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Abstract

In the theory of fixed points, there are numerous articles dealing with generalization of
the basic Banach contraction mapping principle. There has been two lines of approach.
The first one is concerned with generalizations of the contractive conditions on the
mapping space. The other line of investigation deals with various generalizations of
the metric spaces and the results that can be obtained in these new frameworks, referred
to as metric-type spaces. In this thesis, we elected for the latter approach by providing
a more general framework for a b-metric space , G-metric space and S-metric space.
In this thesis, we proved that these new metric-type spaces equipped with various
contractions type mappings have unique fixed points and provide numerous examples

of each metric-type spaced mentioned.
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Notations

T7:X—=X

Set of complex numbers
Set of real numbers
Set of natural number
Metric space

None empty set
Empty set

Sequence

Fixed point

Norm on X

Subset

Metric topology

Contraction mapping on X
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Thesis outline

Chapter 1

In this chapter we introduce the important concepts of metric spaces, their definitions
and properties, as well as examine some fixed point theorems.

Chapter 2

The purpose of this chapter is to introduce a new relaxed «, 8 b-metric type by relaxing
the triangle inequality. We investigate the effect that this generalization has on fixed
point theorems.

Chapter 3

In this chapter, we generalize Mann’s iterative algorithm and prove fixed point results
in the framework of a/3-b metric spaces. Firstly a convex structure is imposed on the
space and two strong convergence theorems are provided for two different contraction
mappings. Also the concept of T-stability is extended to this space.

Chapter 4

In this chapter, we study the existence and uniqueness of fixed point in complex valued
b-metric spaces and introduce a new relaxed «, Complex-valued b-metric type by
relaxing the triangle inequality and determine whether the fixed point theorems are

applicable in these spaces.
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Chapter 5

In this Chapter, we provide a generalization of the Gj-metric and prove some fixed
point results of contractive type mappings in this space.

Chapter 6

In this chapter, we provide a generalization of an S-metric space by relaxing the triangle
inequality. As applications, we provide some fixed point theorems of mappings with
common fixed points in the generalized S-metric space.

Chapter 7

Conclusion.



Chapter 1

Metric spaces and fixed point

theorems.

1.1 Metric spaces.

Metric spaces can be thought of as very basic spaces, with only a few axioms, where the
ideas of convergence and continuity exist. The distance or a metric is the fundamental

property that defines the space and measures how close elements are to each other [22].
Definition 1.1.1. A distance d or a metric on a metric space (X, d) is a function
d: X x X =Rt
such that the following axioms hold for all z,y, z € X.
(i) d(z,y) =0
(ii) d(z,y) =0 <= x =y

(iii) d(z,y) = d(y,z) (symmetry)



(iv) d(z,y) < d(z,z) +d(z,y) (triangular inequality)

Proposition 1.0.1. The vector space R™ with the standard Fuclidean distance defined

by dy(z,y) = O |z — yi]p)% where p > 1 with x = (x1,-+- ,x,) andy = (Y1, , Yn)

i R™ is a metric space.

Proof. We shall prove only the triangular inequality d(z,y) < d(z,z) + d(z,y) which

is non trivial. dy(z,y) < d,(x, z) + dy(z,y) where z = (21, 29, -+ , 2,) in R™.

dy(,y) = (Zm—w)p
= (Z |(2k + 21) + (21 — yk)|p> ”
< <Z|$k—zk|p>p+ (Z|Zk—yk|p)p- (1.1)

Equation (1.1) follows from Minkowski’s inequality[22]
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For the special case when p = 2 we have a standard euclidean metric on R",

da,y) = | S e — wil?.
k=1

It can be easily proved directly that d(z,y) is a metric. Once again it only suffices to

prove the triangle inequality.



Where ap, = x, — 2, and by = z1 — yg.

Hence

Define a function

F) = (ar — the)? (1.3)

which yields

With t = ¢, in (1.3) we get,

1) =3 [ (Kt )]
-5 e (o o

- _ b ) Z akbk
_ a2 — 2(Zk_nl Ak Ok 4 \k=1 b2
T B (1Y

_ i 2 (ZZ:1 arby)?
k=1
Since f(t,,) is positive we have

S
n 2 n
k=1 k=1 k=1
1 1
n 2 n 2
S i < ( ) (z bz)
k=1 k=1 k=1

3
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Hence d(x,y) in (1.2) becomes

d(z,y) < zn:az+2( " a%)Z (ibi>2+ibi
k k=1

-
N

1.2 Topology of a metric space.

1.2.1 Open spheres

Let d be a metric on set X. For any point a € X a real number » > 0, we denote the

set of points within a distance r from a by
B.(a) ={x € X :d(z,a) < r}.

It is called the open sphere or ball with centre a and radius r.
Omne important property of open sphere in a metric space is that if B,.(z) is an open
ball with the centre x and radius r then for every y € B,(x) there exist an open ball

Bc(y) such that B.(y) C B,(x)

Definition 1.2.1. Let (X, d) be a metric space. The metric topology 74 on X is a
collection of subsets U C X satisfying the property that for each x € U there exists

4



r > 0 such that B,(z) C U.

The collection 74 is a topology in X if,

(i)

(i)

(iii)

@,XGTd

Let {Us}aca be a collection of 7, and A an index set. Let V = U,eaU, and
x € V. Then by definition there exist « € A with x € U,. By the property
satisfied by U, in 74 there exist » > 0 such that

B,.(x) € U,
since U, C V' it follows that B.(z) C V hence V € 714
Let {U;}i=1... » be a subcollection of 74. Let V=N ,U;andz € Vfor 1 <i<n
we get V C U; so x € U;. By the defining property of 7, there exist r; > 0 such
that

B,.(z) C U;
Let r = min;— ... , 1; then

B.(z) C B,,(z) C U;

for each 1 < i < n which implies that B,(z) C V hence V € 7.

In general, the intersection of two open spheres need not to be an open sphere. However

for every point in the intersection of the open sphere does belong to an open sphere

contained in the intersection.

1.2.2 Properties of metric topologies

Theorem 1.1. The closure A of a subset A of a metric space (X, d) is the set of points

whose distance from A is zero, i.e A= {x :d(z, A) = 0}.

5



Theorem 1.2 (Separation axiom ). Let U,V be closed disjoint susbset of a metric

space X. Then there exist disjoint open set U' and V' such that

VcViandUcCU

Definition 1.2.2.

(i) A sequence {z,}nen converges to z € X if for € > 0 there exists N € N such that

d(zp,z) <eforalln>N

(ii) A sequence {z,}nen in X is a Cauchy sequence if and only if for every ¢ > 0

there exists N € N such that d(x,, x,,) < € for every n,m > N.

Every convergent sequence in a metric space is a Cauchy sequence. The converse is

not true.

1.2.3 Complete metric space

Definition 1.2.3. A metric space (X, d) is complete if every Cauchy sequence {x,, },en

in X converges to a point x € X.

Theorem 1.3. The class of open sphere is a set X with metric d is a base for a topology

on X.

Two metrics d and d’ on a set X are equivalent if and only if they induce the same
topology in X that is if and only if the d-open spheres and the d’-open spheres in X

are bases for the same topology on X.

Definition 1.2.4. A metric space (X, d) is isometric to a space (Y,d’) if and only if
there exists a one - one, onto function f : X — Y which preserves distances, that is

6



for x,y € X

d(z,y) = d'(f (), f(y))

Definition 1.2.5. A metric space (X', d’) is a completion of a metric space (X, d) if

(X', d’) is complete and X is isometric to a dense subset of X'.

Theorem 1.4. Every metric space (X, d) has a completion and all completions of X

are 1sometric.

1.3 Fixed Point Theorems

Fixed point theorems concern maps f of a set X into itself that, under certain condi-
tions, admit a fixed point, that is, a point = € X such that f(z) = z. The knowledge
of the existence of fixed points has relevant applications in many branches of analysis

and topology [26].

Definition 1.3.1. [26]Let (X, d) be a metric space. A mapping f : X — X is said to

be Lipschitz continuous if there exist A > 0 such that

d(f (1), f(x2)) < Ad(x1, 22)

for all z1, x5 € X. The smallest \ for which the above inequality holds is the Lipschitz
constant of f. If A < 1 f is said to be non-expansive, if A < 1 f is said to be a

contraction.

Theorem 1.5. [26] Let (X,d) be a complete metric space and let f : X — X be a

contraction with Lipschitz constant \. Then f has a unique fixed point x* € X.



Proof. Take any point o € X and define the iterative sequence z,, = f(z,-1). We

shall first show that {z,} is a Cauchy sequence. It follows that

d(f(wn), f(2n1)) < Ad(2n, 201)
= Ad(f(zn-1), f(2n-2))
< Nd(p-1, Tp—2)
< A\d(z1, z0)
= A"d(f(20), xo)

Forne Nandm >1

d(xn—&—ma xn) S d(xn—l-m’ xn—i—m—l) + d(xn—l-m—ly xn+m—2) + -+ d(xn—o—l; «rn)
= d<f(xn+m*1)v f(xn+mf2>) + d<f<xn+mf2)> f(xn+mf3)) +oeeet d(f(xn)u f(xn*1>>

< ()\n+m71 + )\n+mf2 4+ .4 )\n)d(f<l'0)a xO)

m—1

=" Z Nd(f(xo), xo)

J=0

< A" (Z )\j> d(f(x0),x0)

ATL
1 )\d(f(:co),xo)

Since the lim A" = 0, hence {x,} is a Cauchy sequence, and admits a limit z* € X,
n—oo

for X is complete. Furthermore if we use the triangular inequality, we get

d(z®, f(z")) < d(z”, 2,) + d(@y, f(2"))
- d(ZE*,l’n) + d(f(xn—1)7 f(I*)>
<d(z*,z,) + Ad(zp_1,2%)

—0asn— oo



Thus we have shown that d(z*, f(z*)) = 0, hence f(z*) = z*.



Chapter 2

Generalized b-metric and fixed

point theorems.

2.1 Introduction

The concept of a b-metric was initiated from the contributions of Bourbaki [7] and
Bakhtin [5]. Czerwik [10] gave an axiom which was weaker than the triangular in-
equality and formally defined a b-metric space with a view of generalizing the Banach
contraction mapping theorem. Later on, Fagin et al. [14] discussed some kind of re-
laxation in the triangular inequality and called this new distance measure a non-linear
elastic pattern matching. These applications led us to introduce the concept of a gen-
eralized b-metric type and that the results obtained for such spaces become viable in

different fields.

Definition 2.1.1. Let X be a non-empty set. A function d : X x X — R™ is a b-metric

on X if there exists a real number o > 1 such that the following conditions hold for

10



all z,y,z € X :

(i) d(z,y) =0 = ==y

(ii) d(x,y) = d(y, z)

(iii) d(z,y) < ald(z, z) +d(z,y)]

The pair (X, d) is a called a b-metric space [41]. A b-metric with o = 1 is exactly the

usual metric.

Definition 2.1.2. Let X be a non-empty set. A function p : X x X — Rt is a
generalized a, f b-metric on X if there exists a real numbers «, 5 > 1 such that the

following conditions hold for all z,y,z € X :

(i) plz,y) =0 <= z=y

(i) p(z,y) = p(y, v)

(iil) p(z,y) < ap(z,2) + Bp(z,y)

We shall refer to (iii) as the a, § relaxed triangle inequality. The pair (X p) is a called
a generalized b-metric space. A generalized b-metric with a = [ is exactly a b-metric.
In the special case @ = 1 we obtain the a strong b-metric, [19, 41]. The following

examples justify this generalization found in definition 2.1.2.

