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ABSTRACT 
 

Heavy metal pollution of freshwater environments is a global and local crisis due to 

the toxic nature of metals. Elevated concentrations of heavy metals in sediments, in 

comparison to sediment quality guidelines (SQGs), are an indication of anthropogenic 

input into the environment. Concentrations of cadmium (Cd), chromium (Cr), copper 

(Cu), lead (Pb), nickel (Ni) and zinc (Zn) were investigated in the water and 

sediments of Msunduzi River and two of its tributaries, the Bayne’s Spruit and 

Slangspruit, in KwaZulu-Natal, South Africa. Macro-elements, aluminium (Al), iron 

(Fe) and manganese (Mn) were also investigated and compared to the distribution and 

partitioning pattern of the trace metal concentrations. Total metal concentrations in 

the water samples were below the detection limit of the Inductively Coupled Plasma–

Optical Emission Spectrometry (ICP-OES) for most metals. In surface sediments, 

total metal concentrations were >Effects Range-Low (ERL) of the SQG. The 

Community Bureau of Reference (BCR) sequential extraction protocol was used to 

determine speciation of metals in the sediments and implications for potential 

bioavailability and overall metal toxicity. Results indicated that potentially mobile 

sediment fraction concentrations were >ERL for most of the metals. Fe-Mn 

oxyhydroxides, organic matter content and redox potential had an effect on the 

geochemical partitioning and possible remobilisation or precipitation of the metals in 

all three rivers. Negative redox values were indicative of reducing conditions that 

remobilised metals from the sediments. In the sediment core, the trace metals had the 

same deposition pattern and were correlated to organic matter content at depth. 

Normalisation with Al, at 95% confidence interval indicated that the sediment in the 

Msunduzi River Catchment is enriched with anthropogenic heavy metal input. In 

terms of particle size distribution in the sediment core, the sediment was mainly made 

up of fine sediment (≤500 µm). The sediment is a potential source of long-term heavy 

metal pollution in the catchment. 
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1 INTRODUCTION 
 

Heavy metal1 pollution is one of the major problems facing freshwater systems 

worldwide. Heavy metals do not naturally bio-degrade, thus they remain one of the 

most persistent environmental pollutants associated with anthropogenic 

activities(Callender, 2003; Osman and Kloas, 2010; Sekabira et al., 2010; Bednarova 

et al., 2013).In the past, water sample analysis was the main technique used to assess 

the level of heavy metal pollution on the receiving environment(Fangueiro et al., 

2002; Dalvie et al., 2003; Bosman and Kidd, 2009; Nel et al., 2013). However, water 

analysis results may be inconclusive due to fluctuations in dissolved heavy metals in 

the water column within short time intervals. In addition, heavy metal concentrations 

found in water are usually very low, resulting in analytical difficulties (Förstner and 

Wittmann, 1979; Förstner, 1980; Burton, 1991; Binning and Baird, 2001; Botes and 

van Staden, 2005). Sediment quality, as a method to measure freshwater quality, has 

been widely studied on a local and global scale (Burton, 1991; Biney et al., 1994; 

Thomas and William, 2003; Aprile and Bouvy, 2008). Within freshwater systems, 

bottom sediments are regarded as heavy metal sinks due to the densities and chemical 

properties of metals. Long-term partitioning within the sediments make them more 

useful for measuring heavy metal pollution than water analysis (Burton, 2002; Ayas et 

al., 2007; Chen et al., 2007; Osman and Kloas, 2010; Qiao et al., 2013; Shanbehzadeh 

et al., 2014). However, heavy metals are naturally present in the environment, thus 

distinguishing between natural and enriched concentrations is important (Callender, 

2003). 

 

The distinction between natural and enriched heavy metals is achieved by comparing 

measured concentrations to background values in a region. Background levels are 

determined by measuring the vertical distribution or historical deposition of heavy 

metals in the sediments on the assumption that the natural levels can be found at 

certain depths (Chapman et al., 1999; Grosbois et al., 2006; Meybeck et al., 2007; 

                                                 
1 The term ‘heavy metal’ will be used to refer to a group of stable elemental metals and/or metalloids 
with an atomic density greater than 6 g.cm-3 (aluminium is the exception in this research). These are 
often classified as Potential Toxic Elements (PTEs) (Callender, 2003). 
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Birch and Olmos, 2008; Bednarova et al., 2013). The low solubility of heavy metals, 

coupled with reduced flow rates, causes materials suspended in the water column to 

settle and become incorporated in bottom sediments, thus forming a vertical profile 

and broad history of heavy metal pollution. Even without utilising dating techniques, 

vertical sediment profiles assist in portraying the historical accumulation of heavy 

metals (Valette-Silver, 1993; Aleksander-Kwaterczak and Prosowicz, 2007; Cantwell 

et al., 2007; Karbassi et al., 2008; Harikumar et al., 2009; Zhang et al., 2013). To 

guarantee reliable data, the cored material must ideally be undisturbed and fine-

grained with a relatively rapid sedimentation rate (Förstner and Salomons, 1980; 

Valette-Silver, 1993; Li et al., 2001). Once background concentrations have been 

determined, it is easier to determine natural metal concentrations and concentrations 

from land use activities in the catchment. 

 

The effects of land use practices put a strain on river catchments, therefore, 

monitoring and measuring metal pollutant levels in sediments is vital to inform 

freshwater management decisions (Singh et al., 2005; Sekabira et al., 2010; Akpor 

and Muchie, 2011; Bednarova et al., 2013; Songca et al., 2013; Olaniran et al., 2014). 

Land uses impacting freshwater environments release different forms of metal 

compounds into river water and this is when the metals become associated with the 

bottom sediments (Binning and Baird, 2001; Bednarova et al., 2013). Early studies on 

heavy metals in sediments focused on rapid assessments of overall heavy metals in 

freshwater environments. Rapid assessments only determine the exchangeable forms 

and total concentrations of heavy metals in sediments (Förstner and Wittmann, 1979; 

John and Leventhal, 1995; Matusiewicz, 2003; Okoro and Fatoki, 2012). To fully 

understand the role of sediments as sources of heavy metal pollution in freshwater 

systems, their geochemical partitioning within the sediment fractions should also be 

taken into account(Tessier et al., 1979; Jain, 2004). The forms in which metals are 

found bound in sediment fractions determines the potential mobility and 

bioavailability of the metal, should it remobilise into the overlying water column 

(John and Leventhal, 1995; Kartal et al., 2006). The remobilisation of metals is 

controlled by physico-chemical parameters such as pH, reduction and oxidation 

(redox) potential and organic matter content(Gambrell et al., 1991; Calmano et al., 

1993). 
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Several baseline studies on total heavy metal accumulation, in freshwater sediments 

and water column, have been conducted in South Africa (Greichus et al., 1977; 

Watling, 1981; Watling and Watling, 1983; Watling et al., 1985; Roux et al., 1994; 

Allanson and Read, 1995). In KwaZulu-Natal, where the study area, the Msunduzi 

River Catchment is located, heavy metal research on the total metal content in 

freshwater systems has been investigated (Wepener and Vermeulen, 2005; Malherbe 

et al., 2010; Papu-Zamxaka et al., 2010; Mthembu et al., 2012; Sukdeo et al., 2012; 

Olaniran et al., 2014). Msunduzi River is a tributary of the Umgeni River (figure 1.1). 

There have been a variety of water management research conducted on the Msunduzi 

River Catchment, Pietermaritzburg (Bartholomew and Sivparsand, 2013; Gemmell 

and Schmidt, 2013). However, there has been no comprehensive heavy metal research 

conducted on the catchment.  

 

 

Figure 1.1: Overview of the Msunduzi River Catchment in KwaZulu-Natal, 

South Africa 

 

There have been studies conducted on the water quality, in terms of microbiological 

contamination and on water management in the Msunduzi River Catchment (Rivers-
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Moore and Hay, 1998; Salter and De Vos, 2002; Neysmith and Dent, 2010; Gemmell 

and Schmidt, 2013). However, there have been no comprehensive studies conducted 

on heavy metal accumulation in the sediments and the factors that determine their 

remobilisation from the sediments, thus polluting the overlying water column. 

 

Cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) are the most frequently 

researched heavy metals in bioaccumulation and environmental toxicity studies. 

Nickel (Ni) and chromium (Cr) were considered for this research because they have 

been found to be in high concentrations in areas impacted by urban and industrial 

runoff (Novotny, 1995; Goodyear and McNeill, 1999; Grosbois et al., 2006; 

Wallinder et al., 2006; Meybeck et al., 2007; Turki, 2007; Marchand et al., 2012). 

Aluminium (Al), iron (Fe) and manganese (Mn) were the macro-elements considered 

for correlation purposes. These metals will be focused on in this research, although 

other heavy metals, arsenic (As), barium (Ba), cobalt (Co), lithium (Li), silicon (Si), 

sodium (Na) and vanadium (V), were analysed in the course of the research as 

possible pollutants in the study area.  

 

1.1 AIM AND OBJECTIVES 
The aim of the research was to establish heavy metal baseline concentrations in the 

Msunduzi River and two of its tributaries, the Bayne’s Spruit and Slangspruit, by 

assessing the spatial and vertical distribution of the metals, as well as the potentially 

mobile metal species in the sediments and water. 

 
Specific objectives were as follows: 

1. To characterise total metal content in the sediment and water samples; 

2. To determine the fractionation pattern of the metals in the sediment; 

3. To determine particle size distribution in the core sediment sample; 

4. To investigate the historical deposition of heavy metals in the sediment 

5. To interrogate the sources of heavy metals and their implications; and 

6. To quantify heavy metal concentrations in the water and sediment samples 

using ICP-OES. 
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2 LITERATURE REVIEW 
 

This chapter will provide a brief background, as well as cited literature, on heavy 

metals, their sources and their behaviour in the environment. The chapter will also 

discuss the theory behind the chosen methods. 

 

2.1 HEAVY METALS 
Heavy metals cannot be broken down or bio-degrade like organic pollutants. They 

tend to accumulate in the water and sediments in freshwater systems where they are 

sequestered from one medium to the other (Burton, 1991; Duffus, 2002; Callender, 

2003; Bosman and Kidd, 2009; Sekabira et al., 2010). Some metals, such as iron (Fe) 

and manganese (Mn), are essential biological micronutrients required for organism 

growth. Non-essential heavy metals, such as mercury (Hg), are not required for 

growth and are considered to be most harmful to humans and freshwater biota 

(Corbett, 1995; Wasik and Namiesnik, 2001; Ouyang et al., 2002; Jarup, 2003; Fasinu 

and Orisakwe, 2013). Beyond their optimum threshold, low concentrations of non-

essential metals are as harmful as high concentrations of the essential metals 

(Newman and Clement, 2008; Hariprasad and Dayananda, 2013). Cadmium (Cd), 

chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) are commonly 

classified as trace heavy metals.  

 

2.2 TOTAL METALS 

2.2.1 TRACE METALS 
The term ‘trace metals’ is used when referring to heavy metals of low natural 

concentrations (less than 0.01%) in the environment and may be toxic at relatively 

high concentrations (Alloway, 1995; Duffus, 2002; Callender, 2003; Jarup, 2003; Yao 

and Gao, 2007; Appenroth, 2010). Trace metal toxicity can be defined as the 

concentration level required to exhibit acute (may lead to death) or a sub-lethal 

biological response in organisms (Smith, 1985). Zn is an essential nutrient for the 

human body and thus is important for human health (Ohnesorge and Wilhelm, 1991). 

Zn also has a prominent role in determining the outcome of pregnancies and 
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supporting neurobehavioral development. However, like other essential heavy metals, 

Zn can be toxic in high concentrations (Jarup, 2003). In humans, health effects of zinc 

poisoning include gastrointestinal distress, diarrhoea, slow reflexes, anaemia and 

metabolic disorder. Zn is unusual in that it has low toxicity in humans, but relatively 

high toxicity to fish (Eisler, 1993; Hemat, 2004). Unlike Zn, Cu is as biologically 

essential as it is toxic to organisms. Cu is naturally widely distributed in the 

environment and plants and animals have the ability to rapidly absorb the metal 

(Jarup, 2003).Cu binds to certain enzymes, mutating their physiological functioning 

and is known to cause brain damage in mammals  (Scheinberg, 1991). Unlike Zn and 

Cu, Pb is hazardous to most forms of life at any concentration and is relatively 

bioavailable to freshwater organisms (Jarup, 2003). The symptoms of acute lead 

poisoning are headache, irritability, abdominal pain and various symptoms related to 

the nervous system (Jackson et al., 2009). 

 

Similar to Pb, Cd is a rare mineral in the Earth’s crust and is highly toxic to humans, 

animals and freshwater organisms even at concentrations as low as 1µg.L-1 (Callender, 

2003; Jarup, 2003). The effect of Cd toxicity in humans includes kidney damage and 

bone pains. Cd also has mutagenic (changes in genetic make-up), carcinogenic 

(cancer-causing) and teratogenic (causing developmental malformations) effects 

(Johri et al., 2010; Nawrot et al., 2010). Ni is a non-essential and toxic heavy metal 

which occurs as Ni(II) in the environment. In some aquatic invertebrate populations, 

Ni can cause death even in small concentrations (µg.L-1) (Di Toro et al., 1992; John 

and Leventhal, 1995). Cr, on the other hand, is a relatively common element found in 

many minerals in the Earth’s crust (Callender, 2003; Guertin et al., 2004). The eastern 

part of South Africa harbours the largest reservoirs of chromium in the world (as 

chromite) (Callender, 2003). Cr can exist as Cr(III) and as Cr(VI) but Cr(VI) is 100 to 

1000 times more toxic than chromium(III) as it causes severe skin damage in humans 

(Sharma et al., 2012). 

 

2.2.2 MACRO-ELEMENTS 
Aluminium (Al), iron (Fe) and manganese (Mn) are macro-elements that are also 

naturally present in the environment, but in relatively higher concentrations than trace 
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metals (Alloway, 1990). Al is the most abundant metallic element in Earth’s outer 

crust but is highly insoluble in freshwater environments, therefore, most organisms 

have not adapted to elevated concentrations of bioavailable forms and cannot survive 

high concentrations of intracellular accumulation (Alloway, 1995; Allin and Wilson, 

2000). The absorption of Al into the bodies of animals and humans occurs to only a 

slight extent. Inputs of Al to surface waters occur through a variety of processes and 

exhibit many forms, but the metal is mainly associated with bottom sediments 

(Driscoll and Schecher, 1990; Allin and Wilson, 2000; Fatoki et al., 2002).Fe, one of 

the most abundant metals on Earth, is essential to most life forms and to normal 

human physiology (Callender, 2003). A deficiency of Fe limits oxygen delivery to 

cells, resulting in fatigue, poor work performance, and decreased immunity (Heubers, 

1991; Jarup, 2003). On the other hand, excess concentrations of Fe in humans can 

result in toxicity and even death because very little Fe is excreted from the human 

body(Corbett, 1995). Mn is widely distributed in Earth’s crust and is also an essential 

macro-element for both animals and humans(Schiele, 1991). Mn can be concentrated 

in the tissue of humans at factors of up to 10, whereas freshwater biota concentrate 

Mn by factors of up to 100 000 thereby reaching toxic levels (Schiele, 1991; Jarup, 

2003; Matoka et al., 2014). Symptoms of Mn toxicity in humans includes dullness, 

weak muscles, headaches and insomnia (Martin and Griswold, 2009). 

 

2.2.3 SOURCES 
There are a multitude of natural heavy metal emissions into the environment from 

terrestrial and atmospheric sources (Callender, 2003; Issa et al., 2011). Heavy metals 

from weathered and eroded crustal material and from volcanic activities account for 

approximately 80% of natural heavy metal sources on Earth (Smith, 1985; Alloway, 

1995; Callender, 2003; Obasohan et al., 2008; Hariprasad and Dayananda, 2013). 

Elements such as Al and silicon (Si) contribute approximately 90% of the Earth’s 

crust (Alloway, 1995; Dinelli et al., 2005; Sekabira et al., 2010). The chemical 

composition of freshwater sediments may depend on the lithology, morphology and 

structural settings of the catchment. Heavy metals may be divided into lithogenic, 

geochemical and anthropogenic with relation to their source. Geochemical and 

lithological sources, also referred to as detrital minerals, are governed by processes 

such as geological weathering. Weathering of underlying rocks provides baseline or 
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background levels of metal concentrations that are specific to that region (Smith, 

1985; Alloway, 1995; Reitermajer et al., 2011; Hariprasad and Dayananda, 2013). 

Forest fires and biogenic sources account for 20% of the remainder of natural heavy 

metal sources (Nriagu, 1990; Callender, 2003).Heavy metals from anthropogenic 

sources, are one of the major problems facing freshwater ecosystems worldwide 

(Osman and Kloas, 2010). Most heavy metal concentrations deposited to the Earth’s 

surface by anthropogenic activities are many times greater than depositions from 

natural sources (Battarbee et al., 1988; Nriagu, 1989; Connell et al., 1999; Bosman 

and Kidd, 2009). Research has been directed towards understanding the transportation 

route of heavy metals in the freshwater environments by investigating the pathways 

used by metals to enter freshwater systems (Dominik et al., 2007; Sakultantimetha et 

al., 2009). 

 

2.2.4 THE FATE OF HEAVY METALS IN FRESHWATER ENVIRONMENTS 
In the water column, trace metals may exist as free or complexed ions or they may be 

adsorbed onto solids. Some trace metals are incorporated within insoluble organic or 

inorganic matter in bottom sediments where they are partitioned within the 

geochemical fractions (Filipek and Owen, 1979; John and Leventhal, 1995). One of 

the main processes that governs distribution and partitioning of heavy metals between 

phases is sedimentation (Förstner and Salomons, 1980; Forstner et al., 1986). 

Sedimentation is not a simple or straightforward process and it allows heavy metals to 

be removed from surface water as they become trapped in the bottom sediments 

(Ayoub et al., 2001; Peijnenburg and Jager, 2003; Yao and Gao, 2007). Heavy metals 

become incorporated into bottom sediments by means of the following sedimentation 

processes: 

1. Cation and anion (ion) exchange is a process that occurs between a 

negatively and positively charged ion at a constant charged surface of 

sediment colloids and overlying water (Yao and Gao, 2007). Ion exchange 

occurs on sediments with surface areas large enough for selective adsorption 

of ions from solution, normally onto fine-grained sediments (John and 

Leventhal, 1995; Peijnenburg and Jager, 2003; Violante et al., 2010). Hydrous 

Fe and Al oxides tend to be positively charged under acidic conditions as a 
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result of their relatively high isoelectric points. Under alkaline conditions, clay 

and organic colloids remain negatively charged majority of the time (Alloway, 

1990; Thomas and William, 2003; Yao and Gao, 2007). 

2. Adsorptive interactions are associated with clays and oxide surfaces. The 

surfaces control the dissolved metal concentrations in freshwater 

environments. Fe-Mn oxyhydroxides, including organic matter, play an 

important role in adsorptive processes (Sposito, 1984). Heavy metals may also 

be associated with organic substances such as organic ligands (humic acids). 

The metal-organic ligand complexes either precipitate onto the sediment or are 

adsorbed (Förstner and Wittmann, 1979; Elder, 1989). Alternatively, heavy 

metal adsorption onto hydrous forms of Fe-Mn oxyhydroxides limits solubility 

on the surfaces of clays (John and Leventhal, 1995; Peijnenburg and Jager, 

2003; Violante et al., 2010). 

3. Precipitation reactions (includes co-precipitation and occlusion) occur when 

heavy metals react with anions, thus precipitating out of the water column. 

Ligands that are involved in precipitation reactions include carbonate, 

hydroxide, silicate, phosphate, and sulphide (in anoxic environments). The 

precipitation processes may determine the activity, and therefore, the 

environmental bioavailability of heavy metals when they are in the aqueous 

phase (Noller et al., 1994; John and Leventhal, 1995; Yao and Gao, 2007). In 

effect, the formation of insoluble heavy metal precipitates is a limiting factor 

in bioavailability potential of heavy metals in freshwater ecosystems. Heavy 

metals form compounds with low solubilities and the degree of solubility is 

controlled by pH. That is, acidic conditions will result in increased solubility 

of the metal complexes thus releasing metals in the environments (Förstner 

and Wittmann, 1979; Fergusson, 1990; John and Leventhal, 1995; Peijnenburg 

and Jager, 2003; Violante et al., 2010). Cu, Mn, Ni and Zn are co-precipitated 

in Fe-oxides whereas cobalt (Co), Fe, Ni and Zn are co-precipitated in Mn-

oxides. The process is not important in terms of long-term transport as well as 

retention of heavy metals (Förstner, 1982; Forstner et al., 1986; Otte et al., 

1995; Sheoran and Sheoran, 2006; Yao and Gao, 2007). 

4. Biological activities occur when heavy metals are taken up by aquatic biota 

and then the metals later enter the sediment through decomposition of these 

organisms. Micro-organisms can reveal the extent of heavy metal present in a 
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freshwater system because micro-organisms uptake and store heavy metals 

during metabolic processes (Ye et al., 2001; Russell et al., 2003; Hallberg and 

Johnson, 2005; Yao and Gao, 2007). Metals, such as chromium may  become 

immobilised when reduced through biologically-catalysed processes (Yao and 

Gao, 2007). Chemically-reducing conditions prevail in freshwater 

environments causing heavy metals to be associated with sulphide minerals. 

