHY 201

[46] S. B. Kotsiantis, “Supervised machine learning: A review of classification tech-

niques,” in Proceedings of the 2007 Conference on Emerging Artificial Intel-

ligence Applications in Computer Engineering: Real Word AI Systems with

Applications in eHealth, HCI, Information Retrieval and Pervasive Technolo-

gies, (Amsterdam, The Netherlands, The Netherlands), pp. 3–24, IOS Press,

2007.

[47] M. Aly, “Survey on multiclass classification methods,” tech. rep., Caltech,

USA, 2005.

[48] T. N. Phyu, “Survey of classification techniques in data mining,” in Proceedings

of the International MultiConference of Engineers and Computer Scientists,

vol. 1, pp. 18–20, 2009.

[49] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.

SpringerVerlag, 2003.

[50] A. Freitas, “A review of evolutionary algorithms for data mining,” in Soft Com-

puting for Knowledge Discovery and Data Mining (O. Maimon and L. Rokach,

eds.), pp. 79–111, Springer US, 2008.

[51] A. A. Freitas, “A survey of evolutionary algorithms for data mining and knowl-

edge discovery,” pp. 819–845, New York, NY, USA: Springer-Verlag New York,

Inc., 2002.

[52] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

1st ed., 1989.

[53] H. Liu and H. Motoda, Computational Methods of Feature Selection. Chapman

& Hall/CRC Data Mining and Knowledge Discovery Series, Taylor & Francis,

2007.

[54] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques

in bioinformatics,” bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007.

[55] H. Liu and L. Yu, “Toward integrating feature selection algorithms for classifi-

cation and clustering,” Knowledge and Data Engineering, IEEE Transactions

on, vol. 17, no. 4, pp. 491–502, 2005.

[56] P. Pujari and J. B. Gupta, “Improving classification accuracy by using fea-

ture selection and ensemble model,” International Journal of Soft Computing,

vol. 2.

BIBLIOGRAPHY 202

[57] J. Yang and V. Honavar, “Feature subset selection using a genetic algorithm,”

in Feature extraction, construction and selection, pp. 117–136, Springer, 1998.

[58] R. R. Jacob, Shomona Gracia, “Discovery of knowledge patterns in clinical

data through data mining algorithms: Multi-class categorization of breast

tissue data,” International Journal of Computer Applications, vol. 1, 2011.

[59] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in

Proceedings of the ninth international workshop on Machine learning, ML92,

(San Francisco, CA, USA), pp. 249–256, Morgan Kaufmann Publishers Inc.,

1992.

[60] I. Kononenko, “Estimating attributes: Analysis and extensions of relief,” in

Machine Learning: ECML-94 (F. Bergadano and L. Raedt, eds.), vol. 784 of

Lecture Notes in Computer Science, pp. 171–182, Springer Berlin Heidelberg,

1994.

[61] P. E. McKnight, K. M. McKnight, S. Sidani, and A. J. Figueredo, Missing

data: A gentle introduction. The Guilford Press, 2007.

[62] E. Acuna and C. Rodriguez, “The treatment of missing values and its effect

on classifier accuracy,” in Classification, Clustering, and Data Mining Appli-

cations, pp. 639–647, Springer, 2004.

[63] B. M. Marlin, Missing data problems in machine learning. PhD thesis, Uni-

versity of Toronto, 2008.

[64] P. D. Allison, Missing data, vol. 136. Sage publications, 2001.

[65] B. E. T. H. Twala, M. C. Jones, and D. J. Hand, “Good methods for coping

with missing data in decision trees,” Pattern Recogn. Lett., vol. 29, pp. 950–

956, May 2008.

[66] B. Twala, “An empirical comparison of techniques for handling incomplete

data using decision trees,” Appl. Artif. Intell., vol. 23, pp. 373–405, May 2009.

[67] T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of

the First International Workshop on Multiple Classifier Systems, MCS ’00,

(London, UK, UK), pp. 1–15, Springer-Verlag, 2000.

[68] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Review, vol. 33,

no. 1-2, pp. 1–39, 2010.

[69] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–

140, 1996.

BIBLIOGRAPHY 203

[70] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” Journal of computer and system

sciences, vol. 55, no. 1, pp. 119–139, 1997.

