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Abstract

The Local Directional Pattern (LDP) method has established its effectiveness and perfor-
mance compared to the popular Local Binary Pattern (LBP) method in different applications.
In this thesis, several extensions and modification of LDP are proposed with an objective
to increase its robustness and discriminative power. Local Directional Pattern (LDP) is
dependent on the empirical choice of three for the number of significant bits used to code the
responses of the Kirsch Mask operation.

In a first study, we applied LDP on informal settlements using various values for the number
of significant bits k. It was observed that the change of the value of the number of significant
bits led to a change in the performance, depending on the application.

Local Directional Pattern (LDP) is based on the computation Kirsch Mask application re-
sponse values in eight directions. But this method ignores the gray value of the center pixel,
which may lead to loss of significant information. Centered Local Directional Pattern (CLDP)
is introduced to solve this issue, using the value of the center pixel based on its relations
with neighboring pixels. Local Directional Pattern (LDP) also generates a code based on the
absolute value of the edge response value; however, the sign of the original value indicates
two different trends (positive or negative) of the gradient. To capture the gradient trend,
Signed Local Directional Pattern (SLDP) and Centered-SLDP (C-SLDP) are proposed, which
compute the eight edge responses based on the two different directions (positive or negative)
of the gradients.

The Directional Local Binary pattern (DLBP) is introduced, which adopts directional informa-
tion to represent texture images. This method is more stable than both LDP and LBP because
it utilizes the center pixel as a threshold for the edge response of a pixel in eight directions,
instead of employing the center pixel as the threshold for pixel intensity of the neighbors,
as in the LBP method. Angled Local directional pattern (ALDP) is also presented, with an
objective to resolve two problems in the LDP method. These are the value of the number of
significant bits &, and to taking into account the center pixel value. It computes the angle
values for the edge response of a pixel in eight directions for each angle (0°,45°,90°,135°).
Each angle vector contains three values. The central value in each vector is chosen as a
threshold for the other two neighboring pixels. Circular Local Directional Pattern (CILDP) is



also presented, with an objective of a better analysis, especially with textures with a different
scale. The method is built around the circular shape to compute the directional edge vector
using different radiuses.

The performances of LDP, LBP, CLDP, SLDP, C-SLDP, DLBP, ALDP and CILDP
are evaluated using five classifiers (K-nearest neighbour algorithm (k-NN), Support Vector
Machine (SVM), Perceptron, Naive-Bayes (NB), and Decision Tree (DT)) applied to two
different texture datasets: Kylberg dataset and KTH-TIPS2-b dataset. The experimental
results demonstrated that the proposed methods outperform both LDP and LBP.
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Chapter 1
General Introduction

Texture is the visual aspect of the surface of a material, which originates from the three-
dimensional structure of a physical object. It indicates the surface properties of materials and
these characteristics are recognized by humans at first by visual acuity and is then verified by
touch. In a general sense, the surface texture appears as a result of the interaction between
light and clauses of the surface (roughness, softness, the degree of refinement, the reflected
light from material surfaces and shape). A texture is usually described as rough or smooth,
hard or soft, glossy or matt, etc. (Flexner, 1987). Texture can be categorized in two ways:
in terms of the degree of smoothness, roughness, regular and irregular, or as natural or
man-made. Figurel.l presents a few natural textures and Figure 1.2 shows a few man-made

textures.

Fig. 1.1 Natural Texture

In computer vision, there is no exact definition of the notion of texture. The main reason is
that the characterizing texture in digital image can be sensed via variations of color or the

intensity of capturing. Many researchers have tried to define texture:
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-

We may regard texture as what constitutes a macroscopic region. Its structure is

Fig. 1.2 Man-made texture

simply attributed to the repetitive patterns in which elements or primitives are
arranged according to a placement rule. (Tamura et al., 1978)

A region in an image has a constant texture if a set of local statistics or other local
properties of the picture function are constant, slowly varying, or approximately
periodic. (Sklansky, 1978)

Texture is defined for our purposes as an attribute of a field having no components
that appear enumerable. The phase relations between the components are thus
not apparent. Nor should the field contain an obvious gradient. The intent of
this definition is to direct attention of the observer to the global properties of the
display — i.e., its overall “coarseness”, “bumpiness”, or “fineness”. Physically,
non enumerable (aperiodic) patterns are generated by stochastic as opposed to
deterministic processes. Perceptually, however, the set of all patterns without
obvious enumerable components will include many deterministic (and even
periodic) textures. (Richards and Polit, 1974)

Image texture we consider is non figurative and cellular... An image texture
is described by the number and types of its (tonal) primitives and the spatial
organization or layout of its (tonal) primitives... A fundamental characteristic
of texture: it cannot be analyzed without a frame of reference of tonal primitive
being stated or implied. For any smooth gray-tone surface, there exists a scale
such that when the surface is examined, it has no texture. Then as resolution

increases, it takes on a fine texture and then a coarse texture. (Haralick, 1979)

Texture is a feature that divides images into a different areas. Each area holds a common
characteristic. The picture in Figurel.3 has four specific textures: leopard texture, jungle
texture, snow texture and grass texture. Theses features can be employed to recognize
different object classes.
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Fig. 1.3 This example has four specific textures: leopard texture, jungle texture, snow texture
and grass texture.

1.1 Motivation

Texture analysis is used to segment and recognize images based on the spatial shape of
edges or color. It demonstrates its strength, especially in varied illumination conditions, for
example, in the outdoor conditions. Texture analysis is an important aspect in computer
vision and it has been used in many applications. For instance, it has been used in the
medical field for early detection of breast cancer for women through the recognition of
microcalcifications in the breast (Megalooikonomou et al., 2007); distinguishing the pain
state in the patient through a facial image, characterization of pap cancer by detecting the
abnormal smear cells Nanni et al. (2010), and early predicting of hepatits C disease from
liver computed tomography (CT) images for survivors of the colorectal cancer (Miles et al.,
2009).

In other fields, remote sensing has been used to extract areas of vegatation using satellite
images that contain natural forests and plantations and to identify hydro-thermal uranium
ore areas (Pan et al., 2013), for instance, in Heyuan city- Guangdong province in south
China (Figure 1.4) (Chen et al., 2014). Remote sensing is also used to extract residential
areas, which can be useful in disasters or in urban extensions (Zhang et al., 2016) or for road
networks where roads are extracted through very high-resolution satellite images, as shown
in Figure 1.5 (Li and Zhang, 2015).

In agriculture, identification of plant diseases can be carried out by extracting the infected
area of the plant, captured using a digital camera (Phadikar and Goswami, 2016). In the
forensic field texture analysis is applied to identify victims of massive disasters through dental
images (Joseph and Santhi, 2016). Textures have a high contrast in visual appearance, as they

may be oriented or captured in various sizes and illumination conditions. Most of the features
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(a) (b)
Fig. 1.4 The results of vegetation extraction (Chen et al., 2014)

ic) Road detection results (d) road network results

Fig. 1.5 Road extraction (Li and Zhang, 2015)

are computationally too complex to meet the real-time requirements of many computer vision
applications. For this reason, only few texture feature methods are capable of performing
well enough for real-world applications, despite the large amount of texture classification
research does since the 1960s. In order to employ a feature in a real world application,
it must be robust against rotations, scaling, illumination changes and be computationally
inexpensive.

Grounded on the mathematical theory of Fedorov groups Liu et al. (2004) present a

computational model for periodic pattern perception (wallpaper group and frieze group, as
shown in Figurel.6).
In the mid 90s (Ojala et al., 1996) presented an efficient method for texture analysis, which is
a Local binary pattern (LBP). It shows a high demonstrated superiority in many comparative
studies for speed and performance and has been employed successfully in several real world
computer vision applications. The success of LBP has encouraged many scholars to further
research, by presenting improvements that modernize and build powerful extensions to
LBP such as dominant local binary pattern (DLBP)(Liao et al., 2009), completed local
binary pattern (CLBP)(Guo et al., 2010) and center-symmetric local binary pattern (CSLBP)
(Heikkild et al., 2006), among others.
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Fig. 1.6 Examples of periodic patterns

Research in recent years has started to focus on directional information instead of
intensity information, the reason for this being that the directional information encoded is
more stable than the pixel intensity (Luo et al., 2016). Some examples are Jabid et al. (2010),
who presented a low-level feature, Local Directional Pattern (LDP), which uses the edge
responses of eight different directions for each pixel; Luo et al. (2016), who presented the
local line directional pattern (LLDP), using the line direction response instead of the gradient
response and Shabat and Tapamo (2016), who presented the directional local binary pattern
(DLBP) using the central pixel as a threshold for the eight directional response value of the
neighborhood. In this thesis we present several improvement of LDP.

1.2 The contribution of the thesis

The Local Directional Pattern (LDP) method has established its effectiveness and performance
compared to the popular Local Binary Pattern (LBP), in different applications. However, in
its native form, the LDP suffers from various shortcomings.

Three of these are, overlooking the central value in the local neighborhood, randomly
selecting the number of the most significant edges, which vary depending on the applications
and LDP operator cannot properly detect large-scale texture structures. This is because of
LDP’s structure that targets a small local neighborhood. All these reasons tend to decrease
the performance of LDP.

In this thesis, several extensions and modifications of LDP are proposed, with the objective
of increasing its robustness and discriminative power. Its use of the value of the central pixel,
based on its relations with the local neighboring pixels or as a threshold for the edge response
of a pixel in eight directions, aims for a better analysis. Four orientations (0°,45°,90°, 135°)
are employed to compute the most directional edges in eight directions, rather than the
manual way, to find the appropriate number of edges, which vary based on the application.

To be able to capture the gradient trend, two directions (positive and negative) of the gradient
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are employed to calculate the eight edge responses. To be able to measure the texture on
multiple scale through the use of the circular shape to compute the directional edge vector,
different radiuses are used.

The performance of LDP and the proposed extensions are shown in an extensive comparative
study.

1.3 The outline of the thesis

The remaining part of thesis is organized into seven chapters and the description of each is
reported below.

In Chapter 2, we discuss the analysis of the texture and the most popular and well-known
texture methods, such as GLCM, GLCLL, GLCHS, LBP, CLBP, CS-LBP, LDP and LDPv.
Literary revisions are also made to some of the issues concerning the knowledge of computer
vision and texture analysis. The grounds for the use of texture feature to analyze the texture
and recognize facial expressions are also given in this chapter.

In Chapter 3, paper I entitled, “A Comparative Study of the use of Local Directional Pattern
for Texture Based Informal Settlements Classification” is presented. Local Directional
Pattern (LDP) is applied on the informal settlements using various values for the number of
significant bits k. It is observed that the change of the value of the number of significant bits
leads to a change in the performance, depending on the application.

In Chapter 4, paper II entitled, “Directional Local Binary Pattern for Texture Analysis”
introduces the new features method, Directional Local Binary Pattern (DLBP), that builds on
the best attributes of both the LBP and LDP.

In Chapter 5, paper III presents three extensions that improve LDP. The first improvements
involves the value of the central pixel in the calculation of the LDP code to obtain the new
method of Centered Local Directional Pattern (CLDP). The second improvement is made by
using the gradient sign (positive and negative). The third improvement integrates both the
value of the central pixel and both gradient signs.

In Chapter 6, paper IV entitled “Angled Local Directional Pattern for Texture Analysis with
an Application to Facial Expressions” is presented. In this paper we solve the problem
of the search for the optimal value for the most significant edges, which change from one
application to another. The angles values for the edge response of a pixel in eight directions
for each angle are computed(0°, 45°, 90°, 135°). Each angle vector contains three values.
The central value in each vector is chosen as a threshold for the other two neighboring pixels.
In Chapter 7, paper V entitled “Circular Local Directional Pattern for Texture Analysis” is

presented. Circular Local Directional Pattern (CLDP) is built around the circular shape to
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compute the directional edge vector using different radiuses with the objective of identifying
textures with a large scale.

In Chapter 8, an extensive comparative study between all the presented methods and LDP
were discussed. In this chapter, two different datasets are used to evaluate the performance
of each method.

In Chapter 9, an overview of the proposed methods is given, and the improvements achieved,

the limitations and future work are discussed.






Chapter 2

Texture Analysis

2.1 Introduction

Texture can be identified as an aspect that presents the spatial distribution of the gray levels
of the pixels in a region of a digital image. Texture analysis is the process of extracting
useful information from the surfaces of entities that appear in an image, where each entity
may appear in a small area of the image or the entire image. Many of the texture analysis
algorithms involve extracting texture features of each entity. These algorithms may vary in
the manner in which texture features are extracted and how they are delivered and identified.

Traditionally, there are two types of texture analysis: the statistical or stochastic approach
and the structural approach. Tuceryan and Jain (1990) had a wider perception of the texture
analysis problems and they presented four categories of texture analysis instead of two:
statistical, geometrical, model-based and signal processing. In the statistical approach,
features are derived by considering the image signals, which reflect an inevitable feature of
the spatial distribution of the signals into images. This approach can characterize some
properties such as smoothness and roughness. Using a statistical approach, texture is
measured based on the number of pixels which can be further classified into first order,
second order and a higher order statistics (Ojala and Pietikédinen, 2004). For statistical
properties of texture it is easiest to compute the first order like computing the variance or
the mean of the of individual pixel values. For the second order, it computes the number of
occurrences of two pixels separated by distance and direction. Entropy, energy and many
more texture features are derived from calculating the second order.

The most popular statistical texture measures are co-occurrence matrix (Gotlieb and
Kreyszig, 1990; Haralick, 1979), grey level run length (Galloway, 1975), gray level difference
(Weszka et al., 1976), auto-correlation (Kaizer, 1995), Markov random field (MRF) (Besag,
1986), among others. The quantity of information arising from the statistical type of analysis
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is usually not significant and it is easy to argue the utility of it in real-world applications or
its validity in solving real problems.

The structural approach sees the texture image as a group of primitive (tonal), which
are placed in the texture in a different pattern, as regular or frequent. Primitives are the key
components for recognizing the external structure of the complex texture. Edge detection
has been used to extract texture primitives by using different filters, for example, Difference
of Gaussian (DOG) (Voorhees and Poggio, 1988) or Laplacian of Gaussian (LOG) (Marr,
1982) filters. Structural analysis is usually considered more stable in terms of the change in
the illumination and sensitivity to noise than the statistical.

Leung and Malik (1996) present a structural texture algorithm that involves finding a
desired element in the image and corresponding elements with their neighbors, and grouping
the elements, as shown in Figure 2.1.

3
X
i
X
%
6%
X

(a) architectural image

(b) A textile image

Fig. 2.1 Examples of detection of a desired element (Leung and Malik, 1996)

The mean-shift belief propagation method is applied to detect deformed lattice wallpaper
in real-world images, which involves detecting points of interest, grouping these points
(clustering) and iteration in finding the corresponding lattice structure, as shown in Figure
2.2 (Park et al., 2009).

Yalniz and Aksoy (2010) present a method to detect the natural structure of the texture,
using multiple scale and multiple direction estimation in order to analyze their regularity
through the texture primitive detected, using the LOG filter. Figure 2.3 shows an example of
detection of texture regularity.

Model-based methods are based on the usage of a set of parameters generated by the
variation in the pixel element in the texture to determine the image model. This can be
employed to describe the texture. The random field model (Cross and Jain, 1983) is the
most popular model-based method. For instance, Gaussian Markov random fields (GMRF)

(Chellappa et al., 1993) are applied to capture the textural intensity. Another model-based
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Fig. 2.3 "Example results for the PSU dataset. Each column shows the results for a particular
image. The first row shows the original images. The second row shows the areas detected by
thresholding the regularity index as green, and the associated orientation estimates as yellow
line segments. The third row shows the scale estimates"(Yalniz and Aksoy, 2010)

method, named autoregressive has been employed to extract the texture features (Mao and
Jain, 1992).

In texture analysis, signal processing methods are based on the idea of applying a
particular filter on an image and analyzing the filter response frequency to create texture
features.

Three domains are used to filter the image: spatial domain, frequency domain, and joint
spatial/spatial-frequency. In the spatial domain, for instance, Sobel & Robert (Rosenfeld
and Kak, 1976), Laplacian (Burt and Adelson, 1983) and Laws filters (Laws, 1980)have
been regularly used to extract the edges and boundaries and to measure the edge density.
In the frequency domain, Fourier transform is applied to an image, and the global fre-

quency is extracted to create texture features (Campbell and Robson, 1968).In the joint
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spatial/spatial-frequency domain, DOG (Voorhees and Poggio, 1988)and pseudo-Wigner
distribution (Jacobson and Wechsler, 1982) uses a blank filter with a specific orientation and
frequency to filter the image, and texture features are then extracted from the transformed
image.

There are some methods which integrate both approaches, statistical and structural
(Tuceryan and Jain, 1990), such as local binary pattern (LBP)(Ojala et al., 1996) and local
directional pattern (LDP)(Jabid et al., 2010).

