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Abstract 

Detecting and mapping the occurrence, spread, and abundance of Alien Invasive Plants (AIPs) 

have recently gained substantial attention, globally. Therefore, the present study aims to assess 

remote sensing application for mapping the spatial and temporal spread of Parthenium (P. 

HysterophoruL) in the Mtubatuba municipality of KwaZulu-Natal, South Africa. Parthenium is an 

aggressive herbaceous plant from the South and Central America that has colonized many regions 

of the world including Asia, Australia, and Africa. The adverse social, economic and ecological 

impacts of the plant have emphasized the need for a robust control programme to combat its spread. 

However, data for the management of the weed has been gathered by means of manual methods 

such as field surveys which are time and labour intensive. Alternatively, remote sensing techniques 

provides cost effective approach to large-scale mapping of AIPs. The first objective of the study 

provides an overview of advancements in satellite remote sensing for mapping AIPs spread and 

the associated challenges and opportunities. Satellite remote sensing techniques have been 

successful in detecting and mapping of AIPs, exploring their spatial and temporal distribution in 

rangeland ecosystems. Although they provide fine spatial information, the excessive image 

acquisition costs associated with the use of high spatial and hyperspectral datasets are a limitation 

to continuous and large-scale mapping of AIPs. The signing of the license agreement between the 

South African Space Agency (SANSA) and Airbus Defense and Space (ADS) has ensured a 

continued provision of SPOT data with improved spatial properties for South Africa. Similarly, 

the signing of the single licence government multi-user agreement between the South African 

government and SANSA has ensured free provision of SPOT data for public use in South Africa 

to support land change monitoring. The second objective was to determine the spatial and temporal 

distribution of Parthenium from 2006 to 2016 using SPOT series data in concert with Random 

Forest and Land Change Modeler (LCM). Findings have shown a steady decrease in Parthenium 

distribution over the 10-year period of the study because of the low annual rainfall experienced in 

the area over the recent past. Furthermore, disturbances in the soil opens vacant spaces which are 

susceptible to Parthenium invasion. This study has demonstrated the value of readily available 

multispectral SPOT series data in concert with robust and advanced non-parametric Random 

Forest algorithm in detecting trends and patterns in the spatial and temporal spread of AIPs 

Key words: Parthenium, remote sensing, satellite, multispectral, spatiotemporal, non-parametric. 
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Chapter One 

General Introduction 

1.1 Introduction  

The rapid proliferation of Alien Invasive Plants (AIPs) is increasingly becoming a global concern 

(Rocchini et al. 2015; Poona 2008; Weber et al. 2008), not only to biodiversity but also to food 

security, health and economic development. In general, AIPs are defined as plant species that are 

introduced, intentionally or accidentally, and spread outside their naturally occurring habitats 

(Karki 2009a; Poona 2008). Studies have shown that the rapid spread and proliferation of AIPs is 

one of the major non-climatic drivers to biodiversity loss and global change (Kganyago et al. 2017; 

Beck et al. 2009). Originating from the South and Central America, Parthenium (P. 

hysterophorusL), is one of the world’s most invasive plant that has colonized many regions such 

as Australia, Asia and Africa (Zuberi et al. 2014; Ayele 2007; Karki 2009a). In Africa, the plant 

has favored the east and southern parts of the continent (McConnachie et al. 2011). Parthenium 

has been found to spread vigorously in the KwaZulu-Natal province of South Africa, following its 

first introduction in 1880 (Zuberi et al. 2014; Karki 2009a). Its unabated distribution to the invaded 

landscapes has been intensified by its tolerance to a wide range of environmental conditions (Ayele 

2007). Studies have shown that, under favorable conditions,  Parthenium can grow up to 2 meters 

in height and complete its life cycle in four weeks (Ayele 2007). The small seeds of Parthenium 

can easily be carried and dispersed by wind, vehicles and water movement (Ayele 2007).         

Parthenium invasion presents major socioeconomic and ecological problems to the newly invaded 

landscapes (Ayele 2007). For instance, literature reveals that Parthenium invasion in grasslands 

can neutralize the acidic soil pH of the colonized habitats (Karki 2009a). Furthermore, Parthenium 

produces allelochemicals through its leaves, altering the physical and chemical properties of the 

soil in invaded landscapes, thereby inhibiting germination of native flora (Karki 2009a; Ayele 

2007). In Ethiopia, Parthenium invasion has significantly affected the rangeland composition and 

diversity (Ayele 2007). Besides the aforementioned ecological impacts, several economic losses 

have been reported as a result of Parthenium invasion. For instance, farmers in Ethiopia were 

forced to abandon their productive grazing and cultivated lands  because of Parthenium invasion 

(Zuberi et al. 2014). Studies (e.g. Ayele 2007) have shown that about 10-50% of Parthenium 
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consumption by cattle or buffalos can kill the animals within 30 days. Similarly, significant 

reduction in meat and milk quality have been reported from animals feeding on Parthenium. On 

the other hand, numerous human health risks have been reported as a result of Parthenium invasion 

(McConnachie et al. 2011).    

Despite the aforementioned factors, data for the monitoring of Parthenium spread has been 

gathered by means of manual methods such as field surveys (Karki 2009a). However, the 

limitations of using such methods in the monitoring of alien invasion are well documented in the 

literature (Ismail et al. 2016).  As an alternative, remote sensing provides cost-effective, robust 

and repeatable approaches to the optimal identification, characterization and mapping of AIPs, 

both, at local and regional scales (Peerbhay et al. 2016b; Asner et al. 2010; Kimothi et al. 2010). 

Peerbhay et al. (2016a), successfully detected the invasive bugweed (Solanum mauritianum) in 

the midlands region of KwaZulu-Natal, South Africa using the hyperspectral AISA Eagle, 

Worldview-2 and Light Detection and Ranging (LiDAR) datasets. Their findings revealed that 

overall classification accuracies of 68.33%, 63.33% and 64% were obtainable when using the 

AISA Eagle, Worldview-2 and LiDAR data respectively. Similarly, Robinson et al. (2016), used 

the Worldview-2 data to detect the invasive Mesquite (Prosopis spp.) in the north-west of Pilbara 

in Australia with an overall classification accuracy varying from 80.7% to 84.7%. However, the 

excessive image acquisition costs coupled with small area coverage possible with the use of 

hyperspectral and high spatial resolution datasets are prohibitive to large-scale and continuous 

monitoring of AIPs spread.    

The signing of the license agreement between the South African Space Agency (SANSA) and 

Airbus Defence and Space (ADS) coupled with the SANSA-AIRBUS single licence government 

multi-user agreement to distribute SPOT data for public use has ensured a steady supply of SPOT 

imagery for South Africa (Oumar 2016). From the SANSA-AIRBUS single licence government 

multi-user agreement, the SPOT mission provides large volumes of historical data free of charge 

for regions in South Africa to support the multi-temporal remote sensing of alien invasion by the 

public sector (i.e. government, universities and public entities). On the other hand, the 

developments in image classification algorithms such as the non-parametric Random Forest 

classifiers have been valuable for image classification processes. According to Cho et al. (2012), 

Random Forest does not assume normal data distribution and is free from the Hughes phenomenon 
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of over-fitting. Therefore, it is hypothesized that the use of SPOT series data in concert with 

Random Forest can facilitate the precise delineation of trends and dynamics in AIPs spread, 

especially in financially constrained regions such as the southern Africa. Therefore, the present 

study aims to assess remote sensing application for mapping the spatial and temporal distribution 

of Parthenium in the Mtubatuba municipality of KwaZulu-Natal, South Africa.  

 

1.2 Aims and objectives  

The overall aim of the study was to assess remote sensing application for mapping the spatial and 

temporal distribution of the alien invasive Parthenium in the Mtubatuba municipality of KwaZulu-

Natal, South Africa. To achieve this aim, the study set itself to the following objectives:  

• To review the literature on the advancements of satellite remote sensing for optimal 

detection and mapping of AIPs spread and the associated challenges and opportunities.  

• To detect and map the spatial and temporal distribution of Parthenium from 2006 to 2016 

using the SPOT series data and Random Forest. 

1.3 Research questions  

• With recent advancements in satellite remote sensing sensor technology, what are the cost-

effective ways of improving the detection and mapping of AIPs?  

• Can the use of readily available SPOT series data in concert with robust non-parametric   

Random Forest help to detect trends and dynamics in Parthenium distribution?  

• What are the major driving factors behind the expansion and distribution of Parthenium?   

1.4 Hypothesis 

• The provision of historical data with improved spatial resolution from the SPOT mission 

when used with the robust and advanced non-parametric Random Forest can enable the 

detection of dynamics in Parthenium distribution.  

• The continued vegetation clearings and land use/cover transformations because of human 

activities are the major driving factors behind Parthenium spread.  
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1.5 Chapter outline  

This thesis is organized into four chapters. As an introductory section, chapter one gives an 

overview of the thesis by highlighting the background of alien invasion, Parthenium distribution 

and its impact as well as the remote sensing techniques for monitoring of AIPs spread. 

Furthermore, this chapter set out the main aim and objectives of the research, research questions 

and the hypothesis.  

Chapter two is a manuscript currently under review with the Geocarto International Journal. The 

paper reviews advancements in satellite remote sensing for mapping and monitoring of AIPs. The 

essence of such a review include the opportunity to explore the nexus between the use of cost-

effective multispectral data, with improved spatial properties, in concert with non-parametric 

classification algorithms for accurate detection of current and historical trends in the spread of 

AIPs, especially in financially limited regions.  

Chapter three is a manuscript currently under review with the International Journal Remote 

Sensing. This paper focuses on detecting and mapping the spatial and temporal distribution of 

Parthenium from 2006 to 2016 using SPOT series data and Random Forest. The temporal aspect 

of the study was necessary to understand the trends and dynamics in the spread of Parthenium as 

well as to test the hypothesis that Parthenium is the colonizer of vacant lands. Using the Land 

Change Modeller (LCM), the changes in the spread of Parthenium as well as the degree of change 

were determined.  

Chapter four provides the evaluation of the objectives and major concluding remarks of the study. 

It further sets out recommendations for similar future research studies.  
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Chapter Two 

Advancements in satellite remote sensing for mapping and monitoring of Alien Invasive 

Plant species (AIPs) spread 

The following paper is based on a manuscript that is currently under review: 

Royimani, L., Mutanga, O., Odindi, J., Dube, T. & Matongera, T. N. (Under review). 

Advancements in satellite remote sensing for mapping and monitoring of Alien Invasive Plant 

species (AIPs) spread. Geocarto International.     