Example 1. Let X = {1,2,3} be a discrete set and let p : X x X — R* be a function

11



defined by

p(17 1) = p(Q, 2) = ,0<3, 3) =0
p(172) = p(27 1) = .

3
p(l, 3) = p(37 1) =3

From the definition of the b-metric properties (i), (i) are apparent. For all z,y,z € X

it follows that
p(z,y) < 2p(z, ) + 3p(z,y).
Example 2. Let X = (1,3) and let p: X x X — R™ be a function defined by
eyl if x4y

0, iff r =y.
The first two properties of a generalized b-metric are inherent in the definition. We
verify the «, 0 triangle inequality as follows:

For z #y, 2z € X and 0 € (0,1)

— fle—zl+(1=0)|z—y[ ,(1=0)[x—=|+6]=—y| (2.1)
< sup elleEH-0)—yl ((1 — @)6II*ZI + ge\zfyl) (2.2)
z,y,2€X

< (1= B)ePele==l 4 ge2el>~!
= (1= 0)e’p(x, 2) + 0e’p(z, y).

Where from (2.1) to (2.2) we used Jensens inequality [11] on the convex function €.

For 6 = % we have constants o = 2¢? and 3 = 1¢?.

12



2.2 Topological properties of the generalized b-metric

type.

One introduces a topology on a generalized b-metric space (X, p) in the usual way. The

open ball B(x,r) with centre € X and radius r > 0 is given by

B(z,r)={y € X : p(x,y) <r}

A subset A of X is open if for every € A there is a number r > 0 such that
B(z,r) € A. Denoting by 7, the family of all open subsets of X it follows that 7,

satisfies the axioms of a topology.

Let (X, p) be a generalized b-metric space. Then the b-metric is continuous if

p(xn,x) = 0, p(yn,y) — 0 as n — oo implies p(z,, yn) — 0.

Furthermore, the b-metric is separately continuous if for every x € X,

P(Yn,y) — 0 as n — oo implies p(z,y,) — p(z,y).

The topology 7, generated by a generalized b-metric p has a peculiar property in that

a ball B(z,r) need not be 7,- open as illustrated by the following example, [25].

13



Example 3. Let X =Z% U {0}, ¢ > 0 and define p : X x X — R by

p(0,1) =1
p(m)=

p(0,m) =1+¢ for m > 2

1 1
p(n,m)=—+ — for n>2
nom

p(n,n) = 0.

Then

p(m,n) < ap(m, k) + Bp(k, n)
for all m,n,k € X. The ball B(0,1+ §) = {0,1} and the ball B(1,r) contains an
infinite number of terms for every r > 0. Now since 1 € B(0,1 + §) it follows that
B(1,r) ¢ B(0,14 §) for every » > 0 illustrating that the ball 5(0,1 + §) is not 7,

open.

Let X be a non-empty set and B : X x (0,00) — P(X) satisfying

(i> ﬂr>0 B(ZL‘, r) = {J/‘}
(i) Upso Blz,m) =X
(iii) 0 <ry <ry = B(x,r1) C B(x,712)

(iv) there exists ¢ > 1 such that y € B(x,r) = B(x,r) C B(y,cr) and

B(y,r) C B(x,cr) for all z € X and r > 0.

A family of subsets satisfying properties (i)-(iv) generates a b-metric on X, [2].

14



Condition (i)-(iii) are verified easily for an «, 5 b-metric. We shall show property (iv).
If y € B(z,r) and z € B(x,r) then p(y,2) < ap(y,z) + Bp(z,z) < (o + B)r where
a+( > 2thus z € B(y, (a+)r) and in a similar manner, ify € B(x,r) and z € B(y,r)
then p(x, z) < ap(x,y)+ Lpy, z) < (a+p)r thus z € B(x, (a+ §)r). Thus this family

of subsets also generates an «, 8 b-metric.

2.3 Completeness

Definition 2.3.1. Let (X, p) be a generalized b-metric space, and let {z,} be a se-

quence in X and x € X. Then:
(i) The sequence {z,} converges to x, if lim,,_, p(z,,z) = 0.
(ii) The sequence {z,} is a Cauchy in (X, p) if im, ;00 P(@n, Tm) = 0.

(iii) The space (X, p) is complete if every Cauchy sequence {z,} in X converges to a
point z € X such that lim,, ;00 p(Zp, ) = lim,, 00 p(2p, ) = 0.

Definition 2.3.2.

(i) If (X4, p1) and (X3, p2) are generalized b-metric spaces then a mapping i : X; —

Xy is an isometric embedding if

for all z,y € X;j.
11 completion ol a generalized 0-metric space ,P) 1s a complete b-metric space
i) A leti f lized b i X i lete b i

(Y, p) such that there exists an isometric embedding i : X — Y with (X) C Y

dense in Y.

15



2.4 Fixed point theorem for generalized b-metric

spaces

As a consequence of (iii) of Definition 1.2, the «, 5 triangle inequality, we get for

n,m € N with m > n

P(Zns Tn)
< p(@n, Tna1) + Bp(Tntr, Tm)

< ap(xn, xn-i-l) + ﬁ[ap(xn-&-b $n+2) + 59(3571—&-27 me)} (2'3)

Successively applying the «, § triangle inequality, we obtain

m—n—2

p(xn, ) < a Z B 0(@nriy Trgir1) + B p(Tin1, Ton).- (2.4)
=0

In line with the «, 8 triangle inequality, one may consider the «, § relaxed polygonal

inequality given by

(0+8) "~
2

p(xn,xm) S p(‘r”+i7xn+i+1> (25)

=0

where z; € X for all 3.

Definition 2.4.1. Let (X, p) be a generalized b-metric space then a mapping 7" : X —

X is a contraction on X if there is a real number 0 < A < 1 such that for all z,y € X

p(Tx, Ty) < Ap(z,y). (2.6)

The Banach fixed point theorem gives a constructive procedure for obtaining approxi-
mations to the fixed point called iterations. By the definition, in this method we choose

an arbitrary xy and calculate recursively a sequence from the relation

p =T (2p-1) = T"(xp). (2.7)

16



By a repeated use of (2.6) and (2.7) we get

P(Tntis Tntit1) = P(TnJri(xO)a Tn+i<x1))

S )\p(Tn—H_l(.TO), Tn+i—1($1))

< AN"Vp(xg, 21). (2.8)

Theorem 2.1. Let (X, p) be a complete generalized b-metric space, where p satisfies

1

the o, B8 triangle inequality and T : X — X a contraction mapping such that 0 < A < 5

Then T has a unique fized point x* € X.

Proof. We begin by proving that {z,} is a Cauchy sequence. Using (2.4) and (2.8) we

get

k—1
p(xna xn—&-kz-ﬁ-l) S Q Z Bip@:n-i-h mn-&-i-i-l) + ka(xn-i-ka -Tn-i-k-&-l)
=0
k—1
<o BN p(xo, 1) + BN p(wo, 21)
=0

k—1
=\ [a D BN+ BN plao, 1)
=0
o 1— 5k/\k
=\ {Ozm
~ g [0 N+ A= 1]l )

< A"ﬁp(%,xl). (2.9)

+ Bk)\k} p(zo, 1)

Since lim,, o, A" = 0, it follows that {x,} is a Cauchy sequence. By the completeness of

(X, p) it follows that there exists * € X such that lim,,_,o, p(z,, z*) = 0. Furthermore,

17



using the «, § triangle inequality, we have

p(x*, Ta*) < ap(z”, xni1) + Bp(Tpsr, T27)
S O‘p(m*aanrl) + ﬁp<$n+1,$*)

— 0 asn — oo.

(2.10)

Hence p(z*,Tx*) = 0 and so T'z* = z*. Suppose there exists 2**, 2* € X such that

Tax* = x* and Ta2* = 2**. Then

which implies that p(z**,z*) = 0, i.e., ™ = z*.

Remark 1. Using (2.9) we get

p(Tn, 2°) < ap(Tn, Tnyrr1) + Bp(Tnprtr, T7)

062

< )\n—)p(ﬂﬁo, 1) + Bp(Tptktr, 7).

— (1-=p6A
Letting £ — oo we get the order of convergence:

a2

plan, 27) < )\nmﬂ(ﬂfoﬁl)

which implies at least linear convergence.

(2.11)

(2.12)

(2.13)

Theorem 2.2. Let (X, p) be a complete generalized b-metric space, where p satisfies

the «, B relazed polygonal inequality and T : X — X a contraction mapping such that

0< A< 1. Then T has a unique fized point * € X.

Proof. The proof follows in line with the Theorem 2.1

18



Remark 2. Using (2.5) and (2.8) results in

1

a+B) «—
p(xnvxn+k) S ( 9 ) Zp(anriwrnqLiJrl)
=0
< (04‘;‘6) ()\n+)\n+1 4. .+)\n+k:) p(l‘o,l‘1>
_(at8) 1A
= A X p(xo, z1). (2.14)

—>))\”p(a:0,:c1). (2.15)

Definition 2.4.2. Let (X,p) be a complete b-metric space such that a mapping

T:X — X is a Kannan contraction [17] if there exists A € [0, 1) such that

p(T, Ty) < Ap(x, Ta) + ply, Ty) (2.16)
for all z,y € X.
Let xg € X be fixed, then for n € N

p(T"xo, T" M ag) = p(TT™ ‘2o, TT x)

<A [p(T"2o, T" o) + p(T™ 2o, T20)] (2.17)
then it follows that
p(T™x, T ag) — Ap(T™ ag, T o) < Ap(T™ w0, T a0) (2.18)
which implies that
n n—+1 A n n—1
p(T"xo, T xg) < mp(T xo, T" " xp). (2.19)

Successively using (2.19) we obtain that

p(T xg, T ag) < (—) p(xg, T'zy). (2.20)



Theorem 2.3. Let (X, p) be a complete generalized b-metric space and let T : X — X

be a mapping for which there exists A € [0 > such that

1
) m

p(Tz,Ty) < Xp(z,Tx) + p(y, Ty)]
forall z,y € X. Then T has a unique fized point.

Proof. We begin by showing that for zy € X fixed, and for n € N

(2.21)

{T"x¢} is a Cauchy sequence in (X, p): for m,n € X with m > n, and using inequality

(2.4) and (2.20), we get

p(T"xg, T™x)

_ (ﬁ)n _al _1(_17&) + (f_AA)m_n_l] o(z0, T'zo). (2.22)

It follows that as n — oo that the sequence {T"zy} is a Cauchy sequence in (X, p).

Since (X, p) is complete there exists a zg € X such that
lim p(T"xg, z9) = 0.
n—oo

By the contraction (2.21), we obtain that

p(TnJrle, TZO) < )\p(TnJrle’ Tnxo) —+ )\p(Zo, TZO)

20
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In the limit as n — oo, we get

p<207 TZO) < )\p(Zo, TZ[)).

(2.24)

Since A < 1 we deduce that p(zp,T'zp) = 0. If we assume that 2’ € X is any fixed point

then we obtain

p(z0,2") = p(Tz, T
< Alplz0, T20) + p(2/, T2)]
= plz0, ) + pl(/, 2)
=0

which implies that 2’ = z.

Remark 3. From (2.22) we obtain the priori estimate

o) < (125) (1 _@) (0, To).