A combined statistical and structural approach for unsupervised texture classification is

also found in literature (Umarani et al., 2008).

2.2 Methods related to LDP

2.2.1 The Gray-Level Co-occurrence Matrix (GLCM)

In the early seventies, (Haralick et al., 1973) presented a GLCM method to classify terrain
in aerial photographs. This method is one of the most commonly used in statistical texture
analysis. (Tomita and Tsuji, 1990) called GLCM a second order statistical methods, because
it gathers information from a pair of pixels instead of a single pixel. The GLCM method
is based on counting the number of occurrences of a pair of pixels with a certain value and
specific spatial relationship in the image. The spatial relationship is the displacement between
a particular pixel and its neighbors in any of the four directions (0°,45°,90°,135°). All of
these values for pixel pairs are grouped in a two-dimensional matrix of size (G x G), where G
is the number of gray levels. Figure 2.4 shows an example of the computation of the GLCM

matrix in 0° and 45° directions. A number of statistical features can be extracted from the

1 2 3 4 5
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3 A mp 3 3(0/0]0
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T 5 a4 1 2 3 4 5
/5JA ) 1 1{3|1(0|1]|0
32 [ 1241 t[3]1jo0jojo
1 11/5 "3 3v0 |02 (0|0
2 [5%4 |13 4[0f1]00]0
sfofzofo |1
GLCM (459

Fig. 2.4 Calculation of the GLCM matrix in different directions

GLCM matrix. From amongst these features, five features were selected as being the most
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efficient (entropy, energy, homogeneity, correlation and inertia) (Conners and Harlow, 1980).
Over the past years there have been numerous studies aiming to improve the performance
and get more information from the GLCM. In one study by (Gelzinis et al., 2007), different
values for the displacement factor between a pair of pixels are used. The result establishes
that the alteration in the parameter value corresponds to change in performance, especially
for a the texture of various sizes. Another version of GLCM that deals with color, Modified
Color Motif Co-occurrence Matrix (MCMCM)), is presented by (Subrahmanyam et al., 2013).
It measures the inter-correlation of the three colors in the RGB (red, green, blue) color image.
It also makes some improvements that reduce the amount of calculations and accelerate
the GLCM computation. The gray level co-occurrence linked list (GLCLL) method was
presented by (Clausi and Jernigan, 1998) to speed up the matrix calculation through the use
of the linked list data structure and stores only the non zero probabilities, which led to a
dramatic decrease in the number computations and memory storage. Figure 2.5 shows the
GLCLL structure.

head pointer
©9) @0) @2 30) a2
0.2 0.1 04 005 B
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Fig. 2.5 GLCLL structure
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Fig. 2.6 GLCHS structure

The grey level co-occurrence hybrid structure (GLCHS) is another improvements that
uses the hash table combined with the linked list data structure. It showed a high speed
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performance compared to both the GLCM and GLCLL methods, because it does not require
a sorted list (Clausi and Zhao, 2002). Figure 2.6 shows the GLCHS structure.

2.2.2 Local Binary Pattern

In recent years, LBP has gained popularity because of its simplicity and effectiveness in
solving real-world problems. The feature method LBP was introduced by Ojala et al. (1996).
It is based on the integration of texture analysis, statistical and structural approaches. Local
Binary Pattern (LBP) relabels each pixel in an image based on a threshold of its surrounding
pixels. The basic version of LBP works with a (3 x 3) window. The pixel located at the
central of the window acts as a threshold of its surrounding pixels. In fact, if the value of
the adjacent pixel is greater than the value of the central pixel, it generates one bit value,
otherwise it generates zero bit value. Numbers resulting from this process produce a binary
string, which will replace the central pixel after converting it to a decimal number. Figure 2.7

shows an example of applying LBP operator on a 3 x 3 window.

------------

1]21]z2 ofo]o “.‘

! Binary: 00010011
9]5] 6| Threshold |1 1] ! Decimal: 19
503]2 1Jofo '{

Fig. 2.7 LBP Example: binary code is read clockwise starting from the top left neighbor

Afterwards, the LBP operator will proceed to the next window until the image is com-
pletely transformed. After this stage, Histogram is extracted in order to gather the number of
different binary frequency types from the transformed image, which represents the descrip-
tion of the texture. Every bin in the Histogram may stand for different types of edges and flat
regions and spots. Because the original LBP is based on the thought of eight neighboring
pixels, the number of the pin is equal to 28 = 256. Since its origin, there have been many
additions and improvements appended to the LBP with the aim of improving the performance.
Ojala et al. (2002) introduced a novel feature which gives the LBP the ability to analyze a
different scale and rotation invariant texture, applying the concept of circular shape in the
selection the number of surrounding pixels and the size of the neighborhood by manipulating
a diameter of this circle, as shown in Figure 2.8. One of the disadvantages of this method is
that if the number of adjacent pixels is chosen to be 16, it leads to the increase of the size
of the Histogram which becomes too large and impractical at 2!6 = 65536 bins. To resolve
this issue, Ojala et al. (2002) have proposed something called a "uniform pattern", which
computes the upper limit value of the change in the bit status from O to 1 and vice versa.
For instance, O transitions in both 11111111 and 00000000, while 00001100 and 01111000
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(P=4, R-1) (P-12, R-1.5) (P-16, R=2)

Fig. 2.8 Circular neighbor sets for different number of pixel (P) and radius (R)

contain 2 transitions and so on. It was also observed that there are nine patterns and their
circular rotated version presents more than 90% of local patterns in the image. The center
symmetric LBP (CS-LBP) is based on the idea of comparing each pixel with the parallels of
the opposite pixel, with the objective of getting a shorter histogram (Heikkili et al., 2009), as
shown in Figure 2.9. In this method the number of bins is only 2* = 16 compared to the LBP,
where the number of bins is 28 = 256, which reduces the LBP labels that are used in region
descriptors.

Neighborhood

Binary Pattern

LBP = CS-LBP =

s(n0 — nc}2ﬂ +
s(n1-nc)2' +
s(n2 - nt:.}22 +
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s(n7 —nc)2’

Fig. 2.9 CSLBP structure

2.2.3 Local Directional Pattern (LDP)

Despite the strength and spread of the LBP, it suffers from excessive noise sensitivity and is
non-monotonic in illumination conditions due to its structure, which is based on computing
the pixel intensity (Jabid et al., 2010; Zhou et al., 2008). For this reason, Jabid et al. (2010)
present a more stable method which is less impressed by the random noise method called
Local Directional Pattern (LDP). This method is based on computing the edge response
values of the surrounding pixels in a 3 x 3 window. Edge response values are computed by
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applying the Kirsch Mask in eight directions at each pixel of the image. Figure 2.10 shows
an example of applying LDP to the eight Kirsch Masks.

85 32 26 313 97 503 0 0 1

53 50 10 [—»| 537 X 399 | = 1 X 1

60 38 45 161 97 303 0 0 0

LDP binary code : 00010011
LDP decimal code : 19

Fig. 2.10 Applying LDP operator on a 3 x 3 block

The LDP variance (LDPv) method works on the classification of both the contrast and
the spatial structure in order to bring more stability against varying illumination and more
accuracy in facial identification (Kabir et al., 2010). In LDPv, each LDP code is integrated
with the corresponding variance weight. Principal Component Analysis (PCA) is applied to
reduce the feature dimension by selecting the most distinguishable features.

Most researchers in a local descriptor use histogram to characterize an object. In both
LDP and LBP histogram is extracted as a feature vector. However Kim et al. (2013) use the
LDP image as an input for PCA and Gabor-wavelet to improve the performance and reduce
the affect of change in the light conditions.

Other improvements by Sivapalan et al. (2013) integrate the idea of both the LDP and
the histogram of oriented gradients (HOG) method and in the Histogram of weight local
directional (HWLD) method. The eight edge response values are computed as in the LDP
concept, adding a specific weight based on the military posture of each direction in each
pixel. Figure2.11 shows an example of extending HWLD to a 3-D application.

Different methods were proposed with an aim to improve the LDP such as Local Di-
rectional Ternary (LDT) (Ryu et al., 2017) and Improved Local Directional pattern for low
resolution images (Garg and Kaur, 2016).

2.3 Classification

Humans usually commit many errors in analytical processing of data and are unable to
visualize relationships between multi-dimension features. This makes it difficult to find
solutions to many problems. Classification can be applied successfully to these problems to

improve performance of systems. Classification is one of the most significant problems in
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Q@190-790 @P170-9@0 Q@170-9@0

Fig. 2.11 "3D local directional kernels. Three unique cases are presented, showing the kernel
direction and the corresponding weight values. The other 23 kernels can be obtained by
applying rotational transforms to them."(Sivapalan et al., 2013)

machine learning and the machine vision. The objective of the classification is to recognize
the unknown object and to select the most appropriate class from known classes or search for
the probability of its occurrence in one of the known classes. In texture classification, texture
is classified by identifying the unknown image to one of the known classes.

There are two fundamental types of image classification, the supervised and the unsuper-
vised. In the supervised approach it is essential to know the features and the characteristics
of each sample in the training sample corresponding to defined classes before determining
the decision to identify the unknown sample (Duda et al., 1973). Hence the training sample
needs to be merged with its own class label. In the unsupervised classification, the algorithm
defines classes without any prior knowledge. It categorizes a group of samples into different
classes based on their features and pattern. Texture classification has been used to evaluate
many texture features methods.

Song et al. (2013) present a more robust features method called, Locally Enhanced Binary
Coding (LEBC). In this setup, two classifiers VZ_MRS8 (Varma and Zisserman, 2005) and
VZ_Joint (Varma and Zisserman, 2009)) are used to compare the performance of LEBC,
Local Ternary Pattern (LTP)(Tan and Triggs, 2010), CLBP(Guo et al., 2010) and the formal
LBP. Four different classifiers (Naive-bayes(NB); Multilayer Perceptron(MLP); Support
Vector Machine (SVM); and k-nearest Neighbor Algorithm(k-NN)) are used to evaluate
the performance of both methods LDP and GLCM in four different orientations (0°,45°,
90°,135°). Results show that LDP outperforms GLCM when applied to the classification
of informal settlements (Shabat and Tapamo, 2014).  Shabat and Tapamo (2016) make
a comparison between directional local binary pattern (DLBP), the known LBP method
and local directional pattern (LDP) using four classifiers Naive-bayes(NB), Multilayer
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Perceptron(MLP), Support Vector Machine (SVM), k-nearest Neighbor Algorithm(k-NN).

Results show that DLBP has a superior performance.



Chapter 3

A Comparative Study of the Use of Local
Directional Pattern for Texture Based
Informal Settlements Classification
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Abstract

In developing and emerging countries progression of informal settlements has been a fast growing phenomenon since the mid-1990s. Half of
the world’s population is housed in urban settlements. For instance, the growth of informal settlements in South Africa has amplified after the end
of apartheid. In order to transform informal settlements to improve the living conditions in these areas, a lot of spatial information is required.
There are many traditional methods used to collect these data, such as statistical analysis and fieldwork; but these methods are limited to capture
urban processes, particularly informal settlements are very dynamic in nature with respect to time and space. Remote sensing has been proven
to provide more efficient techniques to study and monitor spatial patterns of settlements structures with high spatial resolution. Recently, a new
feature method, local directional pattern (LDP), based on kirsch masks, has been proposed and widely used in biometrics feature extraction. In this
study, we investigate the use of LDP for the classification of informal settlements. Performance of LDP in characterizing informal settlements is
then evaluated and compared to the popular gray level co-occurrence matrix (GLCM) using four classifiers (Naive-Bayes, Multilayer perceptron,
Support Vector Machines, k-nearest Neighbor). The experimental results show that LDP outperforms GLCM in classifying informal settlements.
© 2017 Universidad Nacional Auténoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnolégico. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction to distinguish the human settlements. For example, a study by
Aminipouri, Sliuzas, and Kuffer (2009) estimates the population

In developing countries, informal settlements have become a by creating an accurate inventory of buildings. The computer
phenomenon which grow very fast specially in the 21st Century. vision community is facing a very complex and challenging task
Half of the world’s population is housed in urban settlements.  ex(racting the spatial data from informal settlements. Construc-
The reason for this phenomenon is the immigration of people  tions in informal settlements are built using various materials
from the rural areas to the cities. Many previous studies aimed and are very close to each other and have no suitable organiza-
at extracting houses outline to quantify shape-based features  (jon. It makes the classification of informal settlements images
of informal settlements. Object-based image analysis (OBIA) an uphill task (McLaren, Coleman, & Mayunga, 2005). A num-
method estimates the size, spacing and shape of the houses by per of researchers have tried to develop tools and techniques
extracting the houses footprint (Blaschke & Lang, 2006). OBIA to characterize the informal settlements areas from remotely
partitions remote sensing (RS) imagery into meaningful image- sensed data. Mayunga, Coleman, and Zhang (2007) present a
objects and assesses their characteristics through spatial, spectral new semi-automatic approach to extract buildings from infor-
and temporal scale (Hay & Castilla, 2008). Previous studies on ] settlements images obtained using Quick Bird. Snackes and
geospatial methods have been used to estimate populations and il casting algorithm were used to map the informal settle-
ments images. The main limitation in this study is the difficulty

N ] . of characterizing small houses. Khumalo, Tapamo, and Van Den
Corresponding author.

E-mail address: tapamoj@ukzn.ac.za (J.-R. Tapamo). Bergh (2011) applied two feature methods, Gabor filters and
Peer Review under the responsibility of Universidad Nacional Auténoma de GLCM to distinguish different textural regions in Soweto area
México. (Johannesburg, South Africa). They found Gabor filters more

http://dx.doi.org/10.1016/j.jart.2016.12.009
1665-6423/© 2017 Universidad Nacional Auténoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnoldgico. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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accurate than GLCM in classifying informal settlements. A
study carried out by

Ella, Van Den Bergh, Van Wyk, and Van Wyk (2008) com-
pared gray level co-occurrence (GLCM) and local binary pattern
(LBP) in their ability to classify urban settlement. It is shown
that both methods performed very well with a superior perfor-
mance for LBP. Van Den Bergh (2011) investigates the powers
of two features methods, GLCM and LBP, to classify Soweto
(Johannesburg, South Africa) areas. It is established that the
performance of the gray level co-occurrence matrix is superior
to the local binary pattern on a combined spatial and tempo-
ral generalization problem, but the LBP features perform better
on spatial-only generalization problems. In Owen and Wong
(2013) an analysis is conducted on the shape, texture, terrain
geomorphology and road networks to characterize the infor-
mal settlements and formal neighborhoods in Latin America.
The results achieved were promising when finite data were used
to recognize informal settlements. Asmat and Zamzami (2012)
introduced an automated house detection technique to extract
legal and illegal settlements in Pulau Gaya, Saba. The result
shows that the edge to edge features can separate between houses
that are less than 2 m away from each other. In Graesser et al.
(2012), an investigation of nine statistics methods (GLCM Pan-
Tex, Histogram of Oriented Gradients, Lacunarity, Line Support
Regions, Linear Feature Distribution, Psuedo NDVI, Red-blue
NDVI, Scale Invariant Feature Transform, and TEXTONS) is
presented with different direction, structure size and shape and
tested in four different cities. The GLCM PanTex, LSR, HoG and
TEXTON features were found to be the best in characterizing the
informal settlements and formal areas. A new feature method,
local directional pattern (LDP), based on the known Kirsch ker-
nels was recently proposed by Jabid, Kabir, and Chae (2010a).
LDP has mainly been applied in biometrics: face recognition
(Jabid, Kabir, & Chae, 2010b), signature verification (Ferrer,
Vargas, Travieso, & Alonso, 2010) and facial expression recog-
nition (Jabid, Kabir, & Chae, 2010c). In Shabat and Tapamo
(2014) the powers of GLCM and LDP to characterize texture
images are compared; the result shows that LDP outperforms
GLCM. In this paper, GLCM and LDP are investigated using
different numbers of significant bits; the final goal is to identify
the most effective amongst them. The computation of the local
directional pattern is based on the number of significant bits,
and in this work four alternative values are considered: 2, 3, 4,
5 instead of 3 as in the classic LDP.

2. Materials and methods

In the following sections the different feature methods used
the in the paper are presented

2.1. Gray level co-occurrence matrix (GLCM)

In the early 1970s Haralick, Shanmugam, and Dinstein
(1973) proposed the extraction of fourteen features, from the
GLCM of a gray level, to characterize the image texture. The
computation of GLCM depends on two parameters: the orienta-
tion 6 formed by the line-segment connecting the two considered

pixels, and the distance (d)[number of pixels] between them. The
direction 6 is usually quantized in 4 directions (horizntal — 0°,
diagonal - 45°, vertical — 90°, anti-diagonal — 135°).

To compute the gray-level co-occurrence matrix of a window
in an image, the following parameters are considered:

e The window size, Ny x Ny, where N, is the number of rows
and N, the number of columns.

e Distance (d) and directions 6.

e And the range of gray values to consider in calculations
0,...G—1.