The sulphide-metal compounds are relatively immobile, provided the 

environment remains chemically reducing (John and Leventhal, 1995; 

Peijnenburg and Jager, 2003).  

 

2.2.5 HISTORICAL DEPOSITION AND SPATIAL DISTRIBUTION OF HEAVY METALS 
The brief review of Valette-Silver (1993), indicates that sediment cores can be used to 

reconstruct historical anthropogenic contamination in a region. There are certain 

criteria that a site must meet in order to be suitable for historical core analysis(Heim 

and Schwarzbauer, 2013). Such conditions can be found in marine and estuarine 

environments. The majority of sediment core studies have been concentrated in 

coastal environments (Chow et al., 1973; Bruland et al., 1974; Tanner et al., 2000; Li 

et al., 2001; Spencer and MacLeod, 2002). Heavy metal pollution of sediments 

increased in the late 1800s. The pollution rapidly accumulated in the 1940s before 

reaching its maximum between the 1960s and 1970s (Goldberg and Arrhenius, 1958; 

Goldberg, 1976; Valette-Silver, 1993). A decrease in certain heavy metals occurred in 

the 1980s, when new environmental laws and regulations were implemented (Valette-

Silver, 1993).  

 

A historical perspective of mismanagement and lack of legislation to protect 

freshwater environments can be highlighted by using sediment cores to reconstruct 

pollution history (Valette-Silver, 1993). Catallo et al. (1995) studied sediment cores 

deposited between 1950 and 1991. Sediments deposited between 1955 and 1980 were 

due to widespread industrial and agricultural activities because of uncontrolled point 

source discharge of contaminants (Catallo et al., 1995). However, a typical sediment 

core would show decreasing concentrations dating back to pre-industrial eras. Abu-

Rukah and Ghrefat (2001) studied the distribution of heavy metals (Cd, Co, Cr, Ni, 



17 
 

Mn and Pb) in six sediment cores at two locations along the Yarmouk River, Jordan. 

The concentrations of the heavy metals decreased with depth in all sediment cores 

(Abu-rukah and Ghrefat, 2001). Zhao and Marriott (2013) investigated heavy metals 

in floodplain sediments of the River Severn, United Kingdom. Concentrations of 

heavy metals increased with depth and then decreased, with peak values reached at 

varying points affected by translocation and hydroperiod. The peaks also 

corresponded with the change of historical mining output upstream (Zhao and 

Marriott, 2013). 

 

Implementation of stringent regulatory laws and acts have also shown a decreasing 

trend in sediment accumulation of heavy metals and other contaminants as you move 

up the sediment core (Zhang et al., 2013). Santschi et al. (2012) reconstructed 

historical inputs of Cu and Pb in the Mississippi River using sediment cores. Similarly 

Ye et al. (2012) investigated the accumulation of metals in sediments of the Pearl 

River, China. Spatial distribution of metals was consistent with anthropogenic input 

into the river basin. In terms of vertical deposition, there was a decline in pollution 

from the mid-1990s consistent with efficient pollution management in the basin 

(Santschi et al., 2001; Ye et al., 2012).Studies conducted in the late 1980s found that 

anthropogenic heavy metal emissions into the atmosphere, mainly due to mining, 

smelters and steel manufacturing, are in the order of two times (for Cu and Ni), five 

times (for Cd and Zn), and thirty-three times (for Pb) greater than the natural 

emissions of metals to the atmosphere (Smith, 1985; Hart and Lake, 1987; Nriagu, 

1988; Nriagu and Pacyna, 1988). Similarly, Beck et al. (1990) investigated sediments 

in the Calcasieu River, Louisiana. The extent of pollution and transport of certain 

heavy metals exceeded background concentrations (Beck et al., 1990). Ramesh et al. 

(1990) investigated heavy metal distribution in suspended and bed sediments of the 

Krishna River in India. There was substantial variation in the concentration of metals 

towards downstream sites which may be due to various degrees of human impact in 

the basin (Ramesh et al., 1990). 

 

Understanding the distribution of pollutants is critical for environmental management 

of spatially distributed heavy metals in sediments (Raulinaitis et al., 2012). 
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Onceheavy metals have entered the freshwater environment, they pose a risk to biota 

and human health(John and Leventhal, 1995; Jarup, 2003).Studies have been 

performed to investigate heavy metal pollution in Florida rivers and estuaries in the 

United States (Schropp and Windom, 1987; Alexander et al., 1993; Campbell et al., 

1993). Ouyang et al. (2002) investigated the characteristics and spatial distributions of 

Cd, Cu, Pb and Zn in sediments from the lower St. Johns River basin, Florida. Most 

of the metal concentrations exceeded the background levels by factors of 2–10 

(Ouyang et al., 2002). A great deal of effort was invested to reduce the heavy metal 

pollution of the Keelung River, Taiwan. A set of sediments was analysed for heavy 

metal concentrations and grain size content in order to understand the spatial 

variations of sediment heavy metal concentrations as well as to evaluate the 

effectiveness of pollution control that had been implemented in the region (Huang and 

Lin, 2003). In Turkey, Ayas et al. (2007) conducted a study on the accumulation of 

Cd, Pb and Ni in water and sediment samples. Results showed that spatial distribution 

of the three heavy metals was extensive throughout the study area. In the water 

samples, heavy metal concentrations were below the respective detection limits of the 

metals. Expectedly, metal concentration levels in the sediment samples were higher 

than that of the water samples (Ayas et al., 2007). 

 

The distribution and enrichment of heavy metals (Cd, Cr, Cu, Mn, Pb, Ni and Zn) in 

sediments in the Tapacurá River basin, Brazil, were examined by Aprile and Bouvy 

(2008). Metal concentrations in the industrial and agricultural areas were higher than 

those in the urban areas. Particle size and anthropogenic influences were dominating 

factors controlling the spatial variations of heavy metals (Aprile and Bouvy, 

2008).The Smolnik Creek, Slovakia, was impacted on by acid mine drainage and was 

known to contain high concentrations of sulphates and heavy metals. Decreasing pH 

caused remobilisation and release of historically deposited metals from the sediments 

into the overlying water column (Santschi et al., 2001; Balintova et al., 2012). 

Bednavora et al. (2013) studied the spatial distribution of heavy metals in the Morava 

River and Drevnice River, Czech Republic. The analysis was based on heavy metal 

enrichment factors and their concentrations were benchmarked using sediment quality 

guidelines(SQGs). The use of enrichment factors which include grain size proxy 

normalisation and heavy metal background levels, along with the comparison of the 
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detected concentrations to guidelines, proved an efficient way to identify pollution 

from anthropogenic sources (Bednarova et al., 2013). 

 
A more recent study was carried out by Shanbehzadeh et al. (2014) where they 

examined heavy metal concentrations in water and sediment, upstream and 

downstream of the entry of the sewage to the Tembi River, Iran. Results indicated that 

the average concentrations of the metals in water and sediment in downstream sites 

was higher than that of the upstream sites (Shanbehzadeh et al., 2014). Even though 

land-use activities influence the vertical and spatial distribution of heavy metals in 

freshwater environments (dependant on the source and the location of the source), the 

sediment, water and sediment-water interactions also influence the behaviour of heavy 

metals in any freshwater system. Moreover, the macro-elements previously 

mentioned, mainly Fe and Mn, also play a critical role in the partitioning and release 

of heavy metals from bottom sediments. Thus, it is also important to investigate the 

factors that control the behaviour of heavy metals in sediments. Particularly since 

metals are found in different chemical forms in the environment. 

 

2.3 BIOAVAILABLE METALS 

2.3.1 PARTITIONING OF HEAVY METALS WITHIN SEDIMENTS 
Within sediments, heavy metals are partitioned into various fractions, namely 

exchangeable2, Fe-Mn oxyhydroxides, organic matter/sulphides and residual 

fractions3. Collectively, these fractions constitute the total metal concentration in a 

sediment sample (table 2.1) (John and Leventhal, 1995; Salomons, 1995). 

 

2.3.2 REMOBILISATION OF HEAVY METALS 
Heavy metals are not permanently bound within the sediment fractions, but are 

remobilised when environmental conditions change (Fergusson, 1990; Connell et al., 

1999). Once in the water column, the heavy metals remain in dissolved and mobile 

                                                 
2 The term ‘exchangeable fraction’ will be used to describe those metals bound within the 
exchangeable, carbonates and acid-soluble sediment fractions. 
3 The term ‘residual’ will be used to describe those metals bound within the crystalline sediment 
fraction. 
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Table 2.1: Relative mobility and availability of trace metal from the different 

sediment fractions [adapted from (John and Leventhal, 1995; Salomons, 1995)] 

Sediment fractions Degree of mobility Implications 
Exchangeable High Changes in major cationic composition 

lead to ion exchange that causes the 
associated metals to be released. 
 

Fe-Mn oxyhydroxides High to medium  Occurs with changes in redox potential. 
Associated metals may be released, but 
some may precipitate if the sulphide 
mineral present does not re-dissolve. 
 

Organic 
matter/sulphides 

Medium to low  The decomposition and/or oxidation of 
organic matter take place over time. 
Under oxic conditions, the oxidation of 
sulphide minerals in the sediment causes 
the release of associated heavy metals. 
 

Residual Low Metals associated with the fraction are 
released after weathering or 
decomposition events. 

 

Forms that are significant enough to exert toxic effects if bioavailable to organisms. 

Fe and Mn are examples of released heavy metals that are rapidly re-precipitated and 

deposited as insoluble oxyhydroxides where newly mobile trace heavy metals can 

become adsorbed (Di Toro et al., 1992; Saulnier and Mucci, 2000). In terms of 

toxicity effects, humans become affected when they consume contaminated animals 

or when they come into contact with contaminated water or sediments (Jarup, 2003; 

Papu-Zamxaka et al., 2010). Some of the most important environmental factors that 

affect metal remobilisation are changing pH and redox conditions of surface waters 

and the presence of Fe-Mn oxyhydroxides (John and Leventhal, 1995). 

 

2.3.2.1 CHANGING PH AND REDOX CONDITIONS 

Natural or man-made disturbances to the sediment in a freshwater system alter the 

redox potential and pH. The change in chemistry causes remobilisation of heavy 

metals from the sediments thus contaminating the water column (Förstner and 

Wittmann, 1979; Forstner et al., 1986; Calmano et al., 1993; Fytianos and Kotzakioti, 

2005; Belzunce Segarra et al., 2007; Kumar et al., 2010). Oxic (oxidising) sediment 
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conditions lead to a positive redox potential of the sediment, among other chemical 

properties. In the anoxic (reducing) layer of the sediment, the redox potential of the 

sediment is reduced and the metals in these conditions are normally in the stable, 

sulphidic form. In large rivers, periodical oxidation and reduction of sediments may 

also take place. Change of redox potential of water changes the heavy metal-binding 

forms in the surface sediments in contact with the water (Förstner and Wittmann, 

1979; Tessier et al., 1979; Förstner and Salomons, 1980; Forstner et al., 1986; Tessier 

and Campbell, 1987; Calmano et al., 1993; John and Leventhal, 1995). The pH affects 

both the solubility and adsorption-desorption processes of metal-hydroxide minerals 

(Förstner and Wittmann, 1979; White et al., 1979; Calmano et al., 1993). Under a 

reducing environment, metal-carbonates, metal-hydroxides and metal-sulphides are 

precipitated due to changing pH. Oxidated Fe-oxide surfaces have a positive charge 

when the pH is lowered, but become negatively charged when the pH is increased 

(Calmano et al., 1993; Eggleton and Thomas, 2004; Jain, 2004; Yao and Gao, 2007; 

Dordio et al., 2008).  

 
Alterations in redox potential lead to decreases in pH causing most metals to become 

increasingly mobile and potentially bioavailable. The extent to which pH is reduced is 

dependent on the sulphide matter content in the sediment and how much of the 

sulphide matter is oxidised (Forstner et al., 1986; Calmano et al., 1993; Delaune and 

Smith, 1995; Petersen et al., 1997; Simpson et al., 1998). Most metal-hydroxide 

minerals are not readily soluble under naturally occurring freshwater pH. The 

solubility of the hydroxides increases with decreasing pH thus increases the chances 

of their potential bioavailability(John and Leventhal, 1995; Osman and Kloas, 2010). 

However, alkaline conditions allow for co-precipitation of heavy metals into the 

sediment and the metals are not mobile (Thomas and William, 2003; Yao and Gao, 

2007). 

2.3.2.2 PRESENCE OF FE-MN OXYHYDROXIDES 

Fe-Mn oxyhydroxides are significant sinks for heavy metals in sediments. In the water 

column, Fe and Mn are in their reduced states as Fe(II) and Mn(II) where they are 

present as insoluble oxyhydroxides. Recently released heavy metals become adsorbed 

onto Fe-Mn oxyhydroxides at varying rates and extent (Calmano et al., 1993; Dong et 

al., 2000; Eggleton and Thomas, 2004). Dissolved oxygen in the water oxidise the 
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metals and Fe-Mn oxyhydroxides precipitate out of solution as insoluble compounds 

due to their relative solubility in oxic (oxygenated) conditions. Heavy metals co-

precipitate with these oxides or become adsorbed to their surface which are then 

bound to the surface sediments (Förstner and Wittmann, 1979; Fytianos and 

Lourantou, 2004). Most metal-hydroxide compounds have low solubilities under pH 

between 6 and 8, but their solubility increases with decreasing pH thus increases the 

chances of their incorporation in biological processes(Calmano et al., 1993; John and 

Leventhal, 1995; Caetano et al., 2002). The slower oxidation kinetics associated with 

sulphide-bound metals causes them to be more stable and less likely to be 

momentarily oxidised (Saulnier and Mucci, 2000; Eggleton and Thomas, 2004).  

 

2.3.3 POTENTIAL MOBILITY AND BIOAVAILABILITY LITERATURE 
Heavy metal speciation, utilising different sequential extraction procedures on lake, 

river and marine sediments, has been assessed in the past (Tessier et al., 1979; 

Forstner et al., 1986; Allen et al., 1990; Pardo et al., 1990; Davidson et al., 1994; 

Ngiam and Lim, 2001). Toxic metals such as arsenic and mercury may accumulate in 

sediments. If released, due to changing environmental processes, the metals can move 

up the biological food chain where they may be ingested by humans (Förstner and 

Wittmann, 1979; Yao and Gao, 2007). The partitioning behaviour of toxic heavy 

metals has received increasing attention due to growing concerns of human health 

impacts and freshwater quality issues. Technological advancement has allowed for 

identification and comparison the spatial distribution of heavy metals within 

sediments(Li et al., 2001; Jarup, 2003). An understanding of the partitioning 

behaviour of divalent metals provides an understanding of the physico-chemical 

factors influencing their potential toxicity and bioavailability in freshwater systems 

(Dong et al., 2000). 

 

In the 1960s and early 1970s, few studies had attempted to assess the speciation of 

particulate forms of metals(Tessier et al., 1979). Total metal concentration values 

were used as a proxy to assess the potential effects that contaminated sediments may 

have. However, assessing the concentrations of metals in their entirety implied that all 

forms of a heavy metal have a uniform impact on the environment (Holmgren, 1967; 
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Chow et al., 1973; Gibbs, 1973; Bruland et al., 1974). In the late 1970s and early 

1980s, authors theorised that solid material can be partitioned into various fractions 

which can be selectively extracted by using certain reagents (Ngiam and Lim, 2001). 

Jackson (1958) conceptualised that one can borrow or adapt extraction procedures 

used for soils and use them in sediment extraction procedures due to similarities 

between sediments and soil (Jackson, 1958). Förstner (1982) investigated 

accumulative fractions for heavy metals in freshwater sediments, in Hamburg, 

Germany, with the use of a selective extraction procedure. Clay-rich sediments are the 

major carriers of heavy metals where exchangeable, Fe-Mn oxyhydroxides and 

sulphide fractions predominantly accumulate heavy metals in sediments. Freshwaters 

affected by acid precipitation release Co, Ni and Zn from the reducible fraction and 

Cd from the organic fraction (Jackson, 1958; Förstner, 1982). 

 

Tessier et al. (1979) examined a sequential “selective” extractions method that would 

allow for the partitioning of particulate trace metals into species, from geochemical 

fractions, that may be released under varying environmental conditions. The metal 

chemical forms were: exchangeable-metals, metals-carbonates, metals bound to Fe-

Mn oxyhydroxides, those metals bound to organic matter and metals bound to the 

residual fraction (Sobolewski, 1999). Fe-Mn oxyhydroxides and sulphide/organic 

matter fractions of the scavenged metals in sediments in concentrations that exceed 

their own concentrations thus, Fe-Mn oxyhydroxide and sulphide/organic fractions 

are important sources of potentially mobile metals (Salomons and Förstner, 1984; 

Kersten and Förstner, 1986). 

 

Following this, Tessier et al. (1985) investigated the role of Fe-Mn oxyhydroxides in 

controlling the heavy metal concentrations in natural freshwater systems. They 

concluded that the adsorption of Cd, Cu, Ni and Zn onto iron-oxides is an important 

mechanism in the lowering of heavy metal concentrations in oxygenated pore waters 

(Tessier et al., 1985; Callender, 2003). Tessier and Campbell (1987) conducted a 

review study on the geochemical partitioning of trace heavy metals in sediment 

fractions and how this related to bioavailability. The accumulation of trace metals by 

freshwater organisms is influenced by various physico-chemical and biological 

factors. The partitioning of heavy metals among various fractions obtained by 
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experimental techniques, such as sequential extraction, provided an insight into the 

physico-chemical factors influencing bioavailability of particulate trace metals 

(Tessier and Campbell, 1987).In a subsequent study, Tessier et al. (1989) concluded 

that Zn is adsorbed onto Fe-Mn oxyhydroxides, organic matter and clay (Sigg, 1987; 

Tessier et al., 1989). Finally, the authors expanded their studies to include adsorbed 

organic matter. pH was shown to play an important role in determining which types of 

particle surface binding sites predominate in the sorption of heavy metals in 

freshwater sediments (Tessier et al., 1996; Callender, 2003). 

 

The problem of post-extraction readsorption of Cd, Ni, Pb and Zn was addressed by 

Belzile et al. (1989) who found that by using an extraction procedure on trace-element 

spiked natural sediments it is possible to recover the added trace elements within the 

limits of experimental error  (Belzile et al., 1989; Callender, 2003). Despite the 

drawbacks of sequential extraction techniques, the method remains one of the most 

widely used technique when gaining a better insight of geochemical processes that 

affect sediment-bound metals (Tipping et al., 1985; Rapin et al., 1986; Martin et al., 

1987; Belzile et al., 1989; Allen et al., 1990; Pardo et al., 1990; Yao and Gao, 2007).  

The effects of the water column chemistry on remobilisation of heavy metals from 

contaminated sediments have also been studied (Deurer et al., 1978; Lerman, 1978; 

Calmano et al., 1993; Eggleton and Thomas, 2004). Gambrell et al. (1991) provide 

information on factors affecting the mobilisation/immobilisation of metal 

contaminants under conditions of various possible remediation alternatives (Gambrell 

et al., 1991). Calmano et al. (1993) investigated the precipitation and remobilisation 

of heavy metals in sediments affected by changing pH and redox potential, in 

Hamburg, Germany. During sediment oxidation, the pH value decreased, leading to 

the mobilisation of heavy metals. Cd and Zn were more strongly released compared to 

Cu and Pb. The reducible fraction (Fe-Mn oxyhydroxides) increased during oxidation 

while the organic matter/sulphide fraction decreased. At constant pH more metals are 

mobilised in oxidised sediment compared to sediments in the reducing state. The 

changing reduction and oxidation of the sediments show that redox potential also 

plays a role in the mobilisation of sediments (Calmano et al., 1993). 
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Sediments are an important storage compartment for metals that are released to the 

water column in freshwater systems. Their ability to sequester metals allows 

sediments to reflect water quality and record the effects of anthropogenic emissions 

(Förstner, 1990; Callender, 2003). Lim and Kiu (1995) investigated the impacts of 

domestic and industrial waste discharge on the speciation of heavy metals in 

sediments of the Juru River, Malaysia. To ascertain the extent of heavy metal 

pollution, total and non-residual concentrations of Cu, Mn, Fe, Pb and Zn in sediment 

samples were determined. Both total and non-residual metal concentrations in 

sediments can successfully be used to identify heavy metal pollution sources (Lim and 

Kiu, 1995). Perin et al. (1997) conducted a five year study on heavy metal pollution 

and potential bioavailability in Rio de Janeiro, Brazil. Lin and Chen (1998) 

investigated the relationship between adsorbed heavy metals and organic matter in 

Lau-Che River sediments. Whereas, Traina and Laperche (1999) observed the effects 

that dissolution and precipitation have on sediment-bound metals (Perin et al., 1997; 

Lin and Chen, 1998; Traina and Laperche, 1999). 

 

As Tessier et al. (1979) determined that the toxicity of metals is dependent on its 

chemical forms. Jain (2004) also noted that it is more meaningful to quantify the 

different forms rather than using total metal concentrations. Fytianos and Lourantou 

(2004) performed a five-step extraction on sediment samples collected from lakes 

Volvi and Koronia in Greece, concluding that readily extractable metals were Cd, Cr, 

Cu, Mn and Pb. In Lake Volvi, the metal distribution followed a pattern that was 

expected as typical background levels in the sediments as more than 30% of the heavy 

metals were bound to the residual fraction (Fytianos and Lourantou, 2004). Fe-Mn 

oxyhydroxides, together with organic matter content scavenge metals in 

environmentally oxidising sediments and this is in agreement with results found by 

Tessier et al. (1979) upon development of their extraction procedure. 

