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EXECUTIVE SUMMARY 

Numerous perennial rivers which flow through arid and semi-arid environments in South 

Africa, have become severely constrained as water resources abstractions are close to 

exceeding, or have exceeded the available supply and ecosystem resilience. This is a common 

phenomenon, as river basins are increasingly developed and often over allocated, in order to 

maximize socio-economic benefits through consumptive water use, often at the expense of the 

environment. Thus, managing and maintaining environmental water requirement (EWR) flow 

allocations in these circumstances becomes increasingly important but all the more 

challenging, especially during periods of water scarcity. 

The Letaba River situated in the semi-arid north-eastern region of South Africa is a typical 

example of a river system in which water governance challenges and infrastructural 

development have resulted in flows within the river no longer resembling the natural flow 

regime. This situation has improved to some extent after the establishment of river operating 

rules and an adaptive operational water resources management system. However, one of the 

major challenges with successfully implementing and managing EWR flows to date has been 

the uncertainty regarding the magnitude and influence of streamflow transmission losses (TL’s) 

on flows within the river system. TL’s along the Letaba are thought to be a significant 

proportion of streamflow during dry periods and this therefore constrains the ability to meet 

target EWR flows, as it is often the case that specified EWR releases from the Tzaneen dam 

are not adequately met further downstream at EWR target gauges. 

To ensure that water provisions and in particular EWR flows can be managed more effectively 

and efficiently in the future, it is imperative that the hydrological processes contributing to 

TL’s are quantified at various spatial and temporal scales. Considering this statement as a point 

of departure, the overall objective of this thesis was to reduce the uncertainty associated with 

TL’s by attempting to acquire an improved hydrological process understanding of the natural 

drivers of loss in this system, so that TL’s along the Letaba River can be more accurately 

quantified. This research involved, conducting detailed characterizations of hydrological 

processes along a 14 km reach of the Groot Letaba River which has similar land use activities 

and hydrological characteristics to the broader river system. 

 



 

 ii 

Particular emphasis was placed upon establishing the influence of riparian total evaporation 

(inclusive of open water evaporation) on TL’s, as this process is a major contributing factor to 

the water balance of arid and semi-arid environments, yet has seldom been incorporated or 

adequately represented into TL’s estimation procedures. These investigations were centred on 

evaluating the potential of using a satellite-based approach to acquire spatially explicit 

estimates of evapotranspiration (ET) during the low flow period in this river system (May to 

October), which typically represents a critical period with regards to water shortages. For this 

purpose, the satellite-based surface energy balance (SEBS) model and satellite earth 

observation data acquired from Landsat and Moderate-resolution imaging spectroradiometer 

(MODIS) were used to estimate ET. However, the trade-off between the spatial and temporal 

resolution associated with these data sets can limit the reliability of satellite-based ET 

modelling (except where occasionally correct).  

Consequently, the SEBS ET estimates from these data sets were used as inputs to two relatively 

simplistic approaches (actual crop coefficient or Kcact and output downscaling with linear 

regression or ODLR) to quantify ET at a moderate spatial resolution (30 m) on a daily time 

step. These ET estimates were compared against in-situ ET estimates using a one sensor Eddy 

Covariance system to quantify any uncertainties associated with the satellite-derived estimates. 

To further investigate spatial and seasonal variations in source contributions to plant water 

uptake during the investigation period, stable isotope analysis (of 18O and 2H) and a Bayesian 

mixing model were coupled with the satellite derived ET estimates. The insights acquired from 

these investigations, were then used to derive baseline estimates of TL’s. This involved using 

the satellite-derived daily ET time series in conjunction with data obtained from a parallel 

investigation focusing on quantifying the rapport between surface and sub-surface water 

storage processes.  

Initial comparisons of ET estimates acquired using the Kcact and ODLR approaches against 

ECET were fairly poor yielding RMSE values of; 1.88 and 2.57 mm d-1 and 1.10 and 2.39 mm 

d-1 (for two replicate transects), respectively. The poor performance of these techniques was 

largely attributed to the SEBS ET estimates used as inputs to these techniques, as SEBS may 

overestimate evapotranspiration during conditions of water stress.  
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This limitation was overcome using an evaporative calibration factor (termed the 

environmental stress factor or ESF) into the original SEBS formulation (SEBS0), to correct for 

the overestimation of the latent heat flux (LE) and the evaporative fraction (EF). The ESF 

calibration factor was empirically derived and then integrated into SEBS0, so as to better 

represent the influence of water stress on the EF and consequently LE. The implementation of 

the modified version of SEBS (SEBSESF) was shown to significantly improve the estimation of 

energy fluxes, which in turn resulted in an improved correlation and an increase in the 

percentage of modelled ET estimates within an acceptable accuracy range (± 15 to 30 %) when 

compared against in-situ observations.  

Through the application of this modified version of SEBS (SEBSESF), the ability of the ODLR 

and Kcact approaches to develop a time-series of daily moderate spatial resolution ET estimates 

could now be demonstrated. The use of SEBSESF ET estimates as inputs to the Kcact approach 

was shown to compare most favourably to ECET, yielding correlation coefficient and Nash-

Sutcliffe efficiency values of 0.79 and 0.60, respectively. With the ability of this satellite-based 

approach to adequately represent ET within this environment now confirmed. Stable isotope 

analysis (of 18O and 2H) and a Bayesian mixing model were coupled with the Kcact derived ET 

estimates, to further investigate spatial and seasonal variations in plant water uptake dynamics.  

The results of these investigations showed that soil water was the main contributing source to 

ET. While stream and groundwater use during transpiration was also prevalent within the study 

area and increased with aridity, the magnitude of the contribution of these sources to 

transpiration was fairly minimal and not as significant as generally reported in literature. The 

insights gained from these investigations, as well as those obtained from the quantification of 

surface and sub-surface water storage processes, assisted in deriving baseline estimates of TL’s 

along the length of river reach studied.  

In general, it was found that during the latter stages of the dry season (August to October) TL’s 

accounted for approximately 5 to 15 % of the flow in the river system, with riparian total 

evaporation and in particular transpiration the dominant contributing processes to this loss. 

Through linkages with the recent gazetting of the Letaba Management Class (resource 

objective setting) and the mandatory implementation of EWR flows, it was shown that flows 

within the river system were unable to meet low flow targets and are required to be increased 

in order to fulfil this requirement, whilst simultaneously accounting for TL’s.  
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It should be noted that while the various investigations undertaken in this study enabled the 

estimation of TL’s and the contribution of processes viz. riparian ET to TL’s, the estimates 

provided could not be verified due to the lack of reliable upstream (inflow) flow gauge data. 

Although the investigations and observations detailed in this study provide an understanding 

of the system for a limited period in time, they would substantially benefit from longer-term 

monitoring, so that the assumptions and related uncertainties that had to be factored into the 

analysis could be reduced. Overall the study has detailed key hydrological processes 

influencing TL’s along the Groot Letaba River, providing invaluable insights on existing 

knowledge gaps and contributing new knowledge to this research area. It is envisaged that this 

will enable the establishment of an improved conceptual understanding of the system, which 

may prove to be beneficial for future hydrological modelling applications in this region. 
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1. INTRODUCTION 

Globally, water scarcity has been exacerbated by the effects of increasing population growth, 

socio-economic development and climate change (Molle et al, 2010; Pittock and Lankford, 

2010). As a result, the availability of water to sustain the natural functioning of riverine 

ecosystems and the provision of ecosystem goods and services has fallen under threat (Pittock 

and Lankford, 2010). This situation has escalated river basin closure (Falkenmark and Molden, 

2008; Molle et al, 2010), which Molle et al. (2010) defines as the situation in which the 

available supply of water is unable to fulfil the water quality and quantity demands within a 

river or basin, for a period of time.  