We adopt the formulation used in Bastos, Liatsis, and Conci,
2008 and Eleyan and Demirel (2011) to present the calculation
of GLCM. The GLCM is defined as the probability of occurrence
of two gray levels at a given offset (with respect to given distance
and orientation). Given the image I, of size Ny x Ny, the value
of the co-occurrence for the gray values i and j, at the distance
(d) and direction 6, P44(i, j) can be defined as

Ny—1Ny—1

Paol, )= > 8anijx ) (1)
x=0 y=0
Where
8a.6,i,j (x,¥)
1 ifl(x,y)=iand I(x +m:(d, 0),y +my(d,0) = j
B 0 otherwise

The offset (mx(d, 9), y(d, 0)) is used to compute the position
of (x, y) with respect to its neighbor at the distance (d) and
direction 6. For the 4 directions (0°, 45°, 90°, and 135°) and the
offsets are given in Table 1.

2.1.1. Haralick’s features

Given an image [/ with G gray levels, an angle 6 and
a distance (d), after the gray level co-occurrence matrix,
(Pao(i, j))0§i,j§G—l’ number of features can be extracted,
amongst which the most popular are the 14 Haralick features
(energy or angular second moment (ENR), contrast (CON),
correlation (COV), variance (VAR), inverse different moment
(IDM), sum average (SAV), sum variance (SVA), sum entropy
(SEN), entropy (ENT), difference variance (DIV), difference
entropy (DEN), information measures of correlation (IMCI,
IMC2), maximum correlation coefficient (MCC)). The compu-
tation of Haralick features is done using a normalized GLCM.
The (i, j)th normalized entry,

Table 1

Definition of different offsets.

0 0° 45° 90° 135°
7y (d, 0) 0 —d —d —d
7y (d, 0) d d 0 —d
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Pag(i, j), of Pgp(i, j) is defined as

Py (i, j)

Faol- =515 )

@

where || Py || = ZiG:?)lZ]G;Ol P4.0(i, j). Details on the calcula-
tion of all these features can be found in Haralick et al. (1973).
For each texture, T, a chosen distance (d) and a direction 6, 14
Haralick features can be extracted.

3

=1,...,

2.2. Local directional pattern (LDP)

The local binary pattern (LBP) operator depends on the
change of the intensity around the pixel to encode the micro-
level information of spot, edges and other local features in the
image (Jabid et al., 2010a). The gradient is known to be more
stable than the gray level; that is why some researches have
replaced the intensity value at a pixel position with its gradient
magnitude and calculated the LBP (Ferrer etal., 2010). The local
directional pattern (LDP) was proposed by Jabid et al. (2010b)
to resolve the problem with LBP, mentioned earlier. Since the
LBP depends on the neighboring pixels’ intensity which makes
it unstable. Instead, LDP considers the edge response value in
different direction. LDP features are based on eight bit binary

y
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codes assigned to each pixel of an input image. It is composed
of three steps (Kabir, Jabid, & Chae, 2010):

e Calculation of eight directional responses of particular
pixels using the Kirsch compass edge detector in eight ori-
entations (M7, . . ., M) centered on its own position as shown
in Figure 1. Given a pixel (x, y) of an image, I, for each direc-
tion i, and using the corresponding mask M; the ith directional
response m; can be computed as

1 1

m; = Z ZMi(k+l,l—I—l)x1(x—I—k,y+l)
k=—1l=—1

“

For the 8 directions a vector (m7, . . ., mg) is obtained. Figure 2
shows the Kirsch directional responses of a pixel (x, y).

e LDP code generation of the directional responses obtained
in the previous step. It is based on the selection of k most
significant responses and set the corresponding bit to 1 leaving
other (8 — k) bits to 0. Finally, the LDP code, LDPy.(my, . . .,
my7), of the pixel (x, y) with directional response (my, . . ., m7),
is derived using Eq. (5).

7
LDP, y(mo, ....m7) = s(m; —my) x 2 (5)

i=0

Directional responses

Bits significance positions
A

( A

m, mg msg my mg My m;y my

270 | 310 —290

°)

110 |—10 |—250

LS 8 3 1 6 7 4
Y

Ranking of directional responses

b

Fig. 2. Krisch directional response. (a) This figure shows a pixel (x,y) that has a gray level 60. (b) Directional responses, together with the ranking of those responses,
and the associated bit significance, with mg being at the less significant position and m7 at most significant position. Note that the ranking of responses is done on

absolute values.
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where, my is the kth most significant response and s(x) is
defined as
x>0

L

s(x)—{o’ x <0 ©)
Given the directional responses generated by the Kirsch

convolution on pixel (x, y) presented in Figure 2, the LDP

code for k=3 is computed as follows:

o ms5 =270 is the 3rd most significant directional response.

o The code of the LDP code of the pixel (x, y) is then

7
LDP, y(mg, ..., m7) = Zs(m,' — ms) X 21
i=0

=0x2"+0x2°4+1x2°
+1x2+0x22+0x2?2
+O><21+1><20

o The LDP code, LDP,y, of the pixel (x, y) is then 49.

e Construction of LDP descriptor which is carried out after
the calculation of the LDP code for each pixel (x, y). The
input image I of size M x N is then represented by a LDP
histogram using Eq. (7), that is also called LDP descriptor.
In this case k=3, is used; It means, 8C3 = 56 distinct values
are generated and used to encode the image. The histogram
H obtained from the transformation has 56 bins and can be
defined as

M—-1N-1

Hi =) Y p(LDPyy), Ci) (7

x=0 y=0

where C; is the ith LDP pattern value, i =1, .. ., 8C3 and the
definition of p is given in Eq. (9).

wa={b *=° @®)
x,a) =
p 0, x+#0

Given a texture, 7, and the number of significant bits k, a
feature vector LDPj 1 can be extracted and represented as

LDPy 1 = (Hi, ..., Hs) )

2.3. Classtfiers

Four classifiers are used to evaluate the power of LDP to
characterize textures and compared Haralick features extracted
from GLCM.

2.3.1. Support vector machines

SVM is a learning technique for pattern classification and
regression (Cortes & Vapnik, 1995; Vapnik, 2013). It was orig-
inally designed as two-class classifier, but many versions have
been proposed to perform multi-class classification (Crammer
& Singer, 2002; Hsu & Lin, 2002). The principle is, given a
labeled set of M training samples (x;, y;), where x; € R and y; is
the associated label (y; € {—1,1}),i=1, ..., M. A SVM clas-
sifier finds the optimal hyperplane that correctly separates the

largest fraction of data points while maximizing the distance of
either class from the hyperplane. The discriminant hyperplane
is defined by the level set function

M
fx) = Zyiaik(x, x;)+b (10)

i=1

where k(-, -) a kernel function and the sign of is f{x) indicates
the membership of x. Constructing an optimal hyperplane is
equivalent to finding all nonzero ;. Kernel function K(x;, x;) is
the inner product of the features space K(x;, x;) <@ (x;), @ (x;).
The three following kernel functions are often used:

e Polynomial kernel

K(x1, x2) = ({x1, x2) + d)* (11)

where c is a positive constant and d is the dimension of feature
space in question.

e Linear kernel
K(x1, x2) = (x1, x2) (12)

e Radial basic function kernel (RBF)

_ 2
K(x1, x2) = exp (—““”“) (13)
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where llx; — x2ll is the distance between the vectors x; and xp,
o € Ris the bandwidth of a gaussian curve.

In our case, the M feature vectors (x; =1,..., M) are
extracted, from texture images that need to be classified, using
the local directional pattern, or GLCM.

2.3.2. Naive Bayes classifier

One of the most popular and most simplest classification
models is the naive Bayes classifier (Friedman, Geiger, &
Goldszmidt, 1997). The principle of Naive bayes is: given the
training data 7 which contain a set of samples, each sample
X=(x1, ..., x,) and there are k classes Cy, ..., Cr. Each sam-
ple is labeled by one of these classes. Naive Bayes predicts a
given sample X belongs to the class that has the highest posterior
probability conditioned on X. Therefore, sample X is predicted
to belong to class C; if and only if P(C;lX) > P(C;lX), for all j
such that 0<j<(m— 1) andj # i. By Bayes’ theorem
P(Ci|X) = P(X|Ci)P(C;) (14)

P(X)

If the data set has many attributes, it would be expensive
to compute P(XIC;). To solve this problem, naive assumption
assumes that the value of the attributes are conditionally inde-
pendent of one another. This means that

P(X|Ci) ~ [ [ PexICh) (15)
k=1
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Fig. 3. Samples FT1 and FT?2 are extracts of the formal township, where buildings are placed in a planned manner. This type contains stable structure. The different
between T_1 and T_2 is on the houses.

2.3.3. k-Nearest neighbor (k-NN)

k-NN is a non-parametric classification method introduced
in the early 1970s by Fix and Hodges (1951). The process is
done by computing the similarity between the sample and the
different classes. Let Cy, . . ., Ci be the classes of our samples.
Given a new sample X =(xy, ..., x,), to find to which class it
belongs, the distance d(x, C;) between x and C;, for j=1, ...,
k, is calculated. Sample X is assigned to class C;, to which it
is closest. Index iy is calculated as presented in the following
equation:

io = argmin;—y . xd(x, C;) (16)

2.3.4. Multilayer perceptron (MLP)

MLP is well known and widely used in different detection
and estimation applications (Burrascano, Fiori, & Mongiardo,
1999; Gati, Wong, Alquie, & Fouad Hanna, 2000; Kasabov,
1996). The principle of MLP is that the input layer in MLP
is considered as layer 0. Assume that the total number of
the hidden layers is L. In the hidden layer / the number of
node is Ny, I=1, ..., L. Let w;; be the weight of the connec-
tion between the jth nodes of (I — 1)th hidden layer and ith
nodes of the /* hidden layer, and let x; be the itk input fac-
tor to the MLP. Let yf represent the output of the ith node of

the /" hidden layer, which can be calculated by the following
equation:

N;—1
(B reen o
i=1

where 6! represent the bias factor of the irh node of the Ith hidden
layer, y; = x;,i =1,..., No and f{.) is the active function. Let
vg; be the weight of the connection between the kth node of the
output layer and the ith node of the Ltk hidden layer. The MLP
output can calculated as

N
W= widi+ B k=1...Ny (18)

i=1

where the S is the bias factor of the output layer. The MLP
algorithm compares between the network output with the desire
output which measures the error in the network. To correct the
output layer, this algorithm updates the weight until the output
of network gets closer to the desire output.

3. Experimental results and discussion
3.1. Data set

Settlements image categories, shown in Figures 3-8, were
identified in Soweto (Gauteng province, South Africa) to work

Fig. 4. Informal squatters (IS typel): the structure of the informal squatters is not stable. The dwellings of this category are shack type (made out of cardboard, wood,

tin, etc.). Typically characterized by high building densities.
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Fig. 5. Formal township + informal squatter (FTIS Typel, FTIS Type2, and FTIS Type3): In this category we can find any type of any density, of residential unit, but
buildings appear in pairs a larger building will be accompanied by a backyard shack.

Fig. 6. Informal Township: the structure of the informal township is recognized as constant or semi-constant structure. The dwelling of this category is shack type
and located on serviced and un-serviced sites. The dwelling densities vary from low to high.

Fig. 8. Non-urban: shows samples of this type. All of them were gray level images with 8 bit per pixel.
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Table 2

Number of the sample in each category.

Samples type Number
Formal 413
FT1 367
FT2 637
FTIS1 62
FTIS2 611
FTIS3 100
Informal 358
IS1 312
Non-urban 479

with as target classes. Data used are gray-level images with 8
bit per pixel, and a size of (200 x 200) pixels. Table 2 shows the
number of samples in each category.

e Formal township (FT1, FT2): The structure of the formal
township building is placed in a planned manner. The differ-
ence between FT1 and FT2 relates to the size of the houses.

o Informal squatters (IS): The structure of the informal squatters
is not stable. The dwellings of this category are shack type
(made out of cardboard, wood, tin, etc.). This is typically
characterized by high building density.

e Formal township +informal squatter (FTIS1, FTIS2, and
FTIS3): In this category we can establish any type of any
density, of residential unit, but buildings appear in pairs and
a larger building is accompanied by a backyard shack.

e Informal township: The structure of the informal township
is recognized as a constant or semi-constant structure. The
dwelling of this category is shack type and located on serviced
and un-serviced sites. The dwelling density varies from low
to high.

e Formal: The structure of the formal residential is a constant
structure, located near well establish buildings area.

e Non-urban area: The areas outside a town or a city. Open
swath of land that has few homes or other buildings.

3.1.1. Choice of parameters
The computation of GLCM is done using the following
parameters:

e Number of gray levels: 256
e Directions: 0°, 45°, 90°, 135°
e Distance: 1

The computation of the local directional pattern is based on
the number of significant bits, and in this work four alternative
values are considered: 2, 3, 4, 5.

3.2. Result and discussion

Performance of the various classifiers using various size
of training samples, with various values for k are considered.
k-NN and MLP achieve reasonably good results, even when
only a small proportion of the data is used for training. The
superiority of the k&-NN and MLP over both SVM and NB

is easily perceptible. Moreover, it can be noticed that when
the number of significant bits (k) changes from 2 to 4 the
accuracy improves and declines when k=35. Classifiers have
the best performance for k equal 4 and the worst performance
is registered for k equal to 2. The performance of LDP is
evaluated for different values of k: The average accuracy of
LDP with different k values shows that for LDP when k equal
4 is the highest performance (85.6%) compared to the rest.
For LDP, the value 2 for k is the lowest performance (77.7%).
The best achievement was obtained by k-NN and MLP 98.9%),
98.19% in LDP (4) and LDP (3) when the data proportion is
80% as training 20% testing. NB performances are remarkably
low ranging between 55% and 70%. Another observation is
the fact that the accuracy of SVM is not very high either. With
the gray-level co-occurrence matrix, different combinations of
the 14 original Haralick features (entropy, (entropy +IDM),
(energy + contrast + correlation), (entropy + energy + contrast),
(energy + correlation + entropy + IDM),

(entropy + energy + contrast + correlation + IDM), and  all
14 features are used to characterize textures. The presentation
of different feature combinations to characterize informal
settlements reveals that the best performance is achieved by k-
NN with value (86.04%) using the 14 original Haralick features
in 45° direction. With NB, the performance is remarkably low
ranging between 29% and 53%. Another observation is that
both SVM and MLP are not very effective classifying informal
settlements, with accuracies ranging from 30% to77%. Using
k-NN, the best achievement was achieved with 45° direction at
91%. With NB, the performances are remarkably low ranging
between 50% and 55% The accuracy of both SVM and MLP
are not very high range between (48%—60%) and (64%—80%).
The best performance was achieved in 45° direction with value
(80%) using MLP and (60.81%) using SVM. The training
set percentage: the average accuracy of the best direction
changes from 62% when the training set is 10%—71.17% when
the training set is 80%. With the knowledge that the best
performance is achieved with GLCM and this when the 14
original Haralick features at 45° direction are chosen, it can be
compared to the performance of LDP when k equals 4. The
average performances of each classifier in both feature methods
are such that, with NB and SVM, the performance is remarkably
low in both LDP (4) and GLCM (45°), the best achievement is
(83.06%) by SVM using LDP (4). With MLP, LDP (4) achieved
20% more with value (92.77%) compared to GLCM (45°) with
value (77.48%). With k-NN, The best result was achieved by
LDP (4) with value (92.7%), compared to GLCM (45°) with
value (86.03%). For GLCM (45), we find the performance from
20% to 80% increase by approximately 1% in each step. The
best achievement obtained when the training set is 80% with
a value (71.17%). The worst achievement obtained when the
training set is 10% with a value (62.6%). For LDP (4), we find
the performance almost constant from 50% to 80% with value
(86.81%). The best achievement obtained when the training set
is 80% with a value (86.81%). Figures 9—10 below summarize
the comparison between these two methods (LDP, GLCM). In
conclusion, the best combination used in our approach is using
the local directional pattern with k equals four applying on
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Classification accuracy vs. the number of training samples

GLCM_NB
LDP_NB

Classification accuracy

LDP_SVM

40
Training percentage

GLCM_SVM === GLCM_MLP === GLCM_k-NN

LDP_MLP LDP_k-NN

50

Fig. 9. Classification accuracy vs. the number of training samples using both features method LDP when k=4 and GLCM with distance 1 and 45° direction.

nine categories of image, and the k-nearest neighbor being the
preferred classifier.