 

Abstract 

Detection and mapping of the occurrence, spatial distribution, and abundance of AIPs have 

recently gained substantial attention, globally. This work, therefore, provides an overview of 

advancements in satellite remote sensing for mapping and monitoring of AIPs spread and 

associated challenges and opportunities. Although confounded by numerous factors, satellite 

remote sensing techniques have been successful in detecting and mapping AIPs, exploring their 

spatial and temporal distribution in rangeland ecosystems. However, the launch of high spatial 

resolution and hyperspectral remote sensing sensors has not been a complete solution to address 

the challenges experienced with the use of poor spatial and spectral resolution sensors. This is 

certainly due to associated acquisition costs as well as the limited swath-width and archival data 

in using such sensors. Therefore, the use of high spatial and hyperspectral dataset is prohibitive to 

long-term monitoring of AIPs which is a requirement for effective management of AIPs spread. 

The freely availability of multispectral data with improve spatial resolution can improve the large-

scale and long-term mapping of AIPs spread. Furthermore, advancements in image classification 

algorithms such as the non-parametric Random Forest, Support Vector Machine, Artificial Neural 

Network, has been valuable to accurate detection of AIPs at the landscape scale. To promote the 

large-scale and long-term monitoring of AIPs spread, especially in resource limited regions such 

as South Africa, the present study recommends that future research should consider the use of 

SPOT series data with non-parametric image classifiers.  

Keywords: Satellite remote sensing, spatial, spectral, temporal, AIPs, parametric, non-parametric.  
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2.1 Introduction 

Globally, AIPs pose significant threats to, among others, natural ecosystems (Gurevitch and 

Padilla 2004), biodiversity (Gaertner et al. 2009; Higgins et al. 1999), forests (Peerbhay et al. 

2016a), rangelands and agricultural productivity (Pimentel et al. 2005). Furthermore, AIPs are 

known to reduce species richness (Gaertner et al. 2009), alter fire regimes and soil properties 

(Pejchar and Mooney 2009) and homogenize biodiversity (Peerbhay et al. 2016c;  Kimothi and 

Dasari 2010; Joshi et al. 2004) of invaded landscapes. Experimental studies have reported 

excessive economic losses as a result of alien invasion (Karki 2009b; Ayele 2007). For instance, 

in the United States alone, the environmental impacts of alien invasion were estimated to be 

approximately 120 billion US dollars per annum (Pimentel et al. 2005). In Australia, parthenium 

invasion in prime grazing land costs the government about 16.8 million US dollars annually, while 

in India, forty percent crop production losses are attributed to AIPs (McConnachie et al. 2011). 

Lowe et al. (2000), presented a list of invasive species around the world. The list comprises of 

Tamarisk (Tamarix ramosissima), Siam weed (Chromolaena odorata), Caulerpa Seaweed 

(Caulerpa taxifolia), Strawberry guava (Psidium cattleianum) and the Yellow himalayan raspberry 

(Rubus ellipticus). Several other AIPs with global distribution like Parthenium (Nigatu et al. 2010), 

Bugweed (Peerbhay et al. 2015), Tamarix spp (Swayne et al. nd), Bracken fern (Pteridium) 

(Matongera et al. 2017; Singh et al. 2013) and Pinus spp (Forsyth et al. 2014) have also been 

reported.      

To mitigate AIPs spread, timely and accurate information on spatial and temporal distribution, as 

well as abundance is required (Peerbhay et al. 2016a). This information is necessary to enhance 

the understanding of trends and patterns in AIPs spread for improved decision-making, optimal 

resource management and stewardship. Traditionally, field surveys and aerial photographs have 

been used to collect data on AIPs (Zuberi et al. 2014; Ayele 2007; Foxcroft et al. 2008; Crossman 

and Kochergen 2002; Everitt et al. 1996). However, many studies (e.g. Peerbhay et al. 2016c; 

Evangelista et al. 2009) note that such approaches are not sustainable due to excessive capital, 

time and labor required, especially for large-scale applications. Furthermore, the use of traditional 

approaches like surveys are hampered by accessibility to the regions of interest, particularly in 

remote areas (Matongera et al. 2016a; Curatola Fernández et al. 2013). Satellite remote sensing, 

on the other hand, has increasingly gained popularity as a plausible alternative in AIPs mapping 

(Dorigo et al. 2012; Aitkenhead and Aalders 2011; Gómez-Casero et al. 2010). Unlike traditional 
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approaches, satellite remotely sensed data and techniques can be applied on large and remote 

geographical locations (Huang and Asner 2009). Similarly, the repeated coverage possible with 

satellite remote sensing approaches allows for detection of plant phenology which is necessary for 

the detection of AIPs spread (Flood 2013).       

Several studies (e.g. Matongera et al. 2016a; Peerbhay et al. 2016c; Niphadkar and Nagendra 

2016; Rocchini et al. 2015; Bradley 2014; Boyd and Foody 2011; Huang and Asner 2009; Lass et 

al. 2005; Joshi et al. 2004)  have reviewed remote sensing techniques to optimize the detection 

and mapping of AIPs. For instance, Huang and Asner (2009) provided an overview of spatial, 

spectral and temporal sensor resolutions for detecting AIPs based on structural and functional traits 

at various canopy levels. Similarly, Peerbhay et al. (2016c) explored the value of multisource 

remotely sensed data for optimal detection of structural and functional properties of AIPs in 

commercial forests, while Bradley (2014) investigated the value of spectral, structural and 

phenological attributes in detecting AIPs. Lass et al. (2005), on the other hand, explored the use 

of hyperspectral dataset in detecting AIPs. To the best of our knowledge, there is no study that has 

tried to understand the relationship between the use of readily available multispectral data with 

improved spatial properties in concert with robust and advanced non-parametric image classifiers 

for detection of AIPs. In our opinion, it is necessary for future studies to establish this relationship 

to promote the continued and large-scale mapping of AIPs, currently constrained by existing 

acquisition cost of high spatial and hyperspectral data.   

The present study explores the importance of using the advanced and robust non-parametric image 

classifiers on freely available and improved spatial resolution data provided by the new generation 

of multispectral sensors to promote mapping of AIPs at an operational scale. Firstly, this paper 

provides a background on the ecology, as well as the spatial distribution of AIPs around the world. 

Secondly, the paper discusses sensor vegetation spectral properties necessary for discriminating 

AIPs as well as other remote sensing techniques useful in the identification of AIPs from native 

vegetation. Thirdly, the review explores the applications of different satellite remote sensing 

techniques, such as multispectral, hyperspectral and multisource data in detecting and mapping 

AIPs as well as their financial implication in relation to scale of application and mapping accuracy. 

Fourthly, the paper outlines the importance of image classification with a detailed comparison of 

parametric and non-parametric or advanced robust machine learning algorithms in enhancing the 



  

8 
 

detection of AIPs using remotely sensed data. Furthermore, the paper also draws a synergy 

between the type of remotely sensed data used and a chosen image classifier. Lastly, the paper 

highlights the challenges of using remote sensing in the detection and mapping of AIPs and suggest 

directions for future research.  

2.2 The ecology and spatial distribution of AIPs   

Broadly, the term AIPs is used to refer to plant species or sub-plant species growing outside their 

naturally occurring habitats, with a strong ability to survive, reproduce, disperse and subsequently 

displace native flora (Kimothi and Dasari 2010; Shezi and Poona 2010; Mack et al. 2000). 

Generally, AIPs have identical functional features, such as competitive aggression and increased 

encroachment on disturbed environments. In these areas, AIPs take advantage of reduced 

interspecies competition as soils are either left bare or the native flora are still at an early stage of 

rejuvenation (Le Maitre et al. 2002). Studies have noted for instance that Parthenium establishes 

and naturalize on empty niches along roadsides, railway tracks, fallow agricultural lands and 

around buildings (McConnachie et al. 2011). Similarly, Peerbhay et al. (2015) reported that the 

exotic Bugweed invades pasture lands, river-banks, forest margins and plantations. Other studies 

(e.g. Curatola Fernández et al. 2013) have also reported that areas disturbed by fire are often 

preferred by the Bracken fern while Dark (2004) found that areas close to roads have a high density 

of noxious species in California. 

Furthermore, studies have shown that AIPs have the engineering ability to modify their newly 

invaded habitats (Peerbhay et al. 2016b; Bax et al. 2003), thereby making it more suitable for their 

exponential growth and distribution. For instance, the allelopathic chemicals produced by 

Parthenium do not only displace indigenous plants but also transform river banks, grasslands, 

floodplains and woodlands into monocultural shrublands (McConnachie et al. 2011). Nigatu et al. 

(2010), for instance, found that the allelopathic chemicals produced by AIPs can inhibit 

germination and growth of indigenous plant species, which can change the structure and type of 

vegetation, fauna and local climate. Also, the literature shows that invaded landscapes are more 

likely to remain dominated by one individual species for a very long time (Huang and Asner 2009). 

Although literature highlights some positive ecological and economic impact of AIPs, such as the 

provision of habitat to local fauna (Matongera et al. 2016a) and provision of fuelwood and carbon 

assimilation (Shackleton et al. 2007), the recorded ecological destruction as a result of the alien 
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invasion is far-reaching. For instance, AIPs out-compete the indigenous plants for available natural 

resources (i.e. water, sunlight, nutrients, space), which are integral to growth and distribution (Dark 

2004). Furthermore, the literature shows that AIPs are unpalatable to livestock and game grazing 

(Everitt et al. 1995; Pyšek 1998).  

According to Kalusová et al. (2013) and Pyšek (1998), plant species that are highly invasive have 

their origin in Europe. Mack et al. (2000), attribute this to the early (1500s) European voyages that 

contributed significantly to the human-driven dispersion. Blossey and Notzold (1995), for 

instance, reported that the Purple loose strife (Lythrum salicaria L.), native to Eurasia, was 

introduced in North America during the 1800s.  Despite the human-driven invasions i.e. migration 

and transportation of goods (Mack et al. 2000),  studies have shown that AIPs can spread and 

invade new habitats through watercourses (Dorigo et al. 2012) and birds dispersal. However, Joshi 

(2006) and Mack et al. (2000) note that the human-driven invasion still remains the greatest 

contributing factor towards dispersion of exotic plant species globally. Dispersion of AIPs by 

humans can be either accidental or purposeful. Purposefully, people can introduce exotic plants in 

new regions for controlling of other problematic species, to improve agricultural productivity or 

for ornamental reasons (Goodwin et al. 1999). The South American miconia (Miconia calvescens) 

for instance was introduced intentionally to the island of Tahiti in 1937 for ornamental reasons 

(Lowe et al. 2000). Other studies have recognized the impact of changing climatic conditions, as 

well as physiographic factors to induce invasion processes (Dark 2004; Kriticos et al. 2003). Apart 

from the aforementioned forms of dispersion, the invasiveness and spreading of AIPs, generally, 

increases with time of habitation since their first introduction in a community (Howison 2016).  