1-A

21

(2.25)

(2.26)



Chapter 3

(Generalized convex metric and

fixed point theorems.

3.1 Introduction

In 1922 Banach [39] proved his famous fixed point theorem that every contraction
mapping on a complete metric space has a unique fixed point. Since then there has
been numerous extensions to his work, especially in changing the underlying structure
of the metric space or introducing new contraction types. Czerwik [10] relaxed the
triangular inequality and formally defined a b-metric space. In 1970, Takahasi [40]
introduced the concept of convexity in metric spaces and proved fixed point theorems
for contraction mappings in such spaces. Chen et. al. [8] discussed fixed point theorems
in convex b-metric spaces. Here we discuss such concepts in a convex a3 b-metric space.
Fixed point theory is important in non linear analysis and functional analysis. It finds

application in systems of non linear differential, integral and algebraic equations.
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3.2 Preliminaries

Definition 3.2.1. [13] Let I = [0,1). Define p : X x X — [0,00) and a continuous
function w : X x X x I — X. Then w is said to be a convex structure on X if the

following holds.

p(z,w(@,y; 1) < pp(z, ) + (1= p)p(z,y) (3.1)
for each z € X and (z,y;pu) € X x X x [

Example 4. Let X = [1,3] and define p by

le=ul p £y
p(r,y) = (3.2)

0 r=y

(X, p) is a aff b-metric space as

plz,y) < 3le=zl+==vl

_ 3hle—2l+ 3l g2 le—zl+ eyl
1 2 2.1
< (L3l 4 23041} gup 32le—21+ 21—l
< (534 33 sup
= 3p(x,z) + 6p(z,y)

Since

p(1,3) > p(1,2)4p(2,3) (3-3)
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(X, p) is not a metric space. Define w(z,y; u) = px + (1 — p)y for p € I, then

p(z,w(z,y; 1) = pz, pr + (1 — pw)y)

— glz—pa—(1-p)y|
— 3lu(z=2)+(1=p)(z=y)|

< gul(z=2)[+(1=p)|(z=y)|
< 3+ (1 g

= pp(z,x) + (1 — p)p(z,y)

3.3 Main Results

Theorem 3.1. Let (X, p,w) be a compete convexr o, f b-metric space and

T : X — X be a contraction mapping, that is there exists A € [0,1) such that
p(Tx,Ty) < Mp(z,y),Vo,y € X. Choose xy € X such that p(xo,Tzo) < oo and
define x, = w(xp_1,TTy_1; 1), where

1
82
B

- A

O<,un71 <

for each n € N, then T has a unique fixed point in X.

Proof.

P(Tns Tng1) = P(Tn, (T, T 1)) < (1= pin) p(@0, Tp) (3.4)
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Pt Tn) < (s Ttn 1) + Bp(Tn 1, T) (3.5)
S Oé,0<UJ($n—1a T'rnfl; /infl), Txnfl) + 6/\10(37n717 xn) (36)

S aﬂnflptvnfla Txn71> + ﬁ)\(l - ,un71>p(xn717 T.CL’n,1) (37)

= [apin—1 + BANL = pin1)] p(&n—1, T 1) (3.8)
< %p(xn_l,Txn_l) (3.9)
< p(xp_1,Tx, 1) (3.10)

Hence {p(x,,Tr,)} is a decreasing sequence of non-negative reals. Hence there exists
~ > 0 such that lim,,_, p(z,, Tx,) = 7. If v > 0 then letting n — oo in (3.10) we have
~ < 7, a contraction. Hence v = 0 and from (3.4) it follows that lim,, ,, p(z,, Tx,) = 0.

We now show that {z,} is a Cauchy sequence. Let m > n then

p(xmaxn) < ap(xnaxn+1) +Bp(xn+1axm) (3'11)
< O‘p(xna xn+1) + B [O‘p(xn-i-la an+2) + ﬁp(xn+2a xm)] (3'12)
S ap(xna :L‘n-l—l) + ﬁap(xn—‘rh xn+2) + 52,0(%1-1-2, xm) (313)
S ap(xnu xn—l—l) + ﬁap(l'n-s—l, xn+2) + /62p<xn+27 xm) (314)
e B (2, ) (3.15)
m—n—1
<o Z BE (s Tniri) (3.16)
k=0
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Now from (3.4),(3.9) and (3.10) it follows that

Hence

(X, Tny1) = p(xn, (T, Tan; f1n)) < (1 — pp)p(x,, Txy) (3.17)

< plxy, Txy) (3.18)
1

< @p(a:n_l,Txn_l) (319)
1

< Ep(xn_g,Txn_g) (3.20)
1

< Wp(xn_k,Txn_k) (3.21)

(3.22)

1
P(Trte, Tnit1) < @P(%»T%) (3.23)

Substituting (3.23) in (3.16) we obtain

p(Tm, ) < @ ; %p(xn,Txn) (3.24)
00 1 k
< ap(x,, Tx,) Z (—) (3.25)
i\
_ ﬂo‘_ﬁ i, Tn). (3.26)

Hence lim,y, 00 (%, ) = 0, which implies that {z,} is Cauchy. By the completeness

of X there exists 2* € X such that lim, ., p(x,,2*) = 0. We now verify that z* is a

fixed point of T

p(a*, Ta*) < ap(a*, z,) + Bp(xn, Tz¥) (3.27)
< ap(z”, zn) + B lap(@n, Tey) + Bp(Tan, Ta")] (3.28)
< ap(z*, ) + Bap(@n, Txr) + B2Ap(20, T*) (3.29)
= (a+ B?N) p(a*, @) + Bap(z,, Txy,) (3.30)
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Let n — oo in (3.30) to conclude that p(z*,Tz*) — 0, hence Ta* = z*. If 2** is

another fixed point of T then
plax*, a*) < p(Tx*, Tx*™) < Ap(z*, ™). (3.31)

Hence p(x*,2**) = 0 otherwise A > 1 is a contradiction and the fixed point is unique.

]

Theorem 3.2. Let (X, p,w) be a complete convex «, 3 b-metric space and T : X — X

be defined by p(Tz, Ty) < Xp(x,Tz)+ p(y, Ty)|,Vr,y € X and for 0 < X\ < ,4%

Choose xo € X such that p(xg, Tzg) < 0o and define x, = w(Tp_1, TTp_1; pn_1), where

for each n € N, then T has a unique fized point in X.

Proof.
(@0, Tnsr) = p(@n, W(Tn, Tn; pn)) < (L= pn) p(an, Tn) (3.32)
p(xn, Try) < ap(x,, Te,_q) + Bp(Txn_1, Txy) (3.33)
< ap(an, Ton1) + BA (201, Tn 1) + p(an, Ten)] (3.34)
= ap(w(xp_1,TTp_1; n-1), Txn_1) + BAp(Tp_1,TxH_1) (3.35)
+ BAp(zp, Txy) (3.36)

= pin_1p(Tn_1, Txn 1) + BAp(Tn_1, T2n_1) + BAp(2p, Txy,) (3.37)

We observe that 0 < 1 — S\, hence

e A
p(xn, Tr,) < Mp(xn_l,Txn_l) (3.38)
1—p5A
p(@n—1, T 1)
< 152 ! (3.39)
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as proved in Theorem 3.1. Hence p(z,,Tx,) is a decreasing sequence that converges

to zero and is also Cauchy. If lim,, ., p(z,,2*) = 0 then

p(z*, Ta*) < ap(x*, z,) + Bp(x,, Tx*) (3.40)
< ap(z*, z,) + Blap(x,, Tx,) + Bp(Tx,, Tx*)] (3.41)

< ap(z*, 1) + aBp(x,, Tx,) + B*Np(xn, Txy) + pla*, Ta*)] (3.42)
Then

(1= 8%\) p(a*, Ta*) < ap(a*, x,) + (aB?N) p(zn, Tzy) (3.43)

p(xo, Tro)
BQTL

< ap(a*, z,) + (af?N) (3.44)

Letting n — oo we obtain p(z*, Txz*) = 0, so z* is a fixed point of T". If 2** is another

fixed point of T then
pla*, ) = p(Ta*, Tx™) < Np(x*, Tx*) + p(*™, Tz*)] =0 (3.45)
proving that the fixed point is unique. n

Lemma 3.3[39] Let {y,},{z.} be non-negative sequences satisfying y,.1 < z, + hy,

foralln e N0 < h < 1, lim,_,o 2, = 0, then lim,, ,ocy, =0

Definition 3.3.1. Let T be a self map on a compete «, 5 b-metric space (X, p). The
iterative procedure z,.1 = f(T,x,) is weakly T-stable if {z,} converges to a fixed
point z* of T and if {y,} is a sequence in X such that lim, e p(Yns1, f(T,yn)) = 0

and {p(Yn, Tyn)} is bounded then lim,, . y, = x*.

Theorem 3.3. Under the assumptions of Theorem 3.1, if in addition lim, . p, =0,
then Mann’s iteration is weakly T'-stable.
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Proof. From Theorem 3.1 z* is a fixed point of T"in X. If {y,} is a sequence such that

limy, o0 P(Yns1, W(Yns TYn; ptn)) = 0 and {p(yn, Tyy,)} is bounded then
P(Yn+1,7%) < ap(Ynr1, @ (Yn, TYni 1)) + Bo(W (Y, T ptn), %) (3.46)

< P(Ynt1, W (Yn, Tns pin)) + Blap(w (Y, Tyn; pin), Tyn)
+ Bp(Tyn, Ta")] (3.47)
< ap(Yni1, 9 Yns TYns tin)) + B p(Yn, Tyn) + B2A0(yn, )] (3.48)
= 2, + B2Ap(Yn, 2¥)]. (3.49)
Since %)\ < 1 and {p(yn, Ty,)} is bounded, lim,, o, z, = 0 and hence by Lemma 3.3
lim,, 00 p(Yn, 2*) = 0. H

Theorem 3.4. Under the assumptions of Theorem 3.2, if in addition lim, . p, =0,

and if a, B, \ satisfy additionally 1@[’:\; < 1 then Mann’s iteration is weakly T-stable.

Proof. From Theorem 3.2 z* is a fixed point of 7" in X. If {y,} is a sequence such that

limy, o0 P(Yns1, W(Yn, TYn; in)) = 0 and {p(yn, Ty,)} is bounded then

P(Yns1, %) < ap(Yns1, W(Yn, TYn; ) + Bo(W(Yn, TYn; fin), ) (3.50)

< ap(Ynr1: W Yns Ty b)) + Bap(WYn, TYn; tin)s Tyn) + 52 0(Tyn, 2*)

(3.51)
Now
P(Tyn, x") = p(Tyn, Tx") < Ap(yn, Tyn) (3.52)
< Aap(Yn, %) + ABp(z*, Tyy). (3.53)
From which we get
(T %) < —22 () (3.54)
p(Tyns27) < 735 (Un: 27, :
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Aa3?

P(Ynt1, %) < ap(Ynir, W(Yn, TUn; fn)) + Bpinp(Yn, Tyn) + P(Yn, ") (3.55)

Y
Aaf?
— 2z, o I 3.56
e (3.56)
Since I\f‘f; < 1 and {p(yn, Ty,)} is bounded, lim,, ,, z, = 0 and hence by Lemma 3.3

lim,, o0 p(yn, 2*) = 0. O
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Chapter 4

Complex valued b-metric space

with fixed point theorems.