 

Particle size can also govern the distribution of heavy metals in a system. Sediment 

particle size has an effect on the geochemical partitioning of heavy metals (Filipek 

and Owen, 1979; Huang and Lin, 2003). Lin et al. (2003) assessed sediment toxicity 

by metal speciation in different particle-size fractions the sediments in two rivers in 

Taiwan. Heavy metals were subject to accumulation in the silt/clay (<25 μm) and 
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coarse sand (420 to 2000 μm) fractions. The potential toxicity to the river was caused 

by the fine sediments as well as coarse sediments (Lin et al., 2003). In contrast, a 

study by Rangel et al. (2011) the authors showed that sand fractions did not 

accumulate, nor did they have a distinctive fractionation pattern of heavy metals as 

much as finer particles (Rangel et al., 2011).  

 

More recently, sequential extraction schemes have been applied to a number of 

different freshwater systems. Silva et al. (2012) studied the distribution of heavy 

metals in surface sediments of the Sergipe River, Brazil. Enrichment factor values 

indicated that some sites could be considered contaminated by Cr, Cu and Pb (Silva et 

al., 2012). A study in Kenya determined spatially distributed and accumulated trace 

metals in two freshwater lakes. Variable accumulated levels were found in the 

analysed sediments. The residual fractions retained relatively higher concentrations of 

metals. Relatively higher concentrations of Cr, Cu and Pb were found in Lake 

Victoria sediments. Cd, Ni, Mn and Pb are of concern because a higher percentage of 

these metals were retained in the more bioavailable fractions in Lake Naivasha 

(Mwamburi, 2013).  

 

2.4 THE STATE OF HEAVY METAL RESEARCH IN SOUTH AFRICA 
Despite being seen as a region of limited industrial activity there is growing need for 

increased management and protection of Africa’s freshwater environments. Proper 

management becomes that much more vital in light of an expected increase in 

industrial as well as urban activities in most regions of Africa (Idowu et al., 2004; 

Ogoyi et al., 2011; Okoro and Fatoki, 2012). South Africa is an example of such a 

region where the quality of natural water resources are declining from increased 

industrialisation and urbanisation(Crafford and Avenant-Oldewage, 2010; Gordon and 

Muller, 2010; Gemmell and Schmidt, 2013; Olaniran et al., 2014). Approximately 20 

– 40 % of South Africa’s available freshwater is extracted from rivers and freshwater 

stress is likely to increase, making knowledge of water quality that much more vital 

(Holmes, 1996a, 1996b, 1996c, 1996d; Jackson et al., 2009; Olaniran et al., 2014). 

Any activities that degrade or adversely contaminate natural water resources require a 

water use license issued by the Department of Water Affairs. Therefore, routine 

freshwater quality monitoring forms an essential part of the conditions of 
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aforementioned licences (Holmes, 1996a, 1996b, 1996c, 1996d). In South Africa, 

water chemistry has been seen as a suitable proxy for some human disturbances, such 

as heavy metal pollution. However, heavy metal concentrations fluctuate greatly in 

river water and only represent the water quality at the time of sampling, thus 

interpreting the extent of heavy metal pollution status is difficult(Botes and van 

Staden, 2005; Bosman and Kidd, 2009). High concentrations of metals usually 

accumulate in river sediments as sediments act as  important sinks for heavy metals 

(MacDonald et al., 2003; Zhao and Marriott, 2013).The impact of human activities on 

the quality of South Africa’s freshwater systems is demonstrated when referring to the 

River Health Programme. 

 

2.4.1 SOUTH AFRICAN RIVER HEALTH PROGRAMME 
The design of the River Health Programme (RHP) began in 1994 by DWAF and is 

intended to produce information regarding the ecological condition of riverine 

ecosystems in South Africa (Roux et al., 1999; WRC, 2002; Strydom et al., 2006; 

Osman and Kloas, 2010). Its overall goal was to expand the ecological basis of 

information on freshwater systems for effective management of the systems (Roux et 

al., 1999; Dallas, 2000; WRC, 2002; Strydom et al., 2006). Assessment tools with 

different indicator organisms have been developed for assessment of environmental 

water quality within the RHP. These tools utilise the responses of freshwater biota to 

characterise impacts of anthropogenic activities on in-stream biota. The rationale is 

that the health status of the biota provides an all-inclusive and integrated measure of 

the overall health status of the river in which they live, often referred to as  biological 

monitoring (or biomonitoring) (Hamer and Soulsby, 1980; Charles, 1996; Karr and 

Chu, 1997; Barbour et al., 1999; Kleynhans, 1999; Blinn and Bailey, 2001; Dickens 

and Graham, 2002; Strydom et al., 2006; Oberholster et al., 2008; Arimoro, 2009; 

Hermoso et al., 2010).  

 

Biomonitoring is based on the assumption that measurements of the integrity of biota 

can be used to assess the ecological integrity of an ecosystem, thus inferring the water 

quality. This is due to ecosystem pollution and other perturbations that might result 

from anthropogenic activities (Rosenberg and Resh, 1993; Karr and Chu, 1997; 
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Novotny et al., 2005; Bonada et al., 2006; Ollis et al., 2006).The use of macro-

invertebrates in biomonitoring of South Africa’s water resources became popular with 

the development of the South African Scoring System (SASS), and was later 

incorporated into the river health programme as one of its biological indices. SASS is 

a biotic index based on the presence of selected families of aquatic macro-

invertebrates and their apparent sensitivity to changes in water quality (Rosenberg and 

Resh, 1993; Chutter, 1998; Strydom et al., 2006; De la Rey et al., 2008a, 2008b). 

 

Benthic macro-invertebrates have the advantage of being visible to the naked eye, 

easily identifiable, have rapid seasonal life cycles and are largely sedentary  (Dallas, 

2000; Ollis et al., 2006; Strydom et al., 2006; Hermoso et al., 2010). However, Round 

(1991) listed some disadvantages of using macro-invertebrates as measures of 

ecosystem integrity. Their seasonality, distribution, food resources and choice of 

substratum limit the use of aquatic invertebrates as a measure of water quality. They 

also have complex reproductive cycles causing them to sometimes change habitats 

making them difficult to sample. Many freshwater macro-invertebrates are actively 

grazed, mostly have specific habitat niches and are closely linked to flow regimes 

meaning they only reflect the impact of physical habitat destruction and certain 

chemical changes (Round, 1991; Charles, 1996; De la Rey et al., 2004; Bonada et al., 

2006; De la Rey et al., 2008a, 2008b). Sediment quality, as a protocol for monitoring 

the quality and potential long-term pollution in South African freshwater systems 

should be added to the RHP. 

 

2.4.2 PREVIOUS HEAVY METAL RESEARCH IN SOUTH AFRICA 
Some of the earliest work on the analysis of South African freshwater systems was 

conducted by Greichus et al. (1977), who determined levels and distributions of heavy 

metals, in the Hartbeespoort Dam and Voëlvlei Dam, Johannesburg. Both dams were 

impacted on by a variety of human activities. The levels of arsenic (As), mercury 

(Hg), Cd, Cu, Mn, Pb and Zn were investigated in water and sediment samples. There 

were higher metal levels in Hartbeespoort Dam compared to Voëlvlei Dam (Greichus 

et al., 1977). Watling and Emmerson (1981) investigated areas of heavy metal input 

in the Papenkuils River, Port Elizabeth. The study served as a preliminary survey of 
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the pollution status of the river. Results revealed that the level of pollution had caused 

extensive ecological modification in the river (Watling and Emmerson, 1981). In 

contrast, the Swartkops River estuary was generally unpolluted with regards to heavy 

metal pollution (Watling and Watling, 1982a). Similar studies by the same author 

indicated that the estuaries of Knysna, Bushmans, Kariega, Kowie and Great Fish 

rivers were not as severely polluted as the Swartkops (Watling and Watling, 1982b, 

1983). A series of survey studies then ensued in South Africa. 

 

Watling et al. (1985) studied the distribution of selected heavy metals in the Buffalo 

River as well as the Mzoniana and Ncabanga streams from August 1982 – August 

1983. Surface water and sediment samples along with sediment cores were collected 

and analysed. Results indicated widespread anthropogenic input of Co, Cd,Cr, Cu, 

Hg, Pb, Ni and Zn, throughout the study area (Watling et al., 1985). Background 

concentrations were exceeded by 100 fold when compared to a 1981 study in the 

same area (Watling, 1981). Talbot et al. (1985) investigated heavy metals in the 

Blind, Ihlanza, Nahoon and Quinera Rivers, near East London. Samples were 

analysed for up to sixteen heavy metals. Results revealed that the Blind, Ihlanza and 

Nahoon Rivers were enriched with Cu, Hg, Pb, Ni and Zn from unrestricted land-use 

in the river catchments. Only the Quinera River was found to be relatively unpolluted, 

in terms of heavy metal contamination (Talbot et al., 1985). 

 

While Greichus et al. (1977) determined total metal concentrations in the 

Hartbeespoort Dam, Coetzee (1993) employed a sequential extraction technique to 

determine the distribution of vanadium (V), Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in 

sediments collected from the dam. The observed metal distribution patterns in the 

different sediment fractions indicated that major proportions of most metals seemed to 

be associated with the inert fraction and could therefore be classified to be of 

geochemical origin(Greichus et al., 1977; Coetzee, 1993). A survey of heavy metals 

in the Swartkops River, Eastern Cape Province was conducted by Binning and Baird 

(2001), nearly twenty years after the first published survey by Watling and Watling 

(1982a). The authors concluded that the continuous increase in heavy metal 

contamination was a cause for concern as the metals studied had the ability to 
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bioaccumulate (Watling and Watling, 1982a; Binning and Baird, 2001). Dissolved 

heavy metals, Al, Cd, Cu, Fe, Mn, Pb and Zn, in the Umtata River, Eastern Cape 

Province were determined by Fatoki et al. (2002). High levels metals that may affect 

the health of freshwater biota and communities that use the untreated river water were 

observed. Anthropogenic sources such as rural, urban and agricultural activities may 

have caused the elevated metal concentrations. Although it cannot be concluded that 

natural sources did not contribute to the observed high metal levels (Fatoki et al., 

2002). 

 

Metal concentrations were observed in the Mooi River sediments from mining 

activities on a tributary of the river (Wade et al., 2000). Van Aardt and Erdmann 

(2004) took sediment core samples from three dams within the Mooi River 

Catchment, namely Klerkskraal, Potchefstroom and Boskop. The dams had elevated 

concentrations of Cd, Cu, Pb and Zn (Van Aardt and Erdmann, 2004). Both studies 

were based on the original baseline study conducted decades before(Wittmann and 

Förstner, 1977), where the concentrations of Cu and Zn were reported in the water 

and sediments. Similarly, Okonkwo and Mothiba (2005) determined baseline data for 

trace metals in surface waters and sediments from the Dzindi, Madanzhe and Mvudi 

Rivers in Thohoyandou, Limpopo Province. Speciation studies revealed that Pb was 

mainly found in the particulate form while Cu and Zn were mainly found in the non-

mobile fraction. Cd was equally distributed between the mobile and non-mobile 

sediment fractions. The three rivers were polluted by Cd and Pb when using 

international SQGs (Okonkwo and Mothiba, 2005). Greenfield et al. (2007) 

conducted a similar study on baseline metal study on sediments from the Nyl River 

flood plain, within the Waterberg catchment area, Limpopo. Al, As, Cd, Cu, Cr, Mn, 

Pb and Zn in the sediments revealed that the sediment was of a fair quality when 

compared to international SQG values. Most of the metals were found to be bound in 

the fourth and fifth geochemical fraction when using a sequential extraction 

technique. Despite being subject various potential impacts via anthropogenic 

activities, the quality of the sediment posed little potential threat to the system 

(Greenfield et al., 2007). 

 



31 
 

There have been a number of published heavy metal studies in marine and estuarine 

environments, including harbours, in KwaZulu-Natal. Vermeulen and Wepener 

(1999) conducted a study on the heavy metal status of water, sediments and biota of 

Richards Bay Harbour (Vermeulen and Wepener, 1999). In a subsequent study, 

Wepener and Vermeulen (2005) investigated heavy metal concentrations in the 

harbour 20 years after its construction. The authors observed bioavailable metal 

concentrations in the harbour sediments (Wepener and Vermeulen, 2005). Mzimela et 

al. (2003) investigated the accumulation of metals in water, sediment and fish from 

the Mhlathuze Estuary. Metal concentrations were found to be higher when there was 

high freshwater inflow from the Mhlathuze River (Mzimela et al., 2003). More 

recently, Pillay et al. (2014) investigated heavy metal pollution in the Isipingo River 

Estuary, KwaZulu-Natal(Pillay et al., 2014). Similarly, Sukdeo et al. (2014) studied 

the Mvoti River Estuary, KwaZulu-Natal, which is known for its poor water quality 

due to agricultural, industrial and domestic water uses.  

 

In one of KwaZulu-Natal’s freshwater environments, Mthembu et al. (2012) studied 

the effect of human activities, such as agricultural and industrial, on the Mhlathuze 

River water quality, similar to that of Mzimela et al. (2003)(Mthembu et al., 2012). 

Whereas Papu-Zamxaka et al. (2010) investigated the effect of mercury exposure on 

communities living close to the Hg-polluted Umgeni River in the Inanda Dam area. 

Sukdeo et al. (2012) assessed the presence of heavy metals in the lower Mvoti River. 

Results show that the river and estuarine sites closest to industrial effluent discharge 

sites and informal settlements had the highest levels of heavy metal pollution(Sukdeo 

et al., 2012). Olaniran et al. (2014) conducted an assessment of the physico-chemical 

and heavy metal status of two rivers, Umgeni and Umdloti. However, the authors only 

analysed water samples. Moodley et al. (2014) investigated the seasonal variation of 

heavy metal concentrations in the water and sediments of the Palmiet River, a 

tributary of Umgeni River, KwaZulu-Natal (Moodley et al., 2014). Results indicated 

that industrial activities and the winter season yielded higher metal concentrations. 

One of the few water quality studies in the Msunduzi River Catchment was conducted 

by Gemmell and Schmidt (2013). However, the authors only assessed the 

microbiological quality of the Msunduzi River Catchment. 
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The previous cited literature indicates that heavy metals from anthropogenic sources 

have detrimental impacts on the receiving water body, depending on the nature of the 

activities and proximity to the river environment. Once the metals have entered the 

system, they become assimilated into the bottom sediments were they can remain for 

several decades. Thus, sediments may be used to demonstrate the historical heavy 

metal input in a particular region. The spatial and vertical distribution as well as 

mobility and potential bioavailability of sediment-bound heavy metals are influenced 

by biological, physical and chemical processes. A number of analytical procedures 

can be applied in order to determine chemical characteristics that will assist in 

estimating total metals and metal bioavailability 

 

2.5 THEORETICAL METHODOLOGY 
This sub-section will provide a background to the techniques that were applied in this 

research to determine total metal concentrations and potentially mobile metals in the 

water and sediments of the Msunduzi River Catchment.  

 

2.5.1 WATER AND SEDIMENT QUALITY GUIDELINES 
Water chemistry has long been used to measure river health and water quality in 

South African freshwater systems (Botes and van Staden, 2005). Pollution levels 

measured in water quality studies are compared against South African water quality 

guidelines published by the Department of Water Affairs and Forestry (DWAF) in 

1996 (Holmes, 1996a, 1996b, 1996c, 1996d; Hallberg and Johnson, 2005). A series of 

guidelines for the different water uses, ranging from Water Quality Guidelines for 

Agricultural Use, to Water Quality Guidelines for Recreational Use, were developed 

and are still in use. The South African Water Quality Guidelines for Aquatic 

(freshwater) Ecosystems are used by the DWAF as the principal source of reference 

data and decision-making tool for the management of freshwater systems (Holmes, 

1996a, 1996b, 1996c, 1996d; Bosman and Kidd, 2009). The current South African 

water quality guidelines are being revised, but judging from their criteria, they only 

reflect the effects of dissolved chemicals in the water column on biota. The chemicals 

associated with suspended and settled sediments, as well as the sediments themselves, 

are not taken into account. As particulate matter acts as a binding site for 
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contaminants, they ultimately accumulate in the bottom sediments (Chen et al., 2007; 

Gordon and Muller, 2010; Osman and Kloas, 2010; Shanbehzadeh et al., 2014). 

 

Benthic organisms in intimate contact with the sediments are exposed to any chemical 

contamination adsorbed onto the sediment particles, thus introducing the contaminant 

into the food chain (Loring and Rantala, 1992; Gordon and Muller, 2010). Currently, 

South African legislation does not provide a definition for contaminated sediment and 

there is no universally accepted definition for contaminated sediment. The only 

applicable definition comes from Palermo (2001) in which contaminated sediment is 

defined as: “sediments containing chemical concentrations that pose a known or 

suspected threat to the environment or human health” (Palermo, 2001). Sediments are 

essential to the functioning of a healthy aquatic ecosystem and any form of 

anthropogenic disturbance may have an ecosystem level effect (Förstner and 

Wittmann, 1979; Burton, 2002; MacDonald et al., 2003). The development of 

sediment quality guidelines (SQG) for freshwaters, much like the water quality 

guidelines, could be an important step towards the management and protection of 

freshwater ecosystems (Newman and Watling, 2007). There has been some work in 

deriving and, ultimately, implementing sediment quality guidelines in South Africa, 

but the study has not been conducted to date (Gordon and Muller, 2010). 

 

The National Oceanic and Atmospheric Administration (NOAA) collect and analyses 

marine sediment samples on a yearly basis. A set of guidelines were developed by 

Long and Morgan (1990) which were derived by matching chemical concentrations 

and biological effects from saltwater and freshwater sediments. These biological 

effects mainly comprised the effects on benthic communities (Long and Morgan, 

1990; Gordon and Muller, 2010). The guidelines were later revised by Long et al. 

(1995) and they included nine trace elements [arsenic (As), Cd, Cr, Cu, Pb, Hg, Ni, 

silver (Ag) and Zn], total polychlorinated biphenyls, two pesticides, thirteen 

polycyclic aromatic hydrocarbons and three classes of polyaromatic hydrocarbons 

(PAHs) (Long et al., 1995; NOAA, 1999). The SQGs are intended to be used as an 

informal guideline for the interpretation of chemical data from sediment analyses and 

for use in classifying chemicals in terms of potential adverse health effects. With 
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regards to the trace elements, the NOAA SQGs work by deriving effects range-low 

(ERL) and effects range-median (ERM) values. ERLs represent concentrations below 

which effects were rarely observed (NOAA, 1999; Newman and Watling, 2007). That 

is, any concentration values below the ERL would have less adverse biological effects 

on benthic biota. Whereas, the ERM denotes concentration values above which 

adverse biological effects frequently occur. It was found that the ERM values better 

indicated health effects compared to the ERL values (Long and Morgan, 1990; Long 

et al., 1995; NOAA, 1999; MacDonald et al., 2003). Consequently, NOAA (1999) 

sediment quality guidelines were used in this study as they followed the mechanistic 

approach adopted by the upcoming South African guidelines. 

 

2.5.2 TOTAL METAL ANALYSIS 
Chemical extraction procedures are used to extract metals from sediments into 

aqueous solution for easier analysis in analytical equipment. Extraction methods may 

be in the form of single or sequential extractions. Different reagents are used to 

selectively dissolve metals associated with the different fractions within the sediments 

(Bakircioglu et al., 2011). The single extraction technique used in the research was 

acid extraction. Wet acid digestion is a preparative analysis step used for the 

determination of total metal concentrations in sediments (Kotz et al., 1972; 

Bakircioglu et al., 2011). Microwave-assisted digestion is a type of closed wet acid 

digestion procedure used in determining elements in a solid sample by transferring the 

analytes into solution form (Matusiewicz, 2003; Sakan et al., 2011). The principal 

advantage of a closed vessel system is the speed of digestion. In comparison with 

open digestion, such as the traditional “hot plate” method, closed microwave digestion 

is faster and can achieve higher temperatures. Microwave digestion is safe, fast and 

reliable. As sample preparation consumes the largest share of time for any analysis, 

this technique has economic significance (Kotz et al., 1972; Förstner and Wittmann, 

1979; John and Leventhal, 1995; Matusiewicz, 2003; Okoro and Fatoki, 2012).  

 

It has been suggested that for pollution studies it is not necessary to obtain full 

digestion of all sediment components since the pollution effects are associated with 

the surface of the sediment particles. Therefore, it is not necessary to dissolve metals 
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bound into the internal structures of silicates and other detrital minerals (Chand and 

Prasad, 2012). Total metal concentrations reflect the geological origins of sediments 

and may also reveal anthropogenic input into a system. Determining the total metal 

concentrations in sediments in environmental monitoring ensures that total metal 

levels are within the range of natural background levels (Sastre et al., 2002; Sakan et 

al., 2011; Chand and Prasad, 2012). Despite being rapid and simple, this technique 

suffers from the time-consuming effort of having to transform the solid sediment 

sample into solution (Kazi et al., 2009). Additionally, one has to find a single reagent 

effective enough in quantitatively dissolving the non-residual (mobile) forms of heavy 

metals (Chand and Prasad, 2012).  Aqua regia (in the form of nitric acid:hydrochloric 

acid (1:3) decomposition of sediments is sufficient for trace heavy metal analysis as it 

is strong enough to extract metals associated with all sediment fractions, including 

silicates (Förstner and Wittmann, 1979; Tessier et al., 1979; Förstner, 1980; Förstner 

and Salomons, 1980; Nriagu, 1990). Primarily, mixtures of commercially available 

acids are used, along with acid-resistant vessels, such as Teflon vessels, used to 

ensure chemical and temperature stability (Kotz et al., 1972; Förstner and Salomons, 

1980; Matusiewicz, 2003).  

