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ABSTRACT 

 
 
Historical earthquake information forms a critical dataset for seismotectonic investigations that can be 
used for seismic hazard investigations of hazardous and high rise structures and national seismic 
hazard maps. This study systematically interrogates historical earthquake data for the region from 
various sources in order to have a better understanding of the origins of the larger earthquakes. Several 
previously undocumented earthquakes were found that can supplement the national catalogue. Various 
sources are postulated as origins of these tremors namely local sources located in Mtubatuba and 
offshore sources like the Mozambique Channel.  
 

A seismotectonic model of the study region is also presented from an analysis of earthquake data, 

structural and kinematic systems. Geo-spatial data from geology, tectonics, regional geophysical 

anomalies, historical and instrumental seismicity and kinematics are considered.  

For what was once considered as a diffuse seismotectonic region with low levels of seismicity and 

where insufficient, uncertain and incomplete data existed – we now have datasets that are more 

complete and have higher levels of accuracy.  

 Earthquake epicentres from both the historical and instrumental record as well as thermal spring 

localities correlate with old Jurassic faults. An assembly of a variety of datasets and studies are 

performed followed by a delineation of respective seismotectonic provinces. 

Earthquake recurrence parameters were assessed for the seismic provinces. Many of the provinces had 

insufficient seismic data to compute parameters. Improved seismic monitoring of the east coast region 

is required to better characterise the seismic risk. 

These results re-emphasize the need to better understand the coastal environment for seismotectonic 
characterization and to densify the seismic network towards the eastern coastline. 
 

 

  



viii 
 

PREFACE 

 

 

 

 

 

 

 

 

 

 

 

GOD is in all things and all things are possible with GOD in mind…. 

 

  



ix 
 

CONTENTS 
CHAPTER 1: INTRODUCTION ........................................................................................................... 1 

1.1 Problem Definition ...................................................................................................................... 1 

1.2 Motivation ................................................................................................................................... 2 

1.3 Aims and Objectives ................................................................................................................... 3 

1.4 Research Approach ...................................................................................................................... 3 

1.5 Technical and Scientific Contributions ....................................................................................... 5 

1.6 Structure of the Thesis ................................................................................................................. 6 

1.7 References ................................................................................................................................. 10 

CHAPTER 2: ANALYSIS OF POSSIBLE SOURCES OF SOME UNREGISTERED HISTORICAL 

EARTHQUAKE TREMORS THAT AFFECTED THE KWA-ZULU NATAL COASTAL REGIONS 

OF SOUTH AFRICA FOR SEISMOTECTONIC INVESTIGATIONS .............................................. 11 

2.1 Introduction ............................................................................................................................... 12 

2.2 Literature Review ...................................................................................................................... 12 

2.3 Methodology ............................................................................................................................. 14 

2.4 Results and Discussion .............................................................................................................. 15 

2.5 Conclusions ............................................................................................................................... 17 

2.6 Acknowledgements ................................................................................................................... 24 

2.7 References ................................................................................................................................. 25 

CHAPTER 3: SEISMOTECTONIC ANALYSIS OF KWA-ZULU NATAL, SOUTH AFRICA: 

DATABASE ASSEMBLY AND AREAL SOURCES INTERPRETATION ...................................... 28 

3.1 Introduction ............................................................................................................................... 29 

3.2 Literature Review – State of the art ........................................................................................... 30 

3.3 Methodology ............................................................................................................................. 31 

3.4 Data Assembly and Interpretation ............................................................................................. 31 

3.4.1 Seismic System .............................................................................................................. 32 

3.4.2 Structural Systems ......................................................................................................... 32 

3.4.3 Kinematic System of the African Plate ......................................................................... 39 

3.4.4 Discussion - Assimilation .............................................................................................. 40 

3.5 Conclusions ............................................................................................................................... 44 

3.6 References ................................................................................................................................. 61 

3.7 Acknowledgements ................................................................................................................... 67 

CHAPTER 4: DISCUSSION AND CONCLUSION ............................................................................ 68 

4.1 References ................................................................................................................................. 73 

CHAPTER 5: APPENDICES – PEER-REVIEWED AND NON PEER-REVEIWED CONTENTS .. 74 

5.1 EGU 2012 Abstract: Seismotectonic Analysis for the KZN region of South Africa ................ 74 



x 
 

5.2 SAGA-AEM 2013 Extended Abstract: Combining Structural Domains, Geomorphological 
Provinces and GPS Data for Seismotectonic Modelling of the KZN Province .................................... 75 

5.3 Position IT 2014 Article: Geo-Database compilation for Seismotectonic investigations for the 
KZN coastal regions .............................................................................................................................. 77 

5.4 Africa Array 2014 Abstract: Seismotectonic Interpretations of Seismic and Structural data for 
the KZN Province of South Africa ........................................................................................................ 88 

5.5 Africa Array 2015 Abstract: Analysis of possible sources of some unregistered historical 
earthquake tremors that affected the KwaZulu-Natal coastal regions of South Africa for seismotectonic 
investigations. ........................................................................................................................................ 89 

5.6 Natural Hazards 2015 Publication: Geo-Database compilation for Seismotectonic 
investigations for the KZN coastal regions ........................................................................................... 90 

5.7 SAGA 2015 Extended Abstract: Earthquake recurrence parameters for KwaZulu-Natal 
Province ................................................................................................................................................. 91 

 

FIGURES 
Figure 1.1 Schematic representation of key components of the Seismic Risk Methodology 

providing context for the seismotectonic component building blocks ........................... 7 

Figure 1.2 Seismotectonic model for South Africa comprising of seismotectonic systems, 

domains and structures (from Singh et al. 2011). ........................................................... 8 

Figure 1.3 Schematic representation of stages in the creation of a regional seismotectonic 

model (adapted from Terrier et al. 2000). ...................................................................... 9 

Figure 2.1 Isoseismal maps of significant earthquakes that have occurred within the province 

(from Singh and Hattingh 2008) ................................................................................... 18 

Figure 2.2 Map of southern Africa with seismic events (stars) and IDPs reported in the text 

(dotted circles) with corresponding earthquake epicentres reported within a few days 

of the reported IDPs. ..................................................................................................... 23 

Figure 3.1 Flow chart of scheme for seismo-tectonic modelling ............................................. 45 

Figure 3.2 Seismicity of the KZN region with results of focal mechanism studies (data from 

Council for Geoscience) ............................................................................................... 47 

Figure 3.3 Map of Historical and Instrumental Seismicity Trend ............................................ 48 

Figure 3.4 Generalised geology of the KZN region at a scale of 1-250K, seismicity is plotted 

in the background (data from Council for Geoscience) ............................................... 49 

Figure 3.5 Regional gravimetric map of South Africa superimposed on the major geological 

boundaries and the seismicity. (data from Council for Geoscience) ............................ 50 

Figure 3.6  Magnetics Regional aeromagnetic map of South Africa superimposed on the 

seismicity (Data from Council for Geoscience) ........................................................... 51 

file:///G:/Research/Current/PHD%20Thesis/Submission/M%20Singh%20PhD%20Thesis_20160304.docx%23_Toc446068087


xi 
 

Figure 3.7 Major geological provinces of KZN superimposed with the seismicity (adapted 

from Nguuri et al. 2001) ............................................................................................... 52 

Figure 3.8 Geomorphological domains of Partridge et al. (2010) ........................................... 53 

Figure 3.9 Map of structural lines contained in the 1-250K Geology (data from Council for 

Geoscience) and neo-tectonic structures digitized from reports referenced herein. 

Insert: Potentially active faults in the region from Ngoasheng (2015) study ............... 54 

Figure 3.10 Structural domains produced by Von Veh (1994). The domains delineated 

correspond with major domains 1-3 which can be further subdivided into 1a, 1b, 2a, 

2b and 3 a, b, c, d and e. ............................................................................................... 55 

Figure 3.11 Localities of offshore study areas mentioned in the text ...................................... 56 

Figure 3.12 Combination of Structural Domains, geomorphological boundaries and tectonic 

provinces. ...................................................................................................................... 57 

Figure 3.13 Seismotectonic interpretations considering the multidisciplinary data and research 

(historical earthquakes – red, instrumental earthquakes-green) ................................... 58 

Figure 3.14 Seismic Risk Curves for the eThekwini Municipality Area by Martinez (2015) . 59 

 

TABLES 
Table 1.1 List of some recent and notable earthquakes ............................................................. 7 

Table 2.1 Listing of unregistered historical events (IDPs) found in this study that is not 

included in the national historical database .................................................................. 19 

Table 2.2 Listing of earthquake events that occurred within the date nearest to the reported 

tremor [the abbreviated source catalogues refer to FIN – Finsen, MEND – Mendez, 

KRIG – Krige, ISC – International Seismological Centre, BULA – Bulawayo, PRE – 

Council for Geoscience) ............................................................................................... 20 

Table 3.1 Regional Geological, Geomorphological and Structural History of the KZN 

province (Compiled with information from Partridge and Maud 1987 and Whitmore et 

al 1999) ......................................................................................................................... 46 

Table 3.2 Earthquake recurrence parameters for Zone 3c and 3d. ........................................... 60 

 

 



1 
 

CHAPTER 1: INTRODUCTION 

1.1 Problem Definition 
 

Devastating earthquakes and tsunamis have shocked the modern world (Table 1.1). These earthquakes 

have caused large scale damage to the built environment not to mention the high number of fatalities. 

The KwaZulu-Natal (KZN) coastal region is a fast developing region. This can be seen especially 

towards the north of the Durban CBD. The KZN is home to 10 million inhabitants with a relatively 

denser population distribution around the Durban and Pietermaritzburg CBDs. With the increasing 

amount of investment towards the north coast of Durban, the population distribution will migrate to 

these areas. These new buildings and inhabitants will then become ‘vulnerable’ to rare, infrequent and 

potentially devastating natural disasters like earthquakes.  

This research is aimed towards developing a seismotectonic model for the KZN coastal region through 

analysis of the historical earthquake catalogue for the region; geodatabase assembly for the zonation, 

and lastly assessment of earthquake recurrence parameters for use in seismic hazard assessments. 

One of the first steps to understand and plan for an earthquake occurrence is through a seismic hazard 

and risk assessment of which seismotectonic modelling forms a major component (Figure 1.1). 

Terrier et al. (2000) define seismotectonic analysis as the analysis of structural, neotectonic and 

seismological data to establish links between seismicity and current deformation mechanisms, and 

their effects on certain tectonic structures, with the ultimate goal of delimiting and characterising 

various seismotectonic units. Seismotectonic units or zones correspond to tectonic structures like 

faults, or to geological and structural bodies of uniform seismicity. The seismotectonic model, 

otherwise known as a seismotectonic map, seismotectonic zonation or seismotectonic provinces will 

consist of a presentation of all the seismotectonic units identified for the region of interest.  

A first-order regional seismotectonic model for SA was developed by Singh et al. (2011) by 

combining available regional earth science datasets as shown in Figure 1.2. A multidisciplinary 

geoscientific database was also compiled by them in Singh et al (2009). In their study several gaps 

were identified in the earth science dataset required for the modelling namely: 

(i) The current number of seismic stations and their configuration allows for a very limited 

detection capability of the network. As a result the location of earthquake events can be poor, 

and the ability to detect micro-earthquakes on active structures is rather limited. A denser 
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network of seismic monitoring stations is required to improve the sensitivity and location 

accuracy of recorded earthquakes  

(ii) A comprehensive study is required to distinguish mining-related earthquakes from 

earthquakes of natural tectonic origin in the database. Furthermore, analytical techniques 

should be adopted by custodians of the national network to distinguish these events as they are 

reported  

(iii) Quaternary sediments, especially those providing evidence of neotectonic and 

paleoseismicity, need to be dated and mapped across the country. 

To address these gaps for any country is a mammoth task not to mention the capital, skills and time 

required. Hence this study is focused towards a smaller research area that will address some of the 

gaps identified and which can be quite useful for enhancement of the seismotectonic model already 

developed. It is important to note that no seismotectonic model of this nature for KZN is readily 

available in the published literature. 

1.2 Motivation 
 

The KZN region has been selected for the study area for several reasons.  For budgetary reasons 

appropriate site visits will cost significantly less compared to visits to regions away from the local 

area. The work can be more focused when the area is much smaller as compared to studying the whole 

country for example. The KZN province especially towards the northern coastline has had significant 

growth and investment over the years which make the province now more vulnerable to earthquakes. 

Lastly, historically fair amount of damage occurred from earthquakes. Historical reports of damage to 

the KZN coastal areas have been reported since 1932. These earthquakes are reported to originate 

from different sources even neighboring countries like Mozambique. Note that the damage reported 

was significantly less compared to the possible damage if a similar earthquake were to occur today. 

This would mainly be caused by the rapid change in infrastructure and development. 
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1.3 Aims and Objectives 
 

The aim of this research is to develop a seismotectonic model for the KZN region. Under the 

framework of this research, it is proposed to refocus attention on the KZN coastal region, increase 

resolution of data in the study area, and make improvements on the existing datasets and to redefine 

the boundaries of the regional seismotectonic model using the enhanced datasets. 

These objectives were achieved by undertaking the following tasks for the KZN coastal region:  

1. Search for missing events in the historical earthquake catalogue – see Chapter 2 

2. Analysis of seismic/tectonic sources from historical tremors – see Chapter 2 

3. Development of a Geo-Database for use – see Chapter 3 

4. Development of a Seismotectonic Model – see Chapter 3 

5. Development of an Earthquake Recurrence Model – see Chapter 3 

 

It was extremely difficult logistically to separate findings of Objectives 3-5 in separate publications so 

all three were organized into one publication and is provided in Chapter 3. 

 

1.4 Research Approach 
 

Each of the objectives outlined above were achieved by using different research methods and will be 

described separately.   

 

OBJECTIVE 1 Search for missing events in the historical earthquake catalogue – see Chapter 2 

The flowchart summarising the methodology for the seismotectonic zonation followed by Singh et al. 

(2011) is shown in Figure 1.3. The methodology is refined and presented again in Chapter 3. The 

seismicity data is an essential starting point for Stage 1 Collection and Selection of Base Data.  The 

custodian of the earthquake catalogue for South Africa is the Council for Geoscience (CGS). The 

preliminary data was obtained from the CGS. It is also possible that earthquakes (especially the 

historical ones) can be missing in the database so this aspect was investigated further. This work was 

published in Natural Hazards (see Appendix 5.6). The full paper is included in Chapter 2. 

OBJECTIVE 2 Analysis of seismic/tectonic sources from historical tremors – see Chapter 2  

The sparse coverage of the seismic network in the east coast of SA makes it difficult to locate the 

source of tremors or earthquakes occurring here. Other techniques are then used to investigate the 
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seismic or tectonic sources of these earthquakes. This work was published in Natural Hazards (see 

Appendix 5.6). The full paper is included in Chapter 2. 

 

OBJECTIVE 3 Development of a GeoDatabase (See Chapter 3) 

The methodology illustrated in Figure 1.3 has been revised as a result of this work. However the 

inputs for the database remain unchanged. 