The deterioration in the health of riverine ecosystems has been largely accredited to alterations 

in the natural flow regime of river systems, resulting from significant land-use changes and 

poor water governance (Pollard and du Toit, 2011b). Consequently, it has become increasingly 

difficult to implement Environmental Water Requirement (EWR) flows. In order to remedy 

this situation, it is of critical importance to efficiently manage and monitor abstractions of water 

from the riverine ecosystem and dam outflows, whilst simultaneously ensuring that all water 

users receive an acceptable quantity and quality of water which can be supplied and sustained 

at an acceptable assurance level without impeding the ability to maintain the natural 

functioning of the riverine ecosystem. The following sub-sections (1.1 to 1.4) provide a 

detailed discussion from a South African perspective on the current state of EWR flow 

management and some of the challenges faced to date with implementing these flows. 

 Maintaining and Managing Environmental Water Requirements 

South African environmental laws are internationally recognised and acclaimed, particularly 

the laws relating to the governance of water i.e. the National Water Act (NWA), Act 36 of 

1998.  The NWA promotes the fair and equitable use of water to all water users, whilst ensuring 

that this valuable resource is protected and managed in a sustainable manner. This is achieved 

through a holistic approach that involves the integrated management of catchments (The NWA, 

1998). The NWA is responsible for the fortification of water resources through the allocation 

of a pre-established quantity of water present in a system, to preserve the natural functioning 

of the riverine ecosystem and surrounding environments and the provision of ecosystem goods 

and services to society (Brown et al., 2010).  
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EWR flows are centred on some predefined condition, which has been established from reserve 

determination and water resources classification studies (Brown et al., 2010). To satisfy the 

aforementioned requirement, the water resource must be made available at an appropriate 

volume and quality for relevant periods. This is known locally as the Ecological Reserve 

(Brown et al., 2010) but more generally in the scientific literature as Environmental Flows or 

EWR flows (Pittock and Lankford, 2010; Smakhtin et al., 2004; Swirepik et al., 2015). 

In a South African context, numerous perennial rivers which flow through arid and semi-arid 

regions are close to being fully allocated (all available water in the system has or is close to 

being fully used up), with options for additional water users in the system being ‘closed’. 

Consequently, catchments within these regions have been adversely affected, as the ecological 

functioning and resilience of riverine ecosystems as well as surrounding environments begin 

to steadily decline, due to the minimum amount of water that is required to sustain 

environmental processes within these catchments being unavailable (Falkenmark and Molden, 

2008; Pollard and Du Toit, 2011a; Adams et al., 2016).  

This is a common phenomenon, as river basins are generally overdeveloped to maximize socio-

economic benefits through consumptive water use, at the expense of the environment (Wester 

et al., 2005; Venot et al., 2007; Falkenmark and Molden, 2008; Molle et al, 2010; Pittock and 

Lankford, 2010). Thus, managing and maintaining EWR flow allocations in these 

circumstances becomes more challenging, especially during periods of water scarcity (Pittock 

and Lankford, 2010; Adams et al., 2016). 

According to Pollard and Du Toit (2011a) during the latter periods of the 20th century, the EWR 

flows in various catchments of the South African Lowveld (a region that lies between 150 and 

600 m above mean sea level, dominated by a mixture of savanna grasses and woodland; Mucina 

and Rutherford, 2006), have been on the decline. This has been attributed to the compounded 

effects of land-use change, as well as the constrained management of water resources within 

these catchments (Pollard and Du Toit, 2011a). Consequently, these catchments have been 

adversely affected, as the ecological functioning of these riverine ecosystems and surrounding 

environments begin to steadily decline, due to the minimum amount of water that is required 

to sustain environmental processes within these catchments being unavailable (Pollard and Du 

Toit, 2011a).  
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The hydrological characteristics of South African catchments display a high degree of 

variability, which is largely due to its climatic zones which range from the tropical to  hyper-

arid. The inter and intra-annual variability in hydrological processes such as streamflow and 

runoff is notably high in the semi-arid zones (McMahon, 1979). The efficient management of 

limited water resources in these environments is therefore dependent on comprehensively 

quantifying all hydrological processes, to understand and account for how these processes 

impact the flows within these river systems (van Dijk and Renzullo, 2011). 

Presently, knowledge regarding precipitation inputs to a river system, releases from dams and 

permitted water abstractions from river systems, which are relatively easy to quantify, have 

been used to manage the flows for river operations within these environments (Riddell et al., 

2017). However, the lack of an adequate quantitative understanding of channel water losses or 

streamflow transmission losses (TL’s) remains a constraint to the effective management of 

flows especially in the arid and semi-arid environments (Lange et al., 2005; Hughes, 2008; 

Costa et al., 2013; Villeneuve et al., 2015). 

 Streamflow Transmission Losses 

The loss of water from the stream is termed TL’s, which can be defined as a reduction in the 

volume of flow in a river system between upstream and downstream points (Lane et al., 1990; 

Walters, 1990; Hughes and Sami, 1992; Cataldo et al., 2010; Costa et al., 2013; Shanafield and 

Cook, 2014; Huang et al., 2015). TL’s have been identified as a significant contributing process 

to the water balance of river systems, particularly in arid and semi-arid environments (Hughes 

and Sami, 1992; Lange, 2005; Costelloe et al., 2003; Cataldo et al., 2010; Shanafield and Cook, 

2014; Huang et al., 2015). They influence the recharge of ground water resources, attenuation 

and storage of flood waters and supports the ecological functioning of the riparian ecosystem 

(Renard, 1970; Walters, 1990, De Vries and Simmers, 2002; Morin et al., 2009; Costa et al., 

2013; Huang et al., 2015). 

Depending on the interaction between the river and the hydrogeological template the river 

traverses, a river or stream segment may be described as losing or gaining; i) if water is lost to 

total evaporation or the underlying aquifer and ii) water is gained from the discharge of ground-

water, respectively (Heath, 1983; Winter et al., 1998; Ivkovic, 2009).  
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This loss of water from the river or stream is largely regulated by three natural processes; (i) 

riparian evapotranspiration (ET), (ii) open-water evaporation or infiltration of flood waters 

stored in channel depressions or the flood plain and (iii) the recharge of ground water as water 

infiltrates the stream channel or open-water evaporation directly from the stream channel 

(Cataldo et al., 2004; 2010; Shannafield and Cook, 2014). These processes ultimately influence 

the hydraulic gradient between the surface water and the groundwater level, resulting in the 

loss of water from the stream to the underlying aquifer (Figure 1.1).  