 

In addition to the task of transforming the solid sample into an aqueous solution, the 

acid extraction technique suffers from the fact that the fraction of the total metal 

extracted by any partial technique will depend on the reagent used(Sabra et al., 2011). 

Re-adsorption of metals can occur at neutral pH and the use of a single reagent does 

not permit the dissolution of all the organic and inorganic labile forms without also 

attacking the detrital minerals (Tessier et al., 1979; Martin et al., 1987; Tessier and 

Campbell, 1987; Sabra et al., 2011). Sample preparation is the most critical in 

environmental analysis studies and microwave-assisted digestion to determine total 

metal concentrations with the use of an additional technique (Velez, 2009). In effect, 

single extraction is only useful to provide a preliminary scan or idea of the heavy 

metal levels in sediments and should be considered in conjunction with other data, 

including sequential extraction procedures, when undertaking the task of predicting 

potentially mobile, bioavailable and toxic metal species in sediments (Tessier et al., 

1979; Tessier and Campbell, 1987; Thomas et al., 1994).  
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2.5.3 SEQUENTIAL EXTRACTION 
The use of total metal concentrations to assess sediment contamination implies 

regardless of the form in which a metal is found, all forms exert an equal impact on 

the receiving environment (Chand and Prasad, 2012). Using sequential extraction 

procedures, although more time consuming than total metal determination, provides 

information on the physical and chemical factors affecting bioavailability, 

mobilisation and transport of heavy metals in sediments (Bernhard et al., 1986; Ure et 

al., 1993). Sequential extractions are based on the notion that heavy metals can be 

partitioned or fractionated into specific fractions in sediments. The metals in the 

fractions can be selectively extracted using the appropriate reagent and the metal 

concentrations are related to the extractant used instead of the simulated 

environmental conditions (Förstner and Wittmann, 1979; Tessier et al., 1979; Förstner 

and Salomons, 1980; Förstner, 1982; Forstner et al., 1986; Tessier and Campbell, 

1987; Quevauviller et al., 1997; Baeyens et al., 2003; Jain, 2004).  

 

Numerous sequential extraction procedures have been proposed, with the initial 

extraction procedures were largely a combination of single extractions originally used 

by soil scientists (Goldberg and Arrhenius, 1958; Jackson, 1958; Martin et al., 1987; 

Bettinelli et al., 2000; Fernandez et al., 2004). Considering the similarities between 

sediments and soils, research has shown that extraction techniques may be adapted 

from soil chemical analysis methods (Jackson, 1958; Tessier et al., 1979; Sposito, 

1984; Tessier and Campbell, 1987; Nriagu and Pacyna, 1988). The sediment fractions 

used in early partitioning studies were the exchangeable, carbonate-bound, easily 

reducible, labile organics, oxides, oxidisable oxides/sulphides, crystalline iron-oxides 

and the residual minerals (Tessier et al., 1979). Early research saw the successful 

application of a variety of reagents to selectively extract metals from all these 

fractions. The exchangeables were extracted with compounds such as magnesium 

chloride, calcium chloride, barium chloride and weak acetates as the fraction holds 

easily soluble metals (Jackson, 1958; Gibbs, 1973; Engler et al., 1977; Gibbs, 1977). 

The carbonate bound fractions were extracted with acidified acetates (pH = 5) (Deurer 

et al., 1978; Filipek and Owen, 1979).  
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Labile organic bound metals were extracted with phosphate and carbonate 

compounds, acidified with HCl. The easily reducible fractions were extracted with 

hydroxylamine hydrochloride (at pH = 2) whilst the oxide fractions were extracted 

with a mixture of hydroxylamine hydrochloride and a weak acetate (Jackson, 1958; 

Gibbs, 1973; Cooper and Harris, 1974; Gupta and Chen, 1975; Engler et al., 1977; 

Gibbs, 1977). The oxidisable oxides/sulphides were almost exclusively extracted with 

a hydrogen peroxide/ammonium acetate solution. The crystalline Fe-oxides were 

extracted in only a few studies with acids such as nitric acid and hydrochloric acid 

compounds (Chester and Hughes, 1967; Holmgren, 1967; Filipek and Owen, 1979; 

Förstner and Salomons, 1980). Finally, the residual minerals were extracted with 

concentrated acids, such as hydrofluoric acid, nitric acid and hydrogen perchlorate 

mixtures (Förstner and Wittmann, 1979; Ure, 1996; Bettinelli et al., 2000).  

 

In an early study, Tessier et al. (1979) aimed to develop an extraction scheme and 

examine its ability to partition sediment-bound trace heavy metals into chemical 

forms likely be released into the overlying water column, under changing 

environmental conditions. The authors proposed a five-step procedure, known as the 

Tessier extraction scheme, which partitioned selected heavy metals to distinguish 

between metals bound in five sediment fractions: exchangeable, carbonates, iron-

manganese oxides, organic matter and residual. The Tessier extraction scheme is the 

most widely used extraction scheme in the world, even in recent studies (Tessier et 

al., 1979; Rauret et al., 1989; Allen et al., 1990; Eslokkary and Muller, 1990; Pardo et 

al., 1990; Zhang et al., 1990; Coetzee, 1993; Fytianos and Lourantou, 2004; Hlavay et 

al., 2004; Jain, 2004; Silveira et al., 2006; Sharmin et al., 2010). However, one of the 

disadvantages of using this method was that it does allow results to be compared 

worldwide as the procedure cannot be validated (Rauret et al., 1989; Rauret et al., 

2001; Hlavay et al., 2004). 

 

2.5.3.1 DEVELOPMENT OF THE BCR PROTOCOL 

The European Community Standards Measurement and Testing Programme (BCR) 

(formerly the Community of Bureau of Reference) launched a project aimed at 

harmonising and standardising single and sequential extractions for the determination 
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of metals in sediments and soils (Rao et al., 2007; Okoro and Fatoki, 2012). An initial 

study of the literature and consultation with European experts was conducted by Ure 

et al. (1993). The following recommendations were made at a meeting of 

representatives of leading European soil and sediment laboratories: 

1. Single and sequential extraction procedures for the analysis of soil and 

sediments were designed; 

2. An inter-laboratory trial analysis of three different extraction schemes was 

carried out. Namely, the Tessier et al. (1979) scheme, the short method of 

Förstner and Salomons (1980), and the method of Meguellati (1983); 

3. The elements to be included were Cd, Cr, Cu, Ni, Pb and Zn; 

4. The sediment was selected from materials available from the Joint Research 

Centre in Ispra, Italy; and 

5. The reference material, whose extractable contents were certified by an 

extraction procedure, was then developed. 

 

Thus, a three-step extraction protocol was developed based on an acetic acid 

extraction in step 1, a hydroxyl ammonium chloride extraction in step 2 and a 

hydrogen peroxide attack followed by an ammonium acetate extraction in step 3 

(Tessier et al., 1979; Förstner and Salomons, 1980; Meguellati et al., 1983; Ure et al., 

1993; Rauret et al., 2001). This three-step procedure was first tested in 1992 in an 

inter-laboratory trial in which the extraction was conducted on sediment samples from 

the Netherlands (Ure et al., 1993). Subsequent studies resulted in the improvement 

and validation of this protocol, as well as the preparation of certified reference 

material 601 (CRM 601) for the three-step BCR protocol (Davidson et al., 1994; 

Quevauviller et al., 1994; Quevauviller et al., 1997). 

 

The three-step BCR protocol was then modified, in the late 1990s, from the findings 

of the validation of CRM 601, which had some discrepancies at the 95% confidence 

interval(Rauret et al., 2001). This modified procedure, along with the addition of the 
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aqua regia stage, was used to certify the newly developed CRM 701: for lake 

sediments. The aqua regia extracts were considered to be an important tool for 

internal control, and this is now the preferred protocol and CRM according to the 

European Community Standards Measurement and Testing Programme (Rauret et al., 

2001). Researchers have used some variation of the BCR protocol in their speciation 

studies (Lopez-Sanchez et al., 1993; Davidson et al., 1994; Thomas et al., 1994; 

Whalley and Grant, 1994; Fernandez et al., 2004; Yuan et al., 2004; Kartal et al., 

2006). More recently, a fourth step was added to the BCR protocol, in which the 

residual (crystal lattice) is extracted by means of aqua regia (HNO3/HCl; 1:3). The 

aqua regia acts a strong oxidising agent which is able to destroy the remaining 

minerals and resistant oxidisable material. The data from the first three steps is 

deducted from this data to obtain the residual fraction of the sediment (Rauret et al., 

2001). 

 

2.5.3.2 LIMITATIONS AND ASSUMPTIONS OF SEQUENTIAL EXTRACTION PROCEDURES 

Although sequential extraction procedures (SEPs) are routinely used in environmental 

monitoring, many methodological problems remain unresolved. They include non-

selectivity of extractants, redistribution of trace elements and matrix effects (Goldberg 

and Arrhenius, 1958; Jackson, 1958; Tessier et al., 1979; Tessier and Campbell, 

1987). Extractant selectivity requires that the targeted sediment fraction is entirely 

solubilised, while the remaining fractions resist extraction. If extractants are not 

selective, the specific origin of a metal in a particular fraction cannot be determined 

and it would not be justified to interpret results by assigning a pollutant to a particular 

sediment fraction. However, this is exactly the way in which sequential extraction 

results have been generally interpreted and published in the past. Moreover, different 

mineralogical compositions can lead to different efficiencies of extraction (Goldberg 

and Arrhenius, 1958; Jackson, 1958; Tessier et al., 1979; Förstner and Salomons, 

1980; Tessier and Campbell, 1987).  
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Table 2.2: The chemistry of the extractants in the BCR protocol [adapted from 

(Tessier et al., 1979; Rauret et al., 2001)] 

Step Sediment phase Chemistry of extractant 

1 Water and acid soluble; 
exchangeable (bound to 
exchangeable cations and 
carbonates) 

Acetic acid 
 
The acetic acid dissolves exchangeable carbonate 
minerals and their associated metals. 
 
 

2 Reducible (bound to Fe-
Mn oxyhydroxides) 

Hydroxylamine hydrochloride (pH = 2) 
 
Brings reducible species of iron and manganese 
oxides into solution 
 

3 Oxidisable (bound to 
organic matter and 
sulphides) 

Hydrogen peroxide 
 
Used to extract the oxidisable material and includes 
any organic matter or metal sulphides in the 
sediments. The hydrogen peroxide therefore acts as 
an oxidising agent. 
Ammonium acetate 
 
Used to complex the extracted and dissolved metal 
ions and prevent readsorption onto the sediment. 

 

Readsorption of extracted species onto the next sediment fraction, during the 

extraction process, can result in a particular pollutant being allocated to a different 

fraction. This effect may be reduced by buffering each extractant to an optimal pH 

(Baeyens et al., 2003). Matrix effects may hinder the instrumental analysis of the 

samples, depending on the geochemical make-up of the sediment (Tessier et al., 

1979). Despite all these problems, SEPs seem to fulfil an important need in 

environmental sciences. With extensive validation of the procedures and the proper 

appreciation of the chemistry of reagents used, SEPs may prove useful. 

 

2.5.4 INDUCTIVELY COUPLED PLASMA – OPTICAL EMISSION SPECTROMETRY 
Inductively Coupled Plasma Optical (ICP) – Optical Emission Spectrometry (OES) is 

an analytical technique that uses inductively coupled plasma as an excitation source. 

The “plasma” is a luminous volume of partially ionised gas (Skoog et al., 2004; 

Velez, 2009). ICP-OES is a type of emission spectroscopy that is based on the fact 



41 
 

that atoms from different elements emit electromagnetic radiation at characteristic 

wavelengths. This allows for simultaneous, quick, accurate detection of a broad range 

of elements metals. It not only measures major macro-elements, but can also detect 

trace elements, therefore, a large number of samples may be analysed using ICP-OES. 

The most commonly used plasma gas is argon as it can simultaneously excite and 

ionise most elements (Huang et al., 2006). Liquid samples are introduced by means of 

a peristaltic pump and then go through a nebuliser which forms a fine aerosol. The 

aerosol is transported to the centre of the plasma which decomposes the sample into 

atoms, at temperatures in excess of 7000°C. Some of the atoms are ionised and 

excited and electrons from the ground state are excited to vacant higher energy levels 

(Skoog et al., 2004). As they revert to their ground state the atoms they emit light at a 

wavelength characteristic to that element and this emission is measured with an 

optical spectrometer. The intensity of the emission has a direct relationship with the 

concentration of that element in the sample being analysed (Skoog et al., 2004; Huang 

et al., 2006; Ojeda and Rojas, 2007).  

 

ICP-OES is a widely-used and robust trace element technique that provides accurate, 

precise results with low detection limits. Due to its multi-element capabilities, it is 

ideal for a large number of samples for routine analysis. ICP-OES requires minimal 

dilution, even in samples high in salt content (Skoog et al., 2004; Velez, 2009; 

Dospatliev et al., 2012). However, the technique has its limitations. It consumes a 

larger volume of the introduced sample than other ICP techniques and cannot 

determine isotopic ratios. The absence of self-absorption in the argon plasma results 

in linear calibration lines over a large concentration range (Dams et al., 1995; Ojeda 

and Rojas, 2007). Although the high temperature of the plasma reduces interferences, 

it cannot eliminate all spectral and non-spectral interferences (Dams et al., 1995). 

When electrons revert to their ground state an emission spectral line is generated. If 

the electrons move to more than one vacant energy level a series of spectral lines may 

be produced. A sample containing a number of different elements may then produce 

complex emission spectra (Dams et al., 1995; Hill et al., 2004; Skoog et al., 2004; 

Huang et al., 2006; Ojeda and Rojas, 2007). 
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2.5.5 PARTICLE SIZE ANALYSIS 
When undertaking heavy metal analysis in sediments it is imperative that a 

standardised procedure is adopted with regard to particle size. This can be done by 

means of normalisation using linear regression (Newman and Watling, 2007). 

Normalisation is the process of compensating for the mineralogical and granulometric 

factors that influence the natural variation in the heavy metal concentrations (Lin et 

al., 2003; Wei and Wen, 2012). Granulometric normalisation refers to the isolation of 

the <90 µm fraction (or less) of all sediment samples as it aims to reduce the diluting 

effects of the non-metal bearing coarser particles. This is because heavy metals tend 

to be associated with the finer sediment particles (<90 µm) due to their higher surface 

area(Herut and Sandler, 2006; Newman and Watling, 2007). Small particles with a 

large surface area to mass ratio allow more adsorption of heavy metals than larger 

particles (Förstner and Salomons, 1980; Lin et al., 2003; Jain, 2004). Particle size 

distribution (PSD) is vital in characterising water and sediment samples. Physico-

chemical parameters, as well as heavy metal distribution, are closely correlated to 

PSD (Sabra et al., 2011; Sadeghi et al., 2012).  

 

There are a number of methods available to determine the particle size distribution of 

a sediment sample and these include dry sieving, sedimentation, microscopy as well 

as laser diffraction. The laser diffraction technique has gained increasing popularity as 

the method of choice for particle size analysis as it is simple and rapid, yet accurate 

(Eshel et al., 2004; Rawle, 2005). Laser diffraction is based on the diffraction angle of 

spherically-shaped particles being indirectly proportional to the size of the particle 

(Eshel et al., 2004). Laser diffraction instruments, such as the Malvern Mastersizer 

2000, use a laser as a source of intense light at a fixed wavelength, an apt detector and 

a manner in which the sample can be passed through the laser beam (Kiurski et al., 

2010). The latest laser diffraction instruments use the Mie theory which allows for 

completely accurate results over a large size range (normally 0.02 to 2000 µm). The 

light pattern scattered from particles at different angles is recorded and an analytical 

procedure is used to determine the size distribution (Rawle, 2005). This is based on 

the spherically shaped particles that create the light patterns. The results are depicted 

as the relative distribution of volume (or number) of particles in the range of classes. 

The volume distribution is generated directly and is equal to the weight of 
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distribution, provided that the density is kept constant. This is why the solvent of 

choice is water for measuring the solids as a liquid suspension, and is one of the 

advantages of using this technique (Eshel et al., 2004; Rawle, 2005; Kiurski et al., 

2010; Stojanović and Marković, 2010). 

 

According to Allen (1965) the particle size characteristics of river sediment is 

dependent on flow regime of the river. The flow rate, as well as the characteristics of 

the particles transported, strongly influences the rate of deposition of sediments in 

freshwater environments (Allen, 1965; Chakrabarti and Lowe, 1981). Taking into 

account particle size distribution (PSD) may reveal the flow strength and 

characteristics of heavy metal transport mechanisms in river systems as the metals are 

incorporated into the sediment as it is deposited down the river (Nilsson and Malm-

Renöfält, 2008; Rahman and Plater, 2014). When considering particle size data as 

depicted by a laser instrument, the particle distribution pattern may reveal flow events 

in a freshwater system. Blanchard et al. (2011) studied the concentrations and particle 

size of sediments distributed in the Red River, North Dakota. Results showed that 

during high-flow events, there is an increase in pollutant loads at the settling point. 

The peak is sometimes directly proportional to the existence of smaller sediment 

particles that were easily transported by the rapidly flowing river water (Blanchard et 

al., 2011). As particle size distribution is sensitive to flow strength spatial and vertical 

distribution patterns of sediments can indicate when there was increased (flood 

events) or decreased flow (drought) in a freshwater system (Nilsson and Malm-

Renöfält, 2008; Okon and Asuquo, 2012; Rahman and Plater, 2014).  

 

2.5.6 LOSS ON IGNITION 
One of the most important components of river sediment deposits is organic matter. 

River sediment organic matter content may be estimated by measuring the 

concentration of weight lost in sub-samples subjected to different stages of heating 

(Heiri et al., 2001). Loss on ignition (LOI) is a form of gravimetric methodology that 

is widely used to estimate the organic matter content of sediments (Cooper and Harris, 

1974; Allen et al., 1990; Lin and Chen, 1998; Heiri et al., 2001). This technique is 

based on the different thermal conditions of materials in the sediment. Organic matter 
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ignites at 200 °C until the organic matter is completely depleted at 550 °C where the 

organic matter is oxidised to carbon dioxide and ash. Weight losses are quantified by 

recording the sub-sample weight before and after controlled heating (ignition at ~ 550 

° C) and this may be correlated with water and organic matter content. The ignition is 

typically done in a muffle furnace (Sutherland, 1998; Santisteban et al., 2004; Wang 

et al., 2011). The advantages of the LOI technique is that it is relatively simples, less 

costly and less labour-intensive compared to automated techniques and other chemical 

methods(Veres, 2002). However, the LOI method has its limitations. Higher 

temperatures can drive can lead to the decomposition of carbonates and hydrated salts, 

thus increasing errors and results in over-predicting organic matter content 

(Santisteban et al., 2004; Konare et al., 2010). Technical factors can also affect 

measurements, such as sample size, exposure time, location of the sample tube inside 

the furnace (Heiri et al., 2001; Veres, 2002).  

 

2.6 SYNTHESIS 
Heavy metals are introduced into freshwater environments from natural and 

anthropogenic sources. Certain metals (e.g. Zn) are essential as biological nutrients, 

although they may be toxic when they exceed a certain threshold. Non-essential 

metals (e.g. Pb), are hazardous at any concentration. Historical anthropogenic 

activities enrich naturally present metal concentrations and pose a threat to freshwater 

environments, freshwater biota and potentially, humans. Due to the physical and 

chemical properties of metals and the receiving environment, the metals mainly 

become incorporated with the bottom sediments. Speciation (chemical forms) of 

metals involves understanding the distribution of metals over sedimentary fractions 

such as exchangeable, Fe-Mn oxyhydroxides, organic matter/sulphides and crystalline 

geochemical fractions. Under changing environmental conditions, metals are released 

from these geochemical fractions and pollute the overlying water column. Research 

on heavy metals in sediments is increasing in South Africa, and in KwaZulu-Natal, in 

particular. However, there has been no comprehensive research done on the heavy 

metal status of the Msunduzi River Catchment in Pietermaritzburg, KwaZulu-Natal. 

There are methods that can assist in providing a comprehensive overview of the heavy 

metal status in the catchment. Namely, total metal (of Cd, Cr, Cu, Pb, Ni, Zn, Al, Fe 

and Mn) and potentially bioavailable metal concentrations in the water and sediment. 
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The effect of physico-chemical factors (pH, redox potential, particle size and organic 

matter content) on the distribution, bioavailability and remobilisation of heavy metals 

can also be investigated. 
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3 MOBILITY AND POTENTIAL BIOAVAILABILITY 
OF SEDIMENTARY HEAVY METALS IN THE 

MSUNDUZI RIVER CATCHMENT, KWAZULU-
NATAL, SOUTH AFRICA 

 

3.1 RATIONALE 
Sediments represent an important reservoir of heavy metals in rivers, regardless of 

whether the metals are from natural or anthropogenic sources. Some physical and 

chemical disturbances, such as change in pH and redox potential, may cause the 

release of metals into the overlying water column. Thus, sediments can be seen as 

long term metal pollutants as disturbance can occur long after metals have been 

discharged into a river system. There is no published data on the metal pollution status 

of the Msunduzi River Catchment in KwaZulu-Natal. Simply determining the total 

metals present in the sediment is not sufficient, thus determining the chemical forms 

in which the metals occur is important. In addition, investigating the physical and 

chemical conditions that occur in freshwater systems that might affect the 

precipitation or remobilisation of metals is also important. The objective was to 

determine baseline levels of total concentrations and potentially mobile metal 

concentrations in the sediments of the Msunduzi River Catchment.  