 

The GeoDatabase includes datasets that contribute to the understanding of  

1) The Seismic System 

2) The Structural System and the 

3) Kinematic System 

 

These datasets include that of geology, geophysics, earth stress, seismicity, neotectonics, topography, 

structure and anisotropy of the crust and mantle.  High resolution datasets were requested from 

respective custodians (CGS) and various researchers that have published their works. Seismicity 

datasets were analysed to determine recent stress fields. This work was presented in the Africa Array 

conference (Appendix 5.4 and Appendix 5.5)  

Note that during data collection there was no restriction on the scale of the data to be collected. The 

reason that scale wasn’t a strict parameter at that stage was that all the available base data were being 

collected. Once potential sources are identified one can then proceed with sourcing or acquiring better 

resolution data. 

 

OBJECTIVE 4 Development of a Seismotectonic Model (See Chapter 3) 

 

The methodology for the model development was refined to include the kinematic system. The 

delineation of the respective units was done manually. However a discussion is provided on 

methodologies available to automate the process. This automation was beyond the scope of this work 

and certainly an avenue to be explored in future research. 
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OBJECTIVE 5 Investigations of Earthquake Recurrence Parameters and Seismic Hazard Implications 

(See Chapter 3) 

 

It is essential to provide earthquake recurrence parameters for each seismotectonic unit.  This was 

done using different analytic procedures. Some challenges that are inherent in this work include the 

incompleteness of the seismicity datasets and the insensitivity of the national seismic network to detect 

earthquakes of magnitude less than 3 which are essential for identifying/mapping slow creeping faults/ 

active features.  The shortcomings in the resulting model can then be accounted for in the SHA by the 

use of probabilistic models, hypothetical assumptions and logic trees and is out of the scope of this 

work. 

 

1.5 Technical and Scientific Contributions 
 

Several new technical and scientific contributions were produced: 

 An instrumental earthquake catalogue with focal mechanisms for KZN was developed (by Ian 

Saunders TUT MSc Thesis under preparation)  

 A geodatabase for KZN was created for seismotectonic modelling (by M Singh Chapter 3)) 

 New historical intensity data points were recorded (by Vuyo Zungu, UKZN Hons Thesis 2013 

(Supervised by M Singh) Chapter 2 Table 2.1) 

 A database of naturally occurring springs for the KZN province was compiled by UKZN Hons 

student Londi Shude (Supervised by M Singh), Chapter 3,  Figure 3.9. 

 A consolidation of the geology and geomorphological evolution of the region over time is 

presented. This can be developed into a 3D evolution model in future research (Chapter 3 

Table 3.1) 

 A seismotectonic model for the KZN province was prepared (by Mayshree Singh Chapter 3 

Figure 3.13) 

 Earthquake recurrence parameters for KwaZulu-Natal Province were calculated for the 

seismotectonic zones outlined above (by V. Mapuranga and M. Singh. See Chapter 3 and 

Appendix 5.7). 

 A seismic risk analysis for the EThekwini Municipality area was performed by Jennifer 

Martinez UKZN MSc Thesis (Supervised by M Singh, M Akombelwa and M Chilufya). 

 A database of potentially active faults for the KZN region was prepared by Sefako Ngoasheng 

UKZN BSc Hons Thesis (Supervised by M. Singh) 



6 
 

 A seismotectonic model for the KZN region was developed using the SOM algorithm by 

Innocent Ngcobo UKZN BSc Hons Thesis (Supervised by M. Singh) 

 A database of seismic vulnerability for the Durban CBD was developed by Siyabongwe 

Tshabalala UKZN BSc Hons Thesis (Supervised by M. Singh) 

 The reference database consisting of an Endnote platform, Excel platform and Hardcopy 

platform was prepared and this comprised of all the research articles and reports cited in this 

thesis. Due to copyright issues it cannot be made publicly available. Nevertheless these 

databases will ensure longevity of the research and facilitate easy updating and validating. 

 Findings from this research has been presented at scientific meetings (included in the 

Appendix) 

  

The funding for this project also provided a unique opportunity for collaboration of various scientists 

and students located in a number of research institutions from a variety of disciplines. 

 

1.6 Structure of the Thesis 
 

Chapter 2 This thesis begins with a review of large historical earthquakes that have affected the 
province and then searches for seismic sources of some unrecorded seismic tremors that have affected 
the region  

Chapter 3 Provides a summary of the methodological framework that was selected for the 
seismotectonic zonation, a summary of the geodatabase assembled, a summary of the key aspects of 
the datasets used, the seismotectonic model  

Chapter 4 Summarizes the key results of the previous Chapters and provides recommendations for 
future research in this field. 
 
The Appendix provides a record of non-peer reviewed and peer-reviewed abstracts, papers and 
proceedings that originated from this work 
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Table 1.1 List of some recent and notable earthquakes  
 

Location Date Earthquake Size Damage and Fatalities 

Haiti 12 January 2010 Mw 7.0 316 000 killed and 300 
000 injured 

New Zealand 21 February 2011 Mw 6.3 148 killed 

Japan 7 April 2011 Mw 9.0 15,457 deaths 5,389 
injured US 300$billion 
loss (Japanese National 
Police Agency 2011) 

 

 
 

 

 

Figure 1.1 Schematic representation of key components of the Seismic Risk Methodology providing context for 
the seismotectonic component building blocks  
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Figure 1.2 Seismotectonic model for South Africa comprising of seismotectonic systems, domains and structures 
(from Singh et al. 2011).  
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Figure 1.3 Schematic representation of stages in the creation of a regional seismotectonic model (adapted from Terrier et al. 2000). 
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CHAPTER 2: ANALYSIS OF POSSIBLE SOURCES OF SOME 

UNREGISTERED HISTORICAL EARTHQUAKE TREMORS THAT 

AFFECTED THE KWA-ZULU NATAL COASTAL REGIONS OF 

SOUTH AFRICA FOR SEISMOTECTONIC INVESTIGATIONS 
 

The contents in this chapter was published in: 

CITATION: Singh, M., Akombelwa, M. and Maud, R. (2015). Analysis of possible sources of some unregistered historical 

earthquake tremors that affected the KwaZulu-Natal coastal regions of South Africa for seismotectonic investigations. 

Natural Hazards (2015). 75:2279-2289. DOI 10.1007/s11069-014-1425-8. (See Appendix 5.6) 

 

Abstract 

Historical earthquake information forms a critical dataset for seismotectonic investigations 
that can be used in seismic hazard investigations of hazardous and high rise structures and 
national seismic hazard maps. This study systematically interrogates historical earthquake 
data for the region from various sources in order to have a better understanding of the origins 
of the larger earthquakes. Several previously undocumented earthquakes were found that can 
supplement the national catalogue. Various sources are postulated as origins of these tremors 
namely local sources located in Mtubatuba and offshore sources as in the Mozambique 
Channel. These results re-emphasize the need to better understand the coastal environment for 
seismotectonic characterization and to densify the seismic network towards the eastern 
coastline. 
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2.1 Introduction 
An earthquake catalogue is an important resource that can be used to assess the probability of future 

occurrences of earthquakes in a given region in order to build seismic resistance into engineering 

structures. While the instrumental part of the earthquake catalogue is critical for recording earthquakes 

as they occur the catalogue should also reflect historically recorded events of generally larger 

magnitudes that usually have occurred less frequently (Ambraseys 1971). Historical seismic records 

have been compiled into national earthquake catalogues worldwide. Some examples include those for 

Europe (Rubbia 2004), India (Rao and Rao 1984), Japan (Usami 1979) and China (Lee et al. 1976).   

Historical earthquake information for South Africa (SA) is presently available from the Council for 

Geoscience (CGS) which data has been compiled from various sources such as journal entries, 

reports, letters, newspapers and international datacentres. This contribution presents the results of a 

study of available sources in order to determine locations of historical earthquake sources for the 

KwaZulu-Natal (KZN) province that may not have otherwise been captured in the national and 

international catalogues. Knowledge of these earthquakes or even their epicentres is an integral part of 

seismotectonic investigations, which delineate between different earthquake sources for a given 

region.  

 

2.2 Literature Review 

The earthquake record for SA can be separated into an instrumental period (post 1970) and a historical 

(pre 1970) period which have varying degrees of completeness (Saunders et al. 2008). The first 

comprehensive historical catalogue was compiled by Fernandez and Guzman (1979). Their study was 

based on earlier works by Theron (1974), Krige and Maree (1948), Finsen (1950) and De Klerk and 

Read (1988).  Brandt et al. (2005) updated the work of Fernandez and Guzman (1979) by assessing the 

original journal entries and newspaper articles published in earlier works. Earthquake data from the 

International Seismological Centre (ISC) and African data centers like Bulawayo (BUL) were added 

to the national historical earthquake dataset. Von Veh (1988) completed a comprehensive study for the 

KZN coastal region as part of Eskom’s proposed siting of a nuclear power station near Salt Rock. In 

that study 33 new events were found that had not been included in the national catalogues.  

Singh and Hattingh (2008) compiled an atlas of isoseismal maps for SA from 1932. Midzi et al 

(2013) completed a similar study providing an atlas of intensity data points (IDPs) for the region. 

Midzi et al (2013) and Singh and Hattingh (2008) used data sources such as questionnaires, 

newspaper reports and other studies to characterise the events. All of the relevant events have 

since been incorporated in the CGS catalogue.  
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Historical earthquake investigations can be expensive and time consuming.  Investigations also 

involve an understanding of the geopolitical setting at the time and the population movements. 

Resources that have been found worth studying for historical accounts of earthquakes include diaries 

and letters of the early inhabitants of the region. The first records that might contain datable 

earthquake references are from about 1500, in the form of diaries and letters of explorers, travelers and 

laborers. However these resources have not yet been studied for records of large earthquakes. Von 

Veh (1988) only looked at newspaper records and responses from the general public. 

The KZN coastal areas have experienced several potentially damaging earthquakes historically, albeit 

they occurred at a time when it was less populated and urbanised, hence there is very little memory or 

record of earthquake damage. Figure 2.1 shows the distribution of isoseismal maps (curves delineating 

areas with different seismic intensities) in Modified Mercalli (MM) scale of Richter (1958). 

Potentially damaging intensities to infrastructure start from MM Intensity IV upwards. Historical 

reports of damage to the KZN coastal areas were reported since 1932. These earthquakes were 

reported to originate from various sources including St Lucia, Port Elizabeth, Matatiele and even 

neighbouring countries like Mozambique and Swaziland. The damage reported was significantly less 

than if there were to be a repeat of the same earthquake today, due to the greater modern 

infrastructure. Another important factor affecting earthquake damage is that some regions in KZN 

are situated on thick sedimentary cover so one may find that at a given site the earthquake effects 

are much greater because of the signal amplification. (Fernandez and Brandt 2000, Midzi et al. 

2013, Albini et al. 2014). 

The offshore area has many reports of historical earthquake activity. Hartnady et al. (2013) pointed out 

a number of historical earthquakes in the Natal Valley that aligned along the boundary between the 

Nubian (NU) and Lwandle (LW) microplates, namely those of 1 November 1942, 22 January 1972, 1 

December 2009 and 21 May 1850. The source for the 1850 event documented by De Klerk and Read 

(1988) and re-interpreted by Albini et al. (2014) was suggested by Hartnady et al. (2013) to be 

offshore with a magnitude of Mw 8 and located along the NU-LW plate boundary. Ben-Avraham 

(1998) and Reznikov et al. (2005) reported neotectonic activity (in the Quaternary) from observations 

of data acquired from marine geophysical surveys. They found young intrusives in the southern 

Mozambique rift, fractures disturbing the seafloor along the Agulhas Fracture Zone, and young 

intrusives in the Natal Valley. Goedhart (2007) reported on quarternary faulting in the Eastern Cape 

region. 

Another issue is that up until today the seismic network coverage for the east coast of SA has been 

relatively poor. While to date the instrumental record in the catalogue is complete for events above 

magnitude 3, one still needs to be able to detect the smaller earthquakes that occur in the region in 

order to identify seismic sources for seismic hazard investigations. 
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Seismotectonic investigations for the country were first published in specialist reports for the CGS for 

siting of nuclear power plants but these reports were not made publicly available. Andreoli et al (1996) 

did a comprehensive neotectonic study for the country. Bird et al (2006) modelled stress patterns for 

Southern Africa. Singh et al (2009) performed a regional study that incorporated both historical and 

instrumental earthquakes and other multidisciplinary datasets from shallow and deep geophysics, neo-

tectonics and stress fields to delineate source zones for SA. While this was a regional study and only 

existing datasets were compiled (albeit the datasets were quite sparse and incomplete), Singh et al. 

(2014) are working on a more localized study that focuses on the KZN region. While several datasets 

have since been collected and improved (Saunders and Botshielo 2013) this study is an important step 

in developing a more complete and high resolution geodatabase for Seismic Hazard (SH) 

investigations.  

 

2.3 Methodology 
The first step in the methodology was to collect existing historical datasets for the country. Thereafter 

a literature review was conducted to find sources of historical earthquake information particularly for 

the KZN region. Notices were placed outside municipal centers.  Due to time constraints these notices 

were placed randomly in areas within 50km of the Durban city centre. Letters were written to editors 

of local newspapers soliciting earthquake information from the public.  

The information gathered and public responses was compiled and analysed to determine the essential 

parameters required for the historical catalogue. This compilation was then checked entry by entry to 

see if any events had been registered in the national datasets. In order to maintain uniformity in the 

datasets the descriptive information provided on the described damage was converted into the MM 

Richter Intensity scale.  

A list was then made of those events that were not registered in the national datasets. At this stage 

these events were just Intensity Data points and not locations of earthquake origins (epicenters). The 

intensity data points (IDPs) have several uses for Seismic Hazard Assessment (SHA) (attenuation, site 

effect, and vulnerability) but for seismotectonic investigations knowing the epicenter of an earthquake 

is of paramount importance.  

The best methods to determine the epicenters or source or fault parameters of historical earthquakes 

are those described by Musson (2009) and by Gasperini et al. (1999) however these methods need 

several observations of a particular event. At this stage of data gathering there was mostly a single 

observation per event which provided merely the possible geographic location of the source. Note that 
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the geological setting and framework was not discussed at this stage because the dataset was also too 

sparse to warrant conclusions on active faults.  

To determine possible sources for these events the national and international catalogues were 

searched. Events that occurred in the same month (i.e. within about 10 days before or after the event) 

were extracted and then plotted with the IDP of that event. Criteria that could be used to determine the 

likely source were: 1) clusters of large events, 2) events that occurred in the same vicinity of the 

sources mentioned above or 3) events which occurred close to the IDP date.  

  

2.4 Results and Discussion 
A few key publications were found that provided additional historical data. These were Von Veh 

(1988), Singh and Hattingh (2008) and Midzi et al.( 2013). Responses to letters written to the Berea 

Mail and the Northglen News in 2013 soliciting information also provided information on some 

tremors that were felt in the 1950s. In these accounts only the year of events was provided by residents 

and not their exact dates. Each entry was individually analysed. Most of the events listed in the above 

publications had been already registered in the database. Those events not registered and that had 

MMI of IV and greater are listed in Table 2.1, indicating these intensities that are of concern when 

dealing with ground motion and damage, all of which come from Von Veh’s (1988) database. Note 

that one of the reasons that these events were not incorporated in the national database was that Von 

Veh’s (1988) work was not published.  