[71] R. E. Schapire, “The strength of weak learnability,” Machine Learing, vol. 5,

pp. 197–227, July 1990.

[72] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,”

in Machine Learning: Proceedings of the Thirteenth International Conference,

pp. 148–156, MORGAN KAUFMANN PUBLISHERS, INC., 1996.

[73] B. Liu, B. McKay, and H. Abbass, “Improving genetic classifiers with a

boosting algorithm,” in Evolutionary Computation, 2003. CEC ’03. The 2003

Congress on, vol. 4, pp. 2596–2602 Vol.4, Dec 2003.

[74] S. Garcia, J. Luengo, J. Saez, V. Lopez, and F. Herrera, “A survey of dis-

cretization techniques: Taxonomy and empirical analysis in supervised learn-

ing,” Knowledge and Data Engineering, IEEE Transactions on, vol. 25, no. 4,

pp. 734–750, 2013.

[75] H. Liu, F. Hussain, C. L. Tan, and M. Dash, “Discretization: An enabling

technique,” Data mining and knowledge discovery, vol. 6, no. 4, pp. 393–423,

2002.

[76] R. Kerber, “Chimerge: discretization of numeric attributes,” in Proceedings of

the tenth national conference on Artificial intelligence, AAAI’92, pp. 123–128,

AAAI Press, 1992.

[77] J. R. Quinlan, C4.5: programs for machine learning. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1993.

[78] H. Liu and R. Setiono, “Feature selection via discretization,” Knowledge and

Data Engineering, IEEE Transactions on, vol. 9, no. 4, pp. 642–645, 1997.

[79] F. E. Tay and L. Shen, “A modified chi2 algorithm for discretization,” Knowl-

edge and Data Engineering, IEEE Transactions on, vol. 14, no. 3, pp. 666–670,

2002.

[80] M. Hacibeyoglu, A. Arslan, and S. Kahramanli, “Improving classification ac-

curacy with discretization on datasets including continuous valued features,”

World Academy of Science, Engineering & Technology, 2011.

[81] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent sur-

vey,” GESTS International Transactions on Computer Science and Engineer-

ing, vol. 32, no. 1, pp. 47–58, 2006.

BIBLIOGRAPHY 204

[82] J. Bacardit and J. M. Garrell, “Evolution of multi-adaptive discretization in-

tervals for a rule-based genetic learning system,” in Advances in Artificial

Intelligence–IBERAMIA 2002, pp. 350–360, Springer, 2002.

[83] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-valued

attributes for classification learning,” in Proceedings of the 13th International

Joint Conference on Artificial Intelligence, pp. 1022–1029, 1993.

[84] J. Bacardit and J. M. Garrell, “Evolving multiple discretizations with adaptive

intervals for a pittsburgh rule-based learning classifier system,” in Proceed-

ings of the 2003 international conference on Genetic and evolutionary com-

putation: PartII, GECCO’03, (Berlin, Heidelberg), pp. 1818–1831, Springer-

Verlag, 2003.

[85] J. Aguilar-Ruiz, J. Bacardit, and F. Divina, “Experimental evaluation of

discretization schemes for rule induction,” in Genetic and Evolutionary

Computation–GECCO 2004, pp. 828–839, Springer, 2004.

[86] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. Jesus, S. Ventura, J. Garrell,

J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, and F. Herrera,

“Keel: a software tool to assess evolutionary algorithms for data mining prob-

lems,” Soft Computing, vol. 13, pp. 307–318, Oct. 2008.

[87] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-

ten, “The weka data mining software: an update,” SIGKDD Explor. Newsl.,

vol. 11, pp. 10–18, Nov. 2009.

[88] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and

F. Herrera, “Keel data-mining software tool: Data set repository, integration of

algorithms and experimental analysis framework,” Journal of Multiple-Valued

Logic and Soft Computing, 2010.

[89] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[90] A. A. Freitas, Data mining and knowledge discovery with evolutionary algo-

rithms. Springer, 2002.

[91] G. Tur and H. A. Guvenir, “Decision tree induction using genetic program-

ming,” in Proceedings of the Fifth Turkish Symposium on Artificial Intelligence

and Neural Networks.