4.1 Introduction

The concept of a b-metric was initiated from the contributions of Bourbaki [7] and
Bakhtin [5]. Czerwik [10] gave an axiom which was weaker than the triangular in-
equality and formally defined a b-metric space with a view of generalizing the Banach
contraction mapping theorem. Later on, Fagin et al. [14] discussed some kind of re-
laxation in the triangular inequality and called this new distance measure a non-linear
elastic pattern matching. In 2011, A. Azzam, B. Fisher and M. Khan introduced the
notion of a complex valued metric space and called the complex-valued metric space
as an extension of the classical metric space and proved some common fixed point
theorems, [3]. In a similar way various authors have studied and proved the fixed

point results for mappings satisfying different types of contractive conditions in the
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framework of complex-valued metric spaces,[6]. In 2013, Rao, et al. introduced the
concept of a complex-valued b-metric space which is a generalization of the concept of
a complex-valued metric space, [27] and subsequent to that A.A Mukheimer obtained
common fixed point results, [21]. In this thesis, we generalize the concept of a complex-
valued b-metric and prove the common fixed results satisfying certain expressions in

this new space.

4.2 Preliminaries

Let C be the set of complex numbers and if 21, 2o € C then define a partial ordering <
on C as follows:

21 % 29 <= Re(z1) < Re(z2) and Im(z;) < Im(22)

Futhermore, if z3 € C, we obtain that following:
(1) If 0 < 21 X 22 then |z1] < |22]
(i)If 21 < 22 and 29 X 23 then 2, < z3

(iii) If a,b € R and a < b then az < bz for all z € C

Definition 4.2.1. Let X be a non-empty set. A function d : X x X — C is a complex-
valued b-metric on X, [27], if there exists a real number a > 1 such that the following

conditions hold for all z,y,z € X :

(i) 0 d(z,y) and d(z,y) =0 <= x =1y

(ii) d(x,y) = d(y, z)

(iii) d(z,y) < ald(z,2) +d(z,y)]
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The pair (X, d) is a called a complex-valued b-metric space.

Definition 4.2.2. Let X be a non-empty set. A function p : X x X — C is a
generalized a, f complex-valued b-metric on X if there exists real numbers o, 5 > 1

such that the following conditions hold for all x,y,z € X :

(i) 0 p(z,y) and p(z,y) =0 < z =y
(i) p(z,y) = p(y, )

(iil) p(z,y) < ap(z, z) + Bp(z,y)

The pair (X, p) is a called a «, 5 complex-valued b-metric space.

The following example justifies the generalization found in the definition.
Example 5. Let X = (1,3) and let p: X x X — C be a function defined by
elx_yl + ielx_y" lf €T ;é y

0, iffx =y.
To show that the example is a generalized «, § complex-valued b-metric, we only need
to verify the «, § triangle inequality:

Forx #y, z€ X and 6 € (0,1)

p(z,y) < (14 i)el—=1H=

(1 + )Pl Ol (102012

< sup lPTEFOSOET (1 0) (1 4 i)el 1 0(1 4 i)el V)
z,y,2€X

< (1= 60)e* (1 +i)el™ =1+ 0(1 4 1)e2elY!
= (L= 0)e*p(x, 2) + 0e’p(2, y).

For 6 = % we have constants o = 2¢? and 3 = 1¢?.
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One introduces a topology on a generalized «, § b-metric space (X, p) in the usual way.

The open ball B(z,¢) with centre 2 € X and radius 0 < € € C is given by

B(z,e) ={y € X : p(x,y) < €}

A subset A of X is open if for every z € A there is a number 0 < ¢ € C such that

B(z,€) C A.

Definition 4.2.3. Let (X, p) be a generalized «,  complex-valued b-metric space, and

let {z,,} be a sequence in X and z € X. Then:

(i) The sequence {x,} converges to z € X, if for every 0 < ¢ € C then there is
N € N such that p(z,,z) < e. The sequence {x,} converges to x € X <=

lp(xp, )] — 0 as n — oo, [27].

(ii) The sequence {z,} is a Cauchy in (X, p) if for every ¢ € C there is N € N such
that p(zn, Tnim) < €, where m € N. The sequence {z,} is a Cauchy sequence in

(X,p) <= |p(xn, Tnim)| — 0 as n — oo , where m € N, [27].

(iii) The space (X, p) is complete if every Cauchy sequence {z,} in X converges to a

point x € X.
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4.3 Fixed point theorem for generalized «, 5 complex-

valued b-metric spaces

As a consequence of (iii) of Definition 4.2.2 ;| the «a, 3 triangle inequality, we get for

n,m € N with m > n

P(Zns T )
< Oép(%m xn—i—l) + /BP(In-s—l, xm)

< Oép(l‘m J7n+1) + B[ap(xn-&-lv xn-&-?) + 5p(1‘n+2, xm)} (41)

Successively applying the «, § triangle inequality, we obtain

m—n—2
Py Tm) S @ D B p(@nsis Tnginr) + B p(Emer, ). (4.2)
=0

This theorem is a generalization of the fixed point theorem studied by Mishra, et al.,

in [20].

Theorem 4.1. Let (X, p) be a complete generalized o, B complez-valued b-metric space

and T : X — X a mapping such that

p(Tx, Ty) <X ap(x, Tx) + bp(y, Ty) + cp(z,y)

forallz,y € X, where a,b, and ¢ are non-negative real numbers satisfying a+ 3 (b+c) <

1, then T has a unique fixed point.

Proof. We begin by proving that for xy € X, the sequence {x,} generated by the re-

cussive formula z,, = T'x,,_1 = T"x is a Cauchy sequence in X. For n € N we obtain
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p<xn+2a anrl) = :0<Txn+17 Txn)
< ap(Tnt1, TTpi1) + bp(xn, Tay) + cp(Tnt1, Tn)
= ap(Tni2; Tni1) + 0p(Tni1, Tn) + cp(Tnir, Tn)

= ap(Tpt2, Tnt1) + (b + 0)p(Tns1, Tn)

(1 = a)p(@ns2, Tngr) < (0 + )p(Tpt1, )

b+ c
) (i1, )

1—a

P(Tny2, Tni1) < (

If we let v = (b+c) then by repeated use of (4.5) we get

l—a

P( Ty, Tni1) < Y p(21, 20).

Using (4.2) and (4.6) for k € N, we get

k-1
P(Tn, Tnpre1) S Z B p(Tnsis Tntir) + Bp(Tnsks Tninin)
i=0
k-1
<) By p(xo, 1) + B p(wo, 41)
i=0

k—1
=" [a > B+ B plo, 1)
=0

_ gkak
=" {a% + ﬁkv’“] p(o, 1)
= (11—;7) [04 — B (o + By — 1)] p(x0, 1)

PN - (20, 1)
Ty

Now,
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n 0]
|p(T0, Trgirr)| <y ( |p(0, 71)] (4.8)

1—87)
Since a + B(b+¢) < 1 for > 1 then 8y < 1 and v < 1. Taking the limit n — oo we
get v — 0, which implies that |p(x,, Z,1k+1)| — 0 as n — oo thus the sequence {z,}
is a Cauchy sequence. Since X is a complete «, f complex-valued b-metric space the
sequence converges to z* € X. We show that x* is a fixed point of T. Using the «,

triangle inequality, we have

p(z", Tz") < ap(z”, xpy1) + Bp(Tngr, T2")
< Oép($*>$n+1) + ﬂp(T.%n,T{B*)

< ap(x”, 2nga) + Blap(an, Ten) +bp(a”, Tx™) + cp(an, ©7)] (4.9)

(1 - bﬂ)p(x*,T:c*) < O‘p(x*7$n+l) + aﬁp(xnaTxn) + Cﬁp(l‘n, x*)

p(z”, Tz") < (1——155) lap(z®, 2pi1) + aBp(Tn, Tnt1) + cBp(xn, 7)) (4.10)

Taking the absolute value of both sides, we get

lp(z*, Tz")| < (1——1[)@ (2™, 2nt1) + aBp(Tn, Tpy1) + cBp(zn, 27)]|

= ﬁ lap(z”, Tni1)| + aBy" [p(zo, x1)| + B |p(n, 7)) (4.11)

Since x, converges to z* , taking limit n — oo implies that |p(z*,Tz*)| — 0 which
yields z* = Tz*. To show uniqueness of the fixed point. Assume that there exists

z** € X such that Tz** = ™. Then

p(x™, %) = p(Tx™, Tx*) X ap(x™, Tx™) + bp(z*, Tx*) + cp(z*, x™) (4.12)
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which implies that p(z**, x*) 5 ep(z*, ™). Taking the absolute value of both sides, we

get |p(x**, x*)| < c|p(z*,2*™)|. This implies that p(z*, ™) = 0. Thus a* = 2**. O

Theorem 4.2. Let (X, p) be a complete generalized complex-valued o, 5 b-metric space

and let T : X — X be a mapping such that,
p(Tz, Ty) < ap(x, Ty) + bp(y, Tx) (4.13)

Which implies that for every x,y € X, where a,b are non-negative constants with

Bb < 14%04 Then T has a fized point in X and has a unique fized point if a +b < 1.

Proof. Let xq € X be fixed then consider the sequence generated by the formula

Tp =Tz, 1 =T"x9. Let n € N then we get

P(@nt2, Tny1) = p(T 041, T2y)
< 0p(Enst, Tn) + b Tnpr)
= ap(Tnt1, Tnt1) + 0p(Tn, Tnyo)
= bp(Tn, Tn+2)
< bap(wp, Tny1) + 0Bp(Tni1, Tnyo)
(1 = b8)p(Tni2, Tny1) < bap(2n, Tpg1)

P(Tnt2, Tnt1) < 72550(Tns Tns1) (4.14)
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Letting v = 1%5 and repeated use of (4.14) yields

p($n+1, xn+2) 4 ’Yp(:Cn, xn+1)

< V(T 1, )

7" (0, 21) (4.15)

e

Let m € N then

P(Tn, Tntm)

< ap(@n; Tpt1) + Bo(Tnt1s Tpm)

< ap(Tn, Tni1) + Blap(Tnst, Tnio) + Bp(Tns2, Tnim)]

< ap(Tn, Tpg1) + ABp(Tnir, Toga) + -+ B p(Tnymo2, Tngm1) + 8" p(Tngmo1s Togm)
< a"p(wo, 1) + By (o, 1) + - - Ay TP pag, a1) + BT plw, )

< a"p(xo, x) [L+ By + -+ 9" 2872 4+ 471" p(ag, 1)

< ay"p(xo, 1) [%} 4Lyl )

n

< agtgplao, x1)a = (B7)" o — 1+ 7))

< a%p(xo,xl)

Since b < 1J+a then 0 < v < %3 and v < 1. Taking the limit n — oo, we get
4™ — 0. This implies that |p(z,, Znim)| — 0 as n — oo. The sequence {z,} is a

Cauchy sequence in X. Since (X, p) is a complete complex-valued b-metric space then

{x,} converges to z* € X,
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We show that x* is a fixed point of T'.

p(x*,Ta") < ap(a”, xn) + Bp(wn, Ta")
= ap(x*,z,) + Bp(Txp_1, Tx")
< ap(z*, 20) + Blap(@p_r, Tx*) + bp(T2n_y, Tz")]
= ap(z*, x,) + Bap(xp—1, Tx") + Bbp(zy, z*)
< (a+ Bb)p(xn, ) + Baap(z, 1, 2*) + afp(a*, Ta")
[1— af’|p(z*, Tx*) < (a + Bb)p(xn, %) + aBap(x, 1, 1%). (4.16)

Since {z,} converges to z* we get |p(z*, z,)| — 0 as n — oo, and taking the absolute

value of both sides of (4.16) we obtain |p(z*,Tz*)| < 0 thus p(z*,Tx*) = 0, which

implies that Tx* = z*. To prove the uniqueness of the fixed point we assume that

there z*, x** € X such that Tx* = 2* and Tx*™ = 2**. Now

plx*, x*) = p(Tx*, Tx™) (4.17)
< ap(x™, Tx™) + bp(«™, Tx™) (4.18)
= ap(z*, ™) + bp(z™, x") (4.19)
= (a+b)p(z*,z™) (4.20)

Thus we get |p(z*, ™) < |[(a+ )| |p(z*, z**)|. Since a +b < 1 we get |p(z*, ™) =0
thus o* = z**.