4. Running Times for Features Extraction

For an image of size nxm, GLCM running time will
be G(m, n)=0(mn). However, the running time for LDP is
L(m, n)=R(m, n)+ H(m, n) where R(m, n)=O(mn) is the run-
ning time to compute the responses and H(m, n)=O(mn) is
the running time of the computation of the histogram, then

L(m, n)=O(mn). Table 3 shows running times for both GLCM
and LDP applied to nine different categories using a computer
with a processor Intel Core 15, a CPU of 2.3 GHz and 4G
of RAM. With GLCM 14 features were computed and for k
equals 4 for LDP; the running time of the GLCM algorithm is
remarkably low (less than 13 ms to process an image). Com-
pared to LDP, which takes a very long time to compute, ranging
from 4.7s in average to process an image in FTIS1 to 9s in
FT2. It is worth mentioning that the size of each image is
(200 x 200).

Classification accuracy vs. the number of training samples
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50
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Fig. 10. Classification accuracy vs. the number of training samples using LDP with different number of significant bits (k).
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Table 3

Average running time for both GLCM and LDP applied to nine category images.
Image category GLCM runtime (s) LDP runtime (s)
Formal 0.014 7.22

FT1 0.013 8

FT2 0.014 9

FTIS1 0.016 4.7

FTIS2 0.013 7.4

FTIS3 0.01 7.93

Informal 0.013 8

IS 0.012 8.7

Non-urban 0.012 6.3

5. Conclusion

Two feature methods, local directional pattern (LDP) and
gray-level co-occurrence matrix (GLCM), have been compared
using four different classifiers (Naive-Bayes, multilayer percep-
tron, support vector machines, and k-nearest neighbor). This
work has investigated the impact of the number of significant
bits considered to code the Kirsch masks application responses.
Experiments have shown that the choice of 4 significant bits
achieves the best accuracy for texture characterization using
LDP. It has also been established that the best texture feature
is the local directional pattern when k-NN is used as a classifier.
On the other hand, it has been demonstrated that the local direc-
tional pattern is superior in characterizing informal settlement
images. However, the running time for LDP is two orders of
magnitude higher than that of the GLCM.
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Abstract. In this paper, a new features method, the Directional Local
Binary Pattern (DLBP), is presented, with an objective to improve Local
Directional Pattern (LDP) for texture analysis. The idea of Directional
DLBP is inspired by the stability of the Kirsch mask directional responses
and the LBP neighboring concept. The result shows that Directional
Local Binary Pattern outperforms LDP and LBP.

Keywords: Texture features - Local Directional Pattern - Directional
Local Binary Pattern - Local Binary Pattern - Classification

1 Introduction

The main goal of texture analysis is to quantify the different qualities of an
image, such as smoothness, roughness, and bumpiness. This is modeled as a
spatial variation in pixel gray values. Texture represents a basic level of spatial
properties of a digital image, and can be defined as relationship between gray
levels in neighboring pixels [2]. Texture analysis has been applied in several areas,
including medical image analysis, biometrics, and security.

Gray Level Co-occurrence Matrix (GLCM) is one of the commonly used
textures based features extraction techniques. Haralick et al. [3] proposed it in
the early 1970s. It has since been used in many applications.

A study by Song et al. [12] used LBP operator to analyze textures of multi-
spectral images. The technique used achieved more than 4 % gain in the perfor-
mance, compared to the popular GLCM method. Musci et al. [7] investigated the
use of Local phase quantization (LPQ) and LBP to characterize land-cover and
land-use. The result establishes that both LBP and LPQ outperform GLCM.

The successful application of the LBP inspired many scholars for further
research. Several adjustments of LBP have been proposed [1,8,10]. However,
LBP suffers from random noise, because it depends on neighboring pixels inten-
sity. A more stable technique, based on Krisch masks, Local Directional Pattern
was recently presented by Jabid et al. [4]. LDP considers the edge response
values in eight directions around the pixels obtained from the Krisch gradient
operator rather than the raw pixel intensities like LBP. LDP has been applied
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in many areas, including texture classification [11], and facial expression inter-
pretation [4]. One of the drawbacks of LDP is the number of significant bits, k,
considered after the generation of Kirsch mask responses. The choice k = 3, as
established in the literature is empirical. A careful investigation revealed that the
change in the value of k affects the performance of LDP. DLBP takes the best
of both LDP and Local Binary Pattern (LBP), by first computing the gradient
directional responses since it is more stable than the local neighboring following
LDP concept. And generates the code following the LBP concept.

2 Features Methods for Texture Analysis

Features extraction is one of the key processes in texture analysis. In this paper,
Local Binary Pattern (LBP), Local Directional Pattern (LDP) together with the
proposed Directional Local Binary Pattern (DLBP) are presented.

2.1 Local Binary Pattern

Local binary pattern introduced by Ojala et al. [8] is inspired by the general
definition of texture in the local neighbourhood. Given an image of size R x C,
for each pixel p = (z,y), where 0 < 2z < R and 0 <y < C, the LBP code of p is

computed as
N—

LBPy(z,y) = ) S(9i — 9,)2' (1)
1=0

Ju

where g, and g; are the gray levels of pixel p and its it" neighbor, respectively;
and the function S(z) is defined as

1 ifz>0
S(a) = {O otherwise (2)

If for each pixel, N neighbors are considered, we can have 2V distinct values
for the LBP code. It means a gray-scale image representing a texture can be
characterized using a 2V-bin discrete distribution.

2.2 Local Directional Pattern

Local Directional Pattern (LDP) was introduced by Jabid et al. [4]. It has mostly
been used in face based biometrics and has received little attention from other
areas. LDP descriptors of an image are calculated using eight bit binary codes
generated from Kirsch masks application on each pixel of this image. Detailed
description of the three steps used to calculated LDP descriptors of an image I
is given below [5]:
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1. Computation of response values using Kirsch mask application: for
each pixel (z,y), Kirsch mask convolution response values,
(Ko (z,9), Koy (2,9) - ., Ky, (2, y)), are generated using Eq. 3 as

K (wy) = Y Y My(ij) x I(w + i,y + j) (3)

i=—1j=—1

where Ky, (z,y) represents the response value at direction M, (see Fig. 1),
forq=0,1,...,7. Ky, for ¢ =0,1,...,7 are then allocated ranks based on
their absolute values as shown in Fig. 2(b). In the rest of the text Ky, = m,
2. Generation of LDP code: assuming that k significant bits will be con-
sidered, from Kirsch mask convolution responses generated in the previ-
ous step set to 1 the corresponding bit positions of the k most significant
responses, and leave other (8 — k) bits to 0. This process is implemented by
the function S(z) defined in Eq. 2. The resulting LDP code of the pixel (x,y),

LDP, ,(mg,m1,...,mz), can be derived as
7 .
LDP, ,(mg,m1,...,m7) = ZS(mi — msg) x 2° (4)
i=0

where msy, is the k' most significant response and S(z) is defined in Eq. 2.
Considering the Kirsch mask application on pixel (z,y) shown in Fig. 2, the
LDP code for k = 3 is generated as follows:

-3 -3 5 -3 -3 5 -3 5 5 5 5 5
-3 0 5 -3 0 5 -3 0 5 -3 0 -3
-3 -3 5 -3 -3 5 -3 -3 -3 -3 -3 -3
Mo(Bast) M; (North East) Ma(North) M3 (North West)
5 5 -3 5 -3 -3 -3 -3 -3 -3 -3 -3
5 0 -3 5 0 -3 5 0 -3 -3 0 5
-3 -3 -3 5 -3 -3 5 5 -3 -3 5 5
Mj (West) M5 (South West) Mg(South) Mg (South Est)
Fig. 1. Kirsch masks
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Fig. 2. Kirsch mask application response value of a pixel (z,y) with a gray value 60.
(a) pixel (z,y) with the 8-neighborhood. (b) The middle row shows the directional
response values, the row below represent the ranking of those responses. The ranking
of responses is considered with the responses in absolute values.
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— The response values are (mo, ..., my) = (—130, —10, 270, 310, 110, —10, —250, —290),
and with 310, —280, 270, being the largest values in absolute term, mak-
ing my4, mo and ms the most significant bits. ms = 270 is the 3*" most
significant directional response value.

— The LDP code, LDP, ,, of the pixel (z,y) is then 49.

7
LDP, ,(mg,m1,...,m7) = Z S(m; —msy,) x 2°
=0

=0x2"4+0x2041x2°
+1x224+0x2340x 22
+0x2' +1x2°

=49

3. Production of the LDP descriptor: Given an image I of size M x N, the
LDP code of I, denoted by LDP(I) is defined as

LDP(I) = (LDP, y)o<z<M—1,0<y<N-—1 (5)

LDP histogram can then be generated using Eq.6, that is also called LDP
descriptor. With k = 3, there are 56(=% C3) distinct values generated and
used to encode the image. The histogram H, with 56 bins, used to represent
the image is generated using Eq. 6.

M—-1N-1

Hi= Y% p(LDP,,,C;) (6)

=0 y=0
where C; is the i** LDP component, i = 1,...,8Cy and p is defined as

1ifz=0
0 otherwise

p(z,a) = { (7)
Given a texture, 7', and the number of significant bits k, a feature vector
ldby, 7 is generated and represented as

ldpkﬁT: (Hl,HQ,...,Hg,G) (8)

2.3 Directional Local Binary Pattern

LDP proposed to solve the problem with LBP. In fact, LBP depends on neigh-
boring pixels intensity which makes it unstable. Instead, LDP considers the edge
response value in different directions. As it is well known, gradients are more sta-
ble than the gray levels. But the problem with LDP is to select the value of the
number of significant bit k. The value k = 3 has widely been used in litera-
ture. Through our research, we established that the change in the value of the
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DLBP
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Takes the average value | 1 [ o[ o]

1 IR
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Fig. 3. The figure shows the computation of DLBP, by first calculating the eight direc-
tional edge responses and then generate the DLBP code in two different way, first, by
using the center value as a threshold, secondly, using the average value as a threshold.

k affects performance. Our proposed method, Directional Local Binary Pattern
(DLBP) takes the best of both LDP and LBP, by first computing the gradient
directional responses since it is more stable than the local neighboring following
LDP concept. And generates the code following the LBP concept.

The DLBP features are an eight binary code assigned to each pixel of an
input window. DLBP descriptors are calculated in three steps:

1. Computation of Kirsch kernel application response values is similar to LDP.
2. In this step, two ways are proposed to generate DLBP code,

(a) Generation of DLBP code including the center pixel: It is based
on the values generated in the first step. For each pixel (z,y), its binary
DLBP code can be generated by comparing the value, v(x,y), to the
response values my, ..., my. The DLBP code, DLBP, ,(my,...,my7), of
the pixel (z,y) can then be calculated using Eq.9.

7
DLBP, ,(mg,m1,...,m7) = ZS(mi —wv(z,y)) x 2° (9)
i=0

(b) Generation of the DLBP code, DLBP(AVG), ,, based on the
average Kirsch mask application response values: The average
value is computed based on first step (see Eq. 10). This average is used as
a threshold of mg, m1,...,m7. The DLBP code, DLBP(AV @), of the
pixel (z,y) for the directional response (my,...,m7), is computed using

Eq. 11.
7
AVGLy — E'L:O m19+ ’U((E7 y) (10)
7
DLBP(AVG)yy = > S(m; — AVG,,) x 2' (11)
1=0

Figure 3 shows an example of computation of DLBP code of a pixel.
3. The production of DLBP descriptor is similar to that of LDP descriptor using
DLBP code generated in the previous step.



Directional Local Binary Pattern for Texture Analysis 231

3 Experiments

3.1 Data Set

In our experiment, we gathered 3200 texture images from the Kylberg texture
dataset [6]. These images are divided into 20 categories, each categories has 160
images. All the selected image have the size of 576 x 576. In Fig.4 a sample of
each category is shown. We used python-fortran framework to implement the
proposed features using opencv and scikit-learn toolkit [9]. In this experiment,
there are two main components in textural classification: Feature Extraction and
Features Classification. During the features extraction stage all the proposed
methods are calculated for each Image. In Features Classification, each image is
classified according to the extracted features using 20 % as a test data set and
the remains as a training data set.

Fig. 4. The sample images of texture from Kylberg

3.2 Results and Discussion

In this section, a comparison between Local Directional Pattern, Local Binary
Pattern and the presented method Directional Local Binary pattern.

The performance of LDP, LBP, DLBP and DLBP(AVG) will be compared
using 6 different classifiers (K-neareast neighbor algorithm (k-NN), Support Vec-
tor Machine (SVM), Perceptron, Naive-Bayes (NB), Decision Tree (DT)) in dif-
ferent conditions.

Table 1 and Fig. 5 show the accuracies of LDP, LBP, DLBP and DLBP(AVG)
using six different classifiers. Both DLBP and DLBP(AVG) methods are the
best in performance using k-NN classifier. As the performance increases by 1%
compared to LDP and LBP. It can also be observed that the worst performances
were achieved by LDP and LBP with accuracy of 93 %. For SVM classifier the
three features methods LDP, DLBP and DLBP(AVG) performed equally, with
an accuracy of 99 %, except LBP with accuracy of 98 %. With the DT classifier,
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Table 1. Accuracies measures in % of LDP, LBP, DLBP and DLBP(AVG) using six
different classifiers, Gaina is the gain when using average DLBP, and Gainc is the
gain when using center DLBP

Feature methods

DLBP | DLBP(AVG) | LDP | LBP | Gainc | Gaina
Classifiers | k-NIN 94 94 93 93 | +1 +1
SVM 99 99 99 |98 |0 +1
DT 94 94 88 87 +6 +7
RF 73 78 78 |70 |45 +8
NB 90 90 86 86 +4 +4
Perceptron | 86 87 82 63 +5 +14

The performance accuracy of LDP, LBP and DLBP

N
-
RN
-

3
z
H

=
H
g
H
g

WDIBP W DIBP(AVG] ®LDP «LBP

Fig. 5. The performance accuracy of LDP, LBP, DLBP and DLBP(AVG) using six
different classifiers (Color figure online)

there was an increase by 6 % in the performance, as both DLBP and DLBP(AVG)
performed very well (94 %), compared to LDP (88 %) and LBP (87 %). Using RF
classifier, DLBP achieved the best performance with 78 %, yielding an increase
of 5%. Both NB and Perceptron Classifiers better accuracies using DBLP, with
increases 6 % and 5 %, respectively. Table 1 shows that the best accuracies were
achieved by DLBP(AVG) when using the Kylberg texture dataset. Improvements
in performances range from 1% to 5 %.

4 Conclusion

Directional Local Binary Pattern (DLBP) has been proposed, which enables
users to select the number of significant bits for the coding features as it is
done with LDP. DLBP builds on the strengths of both LDP (Local Directional
Pattern) and Local Binary Pattern (LBP). It first computes the gradient direc-
tional responses since it is more stable than the local neighboring following LDP



Directional Local Binary Pattern for Texture Analysis 233

concept. It then generates the code following the LBP concept. The perfor-
mances of LDP, LBP and DLBP were evaluated using Kylberg texture dataset
of 3200 texture images using six different classifiers (K-neareast neighbor algo-
rithm (KNN), Support Vector Machine (SVM), Perceptron, Naive-Bayes (NB),
Adaboost, Decision Tree (DT)) in different conditions. Results show that DLBP
outperforms the existing LDP and LBP.
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Abstract. In this paper, several extensions and modifications of Lo-
cal Directional Pattern (LDP) are proposed with an objective to in-
crease its robustness and discriminative power. Typically, Local Direc-
tional pattern generates a code based on the edge response value for the
eight directions around a particular pixel. This method ignores the cen-
ter value which can include important information. LDP uses absolute
value and ignores sign of the response which carries information about
image gradient and may contain more discriminative information. The
sign of the original value carries information about the different trends
(positive or negative) of the gradient and may contain some more data.
Centered Local Directional Pattern (CLDP), Signed Local Directional
Pattern (SLDP) and Centered-SLDP (CSLDP) are proposed in different
conditions. Experimental results on 20 texture types using 5 different
classifiers in different conditions shows that CLDP in both upper and
lower traversal and CSLDP substantially outperforms the formal LDP.
All the proposed methods were applied to facial expression emotion ap-
plication. Experimental results show that SLDP and CLDP outperform
original LDP in facial expression analysis.

Keywords: Texture features. Local Directional Pattern. Centered Local
Directional Pattern. Signed Local Directional Pattern. Centered-SLDP.
Classification. Facial expression.

1 Introduction

In computer vision, texture is a very significant aspect. It presents information
about the spatial properties like color or pixel intensity which can be extracted
from an image. It describes the relationship between the value of the gray value
in a particular pixel and its neighbors. Several textural features methods have
been proposed, including Gray Level co-occurrence Matrix (GLCM) [1], Grey-
Level Run Length Matrix (GLRLM) [2], Gabor Filter [3], Local Binary pattern
[4] and Local Directional Pattern [5] and many others. Local Binary Pattern
(LBP) was an eye catching for its simplicity and excellent accuracy in extracting
data from images. It has been used in various applications, such as face and



hand recognition [6]. The LBP operator generates binary digits, from the binary
derivation that describes the neighboring pixels, which is utilized as an integral
measure for regional image contrast. It takes the center value as a threshold
for the regional 3 x 3 neighboring pixels, hence generating one binary digit if
the neighbor pixel is larger or equal to the threshold, otherwise it generates
zero binary digit. Inspired by the success of LBP, many scholars have proposed
several adjustments of LBP [7—10]. However, LBP is sensitive to illumination
changes and noise.