2.3 Spectral properties of AIPs for remote sensing techniques  

The rapid spread of AIPs across the landscape renders the adoption of traditional field surveys to 

manage the encroachment of such species implausible, hence the need for alternative methods 

(Peerbhay et al. 2016c; Evangelista et al. 2009; Lass et al. 1996). Until recently, the viable 

alternative for detecting and mapping the spatial and temporal distribution of AIPs has relied on 

observing and detecting differences in their spectral reflectance using remote sensing techniques 

(Strand 2007; Joshi 2006). Several AIPs have been discriminated from their co-existing vegetation 

based on estimated spectral differences. These include the Bracken fern (Matongera et al. 2017; 

Singh et al. 2013), Bugweed (Peerbhay et al. 2016a; Peerbhay et al. 2016b; Peerbhay et al. 2015), 



  

10 
 

Mesquite (Robinson et al. 2016), Broom snakeweed (Gutierrezia sarothrae) (Peters et al. 1992a) 

and the Tickberry (Lantana camara) (Oumar 2016). Studies have revealed that plants, either alien 

or native, have different spectral reflectance within different regions of the electromagnetic 

spectrum, attributable to dissimilar biophysical (e.g. texture, canopy, leaf structure and orientation) 

and biochemical (e.g. chlorophyll and water content) properties of the plant (Matongera et al. 

2016a; Zhao et al. 2009). This can best be demonstrated in Figure 2.1 where the thickened and 

succulent leaves of the Iceplant (Carpobrotus edulis) increased the absorption of its spectra around 

0.9 µm (see the up pointed arrow) while the dry foliage of Jubata grass (Cortaderia jubata) 

increased its spectral reflection around 0.55 µm (see the down pointed arrow) (Strand 2007). In 

these regions, the distinctiveness of spectral reflectance for the two AIPs has necessitated their 

spectral separation from native plants using remote sensing techniques.   

 

 

 

Figure 2. 1: Spectral signatures for different Alien Invasive Plants (AIPs). Adapted from Strand 

(2007).   

According to Blossey and Notzold (1995), AIPs are often more vigorous and taller than co-existing 

vegetation due to disproportionate resource allocations. The improved physical development (i.e. 

vigor and height) of AIPs facilitates their discrimination from coexisting species, especially with 
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active remote sensing sensors such as LiDAR, which can effectively detect the three-dimensional 

aspect of a feature on the ground. In an attempt to understand the invasiveness of exotic species 

with recognizable biological features to identify such plants, Goodwin et al. (1999) reported that 

differences in stem heights and flowering periods can be valuable in distinguishing AIPs from 

native plant species. Similarly, Everitt et al. (1995) reported that measuring plant species spectral 

reflectance at canopy level has been beneficial in delineating AIPs. Peerbhay et al. (2016c), further 

note that AIPs often form dense infestation stands in their new habitats, facilitating their 

discrimination using remote sensing techniques.   

2.4 Multispectral remote sensing of alien invasion  

The development of broadband remote sensing sensors such as Landsat Thematic Mapper (TM), 

Enhanced Thematic Mapper Plus (ETM+), Satellite Pour l'Observation de la Terre (SPOT) and 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) marked the 

beginning of a new era in remote sensing of alien invasion (Lass et al. 2005). Generally, 

multispectral remote sensing sensors provide data collected between 10 – 100 m spatial resolution 

and in less than 20 bands (Huang and Asner 2009). Many studies (e.g. Evangelista et al. 2009; 

Savage and Lawrence 2010; Viana and Aranha 2010) have mapped and monitored AIPs spread 

using broadband coarse to medium spatial resolution data. As indicated in Table 2.1, the 

importance of these sensors includes not only the provision of large swath-width data but also 

repeated and free to cost-effective dataset (Mutanga et al. 2016; Matongera et al. 2016a) which 

can be archived to support multi-temporal remote sensing applications. Wilfong et al. (2009), for 

instance, used Landsat TM images captured in November 2005 and June 2007 together with a 

Landsat ETM+ image captured in January 2002 to detect the Amur honeysuckle (Lonicera 

maackii (Rupr.) Herder) in the Northeast of United States. Similarly, Evangelista et al. (2009) 

detected Tamarisk along Arkansas River in Colorado using Landsat ETM+ scenes acquired in  

April, May, June, August, September, and October.  

The increased repeatability of earth observation using high temporal resolution sensors allows 

discerning vegetation types at different growth stages. Studies have shown that the use of images 

captured at different plant growing seasons is crucial for a precise detection and monitoring of 

changes in those plant species and in their coexisting vegetation (Hamilton et al. 2006; Joshi et al. 

2004). Also, AIPs are characterized by distinctive contextual and structural features such flowering 
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colour and canopy structures at various phenology, which can best be detected using images taken 

over time. For instance, the distinctive orange-brown colour of the Chinese tamarisk (Tamarisk 

chinensis), before leaf shading, aids its discrimination from neighboring vegetation (Everitt et al. 

1995). Furthermore, the acquisition of images at different plant growing seasons offer a great 

opportunity to compare images taken at different sun’s azimuth, reducing the impact of topography 

and cloud shadows (Matongera et al. 2016a). In some cases, AIPs obscure background of natural 

vegetation particularly at early stages of their growth (Peerbhay et al. 2015). Under such 

conditions, images acquired over time (e.g. during non-flowering and flowering seasons) facilitate 

reliable mapping (Huang and Asner 2009). On the other hand, the long-term and seasonal mapping 

of AIPs are vital to understand inter and intra annual distribution and abundance of such species. 

In addition, given that cloud cover is a challenge to satellite remote sensing, the use of multi-

temporal remote sensing can optimize the acquisition of cloud-free images.  

The launch of high spatial resolution multispectral sensors such as IKONOS, Quickbird and 

WorldView-2 are regarded a significant step towards the development of broadband sensor 

technology for improved detection and mapping of AIPs. For instance, Ngubane et al. (2014) 

reported an improved (91.67% overall accuracy) detection of Bracken fern in Durban, South 

Africa, using the high spatial resolution WordView-2 than the medium spatial resolution SPOT-5 

(72.22% overall accuracy). Also, the Pinus spp. was successfully (84% overall accuracy) mapped 

by Forsyth et al. (2014) in mountainous regions of the Western Cape, using SPOT-6 imagery. 

Other studies that have reported an improved discrimination of vegetation types using high spatial 

resolution multispectral sensors include Oumar (2016), Peerbhay et al. (2016b), Li et al. (2016), 

Gómez-Casero et al. (2010), and Lawrence et al. (2006a). The strategically positioned bands in 

high spatial resolution multispectral sensors have significantly improved their performance in 

discrimination of vegetation types as compared to low spatial resolution multispectral sensors. 

Despite the improved spatial discrimination of features, literature shows that the utility of 

multispectral sensors in vegetation monitoring is still impeded by the poor spectral resolution 

(Ngubane et al. 2014). 



  

 

Table 2. 1: A summary of satellite remote sensing sensors for mapping AIPs in relation to their resolutions, acquisition costs, scales of 

application and accuracies.     

Sensor Resolutions Accessibility Application scale Accuracy Authors  
Spatial Spectral Temporal 

    

ASTER  15 to 90 m  14 bands 16 days Free  Local to regional  Very low to low Viana and Aranha (2010)  

AVHRR 1 to 4 km  5 bands  Daily  Free  Regional to 

global  

Very low  Peters et al. (1992a)  

Landsat 5 TM 30 to 120 m 7 bands 16 days Free  Regional   Low to moderate  Gavier-Pizarro et al. (2012) 

Landsat 7 

ETM+  

15 to 60 m 8 bands  16 days  Free  Local to regional  Moderate  Gavier-Pizarro et al. (2012), 

Viana and Aranha (2010) 

Landsat 8 

OLI/TIRS 

15 to 100 m  11 bands  16 days Free  Local to regional  Moderate Matongera et al. (2017)  

SPOT - 5 2.5 to 20 m 4 bands  2-3 days  Free in southern 

Africa 

Local to regional  Moderate  Ngubane et al. (2014) 

SPOT - 6 1.5 to 6 m 4 bands  Daily  Free in southern 

Africa 

Local to regional High  Oumar (2016), Forsyth et al. 

(2014) 

WorldView-2  0.46 to 2.4m  8 bands  1 to 3 days Expensive  Local   Very high  Robinson et al. (2016), 

Peerbhay et al. (2016b), 

Matongera et al. (2017), 

Ngubane et al. (2014) 

IKONOS  0.82 to 4 m 5 bands  3 days  Expensive  Local  Very high  Li et al. (2016), Gil et al. 

(2013), Fuller (2005), Casady et 

al. (2005) 

QuickBird  65 cm to 

2.90 m 

5 bands  1 to 3 days  Expensive  Local  Very high  Curatola Fernández et al. 

(2013)  

Hyperspectral  < 1  >100  -  Very expensive  Local  Very high  Peerbhay et al. (2016a), Goel et 

al. (2002), Hunt (2010), 

Williams and Hunt (2002), Pu 

et al. (2008)   

file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_104
file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_90
file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_32
file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_72
file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_18
file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_18
file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_92
file:///E:/USB/Masters%20Proposal/Draft%20Review/Tables.xlsx%23RANGE!_ENREF_92


  

14 
 

2.5 Hyperspectral remote sensing of AIPs  

To compensate for the poor spectral resolution that characterizes multispectral sensors, 

hyperspectral sensors emerged with hundreds of narrow contiguous spectral bands to distinguish 

subtle inter and intra-species spectral variations (Atkinson et al. 2014; Cho et al. 2012). Generally, 

the hyperspectral dataset is collected at 2 to 16 nm spectral bandwidth across hundreds of spectral 

bands (Lass et al. 2002) and has been used to overcome the saturation problem commonly 

experienced with the adoption of multispectral sensors (Mutanga and Skidmore 2004). This has 

been demonstrated by Hunt et al. (2007), who tested the potential of Airborne Visible / Infrared 

Imaging Spectrometer (AVIRIS) with two broadband sensors (Landsat ETM+ and SPOT-4) to 

discriminate the Leafy spurge (Euphorbia esulaL.) near Devils Tower National Monument in 

Crook County, Wyoming, USA. Their findings showed a superior classification accuracy of 74% 

when using the hyperspectral AVIRIS in comparison to Landsat ETM+ and SPOT-4, which 

yielded 49% and 48% overall accuracy, respectively.  

