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Abstract

The ability to track articulated human motion in video sequences is essential for applica­

tions ranging from biometrics, virtual reality, human-computer interfaces and surveillance.

The work presented in this thesis focuses on tracking and analysing human motion in terms

of MPEG-4 Body Animation Parameters, in the context of a model-based coding scheme.

Model-based coding has emerged as a potential technique for very low bit-rate video com­

pression. This study emphasises motion reconstruction rather than photorealistic human

body modelling, consequently a 3-D skeleton with 31 degrees-of-freedom was used to model

the human body. Compression is achieved by analysing the input images in terms of the

known 3-D model and extracting parameters that describe the relative pose of each seg­

ment. These parameters are transmitted to the decoder which synthesises the output by

transforming the default model into the correct posture.

The problem comprises two main aspects: 3-D human motion capture and pose descrip­

tion. The goal of the 3-D human motion capture component is to generate 3-D locations

of key joints on the human body without the use of special markers or sensors placed on

the subject. The input sequence is acquired by three synchronised and calibrated CCD

cameras. Digital image matching techniques including cross-correlation and least squares

matching are used to find spatial correspondences between the multiple views as well as

temporal correspondences in subsequent frames with sub-pixel accuracy. The tracking al­

gorithm automates the matching process examining each matching result and adaptively

modifying matching parameters. Key points must be manually selected in the first frame,

following which the tracking commences without the intervention of the user, employing

the recovered 3-D motion of the skeleton model for prediction of future states. Epipo-
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lar geometry is exploited to verify spatial correspondences in each frame before the 3-D

locations of all joints are computed through triangulation to construct the 3-D skeleton.

The pose of the skeleton is described by the MPEG-4 Body Animation Parameters. The

subject's motion is reconstructed by applying the animation parameters to a simplified

version of the default MPEG-4 skeleton.

The tracking algorithm may be adapted to 2-D tracking in monocular sequences. An ex­

ample of 2-D tracking of facial expressions demonstrates the flexibility of the algorithm.

Further results involving tracking separate body parts demonstrate the advantage of mul­

tiple views and the benefit of camera calibration, which simplifies the generation of 3-D

trajectories and the estimation of epipolar geometry. The overall system is tested on

a walking sequence where full body motion capture is performed and all 31 degrees-of­

freedom of the tracked model are extracted. Results show adequate motion reconstruction

(i.e. convincing to most human observers), with slight deviations due to lack of knowledge

of the volumetric property of the human body.
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Chapter 1

Introduction

Human vision is a complex system that enables us to perceive and act in an equally complex

environment. Computer vision aims to provide artificial systems with human-level ability

to extract information from image data. Computer vision is a relatively young area of

research that is closely related to fields such as image processing, pattern recognition and

photogrammetry. In today's information age the sharing of visual information constitutes

a large portion of traffic in communication systems. Nowhere is this more evident than in

the case of the ever evolving internet and the newly introduced 3G mobile cellular networks

that provide the consumer market with technology such as video conferencing. The large

amount of data associated with images result in storage burdens and heavy bandwidth

utilisation when exchanged between users. These problems are further amplified when

video sequences are used instead of still images, and/or transmission is performed over

wireless networks where bandwidth is further limited. As a result, data compression is

absolutely necessary in order for visual information transmission to be practical and cost

effective.

The research group at the University of KwaZulu-Natal sponsored by Thales Advanced

Engineering and Armscor has been guided by the topic of low bit-rate video. Previous

research focused mainly on wavelet compression [20] [21] although a new avenue was

examined by Murugast [22], who adopted a more content driven approach when segmenting
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CHAPTER 1. INTRODUCTION 2

moving objects of interest in video sequences. Following the ideology of video compression,

the research presented in this thesis explores the relatively new and promising method of

model-based coding l that is capable of achieving very low bit-rates [23]. The method is

applied to a specific case of human motion. Under the concept of model-based coding, the

research fields of computer vision and computer graphics are brought together. Computer

vision deals with the recovery of motion data from the input video sequence, a process

referred to as human motion capture (HMC). Computer graphics come in at the output

stage of the system which entails rendering of photorealistic human models performing

the desired movement. In essence the output is not a real image, rather a synthetically

generated scene. The level of realism or believability of the output depends on the quality

of the human motion capture system (for human like motion) and human body modelling

stage (for realistic humanoid models).

1.1 Model-Based Coding

Conventional coding techniques (predictive coding, transform coding, vector quantisation)

belong to information theory based methods which compress each frame by exploiting its

stochastic properties. Model-based coding however regards the image as a 2-D snapshot

of a 3-D world rather than a group of random signals. Low bit-rates are achieved by

exploiting knowledge of the scene content and modelling the 3-D objects in terms of

shape and motion. Figure 1.1 depicts a diagram of a general model based coding scheme.

Assuming the emphasis is on human motion, the input is a sequence of images of full body

movements of a person. The 3-D model encapsulates the geometrical and textural features

of the person. Although the appearance (size, texture, etc.) will differ from subject

to subject the structure of the human body (hierarchical setup of the joints and bone

segments) is common. A default 3-D model may exist at both the encoder and decoder

end of the system. Typically, the appearance description will not change throughout the

sequence, hence those parameters need to be encoded only once in order to customise

the default model (to resemble the subject). Using the 3-D model, the encoder analyses

1Also referred to as "content-based coding", "analysis-synthesis coding", "object-based coding",

"knowledge-based coding" or "semantic coding"
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each frame and collects information about the person's motion and deformation. The

extracted parameters collectively describe the 3-D pose of the subject in each frame in a

very compact manner. At the decoder, in general terms, synthesis is the reconstruction

of the image using the scene parameters. When applied to HMC, the human model is

transformed by the extracted pose parameters to represent the person's motion in that

frame. Model-based coding can be used for compression of visual information because

ENCODER CHANNEL DECODER

Analysis Data

~
(scene parameters)

Synthesis ~Analysis

Model Model

Figure 1.1: Structure of a general model-based coding scheme.

a small number of model parameters are able to quantify the object's temporal changes

in a video sequence. The high coding efficiency does however come at a cost, that is, a

reduction in generality since the application is restricted to scenes composed of objects

known by the encoder/decoder. Previous work contributing towards 3-D model-based

coding has concentrated on the scenario of head-and-shoulders [23] [24] since the facial

images are important for broad applications, but also because the analysis and synthesis

of the human head presents a simpler problem than that of the whole body. The concept

was first proposed by Forchheimer et al. in 1983 [25] and applied to a model-based video­

phone system. Since then, there has been a great interest in the subject [26] [27] [28] [29]

[30] [31] [32] [33]. The ratification of the MPEG-4 standard in 1999 stimulated research

into model-based coding. MPEG-4 is the first content-based audio-visual coding standard,

part of which is specifically devoted to the human face and body. The introduction of this

standard has opened the door to new research topics such as low bit-rate video phone for

the deaf [34] and very low bit-rate compression of virtual characters [35] [36].
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1.2 Human Body Animation

4

The goal of human body animation is twofold; to produce photorealistic models, as well

as realistic motion, of the character. The human body is a complex articulated object and

our eyes are especially sensitive to the human figure and the subtle detail of its motion.

Realistic animation is a complicated task due to our sensitivity to errors in animated

human motion [37] [38]. For this reason, human motion capture has emerged as the

preferred method instead of keyframing and physical simulation.

In keyframe animation, the animator specifies keyframes in which the pose of the model

is set manually. The intermediate frames are generated by the computer by interpolating

between the two key positions. Although this saves a considerable amount of time, it is

still a labour intensive technique, particularly for models with a high number of degrees­

of-freedom.

Methods based on physical simulation compute movement using simulations of Newtonian

physics. This method is typically used for animation of cloth deformations, rigid objects

or fluids, however it is deemed impractical for the animation of articulated figures. One

reason is the complexity of the physics-based model of such an object, but also, to produce

the desired motion the animator would have to be familiar with the human body (i.e.

configuration of the muscles and joints, and the energies involved in moving them).

Human motion capture on the other hand records the movements of an actor and maps

that data onto the model. More importantly it is able to capture the subject's motion

texture. Motion texture is the term (originally suggested by Prof. Ken Perlin of New York

University) that describes a person's unique way of movement, i.e. the differences when

the same movement is performed by different people, and the variations in an individual's

repetitive motions. In this way, life-like and realistic animation is generated, with the

virtual character also acquiring some of the actor's personality.

The Face and Body Animation (FBA) subgroup of the Synthetic and Natural Hybrid

Coding Group (SNHC) of Motion Pictures Expert Group (MPEG) has addressed the

subject of virtual character animation, gesture synthesis and compression/transmission.
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The appropriate framework has now been standardised under the MPEG-4 international

standard. The standard defines two sets of parameters for the face and body. The Face

Definition Parameter (FDP) set and the Body Defi.nition Parameter (BDP) set describe

features particular to the subject, while the Face Animation Parameter (FAP) set and

Body Animation Parameter (BAP) set are used to animate the virtual humanoid. The

decoder uses these parameters to transform the default, H-Anim [39] compliant human

model and renders a virtual representation of the subject (Figure 1.2).

FDP
BDP

FAP
BAP

Default
Model

Rendered
Body

Figure 1.2: MPEG-4 human face and body animation. (customised male model images

from Thalmann and Vexo [1])

1.3 System Definition

The scope of the implemented model-based coding scheme is depicted in Figure 1.3. The

aim is to reconstruct general human body motion, hence the analysis of the hands and head

is not dealt with. The focus is placed on the computer vision aspect of the problem, conse­

quently modelling of the human body is performed only to such a degree as to adequately

represent the corresponding movement. Human motion capture is used to estimate the

subject's pose in each frame. Moeslund and Granum [40] define pose estimation as "the

process of identifying how a human body and/or individual limbs are configured in a given

scene". Once the configuration of the individual limbs is known, the pose can be described
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by a relatively small number of parameters. The pose parameters employed in this work

have been defined according to the MPEG-4 standard, i.e. the pose is defined by the Body

Animation Parameter set. The process of rendering human animation needs to tackle two

aspects; motion of the hierarchical skeleton and deformation of the body [41]. Only the

motion of the underlying skeleton is required for the animation of a model [19]. Thus, the

human motion reconstruction from a video sequence is performed by means of a simplified

skeleton model with 31 degrees-of-freedom (DOF) and 18 joints as defined in [42]. Since

accurate modelling of the body is not carried out (i.e. modelling of the flesh and skin,

customising the model to the subject's dimension/texture or animating the deformation of

the body), only the animation parameters (BAPs) need to be extracted and passed onto

the decoder (i.e. BDPs are not used). Automatic interpretation of human movements is

ENCODER CHANNEL DECODER OUTPUT

analysis synthesis
(HMC) (animation)

BAPs [!]

INPUT

default
skeleton model

default
skeleton model

Figure 1.3: Implemented model-based coding scheme.

one of computer vision's most challenging tasks [43]. The head and shoulders scenario has

enjoyed more attention from researchers partly due to certain characteristics that make

the problem simpler when compared to the analysis of the whole body. The first difference

is in the input data. Problems involving motion of the head typically involve the subject

positioned close to the camera(s) with the head occupying a large portion of the overall

image. This results in better quality data and a larger "region of interest", i.e. signal
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belonging to the object under analysis (the head). Figure 1.4 shows the difference in size

of the "region of interest" in case of analysis of the head and shoulders, and the full body.

Depth estimation is the most challenging task of 3-D reconstruction. In contrast to full

body motion, the head undergoes small depth displacements throughout the sequence, of­

fering potentially more accurate depth estimates. However the greatest difference between

(a) (b)

Figure 1.4: Comparison of the "region of interest" size, (a) head and shoulders scenario,

(b) full body motion analysis scenario.

the two scenarios is that the global motion of the head is rigid and little occlusion occurs

during the sequence. The human body is an articulated object consisting of a number of

segments linked by joints. During unconstrained motion, various body parts occlude each

other making the tracking process very complex.

Thus far, researchers have failed to produce a full-body tracker general enough to handle

realistic real-world applications [44]. Commercial optical systems employ sophisticated and

expensive hardware in controlled environments. Occlusion poses the greatest challenge,

which is partially overcome by deploying a large number of cameras distributed around

the workspace. Retra-reflecting markers are placed on the subject to further simplify

the tracking problem. The constantly increasing computational power of off-the-shelf

hardware is allowing researchers to focus on marker-free vision-based motion capture.

These systems commonly simplify the problem by constraints and assumptions which are

discussed in more detail in Chapter 2.

This human motion capture system must provide 3-D locations of key points on the human

body from which the pose can be inferred. The problem was tackled by selecting the key
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points at the locations of articulation, i.e. joint locations, and tracking them throughout

the video sequence using image matching techniques. The whole process can be broken

down into the following components:

• Data acquisition

• Image matching

• Tracking

• 3-D reconstruction

This system is non-invasive, and no markers are placed on the subject. In addition, there

are no restrictions on the background (static, monochrome etc.), and no major restrictions

on the clothing worn by the subject (tighter fitting clothes with good texture produce more

accurate and robust motion data).

In this research, the input data is acquired by three synchronised and calibrated CCD

Dragonfly cameras from Point Grey Research [45]. These cameras are sensitive to visible

light and orientated in a fixed, centralised configuration. The use of multiple cameras aids

the tracking process and simplifies the depth estimation problem. The cameras themselves

produce colour images at a resolution of 640x480 pixels and frame rate of 30 fps, however

only the grey level intensities are utilised in the tracking process. These hardware specifi­

cations fall well below those used in the commercial systems and result in lower accuracy.

It is however sufficient to capture visually accurate enough data to express a subject's

motion.

Image matching is a process that finds correspondences in two images. The tracking algo­

rithm automates the matching process so that following initialisation, no user intervention

is required to track selected points throughout the video sequence. The tracking algorithm

can be applied to both 2-D (monocular sequence) and 3-D (multi-view sequence) tracking.

In the latter case, the additional available information is used to verify tracking results

and reconstruct a 3-D model of the subject. The tracking strategy is similar to that of

D'Apuzzo [46] who uses least squares matching for multi-view human motion capture.



CHAPTER 1. INTRODUCTION 9

The reconstructed model is a 3-D stick figure (skeleton) consisting of 18 joints and 17

segments. Although the structure of the model is the same as the one animated at the

decoder, it must be noted that this is not always the case, as the two models serve different

functions. The model animated at the decoder is used purely for display purposes which

present the output of the system. Models in human motion capture are used to aid the

tracking process, which in this case means the prediction of future states. The reason for

choosing the same model for human motion capture and animation is twofold. Firstly,

accurate human body modelling was not dealt with in this work and the skeleton model

is the simplest way to adequately represent human motion. Secondly, the reconstructed

motion is evaluated by visual inspection (due to the lack of ground truth data) and the

use of the same model for both components allows for an easier assessment of the system's

performance.

In order to achieve the results presented at the end of this thesis, several constraints/limitations

were placed on the system. An initialisation step is required before tracking commences.

The user must manually select the 2-D locations of the required joints in the first frame

of the one view before automatic tracking in all three views can begin. The selected joints

must be visible throughout the sequence, i.e. the tracking algorithm does not handle

occlusion of the chosen features. Although this is quite a restrictive constraint, it is not

uncommon. Lastly, the process is performed offiine, and is not optimised for real-time

applications.

1.4 Thesis Outline

The topic of HMC is discussed in Chapter 2. A brief history of the subject is followed by

the introduction of the various methods of generating motion data. Several applications

of HMC are mentioned, and a number of commercially available systems are examined.

The second part of the chapter surveys past research into computer vision based HMC,

which is dealt with in three categories.

Chapters 3, 4 and 5 pertain to the computer vision based HMC system implemented as
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part of the presented research, which constitutes the analysis part of the model-based

coding scheme.

The system is required to generate 3-D locations of the various joints on the human body

from the input image data. The theory which maps the pixel locations of points to their

actual locations in 3-D space is introduced in Chapter 3. This chapter also explains the

various camera parameters used in the camera model, as well as their recovery through

camera calibration. A widely used property of stereo view systems, the epipolar constraint

is also discussed. The chapter concludes with the method of triangulating the 3-D location

of a point from its 2-D correspondences in stereo image pairs.

The HMC system relies on image matching to track desired joint locations. Chapter 4 ex­

amines in greater depth two area-based matching techniques that have been implemented,

and presents typical matching outputs of each method.

The actual tracking algorithm is discussed in Chapter 5. In order to automatically track

points, the algorithm must adaptively tune the various matching parameters and be able

to assess the quality of matching results for accurate and robust tracking. The tracking

algorithm may be applied to both 2-D and 3-D tracking, and the prediction schemes under

both conditions are put forward. In the case of 3-D tracking, additional information is

available which is used in verification of tracked data.

Chapter 6 focuses on the MPEG-4 standard and the tools it provides for the efficient

modelling and animation of the human body. This chapter identifies the appropriate pose

parameters and their extraction process, as well as the model they animate to represent the

subject's pose. The pose parameters form the analysis data transmitted by the encoder.

Chapter 7 presents the results and discussion of the accuracy associated with each step

leading to the desired output. Conclusions are drawn in Chapter 8 and directions for

future work are proposed.



Chapter 2

Human Motion Capture

This chapter begins by defining what is meant by the term human motion capture. A

brief history of the topic examines its evolution over almost 120 years. An explanation

of the various methods of capturing human motion follows, numerous applications for the

acquired data are given and an analysis of commercially available systems provides an

insight into the current state of the technology. Finally, previous research into computer

vision based methods of HMC is surveyed to provide grounds for the choice of approach

as adopted in this research.

The term human motion capture is generally only associated with body analysis, but

in fact also covers topics related to face and gesture analysis. Under the face analysis

subdivision, one can further branch out into applications concerned with face detection,

tracking, face recognition, expression recognition and modelling. Gesture recognition is

concerned with extracting meaning out of the motion of hands and arms. Currently

the main drive behind this area of research is the development of systems that are able to

understand and generate sign language. Body analysis studies the larger body movements.

It looks at how people move around and what they do. Depending on the application,

the person may be considered as a single blob (surveillance systems) or as a complex

articulated object (gait analysis, virtual reality, model-based coding).

11
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2.1 History

12

Human motion capture starts with Eadweard Muybridge and his famous experiments

entitled Animal Locomotion [47] in 1887. Muybridge was initially commissioned by Gov.

L. Stanford to demonstrate that, indeed, galloping horses did lift all four feet off the

ground at the same time. He proved this theory by using a bank of cameras to capture a

series of still images in quick succession (Figure 2.1).

Figure 2.1: Muybridge's sequence of photographs called "Annie galloping". (from

Wikipedia [2])

At the same time Muybridge was developing the sequence photography to study the move­

ment of both animals and humans, a French physiologist, Etienne-Jules Marey was search­

ing for new ways of studying movement through photography. To analyse human move­

ment, he took multiple images on one plate, so all the movement was recorded on one

print (Figure 2.2). The subject wore a black suit with metal strips or white lines which

under correct exposure became the only visible features.

In 1915, Max Fleischer used live action film as the basis for drawing animation by inventing

the method called rotoscoping. This method was used by many to get convincing motion

for the human characters, including Disney studios in Snow White. In the 1970's, psy­

chologists extensively studied motion perception using Johansson's moving light displays

(MLD) technique [48]. This technique involves filming moving subjects with reflective

pads or lights attached to their joints. When performed in a dark environment, only the
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Figure 2.2: Marey's motion capture suit and captured walking sequence. (from the Aus­

tralian Centre for the Moving Image [3])

motion of highlighted points is displayed.

The main application that has driven human motion capture is character animation. Al­

though rotoscoping can be thought of as a primitive form of HMC, it was only in the late

1970's, when computers became a feasible option to character animation, that HMC for

character animation was born. In the early 1980's, professor Tom Calvert made use of

techniques previously developed for biomechanics studies and used potentiometers built

into an exoskeleton frame in order to record joint movements. At around the same time,

MIT Architecture Machine Group and the New York Institute of Technology Computer

Graphics Lab experimented with optical tracking of the human body. The systems were

based on the same principle as MLDs, with the edition of special hardware and software

that calculated the 3-D position of each marker through time. From the mid 1980's anima­

tion systems started using computer puppets and more sophisticated suitsjexoskeletons.

Some examples of these are "Mike the Talking Head" by deGrafjWahrman and "Waldo

C. Graphic" by Pacific Data Images in 1988. Pacific Data Images went on to develop

an upper body suit able to track the motion of the torso, arms and head, and in 1992

SimGraphics used sensors on the chin, lips, cheeks and eyebrows for a face tracking system

called "face Waldo". In 1989, Kleiser-Walczak produced "Dozo", a non-real-time optical

based computer animation of a dancing actor. This system used multiple cameras and

reflective tape to triangulate control points in 3-D space. Acclaim managed to greatly
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improve this method, releasing a system able to track many points simultaneously in real

time in 1993. Since the mid 1990's, there has been a tremendous increase in human mo­

tion capture systems, ranging from mechanical, to magnetic, to acoustic as well as optical

methods of tracking motion. Researchers have started looking at the non-invasive tech­

niques of capturing motion, bringing the field a step closer to its ultimate goal of purely

passive and unconstrained human motion capture.

2.2 Applications

The information gained from capturing and analysing the way people move has a number

of promising applications. These include human-computer interface, smart surveillance,

motion analysis, virtual reality and model-based coding.

In today's world, the computer has become a common and essential part of everyday

life. Although the past two decades have seen rapid development and the computational

power of computers has increased by several orders of magnitude, the computer systems

of today are still, as Alex Pentland from MIT Media Lab puts it, "blind and deaf" to their

users. This has lead to the new research field known as Human-Computer Interaction

(HCI). The basic idea behind this research is to develop computers able to communicate

on human terms, since many people find it difficult to learn the language of computers.

Computers with these interfaces will be able to understand gestures, transforming them

into something more than mere screens with attached keyboards.

An important application of HMC can be found in smart surveillance systems. Ability

to recognise humans may prevent false alarms triggered by animals or natural influences,

whilst face identification can be used for access control and behaviour analysis may identify

potential threats before a crime is committed [49].

In motion analysis, accurate 3-D pose is utilised in the medical field, sport, dance chore­

ography and video indexing. Accurate motion analysis helps in diagnosing patients with

locomotion difficulties, as well as rehabilitation. Stroke patients require multi-disciplinary

assessments and appropriate rehabilitation once released from hospital [50]. Systems such
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as those proposed by Eriksson and Mataric [51] aim at bringing the rehabilitation task into

the patient's home, making rehabilitation more accessible while at the same time taking

the burden off healthcare services. Sportsmen use HMC to identify possible improvements

in their performance. An exciting new application based on motion analysis dealing with

content-based video indexing has been proposed. Sequences are indexed according to the

type of motion within the clip reducing the effort involved in searching for specific events,

particularly useful application in sporting footage.

Virtual reality is currently a common application of HMC. With the improving technology

and decreasing costs, HMC is becoming a viable option for virtual character animation.

Data describing the subject's motion is mapped onto a virtual character, generating a

smooth and realistic animation. These animations are widely used for special effects in

movies and computer games, but also in interactive virtual worlds and teleconferencing.

Finally, a promising new application of HMC is in model-based coding, the subject of

this research. This field is centred around the new MPEG-4 standard which looks at

compression of model based media in order to achieve low bit-rate transmission. Although

most existing research is focused on the human head, the MPEG-4 standard is still new

and an increasing amount of work dealing with the full body motion has begun to emerge.

2.3 Methods of Human Motion Capture

Human motion capture systems are composed of two parts, sensing and processing. There

is an inverse relationship between the operational complexities of the two subsystems [40],

i.e. high complexity in one allows for corresponding simplicity in the other. Perhaps the

first decision to be made when choosing HMC systems is whether to use active or passive

sensing. Active sensing involves sensors placed on the subject capable of describing their

relative orientation with varying degrees-of-freedom. In some cases, the wearable devices

work in conjunction with devices placed in the surroundings, where one transmits a signal,

and the other uses that signal to generate data describing its orientation. Although active

sensing allows for simpler processing of data, it often requires a well controlled workspace.
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Passive sensing works with natural signal sources such as visible light, infra-red etc. As

such, wearable devices are not required, unless markers are used to simplify tracking. In

the case where markers are used, the method is still considered less intrusive and less

movement restricting then active sensing. The main methods of HMC are mechanical,

optical, or magnetic and these are discussed next.

Mechanical methods use an exoskeleton with built-in sensors (potentiometers, optical en­

coders etc.) that measure the various angles of articulation. The exoskeleton is worn

by the subject, and may in some cases restrict the range of motion. Although this is a

relatively simple, robust and accurate method, it is very intrusive.

Optical methods do not require an exoskeleton and as such enjoy a less intrusive and un­

hindered motion. However, it is common for the motion to be captured under controlled

conditions. The subject often wears tight fitting clothes matching the uniform background

colour, with reflective markers placed in specific locations on the body which strongly con­

trast the rest of the scene. Tracking is performed using a number of cameras distributed

around the workspace. In most cases, high resolution and high speed cameras are used

providing high data rates, an important factor in applications such as biomechanics. Dis­

advantages of these systems included intensive post-processing, occlusion and capturing

multiple actors. Because of the computational requirements, many systems are unable to

produce data in real-time. Occlusion is dealt with by employing a large number of cameras

to ensure that all markers are visible by at least some cameras in each frame. However

in practice this does not eliminate the problem completely. When all the information is

derived from the images alone without the use of markers or special setups, the method is

often referred to as image-based. Although this approach has clear advantages by being

completely passive, it suffers from high computational costs and the unsolved problem of

occlusion.

Magnetic systems overcome many of the flaws associated with optical systems, but also

introduce limitations of their own. In a magnetic system, a known magnetic field is set up

in the workspace. The actor wears sensors that detect their location and orientation based

on the magnetic field. Data is captured in real-time, and occlusion and multiple subjects
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do not pose any problems. On the other hand, this method is sensitive to its surroundings

in particular any metal objects. Furthermore, a field of high enough quality for accurate

data collection can only be created in a relatively small space, considerably limiting the

size of the workspace.

2.4 Commercial Systems

Human movement tracking systems can be classified as inside-in, inside-out, or outside-in

systems. Inside-in systems are those that employ sensors and sources that are both on the

body. These systems are not limited by workspace, however in general do not provide 3-D

world-based information. Inside-out systems make use of sensors on the body that sense

external sources (externally generated electromagnetic field etc.). Although this method

provides world-based information, it is restricted by the workspace. Outside-in systems

are based on an external sensor that senses artificial (markers) and natural (body texture)

sources on the body. Although these systems are the least intrusive (or not at all), they

are limited by the workspace, and suffer from occlusion. In the following section several

examples of commercial systems are given.

Polhemus [4] is the industry leader in the area of six DOF (position (x, y, z) and orientation

(azimuth, elevation, roll)) motion tracking using electra-magnetic technology. Polhemus

provides three "inside-out" systems, LIBERTY, FASTRAK and PATRIOT (Figure 2.3).