  

 

Figure 1.1 An illustrated example of gaining stream and losing stream reaches 

(Winter et al., 1998) 

TL’s may occur in any climatic region, with the most frequent occurrences taking place in arid 

and semi-arid climatic regimes, where their effects are enhanced due to deep water tables which 

are predominantly lower than the level of water in the river channel (Cataldo et al., 2010). As 

the loss of water from the river is largely controlled by the hydraulic gradient, groundwater 

recharge by the stream occurs when the surface water level is higher than the groundwater level 

(Winter et al., 1998). 

In South Africa, these TL’s generally occur along rivers within two distinct environments; i) 

deep fractured hard rock landscapes and ii) alluvial systems (Smakhtin, 2001; Hughes, 2008). 

Rivers which traverse channels characterized by surface fracturing and structural weakness in 

hard rock environments or unconsolidated material in alluvial environments, offers the ideal 

opportunity for substantial TL’s to occur during both the initial phases of flood events, as well 

as for low flow periods (Smakhtin, 2001).  
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It should also be noted that the processes driving TL’s may be more significant and vary 

depending on type of flow within the system (high or low flow). For example, Lange (2005) 

and Morin et al. (2009) showed that there was a higher contribution to aquifer recharge during 

single high magnitude flood events, as compared to small and medium flow events. This was 

largely attributed to the flooding of overbank areas, which enhanced recharge. 

 Estimation of Streamflow Transmission Losses in South Africa 

TL’s have been well documented internationally for arid and semi-arid environments, with 

Cataldo et al. (2004) and Shanafield and Cook (2014) providing comprehensive discussions on 

the various approaches which have been implemented to understand and quantify this process. 

However, there remains a paucity of studies of this process in southern Africa (Hughes, 2008; 

Tanner and Hughes, 2015a, 2015b).  

Although, TL’s have not been adequately quantified for any South African river system, the 

magnitude of these losses is estimated to be high, especially for perennial river systems flowing 

through arid and semi-arid environments (Everson, 1999; Everson et al., 2001; Riddell et al., 

2017). Boroto and Gorgens (2003) predicted that up to 30 % of the Limpopo rivers mass 

balance may be allocated to TL’s, as a result of riparian ET and aquifer storage. More recently, 

the Letaba River Reserve Determination study (DWAF, 2006) estimated that TL’s may account 

for between 8 to 50 % of channel inflows. A 10 % loss of channel inflows to TL’s is currently 

used for flow management within the Olifants River (DWA, 2011).  

In order to reduce the uncertainty associated with implementing EWR flows, it is imperative 

that the hydrological processes contributing to TL’s are quantified at various spatial and 

temporal scales. The use of conceptual models and time series analysis is one method for the 

reliable prediction of TL’s for regions possessing long time series of streamflow data (Sharma 

and Murthy, 1994a; Costa et al., 2012).  

However, in arid and semi-arid environments the routine monitoring of streamflow is generally 

limited (Lange et al., 2005). In such circumstances, the use of process-orientated models, which 

are parameterized using representative measurements of hydrological parameters, represent the 

most suitable tool to quantify TL’s. This in turn may facilitate the improved management of 

EWR flows (El-Hames and Richard, 1998; Gheith and Sultan, 2002). 
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 Understanding and Quantifying the Contribution of Riparian Total Evaporation to 

Streamflow Transmission Losses  

According to Gu and Deutschman (2001) the proficient management of EWR flows and water 

provisions in arid and semi-arid regions is dependent on understanding and accurately 

quantifying the hydrological processes contributing to TL’s in these environments. Sharp and 

Saxton (1962) describe various key factors which have been identified to have an influence on 

the TL’s process, however only a select few parameters have been successfully incorporated 

into TL estimation techniques (Hacker, 2005). Runoff volume and velocity, the river channel 

geometry and characteristics of the channel bed material are amongst the most commonly 

utilized factors in these procedures (Hacker, 2005). Ultimately, the choice of factors used 

during the estimation of TL’s is largely controlled by the characteristics of the study-site and 

the availability of data (Cataldo et al., 2004). 

However, it is often the case that riparian ET is ignored or inadequately represented in the TL’s 

estimation procedures, even though it has been identified as a contributing process to TL’s 

(Hacker, 2005; Cataldo et al., 2010; Shanafield and Cook, 2014). Research and TL’s estimation 

techniques have tended to focus more on the flow reduction in relation to infiltration (Hacker, 

2005; Cataldo et al., 2010; Shanafield and Cook, 2014), as TL’s in most rivers generally occur 

as a result of infiltration-based losses and open-water evaporation losses (Everson et al., 2001; 

Cataldo et al., 2010). While these infiltration-based losses may generally possess a relatively 

larger contribution to TL’s, the absolute losses resulting from riparian ET cannot be discounted.  

This is particularly pertinent, to environments where total evaporation (inclusive of open water 

evaporation) is a considerably large component of the water budget (McKenzie, 2001; Hacker, 

2005; Shanafield and Cook, 2014). Everson et al. (2001) showed that losses due to riparian ET 

between two gauged sites on the Sabie River was approximately 0.32 m3 s-1, during low flow 

periods. This was a fairly significant proportion of total available flow, considering that low 

flow rates during this period were approximately 0.35 m3 s-1. This finding reaffirms the need 

to acknowledge and quantify the influence of riparian total evaporation, to successfully model 

TL’s accurately in arid and semi-arid environments. 
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While riparian ET may significantly contribute to TL’s in arid and semi-arid environments. 

The transpiration component of this process, may ultimately influence the magnitude of these 

losses, especially during arid periods (Cadol et al., 2012). Daily transpiration demands are 

generally met by available soil moisture. However, during arid conditions, riparian vegetation 

generally become increasingly reliant on stream and groundwater to fulfil a portion of their 

water requirements (Gribovski et al., 2008; Cadol et al., 2012; Lin et al., 2016; Qian et al., 

2017).   

While ET of waters stored within the river banks may enhance TL’s during high flow periods 

when flood waters exceed the bank full storage. During low flow periods, TL’s may be largely 

due to the proportion of water transpired directly from stream and groundwater. Consequently, 

the increased dependency on stream and groundwater by riparian vegetation may increase the 

magnitude of TL’s during arid conditions.  

Groundwater used during transpiration is typically replenished by subsurface flows further 

away from the stream channel or flow maybe redirected from the stream channel into the 

adjacent aquifer due to an inverse in the hydraulic gradient, ultimately resulting in a loss of 

streamflow (Winter et al., 1998; Gribovski et al., 2008; Tanner and Hughes, 2015a). According 

to Cadol et al. (2012) the volume of water lost from stream and groundwater to transpiration, 

should equal the volume of water transpired over an area of influence within and adjacent to 

the stream. 

 Estimating Riparian Evapotranspiration 

In order to adequately quantify the influence of riparian ET and particularly transpiration on 

TL’s, it is essential to develop techniques or approaches which can be used to better understand 

and accurately quantify how this process influences the rapport between subsurface water 

storage processes, streamflow and TL’s. Conventional or traditional approaches used for the 

estimation of total evaporation (for example eddy covariance, scintillometry, surface renewal), 

have been invaluable in improving our understanding of the role which total evaporation plays 

in various environmental processes (Jarmain et al., 2009b).  
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However, these techniques are only able to provide point or line averaged estimates of total 

evaporation (Lu et al., 2013; Liou and Kar, 2014; Mengistu et al., 2014; Zhuo et al., 2014). 