Furthermore, the improved spectral resolution possible with hyperspectral dataset allows a 

superior classification of AIPs based on their biochemical and structural properties (Atkinson et 

al. 2014). With the improved spectral resolution that characterizes hyperspectral sensors, it has 

been possible to discern AIPs with superior accuracy, even on heterogeneous landscapes 

(Lawrence et al. 2006b). Other studies that have explored the utility of hyperspectral remote 

sensing in detection and mapping of AIPs include Peerbhay et al. (2015), He et al. (2011), Andrew 

and Ustin (2009), Hestir et al. (2008), Asner et al. (2008), Underwood et al. (2003) and Lass et al. 

(2002). Although the use of hyperspectral remote sensing has been essential in vegetation 

monitoring, the issue of small swath-width and high acquisition cost, as shown in Table 2.1, 

remains a challenge. Also, the huge amount of spectral information provided by hyperspectral 

sensors can increase data dimensionality and redundancy, thereby reducing classification accuracy 

when mapping AIPs (Peerbhay et al. 2016b).  

2.6 The use of multisource data for detection of AIPs  

Data fusion or multisource dataset is increasingly being adopted for detection and mapping of AIPs 

using remote sensing approaches (e.g. Skowronek et al. 2017; Ghulam et al. 2014; Asner et al. 

2010). Data fusion involves the integration of datasets from two or more remote sensing sensors, 

with various strengths and limitations (Huang and Asner 2009). The fusion of multiple spectral, 
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spatial and temporal properties in the same classification process push the limits of current remote 

sensing techniques. Peerbhay et al. (2016a), for instance, fused an AISA Eagle airborne 

hyperspectral dataset and a high spatial resolution WorldView-2, with LiDAR data to detect 

Bugweed in commercial plantation forests of KwaZulu-Natal, South Africa. Superior 

classification accuracies (78% for AISA with LiDAR) and (74% for WorldView-2 with LiDAR) 

were obtained with the integration of these datasets compared to 68%, 63% and 64% produced by 

AISA, WorldView-2 and LiDAR datasets alone. Similarly, Kimothi et al. (2010) optimized the 

detection and mapping of the Lantana camara in the Rajaji National Park of India using three 

Indian remote sensing sensors (IRS LISS-IV, LISS-IV and Cartosat-1) fused or in isolation. 

Whereas Cartosat-1 produced a poor classification accuracy of 65% when used alone, its accuracy 

was significantly improved to 96.4% and 92.9% when fused with IRS LISS-IV and LISS-IV, 

respectively.  

However, the full potential of data fusion for optimal detection and mapping of AIPs has not been 

adequately explored. Whereas studies have shown the success of this method in detection of tree 

species from rangelands environment (Ghosh et al. 2014; Naidoo et al. 2012; Cho et al. 2012), the 

high-performance computing power required to process fused remotely sensed data makes the 

approach costly, especially for large-scale mapping purposes (Huang and Asner 2009). 

Furthermore, data fusion for detection of AIPs has mainly been dominated by the integration of 

either hyperspectral or multispectral dataset with LiDAR, which is costly, hence not a viable 

alternative for large-scale and continuous monitoring of AIPs. On the other hand, Peerbhay et al. 

(2016a) suggest that the impact of Bidirectional Reflectance Distribution Function (BRDF) still 

needs to be addressed to minimize false classifications that can, potentially, arise because of 

differences in solar and sensor geometry when using multisource data.  

2.7 Parametric and non-parametric image classifiers for invasive alien plants   

Despite the above-mentioned factors that may influence mapping accuracy, classification 

algorithms remain a major factor in landscape mapping and output reliability (Lu and Weng 2007). 

Broadly, image classification processes are performed using either supervised or unsupervised 

classification approaches (Strand 2007; Lass et al. 2005; Kelly et al. 2004). Image classifying 

algorithms could also be categorized based, among others, on either the obtainable information 

from the sensor, nature of the training dataset or on the basis of various parameters (Nath et al. 
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2014). The later could be subdivided to parametric and non-parametric image classifiers. The 

parametric image classifiers such as the Spectral angle mapper (SAM), Minimum Distance to 

Mean (MDM) and Maximum Likelihood (MLH) have been popular to enhance the discrimination 

of AIPs on the landscape and to reduce redundancy in remotely sensed data (Lu and Weng 2007). 

The advantage of these algorithms includes not only their easily accessibility with almost every 

image classifying software but also the unsophisticated nature in the application. Although the 

application of these image classifiers has been successful (e.g. Ngubane et al. 2014; Curatola 

Fernández et al. 2013; Peters et al. 1992b), numerous challenges are reported to impair their 

performance. For instance, parametric image classifiers provide classification output at a pixel 

level (Curatola Fernández et al. 2015) and that significantly compromise the classification 

accuracy, especially with poor spatial resolution multispectral dataset (Kumar and Min 2008). 

Also, parametric image classifiers assume that the chosen dataset for training the classification 

process represents an ideal (100%) cover of the feature or surface (Mather and Tso 2009; Campbell 

and Wynne 2011; Carson et al. 1995). Furthermore, parametric classifiers suffer from mixed pixel 

problem which is increased on heterogeneous landscapes (Matongera et al. 2016a; Lass et al. 

2005), Hughes curse of dimensionality, Gaussian distribution of data (Abdel-Rahman et al. 2014) 

as well as the use of statistics to calculate class separation (Lu and Weng 2007).      

On the other hand, the non-parametric classifiers such as the Artificial Neural Networks, Random 

Forest and Support Vector Machine have emerged with improved capabilities to retrieve 

biophysical features in vegetation. Odindi et al. (2014), tested the performance of the Random 

Forest on two multispectral datasets (WorldView-2 and SPOT-5) with an overall classification 

accuracy of 84.72 and 72.22% for WorldView-2 and SPOT images respectively. Gavier-Pizarro 

et al. (2012), successfully employed the Support Vector Machine to analyze the expansion of 

glossy privet (Ligustrum lucidum) using Landsat series data in Córdoba, Argentina. Similarly, Jay 

et al. (2009), classified patches of the Leafy spurge in a heterogeneous rangeland of Montana in 

the United States, using  Random Forest on a single date and time-series, with a classification 

accuracy varying between 72% and 95%. The main advantage of non-parametric image classifiers 

is the ability to treat individual pixels as mixtures of pure materials and end-members in the 

classification process (Curatola Fernández et al. 2013). In this process, the classifiers sub-divide 

each individual pixel data to increase the spectral variance of different features within the pixels 

for superior and meaningful land cover composition as well as improved classification accuracy 
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(Kumar and Min 2008). As opposed to parametric classifiers that use statistics, non-parametric 

image classifiers such as the Artificial Neural Networks are not driven by statistical properties of 

the data and they are effective in extracting vegetation-type information even in heterogeneous 

landscapes (Gil et al. 2011). Generally, the non-parametric classifiers are suitable for classifying 

change than the parametric (Gavier-Pizarro et al. 2012).     

2.8 The Importance of vegetation indices for detection of AIPs  

Besides, vegetation indices, which are a ratio or linear band combinations, have been very 

instrumental in the mapping of AIPs (Lass et al. 2005; Gómez-Casero et al. 2010). Commonly 

used vegetation indices with AIPs mapping include the Normalized Difference Vegetation Index 

(NDVI) (Savage and Lawrence 2010; Underwood et al. 2003), Principal Component Analysis 

(PCA) (Carson et al. 1995), Enhanced Vegetation Index (EVI) (Wilfong et al. 2009), Tasseled 

Cap (TCAP) (Savage and Lawrence 2010), Simple Ratio (Wilfong et al. 2009), Soil Adjusted 

Vegetation Index (Waser et al. 2008), Visible Atmospherically Resistant Index (VARI) and 

Normalized Difference Moisture Index (NDMI) (Wilfong et al. 2009). Wilfong et al. (2009), tested 

the capabilities of six vegetation indices (EVI, TCAP, SR, SAVI, VARI and NDMI) against 

Landsat TM and Landsat ETM+’s traditional bands in predicting the Asian Amur honeysuckle 

invasion in the south-west of Ohio and eastern Indiana, United States. In the study, a superior 

classification model (coefficient (R2) of 0.75 for quadratic regression and 0.65 for linear 

regression) were achieved using NDVI. Similarly, the incorporation of the NDVI in the 

classification of Bracken fern on Landsat 8 and Worldview-2 images significantly improved the 

mapping accuracy from 76.02% and 82.93% to 80.08% and 87.8% for Landsat 8 and WorldView-

2 respectively (Matongera et al. 2017). Although vegetation indices are valuable for minimizing 

the spectral variability caused by differences in sun viewing angles, atmospheric conditions and 

soil background, Mutanga and Skidmore (2004), noted that some indices such as the NDVI are 

affected by saturation problem, especially in high canopy densities.   

2.9 Relationship between classification algorithms and remote sensing dataset 

Based on research, there is a limited literature to clearly show the synergies between a type of 

remotely sensed data used in conjunction with a chosen image classification algorithm. However, 

Nath et al. (2014), highlight that many image classification algorithms perform well on medium 

resolution multispectral data. Robinson et al. (2016), for instance, detected the invasive Mesquite 
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in the north-western Pilbara, Australia using the multispectral WorldView-2 image with 80.7% 

overall classification accuracy. Although sensor resolutions, especially spectral and spatial, are 

significant factors for discriminating vegetation types (Oumar 2016), image classification 

algorithms also allow the appreciation of precise separation among different plants even when 

using the averaged spectral and poor spatial resolution data. For instance, Matongera et al. (2017), 

compared the performance of two different sensors with various spatial and spectral properties (i.e. 

high spatial WorldView-2 and medium spatial Landsat 8 OLI) in detecting Bracken fern using 

Discriminant Analysis. Despite the difference in resolutions of these two datasets, obtainable 

results reveal an insignificant or negligible (9%) magnitude of difference in overall classification 

accuracies. Evidently, the choice of an image classifier chosen for a particular image classification 

process is vital to improve the capabilities of a remote sensing sensor data used.       

