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Abstract

Finding exact solutions to the Einstein field equations is important for applications in

relativistic astrophysics. We model the collapse of a radiating star in general relativity.

Firstly, we investigate an exact model of a radiating star undergoing expansion-free

collapse. We demonstrate that it is possible to obtain new classes of exact solutions by

integrating the nonlinear junction condition at the surface of the star. The gravitational

potentials are given in terms of elementary functions. The solution makes it possible to

consider the formation of a cavity in an exact model. Secondly, we rewrite the junction

condition in the standard form of a Riccati equation. The boundary condition can be

integrated to find new classes of solutions and extends the analysis of Thirukkanesh

et al (2012). Thirdly, we investigate the radiating star when the interior expanding,

shearing fluid particles are travelling in geodesic motion. Our analysis leads to new

solutions and extends earlier results. A feature of our analysis is to investigate the

role played by the cosmological constant in radiating stars with dissipation. We find

that the presence of the cosmological constant affects the gravitational dynamics. The

presence of this term in the field equations allows for positive pressure in particular

situations leading to stable stellar configurations.
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Chapter 1

Introduction

It is well known that Isaac Newton discovered the inverse square law of gravitation

leading to Newtonian gravity. Newtonian gravity describes the equilibrium of low

mass stars, particularly the order of one solar mass and low mass stellar systems with

particular type of sizes in parsecs. Neutron stars and black holes are relativistic com-

pact objects that require a modification of Newtonian gravity to account for effects

relating to observations and theoretical predictions (Glendenning (2000)). In 1914

Einstein extended the work on Newtonian gravity, which is now called general relativ-

ity (Misner et al (1973)). In general relativity, we consider the study of the modern

theory of gravity. It is important to study the Einstein equations in general theory of

relativity to fully understand astrophysics and cosmology. The Einstein equations lead

us to investigate the cosmos, galaxies, stars, etc. In this thesis we focus on the study of

radiating stars. Einstein equations allow us to estimate the state of the stars, such as

the amount of mass, energy on spacetime, curvature of spacetime, energy momentum,

pressure, density and heat flow that are distributed in stars. It is difficult to solve

Einstein equations in general, hence we make various assumptions to the equations in

order to carry out our investigations.
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In astrophysics, Schwarzschild provided the first exact solution of the Einstein field

equations and obtained the external gravitational field of a spherically symmetric,

static mass distribution (Schwarzschild (1916)). We investigate gravitational collapse

to obtain exact solutions of the Einstein equations, by studying the shear-free motion

of the fluid and shearing spacetimes. Gravitational collapse was first investigated by

Oppenheimer and Snyder (1939) in which they studied the contraction of a spherically

symmetric dust cloud. In this work, we study and investigate solutions that contain

shear because it plays a very important role in the study of gravitational collapse as

Pinheiro and Chan (2008) mention. Maharaj et al (2011) studied the gravitational

collapse of a radiating sphere evolving into a final static configuration described by the

interior Schwarzschild solution. Thirukkanesh et al (2012) considered shearing models

in a general setting for the first time. Their solutions extend particular results of earlier

treatments. Maharaj et al (2013) showed that the junction conditions at the stellar

surface may be generalized so that the pressure at the boundary depends on the interior

heat flux and the exterior string density.

We investigate the behaviour of gravitational collapse of a radiating star, where the

Vaidya spacetime describes the exterior geometry. In the radiating star the exterior

spacetime is represented by the Vaidya solution for pure radiation and is no longer de-

scribed by the exterior Schwarzschild solution. The Einstein field equations describing

the atmosphere of a radiating star, with nonstatic geometry, was first found by Vaidya

(1951). Vaidya investigated the outer field with an expanding inner zone of pure radi-

ation extending the model of empty space decribed by Schwarzschild’s static solution

(Vaidya 1999). The Vaidya metric may be generalized so that the mass function de-

pends on both time and the radial coordinate. The generalised Vaidya spacetime has

physical significance and contains many known solutions of the Einstein field equations
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with spherical symmetry as shown by Maharaj et al (2013). The Santos boundary

condition p = qB is extended to include the external string density for the generalized

Vaidya metric.

Shear-free spacetimes have been studied most often. The interior spacetime where

the fluid is described is considered shear-free with is the slowest possible collapse. The

exterior spacetime of course is given by the Vaidya (1953) metric which represents

the radial flow of unpolarised radiation (Santos (1985)). The Santos junction condi-

tions were generalised to include the effects of an electromaganetic field and shearing

anistropic stresses during dissipative stellar collapse by de Oliveira et al (1985) and

Maharaj and Govender (2000). The other physically important situation is geodesic

motion. Thirukkanesh and Maharaj (2010) studied the behaviour of a radiating star

when the interior expanding, shearing fluid particles are traveling in geodesic motion.

They demonstrated that it is possible to obtain new classes of exact solutions in terms

of elementary functions without assuming a separable form for the gravitational poten-

tials or initially fixing the temporal evolution of the model unlike earlier treatments.

In this thesis we extend their work using the same approach that enables us to write

the junction condition as a Riccati equation which under particular conditions may be

transformed into a separable equation.

In 1917 Einstein introduced the cosmological constant into his general relativistic

theory of gravitation (Weinberg (1989)). The cosmological constant plays an important

role in various cosmological scenarios (Misner et al (1973)). The cosmological constant

is employed in several theories of the early universe (Maharaj and Beesham (1988)).

We model a radiating star when the Einstein field equations include the cosmological

constant. If the models with cosmological constant satisfy the field equations, then the

pressures may be negative for a Kasner type solution and equations of state are formed
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(Maharaj and Naidoo (1993)). Prokopec (2006) investigated that how an initially large

and positive cosmological constant can be driven to zero by the gravitational backreac-

tion induced by fermionic quantum fluctuations, when the effective cosmological term

has a small value but nonvanishing . These physical applications of the cosmological

constant in cosmology may be extended to radiating stars. In this thesis we extend their

work by investigating shearing gravitational collapse when the Einstein field equations

are generalised to include the consmological constant.

We also apply the Eckart and causal theories to study the thermodynamics of ra-

diating stars (Tewari (2013), Sharma et al (2013), Pretel and da Silva (2019)). The

evolution of the temperature profiles is investigated by employing a causal heat trans-

port equation of the Maxwell-Cattaneo form. Both the Eckart and causal temperatures

are enhanced by anisotropy at each interior point of the stellar configuration as shown

by Govender et al (2016). Govender and Govinder (2002) showed that extended ir-

reversible thermodynamics predict a higher temperature at all interior points of the

stellar configuration compared to the Eckart theory. Relaxational effects on the tem-

perature profile of radiating, spherically symmetric matter distributions, in both the

shearing and shear-free cases, have been investigated by Govender and Govinder (2001),

who demonstrated that relaxational effects lead to higher core temperatures and the

monotonic decrease in the temperature, as a function of the radial coordinate, is much

sharper than its noncausal counterpart.

This thesis is organised as follows:

• Chapter 1: Introduction

• Chapter 2: We show that it is possible to integrate the nonlinear junction con-

dition at the surface of the star; the gravitational potentials are given in terms

of elementary functions. The collapsing core dissipates energy in the form of
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a radial heat flux. This exact model complements the perturbative models of

dissipative collapse currently available in the literature. A physical and thermo-

dynamical analysis of the model indicates that it is stable and approximates a

realistic collapse scenario.

• Chapter 3: In this chapter we consider a collapsing stellar model dissipating en-

ergy in the form of a radial heat flux. We investigate the effect of the cosmological

model on the collapse process. New families of exact solutions to the Einstein

field equations are presented. Some of solutions can be written parametrically

and correspond to both nonzero and vanishing cosmological contant. The under-

lying physics is studied for a particular model which is shown to be physically

reasonable. A graphical analysis shows that the star has higher central tempera-

tures and the energy conditions are satisfied. An interesting feature of our model

is the effect on the cosmological constant which renders the radial pressure pos-

itive. The stellar model describes an isothermal sphere in the asymptotic limit

with an equation of state.

• Chapter 4: In this chapter we present various classes of solutions describing dissi-

pative gravitational collapse in the presence of shear and a nonzero cosmological

constant. We model a spherically symmetric matter distribution undergoing grav-

itational collapse and radiating energy in the form of a radial heat flux to the

exterior spacetime. The matching of the interior spacetime to Vaidya’s outgo-

ing solution leads to a nonlinear Riccati differential equation which encodes the

temporal behaviour of the model. A physical analysis indicates that the energy

conditions are satisfied. We solve this boundary condition and present various

families of new solutions which generalise known shearing solutions to include

5



the cosmological constant.

• Chapter 5: Conclusion
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Chapter 2

Expansion-free collapse: an exact

model

2.1 Introduction

Radiating matter in strong gravitational fields is an important area of present research

in relativistic astrophysics. Models with radiating matter may be used to describe

relativistic stars, investigate radiative processes in the external stellar atmosphere and

study gravitational collapse. An interior spacetime, satisfying the field equations, has

to match with the Vaidya exterior spacetime at the boundary of the star. Santos (1985)

was the first to correctly complete the matching conditions for a spherically symmetric

metric to smoothly match to the Vaidya exterior. An important consequence of the

matching conditions is that the radial pressure for a radiating star is nonzero at the

boundry; the radial pressure is proportional to the heat flux. Earlier attempts to

generate exact models placed restrictions on the acceleration, shear, Weyl tensor or took

the star to be initially static. A sample of research papers following these approaches

is given in references by Kolassis et al (1988), Herrera et al (2002), Thirukkanesh and
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Maharaj (2010), Misthry et al (2008), Tewari (2013, 2015), Herrera (2006), Maharaj

and Govender (2005), Herrera et al (2006), Chan (1997), Pinheiro and Chan (2010),

Tewari (2013) and Reddy et al (2015). It is also possible to produce analytic models in

general relativity called Euclidean stars which are generalizations of Newtonian stars

(Herrera (2010) , Govender et al (2010) and Abebe et al (2014)).