Consequently, the estimates which are obtained are only representative of localised conditions 

and cannot be easily extended to provide estimates of total evaporation over larger areas 

(Bastiaansen et al., 2012; Teixera and Batsiaansen, 2012; Mengistu et al., 2014; Jassas et al., 

2015).  

This can essentially be attributed to the land surface heterogeneity, which becomes more 

distinct over larger geographic areas, as well as the dynamic nature of heat transfer processes 

at larger spatial scales (Li et al., 2009; Bastiaansen et al., 2012). Furthermore, it would prove 

to be impractical and relatively costly to create a network of in-situ measurements which can 

be used to provide representative large-scale total evaporation estimates (Elhaddad and Garcia, 

2008; Bastiaansen et al., 2012). In such situations, the use of satellite earth-observation (SEO) 

data represents the most suitable and efficient alternative to obtain spatial hydrological process 

information, preferably in combination with in-situ measurements for verification purposes. 

In the last decade, ET estimation, has substantially benefited from advancements in SEO 

(Nourhi et al., 2013). SEO can be used to overcome spatial limitations generally associated 

with conventional approaches (Fernández-Prieto et al., 2012). Furthermore, SEO can be used 

to acquire data in remote and data scarce regions, as well as making allowance for seasonal and 

inter-annual comparisons of hydro-meteorological variables due to the periodic updating of 

information (Gokool et al., 2016).  

Consequently, the use of SEO data makes allowance for the relatively timeous and inexpensive 

quantification of ET, which can prove to be invaluable towards improving decision making 

with regards to water resources management. Numerous satellite-based methods have been 

formulated for the estimation of ET, with techniques predicated on semi-physical and physical 

approaches being most extensively applied for both scientific research and operational 

purposes (Bastiaanssen., et al.,1998; Senay et al., 2007; Gokmen et al., 2012). Some of the 

most commonly applied models include; Surface Energy Balance System (SEBS) (Su, 2002); 

Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998) and Mapping 

Evapotranspiration at High Resolution with Internalized Calibration (METRIC) (Allen et al, 

2007).  
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According to Li et al. (2009) the aforementioned ET models are derivatives of the Surface 

Energy Balance Index SEBI, detailed in (Menenti and Choudhury, 1993). The distinguishing 

characteristic between these ET models, as well as other frequently applied single-source 

models, is the way in which the sensible heat flux is derived. More specifically this relates, to 

defining the wet and dry limits, as well as upper and lower limits, in order to derive the sensible 

heat flux for particular boundary layer conditions, after which the latent heat flux (LE) is 

derived by subtraction (for example closure of the energy balance equation) (Li et al., 2009). 

A brief narrative of these models is given as follows: 

i. The conceptualization of the SEBAL Model is discussed in detail by Bastiaansen et al. 

(1998). SEBAL uses Thermal infrared (TIR), Visible and Near-infrared radiation data 

acquired from SEO, in conjunction with physical modules and empirical relationships, 

to derive the instantaneous and 24-hr integrated surface heat flux for each pixel within 

a satellite image (Bastiaansen et al., 1998). The SEBAL algorithm computes key hydro-

meteorological fluxes, using minimal in-situ information, to derive the instantaneous 

terms of the shortened energy balance (Bastiaansen et al., 1998).  The latent heat flux 

can be determined, as a residual of the shortened energy balance equation (Bastiaansen 

et al., 1998). Once the instantaneous latent heat flux has been derived, the EF (ratio of 

latent heat to the energy available at the land surface) for each pixel can then be 

calculated (Bastiaansen, 2000). The EF is then assumed to be constant throughout the 

day, which facilitates the estimation of the daily total evaporation (Bastiaansen et al., 

1998a; Bastiaansen, 2000; Jarmain et al., 2009; Mengistu et al., 2014).  

ii. SEBAL is used as the basis, for the conceptualization of the METRIC Model described 

in Allen et al. (2007). According to Li et al. (2009) the model was formulated, to 

overcome limitations associated with SEBAL, for the mapping of regional total 

evaporation over complex environments. The distinguishing features between SEBAL 

and METRIC is the manner in which the cold pixel value is determined and the 

upscaling of instantaneous total evaporation to daily total evaporation (Allen et al., 

2007; Li et al., 2009; Liou and Kar, 2014).  
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The energy balance conditions for the cold pixel are determined, using the alfalfa 

reference evaporation (Allen et al., 2007). The cold pixels are selected for an 

agricultural setting, whereby the biophysical characteristics ought to be akin to an 

alfalfa reference crop (Allen et al., 2007). The daily total evaporation is computed, 

using the ratio of instantaneous total evaporation and the reference crop evaporation, 

acquired from in-situ meteorological measurements at the time of satellite overpass 

(Allen et al., 2007). According to Li et al. (2009), determining the daily total 

evaporation in this way instead of assuming a constant EF for the day, allows for the 

effects of advection and changes in climatic variables during the day, to be better 

accounted for. 

iii. The conceptualization of the SEBS Model is discussed in Su (2002). SEBS estimates 

atmospheric turbulent fluxes using both SEO and meteorological data (Su, 2002; 

Mengistu et al., 2014; Liou and Kar, 2014; Pardo et al., 2014). The model consists of a 

suite of tools used for the determination of land surface physical parameters from 

spectral reflectance and radiance (Su et al., 1999), a comprehensive model for the 

approximation of the roughness length of heat transfer (Su et al., 2001) and an 

innovative procedure for the estimation of the EF on the basis of the energy balance at 

limiting cases (Su, 2002). The model applies the shortened surface energy balance 

equation to partition the available energy into sensible and latent heat flux density. 

Similar to the approach used in SEBAL, the daily total evaporation is estimated, 

assuming the EF remains constant throughout the day (Su, 2002). 

A summary of the recent applications, as well as the relative strengths and weaknesses 

associated with the aforementioned models, which are discussed in further detail in 

Bastiaanssen et al. (1998), Su (2002), Allen et al. (2007), Jarmain et al. (2009) and Li et al., 

(2009) is given in Table 1.1. Considering the advantages and disadvantages associated with 

these models, the SEBS Model was chosen for application in this study. This decision was 

based largely on the accessibility of the model, as it is open-source. Furthermore, SEBS has 

been extensively applied for the estimation of regional fluxes and total evaporation and has 

been shown, to provide relatively high precision estimates of total evaporation and terrestrial 

heat fluxes (Jarmain et al., 2009; Yang et al., 2010; Zhuo et al., 2014).
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Table 1.1 A summary of recent applications, advantages and disadvantages associated with the commonly applied satellite based ET models  

Technique Recent Operational and Research 

Applications 

Advantages Disadvantages 

SEBAL 

• ET estimation for improved water 

resources planning and management 

(Allen et al., 2011; Sun et al., 2011; 

Papadavid et al., 2012, 2017; Kamble et 

al., 2013; Kiptala et al., 2013; Jana et 

al., 2016) 

• Minimal in-situ data requirements 

• Physically based 

• Land use data not required 

• Multiple-sensor approach 

• Automatic internalized calibration 

• Atmospheric corrections not required 

• User defined hot and cold pixels 

• Generally applicable to flat terrain 

• EF is assumed to be constant for the estimation of 

daily total evaporation 

• Not open source 

METRIC 

• ET estimation for improved water 

resources planning and management 

(Allen et al., 2011; Hankerson et al., 

2012; Trezza et al., 2013; 

Spiliotopoulos et al., 2017) 

• Conceptualization of the model similar to SEBAL but 

surface slope and aspect can be considered 

• The method used to determine total evaporation 

allows for the effects of advection and changes in 

climatic variables during the day, to be better 

accounted for. 