BIBLIOGRAPHY 205

[92] P. Espejo, S. Ventura, and F. Herrera, “A survey on the application of ge-

netic programming to classification,” Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, vol. 40, no. 2, pp. 121–144,

2010.

[93] M. Shirasaka, Q. Zhao, O. Hammami, K. Kuroda, and K. Saito, “Auto-

matic design of binary decision trees based on genetic programming,” in Proc.

The Second Asia-Pacific Conference on Simulated Evolution and Learning

(SEAL’98, 1998.

[94] J. R. Koza, “Concept formation and decision tree induction using the genetic

programming paradigm,” in Parallel Problem Solving from Nature, pp. 124–

128, Springer, 1991.

[95] T. Khoshgoftaar, N. Seliya, and Y. Liu, “Genetic programming-based decision

trees for software quality classification,” in Tools with Artificial Intelligence,

2003. Proceedings. 15th IEEE International Conference on, pp. 374–383, Nov

2003.

[96] X. Wang, F. Buontempo, A. Young, and D. Osborn, “Induction of decision

trees using genetic programming for modelling ecotoxicity data: adaptive dis-

cretization of real-valued endpoints,” SAR and QSAR in Environmental Re-

search, vol. 17, no. 5, pp. 451–471, 2006.

[97] J. K. Estrada-Gil, J. C. Fernández-López, E. Hernández-Lemus, I. Silva-

Zolezzi, A. Hidalgo-Miranda, G. Jiménez-Sánchez, and E. E. Vallejo-Clemente,

“Gpdti: A genetic programming decision tree induction method to find

epistatic effects in common complex diseases,” Bioinformatics, vol. 23, no. 13,

pp. i167–i174, 2007.

[98] M. Bot and W. Langdon, “Application of genetic programming to induction

of linear classification trees,” in Genetic Programming (R. Poli, W. Banzhaf,

W. Langdon, J. Miller, P. Nordin, and T. Fogarty, eds.), vol. 1802 of Lecture

Notes in Computer Science, pp. 247–258, Springer Berlin Heidelberg, 2000.

[99] H. Etemadi, A. A. Anvary Rostamy, and H. F. Dehkordi, “A genetic program-

ming model for bankruptcy prediction: Empirical evidence from iran,” Expert

Systems with Applications, vol. 36, no. 2, pp. 3199–3207, 2009.

[100] H. Gray, R. Maxwell, I. Martinez-Perez, C. Arus, and S. Cerdan, “Genetic pro-

gramming for classification of brain tumours from nuclear magnetic resonance

biopsy spectra,” Genetic Programming, p. 424, 1996.

BIBLIOGRAPHY 206

[101] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse ensembles

using genetic programming for classification with unbalanced data,” Evolu-

tionary Computation, IEEE Transactions on, vol. 17, pp. 368–386, June 2013.

[102] R. Poli, N. F. McPhee, and L. Vanneschi, “Elitism reduces bloat in genetic

programming,” in Proceedings of the 10th Annual Conference on Genetic and

Evolutionary Computation, GECCO ’08, (New York, NY, USA), pp. 1343–

1344, ACM, 2008.

[103] K. Hennessy, M. G. Madden, J. Conroy, and A. G. Ryder, “An improved ge-

netic programming technique for the classification of raman spectra,” Know.-

Based Syst., vol. 18, pp. 217–224, Aug. 2005.

[104] X. Li and V. Ciesielski, “Using loops in genetic programming for a two class bi-

nary image classification problem,” in Proceedings of the 17th Australian joint

conference on Advances in Artificial Intelligence, AI’04, (Berlin, Heidelberg),

pp. 898–909, Springer-Verlag, 2004.

[105] B. Garcia, R. Aler, A. Ledezma, and A. Sanchis, “Genetic programming

for predicting protein networks,” in Advances in Artificial Intelligence - IB-

ERAMIA 2008 (H. Geffner, R. Prada, I. Machado Alexandre, and N. David,

eds.), vol. 5290 of Lecture Notes in Computer Science, pp. 432–441, Springer

Berlin Heidelberg, 2008.