Therefore, the launch of the new generation of multispectral sensors such as SPOT-6 can improve 

the detection of AIPs even by resource-limited region. The improvement in detection of AIPs will 

not only be due to improved sensor resolutions but rather the large swath-width and cost-

effectiveness that allows repeated and operational scale monitoring of AIPs. Also, the application 

of robust and advanced non-parametric image classification algorithms can significantly improve 

the performance of these recently launched multispectral sensors. To demonstrate the role of non-

parametric image classifiers over parametric classifiers Gil et al. (2011), tested the performance 

of two parametric (Maximum Likelihood and Mahalanobis Distance) and non-parametric 

(Artificial Neural Network and Support Vector Machine) algorithms in assessing the potential of 

high-resolution satellite imagery in vegetation mapping. Although the Maximum Likelihood 

performed well (76.93%) the Mahalanobis Distance performed badly with an overall accuracy of 

66.04%. On the other hand, both the non-parametric classifiers were successful (76.95% and 

76.25% for Support Vector Machine and Artificial Neural Network, respectively) in spectral 

separation between different vegetation classes. Furthermore, the Spectral Angle Mapper 

performed poorly when classifying the Leafy spurge using SPOT-4, Landsat ETM+ and AVIRIS 

data with overall accuracies of 48%, 49% and 74% respectively.   

2.10 Challenges in remote sensing of alien invasion 

As aforementioned, the success of remote sensing of alien invasion relies on the identification of 

unique spectral signatures for such plants as facilitated by differences in their biophysical and 
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biochemical characteristics (Matongera et al. 2016a). However, when differences in these 

properties are not sufficiently pronounced to increase spectral variance, erroneous spectral 

resemblance will be recorded by the sensor for dissimilar plant species, reducing mapping 

accuracy of target AIPs. This is common when using broadband coarse to medium spatial 

resolution sensors (Huang and Asner 2009). Also, because AIPs often grow in a mix of co-existing 

vegetation, their detectability can be considerably compromised, especially with averaged spectral 

and lower spatial resolution datasets (Matongera et al. 2016a; Huang and Asner 2009). The large 

pixel sizes coupled with averaged spectral data offered by multispectral sensor highlights that their 

adoption for AIPs mapping is limited to homogenous landscapes (Hamilton et al. 2006; Carson et 

al. 1995; Cardina et al. 1997). Carson et al. (1995), for instance, recommends that infestation 

stands should be large enough or dominate the canopy to compensate for the poor spatial and 

spectral resolution of these sensors. Hamilton et al. (2006), indicated that a precise detection of 

Russian olive (Elaeagnus angustifolia L.) in central Utah was influenced by patch sizes, with small 

patches being underestimated or even entirely missed. According to Peerbhay et al. (2016c), the 

uniformity and extensiveness required when detecting the distribution of AIPs, especially with 

poor spatial and averaged spectral resolution datasets, is not always attainable in the newly invaded 

landscapes. Although these sensors provide data for multi-temporal mapping of AIPs, the success 

of discerning AIPs use images taken during different plant phenology depends on the availability 

of clear or cloud-free skies (Huang and Asner 2009) and a precise core-geo-registration (Singh 

1989).  

Moreover, studies show that the development of satellite sensor technology is caught between 

balancing improvements in sensors resolutions and reducing acquisition cost while simultaneously 

achieving large-scale mapping of vegetation (Mutanga et al. 2016). Besides the improved mapping 

accuracy possible with fine resolution sensors, their value for precise mapping at an operational 

scale has not been fully explored (Lu and Weng 2007). More so, the excessive acquisition costs 

for high spatial and hyperspectral resolution imagery is prohibitive for long-term and continuous 

monitoring of AIPs spread in countries and institutions with limited resources. The swath-width 

or area coverage and the application scale of fine spatial resolution multispectral and hyperspectral 

sensors are given in Table 2.1. Studies have shown that hyperspectral sensors suffer from effects 

of multicollinearity and multidimensionality (Gómez-Casero et al. 2010) and hence not the 

ultimate solution to the current problem of poor AIPs mapping accuracy. Therefore, it can be 
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concluded that the current research focus of vegetation monitoring on exploration and utility of 

high spatial resolution and hyperspectral dataset prevent great opportunity to appreciate the 

continued and operational scale monitoring of AIPs spread. This is likely due to the associated 

cost of acquiring these datasets and their small area coverage. The insignificance of this is 

increasingly being a problem, particularly for rangelands monitoring programmes which are broad 

and extensive in extent. More so, the integration of data from different sensors does not address 

the small swath-width dataset provided by high spatial resolution and hyperspectral image data.  

2.11 Possible directions of future research  

Whereas there is considerable progress in the detection and mapping of AIPs using remote sensing 

techniques, the full potential of this technology in estimating and mapping the distribution of AIPs 

has not been adequately explored. This has been demonstrated by the current tradeoffs in sensor 

developments (i.e. resolution and acquisition costs) and application scale (Mutanga et al. 2016). 

Also, numerous attempts in detection and mapping of AIPs are increasingly dominated by the 

utility of high spatial and hyperspectral dataset (e.g. Peerbhay et al. 2016b; Peerbhay et al. 2015; 

Curatola Fernández et al. 2013; Narumalani et al. 2009; Casady et al. 2005). The acquisition costs 

of such dataset are prohibitive to repeated and large-scale mapping of AIPs spread, particularly in 

countries and institutions with limited capital. Also, recent developments in remote sensing sensors 

technology (i.e. unmanned aerial vehicle) do not address the aforementioned challenges of image 

acquisition costs in relation to scale of application.  

To optimize detection and mapping of AIPs in these regions, it is necessary to explore the 

capabilities of the freely available and improved spatial and spectral resolution multispectral 

datasets such as SPOT 6 and 7 as well as Sentinel-2 in concert with robust and advanced machine 

learning algorithms. The newly launched SPOT 6 and 7 provide daily coverages with improved 

spatial resolution (i.e. 6m, see Table 2.1), valuable for multi-temporal vegetation monitoring. On 

the other hand, the Sentinel-2 offers large area coverages captured at 10 m by 10 m spatial 

resolution, necessary for an improved operational approach in vegetation monitoring. Equally 

important, the advanced machine learning image classifiers have been valuable for vegetation 

monitoring as well as detection of AIPs. For instance, using the multispectral WorldView-2 and 

SPOT-5 data in concert with Random Forest Odindi et al. (2014), mapped Bracken ferm 

distribution with overall classification accuracies of 84.72% and 72.22%, respectively. Oumar 
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(2016), also detected the Lantana camara in rangelands of KwaZulu-Natal, South Africa using 

SPOT-6 data and Random Forest with an overall accuracy of 75%. Furthermore, The Support 

Vector Machine and Random Forest yielded good classification accuracies (91.80% and 93.07%, 

respectively) when mapping patterns and spatial distribution of land-use/cover types in a 

heterogeneous landscape of KwaZulu-Natal, South Africa, using RapidEye data (Adam et al. 

2014). However, studies of alien invasion using the improved resolution data and non-parametric 

classification algorithms are mainly based on single-date image scene. With increased free 

provision of multispectral data with improved resolution combined with the value of non-

parametric algorithms to facilitate classification accuracies, timely and large-scale updates 

pertaining the spatial and temporal distribution of AIPs are achievable.     

2.12 Conclusions  

The current study reviewed existing literature on the adoption of remote sensing data and 

techniques for detection and mapping of AIPs spread. Empirical evidence has revealed that the use 

of traditional methods, such as field surveys and aerial photographs are not appropriate for 

mapping and monitoring of invasive species encroachment at a regional scale. The early 

multispectral datasets with poor spatial resolution, e.g. ASTAR, AVHRR and Landsat series, has 

been imperative for the detection and mapping of AIPs. On the other hand, the literature shows 

that limited spatial resolution and poor radiometric resolution of these data sets compromise AIPs 

detection and mapping accuracy. Furthermore, high spatial resolution multispectral sensors such 

as WorldView-2, Quickbird and IKONOS have emerged with improved capabilities to 

discriminate AIPs from other co-existing vegetation species. The major challenges in detection 

and mapping of AIPs established in this review include heterogeneity in infested landscapes, 

causing spectral confusion during classification. Also, the review found out that the increasing use 

of high spatial resolution and hyperspectral datasets for monitoring AIPs is not sustainable due to 

its excessive acquisition costs, especially for resource-limited institutions. Recent advancements 

in the multispectral remote sensing, e.g. SPOT 6 and Sentinel-2, have balance these challenges by 

providing repeated coverages with improved spatial and spectral properties at relatively cost-

effective or free of charge for some regions (e.g. SPOT 6 in southern Africa). To improve the 

large-scale and continuous mapping of AIPs spread, the current study recommends that future 

studies should focus on integrating the freely available and improved resolution multispectral data 

with robust machine learning algorithms.  
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Chapter Three 

Determining multi-temporal distribution of Parthenium (P. HysterophoruL) using SPOT 

series data and Random Forest 

The following paper is based on a manuscript currently under review:  

Royimani, L., Mutanga, O., Odindi, J., Kiala, Z.S. & Sibanda M. (Under review). Determining 

multi-temporal distribution of Parthenium (P. HysterophoruL) using SPOT series data and 

Random Forest. International Journal of Remote Sensing.  

 

Abstract   

Detecting the spatial and temporal distribution of AIPs such as Parthenium is crucial for facilitating 

management and mitigation of spread. The availability of historical remotely sensed data with a 

fine spatial resolution from the SPOT 5, 6 and 7 mission offers greater prospects to cost-effective 

management of AIPs spread. This study sought to determine the spatial and temporal distribution 

of Parthenium using multi-temporal SPOT series data, Random Forest and Land Change Modeler 

(LCM). Findings shown that, Parthenium has been, generally, decreasing over the 10-year period 

of the study. The general decline in Parthenium distribution is attributed to the low annual rainfall 

in the recent past. However, the sharp incline in Parthenium spread in the year 2016 is attributed 

to the high rainfall, leading to increased invasion on vacant or bare areas. Generally, low rainfall 

has not only affected Parthenium distribution but also other vegetation classes such as grassland, 

thereby increasing the area of bare soils. Moreover, increased Parthenium spread has been recorded 

from areas with frequently altered soils, as opposed to areas of infrequent manipulated soils. This 

study has demonstrated the value of cost-effective multispectral SPOT series data in concert with 

robust and advanced non-parametric Random Forest classifier in detecting and mapping the spatial 

and temporal spread of AIPs.   