It incorporates a DSP in conjunction with AC magnetics for real-time tracking of virtually

anything non-metallic. LIBERTY is the fastest scalable electromagnetic tracker available,

able to track objects at 240 Hz for all sensors simultaneously at an effective range of

about 2 metres. FASTRAK is the most accurate electromagnetic motion tracking system

available, tracking at a range of 1.3 to 2 metres and updating measurements at 120 Hz.

PATRIOT is the cost effective solution for six DOF, tracking at 60 Hz with a range of

about 1.6 metres.

Ascension Technology Corporation [5] provides two products, a magnetic system Motion­

Star and an optical system ReActor2 (Figure 2.4). MotionStar uses DC magnetic track-
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(a) (b) (c)

Figure 2.3: Polhemus motion capture devices, (a) LIBERTY, (b) FASTRAK, (c) PA­

TRIOT. (from Polhemus [4])

ing, which is considerably less susceptible to metallic distortion than AC electromagnetic

tracking. It generates real-time 6 DOF data of up to six performers at 120 Hz. ReActor2

captures the movement of an untethered subject fitted with infrared markers, moving in

a capture area bordered by modular bars. Up to 544 sensors embedded in the frame and

over 800 active LEDs provide complete tracking coverage. The Instant Marker Recogni­

tion instantly reacquires blocked markers virtually eliminating occlusion drop outs and

ensuring clean data.

Figure 2.4: ReActor2 from Ascension Technology Corporation. (from Ascension Technol­

ogy Corporation [5])

Animazoo [7] has two main " inside-in" systems for full body motion capture, the GypsyGyro­

18 and Gypsy4 (Figure 2.5(b)). The GypsyGyro-18 is based on 18 inertial sensors, attached

to a lycra suit. These InertiaCube3 sensors (Figure 2.5(a)) provide 3 DOF (azimuth, ele­

vation, roll) measurements at 120 Hz. The sensors do not require an external source, hence

the workspace is limited only by the wireless link. The generated data in each measure­

ment represent the change in the actor's BVH (Bio Vision hierarchical data) form. BVH is
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a commonly used motion capture file format, explained in more detailed by Meredith and

Maddock [52]. Gypsy4 makes use of an exoskeleton that needs to be worn by the actor.

The 17 joint lightweight exoskeleton has 42 potentiometers and 1 gyro sensor built into

it, all running at 120 Hz. The output data format is the same as for the GypsyGyro-18,

with somewhat lower accuracy and a shorter operational range.

(a) (b)

Figure 2.5: (a) InertiaCube3, (b) Animazoo Gypsy4 system. (from Intersense [6] and

Animazoo [7])

VICON [9] is the global leader in 3-D optical motion capture and analysis. The success

of VICON "outside-in" systems is predominantly due to their high speed, high resolution

cameras, designed, developed and built specifically for motion tracking. The Mx range

of cameras supports resolutions from 640x480 to 2352xl728, with maximum resolution

frame rates ranging from 166 to 484 £ps. By reducing the resolution, some of the models

are able to achieve frame rates of 10 000 fps. The cameras also serve another purpose,

illuminating the retro-refiective markers on the actor with high power strobe LEDs, using

either infra-red, near infra-red or visible red light. Together with the VICON tracker,

targets are tracked, their 3-D locations are computed and 6 DOF information is outputted

in real-time.

The above mentioned systems are but a few examples of the commercially available hard­

ware and software for motion capture. They demonstrate the diversity of approaches to

this problem, and although the short reviews give an idea of each system's capability, they



CHAPTER 2. HUMAN MOTION CAPTURE 20

(a) (b)

Figure 2.6: (a) Actor with retro-reflective markers, (b) VICON MX40 camera. (from

Leeds Met [8] and VICON [9])

by no means provide all information required to evaluate the individual performance. The

reader is thus referred to Mulder [53] [54] for a more in depth review of human motion

tracking technology and resources, including further criteria such as accuracy, resolution

and lag which are used in measuring the performance of these systems [55].

Table 2.1: Cost comparison of motion capture systems

System Cost

LIBERTY (16 sensors) $31,595

FASTRAK (4 sensors) $8,600

PATRIOT (2 sensors) $3,200

MotionStar Wired (18 sensors) $57,600

MotionStar Wireless (18 sensors) $82,635

GypsyGyr018 $80,000

Gypsy4 $20,000

ReActor2 $100,000

Vicon (6 cameras) $87,770

Vicon (18 cameras) $206,630

D. Carsky System (3 cameras) $2,400
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The prices of the discussed systems are shown in Table 2.1. It is evident that motion

tracking is not a cheap affair. The tracking algorithm presented in this work tracks 18

joints. It would cost in excess of $30,000 had a commercial product been used. The optical

systems in particular are the most expensive, starting at $87,770 and reaching $206,630.

This is an indication of the high cost of accuracy and robustness of an optical human

motion capture system. In comparison, the 3 camera setup used in this research cost only

$2,400 and required no markers or a special workspace.

2.5 Prior Work

This section surveys the previous research into computer vision based human motion

capture. To be able to compare the different approaches they need to be grouped into

classes having the same characteristics. Various classes that define a particular system

have been identified in [40] [49].

• Tracking dimensionality (2-D vs 3-D)

• Model based vs Non-model based

• Sensor modality (visible light, infra-red, range)

• Sensor multiplicity (monocular vs stereo)

• Sensor placement (distributed vs centralised)

• Sensor mobility (stationery vs moving)

• Tracking vs recognition

• Pose estimation vs tracking

• Pose estimation vs recognition

• Application

• Single person vs multiple person

• Number of tracked limbs
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However, these classes are not both detailed and broad enough to effectively categorise

previous work. As a result, researchers have introduced their own taxonomies into their

surveys.

Cedras and Shah [56) overviews motion extraction methods prior to 1995. The methods

are classified as either optical flow or motion correspondence. They define three ways

of viewing the human motion tracking and recognition problem, as action recognition,

recognition of the individual body parts, and body configuration estimation. Aggarwal and

Cai [57) describe work prior to 1998. They follow the taxonomy of Cedras and Shah [56),

although the three classes are given different labels. Furthermore, each class is divided

into subclasses, separating the approaches into model-based/non-model-based methods,

single/multiple camera systems and state-space/template matching methods respectively.

Gavrila [49) adopted a different taxonomy to [56) and [57). His survey looks at work

prior to 1998, with the main focus on the dimensionality of tracking. Approaches are

divided into three groups, 2-D approaches with and without explicit shape models, and

3-D approaches. Recognition is dealt with within the scope of each group. Although

different taxonomies are applied to [49) and [56) [57), there are similarities between the

classes and essentially same papers are reviewed. Moeslund and Granum [40) take a

completely different approach when reviewing papers prior 2001. They use the stages

that need to occur in order to solve the general problem of motion capture, rather than

the approach or technique used. The structure consists of initialisation, tracking, pose

estimation and recognition. Zhou and Hu [58) review the progress in human movement

tracking prior to 2003, with a special focus on patient rehabilitation. For vision based

tracking systems they follow the taxonomy of Gavrila [49].

In the following review the taxonomy of Gavrila [49) was adopted, with prior work being

discussed under one of the three headings, 2-D approaches without explicit shape models,

2-D approaches with explicit shape models, and 3-D approaches. Separating prior work

into these categories clearly distinguishes methods which are applicable to the presented

application and which are not.
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2-D motion tracking is only concerned with the human movement in the image plane.

Approaches without explicit shape models bypass the pose recovery step, and describe

human movement in terms of simple, low-level, 2-D image features such as points, grids,

contours or trajectories. The human body tracking is normally achieved by determining

the region of interest through background subtraction, skin colour detection or independent

motion.

Cootes et al. [59] use statistical models of shape variation. These Active Shape Models

(ASM) are computed from a set of training images, where example shapes are described

in terms of known feature locations. Applying limits to the parameters of the model

enforces global shape constraints, hence the deformable models maintain the essential

characteristics of the class of objects they represent while being able to deform to fit a

range of examples. The hand model in [59] was used to detect and track the contours of

a hand. The compact parameterised model achieves apart from efficiency, also a degree

of generalisation over the training set. The drawbacks of this approach include occlusion

as features must be present at all times. Furthermore, a good initial estimate is required

in order for this method to converge properly, and its dependency on edge points means

that the input images must contain good contrast between the object and background.

Baumberg and Hogg [60] use ASMs to track the contour of pedestrians in real-time. The

contour (silhouette) is represented by a closed uniform B-spline (Figure 2.7). The subject

is extracted from the image by background subtraction and similar to [10], a Kalman filter

is utilised to achieve spatio-temporal control. The tracker performs reliably only for poses

and views sufficiently represented by the training set.

Freeman et al. [61] developed a vision-based user input for computer games. A special

CCD chip with onboard processing was constructed in order to implement two algorithms

that respond to the user's hand or body. One algorithm used x-y image moments to calcu­

late an equivalent rectangle, with same first and second order moments as the image, and

the other used orientation histograms to select the body pose from a menu of templates.

Both of these algorithms respond to the user in real-time and serve as inputs to computer
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Figure 2.7: Pedestrian contour representation by B-splines with shape variation.

(from Baumberg and Hogg [10], @1994 IEEE)

games. Quek [62] uses shape and motion features alternatively to interpret hand-gestures.

A moving edge detector that accentuates moving edges, suppresses stationery ones is em­

ployed which enforces directional variance, spatial cohesion, directional cohesion and path

cohesion constraints within the dynamic image analysis algorithm. The system is sim­

plified by considering only single-hand gestures directed at the machine vision's system.

Although recognition results are not given, plots of typical outputs of the system which

validate the computational approach are presented.

Darrel and Pentland [63] build a set of model views for hand gestures using normalised

correlation. The system automatically adds views to the model set when the correlation

of the tracked object and the existing views falls below a predetermined threshold. Dy­

namic time warping (DTW) is used to match gestures with stored patterns learned from

examples. This approach is sensitive to backgrounds. Polana and Nelson [64] use optical

flow and down-sampling for low level recognition of periodic human actions. The result­

ing system is robust to illumination and contrast changes, because the exploited motion

information is invariant to these. 2-D optical flow is also used in the proposed solution by

Fablet and Black [65] who aside from modelling the human motion also model the motion

of generic scenes (background). Detection and tracking was posed in a principled Bayesian

framework, with the performance of the system demonstrated on real data of people under

different viewpoints with complex backgrounds.
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This section discusses the work that uses explicit a priori knowledge of how the human

body appears in 2-D to segment, track and label body parts. Self-occlusion is always a

factor when dealing with human motion. To simplify the problem, generic postures or

constrained movements are generally assumed. Typical models include the stick figure,

ribbon model or blobs. These models dictate the type of features used for tracking, whether

they are edges or ribbons, blobs, or points.

Wren et al. [11] present a region-based approach, where a person is represented by a

collection of coloured blobs (Figure 2.8). This real-time person finder system, Pfinder,

is referred to in almost every human motion tracking paper. The scene is modelled as

a static background and a dynamic foreground, with background pixels modelled using

a Gaussian distribution, and the foreground modelled as a number of blobs each sharing

statistically similar colour (Y,U,V) and spatial (x,y) properties. The initial background

(a) (b) (c)

Figure 2.8: (a) Video input, (b) segmented subject, (c) 2-D blob representation. (from

Wren et al. [11], @1997 IEEE)

model is learned from a sequence of images without a subject, and then used to identify the

foreground region once a person enters the scene. Both contour and colour methods are

used to create a model of the human body, which consists of separate blobs for the hands,

head, feet, shirt and pants. New statistics are calculated for each blob and predicted into

the next frame using a Kalman Filter. When a blob can find no data to describe it is

deleted from the person model. When the body part reappears, a new blob is created

either by the contour process or the colour splitting process. As a result, Pfinder is robust

to occlusion, being able to recover lost tracks. Stable enough to support real applications,
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this system has been used as a front end module in several applications at the MIT Media

Lab [15] [66] [67] [68].

Akita [69] demonstrates an early attempt at segmenting and tracking body parts in com­

mon circumstances. He assumed the motion to be known a priori, thus the different

poses of the person were known beforehand and could be modelled using keyframes. The

keyframes were a set of representative stick figure poses which helped when the tracking

of body parts failed. The various body parts were tracked in the following order, legs,

head, arms and trunk. Due to the simplifications, this approach works only in special

situations. Leung and Yang [12] describe a system for labelling the human body. The

system consists of segmenting, tracking and labelling of body parts from a silhouette of a

human. Segmentation is done by image subtraction in combination with edges to segment

movements as described in [70]. The different regions are described by 2-D ribbons, which

are U-shaped edge segments. The 2-D human model consists of five U-shaped ribbons, a

torso and number of joints and mid points (Figure 2.9). Structural and shape constraints

Figure 2.9: 2-D stick figure model fleshed out with ribbons. (from Leung and Yang [12],

@1995 IEEE)

are used to prune the solution space, and model patterns are defined to aid the labelling

interpretation process. Long and Yang [71] use the methods described in [12] and [70] to

segment the edges of the moving human and find edges which are parallel in order to track

logs from frame to frame. A log is an area defined by two parallel lines and a number of

attributes such as log-length, log-location, log-area, log-colour and log-orientation. Exper­

iments were conducted to deal with occlusion (appearance, disappearance, merging and

splitting of logs) however problems were present. Similar work is done by Kurakake and

Nevatia [72] who obtain the joint locations in images of walking humans by establishing
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The assumption that the motion is performed parallel to the image plane is not uncommon.

Both Chang and Huang [73], and Ju et al. [13] have used this to simplify their problems.

Chang and Huang adopted a ribbon-based motion analysis approach to describe human

body movements. Moving ribbons are extracted by processing the difference between

current and reference image frames, and analysed to produce motion parameter curves

for each joint. Ju et al. [13] extend the work of Black and Yacoob [74] to deal with the

articulated motion of human limbs. The "cardboard" human model (Figure 2.10) consists

of 10 rigid planar patches, manually initialised in the first frame. The motion of each

patch is defined by 8 parameters which are estimated in each frame by applying an optical

flow constraint. A view-based method is used to recognise cyclic motion. Self-occlusion

and clothing pose are the main problems associated with this method.

Figure 2.10: The cardboard person model, human representation by planar patches.

(from Ju et al. [13])

Cai and Aggarwal [75] use point features belonging to the medial axis of the human upper

body to track humans across multiple views. Humans are represented by a simplified

head-trunk model, and segmented from the background using a double-difference-method

described in their previous work [76]. Tracking is performed using the position and velocity

of the feature points, as well as the average intensity of the local neighbourhood of the

points. Pre-calibration of the cameras allows points on the medial axis to be brought

into correspondence using epipolar constraints. Experiments were performed on an indoor

sequence involving two subjects using three cameras, with results indicating a robust

performance and a potential for real-time implementation.
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3-D approaches aim at recovering the 3-D location and pose of a body in every frame

of a video sequence. A 3-D model is usually projected into the 2-D images to aid the

tracking process and/or pose recovery. Tracking can take advantage of the kinematic and

shape properties of the human body to simplify the problem. Techniques used for 3-D

pose recovery include inverse kinematics, analysis-by-synthesis, divide and conquer, and

constraint propagation. In terms of modelling the human body, there is a trade-off between

the model accuracy and its complexity. The 3-D models represent the human skeleton and

flesh. Their complexity may range from simple stick figures (skeleton models) [14] [15] [68]

[77] [78] [79] [80] [81], to volumetric models made up of shapes such as cylinders [16] [82]

[83] [84] [85] [86] [87] [88], spheres [89], ellipsoids [19] [46] [90] [91] or superquadratics [17]

[92] [93] [94]. The accuracy of the model determines its ability to predict future movements,

including events like self-occlusion or self-collision. O'Rourke and Badler [89] produced

some pioneering work in terms of model-based 3-D human motion analysis. Using an

elaborate volumetric model for prediction, they found prediction in state space to be more

stable than in image space due to the incorporated semantic knowledge. Their tracking

framework consisting of four main components, prediction, synthesis, image analysis and

state estimation, is followed by most tracking systems today.

The stick figure model is a representation of the human skeletal structure, typically con­

sisting of rigid segments connected by joints with varying DOF. Work done by Chen and

Lee [77] [78] aims at recovering 3-D pose using the stick figure model with 14 joints and

17 segments. Under the assumption that 6 feature points on the face are known, the 3-D

position of the neck is calculated. With the neck as starting point and known segment

lengths, a partial tree representing all possible poses is built up. The path through the

tree is pruned by angle, distance, and collision constraints and the assumption of the sub­

ject walking, to arrive at the correct posture. [78] extends the work [77] by taking the

temporal considerations into account to obtain smooth motion in the model. However, the

drawback of all the joints having to be segmented beforehand still remains. Holt et al. [14]

use a divide and conquer technique to estimate the 3-D motion of an articulated object

from monocular sequences. When the general approach was applied to the analysis of
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the human gait, a stick figure model (Figure 2.11) was used to represent the articulated

human body. The object is decomposed into simpler parts containing a small number

of links. Motion of the simplest part is then estimated and propagated to the remaining

parts of the object. Attractive in its simplicity, this approach however does not exploit the

fact that different components belong to the same model. Zhao et al. [79] find the pose

Figure 2.11: Stick figure model. (from Holt et al. [14], ©1994 IEEE)

of a subject by minimising an energy function that expresses the deviations of the pro­

jected and image features. A stick figure model with encoded biomechanical constraints

is used and must be manually initialised in the image. Tracking is performed by means of

normalised cross-correlation and least squares matching with linear prediction, although

the process is not fully automated and occlusion is not handled. The user is required to

reselect occluded points and adjust unnatural reconstructed poses. Barron and Kakadiaris

use their early work [95] as an initialisation step for their monocular human motion track­

ing system [81]. The initialisation step recovers anthropometryl (up to a scale) and pose

from a single image in which relevant points have been selected manually. The tracking

method searches for the best pose in each frame by minimising the discrepancies between

the original image and the synthetic image of the projected model. Penalty factors are

used in their objective function to guarantee convergence to a global minimum, converting

the objective function to a convex function. Poppe et al. [80] not only recover the pose

but also describe it by MPEG-4 compliant parameters by fitting a 10 joint 16 DOF stick

figure into a silhouette from a single view. The silhouette is generated by background

subtraction (static background is required), and the length of the person and his/her dis-

IDefined in [96] as "the branch of anthropology concerned with comparative measurements of the human

body and its parts".
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tance to the camera is calculated using a priori knowledge of the exact orientation of the

camera. Positions of the hands and head are located by skin colour detection, locations of

the feet are estimated from the silhouette, and the elbows and knees are found by inverse

kinematics. The process assumes the subject is always facing the camera, and no twisting

of torso occurs. The complete 3-D skeleton is then projected into the image and thickened

by rounded rectangles. The final pose is obtained by a prediction and silhouette matching

scheme, so that the various rotations can be recovered.

In [15] [67] [68] Wren and Pentland use the Pfinder algorithm [11] on two images from

different views to produce 3-D blobs for the hands and head (Figure 2.12). Using a

dynamic skeleton model and kinematic constraints, the 3-D pose of the upper body is

estimated. Tracking and segmentation of the blobs is aided by predicting the model in the

next frame with a Kalman Filter. Tracking performance is further boosted by including

behaviour models into the control loop, modelling behaviour using Hidden Markov Models

(HMM). Results demonstrate the real-time, fully-dynamic performance of this multi-view

3-D person tracking system, able to handle full (temporary) occlusion and presence of

multiple people.

(a) (b)

Figure 2.12: (a) Input video from one view with 2-D blobs overlayed, (b) corresponding

dynamic skeleton model. (from Wren and Pentland [15])

Volumetric models are used to represent the skeletal structure of humans, as well as the

flesh surrounding the bones. Hogg [16] and Rohr [84] [87] extended the work by Marr

and Nishihara [97] who used a set of fourteen elliptical cylinders to model the human

body (Figure 2.13). In both cases, movement is assumed to be parallel to the image

plane. Hogg's work [16] from 1983 is one of the first analysis-by-synthesis publications.
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Using image subtraction to find the region of interest containing the subject, the edges

of the projected model are compared to the edges present in that image region. A best

fit, based on the plausibility value calculated for each possible configuration, determines

the subject's pose in the image frame. Rohr [84] [87] follows Hogg's approach, adding

several improvements in order to produce more robust results. The improvements include

automatic determination of initial posture. Furthermore the model contours are compared

with edge lines rather than grey-value edge points, and hidden model contours are removed

automatically. A Kalman Filter estimates the model parameters, and a motion model

tuned to walking is used.

Figure 2.13: Elliptical cylinder model. (from Hogg [16])

Huang and Lin [88] model the human body by 10 cylinders connected by 10 joints with 22

DOF. Assuming a static background, the object is segmented by background subtraction.

The pose is estimated by projecting the 3-D model into the image and finding a best

match between the projected model and silhouette. MPEG-4 BDPs are extracted in the

first frame in which the subject is assumed to be standing upright. Subsequently, 22 BAPs

are used to describe the pose of the model in each frame. Although successful tracking was

achieved, Huang and Lin note that problems arise when limbs and body overlap. DigitEyes

is a hand tracking system developed by Rehg and Kanade [82] [83]. Cylinders are used

to represent the fingers, generating a 27 DOF model of a hand. The system updates the

pose using inverse kinematics, and requires the knowledge of the kinematics, geometry and

initial configuration to be known a priori. Results show the system successfully tracking

two fingers occluding one another. Gonclaves et al. [98] use an analysis-by-synthesis

approach to track a human arm, modelled as two truncated right-circular-cones with two

spherical joints (elbow and shoulder), in monocular sequences. The 3-D arm model is
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projected onto the image plane and fitted to the blurred and thresholded image of the

real arm. Due to a dark background, the edges around the arm are very clear. The

size and orientation of the arm model is adapted by minimising the error between the

model projection and the real image. Moeslund and Granum [85J also try to estimate

the pose of an arm in monocular sequences. Using analysis-by-synthesis they match the

phase space model to real images. Unlike [98J however, their approach does not require

initial parameters to be known, and is able to handle long term occlusions. In other work,

Moeslund and Granum [86J use a calibrated stereo system to tackle the same problem.

Investigation shows that the search space in analysis-by-synthesis can be reduced beyond

the usual methods (dimensionality, kinematic and collision constraints) by using multiple

cues: 3-D points and silhouette data. Results demonstrate the method's ability to estimate

3-D pose of an arm without constraints such as special coloured/textured/tight fitting

clothes or markers, which are often imposed on similar systems.

Superquadratics are used when more accurate volumetric models are desired (Figure 2.14).

A superquadratic is a shape that is some distortion of a sphere. It is defined paramet­

rically in terms of longitude and latitude, with factors controlling scaling in x, y and z

directions, and exponents controlling the squareness/roundness in the latitude and longi­

tude directions. Combined in a hierarchical structure, superquadratics improve the human

modelling accuracy, particularly for body parts such as the head and torso, and for regions

close to articulation sites. Pentland [94J fits deformable superquadratics to range data us­

ing a physics-based method. The computational cost of the fitting process is reduced

by modal analysis. Gavrila and Davis also use superquadratics. Their early work [92J

[93] focuses on tracking and recognition of upper body movements using multiple views,

later extending the method to cope with the full body [17J. Influenced by O'Rourke and

Badler [89] the same tracking framework discussed earlier is adopted. Pose recovery is for­

mulated as a search problem using a generate-and-test approach. A local search based on

best-first search is performed, with search space dimensionality reduced by decomposition.

The model proportions are derived automatically based on the subject's projection in two

orthogonal views. A robust variant of chamfer matching is used to measure the similarity

between the edges of the model projected into the multiple views, and the edges of the real

data. To obtain better edges, subjects wear tight-fitting coloured clothes. When the best
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Figure 2.14: Female and male 3-D human models using tapered superquadratics. (from

Gavrila and Davis [17], ©1995 IEEE)

fit, highest similarity measure is found, the model is updated with the relevant param­

eters. Results show successful tracking of multiple humans performing complex motions

such as dancing the Tango. Rather than searching for the best fit between the contours

of a projected model, and the contours of real data, Delamarre and Faugeras [991 [1001

apply physical forces that push the projection of the 3-D articulated model inside the real

contour (silhouette) of the image of the person. The investigation concludes that tracking

of a person from his silhouettes is possible, and even though the pose parameters of the

model may not be accurate, the results are still visually good despite fast movements, self

occlusion and changing light conditions. Kakadiaris and Metaxas [101] [102] [103] also

use forces to align the model with image data. Additionally, their multi-view tracking

system incorporates active camera selection based on the visibility of a body part and

observability of its motion.

(a) (b)

Figure 2.15: (a) Visual hull from multiple silhouettes, (b) skeleton fitted to visual hull.

(from Theobalt et al. [18])
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Theobalt et al. [18] combine an efficient real-time optical feature tracker with visual hull

reconstruction of a person, to fit a humanoid skeleton to the video footage from four

calibrated views. In each time instance, the silhouette of the subject is generated by

statistical background subtraction. Initially, the silhouette is separated into regions by

a Generalized Voronoi Diagram Decomposition in order to locate the hands, head and

feet. These body parts are tracked in 3-D by skin colour detection under the assumption

that the subject is barefoot, and in parallel to this, the voxel-based approximation to the

visual hull is computed. The first layer skeleton is fitted to the five 3-D points in real-time.

Fitting of the second layer skeleton is done omine. This, more complex skeleton, uses the

reconstructed volumetric data along with the tracked data to find the correct configuration

of the limbs. Because the subject is required to always face the two front view cameras,

only limited rotation about the vertical body axis is allowed.

D'Apuzzo [46] uses least squares matching to measure and track surfaces in multi-view

video sequences. The user must manually determine the contour of the region to measure

(silhouette of the subject), so the least squares matching process can generate a dense set

of correspondences within the defined area in the three views. The correspondences are

used for forward ray intersection, producing a 3-D point cloud representing the measured

surface. Each surface point in the three views is tracked and verified by temporal and

spatial least squares matching respectively. The surface tracking results in a dense field of

trajectories with associated velocities and accelerations. This 3-D information is exploited

to filter out falsely tracked points since each point on the surface must satisfy locally

uniform motion. In order to describe the motion, D'Apuzzo manually selects key points

in the point cloud, which are 3-D regions encapsulating portions of the 3-D vector field

of trajectories that depict the motion of important joints. In sequences with complex

motion this method could not successfully track all points throughout the sequence, a

problem D'Apuzzo postulates could be resolved by increasing the number of cameras. In

related work [19], D'Apuzzo uses the tracked data for realistic modelling of human bodies

by fitting it to a simplified version of the layered model in Figure 2.16. The animation

of the model is determined by the motion of the skeleton whose posture is set by the

data extracted from the tracked key points. The flesh is modelled by ellipsoidal meatballs

whose dimensions are generated from the 3-D surface data. The meatballs influence the
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Figure 2.16: Layered human body model; skeleton, ellipsoidal metaballs representing flesh,

polygonal surface representation of skin, shaded renedering. (from Plankers et al. [19])

skin represented by a polygonal surface, which can be shaded or texture mapped for a

realistic looking human representation.