[106] D. Agnelli, A. Bollini, and L. Lombardi, “Image classification: an evolutionary

approach,” Pattern Recogn. Lett., vol. 23, pp. 303–309, Jan. 2002.

[107] K. Topon and H. Iba, “Classification of scleroderma and normal biopsy data

and identification of possible biomarkers of the disease,” in Computational

Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB’06.

2006 IEEE Symposium on, pp. 1–6, IEEE, 2006.

[108] F. d. L. Arcanjo, G. L. Pappa, P. V. Bicalho, W. Meira Jr, and A. S. da Silva,

“Semi-supervised genetic programming for classification,” in Proceedings of the

13th annual conference on Genetic and evolutionary computation, pp. 1259–

1266, ACM, 2011.

[109] M. Zhang and P. Wong, “Genetic programming for medical classification: a

program simplification approach,” Genetic Programming and Evolvable Ma-

chines, vol. 9, no. 3, pp. 229–255, 2008.

[110] J. Fitzgerald and C. Ryan, “Exploring boundaries: optimising individual class

boundaries for binary classification problem,” in Proceedings of the fourteenth

BIBLIOGRAPHY 207

international conference on Genetic and evolutionary computation conference,

GECCO ’12, (New York, NY, USA), pp. 743–750, ACM, 2012.

[111] D. Muni, N. Pal, and J. Das, “A novel approach to design classifiers using

genetic programming,” Evolutionary Computation, IEEE Transactions on,

vol. 8, no. 2, pp. 183–196, 2004.

[112] J. Kishore, L. Patnaik, V. Mani, and V. Agrawal, “Application of genetic

programming for multicategory pattern classification,” Evolutionary Compu-

tation, IEEE Transactions on, vol. 4, pp. 242–258, Sep 2000.

[113] T. Loveard and V. Ciesielski, “Representing classification problems in genetic

programming,” in Evolutionary Computation, 2001. Proceedings of the 2001

Congress on, vol. 2, pp. 1070–1077, IEEE, 2001.

[114] M. Zhang and V. Ciesielski, “Genetic programming for multiple class object

detection,” in Advanced Topics in Artificial Intelligence, pp. 180–192, Springer,

1999.

[115] W. Smart and M. Zhang, “Classification strategies for image classification in

genetic programming,” in Proceeding of image and vision computing confer-

ence, pp. 402–407, Palmerston North, New Zealand, 2003.

[116] A. Song, T. Loveard, and V. Ciesielski, “Towards genetic programming for

texture classification,” in Proceedings of the 14th Australian Joint Conference

on Artificial Intelligence: Advances in Artificial Intelligence, AI ’01, (London,

UK, UK), pp. 461–472, Springer-Verlag, 2001.

[117] W. Smart and M. Zhang, “Using genetic programming for multiclass classifi-

cation by simultaneously solving component binary classification problems,”

in Genetic Programming, pp. 227–239, Springer, 2005.

[118] H. Jabeen and A. R. Baig, “Two-stage learning for multi-class classification

using genetic programming,” Neurocomputing, 2013.

[119] S. Silva and Y.-T. Tseng, “Classification of seafloor habitats using genetic pro-

gramming,” in Applications of Evolutionary Computing, vol. 4974 of Lecture

Notes in Computer Science, pp. 315–324, Springer Berlin Heidelberg, 2008.

[120] B.-C. Chien, J.-y. Lin, and W.-P. Yang, “A classification tree based on dis-

criminant functions,” Journal of information science and engineering, vol. 22,

no. 3, p. 573, 2006.

[121] T. Loveard and V. Ciesielski, “Employing nominal attributes in classification

using genetic programming,” in Proceedings of the 4th Asia-Pacific Conference

BIBLIOGRAPHY 208

on Simulated Evolution And Learning (L. Wang, K. C. Tan, T. Furuhashi, J.-

H. Kim, and X. Yao, eds.), pp. 487–491, Nov 2002.

[122] C.-S. Kuo, T.-P. Hong, and C.-L. Chen, “Applying genetic programming tech-

nique in classification trees,” Soft Computing, vol. 11, no. 12, pp. 1165–1172,

2007.