A systematic approach to study the junction condition, a nonlinear differential equa-

tion, is to use symmetry invariance; the Lie theory of differential equations produces

infinitesimal point generators reducing the order of the boundary condition. With this

approach new analytic solutions can be found as shown in Abebe et al (2015), Mohanlal

et al (2016) and Mohanlal et al (2017). An unusual and interesting approach to find

a model of a radiating star is to embed the spherical four-dimensional metric into a

flat five-dimensional spacetime. Naidu et al (2018) recently employed the idea of em-

bedding and smoothy matched the Vaidya outgoing solution to a well behaved stellar

interior. We discuss the relevant model and background in Section 2.3 and Section 2.4

we give details of the interior spacetime structure and junction conditions at the stellar

surface. The temporal evolution is discussed in Section 2.5 and an exact solution is

generated in Section 2.6. The physical properties of the new solution are considered in

Section 2.7 and Section 2.8. Concluding remarks are made in Section 2.9.

2.2 The model

Stellar radiating models with restrictions on the four-acceleration vector and the shear

tensor have received considerable attention in the past. In contrast there has been

much less attention on physical models restricting the expansion scalar. Expansion-

free spherically symmetric fluids necessarily implies the appearance of a cavity inside

the matter distribution. Consequently expansion-free models should be studied on
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physical grounds. The basic equations and construction of the model for expansion-

free distributions, in spherical symmetry, were given in Herrera et al (2009), and such

energy distributions must be inhomogeneous (Herrera et al (2009)). The evolution

of expansion-free spherically symmetric fluids and some families of exact solutions

are given in Prisco et al (2011), Kumar and Srivastava (2018a, 2018b). A study of

dynamical instability in expansion-free structures shows that the range of instability

is independent of stiffness, and depends on anisotropy and the radial profile of the

energy density (Sharif and Azam (2012)). The effects of the electromagnetic field were

included by Sharif (2012). Cylindrical symmetry, planar symmetry and axial symmetry

in expansion-free distributions were analysed in the treatments of Sharif and Yousaf

(2012), Sharif and Azam (2013), Sharif and Bhatti (2014). There have been attempts to

study the physical behaviour of expansion-free collapse in alternate theories of gravity.

Some results have found in f(R) gravity by Sharif and Nasir (2015), Sharif and Yousaf

(2013), Sharif and Nasir (2015), and in f(R,T) gravity theories by Noureen and Zubair

(2015), Zubair et al (2018).

As far as we are aware there has been no complete model of a radiating star found

which satisfies all boundary conditions at the stellar surface with the expansion-free

condition. In particular, no exact solution to the Santos boundary condition relating

the radial pressure to the heat flux has been presented. In this chapter we perform a

careful analysis of the Santos nonlinear differential equation and apply the expansion-

free restriction. We show that it is possible to find a simple class of exact solutions in

terms of elementary functions. A physical analysis of the resulting radiating model is

undertaken.
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2.3 Interior spacetime

The line element for the interior of the collapsing star is described by the general spher-

ically symmetric, shearing metric in comoving coordinates (Bonnor et al (1989)),

ds2 = −A2dt2 +B2dr2 +R2(dθ2 + sin2 θdφ2) , (2.3.1)

where A = A(t, r), B = B(t, r) and R = R(t, r). The spacetime coordinates here are

(xα) = (t, r, θ, φ). (2.3.2)

The interior matter content is that of an imperfect fluid given by

Tαβ = (µ+ P⊥)VαVβ + P⊥gαβ + (Pr − P⊥)χαχβ

+qαVβ + qβVα , (2.3.3)

where µ is the energy density, Pr is the radial pressure, P⊥ is the tangential pressure

and qα is the heat flux vector. The fluid four–velocity V is comoving and is given by

V α =
1

A
δα0 . (2.3.4)

The heat flow is in the radial direction, and the heat flow vector takes the form

qα = (0, q1, 0, 0) , (2.3.5)
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where qαVα = 0. We further have

χαχα = 1, (2.3.6a)

χαVα = 0 (2.3.6b)

The expansion scalar and the fluid four acceleration are given by

Θ = V α
;α, (2.3.7a)

aα = Vα;βV
β, (2.3.7b)

and the shear tensor is

σαβ = V(α;β) + a(αVβ) −
1

3
Θ(gαβ + VαVβ). (2.3.8)

For the comoving line element (2.3.1) the kinematical quantities take the following

forms

a1 =
A′

A
, (2.3.9a)

Θ =
1

A

(
Ḃ

B
+ 2

Ṙ

R

)
, (2.3.9b)

σ =
1

A

(
Ȧ

A
− Ṙ

R

)
, (2.3.9c)

where dots and primes denote differentiation with respect to t and r respectively.

The nonzero components of the Einstein field equations for the line element (2.3.1)

and the energy momentum (2.3.3) are
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µ = − 1

B2

[
2
R′′

R
+

(
R′

R

)2

− 2
B′

B

R′

R

(
B

R

)2
]

+
1

A2

(
2
Ḃ

B
+
Ṙ

R

)
Ṙ

R
, (2.3.10a)

Pr = − 1

A2

[
2
R̈

R
−

(
2
Ȧ

A
− Ṙ

R

)
Ṙ

R

]
+

1

B2

(
2
A′

A
+
R′

R

)
R′

R

− 1

R2
, (2.3.10b)

P⊥ = − 1

A2

[
B̈

B
+
R̈

R
− Ȧ

A

(
Ḃ

B
+
Ṙ

R

)
+
Ḃ

B

Ṙ

R

]

+
1

B2

[
A′′

A
+
R′′

R
− A′

A

B′

B
+

(
A′

A
− B′

B

)
R′

R

]
, (2.3.10c)

q =
2

AB

(
Ṙ′

R
− Ḃ

B

R′

R
− Ṙ

R

A′

A

)
, (2.3.10d)

where q = Bq1. This is an underdetermined system of four coupled partial differential

equations in seven unknowns, viz., A,B,R, µ, Pr, P⊥ and q.

2.4 Exterior spacetime and junction conditions

The exterior spacetime is taken to be the Vaidya solution given by

ds2 = −
(

1− 2m(v)

R

)
dv2 − 2dvdR

+R2
(
dθ2 + sin2 θdφ2

)
, (2.4.1)
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where m(v) represents the Newtonian mass of the gravitating body as measured by

an observer at infinity. The spacetime coordinates here are

(xα) = (v,R, θ, φ). (2.4.2)

The necessary conditions for the smooth matching of the interior spacetime (2.3.1) to

the exterior spacetime (2.4.1) have been extensively investigated. We present the main

results that are necessary for modeling a radiating star. The continuity of the intrinsic

and extrinsic curvature components of the interior and exterior spacetimes across a

timelike boundary gives

m(v)Σ =

R2
(Ṙ

A

)2

−
(
R′

B

)2

+ 1


Σ

, (2.4.3)

(Pr)Σ = qΣ. (2.4.4)

Relation (2.4.4) determines the temporal evolution of the collapsing star across the

boundary Σ. Equation (2.4.4) is a highly nonlinear differential equation. As far as we

are aware it has not been solved exactly for expansion-free collapsing stars with null

radiation in the exterior atmosphere.

2.5 Temporal evolution

The junction condition (Pr)Σ = qΣ yields
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Ḃ =

(
R

2AR′

)2
R̈

R
+

(
Ṙ

R

)2

− 2
Ȧ

A

Ṙ

R
+
A2

R2

B2

+

[
Ṙ′

R′
− A′

A

Ṙ

R′

]
B − A

2

[
R′

R
+ 2

A′

A

]
, (2.5.1)

which is of the form

Ḃ = C0(t)B2 + C1(t)B + C2(t). (2.5.2)

In general this is a Riccati equation. Thirukkanesh et al (2012) have provided various

classes of exact solutions to (2.5.1) based on ad hoc assumptions.

In seeking solutions to (2.5.1) we are going to focus on the socalled expansion-free

collapse scenario. The framework and motivation for studying expansion-free collapse

models were well motivated by Herrera and coworkers. The vanishing of the expansion

scalar leads to

B(r, t) =
g(r)

R2(r, t)
, (2.5.3)

where g(r) is an arbitrary function. With the assumption (2.5.3) the boundary condi-

tion (2.5.1) reduces to

R̈

R
+

1

2

(
Ṙ

R

)2

− Ȧ

A

Ṙ

R
−
(
AR2R′

g
+ Ṙ

)
A′R

g

−
(
R2R′2

2g2
− 1

2R2

)
A2 +

(
2ṘR′ +RṘ′

) A
g

= 0, (2.5.4)
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which was first obtained by Herrera et al (2009). This equation helps to provide the

physical meaning of expansion-free collapse.

2.6 Exact model

It is necessary to integrate (2.5.4). In spite of its nonlinearity exact solutions do exist.

By inspection it is possible to identify a family of solutions that solves (2.5.4) exactly.