2.6 Conclusion

This chapter has discussed the topic of human motion capture from its beginnings in the

late 19th century to the current state of the art and ongoing research. The various methods

of obtaining motion data were introduced as well as some applications that make use of

such information. Out of all the possible methods of capturing motion, optical systems

provide the only potential solution to non-invasive human motion capture in real-world

unconstrained environments. Optical commercial systems rely heavily on very expen­

sive hardware and artificial markers for accuracy and robustness, whilst researchers of

image-based techniques formulate their approach depending on the application, introduc­

ing constraints and assumptions along the way, to achieve the final goal.

The goal of this research is to reconstruct human motion from video sequences. The

problem is formulated as a model-based coding scheme in which the motion data extrac­

tion is performed at the analysis side (encoder) and the subsequent reconstruction at the

synthesis end (decoder) of the system. The desired application directly influences which

category (introduced in Section 2.5) the analysis approach falls under. The 2-D approach

without explicit shape models bypasses the pose recovery step, immediately excluding it
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as a possible solution to the problem. The 2-D approach with explicit shape models is

only able to recover 2-D pose and 2-D motion, hence a 3-D approach must be adopted in

order to acquire the subject's 3-D pose. It is possible to infer some 3-D information from

monocular video sequences and a number of researchers have extracted pose from single

views [78] [79] [80] [81] [89]. However, the recovered 3-D data is generally only known

up to an unknown scale factor and the system is more susceptible to occlusion and pose

ambiguity. When multiple calibrated cameras are used the 3-D reconstruction problem

becomes straight forward [104]. Furthermore, the different views may be used for verifi­

cation of tracked data [46], aiding in occlusion handling [17] [102] or resolving ambiguities

in one view by the other views [105]. This research has recognised the benefits of multiple

views and adopted this approach mainly due to the simplicity of 3-D reconstruction and

the ability to verify tracked data.

The efficiency of a model-based coding system depends on how effectively it is able to

describe the scene. Investigation by Preda et al. [34] has shown that the MPEG-4 Face

and Body Animation (FBA) framework provides appropriate functionalities for virtual

actor animation, gesture synthesis and compression/transmission with applicability to

low bit-rate situations. This claim is further supported by Capin et al. [35] [36] who

present favourable results from work concerning modelling and animating virtual bodies

using MPEG-4. Thus the FBA framework defined in the MPEG-4 standard was a natural

choice for the model-based coding system implemented in this research. The task of

estimating FBA parameters from image data has thus far been tackled by only a few

researchers [80] [88] [106], presenting an opportunity for novel research.

The tracking complexity is dictated by the number of DOF of the state [107]. In the

case of model-based coding of the human body, a complete 3-D kinematic human model

is required. To parameterise the overall pose, the locations of major joints have to be

estimated, which when connected by rigid segments form a skeleton. To obtain the entire

3-D skeleton one may either track each joint separately [46] [79], fit the skeleton to a 2-D

silhouette [80], fit the skeleton to a visual hull [18] or generate all possible poses from a

known starting point and using various constraints to recover the most plausible solution

[78]. Alternatively, one can use a volumetric model to find the overall pose by matching
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the projected model to the segmented image [81] [88], extracted silhouette [100] [102] or

edge data [17]. A volumetric model may not have an explicitly defined skeleton, however

the underlying skeleton always exists due to the points of articulation joining each body

part. However, since most of these models use a single volume to represent the torso,

the DOF of the spine is limited. Similarly, the DOF is limited in the case of fitting the

skeleton to the visual hull [18] and 2-D silhouette [80]. Furthermore, in the last two cases

some of the actual joint locations are estimated from the relevant data introducing a level

of uncertainty to the resulting pose parameters [80]. In this research 18 joints are tracked

in a 31 DOF model. The additional DOF come from a more complex spine model and

the introduction of the left and right clavicula joints. Since these DOF would be annulled

by a single volume representation of the torso, the approach of tracking individual joints

was adopted rather than matching a volumetric representation of the subject to the image

data. Thus the locations representing the key joints on the human body have to be found

in each frame. Theobalt et al. [18] track the hands, feet and head using skin detection

while Wren and Pentland [15] [67] [68] and Azarabeyjani and Pentland [66] track the hands

and head as blobs that not only consider colour but shape characteristics as well. These

methods track relatively large regions, and assume the corresponding joint lies at the

centre of that region. Neither of these methods could be applied to tracking all 18 points

required in this work. Skin colour detection will work only for hands, head and feet, and

only if the subject is wearing long sleeves, long pants and no shoes. Tracking using blobs

has been applied to the whole body in the 2-D case [11] and could be extended to 3-D by

[66]. However, blobs represent large regions which reduce the overall DOF, furthermore

accurate locations of all joints cannot be estimated. The solution by D'Apuzzo [46] uses

image matching techniques to track points in subsequent frames as well as within the

different views. That approach was adopted because it utilises least squares matching

which is able to find correspondences with sub-pixel accuracy. This not only ensures

that points are correctly tracked in the sequence, but more importantly finds accurate

correspondences within the multiple views which is essential for the 3-D reconstruction

phase. The tracking process only requires estimates at the joint level which is adequately

approximated by a skeleton model.

The two main limitations of the presented system come in the form of manual initialisa-
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tion and the assumption that all tracked locations are visible throughout the sequence.

Although both limitations make real world applications impractical, they are not uncom­

mon in current research. Several systems specifically rely on key locations to be provided

a priori [14] [46] [78] [79] [80] [81] [89] [108], and a number of approaches cannot handle

or have difficulty with occlusion [13] [46] [59] [71] [79] [82] [109] [110]. Both aspects re­

serve room for improvement of the current system, and are discussed in that context in

Chapter 8.

The task presented to the human motion capture system is to produce 3-D locations of

selected joints in each frame to enable the construction of the 3-D skeleton and subsequent

estimation of 31 BAPs. The key concept is acquiring 3-D information from 2-D images,

and the following chapter presents the necessary theory which makes this process possible.



Chapter 3

Fundamental Theory

This chapter introduces the fundamental computer vision theory that provides the link

between 2-D images and the real world. Since 3-D locations of joints are required for

the pose parameter extraction process, the relationship between a point in 3-D space and

its projection on the image plane needs to be established by some camera model. This

relationship is expressed in terms of intrinsic and extrinsic camera parameters which are

found through camera calibration. A correspondence in stereo views together with known

camera parameters allows the unambiguous triangulation of the point's 3-D location in

world space. Furthermore, a multiple camera system allows the exploitation of the epipolar

constraint inherent in the geometry of two views, which becomes useful in the matching

and tracking processes that form the human motion capture system.

3.1 Notation

The concepts introduced in this chapter are part of the foundation upon which computer

vision is based. Unless otherwise indicated, the notation and derivations follow those

of Trucco and Verri [104]. Boldface letters refer to matrices and vectors. Furthermore,

a boldface P refers to a 3-D point with [X, Y, Z] coordinates, and where necessary, the

reference frame in which it is measured is indicated by subscripts c and w for camera and

39
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world reference frames respectively. The projection of P in the image plane is represented

by p, with a subscript im indicating when the measurement is in pixels. Subscripts l

and r refer to the left and right camera reference frames respectively, with rl indicating a

measurement in the right view with respect to the left reference frame. Column vectors

discussed in the body text are written as a transpose indicated by a superscript T.

3.2 Camera Model

The most widely used geometric model of intensity cameras is the perspective model shown

in Figure 3.1. Also known as the pinhole model, it consists of an image plane 1r and a

centre of projection (COP) 0 which is the origin of the 3-D camera coordinate system.

The z-axis is perpendicular to the image plane, a focal length distance I away from the

centre of projection. The point at which the z-axis and image plane intersect is called the

principal point o.

p

Camera
Reference

Frame

o

Figure 3.1: Perspective camera model.

Under perspective projection, a 3-D point P = [X, Y, Z] in the camera reference frame is

mapped to p by similar triangles (Figure 3.2) resulting in a set of equations (3.1). This is

a mapping from Euclidean 3-space ~3 to Euclidean 2-space ~2.

- IXx- z
- I Yy- Z

(3.1)
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f
~ 0 z

Figure 3.2: Similar triangle relationship under perspective projection (shown only for

y-component) .

3.3 Camera Parameters

Camera characteristics are described by extrinsic and intrinsic parameters. Extrinsic pa­

rameters define the location and orientation of the camera reference frame with respect

to a known world reference frame by a translation vector T and an orthogonal rotation

matrix R. With these parameters, one is able to link the world coordinates P w of a point

P to its corresponding camera coordinates Pc by equation (3.2),

Pc = R(Pw - T) (3.2)

where R is a 3x3 rotation matrix that aligns the corresponding axes of the two reference

frames and T is a 3x1 vector of the distance between the two origins.

(3.3)

Intrinsic parameters describe the optical, geometric and digital characteristics of a camera.

The parameters are related to the perspective projection, the transformation between

camera and pixel coordinates, and the geometric distortion introduced by the optics.

The image projected onto the image plane is digitised into discrete pixel values by the

sensor. The output is a matrix of intensity values, with each entry representing one
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pixel. In reality, the pixels have physical size. Knowing the pixel size, together with the

location of the principal point in the image plane, the relationship between image and

pixel coordinates is given by equation (3.4),

x = (Xim - ox)sx

Y = -(Yim - Oy)Sy

where:

Sx is the horizontal pixel length in millimetres

Sy is the vertical pixel length in millimetres

Ox is the x coordinate of the principal point in pixels

Oy is the Y coordinate of the principal point in pixels

(3.4)

The image coordinates are defined such that the y-axis points in the opposite direction to

that of the pixel coordinates, hence the sign change of Y in equation (3.4).

The camera optics often introduce radial and tangential distortions that become more

evident towards the periphery of the image. Fortunately the distortion can be modelled

and the distorted coordinates [Xd, Yd]T in the camera reference frame can be corrected

for. The level of distortion depends on the quality of the lens used and the complexity

of the distortion model is based on the desired accuracy. In some cases the distortion

may be ignored altogether, however in the presented work it is modelled as in [111] by a

sixth order polynomial. The coefficients (kl,k2,k3,k4 ,k5) of the sixth order polynomial are

stored in the five element vector k and are applied to the distorted coordinates according

to equation (3.5).

where:

[ : ] = (1+ kIr' +k,r
4

+k,r
6

) [ :: ] +dx (3.5)

(3.6)
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3.4 The Perspective Camera
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Sections 3.2 and 3.3 linked the various reference frames via camera parameters. In general

only the pixel data is available to the user, which necessitates the relationship between

pixel coordinates and the world coordinates. The camera parameters can be grouped into

two matrices Mint and M ext encoding the intrinsic and extrinsic parameters respectively

as in equation (3.7),

o
-i;

By

o
[

ru r12 r13 - R[ . T ]

M ext = r21 r22 r23 - RI .T

r31 r32 r33 -Rf· T

(3.7)

where ~, i = 1,2,3 is a vector formed by the i-th row of the rotation matrix R. Hence

the linear matrix equation of normalised perspective projection can be written:

(3.8)

1

Equation (3.8) encompasses the transformations between the various reference frames of

a vision system as depicted in Figure 3.3.

3.5 Camera Calibration

Camera calibration is an essential preliminary step for most applications of 3-D computer

vision. The goal of camera calibration is to recover the intrinsic and extrinsic camera

parameters. These parameters estimate the geometric and optical camera characteristics,

and the 3-D position and orientation with respect to a defined world reference frame

according to the models described in Sections 3.2 - 3.4. There are two main categories

under which camera calibration methods fall [112] viz. photogrammetric calibration and

self-calibration. Photogrammetric calibration requires precise a priori knowledge of the

calibration object's geometry in 3-D space. The calibration object generally consists of
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Figure 3.3: Relationship between reference frames of a visual system.

two or three orthogonal planes. Although producing good results, this method is time

consuming, and requires expensive equipment and an elaborate setup. These drawbacks

may make photogrammetric calibration unfeasible for some applications. Self-calibration

on the other hand is simple, easy and requires no calibration object. Camera parameters

are recovered from correspondences in images of a static scene. Although this method is

feasible for almost any setup, due to the number of parameters to estimate, the results

are not always reliable [112]. Zhang [112] has proposed a solution which is a combination

of these two methods. It uses a planar pattern that is moved around in space to generate

several views of the object in different poses. The pattern itself can be printed on a laser

printer and attached to a planar surface and the knowledge of the motion is not required.

Both intrinsic and extrinsic camera parameters are found explicitly. This method has

become popular among researchers due to its simpler and cheaper setup when compared

to photogrammetric calibration, whilst at the same time producing more accurate and

robust results in comparison to the self-calibration technique.

The cameras used to capture data for this research were calibrated using the Matlab
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Calibration Toolbox implemented by Jean-Yves Bouguet [111]. C++ implementation of

this calibration is also freely available, as part of the lntel OpenCV library [113]. These

two libraries are probably the most widely used tools for camera calibration. Bouguet's

approach is based on Zhang's work [112] [114]. The calibration is done in two steps;

initialisation and non-linear optimisation. The initialisation computes a closed-form so­

lution for the calibration parameters excluding lens distortion. Subsequent non-linear

optimisation computes all the intrinsic and extrinsic parameters by minimising the total

reprojection error in the least squares sense. The main difference between Bouguet's and

Zhang's approach is that Bouguet implements the intrinsic camera model by Heikkila and

Silven [115]. Heikkila and Silven incorporate extra two parameters into the lens distortion

model to take into account tangential distortion in addition to radial distortion.

Figure 3.4: 2 out of 20 calibration images for left, middle and right view cameras.

The calibration procedure itself requires the user to capture several images of a calibration

pattern in various poses for all cameras as shown in Figure 3.4. The user must manually

select the four corners that define the region of interest (Figure 3.5(a)), and then the

checkerboard corners are detected automatically (Figure 3.5(b)). Once each camera is

calibrated separately, the toolbox allows stereo calibration, which produces the rotation

matrix and translation vector that relate the two camera reference frames to each other.

The relationship is such that points PI and Pr' the projections of a 3-D point P in the left
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(a) (b)

Figure 3.5: (a) Calibration pattern region of interest, (b) detected corners.

and right camera reference frames respectively, are related in [111] by equation (3.9).

Pr = RrlPl + Trl (3.9)

The extrinsic parameters of a stereo system, Rrl and T rl are calculated from the extrinsic

parameters of the left and right view by equation (3.10).

Rrl = RrRT

Trl = T r - RrlTl

3.6 Epipolar Geometry

(3.10)

In the case of two cameras looking at the same point, the epipolar geometry is the basic

constraint that arises from the existence of the two viewpoints. The epipolar geometry is

the intrinsic projective geometry between two views. It is independent of scene structure,

and only depends on the cameras' internal parameters and relative pose.

3.6.1 Epipolar Constraint

The epipolar geometry is shown in Figure 3.6. Point P is observed by two cameras with

optical centres 0 1 and On producing images PI and Pr' These points all lie in the epipolar

plane defined by the two intersecting rays OIP and OrP. More importantly, the point

Pr lies on the line Ir formed at the intersection of the epipolar plane and the image plane
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7rr of the right camera. The epipolar line lr is associated with the point PI' and likewise,

the line lion which the point PI lies is associated with the point Pr· Both the left and

right epipolar lines pass through the points el and er respectively, which are located at

the intersections of the baseline joining the optical centres 01 and Or with the respective

image planes. The points el and er, called the epipoles ofthe two cameras, are the (virtual)

images of the opposite view's optical centre.

p

OI... ....,.._..-::!-......_-1.....::':lfI._~ ~Or

Figure 3.6: Epipolar geometry.

The practical importance of epipolar geometry stems from the fact that the epipolar plane

intersects each image in a line, the epipolar line (11 and Ir ). Given PI, the epipolar plane

is determined by the baseline and the ray defined by PI. The line Ir is the image in

the second view of the ray back-projected from PI. Thus the corresponding point, Pr'

is constrained to lie on the epipolar line Ir (Figure 3.7). This is known as the epipolar
p

Figure 3.7: Epipolar Constraint: the set of possible matches for the point PI is constrained

to lie on the associated epipolar line Ir .

constraint, which establishes a mapping between points in the left image, lines in the right
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image and vice-versa. This can effectively be used in correspondence problems whereby

the search for correspondences is thus reduced to a 1-D problem by searching only along

the epipolar line rather than in the whole image. Alternatively, the same knowledge can

be used to verify whether or not a candidate match lies on the corresponding epipolar line.

The baseline, the line connecting 01 and Or, defines a family of planes. As the position of

P varies, the epipolar planes" rotate" about the baseline. This family of planes is referred

to as an epipolar pencil (Figure 3.8). Its intersection with each image plane is a family

of lines going through the points el and er' These two families are pencils of lines called

the pencils of epipolar lines. It has been shown in [116] that epipolar planes induce a

natural correspondence between the two pencils of epipolar lines, i.e. two epipolar lines

correspond to each other if and only if they belong to the same epipolar plane.

Figure 3.8: Epipolar Pencil.

3.6.2 The Essential Matrix

The essential matrix was first introduced in the now classic paper by Longuet-Higgins [117].

The essential matrix was calculated by the 8-point algorithm, and used to compute the

structure of a scene from two views with calibrated cameras. The following explanation of

the essential matrix (and in the subsequent section the fundamental matrix) is based on

the descriptions by Trucco and Verri [104]. Trucco and Verri use equation (3.11) to relate

the left and right camera reference frames, which is a slight variation of equation (3.9)
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defined in the calibration section, where rotation preceded translation.
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(3.11)

While the rotation matrix remains the same in both cases, the translation vector is differ-

ent, and now determined by equation (3.12).

(3.12)

Defining vectors Pl and T as in Figure 3.9, the equation of the epipolar plane is given by

the following coplanarity condition:

(3.13)

p

"'--------------. 0,
T =(0,-0\)

Figure 3.9: Coplanarity condition.

Using equation (3.11), equation (3.13) is rewritten as:

(3.14)

The cross product by T can be expressed as matrix multiplication where:

(3.15)

so that equation (3.14) becomes,

(3.16)

with:

(3.17)
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By construction, S always has rank 2. The matrix E is called the essential matrix and

links the epipolar constraint and the extrinsic parameters of a stereo system. Recalling

equation (3.1), which in vector form becomes (3.18),

f
P= -P

Z
(3.18)

by applying eqution (3.18) to both Pr and PI and dividing by ZIZr, equation (3.16) can

be rewritten as,

(3.19)

which defines the essential matrix in terms of camera coordinates. Equation (3.19) defines

a mapping between points and epipolar lines, i.e. it is satisfied by every point PI lying on

the left epipolar line. The equation of the right epipolar line due to an arbitrary point

PI in the left image plane can be attained by equation (3.20) (see Appendix A for the

homogenous projective representation of lines).

(3.20)

Properties of the essential matrix:

- encodes information on the extrinsic parameters only

- has rank 2, since S in equation (3.17) has rank 2 and Rrl full rank

- its two nonzero singular values are equal

3.6.3 The Fundamental Matrix

The essential matrix works in the camera reference frame which is generally hidden from

the user. When one wants to proceed directly from pixel measurements, the fundamental

matrix first introduced by Faugeras et al. [116] is used. Interestingly, because the fun­

damental matrix works with pixel measurements, it can be recovered from pixel matches

alone without any information about the intrinsic and extrinsic parameters of the stereo

system.

Suppose that Ml and M r are the matrices of the intrinsic parameters of the left and right

cameras respectively, and PI and Pr are the pixel coordinates of PI and Pr respectively,
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the relationship described by equation (3.21) exists.

PI = MlIpl

Pr = M;Ipr

Substituting equation (3.21) into equation (3.19),

-TF- 0Pr PI =

where:
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(3.21 )

(3.22)

(3.23)

F is called the fundamental matrix. FPI in equation (3.22) equivalently to EPI in equa­

tion (3.19) can be thought of as the equation of the projective epipolar line Ir corresponding

to the point PI, or

(3.24)

Alternatively, Pr corresponding to Pr is found by equation (3.25).

The epipoles are located using equation (3.26).

(3.25)

Fel =0, (3.26)

The most important difference between equations (3.20) and (3.24), and therefore between

the essential and fundamental matrices is that the former is defined in camera coordinates

whilst the latter in pixel coordinates. Thus if one estimates the fundamental matrix from

pixel correspondences, the epipolar geometry may be recovered without a priori knowledge

of the intrinsic and extrinsic camera parameters.

The fundamental matrix is a generalisation of the essential matrix, and is commonly used

with uncalibrated systems. It is important because it captures, in a very compact manner,

the epipolar geometry of the two images [118]. The fundamental matrix is used in many

applications such as affine and projective reconstruction, computation of projective invari­

ants, uncalibrated stereo matching, calibration and auto-calibration, image rectification,

and image synthesis.
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The fundamental matrix may be computed from a certain number of point correspondences

obtained from the two images of the stereo setup. An often cited method for computing the

fundamental matrix is the 8-point algorithm, introduced by Longuet-Higgins [117], which

requires 8 or more point matches. It has the advantage of simplicity of implementation,

because the linear criterion leads to a non-iterative computation method. However, the

algorithm has been found to be quite sensitive to noise even with numerous data points

[118], resulting in the algorithm being viewed as inadequate and inferior to the iterative

methods. Recently Hartley [119] has challenged this view, basing his approach on the

observation that the poor performance of the 8-point algorithm is due, for the most part,

to poor numerical conditioning. He has proposed a normalised 8-point algorithm, showing

results comparable, though not bettering those of the iterative techniques, reviewed in

[118] and [120].

The methods in [117] [118] [119] [120] require point correspondences in the image pairs.

The data points are always corrupted by noise, and sometimes the matches are even

spurious or incorrect. As a result, Csurka et al. [121] have modelled the uncertainty of the

estimated fundamental matrix in order to exploit its underlying geometric information

correctly and effectively. The uncertainty is given by the covariance matrix which is

calculated by either the statistical or analytical method. Once obtained, it may be used

to define the epipolar band for stereo matching, computation of uncertainty in projective

reconstruction as well as the improvement of self-calibration techniques based on Kruppa

equations [116].

3.7 3-D Reconstruction

3-D reconstruction generates a three dimensional representation of a scene from two di­

mensional images. The degree of reconstruction that can be obtained from stereo images

depends on the amount of available a priori knowledge of the system, summarised in

Table 3.1.

In this work both the intrinsic and extrinsic parameters have been recovered through
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Table 3.1: Degrees of 3-D reconstruction vs a priori knowledge of camera parameters

a priori knowledge 3-D reconstruction

intrinsic and extrinsic parameters unambiguous (absolute coordinates)

intrinsic parameters only up to an unknown scaling factor

no parameters up to an unknown global projective transformation

calibration, hence 3-D locations of points can be obtained from their projections in the

left and right views through triangulation. Assuming two corresponding points PI and Pr

in the left and right views respectively are known, the rays originating at each centre of

projection and passing through the respective image points should theoretically intersect

in 3-D space, at the location of the real point. In practice however this will not happen

due to several reasons:

• Models describing the camera geometry and distortion are approximations and not

exact

• Calibration parameters carry uncertainty due to approximate camera models and

noisy image data

• Correspondence match inaccuracy

As a result, the 3-D point is estimated at the point of minimum distance between both

rays. The triangulation problem is represented in Figure 3.10 and solved according to

[104]. Let l, the ray through 0 1 and PI be described by aPl (a E lR) and the ray r going

through Or and Pr be described in the left camera reference frame by Trl+bR~Pr (b E lR).

The vector w is orthogonal to both land r. The task now is to determine the location of

the point P, which lies at the mid-point of the shortest segment joining land r, defined

by PI and P2, and parallel to w. Solving the linear system of equations (3.27) for aa, bo

and co,

apl - bR~Pr + c (PI X R~Pr) = Trl (3.27)
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Figure 3.10: Triangulation with non-intersecting rays.
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(3.28)

the points Pl and P2 are found by equation (3.28),

Pl = Trl + boR~Pr

P2 = aOPl

and finally the 3-D location of the point P in the left camera reference frame is given by

equation (3.29).

(3.29)

3.8 Summary

This chapter has introduced some important concepts in terms of the work relating to

the presented research as well as computer vision in general. The perspective camera

model provides a link between the 2-D pixel coordinates and the 3-D world coordinates.

The extra effort involved with camera calibration is justified by enabling unambiguous 3-D

reconstruction, as well easy calculation of the epipolar geometry, an important relationship

between multiple views. The following chapters will discuss image matching, the tracking

algorithm and pose parameter extraction. Image matching finds pixel correspondences

in two images. The tracking algorithm tracks the various pixel locations throughout the

video sequence and produces their 3-D location through triangulation. Once these 3-D
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locations are known, the pose parameter extraction process can generate the relevant

information pertaining to the subject's pose. It is clear how the theory fits into the overall

human motion capture system, as it generates 3-D motion data from an input array of

grey levels.



Chapter 4

Digital Image Matching

Digital image matching is at the heart of the human motion capture system as imple­

mented in this research. By finding accurate correspondences in different images it is

possible to track points in subsequent frames as well as to reconstruct the 3-D skeleton.

In this work two techniques have been implemented, cross-correlation and least squares

matching (LSM). This chapter presents the respective mathematical models together with

the advantages and disadvantages of each method and some typical results.

4.1 Overview

Digital image matching is a crucial component of almost any image analysis process both in

photogrammetry and computer vision. Matching is necessary for the generation of Digital

Terrain Models (DTM), scene reconstruction and often a prerequisite for object detection,

classification and identification. The correspondence problem can be broadly classified into

two main categories, feature-based and correlation-based matching techniques. The former

method matches features that have been extracted from the images in a pre-processing

step, while the latter works directly with the intensity profiles of the images.

Feature matching methods first extract salient features from the images using feature ex­

traction algorithms. The types of features used depend on the particular problem, but

56
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may include one or more low-level features such as edges, corners, line segments, curve

segments, and/or higher-level features such as circles, ellipses or polygonal regions. The

matching process uses the attributes (feature descriptors) associated with each feature to

find a corresponding pair. First, a preliminary list of candidate corresponding features is

built up. This list is then thinned through assumptions (e.g. object's local geometry) or

constraints (epipolar, uniqueness or continuity). The best match is found using the mea­

sure of the distance between the feature descriptors. Feature-based methods are suitable

in cases when a priori information about the scene is available, so that optimal features

can be selected.

The correlation-based techniques may also be referred to as signal, window, or area-based

methods. Point matching is performed by considering a neighbourhood of pixels around

the point constituting a subset of the original image, which in the subsequent discussions

is referred to as an image patch. In addition, the patch defined around the point of

interest whose correspondence in another image is desired is called the template patch.

One correlation-based approach uses a statistical measure, shifting the template patch

over the search space of the second view and calculating a similarity value at each position

as in Figure 4.1. Alternatively, one may define the unknown corresponding coordinates

in the search area as a function of the grey values of the target and search regions and

iteratively solve the non-linear system to obtain the match location.

Image 1 Image 2

Figure 4.1: Searching for best match using similarity measures.

Although in terms of surface discontinuities and requirements for approximate values

feature-based matching is more flexible, correlation methods have a higher potential for

accuracy [122]. Moreover, keeping in mind the application of matching to human motion

capture where specific locations have to be tracked, it is inevitable that adequate features
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will be absent at some locations, hence correlation-based methods have been adopted in

this work.