A stabler feature method, based on the computation of the directional in-
formation, Local Directional Pattern was proposed by Jabid et al. [5]. Unlike
LBP which is based on computing the pixel intensity, LDP computes the direc-
tional information around the pixel using a gradient operator. It has been used
in various applications; signature verification [11], face recognition [12], and fa-
cial expression recognition [5]. Despite the great achievement of LDP in pattern
recognition and computer vision, its fundamental working mechanism still needs
more investigation. Zhong [13] proposed an Enhanced Local Directional Pat-
tern (ELDP) by taking the two most prominent directional edge response value.
ELDP code is then generated by converting the two values into an octal digit.
The result established the robustness of ELDP against non-illumination changes.
LDP codes generation is based on the edge response values in the eight direc-
tions around the central pixel, but it doesn’t take into account the center pixel
value. Due to the fact that the center pixel is a very significant factor, ignoring
it may lead to a critical lost of information. Centered Local Directional Pattern
(CLDP) is proposed with an aim to include the center pixel value based on its
relation with the neighboring pixels. Another issue with the classical LDP is that
it is encoded using the absolute value, however, the sign of the original value
indicates a trend (positive or negative) which may hold more information and it
is applied in the proposed Signed Local Directional Pattern (SLDP) method.

The remainder of this study is organised as follows. In section two, Local Di-
rectional Pattern, CLDP, SLDP and CSLDP, for texture analysis are presented.
Section three, is devoted to the evaluation of discrimination performances of fea-
ture methods presented. Section four presents conclusion and recommendations
of the study.

2 Local features for texture analysis

In this section, the original LDP is presented together with the proposed meth-
ods, CLDP, SLDP and CSLDP.

2.1 Local Directional Pattern

LBP is considered unstable because it extensively depends on the neighboring
pixels intensity which makes it vulnerable and sensitive to random noise. To
overcome these problems, Jabid et al. [5] proposed the Local Directional Pattern
(LDP). Unlike LBP which considers the intensities of the neighboring pixels,



LDP considers edge response values in eight different directions. To calculate
the eight directional edge response values of a particular pixel, Kirsch masks,
shown in Fig 1, are used.

-3 =3 5 -3 -3 5 -3 5 5 5 5 5
-3 0 5 -3 0 5 -3 0 b -3 0 -3
-3 -3 5 -3 -3 5 -3 -3 -3 -3 -3 -3
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5 0 =3 5 0 -3 5 0 -3 -3 0 5
-3 -3 -3 5 -3 -3 a 5 -3 -3 5 5
My (West) M5 (South West) Mg{South) Mg (South Est)

Fig. 1: Kirsch masks

Given a pixel (x,y) of an image, I. For each direction ¢ and using the corre-
sponding mask M;, the i directional response m;(z,y) can be computed as

1

1
mi(z,y) = > > Mi(k+1,1+1) X I(w+k,y+1) 1)

k=—11=—1

A vector (myg,...,my7) is derived from each of the eight directions, where for
each pixel (x,y) m; represents m;(x,y). The k most significant responses are
selected from the directional response vector. Thus, placing the corresponding
positions to 1 bit code, leaving the remaining (8 — k) to 0 bit code. The LDP
code, LDP, ,, of the pixel (z,y) base on the directional response (my, ..., mz),
is derived using Equation 2.

7
[/D}DJ;/‘U(TI’LO,7’)7,17 ...,m'7) = Z S(m, _ mk) X 21 (2)
=0

where my, is the k' most significant response and s(x) is defined as

sta) = {1 el g

0 otherwise

From the LDP transformed image, an histogram, H, is extracted. H is defined

as
M—-1N-1

Hy=Y > p(LDP,,,C) (4)

z=0 y=0
Where C; is the i** LDP pattern value, i = 1,...,> C3 and p is given as

1 ifz=0
0 otherwise

p(z,a) = {



2.2 Centered Local Directional Pattern

The original LDP codes are generated based on the value of the edge response
in eight directions around pixel, but this method ignores the center pixel value.
However, the center pixel may contain more information. In LDP, central pix-
els are not included; as a result only 8C3 = 56 patterns can be generated. If
the central picxel is considered, “Cy = 126 patterns will be generated. Conse-
quently, CLDP enables the extraction of more information, that will potentially
lead to better characterization of visual artefacts. The CLDP feature method is
calculated in three steps;

1.

2.

Calculate of the eight directional responses. This remains the same as in the
first and the second steps in LDP calculation (see Equation 2).

Compute the average may g of the the 8 neighbouring pixels (see Equation
5) as a threshold, Generate 1 binary code if the center pixel is greater or
equal to the threshold, otherwise generates 0 binary code (see Equation 6).

7
1

mave = g ; m; (5)

CLDPipreshotd = S(Me —mavea) (6)

Where m, is the center pixel value and s(z) is defined in Equation 3.

. Using the response values computed in the first step, and the threshold

obtained in the previous step, the CLDP can be calculated as

7
CLDP = Z s(mz — mk) X 21 + CLDPthreshold (7>
=0

There are two ways to generate the binary code in CLDP, depending on the
direction:

— CLDP-UP: in this option, the computation of the binary code begins from

the center pixels and walks up (anticlockwise) through all the neighbour-
ing pixels, in the following order (m.,mo,...,m7) as shown in Fig 2. The
CLDPyp can be calculated as

7
CLDPyp = Zs(mi —my) X 2"+ s(me — mavg)
i=0
CLD Ppgwn: in this other option, the computation of the binary code begins
from the central pixels and walk down (clockwise) through all the neigh-
bouring pixels, in the following order (m.,mg,mz,...,m1) as shown in Fig
2. CLDPyp, as represented, starts from the center pixel mg and walks up
through all neighboring pixels; then C'LD Ppy,y, starts from the center pixel
mo and walks down through all neighboring pixels. CLD Ppgy,» can be cal-
culated as
7
CLDPpoyn = Z s(mr—; —my) X 2° 4+ s(m. — mi) X 2+ s(me — Mavea)
i=0
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Fig. 4 shows an example of computing the Centered Local Directional Pattern.
To construct the CLDP descriptor, the calculation of the CLDP code for each
pixel (x,y) is necessary. The histogram H obtained from the transformed Image
can be defined as

M-1N-1

z=0 y=0

2.3 Signed Local Directional Pattern

LDP and SLDP are for most of the steps similar; the only difference thing is the
way the most prominent edges are chosen. On the LDP, the selection of the most
prominent edges is based on the absolute values, while for the SLDP the signs
(positive or negative) of edges are considered. Typically, LDP is encoded using
the absolute value, however the sign of the original value indicates the trends
(positive or negative) of the gradient and may hold more data. SLDP features
are based on eight bit binary codes assigned to each pixel of an input image.
In case of the positive trends, three of the most prominent edges are chosen as
calculated in equation 9.

7
SLDP(Pos), Z s(m; —my,) x 2° (9)

=0
On the other hand, in the negative trends are calculated as:

7
SLDP(Neg)ay =Y s((— my) x 2 (10)

=0
where s is defined a in Equation 3. Fig.3 shows an example of computing SLDP.

Histogram H for both directions are obtained from the transformation has 56
bins and can be defined as

M—-1N-1

Hy(P/N) =Y p(SLDP,(P/N),C;) (11)

=0 y=0



2.4 Centered Signed Local Directional Pattern

The SLDP codes are generated based on two different directions (positive or
negative) of the gradients. However, this method ignores the center pixel value.
In the original SLDP, 8C5 = 56 patterns only are generated, but if the center
pixel is included °Cy = 126 patterns will be generated, which will include more
information. Center-SLDP (CSLDP), adds the center pixel for both directions
(positive or negative). Their computation is done in two steps:

1. Compute SLDP as in the subsection 2.3 above.

2. CSLDP coding of the directional response is generated based on the first
step and the calculation of the center pixel obtained in subsection 2.2. The
CSLDP can be calculated as

CSLDP = SLDP(POS/NGQ) + CLDPthreshold (12)
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Fig.5: A computing example for Centered Signed Local Directional Pattern

3 Experimental Analysis

The main steps used for texture classification are:

1. Feature operator selection: This step consists of picking a features method
(LDP, CLDP and SLDP) and determining the descriptions for each pixel,
creating a suitable scale for the textual description of the image.

2. Local feature extraction: The resulting description of the image is formed
through a concatenation of sub-regional histogram of local pattern.

3. Classification: Match the unknown image description (test set) with all
known images (training set) using different classifiers in different conditions.

Python-Fortran, OpenCV and scikit-learn frameworks [15] are used for experi-
ments.



3.1 Classification Evaluations

The effectiveness of these methods were evaluated using different classification
measures, learning curve, accuracy, precision, recall, F-score and Cohen’s kappa.
The learning curve is a very useful algorithm that evaluates the sanity of an
algorithm. It plots the relation between the training set size and the performance.
In a basic manner it shows the starting point where the classifier begins to learn.
Accuracy is the number of samples classified correctly, for example if the classifier
accuracy is 50% it means that the classifier manages to classify correctly 50% of
the dataset

Accuracy = # of samples correctly classified/# of samples (13)

Precision is the ratio of positive predictions to all positive classes value predicted.
precision = True positive/(True positive + False positive) (14)
Sensitivity is the ratio of positive predictions to all positive classes in test data.
recall = True positive/(True positive 4+ False negative) (15)

F-score conveys the balance between the precision and the recall.
F — score = 2 x ((precision * recall) / (precision + recall)) (16)

Cohen’s kappa is a very good measure that can handle both multi-class and
imbalanced class problem very well. It calculates the agreement between cate-
gorical data. If the value is less than or equal 0, it indicates that the classifier is
useless. Table 1 shows the interpretation of Kappa value.

Table 1: Interpretation of Kappa(x)

Strength of argument|Value of «
Poor agreement x <0.20

Fair agreement 0.20 < kK <0.40
Moderate agreement 0.40 < k < 0.60
Good agreement 0.60 < k < 0.80
Very good agreement 0.80 < xk < 1.00

Each classifier is trained using different parameters as shown in Table 2.

3.2 Textural Application

In this section, all the presented method are evaluated for texture analysis using
Kylberg dataset.

Kylberg Datasets Kylberg dataset [14] consists of 28 categories, each cate-
gories has 160 images. All selected images have the size of 576 x 576. In Fig. 6
a sample of each category is shown.



Table 2: Classifiers parameters

SVM Polynomial linear kernel, Configuration parameter ¢ =0.025
k-NN k=5

DT Entropy, The minimum number of split is 10

RF The number of the trees is 10, The maximum depth of the tree is 5

Adboost |[The maximum number of estimator is 50, Learning rate = 1
Gaussian NB|autoselected
Perceptron |[The number of passes over the training data = 100, Constant eta = 0.1

Fig. 6: The sample images of texture from Kylberg

Experimental Results and Discussion for Kylberg Dataset In this para-
graph, we evaluate the power of the proposed descriptor for texture analysis
using 5 different classifiers (K-neareast neighbor algorithm(KNN), Support Vec-
tor Machine (SVM), Perceptron, Naive-Bayes(NB), Decision Tree(DT)), under
two different conditions:

1. Classification without preprocessing: In this option, raw feature vectors gen-
erated are fed into classifiers.
2. Classification with with preprocessing;:
— Standardization (Z-score normalization): Re-scale the features so that
they’ll have the attributes of a standard normal distribution with the
mean (u) equals to 0 and the standard deviation (o) equals to 1.
— Min-Max scaling: The data is normalized to a specified range - usually
0 to 1. A Min-Max scaling is typically performed using Equation 17.
X - szn

Xnorm =5 v 17
Xmaac - szn ( )

The Kylberg dataset is split into two: 80% of the dataset as a training set and
20% as test set, and 10 cross-validation is used. The performance of LDP, CLDP
(up or down), SLDP (Positive or negative) and CSLDP (positive or negative) will
be compared using 6 different classifiers (K-neareast neighbor algorithm(KNN),
Support Vector Machine (SVM), Perceptron, Naive-Bayes (NB), Decision Tree
(DT)) under different conditions. Regarding the length of the proposed descrip-
tor, the basic LDP and SLDP has 56 bins and both CLDP and CSLDP have
126 bins. F-score and the performance accuracy are used to evaluate the effec-
tiveness of our proposed methods. We begin by describing the performance of
the proposed method without any preprocessing for the feature vectors, Fig. 10a



Table 3: F — score of LDP, CLDP, SLDP and CSLDP using six classifiers

Classifiers |[LDP [CLDPyp |[CLDPR[ ) | SLDP(Pos.) [SLDP(Neg.) [ CSLDP (Pos.) [ CSLDP (Neg.)
k-NN 0.928 0.953 0.954 0.911 0.897 0.954 0.957
SVM 0.992 0.999 0.999 0.988 0.978 0.988 0.985
DT 0.897 0.924 0.916 0.85 0.848 0.916 0.87

RF 0.688 0.807 0.752 0.745 0.716 0.741 0.769
NB 0.867 0.91 0.911 0.868 0.869 0.929 0.929
Perceptron |0.756 0.888 0.891 0.559 0.568 0.83 0.808
The Performance Accuracy of LDP, CLDP, SLDP and CSLDP Using Six Classifers (No
processing)
| | l l l l , CLoP, 5L0P. & Six Classifers (WinMax)

a) Without any processing (b) MinMax Processing

Fig. 7: The classification performance of LDP, CLDP, SLDP and CSLDP using
six classifiers

shows the performance accuracy of LDP, SLDP, CLDP and CSLDP in six differ-
ent classifiers. The results establish that the addition of the center pixel to the
LDP in CLDP has a substantial impact on the performance, where there is an
increase in the performance ranging from 1% to 9% according to each classifiers.
It was noted that the trend (up or down) to calculate the edge responses vector
in CLDP has no effect; as both have proximity the same accuracy. The result also
shows that the sign of the gradient (positive or negative) in SLDP has improved
the performance compared to LDP which use only the absolute value. For exam-
ple, the accuracy for SLDP is equal to 95% and 100% compare to 93% and 99%
in LDP using NB and SVM, respectively.For CSLDP, the two properties were
merged, adding the center pixel value and the sign of the gradient. The F' — score
in Table 3 shows that the value for CSLDP is always greater than LDP except
for DT classifier. It is clear that the best accuracies are achieved for the Kylberg
texture dataset was 100% for both CLDP and SLDP using SVM classifier. Table
3 shows that the best performance is distributed among CLDP and CSLDP for
all the classifier, however, LDP did not provide the best performance in any of
the classifiers.

When features extracted are preprocessed using standarlization or MinMax be-
fore the classification, it can be noticed that there is an improvement in perfor-
mance by 1% to 7% in all the classifiers except SVM which decreases by 1% (see
Fig. 10a and 7b). For example, the best performance of the perceptron classifier
was 92% but when we process the data it improved the performance to 99%.

3.3 Facial Expression Application

Extended Cohn-Kada Dataset (CK+) Extended Cohn-Kanade Dataset
(CK+) dataset has 593 sequences from 123 persons. For each person seven facial



expression neutral, sadness, surprise, happiness, fear, anger and disgust were
captured. The size of each image is 640 x 490 pixel. Fig. 8 shows a sample of
each expression.

2lalalalzla]s

Fig.8: A sample of face expression images from Cohn-Kanade dataset

Experimental Results and Discussion for CK+ Usually in facial appli-
cations the data size is fixed, so we calculated the learning curve to determine
how much training dataset is sufficient to teach the classifiers. Note that in each
of the two methods LDP and CLDP, the SVM began to be learned when the
sample size was between 0 and 500 with an accuracy around 85% as shown in
figs. 9a and 9b. On the other hand, we also noticed that SVM learned faster
on SLDP with an accuracy around 90% utilizing the same sample size. These
results demonstrate the strength and effectiveness of the methods despite the
small sample size. It is found that the learning curve starts to flatten when the
sample size is around 1500 with an accuracy of ~ 98% with all the features
methods which indicate that the classifiers are gaining less knowledge.