A simple family of exact solutions is given by

A(r, t) =
22/3C

1/3
2 (−1 + 4C

1/3
2 − 3C2

2)1/3t

(2C1 − 3r2 + 3t2)2/3
, (2.6.1a)

B(r, t) =
22/3(−1 + 4C2 − 3C2

2)1/3r

C
2/3
2 (2C1 − 3r2 + 3t2)2/3

, (2.6.1b)

R(r, t) = (C
1/3
2 (−1 + 4C2 − 3C2

2)5/6(C2
1 + 6C1(−r

2

2
+
t2

2
)

+9(−r
2

2
+
t2

2
)2)1/6)×

(
1− C2 + 3C2

2

)−1
, (2.6.1c)

where C1, C2, C3 are constants.

With the above gravitational potentials the Einstein field equations (2.3.10a)–

(2.3.10d) reduce to
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µ = − 4× 22/3(1− C2 + C2
2)

C
2/3
2 (−1 + 4C2 − 3C2

2)2/3(2C1 − 3r2 + 3t2)2/3
, (2.6.2a)

Pr = − 4× 22/3C
1/3
2

(−1 + (4− 3C2)C2)2/3(2C1 − 3r2 + 3t2)2/3
, (2.6.2b)

P⊥ =
22/3C

−2/3
2 (−4r2 + C2

2(2C1 + 5r2 + 3t2))

(−1 + (4− 3C2)C2)2/3r2(2C1 − 3r2 + 3t2)2/3
, (2.6.2c)

q = − 4× 22/3C
1/3
2

(−1 + 4C2 − 3C2
2)2/3(2C1 − 3r2 + 3t2)2/3

. (2.6.2d)

Therefore equation (2.6.2a)-(2.6.2d) are an exact solution to the Einstein field equations

(2.3.10a)-(2.3.10d) wich may be utilised to model the interior of a spherically symmetric

star with heat flow.

2.7 Energy conditions

We will now examine the physical viability of our stellar model. First, we require that

the thermodynamical quantities be positive within the star

µ ≥ 0, (2.7.1a)

pr ≥ 0, (2.7.1b)

p⊥ ≥ 0. (2.7.1c)
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Next, the energy density and radial pressure must decrease outwards from the centre

of the star to its surface

µ′ < 0, (2.7.2a)

p′r < 0. (2.7.2b)

Figure 2.1 and Figure 2.2 confirm these trends in the energy density and radial pressure

profiles of the model respectively. We also observe that the energy density and both

the radial and tangential pressures (Figure 2.3) increase with time. This is expected

since as the collapse proceeds more matter gets squeezed into smaller volumes leading

to a more compact core. The profile of the heat flux, given in Figure 2.4, we observe

that it is an increasing function of the temporal coordinate. As the core collapses, its

density increases thus squeezing more atoms together. This initiates a larger number

of fusion reactions which produce vast amounts of energy. Figure 2.5 and Figure 2.6

show that the energy conditions

z1 = (µ+ pr)
2 − 4q2 > 0, (E1) (2.7.3a)

z2 = µ− pr − 2p⊥ +
[
(µ+ pr)

2 − 4q2
]1/2

> 0, (E2) (2.7.3b)

always hold within the stellar interior. Thus, the weak, strong and dominant energy

conditions are satisfied throughout the interior of the star.
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2.8 Thermal behaviour

Extended irreversible thermodynamics has been widely used in the context of dissi-

pative collapse. The effect of the relaxation time on the temperature and luminosity

profiles has been exhibited in several studies. Within an astrophysical context, it was

shown that relaxational effects predict higher core temperatures and enhanced cool-

ing at the surface of the radiating star. In this regard see the works of Govender at

al (1998), Govender at al (1999), Govender and Govinder (2001) and Maharaj and

Govender (2005). In order to explore the contributions from relaxational effects as the

fluid exits from hydrostatic equilibrium we will employ a causal heat transport equa-

tion of the Maxwell-Cattaneo form (Martinez (1996)). The truncated causal transport

equation in the absence of rotation and viscous-heat coupling is given by

τrhα
β q̇β + qα = −κ

(
hα

β∇βT + T u̇α
)
, (2.8.1)

where hαβ = gαβ + uαuβ is the projection tensor, T (t, r) is the local equilibrium tem-

perature, κ(≥ 0) is the thermal conductivity, and τr(≥ 0) is the relaxation time-scale

over which causal, stable behaviour is achieved. The noncausal Fourier heat transport

equation is obtained by setting the relaxation time τr = 0 in (2.8.1). With the aid of

the metric (2.3.1), equation (2.8.1) becomes

τr(qB)˙ + A(qB) = −κ(AT )′

B
. (2.8.2)

The thermodynamic coefficients associated with radiative transfer are well motivated

by Govender et al (1998, 1999). In order to obtain the causal temperature profile from

18



(2.8.2) we take

κ = γT 3τc, (2.8.3a)

τc =

(
ξ

γ

)
T −ω, (2.8.3b)

where τc is the mean collision time, ξ, γ and ω are positive constants. The relaxation

time is taken to be of the order of the mean collision time

τr =

(
ψγ

ξ

)
τc, (2.8.4)

where ψ (≥ 0) is a constant. Employing the definitions for τr and κ, it can be shown

that equation (2.8.2) takes the form

ψ(qB)˙T −ω + A(qB) = −ξT
3−ω(AT )′

B
, (2.8.5)

where ψ can be considered to be a ’causality index’, that enables us to quantify the

impact of relaxation effects on the system. The noncausal case is obtained when ψ = 0.

Figure 6 shows both the causal and noncausal temperatures from the centre of the star

towards its surface. The noncausal temperature is approximately constant throughout

the stellar fluid. This behaviour is not a true representation of the temperature profile

of a star close to hydrostatic equilibrium. We expect the temperature to be highest at

the centre of the star and to gradually decrease towards the surface layers. The core

is dense and we expect heat generation (in our case thermally generated neutrinos) to

be highest in regions of high densities. This pathological behaviour of the noncausal
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temperature is due to the absence of relaxational effects. The causal temperature shows

that the core temperature starts off at a maximum at the centre and drops off sharply

towards the boundary. This enhanced cooling has been observed in various models of

dissipative collapse.

2.9 Cavity

We have presented an exact model of dissipative collapse in which the interior is

expansion-free. This is a first exact model of expansion-free collapse. An analysis

of the density, radial pressure, tangential pressure and heat flow show that all these

quantities are well behaved. Our model obeys the energy conditions rendering it a

physically viable description of dissipative collapse. The noncausal temperature is ap-

proximately constant. The causal temperature dominates the noncausal temperature

up to a finite radius r0, for r0 < r ≤ rb. For r > r0 the noncausal temperature is greater

than causal temperature. This is the first time that we observe such a phenomenon.

Could this be the presence of a cavity forming within the stellar fluid for r ≤ r0 or is

it the consequence of the adoption of a noncausal heat transport equation?. This is an

isuue that requires further investigation.

Herrera and coworkers (Herrera et al (2012)) have shown that expansion-free col-

lapse in both the nondissipative and dissipative cases lead to the formation of a void

within the stellar fluid. In order to appreciate the formation of the cavity consider the

expansion scalar given by

Θ =
DT (δl)

δl
+

2DTR

R
=
DT (δl)

δl
+

2U

R
(2.9.1)

The first term represents the relative velocity between neighouring fluid layers. The
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circumferential velocity is described by the second term. These two velocities need not

necessarily be equal in magnitude. In the case of expansion-free collapse, a decrease in

the perimeter of a comoving sphere is balanced by an increase in the radial separation

distance between two neighbouring particles (Herrera et al 2010). The formation of the

cavity may alter the relaxation time within the different regions within the collapsing

body which gives rise to the peculiar behaviour of the temperature profiles.
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Figure 2.1: Density as a function of the radial r and temporal t coordinates
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Figure 2.2: Radial pressure as a function of the radial coordinate r and temporal

coordinate t.
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Figure 2.3: Tangential pressure as a function of the radial r and temporal t coordinates
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Figure 2.4: Heat flow as a function of the radial r and temporal t coordinates
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Figure 2.5: Energy conditions as a function of the radial r and temporal t coordinates

26



Figure 2.6: Energy conditions as a function of the radial r and temporal t coordinates
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Figure 2.7: Causal (solid line) and noncausal (dashed line) as functions of the radial

coordinate
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Chapter 3

Dissipative collapse in the presence

of shear

3.1 Introduction

Radiating stars, with the external atmosphere comprising outgoing null radiation, are

an important area of research in general relativity. It is important to find exact solu-

tions to the field equations and the boundary condition to describe the physics in strong

gravity. There have been several exact models found in recent times that have been

applied to gravitational collapse, stability of stars, dissipative effects, thermodynamics

in the Eckart theory and more general causal theories, and other important astrophysi-

cal processes. Some examples of recent investigations addressing these issues are given

in the works by Sharma and Tikekar (2012), Tewari (2012, 2013), Thirukkanesh and

Govender (2013), Sharma et al (2015), and Ivanov (2012). A recent approach to study

radiating stellar system involves the application of Lie symmetry infinitesimal genera-

tors as outlined in the investigation of Mohanlal et al (2017). Also the embedding of

a curved metric in four dimensions into a metric in five dimesions, which is flat with

29



vanishing Riemann tensor, has been analysed by Naidu et al (2018) giving a radiating

stellar model.

The general case of expanding, shearing and accelerating stellar interiors was first

considered by Thirukkanesh et al (2012) in spherically symmetric gravitational fluids.