The entries from the Von Veh (1988) compilation could only be incorporated as intensity data points 

(IDP) because only a few observations of a particular tremor were made. The exact location of the 

epicenter of the earthquake should be further investigated. Two larger events of note that were 

recorded in Von Veh’s (1988) catalogue included one that rocked Umhlanga on 17 August 1981 

with an intensity V at about 10-30 pm followed by 2 tremors 13 minutes later that lasted 30 

seconds each (Natal Mercury, 18 August 1981). The other was in 1944 that was felt in Scottsville 

(NW-SE shaking) with an observed crack in the ground in Pietermaritzburg. Note that all material 

used for this study has been preserved in the seismotectonic reference database and geo-database 

should further investigation be required.  

The question then arises, what could be the sources of these large events? The answer might be critical 

for seismic hazard assessment. On looking at Figure 1, it appears that multiple sources around the 

region area are capable of generating intensities of IV and V within it.  The ISC and CGS catalogues 

were correlated to the database for events that occurred in the same time period (a few days before or 

after the event) (see Table 2.2 and Figure 2.2) in order to suggest possible sources of the events listed 
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in Table 2.1. It’s conceivable that there could be an analyst error in the dates of either sources. The 

likely source could be attributed to 1) regions that have had a high level of activity for that time period 

or 2) events that occurred in the vicinity of the IDP location around that time period and 3) events that 

occurred close to the recorded date.   

For the event of 8 March 1927, Finsen (1950) reported an earthquake in Mtubatuba (near the location 

of the 1932 St Lucia event) which is the most likely location for the epicentre of this IDP.  

For the event of 26 August 1944 reported from Scottsville, during that month there were a few 

earthquake reports from all over the country. An earthquake occurred in Beaufort West on the 28 

August (Krige and Maree, 1948) which could be a possible source location. Note however that this 

event was of small magnitude and the supposed epicentre is also located quite far from Scottsville. 

For the event of 23 November 1964, no other reports of local earthquakes were found for that time. 

The only earthquakes reported were in the central MidAtlantic Ridge which is too far to have any 

effect in the KZN coastal area. 

For the event of 1 September 1970, three earthquakes were reported in the Mozambique Channel 

which is the most likely location of the epicentre of this IDP. 

For the event of 13th July 1978, within a few days of this tremor, earthquakes occurred in the Far West 

Rand (FWR) mining region, Phalaborwa and the East Rand Mining District. However these tremors 

were of relatively small magnitude and should there have been a large event in the mining region on 

the 13th July that would probably have been detected.  

For the event of 17th August 1981, several small events of magnitude 2-3 were reported in the gold 

mining areas for that time (not shown in Table 2.2). Other notable events on the same day were in the 

offshore region and Madagascar. There was also an earthquake in the South Sandwich Islands region 

(SSI) region which is too far away to have been felt in Natal. 

Subsequently all of the events in question were interrogated in the CGS database to check whether 

they were possibly detected and mis-located but no new information could be found about these 

locations (Ian Saunders, pers comm.). A detailed report of these findings will be published in further 

work. 

In summary the previously undocumented sources which can most likely effect the region and which 

might be reliable enough to be considered at this stage is the one in the Mozambique channel (cluster 

of events in 1970).  The SSI source comes up several times and it is postulated that earthquake 

occurrence there has triggered faulting along the ridge up to the eastern coastline and the Mozambique 

Channel. This is supported by evidence of an earthquake that occurred in August of 1970 followed by 
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three earthquakes in the Mozambique Channel in September of that year. Earthquakes might then be 

occurring on faults near the coastline which are not being detected by the national network. The 

Mtubatuba source is well known as this is where the 1932 earthquake originated. Note that that this 

tectonic region marks the path that was taken when the Falklands Islands broke away from Africa 175-

125 million years ago along the Aghulhas Transform Fault. 

 

2.5 Conclusions 
This study provided insight into possible earthquake sources that could affect the KZN region from 

freshly revealed historical earthquake data.  

The most significant source that should be accounted for in seismotectonic investigations is that of the 

Mozambique Channel.  

Currently the earthquake network coverage for the east coast is rather poor and hence any offshore 

earthquakes are not being recorded with sufficient completeness. This is a real problem because it 

seems that some tremors that are being felt in the region (along the coastline) are originating from 

offshore sources.  

While a large portion of this compilation consisted of IDPs rather than locations of earthquake 

epicentres, a foundation is made for future research in this field that might search historical documents 

for the epicentres of these IDPs. The epicentres of these events should be located by surveying the 

public, newspapers and other historical documents.  

One should also acknowledge that the locations of these epicentres used in this study also carries some 

uncertainty (some 50km) for varying reasons (insufficient station coverage and few historical 

documents to provide good locations). The assessment of this uncertainty is beyond the scope of this 

study. 
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Figure 2.1 Isoseismal maps of significant earthquakes that have occurred within the province (from Singh and 
Hattingh 2008) 
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Table 2.1 Listing of unregistered historical events (IDPs) found in this study that is not included in the national historical database 

No Year Month Day Hour Min Latitude Longitude 
MM 56 

Intensity 
Source Original Source 

Affected 

Town Name 
Effects on things 

IDP-

01 
1927 3 8 6 10 -28.1 31.5 IV Von Veh 

Natal Mercury 

(16/03/1927) 
Empangeni 

Pictures on wall shook, articles 

shook and fell 

IDP-

02 
1933 1 3 2 14 -30.1 30 IV Von Veh 

Natal Advertiser 

03/02/1933 
Ixopo 

Rooms vibrated, glasses shook on 

shelves, windows rattled, bed 

swayed 

IDP-

03 
1944 8 26 22 0 -29.6 30.3 V Von Veh 

Daily News 

26/08/1944 
Scottsville 

Crack in ground at 

Pietermaritzburg 

IDP-

04 
1964 11 23 22 10 -29.9 31 IV 

Public 

Accounts 

Daily News 

24/11/196 
Durban 

Bed shook, walls and wardrobe 

swayed 

IDP-

05 
1970 9 1 11 30 -29.8 31 IV 

Public 

Accounts 

Daily News 

1/09/1970 
Durban 

Building shook, furniture and 

machinery vibrated 

IDP-

06 
1978 7 13 8 15 -30.1 30.4 IV Von Veh 

Daily News 

14/07/1978 
Oribi Flats 

Walls moved, bedroom and kitchen 

furniture shook, window panes 

rattled 

IDP-

07 
1981 8 17 22 30 -29.7 31 V Von Veh 

N.Mercury 

18/08/1981 
Umhlanga 

Homes shook, Rattling windows, 

ornaments fell over 
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Table 2.2 Listing of earthquake events that occurred within the date nearest to the reported tremor [the abbreviated source catalogues refer to FIN – Finsen, MEND – Mendez, 
KRIG – Krige, ISC – International Seismological Centre, BULA – Bulawayo, PRE – Council for Geoscience) 

Event Match Year Month Day Latitude Longitude 
Local 

Magnitude 
Source Nearest town Comment on source location 

1927, 3, 8 IV 

Empangeni 

1927 3 10 -28.4 32.3 3.7 FIN Mtubatuba, KZN Likely source location – closest date 

1927 3 18 -27 30.8 3 FIN 
Piet Retief District, 

Transkei 
Unlikely source  location -date 

1944  8 26 V 

Scottsville 

1944 8 17 -20.5 32.8 4.3 MEND 
Espungabera, Mozambique 

 
Unlikely source  location  -date 

1944 8 28 -32.5 22.5 3 KRIG 
Beaufort West, Cape Prov 

 
Unlikely source location  – too far 

1944 9 17 -27.6 30.8 4.3 KRIG 
Vryheid, Natal, SA 

 
Unlikely source location  -date 

1944 11 12 -29 27.7 4.3 KRIG 

Ladybrand, SA-Lesotho 

Border 

 

Unlikely source location  -date 

1964 11 23 IV 1964 11 16 -56.06 -27.4 5.24 ISC 
South Sandwich Islands 

Region  
Unlikely source location  – too far 
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Durban 
1964 11 17 -55.46 -27.9 5.29 ISC 

South Sandwich Islands 

Region 
Unlikely source  location – too far 

1964 11 20 -0.18 -18.21 5.37 ISC Central Mid-Atlantic Ridge Unlikely source  location – too far 

1964 11 23 -56 -27.4 5.46 ISC 
South Sandwich Islands 

Region  
Unlikely source location  – too far 

1964 11 29 -55.32 -25.7 5.37 ISC 
South Sandwich Islands 

Region 
Unlikely source  location – too far 

1970 9 1 IV Durban 

1970 8 3 -56.21 -27.23 5.33 ISC 
South Sandwich Islands 

Region 
Unlikely source location  – too far 

1970 9 1 -23.3 37.6 3 BULA Mozambique Channel Likely source location  – closest date 

1970 9 1 -23.5 37.6 3.3 BULA Mozambique Channel Likely source  location – closest date 

1970 9 1 -23.5 37.5 3.4 BULA Mozambique Channel Likely source  location – closest date 

1970 9 1 -1.8 -12.4 5.12 ISC North of Ascension Island Unlikely source  location  – too far 

1970 9 1 -1.64 -12.68 5.12 ISC North of Ascension Island Unlikely source location  – too far 

1970 9 1 -1.64 -12.77 5.37 ISC North of Ascension Island Unlikely source location  – too far 

1978 7 13 IV  

Oribi Flats 

1978 7 12 -26.4 27.4 3.5 PRE 
Far West Rand gold mines, 

SA 
Likely source  location – closest date 

1978 7 12 -26.5 27.6 3.1 PRE Far West Rand gold mines, Likely source location  – closest date 
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SA 

1978 7 17 -24.3 31.3 3.8 PRE 
Phalaborwa Eastern 

Transvaal 
Unlikely source  location -date 

1978 7 17 -26.4 27.3 3.7 PRE 
Far West Rand gold mines, 

SA 
Unlikely source  location -date 

1978 7 18 -26.4 27.4 3.4 PRE 
Far West Rand gold mines, 

SA 
Unlikely source  location -date 

1978 7 19 -26.5 27.5 3 PRE 
Far West Rand gold mines, 

SA 
Unlikely source  location -date 

1978 7 20 -26.2 28.2 3.1 PRE East Rand gold mines, SA. Unlikely source location  -date 

1981 8 17 V 

Umhlanga 
1981 8 14 -16.9 40 4.83 BUL Offshore N. Mozambique Unlikely source location 

 1981 8 14 -32.5 31.3 5.04 BUL Offshore SA 
Likely source location  – proximity to 

event 

 1981 8 17 -59.81 -25.65 5.57 ISC 
South Sandwich Islands 

Region 
Unlikely source location  – too far 

 1981 8 19 -20.6 47.3 4.93 ISC Madagascar Unlikely source  location – too far 
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Figure 2.2 Map of southern Africa with seismic events (stars) and IDPs reported in the text (dotted circles) with corresponding earthquake epicentres reported within a few days 
of the reported IDPs.  
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CHAPTER 3: SEISMOTECTONIC ANALYSIS OF KWA-ZULU NATAL, 

SOUTH AFRICA: DATABASE ASSEMBLY AND AREAL SOURCES 

INTERPRETATION 
 

The contents in this chapter was submitted for publication and is under review: 

Citation: Singh, M., Akombelwa, M. Andreoli M, Brynard H, Maud, R. and Saunders I (2015). 
SeismoTectonic Setting of Kwa-Zulu Natal, South Africa, Database Assembly sources interpretation 
and risk implications SAJG, under review.  

 

Abstract 

A seismotectonic model of the study region is presented from an analysis of earthquakes, structural 

and kinematic systems. Geo-spatial data from geology, tectonics, regional geophysical anomalies, 

historical and instrumental seismicity and kinematics are considered.  

For what was once considered as a diffuse seismotectonic region with low levels of seismicity and 

where insufficient, uncertain and incomplete data existed – we now have datasets that are more 

complete and have higher levels of accuracy.  

Earthquake epicentres from both the historical and instrumental record as well as the occurrence of 

thermal springs correlate with Jurassic faults. An assembly of a variety of datasets and studies are 

performed followed by a delineation of respective seismotectonic provinces. 

Earthquake recurrence parameters were assessed for the seismic provinces. However, many of the 

provinces had insufficient seismic data to compute parameters. Improved seismic monitoring of the 

east coast region is required to better characterise the seismic hazard. 

 

Keywords: seismotectonic model, South Africa, seismicity, zonation 
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3.1 Introduction  
 

The coastal province of KwaZulu-Natal (KZN) is a seismically active region of South Africa (SA) that 

is the site of large infrastructure developments. The increase in population density and hence 

vulnerability calls for a thorough analysis of seismic sources and potentially active faults and 

geological structures. 

An areal seismotectonic source model for the province is proposed that is built from a 

multidisciplinary geo-database that may help in active fault determination and for understanding the 

causes of earthquake generation. The enhanced earthquake database used in this study contains error 

ellipses for location and focal mechanism solutions where possible. Fault data was also digitised from 

historic documents. 

The KZN coastal areas have experienced several potentially damaging historical earthquakes at a time 

with less population density and less buildings, hence there is little memory or record of earthquake 

damage. Historical reports of damage to the KZN coastal areas have been recorded since 1932. These 

earthquakes originate from a variety of sources including active zones as far as Mozambique. The 

damage reported was significantly less than if such events were to occur today, due to the higher level 

of today’s infrastructure and population. The datasets collected reveal that the coastal regions have a 

number of NE-SW trending faults that originated during the break up of Gondwana. The seismic 

events correlate well with these faults. Another point of interest is along the Tugela fault where 

seismic events were recorded. This is also a zone near which a number of thermal springs can be 

located. The Swaziland region is another potential hotspot from where large earthquakes have 

originated historically. Thermal springs are also located here indicating a possible region where neo-

tectonic activity is taking place. 

While seismic hazard maps were calculated for South Africa [Fernandez and du Plessis (1992); 

Giardini and Basham (1993),  Midzi, V., et al. (1999) and Kijko et al. (2003)] in most cases the 

methodology used for the seismic hazard maps were based on ‘zone-free’ methods mainly because the 

seismotectonic model for the region was poorly documented. Internationally, regulations for seismic 

design of public infrastructure like nuclear power plants, bridges and tunnels, require that 

seismotectonic models in some form be incorporated in the seismic hazard assessments (SHA) hence 

its importance. In this work, we analyse all available geological, geomorphological, tectonic, 

seismicity and geophysical data (from published literature and professional reports of research 

institutions and surveys) and explain our seismotectonic approach.  
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3.2 Literature Review – State of the art 
Wong et al. (2004) summarised the essential parameters required for a seismic source model. Two 

types of earthquake sources are required fault sources and areal sources. Fault sources are typically 

modelled as a three dimensional fault surface and details of their behaviour are incorporated into the 

source characterisation. Areal sources are regions where earthquakes appear to occur randomly 

without any clear association with any of the faults that might be included in the seismic source model.  