[123] J. Eggermont, A. E. Eiben, and J. I. v. Hemert, “A comparison of genetic

programming variants for data classification,” in Proceedings of the Third In-

ternational Symposium on Advances in Intelligent Data Analysis, IDA ’99,

(London, UK, UK), pp. 281–290, Springer-Verlag, 1999.

[124] K. C. Tan, A. Tay, T. H. Lee, and C. M. Heng, “Mining multiple comprehensi-

ble classification rules using genetic programming,” in Proceedings of the Evo-

lutionary Computation on 2002. CEC ’02. Proceedings of the 2002 Congress

- Volume 02, CEC ’02, (Washington, DC, USA), pp. 1302–1307, IEEE Com-

puter Society, 2002.

[125] C. Bojarczuk, H. Lopes, and A. Freitas, “Genetic programming for knowl-

edge discovery in chest-pain diagnosis,” Engineering in Medicine and Biology

Magazine, IEEE, vol. 19, pp. 38–44, July 2000.

[126] J. Eggermont, J. N. Kok, and W. A. Kosters, “Genetic programming for data

classification: partitioning the search space,” in Proceedings of the 2004 ACM

symposium on Applied computing, SAC ’04, (New York, NY, USA), pp. 1001–

1005, ACM, 2004.

[127] H. Jabeen and A. R. Baig, “Two layered genetic programming for mixed-

attribute data classification,” Appl. Soft Comput., vol. 12, pp. 416–422, Jan.

2012.

[128] A. Idris, A. Khan, and Y. S. Lee, “Genetic programming and adaboosting

based churn prediction for telecom,” in Systems, Man, and Cybernetics (SMC),

2012 IEEE International Conference on, pp. 1328–1332, 2012.

[129] R. Thomason and T. Soule, “Novel ways of improving cooperation and perfor-

mance in ensemble classifiers,” in Proceedings of the 9th annual conference on

Genetic and evolutionary computation, GECCO ’07, (New York, NY, USA),

pp. 1708–1715, ACM, 2007.

[130] Y. Zhang and S. Bhattacharyya, “Genetic programming in classifying large-

scale data: an ensemble method,” Inf. Sci., vol. 163, pp. 85–101, June 2004.

BIBLIOGRAPHY 209

[131] G. Folino, C. Pizzuti, and G. Spezzano, “Ensemble techniques for parallel

genetic programming based classifiers,” in Genetic Programming (C. Ryan,

T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, eds.), vol. 2610 of

Lecture Notes in Computer Science, pp. 59–69, Springer Berlin Heidelberg,

2003.

[132] G. Folino, C. Pizzuti, and G. Spezzano, “Gp ensembles for large-scale data

classification,” Evolutionary Computation, IEEE Transactions on, vol. 10,

pp. 604–616, Oct 2006.

[133] H. Iba, “Bagging, boosting, and bloating in genetic programming,” in Proceed-

ings of the genetic and evolutionary computation conference, vol. 2, pp. 1053–

1060, 1999.

[134] D. A. Augusto, H. J. C. Barbosa, and N. F. F. Ebecken, “Coevolutionary

multi-population genetic programming for data classification,” in Proceed-

ings of the 12th annual conference on Genetic and evolutionary computation,

pp. 933–940, ACM, 2010.

[135] T. K. Paul, Y. Hasegawa, and H. Iba, “Classification of gene expression data by

majority voting genetic programming classifier,” in Evolutionary Computation,

2006. CEC 2006. IEEE Congress on, pp. 2521–2528, IEEE, 2006.

[136] G. Pappa and A. Freitas, “Creating rule ensembles from automatically-evolved

rule induction algorithms,” in Advances in Machine Learning I, vol. 262 of

Studies in Computational Intelligence, pp. 257–273, Springer Berlin Heidel-

berg, 2010.

[137] P. Lichodzijewski and M. I. Heywood, “Managing team-based problem solving

with symbiotic bid-based genetic programming,” in Proceedings of the 10th an-

nual conference on Genetic and evolutionary computation, pp. 363–370, ACM,

2008.

[138] J. U. Ryan and H. M. Jason, “Learning classifier systems: A complete intro-

duction, review, and roadmap,” Journal of Artificial Evolution and Applica-

tions, 2009.

[139] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,

pp. 273–297, Sept. 1995.