4.2 Grey Value Correlation

One of the most commonly used area-based matching techniques is cross-correlation. A

template patch is shifted over the search space as in Figure 4.1 and the similarity at

each locations is represented by the correlation coefficient Rts . The correspondence in the

search image is located at the position of the highest Rts ·

Denoting the template patch by fi and the search area by gi, where i = 1,2, ... ,n with n

the number of pixels in the patch, the common similarity measure, discrete correlation, is

given by equation (4.1).

Rts = LJi· gi (4.1)

Normalising equation (4.1) by the means 1 and g, and the second moments L: (fd 2 and
i

L: (gi)2, the normalised cross-correlation (NCC) coefficient is given by equation (4.2),
i

(4.2)

with the property -1 ~ Rts ~ 1.

By normalising the cross-correlation, the correspondence measure is insensitive to lumi­

nance scale and level. Burt et al. [123] showed that normalised cross-correlation gave the

lowest error rates when compared to non-normalised or partially normalised correlation.

Cross-correlation treats an image as a 2-D signal disregarding the 3-D structure of the

scene. Particularly in close range scenarios, when the 3-D scene is observed from different

viewpoints, or the 3-D objects undergo motion, the resulting two images may differ consid­

erably. Cross-correlation matching cannot account for this geometric distortion between

the two images, but to reduce its effect a weighting function Wi may be introduced [124].

Noting that the geometric distortion is more pronounced towards the edges of an object
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than its central part, the weighting function is defined such that it favours the central

pixels of the patch as shown in Figure 4.2.

1 1 1 1 1

1 3 3 3 1

1 3 5 3 1

1 3 3 3 1

1 1 1 1 1

Figure 4.2: An example of the weight distribution of pixels in a 5x5 patch.

When the weighting function is incorporated into the matching process, the normalised

cross-correlation is given by equation (4.3).

(4.3)

The matching process involves shifting the template patch over the search space and

calculating the cross-correlation coefficient Rts at each step. This produces correlation

values at discrete locations, resulting in the matching accuracy to be within ±O.5 pixel

in both x and y directions. To improve the accuracy, Webber [125] fits a second order

polynomial to the discrete values in the neighbourhood of the highest Rts (Rmax).

hx(r) = do + d1x + d2x 2

hy(r) = eo + elY + e2y2

This leads to the sub-pixel position of Rmax to be:

x max = -d1!2d2

Ymax = -e1!2e2

(4.4)

(4.5)

Figure 4.3 illustrates the matching process using normalised cross-correlation. The loca­

tion of the point of interest in image 1 defines the centre of the template patch. The

template patch is shifted over the search space in image 2, and the correlation coefficient

is calculated at each location by equation (4.2). In the resulting 3-D plot the correlation

value is indicated on the z-axis, with the x-y axes corresponding to the x-y location in

the second image. At the position of the maximum correlation equation (4.4) is used to
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approximate the continuous function of Rts in order to estimate the sub-pixel location of

R max by equation (4.5). The resulting coordinates Xmax and Ymax are also the coordinates

of the correspondence in image 2.

Image 2

Figure 4.3: Matching points in a stereo pair using normalised cross-correlation.

The 3-D plot of the correlation coefficient in Figure 4.3 draws attention to the drawbacks

of cross-correlation matching. The images in Figure 4.3 have a resolution of 640x480

pixels. The template patch was 19 x 19 pixels, thus the correlation coefficient had to

be calculated 287364 times, making this process time consuming and computationally

expensive. Furthermore, aside from the peak corresponding to the final result, the 3-D

plot displays a number of other peaks, intuitively leading one to suspect that false matching

may occur. This is indeed true, particularly when images contain regular patterns and/or

the difference between the two images is large enough to cause low correlation at the actual

match location. A partial solution to these two problems is reducing the search space in

the second image. In case of stereo images, the epipolar constraint may be used to restrict

the search to a line effectively reducing the task from a 2-D to a 1-D problem (Figure 4.4).

Alternatively, if matching is performed in images constituting a video sequence, a priori

knowledge of motion may be employed in predicting the object's location in subsequent
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frames. In this way, the search space is reduced from the entire image to an area covering

the uncertainty of the prediction.

-1 '-----:,::::oo=------:::200:::----;;3::::oo=--~400O;-----;;!500-=--l5OO='
x (plxeIS)

Figure 4.4: Using epipolar geometry to reduce the search space from a 2-D to a 1-D

problem.

Although search space reduction improves the performance of cross-correlation matching,

the problem of geometric distortion between the two images still remains. Moreover, a

different viewpoint or object motion results in changing illumination and reflectance con-

ditions distorting the images radiometrically as well. Even though the weighting function

Wi can be introduced, it reduces rather than accounts for the effects of geometric and ra­

diometric distortions. Thus, even when equation (4.5) is used to acquire a sub-pixel match

location, cross-correlation cannot be considered as a matching technique with consistent

sub-pixel accuracy. Nonetheless, cross-correlation remains an effective coarse matching

tool, with the correlation coefficient a very useful similarity measure.

4.3 Least Squares Matching

Least squares matching is a method introduced by Ackermann [126] and Gruen [127] to

overcome the limitations of cross-correlation. Similarly to cross-correlation, point match­

ing is performed by considering an area around the point of interest in the template patch.

In contrast however the correspondence is not found by searching a defined region. In­

stead, an estimate of the match location in the second image defines the centre of the
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search patch which is shifted by the matching process to the actual coordinates of the

correspondence. The mathematical model incorporates parameters that account for the

geometric and radiometric differences between the template and search patches, providing

least squares matching with the ability to produce results with high sub-pixel accuracy.

The geometric relationship between the two patches can be described by transformations

of varying degrees, depending upon the desired precision. Both Ackermann [126] and

Gruen [127] have concluded that a 6 parameter affine transform is sufficient, particularly

when small patches are used (e.g. 32x32 pixels or smaller). Subsequently, the affine trans­

form has been used in other works involving least squares matching [46] [128] [129] [130]

[131] [132] [133]. Radiometric correction of the search patch is achieved by introducing

an offset and gain parameter to model the brightness and contrast differences. Following

a least squares procedure, the residual differences between the grey values of the tem­

plate and search patch are minimised to produce a transformation that provides optimal

matching in the least squares sense.

4.3.1 Mathematical Model

The following derivation of the least squares estimation model follows the one given by

Gruen [127], with the improved radiometric model adopted from [134]. Given two images,

a template patch is defined in image 1 and a search patch in image 2. The template

and search patches are given as discrete two-dimensional functions j(x, y) and g(x, y)

respectively whose origins are located at the centre of the patch (i.e. at the point of interest

and at the estimated match location). In an ideal situation correlation is established when:

j(x, y) = g(x, y) (4.6)

Due to noise present in one or both images, equation (4.6) does not hold, and an additive

noise vector e(x, y) is introduced leading to:

which can be rewritten as:

j(x, y) = g(x, y) + e(x, y)

j(x, y) - e(x, y) = g(x, y)

(4.7)

(4.8)
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Equation (4.8) gives the least squares observation equation which models the function

f(x, y) with the function g(x, y). The location of g(x, y) within the search image needs to

be approximated with respect to some initial estimate go(x, y). In addition to finding the

translation between the final location of g(x, y) and go(x, y), the affine transform given

by equation (4.9) compensates for geometric differences by shaping the search patch to

resemble the template patch.

x = all + a12XO + a21YO

y = bll + b12XO+ b21YO
(4.9)

The affine transform is performed with respect to the origin of the search patch de­

fined at the location of the initial estimate. It accounts for translation (all,bll ), rotation

(a12,a21,b12 ,b21), scaling (a12,b21) and shearing (a21,b12). Adding ro and rl for radiometric

correction, together with equation (4.9), equation (4.8) can be rewritten as:

(4.10)

Gruen linearises the non-linear observation equation (4.10) by expanding it into a Taylor

series and keeping only the zero and first order terms as in equation (4.11).

ago (x, y) ago(x, y)
f(x, y) - e(x, y) = go(x, y) + ax dx + ay dy + dro + drlg0(X, y)

Differentiating equation (4.9) gives:

dx = dall + XOda12 + YOda21

dy = dbll + xodb12 + yodb21

and using simplified notation:
_ 8go(x,y)

gx - 8x

9
_ 8go(x,y)

y - 8y

equation (4.11) becomes:

f(x, y) - e(x, y) = go(x, y) + gxdall + gxxOda12 + gxYOda21

+gydbll + gyxodb12 + gyyodb21 + dro + drlg0(X, y)

(4.11)

(4.12)

(4.13)

(4.14)

The parameters in equation (4.14) are grouped into the parameter vector x, the coefficients

into the design matrix A, and the vector difference f(x, y) - g(xo, YO) into I according
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to (4.15).

x T = [dau, da12, da21, dbu , db12, db21, dro, dr1]

1
9x

. 1xO 19x ' 1yO 19y 19y ' 1xO

where:

64

(4.15)

iX, i y are the local coordinates of pixel i in the image patch

i gx, i gy are the discrete horizontal and vertical gradients at pixel i

if, ig are the grey values of the pixel i in the template and search patch

n is the total number of pixels in a N x M image patch

Using (4.15) the observation equations are obtained in the classical notation:

1- e = Ax

and assuming:

(4.16)

(4.17)

the system is a Gauss-Markov model. The least squares estimation of equation (4.16)

leads to the solution vector x:

with:

v = Ax - 1 residual vector

0-5 = vT;v variance factor

Q = 0-5 . (ATpA) -1 covariance matrix

(4.18)

r=n-u

n

u

p

variance factor of single parameters

redundancy

number of observations

number of transform parameters

weight matrix

(4.19)



CHAPTER 4. DIGITAL IMAGE MATCHING 65

The weight matrix P is usually set to identity because typically the weight of each pixel

in the patch is the same. It is in situations such as edge matching that P provides the

flexibility to favour edge pixels by setting the corresponding weights depending on the

value of the gradients at that point.

The functional model is non-linear and the final solution has to be found iteratively. The

solution vector x contains incremental updates of the affine parameters that describe the

geometric difference between the template and search patch. The transform parameters

are initialised with values all = a21 = bll = b12 = 0 and a12 = b21 = 1 (i.e. initialised

with values that do not alter the image patch). Subsequently, after each iteration these

values are updated according to equation (4.20) and the search image is transformed.

PI = Po + dp

where p denotes an affine parameter and dp the incremental update.

(4.20)

The A matrix and I vector must be re-evaluated from the transformed image. This implies

interpolation of the grey values from the transformed search patch, a process referred to as

resampling, discussed in Section 4.3.2. The iteration stops when the shaping of the search

patch becomes insignificant, indicated by low magnitudes of the update parameters or a

small change in 0"0.

4.3.2 Computational Aspects

Section 4.3.1 presented the mathematical model and theoretical explanation of least squares

matching. In this section the focus shifts to the practical implementation aspects and the

decisions that directly affect the convergence rate, robustness and accuracy of the matching

process.

Grey Level Derivatives

The grey level derivatives are computed from the discrete pixel values of the image patch.

It is assumed that surrounding border pixels are available. The derivatives gx and gy at
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pixel (i, j) are given by equations (4.21) and (4.22) which average the two neighbouring

slopes.

where:

gx
(g(i,j + 1) - g(i,j))/ti.x + (g(i,j) - g(i,j - 1))/ti.x

2
g(i,j + 1) - g(i,j - 1)

= 2ti.x

(g(i + l,j) - g(i,j))/ti.y + (g(i,j) - g(i -1,j))/ti.y
2

g(i + l,j) - g(i - l,j)
2ti.y

(4.21)

(4.22)

ti.x, ti.y are the distance between two neighbouring pixels, equal to 1

i,j are the row and column indices respectively

Computation of Design Matrix A

The design matrix A was introduced in equation (4.15). Its elements are dependant on

the image gradients defined by equations (4.21) and (4.22), and collectively embody the

information used to determine the geometric relationship between the conjugate patches.

The formulation and treatment of A thus has a direct effect on the accuracy, robustness

and rate of convergence of matching. Baltsavias [134] has investigated the computational

aspects of A, arriving at three viable variations:

(a) Computation of A from the search patch (A is updated in each iteration)

(b) Computation of A from the template patch (A remains constant throughout the

iterations)

(c) Computation of A from the average of the template and search patch (A is updated

in each iteration)

In the case of noise free, synthetic image matching, all three alternatives will arrive at the

same result. According to the mathematical model derived in Section 4.3.1, option (a) is
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the theoretically correct method and should yield the most accurate correspondences. Op­

tion (b) computes A from the template patch, thus bypasses the necessary recomputation

of A after each iteration resulting in faster matching. Option (c) generates an additional

patch from which A is computed by averaging the template and the search patch. The

effect of this intermediate step is that the differences between the conjugate patches caused

by noise and distortions are smoothed, thereby aiding the convergence of the transform

parameters. The results of the investigation performed in [134] show that in the case of

planar surfaces with good contrast and low noise the three variations indeed exhibit very

similar performance. However, when larger distortion and noise is introduced, option (c)

displays a more stable and faster convergence. In terms of accuracy, the final locations

obtained by (c) were similar to those obtained by (a) (the difference being smaller than

the x and y shift convergence criterion), and considerably better than those obtained by

(b). Additionally, by smoothing the differences between the conjugate patches, option (c)

is able to handle worse initial estimates than options (a) and (b).

In conclusion, when planar surfaces with low noise are being matched option (b) is pre­

ferred purely because it is faster. However this is not the case in sequences used in this

work, and subsequently option (c) was adopted because it finds the correct solution even

in situations when the other two methods fail.

Optimal Matching Window Size

The matching window size, i.e. the size of the image patch, is a significant parameter of

area-based matching algorithms. The patch is a rectangular array of grey values symmet­

rical about the pixel position of the target point or the candidate matching point. The

question now arises, what is the optimal window size for least squares matching. Unfor­

tunately there is no straight forward answer because the patch size depends on factors

specific to each case such as the objects present in the image as well as their texture.

The size and shape of the patch will ultimately determine the reliability and accuracy of

the matching result. It must adapt to both the radiometric content of the image as well

as the geometric form of the object. The patch must be large enough to contain sufficient
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signal (texture) in order to determine all the affine parameters, but small enough for the

assumption of a locally planar object surface to hold. The determinability of the affine

parameters is dependant on the grey level gradients in the patch, their size as well as their

distribution [134]. If the patch is too small, some of the shaping parameters may not be

recovered, resulting in insufficient information for the similarity measurement. On the

other hand, when the patch is too large, the assumption of the planar surface portion may

no longer be valid, and the geometric deformation and extra features further away from

the patch origin may affect the matching process and matching quality. Thus, the task is

to select the smallest patch that allows for stable convergence of the affine parameters.

The shape of the patch can adapt to the matching feature to maximise the useful signal

content used for the estimation of the affine parameters. An example of this is found in

photogrammetry when matching features such as roads, in which case rectangular patches

are preferable. Photogrammetry applications often have the advantage of being free to

select the matching features, thus a selection process may be performed to select points

lying along edges, improving matching success and precision [134]. Unfortunately, in the

case of human motion capture, the key points were determined by the joint location rather

than the presence of texture. Since there was no guarantee of long edges in either direction,

the shape of the patches is always kept square.

The optimal size of the patch is determined experimentally depending on the content of

the images used. Since the variation in applications of LSM is large (e.g. close range

up to aerial images), it is difficult to establish even a guideline. Ackermann [126] has

used patches of 64x64 pixels and more. Baltsavias [134] states that patches smaller than

7x 7 to 9 x 9 pixels should be avoided and proceeded to use 15 x 15 patches in most of his

experiments, rarely using patches greater than 30x30. Xin [135] also found 15x15 patches

produced best results in his application. Rosenholm [136] conducted an investigation into

the effect of window size on precision and reliability, concluding that patches of 20x20

and 30 x 30 pixels are optimal for precision. An optimal patch is large enough to contain

sufficient signal for the determination of the geometric relationship between the conjugate

patches, yet small enough to represent a planar surface. The optimal size in this work

was found experimentally in matching scenarios typical of those faced in human motion
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tracking, with a 19x19 patch producing most consistent results.

Resampling

69

Resampling is the process of transforming a sampled image from one coordinate system to

another. The least squares matching procedure iteratively estimates the affine mapping

function. After each iteration the original search patch is transformed by the updated

affine transform to yield a patch increasingly resembling the template. In the subsequent

explanation the original search patch is referred to as the input image and the transformed

patch as the output image. The transformation itself is performed on the coordinate system

of the input image, resulting in new coordinates for the grey values which are no longer

restricted to an integer lattice. The output image is obtained by first projecting the output

resampling grid into the input image by the inverse mapping function (i.e. the inverse

affine transform) and then sampling the input image at these points to assign grey values

to their respective output pixels. However, the projected resampling grid will generally

not correspond to the input sampling grid and the grey values must be interpolated from

the input image at the desired locations.

The choice of a suitable interpolation function usually involves a tradeoff between accuracy

and efficiency. The simplest and fastest interpolation is the nearest neighbour algorithm

which assigns a value to an output pixel of the nearest sample point in the input image.

Bilinear interpolation considers the four neighbouring points around the sample location

and assumes that the brightness function is bilinear in the neighbourhood, while bicubic

interpolation considers a neighbourhood of sixteen points assuming that the brightness

function is bicubic. Higher order functions can also be used, however will not be discussed

in the scope of this work. An example of the three above mentioned methods is shown in

Figure 4.5, where an affine transform was used to rotate the input image (Figure 4.5(a)) by

15 degrees. Once the output sampling grid was projected back into the input image, the

output image was resampled by nearest neighbour interpolation (Figure 4.5(b)), bilinear

interpolation (Figure 4.5(c)) and bicubic interpolation (Figure 4.5(d)). Nearest neighbour

interpolation suffers from severe loss of quality and since it may introduce errors of up to a
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half-pixel it is not suitable for problems requiring sub-pixel accuracy. Bilinear interpolation

displays considerably improved results, with the problem of step like straight boundaries

significantly reduced. The bicubic interpolation has less of a blurring effect than bilinear

interpolation, however the difference in image quality is less pronounced and comes at a

higher computational cost [137].

(a)

(b) (c) (cl)

Figure 4.5: Resampling a transformed image using different interpolation methods, (a)

original image, (b) nearest neighbour, (c) bilinear interpolation, (d) bicubic interpolation.

Ackermann has originally applied sophisticated interpolation techniques in his implemen­

tation of least squares matching, however through experimentation with various methods

he concluded in [126] that bilinear interpolation provides sufficient results for accurate

matching. The bilinear interpolation is give by equation (4.23):

I(r,s) = Io(i,j) + (Io(i,j + 1) - Io(i,j))· dx + (Io(i + l,j) - Io(i,j)). dy

+(Io(i + l,j + 1) + Io(i,j) - Io(i,j + 1) - Io(i + l,j)). dxdy
(4.23)
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where:

r,s are real

i,j are integers with i = int(r), j = int(s)

dx = s - j, dy = r - i

Figure 4.6 shows the output resampling grid (broken lines) projected into the original

image whose sampling grid is indicated by solid lines. The grey value of the output pixel

is computed from the four pixels of the input image neighbouring the projected sampling

location.
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Figure 4.6: Bilinear interpolation considers the four neighbouring points of the input

sampling grid 10 around each point of the projected output sampling grid I.

4.3.3 Typical Results

The following two experiments demonstrate the least squares matching process. First,

synthetic images are used to clearly illustrate the shaping of the search patch during the

iterative stage, as well as to provide ground truth data to assess the matching performance.

The second example is performed with real images from a stereo setup. In this case

ground truth is not available and parameters used for assessing the quality of the result

are discussed.
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Synthetic Data

72

The experiment with synthetic data makes use of a simple template image consisting

largely of a black circle on a white background, which provides well defined edges and

consequently large gradients whose presence improves matching stability. The second

view, the search image, was generated by transforming the template image by a known

affine transform defined by equation (4.24) and subsequently resampling using bilinear

interpolation. The two synthetic images are shown in Figures 4.7(a) and 4.7(b).

[
Xs ] [ all ] + [a12 a21] [Xt]
Ys bll b12 b21 Yt

[1]+ [1 0.3] [Xt]1 0.3 1 Yt

(4.24)

In comparison to the real data encountered in human motion tracking, the synthetic images

differ in three ways:

1. the synthetic images represent perfectly planar surfaces

2. the presence of such well defined edges is uncommon in markerless human motion

capture

3. no noise was added to the search image aside from the distortion introduced by the

irreversible blurring effect of bilinear interpolation

The overall effect of these factors on the matching result is that for the synthetic data

experiment the achieved accuracy is unrealistic in comparison to real data. However, the

experiment is beneficial in that it is able to visualise the least squares matching process,

as well as to indicate the theoretically achievable precision.

Before initiating the matching process, the suitable patch size must be determined. Sec­

tion 4.3.2 stated two aspects affecting the size of the patch (matching window): the patch

must be small enough to represent a locally planar surface and the patch must be large

enough to contain sufficient signal to allow stable and accurate determination of the six
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affine parameters. In this case the former constraint is always fulfilled because the whole

image represents a planar surface. The latter constraint can thus be easily satisfied as

the maximum patch size is not limited apart from the dimensions of the actual image.

The "sufficient signal" refers to the regions of high value gradients which for the template

image are encapsulated by a 69x69 patch. Figure 4.7(c) shows the shaping of the search

patch through five iterations. By visual inspection there seems to be little change after the

third iteration and by the fifth iteration the search image seems identical to the template.

(a) (b)

(c)

Figure 4.7: LSM using synthetic data, (a) template image with patch, (b) search image

with patch, (c) search image and patch deformation after iterations 1 to 5.

To evaluate the matching result quantitatively, one must look at the values of the updates,

the resulting affine parameters and the pixel error of the final result. The shaping of the

search image in Figure 4.7(c) occurs because the matching process incrementally updates

the estimate of the affine transform describing the geometric difference between the con­

jugate images. Figures 4.8(a) and 4.8(c) show the behaviour of the x and y coordinate

updates of parameters in equation (4.9) respectively. Ideally the system converges when
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the updates tend to zero as is the case from iteration 7 onwards. In practice however, suit­

able thresholds are selected for the magnitudes of the updates to establish convergence.

The typical values of 0.05 for the shifts (l.6.all\' l.6.bllJ) and 0.1 for the shaping param­

eters (l.6.ad, l.6.a21 I, l.6.bd, \.6.b21J) used in [134] were also adopted in this work. These

thresholds are indicated in Figures 4.8(a) and 4.8(c) by dotted lines, according to which

convergence occurred after the 5th iteration. Figures 4.8(b) and 4.8(d) display the x and

y coordinate affine parameters converging onto the ground truth indicated by dotted lines.

Table 4.1: Comparison of ground truth and matching results (after 5 iterations)

parameter ground truth measurement % error

all 1.0000 0.9991 0.09

a12 1.0000 0.9993 0.07

a21 0.3000 0.2982 0.60

bll 1.0000 0.9963 0.37

b12 0.3000 0.3016 0.53

b21 1.0000 0.9985 0.15

The accuracy of the affine parameters estimation is more clearly expressed in Table 4.1.

The purpose of recovering the affine parameters is to align the template and search patch

coordinates of corresponding pixels by shifting and warping the search patch coordinate

system. This results in the origin of the search patch coordinate system that is initially

defined at the location of the estimate to be shifted to the correct location of the correspon­

dence. Intuitively, as the estimation of the affine parameters improves, the resemblance

between the patches becomes more evident and the accuracy of the result increases. This

relationship is supported by Figures 4.8(e) and 4.8(f), which show the cross-correlation

coefficient and the pixel error after each iteration respectively. As the similarity between

the template and search patch increases, the error of the match location decreases. The

final matching result lies at the origin of the search patch and hence is only dependant

on the x and y shifts all and bll respectively. These two parameters were estimated with
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Figure 4.8: Synthetic data matching results.
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errors of 0.09% and 0.37% resulting in precision of 1/250 pixel. The high accuracy can be

attributed to the three aspects discussed at the beginning of this section, which set the

synthetic images apart from the typical real data encountered in this research. Ackermann

indicates in [126] that precision of 1/180 pixel is possible for aerial photographs with high

contrast, however in low contrast situations it drops down to 1/10 pixel. Baltsavias [134]

achieved accuracy of 1/10 to 1/50 pixels in close range experiments and reports that the

maximum attainable accuracy in real images lies in the range 1/20 to 1/100 pixels. Lem­

mens [124] establishes LSM accuracy to be 1/20 pixel which is a representative value when

comparing LSM to other methods and not considering specific cases.

Real Data

The experiment with real data was performed on images constituting a stereo pair. Por­

tions of these images are shown in Figure 4.9 together with the corresponding patches

which have been enlarged for the sake of clarity. The image content is typical of the

captured data for the human motion capture system in this work.

Figure 4.9: Left (template) and right (search) view of a stereo system. The original patch

in the search image is shown in black, and the final deformed patch in white.

The multi-view camera setup is such that the baseline between the cameras is relatively

short resulting in small geometric differences and consequently similar images in all views.

This leads to an argument that a simpler transform could be used to describe the geometric
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relationship between the conjugate images. Ackermann [126] has investigated this possi­

bility by experimenting with a 4-parameter similarity transform. The experiments were

performed on aerial images and results indicated that in areas of flat ground (i.e. planar

patches) the 6-parameter affine transform did not yield considerably better results. How­

ever, Ackermann concluded that the affine transform should still be used as a safeguard.

The experimental results are shown in Figure 4.10, where 4.10(a) and 4.10(c) display the

updates together with the convergence criterions (thresholds), 4.10(b) and 4.1O(d) display

the estimated affine parameters and 4.1O(e) displays the cross-correlation between the two

patches. Indeed the affine parameter estimation process is dominated by shifts and scales,

with only small shearing occurring. The relatively high similarity between the images

results in fast convergence (4 iterations).

In the absence of ground truth, the confidence in the result is assessed by analysing param­

eters produced as a consequence of the matching process. These parameters include the

cross-correlation coefficient Rts calculated by equation (4.2) and the standard deviations

aa, a x and ay obtained from equation (4.19). Rts is a useful indicator of the matching

quality because it quantifies the similarity between the two patches. Since the matching

process tries to minimise the residual differences between the patches, a high value Rts

suggests quality estimation of the transform function parameters and consequently good

matching results. The standard deviation aa is an a posteriori estimator for the difference

in grey levels between the template and search patch. It is highly correlated with the

cross-correlation coefficient. Serving as an indicator of the error between the patches, aa

decreases with increasing similarity. The standard deviations of the x and y shifts, ax and

ay (ax = aall' ay = abll) are of particular interest because the two shifts are ultimately

responsible for the accuracy of the final result. Large values ofax and ay indicate low

precision in all and bll and consequently low precision in the resultant match location.