]

Kir et al. studied the following fixed point theorem in b-metric spaces and we general-

ized the result into a a, f complex-valued b-metric spaces, [19].

Theorem 4.3. Let (X, p) be a o, B complex-valued b-metric space and let T : X — X
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be a mapping such that
p(T'z, Ty) < Alp(z, Tx) + py, Ty)],

where X € [0, 3), for all z,y € X. Then T has a unique fized point.

Proof. We begin by showing that for xy € X fixed, the sequence {x,} where z, =
Tx,—1 = T"x is a Cauchy sequence in (X, p).

For n € N, we have

P(Tnt2, Tpy1) = p(T2p41, Tay)
< Alp(@n1; Twntr) + p(zn, Tay)]
= Ap(@nt1, Tnt2) + p(2n, Tay)]
(1 = X)p(@nt2, Tnt1) < Ap(Tnt1, Tp)

P(Tnta, Tny1) < r)\)\)/J(xn—Ha Tn) (4.21)

Repeated use of (4.21), for n € N, we get

)n+1

P(Tny2, Tni1) < (ﬁ p(z1,70).
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For m,ne X

P(Zn, Tngm)

< ap(Tn; Tpt1) + Bo(Tnt1s Tnpm)

< ap(Tn, Tns1) + Bap(Tni1, Tng2) + B20(Tnso, Tngm)

< ap(Tp, Tng1) + OBP(Tng1, Tuga) + -+ + B2 p(Tpgm—2, Tnym—1)

+ ﬁm_lp(xn-i-m—l» xn-l—m)

n+1 n+m—2

< a(i25)" plwo.zn) +aB (125)" pleo, 1) + -+ af™ % (125) plao, 1)
+8m 7 (2" plao, m)

= ()" plro ) [14 8 (2) 4+ 877 (200" 477 (20" gl )

Since A € [0, 3) implies that 0 < ﬁ < 1. Taking the absolute value of both sides we
get |p(Tn, Tngm)| — 0 as n — oo. It follows that that the sequence {x,} is a Cauchy

sequence in (X, p). Since (X, p) is complete there exists a 2* € X such that

lim p(z,,z") = 0.

n—oo

We now show that z* is a fixed point of the mapping 7.

p(*, Ta") < ap(z”, z,) + Bp(2n, T2")
= ap(z*,x,) + Bp(Tr,_1, Tx")
< ap(x*,x,) + BAp(Tp_1, Txn_1) + BAp(z™, Tx")
[1—BA p(z*, Tz") < ap(a, x,) + BAp(Tn—1, xn) (4.22)
Taking the absolute value of both sides of (4.22) and taking n — oo, we obtain

p(x*, Tz*) = 0. This implies that z* is a fixed point of T.
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To prove the uniqueness of the fixed point, we assume that there are z*, x** € X such

that Tx* = 2* and T2™* = 2**. Now

S Alpla®, Ta®) + p(a™, Ta™)]

=0

Thus we get |p(z*, z**)| < 0, which implies that * = z*™*. Hence z* is a unique fixed

point.
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Chapter 5

Generalized (G metric

5.1 Introduction

Mustafa et al.[24] introduced a new structure of generalized metric spaces which they
called G-metric spaces as a generalization of metric spaces, to develop and introduce a
new fixed point theory for various mappings in this new structure,[23]. Various authors
have proved some fixed point theorems in these spaces,[9, 24, 35].

Recently, Sedghi et al.[30] have introduced D*-metric spaces which is a modification
of the definition of D-metric spaces introduced by Dhage, [12] and proved some basic
properties in D*-metric spaces, [31]. Furthmore, they introduced the concept of S-
metric spaces and presented some properties for common fixed point theorem for a
self-mapping on complete S-metric spaces, [33].

Using the concepts of G-metric and b-metric, Ahhajani et al.[1] define a new type of
metric which they called a Gy-metric. They studied some basic properties of such a

metric and proved common fixed point theorem for mappings satisfying weakly compat-
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ible condition in complete partially ordered Gy-metric spaces and presented a nontrivial

example to verify their effectiveness and applicability, [1].

Definition 5.1.1. Let X be a nonempty set. A generalization of a metric or G-metric

is a function G : X x X x X — [0, 00) satisfying the following properties,[23]:

(i) for all z,y,z € X G(z,y,2) =0 <= z=y==z2

(ii) forall z,y € X, z £y, 0 < G(z,x,y)

(i) G(z,z,y) < G(z,y,2) forall z,y,z € X, 2z #y

(iv) G(z,y,z) = G(z, z,y) = G(y,x,z) = --- symmetry in all variables

(v) for all x,y,z,w € X, G(z,y,2) < G(z,w,w) + G(w, y, 2)

The pair (X, G) is a G-metric space.

Definition 5.1.2. Let X be a nonempty set and s > 1 be a real number. A general-
ization of a G-metric is a function G : X x X x X — [0, 00) satisfying the following

properties,[1]:

(i) for all z,y,z € X Gp(z,y,2) =0 <= x=y =12

(ii) for all x,y € X, z £y, 0 < Gy(z, z,y)

(111> for all r,y,z € X, z # ) Gb(x,x,y) < Gb<I,y7Z)

(iv) Gp(z,y,2) = Gy(x, z,y) = Gyp(y,x, z) = - -+ symmetry in all variables

<V> for all z,Y,z,w € Xa Gb<x7y72> S S [Gb(a:,w,w) + Gb(w7y7z)]

The pair (X, G}) is a generalized b-metric space or Gy-metric space.
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Example 6. Let X = R then define a mapping G : X x X x X — [0,00) by

Gy(,y,2) = 3 (lz —y| + |y — 2| + |z — 2|)*. Then (X, G}) is a Gp-metric space[1].

Definition 5.1.3. Let X be a nonempty set and «, 3 > 1 are real numbers. A
generalization of a Gp-metric is a function Gbaﬂ : X x X x X — [0,00) satisfying the

following properties:
(i) for all z,y,2 € X GP(2,9,2) =0 <= z=y =12
(i) for all z,y € X, z #y, 0 < GP(z, z,y)

(iii) for all x,y,z € X, z # y, G?ﬁ(x,m,y) < G?’g(x,y,z)

(iv) G2z, y,2) = G (x, 2,y) = G2 (y,x,2) = - - - symmetry in all variables
(v) for all z,y, z,w € X, Go¥(x,y, 2) < Gy’ (z,w,w) + BGY (w, y, 2)

The pair (X, GZ‘B ) is an «,  generalized b-metric space or ngﬁ -metric space. If a =
B =1then G = G. If @ = 8 = s then G?ﬁ = Gy. For every generalized b-metric
G, it is not always possible to find an «, 5 > 1 such that 1 < o, < s satisfying the

property (v) of definition 5.1.3.

Example 7. Let X = (1,3) then define Gi” : X x X x X — [0,00) by

B elx_y|+|y_z|+|z_x|7 x 7é y # z
Gl? (Z‘, Y, Z) =
0 r=1y=z,

To show that G2 (z,y, 2) is a GoP-metric we verify properties (i)-(v) of definition 5.1.3.

Properties (i)-(iv) are easily verified. We only verify property (v) of definition 5.1.3.
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Let x,y,z € X such that x # y # 2 then

Gy (2,y, 2)

< elt—wltly—wl+ly—z|+z—w[+|z—w]

< e2le—wltly—wl+ly—z|+[z—w]|

< sup o 312(@—w)l+3 ly—wl+ly—zl+|z—wl] 3 [2(z—w)|+3 [ly—w|+|y—z|+]z—wl]

x7y7Z€X

1 90

3 3
< & clle—w)l 4 2€° ly—wltly—zltz—uwl]

14 9 14

€3 aB €3 aB
= —G," (v, w,w) + G, (w,y, 2)

3

1 14
Witha:%ZlandB:%Tg’Zl,oz%ﬁanda</B.

5.2 Properties
The following properties can be deduced from the Definition 5.1.3.
Proposition 5.0.1. Let (X, G?ﬂ) be a G?ﬁ-metm’c space. For all v,y,z € X
(i) Gy (2,y.2) < aGyP (y, 2, x) + BGY” (2,2, 2);
(i) Gy (z,y,y) < (a + B)Gy (y, x, ).

Definition 5.2.1. A G&’-metric is symmetric if Go°(x,z,y) = G (z,y,y) for all

z,y € X.

Definition 5.2.2. Let (X, G2%) be a G2’-metric space then for 2o € X, € > 0, a G27

ball with center xy and radius ¢ is
BG‘;‘B (I(]? 6) = {y € X) Gbaﬁ(‘r()? Y, y) < 6}
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Proposition 5.0.2. Let xg € X, € > 0 and if y € BGba;a(:co, €) then there exists 6 > 0

and ¢ 2 1 such that Bos (y,0) C Bgas(zo, ce).
b

Proof. Let y € BGZ‘B (29, €) then Gz‘ﬁ(a:o, y,y) < € and taking § = € — G?’B(xo, y,y) > 0.

Now, let w € Bas(y,d) then G (y,w, w) < 6. Then it follows that
b

GO (20, w,w) < aGe (x0,y, 1) + LG (y, w, w)
S O[G?B(xm Y, y) + 6(6 - G?IB(LEO; Y, y))
S aGIC:B(xm y)y> + 66

< (a+B)e
Thus w € Bas(xo, (a+3)e). Since , > 1 and taking ¢ = a+ 3 > 2 we conclude. [
b
Definition 5.2.3. Let (X, G2”) be a G§”-space and {z,} a sequence in X :

(i) The sequence {z,} is a Gi’-Cauchy sequence if for every e > 0 there exists N € N

such that G?B(xn,xm, xy) < € for all n,m,k > N.

(ii) The sequence {z,} is a G?'B -convergent sequence if for every e > 0 there exists

N € N and x € X such that G?’B(azn,xm,x) < e for all n,m > N.

Proposition 5.0.3. Let (X,G%°) be a GY°-metric space.
The sequence {x,} is G?'B—Cauchy <= for any € > 0 there exists N € N such that

G?B(xn,xm,xm) <€ for alln,m > N.

Proof. = : From Definition 5.2.3 it follows easily if we take & = m.