[140] C. Gagné, M. Sebag, M. Schoenauer, and M. Tomassini, “Ensemble learning

for free with evolutionary algorithms?,” in Proceedings of the 9th annual con-

ference on Genetic and evolutionary computation, GECCO ’07, (New York,

NY, USA), pp. 1782–1789, ACM, 2007.

BIBLIOGRAPHY 210

[141] K.-H. Liu and C.-G. Xu, “A genetic programming-based approach to the clas-

sification of multiclass microarray datasets,” Bioinformatics, vol. 25, no. 3,

pp. 331–337, 2009.

[142] J. H. Hong and S. B. Cho, “Ensemble genetic programming for classifying gene

expression data,” in Proceedings of the Seventh Asian-Pacific Conference on

Complex Systems, 2004.

[143] D. Nagendra Kumar, S. Satapathy, and J. V. R. Murthy, “A scalable genetic

programming multi-class ensemble classifier,” in Nature Biologically Inspired

Computing, 2009. NaBIC 2009. World Congress on, pp. 1201–1206, 2009.

[144] K. Imamura, R. B. Heckendorn, T. Soule, and J. A. Foster, “N-version ge-

netic programming via fault masking,” in Genetic Programming, pp. 172–181,

Springer, 2002.

[145] G. A. Morrison, D. P. Searson, and M. J. Willis, “Using genetic programming

to evolve a team of data classifiers,” World Academy of Science, Engineering

& Technology, vol. 72, pp. 261–264, 2011.

[146] S. Hengpraprohm and P. Chongstitvatana, “A genetic programming ensemble

approach to cancer microarray data classification,” in Innovative Computing

Information and Control, 2008. ICICIC ’08. 3rd International Conference on,

pp. 340–340, 2008.

[147] M. Brameier and W. Banzhaf, “Evolving teams of predictors with linear ge-

netic programming,” Genetic Programming and Evolvable Machines, vol. 2,

no. 4, pp. 381–407, 2001.

[148] T. Loveard, Genetic Programming For Classification Learning Problems. PhD

thesis, Royal Melbourne Institute of Technology, January 2003.

[149] D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics.

W.H. Freeman, 1989.

[150] D. F. Groebner, P. W. Shannon, P. C. Fry, and K. D. Smith, Business Statis-

tics: A Decision Making Approach. Prentice Hall, 7th ed., 2007.

[151] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special issue on learn-

ing from imbalanced data sets,” ACM SIGKDD Explorations Newsletter -

Special issue on learning from imbalanced datasets, vol. 6, pp. 1–6, June 2004.

[152] R. Bellman, R. E. Bellman, R. E. Bellman, and R. E. Bellman, Adaptive

control processes: a guided tour, vol. 4. Princeton University Press Princeton,

1961.

BIBLIOGRAPHY 211

[153] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi,

W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, and U.-M. O’Reilly,

“Genetic programming needs better benchmarks,” in Proceedings of the 14th

Annual Conference on Genetic and Evolutionary Computation, GECCO ’12,

(New York, NY, USA), pp. 791–798, ACM, 2012.

[154] J. Bacardit and J. M. Garrell, “Analysis and improvements of the adaptive dis-

cretization intervals knowledge representation,” in Genetic and Evolutionary

Computation–GECCO 2004, pp. 726–738, Springer, 2004.

[155] S. B. Kotsiantis and P. E. Pintelas, “Logitboost of simple bayesian classifier,”

Informatica, vol. 29, pp. 53–59, 2005.

Appendices

212

Appendix A
User Manual

This appendix describes how to run the program.

A.1 Program Requirements

Java must be installed in order to use the program. This can be obtained from

http://java.com/en/download/ and once installed the program can be used.

Figure A.1: Main menu.

213

APPENDIX A. USER MANUAL 214

A.2 Starting the Program

In order to start the program, execute GPforDataClassification.jar which is found

on the CD. Once the program has started the main menu will appear as shown in

figure A.1.

A.3 Selecting an Experiment to Run

From the main menu, there are 11 options to choose from. Each button on the menu

corresponds a proposed method in this dissertation.

• Arithmetic Representation - corresponds to the arithmetic representation

described in chapter 7.