There are several agreed methodologies for deriving the seismotectonic model [Gonzalez and Skipp 

(1980), Gasperini et al. (1998), Meletti et al. (2000), Hicks et al. (2000), Le Goff et al. (2011), Terrier 

et al. (2000); Kumamoto and Masataka (2011); Wheeler et al. 2005, Romeo and Pugliese (2000), 

Gasparini et al., 1982; Powell et al., 1994; Lavecchia et al., 1994, Costa et al., 1996; De and Kayal, 

2003; Nowroozi (1976) and Tavakoli and Ghafory-Ashtiany (1999)]. Best practice for seismotectonic 

analysis was only recently published in Vilanova et al. (2014).  They presented a methodological 

framework to develop and document the data, assumptions and procedure for zonation. They 

emphasised the need for the models to be supported by a comprehensive set of metadata. The 

methodology is also illustrated with a seismotectonic model developed for the Azores-West Iberian 

region. 

 

Seismotectonic investigations for the country were first published in specialist reports for the Council 

for Geoscience (CGS) for siting of nuclear power plants, but these reports were not made publicly 

available. Andreoli et al. (1996) did a comprehensive neotectonic study for South Africa (SA) and 

Bird et al. (2006) modelled stress patterns for southern Africa including KZN. Singh et al. (2009) 

performed a regional study that incorporated both historical and instrumental earthquakes and other 

multidisciplinary datasets from shallow and deep geophysics, neo-tectonics and stress fields to 

delineate source zones for SA. This was a regional study and only existing datasets was compiled 

(albeit the datasets were quite sparse and incomplete), While several datasets have since been 

collected and improved, this study is an important step in developing a more complete and high-

resolution geodatabase for seismic hazard (SH) investigations. 

Further, Madi and Zhao (2013) integrated several other important datasets in order to investigate the 

potential for groundwater access on a regional scale in SA. Meghraoui (2015) is preparing a 

seismotectonic map for Africa and Midzi (pers. comm, 2014) is contributing to this project by 

providing an investigation of potentially active faults for the SA region. Bommer et al. (2014) 

published a seismic zonation for the southern part of SA delineating the major craton structures and 

some coastal and inland faults that may be considered active. This zonation was largely based on 

earlier works.  
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3.3 Methodology  
 

The work flow was adopted from studies presented by Terrier et al. (2000), Singh et al. (2009) and 

elements of the procedure of Meletti et al. (2008). The work flow encompasses four stages: (1) Data 

collection; (2) Data Preparation for Modelling; (3) Development of Specialist Systems and (4) 

Compilation of a Seismotectonic model.  

The flowchart summarizing the workflow is shown in Figure 3.1. Each stage in itself is extensive. Step 

1 involves the collection of multidisciplinary data namely earthquake catalogues; geological maps and 

faults, geophysical data, GPS data, neo-tectonic and crustal stress data. Ideally one should collect the 

digital data and preserve all the source information and characteristics of how the data was collected 

along with its associated errors. In step 2 the data should be prepared for modelling or integration with 

the other datasets which essentially means that the data should be digitised where possible while 

preserving the data characteristics as metadata. In step 3 the data can then be organised according to 

relevance to the three specialist systems (Seismic, Structural and Kinematic). Stage 3 also provides a 

convenient way to isolate the many complex systems that describe the tectonic forces that contribute 

to earthquake activity in the region. In step 4 the seismic source zones are created by observing 

correlations with seismicity and mapped structures and delineating different active tectonic 

environments. 

A comprehensive geo-database has been created which contains all the original reports, shape-files 

and maps. This database can be revisited when re-testing or updating of the model is required.  

The multi-disciplinary dataset collected currently ranges from raw data, first order to advanced 

models, theories derived from multi-disciplinary considerations and ad-hoc observations on a certain 

phenomenon.  One of the bigger challenges in the data collection is separating the raw data from the 

analysis and interpretations.  

 

3.4 Data Assembly and Interpretation 
The analysis of the individual systems (seismic, structure and kinematic) is presented. Where required, 

the data collection and preparation is covered when describing each system. Depending on the data 

available one can create specialist systems like a seismic system (using the seismic data), a structural 

system (using geological and geophysical data) and a kinematic system using GPS motion vectors and 

plate boundaries generated from kinematic data.  While the seismic and structural models help to 

conceptualize the historical development and current stressors within the tectonic plate, the kinematic 

model provides the current dynamic motion of the tectonic plate. 
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3.4.1 Seismic System 

The Council for Geoscience provided historical (pre-1970) and instrumental catalogues of seismic 

events for the KZN province (Saunders and Botshielo (2013)). Presently the seismic stations are 

sparsely distributed. The threshold of earthquake sensitivity is magnitude 3. Because of incomplete 

records and uncertain locations, efforts were made to improve the database (Stage 2 of Figure 3.1). 

Additional historical epicentres and Intensity Data Points (IDP) have been found from various sources 

(Singh et al., 2014). For recorded events, their location and magnitude were re-assessed and events 

traceable to coal mining explosions were removed (Saunders and Botshielo, 2013).   

The largest earthquake occurred in 1932 of ML 6.3 in the St Lucia area (reported also as Ms 6.8 in 

Fonseca et al., 2014). Its effects were well documented in Krige and Venter (1933). This earthquake 

was located in the sea offshore the Zululand coast. The nearest point on land to the epicenter was Cape 

St. Lucia, where Modified Mercalli Intensity (MMI) of IX was assigned on the evidence of sand boils 

and cracks in the surface. However the damage in this area was small possibly because of low 

population density. In the severely shaken areas, poor-quality houses were severely damaged. From 

the evidence of its effects, Krige and Venter (1933) argued that this earthquake was probably caused 

by slip along a fault in the sea striking in a SSW-NNE direction parallel to the coast. Andreoli (1996) 

reported on late Pleistocene to Holocene faults that were well exposed near Richards Bay extending 

northwards through the St Lucia Lakes and the northern KZN coastal plain to Mozambique. These 

faults should be characterised further in order to better understand the seismicity in that area. 

Looking at the spatial distribution of the earthquakes (Figure 3.2) an almost linear band of about 100 

km extent exists of both historical and instrumental earthquakes trending in a NE-SW direction 

parallel to the coast (Figure 3.3). There still exists a concentration of earthquake epicentres in the 

northwestern region that can mostly be attributed to tectonic activity. The historical and instrumental 

dataset has slightly different trends as shown in Figure 3.3 mainly due to the fact that historically 

settlements were more concentrated towards the coastline and hence there were more reports of 

earthquakes having being felt in these locations. 

3.4.2 Structural Systems 

The structural system can be organised in terms of shallow structures and deep structures. Shallow 

structures data are derived from structural mapping and near-surface geophysics. Deep structures data 

are obtained from shear wave splitting analysis and tomographic studies. 

The local geology and structure followed by offshore findings characterise crustal tectonic studies. 

Thereafter neo-tectonic features are reviewed followed by a review of stress data. Owing to the long 

time-scale involved, Table 3.1  maps the chronological sequence of the major geological, structural 

and geomorphological events that have affected the region. It can be used as an easy reference. 
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3.4.2.1 Generalised Lithology 

The lithological units outcropping in the province are shown in Figure 3.4. Whitmore et al. (1999) 

provided a generalized summary of the rock units outcropping into the province. The rocks in the 

region are of Archean (2700Ma) to Cenozoic (65Ma –recent) in age. The basement rock units outcrop 

in the northern part of the province towards the Swaziland border. On the eastern coastline, the 

Cenozoic Zululand Group silt and sandstone and unconsolidated sediments can be found. Most of the 

central part of the province consists of the Paleozoic to Mesozoic (300-180Ma) Karoo Supergroup 

(KS) sediments. The younger Proterozoic rocks (2500-490 Ma) of the Natal Group Sandstone (NGS) 

and the Natal Metamorphic Province (NMP) can be found outcropping in a NE band between Durban 

and Pietermaritzburg. From Pietermaritzburg up to Lesotho in a westerly direction, rock outcrops of 

the KS occur.  

The incipient break-up of the Gondwana supercontinent 183 Ma formed fractures and planes of 

weaknesses that acted as conduits for lava and formation of dolerite dykes and sills. After the 

separation of Africa and Antarctica at about 140 Ma marine sediments of the Cretaceous Zululand 

Group were deposited in the newly opened Indian Ocean (Whitmore et al. 1999).  

Regional geophysics (Figure 3.5 and Figure 3.6) has been used to image the older granite crustal 

subsurface overlain by the Karoo sediments. Nguuri et al. (2001) found the crustal provinces for the 

region and the major provinces that underlie the region are the Namaqua Natal Mobile Belt (NNMB) 

and the KC (Figure 3.7). The rocks in the NNMB provide locally high magnetic signatures. The 

regional gravity map also maps the high density rock types along the coastline.  

Partridge (2010) identified 34 provinces and 12 sub-geomorphic provinces (Figure 3.8). These 

provinces are generally geographic regions on the earth’s surface that are subject to the same erosional 

parameters and are similar in terms of structure, shape and mineral composition. Essentially they were 

identified from macro-reaches that were subsequently classified in terms of slope and cross sectional 

width, sediment storage potential etc. Principal component analysis was used for the data analysis. For 

the KZN region a regional sub-domain was identified with the Great Escarpment showing prominence. 

Numerous rivers drain from the escarpment to the coastline. The St Lucia area has a remarkably 

different province from the broad province identified for KZN region. This is an interesting 

observation as the largest historical earthquake in the province originated in this region. 
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3.4.2.2 Tectonic Fabric 

The broad structure of the province consists of undisturbed Karoo rocks in the interior of the province 

dipping gently westward into the Karoo basin. Near the coast, areas of these rocks have been 

depressed and all lithological types appear at sea-level at several localities together with the NGS and 

the granite. In many cases these coastal exposures have a pronounced southeasterly or seaward dip 

(Maud, 1961). 

Major faults mapped in the province are superimposed on the seismic catalogue in Figure 3.9. Hughes 

(2008), Von Veh (1994) and Maud (1961) described consistent trends in the fault directions in the 

province. The mapped faults have three distinct orientations: NE-SW coast parallel patterns, arcuate 

patterns in the south east, and NW-SE coast perpendicular orientations in the north. These distinct 

groups occur at the interface between the sediments of the KS and the Pongola Supergroup (NW-SE 

faults) and at the interface between sediments of the KS and the sediments of the NGS and the NMP. 

A prominent feature within the KS is the E-W fault line referred to as the Tugela fault which occurs at 

its boundary with the NNMB. Jurassic faulting and tectonism resulted in the seaward tilting and down-

faulting of many faulting units. For examples the Mlalazi fault records a down-throw of 4km, the 

Nembe fault 800m, the Amitikulu fault 1km and the Umvoti fault 250-300m (Figure 3.9).  

Hughes (2008) looked specifically at the Durban area and found relative displacement of faults 

ranging from a few centimeters to tens of meters. Maud (1961) described in detail faults that had 

displacements of 300m in places. Normal faults are dominant in the Durban area and are consistent 

with extensional palaeostresses acting at the time of faulting. Dykes intrude along faults zones of 

preferential movement. 

There has been controversy surrounding the model used to explain the structural patterns and 

topography of the region. King (1982) supported the theory of ‘limited epeirogenic coastwise tilting’. 

However, Kent (1938) and Maud (1961) supported a model in which normal faulting caused the 

structural patterns. The north coast is close to the reconstruction of the margins of the Falklands 

plateau and is part of the second phase of Gondwana break-up. The faulting patterns observed can be 

explained by early extensional forces in play resulting in the normal listric E-W to NE-SW faults in 

Northern KZN coast and dextral lateral forces resulting in the NNE-SSW trend strike slip faults in 

southern KZN and Transkei. In a third interpretation, Hughes (2008) proposed a plume model to 

explain the different orientations of the joints observed. 

Structural domains provide insight to the underlying tectonic forces at play when an earthquake 

occurs. Von Veh (1994) defined three broad structural domains by analyzing fault, dyke and lineament 

data (Figure 3.10).  These domains were further subdivided based on geological characteristics. In 

total 9 subdomains were delineated. The strike frequency distribution of faults, dykes and lineaments 
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were analyzed for each domain. The direction of maximum principal stress that prevailed during the 

different tectonic events was also provided for each subdomain.  

 

3.4.2.3 Offshore Region 

The Mozambique Plateau and the Agulhus Plateau are well defined and separated by the Transkei 

Basin (Figure 3.11). The Falkland-Aghulhus Fracture Zone can be found adjacent to the coastline and 

records the southerly movement of the Falklands islands some 133Ma years ago.  

Marine geological investigations (NECSA, 1989) looked at the continental shelf geology from Durban 

to Richards Bay. The general geology can be described by seaward dipping strata overlain 

unconformably by Pleistocene aelonite cordons and Holocene sediments. The geology of the shelf 

edge is characterized by slump facies with compressional features like folds, thrusts and chaotic 

bedding. Little evidence of tectonic instability was detected. However, just off Durnford and Richards 

Bay some faults were detected on seismic profiles but the data points were too sparse to make 

correlations. Normal faults with seaward throws showed submarine slumping off the Zululand coast 

and some evidence for faulting offshore. Still further detailed investigation is required.  

Leinweber and Jokat (2011) undertook a detailed geophysical study of the geology of the Northern 

Natal Valley and The Mozambique ridge. The Mozambique ridge was formed in a mid-oceanic setting 

(MOR) and so was interpreted as being one continuous geological structure with the northern part of 

the Natal Valley.  

Cawthra and Uken (2012) undertook a detailed investigation of the evolution of the Durban Bluff and 

the adjacent Blood Reef and described the region as a storm-dominated broad passive shelf. There 

were no disturbances of quarternary sediments from studies of seismic profiling. 

Green et al. (2007) studied the geomorphological features north of the St Lucia area. They particularly 

looked at the evolution of the canyons at specific study areas. Although their focus was not aimed 

towards understanding the seismic activity this data can be essential to supplement studies of recent 

faulting in the area. 

3.4.2.4 Neotectonics including offshore neotectonics 

Andreoli et al. (1996) reported some interesting neo-tectonic observations for SA of which those 

relating to the KZN region will be summarized here because of their relevance to the study area 

(Figure 3.9). The seismic catalogue used at the time showed strong correlations with the Amathole-

Swaziland Axis. This axis was first identified by Partridge and Maud (1987) as a region of uplift of 

800-900m during the Plio-Pleistocene. Along this axis lie a number of thermal springs and spas. From 
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the seismic patterns they observed an E-W trend from Koffiefontein to Port Shepstone and a NW-SE 

belt from Richards Bay to Swaziland. Hartnady (1990) proposed a hotspot ‘pre-weakening’ model to 

explain the seismicity near Koffiefontein, Lesotho and KZN, arguing that a hotspot moved 

progressively from Mozambique (ca. 60Ma) through St. Lucia (ca. 10Ma) to Cedarville near Lesotho 

where it is presently located. He also suggested that this might be the point where the east African rift 

system (EARS) will extend to in the future. Note that the lack of volcanic eruptions in the 

Mozambique channel questions the hotspot theory. Another mention of neotectonic activity is that of 

Southern Natal where McLachlan et al. (1976) reported breccia and distortion of bedding of the early 

cretaceous conglomerate sandstone at the Egosa fault. 