— lfep= then e, > 0 for any € > 0 then there exists N € N such that

N
2max{«a,8}

G?ﬁ(azn,xm,xm) < €4 for all n,m > N. From definition 5.1.3, property (iv) and (v),
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we get

G?’B(xn,xm,xk) < aG?’B(xn,xm,xm) +BG§"B(xm,xm,:ck)

< (somp) * (mea)

=€
for all n,m,k > N. n

Proposition 5.0.4. [1] Let (X, G2%) be a GP-metric space. The following statements

are equivalent:
(a) If {x,} is a G2°-convergent sequence.
(b) for every € > 0 there exists N € N such that G2 (&, Tn, ) < € for alln > N.

(c) for every e > 0 there exists N € N such that Go¥ (&, z,z) < € for alln > N.

Proposition 5.0.5. [1] Let (X, G2?) be a G2*-metric space. Then the following state-

ments are equivalent:
(i) {zn} is GOP-convergent to x € X ;
(it) GP (&, 2n,z) = 0 as n — oo;
(iii) G (2, x,2) — 0 asn — oo,

Definition 5.2.4. A G*’-metric space (X, G?’B) is GZ‘B complete if every Gg‘ﬁ— Cauchy

sequence is G*’-convergent.
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5.3 Fixed Point Theorems

Theorem 5.1. Let (X, G?ﬁ) be a G?ﬁ—complete metric space. If a mappingT : X — X

satisfies the following
GYP(Tx, Ty, Tz) < \GP(x,y, 2) (5.1)

forall x,y,z € X, where 0 < \ < % Then T has a unique fized point.

Proof. Let xy € X be arbitrary and define a sequence {z,} by =, 1 = Tz, for n € N.

Then it follows from inequality (5.1), for the sequence {z,} we get
G?B(xn,xnﬂ,xnﬂ) = G?B(Txn_l,Txn,Txn) < )\G?B(xn_l,xmxn) (5.2)
Repeatedly applying inequality (5.2), we get
G?ﬁ(ﬂfn,mn_’_l,xn+1) < )\"G“’B(:vo,xl,ml) (5.3)
For n,m € N and proposition 5.0.3, we get

G?B(xm Tntm, anrm)

< aGZw(mn, Tpitl, Tni1) + aﬁG?B(an, Tpi2, Tnio)

+ aﬁzGl?ﬂ (Tnt2, Tngs, Tnys) + -0+ Bm_lG?B (Trtm—1, Tntm: Tntm)
< Ong’B(xn, Trg1, Tny1) + OzﬁGZw (Tnt1, Tny2, Tnia)

+ 0462Gl?,8 (xn+27 Tn+3,s mn+3) +oeee aﬁm_lG?ﬂ(xn-i-m—la Tntm xn—&-m)

<a ()\n + )\n-i-lﬁ 4+ -4 )\n—i-m—lﬁm—l) G?ﬁ(x(];xhxl)

S Oé)\n]_ — BAG?ﬁ<I07xl7xl)

Since A < % we conclude that for every € > 0 there exsits N € N such that
G?B(xn,xn+m,xn+m) < e forn > N, thus {z,} is a Gbaﬁ—Cauchy sequence in (X GZ‘B).
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Since (X, Gz‘ﬁ ) is a complete—Gg‘B metric space there exists z* and N; € N such that
G?B(xn,xn,x*) < e for n > Nj.
To show that x* is a fixed point of T'. Using the contraction condition we get
GO 2y, Tx*, Tx*) = GOP (T, Tx*, Ta*)
< AG?ﬁ(xn,x*,x*)
Taking the limit as n — oo, we get Gg‘ﬁ(a:*, Tx*,Tx*) =0. Thus Tz* = z*.

To prove uniqueness we assume that 7' has fixed points z* and z**. Then it follows

that
G?ﬁ(a:**,x*,m*) = G?B(Tx**,Tx*,Tm*) < )\Gg‘ﬂ(m**,az*,x*)
Since 0 < X\ < 1, we get ™ = z*. O

Theorem 5.2. Let X, Gg‘ﬁ be a G?ﬂ—complete metric space and a mapping T : X — X

such that

G (Tx, Ty, T=)
< Amax {Gaﬁ(x, y,2), G (x, Tx, Tx), G*(y, Ty, Ty),

GP(2,T2,Tz), G (x, Ty, Ty), G**(y, Tz, Tz), G**(z, T, Tx)} (5.4)

forall x,y,z € X with 0 <\ < ﬁ Then T has a unique fixed point.

Proof. Let xy € X define a sequence x, 11 = Tz, then for sequence {x,}, we get from
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inequality (5.4),

G?ﬁ(xm Tn41, $n+1)

aff af aff
S A max {Gb (xnfla Tn, ajn): Gb ($n7 Tnt1, xn+1): Gb (xnfly Tn+1, $n+1)>

Gz‘ﬁ(mn, T, xn)}

S A max {G?B(xn—h T, l‘n)a G?B(xna Tnt1s xn—&-l)a aG?B (J:n—ly T, xn)
+5G?6(xna Tn+1, xn—l—l)}

= )\aGZ‘B(xn_l, Ty Ty) + ABG?B(xn, Tpil, Tnil) (5.5)

From inequality (5.5), and that A < ﬁ, we get
Ao

af
. )\5G (Tp_1, T, Tp)- (5.6)

th)zﬂ ($n> Tn+1, xn—i—l) S
For n,m € N | recursively applying inequality (5.6), we get

G?B(Im Trym) Tntm)

< osz‘ﬁ(xn, Tpil, Tni1) + ocBG?B(an, Tpto, Tnio)

+ aﬁ2G?ﬁ(ajn+2, Tpig, Tnis) +o0 + BmflGl?ﬂ(:anrm,l, Tntms Tnim)
< Gy (Xn, Tngt, Tngr) + BGY (Tni1, Tota, Tnso)

+ QBZG?B ($n+27 Tn+3, :L'n—i-S) +- 4+ aﬁm_lG?B(mn—i—m—la LTn4m :En—&-m)

A \" A\ Aa \MTh
S“((l—w) (25) oo (i) )

G?ﬁ(ﬁo,n’fl,fﬁl)

)\Oé " 1 —ﬁ)\ o
= (1 - Aﬁ) 1— A1+ A (&0, 1,1)

Since A < (#5 we conclude that for every € > 0 there exsits N € N such that

G?ﬁ(xn,xmm,x%m) < eforn > N, thus {z,} is a Gbo‘ﬁ—Cauchy sequence in (X GZ‘B).
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Since (X, Gz‘ﬁ ) is a complete—Gg‘B metric space there exists z* and N; € N such that
G?B(xn,xn,x*) < e for n > Nj.

To show that x* is a fixed point of T". For the GZ‘B -convergent sequence {z,} , we get

GP (2, Tx*, Tz")
< )\maX{GbaB(xn_l,x*,x*),G?ﬂ(acn_l,Tx*,Tx*),

G?’B(x*,Tq:*,Tx*),G,‘j‘ﬁ(:cn,l,:cn,xn),G?ﬁ(:c*,xn,xn)} (5.7)

Letting n — oo in inequality (5.7), we get GZ‘*B(x*,Tx*,T;E*) < )\G?ﬁ(ac*,Tx*,Tx*).
Since A < —— < 1 the inequality is only valid if Gl‘:ﬁ (x*, Tx*, Tz*) = 0 which implies

a+8 2

Tx* = z*. For the uniqueness of the fixed point we assume that ™ € X is a fixed

point of 7. Then from inequality (5.4), we get

GOP(Ta*, T, Tx*)
< Amax {G*(z*, 2%, 2**), G (2*, Ta*, Tx*), G*P (x**, Ta*™, Ta™),
GQB(ZE**, Tl’**, j-vx»ok)7 Gaﬁ(x*’ T[L'**, T.ZU**>, Gaﬂ(l'*, Tl’**7 j-vl,»ok)7

G (a**, Ta*, Tx*)} (5.8)
Thus, we obtain from Proposition 5.0.1,

G?ﬁ(a:*,:c*,x**) < )\max{G?’B(x*,x*,x**),G?’B(:U*,x**,x**)}

< Mo+ B)GP (z*, 2%, 2**).
It follows that
1—XNa+5)] G?B(x*, ¥, ") <0

Since 1 — M« + ) > 0, we conclude that G¢°(z*, z*, 2**) = 0 thus z* = 2**. O
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Theorem 5.3. Let X, Gg‘ﬁ be a G?ﬁ—complete metric space and a mapping T : X — X

such that

Gg‘ﬁ(T;ﬂ, Ty, Tz) < MG (x,y,2) + MG (x, Tz, Tx) + N3G (y, Ty, Ty)
+ MG (2, T2, T2) + MG (2, Ty, Ty) + MG’ (y, T2, T%)

+ MG (2, T, Tx) (5.9)

forall x,y,z € X with A\ + Xa + A3+ M+ (a+ B)As + X¢ + Ay < 1. Then T has a

unique fized point.

Proof. Let zo € X be arbitrary and define a sequence {z,}, where x,,; = Tx,. For

the sequence {z,} and from inequality (5.9), we get

Gy (&n, Tni1, Tnt1)

< MG (2 1, Tn, ) + XNaGP (21, Ty ) + AsGP (T, Tyt Trgr)

+ MG (2, i1, Tg1) + MG (Tt Tpgt, Tngr) + NG (T, Trp1, Trgr)
+ MG (2, T, T

< (M A M) G Tty Ty ) + (N3 + A+ A6) G (0, Tnt, Tt

+ /\5 (O‘G?B (xn—h T, 1771) + 6G?ﬂ(xm Tnia, xn—&-l) (510)
From inequality (5.10), we get
[1— (A3 + A+ ) — A3 G?ﬁ(ﬂfm Tpits Tng1)
S ()\1 + )\2 + >\5Q{)Ggﬁ(l’n_1, L, l‘n)

Since A\; + Ao+ A3 + A+ (a4 5)As + X < 1, we get

)\1+)\2+/\5Oé
1—(Ag+ M+ X)) — X508

G?B<wn7 Tn+1, anrl) S ( ) Gbaﬁ(xnflv T, mn)
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Following an argument as in theorem 5.1, we can conclude that the sequence {z,} is
a Gz‘ﬁ -Cauchy sequence in X. Since (X, G*?) is complete it follows that the sequence
{x,} is G*-convergent to x* € X. To show that x* is a fixed point for T. From
inequality (5.9), we have

G?ﬁ(xn, Tx*, Tx")

< MG (2 g, 2%, %) + MG (2, 1, 2y, 20) + NG (2%, T2, Tx*)

+ MG (2, Ta*, Ta*) + NG (21, Ta*, Ta*) + NG (2%, Ta*, Tx*)

+ MG (2% 2, )
Taking the limit n — oo in the above inequality, we get

(1= X3 — M — s — Xg)GoP (o, Tx* Tx*) <0

It follows that T'z* = z*. To prove uniqueness we assume that z** is a fixed point for

T. Then from inequality (5.9), we get
G?B<.§C*,$**,$*)
< MG (z*, 2%, 2%) + MG (a*, T2, Ta*) + N3G (™, Ta**, Tx*™)
+ MG (2%, Ta*, Ta*) + NG (x*, T, Tx™) + A\eG? (2™, Ta*, Tx*)
+ MG (2% Ta*, Tx*)
It follows that
G?ﬁ(x*,x**,x*) < AlG?’B(x*,x**,m*) + )\5G?5(:U*,x**,x**)
+ )\gGZ‘B(x**, ¥, x)
Using Proposition 5.0.1, we get

(1 =X — X6 — Mgl + B))GP (™, 2, ) < 0. (5.11)
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*

Thus, we get G‘g"g(:c*, x**, x*) = 0 which implies z** = z*.
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Chapter 6

Generalized S-metric

6.1 Introduction

The concept of metric spaces is a very important in Mathematics with a wide range
of applicability in many fields in applied sciences. Many authors have given general-
izations of metric spaces in several ways. Gahler, introduced the concept of 2-metric
spaces,[16] and Dhage, [12] introduced the concepts of D-metric spaces. Mustafa al
et.[24] introduced a new structure of a generalized metric space which they called G-
metric spaces as a generalization of metric spaces, [23]. They developed and introduced
new fixed point theory for various mappings in this new space.