Key words: SPOT series, Random Forest, Parthenium, distribution, spatial, temporal  
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3.1. Introduction  

Parthenium is an aggressive herbaceous plant from the south and central America that has 

colonized and naturalized in many regions of the world, such as Australia, Asia and Africa 

(McConnachie 2015; Zuberi et al. 2014; Goodall et al. 2010). In Africa, the plant has become 

prevalent in the eastern and southern parts of the continent (Zuberi et al. 2014). In South Africa, 

Parthenium was first recorded at the Inanda area of KwaZulu-Natal in 1880 and later spread to 

other regions following the Tropical Cyclone Domoina in 1984 (McConnachie 2015; Goodall et 

al. 2010). Its tolerance and adaptability to a wide range of environmental conditions as well as soil 

types has intensified its exponential growth and expansion to the newly invaded landscapes (Ayele 

2007). Parthenium is characterized by longitudinal grooved stem and leaves that are covered by 

short hairs and a general growth of up to 2 meters height under favorable conditions (McConnachie 

et al. 2011). At optimum conditions, Parthenium can complete its life cycle in four weeks, with 

approximately 15 000 to 25 000 seeds produced per plant (Goodall et al. 2010; Adkins et al. 2010). 

At dense infestations, the plant forms a large seed bank, estimated to 200 000 seeds per m-2, that 

remain in the soil for a long time (Goodall et al. 2010). Seed dispersal is by wind, water and 

vehicles (Wabuyele et al. 2014). Literature shows that the annual germination and growth of 

Parthenium is limited by soil moisture (Goodall et al. 2010).   

Studies have shown that Parthenium establishes and develops well in disturbed areas, such as 

roadsides, overgrazed areas and fallow agricultural lands (Karki 2009a) where native plants are 

still in the early stages of rejuvenation. The ecological impact of Parthenium includes displacement 

of native flora and fauna as well as the significant decline in local biodiversity (Karki 2009a). Its 

capabilities to displace native plants are strengthened by its allelopathic qualities (McConnachie 

2015; Ayele 2007; Karki 2009a). In allelopathy, poisonous allelochemicals such as phenolics and 

lactones are produced by Parthenium leaves, thereby inhibiting germination and growth of native 

species (McConnachie et al. 2011). Also, the weed is unpalatable to grazers (Karki 2009a), thereby 

allowing its long-lasting growth and spread. Parthenium is also known to affect rangeland quality 

and quantity (Shrestha et al. 2015; Brunel et al. 2014). Its uncontrollable and fast-growing rate has 

the ability to reduce forage productivity by up to 90% (Ayele 2007). It is also known to affect 

animal health, milk and meat production (Evans 1997). In croplands, Parthenium can act as a host 

to crop pests and disease (Evans 1997). Similarly, there are numerous human health risks reported 

from Parthenium and these include, asthma, dermatitis and rhinitis (Evans 1997).   
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Traditionally, data for the monitoring and control of Parthenium has been acquired by means of 

manual methods such as field surveys (McConnachie 2015; McConnachie et al. 2011). However, 

the success of such methods in the monitoring of alien invasion has been mainly limited to small-

scale applications (Peerbhay et al. 2016b). Alternatively, remote sensing has emerged as a reliable 

approach for mapping the spread of AIPs spread at the landscape scale (Matongera et al. 2017; 

Odindi et al. 2016; Oumar 2016). Studies have demonstrated the successes of remote sensing in 

the detection and mapping of the AIPs spread (Robinson et al. 2016; Ngubane et al. 2014; Casady 

et al. 2005). Gil et al. (2013), for instance, mapped the invasive Pittosporum undulatum in a 

Protected Area of Sao Miguel Island, Portugal, using IKONOS dataset, while Fuller (2005) 

mapped the distribution of the Melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) with 

85.66% overall classification accuracy using IKONOS data in the south of Florida, United States. 

Despite the fine spatial resolution in these sensors, the excessive acquisition costs coupled with 

small area coverage are prohibitive to the continuous and large-scale mapping of AIPs, especially 

for financially constrained regions such as southern Africa.  

The signing of the license agreement by the South African National Space Agency (SANSA) and 

Airbus Defence and Space (ADS) has ensured a steady supply of SPOT imagery for South Africa 

(Oumar 2016). Furthermore, the South African government has signed a single licence government 

multi-user agreement with SANSA to ensure that SPOT images are freely available for public use, 

making it an alternative to the high spatial and hyperspectral dataset. The SPOT mission, also, 

offers large volumes of archival data with improved spatial properties (Oumar 2016) to detect 

trends and patterns, both, in the current and historical distribution of AIPs. More so, the robust and 

advanced non-parametric image classifiers such as Random Forest have been valuable for 

detecting AIPs spread (Kganyago et al. 2017; Abdel-Rahman et al. 2014; Pal 2005). Therefore, 

the current study aims to determine the spatial and temporal distribution of Parthenium using 

SPOT series data and Random Forest. Several studies (e.g. Matongera et al. 2017; Oumar 2016) 

have shown that the incorporation of vegetation indices is instrumental for improving classification 

accuracy, hence the computation of the eight vegetation indices. The Land Change Modeler (LCM) 

was used to determine the temporal changes in Parthenium distribution as well as the degree of 

change. Determining the dynamics in Parthenium distribution was necessary to examine the 

hypothesis that its spread is intensified by the creation of bare or vacant lands.  
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3.2 Methods and Material  

3.2.1 Description of the study site 

The study was conducted within the Mtubatuba local municipality on the north-east coast of 

KwaZulu-Natal, South Africa (Figure 3.1). The extent of the study area is approximately 4750 ha. 

The area falls within the Maputaland-Pondoland-Albany biodiversity hotspot and is characterized 

by subtropical climates with hot to warm summers and mild winters (Grundling et al. 2013). The 

mean annual rainfall is approximately 980 mm with most of it occurring during the summer months 

(i.e. September to March) (Wigley et al. 2009). Dominant vegetation includes tropical bush and 

savannas as well as coastal tropical forests (Wigley et al. 2009). The underlying geological 

formation includes granitoids and gneisses of the Mzumbe Terrane of the Natal Metamorphis 

Province (Thomas, 1989). Also, these rocks are overlaid by arkosic and quartz arenites of the Natal 

Province (Marshall, 2002).   

 

Figure 3. 1: Location of the study area in Mtubatuba municipality, KwaZulu-Natal, South 

Africa. 



  

26 
 

The area is known for its long history of Parthenium infestation. According to the National 

Implementation Plan for the management of Parthenium in South Africa, this region falls within 

the “asset protection” zone in the province of KwaZulu-Natal. 

3.2.2 Field data collection  

Field data were collected from the 30th of January to the 5th of February 2017 using a differentially 

corrected Trimble GeoXT handheld Global Positioning System (GPS) receiver with a sub-meter 

accuracy. The ground truth data were collected for Parthenium infestations and other classes such 

as forests, grassland as well as bare soils in the study area. However, training points for built-up 

areas were digitized on-screen using aerial photographs. According to Ismail et al. (2016), AIPs 

are generally not distributed uniformly in their invaded habitats, therefore, purposive sampling 

approach was used to identify Parthenium patches that are larger than 10 m2. The 10 m2 patch 

size of Parthenium infestation was necessary to complement the spatial resolution of the SPOT-5 

sensor. Parthenium locational information and percentage cover were recorded while only the 

locational information was recorded for the other classes. An average of 100 GPS points was 

recorded for Parthenium infestations while 60 GPS points were recorded for each of the other 

classes. A total of 340 GPS points were collected for all the five classes across the study area. The 

data was then divided into 70% training and 30% validation.   

3.2.3 Image acquisition and preprocessing  

Three SPOT-5 and one SPOT-6 scene were acquired from the SANSA online catalog. The images 

used were chosen based on either the availability from the supplier’s archive or the amount of 

cloud cover. Besides the improved spatial resolution (Oumar 2016), SPOT mission provides large 

volumes of historical datasets to promote multi-temporal remote sensing of alien invasion. Table 

3.1 provides the acquisition dates and characteristics of all the four SPOT data used in this study. 

All the images were acquired in summer (i.e. December to March) when vegetation was full of 

vigor due to high precipitation in the area (Wigley et al. 2009). For consistency in the dataset, the 

SPOT-6 image was sampled to 10 m2, which is comparable to SPOT-5’s spatial resolution. 

Additionally, Otunga et al. (2014), emphasized the importance of image co-rectification when 

using multi-temporal remote sensing to allow conformity in the dataset and meaningful spatial 

comparison. The 2006, 2009 and 2012 image scenes were co-registered to the 2016 SPOT-6 image 

to less than half a pixel Root Mean Square Error (RMSE). In this study, image normalization was 
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done as described by El Hajj et al. (2008), using dark object subtraction (DOS) approach available 

on ENVI 5.2. The DOS approach is data dependent (Gilmore et al. 2015).  

 

Table 3. 1: Image acquisition dates and sensor characteristics.  

Sensor Acquisition date Resolutions Center coordinates  

  Spatial             Spectral   
SPOT-6 2016 – 02 – 11  6m                    4 bands S28° 28' 02": E32° 29' 03"  

SPOT-5 2012 – 12 – 09   10m                  4 bands S28° 28' 22": E31° 53' 29"  

SPOT-5 2009 – 12 – 22   10m                  4 bands S28° 28' 26": E31° 53' 20"  

SPOT-5 2006 – 12 – 15  10m                  4 bands          S28° 28' 24": E32° 27' 15"  
    

 

3.2.4 Vegetation indices retrieval 

Eight vegetation indices (Table 3.2) were computed in this study to improve classification 

accuracy. These indices were chosen based on their importance for minimizing the effect of soil 

background or to enhance greenness in vegetation. For instance, the NDVI has been successful in 

estimating biomass and crop yields (Oumar 2016; Matongera et al. 2017). Also, the use of NDVI 

as opposed to the classification of raw bands is recommended for change detection techniques 

(Blaschke 2005). According to Evangelista et al. (2009), the Simple Ratio (SR) works relatively 

similar to the NDVI by measuring the spectral responses between the red and NIR bands 

respectively. The Soil Adjusted Vegetation Index (SAVI) has been imperative in minimizing the 

effect of soil background as well as sparsely distributed vegetation (Amiri and Tabatabaie 2009). 

The Difference Vegetation Index (DVI), which subtracts the red band from the near infrared bad, 

has been instrumental for vegetation monitoring (Mulla 2013). The Green Ratio Vegetation Index 

(GRVI), Green Normalized Difference Vegetation Index (GNDVI), Green Difference Vegetation 

Index (GDVI) and the Infrared Percentage Vegetation Index (IPVI) have also been recommended 

for use in remote sensing of vegetation monitoring (Wu 2014; Amiri and Tabatabaie 2009).  
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Table 3. 2: Selected vegetation indices for discerning green and non-green features.    