Jackson and Hobday (1980) interpreted deformation of the eolian sands on the top of the Port 

Durnford formation, as possibly caused by gravity gliding induced by seismic triggering. This could 

also be interpreted as thrust faults because the area is seismically active. Kruger and Meyer (1988) 

inferred that a normal fault of down-throw 30m displaced the Uloa and Port Durnford formation in 

Northern Zululand.  This investigation was extended to try to trace the Uloa formation through the 

resistivity method regionally and several EW trending depressions were found – one near the Port 

Durnford fire look-out tower. They describe in great details the complex shortening structures in the 

lignite-bearing beds of the Port Durnford formation (of Holocene age) (NECSA, 1989). 

Krige and Venter (1933) reported surface faulting east of Mtubatuba at Shire’s mill during the 

earthquake of 1932. Further south, the Tugela river course is fault controlled which manifests 

themselves as linears on the satellite imagery and a number of the linears cut through unconsolidated 

sand (NECSA, 1989). 

Further north Ben-Avraham (1995) and Reznikov et al. (2005) reported offshore neo-tectonic activity 

(in the Quarternary) from observations of data acquired during marine geophysical surveys. They 

found young intrusives in the southern Mozambique rift and fractures disturbing the seafloor along the 

Agulhas Fracture Zone, and young intrusives in the Natal Valley.  Wiles et al. (2014) found soft 

sediment deformation in the Mozambique ridge.  

 

3.4.2.5 Stress Field 

‘‘Stress regime’’ refers to the orientation of deformation produced, using an Andersonian 

classification into normal faulting (NF), strike-slip faulting (SS), and thrust faulting (TF). 

Bird et al. (2006) reported normal faulting in the Funhalouro-Mazenga Graben Mozambique. Ferro 

and Bouman, (1987) and Saunders and Botshielo (2013) reported normal fault and strike slip 

mechanisms for some earthquake records (Figure 3.2). The fault plane solutions were obtained by 
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different methods: calculated using the FPFIT algorithm (Reasenberg and Oppenheimer, 1985), and a 

catalog created using the HASH algorithm that tests mechanism stability relative to seismic velocity 

model variations and earthquake location (Hardebeck and Shearer, 2002) and  Seisan’s FOCMEC 

algorithm (software by GeoSIG).  

The World Stress Map, Zoback (1992), Heidbach et al. (2011), provides a database of stress data 

however none of the data points in that database fall in the study area. 

Von Veh (1994) summarised the state of stress for the KZN region and interpreted this for three major 

structures – Phanerozoic, Proterozoic and Archean. The direction of maximum principal stress for 

each structure was different due to the particular tectonic phases as summarised in detail in this work.  

Bird et al (2006) attempted to identify the most significant feature of the stress field in the southern 

Africa region, and attempted to reproduce it with finite element neotectonic models to determine its 

origin. Modelling experiments were conducted with program shells that use a thin shell approximation 

to model neotectonics of the lithosphere, based on estimated structure and temperatures, estimated 

rheology, and the conservation of momentum. Elastic strain is neglected, and therefore the velocities 

and strain rates predicted should be considered as quasi-static long-term averages. Once each model 

calculation is iterated to convergence, it predicts long-term average surface velocities, anelastic strain 

rates, fault slip rates, and stresses. The predicted stress regime (actually strain rate regime) is 

determined by the orientations of the principal strain rate axes giving results in terms of normal 

faulting (extentional), strike-slip faulting and thrust faulting (compressional).   

In the southern Africa region, the highest density moments (a measure of variation of the density 

vertically in the lithosphere) are in the elevated continental plateaus, so these regions were predicted to 

spread laterally. Consequently, the continental regions were almost all predicted to be in the NF 

regime. The strong belt of old oceanic lithosphere just offshore restricted this spreading tendency, and 

it experienced much higher stress intensities, with primarily SS regime close to the continental margin, 

and TF regime farther offshore. The predicted fault orientations are NS in the north (St Lucia/Richards 

Bay/ Mozambique) region and NW-SE towards the South (Bird et al (2006)).  

These predictions fit well the fault plane solutions of Saunders and Botshielo (2013) with normal 

faults striking NW SE in the northern continental region, strike slip in the mountainous Lesotho region 

and strike-slip at the continental margin (Figure 3.2).  

One controversial aspect of Bird et al. (2006) is the projection of the southernmost extent of the 

EARS. It is located as far as the central KZN (29degrees latitude). The largest earthquake that 

occurred on the southernmost extent of the rift was in 2006 and had its epicenter in Beira some 

1000km away from this extention point (21 degrees latitude). If it were the case that this rift system 



38 
 

extends or will be extended to this point (Bird et al. (2006) rift projection) in the near future it will 

most probably avoid the much more stable cratonic regions.  There is certainly evidence of springs and 

seismicity along the Swaziland – SA boundary that supports this extension southwards (27 degrees 

latitude) however there is little evidence of very high seismicity further south (excluding the Tugela 

fault system – which strikes E-W and has a different suspected mechanism). Singh et al. (2014) noted 

several ‘larger’ earthquakes (of intensity V) that were undetected by the national network and are 

believed to originate offshore – which is probably the most likely location for the extension of the rift 

system. 

However extensional structures including normal faults with down-dip lineations and breccias with 

open space fillings are abundant in the region. . The geometry of the cretaceous faults, tension gashes 

and veins are consistent with extensional stresses directed approximately perpendicular to the coast 

(Maud 1961). 

 

3.4.2.6 Mantle Structures 

These studies help to identify boundaries of provinces deep within the earth. 

Colli et al. (2013) conducted full waveform tomography for the South Atlantic region and this 

included the Southern African region. From tomographic slices at 100km, 150km and 200km depth, 

the Precambrian cratons can clearly be distinguished  having fast anomalies (4.6-4.8km/s) in contrast 

to what is seen in the EARS that is characterized by slow velocity anomalies (4km/s). At 250 km 

depth the anomalies at the cratons are less pronounced and are dominated by slower velocities. At 

depths between 300km and 450km there is an overall fast mantle (4.7-5km/s). Still the EAR is clearly 

visible as having a relatively slower anomaly than the rest of the region indicating that there is a large 

regional mantle plume and a zone with high potential for stress and seismic activity. However the 

extent of this anomaly stops at the Rovuma-Somalia RO-SOM plate boundary corresponding with the 

start of the Archaen craton – indicating stability and the absence of hotspots that cause crustal thinning 

and deformation. 

Several geophysical studies were undertaken primarily to understand the nature of the African 

superswell – an anomaly that shows the African continent at a significantly higher elevation compared 

to the other continents around the world. These include the study of Nguuri et al. (2001) who focused 

on defining the crustal structure across the Kaapvaal craton (KC), Limpopo and Zimbabwe craton 

(ZC) using seismic receiver functions, while the tomography work of James et al. (2001) focused on 

the deep mantle lithospheric structure. Fouch et al. (2004) produced S- and P- wave velocity 

perturbation models for depth of 700km and found evidence for the existence of a deep mantle keel 
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underneath the KC craton.  Kgaswane et al. (2009) and Nair et al. (2006) focused on the lower crust 

20-30km and found shear wave velocities of >= 4km/s for the Achaean and Proterozoic terrains. 

Khoza et al. (2013) also looked at the KC and ZC boundaries to understand its tectonic framework and 

noted a collision of these cratons about 2.6 Ga but his study area is further north of the KZN province. 

 

3.4.3 Kinematic System of the African Plate 

Kinematic models for East and South Africa were developed by Calais et al. (2006), Stamps et al. 

(2008) and Fernandez et al. (2013) using geodetic data. Saria (2013) used GPS data to look at the 

African plate kinematics for the East African Rift System (EARS). The findings for all kinematic 

models are that the African plate can be subdivided into two major plates– Nubia (NU) and Somalia 

(SOM) and three sub-plates Victoria (VC), Rovuma (RO) and Lwandle (LW). The NU behaves as a 

rigid plate with motions at the 0.6mm/yr level. Relatively larger plate motions are observed on the 

eastern side of the EARS. Larger plate motion rates are observed in the north (Tanzania/Ethiopia of 4-

5mm/yr) and lower plate motion rates of 1mm/year are observed in the Mozambique region. These 

motions have an almost easterly trend. Towards the Southwest Indian Ridge (SWIR) (on the SOM 

plate) the plate motion changes dramatically to SE and the rate of motion also increases (4mm/yr) 

Saria (2013). Hartnady et al. (2013) pointed out a number of historical earthquakes in the Natal Valley 

that aligned along the boundary between the Nubian (NU) and Lwandle (LW) microplates. 

Malservisi et al. (2011) analysed GPS data from the South African Trignet network. They found that 

the cratonic regions in SA are stable with a relatively larger deformation rate in the Cape Town region. 

They also found deformation possible along the southern coast and along the Mozambique belt. On a 

broader view the African continent behaves like a rigid plate with motions less than 2mm/year with a 

clockwise rotation of the South African region with respect to the Nubian region. Data was lacking to 

confirm some of their hypothesis. Additional geodetic data along with its measures of uncertainty 

should be acquired and incorporated in some way in the seismotectonic modelling. Uncertainties 

relating to system, data and application errors should be quantified by the means of implementing 

multiple datasets in a logic tree application. 

Reeves (2013) used fracture patterns from the mid-oceanic ridges to obtain Euler poles of rotation 

from before the breakup of Gondwana. Large scale regional motions were tracked and predicted. On a 

large scale- the African plate is colliding with the Eurasian plate at a rate of 2-6mm/year. The Reeves 

(2009) model is particularly interesting because the reconstruction of the plate motion co-incides with 

the occurrences of mantle plumes or hotspots that according to 3a theory long proposed by geologists, 

have given rise to islands like Marion, Bouvet and Tristan da Cunha.  
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3.4.4 Discussion - Assimilation 

 

Probably the most daunting task of an analyst is to now combine and assimilate these systems and 

datasets into meaningful information that leads to the best possible classification or zonation model. 

One can be guided by the broad tasks set out in Step 4 of Figure 3.1. This section discusses possible 

fault sources and areal sources based on the datasets provided in the different systems presented in the 

previous sections. 

FAULT SOURCES 

Following US NRC guidelines, a “capable fault” is a fault that exhibits one or more of the following 

characteristics:  

(1) Movement at or near the ground surface at least once within the past 35,000 years or movement of 

a recurring nature within the past 500,000 years. 

(2) Macro-seismicity instrumentally determined with records of sufficient precision to demonstrate a 

direct relationship with the fault. 

(3) A structural relationship to a capable fault according to characteristics (1) or (2) of this paragraph 

such that movement on one could be reasonably expected to be accompanied by movement on the 

other. 

There are a number of faults located north of the study area that can be linked with seismicity and 

where detailed investigations of the fault characteristics are required. The seismic system (especially 

the instrumental seismicity) clearly shows that seismicity is occurring along pre-existing zones of 

weakness. The potentially active faults are by definition those that are favourably oriented in relation 

to the stress field in the region. This is also observed in many other settings (see the Korean Peninsula 

discussed by Hong and Choi, 2012; Choi et al., 2012). The continental-margin environments require 

dense seismic networks for complete event records.   

There are definitely a number of faults within close vicinity of earthquake epicentres however there 

needs to be further investigations to identify which fault can be attributed to which earthquake. 

Towards the coastline there are several fault traces. Many faults correlate with both historical and 

instrumentally recorded earthquakes. While the instrumentally recorded earthquakes have better 

locations (5km) the uncertainty in locations of the historical events still needs to be assessed. The 

Tugela fault for one can certainly be considered active along several segments because clearly it can 

be correlated with seismicity and springs. A strong gravity anomaly also can be seen along this fault. 
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Note that the pattern of the aeromagnetic signatures correlates well with the fault patterns and would 

be very useful in identifying major fault trends. 

 

Upon looking at the digital elevation model (DEM) which correlates with linear expressions already 

indicated by fault lines – it can be seen that fault lineaments in the south of the map continue beneath 

the KS (Figure 3.9). The fault pattern becomes more complicated in the northern-most part of the 

region where differently trending faults intersect. Detailed investigation of faulting patterns is required 

for the region especially beneath the Karoo sediments. Remote sensing techniques can be used in 

places where there is thick overburden. Detailed seismic monitoring will also help delineate those 

structures on which earthquake epicentres occur because the faults are located close to each other. In 

preliminary investigations of fault correlations with seismicity Ngoasheng (2015) provided a map of 

such faults (see insert in Figure 3.9). In order to characterise any fault for a SHA study one should 

have the fault trace digitally, its formation age and age of its last movements, the rake, dip and slip 

rate. Such data still needs to be acquired hence faults were not included further in the zonation. 

Henceforth only areal zones are considered. 

AREAL SOURCES 

Several methods are available for the modelling e.g. implementing of the self-organising map (SOM) 

algorithm of Mojarab et al. (2013) or Principal Component Analysis (PCA) by Kumamoto and 

Masataka (2011). Alternatively one can also consider a re-assessment of the finite element neotectonic 

models of Bird et al. (2006) with the revised data. The structural, geomorphological and crustal 

province boundaries are shown in Figure 3.12. The kinematic boundaries do not affect the study area. 

The offshore structural boundaries are also available on a regional scale but are not considered here 

because of the poor seismic coverage offshore. Ngcobo (2015) attempted to classify the combined 

datasets using the SOM algorithm available in the IDRISS Selva software. This work is ongoing. 

There is still much uncertainty as to the weighting required when integrating the boundaries, the 

incomplete coverage of seismic events and the poorly developed deep earth structural model. In view 

of these limitations a manual interpretation was selected.  

The best rationale for the manual interpretation was provided by the structural domain delineation of 

Von Veh 1994 (Figure 3.9). The following rationale was considered in adopting the areal 

seismotectonic provinces which are essentially comprised or derived from Von Veh’s (1994) 

subdomains. 

The broad (regional) domains that were preserved in the Von Veh (1994) model are those of the 

NNMB and the KS suggested by Nguuri et al (2001) and observed by several other datasets (s-wave 
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velocity, tomography, geology, aereomag, gravity). An important note is that these regional domains 

are separated by the seismically active Tugela fault that is actually a network of related faults. The 

Tugela fault is also the location of several springs indicating a likely region for neo-tectonic activity. 

The other rationale for the domain and subdomain delineation was the noticeable faulted coastal 

region and the relatively unfaulted western region. Also there is a noticeable variation in the lithology 

in the northeastern region (Mtubatuba-Richards Bay- St Lucia).  

 

The structural provinces suggested by Von Veh separates the KZN region into 3 major domains.  

a. Domain 1  

b. Domain 2 and  

c. Domain 3 

Domain 1 The KC portion of the region underlain by Archaen granites, gneisses, metavolcanics and 

metasediments. This domain can be further subdivided by the southern (1a) and (1b) subdomains. 1a 

lies adjacent to the southern margin of the KC where the earlier Archaen structures are overprinted by 

later ones related to the Proterozoic Namaqua Natal orogeny. 

Domain 2 is the NNMB portion underlain by granites, gneisses, migmatites and metasediments. It can 

be further subdivided into subdomains (2a) and (2b) where (2a) is the northern thrust front adjacent to 

the KC and (2b) is the southern Mapumulo Group. 

Domain 3 is the portion underlain by the Natal Group and the Karoo sequence. The KC boundary and 

the belt of highly fractured rock extend some 70km inland from the coast. Subdomain 3a is the faulted 

region south of the KC and Subdomain 3c is in the north. Subdomains 3c and 3d lie in the relatively 

unfaulted western region south and north of the KC. Subdomain 3e defines the faulted region 

overlying the KC. It is bounded by subdomain 3d to the west and undeformed cretaceous and younger 

sediments to the east. 