 

3.2 ABSTRACT 
An evaluation of total metal [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), 

nickel (Ni) and zinc (Zn)] concentrations within the sediments of the Msunduzi River 

and two of its tributaries was undertaken. The forms in which the metals occur were 

also investigated to measure the level of heavy metal pollution. The purpose of this 

study was to identify potential problem areas and possible sources of metal pollution 

in the Msunduzi River Catchment. It therefore serves as baseline study for 

sedimentary heavy metal levels in the Msunduzi River catchment from which 

informed future management decisions can be made. Total metal values were assessed 

against sediment quality guidelines to determine the potential toxicity level of the 

metals in the sediments. The Community Bureau of Reference (BCR) sequential 
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extraction method was used to analyse metals in the potentially mobile geochemical 

fractions of the sediment. The highest levels of heavy metal concentrations were 

recorded at points where the rivers flowed through dense residential and industrial 

regions. Total and potentially bioavailable concentrations of Cd, Cr, Cu, Ni and Pb 

did not exceed the Effects Range-Median (ERM) values but all metals exceeded the 

permitted Effects Range-Low (ERL). Pb was found to be the most potentially mobile 

metal. The level of potentially mobile heavy metals present in the sediment samples 

indicates the possibility for long-term pollution in the Msunduzi River Catchment. 

 

Keywords: Sediment quality, BCR sequential extraction, partitioning, trace element 

toxicity, ERL, ERM 

 

3.3 INTRODUCTION 
Heavy metals cannot naturally bio-degrade and are one of the most persistent 

pollutants in freshwater systems as they become enriched in bottom sediments(Harris 

and Santos, 2000; Callender, 2003; Singh et al., 2005; Osman and Kloas, 2010; Akpor 

and Muchie, 2011; Bednarova et al., 2013). Heavy metals occur naturally in Earth’s 

crust in trace concentrations and become enriched when they enter freshwater 

environments due to anthropogenic activities, such as mining, agricultural practices, 

municipal and urban waste and industrial discharge(Callender, 2003; Cempel and 

Nikel, 2006; Dominik et al., 2007; Hariprasad and Dayananda, 2013). Sediments not 

only act as a sink for heavy metals, but also as a possible delayed source of long-term 

heavy metal pollution in freshwater systems (Turki, 2007).  

 

In South Africa, water chemistry has been used as a proxy for some human 

disturbances, such as waste from industrial activities, agricultural practices and 

domestic sewage. There are water quality guidelines for the different water uses such 

as drinking water, recreational use, and agricultural use (Holmes, 1996d; Burton, 

2002). However, chemical parameters in water fail to capture long-term changes in an 

environment as chemical features fluctuate greatly in freshwater (Holmes, 1996d; 

Bosman and Kidd, 2009; John and Trollip, 2009; Nel et al., 2013). Since trace metals 
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are continuously sequestered in the water column and bottom sediments they remain 

environmentally significant due to their potential for future toxicity, mobility and 

biological availability (bioavailability) (Ramesh et al., 1990; Yuan et al., 2004; Singh 

et al., 2005). 

 

To fully understand sediments as potential pollution sources, and their potential 

toxicity to organisms, their chemical partitioning should also be assessed (Tessier et 

al., 1979; Tessier and Campbell, 1987; John and Leventhal, 1995; Jain, 2004; Turki, 

2007). Partitioning, or fractionation, refers to the distribution of heavy metals among 

the different binding phases of a complex substrate (Baeyens et al., 2003; Lin et al., 

2003; Krupadam et al., 2006). In substrates such as sediments, fractionation includes 

the successive application of selective extractants or reagents under increasingly harsh 

conditions. This is known as sequential extraction and the idea behind the method is 

that the selected extractant could stepwise liberate the metals associated with a 

specific sediment fraction. These include carbonates, iron-manganese (Fe-Mn 

oxyhydroxides), sulphides/organic material (these three fractions are known as the 

mobile forms) and the crystalline lattice (known as the non-mobile form) (Tessier et 

al., 1979; Tessier and Campbell, 1987; Lim and Kiu, 1995; Baeyens et al., 2003; 

Eggleton and Thomas, 2004; Kartal et al., 2006; Dominik et al., 2007). The mobile 

forms may be potentially available for uptake by freshwater biota if released in their 

respective sediment fractions. The metals bound in crystalline structures and silicates, 

are not bioavailable, unless they undergo geochemical weathering (Luoma, 1983; 

Forstner et al., 1986; Calmano et al., 1993; Goodyear and McNeill, 1999; Krupadam 

et al., 2006; Ayas et al., 2007). 

 

The current South African water quality guidelines only reflect the potential 

biological effects of dissolved metals in the water column. These guidelines do not 

take into account for the chemicals associated with settled sediments that have the 

potential to be remobilised should environmental conditions change(Holmes, 1996a, 

1996b, 1996c, 1996d; Gordon and Muller, 2010). There has been some work in 

developing and, ultimately, implementing local sediment quality guidelines (SQGs), 

but the study has not yet been concluded (Gordon and Muller, 2010). For this reason, 
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the National Oceanic and Atmospheric Administration (NOAA) SQGs were used in 

this study, as these are integral in the formulation of the South African SQGs (NOAA, 

1999; Gordon and Muller, 2010). SQGs are used to interpret the contamination of 

heavy metals in sediment considering they exceed the set guideline values. Effects 

Range-Low (ERL) indicates concentrations below which adverse effects rarely occur, 

or are rarely observed, whilst Effects Range-Median (ERM) values represent 

concentrations above which adverse effects frequently occur(NOAA, 1999). The 

afore-mentioned effects are based on measures of potential biological effects 

associated with toxicants in freshwater sediments and their toxicity on the biota (Long 

and Morgan, 1990; Long et al., 1995; NOAA, 1999). SQGs do not differentiate 

between natural and anthropogenic sources of metals, but define them at 

concentrations above which adverse biological effects may occur(Burton, 2002; 

MacDonald et al., 2003). SQGs will be usedto evaluate heavy metal concentrations in 

the sediments of the Msunduzi River Catchment, KwaZulu-Natal, South Africa 

(figure 1.1).  

 

Human health risks associated with regular use and exposure to the Msunduzi River 

water has not been adequately documented. Microbiological testing has been the 

primary focus of water quality determination in the Msunduzi as the river is used for 

recreational, domestic and irrigation purposes(Bartholomew and Sivparsand, 2013; 

Gemmell and Schmidt, 2013). There have also been socio-economic studies on one of 

Msunduzi River’s tributaries, the Bayne’s Spruit (Rivers-Moore and Hay, 1998; 

Neysmith and Dent, 2010). However, there have been no published chemical studies, 

particularly, heavy metal testing, on the Msunduzi River or any of its tributaries.The 

heavy metals of interest, for bioavailability studies, are cadmium (Cd), copper (Cu), 

chromium (Cr) [as Cr(III) and Cr(VI)], nickel (Ni), lead (Pb), and zinc (Zn). These 

trace metals were selected because of their potential for human exposure and 

increased health risk (Trefry et al., 1985; Daskalakis and O'Connor, 1995; John and 

Leventhal, 1995; Santschi et al., 2001; Fleeger et al., 2003; Powell and Alexander, 

2003). Aluminium (Al), Fe and Mn were also assessed for correlation purposes. The 

overall aim of this study was to assess heavy metal concentrations in the water as well 

as metal partitioning patterns in the surface sediments of the Msunduzi River 
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Catchment and relate these to potential mobility, toxicity and bioavailability of the 

metals. 

 

3.4 METHODS 

3.4.1 SITE DESCRIPTION 
The Msunduzi River Catchment flows through the city of Pietermaritzburg in the 

KwaZulu-Natal Province (figure 3.1). The topology of the catchment is mountainous 

with various hills, lowlands, wetlands, marshes and flat areas (Gericke et al., 2004).  

In this study, a targeted sampling design was employed in which sites were 

intentionally selected for their location relative to suspected sources of contamination 

and for their accessibility. Sampling started downstream of Henley Dam and ended 

downstream of the wastewater treatment works. 

 

3.4.2 SAMPLING AND ANALYSIS 
A once-off sampling event occurred in September 2013. One 50 mL water sample and 

one sediment sample (shovel collection at a depth not more than 5cm) was collected 

at each chosen site. In total, 27 water and 27 sediment samples were collected (16 

sites along the Msunduzi River, 8 sites along the Bayne’s Spruit and 3 sites along the 

Slangspruit).Only certain samples were reported on in this study to make on 

observation on land use effect on the water and sediment quality (Figure 

3.1).Concentrations for all metals at all sites can be found in Appendix A for water 

and Appendix B for surface sediments. Chemicals used were of analytical grade 

purchased from Sigma Aldrich.Water and sediment samples were quantified using 

Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) (Optima 

5300 DV with AS 90 plus Autosampler) with axial/radial view. Analysis was done in 

three replicates (n=3) for each sample. Where applicable, the mean, standard 

deviation and percentage relative standard deviation, were calculated. One-way 

analysis of variance (ANOVA) was used to determine statistical significance 

(p<0.05).One-way ANOVA is a statistical procedure used to determine whether there 

were any significant differences between the means of two or more independent sets 

of data and this is done by analysis of variance. The method is useful in revealing 
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important information, particularly in interpreting experimental outcomes and to 

determine the influence of some factors on other parameters (Ostertagova and 

Ostertag, 2013). 

 

3.4.2.1 WATER SAMPLES AND PHYSICO-CHEMICAL PARAMETERS 

The water sampling technique that was employed is a standard method as set out by 

the United States Environmental Protection Agency (US-EPA) (2001). Polyethylene 

bottles (50 mL) were rinsed with deionised water prior to sampling. At each sampling 

site, the bottles were rinsed with the surface water sample before collecting a sample. 

Three drops of nitric acid were added to each sample before being stored in ice. The 

in situ water quality parameters (temperature, total dissolved solids, pH, redox 

potential and electrical conductivity) were measured using hand-held pH and 

conductivity meters. In the laboratory, the water samples were passed through a 0.45 

µm membrane filter and stored in 15 ml vials prior to ICP-OES analysis. 

 

3.4.2.2 SURFACE SEDIMENT SAMPLES 

All sediment sampling techniques used are those set out by the U.S. EPA (2001). In 

the laboratory, sub-samples from each site, were air-dried. The dry sediment sub-

samples were sieved to <90 µm. The first step in total metal analysis involved 

weighing 0.5 ± 0.0001 g of sediment into Teflon vessels and digesting at room 

temperature by adding 10 mL aqua regia (HNO3:HCl, 1:3) in a fume cupboard. The 

samples were then digested using a MARS 6 Microwave digestion unit. The final step 

involved decanting the supernatant into 50 mL volumetric flasks and making it up to 

the mark with Millipore water.  

 

3.4.2.3 SEQUENTIAL EXTRACTION 

Approximately 0.5 ± 0.0001 g of sieved sample was used for mobility and 

bioavailability studies, using the three-step BCR sequential extraction (Rauret et al., 

2001). The first step in the extraction procedure involved selective extraction of 

metals bound to the exchangeable/carbonate fraction where 20 mL of acetic acid 
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                         Figure 3.1: Distribution of sample sites on the Msunduzi, Slangspruit and Bayne’s Spruit 

rivers 
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Table 3.1: Description of Msunduzi, Slangspruit and Bayne’s Spruit sampling 

sites 

River Sampling  
site 

Land use 
category 

Site description 

 
 
 
 
 
 
 
 
 
 
 
 
 
Msunduzi 

MS1 Rural Reference site for the Msunduzi River, 
downstream of Henley dam wall and rural 
areas of Chaewe and Ezibomvini 
 

MS3 Urban Dense urban area of Edendale 
 

MS4 Urban Dense urban area of Edendale and downstream 
of Sinathingi Stream confluence with 
Msunduzi River 
 

MS6 Urban Adjacent to existing tannery and old tannery 
ponds 
 

MS7 Urban/ 
Industrial 

Downstream of tannery and urban area of 
Edendale A 
 

MS8 Industrial Downstream of metal works factory 
 

MS9 Industrial/ 
Commercial 

Camps Drift downstream of industrial complex 
and Slangspruit confluence; slowest river flow 
compared to upstream sites 
 

MS10 Urban Dense urban area of Pelham and site was 
observed to be area of illegal dumping of waste 
during sampling trip 
 

MS12 Urban Downstream of Dorpspruit River (which 
passes through an industrialised area) 
confluence with Msunduzi River 
 

MS14 Urban Downstream of landfill site and adjacent to 
wastewater treatment works and adjacent to 
urban area of Sobantu 
 

MS15 Urban/ 
Industrial 

Adjacent to wastewater treatment works and 
downstream of Sobantu 
 

MS16 Rural Downstream of wastewater works and 
Hollingwood rural area 

Slangspruit SL1 Urban Downstream of urban area of Edendale D 
 

SL2 Industrial Adjacent to industrial area of Masons Mill and 
urban area of The Grange 
 

SL3 Industrial Adjacent to industrial area of Camps Drift 
 BA1 Urban Reference site for Bayne’s Spruit upstream of 

industrial area 
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River Sampling  
site 

Land use 
category 

Site description 

 
 
 
 
 
Bayne’s 
Spruit 
 
 
 
 

 
BA3 Urban Dense urban area of Rosedale and industrial 

area 
 

BA4 Industrial Dense urban area and industrial area, 
downstream from small stream coming from 
quarry near Panorama Gardens 
 

BA5 Industrial Downstream and adjacent to industrial area 
BA6 Industrial Dense urban settlement area of Eastwood and 

downstream of industrial area 
 

BA8 Industrial/ 
Residential 

Dense urban areas of Eastwood and Sobantu 
and downstream of industrial area of 
Willowton 

 

acetic acid (0.11 mol.L-1) was added to the sample and shaken for 16 hours. The 

second step was carried out to selectively extract of metals bound to the Fe-Mn 

oxyhydroxides fraction where 20 mL hydroxyl ammonium chloride (0.5 mol.L-1) was 

added to the sample shaken for 16 hours. The third step involved selective extraction 

of metals bound to the organic matter/sulphide fraction where 5 mL hydrogen 

peroxide (8.8 mol.L-1) was added to the sample and digested at 85 °C until almost dry, 

followed by 25 mL ammonium acetate (1.0 mol.L-1, pH = 2) and shaken for 16 hours. 

The residual fraction was determined by extracting concentrations from steps one, two 

and three from the total metal concentration levels determined in a separate step. 

Analytical accuracy was determined using a certified standard reference material 

(CRM) BCR-701: Lake Sediment. 

 

3.5 RESULTS AND DISCUSSION 

3.5.1 WATER SAMPLES AND PHYSICO-CHEMICAL PARAMETERS 
Cd, Cr and Ni were below the instrument detection limits in all samples and the 

results are omitted from this chapter. There were higher concentrations of Pb in the 

water, particularly in the Msunduzi and Bayne’s Spruit, compared to Zn and Cu. The 

physico-chemical parameters are presented (table 3.2).  
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Table 3.2: In situ physical and chemical parameters measured in the water 

Site Temperature 

(° C) 

Total Dissolved 

Solids (mg.L-1) 

pH Electrical 

Conductivity 

(µS.cm-1) 

MS1 15.1 69 5.9 118 

MS2 14.2 69 6.25 118 

MS3 14.5 75 6.5 130 

MS4 16 88 7.38 151 

MS5 16.6 94 7.48 162 

MS6 16.6 102 7.4 177 

MS7 16.3 104 6.01 180 

MS8 16.1 107 7.15 184 

MS9 18.9 136 7.02 234 

MS10 17.5 132 7.05 228 

MS11 18.6 133 7.16 228 

MS12 19.1 132 6.67 224 

MS13 18.9 133 6.56 228 

MS14 18.7 137 6.67 236 

MS15 18.3 152 5.75 263 

MS16 19.5 324 5.55 557 

BA1 21.8 164 5.86 298 

BA2 20.9 185 5.76 319 

BA3 20.7 152 5.76 264 

BA4 18.1 319 6.27 554 

BA5 14.3 119 6.17 205 

BA6 15.2 118 6.39 203 

BA7 15.4 122 6.4 211 

BA8 14.9 124 6.29 214 

SL1 21.7 224 7.28 384 

SL2 21.4 225 7.3 385 

SL3 21.7 237 6.71 406 

 

The water temperature increased due to the time of the day when samples were 

collected. The highest pH throughout the catchment was pH 7.48 at MS5 and the 

lowest was pH 5.55 at MS16. Total Dissolved Solids (TDS) increased along the 
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Msunduzi River where MS1 had a value of 69 mg.L-1 and MS16 was 324 mg.L-1. In 

the Bayne’s Spruit, values were constant with a peak at BA4. Electrical Conductivity 

(EC) followed a similar trend in both rivers as the two parameters have a direct 

relationship with another and measurements are recorded as a ratio (TDS:EC) 

(Holmes, 1996b, 1996c; van Niekerk et al., 2014). TDS:EC is a measure of the 

concentration of material dissolved in water and if TDS:EC values are too high or too 

low, it can affect biological organisms in the river (Holmes, 1996a; Murphy, 2007). 

Factors that may affect increased TDS:EC at the downstream Msunduzi sites and BA4 

in the Bayne’s Spruit, that led to increased TDS:EC readings, include urban run-off, 

agricultural activities and wastewater treatment effluent (Murphy, 2007). 

 

3.5.2 CERTIFIED REFERENCE MATERIAL ANALYSIS (CRM) 
In order to validate and evaluate the results, the extracted sample concentrations had 

to be correlated with the CRM data values (table 3.3). Heavy metal recoveries were 

within the acceptable ranges for steps two and three of the BCR 701 extraction, 

although there was over-recovery at some instances due to matrix effect and analytical 

errors. There may not have been complete destruction of all the metal-containing 

minerals in the sediment by the selected reagent. There may also have been 

precipitation of extracted zinc and copper as insoluble compounds. It is reasonable to 

expect a small loss of analyte due to the number of transfers of the sample residue 

between steps. Matrix effects may have hindered the instrumental analysis of the 

samples depending on the geochemical makeup of the sediment.  

 

3.5.3 SEDIMENT SAMPLES 
The Msunduzi River was the main focus of the partitioning and mobility study. The 

impacts of the two tributaries, Slangspruit and Bayne’s Spruit, was also investigated 

(figures 3.2 to 3.7). Organic matter content, redox values and formation of Fe-Mn 

oxyhydroxides (depicted as total Fe and Mn) are important physico-chemical 

parameters that assist in evaluating the geochemical partitioning of metals within the 

four sediment fractions (table 3.4). 
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Table 3.3: Concentrations and recovery of heavy metals extracted from the 

certified reference material (BCR 701: Lake Sediment) where all values are 

represented as mean ± standard deviation 

 Element  Experimental 
values (mg.kg-1) 

Certified values 
(mg.kg-1) 

Recovery 
(%) 

Step 1 
(Exchangeable 
fraction) 

Cd 8.19  ±  1.26 7.34  ±  0.35 112 
Cr 4.42  ±  0.01 2.26  ±  0.16 195 
Cu 57.7  ±  0.89 49.3  ±  1.7 117 
Ni 21.2  ±  1.92 15.4  ±  0.9 138 
Pb 3.72  ±  1.22 3.18  ±  0.21  117 
Zn 202  ±  1.32 205  ±  6.0 98.5 

 
Step 2 
(Reducible: 
bound to Fe-Mn 
oxyhydroxides) 

Cd 7.42  ±  0.1 3.77  ±  0.28 197 
Cr 52.2  ±  1.95 45.7  ±  2.0 114 
Cu 121  ±  4.13 124  ±  3.0 97.6 
Ni 28.9  ±  0.94 26.6  ±  1.3 109 
Pb 130  ±  1.98 126  ±  3.0 103 
Zn 122  ±  1.36 114  ±  5.0 107 

 
Step 3 
(Oxidisable: 
bound to 
organic matter 
and sulphides) 

Cd4 3.89  ±  0.04 0.27  ±  0.06 - 
Cr 148  ±  7.89 143  ±  7.0 103 
Cu 60.1  ±  3.15 55.2  ±  4.0 109 
Ni 17.3  ±  1.11 15.3  ±  0.9 113 
Pb 10.5  ±  0.34 9.3   ±  2.0 113 
Zn 49.6  ±  1.35 46.0  ±  4.0 107 

 

 

Table 3.4: Total Fe, total Mn and organic matter content in the surface 

sediments and redox potential in the water 

 Surface sediments Water 

Site Total Fe (mg.kg-1) Total Mn 

(mg.kg-1) 

Organic matter (%) Redox (mV) 

MS1 45181 2329 12.0 27.5 

MS3 35615 954.1 8.02 30.1 

MS4 36625 953.5 7.92 22.1 

MS6 34286 821.1 5.71 23.5 

MS7 33856 101.7 6.41 60.6 

MS8 29518 570.2 5.18 -1.5 

                                                 
4 There was also an over-recovery of Cd in step three by several orders of magnitude, which hindered 
the validation of those results. 
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 Surface sediments Water 

Site Total Fe (mg.kg-1) Total Mn 

(mg.kg-1) 

Organic matter (%) Redox (mV) 

MS9 32586 739.1 6.79 -3.6 

MS10 31447 779.2 7.56 -0.5 

MS12 31617 846.5 7.87 20.1 

MS14 31567 955 5.78 20.8 

MS15 38494 972.5 4.36 76.8 

MS16 30037 638.3 5.32 85.6 

BA1 37435 990.1 5.59 73.5 

BA3 38324 1698 6.19 85.4 

BA4 37634 1039 3.77 34.5 

BA5 31517 1386 10.8 50.2 

BA6 36105 629.6 10.0 37.7 

BA8 42672 778.3 8.07 42.9 

SL1 36415 2675 4.93 -20.7 

SL2 37195 2999 3.9 -4.4 

SL3 35255 2147 6.18 15.4 

 

Results for Cd show that the total potentially mobile fraction in all three rivers was 

<ERM, apart from site MS1 (figure 3.2). Cd was largely partitioned in the residual 

fraction in all three rivers. Metals associated with the residual fraction have low 

mobility. The partitioning pattern changes at sites BA5, BA6 and BA8. While the 

total metal concentration is not significantly higher, compared to the other Bayne’s 

Spruit sites, the partitioning pattern is different in that the oxidisable fraction is >ERL. 