Learning Curves (SVM, RBF kernel, v =0. 001) Leaming Gurves (SVM, RBF kemel, 7 =0.001)
005 oos
090 000

—— Training score 075
—— Cross-validation score = Traiing score

Accuracy
-

o 500 1000 1500 2000 2500 on

) ®0 000 00 200 200
Samples Size

Samples Size

(a) LDP (b) CLDPpouwn

Fig.9: Learning curve of LDP, CLD Ppyy, using SVM

In table 4 the average kappa scores when applying each classifier to 40% of
dataset as a training dataset and reminder as a test dataset are shown. It was
noticed that LDP performance was not the best in any of the classifiers. On the
contrary, for instance, its performance with (DT) was 0.64 compare to the best
performance 0.75 using CLDP. Which establishes the strength and efficiency of
the presented methods. The best classifier performance was for both SVM and



(a) LDP (b) SLDP (Pos)

Fig. 10: Classification report of LDP and SLDP (Pos) using SVM

perceptron with accuracy ranging from 0.98 to 0.99 in all feature methods. This
is why we chose SVM to plot a learning curve and the classification report as it
will be seen later. For DT classifier there was a 10% improvement in the SLDP
method compared to LDP, LDP accuracy was 0.64 compared to SLDP at 0.75.
The weak performance of all classifiers was when NB was used to judge the
methods.

Table 4: The average kappa scores of LDP, CLDP and SLDP

Features DT |SVM|NB k-NN |Perceptron
LDP 0.64| 0.98 [0.61| 0.82 0.98
CLDP (UP) [0.62] 0.99 [0.58] 0.84 0.99
CLDP (Down)|[0.62| 0.99 [0.62] 0.83 0.99
SLDP (Pos) [0.75] 0.99 [0.58] 0.83 0.99
SLDP (Neg) [0.73] 0.99 [0.61] 0.83 0.99

In Fig.10 a classification report is plotted for each facial expression emotions
class, where the x-axis shows the performance for precision, recall and F-score
and y-axis shows the facial expression classes and their images number. Once
again, our features methods achieved the best score on almost every facial ex-
pression class. The F-score of our SLDP outperforms the original LDP in every
facial expression class.

4 Conclusion

Several extensions and modifications of Local Directional Pattern (LDP) have
been proposed, CLDP, which takes into account the center value, SLDP, which
considers the two different trends of the gradient and CSLDP, which includes
the center for both directions (positive or negative). LDP, CLDP, SLDP and
CSLDP were tested using Kylberg dataset of 3200 images using six different
classifiers in different conditions. The performance of the proposed operators
was also investigated on facial expression analysis. Results show that CLDP
and CSLDP outperform the existing LDP. This shows that the center pixel and



the directions of the gradient are very important in the extraction of textural
features.
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Abstract: Local Binary Pattern (LBP) is currently one of the most common feature extraction
methods used for texture analysis. However, LBP suffers from random noise, because it depends
on image intensity. A recently introduced more stable feature method, Local Directional Pattern
(LDP), uses the gradient space instead of the pixel intensity. Typically, LDP generates a code based
on the edge response values for eight directions around pixels. Yet, despite the great achievement
of LDP, it has two drawbacks. The first is the chosen number of significant bits k, which is always
three in the experiments conducted to date. Secondly, the original LDP method is structured around
the responses of the application of the Kirsch Masks on the 8-neighbourhood of each pixel of the
image and ignores the centre pixel value, despite it being very important in many applications.
This paper presents Angled Local Directional Pattern (ALDP), which is an improved version of
Local Directional Pattern (LDP), for texture analysis. Experimental results on two different texture
dataset (Kylberg and KTHTIPS2b), using six different classifiers [K-nearest neighbour algorithm
(k-NN), Support Vector Machine (SVM), Random Forest (RF), Perceptron, Naive-Bayes(NB), and
Decision Tree (DT)], show that ALDP substantially outperforms both LDP and LBP methods. The
ALDP has been evaluated with the Cohn-Kanade database to recognize the facial expressions emo-
tion. Results indicate a very high recognition rate for the proposed method. An added advantage
is that ALDP needs a selection of the number significant bits (k) as opposed to LDP.

1. Introduction

Texture can be described as complex visual form composed of units or sub-patterns that have a wide
variety of characteristics such as luminosity, color, size, slope, shape. Texture is determined as the
spatial variation of pixel intensities. It can help to segment an image into different homogeneous
regions where the criteria of similarity of a region are based on texture features. Texture analysis
is the operation of Machine Learning to characterize texture in an image [1]. Texture analysis is
used in a variety of applications, including medical imaging, remote sensing and security. Several
feature methods have been proposed in literature, including Local Binary Pattern (LBP) [7], Local
Directional Pattern (LDP)[3], Local Directional Pattern variance (LDPv) [8], Directional Local
Binary Pattern (DLBP) [9] and many others.

Local Binary Pattern has gained a lot of interest as a result of its simplicity and excellent perfor-
mance in texture analysis. A study by Song et al. [11] employed LBP operator to calculate texture
for multi-spectral remote sensing. The outcome showed more than 4% increase in performance,
compared to Grey Level Co-occurrence Matrix (GLCM) method. The successful application of
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LBP in a variety of domains has inspired many several modifications [12, 13, 14, 15, 16] to im-
prove its success rate. Guo [26] proposed a completed LBP(CLBP) scheme which improves the
discrimination capability of LBP descriptors. It presents two operators, the CLBP-Sign, which
is equivalent to the conventional LBP, and CLBP-Magnitude (CLBPM), which measures the lo-
cal variance of magnitude. This study demonstrated that the sign component is more significant
than the magnitude component in preserving the local information difference. Zhao [27] presented
a local binary code (LBC) which is based on extracting the grayscale different scale instead of
the structural information as, on the CLBP. The results show that LBC is more robust against the
modification of the illumination condition or the alteration of the texture scale. However, LBP
suffers from random noise because it depends on neighbouring pixels intensity. A more stable
feature method, the Local Directional Pattern (LDP), was introduced by Jabid et al. [3], which
considers the edge response of the application of Kirsch gradient operator rather than the raw
pixel intensities as is done with LBP. LDP has been used in several applications, such as textural
classification [17], signature verification [4], and facial expression recognition [3]. Despite the
outstanding achievement of LDP in many computer vision applications, its underlying working
mechanism still requires more investigation. Kabir et al. [8] presents Local Directional Pattern
variance (LDPv), which extracts the texture and contrast information to characterize the facial
components. Principal Component Analysis (PCA) was utilized in LDPv to reduce the dimen-
sionality of the most significant element on LDP. Results show that the LDPv method achieved a
higher recognition rate compared to LBP and LDP. Zhong and Zhang [10] present Enhanced Local
Directional Pattern (ELDP) that employs the directions of the two most significant edge response
values. Results show that ELDP is more robust to non-monotonic illumination changes compared
to LDP. Shabat and Tapamo [9] present Directional Local Binary Pattern (DLBP), which uses the
centre value as a threshold for the eight directional edge response values. Directional Local Bi-
nary Pattern is applied on texture classification and results show that it outperforms both LDP and
LBP. Angled Local Directional Pattern (ALDP) is proposed in this paper to resolve two problems
encountered when using LDP. The first problem is the value of the number of significant bits k.
The choice of k = 3, as established in the literature, is empirical. A careful investigation revealed
that the change in the value of £ affects the performance of the LDP. Secondly, the original LDP
codes are generated based on values of the edge responses when Kirsch mask is applied in the
eight directions around a pixel, but this method ignores the centre pixel value, which leads to lost
information.

2. Features methods for texture analysis

An important process in texture analysis is feature extraction. In this section, Local Binary Pat-
tern (LBP), Local Directional Pattern (LDP) together with the proposed Angled Local Directional
Pattern (ALDP) are presented.

2.1. Local Binary Pattern

A detailed study of Local binary pattern (LBP) is presented by Ojala et al. [2]. Local Binary
Pattern has since been used in several computer vision applications. It relabels each pixel of an
image by constructing an 8-bit binary string corresponding to the 8-neighbourhood. This binary
string is obtained through the following process: the gray value g, of each pixel, p, is compared to
the gray value of all its 8-neighbours, where the 8-neighbours are represented as shown in Fig 1,



n;(p) represents the i*" neighbour of pixel p. After the comparison, if g, < gn,(), a 1 is produced,
otherwise a 0 is returned. The binary code obtained is then converted into a decimal number. In
other words, for each pixel, p, its LBP code, LBP(p), is computed as

7
LBP(p) =Y S(gn.p) — 1
=0
where
1 ifz>0
S(z) = { 0 otherwise @)

n3(p) | na(p) | na(p)

na(p) | p | no(p)

ns(p) | ne(p) | ne(p)

Fig. 1: 8-neighbors of a pixel p

2.2. Local Directional Pattern

Local Directional Pattern code is calculated by first applying Kirsch Masks (M, - - - , M7); these
masks are shown in Fig.2. Given an image, /, an 8-dimensional vector (myg,- - - ,m7) can be
calculated for the eight directions as follows:

1 1
=3 Ia+1Ly+k) x Ml k) 3)

l=—1k=-1

Local Directional Pattern code is then generated using the k£ most significant responses. Hence, the
bits corresponding to the top & Kirsch masks application responses are set to 1, and the remaining
(8 — k) bits are set to 0. For a pixel at the position (x,y), the LDP code LD P, , is derived using

Equation 4.
7

LDP,,(mg,my, -+ ,mg) = »_ S(m; —my) x 2' (4)
i=0
where m;, is the most prominent response and S(x) defined as in 1.
Fig.3 gives an example of the calculation the LDP code.

The histogram H is employed on the transformed image (LDP) to encode the image as a feature
vector. The histogram obtained from the transformation can be defined as
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Fig. 3: Kirsch Mask application responses on a pixel (z, y)
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H; =Y "> p(LDP,, C))

z=0 y=0
where C; is the 7" ranked LDP value, i = 1, ... .2 C}, and p is defined as

p(z,a) = {

2.3. Angled Local Directional Pattern

1 ifx=a
0 otherwise

&)

(6)

There are two problems associated with an LDP operator: first, the number of significant bits,
k, has to be determined. The classic LDP empirically chooses k¥ = 3. It has been established
that the change in the value of the % affects performance. Secondly, classic LDP codes are gen-
erated based on the value of edge responses in eight directions around each pixel, based on the
8-neighborhood only, and it ignores the center pixel, although the centre pixel is very important
in many applications. In Angled Local Directional Pattern (ALDP), instead of choosing & values
of the 3 x 3 window, the centre value for each angle will be taken as a threshold. Angled Local
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Directional Pattern features are made up of an 8-bit binary code produced for each pixel. Angled
Local Directional Pattern features are calculated in three steps:

1. Generate the Kirsch Masks application responses (my, - - - ,mg, m7) as in the classic LDP.
Fig. 3 gives an example.

2. Calculate the angular vector values, where each angle (0°, 45°,90°,135°) has a different
number of vectors, and each vector contains three values. The central value in each vector will
is chosen as a threshold for the other two neighbouring pixels. A binary code of 1 is generated
if the threshold is greater than both neighbours; otherwise 0 binary code is generated(see Fig.
4). For example, py is one of the vectors for the 0°, which contains three values, m,, ¢ and
mg. Since c is the central value, c is the threshold for m4 and my. If the value of c is greater
than m4 and my, 1 binary code is generated; otherwise, O binary code is generated. Equations
7 to 14 below show all the vectors values for all the angles:

For 0°:
Po = b(mg — ¢, my — ¢) (7)
p1 = b(m3 — M2, M1 — mz) (8)
P2 = b(m7 — Mg, My — mﬁ) )
For 90°:
p3 = b(my — mgy, my — my) (10)
ps = b(me — ¢, mg — ) (11)
ps = b(mg — my, ms — my) (12)
For 45°:
pe = b(ms —c,mq —¢) (13)
For 135°:
pr = b(mg — ¢, m7 — ¢) (14)
where

15)

br, s) = 1 ifr>0ands>0
2/ 771 0 otherwise

Finally, the ALDP code ALDP, ,(po, p1, ..., p7) of the pixel at the position (z,y) with the
angle vector values, (po, p1, ---, p7) is derived using equation 16, as

7
ALDP, y(po,p1 -, p7) = »_pi X 2° (16)
=0

3. Compute ALDP histogram; this step remains the same as the third step on LDP. Fig. 5 shows
an example of computing ALDP.

3. Experimental results and discussion

Performance of ALDP was evaluated by testing its ability to classify textures and its suitability to
recognize facial expression.
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3.1. Experiment 1: Texture Analysis

3.1.1. Data set: 1In this experiment, two texture image datasets are used. They were chosen
because of the variety of their characteristics in terms of the number of classes and the number
of samples. The Kylberg dataset has 28 categories of 160 images each, with grayscale images of
different man-made and natural textured surfaces. Categories are very similar with regard to scale
and illumination. All selected images have a size of 576 x 576. In Fig. 6(a), some sample images
are shown.

KTH-TIPS2b dataset has 11 categories of 432 images each. Each category has images with varia-
tions in scale, illumination and pose. Each selected image has 200 x 200 pixels. In Fig. 6(b), some



image samples of KTH-TIPS2b dataset are shown. Classifier parameters are given in Table 1.
In this article, the classification model used has the usual two components: Feature Extraction
and Feature Classification. Datasets used are split into two sets, 80% as a training dataset and the

remaining as a test dataset. Each classifier is trained using different parameters, as shown in Table
1.

Table 1 Classifier parameters

Polynomial linear kernel

SVM Configuration parameter ¢ =0.025
k-NN k=35
DT Entropy
The minimum number of split is 10
RE The number of the trees is 10

The maximum depth of the tree is 5

Gaussian NB | autoselected

The number of passes over the training data = 100
Constant eta = 0.1

Perceptron

Accuracy is used to evaluate the classifiers, which compute the number of samples classified cor-
rectly, as shown in Eq.17.

No. of samples correctly classified

Accuracy = (17)

No. of samples

The proposed features extraction method is implemented using the python-fortran framework. The
Scikit-learn toolkit [6] is used for the classification.

(a) Texture samples from Kylberg dababase (b) Texture samples from KTH-TIPS2b database

Fig. 6: Textures Data sets

3.1.2. Performance of ALDP on Texture Analysis: In this section, the performance of LDP
and ALDP are compared, using six different classifiers under different conditions: K-nearest neigh-
bor algorithm (k-NN); Support Vector Machine (SVM); Perceptron; Decision Tree (DT); Random
Forest (RF); Naive-Bayes (NB)and Perceptron.



THE PERFORMANCE OF LBP, LDP AND ALDP ON KYLBERG DATASET
100
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Fig. 7: The performances of LDP and ALDP using Kylberg dataset and six classifiers

Kylberg Results

Table 2 shows the performance of LBP, LDP and ALDP using six different classifiers. With the
Kylberg dataset ALDP achieves the best accuracy (100%), using the SVM classifier. Angled Local
Direction Pattern improvement of the performance ranges from 1% to 15%, in all classifiers as
shown in Table 2. For example, ALDP performance using k-NN is 98%, while LDP performance
is 91%. This shows a performance improvement of 7%. It is also noticeable that LBP and LDP are
consistently outperformed by ALDP (see Fig. 7).

Table 2 The performance accuracy of LBP, LDP and ALDP applied on Kylberg dataset using six classifiers

Kylberg
k-NN | SVM | DT | RF | NB | Perceptron
LBP | 093 | 098 | 0.87 | 0.70 | 0.86 0.63
LDP | 091 | 098 | 0.89 | 0.66 | 0.96 0.74
ALDP | 0.98 1.0 | 094 | 0.81 | 0.97 0.85

KTH-TIPS2-b Results

Table 3 shows the performances of LBP, LDP and ALDP with six different classifiers. It is clear
that the best accuracy (94%) was achieved by ALDP using the SVM classifier, on KTH-TIPS2-b
texture dataset. The improvement of performance with ALDP ranges from 5% to 14%, and it is
consistent through classifiers. For example, the ALDP success rate using k-NN is 88%, while the
LDP success rate is 80%, which is an improvement of 8%. It is also important to note that both
LDP and LBP performed poorer for all classifiers (see Fig. 8).

Table 3 The performance accuracy of LBP, LDP and ALDP applied on KTH-TIPS2-b dataset using six classifiers

KTH-TIPS2-b
k-NN | SVM | DT | RF | NB | Perceptron
LBP | 0.80 | 0.79 | 0.68 | 0.53 | 0.50 0.43
LDP | 0.80 | 0.88 | 0.75 | 0.56 | 0.56 0.54
ALDP | 0.88 | 0.94 | 0.81 | 0.63 | 0.65 0.69




THE PERFORMANCE OF LBP, LDP AND ALDP ON KTH-TIPS2-B DATASET
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Fig. 8: The performance accuracy of LDP and ALDP applied on KTH-TIPS2-b dataset using six
classifiers

3.2. Experiment 2: Identifying Facial Emotional Expression

After establishing the power of the ALDP in classifying the texture in the previous experiment and
solving the problem of selecting the most edge without reducing the performance of the LDP but
on the contrary improving the performance of the LDP, we implemented a practical application
to examine the strength of ALDP in real life application. If fact, we evaluated how well ALDP
characterizes facial emotion(i.e. joy, sadness, anger, disgust, fear, contempt and surprise) based
on facial image. In this paper, we replicated and expanded the experiment done by Kabir [8] and
compared the performance of the ALDP with LDP, LDPv and LBP methods.