The zones delineated have various concentrations of seismicity (Figure 3.13). It may not be possible to 

determine seismic hazard parameters for each zone owing to the lack of seismic data in some zones. 

If one were to compare the more detailed interpretations provided in this study with that of Singh et al 

(2009) one can see that the study area falls within zone 5 where then there was little knowledge of the 

underlying Gondwana related structures and the large Tugela fault running centre to the study area.  

While these interpretations still may not be sufficient for seismic hazard type assessments for critical 

structures owing to the low resolution of datasets used it can serve as a starting point or 
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reconnaissance study for these detailed investigations. It should also be used with caution and more 

attention should be placed in characterising faulting in the region. 

For the recurrence parameters one needs to include the recurrence model, recurrence rate – which can 

be obtained from the slip rate or average recurrence interval for the maximum seismic event, slope of 

the recurrence curve (b-value), and maximum magnitude as obtained from a completed seismicity 

catalogue. The main problem here is that the seismicity catalogue is often short (a few tens of years) 

and incomplete (does not cover all the magnitude spectrum). 

Earthquake recurrence parameters are an essential component in SHA. The basic parameters required 

is the mmin, the minimum detection threshold of the network; the upper bound magnitude mmax 

representing the maximum expected magnitude, the Gutenberg- Richter earthquake recurrence 

parameter b-value and the activity rate λ, which is the annual number of earthquakes above the lower 

bound magnitude mmin. The earthquake recurrence parameters were calculated by Mapuranga and 

Singh (2015) based on maximum likelihood procedure and results are shown in Table 3.2. Note that 

only values for Zones 3c and 3d could be assessed as there was not sufficient data to perform a reliable 

calculation for the other zones. 

Note also that these results are comparable with the Singh et al. (2009) study and the Martinez (2015) 

study for the b values but not for the mmax values. The reason being that the maximum observed or 

recorded magnitude maxobs for zones 3c and 3d are        and        respectively. The higher 

magnitudes are coming from zones 3a which have been incorporated in the Singh et al. (2009) and the 

Martinez (2015) study.  

Martinez (2015) performed a seismic risk assessment to calculate the percentage of risk that buildings 

have of being damaged for the eThekwini Municipality area. The risk was assessed according to 

twelve structural trait categories available in South Africa and a probabilistic approach was followed. 

All earthquakes within a radius of 300 km from the Durban area were incorporated and seismic hazard 

values were calculated based on a methodology that does not require the knowledge of the seismic 

source zones.  

The results from the study are shown in Figure 3.14. The building classes that were found to 

potentially suffer the highest proportion of damage were Unreinforced Masonry (URM) structures 

(Building Classes 3, 4 and 5). In the studies done by Pule (2014) and Van der Kolf (2014), it was 

established as well that unreinforced masonry buildings are usually more vulnerable to seismic 

damage. In South Africa, URM structures are commonly used and it should be a concern when 

appropriate design procedures are not followed for such structures In contrast, the building classes 

with the lowest annual expected damage percentage (more resistant to damage) were class 12 and 2 

(Long Span Buildings and Light Metal Buildings) (Martinez, 2015). 
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3.5 Conclusions  
 

This research has shown that what was once considered as an intra-plate region with low levels of 

seismicity, where faults were considered inactive, has actually a moderate level of seismicity. It has 

been illustrated that more information is available in the earth science dataset than previously known 

hence a more detailed seismotectonic zonation is possible. 

Seismic events can be correlated with the old pre-existing faults (Ngoasheng, 2015). There is certainly 

a level of reactivation in place and an accumulation of stresses along these structures. Hence there is 

potential for further site investigations especially on faults identified as potentially active. Many of 

these faults can be located within the delineated zones. Seismicity is driven by release of stress along 

pre-existing fractures. Another key dataset that is lacking is that of Quaternary faults and neo-

tectonics. This data might be acquired through LiDAR. 

There is also room to improve the historical earthquake dataset. However the instrumental seismic 

dataset can only be improved by densifying the seismic network. Investigations are required for more 

computerised methods for investigations – particularly looking at SOM algorithms and clustering 

(Ngcobo, 2015). 

A detailed risk assessment is required following on Martinez (2015) study in order to reassess the risk 

based now on the newly acquired zones and to better understand the building vulnerability of the 

province as performed for the Durban CBD (see Tshabalala, 2015) . 

Historical datasets on tsunami occurrences are sparse (Kijko et al., 2014 and Cawthra and van Zyl 

2015) though they would be pertinent for this kind of study. 

Emphasis should also be made on efforts of the CODATA initiatives to encourage data citation 

practices and open access to data. Initiatives are also underway for training into standards and best 

practice for data collection which is very important in multidisciplinary studies such as these. 
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Table 3.1 Regional Geological, Geomorphological and Structural History of the KZN province (Compiled with information from Partridge and Maud 1987 and Whitmore et al 1999)  
 

 

PRECAMBRIAN 

2500-570 

PALAEOZOIC 

570-250 

MESOZOIC 

250-65 

CENOZOIC 

65-0 

  EVENT GEOMORPHIC 
MANIFESTATION 

EVENT GEOMORPHIC 
MANIFESTATION 

 

 

1000 Ma Natal Metamorphic 
Province granite and gneiss 

 

2700 Ma Pongola granite 

 

2900 Ma Pongola Supergroup  

Nsuze Group sandstone and shale 

Nsuze Group basalt and sandstone 

 

Kaapvaal Craton 

Granite and greenstone 

 

180-300Ma Karoo Supergroup 

Lebombo Group rhyolite and basalt 

Drakensburg Group basalt and dolerite 

Stormberg group mud and sandstone 

Group mud and sandstone 

 

Ecca Group shale and sandstone 

Dwyka Group Tillite 

 

490 Ma Natal Group Sandstone 

Late Jurassic Early Cretaceous-to end of early 
Miocene – African 1 Cycle of Erosion 

Extensive Volcanic activity – seeaward tilting 
and downward faulting along the Natal coast – 
NNMB and KS rocks lowered to sea-level 
along the coast 

 

125 Ma -98Ma Second Phase of Gondwana 
break-up. 

175-125 Ma Antartica/Madagascar broke 
away from Mozambique/Kenya/Tanzania 

 

 

Late Jurassic Early Cretaceous-Fragmentation 
of Gondwana [rift-faulting- complex network of 
faults 

Advanced planation above and below GE- 
development of laterite and silcrete profiles 

 

 

 

Falklands Islands broke away from Africa 
along a short rifted margin and moved 
1300km along the Agulhus Transform Fault 

Movement along the extentional transform 
along the Tanzanian continental margin and 
the northern end of Lebombo and the 
southerneastern side of the Falklands island 

 

 

Initiation of the Great Escarpment 

 

<65 Zululand Group silt and 
sandstone 

Late Pliocene to Holocene –
Climatic and sea-level fluctuation 

Late Pliocene to Holocene –Post 
African II cycle of erosion  

 

Late Pliocene (2Ma) – Major 
Uplift (600-900m) 

 

 

 

Early Mid Miocene to Late 
Pliocene – Post African 1 cycle of 
erosion 

18 Ma End of early Miocene (18 
Ma)- Moderate uplift (150-300m) 

Gravity Sliding in Port Durnford Fm 

 

Marine benches, coastal dune deposits, 
river terraces 

 

Formation of Post African II surface, 
incision of gorges, down-cutting and 
formation of terraces along rivers 

Asymetrical uplift of subcontinent, 
major westward tilting of interior land 
surface, Monoclinal warping along 
southern and eastern coastal margins 

Formation of Post African 1 surface 

 

Westward tilting of African surface 
with limited coastal 46onoclonal 
warping 
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Figure 3.2 Seismicity of the KZN region with results of focal mechanism studies (data from Council for Geoscience) 
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Figure 3.3 Map of Historical and Instrumental Seismicity Trend 
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Figure 3.4 Generalised geology of the KZN region at a scale of 1-250K, seismicity is plotted in the background (data from Council for Geoscience) 
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Figure 3.5 Regional gravimetric map of South Africa superimposed on the major geological boundaries and the seismicity. (data from Council for Geoscience) 
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Figure 3.6  Magnetics Regional aeromagnetic map of South Africa superimposed on the seismicity (Data from Council for Geoscience) 
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Figure 3.7 Major geological provinces of KZN superimposed with the seismicity (adapted from Nguuri et al. 2001) 
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Figure 3.8 Geomorphological domains of Partridge et al. (2010) 
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Figure 3.9 Map of structural lines contained in the 1-250K Geology (data from Council for Geoscience) and neo-tectonic structures digitized from reports referenced herein. 
Insert: Potentially active faults in the region from Ngoasheng (2015) study 
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Figure 3.10 Structural domains produced by Von Veh (1994). The domains delineated correspond with major domains 1-3 which can be further subdivided into 1a, 1b, 2a, 2b 
and 3 a, b, c, d and e. 
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 Figure 3.11 Localities of offshore study areas mentioned in the text 

Wiles et al (2105) 
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Figure 3.12 Combination of Structural Domains, geomorphological boundaries and tectonic provinces.  
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Figure 3.13 Seismotectonic interpretations considering the multidisciplinary data and research (historical earthquakes – red, instrumental earthquakes-green) 
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Figure 3.14 Seismic Risk Curves for the eThekwini Municipality Area by Martinez (2015)
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Table 3.2 Earthquake recurrence parameters for Zone 3c and 3d. 
 

Seismic Parameters Zone 3c Zone 3d Singh et al (2009) 

study Zone 5 

Martinez (2015) 

300km radius 

b-value 1.86±0.4 1.00± 0.3 1.08 ± 0.2 1.14 ±0.1 

mmax 5.61± 0.5 5.44±0.4 6.71±0.48 6.43 ±0.1 

Max obs 5.6 4.4   
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CHAPTER 4:DISCUSSION AND CONCLUSION 
 

This study was aimed towards collecting and analysing relevant datasets for seismotectonic modelling. 

It was further intended to improve the knowledge-base and the resolution of the model prepared by 

Singh at el (2009). This section highlights the achievements made towards this effort, challenges 

encountered and summarises the way forward for further research. 

This research has shown that what was once considered as an intra-plate region with low levels of 

seismicity, where faults were considered inactive, has actually a moderate level of seismicity. It has 

been illustrated that more information is available in the earth science dataset than previously known 

hence a more detailed seismotectonic zonation is possible. This study provided insight into possible 

earthquake sources that could affect the KZN region from freshly revealed historical earthquake data.  

The most significant source that should be accounted for in seismotectonic investigations is that of the 

Mozambique Channel.  The KZN region provided a unique opportunity to study an ‘intraplate’ region 

with ‘moderate’ seismicity levels. It was interesting to observe seismic sources originating from the 

coastal areas as far as SSI and the Mozambique channel. Other interesting seismic sources were the 

pre-existing normal Gondwana age faults and the very large Tugela fault that dissects the province. 

Another significant finding was the presence of a number of thermal springs situated near the Tugela 

fault amongst other locations. The presence of these springs does confirm to some extent neotectonic 

activity in the province. 

It has been illustrated that the seismotectonic model consists of an amalgamation of a multidisciplinary 

dataset. This amalgamation can be open to interpretation in several stages which brings a significant 

amount of subjectivity in the model. More effort is hence required in documenting and streamlining 

methods for its development. At the same time effort is required in documenting the methods and in 

collecting the multidisciplinary dataset as well.  

This work, with the assimilation of the base data and testing of modelling techniques and 

interpretations, provides an important baseline for future seismotectonic work in the province. For 

detailed investigations the fault, seismic or stress information can be investigated further at a given 

locality using geophysical techniques and higher resolution datasets can be acquired. Seismic 

monitoring can also be concentrated now along the coastline and along regions where neotectonic 

activity is taking place  This can be achieved by detailed field mapping at a minimum scale of 1-24K 

in order to detect fault activity. 

One should also acknowledge that the locations of these epicentres used in this study also carries some 

uncertainty (some 50km) for varying reasons (insufficient station coverage and few historical 
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documents to provide good locations). The assessment of this uncertainty is beyond the scope of this 

study. There is also room to improve the historical earthquake dataset. However the instrumental 

seismic dataset can only be improved by densifying the seismic network.  Currently the earthquake 

network coverage for the east coast is rather poor and hence any offshore earthquakes are not being 

recorded with sufficient completeness. This is a real problem because it seems that some tremors that 

are being felt in the region (along the coastline) are originating from offshore sources.  While a large 

portion of the compilation of undetected tremors in Chapter 2 consisted of IDPs rather than locations 

of earthquake epicentres, a foundation is made for future research in this field that might search 

historical documents for the epicentres of these IDPs. The epicentres of these events should be located 

by surveying the public, newspapers and other historical documents.  

Seismic events can be correlated with the old pre-existing faults. There is certainly a level of 

reactivation in place and an accumulation of stresses along these structures. Hence there is potential 

for further site investigations especially on faults identified as potentially active. Many of these faults 

can be located within the delineated zones. Another key dataset that is lacking is that of Quaternary 

faults and neo-tectonics. This data might be acquired through LiDAR.  

Historical datasets on tsunami occurrences are sparse (Kijko et al., 2014 and Cawthra and van Zyl 

2015) though they would be pertinent for this kind of study. 

Emphasis should also be made on efforts of the CODATA initiatives to encourage data citation 

practices and open access to data. Initiatives are also underway for training into standards and best 

practice for data collection which is very important in multidisciplinary studies such as these. 

The research objectives are revisited and discussed: 

1. Analysis of the historical earthquake catalogue – see Chapter 2 

 

Historical earthquake information was revisited in Chapter 2 in order to determine locations of 

seismic sources that can be contributing to the seismic activity in the province. We were 

unable to obtain earthquake epicentres due to the lack of available historical data. However we 

were successful in obtaining some IDPs of significant intensity to warrant further 

investigation. These IDP’s cannot be linked to earthquakes in the national database. This then 

means that some significant historical earthquakes have gone undetected the national database. 

Many of these earthquakes are thought to originate offshore.  The seismic sources that are 

affecting the region largely originate from the Mtubatuba area and offshore Mozambique.  

 

There are certainly opportunities now knowing the date and time of these IDP’s to scroll 

through the rich historical records of the early settlers particularly the English and Indian 
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settlers and labourers to supplement knowledge on these undetected earthquakes for records of 

historical earthquakes and possible tsunamis. 

 

In 2015 and 2016 two significant earthquakes were felt all over the KZN region. On 16 June 

2015 (USGS Moment magnitude 4.3) occurred in the Sundumbili region. This earthquake was 

felt widely in the Zinkwazi region up until Richards Bay. Locally near the Tugela river mouth, 

significant damage was caused to the local beach and fishing spot to the extent that some 

100m of beach area was and still is entirely inundated by water. On 6 February 2016 another 

earthquake (CGS local magnitude 3.8) rocked the Umhlanga and Durban north coastal areas. 