The four parameters Rts , aa, a x and ay are utilised in result assessment by comparing

them to suitable thresholds. The difficulty of selecting the thresholds stems from the

fact that characteristic values of these parameters are dependant on the image content

and quality. The typical threshold criteria used in this work are displayed in Table 4.2
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together with the corresponding values from the real data experiment. A high threshold

for the cross-correlation coefficient is appropriate since the conjugate images begin the

matching process with high similarity due to the 30 fps frame rate and centralised camera

setup. The thresholds for 0-0, o-x and o-y have been adopted from D'Apuzzo [138] who

found these values to be appropriate for markerless human motion capture.

Table 4.2: Indicators of quality of real data matching result

parameter measurement threshold

Rts 0.9893 0.9000

0-0 10.925 25.000

o-x 0.0374 0.1800

o-y 0.0159 0.1800

4.4 Summary

This chapter has presented two digital image matching techniques. Cross-correlation is a

simple method in terms of implementation, however because it does not model the geomet­

ric and radiometric differences between the images it does not provide adequate accuracy

required by the tracking algorithm discussed in Chapter 5. Furthermore, unless the search

space is limited to a small area, cross-correlation is susceptible to false matching. Despite

these deficiencies, cross-correlation has been widely used in the tracking algorithm as a

similarity measure, as well as a coarse matching technique for initial estimate generation

in a search space reduced by prediction or epipolar geometry.

The second matching technique introduced was least squares matching. Least squares

matching models the geometric difference between images by a 6-parameter affine trans­

form, and the radiometric difference by an additive and multiplicative coefficient. Least

squares matching is an iterative process that can be summarised by the 11 steps shown

below. A schematic representation of the algorithm is provided in Figure 4.11.
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Initialisation:

(1) Define template patch

(2) Define search patch

(3) Initialise the affine transform

Iterate:

(4) Subtract search patch from template patch

(5) Construct I

(6) Average template and search patch

(7) Calculate x and y gradients

(8) Construct A

(9) Estimate affine parameter updates

(10) Update affine parameters

(11) Transform original search patch

repeat steps 4-11 until lupdatesl < threshold or Llao < threshold

80

Experiments have demonstrated the high accuracy of least squares matching, within 1/250

pixel for synthetic data. Matching precision in real data close-range experiments is ex­

pected to lie between 1/10 and 1/50 pixel. In this work no ground truth data is available

for real images, and the confidence in the result is assessed by looking at how well the

affine parameters have been estimated. This is indicated by either the similarity or the

error between the patches described by Rts and ao respectively. The final result is ob­

tained by shifting the initial estimate to the correct location by parameters all and bll.

The precision of these parameters is indicated by a x and ay respectively, which are also

employed in the analysis of the result. After the matching process is complete, the above

mentioned parameters are compared to predefined thresholds, and if the relevant criteria

are satisfied the estimated match location is accepted.
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Figure 4.11: Visual overview of the least squares matching process.
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The least squares matching technique is at the heart of the tracking algorithm discussed in

Chapter 5. By automating the matching process, scrutinising the matching results and au­

tomatically tuning the matching parameters, the tracking algorithm tracks selected points

throughout the sequence as well as within the multiple views with sub-pixel accuracy.



Chapter 5

Tracking Algorithm

The tracking algorithm developed in this work completes the human motion capture sys­

tem required at the encoder stage of the model-based image coding scheme. Selected

points are tracked in 3-D by automating the image matching process over multiple views.

Following manual initialisation, tracking is performed automatically without any interven­

tion from the user. Automation of the image matching process involves the introduction

of a prediction scheme that generates initial estimates of correspondences for least squares

matching. Furthermore, the least squares matching process is monitored to detect un­

determinable affine parameters, to determine convergence, assess results and if necessary

repeat matching with modified parameters.

This chapter starts by discussing the issues relating to the automation of the least squares

matching process. First, the convergence radius, also called the pull-in range is investigated

to establish the necessary accuracy of the prediction scheme. Then, tests for the detection

of undeterminable parameters are proposed and methods of determining convergence and

assessing results, already introduced in Chapter 4, are discussed further. The automatic

least squares matching process is first applied to tracking in 2-D, following which the

concept is extended to 3-D tracking. The advantages of multiple views and 3-D information

are described and incorporated into the final tracker.

83
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5.1 LSM Adaptation to Tracking

84

Figure 4.11 in Section 4.4 provides a schematic description of the least squares matching

model introduced in Section 4.3. The process iteratively estimates the geometric and ra­

diometric relationship between two images in order to yield the location of corresponding

points. To utilise LSM in an automated system such as a 2-D/3-D tracker, several ad­

ditional comp<;ments have to be added as shown in Figure 5.1. The input to the system

consists of two images and the locations of the point of interest and the initial estimate.

The estimation of the affine parameter updates is performed according to Figure 4.11,

which is represented in Figure 5.1 by the LSM box. In addition to the estimation of

the incremental updates, the shaping parameters are examined to detect undeterminable

cases, the convergence status is established by inspecting the behaviour of the estimation

process and the quality of results is assessed using parameters introduced in Section 4.3.3.

A failure of anyone of the above conditions results in the matching process repeating

Input

LSM

failed Shaping
Parameter

Tests

ok

Matching failed Convergence no
Parameter

Status
Adjustment

ok

failed Result
Analysis

ok

Output

Figure 5.1: Information flow of the automated LSM module.
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with modified parameters, thus ensuring a high rate of matching success in the tracking

procedure.

5.1.1 Shaping Parameter Tests

The behaviour of the shaping parameters during the matching process is analysed in order

to detect undeterminable cases. The issue of affine parameter determinability has already

been touched upon in Section 4.3.2 which dealt with matching patch size. The patch

must ideally be large enough to encompass enough image content to guarantee stable

and accurate recovery of all affine parameters. In a practical tracking application the

user cannot select the best suitable patch size for each matching case. On the contrary,

the user can only select a patch size that provides good results in most cases, and the

tracking algorithm must fine tune this parameter in those instances when matching does

not yield a satisfactory result. Under these conditions, it is probable that throughout

the process there will be situations when the patch does not contain enough information

for LSM to determine all the affine parameters. The undeterminable parameters usually

exhibit oscillating or diverging characteristics during the iterative estimation process. An

example of these two cases is shown in Figure 5.2. The oscillation of the update and

resulting oscillation of the transform parameter is displayed in Figures 5.2 (a) and 5.2 (b)

respectively, and similarly in the case of divergence in Figures 5.2(c) and 5.2(d). The

tests for oscillation and divergence are performed during the estimation process. Initially

there may be a considerable difference between the patches causing large update changes,

therefore the tests are carried out from the 3rd iteration onwards once the system has

begun to stabilise. Each shaping parameter update (~a12, ~a21, ~b12, ~b2d is checked,

and if its magnitude is greater than the convergence criteria threshold, it must satisfy the

set of rules suggested in [134]:

• If in three consecutive iterations the update changes sign, its magnitude must de­

crease

• If an update does not change sign, its magnitude must be decreasing over the last

three iterations
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• If the update's magnitude decreases in two successive iterations, it is not allowed to

increase

• The magnitude of the update must decrease in the last 2-3 iterations (performed at

the end of the estimation process)

Failure to meet anyone of the above criteria may lead to the corresponding parameter

to be excluded from the mathematical model. Naturally, the two shifts (~all and ~bll)

cannot be excluded without loosing accuracy and confidence in the result.
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Figure 5.2: Examples of undeterminable parameters. Dotted lines indicate convergence

thresholds of respective updates.
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5.1.2 Convergence
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LSM convergence is established when the shaping of the search patch becomes so small

that it has no real effect on the matching result. Such a point in the estimation process

may be indicated either by the updates as done in Section 4.3.3 or by the change in ao.

In either case, the corresponding values are compared to pre-selected thresholds. In the

case of the updates, convergence occurs only once the magnitudes of all the incremental

changes fall below their thresholds. Figure 5.3 shows an example of successful convergence.

-0.81L-~2-~3-~4~~5--6~~7~~8--9'--~10

Iteration

Convergence of Shift Updates
0.6

0.4

0.2

'".S!

X
:;)

~ -0.
C/)

-0.6

(a)

Convergence of Shaping Updates
0.2

~M12

--- M 21
__ db"

........ db"

'".,..
"8-
:;)

Cl-5. -0.05

'"~
C/) -0.1

-0.2

-0.251:----:2----:-3-~4:----:-5---,6c------=7--8'--~9-~10

Iteration

(b)

Convergence of the Change in 00

2.5

6 7
Iteration

8 9 10

(c)

Figure 5.3: Determination of convergence by setting thresholds for updates (a), (b) and

by setting a threshold for change in ao (c).
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Convergence determination by updates is shown in Figures 5.3(a) and 5.3(b) which dis­

play the incremental estimation of the shifts and shaping parameters respectively, together

with their corresponding thresholds (l~al1l = I~blll = 0.05, l~a12l = l~a211 = l~b12l =

l~b211 = 0.1). The behaviour of ~(TO and its threshold (equal to 0.02) for the same

matching example is shown in Figure 5.3(c). The task is now to assess whether the chosen

threshold values are sufficient for accurate results. Using the 1/20 pixel guideline accuracy

of LSM as reported by Lemmens [124], the plot of the pixel error of the matching exper­

iment of Figure 5.3 and the accuracy "threshold" was generated (Figure 5.4). Figure 5.4

shows that the desired accuracy was reached in the forth iteration. According to the up­

dates, convergence was established in the fifth iteration, while ~(TO fell below its threshold

in the sixth iteration. Thus it can be concluded that the thresholds for both criteria sat-

isfy the accuracy demands. Experiments have shown that both methods of determining

convergence produce very similar results, however the ~(TO criterion was preferred since

only one parameter instead of six needs to be monitored.
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Figure 5.4: Pixel error of matching experiment used to generate convergence data for

Figure 5.3.

The "convergence status" component of the automatic LSM algorithm (Figure 5.1) has

three outputs; convergence not yet reached, convergence reached and convergence failed.

The first two instances have already been covered by the discussion of convergence determi-
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nation. Failure occurs when the convergence criterion is not satisfied within the maximum

number of allowed iterations. In this work, the maximum number of iterations was set at

15. The temporal changes and spatial differences in the multi-view video sequences were

relatively small resulting in an average convergence rate of 4-5 iterations. Thus, if LSM

is unable to converge onto a solution in 15 iterations, it can be said with confidence that

this case will not yield a solution with the particular matching parameters.

5.1.3 Result Analysis

Convergence on its own does not guarantee correct results. Both methods of determining

convergence merely monitor the shaping of the search patch, stopping the estimation

process once significant transformation of the patch has ceased. The convergence tests

cannot detect when LSM converges onto a wrong solution, hence the result needs to be

analysed to establish whether it is acceptable or not. When working with real data, in the

absence of ground truth, the parameters used to analyse the quality of the result are the

cross-correlation coefficient Rts and the standard deviations 0"0, O"x and O"y as introduced

in Section 4.3.3. An experiment that demonstrates the importance of the result analysis

uses images shown in Figure 5.5, where the point of interest lies at the location denoted

(a) (b)

Figure 5.5: Images demonstrating incorrect convergence, (a) template image with point

of interest indicated by "+", (b) search image with initial estimate indicated by "0" and

converged result by "+".
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by a "+" in the template (Figure 5.5(a)), and the corresponding estimate in the search is

denoted by an "0" (Figure 5.5(b)). The estimate is purposefully at a completely wrong

location to ensure that the process does not converge onto the correct solution. Figure 5.6

displays the resulting updates in (a) and (b) and the change in standard deviation in (c).
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Figure 5.6: Convergence of the updates (a), (b) and the change in standard deviation (c).

Thresholds are indicated by dotted lines.

Although the shift updates start to diverge as the iterations continue, according to the

threshold criteria the systems has converged after 7 iterations in the case of the updates

and after 6 iterations when 0'0 is used as the criterion. It is obvious to a human observer
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that the result denoted by "+" in Figure 5.5(b) is incorrect and the automatic tracking

algorithm must also be able to make this judgement in order to successfully track points

in video sequences.

Correlation Between Patches

0.9r

I
0.8r

rr"" 0.5

0.4r

0.3

0.2

5 10 15
Iteration

(a)

40

Standard Deviation of Shifts

0.17
~

" 0.16

0.15r
0.14

Standard Deviation of the Difference in Grey Levels

16~

14:[ ~
120~ e " BB" BB" " "

100r
0

0

80·

I
60

20'-'-2--4---6---8--1-0--12,-----14­

Iteration
4 12 14

(b) (c)

Figure 5.7: Assessing the quality of result by (a) cross-correlation coefficient Rts , (b)

standard deviation ao, (c) standard deviations of the shifts ax, ay. Thresholds are indicated

by dotted lines.

Figure 5.7 displays the cross-correlation coefficient, the standard deviation of the difference

between the two patches (error) and the standard deviations of the shifts during the

matching process. Both Rts and ao indicate a large difference between the patche and
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consequently low similarity. Although the standard deviations of the shifts do fall below

the threshold, the result would be rejected based on Rts and 0'0· Ideally LSM transforms

the search patch to look exactly like the template and thus such a low value of Rts and

conversely a high value of 0'0 are a clear indication of an incorrect convergence.

5.1.4 Adjustment of Matching Parameters

The matching parameters are modified when undeterminable parameters are detected,

the system fails to converge or the result does not exhibit the desired characteristics of

a good match. Once one of these three components generates an error, the automatic

LSM algorithm enters the "Matching Parameter Adjustment" phase and adjusts either

the patch size, the mathematical model (by excluding undeterminable parameters) or the

initial estimate. The sequential process is demonstrated in Figure 5.8(a). The adjustment

changes only one of the parameters at a time, then reinitialises and repeats the matching

process. If matching continually fails, the adjustment proceeds down the decision tree

resulting in a combination of the modifiable aspects that affect the matching process.

Modifying the patch size is the first attempt at improving the matching result because it

is the most probable reason for matching failure. If however this does not have a positive

influence on the matching, any undeterminable affine shaping parameters are excluded

from the mathematical model, following which the patch size is once again modified if

errors persist. In the case that excluding undeterminable parameters and modifying the

patch size fails to produce an acceptable result, a new estimate is generated and the

adjustment process is once again free to modify the patch size and model if necessary. This

strategy structures the three modification processes in a hierarchical fashion illustrated in

Figure 5.8(b). In the simplest case only the patch size is changed, while in the extreme case,

a new estimate is generated, undeterminable parameter(s) is/are excluded from the model

and the patch size is adjusted. The modification of the patch size is performed within a

minimum and maximum size range as long as the adjustment is improving the result. The

improvement is judged by the values of R ts , 0'0, O'x and O'y which must be better than in

the previous adjustment. Increasing the patch size attempts to satisfy the first constraint

of LSM, i.e. the patch must contain enough signal to allow the determination of all six
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affine parameters. On the other hand, if increasing the patch size does not eliminate the

matching error, the size of the patch is decreased, favouring the second constraint of LSM

which states that the patch must be small enough to represent a locally planar surface.

The undeterminable parameters are only excluded once patch size adjustment fails to

improve accuracy. Once all the possibilities are exhausted, the matching is considered

failed which may amount to tracking failure.
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Figure 5.8: (a) Flow diagram of the matching parameter adjustment process, (b) hierar­

chical structure of parameter modification.

5.1.5 Convergence Radius

The convergence radius of LSM is a crucial aspect because it dictates the permissible

uncertainty in the initial estimate. It describes the maximum error of the estimate which

LSM is able to deal with to arrive at the correct solution. The convergence radius is

determined by the signal present in the patch and in most cases is not a circle as one would
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presume from the term "radius", rather it is direction dependant. To avoid confusion,

some researchers refer to the convergence radius as the "pull-in range". Although the

convergence radius has a direct affect on the convergence rate, stability and accuracy,

the main motivation behind its analysis is to determine the necessary accuracy of the

prediction scheme implemented in the tracking algorithm.

Expressing the convergence radius by a fixed number of pixels is inconsequential and does

not provide any useful information from a theoretical point of view. The problem with

defining the convergence radius stems from the fact that it is dependant on many factors

and cannot be fixed. It changes from image to image and is influenced by the patch

size, signal content, filtering, the method of calculating the A matrix and image gradients

to name a few examples. In photogrammetry, some investigations have been done into

the convergence radius of least squares matching. Ackermann [126] and Forstner [139]

stipulate that an approximation within 3 pixels is required for fast convergence when

no smoothing is performed. Pertl [140] states that the estimates should be within 1.5

pixels because LSM is used only for fine matching. However both Ackermann [126] and

Baltsavias [134] point out that successful matching was achieved with estimates ten or

more pixels off the target, thus the suggested estimate range may not necessarily dictate

the maximum convergence radius in all matching cases. On the contrary, a 1.5 pixellimit

may not indicate sufficient estimate accuracy either. In cases where the image consists of

repetitive patterns separated by 2 pixels, the initial estimate must be within 1 pixel to

achieve correct matching.

Figure 5.9: Examples of the convergence radius in two matching experiments.

The convergence radii of two matching experiments using images taken from the captured



CHAPTER 5. TRACKING ALGORITHM 95

motion data are displayed in Figure 5.9, where the estimates leading to a successful con­

vergence are denoted by crosses and the target locations by circles. These two cases clearly

illustrate the variable and directional nature of the convergence radius. In the left image,

all points within approximately 6 pixels from the target were correctly matched, whilst

in the right image the maximum error that guaranteed convergence was only 3.5 pixels.

The prediction scheme implemented in the tracking algorithm used the 3 pixel error as a

conservative guideline when estimating the locations of points in subsequent frames. Since

the motion data did not contain closely spaced repetitive patterns, there was no danger

of false matching with estimates within that range.

5.2 2-D Tracking

The 2-D tracking algorithm based on least squares matching consists of an initialisation

step and a prediction scheme added onto the automatic LSM module described in Sec­

tion 5.1 (Figure 5.10). The template patch is obtained from the current frame, while the

search patch is defined at the predicted location in the next frame. Successful match­

ing effectively tracks the point in the two frames and by looping this process, tracking is

achieved throughout the monocular sequence. The initialisation step generates the 2-D

locations of the desired points in frame 1 that are tracked throughout the video sequence.

This may be an automatic process that selects key features, or a manual step which relies

on the user to input the key locations (as implemented in this work).

The prediction stage is vital for successful matching. The investigation into the conver­

gence radius of least squares matching produced a conservative limit to the prediction

error of 3 pixels. Section 4.2 introduced normalised cross-correlation, a coarse matching

technique with a maximum accuracy of ±0.5 pixel. Although NCC accuracy satisfies the

initial estimate requirements of LSM, to avoid lengthy computations and to reduce the

possibility of false matching NCC must be performed in reduced search space rather than

the whole image. In monocular sequences epipolar geometry cannot be exploited. Instead,

prior motion of the point in the 2-D image plane is used to predict the point's location in

the subsequent frame. The prediction process is depicted in Figure 5.11.
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Figure 5.10: 2-D tracking algorithm flow diagram.

The instantaneous velocity of point Po is calculated from its location in the current and

previous frame. Adding the change in displacement [~x ~Y] to the current location [xo YO]

results in P+l, a 2-D velocity-based linear prediction of Po in the subsequent frame. The

cross-correlation search space is defined around P+l and the estimate is established at

the location of best cross-correlation. The size of the cross-correlation search space is

dictated by the accuracy of the 2-D velocity-based estimation. The 2-D velocity-based

estimation can provide accurate enough estimates (within 3 pixels) for slow changing

inter-frame motion in which case cross-correlation improvement is not required. However

the estimate's uncertainty increases with increasing change in velocity (i.e. acceleration),

and correspondingly the cross-correlation search space grows.

Figure 5.12 shows the pixel error of the 2-D velocity-based prediction in three cases with



CHAPTER 5. TRACKING ALGORITHM 97

P·I
[x.• y.d

+________ I po

r~x ~vl ~[X() yo]
[~~y] + P+I

IX() yo] ~[x_. y.d ~-----
: • 2-D velocity-based prediction

Cross-correlation: E9 [X() yo] + [~x ~y]
search area ~ _

Location of best
cross-correlation

Figure 5.11: 2-D linear prediction. Using prior 2-D velocity to reduce cross-correlation

search space.

varying degrees of inter-frame motion, together with the 3 pixel limit of the prediction

error. Figure 5.12(a) refers to a point on the mouth, taken from a 2-D tracking of fa­

cial expressions experiment (Figure 5.13(a)). Changes in facial expressions occur rapidly

resulting in sudden changes in velocity and consequently a number of prediction errors

greater than 3 pixels. Thus normalised cross-correlation is required to ensure estimates

remain within 3 pixels. Due to the size of the errors the search space must have a minimum

radius of approximately 5 pixels. Figures 5.12(b) and 5.12(c) refer to points taken from

the arm tracking experiment shown in Figure 5.13(b). The motion of the arm is much

smoother than that of facial features (i.e. changes in motion do not occur as suddenly)

thus the 2-D velocity prediction is sufficient in most instances. The prediction of the

elbow Figure 5.12(c) is always within acceptable limits, while the prediction of the wrist

Figure 5.12(b), which undergoes greater motion changes, requires NCC improvement in a

3 pixel radius search area.

Although with hindsight it becomes evident that in some cases the 2-D velocity-based

prediction is sufficient, one can not foretell this before the points are tracked. For this

reason the 2-D tracking algorithm prediction scheme always made use of normalised-cross

correlation to improve the estimate. This method not only eliminates estimates that

fall outside the 3 pixel safety range, but it improves the accuracy of the estimates in

general. As an example, NCC reduced the average estimate error of the wrist point in

Figure 5.12(b) from 0.83 pixels (0" = 0.56) to 0.39 pixels (0" = 0.15). In situations where

one can anticipate relatively smooth motion such as the case of tracking the arm, the
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Figure 5.12: Prediction error, (a) point on the mouth, (b) wrist, (c) elbow.
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cross-correlation search space can be defined smaller than in cases with rapidly changing

motion as was experienced in tracking facial expressions. Although the addition of cross­

correlation matching to the prediction scheme increases the computational requirements

of the tracking algorithm, it is offset to a degree by the faster convergence rate of LSM

resulting from the improved estimate.

(a)

(b)

Figure 5.13: Selected frames from 2-D tracking experiments, (a) tracking facial expressions,

(b) arm tracking.

5.3 3-D Tracking

The 3-D tracking algorithm follows the same basic strategy of the 2-D algorithm, whereby

tracking is achieved by looping a matching process in two successive frames aided by an

appropriate prediction scheme. However, the 3-D tracking algorithm incorporates data

from multiple views and tracks the points in subsequent frames (temporally) as in the 2-D

case, as well as within the multiple views (spatially). The additional information provided
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Prediction of
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Figure 5.14: 3-D tracking algorithm flow diagram.
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by the calibrated multiple views improves tracking robustness and enables the recovery

of 3-D information. The following discussion focuses on the specific application to human

motion capture, however the tracking algorithm itself may be easily adapted to tracking

other points/objects.

Figure 5.14 displays the flow diagram of the 3-D tracking algorithm. The multi-view

video sequences were acquired by three synchronised Dragonfly IEEE-1394 cameras from

Point Grey Research [45], which produce images at 30 £ps with a resolution of 640x480

pixels. The calibration step discussed in Section 3.5 was performed before capturing the

motion data in order to estimate the camera parameters. The initialisation step requires

the 2-D pixel locations of the desired points in the first frame of one of the three views,

following which the correspondences in the other views and the 3-D model are generated

automatically. The prediction process is bound by the same constraint as in the 2-D

case (maximum 3 pixel error), however prediction is no longer made in 2-D, but in 3-D

with the aid of a model. Point tracking in successive frames involves finding temporal

correspondences in parallel for all three views and subsequently spatial correspondences in

the middle-left and middle-right image pairs. The tracking verification stage analyses the

spatial and temporal matching results. Provided the difference between the two locations

is within preset limits and the location of the point is verified by epipolar geometry,

tracking can be considered successful. After a successful completion of each tracking loop

(tracking in successive frames) the correspondences in the three views are used to update

the 3-D model (by triangulation, equation (3.29)) and the process repeats until the end of

the sequence.

5.3.1 Skeleton Model

The purpose of modelling the human body in human motion capture applications is to

assist the tracking process by aiding segmentation, prediction of future states, occlusion

or collision, or helping to recover pose. Various models and their function have already

been described in Chapter 2. In this work the model is used in the prediction stage of the

tracking process and subsequently in pose recovery. The tracking algorithm only requires
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prediction at the joint level which is effectively achieved by the skeleton model. There

is no need to model the flesh because segmentation of the subject from the background

is not required and neither is the estimation of the subject's physical dimensions for the

purpose of pose recovery by fitting the model into the body contour.

The complexity of the skeleton model is dictated by the desired output. The decoder of

the model-based coding scheme synthesises the subject's motion using an 18 joint, 31 DOF

model. As a result the analysis stage must be able to extract all 31 parameters from the

tracked data, which in turn necessitates for the human motion capture system to track

all 18 joints. Consequently the skeleton model is defined by the 18 joints required by the

pose estimation process in order to provide prediction for the corresponding points in the

three views.

Figure 5.15 shows the 3-D skeleton model used in the 3-D tracking algorithm and in the

pose extraction process which is dealt with in Chapter 6. The 18 points of articulation

(joints) are connected by 17 segments and correspond to the following anatomical joints:

• left and right wrists

• left and right elbows

• left and right shoulders

• left and right sternoclaviculars

• cervical vertebrae (4)

• thoracic vertebrae (6)

• lumbar vertebrae (3)

• sacroiliac

• left and right hips

• left and right knees

• left and right ankles
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Figure 5.15: 3-D skeleton model.

5.3.2 Initialisation
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The initialisation step of the 3-D tracking algorithm requires the same input from the

user as the 2-D tracking algorithm. In addition to the 2-D pixel locations in one view,

an automatic process follows which generates correspondences in the other views as well

the 3-D model in the first frame. To initialise the tracking algorithm for human motion

capture, 18 points that define the skeleton model are selected in the middle view, which

correspond to the locations indicated in Figure 5.16.

right sternoclavicular

right shoulder

lumbar vertebrae (3)
right elbow

sacroiliac

right wrist

right hip

right knee

right ankle

cervical vertebrae (4)

left sternoclavicular

left shoulder
thoracic vertebrae (6)

left elbow

left wrist

left hip

left knee

left ankle

Figure 5.16: Key point locations on the human body.
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Figure 5.17: Initialisation stage flow diagram.

Figure 5.17 shows the flow diagram of the steps that follow the manual point selection in

order to complete the initialisation stage. After the manual identification of the 18 joint
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locations in the middle view, corresponding epipolar lines are generated in the left and right

images in order to reduce the cross-correlation search space. Normalised cross-correlation

along the epipolar lines provides correspondence estimates for the 18 points in the two

images, which are subsequently refined by least squares matching. Before commencing

the tracking process the recovered correspondences are verified by epipolar geometry to

ensure that indeed they correspond to the locations defined in Figure 5.16.