• Uncertainty, can be introduced in the determination of 

hot and cold pixels 

• Not open source 

SEBS 

• ET estimation for improved water 

resources planning and management 

(Ma et al., 2012, 2014; Szporak-

Wasilewska et al., 2013; Matinfar and 

Soorghali, 2014; Shoko et al., 2014; 

Yang et al., 2015; Abdelrady et al., 

2016; Ferreira et al., 2016; Gokool et 

al., 2016; Mohammadian et al., 2017) 

• Apriori knowledge of actual turbulent fluxes is not 

required 

• Explicitly computes roughness length of heat transfer 

• Open source software available in ILWIS 

• Application of the model is fairly user-friendly 

• Less assumptions are made then in other techniques 

• The shortened energy balance is solved with more 

physical parameterizations 

• Dry and wetland requirement to determine the 

sensible heat flux,  

• Solution to determine turbulent heat flux is fairly 

complex 

• EF is assumed to be constant for the estimation of 

daily total evaporation 

• Pre-packaged version of the model in ILWIS has been 

parameterized for agricultural crops 
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 Satellite-based Total Evaporation Estimation using the SEBS Model 

Su (2002) provides a detailed conceptualization of the SEBS model, which is described as a 

single-source surface energy balance model, which can be used to estimate atmospheric 

turbulent fluxes, as well as the EF, using both SEO and meteorological data. A suite of tools is 

available within the model, which facilitates the determination of land surface physical 

parameters from spectral reflectance and radiance (Su et al., 1999), a comprehensive model for 

the approximation of the roughness length of heat transfer (Su et al., 2001) and an innovative 

procedure for the estimation of the EF on the basis of the energy balance at limiting cases (Su, 

2002).  

Su (2002) states that there are three primary sets of information or data are required by the 

model for the estimation of daily total evaporation. The first set of data comprises the land 

surface physical parameters viz. albedo, emissivity, temperature, fractional vegetation cover, 

leaf area index (LAI) and vegetation height. The normalized vegetation difference index 

(NDVI) is used as surrogate when vegetation information is unavailable. Information, relating 

to the land surface physical parameters can be derived from a combination of SEO data and 

ancillary information regarding the surface of interest (Su, 2002). 

The second set, relates to data which can be acquired from meteorological stations, this 

includes measurements of air temperature and pressure, humidity and wind speed at a reference 

height. The reference height is used, as the measurement height, as well as the height of the 

planetary boundary layer (PBL) for point application and regional application, respectively. 

Large scale meteorological models can be used for the estimation of this data set (Su, 2002; 

Jarmain et al., 2009; Mengistu et al., 2014).  

The third data set includes both the downward shortwave radiation and downward longwave 

radiation, which can be obtained through measurements or estimated through parameterization 

of the model (Su et al., 2001; Su, 2002). The various sets of input information are incorporated 

into three sub-models, which is then used for the computation of the components of the 

shortened energy balance, the roughness length of heat transfer and the EF on the basis of the 

energy balance at limiting cases (Su, 2002). 
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The use of SEO data within the SEBS Model allows for an improved spatial representation of 

total evaporation estimates. Furthermore, the open source nature of the model, its strong 

physical conceptualization and relatively user-friendly operability, make it an attractive tool, 

for the provision of spatially representative total evaporation data.  

 Determination of total evaporation within the SEBS Model 

Satellite earth observation data and meteorological data are used, to derive the various input 

parameters required for the estimation of total evaporation within the SEBS Model. The 

formulation of SEBS (Su, 2002) is given as follows: 

Derivation of surface energy balance terms 

The SEBS Model employs the shortened surface energy balance equation (Equation 1.1) and 

partitions the available energy into sensible and latent heat fluxes. 

Rn = 𝐺𝑜 + 𝐻 +  𝜆𝐸        (1.1) 

Where Rn is net radiation (W m-2), G0 is soil heat flux (W m-2), H is sensible heat flux  

(W m-2) and λE is the latent heat flux (W m-2). 

The equation to determine the net radiation term in Equation 1.1 is given as: 

Rn  =  (1 −  𝛼)𝑅𝑠𝑤𝑑 +  𝜀𝑅𝑙𝑤𝑑 −  𝜀𝜎𝑇𝑜
4     (1.2) 

Where α is the albedo (surface reflectance), Rswd is the downward solar radiation (W m-2), Rlwd 

is the downward longwave radiation (W m-2), ε is the emissivity of the surface, σ is the Stefan-

Boltzman constant and To is the surface temperature (K). 

The soil heat flux equation is parameterised as: 

Go  = 𝑅𝑛[Γ + (1 − 𝑓𝑐)(Γ𝑠 − Γ𝑐)]      (1.3) 

Where the ratio of soil heat flux to net radiation Гc is assumed to be 0.05 for a fully vegetated 

canopy (Monteith, 1973) and Гs is assumed to be 0.315 for a bare soil surface (Kustas and 

Daughtry, 1989). The fractional vegetation coverage fc is used to perform an interpolation 

between the aforementioned limiting cases, to separate land surfaces into non-vegetated, 

partially vegetated and densely vegetated surfaces. 
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SEBS makes use of the Monin-Oukhov similarity theory (MOST) for the estimation of the 

sensible and latent heat fluxes. MOST relates surface variables and variables in the atmospheric 

surface layer (ASL) to surface fluxes (Su et al., 2001). Su (2002) states that the similarity 

relationships for profiles of the mean wind speed and mean temperature difference (θo - θa) in 

the ASL, are usually written in integral form as: 

u  = 
𝑢∗

𝑘
[ln (

𝑧−𝑑𝑜

𝑧𝑜ℎ
) − 𝜓𝑚 (

𝑧−𝑑𝑜

𝐿
) + 𝜓𝑚 (

𝑧𝑜𝑚

𝐿
)]     (1.4) 

θo - θa = 
𝐻

𝑘𝑢∗𝜌𝐶𝑝
[ln (

𝑧−𝑑𝑜

𝑧𝑜ℎ
) −  𝜓ℎ (

𝑧−𝑑𝑜

𝐿
) +  𝜓ℎ (

𝑧𝑜ℎ

𝐿
)]     (1.5) 

Where z is the reference meteorological height (m), u* is the friction velocity (m s-1), ρ is the 

density of air (kg m-3), Cp is the heat capacity of dry air (Jkg-1), k = 0.4 is von Karman’s 

constant, do is the zero plane displacement height (m), zom is the roughness height for 

momentum transfer (m), θo and θa are the potential surface temperature and potential air 

temperature at height (z) respectively (K), zoh is the scalar roughness height for heat transfer, 

ψm and ψh are the stability correction factors for momentum and heat transfer respectively and 

L is the Obukhov length (m), which is given as: 

L =  
𝑝𝐶𝑝𝑢∗

3𝜃𝑣

𝑘𝑔𝐻
         (1.6) 

Where g is the acceleration due to gravity (m s-2) and θv is the potential virtual temperature near 

the surface (K). The stability length L is a function of the sensible heat flux H, which in turn is 

dependent on u* and is calculated in equation 1.6 as a function of θ and u*. Consequently, 

iterative procedures are required for the estimation of H and u* (Jarmain et al., 2009). 