The special case of geodesic flows leads to considerable simplification of the underly-

ing nonlinear differential equations and consequently has received much attention. A

comprehensive treatment of the dissipative effects for gravitating geodesic stars was

undertaken by Kolassis et al (1988). Radiating bodies with neutrino flux were anal-

ysed by Grammenos and Kolassis (1992). Particle trajectories which are geodesic with

separable metric potentials are restrictive and require anisotropic pressure (Govender

and Maharaj (2009)). Models of geodesic stars have been found by Thirukkanesh and

Maharaj (2009, 2010) by transforming the boundary condition to Bernoulli equations,

Riccati equations and confluent hypergeometric equations. Abebe et al (2014) found

several new families of exact solutions using the geometric properties of Lie groups;

travelling wave solutions and self-similar solutions arise in the Lie symmetry approach.

Ivanov (2016) found a generating function for geodesic stars undergoing anisotropic

collapse with shear and outgoing null radiation. This allows for the introduction of the

horizon function with is related to the redshift and the formation of horizons. Recently

several new farmilies of exact solutions with elementary functions for geodesic radiating

systems were found by Tiwari and Maharaj (2017) with physically reasonable profiles.

The cosmological constant is often included in studies because of obsevations relat-

ing to type Ia supernovae, high redshifts and baryon acoustic oscillations. The relevant

data point to a small positive cosmological constant which should be included in mod-

els describing strong gravity scenarios. In particular it is important to determine the

degree to which a nonzero cosmological constant influences the collapse of a general
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relativistic star. Some studies involving the cosmological constant include decreased

bending of light (Rindler and Ishak (2007)), modification of the Buchdahl compactness

ratio (Andreasson and Boehmer (2009)), formation of gravastars (Chan et al (2009)),

and strange stars with null strange quark fluid (Ghosh and Dadhich (2003)). Desh-

ingkar et al (2001) and Bohmer and Harko (2005) modelled stars and collapsing matter

distributions showing that the cosmological constant is connected to formation of both

black holes and naked singularities. Govender and Thirukkanesh (2009) considered the

effect of the nonzero cosmological constant on the star’s temperature profile in causal

thermodynamics; relaxational effects lead to larger temperature gradients in the core of

the star. These results were confirmed in the subsequent treatment of Thirukkanesh et

al (2012). Recently Bhatti (2018) considered shear-free matter distributions dominated

by the cosmological constant and found solutions satisfying the Darmois matching con-

ditions.

In this chapter we consider the situation of a collapsing star in spherical symmetry

both in the absence and the presence of the cosmological constant. We perform an

analysis of the underlying boundary condition and find new exact solutions. In Sec-

tion 3.2 we present the model of a radiating star, the field equations and the boundary

condition at the surface. In Section 3.3 a transformation due to Thirukkanesh and

Maharaj (2010) is discussed. Exact solutions with both nonzero and vanishing cosmo-

logical constant are presented in Sections 3.4 and 3.5 respectively. A detailed physical

analysis is performed in Section 3.6. Concluding remarks are made in Section 3.7.

3.2 The model

The line element for the interior goemetry of a radiating star for a general spherically

symmetric, spacetime can be written as
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ds2 = −A2dt2 +B2dr2 + Y 2(dθ2 + sin2 θdφ2) , (3.2.1)

where A = A(t, r), B = B(t, r) and Y = Y (t, r) are potentials. The energy momentum

tensor for the interior matter distribution is given by

Tαβ = (µ+ P⊥)VαVβ + P⊥gαβ + (Pr − P⊥)χαχβ

+qαVβ + qβVα , (3.2.2)

where µ is the energy density, Pr is the radial pressure, P⊥ is the tangential pressure,

and qα is the heat flow vector. The fluid four–velocity V is comoving and has the form

given by

V α =
1

A
δα0 . (3.2.3)

The heat flow vector is outgoing and spacelike. It is given in the form

qα = (0, q1, 0, 0) , (3.2.4)

where qαVα = 0. In addition we have

χαχα = 1, (3.2.5a)

χαVα = 0. (3.2.5b)

The expansion scalar and the fluid four acceleration are defined by

Θ = V α
;α, (3.2.6a)

aα = Vα;βV
β, (3.2.6b)
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and the expression

σαβ = V(α;β) + a(αVβ) −
1

3
Θ(gαβ + VαVβ), (3.2.7)

gives the shear tensor. For the comoving line element (2.3.1) these kinematical quan-

tities can be written as

a1 =
A′

A
, (3.2.8a)

Θ =
1

A

(
Ḃ

B
+ 2

Ẏ

Y

)
, (3.2.8b)

σ =
1

A

(
Ȧ

A
− Ẏ

Y

)
, (3.2.8c)

In terms of the potentials A, B and Y . In the above dots and primes denote differen-

tiation with respect to t and r respectively.

The Einstein field equations with cosmological constant λ has the form

Gαβ + λgαβ = Tαβ . (3.2.9)

For the metric (3.2.1) and the matter distribution (3.2.2), the equations (3.2.9) can be

written as
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µ = − 1

B2

[
2
Y ′′

Y
+

(
Y ′

Y

)2

− 2
B′

B

Y ′

Y

]

+
1

A2

(
2
Ḃ

B
+
Ẏ

Y

)
Ẏ

Y
+

1

Y 2
− λ, (3.2.10a)

Pr = − 1

A2

[
2
Ÿ

Y
−

(
2
Ȧ

A
− Ẏ

Y

)
Ẏ

Y

]
− 1

Y 2

+
1

B2

(
2
A′

A
+
Y ′

Y

)
Y ′

Y
+ λ, (3.2.10b)

P⊥ = − 1

A

[
B̈

B
+
Ÿ

Y
− Ȧ

A

(
Ḃ

B
+
Ẏ

Y

)
+
Ḃ

B

Ẏ

Y

]

+
1

B2

[
A′′

A
+
Y ′′

Y
− A′

A

B′

B
+

(
A′

A
− B′

B

)
Y ′

Y

]
+ λ, (3.2.10c)

q =
2

AB

(
Ẏ ′

Y
− Ḃ

B

Y ′

Y
− Ẏ

Y

A′

A

)
, (3.2.10d)

where q = Bq1. This is a nonlinear system of partial differential equations.

At the boundary of the star there has to be matching of the intrinsic and extrinsic

curvature components connecting the interior and exterior spacetimes. The matching

of the spacetimes is at the timelike boundary Σ. We generate the condition

(Pr)Σ = qΣ, (3.2.11)

which indicates that the radial pressure is not vanishing across the boundary of the

star. With the help of (3.2.10b), (3.2.10d) and (3.2.11) we find that the junction
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condition becomes

2

AB

(
Ẏ ′

Y
− Ḃ

B

Y ′

Y
− Ẏ

Y

A′

A

)
= − 1

A2

[
2
Ÿ

Y
−

(
2
Ȧ

A
− Ẏ

Y

)
Ẏ

Y

]

− 1

Y 2
+

1

B2

(
2
A′

A
+
Y ′

Y

)
Y ′

Y
+ λ, (3.2.12)

which governs the temporal evolution of the radiating star across the stellar surface Σ.

This equation can be rewritten in the form

Ḃ =

[
Ÿ

AY ′
− ȦẎ

A2Y ′
+

Ẏ 2

2AY Y ′
+

A

2Y Y ′
− λAY

2Y ′

]
B2 +

(
Ẏ ′

Y ′
− Ẏ

Y ′
A′

A

)
B

−A
2

(
2A′

A
+
Y ′

Y

)
, (3.2.13)

which has the form of a first order equation in the potential B. When λ = 0 we regain

the boundary condition studied by Thirukkanesh et al (2012).

3.3 A transformation

Equation (3.2.13) may be viewed as a Riccati equation in B. Particular solutions have

been found using various methods. In the case of geodesic flows Thirukkanesh and

Maharaj (2009) introduced the transformation

B = ZY ′, (3.3.1)

which leads to a new family of solutions. We now apply (3.3.1) to the general case

including nongeodesic motion with cosmological constant. In this general case we find
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that (3.2.13) and (3.3.1) lead to the result

Ż =

(
Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2

)
Z2 − A′Ẏ

AY ′
Z −

(
A′

Y ′
+

A

2Y

)
, (3.3.2)

which is a first order equation in Z.

If we set A = 1 for geodesic flows with cosmological constant then equation (3.3.2)

gives

Ż =
1

2Y
[FZ2 − 1], (3.3.3)

where we have set

F = 2Y Ÿ + Ẏ 2 − λY 2 + 1. (3.3.4)

When A = 1 and λ = 0 then

F = 2Y Ÿ + Ẏ 2 + 1, (3.3.5)

which in the simplest case first studied by Thirukkanesh and Maharaj (2010).

Equation (3.3.2) is nonlinear and difficult to integrate in general. However exact

solutions exist. A simpler class of solutions can be found if we let

Ẏ = 0, (3.3.6a)

A′

Y ′
+

A

2Y
= 0. (3.3.6b)
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Then (3.3.2) becomes

Ż =

(
A

2Y
− λAY

2

)
Z2. (3.3.7)

We can integrate (3.3.6a), (3.3.6b) and (3.3.7) to find the potentials

A = f(t)Y −1/2, , (3.3.8a)

B = 2Y ′
[(
λY 1/2 − Y −3/2

) ∫
f(t)dt+ g(r)

]−1

, (3.3.8b)

Y = Y (r). (3.3.8c)

in terms of the arbitrary functions f(t) and g(r) which arise from the integration pro-

cess. With these potentials the line element (3.2.1) becomes

ds2 = −f 2(t)Y −1dt2 + 4Y ′2
[(
λY 1/2 − Y −3/2

) ∫
f(t)dt+ g(r)

]−2

dr2

+Y 2(dθ2 + sin2 θdφ2), (3.3.9)

containing the cosmological constant λ and the function Y (r). It is interesting to

observe that the spacetime related to (3.3.9) is expanding, accelerating and shear-

ing. When λ = 0 then (3.3.9) is related to one of the metrics in the treatment of

Thirukkanesh et al (2009).
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3.4 Geodesic motion with λ 6= 0

As shown in Section 3.3, exact solutions to equation (3.3.2) exist when A 6= 1. We now

consider the simpler case of geodesic motion (A = 1) in the presence of the cosmological

constent (λ 6= 0). We have to solve (3.3.3) subject to (3.3.4). We can find two classes

of simple solutions.