Sam al et.[29] established some useful propositions to show that many fixed point
theorems on (non-symmetric) G-metric spaces follow directly from results on metric
spaces.

Sedghi et al. introduced D*-metric spaces,[32] which are modifications of the definition

of D-metric spaces introduced by Dhage, [12]. These authors, further introduced the
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concept of S-metric space and gave some properties with applications as common fixed

point theorems for self mappings on complete S-metric spaces [30].

Definition 6.1.1. Let X be a nonempty set. A function S : X x X x X — [0,00) is

a S-metric on X if for all x,y, z,w € X:
(i) S(z,y,2) =0 <= z=y==z
(i) S(z,y,2) < S(z,z,w)+ S(y,y,w) + S(z, z,w)
The pair (X, S) is called an S-metric space, [30].
Example 8. Let X = R" and || - ||x be a norm on X, then the function S defined by
S(,y,2) = lly+ 2 = 2zllx +[ly — 2llx
is an S- metric on X.

Definition 6.1.2. Let X be a nonempty set and assume that there exists a real number

a > 1. A function Sp : X x X x X — [0, 00) is an Sp-metric on X if for all z,y, z, w € X:
(11> Sb(xvxay) = Sb(yayv‘x) for all T,y € X,

(lll) Sb(xa Y, Z) < [Sb(xa Z, ’LU) + Sb(y7 Y, w) + Sb(za <, w)]
The pair (X, Sp) is called an Sp-metric space [38],[34]. If a = 1, we have that the S-

metric is equivalent to the S-metric. It should be noted that the symmetry property

follows from the triangle property with a = 1.

Definition 6.1.3. Let X be a nonempty set and assume that there exists real numbers
a,B,7 > 1. A function Sy, 1 X x X X X — [0,00) is an S,p,-metric on X if for all
x,y, z,w € X:
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(i) Sapy(2,y,2) =0 = z=y=2z;

(i) Sapy(x,y, 2) < ASapy(x, 2, W) + BSasy (Y, y, w) + ¥Sapy (2, 2, w).

The pair (X, Sap,) is called an S,g,-metric space. If & = § = v = 1, we obtain that

S = Sapy. If @ = 3 = ~ then we obtain that S,3, = Sp. Furthermore, if o, > 1

and v = 1 then we have the symmetry property, Sus,(z,2,y) = Sag,(y,y,z) for all

z,y € X. The following example justifies the weakening in the triangle inequality

found in Definition 6.1.3.
Example 9. Let X = (1,2) and define S,3,(z,y, 2) by

Qle—yltly=zltlz—al g oL g £ »
SQ,B’Y('Tv ya Z) =

0 &= zx=y==z

It suffices to verify property (iii) of definition 6.1.3. For z # y # z we have
Saﬁ’)/(xﬂ Y, Z)
_ ole—yl+ly—zl+lz—a]
< lr—wltlw—yl+y—wl+lw—z+z—w|+lw-z|
_ 22|x—w\+2|y—w\+2|z—w\

_ ob@z—w)+ECly—w)+ i Cle—w)gle—wl+ 3 ly—wl+Ils—ul

S % ( 2‘$_w|) + g (22|y_w|) + é (22‘”2_“”) sup glz—w|+§ly—wl+F|z—wl
(1,2)

= 85@57(‘%’ l‘, w) + 680[,37(:% y7 w) + ZSaﬂv(za 27 U}),

where we have obtained (6.4) from (6.3) by using Jensen’s inequality, [28].

(6.1)

(6.2)

Definition 6.1.4. Let (X, S.p,) a Sup,-metric space. For e > 0 and x € X, we define

the open ball Bs,, (7,¢) = {y € X; Sasy(y,y, ) < €}
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Definition 6.1.5. Let (X, S,3,) be a S,p,-metric space and A C X:

(i) If for every x € A there exists € > 0 such that Bg,_, (7,€) C A, then the subset

A is open.

(ii) Subset A is bounded if there exists ¢ > 0 such that S,g,(z,z,y) < € for all

x,y € A.

(iii) A sequence {z,} in X converges to z € X <= for every ¢ > 0 there exists

N € N such that Sag, (2, 2,,2) < e forall n > N.

(iv) A sequence {z,} is a Cauchy sequence if for every € > 0 there exists N € N such

that Sapy (2, T, ) < € for all n,m > N.

(v) The S,p,-metric space (X, S,s,) is complete if every Cauchy sequence in X is

convergent.

Lemma 6.1. Let (X, Sap,) be an Sap,-metric space. If a sequence in X is convergent

then the limit point is unique.

Proof. Let {x,} be a convergent sequence in X. Then for every ¢ > 0 there exists

r € X and Ny € N such that Sug, (2, z,, 2) < m for all n > N;. Assume that

there exist y € X and N, € N such that Sys, (2, Tn,y) < # for all n > N,. From

definition 6.1.3, property (ii) it follows that
SaﬁV(xv I’, y) S O'/SOé,B’Y(xa l’, xn) + Bsozﬁw(l‘a I‘, xn) + ’YSaB’Y(ya ya xn)
= (a+ B)Sapy (@, 2, 20) + VSapy(Ys Y, Tn)

< (Oé + 5)73&57(17”? T, x) + ’7250457(‘%‘”7 T, y)

<€
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for all n > max{Ny, No}. It follows that S.g,(x,z,y) = 0 thus we get x = y. ]

6.2 Some fixed point results

Definition 6.2.1. Let (X, S,3,) be a S,3,-metric space. A mapping 7': X — X is a

contraction if there exists a constant 0 < A\ < 1 such that
Sapy(Tx, Tz, Ty) < ANSapy(z,2,y)
for all x,y € X.

Theorem 6.2. Let (X, Sy,) be a complete Sqp,-metric space and T : X — X be a

contraction with 0 < \ < 7% Then T has a unique fized point v € X.

Proof. To show uniqueness, we assume that there exists z,y € X with Tx = z and

Ty =y. Then

S )\Saﬁ’y(xvxa y) (67)

since A < 1, we conclude S,g+ (2, z,y) = 0 thus we get = y. To show existence we
show that for x € X that {7z} is a Cauchy sequence in X. For n € N, we recursively

obtain that

Sopy(T"x, Tz, T ) < ASppy (T ta, T o, T"x)

< N'Sapy(z, 2, Tx) (6.8)
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For n,m € N, and from inequality (6.8), we get

Sopy(T"x, Tz, T ™)
< (a+ B)Sap, (T"z, T", T" ) + (0 + B)V2Supy (T, T, T 22)
S (a + 6),}/2(m72)5a6'y(Tn+m72x7 Tn+m72’ Tn+m71$)

+ (7)2(7’”71)‘5'0467 (Tnerfl:L,, Tnerfl’ Tn+mx)

m—1

< (a+p) Z VZiSagv(T"Hx, T, T )
=0

m—1

< (a+p) Z VNS 5o (1, 2, T

1=0

< (Oé + ﬁ)/\nsaﬁ’Y(x7 T, Tx)m

It follows that {7z} is a Cauchy sequence and since X is complete there exists xy € X
such that lim,,_.., T"x = x. Since T is continuous it follows that
ro = lim,, 0o T" Mo = lim, oo TT"x = T(lim,,_,o, T"x) = Txg. Therefore x; is a fixed

point of T'. Taking m — oo, we get

S(T"z, T"z, o) < (a+ B)A"Supy(z, 2, Tx)

1= (\?)
[
Example 10. Let X = [0,1] and define S,,(x,y, z) by
Susn(o..2) = (Ko =1+ 2y =21+ Szl ) (©:9)
apy\ T, Y, %) = 433 y 4y z 22 x . .
Then, we have that
9 2
Saﬂy(l',l‘,w) :1_6|I_w| (610)
9 2
Sapy(y,y,0) = 75ly — vl (6.11)
9 2
Sapy (2,2, w) = —|z — w| (6.12)

16
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and by Jensen’s inequality [28], it follows that

1 1 1
Sagr(2,,2) < Jlw =yl + 7ly = 2" + 5lz — 2] (6.13)

o =yl < (Jo —w| + [w—y|)*
= |z —w’ + [w —y* + 2|z — wlly — w|

<2z — w|* + 2)w — y|? (6.14)
and similar relations hold for |y — 2|? and |z — x|* we can simplify (6.13) as follows

3
§|z —wl? (6.15)

3
Saﬂﬁf(xu Y, Z) < §|J} - w|2 + |y - w|2 +
Finally using (6.10)-(6.12) we conclude that

24 16 24
S@/B’Y(m? Y, Z) S ?Saﬁ’Y(x?‘%’ w) + Esaﬁv(yaya w) + 35@5’7(27 Z,W) (616)

It follows that (X, Sagy) is a complete S,g,-metric space. Let 7" : X — X defined by

then 7' is a contraction on X as shown below.

9
SaB’Y(TvaxaTy) = E |T$ - Ty|2

2

9

1

1 1

6lz+2 y+2
|z —y|?

6

16 |z + 2[2|y + 2/

1
< < Sun(@,7,9) (6.17)

where & = < L = (3)2. Thus by theorem 6.2, T has a fixed point z* = v/2—1 € X.

24
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6.3 Some common fixed points results of mappings

Lemma 6.3. Let (X, Sy3,) be an Sy, -metric space and assume that there ezists a
sequence {x,} and {y,} such that lim, .. Sagy(Tn, Tn,yn) = 0 whenever {x,} is a

sequence such that lim,_, Sap (%, x, x,) = 0 for some x € X then lim, o yn = .
Proof. From Definition 6.1.3, property (ii) we get
Sagy (Yns Yns ) < (@ 4 5)Sapy (Yn, Yn, Tn) + VSapy (€, 2, 20)
< (a + B)ySasy(Tn, Tn, Yn) + VSaps (T, T, Tn)

It follows that lim,, o sup {(& + 5)Sapy (Tn, Tn, Yn) + VSapy (2, 2, z,)} = 0. Since Sppy (-, -, ) >

0, we get
0< nh_}rg(} inf { (o + B)Supy(Tn, T, Yn) + ¥Sapy (T, 2, 20) } (6.18)
< lim sup {(a + 5)Sagy (Tn; Tn, Yn) + VS0 (2, 2, 20)} = 0. (6.19)
Hence, we get limy,_,o0 Sagy(Yn, Yn, ) = 0. Thus we obtain lim,_,. y, = . O

Definition 6.3.1. Let (X, S.s,) be a Sys,-metric space. A pair of mappings {f, g}
are compatible iff lim,, o Sagy(f92n, f92n, gfz,) = 0 whenever {z,} is a sequence in

X such that lim,,_, fz, = lim,_, gz, = x for some z € X.