3.2.1. Data set: In this work, we attempted to identify facial emotional expressions using the
well-known extended Cohn-Kanade data set (CK+) [19]. This data set contains seven facial ex-
pressions (joy, sadness, anger, disgust, fear, surprise and contempt) taken from 210 adults aged
between 18 to 50 years: 69% were female, 13% Afro-American, 81% Euro-American and 6%
other groups. Fig.9 shows a sample of face expression images from the CK+ data set. This data set
contains 593 image sequences of 123 subjects. Each sequence has consecutive images, beginning
with a neutral facial expression (first image) right up to the image of a visible emotional expres-
sion on the face(last image). In this experiment, 400 images were selected for each emotional
expression (joy, sadness, anger, disgust, fear and surprise).

3.2.2. Performance of ALDP on Facial Expression Identification: In this experiment facial
image was detected using Haar-like features [20] and then cropped from the original image and
normalized to a size of 200 x 200. Fig.10 shows an example of detection and cropping of facial
regions, using Haar-like features.

No preprocessing was performed because LDP and ALDP are not affected by the noise and illumi-
nation changes. We chose to divide each facial image 200 x 200 into 10 x 10 blocks, and the size
of each block is 20 x 20 pixels. In this experiment, two modes were employed to split the data. In
the first mode, 10-cross validation [21] was used to split the training set into 10 smaller sets. In the



Detect the

Fig. 10: Detecting and croping the facial region from the original image using Haar-like features

second mode, different values were employed as a training data set varying from 10% to 90% of
the data set and the rest as a test data set and performances were computed for each value.

Table 4 shows the results of the comparison between the LDP and the ALDP using 10 cross val-
idation. The best recognition rates were achieved by ALDP. Note that the performance of ALDP
using both classifiers SVM (linear and polynomial) and Perceptron is almost equal to the perfor-
mance of the LDP and the difference not more than 1% in favour of ALDP. There is anincrease in
the recognition rate for ALDP from 4% to 11% compared to LDP in both DT and NB.

Table 4 7-class expression recognition using four different classifiers

Features method | SVM (Linear) | SVM (Polynomial) | DT (Entropy) | Perceptron | NB

LDP 0.98 0.98 0.78 0.98 0.75

ALDP 0.99 0.99 0.82 0.99 0.86

Figs.11 and 12 show the recognition rates for different testing set cases. For instance, in Fig. 11,
when the testing data set was 30% of the whole data set, the performance for ALDP using DT was
86%. Note that even with a small training data set, ALDP still works well. For instance, in Fig.12,
when 80% of the data set was used as a testing data set and the rest (20%) as a training data set
, ALDP achieved a very high recognition rate with 97%. This demonstrates the strength of the
proposed method.

Furthermore, Table 5 exhibits the effectiveness of the ALDP, showing how it compares to previous
studies. Although this study includes a new facial expression (contempt) which was not employed
in previous studies, and a larger number of subjects and without any kind of preprocessing, ALDP
achieves the best performance with 99%. The improvement in performance is due to several fac-

10
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Fig. 11: The performance of LDP and ALDP using the two classifiers DT and NB

THE RECOGNITION RATE OF LDP AND ALDP USING SVM (KERNEL = POLYNOMIAL)
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Fig. 12: The performance of the LDP and ALDP using the SVM classifier

Table 5 The performance rate of previous studies and ALDP applied on the Cohn-Kanade data set

Features method Performance
ICA [22] 0.60
EICA [22] 0.66
Zenike Moment (10 order) [23] 0.73
log-Gabor feature [24] 0.92
LDP [4] 0.93
VLBP [25] 0.96
LDPv [8] 0.97
ALDP 0.99

tors. The first factor takes into account the value of the central pixel, which may carry important
information, rather than ignoring its value and applying it only as a threshold. The central pixel
has the same weight as the neighbouring pixels. Another factor influencing performance is the
selection of the number of significant bits which is based on the pixel relation to one another and
is not the same as in the LDP where the number of significant bits is adaptively chosen.

11



4. Conclusion

Angled Local Directional Pattern (ALDP) is proposed in this study, which resolves two problems of
LDP. It takes into account the centre value and does not have to select the number of significant bits
k. Both LDP and ALDP were tested on two texture data sets (Kylberg and KTH-TIPS2-b) using
six different classifiers [K-nearest neighbour algorithm (KNN), Support Vector Machine (SVM),
Perceptron, Naive-Bayes (NB), Adaboost, Decision Tree (DT)] under different conditions. An
improvement in the performance ranging from 1% to 15% was observed, depending on the chosen
classifiers. Results showed that ALDP outperforms the classic LDP. This proves the fact that for
each kernel both the centre pixel and neighbours in all directions are very important factors in
texture analysis. The ALDP has also been applied to the Cohn-Kanade database with the objective
of recognising facial expressions. Results obtained showed that ALDP outperforms several earlier
studies’ methods. Although this study has a new facial expression (contempt) which was not
employed in the previous studies, a larger number of subjects and there was no preprocessing.
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Abstract This paper presents a novel texture feature extrac-
tion method, Circular Local Directional Pattern (CILDP),
that is inspired by Local Binary pattern(LBP) and Local Di-
rectional Pattern(LDP). This method relies on circular shape
to compute the directional edge responses based on Kirsch
Masks using different radiuses. The performance of the pro-
posed method is evaluated using five classifiers on textures
from the Kylberg dataset. Results achieved establish that the
proposed method consistently outperforms LBP and LDP
when different radiuses are considered.

Keywords Texture Analysis - Local Binary Patterns - Local
Directional Pattern - Classification

1 Introduction

Texture analysis is an important aspect employed in many
image analysis and computer vision applications such as ob-
ject classification and face identification. Although, texture
analysis is extremely used in computer vision and the many
efforts to define it in universal terms, texture analysis loss
a precise definition. One of the better description of texture
analysis, defining it as a function of the spatial variation in
pixel intensities [1]. Many of the features methods have been
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proposed, such as grey-level co-occurrence matrix (GLCM)
[2], local binary pattern [3], scale-invariant feature trans-
form (SIFT) [4], speeded up robust features (SURF) [5],
local directional pattern (LDP) [6], directional local binary
pattern (DLBP) [7] and so much more. Some of the meth-
ods have been applied for surface characterizations and tex-
ture analysis applications[8,9,10]. Among all the features
methods, local binary pattern is the most popular feature.
It has been employed in several applications, including fa-
cial recognition [11], texture analysis [9] and remote sens-
ing [12]. Instigated by the power and the simplicity of LBP,
many researchers proposed different improvement on LBP,
such as dominant local binary pattern (DLBP) [13], com-
pleted local binary pattern (CLBP)[14] and center-symmetric
local binary pattern (CSLBP) [15], etc.

The research in the recent years has started to focus on di-
rectional information instead of intensity information. The
reason for that is because the directional encoded is more
stable than the pixel intensity [16]. Jabid et al.[6] presented
a low-level feature, Local Directional Pattern, which uses
the edge responses of eight different directions about each
pixel. Luo et al.[16] presented the local line directional pat-
tern (LLDP) using the line direction response instead of the
gradient response. Shabat and Tapamo[7] presented the di-
rectional local binary pattern (DLBP) using the center pixel
as a threshold for the eight directional response values of the
neighborhood.

Motivated by LBP and LDP , in this paper we propose a new
LDP-structure descriptor, Circular Local Directional Pattern.

2 Features Methods for texture analysis

The most important process in texture analysis is the fea-
tures extraction. In this section, Local Binary Pattern (LBP),
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Local Directional Pattern (LDP) and the proposed Circular
Local Directional Pattern (CILDP) are presented below.

2.1 Local Binary Pattern

Local Binary Pattern changes the value of each pixel in the
image. This modification is based on the relationship of each
pixel in its 8-neighborhood. For each pixel p, LBP operator
makes its gray value g(p) a threshold, and for each neighbor
(ni(p)) (fori = 0,1,...,7) if its gray value is greater than
g(p) then set gray value corresponding binary LBP bit code
to 1 binary bit, otherwise, set it to 0. At the end convert the
binary code obtain into decimal. An example is shown in
Fig.1. When the LBP codes are produced for all the pixel of
an image, an histogram of these codes is generated and can
be used as a texture feature.

59 44 48 1 0 0
Threshold .
Binary =10001100
50 . 60 0 X 1 |iep=140
55 40 47 1 0 0

Fig. 1: LBP Example

2.2 Local Directional Pattern

The LDP operator calculates an eight-bit binary code by
comparing the different directional edge response values in
the 8-neighborhood of each pixel. The directional edge re-
sponse vectors are computed using Krisch Mask M, in a

given 3 neighborhood. M, have eight different rotations (Mo, ...

as shown in Fig.2.

mn:pn*Mn(xvy)7n: 1,..,7 (D

Where p,, is the gray value of the n'" neighbor.

-3 -3 5 -3 -3 5 -3 5 5 5 5 5

-3 0 5 -3 0 5 -3 0 5 -3 0 -3

-3 -3 5 -3 -3 5 -3 -3 -3 -3 -3 -3

M;(North Enst) Mg (North) Mg (North West)

5 =3 5 -3 -3 I' -3 -3 -3 ]
0 -3 -3 0 5

-3 l -3

a5 i 5 5
Mg(South) Mg (South Est)

-3 -3 -3

5 0 -3
-3 -3 -3 5 =3 =3
My (West) M;(South West)

Fig. 2: Kirsch Masks

The k& most significant response are chosen to generate the
binary code. Hence the top k*" values are set to be 1, leaving

(8 — k) values to 0. LDP is derived using Equation 2.

7

ymz) =Y s(my —mg) x 2" (2)

n=0

LDPw7y(m0,m1,

where my, is the most prominent directions and s(z) is de-
fine as

S(x):{l ifz >0

0 otherwise

An example is shown in Fig.3.

Directional The three most
45 60 25 responses significant responses 1
40 | 50 | 10 -10 1/0

Binary = 10001100

LDP = 140

Fig. 3: LDP Example

2.3 Circular Local Directional Pattern

In contrast to the regular LDP, which uses eight pixels in
(3 x 3) window, CILDP uses the circle shape to allocate
a set of points using different radius (1, 2, 3) as shown in
Fig.4. Which lead to better analysis specially with textures
with different scale. However, it is limited to eight pixels
because the kirsch mask has eight values only.

Consider an image I and let p. be the arbitrary pixel at the
point (., y.). Moreover, let p,, denote to the gray value of
a sampling point in an evenly spaced circular neighborhood
of 8 )points and radius R around p,.

aM7

Pn =I(xn,yn), n=0,...,7 3)
Where

ZTp = x. + Reos(2mp/8) 4
Yn = Ye + Rsin(27p/8) 5)

Given a point p. = (2,2) and radius R = 2. The circular
neighborhood of 8 points (py, ..., p7) are located using equa-
tions 4 and 5. Table 1 shows the coordinates x,, and ¥,, in
each point.

Bilinear interpolation is employed to compute the gray value
py, for all that points that doesn’t correspond with the cen-
ter of a pixel as you saw in example 1, point p1, ps, ps and
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Fig. 4: The circular a.(8,1) b.(8,2) c.(8,3) neighborhoods. Bilinear interpolation is used to compute all the points that doesn’t
fall in the center of a pixel.

Table 1: Example 1- Compute the circular neighborhood of
8 points in radius R = 2

Pn Tn Yn
Do 4 2
| 3.14 | 0585
P2 2 0
p3 0.585 | 0.585
P4 0 2
ps | 0585 | 341
D6 2 4
e | 341 | 341

pr doesn’t corresponding with any point in the image ma-
trix. The equations below, compute bilinear interpolation to
determine the gray value of the unknown point using four
known neighbor points as shown in Fig.5.

G Py G
Y, 12 X2
P2
y nrt
Y1
Gy Py Gy
X1 X X2

Fig. 5: Finding the gray value p,, using four known points
(G11, G12, G21 and Ga2)

To — T T — T

Del = G Ga1 (6)
T2 — I T2 — I
To — X r — I

Pa2 = 2 Gao @)
To — I T2 — T

2 — — Y1
Y2 — Y1 Y2 — Y

Where G111, G12, G21 and Gos is the gray value for four dif-
ferent points in different location.

After all the points around a particular pixel are declared,
eight directional edge response vectors are computed us-
ing Krisch mask M,,. M,, have eight different orientations
(My, ..., Mr).

mn:pn*Mn(aj?y)an:La? (9)

In order to generate the CILDP code, the k£ most significant
response are chosen to generate the binary code. Hence the
top k" values are set to be 1, leaving (8 — k) values to 0.
CILDP is derived using Equation 10.

7
CILDP = s(m, —my) x 2"

n=0

(10)

where my, is the most prominent directions and s(z) is de-

fine as
sy = {1 =0
"1 0 otherwise

Algorithm 1 Extraction of CILDP feature of an Image

Input: I //image
Output: H // CILDP Histogram of the image I
1: Convert [ into gray level I
2: Compute the circular neighborhood for the eight points using dif-
ferent radiuses.
3: Calculate the directional information by applying Kirsch Masks on
the original image.
4: Compute the CILDP code by selecting the three most significant
directional responses.
5: Compute the histogram H from the transformed image.
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Fig. 6: Example of one sample of each category in the 28
classes in the Kylberg dataset

3 Experimental results and discussion

In this section, a description for the classification perfor-
mance applied to Kylbreg Dataset using the proposed method
CILDP, LDP and LBP are presented. The proposed meth-
ods are implemented using python framework, scikit-learn
library and opencv.

3.1 Image Dataset

To evaluate the proposed method Kylberg image dataset is

used. The Kylberg dataset consists of 4480 texture surfaces

of 28 categories, with 160 samples per category as shown in

Fig.6. The images are homogeneous in terms of illumination

and scale. The standard size of each sample is 576 pixels and
2 11

it is available in different rotations 6 € [0, %ﬂ', ST,y o T

3.2 Classification Evaluation

The effectiveness of these methods were evaluated using
different classification measures, learning curve, accuracy,
precision, recall, F-score and Cohen’s kappa. The learning
curve is a very useful algorithm that evaluate the sanity of
an algorithm. It plots the relation between the training set
size and the performance. In a basic manner it shows the
starting point where the classifiers begins to learn. Accuracy
is the number of samples classified correctly, for example
if the classifier accuracy is 50% it means that the classifier
manage to classify correctly 50% of the dataset

# of samples correctly classified
# of samples

an

Accuracy =

Precision is the ratio of a number of positive predictions to
all the number of positive classes value predicted.

TP

TP+ FP (12)

precision =

Sensitivity is the ratio of a number of positive predictions to
all number of positive classes in test data.

TP

TP+ FN (13)

recall =
Where T'P is the number of samples correctly classified as
positive, F'P is the number of samples incorrectly classified
as positive and F'N is the number of samples incorrectly
classified as negative.

I — score conveys the balance between the precision and
the recall.

precision * recall

F — score = (14)

precision + recall

Cohen’s kappa is a very good measure that can handle very
well both multi-class and imbalanced class problem. It cal-
culates the aggreement between categorical data. If the value
is less than or equal O it indicates that the classifier is useless.
Table 2 shows the interpretation of Kappa value.

Table 2: The interpretation of Kappa

conditions on K

x <0.20

0.20 < k £0.40
0.40 < kK £0.60
0.60 < k <£0.80
0.80 < k < 1.00

Interpretation

Poor agreement

Fair agreement
Moderate agreement
Good agreement
Very good agreement

The dataset is split into two datasets 80% as a training set
and 20% test set using 10 cross validations. Each classifier
is trained using different parameters as shown in Table 3.

Table 3: Classifiers parameters

Classifiers | Parameters
SVM Polynomial linear kernel
Configuration parameter ¢ =0.025
k-NN k=5
DT Entropy
The minimum number of split is 10
RF The number of the trees is 10
The maximum depth of the tree is 5
Percepron | The number of passes over the training data = 100
Constant eta = 0.1

3.3 Result Discussions

The performance of the proposed CILDP, LBP and LDP
are tested in texture classification problem using Kylberg
dataset. In this paper, five classifiers have been applied k-
nearest neighbours, support vector machine, Decision Tree,
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Fig. 7: The Learning Curve of LDP and CILDP

random forest and perceptron. Table 4 shows the perfor-
mance rate of CILDP, LDP and LBP using five different
classifiers on Kylberg dataset. Overall, it can be seen that the
CILDP in various distances were matched or higher than the
other methods. Fig.7 shows the learning curve for the pro-
posed method CILDP and LDP using SVM as a classifier.
Learning curve describes the relation between the perfor-
mance and the experience, where the performance is mea-
sured by the accuracy and the experience is the amount of
the training dataset or the number of iterations (cross vali-
dation) used to enhance the parameter of a classifier. In each
graph there are two lines, the average square error on train-
ing set and the average square error on cross validation set.
We mentioned that the performance rises when the training
samples are between 250 to 750. Above 1500 the classifier
starts to gain less knowledge and doesn’t improve much.
The CILDP method in different distance parameters did very
well compared to the LDP.