Derivation of the roughness length for heat transfer 

The above derivations require the aerodynamic (do and zom) and thermal dynamic roughness 

parameters (zoh) to be known (Su, 2002). The turbulence model proposed by Massman (1997) 

can be used, to estimate the aforementioned aerodynamic parameters when near surface wind 

speed and vegetation parameters (LAI and wind speed) are available. However, when 

information with regards to the abovementioned vegetation parameters are unavailable, the 

aerodynamic parameters can be related to satellite-derived vegetation indices (Su, 2002). 
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According to Su and Jacobs (2001) zom can be estimated, using empirical relationships with 

NDVI. Empirical relationships are also used for the estimation of vegetation height (h) and do 

(Brutsaert, 1982). The estimation of these parameters is given as: 

Zom = 0.005 + 0.5 (
𝑁𝐷𝑉𝐼

𝑁𝐷𝑉𝐼𝑚𝑎𝑥
)

2.5

       (1.7) 

h = (
𝑧𝑜𝑚

0.316
)         (1.8) 

do = 
2

3
ℎ          (1.9) 

The scalar roughness height for heat transfer can be derived as: 

zoh = 
𝑧𝑜𝑚

exp (𝑘𝐵−1)
         (1.10) 

Where B-1 is the inverse Stanton number, a dimensionless heat transfer coefficient 

The kB-1 value can be determined using the extended physical model proposed by Su et al. 

(2001), which is given as: 

kB-1  = (
𝑘𝐶𝑑

4𝐶𝑡
𝑢∗

𝑢(ℎ)
1−𝑒

𝑛𝑒𝑐
2

) 𝑓𝑐
2 + 2𝑓𝑐𝑓𝑠

𝑘
𝑢∗

𝑢(ℎ)
 x 

𝑧𝑜𝑚
ℎ

𝐶𝑡
∗ + 𝑘𝐵−1𝑓𝑠

2    (1.11)  

Where Cd is the drag coefficient of foliage elements assumed to possess a value of 0.2, Nec is 

the within-canopy profile extinction coefficient, u(h) is the horizontal wind speed at the top of 

the canopy, fc is the fractional vegetation cover and fs is its complement, Ct is the heat transfer 

coefficient of the leaf and bounded between 0.005N ≤ Ct ≤ 0.075N (N is the number of sides 

of the leaf which participates in heat transfer process) for most canopies and environmental 

conditions. 

Ct* is the heat transfer coefficient of the soil which is given as Ct* =𝑃𝑟

−2

3  x 𝑅𝑒∗

−1

2 , where Pr is the 

Prandtl number and Re* is the roughness Reynold number. According to Brutsaert (1982) the 

kB-1 for a bare soil surface can be estimated as: 

kBs
-1  = 2.46(𝑅𝑒∗)

1

4 − ln (7.4)      (1.12) 
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Determination of the evaporative fraction on the basis of the energy balance at limiting cases 

Su (2002) discusses the derivation of the EF on the basis of the energy balance at limiting 

cases. In SEBS, the actual sensible heat flux (H) is constrained in the range set by the sensible 

heat flux at the wet limit (Hwet) and the sensible heat flux at the dry limit (Hdry) (Su, 2002).  

Due to the limitation of soil moisture, the latent heat flux (or the evaporation) becomes zero, at 

the dry limit, and the sensible heat flux attains its maximum value (Su, 2002). The sensible 

heat flux at the dry limit is given as: 

λEdry  = 𝑅𝑛 − 𝐺𝑜 − 𝐻𝑑𝑟𝑦   = 0, or      (1.13) 

Hdry =  𝑅𝑛 − 𝐺𝑜  

The sensible heat flux attains its minimum value, at the wet limit, as evaporation can take place 

at potential rates (evaporation is constrained, only by the energy available for given surface 

and atmospheric conditions). The sensible heat flux at the wet limit (Hwet) is given as: 

Hwet =  𝑅𝑛 − 𝐺𝑜 −  𝜆𝐸𝑤𝑒𝑡       (1.14) 

Su (2002) combines Equation 1.14 with an equation similar to the Penman-Monteith 

combination equation, in order to derive Hwet. Menenti (1984) grouped the bulk internal and 

external resistances to express the combination equation as:  

λE  =  
Δ𝑟𝑒(𝑅𝑛−𝐺𝑜)+𝑃𝐶𝑝(𝑒𝑠−𝑒𝑎)

𝑟𝑒(𝛾+ Δ)+ 𝛾𝑟𝑖
       (1.15) 

Where Δ is the rate of change of the saturation vapour pressure with temperature (hPa K-1), γ 

is the psychometric constant (hPa K-1), es and ea are the saturation vapour pressure (hPa) and 

actual vapour pressure (hPa) respectively, re is the aerodynamic resistance (s m-1) and ri is bulk 

surface internal resistance (s m-1). The roughness length for heat transfer and vapour transfer 

are assumed to be equal, in Equation 1.15 (Brutsaert, 1982). The Penman-Monteith equation is 

only valid for a vegetated canopy, whereas by definition Equation 1.15 is also valid for a soil 

surface with defined bulk internal resistance (Su, 2002).  Su (2002) states that it may prove 

difficult to estimate the latent heat flux, using Equation 1.15. This is largely due to the difficulty 

in determining the bulk internal resistance (ri), which is regulated by water availability (Su, 

2002). 
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An alternative is proposed by Su (2002), to circumvent the direct use of ri for the estimation of 

λE. By definition, the internal resistance under the wet limit is equal to zero. Su (2002) applied 

this property to Equation 1.15 and altered the parameters accordingly to reflect wet limit 

conditions, so that the sensible heat flux at the wet limit can be given as: 

Hwet =  
(𝑅−𝐺)−(

𝑝𝐶𝑝

𝑟𝑒𝑤
)(

𝑒𝑠−𝑒𝑎
𝛾

)

1+ 
Δ

𝛾

       (1.16) 

The external resistance is also dependent on the Obukhov Length L, which is a function of the 

sensible heat flux H and friction velocity u* (Equations 1.4-1.6). As the Obukhov Length has 

been previously determined, the external resistance rew can be estimated from Equation 1.5 as: 

rew = 
1

𝑘𝑢∗
[ln (

𝑧−𝑑𝑜

𝑧𝑜ℎ
) −  𝜓ℎ (

𝑧−𝑑𝑜

𝐿𝑤
) + 𝜓(

𝑧𝑜ℎ

𝐿𝑤
)      (1.17) 

The stability length at the wet limit can be given as: 

Lw  = 
𝜌𝑢∗

3

0.61𝑘𝑔
𝑅𝑛−𝐺𝑜

𝜆

        (1.18) 

The relative evaporation can then be given as: 

 Λr  =  
𝜆𝐸

𝜆𝐸𝑤𝑒𝑡
         (1.19) 