Theorem 6.4. Assume that f,g,F,G are self maps of a complete S,3,-metric space
(X, Sapy) with f(X) C F(X) , g(X) C G(X) and the pairs {f,G}, {g, F'} are compat-

ible. If

Saﬁ’y(fxa fy7 gZ)

< Amax {Sap, (G, Gy, Fz), Sy (fr, fr,Gr),
Sa,37<gz7gz7FZ>7SaB“/<fy7fy7gz)} (620>
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forxz,y,z € X with0 < A < 7%1 Then mappings f, g, F,G have a unique common fixed

point in X provided that F,G are continuous.

Proof. Let xy € X then frg = Fa; for some z; € X since f(X) C F(X) and gz = Gz
for some x5 € X since g(X) C G(X). In general, we get yo, = fo, = Fxa,,; for some
ZTonse1 € X and Yo i1 = gTons1 = Gropio for some xo,,9 € X. We shall show that the

sequence {y,} is a Cauchy sequence in X. For the sequence {y,} using the inequality

(6.20), we get

50457<y2na Yon, an-i—l)

= Sapy(fT2n, T2, 9T2nt1)

< Amax {Sap(Gran, GTan, Froni1), Sapy(fTon, [Ton, GTay),
Saﬂ7(9x2n+17 9Ton+1, FI2n+1)7 Saﬁw(f@m fron, 9$2n+1)}

< Amax {Sasy(Y2n—1, Y2n—1, Y2n)s Sapy(Y2ns Yons Yon-1),
Sa,37<y2n+17 Yon+1, 3/2n)a Saﬁv(y%, Yon, 3/2n+1)}

S )\"Y max {Saﬁ'y(an—b Yon—1, y2n)a Soz,@'y (y2n7 Yon, y2n+l)} (621)
If Saﬁ’Y(y2n7 Yon, y2n+1) > Sa,B’y(yanl, Yon—1, an) then from inequahty (621) we get

Saﬁﬁf(y?m Yon, y2n+1) S )\/7 max {Sa67<y2na Yon, y2n+1)}

< Saﬁ'y (y2n7 Yon, y2n+1)

is a contradiction. Hence, Sysy(Y2n, Yon, Y2nt1) < Sapy(Y2n—1, Y2n—1, Y2n) therefore

Seasy(Yon, Yon, Yont1) < AYSasy(Yon—1; Y2n—1, Yon)

< M2 Sapy (Yons Yon, Yon—1) (6.22)
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In a similar manner, have that

Saﬁ"/(Zanfla Yan—1, an)

< ¥Sapy(Y2ns Yon, Yon—1)

= VSapy (fTon, fT20, gT20-1)

< Mymax {Supy(Gron, Gony, Fron—1), Sapy(fTon, fon, GTan) ,
Seapy(9T2n-1, 9Tan—1, FT2n-1), Sapy(fT2n, fon, 9Tan—1)}

= yAmax {Sapy (Y2n—1, Y2n—1, Y2n—2); Sasy(Y2n, Y2n: Y2n—1)
Sapy (Y2n—1, Y2n—1, Y2n—2), Saﬁv(yma Yon, Yon—1) }

= ’Y)\ max {Sa,é"y (y2na Yon, y2n71)> Saﬂ'y(ianfla Yon—1, y2n72>}
If Sopy(Yons Yon, Yon—1) > Sapy(Y2n—1,Y2n—1, Y2n—2) then it follows that

Saﬂfy (y2n—17 Yon—1, y2n) S /\’YSaﬁfy (y2n7 Yon, y2n—1)

< )\725(157(3/2%1, Yon—1, y2n) (623)

which is a contradiction. Hence

Saﬁ’Y(?J?n—la Yon-1, y2n) S )"YSaB”/ (an—h Yon—1, an—2>

< )‘72Sa57(y2n—27 Y2n—2, Yon—1) (6.24)

Thus, from inequality (6.22) and (6.24) we obtain

Saﬁ'y (ym Yn, yn—l) < )\72504,3’Y<yn—1a Yn—1, yn—2) (625)
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where Ay? < 1 and n > 2. Tt follows by repeated application of inequality (6.25) that,

5015’7 (ym Yn, ynfl) S )\72Saﬁ'y<ynfla Yn—1, ynf2>

< (M) Sagy (1,91, %0) (6.26)

It follows from (6.26) that

Sasy(Uns Yns Ynt1) < VSagy (Yntts Ynsts Yn) < Y(AY?) " Sagy (1, v1, Yo) (6.27)

For n,m € N we get

Saﬁ'y(yna Yn, yn—i-m)
< (a4 B)SasyWns Yns Yn+1) + (@ + B)7*Sapy (Yns1: Yns1, Yng2) + -
+ (O{ + 6) (72)m72505’7 (yner*Q? Yn+m—2, yn+m71)

+ (72)milsaﬁ'y(yn+mfla Yn4+m—1, yn+m)

m—1
> a + 5 Z oz/:’fy yn+z7 Yntis yn+z+1)
=0

< (a+ B S ((1)N) Sapy (1,91, %0)

i

3

I
=)

1

< (a+ B)V(AVQ)nmSaﬁv(yb Y1, Yo)

since My? < 1, it follows that {y,} is a Cauchy sequence in a complete S,s,-metric
space, thus there exists y € X such that lim,, oo Yo, = lim, o0 fTo, = lim, oo FXo,1 =
y = lim, oo Yonr1 = lim, o gro,41 = lim, o Gxo,1o We shall now show that y is a
common fixed point for mappings f, g, F, G. Since G is continuous, we get lim,, o, G(G2,12) =

Gy and lim,,_,o G fz9, = Gy since f, G are compatible lim,,_,o Sagy (fGxay, fGxopn, G f2e,) =
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0 so by lemma 6.3 it follows that lim,,_,o, fGxa, = Gy. It follows from inequality (6.20),

Saﬂv(fGiUzm fGxay, 95132n+1)
< Amax {Sapy(GGron, GGxay, Froni1), Sapy(fGTon, Gy, GGay),

Saﬁ’y(ngn—&—la 9Ton+1, Fx2n+1)> Saﬁ’y(foQn7 fo2na gx2n+1)}

Taking the limit n — oo, we get

Saﬁ‘y/(Gy’ Gyv y)

< Amax {Sasy(Gy, Gy, y), Sapy (Gy, Gy, GY), Sapy (Y, ¥, ¥), Sapy(Gy, Gy, y) }

= )\SaB'Y<Gy7 Gy> y)

since A < 1, we get Sus,(Gy,Gy,y) = 0 thus Gy = y. In a similar manner, since
F' is continuous we get, lim, o F'Fro,11 = Fy, lim, o Fgxs,11 = Fy since g and
F are compatible, lim,_,o Sapy(9F Ton+1, 9F Tont1, Fgxoni1) = 0 and it follows that

lim,, o0 gF 9,11 = Fy. From inequality (6.20),

Socﬁw(fonv fx2n7 gFan—l—l)
S Amax {Sozﬁfy(GmZm Gx2n7 FFx2n+1)7 Sa,@fy(fx%zy fx2n7 Gx2n);

Saﬁ'y(ng2n+17 gF$2n+17 FFx2n+1)7 Saﬁ'y(fona f$2n7 ngQnJrl)}
Taking the limit n — oo, we get
Sozﬁ’Y(?/? y7 Fy)
S )\ max {Saﬁ’Y(y’ ya Fy)7 Saﬁ’Y(?J? ya y)a

Saﬁ'y(Fya Fy7Fy)>Saﬂ’7<yay7Fy>}

S )\Sa67<y7 Y, Fy)
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since A < 1, it follows that F'y = y. Furthermore, we obtain that

Saﬁ'V(fya fy7 gx2n+l)
S )\ {SQB'Y(Gy7 Gy; F]}Qn-ﬁ-l)u Saﬁfy(fy, fy, Gy), Saﬁ’y(ngTH-l; GTon+1, F$2n+1)7
Saﬁv(fya 1y, gl’znﬂ)}

Taking the limit n — oo, and Gy = F'y = y we have

Saﬂ'y(fyv fZ/7 y)
< Amax {Sap, (GY, GY,Y), Sapy (fY, fU,Y),
Saﬁ’y (yv Y, y), Soa,B'y(fya fy> y)}

- )‘Soaﬁv(fya fyv y)

since A < 1, fy = y. Finally, we have Gy = Fy = fy =y and

Sapy (Y5 Y5 9Y) = Sapy(fY, [y, 9y)

< Amax {Sap,(Gy, Gy, FY), Sapy (fY, 1Y, GY), Sasy(9Y, 99, F'Y), Sasy (Y, fy. 9y)}

= ASagy (4, ¥, 99)
It follows that gy = y. Thus we get F'y = Gy = gy = fy = y. It remains to show
that the common fixed point is unique. Assume that there exists € X such that
Fr =Gr = gx = fxr = x then

Sapy (2,2, y) = Sapy(f2, [, )

< Amax {Sapy (G, Gz, FY), Sapy(f2, fr,GY), Sapy(9y, 9y, FY), Sapy (f, [, 9y)}

= Amax {Sapy (2, 7,Y), Sapy (%, 2, 7), Sapy (T, 2,y)}

= ASapy (2, 2,Yy)
which implies that S,g,(z,z,y) = 0 thus z = y. ]
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Corollary 6.4.1. Let (X, Sy3,) be a complete Sop,- metric space and let f,g: X — X

be mappings such that

Saﬂﬁ’(fx7 fya gZ)
S )\max {Saﬂ'y<xv Y, Z)? Saﬂ’)’(fx7 fl’, IL’),

Saﬁ'y(gza gz, Z), Saﬁ’y(fyv fy7 gZ)}

forall x,y,z € X with 0 < X\ < 1 then there exists a unique fixed point for mappings f

and g.

Proof. The proof follows in a similar manner as in Theorem 6.4, by taking mappings

F and G as identity mappings. O
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Chapter 7

Conclusion

In Chapter 1, we presented the concept of a metric space and showed that a contraction
mapping on a complete metric space has a unique fixed point which set the tone and
style for sections to follow. We further presented definitions of concepts that were used

in the thesis.

In Chapter 2, we presented the concept of a b-metric and showed by relaxing the
s-triangle inequality, we can formulate the concept of a generalized b-metric type. We
proved that a contraction type mapping on a complete generalized b-metric space has
a unique fixed point. We proved that if one replaces the s-inequality of a b-metric by
a relaxed polygonal inequality, one can formulate the concept of generalized b- met-
ric space type and can prove that a contraction mapping on a complete generalized
b-metric space type has a unique fixed point. We further proved that a Kannan con-

traction on a complete generalized b-metric space type has a unique fixed point.
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In Chapter 3, we imposed a convex structure on a generalized b-metric space type
to formulated the concept of a generalized convex metric type space. We proved that a
contraction mapping in a complete generalized convex metric type space has a unique

fixed point.

In Chapter 4, we imposed a partial ordering on the set of complex numbers and ex-
tended the concept of a generalized b-metric type space to a generalized complex valued
b-metric type space. We proved that a Reich contraction type mapping on a complete

generalized complex valued b-metric space type has a fixed point.

In Chapter 5, we relaxed the rectangle inequality and formulated the concept of a
generalized G- metric space. We further presented some properties of the generalized
G}, metric type. We proved that in a complete generalized GG, metric space type with

a contraction mapping a fixed point exists.

In Chapter 6, we formulated the concept of a generalized Spy-metric space and proved

that a pair of compatible mappings satisfying a contraction condition on a complete

generalized Sp-metric space type has common fixed points.
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