Organic matter % in the Bayne’s Spruit was highest (average of 7.4%) compared to 

most of the sites in all three rivers except for MS1 and MS12. The higher overall 

mobility at BA6 may indicate anthropogenic input at this site and the effects are seen 

downstream as well. 

 

In freshwater systems, the redox potential controls the chemical association of Cd 

whereas the pH affects the stability of the metals chemical forms (Jain, 2004). 

However, remobilisation of Cd in the oxidisable fraction is unlikely as Cd mostly 

occurs as metal-sulphides. Also, positive redox values in the Bayne’s Spruit favoured  
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Figure 3.2: Fractionation of Cd in the sediment samples as determined by the 

three-step BCR procedure 

 

the formation of stable metal complexes. Cd minerals are very rare in the Earth’s crust 

and the metals sources in the rivers are likely to be associated with anthropogenic  

activities (Stoeppler, 1991). It is a highly toxic metal so any remobilised forms in the 

rivers would be harmful to freshwater biota and humans (Jarup, 2003). 

 

The partitioning pattern of Cr was similar in all three rivers (figure 3.3). The total 

potentially mobile fraction did not exceed the ERL and ERM (value of 370 mg.kg-1). 

Most of the Cr was associated with the residual fraction which is unavailable for 

biological uptake. The second most abundant form was Cr associated with 

sulphides/organic matter. The highest concentration of the oxidisable fraction was 

found at site MS7 (organic matter content was 6.4%) (Kotas and Stasicka, 2000). In 

waters of moderately acidic or neutral pH, Cr is found as non-toxic, but also relatively 

insoluble. Cr(III) hydroxy complexes. The pH values at all sites were neutral and 

redox potential was positive, meaning that conditions were oxidising and anaerobic, 

allowing for the formation of stable metal complexes.  
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Figure 3.3: Fractionation of Cr in the sediment samples as determined by the 

three-step BCR procedure 

 

The total potentially mobile forms of Cu were <ERM (value of 270 mg.kg-1) (figure 

3.4). Cu was associated with all geochemical fractions, but in all three rivers, the 

residual fraction was the primary association for Cu, followed by the reducible 

fraction, then the oxidisable fraction and lastly was the exchangeable fraction. At all 

three Slangspruit sites there was no significant difference (p>0.05) in the total Cu 

concentrations. In the Msunduzi, there was an increase in total, oxidisable and 

reducible Cu at MS12 (organic matter content of 7.9%), where a potentially mobile 

fraction is now >ERL, compared to upstream sites. This is linked to industrial 

activities from the tributary confluence upstream.  In the Bayne’s Spruit, BA3, BA6 

and BA8 had higher total Cu compared to the other Bayne’s Spruit sites. Cu was 

bound to sulphides/organic matter (oxidisable fraction) which was >ERL at sites BA3 

and BA5, while reducible and oxidisable forms of Cu were >ERL at site BA6 and  
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Figure 3.4: Fractionation of Cu in the sediment samples as determined by the 

three-step BCR procedure 

 

BA8. Fe concentrations in the Bayne’s Spruit were lowestatBA5 and were the highest 

at BA8, while Mn concentrations fluctuated with the lowest concentrations at BA8, 

when comparing Bayne’s Spruit sites. The corresponding reducible fraction was not 

affected by the Fe-Mn content at all Bayne’s Spruit sites. Metals in the reducible 

fraction can be released with a decrease in pH or if redox potential changes the 

sediment from oxic to anoxic conditions (Turki, 2007).  

 

Redox values were positive in the Bayne’s Spruit and the higher organic matter 

content at BA6 and BA8 and this corresponded with the increased concentration of 

the oxidisable fraction at these sites. Industries such as the combustion processes, 

refineries and the electric industry are possible Cu sources, particularly in the 

Msunduzi and Bayne’s Spruit(Chen et al., 2007).  
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Figure 3.5: Fractionation of Ni in the sediment samples as determined by the 

three-step BCR procedure 

 

Ni is a non-essential and toxic element which is mostly bound within the non-mobile 

crystal lattice in sediments (figure 3.5) (Sunderman and Oskarsson, 1991). Total 

potentially mobile forms of Ni were all <ERM (value of 51.6 mg.kg-1) and the ERL in 

all three rivers. Ni displayed a similar partitioning pattern between the four 

geochemical phases in that the metal was mostly associated with the residual fraction. 

Concentrations of Ni bound in oxidisable, reducible and exchangeable fractions 

increased in the Slangspruit and Bayne’s Spruit when compared to the Msunduzi. 

Similar to Cu, at all three Slangspruit sites there was no significant difference 

(p>0.05) in the partitioning pattern of the potentially mobile fractions as well as total 

Ni. Compared to the other Bayne’s Spruit sites, BA4 (organic matter content of 3.8 % 

and redox value was 34.5 mV) had lower concentrations of total Ni and potentially 

mobile Ni.  The reason may be is that BA4 is in an industrial area and the difference 

in partitioning could be due to changes in input to that system from industries such as 

smelters and refineries (Smith, 1985; Moore et al., 2011). Additionally, physico-

chemical parameters of the water at this site may account for the different 

geochemical pattern compared to the other sites. 
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Figure 3.6: Fractionation of Pb in the sediment samples as determined by the 

three-step BCR procedure 

 

The total potentially bioavailable forms of Pb were <ERM (value of 218 mg.kg-1). Pb 

was mostly bound to Fe-Mn oxyhydroxides in the reducible fraction in all three rivers 

(figure 3.6). Fe-Mn oxyhydroxides are important scavengers of Pb in sediments and 

Pb is able to form stable complexes with Fe-Mn oxyhydroxides(Li et al., 2001; Wong 

et al., 2007). Metals in the reducible fraction can be released from the sediment if the 

pH decreases or if the redox potential changes (from oxidising to reducing) (Turki, 

2007). In the Msunduzi, total Pb at sites MS10, MS12 and MS14 are >ERL. The 

reducing conditions at MS9, MS10 and MS12 (negative redox values) favours the 

release of metals from sediment fractions. Organic matter content was also higher at 

these sites compared to downstream sites. Sampling site MS10 is adjacent to a 

residential area and elevated concentrations may come from sewage or illegal 

dumping. Sampling site MS12 is downstream of a Dorpspruit River confluence where 

possible Pb sources include smelting processes, fertilisers and the paint and dye 

industry (Sheikh et al., 2013). Slangspruit had the lowest total and potentially mobile 

Pb concentrations and all values were <ERL, although SL1 and SL2 had low redox 

values and conditions may favour metal remobilsation.  
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Most of the Bayne’s Spruit sites had lower total Pb when compared to MS16 and the 

sites downstream. Site BA6, which is downstream from most industrial complexes, 

had significantly higher total Pb, as well as Pb associated with Fe-Mn oxyhydroxides, 

when compared to the Msunduzi and Slangspruit. Most probably from the nature of 

the Pb-based compounds discharged from industrial processes such as sewage effluent 

and the paint and dye industry (Zoumis et al., 2001). Naturally occurring lead 

minerals are not very mobile under normal environmental conditions, the sources of 

Pb are likely anthropogenic in nature (Jain, 2004). Mn at BA6 was at lower 

concentrations compared to other Bayne’s Spruit sites and Fe was not significantly 

higher compared to the other Bayne’s Spruit sites. 

 

Similar to Ni, the partitioning pattern of Zn was bound in all sediment fractions as the 

Zn has amphoteric properties (figure 3.7) (Grosbois et al., 2006). There was higher 

total and exchangeable fraction concentrations of Zn compared to the other metals. 

The exchangeable fraction is the most mobile fraction and Zn may be released if pH is 

decreased (Turki, 2007). In the Msunduzi River, the total potentially bioavailable 

fraction did not exceed the ERL. Sites MS12, MS14 and MS15 had higher total and 

potentially mobile Zn concentrations compared to upstream sites. These sites are 

impacted by industrial activities (smelters and metal manufacturing) and wastewater 

effluent (Li et al., 2001). The Zn in the Slangspruit sediments were mainly bound in 

the residual fraction and total potentially mobile fractions were <ERL. The pH values 

(table 3.2) in the Msunduzi were neutral so the remobilisation of the exchangeable 

fraction was unlikely.  

 

In the Bayne’s Spruit, concentrations of total, exchangeable and reducible forms of Zn 

were the highest total at BA5, BA6 and BA8 and concentrations were >ERL. BA5 is 

downstream from residential areas and is adjacent to dense industrial complexes, as is 

BA6. BA8 is downstream from all activities impacting the Bayne’s Spruit. Most Zn 

compounds are insoluble in water and may account for the high total concentrations in 

the sediments. Metals with an anthropogenic source are mainly associated with the 
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Figure 3.7: Fractionation of Zn in the sediment samples as determined by the 

three-step BCR procedure 

 

 

exchangeable, reducible and oxidisable fractions (Turki, 2007). Fe-Mn oxyhydroxides 

in the reducible geochemical fraction, are major carriers of Zn in freshwater sediments 

and this may account for the increased concentration of Zn in this fraction compared 

to the Msunduzi and Slangspruit (Li et al., 2001). The pH in the Bayne’s Spruit was 

<6 and a decrease in the pH, due to industrial effluent, may result in the release of 

exchangeable Zn, which is present in higher concentrations at BA5, BA6 and BA8 

compared to upstream sites. At BA5 and BA6, Fe concentrations were lower 

compared to the concentration at BA8, which was the highest in the river. Mn 

concentrations were constant. Organic matter content was the highest at BA5 (10.8%) 

and decreased at BA6 and BA8. Fe-Mn content and organic matter content may 

account for the increased concentration of potentially mobile Zn compared to the 

other Bayne’s Spruit. 
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3.6 CONCLUSION 
Total and mobile metal concentrations in the sediments were assessed against NOAA 

SQGs. With respect to ERL and ERM values of the SQG, Bayne’s Spruit had poor 

sediment quality compared to Msunduzi and Slangspruit. The metals were primarily 

associated with the residual fraction except for Pb in all three rivers and Cu and Zn in 

the Bayne’s Spruit. Sites impacted by industrial activities were areas of concern in the 

Msunduzi Catchment, particularly in the Bayne’s Spruit. The metal of concern was Pb 

and the sediments are a potential source of long-term Pb pollution in the Catchment. 

The research served as a baseline study for total and bioavailable metal status of the 

Msunduzi River Catchment. 
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4 SPATIAL DISTRIBUTION AND VERTICAL 
PROFILE OF SEDIMENTARY HEAVY METALS IN 

THE MSUNDUZI RIVER CATCHMENT, 
KWAZULU-NATAL, SOUTH AFRICA 

 

4.1 RATIONALE 
There is a gap in the knowledge in terms of heavy metal pollution in the Msunduzi 

River Catchment, KwaZulu-Natal. Determining the source of heavy metal pollution 

can be done by assessing the spatial distribution pattern of metals in the water and 

sediments. Vertical distribution patterns, coupled with particle size distribution 

analysis can be used to determine historical metal pollution and changes in flow 

regimes that may transport pollutants down a river system. The objective was to 

investigate the spatial and vertical distribution pattern of metals in the sediments of 

the Msunduzi River Catchment. Particle size distribution and organic matter 

composition can be used to infer relationships between the metals and physico-

chemical parameters. Normalising with a metal such as aluminium assists in 

determining whether metal pollutants are from natural or anthropogenic sources. 

 

4.2 ABSTRACT 
Heavy metals are one of the most persistent and noxious pollutants in freshwater 

environments. Sediments in freshwater ecosystems act as a sink for heavy metals, 

where the metals are continuously sequestered between the sediment surface and 

overlying water column. As sediments accumulate on the river bed, they form a 

vertical profile of the trapped heavy metals in that system. Surface sediments illustrate 

the most recent anthropogenic inputs of heavy metals into freshwater systems, while 

undisturbed profiles are advantageous in that they preserve the historical sequence of 

pollution intensities. Surface sediments in the Msunduzi River and Bayne’s Spruit, 

KwaZulu-Natal, South Africa, as well as a sediment core from the Msunduzi, were 

collected. The spatial distribution of heavy metals [cadmium (Cd), chromium (Cr), 

copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn)], was determined by analysing the 

heavy metals in the >90 µm sediment fraction. In both the Msunduzi River and 
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Bayne’s Spruit, spatial distribution of Cd and Ni was similar, while Cu, Pb and Zn 

had similar distribution patterns. Particle size distribution revealed that the flow 

regime of the river changed and the sediment eventually settled. Most of the heavy 

metal pollution from surrounding areas has been deposited downstream. This serves 

as a baseline study for heavy metal pollution in the Msunduzi River, Slangspruit and 

Bayne’s Spruit. Further work on possible dating of the core sample, analysis of 

industrial effluent and comparison of other pollutants (organics and/or 

microbiological) with heavy metal pollution is needed. 

 

Keywords: Vertical distribution, accumulation, normalisation, geochemical baseline, 

baseline study 

 

4.3 INTRODUCTION 
Pollution of freshwater environments has been intensively studied, with heavy metals 

recognised as being toxic to freshwater organisms even at moderate concentrations 

(Burton, 1991; Biney et al., 1994; Connell et al., 1999). Heavy metals may directly 

jeopardise the development and reproduction of an organism that absorbs and 

accumulates them (John and Leventhal, 1995; Aderinola et al., 2009; Appenroth, 

2010; Kumar et al., 2010). As sediments can be particularly useful in detecting 

pollution sources they can be used in the selection of critical sites for routine water 

sampling (Förstner and Salomons, 1980; Salomons and Forstner, 1980; Valette-Silver, 

1993). Sediments do not only behave as a sink for heavy metals, but may also act as 

source of heavy metal pollution in freshwater environments. This occurs when metals 

are remobilised from the bottom sediments when the chemistry of the overlying water 

column, and surrounding environments, changes(Tessier et al., 1979; Tessier and 

Campbell, 1987; John and Leventhal, 1995; Jain, 2004; Turki, 2007).Depending on 

the dissolved metal concentrations present, heavy metals have an impact on the 

freshwater ecosystem, on humans using the river for recreational and domestic 

(Holmes, 1996a, 1996b, 1996c, 1996d). 
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Specific local sources such as discharge from smelters, metal-based industries, paint 

and dye formulators, petroleum refineries, as well as effluents from chemical 

manufacturing plants, may lead to heavy metal accumulation in sediments(Smith, 

1985; Callender, 2003; Dinelli et al., 2005). During periods of reduced flow rate, 

suspended material settles to the river bed, becoming partially incorporated into the 

bottom sediment. Thus, spatial distribution indicates local sources of heavy metal 

input and the sources can be determined and further investigated (Bednarova et al., 

2013; Qiao et al., 2013; Shanbehzadeh et al., 2014). Due to their large adsorption 

capabilities, fine-grained sediments tend to be a major repository for heavy metals, 

where metal pollutants are stored and can later be investigated as sediment cores 

(Fabbri et al., 2001; Léopold et al., 2012). 

 

Undisturbed vertical sediment cores often preserve the historical sequence of 

pollution intensities, providing reasonable estimates of the background level and input 

variations of a pollutant over an extended period (Valette-Silver, 1993; Aleksander-

Kwaterczak and Prosowicz, 2007; Cantwell et al., 2007; Zhang et al., 2013). In the 

1970s, researchers began to use sediment cores to reconstruct the history of coastal 

pollution (Chow et al., 1973; Bruland et al., 1974; Aller and Cochran, 1976; Goldberg 

et al., 1976; Goldberg et al., 1977; Goldberg et al., 1979). Sediment cores have also 

been used to study the behaviour of metals in different environments (Förstner and 

Salomons, 1980; Valette-Silver, 1993; Li et al., 2001). Research expanded to 

freshwater lakes because the cored sediment material in lacustrine environments is 

usually undisturbed, fine-grained, and collected with a relatively rapid sedimentation 

rate (Beck et al., 1990; Valette-Silver, 1993; Catallo et al., 1995; Aleksander-

Kwaterczak and Prosowicz, 2007; Wang et al., 2012; Mwamburi, 2013). However, 

because of their low buffering capacity, lakes can be very sensitive to acidification 

processes (Valette-Silver, 1993). Studies of pollution, especially heavy metal 

pollution, in rivers has attracted attention for a long time because sediments are an 

important sink for pollutants (Ramesh et al., 1990; Lim and Kiu, 1995; Mwamburi, 

2003; Jain, 2004; Turki, 2007; Ogoyi et al., 2011; Léopold et al., 2012).  
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To better understand the data from sediment cores, dating techniques are often 

employed to provide a chronological framework for the observed trends (Valette-

Silver, 1993; Bednarova et al., 2013). However, dating techniques such as accelerator 

mass spectrometry (AMS) radiocarbon dating are costly, thus, particle size 

distribution (PSD) may also be used as an indicator of flow strength within the 

depositional freshwater environment (Rahman and Plater, 2014). It is imperative to 

base heavy metal analyses, particularly those from river sediments, on a standardised 

procedure with regard to particle size, as there is a marked decrease in the content of 

metals as sediment particle size increases (Callender, 2003; Mwamburi, 2003; Kiurski 

et al., 2010; Sabra et al., 2011; Sadeghi et al., 2012; Mwamburi, 2013). PSD can 

reveal a relationship between the deposited sediment and metal concentrations 

associated with a certain sediment fraction. Sedimentation may be affected by 

anthropogenic activities that change the flow regime of the river at any given time. 

Such a phenomenon may be linked to natural variability, but may also be accelerated 

by anthropogenic activities (Walling, 1997; Zhang et al., 2006; Sadeghi et al., 2009; 

Sadeghi et al., 2012). 

 

Although heavy metal research has received increasing attention in South Africa, 

there is no data on the comprehensive state of heavy metal pollution in the Msunduzi 

River Catchment, KwaZulu-Natal, South Africa (figure 4.1). The Msunduzi River 

Catchment drains the Msunduzi Local Municipality, which includes the highly 

urbanised and industrialised city of Pietermaritzburg. Most of the research in the 

Msunduzi River Catchment has been focused on socio-economic issues as well as 

microbiological studies (Rivers-Moore and Hay, 1998; Gericke et al., 2004; 

Bartholomew and Sivparsand, 2013; Gemmell and Schmidt, 2013). Due to recent and 

historical anthropogenic activities in the catchment, determining the heavy metal 

status is important. The main objective of this study was to investigate the spatial and 

vertical distribution of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead 

(Pb) and zinc (Zn) in the sediment samples, as well as to investigate the heavy metal, 

organic matter content and particle size distribution in the sediment core. 
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4.4 METHODS 

4.4.1 SITE DESCRIPTION 
This study was conducted in the Msunduzi District Municipality, KwaZulu-Natal 

Province, South Africa, along the Msunduzi River and Bayne’s Spruit River (figure 

4.1). The main factor for sample site selection (16 sites on the Msunduzi River and 8 

sites on the Bayne’s Spruit River) was to investigate the impact of land use activities 

along the two rivers. Sampling site accessibility was a secondary factor. 

 

4.4.2 SAMPLING 
A once-off sampling event occurred in September 2013. One water and one surface 

sediment sample was collected at each site (figure 4.1). The water sampling technique 

that was employed is a standard method as set out by the United States Environmental 

Protection Agency (US-EPA) (U.S. EPA, 2001).Polyethylene bottles (50 mL) were 

rinsed with deionised water prior to sampling. At each sampling site, the bottles were 

rinsed with the surface water sample before collecting a final sample. Three drops of 

nitric acid were added to each sample before being stored in ice. In the laboratory, the 

water samples were passed through a 0.45 µm membrane filter and stored in 15 ml 

vials prior to ICP-OES analysis. The in situ water quality parameters were measured 

onsite using hand-held pH meter and conductivity meters. The surface sediment 

samples (0 – 15 cm deep) were collected with a plastic grab sampler along the 

Msunduzi and Bayne’s Spruit Rivers and transferred to polyethylene bags, labelled 

and stored for further analysis in the laboratory. For the full metal concentration 

results at all sites for water and surface sediments, refer to Appendix A and B, 

respectively.  One 1.5 m sediment profile was collected at site MS8 (figure 4.1) using 

a 5 cm diameter gouge auger. The sediment profile was stored horizontally in plastic 

tubes and wrapped with plastic and foil to minimise dehydration and prevent mixing 

of sediments. Site MS8 is downstream of a metal works and other industries. 