• Decision Tree Representation - corresponds to the decision tree represen-

tation described in chapter 7.

• Logical Tree Representation - corresponds to the logical tree representation

described in chapter 7.

• GP Discretisation - corresponds to the proposed GP discretisation methods

described in chapter 6.

• GP Encapsulation With List - corresponds to the proposed GP encapsu-

lation method with the maintained list described in chapter 8.

• GP Encapsulation Without List - corresponds to the proposed GP encap-

sulation method without the maintained list described in chapter 8.

• Hybrid: GA-at-end - corresponds to the proposed GA and GP hybridisation

method, GA-at-end, described in chapter 9.

• Hybrid: GA-after-each - corresponds to the proposed GA and GP hybridi-

sation method, GA-after-each, described in chapter 9.

• Hybrid: GA-with-HC - corresponds to the proposed GA and GP hybridis-

ation method, GA-with-HC, described in chapter 9.

• Hybrid: SSGA-GP - corresponds to the proposed GA and GP hybridisation

method, SSGA-GP, described in chapter 9.

• GP Ensemble Construction - corresponds to the proposed GP ensemble

construction described in chapter 10.

APPENDIX A. USER MANUAL 215

A.4 Starting an Experiment

Once an experiment has been selected from the main menu, a new window will ap-

pear which allows the experimenter to set up the parameters and start the algorithm.

The default parameters are set to those used in this dissertation, however, these pa-

rameters can be changed. For each experiment all the parameters must be filled in.

Furthermore, each experiment can run on one or more threads. The recommended

number of threads to use is based on the specifications of the system on which the

program is being used. If the program is executed on a computer with 2 physical

cores, then a maximum of 4 threads should be used. However, if the computer has

4 physical cores, then a maximum of 8 threads should be used. A greater share of

the CPU will be allocated to the program when more threads are used.

A.4.1 Selecting a data set

For each experiment, a data set must be selected, and the corresponding training

and test files for that data set must be specified. Figure A.2 illustrates the GP

Arithmetic Representation experiment. The Climate data set was selected. For

training the climatetrain0.fold1 was selected, and climatetest0.fold1 was selected as

the test set.

Figure A.2: GP Arithmetic Representation menu.

The training and test files have been supplied on the CD. Each file is in the format

APPENDIX A. USER MANUAL 216

“data set name x.fold y” where data set name corresponds to the name of the data

set, x corresponds to the fold (from 0 to 9 since 10-fold cross-validation is used), and

y corresponds to the partition. Ten-fold cross-validation was performed 5 times on

each data set which correspond to the 5 partitions. Thus for each experiment, one

train and one test must be selected, and the values of x and y must be the same.

For example, using the Climate data set, the following represent examples of valid

selections for the training and test files:

• climatetrain5.fold3 and climatetest5.fold3

• climatetrain2.fold2 and climatetest2.fold2

• climatetrain1.fold3 and climatetest1.fold3

• climatetrain8.fold1 and climatetest8.fold1

• climatetrain9.fold2 and climatetest9.fold2

A.4.2 Executing the experiment

Once the data set has been selected and the parameters entered, the algorithm can be

executed by clicked on “Start GP”. In order to cancel the execution, click on “Cancel

GP Run”. A progress bar will appear on the software which indicates the overall

progression of the algorithm. Once the algorithm has completed, a popup message

will appear as in illustrated in figure A.3. This message indicates the location of the

output file. The output file contains information about run, and the last two lines

of the output file has the training and test accuracy for the evolved GP classifier.

Figure A.3: Popup message which appears at the end of the run.