Preliminary surveys in collaboration with CGS showed that some people felt two bouts of 

earthquake shaking. There is also controversy on the location of the epicentre of the 

earthquake – the CGS reporting that it occurred 30km offshore from Umhlanga and the USGS 

reported that the epicentre is located in Mpumulanga (near Hammarsdale – some 60km NW 

from the CGS reported epicentre). There have been no records of damage to structures. Both 

locations cannot be disputed because many residents in both areas reported feeling the 

earthquake quite strongly.  

 

The fact that there were two bouts of shaking ties in with the reports of the earthquake that 

rocked the Umhlanga area on 17 August 1981 discussed in Chapter 2. Here there were infact 

three bouts of shaking. There is certainly some slumping or fault activity in the offshore 

region. This is further supported by the soft sediment deformation reported by Wiles et al. 

(2014). 

 

Another point that needs mentioning in relation to these two earthquakes is the vulnerability of 

the low-cost housing in the region. Residents in the Sundumbili area (that comprise low cost 

or Reconstruction and Development Program (RDP) houses) reported violent shaking of beds 

and furniture for both these events.  

Residents in RDP homes south of Amanzimtoti (some 50km away from the reported CGS 

epicente) also reported violent shaking of beds and furniture during the 2016 earthquake. 

Furthermore residents in low lost housing in the Mpumulanga area again felt the earthquake 

quite strongly compared with people working in the nearby mall some 1 km away. Hence the 

vulnerability of these homes should be addressed and mitigation measures should be in place 

to strengthen these structures to ensure residents safety. Furthermore densified seismic 

monitoring in the area would certainly help to understand the seismic sources at play. 
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2. Development of a Geo-Database for use – see Chapter 3 

 

The geodatabase consists of a wealth of data for modelling. It was only appropriate to be used 

for regional modelling. Breakthroughs were achieved in the seismic dataset by Saunders and 

Botshielo (2013) who provided the much needed error ellipses of the seismic data and 

corresponding focal mechanisms. This then allows one to correlate faults with seismicity. 

Now one can easily confirm that many segments along the Tugela fault can be considered 

active. The fault segments correlate well with the instrumental seismicity, historical seismicity 

and geothermal springs in the area. It is also a region where two very different geological 

bodies lie adjacent to each other the KC in the north and the NNMB in the south. The Karoo 

sediments are deposited on these different bodies which have different densities and 

competencies hence we have the Karoo sediments compressing the less resistant NNMB rocks 

in the south of the Tugela fault as compared with the more resistant KC in the north of the 

fault (Figure 3.7 and Figure 3.9) (S Master 2015 pers. Comm.) 

 

There are many faults along the coastline that correlate with the instrumental and historical 

seismicity. Many faults are clustered. They comprise of faults of different lengths and strike 

directions. These faults should be organised in different faulting systems. Thereafter one can 

look in detail how to correlate both the historical events (with larger location accuracy) and 

the instrumental events (with better location accuracy). A starting point for this would be the 

aeromagnetic dataset (Figure 3.6) that appears to mimic the fault patterns across the region. 

Looking at the aeromagnetic dataset it actually correlates better with the seismic patterns 

observed compared with the structural lines shown in Figure 3.9. Note that structural lines 

along the coastline do not continue beneath the Karoo sediments. Hence it is proposed that the 

active fault systems to be developed for the region should be guided by the aeromagnetic 

dataset. Following this ground-truthing followed by seismic surveys and monitoring should be 

conducted for the respective systems in order to understand fault capability. 

 

There are still opportunities to look at the full dataset, its fit for use, the reliability and the 

most effective way to incorporate them in a model in an automatic way while still preserving 

some control on the interpretations. The database could easily be used in the SOM algorithm 

procedures. 

 

3. Development of a Seismotectonic Model – see Chapter 3 

 

The methodology for modelling was revised from Singh et al (2009) to add an extra level of 

subsystems – this allows for better organising of the datasets and interpretations. The Von Veh 
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(1994) structural model was best suited for delineation of the areal sources owing to the fact 

that it captured most of the understanding of the tectonics in the region. The broad (regional) 

domains of the NNMB and the KS suggested by Nguuri et al (2001) and observed by several 

other datasets (s-wave velocity, tomography, geology, aereomag, gravity). Subdomain 3 is 

divided into 3c and 3d by the Tugela fault that is actually a network of related faults. The 

Tugela fault is also the location of several springs indicating a likely region for neo-tectonic 

activity. The other rationale for the domain and subdomain delineation was the noticeable 

faulted coastal region and the relatively unfaulted western region. Also there is a noticeable 

variation in the lithology in the northeastern region (Mtubatuba-Richards Bay- St Lucia).  

 

Further investigation into fault sources can be made as suggested in point 2 above but we were 

limited with budget and time constraints.  The offshore region was not included in the model 

however it still remains a significant seismic source worth investigating.  

 

More research is required on integration methods and techniques on these different datasets to 

effectively incorporate the different systems using the SOM algorithm 

 

4. Development of an Earthquake Recurrence Model – see Chapter 3 

 

Earthquake recurrence parameters could only be calculated for two zones [zones 3c and 3d] 

because of the lack of seismic data in the other zones. These values are comparable with other 

studies. Further work should focus on vulnerability assessment of urban infrastructure and risk 

analysis incorporating seismotectonic zones.  A detailed risk assessment is required following 

on Martinez (2015) study in order to reassess the risk based now on the newly acquired zones 

and to better understand the building vulnerability of the province as performed for the 

Durban CBD (see Tshabalala, 2015) . 

 

The objectives as noted above have been met as intended. With a regional KZN model one can now 

pin-point areas that can be further investigated to characterise the seismotectonic model more 

accurately.  

 

  



 

73 
 

4.1 References 
 

Saunders, I. and Botshielo, M. (2013). Relocation of earthquakes in the KZN province for seismotectonic 

analysis, Seismotectonic Project Meeting, University of Kwa-Zulu Natal, November 2013. 

Singh, M., Kijko, A. and Durrheim, R. (2009). First order regional seismotectonic models for SA, Natural 

Hazards, DOI 10.1007/s11069-011-9762-3. 

Von Veh, M. (1994). The structural geological analysis of lineaments and fault and dyke traces in the KwaZulu-

Natal Province, School of Geological Sciences, University of KwaZulu-Natal. 

Wiles, E., Green, A., Watkeys, M., Jokat, W. and Krocker, R. (2014). Anomalous seafloor mounds in the 

northern Natal Valley, southwest Indian Ocean: Implications for the East African Rift System.  

Tectonophysics, Volume 630, 3 September 2014, Pages 300–312. 

 

  

http://www.sciencedirect.com/science/journal/00401951
http://www.sciencedirect.com/science/journal/00401951/630/supp/C


 

74 
 

CHAPTER 5:APPENDICES – PEER-REVIEWED AND NON PEER-
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5.1 EGU 2012 Abstract: Seismotectonic Analysis for the KZN region of 

South Africa 

Citation: Singh M. (2012) Seismotectonic Analysis for the KZN region of South Africa, Vol 14, EGU 

2012-10491 
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5.2 SAGA-AEM 2013 Extended Abstract: Combining Structural Domains, 

Geomorphological Provinces and GPS Data for Seismotectonic 

Modelling of the KZN Province 

 

Citation: Singh, M., Akombelwa, M. and Maud, R. (2013), Combining Structural Domains, 

Geomorphological Provinces and GPS Data for Seismotectonic Modelling of the KZN Province, 

SAGA-AEM Conference, July 2013, Kruger National Park, SA 

 

Preliminary studies combining earth science data [geology, geophysics and seismicity] reveal that the KZN 

coastal regions have been subjected to significant ground motions historically. Subsequently, all new 

developments especially hazardous and high rise structures should incorporate a seismic design component prior 

to construction. Coast perpendicular and coast parallel faults correlate with seismic events recorded for the 

region. For seismotectonic modelling, the following additional datasets are compiled: structural domains for the 

province which provide a tectonic basis for seismotectonic modelling; regional geomorphological provinces 

which provide a geodynamic basis for seismotectonic modelling and GPS measurements to characterize regional 

and local plate motions.  

Seismotectonic modelling used for seismic hazard and risk assessments requires a complete comprehension of 

the geology, tectonics, palaeo-seismology, regional geophysical anomalies, historical and instrumental 

seismicity, and other neo-tectonic phenomena like, relative plate motions and current tectonic plate stresses. A 

study of the seismic catalogue (Singh et al 2013) reveals that the region in question has a significant level of 

seismic activity. From the seismic catalogue, NE-SW coast parallel patterns of seismic occurrence can be seen. 

This pattern correlates with the geology outcropping in a similar coast parallel orientation. The mapped faults 

have two distinct orientation NE-SW coast parallel patterns in the south west, and NW-SE coast perpendicular 

orientations in the north. Several correlations can be made with the mapped faults and the seismic locations. 

From the regional geophysics datasets the extent/boundaries of the basement geological provinces of the 

Achaean Kaapvaal craton and the mobile Namaqua-Natal Mobile Belt province can be located. Higher resolution 

earth data is now available and digitised - like structural domains for the province which provide a tectonic basis 

for seismotectonic modelling (Von Veh 1994); regional geomorphological provinces which provide a 

geodynamic basis for seismotectonic modelling (Partridge et al 2010) and GPS measurements to characterize 

regional and local plate (Malservisi et al 2011).  

Structural domains  

Structural domains provide insight to the underlying tectonic forces at play when trying to understand earthquake 

causes. Von Veh (1994) defined three broad structural domains by analysing fault, dyke and lineament data. 

These domains were further subdivided based on geological characteristics. In total 9 subdomains were 

delineated. The strike frequency distribution of faults, dykes and lineaments were analysed for each domain. The 
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direction of maximum principal stress that prevailed during the different tectonic events was also provided for 

each sub domain. No obvious patterns can be observed when overlaying the seismic events with the structura 

domains. The value of these domains will come into play at specific sites where earthquakes and fault 

mechanisms are being investigated.  

Geomorphological domains  

Partridge (2010) identified 34 provinces and 12 sub-geomorphic provinces. These provinces are generally 

geographic regions on the earth’s surface that are subject to the same erosional parameters and are similar in 

terms of structure, shape and mineral composition. Essentially they were identified from macro-reaches that 

were subsequently classified in terms of slope and cross sectional width, sediment storage potential etc. Principal 

component analysis was used for the data analysis. For th KZN region a regional sub-domain was identified with 

the Great Escarpment showing prominence. Numerous rivers drain from the escarpment to the coastline. The St 

Lucia area has a remarkably different province from the broad province identified for KZN region. This is an 

interesting observation as the largest historical earthquake in the province originated in this region.  

GPS  

Malservisi et al (2011) analysed GPS data from the South African Trignet network. They found that the cratonic 

regions in SA is stable with a relatively larger deformation rate in the Cape Town region. They also found 

deformation possible along the southern coast and along the Mozambique belt. On a more broader view the 

African continent behaves like a rigid plate with motions within 2mm/year with a clockwise rotation of the 

South African region with respect to the Nubian region. In the most part of their conclusions, data was lacking to 

confirm hypothesis. In this case this type of data along with its quality and uncertainty should be incorporated 

and measured in some way for the seismotectonic modelling.  

These additional datasets should be combined effectively to understand the seismotectonics in the region. One 

should have an understanding of the methods used in combining the datasets and provinces, as well as a handle 

on incorporating quality of the data and uncertainty of the data and results. The seismotectonic modelling will be 

undertaken in follow-up work.  
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5.3 Position IT 2014 Article: Geo-Database compilation for Seismotectonic 

investigations for the KZN coastal regions 

Citation: 

Singh, M., Akombelwa, M. and Maud, R. (2013), Geo-Database compilation for Seismotectonic 

investigations for the KZN coastal regions, SASGI Conference, Emperor’s Palace, Jbg, 23-24 July 

2013  

Singh, M., Akombelwa, M. and Maud, R. (2014), Geo-Database compilation for Seismotectonic 

investigations for the KZN coastal regions, Position IT, July 2014, EE Publishers (PTY) Ltd.  

 

Abstract 

 

Seismotectonic modelling used for seismic hazard and risk assessments requires a complete comprehension of 
the geology, tectonics, palaeo-seismology, regional geophysical anomalies, historical and instrumental 
seismicity, and other neo-tectonic phenomena like, relative plate motions and current tectonic plate stresses. 
This paper shows progress made in compiling available geospatial data relevant for this kind of modelling at the 
best resolution available and elaborates their importance in understanding the seismic load for the region. A 
study of the seismic catalogue reveals that the region in question has a significant level of seismic activity, and 
ground motion parameters should be incorporated in the design of critical structures. At this stage visual 
correlations with the seismic catalogues and available geo-data were made in order to ascertain where further 
analysis is required. From the seismic catalogue, NE-SW coast parallel patterns of seismic occurrence can be 
seen. This pattern correlates with the geology outcropping in a similar coast parallel orientation. The mapped 
faults have two distinct orientation NE-SW coast parallel patterns in the south west, and NW-SE coast 
perpendicular orientations in the north. Several correlations can be made with the mapped faults and the 
seismic locations. From the regional geophysics datasets the extent/boundaries of the basement geological 
provinces of the Achaean Kaapvaal craton and the mobile Namaqua-Natal Mobile Belt province can be located. 
Other important studies on the geomorphological provinces, regional plate motion, natural springs, seismic 
tomography and structural provinces are still being compiled.  
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Introduction 

 

Development in the KwaZulu-Natal coastal regions is fast paced. The area is attracting multi-billion rand 
investments from both national and international investors for major infrastructure development projects. To 
name a few: In Durban central- Transnet’s proposed port infrastructure upgrade and EThekwini’s upgrading of 
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the Point harbor area, La Mercy upgrading of infrastructure at the Dube Trade port in the vicinity King Shaka 
International Airport and the infrastructure of the airport itself and Cornubia - an extensive new housing and 
infrastructure development project that will extend from the already developed Gateway precinct to as far as the 
new airport. These civil projects make the region probably one of the fastest growing area currently in South 
Africa (SA).  

 

With infrastructure development, supporting power and water facilities and population density increase come an 
increase in vulnerability to rare natural disasters like earthquakes – which if understood properly could have their 
disastrous effects minimized. Recent earthquakes in Japan, New Zealand and Haiti have shown the need for 
proper infrastructure design and the world has vividly seen the wrath and havoc earthquakes can have on a 
country and its economy. 

 

New infrastructure should incorporate seismic loads in their design hence seismic hazard and risk assessments 
should be performed on a local scale. These assessments are critical for the construction of state of the art critical 
facilities like hazardous and high rise structures. A seismotectonic model is a critical building block for these 
evaluations which comprises as a start a multidisciplinary geo-database for understanding the root cause of 
earthquakes and classifying those regions that have similar properties for earthquake occurrence. 

 

The KZN coastal areas have experienced several potentially damaging earthquakes historically albeit these 
earthquakes occurred at a time when it was less populated and built-up – hence there is very little memory or 
record of earthquake damage. Figure1 shows the distribution of isoseismal maps [curves delineating areas with 
different seismic intensities from each other in Modified Mercalli (MM) scale of [1] where potentially damaging 
intensities to infrastructure start from MM Intensity IV upwards. Historical reports of damage to the KZN coastal 
areas have been reported since 1932. These earthquakes are reported to originate from different sources even 
neighboring countries like Mozambique. Note that the damage reported was significantly less as compared to if 
there were to be a repeat of the same earthquake today, mainly due to the rapid change in infrastructure and 
development.  