 

4.4.3 SAMPLE ANALYSIS 
All chemicals used were of analytical grade purchased from Sigma Aldrich. Water 

and sediment samples were quantified using Inductively Coupled Plasma-Optical 
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Emission Spectroscopy (ICP-OES) (Optima 5300 DV with AS 90 plus Autosampler) 

with axial/radial view. Analysis was done in three replicates (n=3) for each sample. 

Where applicable, the mean, standard deviation and percentage relative standard 

deviation, were calculated. One-way analysis of variance (ANOVA) was used to 

determine statistical significance (p<0.05). One-way ANOVA is a statistical 

procedure used to determine whether there were any significant differences between 

the means of two or more independent sets of data and this is done by analysis of 

variance. The method is useful in revealing important information, particularly in 

interpreting experimental outcomes and to determine the influence of some factors on 

other parameters (Ostertagova and Ostertag, 2013). 

 

4.4.3.1 TOTAL METAL CONCENTRATIONS IN THE SURFACE SEDIMENTS AND SEDIMENT CORE 

Surface sediment sub-samples from each site, were placed in plastic dishes to increase 

the surface area, and then air-dried in a fume cupboard. The dry sediment samples 

were ground with pestle and mortar to break down the larger particles and then sieved 

using mesh screens to the <90 µm fraction. The sediment profile from site MS8 was 

sliced at differing intervals into 60 sub-samples using a plastic spatula that was 

cleaned between each sub-interval to avoid cross contamination. Sediment core sub-

sampling resolution was determined based on the focus of the study. From the top, the 

sediment core (0 cm) to a depth of 15 cm, the sediment core was sliced every 1 cm. 

 

From a depth of 15 cm to a depth of 49 cm the sediment profile was sliced every 2 

cm. From 49 cm to 100 cm the sub-samples were obtained by slicing every 3 cm. 

From 100 cm to 144 cm the sediment profile was sliced every 4 cm. The sub-samples 

were air dried in a fume hood and then sieved to the <2000 µm fraction. Acid 

digestion with 10 ml aqua regia (HNO3:HCl, 1:3) was performed on 0.5±0.0001 g of 

sub-sample. Samples were digested using a MARS 6 Microwave digestion unit. Total 

metal concentrations were quantified using ICP-OES. Correlations of spatial 

distribution with physico-chemical parameters, as well as comparisons of vertical 

distribution of metals (Cr, Cu, Ni, Pb and Zn) to aluminium (Al) concentrations were 

investigated. Correlation was computed to establish the existence of a significant 
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Figure 4.1: Map showing sample sites on the Msunduzi and Bayne’s Spruit 

Rivers 
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linear relationship between spatially distributed heavy metals in the data sets and 

relate these to potential natural or anthropogenic sources. 

 

4.5 RESULTS AND DISCUSSION 

4.5.1 TOTAL METAL CONCENTRATIONS IN THE WATER 
Cd, Cr and Ni were not detected by the ICP-OES instrument during water sample 

analysis and were omitted from the results (table 4.1). Below D/L means that the 

metals in that sample were below the detection limit of the instrument. 

 

Targeted water quality guidelines for Cu, Pb and Zn for different uses are presented 

(table 4.2).Cu concentrations were less than the targeted water quality value in all 

three rivers. Pbconcentrationswere greater than theaquatic ecosystems guideline 

values in the Msunduzi and was at a level that may be harmful to organisms. In the 

Bayne’s Spruit, metal concentrations atBA6, BA7 and BA8 were greater than the 

aquatic ecosystems guideline values and in the Slangspruit, metal concentrations were 

below the guideline values. In terms of domestic use, Cu and Zn were measured in 

mg.L-1 in the guidelines, but the metals still < targeted water guideline for domestic 

use at all sites. There are no targeted water quality concentrations for metals with 

repsect to recreational use. Water used for agriculture has targeted water quality 

concentrationsin mg.L-1 for all metals, and there were no metals, at any site, that 

exceeded the acceptable limits. The only guidelines that were exceeded were the 

targeted water quality guidelines for aquatic ecosystems. 

 

Table 4.1: Heavy metals detected in the water samples 

Site Copper (µg.L-1) Lead (µg.L-1) Zinc (µg.L-1) 

MS1 0.0592 4.527 0.81 

MS2 0.0564 1.697 0.796 

MS3 0.0524 0.614 0.512 

MS4 0.0293 0.559 0.215 
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Site Copper (µg.L-1) Lead (µg.L-1) Zinc (µg.L-1) 

MS5 0.0286 0.714 0.37 

MS6 0.0272 0.687 0.232 

MS7 0.0195 3.149 0.254 

MS8 0.019 1.384 0.223 

MS9 0.0187 0.147 0.313 

MS10 0.0145 0.687 0.457 

MS11 0.0139 0.714 0.371 

MS12 0.0146 1.025 0.693 

MS13 0.0121 1.342 0.55 

MS14 0.0236 1.284 0.197 

MS15 0.0244 0.886 0.231 

MS16 Below D/L 0.0565 Below D/L 

BA1 0.0074 0.873 0.143 

BA2 0.0071 0.851 0.146 

BA3 0.0065 0.436 0.246 

BA4 0.0079 0.339 0.478 

BA5 0.0109 0.702 0.578 

BA6 0.0112 1.602 0.662 

BA7 0.011 1.403 0.204 

BA8 0.0073 1.112 0.279 

 

4.5.2 SPATIAL DISTRIBUTION OF HEAVY METALS IN SURFACE SEDIMENTS 
Results of a one-way ANOVA showed that there was no significant difference 

(p>0.05) between the two rivers for each of the heavy metals sampled. The 

Slangspruit River was not considered in the spatial distribution results as the 

concentrations showed no trend (i.e. were constant at all three sites).In the Msunduzi 

River (figure 4.2), site MS1 is one of the most contaminated sites for all of the metals. 

The source of this pollution may be the Henley Dam, upstream from sites MS1 and 

MS2. The bottom waters of the dam may be anaerobic (reducing conditions) and thus 

sequestrate heavy metals from sediments into the water column which in turn are 

transported to sampling sites MS1and MS2, before metals are incorporated into the 

bottom sediment (Audry et al., 2010). Cd and Ni exhibited a similar distribution 

pattern. As both metals are not naturally common in the Earth’s crust, the sources are 



104 
 

Table 4.2: DWAF targeted water quality guidelines for metal concentrations in 

water [adapted from (Holmes, 1996a; 1996b; 1996c; 1996d)] 

Metal Aquatic Ecosystems 
(µg.L-1) 

Domestic 
(µg.L-1) 

Recreational 
(µg.L-1) 

Agriculture 
(Irrigation) 
(mg.L-1) 

Cu 0.3 – 1.4 In mg.L-1 No data ≤ 0.2 
Pb 0.2 – 1.2 0 - 10 No data ≤ 0.2 
Zn ≤ 2 In mg.L-1 No data ≤ 1.0 

 

likely to be anthropogenic (e.g. waste from rural residential areas) (Issa et al., 2011; 

Shanbehzadeh et al., 2014). Cu and Pb also exhibited a similar distribution pattern 

where the two metals had the highest concentration at sampling site MS12.  

 

Upstream of sampling site MS12 is the Dorpspruit River confluence with Msunduzi 

River. The Dorpspruit is flanked by industrial complexes on its banks and may 

account for the elevated metal concentrations at MS12. Cr and Zn were present in the 

highest concentrations in the sediments. Cr is a relatively common element in the 

Earth’s crust, accounting for the higher concentration levels compared to Cd, Cu, Pb 

and Ni. Additionally, South African sediments are known to have the largest 

reservoirs of Cr in the world (Callender, 2003). Zn also had elevated concentrations at 

sampling sites MS10, MS12, MS14 and MS15, compared to the downstream sites. Zn 

sources at the four sites may attributed to wastewater treatment effluent, galvanizing 

and metal manufacturing (Grosbois et al., 2006). 

 

In the Bayne’s Spruit (figure 4.3), metal concentrations at sampling site BA1 had 

expectedly lower concentrations than the downstream sites, as this was in an 

residential area. Within the manufacturing industry in Pietermaritzburg, the leading 

industrial sector is metal manufacturing, followed by agricultural (including food 

processing) and electronic industries (Gemmell and Schmidt, 2013). This may 

account for the increase in metal deposition in the sediments, at sites BA4 to BA7, 

compared to upstream sites. Sampling site BA6 is adjacent to and downstream from 

dense industrial areas from Willowton and Panorama Gardens. Zn concentrations 
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Figure 4.2: Spatial distributions of Cd, Cr, Cu, Ni, Pb and Zn in the surface 

sediments of the Msunduzi River 

 

were the highest in both rivers and also had the same distribution as that of Cu and Pb 

where there were noticeable increases at sampling sites MS12 and BA6.This was not 

expected as the chemistry of Zn is similar to that of Cd, not to Cu and Pb(Connell et 

al., 1999). Consequently it would be expect that the two metals follow similar spatial 

distribution patterns. Cr concentrations were variable in both rivers. Industrial and 

urban activities that historically and recently released metal compounds into the 

receiving environment are of concern in the catchment. 

 

4.5.3 VERTICAL METAL DISTRIBUTION AND PARTICLE SIZE DISTRIBUTION IN THE 

SEDIMENT CORE 
The sediment core was sampled at site MS8, which is downstream for a metal 

manufacturing plant. There was no correlation between metal concentrations in the 

water at MS8 and the sediment core as a high metal concentration in the water sample 

did not result in the sediments (table 4.3). Particle size distribution (as volume 

weighted mean), organic matter content and metal concentrations were analysed in the 

sediment core (figure 4.4).Volume-based results indicate the location of most of the  
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Figure 4.3: Spatial distributions of Cd, Cr, Cu, Ni, Pb and Zn in the surface 

sediments of the Bayne’s Spruit River 

 

mass, in terms of particle sizes, in the sediment core. Results for all metal 

concentrations and organic matter content % can be found in Appendix C and the raw 

data for the Volume-based results in Appendix F. The majority of the total 

particlemass or volume comes from the500 - 150 μm size fraction. These grain size 

ranges belong to sand particles (fine tomedium).Particle size and metal concentrations 

did not exhibit a similar trend in terms of distribution patterns. When metal peaked 

particle size decreased (between 43 – 37 cm) as metals have a greater affinity for 

small sediment particle sizes. 

 

Table 4.3: Water and surface sediment concentrations at sediment core site MS8 

 Cr Cu Pb Ni Zn 

Water (ug.L-1) <0.3 0.019 1.384 <0.5 0.223 

Surface sediments (mg.kg-1) 97.03 39.66 27.15 18.37 150.1 
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Figure 4.4: Particle size distribution (as volume weighted mean), organic matter 

content and vertical distribution pattern of Cr, Cu, Ni, Pb and Zn in the MS8 

sediment core 

 

Cd concentrations at all depths were <0.5 mg.kg-1 and results were omitted in the 

vertical distribution analysis. The metals exhibited a similar vertical distribution 

pattern (peaks between 76 and 61 cm and between 43and 37 cm), possibly from 

industrial activities. Organic matter peaked at 79, 39 and between 23 – 17 cm 

depths).According to Lin and Chen (1998), organic matters are important scavengers 
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for metals in river sediments. One would expect the two parameters to have similar 

distribution patterns. However, the organic matter content fluctuated with depth. The 

reasons could be analytical error or there were other factors, such as industrial 

activities or natural environmental conditions, that may have affected organic matter 

content in the past. 

 

Normalisation is the process of compensating for the granulometric and geochemical 

factors that influence the natural variation in the heavy metal concentrations (Newman 

and Watling, 2007). Granulometric analysis was conducted by sieving to the <90 µm 

sediment fraction. To determine whether the likely sources of the heavy metals in the 

sediment core are natural or anthropogenic, geochemical normalisation was 

performed by normalising metal concentrations (Cr, Cu, Ni, Pb and Zn) with Al(level 

of statistical inference set at 95%).At depth, normalised concentrations are expected to 

lie along or between the 95% confidence interval (CI) statistical inference. These 

concentrations are from metal input from natural sources and depict the natural 

geochemical and mineralogical makeup of the sediments. Outliers are points where 

metal concentrations are indicative of anthropogenic activities or where naturally 

present metals mixed with anthropogenic pollutants (Aleksander-Kwaterczak and 

Prosowicz, 2007; Newman and Watling, 2007).  

 

The normalisation of Cr, Cu and Ni (figure 4.5) observed fewer outliers (37 – 25 cm) 

compared to Pb and Zn (figure 4.6). The outliers observed for Cr, Cu and Ni (7 – 1 

cm) may be from recently released metals from anthropogenic sources, into the river 

catchment. Site MS8 is downstream from a tannery and adjacent to a metal 

manufacturing industry and this may account for the elevated metal concentrations. 

Particularly for Cu and Ni which are not as naturally abundant in Earth’s crust as Cr. 

Pb and Zn normalised concentrations were mostly present as outliers (79 – 61 cm, 47 

– 31 cm and 7 – 1 cm). Possible surficial Pb and Zn sources, and metals deposited at 

depth, were anthropogenic in nature. In this area, the possible sources may be 

industry, untreated residential effluent and run-off from land use in the Catchment at 

upstream sites (Callender, 2003).The rest of the metals that were not normalised were 

correlated with Al and visually represented in Appendices D and E. 
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Figure 4.5: Ratio of Cr, Cu and Ni to Al in the MS8 sediment core (+/-95% CI) 

 

4.6 CONCLUSION 
Compared to aquatic ecosystem DWAF targeted water quality values, the Bayne’s 

Spruit was the more polluted of the two rivers. This was expected as the catchment of 

the Bayne’s Spruit has more industries compared to the Msunduzi. Metal 

concentration exceeded the water quality range targeted for a healthy aquatic 

ecosystem, in terms of heavy metal content. For the sake of the biota in the river, 
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Figure 4.6: Ratio of Ni and Cu to Al in the MS8 sediment core (+/-95% CI) 

 

metal concentrations would have to be decreased to improve ecosystem health. In the 

Msunduzi and Bayne’s Spruit sediments, Zn, Cu and Pb had similar spatial 

distribution patterns. Cd and Ni had similar patterns while Cr had a different 

distribution pattern compared to the rest of the metals. However, MS1, MS12 and 

BA6 had the highest concentrations. The particle size distribution analysis revealed 

that the sediment core was mainly comprised of medium to fine sands. There was no 

correlation between organic matter content and vertical metal deposition. There was a 
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correlation between particle size in the sediment core and metal concentrations in that 

metals peaked in accordance with reduced particle sizes in the sediment core. 

Statistical analysis revealed that the sediment core was polluted with Pb and Zn and 

these were the metals of concern in the surficial sediments as well. The research 

served as a baseline study for the spatial distribution and vertical deposition heavy 

metal status of the Msunduzi River Catchment. As this was a result of a once-off 

sampling event, the measured concentrations only provide a snapshot of the heavy 

metal status of the catchment. Further research is needed to evaluate the significance 

of different seasons on metal distribution in the Catchment, and what implication this 

may have on the biota and of the land uses in the Catchment. Additionally, dating 

techniques may assist in determining when certain pollution events occurred and a 

possible reason why. 
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5 CONCLUSION 
 

Heavy metals are concentrations are enriched to toxic levels in the water and 

sediments of freshwater environments due to anthropogenic activities. Even 

biologically essential heavy metals (e.g. Zn) can increase to concentrations that are as 

toxic as low levels of non-essential metals (e.g. Pb). Thus, monitoring heavy metal 

concentrations is vital to ensure ecosystem and human health. The spatial distribution 

and historical deposition of heavy metals, cadmium (Cd), chromium (Cr), copper 

(Cu), nickel (Ni), lead (Pb) and zinc (Zn), as well as potentially mobile forms of the 

metals, in the Msunduzi River, KwaZulu-Natal, South Africa and two if its tributaries, 

the Bayne’s Spruit and Slangspruit, were investigated. Distribution of metals in water 

and sediments is controlled by the dynamic interaction with specific physico-

chemical, such as redox potential, pH, total dissolved solids (TDS), electrical 

conductivity (EC), particle size distribution and organic matter content). Metals such 

as aluminium (Al), iron (Fe) and manganese (Mn) are used for geochemical 

referencing. 

 

In terms of the physico-chemical parameters, the pH ranged from 5.55 to 7.48 in the 

Msunduzi River Catchment. For surface waters, pH values typically range between 4 

and 11 (Holmes, 1996a, 1996b, 1996c, 1996d).The pH values did not correspond to 

any increase or decrease in metal concentrations in the catchment. TDS increased 

along the Msunduzi River, but in the Bayne’s Spruit the value only peaked at BA4. 

EC followed a similar trend to that of TDS as the two parameters have a direct 

relationship in the environment (van Niekerk et al., 2014). Anthropogenic sources that 

may lead to increased TDS and EC readings are urban run-off and agricultural 

practices (Murphy, 2007). In the water, Pb was found to be the metal with the highest 

concentrations in the Msunduzi and Bayne’s Spruit rivers. Zn was the second highest 

and the lowest was Cu. Cd, Cr and Ni were below the instrument detection limit in all 

samples. Compared to Department of Water Affairs and Forestry (DWAF) targeted 

water quality values, Cu concentrations were less than the targeted water quality value 

in all three rivers. Pb in the Msunduzi and Bayne’s Spruit was greater than DWAF 

aquatic ecosystems guideline values. There are no metal guidelines for water used for 
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recreational purposes and metals did not exceed targeted water quality values for 

domestic and agricultural use (Holmes, 1996a, 1996b, 1996c, 1996d).Only the aquatic 

ecosystem water quality guidelines were exceeded. This may result in adverse effects 

on organisms in terms of heavy metal toxicity. Interventions are required in the form 

of improved natural resource management in the catchment, particularly for the 

industries in the catchment. 

 

Heavy metals that are sequestered between the water column and surface sediments  

must also be analysed. Total metal concentrations in the surface sediments were 

compared to sediment quality guidelines (SQG) to investigate its pollution status. 

Effects Range-Low (ERL) indicates concentrations below which adverse effects 

rarely occur, or are rarely observed, whilst Effects Range-Median (ERM) values 

represent concentrations above which adverse effects frequently occur (NOAA, 

1999). Total Cd, Cr, Cu, Pb, Ni and Zn were > than the ERL in all three rivers, but 

only Zn was > ERM. In the Msunduzi and Bayne’s Spruit, Zn, Cu and Pb had similar 

spatial distribution patterns. Cd and Ni had similar distribution patterns. Sampling 

sites MS1, MS12 and BA6 had the highest metal concentration concentrations. 

Possible sources of increased concentrations at these sites include industrial and urban 

discharge into the river water (Moore et al., 2011). Total metal concentrations only 

indicate the levels at which metals are present in the environment. Speciation analysis 

reveals the chemical forms that metals are present in. Mobile forms are potentially 

bioavailable and are toxic to organisms at elevated concentrations (Tessier et al., 

1979; Jain, 2004). Metals in the sediment fractions (exchangeable, reducible, 

oxidisable and residual) were extracted using a sequential extraction procedure. 

Extracted metal values were validated using a certified reference material (CRM) 

from the Community of Bureau of Reference (BCR). Organic matter content, redox 

values and formation of Fe-Mn oxyhydroxides (depicted as total Fe and Mn) are 

important physico-chemical parameters that assist in evaluating the geochemical 

partitioning of metals within the four sediment fractions. Metals were primarily 

associated with the residual fraction except for Pb in all three rivers and Cu and Zn in 

the Bayne’s Spruit. These three metals were also partitioned within the mobile 

sediment fractions and can be released with decreasing pH, changing redox potential 

and presence of Fe-Mn oxyhydroxides that facilitate the precipitation of metals (Ure 
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et al., 1993; John and Leventhal, 1995). Speciation analysis revealed that the Bayne’s 

Spruit is the most polluted river, compared to the Msunduzi and Slangspruit. The 

Bayne’s Spruit had higher concentrations of metals partitioned in the potentially 

mobile fractions. Should environmental factors change, such as decrease in pH, a 

change in redox potential and a change in temperature, the metals may be released 

from these fractions and pollute the overlying water column. Organisms found in the 

catchment, as well as any humans that come in contact with the water, may be 

adversely affected. 