3.4.1 λ 6= 0, F = 1

If λ 6= 0 and F = 1, then (3.3.4) becomes

2Y Ÿ + Ẏ 2 = λY 2. (3.4.1)

This equation can be written as

Y
dẎ 2

dY
+ Ẏ 2 = λY 2. (3.4.2)

Integrating (3.4.2) gives

Ẏ 2 =
λY 2

3
+
c(r)

Y
, (3.4.3)

where c(r) is a function of integrating. We can express (3.4.3) in the form

√
Y dY√

λY 3

3
+ c(r)

= dt, (3.4.4)

and the variables Y and t have separated.

Equation (3.4.4) can be simplified if we define
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Y 3/2 =

√
3c(r)

λ
sinh v, (3.4.5)

in terms of the new variable v. Then (3.4.4) is simply 2√
3λ
dv = dt. Finally integrating

yields

v =

√
3λ

2
(t+ C). (3.4.6)

With F = 1 we observe that (3.3.3) is a separable equation; integrating gives

Z =

(
1 + C̃e

∫
1/Y dt

1− C̃e
∫

1/Y dt

)
, (3.4.7)

where C and C̃ are new constants. Therefore

A = 1, (3.4.8a)

B = Y ′
(

1 + C3e
∫

1/Y dt

1− C3e
∫

1/Y dt

)
, (3.4.8b)

Y =

[√
3c(r)

λ
sinh [

√
3λ

2
(t+ C)]

]2/3

, (3.4.8c)

gives a new solution to the boundary condition with λ 6= 0.

3.4.2 λ 6= 0, F = 1 + a(r)

If λ 6= 0 and F = 1 + a(r), then (3.3.4) gives

2Y Ÿ + Ẏ 2 = λY 2 + a(r). (3.4.9)
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Equation (3.4.9) can be written as

Y
dẎ 2

dY
+ Ẏ 2 = λY 2 + a(r), (3.4.10)

which is a first order in Ẏ 2. Integrating gives

Ẏ 2 =
λY 2

3
+ a(r) +

c(r)

Y
. (3.4.11)

This can be written as

dY√
λY 2

3
+ a(r) + c(r)

Y

= dt, (3.4.12)

with separated variables.

It is difficult to find Y from the above. We can achieve some simplification if we let

c(r) = 0, (3.4.13a)

Y =

√
3a(r)

λ
sinh v. (3.4.13b)

Then (3.4.12) is simply
√

3
λ
dv = dt. Then integrating yields

√
3

λ
v = t+ C. (3.4.14)

We can integrate (3.3.3) with F = 1 + a(r). Note that equation (3.3.3) becomes

Ż =
1

2Y

[
(1 + a(r))Z2 − 1

]
. (3.4.15)
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We can rewrite equation (3.4.15) as

∫
dZ

Z − 1√
1+a(r)

+

∫
dZ

Z + 1√
1+a(r)

=

∫
1

Y
dt, (3.4.16)

which is separable. Integrating (3.4.16) gives

Z =
1

(1 + a(r))1/2

(
1 + Ce

∫
1
Y
dt

1− Ce
∫

1
Y
dt

)
. (3.4.17)

Therefore

A = 1, (3.4.18a)

B =
Y ′

(1 + a(r))1/2

(
1 + Ce

∫
1
Y
dt

1− Ce
∫

1
Y
dt

)
, (3.4.18b)

Y =

√
3a(r)

λ
sinh

[√
λ

3
(t+ C)

]
. (3.4.18c)

gives another new solution to the boundary condition with λ 6= 0.

3.5 Geodesic motion with λ = 0

The case of geodesic motion with vanishing cosmological constant was first analysed

by Thirukkanesh and Maharaj (2010). In this case A = 1 and λ = 0. It is possible to

find new solutions with λ = 0 that are not contained in the analysis of Thirukkanesh

and Maharaj (2010). We have to solve (3.3.3) and (3.3.5).
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In this case equation (3.3.3) becomes

Ż =
1

2Y

[
(1 + a(r))Z2 − 1

]
. (3.5.1)

This is the same as equation (3.4.15). Hence the general solution is given by

Z =
1

(1 + a(r))1/2

(
1 + Ce

∫
1
Y
dt

1− Ce
∫

1
Y
dt

)
, (3.5.2)

as in Section 3.4. Then the potential B is given by

B =
Y ′

(1 + a(r))1/2

(
1 + Ce

∫
1
Y
dt

1− Ce
∫

1
Y
dt

)
. (3.5.3)

If λ = 0 and F = 1 + a(r) , then (3.3.4) can be written as

Y
dẎ 2

dY
+ Ẏ 2 = a(r), (3.5.4)

which is a first order in Ẏ 2. Integrating yields

Ẏ 2 =
a(r)Y + εb(r)

Y
, (3.5.5)

where ε = 0,±1 and b(r) > 0, and the arbitrary functions b(r) and ε arise from the

integration process. Three cases arise which we consider separately below.

3.5.1 ε = 0

Equation (3.5.5) become
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Ẏ 2 = a(r), (3.5.6)

which can be written as

dY =
√
a(r)dt. (3.5.7)

Then integrating (3.5.7) we obtain

Y =
√
a(r)t+ k(r), (3.5.8)

where k(r) is a new arbitrary function. This results is the same as the potential in

Thirukkanesh and Maharaj (2010) (see their equation (21)).

Hence the exact solution is given by

A = 1, (3.5.9a)

B =
Y ′

(1 + a(r))1/2

1 + C
(√

a(r)t+ k(r)
)
/
√
a(r)

1− C
(√

a(r) + k(r)
)
/
√
a(r)

 , (3.5.9b)

Y =
√
a(r)t+ k(r). (3.5.9c)

3.5.2 ε = 1

Equation (3.5.5) becomes

√
Y√

a(r)Y + b(r)
dY = dt. (3.5.10)

43



We now set a(r)Y + b(r) = b(r) sinh2 v. Then (3.5.10) becomes

2b(r)

a(r)2/3

√
sinh2 v − 1 cosh vdv = dt. (3.5.11)

Integrating gives

2b(r)

a(r)2/3

[
v +

1

2
sinh 2v

]
= t+ C, (3.5.12)

where C is constant.

We have the following new class of solution

A = 1, (3.5.13a)

B =
Y ′

(1 + a(r))1/2

(
1 + Ce

∫
1
Y
dt

1− Ce
∫

1
Y
dt

)
, (3.5.13b)

Y =
b(r)

a(r)
sinh2 v − b(r)

a(r)
, (3.5.13c)

v +
1

2
sinh 2v =

a(r)2/3

2d(r)
[t+ C], (3.5.13d)

in parametric form. This is a new solution for the boundary condition.

3.5.3 ε = −1

Equation (3.5.5) becomes

√
Y√

a(r)Y − b(r)
dY = dt. (3.5.14)
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We now set a(r)Y + b(r) = b(r) cosh2 v. Then equation (3.5.14) becomes

2b(r)

a(r)2/3

∫ √
cosh2 v + 1 cosh vdv = dt. (3.5.15)

Integrating gives

2b(r)

a(r)2/3

[
v − 1

2
sinh 2v

]
= t+ C (3.5.16)

where C is constant.

We have the following new class of solution

A = 1, (3.5.17a)

B =
Y ′

(1 + a(r))1/2

(
1 + Ce

∫
1
Y
dt

1− Ce
∫

1
Y
dt

)
, (3.5.17b)

Y =
b(r)

a(r)
cosh2 v +

b(r)

a(r)
, (3.5.17c)

v − 1

2
sinh 2v =

a(r)2/3

2b(r)
[t+ C], (3.5.17d)

in parametric form. This is a new solution for the boundary condition.
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3.6 Physical analysis

In order to carry out a physical analysis of our solutions, we use the line element

(3.3.9) to describe the interior of a radiating star. For simplicity we choose Y (r) = r

and f(t) = a where a is a positive constant. The gravitational potentials A and B

follow from (3.3.8a) and (3.3.8b) for this solution. The thermodynamical variables are

µ = −a
2t2

2r5
− λ+

1

r2
− λ2

2r
, (3.6.1a)

Pr = λ− 1

r2
, (3.6.1b)

P⊥ = −(5at+ 3λr2) (at− λr2)
3 − 16λr5 (at− λr2)

2
+ 32r6

16r5 (at− λr2)2 , (3.6.1c)

Q = qB =
1

r2
. (3.6.1d)

Figure 3.1 shows the heat flow as a function of the radial and temporal coordinates.