=  1 − (
𝜆𝐸𝑤𝑒𝑡− 𝜆𝐸

𝜆𝐸𝑤𝑒𝑡
) 

Substitution of Equations 1.1, 1.13 and 1.14, into Equation 1.19 and after some algebra yields: 

Λr  =  1 − 
𝐻−𝐻𝑤𝑒𝑡

𝐻𝑑𝑟𝑦−𝐻𝑤𝑒𝑡
         (1.20) 

The evaporative fraction is given as: 

Λ =  
𝜆𝐸

𝑅𝑛−𝐺𝑜
 

    =  
Λ𝑟𝜆𝐸𝑤𝑒𝑡

𝑅𝑛−𝐺𝑜
         (1.21) 
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Determination of the actual total evaporation 

The actual latent heat flux can be determined by inverting Equation 1.21.  The daily soil heat 

flux is assumed to be close to zero, because the diurnal downward flux and the nocturnal 

upward flux, approximately balance each other (Jarmain et al., 2009). Subsequently, the actual 

total evaporation can be computed by assuming the EF is constant throughout the day. The 

actual total evaporation is estimated as:  

Edaily  =  
8.64x107Λ24(𝑅𝑛−𝐺𝑜)

𝜆𝜌𝑤
        (1.22) 

Where Edaily is the actual daily total evaporation (mm), Λ24 is the daily average EF.  

 Limitations associated with satellite earth observation data and the pre-packaged 

version of the SEBS Model 

Despite the fact that, there are several advantages associated with the use of SEO data for the 

estimation of total evaporation there does exist a number of general, as well as technique 

specific constraints which can limit the effectiveness of these technologies. Cloud 

contamination within an image, satellite revisit and repeat cycles and lack of trained personnel 

to process and analyse imagery, are general limitations which can significantly impede the 

application of satellite based technologies and data, for the estimation of total evaporation 

(McCabe and Wood, 2006; Li et al., 2008; Jarmain et al., 2009).  

It has also been shown that, satellite-based ET estimation approaches often overestimate ET in 

areas of arid and semi-arid climatic regimes in which the availability of water is limiting ET 

(Seneviratne et al., 2010). Studies undertaken by Timmermans and Meijerink (1999), 

Lubczynski and Gurwin (2005) and van der Kwast et al. (2009) in these environments, have 

shown that satellite-based ET estimation models may overestimate ET in the magnitude of 0.50 

to 3.00 mm d-1, as a result of an under-estimation of the sensible heat flux (H). 
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The abovementioned challenges generally relate to satellite-based approaches for the 

estimation of ET, however, there are technique specific limitations which also need to be 

considered. The pre-packaged version of SEBS in the Integrated Land and Water Information 

System (ILWIS) has been found to be extremely sensitive to particular model parameters. 

Consequently, any uncertainty associated with these parameters will be further exacerbated in 

the model output.  

These parameters include; (i) the land surface temperature and air temperature gradient (Su, 

2002), (ii) the selection of the fractional vegetation cover formula (Lin, 2006; Badola, 2009), 

(iii) the height of wind speed measurements and the displacement height (Timmermans et al., 

2005; van de Kwast et al., 2009) and (iv) the spatial heterogeneity of the area of interest 

(McCabe and Wood, 2006; Li et al., 2008). Gibson et al. (2011) provides a detailed discussion 

of these parameters and the potential uncertainties which may be introduced to the model 

output.  

In addition to the aforementioned limitations, the daily ET is computed in SEBS by assuming 

that the evaporative fraction remains constant throughout the day (Su, 2002). The findings of 

research embarked upon by Stewart (1996), Lhomme and Elguerro (1998), Gentine et al. 

(2007); (2011) and Mkhwanazi and Chavez (2013), have shown that this assumption can lead 

to inaccuracies in the daily actual total evaporation estimate, especially when advective 

conditions are prevalent (Gentine et al., 2007; Mkhwanazi and Chavez, 2013). 

 SEBS Modifications 

Surface energy balance ET estimation models such as SEBS do not explicitly account for the 

influence of soil moisture dependency and biophysical factors during the derivation of fluxes 

and ET (Gokmen et al., 2012; Pardo et al., 2014). The individual influence of soil water 

evaporation, transpiration, soil moisture and interception storage are all implicitly 

encompassed in input variables, such as the land surface temperature LST, ignoring their direct 

impact on fluxes and ET (Gokmen et al., 2012; Wu et al., 2014; Li et al., 2015). While, the 

aforementioned approach may be suitable for environmental settings in which the available 

energy is limiting ET such as in the high latitude regions, it may prove to be inadequate where 

water availability is the principle limiting factor to ET, such as in arid and semi-arid 

environments (Seneviratne et al., 2010).  
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Hence, satellite-based ET modelling necessitates an improvement for the estimation of fluxes 

for different land covers experiencing conditions of water stress (Gokmen et al., 2012; Wu et 

al., 2014). Due to this limitation in implementing satellite-based surface energy balance ET 

estimation models during conditions of water stress, Gokmen et al. (2012) and Pardo et al. 

(2014) proposed the implementation of modified versions of SEBS, which involves the 

integration of a scaling factor into the original SEBS formulation (SEBS0). While studies by 

Wu et al. (2014) and Li et al. (2015) discuss alternative approaches in deriving scaling factors 

that can be integrated with SEBS0, these approaches are essentially based on the procedure 

described in Gokmen et al. (2012).  

Gokmen et al. (2012) proposed a scaling factor which considers the influence of soil moisture 

(SM) on ET estimates (SEBSSM), where SM estimates can be acquired from in-situ data or 

satellite based approaches. The rationale for introducing this scaling factor into SEBS0 was to 

correct the underestimation of H, so that an overestimation of EF and LE can be avoided 

(Gokmen et al., 2012). This scaling factor can be integrated in SEBS0 during the computation 

of the Kb-1 parameter, which is used in the estimation of zoh and is given as follows: 

Scalefactor = 𝑎 +  
1

1+exp (𝑏−𝑐∗𝑆𝑀𝑟𝑒𝑙)
      (1.23) 

SMrel = 
𝑆𝑀−𝑆𝑀𝑚𝑖𝑛

𝑆𝑀𝑚𝑎𝑥 −𝑆𝑀𝑚𝑖𝑛
                   (1.24) 

New_Kb-1 = 𝐾𝑏−1 ∗ 𝑆𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟      (1.25) 

Where a, b and c are coefficients of a sigmoid function, which can be determined by performing 

an optimization, which involves reducing the error between observed and modeled H values 

for a particular area of interest. Gokmen et al. (2012) states that a sigmoid function was chosen 

to derive Scalefactor values, as it significantly lowers the Kb-1 value for relatively dry conditions, 

while the influence of soil moisture on Kb-1 is not significant for wet conditions. Therefore, 

this approach allows for an improved representation of fluxes and ET for water limited 

environments, as well as enabling the distinct behavior of irrigated fields surrounded by 

extremely dry landscapes to be captured (Gokmen et al., 2012). 
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The second approach detailed by Pardo et al. (2014) (SEBSNDVI) involves the application of a 

scale factor which considers the influence of temperature and vegetation over fluxes and is 

given as: 

EFscalefactor  =  (𝑠𝑐𝑎𝑙𝑒_𝑇𝑠𝑢𝑟𝑓
𝑎 )[exp(𝑏 ∗ 𝑁𝐷𝑉𝐼)]    (1.26) 

scale_Tsurf = 
𝐿𝑆𝑇𝑚𝑎𝑥 −𝑇𝑠𝑢𝑟𝑓

𝐿𝑆𝑇𝑚𝑎𝑥
       (1.27) 

Where LST is the land surface temperature (K) and LSTmax is fixed at 320.15 K. The parameters 

in EFscalefactor can be fitted using a Marquardt algorithm. Once EFscalefactor has been determined 

it is then applied to the EF calculated in SEBS0 prior to the computation of LE (Pardo et al., 

2014). 