Vegetation indices Formula Reference 

Normalized Difference Vegetation 

Index (NDVI) 

NIR-red/NIR+red Matongera et al. (2017) 

Difference Vegetation Index (DVI) NIR-red Dube et al. (2015) 

Green Difference Vegetation Index 

(GDVI) 

NIR-green Mulla (2013) 

Green Normalized Difference 

Vegetation Index (GNDVI) 

NIR-green/NIR+green Mulla (2013) 

Green Ratio Vegetation Index 

(GRVI) 

NIR/green Wu (2014) 

Infrared Percentage Vegetation 

Index (IPVI) 

NIR/NIR+red Amiri and Tabatabaie 

(2009) 

Simple Ratio (SR) NIR/red Evangelista et al. (2009) 

Soil Adjusted Vegetation Index 

(SAVI) 

NIR-red/NIR+red * (1+L)  Amiri and Tabatabaie 

(2009) 

 

3.2.5 Random Forest algorithm 

The Random Forest is a machine learning approach developed by Breiman (2001) to facilitate the 

classification process by combining a large set of decision trees. The benefits of Random Forest is 

that it is non-parametric (distribution-free) and does not suffer from the Hughes phenomenon of 

over-fitting (Abdel-Rahman et al. 2014).  Furthermore, the Random Forest is stable and faster 

(Chan and Paelinckx 2008), and can be easily implemented and interpreted (Odindi et al. 2014). 

The approach uses a bagging (bootstrap) operation to randomly fit numerous decision trees on 

various subset of samples of the data and employs the averaging technique to improve the 

predictive accuracy and control over-fitting (Abdel-Rahman et al. 2014). In the process, multiple 

classification trees are created based on a random subset of samples. The multiple classification 

trees then vote by plurality on the correct classification (Oumar 2016). The one-third samples not 

used in the bootstrap samples (out-of-bag (OOB)) are used to estimate the misclassification error 

and the variable importance (Chan and Paelinckx 2008). 
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3.2.6 Image classification and Model optimization 

Spectral reflectance values were extracted using the 340 sampling points collected from the field 

to train the classification of the 2016 SPOT scene. The non-parametric  Random Forest (Adelabu 

et al. 2014; Abdel-Rahman et al. 2014; Odindi et al. 2014) was then used to classify all the image 

pixels based on the trained parameters. The older images were classified by the use of combined 

data sources such as the very high spatial resolution (0.5m-2) aerial photograph, Google Earth 

Imagery and thematic maps from the preceding image classification outputs. The Google Earth 

Imagery and aerial photographs were acquired on the 20th, 10th and 12th of December 2012, 2009 

and 2006 respectively. In the process, the initial (2016) thematic map was overlaid with the aerial 

photograph and Google Earth Imagery to obtain training dataset for the 2012 image scene. The 

process was iterated with the 2012 SPOT scene to train classification of the 2009 image scene and 

the 2009 image used to classify the 2006 image scene. However, optimal discrimination between 

Parthenium and grassland, and built-up and bare soils was not achieved. To compensate for this 

error, areas of clearly recognizable land use/cover types were identified on-screen from each 

thematic map and aerial photographs to gather training datasets to repeat the image classification 

process until satisfactory results were obtained.  

Random Forest model optimization was achieved by using feature selection and hyperparameter 

tuning. This process was necessary to determine the best performing parameters for the highest 

obtainable classification output (Abdel-Rahman et al. 2014; Adelabu et al. 2014 Breiman 2001). 

To facilitate the process, spectral band importance rankings were generated using the tree-based 

feature selection process. Subsequently, multiple thresholds were calculated for selecting bands 

based on their importance. Starting with all the bands and ending with the most important band, 

the model was trained and evaluated on the test dataset using the overall classification accuracy 

metric to find the optimal subset of bands. The use of feature selection in the model criterion was 

beneficial because it decreases data training time while improving classification accuracy 

concurrently. Hyperparameter tuning was performed on the model created from relevant bands 

using the Grid-search approach.  

3.2.7 Accuracy assessment  

The contingency table also known as the confusion matrix is one of the most popular methods used 

to test the performance of the classification process and a chosen classifier thereafter (Oumar 
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2016). Subsequently, the confusion matrix was used in this study to validate the performance of 

the Random Forest algorithm. The user’s, producer’s and the overall classification accuracies were 

used as criteria to assess the performance of the classifier. The user’s accuracy indicates the 

probability that a pixel belongs to a certain class as assigned by the classifier, while the producer’s 

accuracy expresses the likelihood of a particular feature being correctly classified (Abdel-Rahman 

et al. 2014). The overall accuracy is a ratio in percentage between the number of correctly 

classified classes and the number of test data (Abdel-Rahman et al. 2014).       

3.2.8 Post-classification and change detection 

To quantify changes in earth surface land cover features using remote sensing data, Waser et al. 

(2008), suggest that dissimilarities between different images (i.e. imag1 – imag2) of the same area 

be computed after image co-registration. Therefore, in this study, to detect changes and determine 

the degree of change in areas of land occupied by different land use/cover types, a ‘from-to’ post-

classification procedure was applied using LCM available in IDRIS software. Studies reveal that 

this procedure is valuable for separating multi-temporal image classification and for image 

comparisons (Otunga et al. 2014). Also, the LCM was essential to detail the spatial increases and 

decreases as well as the degree of change from one class to the other. To identify land use activities 

that are more influential to Parthenium expansion, the study area was divided into agricultural and 

non-agricultural dominated fields. The agricultural dominated fields were made up of forest 

plantation and pastoral or grazing lands whereas non-agricultural dominated fields formed by 

residential areas. 

3.2.9 Annual rainfall distribution  

According to literature, growth and distribution of Parthenium is determined by the available soil 

moisture (Goodall et al. 2010). Therefore, historical rainfall data were acquired for the Mtubatuba 

local municipality from the South African Sugarcane Research Institute (SASRI) to understand 

the influence of rainfall on Parthenium distribution. Rainfall data from SASRI is presented in three 

respective categories; daily, weekly and monthly reports. To fulfill the objective of this study, the 

monthly rainfall data were downloaded from the year 2006 to 2016. Then, all the monthly datasets 

were averaged for each year to get the annual rainfall for each year. However, only annual rainfalls 

for the years that were complementary to the chosen years of image analysis (i.e. 2006, 2009, 2012 

and 2016) were used.            
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3.3 Results  

3.3.1 Assessment of classification accuracies 

Table 3.3, shows the user, producer and overall classification accuracies obtained based on the 

Random Forest algorithm. The bands from the visible region (i.e. green, red and the Near Infrared) 

yielded the highest overall classification accuracies when using the SPOT-5 scenes whereas all the 

four bands (blue, green, red and Near Infrared) of SPOT-6 were significant in discriminating 

among the chosen land use/cover types. Although the chosen vegetation indices were valuable for 

discrimination between vegetation classes (i.e. forest, grassland and Parthenium) and non-

vegetated area, their performance was inferior in separating vegetation classes and between bare 

soils and built-up areas. 

 

Table 3. 3: Accuracy assessment using error matrix for classifying the 2006, 2009, 2012 and 

2016 SPOT scenes. 

Sensor Acquisition year PA (%) UA (%) OA (%) 

     
SPOT-6 2016 68 64 71 

SPOT-5 

 

2012 75 71 75 

SPOT-5 

 

2009 78 78 78 

SPOT-5 

 

2006 64 65 70 
     

Notes: PA= Producer Accuracy, UA= User Accuracy, OA= Overall Accuracy.  

3.3.2 Land use/land cover transformation and Parthenium distribution  

Figure 3.2 and 3.3 illustrate the dynamics in Parthenium distribution in relation to other land 

cover/use transformations in year 2006, 2009, 2012 and 2016. According to these figures (Figure 

3.2 and 3.3) Parthenium has remained a dominant class covering most (29% and 28%) of the study 

area in the year 2006 and 2009, respectively. During the same period, the class of bare soil was 

significantly reduced to 12% and 14% in 2006 and 2009, respectively.  
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Figure 3. 2: Parthenium distribution and land use/land cover transformation. 

However, in the year 2012, the area of bare soil increased substantially (47%), taking over most 

of what previously used to be covered by Parthenium and grassland (Figure 3.9(a)). A detailed 

class succession among these different classes is given in Table 3.4. It is evident that the spreading 

of Parthenium is influenced by changes in other land cover/use types in the study area. For 

instance, the slight decrease in the area of land occupied by Parthenium in year 2009 has intensified 

the creation of open and bare soils in the same year (Figure 3.2 and 3.3). Similarly, the drastic 

decline in all vegetation classes (i.e. forest, grassland and Parthenium) in year 2012 led to the sharp 

incline in land area of bare soils.   

Table 3. 4: Assessing the ‘from-to’ class alterations and the degree of change.   

Year Succeeded class Succeeding class Succeeding value (%) 

2009 

Forest Bare soil 1.6 

Parthenium Bare soil 1 

Grassland Built-up area 3.4     

2012 

Forest Bare soil 3.3 

Grassland Bare soil 7.8 

Grassland Built-up area 1.3 

Parthenium Bare soil 19     

2016 

Bare soil Built-up area 0.3 

Bare soil Forest 15.3 

Bare soil Grassland 8 

Bare soil Parthenium 12.9 
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Figure 3. 3: Parthenium distribution in relation to other land use/cover change for the study 

period. 

 

In the year 2016, there was a recovery in all the vegetation classes invading most of the previously 

vacant or bare soil area. Meanwhile, the built-up area class maintained its consistency for most of 

the study period.  
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3.3.3 Spatial and temporal variability in Parthenium distribution  

In general, Parthenium has shown an uneven trend of either increase or decrease over the 10-year 

period from 2006 to 2016 (Figure 3.4 and 3.5). Besides, the highest infestations of Parthenium, 

covering 29% and 28% of the study site, were recorded in the year 2006 and 2009 respectively. In 

the year 2012, the area occupied by Parthenium dropped significantly to 12% of the total land area 

within the study site. However, in the year 2016, Parthenium spread increased to almost 22% of 

the total land mass. The low or poor R-squared (R2 = 0.5024) value in Figure 3.4 also confirms 

this uneven distribution in Parthenium spreading across the study area.  

 

 

Figure 3. 4: Trends in Parthenium distribution from 2006 to 2016. 
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Figure 3. 5: Spatial distribution of Parthenium for the period of the study. 