Bearing in mind that the collapse proceeds from t = −∞ to t→> 0, we observe that

the heat flow is an increasing function of time. This is expected as the collapse proceeds

the core becomes more dense leading to higher central temperatures. The increase in

temperature leads to higher heat generation within the collapsing core. Figure 3.2

displays the behaviour of the density. The density is positive at each interior point

of the stellar configuration and decreases monotonically as one approaches the stellar

surface. The radial pressure is portrayed in Figure 3.3. Our model displays a very

interesting feature. In the case of vanishing cosmology constant (λ = 0) the radial

pressure is always negative. The inclusion of the cosmological constant (λ 6= 0) allows
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for Pr > 0. We also study the behaviour of energy conditions as given by

Z1 = (µ+ pr)
2 − 4q2 > 0, (E1) (3.6.2a)

Z2 = µ− pr − 2p⊥ +
[
(µ+ pr)

2 − 4q2
]1/2

> 0, (E2) (3.6.2b)

which ensure that the weak, strong and dominant energy conditions are satisfied

throughout the interior of the star. From Figure 3.4 and Figure 3.5 we observe that

the energy conditions are satisfied indicating that our model is physically viable. We

further observe that as the collapse proceeds (t → 0) our model obeys an equation of

state of the form

p = −αµ, (3.6.3)

where µ ≈ 1
r2

. This density distribution is that of an isothermal sphare and the

corresponding general relativistic case was studied by Saslaw et al (1996).

3.7 Discussion

We have presented a new family of solutions to the classical Einstein field equations

describing radiating spheres in the presence of a cosmological constant. This extends

the results of earlier treatments. We employed a transformation which allowed us to

obtain several exact solutions of the boundary condition. In the first class of solutions

we obtain new models with a cosmological constant present. These solutions can be

written parametrically. In the second case we find new solutions with vanishing cos-

mological constant. This class extends the category of models found by Thirukkanesh
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and Maharaj (2010). This allowed us to fully specify the gravitational behaviour of

the stellar model; an analysis of the density, pressure, heat flux and energy conditions

reveals that this model adequately describes a collapsing sphere. We note that the

presence of the cosmological constant affects the gravitational dynamics. An interest-

ing feature of our model is the impact of the cosmological constant on the pressure

profile. In the absence of λ the radial presure is always negative. The presence of λ

allows for positive radial presure. In essence we can view λ as having a repulsive effect

within the stellar core, thus making Pr > 0 and stabilising the stellar configuration.
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Figure 3.1: Heat flow as a function of the radial r and temporal t coordinates
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Figure 3.2: Density as a function of the radial coordinate r and temporal coordinate t.
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Figure 3.3: Radial pressure as a function of the radial coordinate r and temporal

coordinate t.
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Figure 3.4: Energy conditions as a function of the radial r and temporal t coordinate
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Figure 3.5: Energy conditions as a function of the radial r and temporal t coordinates
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Chapter 4

Shearing dissipative collapse in the

presence of λ

4.1 Introduction

In this chapter we extend earlier work done to include the presence of the cosmological

constant. It is well know that the gravitational collapse in general relativity, in which

the interior matter distribution is dust with the exterior spacetime being Schwarzchild,

was first investigated by Oppenheimer and Snyder (1939). This can be extended to

radiating matter by using the junction conditions of Santos (1935). Recently Tewari

et al (2016) found a relativistic model for a spherically symmetric anisotropic fluid to

investigate and analyse the various factors of physical and thermal phenomena during

the evolution of a collapsing star dissipating energy in the form of radial heat flow. It is

important to study radiative gravitational collapse where the collapsing core radiates

energy to the exterior spacetime, as shown in the treatment of Naidu et al (2006).

There are recent models that investigate gravitational collapse, the stability of the star

and dissipative processes. In addition there are models that apply the Eckart theory
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and causal theores to investigate the thermodynamics (Tewari (2013), Sharma et al

(2013), Pretel (2019)). Mohanlal et al (2017) investigated radiating stellar systems

that involves the application of Lie symmetry infinitesimal generators. Thirukkanesh

et al (2012) demonstrated solutions to a Riccati boundary equation governing the

gravitational behaviour for a radiating star. It appears that Riccati equations are

generic to the description of radiating stars which have a Vaidya exterior. In this

paper, we extend their work by introducing a particular transformation to the Riccati

equation and applying a different approach to generate new exact solutions.

We consider exact solutions by introducing a cosmological constant in the Einstein

field equations. Some recent studies include the cosmological constant for observations

relating to type Ia supernovae, high redshifts and baryon acoustic oscillations. It is

important to investigate the degree in which the nonzero cosmological constant affects

the collapse of a general relativistic star. Rindler and Ishak (2007) investigate the

role played by the cosmological constant on the bending of light. Andreasson and

Boehmer (2009) extend the work of the Buchdahl compactness ratio to include the

cosmological constant. Note that the cosmological constant imposes a limit to the

gravastar formation by Chan (2009), and constrains strange stars with null strange

quark fluid by Ghosh (2003). Deshingkar et al (2009) and Bohmer and Harko (2005)

demonstrated that the cosmological constant is connected to formation of both black

holes and visible singularities in gravitational collapse. Govender and Thirukkanesh

(2009) studied the presence of a nonzero cosmological constant on temperature profiles

in causal thermodynamics; relaxational effects produce larger temperature gradients in

the core regions of the star. These results were confirmed in the study of Thirukkanesh

et al (2012). Recently Bhatti (2018) investigated shear-free matter distributions in the

presence of the cosmological constant and generated exact solutions for a radiating
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star. Zitha et al (2019) found exact solutions satisfying the condition for a collapsing

star in spherical symmetry both in the absence and the presence of the cosmological

constant.

In this chapter we consider the presence of cosmological constant in a collapsing

model. In Section 4.2 we present the model of a radiating star, the Einstein field

equations, the boundary conditions, and the transformed equation that needs to be

solved and analysed. In Sections 4.3, 4.4 and 4.5 we find exact solutions with nonzero

cosmological constant under various assumptions. We complete our model by showing

a physical analysis in Section 4.6. We summarise our findings in Section 4.7.

4.2 The model

We investigate the dynamics of a relativistic star. The interior geometry of the radiating

star for the general spherically symmetric line element, is given by

ds2 = −A2dt2 +B2dr2 + Y 2(dθ2 + sin2 θdφ2) , (4.2.1)

where A = A(t, r), B = B(t, r) and Y = Y (t, r) are the metric functions and control

the process of the collapse. The stellar model is represented by the interior matter

distribution with energy momentum tensor T and is given by

Tαβ = (µ+ P⊥)VαVβ + P⊥gαβ + (Pr − P⊥)χαχβ

+qαVβ + qβVα , (4.2.2)

where µ is the energy density, Pr is the radial pressure, P⊥ is the tangential pressure,

and q is the heat flow vector. These quantities are measured relative to a timelike fluid
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four-velocity. The fluid four–velocity V is comoving and has the particular form

V α =
1

A
δα0 . (4.2.3)

The heat flow vector q represents heat loss, across the boundary to the outside of the

star, and is a spacelike vector. It has the form

qα = (0, q1, 0, 0) , (4.2.4)

and it satisfies qαVα = 0. In addition the vectors χ and V satisfy

χαχα = 1, (4.2.5a)

χαVα = 0. (4.2.5b)

The expansion scalar and the fluid four-acceleration are defined by the equations

Θ = V α
;α, (4.2.6a)

aα = Vα;βV
β. (4.2.6b)

If the star is collapsing then we have Θ < 0. The following expression represents the

shear tensor

σαβ = V(α;β) + a(αVβ) −
1

3
Θ(gαβ + VαVβ). (4.2.7)

The kinematical quantities can be written explicitly for the comoving line element

(4.2.1). These kinematical quantities are given by
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a1 =
A′

A
, (4.2.8a)

Θ =
1

A

(
Ḃ

B
+ 2

Ẏ

Y

)
, (4.2.8b)

σ =
1

A

(
Ȧ

A
− Ẏ

Y

)
, (4.2.8c)

where dots and primes represent differentiation with respect to t and r respectively.

The Einstein field equations have the form

Rαβ −
1

2
Rgαβ + λgαβ = Tαβ , (4.2.9)

in the presence of the cosmological constant λ. For the spherical metric (4.2.1) and the

general matter distribution (4.2.2), the equations (4.2.9) become
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ρ = − 1

B2

[
2
Y ′′

Y
+

(
Y ′

Y

)2

− 2
B′

B

Y ′

Y

]

+
1

A2

(
2
Ḃ

B
+
Ẏ

Y

)
Ẏ

Y
+

1

Y 2
− λ, (4.2.10a)

Pr = − 1

A2

[
2
Ÿ

Y
−

(
2
Ȧ

A
− Ẏ

Y

)
Ẏ

Y

]
− 1

Y 2

+
1

B2

(
2
A′

A
+
Y ′

Y

)
Y ′

Y
+ λ, (4.2.10b)

P⊥ = − 1

A

[
B̈

B
+
Ÿ

Y
− Ȧ

A

(
Ḃ

B
+
Ẏ

Y

)
+
Ḃ

B

Ẏ

Y

]

+
1

B2

[
A′′

A
+
Y ′′

Y
− A′

A

B′

B
+

(
A′

A
− B′

B

)
Y ′

Y

]
+ λ, (4.2.10c)

q =
2

AB

(
Ẏ ′

Y
− Ḃ

B

Y ′

Y
− Ẏ

Y

A′

A

)
, (4.2.10d)

where we have set q = Bq1. The system (4.2.10a)-(4.2.10d) is nonlinear relating ρ, Pr,

P⊥, q, λ, A, B and Y .

At the boundary of the star the intrinsic and extrinsic curvature components, re-

lated to the interior and exterior spacetimes, have to match. The matching of the

interior and exterior spacetimes is at the boundary Σ which is timelike. This yields

the boundary condition

(pr)Σ = qΣ. (4.2.11)

Consequently the radial pressure is not zero across the boundary of a radiating star.