The discussion of epipolar geometry thus far focused on reducing the search space by

the constraint arising from the geometry of two views. The introduction of a third view

increases the constraint even further, from a line to a point. Thus, a correspondence in two

views can predict the location of the correspondence in the third view at the intersection

of the epipolar lines (Figure 5.18). In an ideal situation, with a perfect camera model,

exact camera parameters and precise point correspondences, the epipolar lines in the left

view resulting from the points p and p' in the middle an right views respectively would

intersect at p", the location of the correspondence. Accordingly, the matched points in

the left and right views should lie at the intersections of the epipolar lines provided they

represent the same point in 3-D space. Of course, factors such as image noise, imperfect

camera model and errors associated with calibration and matching will introduce a level

of inaccuracy into the epipolar geometry. As a result the correspondences generally do not

line up exactly with the epipolar line intersection and the verification process must allow

for a certain distance from the epipolar lines. Once the data is verified, the 3-D locations

of the joints are triangulated and the automatic tracking of the 18 points in the 3 views

can commence.

Lefl View Middle View

Figure 5.18: Correspondence verification in a trinocular system with epipolar geometry.
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5.3.3 Prediction
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The prediction requirements of the 3-D tracking algorithm are the same as in the case of

2-D tracking (i.e. producing 2-D pixel locations of the desired points in the subsequent

frame within 3 pixels), with the only difference being that it must be done for three

images instead of one. The approach also makes use of the motion information recovered

in previous frames, with the initial estimate (when no a prior motion information is

available) being established by cross-correlation alone as was done in the 2-D problem.

The difference between the 2-D and 3-D case is in how a point's location in the subsequent

frame is predicted based on its velocity. The 3-D tracking algorithm apart from tracking

the selected locations in the 2-D image sequences also generates a model which represents

the motion in 3-D space. Associated with the 3-D motion of the model are the 3-D

velocity vectors of each joint. The 3-D velocity is used to predict the model's posture in

the subsequent frame, which is then projected into the left, middle and right image planes,

providing estimates for the 2-D pixellocation of all joints (Figure 5.19).

~'" ~,.,~---:-.......... ~::... ...~-::::
.r:l • ::1f.~:

n
--~

Left View Middle View Right View

Figure 5.19: Predicting 2-D locations in multiple images based on the estimated motion

of the 3-D model projected into the image planes.

Figure 5.20 shows the comparison between the 3-D velocity-based and the 2-D velocity­

based predictions for the wrist point in Figure 5.12(b)). In most instances, the accuracy
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of the predictions is similar and consequently, as a safeguard, the estimate improvement

by cro s-correlation is also performed. However the 3-D based prediction produces better

estimates at the extremes (where the direction of motion changes) which results in smaller

search areas for the cross-correlation improvement step.

Comparison of Prediction Error

Figure 5.20: Pixel error of the 2-D velocity-based and 3-D velocity-based prediction.

5.3.4 Tracking in Multiple Views

The key aspect of the 3-D tracking algorithm is tracking in multi-image space. The infor­

mation provided by multiple images allows the system to verify tracking results (discussed

in Section 5.3.5) and most importantly compute the 3-D locations of the tracked data in

each frame. The method of tracking corresponding point in multi-view sequences follows

the strategy by D'Apuzzo [46] and is embodied in Figure 5.21. The process begin with

known correspondences in frame i from the initialisation step or a previous tracking loop.

The prediction scheme from Section 5.3.3 estimates the location of the point in the subse­

quent frame for each view and LSM is performed to refine the estimates. In frame i+l,

the middle view is considered as the template and the left and right views as the search

images. Spatial matching is performed to find the correspondences in the left and right

views, which must produce comparable results to those of the temporal matching, in or­

der for the point to be considered tracked in the two frames of the multi-view sequence.
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The middle view is set as the "template view" because the resulting image pairs used in

spatial matching (middle-left and middle-right) will contain the smallest level of geomet­

ric distortion out of the possible image combinations. Hypothetically this should yield

the most reliable and accurate results from the given data. Accurate spatial matching

results are important as the accuracy of the spatial correspondences directly affects the

3-D reconstruction i.e. the generation of the model.

frame i

frame i+l

Left View

Temporal Matching

Spatial
Matching

Middle View

Spatial
Matching

Figure 5.21: Strategy for point tracking in multiple views.

5.3.5 Tracking Verification

Tracking verification analyses the temporal and spatial matching results and exploits the

epipolar geometry to establish whether the 2-D projections of the same 3-D point are

being tracked in all views. An example of good tracking in one view is shown in Fig­

ure 5.22(a), where the epipolar line intersection and the matching locations closely match

up. Without the spatial matching step the multi-view tracking problem essentially be­

comes a 2-D tracking problem performed in parallel for the three views. Spatial matching

helps to determine how closely the point is tracked in the three views. A large difference

between the temporal and spatial result is indicative of the 2-D tracking in the respective

view diverging from the desired location. The possible outcomes of the spatio-temporal

matching analysis are as follows:
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1. Distances between temporal/spatial locations in both left and right views are within

limits.

2. Distance between temporal/spatial locations in either the left or the right view is

not within limits.

3. Distances between temporal/spatial locations in both left and right views are not

within limits.

The limit of the distance between the two points is defined by the threshold value ds which

has been set to 0.15 pixels to allow for some disparity between the matching results. Case 1

represents the desired scenario where temporal tracking in all three views corresponds to

the same point. Case 2 indicates a deviation of the tracked point in the left or right

view respectively which needs to be adjusted before the following tracking loop. The

adjustment involves using the spatial matching result to define the template patch for the

subsequent temporal matching. In this way the point in the affected view is not allowed

to diverge from the other two views. A divergence in the middle view is indicated by a

spatia-temporal deviation in both the left and right views (case 3). The adjustment in

this situation becomes more complex since no correctional data exists (according to the

strategy depicted in Figure 5.14). Consequently the spatial matching process is repeated

in reverse (i.e. the left and right views become the templates and the correspondence is

found in the middle (search) view) and the better result (assessed by Rts , (TO, (Tx, (Ty) is

used for the adjustment.

Consistency of the temporal and spatial matching results may not always guarantee suc­

cessful tracking. When the image contains similar patterns, the matching process may

converge onto the wrong solution and still display good matching properties. These cases

are detected using epipolar geometry as introduced in Section 5.3.2. Figure 5.22(b) por­

trays the instance of incorrect matching convergence detected by epipolar geometry. When

the presence of two correspondences can be established in the image triplet the erroneous

location in the third view is corrected by repeating matching at the epipolar line inter­

section. On the other hand, if none of the tracked locations correspond to each other,

the whole multi-image matching loop is repeated with improved estimates and modified
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matching parameters.

(a)

(b)
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Figure 5.22: Verification of tracking results, temporal matching location is indicated by

a " x" , spatial matching location is indicated by a "+". (a) successful tracking, (b) error

detection by epipolar geometry.

5.3.6 Advantages of Multiple Views

Tracking in multiple views has distinct advantages over tracking in monocular sequences.

The benefits come in the form of increased robustness and the level of information associ­

ated with the output data. The 2-D tracking algorithm is solely dependant on temporal

matching to track points throughout a sequence. As long as temporal matching is ex­

hibiting good performance the tracking is considered successful and there is no additional

data to support or contradict that assumption. By using multiple views, the tracking

status may be assessed more thoroughly by combining the multi-view data as discussed

in Sections 5.3.4 and 5.3.5. In addition to the data verification, lost tracking in one view
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may be recovered through spatial matching from another view. Thus, if at least one view

successfully tracks a point in the subsequent frame, tracking may not necessarily fail as

would be the case in monocular sequences.

The second benefit of multiple views is particularly crucial to the application of the track­

ing algorithm to 3-D human pose recovery. The use of multiple calibrated views allows

unambiguous 3-D reconstruction. Recovery of 3-D data is essential if the application

requires motion information in 3-D space rather than just the 2-D image plane. The dif­

ference in output is illustrated by Figure 5.23 which displays several frames from the test

sequence (a) and the locations of the selected points in each frame resulting from 2-D

tracking (b) and 3-D tracking (c). Human motion capture systems that aim to extract

(a)

2-D Trajectory 3-D Trajectory
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Figure 5.23: Data output of the 2-D and 3-D tracking algorithm for an arm tracking

sequence, (a) frames from the input sequence, (b) 2-D output trajectories, (c) 3-D output

trajectories.

3-D pose from monocular sequences are faced with the effects of depth ambiguity, i.e.

a segment of length l in a 2-D image has two possible orientations in 3-D space. This
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becomes a trivial problem with the information recovered by the multi-view 3-D tracking

algorithm.

Associated with the 3-D trajectories of each point is also the velocity and acceleration

vector of the point at each time step which may be used in analysis of the particular

motion. In this work, the recovered velocity was used to adjust the 3-D trajectories of

the tracked point. The human motion capture system presented in this thesis samples the

motion of the subject at 30 Hz. At this frequency, the motion changes smoothly between

successive time steps and accordingly the velocity curve of each component (x, y, z) should

also be smooth for the duration of the sequence. However, the recovered velocity exhibits

some jitter. particularly in the z-component as depth is the most difficult dimension to

recover accurately. Figure 5.24 di plays the recovered z-component velocity of the wrist

from Figure 5.23(a) (solid grey curve) and the moothed result (black broken line). By

smoothing the noi y velocity data and updating the 3-D trajectories. the characteristics

of the captured human motion become more natural.
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Figure 5.24: Smoothing of the z-velocity component.



CHAPTER 5. TRACKING ALGORITHM

5.4 Summary
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The core idea of tracking points by finding correspondences in subsequent frames was

adopted from D'Apuzzo [46]. This idea was then adapted to the presented application in

order to track key location defining the complete human pose. Tests were incorporated

into the tracking algorithm to monitor the behaviour of the affine update parameters in

order to minimise user intervention. Furthermore, the implemented 3-D tracker performed

prediction in 3-D space rather than 2-D image space, and included procedures to recover

lost tracking in one or two views. Whereas D'Apuzzo [46] aimed to measure the subject's

surface, the work presented in this thesis focused on MPEG-4 pose recovery and conse­

quently tracking the complete surface was not necessary. The investigation of local surface

tracking benefits is proposed as future work in Chapter 8.

This chapter has presented the necessary components required to utilise least squares

matching for tracking purposes. The convergence radius of least squares matching is an

important characteristic because it determines the necessary precision of the prediction

scheme that generates estimates for the matching process. It has been shown that the

convergence radius is neither set nor equal in all directions. A conservative estimate

accuracy of 3 pixels was adopted for the prediction schemes of the implemented tracking

algorithms which is a commonly suggested guideline and has proven sufficient through

experimentation.

Least squares matching was first integrated into a 2-D tracking algorithm, which was then

extended to a 3-D tracking algorithm by incorporating multiple views and a 3-D model.

In both cases the prediction schemes utilised previously recovered motion information to

predict the location of selected points in subsequent frames. For 2-D tracking the point's

velocity in the image plane was used. In the 3-D case, 3-D velocity of the joints predicted

the posture of the skeleton model, which was then projected into the three image planes to

generate 2-D estimates of future states. In most cases both prediction schemes provided

estimates within the 3 pixel error margin, however in instances where the direction of

motion changed for fast moving points the error margin was exceeded. For this reason

the velocity-based prediction was improved by normalised cross-correlation in a reduced
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search space. Prediction based on 3-D velocity displayed smaller errors at the extremities,

resulting in smaller cross-correlation search space.

The 2-D tracking algorithm tracks user selected points throughout the monocular sequence

to produce the pixel trajectories of the tracked points. The 3-D tracking algorithm uses

multiple views to track points both temporally and spatially. Temporal and spatial match­

ing together with epipolar geometry is used to verify tracking results in each frame as well

as recover lost tracks in one or two views thereby adding a degree of robustness when com­

pared to the 2-D tracking algorithm. When tracking data is verified, the 3-D locations of

the points are triangulated and the skeleton model is updated. Upon completion of the

tracking process the user is presented with 3-D trajectories of the tracked points. The

subject's motion is being sampled at 30 Hz and consequently the recovered motion should

be smooth. By this assumption, the recovered velocity of the tracked points is smoothed

in order to adjust the output 3-D data.

This chapter has presented the part of the model-based coding system that extracts perti­

nent information from the input images. Separating the problem into modules, the input

to the human motion capture module is a multi-view sequence of images captured by cal­

ibrated cameras and the output consists of the 3-D locations of the joints in each frame.

Chapter 6 discuses the following module which extracts pose parameters from the 3-D

data. These parameters constitute the information sent over the communication channel

which is used by the decoder at the receiver end to rebuild the skeleton model in each

frame and consequently reconstruct the subject's motion.



Chapter 6

Virtual Humanoid Animation with

MPEG-4

This chapter represents the crossover from the computer vision aspect of the research to

the computer animation domain. At this point in the model-based coding scheme the

3-D human pose has been generated from the input video sequence by the human motion

capture component. To complete the analysis task performed at the encoder, the model

is parameterised, with the extracted parameters comprising the information sent over the

communication link. At the receiver the decoder synthesises the output by transforming

the model into the pose described by the incoming parameters. By performing this process

at the frequency defined by the image sequence frame rate, the output model is animated

and human motion reconstruction is achieved.

This chapter introduces the pose parameters, the extraction process from the tracked

3-D data and the model used for the synthesis of the output. The pose parameters have

been defined with compliance to the ISO/lEe 14496 standard developed by the Moving

Pictures Experts Group (MPEG) which is better known as MPEG-4. MPEG-4 has been

designed with low bit-rate applications in mind and provides specific tools for model-based

coding and animation of humans, as well as efficient coding schemes for the compression

of the extracted parameters. The scope of this work deals with the animation aspect of

115
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the MPEG-4 framework, which describes the orientation of individual limbs with respect

to each other and does not deal with the modelling of the human body or compression of

the transmitted parameters.

6.1 MPEG-4 Overview

The MPEG-4 standard is not a direct improvement of the MPEG-1 or MPEG-2 coding

standards. MPEG-2 generates the content from various sources (video, text etc.) and

composes it into a plane of pixels which are then encoded and transmitted. MPEG-2 is

a static presentation engine; graphics and text may be added to the content, but cannot

be deleted. MPEG-4 on the other hand is dynamic. Different objects are encoded and

transmitted separately and on the other side decoded into their own elementary streams.

The scene composition is performed after decoding instead of before encoding as done in

MPEG-2. In this way the interactivity of MPEG-4 is introduced, as well as the coding

efficiency because each object is encoded with its own optimal coding scheme.

MPEG-4 adopts an object orientated approach where different media (e.g. audio, video,

text, animation, pictures, 2-D and 3-D) are treated as "media objects" that can be of

natural or synthetic origin. This allows new functionality such as video manipulation,

scalable video encoding, synthetic and natural video coding, 3-D object compression or face

and body animation coding, while improving already available functionalities like coding

efficiency and error resilience by using the most adequate coding technology for each type

of data [141]. With the new aspects of MPEG-4 comes a diverse range of applications

of which video telephony, video conferencing, remote classroom and web based virtual

assistants are of particular interest to the concept of model-based video coding of humans.

The object-based scene generation constructs rich audiovisual scenes from the media ob­

jects, allowing more efficient and higher quality representation of media content [142].

Figure 6.1 displays an example of an MPEG-4 scene made up of various media objects

that are coded, transmitted and manipulated independently. Objects within the scene

can be grouped to form "complex media objects" which becomes beneficial when the
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user wants to manipulate related objects (e.g. grouping of the visual and audio aspects

associated with the dog).

2-D background
scene

j3
COOCdinale

system
x

z

Figure 6.1: Example of an MPEG-4 scene.

The composition of the final scene is performed at the decoder using the scene description

information. The dynamically changing scene description coding format within MPEG-4

is known as Binary Format for Scenes or BIFS. The description of the scene follows a

hierarchical structure represented by the scene graph, where each node is a scene object.

An example of a scene graph corresponding to Figure 6.1 is shown in Figure 6.2. The

BIFS commands are not only able to add or delete objects from scenes, but also to change

the object's visual or acoustic properties without changing the object itself. Thus it is

possible to interact with objects within the scene and users may modify the scenes or even

alter the behaviour of the separate objects.
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Figure 6.2: Example of a scene graph corresponding to Figure 6.1.
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6.2 MPEG-4 Human Body Animation Tools
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The topic of animating virtual characters has been addressed by the Face and Body An­

imation (FBA) subgroup of the Synthetic and Natural Coding Group (SNHC) [143] of

MPEG. The MPEG-4 standard provides a complete solution by specifying the character

modelling representation, the animation parameter representation and compression. Ver­

sion 1 of the standard only addressed the animation of the face, with body specifications

being added in the second version. The face and body objects are incorporated into the

standard by defining specific nodes in the scene graph, the face and body nodes, and a

unique dedicated stream, the Face and Body Animation (FBA) stream. The FBA object

is defined by parameters capable of animating both realistic and cartoon-like humanoid

models, providing tools for model-based coding of video sequences containing human faces

and bodies. Since the FBA framework is limited to human-like characters, the SNHC

group has adopted the Bone-based Animation (BBA) framework [144] which allows the

realistic animation of any articulated virtual character whilst still achieving low bit-rate

transmission [145].

If a virtual humanoid (e.g. the one synthesised by the presented model-based coding

system) is added into the scene in Figure 6.1, the Body Object is represented by the

FBA scene graph [146]. The FBA scene graph (Figure 6.3) has a Body node as its root

with three children, the Body Definition Parameters (BDP) node, the Body Animation

Parameters (BAP) node and the renderedBody node. These nodes are associated with

anatomical segments and edges defining the relationship between them.

Body

bodySegment
ConnectionHint

BAP

Figure 6.3: FBA scene graph.
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BDPs control the intrinsic properties of the segment, its geometry, surface local topology

and texture. These parameters are actor! specific, and allow the decoder to create an

FBA model with specified shape and texture. BAPs define the extrinsic properties of a

segment, i.e. its 3-D pose with respect to a reference frame attached to its parent. Unlike

BDPs, BAPs are meant to be generic, so when correctly interpreted, a particular set of

BAPs should produce similar motion/pose results when applied to different avatar models.

Typically, the BDPs need to be transmitted only once, thereafter only BAPs are required

to animate the model in each frame. Modelling and animating a model using only BDPs

and BAPs may produce undesirable effects in the form of broken mesh at the joint level

between two segments [147]. To deal with the realistic 3-D deformations induced by ani­

mation, Body Animation Tables (BATs) are used. BATs specify vertices of the 3-D model

that undergo non-rigid motion, and displacement for each vertex is defined as a function of

BAPs. MPEG-4 does not limit the range of motion of the segments defined by their BAPs.

As a result, unrealistic motion is possible which may be an advantage in gaming applica­

tions, but may require extra effort when realistic simulations are desired. The MPEG-4

standard deals with the efficient coding of animation parameters, and does not standardise

a specific model or a method of extracting the animation parameters. The standard does

provide two methods for the encoding of the animation parameters; a prediction-based

method and a DCT-based method. A comparison between these two methods was done

by Pretaux et al. [148] [149]. The DCT-based method is more appropriate when dealing

with a wide range of bit-rates, while the predictive method is recommended for applica­

tions requiring nearly lossless compression [150]. Typical bit-rates for body animation are

10 to 30 kbps [151], although Capin et al. [36] report that good quality animations of an

FBA object were achieved at 4.4 kbps, with 1 kbps at a lower quality.

6.3 MPEG-4 Body Animation Parameters

The MPEG-4 standard consists of several parts. The FBA object is dealt with in Part 1:

Systems [152] and Part 2: Visual [42]. Part 1: Systems specifies the representation and

lIn computer graphics the subject that is being modelled is often referred to as the actor i.e. in this

work" actor" refers to the subject from the input video sequence.
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coding of the geometry of the body (BDPs). The animation parameters that have been

utilised in the presented system are specified in Part 2: Visual.

The MPEG-4 avatar is defined as a segmented virtual character using the H-Anim [39J

nodes and hierarchy. The BAP parameters comprise joint angles connecting the different

body parts, with joints including toe, ankle, knee, hip, spine (C1-C7, T1-T12, L1-L5),

shoulder, clavicle, elbow, wrist, and the hand fingers. Each movement may be described by

up to 3 separate rotations which together with 3 translation BAPs (tr-vertical, trlateral,

tr-frontal), and 110 BAPs reserved for extensions bring the total to 296 BAPs defined

for the animation of the virtual character. The translation parameters are defined in

millimetres and the rotation unit (BAPU) as 1r/10-5 radians. The angular values are

specified with respect to their local 3-D coordinate system, whose origin lies at the gravity

centre of the joint common to the segment and its parent. The coordinate system is

fixed to and moves with the parent body part i.e. the rotation normals are not fixed

with respect to the body or world coordinate system. The joint rotations are restricted

to the anatomical planes of the human body defined in Figure 6.4(a) with the exception

of twisting and torsion movements. The two most common joint movements, flexion and

abduction, are illustrated in Figures 6.4(b) and 6.4(c) respectively for the left shoulder

joint.

The independence of the BAP description and the generic 3-D model means that a model

does not need to be transmitted in order to animate the avatar. If no BDPs are trans­

mitted, the decoder uses the default body model for subsequent animation. Animation is

performed by accessing the H-Anim joints and altering their angle values to match those of

the BAP stream. Any BAP value can be null, in which case the null component is replaced

by the corresponding default value when the body is rendered at the decoder. In order to

further decrease the bandwidth requirements, the joints comprising the body are grouped

into 24 different categories with respect to their interrelationships and importance. These

groups describe a section of the body in various degrees of model complexity (e.g. simple

spine to complex spine). In this way, if the subject is only waving his right arm, only the

BAPs corresponding to the right arm group need to be transmitted.
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(a) (b) (c)

Figure 6.4: (a) Anatomical rotation planes, (b) shoulder rotation in the sagital plane

(flexion), (c) shoulder rotation in the coronal plane (abduction).

The default joint centre locations suggested by MPEG-4 produce a default skeleton as

depicted in Figure 6.5. The default posture is defined as:

• Standing posture

• Feet pointing in the front direction

• The two arms placed on the side of the body

• Palms facing inwards

• Hands pointing down, with thumb at 45 degrees inclination

The default posture implies that all BAPs have default values o. Any subsequent rotation

is assumed positive in the counter-clockwise direction with respect to the rotation nor-

mal. The default MPEG-4 skeleton in Figure 6.5 defined by the suggested joint centres

represents an elaborate model. MPEG-4 however does not force applications to use such

complex models and typically simpler variations are implemented to suit the purpose or

to balance out computational speed with realism. In the scope of this work, the function

of the model is to represent the extracted pose of a subject in each frame of the video

sequence. Realistic modelling of the subject is not necessary as the skeleton figure ad­

equately characterises the performed motion. Although the model used in tracking and
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Figure 6.5: Suggested joint centre locations of the complete MPEG-4 skeleton showing

front view, rotated view and close-up of the hand.

the model used in the synthesis process represent two separate problems, in the presented

system they are very closely related. Since the tracking model needs to predict the loca­

tions of the joints that define the pose of the synthesised model, both the model in the

human motion capture component and the model in the model-based coding system are

described by the same joints which have been established in Chapter 5.

(a) (b)

Figure 6.6: Model-based coding human model, a) front view, b) rotated view.
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The default model present at the encoder and decoder of the model-based coding scheme

is a simplified 31 DOF version of the MPEG-4 skeleton, depicted in Figure 6.6. Each

joint has up to three BAPs associated with it representing the corresponding DOF. At

the top of the hierarchy lies the HumanoidRoot. The HumanoidRoot is located near the

sacroiliac, however it is not a joint; it is the link between the scene coordinate system

and the local coordinate systems of skeleton i.e. it defines the location and orientation of

the virtual character in the MPEG-4 scene. The 31 BAPs used to describe the pose of

the skeleton model in Figure 6.6 are summarised in Table 5. Each BAP has a unique ID

defined by the MPEG-4 standard that identifies the respective parameter. The angular

values of the animation parameters indicate the rotation about a specified normal with

respect to the default position of the affected anatomical segment. The rotation normals

are standardised by [42] and an example pertaining to the right arm is given in Figure 6.7.

cclavJOlate

r_clav_abducl
r_shoulder_abduct

(a) (b)

Figure 6.7: Rotation normals of the right arm, a) front view, b) side view.
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Table 6.1: BAPs associated with the joints of the skeleton model

joint name DOF BAP ID BAP name movement restriction

181 HumanoidRooLtr_vertical along the y-axis

HumanoidRoot 3 182 HumanoidRooLtrJateral along the x-axis

183 HumanoidRoot_trJrontal along the z-axis

1 sacroiliac_tilt sagital plane

sacroiliac 3 2 sacroiliac_torsion body vertical axis

3 sacroiliac-Ioll coronal plane

4 LhipJlexion sagital plane

Lhip 3 6 lllip_abduct coronal plane

8 lllip_twisting along thigh axis

Lknee 1 10 LkneeJlexion sagital plane

l.-ankle 0 nla nla nla
5 rllipJlexion sagital plane

rllip 3 7 rllip_abduct coronal plane

9 r_hip_twisting along thigh axis

rJmee 1 11 rJmeeJlexion sagital plane

Lankle 0 nla nla nla
114 vl3-Ioll coronal plane

vl3 2 116 vl3_tilt sagital plane

87 vt6-Ioll coronal plane

vt6 3 88 vt6_torsion body vertical axis

89 vt6_tilt sagital plane

vc4 0 nla nla nla
24 L.sternoclavicular_abduct coronal plane

L.sternoclavicular 2 26 L.sternoclavicular-Iotate transverse plane

32 L.shoulderJlexion sagital plane

Lshoulder 3 34 L.shoulder_abduct coronal plane

36 L.shoulder_twisting along forearm axis

Lelbow 1 38 LelbowJlexion sagital plane

Lwrist 0 nla nla nla
25 r...sternoclavicular_abduct coronal plane

r...sternoclavicular 2 27 r...sternoclavicular-Iotate transverse plane

33 r...shoulderJlexion sagital plane

r...shoulder 3 35 r...shoulder.-abduct coronal plane

37 r...shoulder_twisting along forearm axis

Lelbow 1 39 r_elbowJlexion sagital plane

Lwrist 0 nla nla nla

124
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The 31 BAPs from Table 6.1 are extracted from the tracked 3-D data as the final step of

the analysis process performed by the encoder. The tracked 3-D model provides the 3-D

locations of the joints, inherently defining the model segments and the segment lengths.

Following the H-Anim specification [39], the virtual body consists of segments connected

by joints arranged in a hierarchical fashion, where each joint node may contain other joint

nodes. The human motion capture data does not provide any information regarding the

rotation normals of each joint. Since the normals are attached to and move with the body

parts, their directions are unknown. As a result, BAP extraction is performed one joint

at a time starting at the top of the joint hierarchy shown in Figure 6.8.

I skeletonJoot I
Ir ~

I sacroiliac_tilt I I vB_roll

I saccoiliac_tocsion I I vB_tilt

I 1 I
sacroiliacJoll

I vl6_roll

I I vl6_torsion

~ ~
I

I c_hip_flexion I_hip_flexion
vl6_tilt

I
I chip_abduct I_hip_abduct

~ ~
I c_hip_twisting I_hip_twisting I 131av_abduct c31av_abduct

I

I c_knee_flexion I I_knee_flexion I l_clavJotate c3!avJotate
I

II_shoulder_flexion r_shouldec_flexion

II_shouldec_abduct cshouldec_abduct

II_shouldec_twisting c_shoulder_twisting

I

I I_elbow_flexion c_elbow_flexion

Figure 6.8: Skeleton model topology.