 

Historical deposition trends were investigated by collecting a sediment core at site 

MS8. The vertical distribution pattern was assessed against particle size distribution 

(as volume weighted mean) and organic matter content of the sediment core. Cr, Cu, 

Pb, Ni and Zn had a similar vertical profile (peaks between 76 and 61 cm and 43 and 

37 cm). There was no relationship between organic matter content and metal 

distribution (organic matter peaked at 79 cm, 39 cm and 23 – 17 cm depths). The 

majority of the sediment was composed of very fine to medium sand. The fine sand 

may account for the increased metal concentrations at certain depth as fine sand is 

associated with sediments that were transported from upstream sites due to increased 

flow rate in the river. Increased flow rate can be from a natural phenomenon (flood) 

or large concentrations of discharged effluent into the Msunduzi (Walling, 2005; 

Rahman and Plater, 2014). To investigate whether the metals present in the sediment 

core where from natural or anthropogenic sources, geochemical normalisation was 

performed by normalising metal concentrations (Cr, Cu, Ni, Pb and Zn) with Al (level 

of statistical inference set at 95%). Cr, Cu and Ni were from natural sources, but 

outliers at the 95% confidence interval (CI) revealed possible mixing of natural 

mineralogical makeup and anthropogenic inputs. Pb and Zn were from anthropogenic 

sources in the catchment, possibly from metal works and municipal discharge 

(Callender, 2003). Overall analysis indicated that Pb and Zn were the metals of 

concern in the catchment and industrial activities had an impact on heavy metal 

concentrations in the water and sediments. The sources of the metals at depth cannot 

be determined unless a dating technique is used to identify the exact date (in years) of 

the pollution events. Mixing of sediments, due to river flow, may also affect the 

results and this must be taken into account. 
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The results allowed for the determination of baseline heavy metal levels in the water 

and sediments of the Msunduzi River Catchment. Further work is recommended in the 

study area as there is lack of published literature with regards to the heavy metal 

status. Thus, the current research can add to the overall body of literature on heavy 

metal pollution in KwaZulu-Natal. Sampling during different seasons may reveal a 

relationship between seasonal variations in physico-chemical parameters and heavy 

metal concentration in the water and sediment. As there is possible vertical mixing of 

river sediments, dating techniques would not be advisable, but regular particle size 

distribution analysis, of surface sediments and sediment cores, at certain points down 

the river may reveal information on past and current hydrological and geological 

patterns of the Msunduzi River Catchment. The results given in this research may 

require routine water quality monitoring and overall improved catchment management 

of certain sites. Industrial and municipal effluents discharged into the river should also 

be monitored to determine the possible sources of anthropogenic heavy metals 

entering the Msunduzi River Catchment. 

 

The overall aim of the research was to establish heavy metal baseline concentrations 

The study of heavy metal distribution (spatial and vertical) and particle size through 

the Msunduzi River catchment has demonstrated to be a useful tool for gaining 

understanding about not only the distribution degree of metals but also about their 

possible pollution sources and the chemical properties that allow them to act as long-

term pollutants in water and sediments.  
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APPENDICES 
Appendix A: Total heavy metal concentrations in the water samples 

 (in µg.L-1) (in mg.L-1) 
Site Aluminium 

(Al)  
Barium 
(Ba)  

Copper 
(Cu) 

Iron 
(Fe)  

Manganese 
(Mn)  

Lead 
(Pb) 

Vanadium 
(V) 

Zinc 
(Zn) 

Calcium 
(Ca)  

Magnesium 
(Mg)  

Sodium 
(Na) 

Silicon 
(Si) 

MS1 20.33 20.05 0.0592 24.45 2.035 4.527 2.271 0.81 7.182 4.669 2.17 7.094 
MS2 8.533 18.64 0.0564 13.75 0.523 1.697 1.805 0.796 6.755 4.548 1.927 7.074 
MS3 7.377 18.2 0.0524 12.05 0.569 0.614 1.909 0.512 7.536 4.879 2.154 7.064 
MS4 6.69 20.35 0.0293 17.45 0.296 0.559 2.008 0.215 8.764 5.689 2.655 7.347 
MS5 13.35 21.09 0.0286 13 0.826 0.714 1.865 0.37 9.224 5.908 2.812 7.504 
MS6 5.677 22.18 0.0272 12.23 0.474 0.687 2.146 0.232 10.2 6.379 3.133 7.625 
MS7 10.91 22.54 0.0195 19.52 2.838 3.149 2.232 0.254 10.18 6.37 3.249 7.476 
MS8 12.34 23.54 0.019 16.59 1.594 1.384 1.85 0.223 10.63 6.501 3.348 7.386 
MS9 11.14 25.6 0.0187 21.85 0.803 0.147 2.007 0.313 13.72 8.215 4.849 7.876 
MS10 10.23 22.14 0.0145 13.98 0.555 0.687 2.925 0.457 13.63 8.307 4.42 7.839 
MS11 31.27 30.02 0.0139 41.42 30.98 0.714 3.345 0.371 13.72 7.64 4.17 6.966 
MS12 7.196 23.6 0.0146 13.98 0.661 1.025 2.955 0.693 13.5 7.781 4.238 7.397 
MS13 6.854 23.71 0.0121 12.6 0.132 1.342 2.892 0.55 13.44 7.72 4.283 7.242 
MS14 3.67 16.56 0.0236 5.724 3.183 1.284 2.739 0.197 8.573 4.918 2.843 4.483 
MS15 20.98 22.56 0.0244 16.34 0.825 0.886 2.546 0.231 15.81 8.093 4.976 7.073 
MS16 5.25 22.21 Below 

D/L 
18.05 1.452 0.0565 2.846 Below 

D/L 
27.18 7.323 4.652 5.771 

                      



ii 
 

 (in µg.L-1) (in mg.L-1) 
Site Aluminium 

(Al)  
Barium 
(Ba)  

Copper 
(Cu) 

Iron 
(Fe)  

Manganese 
(Mn)  

Lead 
(Pb) 

Vanadium 
(V) 

Zinc 
(Zn) 

Calcium 
(Ca)  

Magnesium 
(Mg)  

Sodium 
(Na) 

Silicon 
(Si) 

BA1 3.741 19.13 0.0074 11.6 1.352 0.873 1.73 0.143 12.98 5.713 4.096 5.432 
BA2 2.783 17.42 0.0071 15.01 2.702 0.851 1.84 0.146 12.54 5.274 4.031 4.965 
BA3 3.075 19.17 0.0065 30.4 6.291 0.436 1.798 0.246 13.08 5.37 3.9 4.993 
BA4 27.21 85.71 0.0079 4.828 2.327 0.339 2.209 0.478 24.95 8.739 6.351 7.515 
BA5 2.424 14.12 0.0109 10.83 0.56 0.702 2.018 0.578 14.05 6.243 7.854 5.267 
BA6 10.74 15.01 0.0112 114.3 1.38 1.602 1.851 0.662 14.84 6.473 8.522 5.545 
BA7 5.489 16.22 0.011 38.77 1.458 1.403 2.065 0.204 15.27 6.66 7.538 5.609 
BA8 9.06 22.72 0.0073 15.83 0.825 1.112 2.723 0.279 25.18 7.725 6.398 6.007 
                      
SL1 4.685 28.52 0.0098 10.97 0.813 0.657 2.899 0.105 23.12 14.05 2.368 11.73 
SL2 3.561 19.53 0.0109 16.78 1.112 0.565 1.959 0.081 13.69 6.376 3.756 6.032 
SL3 4.711 31.66 0.011 22.47 1.006 0.789 2.945 0.078 22.82 13.97 8.308 11.52 

 

 

Note: Cadmium, chromium, cobalt and nickel in the water samples were below the detection limit of the ICP-OES. 
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Appendix B: Total heavy metal concentrations (in mg.kg-1) in the surface sediment samples 

Site Cd Cr Cu Ni Pb Zn Al Fe Mn Ba Li Mg Na Si Co V 

MS1 9.988 170.4 67.23 50.88 18.97 205.7 89026 45181 2329 66.14 49.1 4357 306.6 3.743 37.228 121.7 

MS2 7.207 143.7 57.86 45.43 18.13 168.1 79201 40863 509.1 91.93 46.5 2586 260.8 423.5 33.56 418.9 

MS3 5.034 114.7 55.56 40.23 21.64 192.1 59411 35615 954.1 83.62 36.5 2911 269 532 27.88 86.84 

MS4 5.034 125.9 55.19 43.26 18.05 165.1 55725 36625 953.5 79.98 33.3 3535 287.1 428.8 29.24 84.19 

MS5 4.086 91.51 45.08 28.97 18.55 157.4 43899 33226 595.9 48.25 26.5 2663 288.2 570.1 23.37 72.75 

MS6 4.023 124.1 47.88 29.61 19.50 167.7 39126. 34286 821.1 102.3 25 2998 286.4 516.9 24.67 87.30 

MS7 4.213 137.6 50.18 33.48 19.80 181.4 49441 33856 101.7 68.47 31 3252 302.5 537.9 26.14 74.89 

MS8 2.781 97.03 39.65 27.15 18.36 150.0 35738 29518 570.2 82.44 23.3 2503 237 538.8 19.92 60.44 

MS9 3.611 110.7 47.41 33.27 17.17 153.4 46163 32586 739.1 63.57 30.7 2646 255.4 414.9 25.97 72.45 

MS10 4.794 123.3 47.92 34.46 25.17 276.1 32388 31447 779.2 146.3 16.5 2560 168 180.2 25.74 58.41 

MS11 3.275 87.34 38.70 28.66 13.28 142.8 45140 30597 940.5 47.26 34.6 2689 335 246.2 26.32 67.92 

MS12 4.185 90.41 70.23 31.13 60.33 505.9 43051 31617 846.5 75.13 29.9 2627 262.7 447.9 21.31 61.03 

MS13 2.402 89.95 39.46 28.72 18.41 192.64 45230 26199 438.3 42.18 32.5 2320 294.1 330.3 22.54 70.08 

MS14 4.895 82.78 57.92 31.61 47.13 372.5 28244 31567 955 154.1 20.6 1900 101.9 87.7 21.64 56.69 

MS15 8.954 110.1 48.27 26.35 44.21 344.3 34553 38494 972.5 69.83 22.9 2745 310.9 412.3 26.19 91.28 

MS16 4.115 127.4 52.16 28.831 27.88 216.8 39099 30037 638.3 64.99 28 2583 303.9 413.7 21.52 60.63 

BA1 6.588 75.18 62.06 26.22 42.52 237.9 29140 37435 990.1 162.5 16.4 2779 145.9 17.5 18.55 59.97 

BA2 7.491 115.4 63.19 28.04 44.8 287.4 27780 39884 1644 184.4 21.1 3791 144.3 9.5 19.08 67.05 

BA3 7.002 91.69 78.72 30.05 66.1 404.9 28610 38324 1698 175.8 16.1 2797 162.6 299.4 19.36 64.11 
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Site Cd Cr Cu Ni Pb Zn Al Fe Mn Ba Li Mg Na Si Co V 

BA4 6.804 84.92 62.48 23.72 42.2 269.1 22560 37634 1039 133.2 18 1917 124.9 19.3 17.53 64.7 

BA5 5.126 65.77 71.3 33.65 45.59 863.9 26210 31517 1386 162.9 20.3 2687 184.3 51.7 16.54 50.19 

BA6 7.672 95.06 165.4 33.98 180.2 675.3 29850 36105 629.6 216 16.4 2549 178.3 32.3 22.44 63.2 

BA7 6.491 74.5 78.56 27.05 40.4 654.7 26730 37445 1080 203.9 21.4 2539 151.6 17.5 22.38 62.52 

BA8 8.27 93.11 93.48 31.17 46.06 737.5 28450 42672 778.3 421.2 17.2 2761 184.4 154.8 23.79 72.85 

SL1 6.006 97.31 66.33 38.56 28.44 168.9 49270 36415 2675 48.89 40.9 3811 402.1 263.6 38.09 90.22 

SL2 6.336 101 62.21 38.41 29.03 165.1 47730 37195 2999 38.83 38.8 3579 409.6 350.2 42.61 86.34 

SL3 5.795 98.98 65.69 36.93 24.45 177.1 49070 35255 2147 53.47 40.9 3618 392.3 393.3 33.45 80.85 
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Appendix C: Total metal concentrations in the sediment core and organic matter content 

 (in mg.g-1) (in mg.kg-1)           
Depth 
(cm) 

Al Fe Al Fe Co Cr Cu Ni Pb Zn Mg Mn V Organic 
matter (%) 

0-1 44 41 44450 40590 17 86 29 27 16 70 2267 413 84 11.18 
1-2 50 47 49530 47320 18 93 43 30 16 76 2428 441 87 12.81 
2-3 27 36 27140 36270 16 83 28 25 18 71 1998 394 68 11.46 
3-4 43 38 42650 38070 17 91 28 26 19 74 2208 409 80 11.68 
4-5 28 36 28420 35600 16 82 30 25 16 68 2006 463 53 10.47 
5-6 41 39 40780 38830 17 86 28 26 14 68 2165 459 79 9.099 
6-7 37 34 37220 33620 16 80 26 23 15 65 2015 387 77 8.427 
7-8 37 35 36960 34820 16 80 27 23 14 63 2005 387 74 10.92 
8-9 43 40 43230 40120 18 88 29 27 16 72 2243 426 81 9.557 
9-10 55 50 54580 50260 19 111 34 32 17 79 2547 458 88 9.045 
10-11 39 38 39350 37830 16 90 27 24 16 66 2053 363 75 9.314 
11-12 40 39 40330 38660 15 89 25 24 16 66 2057 368 77 8.025 
12-13 41 40 41080 39570 16 93 27 25 17 72 2127 375 78 7.902 
13-14 42 40 41620 39790 17 100 26 25 17 73 2127 377 82 9.178 
14-15 44 41 43620 40660 17 98 26 25 16 72 2143 392 75 15.23 
15-17 49 47 49190 47410 18 107 33 28 17 86 2229 446 80 13.32 
17-19 44 41 43630 40980 17 102 27 26 17 77 2162 408 80 13.42 
19-21 45 42 44840 42100 19 110 29 28 19 69 2185 437 86 15.62 
21-23 41 40 41390 39960 18 107 27 26 17 65 2099 430 84 12.95 
23-25 35 31 35320 31080 16 93 23 25 14 56 1956 372 70 12.33 
25-27 43 42 43350 41960 18 110 29 29 16 66 2200 480 79 9.638 
27-29 33 36 32870 35940 19 113 29 28 20 66 2024 543 70 9.495 
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 (in mg.g-1) (in mg.kg-1)           
Depth 
(cm) 

Al Fe Al Fe Co Cr Cu Ni Pb Zn Mg Mn V Organic 
matter (%) 

29-31 39 37 38570 36800 17 101 25 27 19 62 2050 439 72 7.877 
31-33 29 35 29200 34730 18 108 28 27 17 66 1960 495 64 7.511 
33-35 45 43 44950 42980 20 126 31 31 22 108 2291 588 84 13.52 
35-37 53 52 53280 51710 22 145 40 36 24 116 2490 655 88 14.41 
37-39 72 75 72490 75420 27 171 55 46 32 173 3119 713 108 15.48 
39-41 104 98 104300 97850 40 238 86 68 45 257 4230 956 153 13.36 
41-43 59 60 58980 60350 21 119 41 34 21 117 2577 533 88 13.40 
43-45 51 48 50500 48490 20 110 36 30 19 95 2335 561 84 11.41 
45-47 46 44 46150 44390 19 120 34 28 21 95 2173 541 80 9.528 
47-49 45 43 44920 42570 18 106 28 27 19 76 2064 555 78 13.67 
49-52 50 48 50250 48170 20 133 30 31 19 75 2370 610 87 10.42 
52-55 52 49 51510 49090 21 121 32 32 20 74 2393 761 92 12.51 
55-58 51 49 51420 49250 21 126 31 31 22 82 2413 830 89 10.82 
58-61 48 46 47840 45920 20 116 30 30 19 81 2414 772 86 11.14 
61-64 62 63 61800 63260 24 128 43 36 29 135 2694 1023 97 11.55 
64-67 60 62 60150 62470 23 127 44 35 26 154 2617 605 92 11.89 
67-70 67 69 66670 69230 24 144 48 39 27 159 2814 533 99 11.82 
70-73 63 65 62820 64660 24 120 47 37 23 125 3018 525 98 12.57 
73-76 53 48 52520 48210 20 99 35 31 17 84 2583 435 81 13.91 
76-79 47 46 47010 45520 21 100 38 33 17 82 2599 504 81 14.87 
79-82 59 61 59380 61270 23 112 38 37 14 74 2989 592 94 9.186 
82-85 47 45 47470 45430 20 104 36 32 17 85 2598 524 82 11.17 
85-88 55 53 55170 53040 21 109 38 32 18 97 2744 515 88 10.65 
88-91 58 57 58110 56750 23 122 41 34 21 114 2928 541 94 12.63 
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 (in mg.g-1) (in mg.kg-1)           
Depth 
(cm) 

Al Fe Al Fe Co Cr Cu Ni Pb Zn Mg Mn V Organic 
matter (%) 

91-94 53 50 52800 50390 21 109 37 30 19 102 2714 537 87 9.494 
94-97 43 40 43200 40060 19 96 31 27 17 78 2494 496 80 10.58 
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Appendix D: Correlation of Cr, Cu, Ni, Pb and Zn with Al in the sediment core 
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Appendix E: Correlation of Co, Fe, V, Ba, Mn and Mg with Al in the sediment core 
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Appendix F: Volume-based particle size distribution analysis and parameters 

Note: Particle absorption index = 1 

Depth 

(cm) 

d (0.1) d (0.2) d (0.5) d (0.8) d (0.9) D [3,2] 

Surface 

weighted 

mean  

D [4,3] 

Volume 

weighted 

mean 

Obscuration 

0-1 87.325 186.914 377.51 635.297 802.3 147.177 420.487 11.26 

1-2 51.624 113.341 344.176 637.534 826.92 100.227 398.695 13.74 

2-3 77.589 193.768 410.175 678.662 846.489 129.26 446.601 11.45 

3-4 86.287 188.763 365.222 588.186 725.839 140.717 394.145 10.6 

4-5 133.291 230.75 412.967 656.888 809.409 174.094 447.85 10.2 

5-6 168.889 232.744 380.628 584.952 711.137 230.171 412.037 11.76 

6-7 107.448 214.578 417.646 687.193 857.593 146.147 458.653 13.29 

7-8 54.7 164.724 362.042 596.004 738.168 78.141 388.929 16.25 

8-9 64.4 141.743 328.793 554.231 688.842 123.322 358.8 12.13 

9-10 63.047 150.941 347.073 579.188 721.507 108.368 377.077 11.8 

10-11 103.189 194.765 378.755 611.089 750.439 155.726 409.207 11.33 

11-12 188.788 256.365 408.191 612.985 736.336 198.176 435.063 12.16 

12-13 97.672 172.606 363.325 597.952 735.885 153.711 394.611 14.94 

13-14 160.213 236.413 391.93 598.541 723.617 183.558 418.473 11.88 

14-15 94.486 196.359 364.336 566.117 683.849 144.541 384.114 11.99 

15-17 92.191 182.852 340.04 537.243 654.619 124.299 363.009 12.93 

17-19 228.283 285.152 428.388 623.6 739.047 248.68 456.211 11.12 

19-21 163.844 256.252 421.018 628.625 748.761 178.286 440.554 12.56 

21-23 248.087 302.367 447.656 650.212 770.537 401.687 481.692 9.69 

23-25 148.336 214.441 363.487 563.622 683.99 192.289 392.125 12.05 

25-27 164.132 232.563 385.75 592.459 717.194 194.627 414.799 11.58 

27-29 193.895 264.847 426.822 643.093 770.869 211.791 454.941 11.1 

29-31 154.32 217.853 370.919 580.863 706.832 226.12 403.259 12.37 

31-33 155.31 221.373 372.166 574.861 695.53 215.122 400.853 11.69 

33-35 136.391 209.744 358.51 554.685 672.124 180.36 384.078 11.94 

35-37 108.855 185.194 326.715 512.158 624.216 142.675 350.33 11.36 

37-39 23.812 49.279 196.554 419.32 544.935 37.542 243.428 13.61 

39-41 13.865 28.548 86.188 242.427 358.949 20.957 142.345 14.61 
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Depth 

(cm) 

d (0.1) d (0.2) d (0.5) d (0.8) d (0.9) D [3,2] 

Surface 

weighted 

mean  

D [4,3] 

Volume 

weighted 

mean 

Obscuration 

41-43 21.451 41.083 137.755 358.634 484.043 33.048 203.155 14.57 

43-45 72.963 160.861 328.851 528.054 645.733 122.208 350.695 10.35 

45-47 83.992 145.975 288.199 478.487 596.15 137.799 318.52 11.1 

47-49 115.936 181.84 330.164 529.814 652.576 177.556 361.123 10.32 

49-52 157.954 217.08 354.103 539.86 651.224 217.975 380.613 11.77 

52-55 199.686 262.826 409.55 602.898 715.709 282.709 434.236 10.03 

55-58 211.344 278.306 432.123 630.659 744.092 272.842 454.84 9.75 

58-61 91.229 207.243 396.471 626.344 761.227 119.388 419.997 13.34 

61-64 39.536 140.404 354.11 615.712 790.204 55.414 397.108 12.07 

64-67 19.851 41.815 237.397 507.074 662.149 30.664 290.14 14.42 

67-70 17.342 35.661 153.901 458.455 628.256 28.416 251.995 13.87 

70-73 11.346 24.141 80.24 296.107 473.399 17.951 167.889 20.7 

73-76 15.609 30.846 87.585 232.73 403.859 23.079 159.007 11.36 

76-79 33.859 69.237 186.098 387.894 523.513 57.088 238.415 10.7 

79-82 30.378 68.197 199.015 447.406 591.06 44.773 262.441 12.23 

82-85 34.385 74.78 236.123 471.364 617.751 56.398 286.135 11.38 

85-88 24.139 42.51 101.244 225.408 338.62 34.869 150.416 11.58 

88-91 179.671 262.447 437.683 674.797 820.741 222.346 471.023 10.47 

91-94 59.886 142.701 338.333 566.57 704.946 108.3 367.107 10.66 

94-97 44.165 159.266 383.723 613.825 749.813 68.623 399.783 13.41 

 

 

 

 