This condition was first stablished by Santos (1985). Using equations (4.2.10b) and
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(4.2.10d) we find that the junction condition (4.2.11) can be written in the form

2

AB

(
Ẏ ′

Y
− Ḃ

B

Y ′

Y
− Ẏ

Y

A′

A

)
= − 1

A2

[
2
Ÿ

Y
−

(
2
Ȧ

A
− Ẏ

Y

)
Ẏ

Y

]
− 1

Y 2

+
1

B2

(
2
A′

A
+
Y ′

Y

)
Y ′

Y
+ λ. (4.2.12)

This condition determines the temporal evolution of the radiating body across the

stellar boundary Σ. In the original form (4.2.12) the equation is complicated but can

be rewritten in the form

Ḃ =

[
Ÿ

AY ′
− ȦẎ

A2Y ′
+

Ẏ 2

2AY Y ′
+

A

2Y Y ′
− λAY

2Y ′

]
B2

+

(
Ẏ ′

Y ′
− Ẏ

Y ′
A′

A

)
B − A

2

(
2A′

A
+
Y ′

Y

)
. (4.2.13)

This representation is simpler as it may be considered as a first order equation in the

metric function B.

Equation (4.2.13) is assentially a Riccati equation in B and some solutions have

been found utilizing ad hoc methods. A further simplification of (4.2.13) is possible if

we introduce the transformation

B = ZY ′. (4.2.14)

The transformation of (4.2.14) was used by Thirukkanesh et al (2012) and Ivanov

(2012) for geodesic fluids in the absence of λ. Zitha et al (2019) showed that the trans-

formation may be used to study the effect of the cosmological contant for a collapsing
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star for a nonaccelerating boby. It is also possible to consider the general case including

nongeodesic motion with cosmological constant. We observe that (4.2.13) and (4.2.14)

produce the result

Ż =

(
Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2

)
Z2 − A′Ẏ

AY ′
Z −

(
A′

Y ′
+

A

2Y

)
. (4.2.15)

Equation (4.2.15) is a first order equation in the new variable Z. It is possible to

integrate (4.2.15) and several simple families of exact solutions arise. These families

are presented in the subsequent sections.

4.3 Class A models

We investigate the case when equation (4.2.15) becomes a linear equation in Z. We set

Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2
= 0. (4.3.1)

Equivalently (4.3.1) can be written as

Ȧ−

(
Ÿ

Ẏ
+

Ẏ

2Y

)
A = −

(
λY

2Ẏ
− 1

2Y Ẏ

)
A3, (4.3.2)

which can be considered as a Bernoulli equation in A if Y is known.

Then equation (4.2.15) becomes

Ż +
A′Ẏ

AY ′
Z = −

(
A′

Y ′
+

A

2Y

)
, (4.3.3)
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which is linear in Z. Equation (4.3.3) can be integrated and obtain

Z = −
∫

(A
′

Y ′ + A
2Y

) exp[
∫

(lnA)′ Ẏ
Y ′dt]dt

exp[
∫

(lnA)′ Ẏ
Y ′dt]

. (4.3.4)

To complete the solution we need to integrate (4.3.2). It is not possible to solve (4.3.2)

in general. However there are particular cases which are solvable which we present

below.

4.3.1 Solution 1 : Ȧ = 0

First set

Ȧ = 0, (4.3.5)

which gives

A = f(r). (4.3.6)

Equation (4.3.2) becomes

2Y Ÿ + Ẏ 2 +
(
1− λY 2

)
A2 = 0, (4.3.7)

which can be written as

d

dY
(Ẏ 2Y ) =

(
λY 2 − 1

)
A2. (4.3.8)

Integrating gives the results
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Ẏ 2Y =

(
λY 3

3
− Y

)
A2 + F, (4.3.9)

where F is a arbitrary function. We cannot solve to get a form for Y in general.

If we set F = 0 then

Ẏ =

√
Y 2 − 3

λ

√
λ

3
A, (4.3.10)

this is separable integral

dY√
Y 2 − 3

λ

=

√
λ

3
Adt. (4.3.11)

If set Y =
√

3
λ

sec v, then equation (4.3.11) becomes

∫
sec vdv =

∫
Adt. (4.3.12)

Integrating we obtain

ln(sec v + tan v) = At+ c, (4.3.13)

so that

ln

(√
λ

3
Y +

√
λY 2

3
− 1

)
= At+ c. (4.3.14)

Therefore this class of exact solution is given by
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B = −
∫

(A
′

Y ′ + A
2Y

) exp[
∫

(lnA)′ Ẏ
Y ′dt]dt

exp[
∫

(lnA)′ Ẏ
Y ′dt]

Y ′, (4.3.15a)

ln

(√
λ

3
Y +

√
λY 2

3
− 1

)
= At+ c, (4.3.15b)

A = f(r). (4.3.15c)

For this category of solution we can make any choice for the function f(r).

4.3.2 Solution 2 : Ȧ 6= 0

If Ȧ 6= 0 then we can set

U = A−1. (4.3.16)

Equation (4.3.2) is the transformed to the linear equation

U̇ + 2

(
Ÿ

Ẏ
+

Ẏ

2Y

)
U =

(
λY

Ẏ
− 1

Y Ẏ

)
. (4.3.17)

Integrating equation (4.3.17) we obtain

U =
λY 2 − 3

3Ẏ 2
+
f(r)

Ẏ 2Y
, (4.3.18)

where f(r) is a function of integration. Therefore
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A =

√
3Y Ẏ√

λY 3 − 3Y + 3f(r)Ẏ 2

. (4.3.19)

Therefore this class of exact solution is given by

B = −
∫

(A
′

Y ′ + A
2Y

) exp[
∫

(lnA)′ Ẏ
Y ′dt]dt

exp[
∫

(lnA)′ Ẏ
Y ′dt]

Y ′, (4.3.20a)

A =

√
3Y Ẏ√

λY 3 − 3Y + 3f(r)Ẏ 2

(4.3.20b)

Y = Y (r, t) (4.3.20c)

For this category of solution we can make any choice for the function of Y (r, t).

4.4 Class B models

We now consider the case when equation (4.2.15) becomes a Bernoulli equation in Z.

In this case we set

A′

Y ′
+

A

2Y
= 0, (4.4.1)

which gives

Y =
f(t)

A2
. (4.4.2)
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Then equation (4.2.15) becomes the Bernoulli

Ż +
A′Ẏ

AY ′
Z =

(
Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2

)
Z2. (4.4.3)

Integrating this equation we get

Z = −

exp[

∫
(lnA)′

Ẏ

Y ′
dt]

∫ (
Ÿ
A

+ Ẏ 2

2AY
+ A

2Y
− ȦẎ

A2 − λAY
2

)
exp[

∫
(lnA)′ Ẏ

Y ′dt]
dt

−1

, (4.4.4)

The general solution is given by

B = −Y ′
exp[

∫
(lnA)′

Ẏ

Y ′
dt]

∫ (
Ÿ
A

+ Ẏ 2

2AY
+ A

2Y
− ȦẎ

A2 − λAY
2

)
exp[

∫
(lnA)′ Ẏ

Y ′dt]
dt

−1

,(4.4.5a)

A2 =
f(t)

Y
, (4.4.5b)

Y = Y (r, t). (4.4.5c)

In this category of solution any choice can be made for the potential Y . Clearly a1 6= 0,

Θ 6= 0 and σ 6= 0 in (4.2.8a)-(4.2.8c) for the kinematical quantities. Some simplification

is possible when we set Ẏ = 0, giving Y = s(r). Then Z in (4.4.4) is reduced to the

simple expression

Z = − 1(
1

2Y
− λY

2

) ∫
Adt

, (4.4.6)
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and A2 = f(t)
Y

with Y = s(r). In this special case Ẏ = 0 but Ȧ 6= 0 so the particles are

not geodesic and remain shearing.

4.5 Class C models

Other solutions of (4.2.15) are possible but not easy to find. It is possible to convert

(4.2.15) to an algebraic equation in Z. To achieve this we set

Ż = 0, (4.5.1)

which gives

Z = k(r). (4.5.2)

In terms of the potential B we have

B = k(r)Y ′. (4.5.3)

Then equation (4.2.15) becomes the quadratic

(
Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2

)
Z2 +

A′Ẏ

AY ′
Z +

(
A′

Y ′
+

A

2Y

)
= 0. (4.5.4)

Equation (4.5.4) can be solved by placing restrictions on its coefficients. We demon-

strate this with an example.

We set
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Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2
= 0, (4.5.5a)

Ȧ = 0. (4.5.5b)

Then equation (4.5.4) becomes

Z = − A′Ẏ

AY ′
(
A′

Y ′ + A
2Y

) = k(r). (4.5.6)

Equation (4.5.6) can be written in the from

Ẏ =
(2A′ + A(lnY )′) k(r)

−2(lnA)′
, (4.5.7)

which relates the temporal and spatial derivatives of Y . Equation (4.5.7) is then a

consistency condition for the existence of the exact solution.

Since Ȧ = 0 equation (4.5.5a) becomes

Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− λAY

2
= 0, (4.5.8)

which can be written as

d

dY
(Ẏ 2Y ) = λA2Y 2 − A2. (4.5.9)

Integrating (4.5.9) gives
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Ẏ 2Y =
λA2Y 3

3
− A2Y +G, (4.5.10)

where G is a function from integration. It is difficult to integrate (4.5.10) in general;

we therefore set G = 0, so that we can express equation (4.5.10) as

√
3√
λ

dY√
Y 2 − 3

λ

= Adt. (4.5.11)

This can be integrated if we set Y =
√

3
λ

sec v. Equation (4.5.11) becomes

∫
sec vdv =

∫
dt. (4.5.12)

Then integrating we obtain

ln(sec v + tan v) = At+ c. (4.5.13)

In terms of the original variables

ln

(√
λ

3
Y +

√
λY 2

3
− 1

)
= At+ c, (4.5.14)

whish gives the potential Y .