CILDP had the highest performance at 99% using SVM.
CILDP improved the performance range from 1% to 24%
in all the classifiers in Table 4. For example, CILDP perfor-
mance using Perceptron classifier is 87%, while LDP per-
formance is 74% and LBP is 63% . This shows performance
improvement of 11% compared to LDP and 24% in LBP.
Table 4 illustrates that the proposed method CILDP either
matched or outperformed LDP and LBP.

Table shows the performance of SVM using 10% as a
training dataset and the remains as a test dataset.

In tableS different classifications evaluation is used to
evaluate the algorithms CILDP and LDP. 10% of the dataset
were used as a training dataset and the remainder as a test
dataset. CILDP at distance 5 was the best Cohen kappa value
with 96% which interpreter as very good agreement. All
the results indicate the superiority of CILDP compared with
LDP.

4 Conclusion

In this paper, we proposed a new texture feature method
CILDP. The method is based on the circle shape to com-
pute the directional edge vector using different radius. To
evaluate the performance of the proposed method a compar-
ison experiment between CILDP, LDP and LBP have been
done using five different classifiers to classify 28 categories
of texture from Kylberg dataset. The result establishes the
effect of using various radius between the center pixel and
the points around it on the performance. More investigation
will be done in the future using different datasets and pa-
rameters.
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CILDP 5 0.95 0.96 0.95 0.95 0.95

15. Heikkil M, Pietikinen M, Schmid C. Description of interest re-
gions with center-symmetric local binary patterns. In ICVGIP, Dec
13, 6, pp. 58-69 (2006).

16. Luo YT, Zhao LY, Zhang B, Jia W, Xue F, Lu JT, Zhu YH, Xu
BQ. Local line directional pattern for palmprint recognition. Pattern
Recognition. Feb 29, 50, pp. 26-44 (2016).






Chapter 8
Discussion

In previous chapters, we introduced five enhancements to the LDP method, and all of these
improvements demonstrated their effectiveness and higher performance compared to LDP. In
this chapter, we compare LDP enhancements, using two types of datasets. The chapter is
split into two sections, the first applying the proposed methods on the KTH-TIPS2b dataset
and the second presenting the application of the methods on facial expression recognition.

8.1 C(llassification evaluation

The effectiveness of the proposed methods were evaluated using different classification
measures, learning curve, accuracy, confusion matrix, precision, sensitivity, F-score and
Cohen’s kappa. The learning curve is a very useful method that evaluates the sanity of an
algorithm. It plots the relation between the training set size and the performance. Basically
it shows the point where the classifier begins to learn. Accuracy is the rating of samples
classified correctly over the total number of samples. Equation 8.1, gives the formula to
calculate the accuracy.
No. of samples correctly classified

A = 8.1
couracy No. of the samples @D

Another way to evaluate a classifier is to use confusion matrix. Confusion matrix is an
illustrated table which allows you to view the performance of the classifier in detail and it
highlights the correct classification and misclassification areas. As shown in Figure 8.1, each
column displays the predicted class and each row provides the actual class.
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Predicted
+ -
Sensitivity (recall) False negative rate
. e - Typfﬁ'ermr TP/® FN/®@
ctual
False positive rate Specificity
B - L FP/ TN/
Precision = False omission rate Accuracy
™/ RN (TP+TN)(®+®)
FDR = Negative predictive value F1 score
FP/ . TN/ 2TP/(2TP + FP + FN)

Fig. 8.1 "Blue and gray circles indicate cases known to be positive (TP + FN) and negative
(FP + TN), respectively, and blue and gray backgrounds/squares depict cases predicted as
positive (TP + FP) and negative (FN + TN), respectively. Equations for calculating each
metric are encoded graphically in terms of the quantities in the confusion matrix. FDR, false
discovery rate."Lever et al. (2016)

Precision is the ratio of a number of positive predictions to all the number of positive
classes of value predicted.
True positive

precision = — — (8.2)
True positive + False positive

Sensitivity is the ratio of a number of positive predictions to all number of positive classes in

test data.

True positive
recall = o . (8.3)
True positive + False negative

F-score conveys the balance between the precision and the recall.

.. 1
Fscore =2 x (precz'sz'on xreca (8.4)
precision + recall

Cohen’s kappa (Pontius Jr and Millones, 2011) is a very good measure that can handle
both multi-class and imbalanced class problems very well. It calculates the aggreement
between categorical data. If the value is less than or equal to 0, it indicates that the classifier

is useless. Table 8.1 shows the interpretation of Kappa values.



8.2 Applying the enhancement methods to KTH-TIPS2b dataset 79

Table 8.1 Interpretation of Kappa(k)

Strength of argument | Value of x
Poor agreement K <0.20

Fair agreement 0.20 < ¥ <0.40
Moderate agreement 0.40 < ¥ <0.60
Good agreement 0.60 < ¥ <0.80
Very good agreement 0.80 < Kk < 1.00

8.2 Applying the enhancement methods to KTH-TIPS2b

dataset

8.2.1 Dataset

The KTH-TIPS2b dataset (Fritz et al., 2004) has images of eleven materials, containing
four different samples for each material. Each image was captured in diverse scale and
illumination conditions at a resolution of 1280 x 960 pixels. All images were cropped to
200 x 200 pixels. Some samples are shown in Figure 8.2. The first experiment performs

texture analysis of the KTH dataset, using six types of classifiers.

Fig. 8.2 KTH-TIPS2b samples

8.2.2 [Experimental Results

To display the outcomes in a clear and correct manner, we present the results of each features
method separately, that is, we present LDP, ALDP, DLBP, CLDP, SLDP and CILDP. Figure
8.3 and 8.4 shows the histogram of both methods LDP and LBP.

Learning curve

Figures 8.5 to 8.15 show the learning curve for the proposed methods and LDP. The x-axis
represents the training samples and the y-axis represents the accuracy. The learning curve

shows the performance versus the size of the data used for training.
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Fig. 8.6 The Learning Curve of ALDP

The CLDP in both directions (Up and Down) was the fastest in learning, with an accuracy

between 80% and 85% when the size of the data used was between 0 and 500 samples. The

other methods were slower learners, with an accuracies of 70%, except for the ALDP, which

scored an accuracy of 80%, and LDP (Negative), which scored an accuracy of 75%.

We also observed that the performance in all the methods increased rapidly when the

training dataset size was from 500 to 1500 samples by about 10%.

We encountered that the performance increased very slowly after the training dataset size

reached above of 2500 samples. That is, the classifier begins to gain less knowledge by an

accuracy of 5%.
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Fig. 8.7 The Learning Curve of DLBP
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Fig. 8.12 The Learning Curve of
CILDP(2)

Figures 8.16 to 8.26 below demonstrate the classification evaluation for each of the textural

classes. The x-axis represents the following evaluation criteria precision; recall, F-score, and

the y-axis representing 11 textural classes.

We provide a detailed explanation for the strength of detecting and recognizing each

class of the textural classes separately. We selected the F-score to compare and evaluate the
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Fig. 8.15 The Learning Curve of
CILDP(5)

methods proposed; this is because it is based on the other two evaluation measures (precision
and recall). The CLDP (Up and Down) method was the best at extracting the most useful
data from the images. The classification rate for the classifier was the highest when SLDP
features were used to determine the textural classes of wool, cracker, brown_bread, corduroy,
cork, white_bread and aluminum, with an F-score between 80% and 98%, in contrast to LDP,
which had a worse performance with a loss between 5% and 17% of accuracy rate.

It was also noted that in wood, linen and lettuce classes, the ALDP was the most capable
of extracting valuable information for the classifier. Its classification performance was
superior to the performance of the LDP classification by 2% to 12%.
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We added the average Kappa scores to verify the performance of all the proposed methods, as
shown in Table 8.2. We noted that the results do not show anything new, as they correspond
to the results presented in the learning curve and the classification reports.
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Table 8.2 Average kappa scores for all the methods applied on the KTH-TIPS2b dataset

Feature SVM | SVM (C) | NB | k-NN | Perceptron | DT(Entropy)
LDP 0.85 0.89 0.55| 0.7 0.58 0.66
ALDP 0.91 0.95 0.64 | 0.84 0.67 0.75
CLDP (Down) | 0.91 0.96 0.61 | 0.85 0.81 0.75
CLDP (Up) 0.91 0.96 0.61 | 0.85 0.79 0.75
CILDP (2) 0.8 0.88 045 | 0.78 0.52 0.68
CILDP (3) 0.77 0.86 043 | 0.8 0.52 0.67
CILDP (4) 0.77 0.86 042 | 0.79 0.6 0.65
CILDP (5) 0.78 0.85 042 | 0.78 0.6 0.65
DLBP 0.83 0.89 054 | 0.7 0.63 0.69
LDP Negative | 0.86 0.92 0.52 | 0.75 0.6 0.68
LDP (Positive) | 0.83 0.91 0.53 | 0.77 0.6 0.69

8.3 Facial expression application

8.3.1 Dataset

The Extended Cohn-Kanade Dataset (CK+)(Lucey et al., 2010) has 593 sequences from
123 persons. For each person seven facial expressions were captured showing neutrality,
sadness, surprise, happiness, fear, anger and disgust. The size of each image is 640 x 490

pixel. Figure 8.27 shows a sample of each expression.

- <t

=)
.,

bl ke

Fig. 8.27 Samples of the CK+ dataset
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8.3.2 Experimental Results

To display the outcomes in a clear and correct manner, we present the results of each features
method separately. That is, we present the results in the following order: LDP, ALDP, DLBP,
CLDP, SLDP and CILDP.

Learning Curve

Figures 8.28 to 8.38 show the learning curve for the proposed methods and LDP. The x-axis
represents the training samples and the y-axis represents the accuracy. The learning curve
shows the performance versus the size of the data used for training. The classifier learned
faster when it used the SLDP feature in both gradients (Positive and Negative), with an
accuracies of 90% when the size of the training samples was between 0 and 500. The
accuracy of LDP, ALDP, DLBP and CLDP (Up and Down) was less than 90%, using the
same training samples. However, CILDP (3,4,5) had a worse accuracy of less than 80%, but
this was expected, since CILDP works better on large-scale texture. The performance of
most of the methods increased rapidly by 10% when the training sample size was between
500 and 1500 samples. When the size of the sample reached 1500 samples in SLDP (Positive
and Negative), the classifier became sufficient and the amount of learning became constant,
with a very high performance of 99%. This indicates the effectiveness of the SLDP, as the

classifier does not require a larger quantity of samples for training.
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Fig. 8.28 The Learning Curve of LDP Fig. 8.29 The Learning Curve of ALDP
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Figures 8.39 to 8.49 below demonstrate the classification evaluation for each facial expression

emotion class (surprise, sadness, joy, fear, disgust, contempt and anger). The x-axis represents
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the evaluation criteria: precision, recall, F-score, and the y-axis representing seven facial
expression emotion classes.

We provide a detailed explanation of the strength of detecting and recognizing each class
of facial expression separately. F-score was selected to compare and evaluate the execution
of the methods provided. This is because it is based on the other two evaluation measures
(precision and recall). We began with our first comparison with the surprise expression,
and found that the best method to recognize this expression was SLDP in both directions
(Positive and Negative), with 98% compared to the LDP 92%. The worst method to identify
the surprise expression was CILDP, using distance 5, which was expected because CILDP is
best when large-scale sized texture is used.

For the facial expression joy, the LDP was the worst identifier, with a success rate of
about 94% compared to the rest of the methods where the rate of the joy recognition was
above 97%.
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For the third time, the SLDP (Positive and Negative) method was found to be the best to
recognize facial expressions. The recognition rate of the fear expression was about 97%, and
the other methods ranged from 88% to 95%.

Likewise, with the disgust expression, LDP did not get the best recognition rate, as it
performed 2% less than the best performance of SLDP (Positive and Negative) which was an
F-score of about 98%.

For both contempt and anger expressions, all methods performed equally with a very
high success rates of 99% to 100%, except for the LDP, where the F-score was 98% for the
anger expression.

All Methods were generally good in classifying the facial expressions, with F-scores
between 88% and 100%, and the SLDP in both directions, positive and negative had the

upper hand in recognizing all facial expressions.
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We added the average Kappa scores to verify the performance of all the proposed methods, as
shown in Table 8.3. Note that the results did not come with anything new, as they correspond

to the results presented in the learning curve and the classification report.
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Fig. 8.49 The Classification report of
CILDP(5)

Table 8.3 The average kappa scores for all the methods applied on the Cohn-Kanade Dataset

Feature SVM | SVM(C) | NB | k-NN | Perceptron | DT
ALDP 0.99 0.99 0.78 | 091 0.99 0.72
CLDP (Down) 1 0.99 0.66 | 0.92 0.99 0.65
CLDP (Up) 1 0.99 0.62 | 091 0.99 0.64
CILDP (2) 0.99 0.99 0.63 | 0.9 0.98 0.57
CILDP (3) 0.99 0.98 0.65| 09 0.98 0.71
CILDP (4) 0.99 0.98 0.66 | 0.91 0.98 0.64
CILDP (5) 0.99 0.98 0.68 | 0.91 0.98 0.68
DLBP 0.99 0.99 0.48 | 091 0.99 0.74
LDP 1 1 0.65 | 091 0.99 0.69
LDP (Neg) 1 1 0.62 | 091 0.99 0.76
LDP (Pos) 1 1 0.6 | 091 0.99 0.73







Chapter 9

Conclusions

The LDP descriptor is considered to be a successful feature extraction method in many
texture analysis applications, especially against the applications that suffer from random
noise and lighting conditions. However, this method suffers from many shortcomings. In
this thesis, we have proposed DLBP, CILDP, CLDP, ALDP, and experiments conducted
display very promising results. Using Circular Local Directional Pattern (CILDP), we have
been able to improve on its inability to extract information from large-scale texture. Another
shortcoming in LDP computation is that some information is ignored and the number of the
most significant Kirsch Masks application edge response values is arbitrarily chosen as three.
The DLBP, ALDP, CLDP and SLDP methods are proposed with the objective of solving the
above shortcomings and to increase LDP robustness.

An empirical study in paper I was performed to investigate if the change in the number of
most significant edge response values has any effect on performance. The results proved that
any change in the number of most significant edge values has a positive or negative impact
on performance, depending on the application.

Paper I, which showed one of the LDP limitations, the choice of the number of significant
bits. Directional Local Binary Pattern (DLBP) was introduced in paper II with the aim of
overcoming this shortcoming. Inspired by both LBP and LDP, DLBP uses the central pixel
as a threshold to set the bits of the binary DLBP code, based on the Kirsch Masks application
edge response values. Results show that DLBP outperforms both LBP and LDP.

In paper 111, several extensions were proposed aiming to overcome some LDP shortcomings
and increase its robustness. Centered Local Directional Pattern (CLDP) was proposed aiming
to add the central pixel value to the LDP computations, which have been neglected. Also
Signed Local Directional Pattern (SLDP) was introduced, which take into consideration
the sign of the gradient directions (Positive and Negative), unlike LDP, which assumes the
absolute value of the gradient directions. Centered Signed-LDP (CSLDP) extension merges
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both ideas of CLDP and SLDP. Results establish the importance of the central pixel and the
sign of the gradient directions.

Angled Local Directional Pattern (ALDP) was introduced in paper IV which computed the
angle values for the gradient directions, using four orientations (0°,45°, 90°,135°) . This
method resolved two limitations of the LDP: choosing the number of the significant bits and
the overlooking of important information in the central pixel.

In paper V, Circular Local Directional Pattern (CILDP) was proposed with the aim of
enabling LDP to extract good information from a large-scale texture. This method takes
advantage of the circular shaped properties to compute the gradient direction using different
radiuses.

The evaluation of these methods was performed using two datasets, KTH-TIPS2b and Ex-
tended Cohen-Kanade Dataset (CK+), which were discussed intensively in Chapter 8. In this
comparison, five classifiers (SVM, NB, k-NN, Perceptron and DT) and seven classification
evaluation techniques (learning curve, accuracy, confusion matrix, precision, sensitivity, F-
score and Cohen’s Kappa) were used. Results demonstrated the effectiveness of the proposed
methods compared to LDP.

We analyzed the importance of the results shown in the thesis and demonstrated that the
objectives set have been achieved. We can state that most of the proposed methods prove
the effectiveness, especially in the application identifying facial expressions, where their
performance is higher compared to previous studies. It can be observed throughout experi-
ments that the proposed methods have improved LDP performance, but at the expense of
computational cost and memory required.

Although the goals set for this thesis have been accomplished, there is room for expansion
and improvement. In this thesis, we compared the proposed methods with only LBP and LDP
and it would be useful to enlarge the research by adding other methods. We also mentioned
previously that these extensions add burdens. In particular, there is plenty of scope to improve
the running of both the LDP and the proposed improvements. One way to achieve the latter

is to use parallel computing.
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