The pose parameter extraction process assumes that the HumanoidRoot (skeleton-root)
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undergoes only translation within the scene. This is a reasonable assumption considering

the human motion capture system cannot handle occlusion and therefore situations when

the body rotates significantly in the scene causing joints to disappear are eluded. Thus the

rotation normals of the sacroiliac and lumbar vertebrae (3) are aligned with those of the

default posture and the respective BAPs can be recovered by finding the angle between the

current segment and its default orientation. Once known, the inverse equivalent compound

rotation is applied to all the dependant joints, essentially transforming the children joint(s)

to their default locations. In this way, the default rotation normals of the children joints

may be used, and the BAP extraction process may propagate down the articulated chain.

The flow diagram of the pose extraction process is shown in Figure 6.9. The required

data comes from the 3-D model of the subject and the skeleton model in the default

posture scaled to fit the segment dimensions of the actor. Ideally the scaled default model

would remain the same throughout the sequence, however due to errors introduced by the

calibration, matching and reconstruction processes the segment lengths do vary within the

sequence and consequently the default model must be generated in each frame.

Scaled Default
Skeleton Model

Joint =Top of Hierarchical Tree

Apply Inverse
Rotation to

Dependant Joints

Figure 6.9: Pose parameter extraction flow diagram.
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Recovering the rotation of joint's with only one DOF is a straight forward task which

entails finding the angle between the default position of the segment represented by the

vector Sd and the rotated segment in the current frame Se' The angle is found by utilising

the dot product between the two vectors:

(6.1)

To give the angle a by:

a = cos-
1 (1::1-1::1) (6.2)

Joints with multiple DOFs that are free to move both in the sagital and the coronal planes

require an intermediate step which recovers the vector between the successive rotations

before the equation (6.2) can be used to calculate the respective BAPs. This is illustrated

in Figure 6.10, which shows the rotation of the right shoulder. The segment is defined by

the shoulder and the elbow joints. In order to move the segment to its default location,

it must first rotated from the elbow position E, to the intermediate position Ei' and then

from Ei to the default location Ed. The resultant BAPs are the shoulder flexion and

shoulder abduct. The flexion is the angle between the vectors SE and SEi projected into

the sagital plane, while the abduction is represented by the angle between SEd and SEi

projected into the coronal plane.

(a)

s

I10
I

I
I

I

E;'-----

(b)

E

s

Coronal Plane

"-
(8) "-

"-
"-
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"­
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~e. " E;

(c)

Figure 6.10: BAP extraction for joints with multiple DOF, (a) compound rotation of

the right shoulder, (b) recovery of r...shoulderJiexion, (c) recovery of r...shoulder-abduct.

Rotation normals are indicated as either going into, or out of the page.
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The BAP extraction process is illustrated in Figure 6.11 and Figure 6.12 using the right

arm to represent a simple articulated chain, with the right sternoclavicular being the

root at the top of the joint hierarchy. The pose data i generated by transforming the

default pose of the right arm by some known BAPs (Figure 6.11). The process begins

at the sternoclavicular joint which together with the shoulder joint define the segment

that has been rotated by the r-clav_abduct and r-clav-rotate BAPs. A close-up of the

two joints together with their rotation normals is shown in Figure 6.12(a) left. Once the

two pose parameters are recovered, the inverse rotation i applied at the sternoclavicular

which rotates the segment (corresponding to the collar bone) into its default position

Figure 6.12(a) right. The inverse rotation propagates down the articulated chain, rotating

the connected segments as well as the normals of rotation attached to each joint. The

same process is then applied at the shoulder joint Figure 6.12(b) and the elbow joint

Figure 6.12(c). The shoulder BAP r-shoulder-twisting can only be recovered once the

flexion and abduct are known and the elbow has been rotated into its default position.

Its rotation normal is along the upper arm and consequently is unknown at the time the

shoulder is being processed. As the motion of the hands is not tracked, there are no

parameters associated with the wrist which merely acts as an end-point that defines the

forearm segment.

~
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: z~~
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Pose Parameters
r clav_abduct =-3
r cIav rOlate =15

cshoulder flexion =20
r_shoulder abduct =-35
r_shoulder twisting =45

r31bow flexion =55

~
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Figure 6.11: Generation of a synthetic pose of the right arm. On the left is the right arm

in the default position, in the middle are the applied pose parameters. on the right is the

transformed arm (solid line) as well as the default pose (dotted line).
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E"1racted Parameters
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Figure 6.12: Steps 1 (a), 2 (b) and 3 (c) of the BAP extraction process for the right arm.

A close-up of the current joint and segment under examination is shown on the left, the

recovered BAPs are given in the middle. and the effect of the inverse rotation is shown on

the right. Default pos ure of the arm is indicated by dotted lines.



CHAPTER 6. VIRTUAL HUMANOID ANIMATION WITH MPEG-4

6.5 Summary

130

This chapter has discussed the final aspect of the model-based coding scheme presented

in this thesis, the definition and extraction of the parameters describing the pose of the

3-D skeleton model. The pose parameters have been defined such that they comply with

the MPEG-4 standard. The MPEG-4 standard is a natural choice for this research as it

has been designed with low bit-rate applications in mind and it defines specific tools for

the modelling and animation of virtual humanoids. The virtual character is represented

in the MPEG-4 scene by the FBA scene graph which contains nodes that are able to

change the physical characteristics of the model (i.e. customise it to a particular actor)

and to animate it. When the same animation parameters are applied to different MPEG-4

compliant models they should generate reasonably similar motion regardless of whether

they are applied to photorealistic or cartoon like models. The model used in this work

is a 31 DOF simplification of the MPEG-4 skeleton. These 31 parameters are extracted

from the 3-D data coming from the human motion capture system. The BAP extraction is

performed sequentially for each joint starting at the root of the skeleton. The final result

is a set of pose parameters that describe the posture of a subject in the image sequence

at a given frame. Low bit rates are achieved because only 31 parameters need to be sent

over a channel in order to reconstruct the motion at the receiver.



Chapter 7

Results and Discussion

In this chapter the performance of the motion reconstruction system is evaluated through

a series of experiments. The objective of the system is to recreate human motion with

enough precision to be convincing to most human observers. A quantitative evaluation of

a motion reconstruction system requires human motion ground truth data. The ground

truth data is typically acquired by either a commercial system [153] [154] [155] [156] such

as the ones described in Chapter 2, or by generating synthetic sequences using a human

model rendering package [80] [157] such as Curious Labs Poser [158], that allows the user

to model and animate a virtual character. Often neither of these options is available

to researchers who typically employ "heuristic visual inspection to judge their results"

[157]. There was no ground truth available to test the presented system. To assess and

compare the performance of the system to previous research, the various components were

considered separately. Their accuracy evaluated and the effects of the errors on the overall

system examined.

Figure 7.1 reveals the error propagation within the complete system. Starting at the

output of the system and working backwards, the accuracy of the reconstructed motion

is dependant on the precision of the extracted pose parameters. The pose parameters

are extracted from the 3-D motion data and consequently any errors in the tracked data

are translated to the output. The ability of the pose parameters to convey the motion

131
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information is also dependant on the modelling of the human body and how the model

fits into the data. However the focus of attention is on the 3-D tracking system and the

precision with which points are tracked in 3-D space. The success of the overall system

rests on the ability to track points in video sequences and the tracking precision offers

a quantitative comparison to previous research. The tracking process relies on accurate

image matching to establish temporal and spatial correspondences. It is affected both

directly and indirectly by calibration errors through imprecise epipolar geometry and

inaccurate 3-D reconstruction of the model respectively.

Calibration

Image Matching

Pose Parameter
Extraction

PoselMotion
Reconstruction

Figure 7.1: Error propagation in the complete system.

Section 7.1 provides a brief discussion of the calibration results which are given for the se­

quence that was used to test the system's motion reconstruction performance. Section 7.2

evaluates the performance of least squares matching under various conditions and com­

pares the results to normalised cross-correlation. Section 7.3 demonstrates the system's

ability to accurately reconstruct 3-D measurements and highlights the necessity of sub­

pixel accuracy in 2-D correspondence generation for the triangulation process. Section 7.4

evaluates the performance of the 3-D tracking algorithm. Once again sub-pixel matching

accuracy is shown to be necessary for successful tracking, and tracking failure of a coarse

matching technique is illustrated using normalised cross-correlation. The limits of the

tracking algorithm are discussed and results for full body tracking are given. Section 7.5
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presents a visual comparison between the tracked and reconstructed model. Extracted

parameters for the whole test sequence are shown for a selected joint and a complete set

of animation parameters describing a specific pose is given. Performance results of the

complete system are shown in Section 7.6.

7.1 Camera Calibration

The calibration results presented in Table 7.1 and Table 7.2 are for the "walking" se­

quence which was used to demonstrate the performance of the complete system. Both the

intrinsic (Table 7.1) and extrinsic (Table 7.2) parameters show typical calibration values

acquired for the testing sequences throughout the course of the research. The calibration

was performed in two steps, first each camera was calibrated separately to generate the

intrinsic parameters, and then the extrinsic parameters of the stereo setup were computed.

The focal length is expressed in units of horizontal and vertical pixels Ix, Iy which is com­

puted by I/ SX and I /Sy respectively. The relative rotation between two views is given

in terms of a three parameter vector. The rotation matrix is obtained by the Rodrigues'

rotation formula [159] described in Appendix B. Although CCD cameras are usually ca­

pable of spatial accuracy greater than 1/50 pixel, due to various error sources affecting

image formation, this accuracy is not easily attained [160]. The accuracy in camera cal­

ibration is often quantified by how well it can measure the 3-D world. There are two

basic approaches to quantifying the calibration error, either the 3-D points are projected

onto the image plane and the pixel distance to the corresponding 2-D point is measured

(forward-projection), or the 2-D points are back-projected into space to measure the dis­

tance between the 3-D points. Zhang's calibration method [112] [114] minimises the pixel

error criterion to estimate the camera parameters. Although this does not guarantee the

accuracy of the physical camera parameters, the composite effect provides satisfactorily

accurate 3-D measurements, which is the main requirement of most computer vision ap­

plications. The reader is referred to [161] for an analysis and discussion of physical camera

parameter accuracies. The planar pattern calibration process compared to more elaborate

methods such as Tsai [162] produces relatively high accuracy with trivial effort [163]. The
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calibration results for the setup used to capture test sequences in this evaluation generated

acceptable accuracy, with the pixel error below the typical precision of 0.2 pixels [164].

Table 7.1: Intrinsic camera parameters of the multi-view setup

Left Camera Middle Camera Right Camera

parameter value uncertainty value uncertainty value uncertainty

fx 545.306 1.580 542.878 1.339 542.417 1.336

fy 545.093 1.557 542.518 1.387 541.438 1.329

Ox 321.036 2.578 355.193 2.415 305.984 2.347

Oy 202.697 1.803 247.899 1.805 226.293 1.664

pixel error [0.13900.1265] [0.13300.1254] [0.11840.1271]

Table 7.2: Extrinsic camera parameters of the multi-view setup

Left Camera with respect to Middle Camera

parameter measurement uncertainty

translation (mm) [-98.5670 -35.932710.1271] [0.17620.14610.1122]

rotation [-0.0457 0.0635 -0.0025] [0.0003 0.0003 0.0002]

Right Camera with respect to Middle Camera

parameter measurement uncertainty

translation (mm) [103.8563 -27.4050 3.7135] [0.15700.13190.1021]

rotation [-0.0293 -0.0400 -0.0212] [0.0002 0.0003 0.0002]

Right Camera with respect to Left Camera

parameter

translation (mm)

rotation

measurement

[203.6011 6.9546 4.279]

[0.0157 -0.1040 -0.0168]

uncertainty

[0.2409 0.1687 0.1509]

[0.0003 0.0004 0.0002]
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Image matching is the core of the presented human motion capture system. The track­

ing algorithm relies on LSM to find temporal and spatial correspondences necessary for

tracking points in multi-view image sequences. The following experiments demonstrate

the ability of LSM to find accurate correspondences despite large image differences caused

by geometric distortion, radiometric distortion and noise.

The test images used in the experiments are displayed in Figure 7.2. The template image

(Figure 7.2 (a)) is a large patch taken from a frame of the "walking" sequence in order for

the image data to be representative of the sequences used in motion tracking. The search

images were generated from the template by known transforms, thus providing ground

truth data for the assessment of matching results. Search images 1-4 (Figure 7.2(b)) have

been rotated by 2.5, 5, 15 and 20 degrees respectively. Images 5 and 6 (Figure 7.2(c))

were generated by scaling search image 3 with scaling factors of 0.9 and 1.25 respectively.

Zero mean Gaussian noise with variances of 0.00125, 0.0025 and 0.005 was added to image

2, to produce images 7, 8 and 9 respectively (Figure 7.2(d)). Image 10 has been sheared

horizontally and image 11 has been rotated, corrupted by noise (zero mean Gaussian,

variance = 0.002) and its brightness and contrast were also modified (Figure 7.2(e)). This

set of test images encompasses the various image distortions caused by inter-frame mo­

tion, different viewpoint and random noise encountered in the video sequences. The only

deviation from real data is that the images represent perfectly planar surfaces, although

this aspect is offset to a large degree by exaggerating the image differences in comparison

to those found between the three views or in subsequent frames throughout this work.

The matching tests were performed using both least squares matching and normalised

cross-correlation for comparison purposes. To produce more accurate correspondence es­

timates with NCC, equations 4.4 and 4.5 were used to generate sub-pixel locations. The

summarised results in Table 7.3 emphasize the need for true sub-pixel accuracy when exact

correspondences are required. The term "true sub-pixel accuracy" refers to a method that

is able to account for the various causes of differences between two images rather than

acquiring sub-pixellocation through interpolation. NCC is only able to produce good re-
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Figure 7.2: Images used in matching experiments. (a) Template Image, (b) Search Images

1, 2, 3, 4 (rotated), (c) Search Images 5, 6 (rotated, scaled), (d) Search Images 7, 8, 9

(rotated, scaled, zero mean Gaussian noise), (e) Search Images 10 (horizontal shear), 11

(rotated, brightness & contrast modified, zero mean Gaussian noise).
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suits when the difference between the conjugate images is small as was the case for search

images 1, 2 and 10. Under these conditions, the resulting surface of the cross-correlation

coefficient over the search space is characterised by a dominant peak (Figure 7.3(a)). The

remaining search images are too distorted to be able to locate a correspondence purely

based on a similarity measure, because the cross-correlation coefficient surface becomes

flattened disguising the correct location among a number of possible candidate peaks (Fig­

ure 7.3(b)).
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Figure 7.3: Surface of the cross-correlation coefficient over the search space for (a) good

correlation (search image 1), (b) bad correlation (search image 11).

Least squares matching on the other hand produced accurate results in all situations. The

affine transform (4.9) accounts for the geometric differences between the template and

search image. The results for the rotated set of images (images 1-4) display a consistent

pixel error, with the increasing rotation largely affecting the number of iterations required

to satisfy the convergence criteria (which has been set in these tests at 0.01 for shifts and

0.02 for scales). Images 5 and 6 tested the ability of LSM to recover scaling differences.

The outcome interestingly indicates that LSM is able to recover a scale increase more

easily than a scale reduction. This could be attributed to the fact that in scale reduction

image data is lost and conversely when the patch is enlarged, additional data is created.

This phenomenon has a significant effect on human motion tracking in situations when

the subject moves away from the cameras and is revisited in Section 7.4. The addition of a

significant level of noise to the search image intuitively has negative effects on the precision
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of the result. However, because the A matrix (4.15) is calculated from the average of the

search and template patch (as described in Section 4.3.2) the effects of noise are reduced,

and accurate results are obtained even with a high degree of image corruption experienced

by search image 9. In addition to rotation and noise, the radiometric property of image

11 was also modified. By using TO and Tl, the additive and multiplicative coefficients

of radiometric correction introduced in 4.10, LSM is able to correct the brightness and

contrast differences and still produce a location within 1/20 of a pixel.

Table 7.3: Comparison of least squares matching and normalised cross-correlation match-

ing results

LSM NCC

search image pixel error Rts iterations pixel error Rts

1 0.012 0.991 5 0.057 0.947

2 0.018 0.994 5 0.178 0.812

3 0.007 0.993 8 0.467 0.273

4 0.016 0.993 10 6.187 0.274

5 0.033 0.986 10 17.403 0.268

6 0.001 0.993 8 16.689 0.252

7 0.018 0.981 7 0.700 0.276

8 0.023 0.971 7 0.453 0.258

9 0.050 0.946 7 2.221 0.259

10 0.001 0.999 5 0.160 0.905

11 0.035 0.965 7 1.837 0.262

The results presented in this section establish the sub-pixel accuracy of LSM under various

situations. The ability of LSM to account for geometric and radiometric distortion as well

as to reduce the effects of noise makes it a suitable method for generating accurate corre-

spondences. The significance of accurate correspondences is demonstrated in Section 7.3
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and Section 7.4.

7.3 3-D Reconstruction
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3-D reconstruction is the process of estimating the shape and position of 3-D objects from

their images. As described in Chapter 3, a point's location in 3-D space is established at

the intersection of the rays originating at the COP of the two cameras and passing through

the 2-D correspondence in the respective image plane. By performing camera calibration

the intersection of the two rays in 3-D space may be found by simple triangulation using

the recovered intrinsic and extrinsic camera parameters. However, due to incomplete

modelling of the image formation process, calibration and 2-D correspondence inaccuracies,

an uncertainty is introduced into the 3-D reconstruction process. According to Hartley

and Zissermann [165] the uncertainty of reconstruction is dependant on the angle between

the two rays. As the rays become more parallel the 3-D points are less precisely localised.

The shape of the uncertainty region is shown in Figure 7.4. The centralised camera setup

that aids the matching process by minimising spatial distortion between the respective

views, in this case hinders the reconstruction process by introducing a greater uncertainty.

Figure 7.4: Regions of reconstruction uncertainty depending on angle between rays.

The analysis of the reconstruction uncertainty focused on the effects of 2-D correspondence

error since Zhang's calibration method [114] has been shown to produce results with high

accuracy [163]. Observing the regions of reconstruction uncertainty in Figure 7.4, it is

evident that the greatest challenge is to recover depth (z-component). Depth estimation
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is a diffie-ult task bE'cause the images on heir own provide no information regarding depth.

which needs to be inferred from the 2-D data. Since the recovery of thE' "lost" dimension

in the data capture process is a vital aspect of 3-D human motion capture, the effects of

correspondencE' error wa' investigated to determine the necessary accuracy of the match-

ing procE'Ss. In the experiment. an arbitrary location on a subject was tracked by LSYI

as he moved away from the cameras. The point's 3-D location was triangulated in every

frame and the resulting 3-D trajectory was considered as ground truth. A matching error

of 0.5. 1 and 1.5 pixels was introduced to the tracked 2-D locations of one of the views.

producing thrE'e a.dditional 3-D trajectories. The distance between each of the three tra-
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Figure 7.5: Effects of correspondence error on the 3-D reconstruct.ion process.
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jectories and the" ground truth" trajectory represents the reconstruction error displayed

in Figure 7.5(a). The data corresponding to the right hand y-axis is the distance of the

tracked point from the camera at each frame of the sequence. The relationship between

the increasing 3-D error and depth confirms Hartley and Zissermann's hypothesis that

reconstruction uncertainty increases as the rays become more parallel. Figure 7.5(b) indi­

cates that the main contribution to the reconstruction error comes from the z-component

estimate as was implied by Figure 7.4. A more important conclusion arising from the

experiment is that a small pixel error (0.5 pixels) in the 2-D correspondence can cause

a 60 mm error in the corresponding 3-D location. In terms of 3-D HMe, a 60 mm joint

location discrepancy is detrimental to the motion reconstruction process. The 3-D errors

introduced by the 1 and 1.5 pixel inaccuracies are clearly unacceptable in a 3-D motion

reconstruction application.

To test the ability of the implemented system to recover 3-D information, two points

defining a specific length on a ruler were matched in the right and middle views by LSM

at various depths and orientations. Selected images from this experiment are displayed in

Figure 7.6. The distance between the two points was 348 mm and details of the recovered

3-D data are summarised in Table 7.4. These results confirm that the accuracy of the

Table 7.4: Results of the 3-D reconstruction experiment

measurement absolute error

min (mm)

max (mm)

mean (mm)

er (mm)

347.04

349.06

348.27

0.52

0.01

1.06

0.52

0.27

calibration results from Section 7.1 and the precision of LSM can accurately recover 3-D

information (on average within almost 1/2 mm). Aside from the high accuracy of the

recovered 3-D data an important outcome of the results in terms of human motion capture

is also the consistency of the recovered lengths. This aspect of the 3-D reconstruction

process pertains to the recovery of the segment lengths of the skeleton model and is
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elaborated upon in Section 7.4.
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Figure 7.6: Selected images from the 3-D reconstruction accuracy test (for middle camera).
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In summary of the 3-D reconstruction experiments, it is clear the LSM is necessary for

accurate triangulation of points in 3-D space. This statement is amplified when the desired

point lies further away from the cameras, an inevitable situation when tracking human

motion. The low precision of a matching technique such as cross-correlation established in

Section 7.2 may lead to large 3-D errors that render the motion data ineffective. Although

the centralised camera setup used to minimise image differences within the three views

leads to a larger reconstruction uncertainty region, the accurate LSM results ensure reliable

recovery of 3-D data.

7.4 3-D Tracking

The 3-D tracking process employs the previously discussed components (viz. camera

calibration, image matching, 3-D reconstruction) to generated 3-D locations of desired

points in each frame. Consequently the tracking process is susceptible to errors arising

in anyone of the three components. Thus far it has been shown in Section 7.2 that

LSM can provide accurate correspondences in two images and in Section 7.3 that the

correspondences together with calibration results are able to generate reliable 3-D data.

Instinctively this leads to the assumption that by repeating the process of matching and

triangulation, the tracking algorithm will always produce reliable motion data. However in

real world situations systems always reveal hidden limitations that cause a deviation from

theoretical predictions and the presented work is no exception. In this section the 3-D

tracking performance is evaluated. First, similarly to Section 7.3 where the necessity of

LSM for accurate reconstruction was established, LSM is shown as a crucial component for

reliable temporal tracking. Next, the precision of 3-D tracking is demonstrated followed

by a discussion of the tracking algorithm limitations and recovered human motion data.

7.4.1 Sub-Pixel Accuracy for Tracking

Throughout this thesis it has been argued that the precision of LSM is vital for the success

of the 3-D human motion data recovery and ultimately motion reconstruction. Section 7.3
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has already proven that accurate spatial correspondences are necessary for reliable 3-D

data generation. This is only one part of the HMC system, as the points also have to be

tracked throughout the video sequence, necessitating accurate temporal correspondences

as well. To demonstrate the requirement of sub-pixel accuracy in temporal matching,

two experiments were performed to show tracking divergence and tracking failure caused

by inaccurate matching. Once again the comparison was made using NCC as the "less

accurate" matching technique. In the two test sequences the tracking strategy was the

same for both NCC and LSM, hence the failure/success can be attributed entirely to the

matching technique.

Figure 7.7 displays five selected frames from the first test sequence involving a moving arm.

The top image represents frame 1, with the left column showing tracking with NCC and

the right column with LSM. Although multiple views were used to allow spatio-temporal

verification, only the middle view images are shown. The wrist point in the NCC tracking

sequence starts to diverge from its original location early in the sequence and on the

subsequent downward motion of the arm becomes "stuck" on the background. When later

the arm moves past that point once more, it latches onto the hand, eventually becoming

"stuck" again in the background where it remains for the rest of the sequence. LSM

on the other hand is able to maintain track for the duration of the test sequence. The

failure is most evident at the wrist because out of the three tracked joints the wrist moves

the fastest. The fast motion translates to large differences between subsequent frames,

which as shown in Section 7.2, NCC is unable to cope with. The remaining two points

have also drifted slightly from their original locations, however this is not evident from

the displayed images. This example demonstrates that it is necessary for the matching

process to account for the geometric differences arising from motion between subsequent

frames in order to successfully track points throughout the sequence.

The second test sequence tracked the corner of an eye as shown in Figure 7.8, where NCC

tracking is once again displayed in the left and LSM tracking in the right column. The

rigid motion of the head results in smaller inter-frame differences opposed to the motion

of the wrist. In this experiment NCC does not fail completely, but diverges from the

original location. This occurs because even the small errors (in cross-correlation terms),



CHAPTER 7. RESULTS AND DISCUSSION 145

(a) (b)

Figure 7.7: (a) Tracking failure due to inaccurate matching, (b) successful tracking with

LSM.
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such as the 0.178 pixel error in the matching example with search image 2 in Section 7.2,

accumulate during the sequence causing a drifting effect. Since LSM matches points with

much higher precision it is able to remain on track throughout sequence.

(a) (b)

Figure 7.8: (a) Tracking divergence due to inaccurate matching, (b) successful tracking

with LSM.

7.4.2 3-D Tracking Precision

In the absence of ground truth motion data, the precision of the 3-D tracking algorithm

was examined by a crude method of moving a target over a ruler (Figure 7.9). The target

was a dark dot on top of a permanent marker pen. It was tracked as it moved up and

down the ruler and every time it crossed a marked position (every 50 mm) a measurement

was taken. The measurement was taken with respect to the target's initial position over

the 0 mm mark. The measurement coming from the tracking system was compared with

the actual displacement to determine the tracking error.
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I~
measurement

......<--- origin

Figure 7.9: Evaluation of tracking accuracy by tracking a target over known distances.

This process was performed on three test sequences with motion in the x-direction, y­

direction and z-direction (Figure 7.10). To compensate for the motion of the reference

point, in addition to tracking the target, a point on the ruler at 0 mm was also tracked.

Table 7.5 contains the tracking error for all three sequences.

Table 7.5: 3-D tracking error

Absolute Error

sequence max(mm) mean (mm) er (mm)

x 2.53 1.60 0.60

y 3.14 1.55 0.98

xz 2.00 0.83 0.64

A surprising outcome is the accuracy achieved for the sequence with motion in the xz­

direction, because from the discussion in Section 7.3 one would expect the least precise

results in that particular experiment. It must be noted that there are several sources of

error in these tests including the visual estimation of the point where the marker crosses

a 50 mm boundary, the determination of the reference point, insufficient compensation

for the motion of the reference point etc. Although these variables may have some affect

on the exact accuracy of the results, the conclusion that the tracking algorithm is able to

track points in 3-D space with millimetre accuracy is still valid.
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(a)

(b)

(c)

Figure 7.10: Test sequences used for tracking accuracy evaluation, (a) motion in the x­

direction, (b) motion in the y-direction, (c) motion in the xz-direction.
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7.4.3 3-D Tracking Limitations
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When considering tracking algorithms, it is important to consider both the tracking ac­

curacy and limiting factors. In this instance, the limiting factors refer to influences that

cause tracking failure or introduce an error that has not yet been discussed under the

various sections. The tracking process relies on LSM and consequently a matching failure

across multiple views translates to tracking failure of the HMC system. Thus to examine

the limitations of the tracking process one must look at the limitations of LSM. There

are three factors that may cause LSM failure; occlusion, bad initial estimate and insuf­

ficient signal in the matching patches. It has been established at the beginning of the

thesis that occlusion is not dealt with in the current implementation and accordingly a

constraint was placed on the tracked motion eliminating occlusion from the problem. The

3-D prediction scheme introduced in Chapter 5 together with a NCC refinement produced

reliable estimates therefore the focus of this section is on the signal content (matching

data) factor. Three aspects were examined; the violation of the assumption that matching

patches represent locally planar surfaces, blurring of image data due to fast object motion

and image data loss caused by excessive scale reduction.