4.6 Physical analysis

In order to perfom our physical analysis of the radiating star, we simple considered our

solution from Section 4.4. We choose
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Y = 4− C

r
,

then

A =
1√

4− C
r

,

and

B = −
2C
√

4− C
r

(4r − C)

rt (C2λ− 8Cλr + (16λ− 1)r2)
,

where C is a positive constant. The Einstein field equations (4.2.10a)-(4.2.10d) yield

the following expressions for the matter variables.
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ρ =
(−2C3 + C2r (λt2 + 24)− 8Cr2 (λt2 + 12))

2(C − 4r)5 (C2λ− 8Cλr + (16λ− 1)r2)−1 ,

+
r3 ((16λ+ 1)t2 + 128)

2(C − 4r)5 (C2λ− 8Cλr + (16λ− 1)r2)−1 (4.6.1a)

pr = λ− r2

(C − 4r)2
, (4.6.1b)

pt =
2λrt2(C − 4r)2 (r3t2(16r − 5C) + 8C(C − 4r)3)

16Crt2(C − 4r)5

+
λ2r2t4(C − 4r)4(C − 16r)

16Crt2(C − 4r)5

+
32C7 − 768C6r + 7680C5r2 − 40960C4r3 + 122880C3r4 − 196608C2r5

16Crt2(C − 4r)5

+
9Cr6t4 + 131072Cr6

16Crt2(C − 4r)5
− 16r7t4

16Crt2(C − 4r)5
, (4.6.1c)

q =
C2λ− 8Cλr + (16λ− 1)r2

(C − 4r)2
. (4.6.1d)

Figure 1 shows that the heat flux decreases monotonically from the centre of the

star towards the stellar surface. We expect this behaviour as the core of the star is

more dense and hotter than the surface layers, hence energy production at the centre

is much higher. Figure 2 displays the behaviour of the density. We observe that the

density is positive at each interior point of the star. The radial pressure is plotted in
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Figure 3. Observation of the radial pressure indicates that it decreases monotonically

towards the boundary of the star. This behaviour mimics the trend in the heat flux.

Higher energy output at the centre of the stellar configuration is accompanied by higher

pressures. It is also important to note from (4.6.1b) that in the case of vanishing Λ,

the radial pressure is negative throughout the fluid interior. Figure 4 indicates that the

tangential pressure is positive everywhere within the stellar interior. The tangential

pressure decreases radially outwards from the centre of the star. We also observe that

the tangential pressure increases as the collapse proceeds. We expect this trend as

the core collapses, matter is squeezed into shells of smaller volume. We can think of

the radial pressure as the surface tension acting on each shell. As this surface tension

increases it enhances the collapse of the core. The energy conditions

Z1 = (ρ+ pr)
2 − 4q2 > 0, (E1) (4.6.2a)

Z2 = ρ− pr − 2pt +
[
(ρ+ pr)

2 − 4q2
]1/2

> 0, (E2) (4.6.2b)

were investigated. The strong, weak and dominant energy conditions are all satisfied

within the stellar interior thus indicating that our model is stable and is physically

viable.
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Figure 4.1: Heat flow as a function of the radial r and temporal t coordinates.
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Figure 4.2: Density as a function of the radial coordinate r and temporal coordinate t.
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Figure 4.3: Radial pressure as a function of the radial coordinate r and temporal

coordinate t.
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Figure 4.4: Tangential pressure pressure as a function of the radial coordinate r and

temporal coordinate t.
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4.7 Discussion

In this work we presented a new family of solutions describing a radiating shearing

sphere undergoing gravitational collapse in the presence of the cosmological constant.

Our solutions generalise previously known shearing, radiating models of gravitational

collapse. Although the junction condition which encodes the temporal behaviour of

the model is nonlinear we are able to obtain exact solutions thus completely specifying

the gravitational potentials. The inclusion of the cosmological constant is not a simple

addition of a constant term to the dynamical boundary condition as is the case with the

density and pressures given in (4.2.10a)–(4.2.10c). The inclusion of the cosmological

constant in the boundary condition increases the nonlinearity of the temporal evolution

of the model. It is remarkable that we are able to solve the boundary condition for

nonvanishing λ. A study of the physics of a specific model indicates that our solutions

can be utilised to model a radiating star undergoing shearing collapse. The effect of the

cosmological constant was brought out in (4.6.1b) which shows that the radial pressure

becomes negative when λ vanishes. Negative pressures arise in models incorporating

dark energy. In our model the presence of the cosmological constant distinguishes the

matter content of the interior: λ = 0, dark energy or nonzero λ, baryonic matter.
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Chapter 5

Conclusion

The major theme of this dissertation was to generalise the junction conditions at the

surface of the body to model a radiating star with shearing fluid. We also studied

the effect of the cosmological constant on the evolution of the star. We presented

an exact model of a radiating star undergoing expansion-free collapse. We showed

that the junction condition can be written in the standard form of a Riccati equation.

We transformed the standard equation into particular Riccati equations. We generated

several new classes of solutions to the field equations. We able to construct new models

for radiating relativistic stars, in the form of geodesic motion and demonstrated the

role of cosmological constant in Einstein equations. We studied the behaviour of the

thermodynamical variables in the interior matter distribution. The role of shear was

studied in relation to dissipative effects and new families of exact solutions were found.

We now provide an overview of our research and findings obtained during the course

of our investigations:

• Chapter 2: We obtained exact solutions by studying a Riccati equation, where

we set B = g(r)
R2(r,t)

. The fundamental equation, we solved is given by
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R̈

R
+

1

2

(
Ṙ

R

)2

− Ȧ

A

Ṙ

R
−
(
AR2R′

g
+ Ṙ

)
A′R

g

−
(
R2R′2

2g2
− 1

2R2

)
A2 +

(
2ṘR′ +RṘ′

) A
g

= 0.

We demonstrated that it is possible to integrate the nonlinear junction condi-

tion at the surface of the star; the gravitational potentials are given in terms

of elementary functions. A physical and thermodynamical analysis of the model

indicates that it is stable and approximates a realistic collapse scenario. As far

as we are aware the results of this chapter represent the first exact solutions for

expansion-free collapse. This solution may be used to model the formation of a

cavity in gravitational collapse. We have shown that relaxational effects lead to

higher core temperatures and monotonically decrease at the surface of the radi-

ating star. The energy density and the radial pressure are decreasing outward

from the centre to the stellar surface. All energy conditions are satisfied at each

interior point of the star. The causal temperature is higher than its noncausal

counterpart. The causal temperature is decreasing as the fluid collapses and the

noncausal temperature does not change its form.

• Chapter 3: A collapsing star dissipating energy in the form of heat flux satisfies

the fundamental equation

Ż =

(
Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2

)
Z2 − A′Ẏ

AY ′
Z −

(
A′

Y ′
+

A

2Y

)
,

in the presence of the cosmological constant. We first found solutions by assum-
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ing that A = 1 and λ = 0, leading to four different types of models. A particular

model leads to a spacetime that is expanding, accelerating and shearing. We

obtained three solutions by integrating the following equation

Ẏ 2 =
a(r)Y + εb(r)

Y
,

where ε = 0,±1 and b(r) > 0. For the case A = 1 and λ 6= 0 we have generated

solutions using the following equation

F = 2Y Ÿ + Ẏ 2 − λY 2 + 1,

by setting F = 1 and F = 1 + a(r). A graphical analysis shows that the en-

ergy density is decreasing outwards from the centre to the stellar surface. The

radial pressure increases as the collapse proceeds with the outermost shells be-

ing squeezed greater than the inner core. The energy conditions are satisfied at

each interior point of the star, and the physical analysis indicates that the weak,

strong, and dominant energy conditions are satisfied in interior points away from

the centre. In the asymptotic limit we regain the equation of state Pr ≈ −αµ.

• Chapter 4: Gravitational collapse in the presence of shear and the cosmological

constant is govered by the nonlinear differential equation

Ż =

(
Ÿ

A
+

Ẏ 2

2AY
+

A

2Y
− ȦẎ

A2
− λAY

2

)
Z2 − A′Ẏ

AY ′
Z −

(
A′

Y ′
+

A

2Y

)
.

We made assumptions to transform this equation to a Riccati equation in A lead-

ing to two types of solutions. Other assumptions lead to a Bernoulli equation
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in Z. Several families of solution are possible. As an axample if we set Ẏ = 0.

Then we get

B = − Y ′(
1

2Y
− λY

2

) ∫
Adt

,

A2 =
f(t)

Y
,

Y = s(r),

as a simple exact solution. To perform a physical analysis we chose Y = 4− C
r

.

This leads to the result pr = −αρ (which is a barotropic equation of state).

Therefore this shows that the radial presure is related to the energy density via

the equation of state. A particular assumption leads to a quadratic equation

in Z. A more detailed investigation is still needed for this case. The energy

density, as a function of the radial coordinate, decreases rapidly as approaches

the boundary. The radial pressure is a decreasing function outwards from the

centre to the stellar surface. Higher energy output at the centre of the star is

accompanied by higher pressures.

The approach that we have taken in the thesis is to write the boundary condition

as a Riccati equation. The role of the cosmological constant in relation to dissipation

in the presence of shear was studied. Exact models were generated which appear to be

physically reasonable. More work needs to be done in studying the thermodynamics of

these exact solutions. In future work, we intend to investigate the effects of the causal

temperature, in the presence of cosmological constant in collapsing bodies.
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