	PREFACE
	DECLARATION 1 - PLAGIARISM
	DECLARATION 2 - PUBLICATIONS
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Purpose of the Study
	Objectives
	Contributions
	Dissertation Layout

	Genetic Programming
	Introduction
	Introduction to Genetic Programming
	Overview of the Generational GP Algorithm
	Terminal Set
	Function Set
	Tree Based GP
	Initial Population Generation
	Full method
	Grow method
	Ramped half and half

	Fitness
	Fitness cases
	Fitness functions

	Selection Methods
	Fitness proportionate selection
	Tournament selection

	Genetic Operators
	Reproduction
	Mutation
	Crossover

	Termination
	Strongly-Typed GP
	GP Control Models
	Modularisation
	Encapsulation
	Compression

	GP and Bloat
	Strengths and Weaknesses of GP
	Strengths
	Weaknesses

	Conclusion

	Data Classification
	Introduction
	Introduction to Data Classification
	Definitions
	Instance
	Attribute
	Class
	Data set
	Class balance
	Classifier

	Performance Measures
	Confusion matrix
	Sensitivity and specificity
	Receiver operating characteristics

	Evaluating Classifiers
	Train/test split
	K-fold cross-validation
	Leave-one-out
	Bootstrapping

	Previous Work on Data Classification
	K-nearest neighbour
	Decision trees
	Artificial neural networks
	Naïve bayes
	Evolutionary algorithms

	Active Research Areas in Data Classification
	Feature selection
	Missing values
	Discarding missing values
	Imputation
	Missing values and decision trees

	Ensemble classifiers
	Discretisation

	Software
	Conclusion

	GP and Data Classification
	Introduction
	GP and Decision Trees
	Advantages and disadvantages of GP decision trees
	Summary of the findings

	GP and Arithmetic Trees
	Binary classification
	Multiclass classification
	Advantages and disadvantages of GP arithmetic trees
	Summary of the findings

	GP and Logical Trees
	Advantages and disadvantages of GP logical trees
	Summary of the findings

	GP and Other Representations
	GP and Ensemble Classifiers
	Strengths and weaknesses of GP ensembles
	Summary of the findings

	Strengths and Weaknesses of Applying GP to Data Classification
	Strengths
	Weaknesses

	Conclusion
	GP for data classification
	GP representations for data classification
	GP discretisation for data classification
	GP encapsulation for data classification
	GP ensembles for data classification

	Methodology
	Introduction
	Addressing the objectives
	Statistical testing
	Data Sets
	Characteristics of data sets for data classification problems
	Binary data sets
	Multiclass data sets
	Rationale behind the selected data sets

	GP System
	Performance Measures
	Technical Specifications
	Conclusion

	Adaptive Discretisation for GP
	Introduction
	Proposed Discretisation Methods for GP
	Equal Width Intervals (EWI)
	GP Evolved Intervals (GPEI)

	Experimental Setup
	Data sets
	GP parameters

	Conclusion

	GP Representations for Binary Classification
	Introduction
	GP Representations for Binary Classification
	Arithmetic trees
	Decision trees
	Logical trees

	Experimental Setup
	Data sets
	GP parameters

	Conclusion

	GP Encapsulation for Data Classification
	Introduction
	Incorporating Encapsulation into GP for Data Classification
	Decision trees and encapsulation
	Maintaining the most called subtrees

	Experimental Setup
	Data sets
	GP parameters

	Conclusion

	Hybridising Evolutionary Algorithms
	Introduction
	Proposed Hybridisation of GP and GA
	GA encoding
	GA run after the last GP generation (GA-at-end)
	GA run after each GP generation (GA-after-each-gen)
	GA with hill climbing (GA-with-HC)
	Steady state GA (SSGA-GP)

	Experimental Setup
	Data sets
	GP and GA parameters

	Conclusion

	GP Ensemble Construction
	Introduction
	Proposed Ensemble Construction
	Selecting a tree to add to the ensemble
	Ensemble evaluation
	Evaluating the GP trees using weights
	Updating the weights

	Experimental Setup
	GP parameters
	Data sets

	Conclusion

	Results and Discussion
	Introduction
	GP Discretisation
	GP Representations for Binary Classification
	GP Encapsulation
	Hybridisation of GA and GP
	GP Ensemble Construction
	Conclusion

	Conclusions and Future Work
	Objective 1 - GP Discretisation
	Objective 2 - GP Representations for Binary Classification
	Objective 3 - GP Encapsulation
	Objective 4 - Hybridising GA and GP
	Objective 5 - GP Ensemble Construction
	Conclusion

	Bibliography
	Appendices
	User Manual
	Program Requirements
	Starting the Program
	Selecting an Experiment to Run
	Starting an Experiment
	Selecting a data set
	Executing the experiment