 

 

Fig. 1: Isoseismal maps of significant earthquakes that have occurred within the province (from [2]) 
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While seismic hazard maps were calculated for South Africa [3, 4, 5] the methodology used for the calculations 
of these maps were based on ‘seismotectonic zone-free’ methods (mainly because the seismotectonic model for 
the region was poorly understood). Regulations for seismic design of critical structures like Nuclear Power 
Plants, Bridges, Tunnels, LNG Terminals, requires that seismotectonic models in some form be incorporated in 
the seismic hazard assessments (SHA) (see IAEA Seismic Safety Series; U.S. Nuclear Regulatory Commission 
Seismic Regulatory Guides; European building code Eurocode; National Nuclear Regulator’s guidelines for 
seismic design). 

 

While there are several agreed methodologies for deriving the seismotectonic model [6-12] and there are several 
methods for SHA [13-20], in all approaches, similar kinds of ‘geo-data’ are required – for which its 
completeness, availability and resolution around the world differ. This work aims to put together the available 
data from literature and relevant organizations responsible for the data collection. Its status in terms of 
completeness, resolution and value to the seismotectonic modelling will be assessed in follow up work. This 
work forms the first step for the seismotectonic modelling process. 

 

The first publication for SA that built up a comprehensive multidisciplinary geodatabase of this nature was that 
of [21] and thereafter [22]. Several gaps were identified in the database if it were to be used for SHA for critical 
structures. [23] proceeded to build a regional model despite the incompleteness in the datasets. Further [24] 
assimilated several other important datasets in order to investigate the potential for groundwater on a regional 
scale in SA. Other imporatant work is that of [25] that assimilated geo-data for use in development of a landslide 
susceptibility map for the province.   

 

[26] Summarises the essential parameters required for a seismic source model that can be used in SHA. Two 
types of earthquake sources are required fault sources and areal sources. Fault sources are typically modelled as 
a three dimensional fault surfaces and details of their behaviour are incorporated into the source characterisation 
and Areal sources are regions where earthquakes are assumed to occur randomly with no clear association with 
any of the faults that might be included in the seismic source model. For fault sources to be included in the 
analysis basic geometric source parameters that are required include the fault location, dip and thickness of the 
seismogenic zone. For the recurrence parameters one needs to include the recurrence model, recurrence rate – 
which can be obtained from the slip rate or average recurrence interval for the maximum event, slope of the 
recurrence curve (b-value), and maximum magnitude. 

 

While the inputs to obtain fault and areal sources are so complex, the risk implication varies considerably – 
considering the investment required for increasing seismic safety for design. Therefore it is imperative in the 
modelling to move from a more qualitative to a more quantitative methodology.  There is a need for one to be 
able to propagate errors, where expert judgement is supported by data and is verifiable. All datasets should have 
room for updating at a later stage. The seismotectonic modelling analyst should be accountable and his 
hypothesis should be traceable or data-supported.  

 

Therefore the style of this review is designed to start with raw data and to track the interpretative outputs in order 
to understand completeness and uncertainties. Ideally one should also be able to document multiple 
interpretations. For modelling that requires data from a multidisciplinary field this is often impossible unless the 
data has been acquired strictly for this modelling purpose and all processes are documented. 
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In this study, the following datasets are presented the seismic history of the region, the regional geology and the 
regional geophysics. Several other datasets are still in the process of being digitized. 

 

Seismic History 

 

The Council for Geoscience provided both a historical (pre-1970) and instrumental catalogue of seismic events 
for the KZN province (see Fig. 2). Additional historical events have been found in literature but are presently 
being validated. A project is also underway to validate all seismic events in the CGS catalogue in terms of 
location and magnitude accuracy. Presently the seismic stations are sparsely distributed regionally making the 
threshold of earthquake sensitivity equivalent to all magnitudes greater than and equal to 3. 

 

 

 

Fig. 2: Historical and Instrumental seismic events that occurred within the province 

There are a total of 177 earthquakes on record with local magnitudes (ML) within range of 2-4 from 1970-2012. 
In the historical catalogue there are 62 earthquakes on record with local magnitudes (ML) within range of 1.5-6.3 
from 1906-1969.  

 

The largest earthquake occurred in 1932 of ML 6.3 in the St Lucia area. Its effects are well documented in [27]. 
This earthquake was located in the sea offshore the Zululand coast. Shocks were reported in Port Shepstone, 
Kokstad, Koster, and Johannesburg (some 500 km away). The nearest point on land to the epicenter was Cape 
St. Lucia, where Modified Mercalli Intensity (MMI) of IX was assigned on the evidence of sand boils and cracks 
in the surface, but the damage in this area was small possibly because it was uninhabited. In the severely shaken 
areas, poor-quality houses (built of unburned or half-burnt bricks or other low-quality materials) were severely 
damaged. In well-built houses, small cracks were occasionally seen but the structures did not suffer major 
damage. The phenomenon of site-effects was clearly displayed in the observations of the after effects of this 
event. Structures built on thick sand were undamaged, while those built on alluvial sands suffered severe 
damage. Changing rock types in the area also had a strong influence on the attenuation of the seismic wave. 
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From evidence of its effects, [27] argue that this earthquake was probably caused by slip along a fault in the sea 
striking in a SSW-NNE direction parallel to the coast. 

 

There is no obvious pattern when looking at the spatial distribution of the earthquakes except two very broad 
patterns as indicated. Towards the north - clustering of events occur in the north-west from blasting in the coal 
fields (containing events from the instrumental period only). An almost linear band of about 100km extent of 
random occurrences of both historical and instrumental earthquakes can be located trending in a NE-SW coast 
parallel direction.   

 

Geology and Faults 

 

The lithological units outcropping in the province is shown in Fig.3. [28] Provided a generalized summary of the 
rock units outcropping into the province. The rocks in the region are of Achaean (3800-2700Ma) to Cenozoic 
(65Ma –recent) in age. The older rock units outcrop towards the northern extent of the province towards the 
Swaziland border. On the eastern coastline, the Cenozoic Zululand Group silt and sandstone and unconsolidated 
sediments can be found. Most of the central part of the province consists of the Paleozoic to Mesozoic (300-
180Ma) Karoo Supergroup (KS) sediments. The younger Proterozoic rocks (2500-490 Ma) of the Natal Group 
Sandstone (NGS) and the Natal Metamorphic Province (NMP) can be found outcropping in a NE band between 
Durban and Pietermaritzburg. From Pietermaritzburg up to Lesotho in a westerly direction one would find rock 
outcrops of the KS.  

 

 

 

Fig. 3: Lithological units of the KZN province (from the 1:1000 000 Regional Geology Map of the Council for 
Geoscience). The seismic event location is superimposed on the lithological units. 

 

On first observation the only correlation with the north easterly trend of the seismic locations identified earlier is 
the linear outcropping trend of the sediments of the NGS and the NMP. However this NE seismic trend extends 
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into the sediments of the KS. A more detailed classification scheme is required than that of [28] to identify the 
different rock units and their relative spatial and age relationships. Hence higher resolution geology data has 
been collected and is being assimilated [KZN Regional geology 1:250 000 scale, Durban 1:50 000 scale, St 
Lucia and Richards Bay, Verulam and Maputuland and offshore bathymetrics].  

 

The incipient break-up of the Gondwana supercontinent 183 Ma formed fractures and planes of weaknesses that 
acted as conduits for lava and formation of dolerite dykes and sills. After the separation of Africa and Antarctica 
at about 140 Ma marine sediments of the Cretaceous Zululand Group were deposited in the newly opened Indian 
Ocean.  

 

Major faults mapped in the province are superimposed on the seismic catalogue Fig.4. [29], [30] and [31] 
described consistent trends in the fault directions in the province essentially coast parallel NE-SW faults and 
coast perpendicular NW-SE faults. These distinct groups occur at the interface with the sediments of the KS and 
the Pongola Supergroup (NW-SE faults) and at the interface between sediments of the KS and the sediments of 
the NGS and the NMP. The E-W fault line is also a prominent feature and occurs within the KS.  

 

 

 

Fig. 4: Mapped faults in the KZN province (from the 1:1000 000 Regional Geology Map of the Council for 
Geoscience). The seismic event location is superimposed on the faults. 

 

 

[29] looked specifically at the Durban area and found relative displacement of faults of a few centimeters to tens 
of meters. [32] Described faults in detail that had displacements of 300m in places. Normal faults are dominant 
in the Durban area and are consistent with extensional palaeostresses acting at the time of faulting. 
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Interestingly there are several correlations with the seismicity and the mapped faults in the area. Until the 
seismic event locations uncertainties are assessed, accurate correlations cannot be made. Work in progress 
includes understanding and classifying the faults such as mechanisms, stress orientations, age of faulting, 
displacement amounts and evidence for reactivation during the Quaternary period.   

 

Geophysics 

 

Geophysical investigations (e.g., gravity, magnetics, and seismic anisotropy) provide a better understanding of 
the subsurface geology of the Earth. Regional aeromagnetic and gravimetric maps of the province are shown in 
Figs. 6 and 7. The seismicity data are superimposed on these maps.  

 

Gravity data provide information about densities of rocks underground. Generally, gravity highs indicate the 
presence of relatively dense rocks, and magnetic anomalies are caused by rocks with abundant magnetite in 
them. Very high-intensity anomalies (more than 50 milli-gals or more than 200 gammas) typify major changes in 
rock type, usually (but not always) in basement rocks. Most sedimentary rocks (with the exception of banded 
ironstones) contain little magnetite, so generally we are dealing with igneous and metamorphic rocks [33]. 

 

From the geophysics data, the regional geological provinces can be determined [34]. The southern extent of the 
Achaean KC is indicated on the figures and the lower province is called the Namaqua-Natal Mobile Belt 
(NNMB). This boundary also falls in the same vicinity of the EW trending fault mapped through the province. 
The sediments of the KS overlay these provinces in most cases. Note that in both these figures the patterns 
formed by the geophysical signatures correlate to a large extent with the geological provinces beneath the Karoo 
sediments.  

 

 

 

Fig. 5: Regional aero-magnetics of the KZN province together with the seismic event locations.   
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Fig. 6: Regional gravity of the KZN province together with the seismic event locations. 

 

The rocks in the NNMB provide locally high magnetic signatures. The regional gravity map also maps the high 
density rock types along the coastline. No other direct correlations can be made with the seismicity and the 
geophysics at this stage.  

 

Higher resolution datasets are available and is being assimilated for further analysis. 

 

Other Databases and Work in Progress 

 

Other work that is being assimilated is: structural domains for the province which provide a tectonic basis for 
seismotectonic modelling [31]; regional geomorphological provinces which provide a geodynamic basis for 
seismotectonic modelling [35], GPS measurements to characterize regional and local plate [36]; naturally 
occurring springs like Lalani, Shushu and Natal Spa that occur usually at deforming ground areas at [37, 38] and 
local evidence of neo-tectonic deformation/faulting. 

 

Conclusions 

 

The region has experienced a significant level of seismic activity historically. Visual correlations of the seismic 
catalogue locations show NE-SW coast parallel patterns of seismic occurrences. This pattern correlates with the 
geology of the NMP and the NGS outcropping in a similar coast parallel orientation. The mapped faults have 
two distinct orientation NE-SW coast parallel patterns in the south west and NW-SE coast perpendicular 
orientations in the north. Several correlations can be made with the mapped faults and the seismic locations. 
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From the regional geophysics datasets the boundaries of the basement geological provinces of the Achaean KC 
and the NNMB can be located. Other important studies on the geomorphological provinces, regional plate 
motion, natural springs, seismic tomography and structural provinces are still being compiled.  

 

Preliminary evidence has shown that the region has significant levels of seismicity and strong evidence of locally 
tectonic active regions. Hence ground motion parameters should be incorporated to reduce economic and 
population vulnerability to earthquakes. 
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5.4 Africa Array 2014 Abstract: Seismotectonic Interpretations of Seismic 

and Structural data for the KZN Province of South Africa 

 

Citation: Singh, M., Akombelwa, M. and Maud, R. (2014). Seismotectonic Interpretations of Seismic 

and Structural data for the KZN Province of South Africa Africa Array Workshop, Wits University, 

January 2014  

 

Abstract 

A seismotectonic interpretation is made from analysing both the earthquake and structural systems. A 

methodology is designed from methods used in France and Italy. Geo-spatial data like geology, tectonics, 

regional geophysical anomalies, historical and instrumental seismicity are considered.  Because of incomplete 

records and uncertain locations, efforts were made to improve the database. Additional historical epicenters and 

Intensity Data Points have been found from various sources. For recorded events, their location and magnitude 

were re-assessed and all the explosions due to coal mining were removed. A comprehensive geo-database has 

been created which contains all the original reports, shape-files and maps that can be revisited when re-testing or 

updating of the model is required. What once was considered as a diffuse seismotectonic region with low levels 

of seismicity and where insufficient, uncertain and incomplete data existed – we now have datasets that are more 

complete and have higher levels of accuracy. Earthquake epicentres from both the historical and instrumental 

record as well as the occurrence of thermal springs correlate with old Jurassic faults. The seismotectonic 

interpretation is explained in a structured way where assumptions can be effectively tracked and recorded. 
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5.5 Africa Array 2015 Abstract: Analysis of possible sources of some 

unregistered historical earthquake tremors that affected the KwaZulu-

Natal coastal regions of South Africa for seismotectonic investigations. 

 

Citation: Singh, M., Akombelwa, M. and Maud, R. (2014). Analysis of possible sources of some 

unregistered historical earthquake tremors that affected the KwaZulu-Natal coastal regions of South 

Africa for seismotectonic investigations. Africa Array Workshop, Wits University, January 2015 

 

Abstract  

Historical earthquake information forms a critical dataset for seismotectonic 

investigations that can be used seismic hazard (SH) investigations of hazardous and high 

rise structures and national SH maps. This study systematically interrogates historical 

earthquake data for the region from various sources in order to have a better understanding 

of the origins of the larger earthquakes. Several previously undocumented earthquakes 

were found that can supplement the national catalogue. Various sources are postulated as 

origins of these tremors, namely local sources located in Mtubatuba and offshore sources 

as in the Mozambique Channel. These results re-emphasise the need to better understand 

the coastal environment for seismotectonic characterisation and to densify the seismic 

network towards the eastern coastline. 
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5.6 Natural Hazards 2015 Publication: Geo-Database compilation for 

Seismotectonic investigations for the KZN coastal regions 

 

Citation: Singh, M., Akombelwa, M. and Maud, R. (2014). Analysis of possible sources of some 

unregistered historical earthquake tremors that affected the KwaZulu-Natal coastal regions of South 

Africa for seismotectonic investigations. Natural Hazards (2015). 75:2279-2289. DOI 

10.1007/s11069-014-1425-8. 
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5.7 SAGA 2015 Extended Abstract: Earthquake recurrence parameters 
for KwaZulu-Natal Province 

 

Citation: Mapuranga, V. and Singh, M. (2015). Earthquake recurrence parameters for the KwaZulu-

Natal Province. SAGA Conference, September 6-19, 2015, Drakensberg, South Africa. 
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