Figure 7.11 illustrates the scenario where the image patches do not represent locally planar

surfaces. The images are taken from the left and right views of the sequence used to

determine the accuracy of 3-D tracking. As the origins of the image patches are defined at

the edge of the ruler, the signal content making up the top half of each patch belongs to

the image background which is different in each view. Only the warp between the portions

belonging to the ruler can be described by the affine transform and subsequently matching

fails in an extreme situation such as the one depicted in Figure 7.11. This scenario occurs

to a lesser degree at the boundary of clothing items (e.g. sleeves) making tracking of

hands and feet more challenging. Reducing the patch size decreases the undesirable effects,

although very small patches may lead to less accurate results or matching failure as well.

The blurring effect caused by fast motion is demonstrated with three successive frames in

Figure 7.12. Blurring is associated with the imaging hardware, namely the shutter speed

and light sensitivity of the sensor. The cameras used in this work are capable of high
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Figure 7.11: Image patches in a stereo pair violating the assumption of locally planar

surfaces.

shutter speeds, up to 1/8000s [166]. However, when a high shutter speed is used the object

must be well illuminated in order to produce usable image data. Although additional

lighting was employed (in the form of three halogen lamps), in some instances blurring

was evident at the extremities of limbs (forearms and calves). Motion blur degrades

the gradient information within the image patch necessary for LSM to recover the affine

parameters. Depending on the intensity of the motion blur the matching accuracy will

decrease and in severe cases fail.

Figure 7.12: Blurring effect of fast human motion.

A subject's relative motion away from the camera results in the scaling down of his/her

image in the video sequence. The scaling is associated with loss of resolution of the sub­

ject's image and ultimately is responsible for setting the maximum depth of the workspace,

because each HMC system requires some minimum resolution to correctly interpret the

image data (for this reason hands can not be tracked in full body motion capture systems).

Systems with lower resolution imaging devices experience more pronounced effects of scale

reduction at a given depth, and consequently are constrained to applications in smaller
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workspaces. The typical size of a workspace in commercial systems ranges from 1-4 metres

in radius [53]. The maximum depth displacement in the experiments performed during

this research was 2.8 metres and due to low image resolution (640x480 opposed to resolu­

tions of up to 2352x1728 of Vicon systems) some tracking divergence was experienced. The

Figure 7.13: Tracking divergence due to large scale reduction.

scale reduction has an unfavourable effect on the matching process because image data of

the tracked feature is lost. Despite good matching results, a point tracked in an image

patch that has undergone a cycle of scale reduction and subsequent scale enlargement will

drift from its original location. This drifting effect (tracking divergence) is illustrated in

Figure 7.13. The top three images display the scale reduction of an image patch as the

subject moves away from the camera and the bottom images show the subsequent en­

largement as the subject returns to his original location. The image data loss is so severe

that despite good LSM indicators (high Rts , low 0'0) the matched result contains an error

that accumulates during the sequence causing a 4 pixel drift by the end. Unfortunately

this error is difficult to identify because the divergence occurs in all three views, thus is

not discovered by the verification process discussed in Section 5.3.5. The end result is

an uncertainty in the tracked 3-D data despite good matching and reconstruction. The

magnitude of this error is small in comparison to that caused by 2-D correspondence error
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examined in Section 7.3. In the example shown in Figure 7.13 the discrepancy between

the tracked location at the beginning and end of the sequence is 13.5mm.

7.4.4 Human Motion Data

The accuracy and limitations of the tracking algorithm have now been examined and it

remains to evaluate the system's performance on the application to full body motion track­

ing. Figure 7.14 displays four frames from the "walking" test sequence. Only the middle

view is shown with the corresponding tracked 2-D skeleton overlaid and the reconstructed

3-D skeleton model. All 18 joints were successfully tracked in the 255 frame sequence for

motion performed at a depth of 1.8 to 2.7 metres.

Figure 7.14: 3-D tracking of human motion. Only the middle view of the multi-view video

sequence is shown, with the corresponding 3-D model fit to the tracked 3-D points.

There is no ground truth to which the tracked 3-D skeleton can be compared to. In this

situation, the best way to evaluate the motion data is to examine the consistency of the

separate segments. The experiment in Section 7.3 that reconstructed a defined length at

various locations in 3-D space displayed very consistent results. However, those matching

patches consisted of well defined artificial planar targets, did not experience motion blur or

large depth displacement as did patches in the "walking" sequence. Thus the assessment

of segments recovered from the motion data (17 segments in total) reveals the effect of the
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factors described in Section 7.4.3 on the precision of the HMC system.

Table 7.6: Statistics of segment length recovery in the "walking" sequence (segment names

are defined in Appendix C)

Measurement % Deviation

segment min (mm) max (mm) mean (mm) (J (mm) max mean

r-farm 213.53 260.58 244.47 9.46 12.66 2.97

r_uarm 232.73 265.06 251.54 5.26 7.48 1.50

r_col 99.02 115.52 107.66 2.64 8.02 1.75

r..s2v 144.25 164.66 153.09 3.61 7.56 1.85

1..s2v 138.14 159.59 148.87 4.21 7.21 2.30

Lcol 112.10 127.88 117.76 3.74 8.59 2.80

Luarm 226.70 261.26 234.55 5.96 11.38 1.97

Uarm 189.67 250.75 229.76 10.25 17.45 3.35

u..spine 132.94 171.92 150.73 7.17 14.06 3.93

m..spine 172.84 181.79 176.66 1.84 2.90 0.87

l..spine 164.48 178.64 171.03 3.21 4.45 1.51

r..shin 285.06 383.72 343.77 18.31 17.08 4.48

r_thigh 328.45 353.54 341.55 6.05 3.84 1.46

r_pel 110.01 132.00 121.17 3.84 9.20 2.48

Lpel 102.59 130.18 119.45 5.88 14.11 3.97

Lthigh 309.67 342.53 324.55 6.39 5.54 1.62

l..shin 305.19 363.81 336.65 9.66 9.34 2.25

Table 7.6 presents the statistics of each segment throughout the "walking" sequence. The

% deviation provides the most informative manner of evaluating the results. The necessary
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segment consistency for visually accurate animation was studied by J. Harrison et al. [38].

After a series of experiments they conclude that human observers are unlikely to perceive

segment changes of 2.7% even when the change of length is expected and the observe is

paying full attention to the segment. Segment changes of up to 20% may go unnoticed

if the observer is not focusing on the particular part. Furthermore, the study shows that

changes are more difficult to perceive for fast motions and out-of-plane rotations. 11

out of the 17 recovered segments from the "walking" sequence on average experienced a

segment variation of less than the perceivable amount. Segments such as the forearms

and shins undergo fast out-of-plane motion, concealing the small length variations. The

maximum percentage deviation of all segments is below the 20% level that signifies the

maximum unnoticeable change. The results from Table 7.6 validate the suitability of the

implemented HMC system for visually accurate motion data.

(a)

-100

(b)

150 400
X (mm)

Figure 7.15: 3-D path of the sacroiliac in the "walking" sequence, (a) rotated view, (b)

top view (x-z plane).

The tracked 3-D data may be used apart from pose recovery for the analysis of the move­

ment. Figure 7.15 displays the subject's 3-D trajectory of the HumanoidRoot Le. his

motion in the scene. Each tracked point also has velocity associated with its trajectory.

The three components of the HumanoidRoot's velocity vector in each frame are shown in

Figure 7.16(a)-(c). The z-component is considerably noisier than the x- and y-components

which can be attributed to the greater uncertainty associated with depth recovery. The

motivation for smoothing the noisy velocity component is to produce smoother motion.
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Although this step does not have a significant effect on the motion data in terms of the

consistency of segment lengths, it should provide for a more fluent output animation.
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Figure 7.16: Velocity of the HumanoidRoot, (a) x-component, (b) y-component, (c)

z-component, (d) smoothed z-component (using the Savitzky-Golay smoothing filter).

7.5 Pose Reconstruction

The human motion capture system tracks joint locations in 3-D space and fits a skeleton

model to the data in every frame of the multi-view video sequence. The tracked skeleton is

parameterised and 28 rotations together with 3 translations are extracted. These 31 pose

parameters must adequately describe the pose so that when they transform the output

model (at the decoder) the reconstructed posture must be visually similar to that of the

subject in the corresponding frame of the input video sequence. Figure 7.17 shows two

views of the tracked skeleton and the reconstructed model side by side. In the frontal
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views the two models seem almost identical. However the rotated views reveal a difference

in the torso area of the two models. This discrepancy is a result of the modelling stage of

the virtual character.

(a) (b)

Figure 7.17: Front and rotated views of (a) the tracked 3-D skeleton and (b) the recon­

structed model at the decoder.

Although both the tracked and the output skeletons are defined by the same joints, the

fundamental difference between them is that the former is essentially planar, whilst the

latter accounts for the volumetric property of the human body. While the MPEG-4

standard defines the skeleton joints at the anatomically correct locations, the HMC system

merely estimates the joint locations on the surface of the subject as it has no access to

the actual joints (Figure 7.18). As a result, the tracked data does not account for the

volumetric structure of the human body. The tracked spine is the main area affected by

the estimation of joint locations as it is defined in front rather than at back of the torso.

In terms of pose reconstruction however, the limbs are visually well represented with the
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offset of the spine not impairing the reconstructed posture to a degree where the resulting

motion would not be adequately conveyed.

(a) (b)

Figure 7.18: Difference between tracked model (a) and H-Anim based model (b) caused

by lack of volumetric data.

Traditional coding schemes achieve compression by exploiting the stochastic properties

of each frame. The model-based coding approach on the other hand only extracts and

transmits useful information that is necessary to reconstruct the scene at the receiving

end. In the case of human motion capture, the 31 pose parameters constitute the useful

information necessary to transform the humanoid model in order to reconstruct the per­

formed motion. The values of the parameters pertaining to the pose of the models shown

in Figure 7.17 are presented in Table 7.7.

Figure 7.19 presents the BAP values (in degrees) of the 6th thoraic vertebrae throughout

the "walking" sequence. These values represent the rotation in the coronal plane (a),

about the vertical body axis (b) and in the sagital plane (c). The collection ofthe angular

motion data of the tracked joints may be used in motion recognition applications [167].
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Table 7.7: Extracted BAPs describing the subject's pose in one frame

BAP ID BAP name BAP value

1 sacroiliac_tilt 0.847

2 sacroiliac_torsion 13.484

3 sacroiliac..roll -4.021

4 l..hipJlexion -2.585

5 LhipJlexion -7.347

6 Lhip-abduct 3.450

7 r_hip_abduct -11.767

8 l..hip_twisting -28.357

9 r..hip_twisting 5.947

10 l..kneeJlexion -7.911

11 r..kneeJlexion -33.101

24 L.sternoclavicular_abduct -13.223

25 r..sternoclavicular-abduct 15.428

26 l..sternoclavicular..rotate 21.266

27 r..sternoclavicular..rotate -8.462

32 l..shoulderJlexion -27.023

33 r..shoulderJlexion -42.915

34 l..shoulder_abduct 41.472

35 r..shoulder_abduct -32.776

36 l..shoulder_twisting 18.615

37 r..shoulder_twisting -31.102

38 LelbowJlexion 7.452

39 r_elbowJlexion 10.702

87 vt6..roll 2.321

88 vt6_torsion -10.119

89 vt6_tilt 34.206

114 vl3..roll -0.303

116 vl3_tilt 3.450

181 HumanoidRooLtr_vertical 319.680

182 HumanoidRoot_trJateral 15.461

183 HumanoidRooLtr-frontal 1931.290
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(a) (b) (c)

Figure 7.19: Recovered BAPs (in degrees) of the 6th thoraic vertebrae, (a) vt6_ roll

(rotation in the coronal plane), (b) vt6_torsion (rotation about the vertical body axis), (c)

vt6_tilt (rotation in the sagital plane).

7.6 Complete System

The process of reconstructing human motion from multi-view video sequences with MPEG-4

compliant pose parameters is illustrated in Figures 7.20 to 7.24. The input to the encoder

of the model-based coding system is the "walking" sequence recorded by three synchro­

nised cameras. The analysis of the input sequence involves tracking manually defined joint

locations in multi-image space using least squares matching. The tracked points in each

view define a 2-D skeleton that represents the subject's 2-D pose in the image space. By

triangulating corresponding points using camera parameters recovered through calibra­

tion, the joint locations in 3-D space are computed. A 3-D skeleton model is fitted to the

3-D motion data and subsequently 31 BAPs describing the model's pose are extracted.

By applying the MPEG-4 pose parameters to an H-Anim compliant humanoid model, the

model is transformed into the posture specified by the BAPs. A stream of BAPs animates

the model, thus the subject's motion is reconstructed.
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Left View Middle View Right View

( 3-D Skeleton Model Reconstruction )

----------------------~-----------------------

( Virtual Humanoid Animation )

Figure 7.20: Frame 1 of the "walking" sequence.
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C'-__T_r_a_ck_ed_2_-_D_C_O_IT_e....;;sp;...o_n_d_en_c_e_s )
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Left View Middle View Right View

( 3-D Skeleton Model Reconstruction)

----------------------~-----------------------,

( Virtual Humanoid Animation )

Figure 7.21: Frame 35 of the "walking" sequence.
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c.....__T_r_a_ck_ed_2_-_D_C_OIT_es...:p_o_n_de_n_c_e_s----)
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Left View Middle View Right View

( 3-D Skeleton Model Reconstruction )

----------------------~-----------------------

( Virtual Humanoid Animation )

Figure 7.22: Frame 115 of the "walking" sequence.
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( Tracked 2-D Correspondences )
'---------=------"'

163

Left View Middle View Right View

( 3-D Skeleton Model Reconstruction )

----------------------~-----------------------

( Virtual Humanoid Animation )

Figure 7.23: Frame 185 of the "walking" sequence.
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( Tracked 2-D Correspondences )
'----_-..:..---'"
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Left View Middle View Right View

( 3-D Skeleton Model Reconstruction)

----------------------~-----------------------

( Virtual Humanoid Animation )

Figure 7.24: Frame 205 of the "walking" sequence.

7.7 Conclusion

In this section, the various components presented in this thesis were evaluated. Zhang's

calibration method [112] [114] provides good accuracy with little effort, making the cal-
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ibration step worthwhile. Parameters recovered through calibration greatly simplify the

computation of epipolar geometry and the process of 3-D reconstruction. Two image

matching techniques have been presented in this work; cross-correlation matching and

least squares matching, with the former being described as a coarse matching technique

and the latter as a sub-pixel matching technique. Section 7.2 investigated the performance

of least squares matching, and compares it to the performance of cross-correlation. The

experimental results demonstrated the ability of least squares matching to cope with var­

ious levels of distortion between images. Conversely, a coarse matching technique such as

cross-correlation was able to perform only in situations with very small geometric distor­

tion.

In Section 7.3, accurate matching was shown to be a prerequisite for reliable 3-D recon­

struction, particularly if the points lie further away from the cameras. The millimetre

accuracy of the reconstruction results is indicative of high accuracy of both the calibra­

tion and least squares matching. Consequently, the least squares matching based tracking

algorithm was able to track points in 3-D space within a few millimetres, provided the

tracking targets were planar and contained well defined edges. Application of the tracking

algorithm to markerless motion capture is faced with adverse influences such as deforma­

tion of clothes indescribable by the affine transform, motion blur, image resolution loss

caused by scale reduction and in general less defined targets in comparison to synthetic

markers. All these factors affect the accuracy of the 3-D tracking and in some cases a

1.5 cm divergence was experienced. Errors of this magnitude are acceptable for visually

accurate animation as they do not cause easily perceivable change in segment length.

To complete the implementation of the model-based coding scheme, the MPEG-4 pose

parameters (BAPs) describing the tracked skeleton's pose must be recovered and applied

to some default model. Although the 31 utilised parameters adequately describe the

given pose, the reconstructed model exhibits noticeable differences. The discrepancy is

attributed to the loss of volumetric information regarding the structure of the human

body by tracking points on the subject's surface. To guarantee better similarity between

the tracked and reconstructed model, either the default model of the model-based coding

system must be redefined, or the 3-D motion data must be better interpreted. The former
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option is not favoured as it affects compliance with other MPEG-4 based systems. The

latter alternative could make use ~f the two rigid regions (pelvis and upper chest where

the thoraic vertebrae 6 connects to the left and right sternoclaviculars) to offset the spine

region in order to account for the volume of the torso.

Despite the imprecision of the reconstructed model it is still able to convey the motion

information as the posture is mainly defined by the limbs that are not susceptible to

the volumetric aspect to such a large degree. Section 7.6 presents a number of sample

frames from the "walking" sequence together with the reconstructed pose which by visual

inspection believably depicts the subject's posture.

The tracking process using least squares matching extended the work by D'Apuzzo [46]

[138] by incorporating tests for the detection of undeterminable affine parameters (Sec­

tion 5.1.1) and allowing the recovery of lost tracking in one view by spatial matching from

another. D'Apuzzo's approach to human motion capture tracks the subject's surface in

the multi-view video sequence. Presented results show human motion representation by

11 points defined at locations unable to describe full body pose. The accuracy of tracking

compares well to other work even with the slight divergence caused by factors discussed

in Section 7.4.3. Azarbayejani and Pentland [66] reported accuracy of their 3-D tracking

to be within 2 cm. Although the system presented in [66] is very robust, it only tracks

the hands and head making it unsuitable for full body pose estimation. Full body pose

was estimated in [80] by 16 BAPs and by 22 BAPs in [88]. Poppe et al. [80] recovered

the BAPs with an average error below 15 degrees. Huang and Lin [88] do not provide

quantitative results however report difficulties with fast motions.

The target precision of markerless human motion capture systems is currently the perfor­

mance of the commercial optical systems that use controlled environments and retrore­

flective markers to achieve accuracies exceeding O.lmm [9]. Markerless systems must first

achieve the same level of precision and robustness to occlusion provided by the use of

artificial markers before being able to compete with today's optical solution to motion

capture.
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Conclusions

8.1 Conclusions

The analysis of human motion, whether applied to reconstruction, recognition or tracking

is a problem that always reduces down to human motion capture, i.e. the generation

of necessary motion data. Since the late 1980's, the optical approach became a feasible

solution to human motion capture and particularly in the past decade has received a

dramatic increase in attention from researchers. Capturing human motion is not a trivial

task because the human body is a complex articulated object whose motion demonstrates

extensive self-occlusion. Despite the research effort the problem of tracking unconstrained,

markerless human motion in everyday environments has not yet been solved. Researchers

adopt approaches depending on the intended application, introducing constraints and

assumptions in order to simplify the task. The commercially available state of the art

optical tracking systems make use of expensive sophisticated hardware and use artificial

markers placed on the subject along with controlled environments to accurately track

performed motion.

The presented system for tracking human motion made use of multiple cameras. Multiple

views considerably simplify the problem of depth estimation and allow the exploitation

of epipolar geometry inherent in a stereo setup. Straightforward and accurate camera
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calibration is possible with the Matlab Calibration Toolbox [111] and the effort is justified

by the resulting simplification of epipolar geometry computation and 3-D reconstruction.

The tracking algorithm incorporates two image matching techniques to track points in

multi-image space throughout the input video sequence. The first image matching tech­

nique introduced was cross-correlation. Although cross-correlation is unable to cope with

large geometric differences between images, it was found useful as a similarity measure

and for improving estimates by searching a reduced image space. Least squares matching

describes the geometric difference between the conjugate images by an affine transform

and illumination differences by additive and multiplicative coefficients of radiometric cor­

rection. Image content encapsulated by the matching patches strongly influences the

quality of the result with the presence of strong gradients aiding the recovery of the affine

parameters. In order for the affine transform to adequately describe the geometric rela­

tionship between the two patches, the matching patches must represent planar surfaces.

Effects of noise are reduced by calculating the A matrix from the average of the template

and search patch. Experimental results presented in Section 7.2 show the ability of least

squares matching to recover correspondences with high accuracy even in cases of large

image differences. The sub-pixel accuracy of least squares matching is vital for both 3-D

reconstruction and successful tracking as demonstrated in Section 7.3 and Section 7.4.

The accuracy of the tracking algorithm is defined by the accuracy of the matching and

3-D reconstruction processes. Test sequences with artificial matching targets demonstrated

tracking accuracy within a few millimetres. Tests on real data revealed the significance of

hardware in human motion capture. Motion blur impairs the image gradients necessary

for accurate determination of the affine parameters, consequently affecting the accuracy

of the tracked points or causing tracking failure altogether. Image resolution was found

to affect tracking when motion path varied in depth. The loss of resolution of the tracked

feature causes a drift from the original location. Nonetheless tracking results for full body

motion with a depth displacement of up to 2.8m yielded accurate motion data in reference

to the perceivable error by the human observer. It is postulated that more sophisticated

hardware would result in more accurate tracking results without any change to the existing

algorithm. Commercial systems overcome many of the discussed problems by using high
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resolution cameras, high speed cameras that decrease the difference in successive frames

(typical cameras with 30 to 60 fps are considered insufficient [53]) and retroreflective

markers that appear very bright in an image when illuminated by IR light. The imaging

hardware as well as the capture environments make optical motion capture considerably

more expensive than other methods.

The process of motion reconstruction in this thesis was presented in the context of a

model-based coding scheme. Model-based coding regards an image as a 2-D projection of

3-D objects. With default 3-D models present at both the encoder and decoder only the

parameters describing an object's inter-frame change are transmitted. The tracked 3-D

skeleton was parameterized by a selection of 31 MPEG-4 animation parameters. Compli­

ance with the MPEG-4 standard ensures that the recovered data may be used to animate

a variety of humanoid models.

In conclusion, the presented markerless human motion capture system once manually

initialised was able to track points in 3-D space. Tracking success was strongly dependant

on the sub-pixel accuracy of least squares matching. Inadequate hardware in human

motion capture terms at times degraded image data and introduced inaccuracy into the

tracking process. Resulting 3-D motion data however was still good enough for visual

assessment. 31 MPEG-4 animation parameters (BAPs) were extracted from the skeleton

model which fits into the tracked data. Motion reconstruction was achieved by applying

the BAPs to a default model, demonstrating the application of model-based coding to low

bit-rate video.

8.2 Future Work

There are a number of avenues for future research considering the final scenario of a

fully automatic system, whose only input is the video sequence to the encoder and whose

output is synthesised by a photorealistic model, scaled and texture mapped to resemble

the subject(s) from the input sequence. This would require additions both in the computer

vision and the computer graphics parts of the problem. Throughout the thesis, the focus
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has been on the computer vision aspect of the system and the same applies to the suggested

directions of future work. The main areas of improvement within the human motion

capture system are the automation and the robustness of the tracking process.

At this stage, the user is required to calibrate the cameras as well as to manually select the

key points in the first frame of one of the views. Auto-calibration is possible by Kruppa's

equation [116] which links the fundamental matrix to the image of the absolute conic.

The fundamental matrix itself can be calculated from 7 or more correspondences [118]

eliminating the need for a special calibration setup. The calibration process may also

be greatly simplified by using special hardware such as the Digiclops camera from Point

Grey Research [45], specifically designed for 3-D computer vision applications. Digiclops

consists of three progressive scan CCD cameras housed in one package, calibrated for lens

distortion and internal alignment.

The elimination of the manual initialisation step is perhaps the greatest contribution

towards fully automating the system. To accurately estimate the location of the desired

joints, a 3-D visual hull representation of the subject as used in [18] would provide valuable

information. Anthropometric information was exploited in [95] for pose estimation in single

monocular images and could no doubt be exploited in a process of fitting a 3-D skeleton

into the visual hull.

The main and most challenging aspect of human motion tracking is handling occlusion.

Past research has handled occlusion by actively selecting the view in which a body part

is not occluded [102], by reincorporating the occluded feature into the tracking process

once it reappears [11] or by employing more sophisticated human models that can predict

occlusion and collision more reliably [17]. In commercial systems, occlusion is handled

by employing a large number of cameras to ensure that tracked features are visible in at

least one view. Using greater number of cameras is an attractive solution. Distributing

the cameras around the workplace would allow for most of the subject to be visible at

all times, as well as for a more accurate visual hull representation. By tracking several

points distributed around a given joint, the joint's actual location within the body could

be estimated and thus the volumetric structure of the body would be recovered.
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To achieve realistic modelling of the subjects from the video sequences, their BDPs in

addition to the BAPs would also have to be extracted and transmitted. The BDPs are

used by the decoder to customise the default model in order to resemble the subject, which

entails scaling the default segment lengths, defining the size of modelled body parts and

even texture mapping the model.



Appendix A

Homogenous (Projective)

Representation of Lines

• A line ax + by + c =0 is ,ep,esented by the homogenous veeto, I whe,e, I ~ [ : j

• Any veoto' k [ : ] ,ep,esents the same line

• Only the ratio of the homogenous line coordinates is significant. A line can be

specified by just two parameters, Y = mx + c, so ax + by + c = 0 can be rewritten

as: y = -~x - ~

• Homogenisation mle lm lines, [ : ] , [ =~: ]
• Properties involving lines and points

- the point x lies on the line I iJJ: xTI = 0

- two points define a line: I = p x q (Figure A.l(a))

- two lines define a point: x = I x m (Figure A.l(b))
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~I
P

(a) (b)

Figure A.I: (a) Two points define a line, (b) two lines define a point.



Appendix B

Rodrigues' Rotation Formula

This formulation of the Rodrigues' rotation formula directly follows that of [159]. It is an

efficient method of computing the rotation matrix RE 80(3) corresponding to a rotation

by an angle () E IR about a fixed axis specified by the unit vector w= (wx , wy , wz ) E 1R3.

R is then given by:

[

COS () + wi(l - cos ())

W z sin () + wx wy (l - cos ())

-wy sin () + wx wz(l - cos ())

wx wy (l - cos ()) - Wz sin ()

cos () + w~(l - cos ())

W x sin () + wywz (l - cos ())

W y sin () + WxWz (1 - cos ()) ]

-Wx sin () + wywz(l - cos ())

cos () + w~ (1 - cos ())

where I is the 3x3 identity matrix and wdenotes the antisymmetric matrix:
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Definition of Skeleton Model

Segments

Figure C.l: Definition of segment names.
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