 



  

36 
 

3.3.4 Comparing the spread of Parthenium between agricultural and non-agricultural 

dominated fields   

Figure 3.6 depicts changes in the area of land occupied by Parthenium from agricultural and non-

agricultural dominated fields. The figure shows that Parthenium infestation is prevalent in the non-

agricultural dominated than in agricultural dominated fields. Although the amount of land 

occupied by Parthenium has remained consistently high in non-agricultural dominated fields, there 

has been a sharp incline in the area of this class after 2013 in both land uses. 

 

 

Figure 3. 6: Change in Parthenium distribution in relation to agricultural and non-agricultural 

dominated fields.  

 

Figure 3.7 shows the correlation between annual rainfall and Parthenium distribution for the study 

site from the year 2006 to 2016. Generally, the annual rainfall remained very low for most of the 

study period. According to figure 3.7, the spread of Parthenium is directly influenced by rainfall. 

For instance, the highest infestation of Parthenium in the study site was recorded in the year 2006 

when the rainfall was above 70 millimeters per year and the lowest was in 2012 when rainfall was 

47 millimeters. Since 2006, Parthenium has been consistently decreasing with declining rainfall 

until the year 2016 where it boomed following the increased annual rainfall of 65 millimeters per 

year (Figure 3.7).    
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Figure 3. 7: Rainfall and Parthenium distribution for the study period. 

 

3.4 Discussion  

Based on the results of this study, there was a steady decline in Parthenium spread over the 10-

year period. The noticeable trend of reduction in Parthenium (i.e. from 2006 to 2012) in the present 

study could be attributed to the low rainfall (Figure 3.7) experienced in the area over the recent 

past (Grundling et al. 2013). These results are consistent with Goodall et al. (2010), who observed 

a decrease in Parthenium distribution in a 5 km buffer outside the Hluhluwe game reserve. 

Generally, low rainfall means a reduction in soil water (Jaleel et al. 2009), leading to reduced soil 

moisture. Given that soil moisture is the major limiting factor to growth and distribution of 

Parthenium (Goodall et al. 2010), low rainfall could have had a significant impact on the spread 

of the weed during this period. The rapid increase in the land area occupied by Parthenium in the 

year 2016 could be attributed to increased rainfall experienced in the area by the end of the year 

2016 (Figure 3.7). This is in conformity with results of other studies (e.g. Goodall et al. 2010), 

who reported a high growth and spread in Parthenium following rainy seasons within the Hluhluwe 

game reserve. Furthermore, the strong correlation between Parthenium distribution and rainfall 

has been confirmed by the good R-squared (R2 = 0.9631) indicated in Figure 3.8. Therefore, it is 

evident that, among others, the spread of Parthenium is highly influenced by the distribution of 

rainfall.   
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Figure 3. 8: Correlation between rainfall and Parthenium distribution.  

 

Despite the effect of low rainfall, Parthenium distribution has shown a direct relation with land 

use/cover transformations in the study area. For instance, the sharp reduction in the area of land 

occupied by Parthenium and grassland in the year 2012 (Figure 3.2 and 3.3), can be attributed to 

the increase in the area of bare soils (Figure 3.9(a)). During this period, grasses and Parthenium 

are believed to have decreased because of low rainfall (Figure 3.7) while leaving out most of the 

study area’s landscape uncovered by vegetation. With its rapid and aggressive behaviour 

(Kganyago et al. 2017; Adkins et al. 2010; Ayele 2007) Parthenium is assumed to have capitalized 

on the availability of these bare soils to spread following the increased rainfall in 2016 (Figure 3.9 

(b)). Furthermore, landscape disturbances and vegetation clearing are known to destroy natural 

vegetation (Otunga et al. 2014), thereby creating vacant niches that are susceptible to Parthenium 

invasion. Subsequently, the reported spread of Parthenium in 2016 was more pronounced on 

frequently disturbed landscapes of residential areas, fallow agricultural and grazing lands. This 

unabated trend of increased Parthenium spread in disturbed landscapes is further shown in Figure 

3.6. As confirmed by Kganyago et al. (2017), it is evident that Parthenium is a major invader of 

residential peripheries which capitalizes on the creation of vacant niches.  
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Figure 3. 9: Relationship between bare soil and Parthenium distribution from (a) 2009 to 2012 

and from (b) 2012 to 2016.   

However, on the other hand, the closed canopy covers of forests are believed to have prohibited 

the germination and spread of Parthenium within the forest environments (Figure 3.3). Besides, 

up-to-date information pertaining the distribution of AIPs is a requirement for monitoring and 

combating the spread (Kganyago et al. 2017; Oumar 2016). The provision of historical data from 

the SPOT mission offers an opportunity to map the spatial and temporal spread of AIPs such as 

Parthenium. More so, the use of improved resolution SPOT series data in concert with robust non-

parametric image classification algorithm proved to be valuable in discriminating Parthenium from 

other classes such as grasses, forests and built-up area. However, although advocated in literature 

to improve classification accuracy, the chosen vegetation indices performed poorly in discerning 

Parthenium from forest and grasslands, hence were not reported in the study.   
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3.5 Conclusion  

The objective of the study was to map the spatial and temporal spread of Parthenium using the 

multi-temporal SPOT series data. The results show that there has been a persistent decline in 

Parthenium distribution during the study period. Such a decrease has been attributed to the dry 

conditions associated with low rainfall activities. However, in the year 2016, there has been a boom 

in Parthenium spread following increased rainfall in the area. Furthermore, Parthenium has shown 

a strong relationship with land use/cover transformation across the study area, with frequently 

transformed soils being prone to Parthenium spread than infrequently changed landscapes. 

Moreover, this study demonstrated the value of using the robust and advanced non-parametric 

Random Forest in concert with improved resolution SPOT series data to facilitate the precise 

delineation of trends in AIPs such as Parthenium. The incorporation of these tools (i.e. non-

parametric classifiers and freely available multispectral data with improved resolution) in southern 

Africa offers an affordable opportunity to the continued and operational scale monitoring of AIPs, 

a task previously confounded by excessive image acquisition costs. Due to the insignificant role 

of the management efforts currently in place to mitigate the spread of the weed, coupled with the 

imminent impact of Parthenium on subsistence agriculture, it is recommended that future research 

focus on national or provincial scale mapping of this weed to allow a comprehensive viewing of 

its distribution.           
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Chapter Four 

Evaluation and conclusion 

 

4.1 Introduction  

The present study aimed to assess remote sensing application for mapping the spatial and temporal 

distribution of Parthenium in the Mtubatuba municipality of KwaZulu-Natal, South Africa. This 

chapter provides an evaluation of the objectives established in the introductory section (chapter 

one) of this research. More so, the chapter highlights the major concluding remarks of the research 

as well as prescribing a possible way forward for future research studies.      

4.2 Evaluation of research objectives  

4.2.1 Objective one:  

The first objective of the study was to review literature on the advancements of satellite remote 

sensing for optimal detection and mapping of AIPs spread and the associated challenges and 

opportunities. The rapid spread of AIPs presents a number of socioeconomic and ecological 

problems to the invaded landscapes. Although providing cost-effective techniques for monitoring 

of AIPs spread, remote sensing of alien invasion is still confounded by a number of challenges 

such as balancing improvements in sensors technology (resolutions), image acquisition costs as 

well as the scale of application. For instance, although often provides large volumes of cost-

effective dataset for continuous and large-scale mapping of AIPs, averaged spectral and poor 

spatial resolution data are inadequate for optimal detection of AIPs spread. With its small swath-

width and excessive acquisition, the high spatial and hyperspectral dataset is also not an 

alternative. The increased free provision of multispectral data with improved spatial and spectral 

properties seem to be the alternative to achieve precise large-scale and long-term monitoring of 

AIPs. Also, developments in classification algorithms such as the Support Vector Machine and 

Random Forest with their robustness, are more valuable for accurate detection of earth features 

using remote singing data. Therefore, with the fusion of these two approaches mentioned above it 

is possible to achieve, both, the large-scale and long-term mapping of AIPs even by resource 

limited countries.     
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4.2.2 Objective two:  

The second objective was to detect and map the spatial and temporal distribution of Parthenium 

from 2006 to 2016 using the SPOT series data and Random Forest. The signing of the license 

agreement between SANSA and ADS coupled with SANSA-single licence government multi-user 

agreement have ensured a steady supply of SPOT series data, free of charge in South Africa, to 

promote large-scale landscape analysis and long-term monitoring of AIPs spread. Findings have 

shown a consistent decrease in Parthenium spread for the study period. However, such decrease in 

Parthenium spread is assumed to be due to a low rainfall distribution. Also, Parthenium spread is 

influenced by land use/cover transformations with areas of frequent soils manipulation being more 

prone to expansion than infrequent altered soils. As a result, Parthenium spreading is high in 

residential peripheries, fallow agricultural lands and grazing lands than competitive places of forest 

environments. The increased availability of improved spatial resolution data from the SPOT 

mission provides the most appropriate approach to large-scale and long-term mapping of AIPs in 

South Africa. Furthermore, the use of non-parametric image classifiers when classifying SPOT 

images yield some promising results for optimal detection of AIPs spread and continuous 

vegetation monitoring.     

 

4.3 Conclusion  

The main aim of the study was to assess remote sensing application for mapping the spatial and 

temporal spread of Parthenium in the Mtubatuba municipality of KwaZulu-Natal, South Africa. 

Evidently, the use of the improved spatial resolution multispectral data in concert with non-

parametric classification algorithms provides a cost-effective approach to long-term and operation 

scale mapping of AIPs. On the other hand, the spread of Parthenium in the invaded landscapes is 

intensified by the availability of rainfall. Moreover, Parthenium spread is encouraged by 

vegetation clearings and land use/cover transformations. Therefore, this study concludes that, 

Parthenium does capitalize on available vacant spaces and spread throughout the landscape. This 

has been revealed by its strong relationship with bare soils established from the study. This study 

is beneficial to both crop and animal farmers to identify and avoid Parthenium invaded landscapes 

in their farming activities. This will then help avoid the potential economic loss that can arise when 

livestock fed on and crops ploughed on Parthenium invaded areas. The major limitation of the 
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study was the increased time interval in between the chosen years of analysis and the time length 

was governed by image availability. Given that Parthenium growth mostly depends on moisture 

availability, this could have prevented a great opportunity to understand the annual and seasonal 

distribution of the weed. However, to improve the understanding of the spatial and temporal 

distribution of the weed, interested parties such as the Department of Agriculture and Rural 

Development as well as the Department of Economic Development, Tourism and Environmental 

Affairs can increase the available images by using techniques such as drones or Unmanned Aerial 

Vehicle (UAV). Furthermore, soil characteristics, soil moisture and topography can be 

incorporated in analysis of future studies to fully understand the spread of the weed.            
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