EFnew = 𝐸𝐹𝑜𝑙𝑑 ∗ 𝐸𝐹𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟                   (1.28) 

In order to ensure closure in Equation 1.1, H should also be recalculated using EFnew as follows 

(Pardo et al., 2014): 

Hnew = (1 − 𝐸𝐹𝑛𝑒𝑤)(𝑅𝑛 − 𝐺0)                 (1.29) 

Pardo et al. (2014) evaluated the SEBS0 algorithm, as well as the aforementioned modifications. 

The results of the study indicated that while the application of both the SEBSSM and SEBSNDVI 

approaches resulted in an improved agreement between the observed and modelled H. Only 

the SEBSNDVI, was shown to have significantly improved modelled LE and EF when compared 

with observed values. 

 Determining Source Contribution to Evapotranspiration  

Previous research has demonstrated how conventional and SEO techniques can provide fairly 

accurate estimates of riparian ET. However, these estimates often represent the total water used 

by vegetation from multiple sources, such as; soil, stream and groundwater. According to 

Tanner and Hughes (2015) there remains a fair degree of uncertainty regarding the contribution 

of groundwater to riparian ET. Consequently, identifying source contribution to ET can prove 

to be of added benefit to improving our understanding of the role which riparian ET plays in 

the TL’s process.  
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Since the uptake of water during transpiration does not result in the fractionation of  

oxygen-18 (18O) and deuterium (2H) within suberized tissue (non-photosynthesising tissue) 

(White et al., 1985; Dawson, 1993; Dawson and Ehlringer, 1993; Evaristo et al., 2017)., the 

isotopic composition of 18O and 2H of xylem water should represent the sources present within 

the root zone (Evaristo et al., 2017). Consequently, stable isotope analysis can be used to 

determine the proportion of source contribution to ET (February et al., 2007; Eamus et al., 

2015; Lin et al., 2106; Ma and Song; 2016). 

According to Craig (1961), there exists a linear relationship between 2H and 18O within 

freshwater that can be explained by the global meteoric water line (GMWL), which can be 

described as: 

δ2H = 8𝛿 18O + 10        (1.30) 

According to Gat (2005) the relationship described in Equation 1.30 can be affected by 

meteorological conditions, such as temperature and relative humidity, as well as by processes 

such as evaporation, condensation and mixing). Therefore, the linear relationship between 2H 

and 18O at a particular site may differ from the GMWL and may be better described using a 

Local Meteoric Water Line (LMWL).  

The GMWL or LMWL provides a reference point by which localized differences in water can 

be characterized, subsequently facilitating the source of the water to be determined. For 

example, free evaporative processes may typically result in a line with a slope and intercept 

that is less than 8 and 10, respectively. The shallower slope can be attributed to the non-

equilibrium kinetic effects that occur during evaporation, resulting in the fractionation of 

Hydrogen and Oxygen isotopes (Kendall and McDonnell 1998; February et al., 2007). 

Subsequently, fractionation may result in waters exhibiting distinct isotopic compositions 

indicative of the source of water or the processes that formed them (Kendall and McDonnell 

1998).  

Stable isotope techniques have been extensively used to provide a qualitative understanding of 

the source of water uptake by vegetation, as well as to quantify the amount of water which is 

used from a particular source (Zencich et al., 2002; Holland et al., 2006; Feikema et al. 2010; 

Goedhart and Pataki 2011; Ma and Song; 2016; Lin et al., 2106; Qian et al., 2017).  
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Kendall and McDonell (1998) define stable isotopes, as atoms which do not decay over time 

to form other isotopes, however they can be fashioned by the decay of other radioactive 

isotopes. The concentration of 18O and 2H in the plant xylem water provides an indication of 

the isotopic concentration at the source, this is due to fractionation not taking place during plant 

water uptake (White et al., 1985). The isotopic composition of water (2H and 18O) is expressed 

in delta notation relative to the Vienna Standard Mean Oceanic Water (VSMOW), as: 

δ = (
Rsample

Rstandard
− 1)*1000        (1.31) 

Where δ (expressed in ‰ notation) represents changes in the ratio of the uncommon to common 

isotopes (2H/1H and 18O/16O) for the sample (Rsample) and standard (Rstandard). The value of δ (‰) 

can be positive or negative, contingent to the isotopic concentration of the water sample being 

enriched or depleted relative to the VSMOW.   

According to Orrelana et al. (2012) the general isotopic concentration of xylem water 

originates from a mixture of multiple sources with each one potentially, being isotopically 

different. Therefore, isotopic analyses can also be used to quantify the quantity of water 

acquired from a particular source through the application of a mixing model (Orrelana et al., 

2012). The mixing model is predicated on a mass balance approach, whereby the concentration 

of isotopes in the plant xylem water is representative of the weighted average of isotopic 

concentrations from the various sources of water (Orrelana et al., 2012).  

Several studies have quantified the proportion of source contribution to ET using mixing 

models, some of which include Snyder and Williams (2000), Zencich et al. (2002) and Feikema 

et al. (2010), Ma and Song (2016) and Qian et al. (2017). The advantage of conducting 

investigations using stable isotope techniques is the non-destructive nature of the sampling 

procedures and the ability to clearly differentiate between different sources of water use 

(Ehlringer and Dawson, 1992; Yang et al., 2010). However, the successful application of the 

technique can be limited by data interpretation and the restricted number of possible water 

sources represented within the mixing model (Yang et al., 2010; Orrelana et al., 2012). 

 Research Aims, Objectives and outline of thesis structure 

As mentioned previously, it is imperative that all hydrological processes contributing to TL’s 

are understood and accurately quantified, so that water provisions and in particular EWR flows 

can be managed competently.  
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Considering this statement as a point of departure, the overall aim of this thesis was to improve 

the hydrological process understanding of TL’s by attempting to understand and quantify the 

key hydrological processes which contribute to TL’s along the Letaba River. The Letaba River 

is a typical example of a river system in which EWR flow management has been adversely 

impacted by the lack of a quantitative understanding of TL’s (DWA, 2014) and therefore 

provides an ideal study site to perform the research necessary to fulfil the objective of this 

thesis. This research involved, conducting detailed characterizations of hydrological processes 

along a 14 km reach of the Groot Letaba River.  

Particular emphasis was placed upon establishing the influence of riparian ET on TL’s. This 

was centred around evaluating the potential of using a satellite-based approach to estimate ET 

along the length of river reach studied; assessing both the strengths and limitations associated 

with the implementation of a satellite-based ET model and requisite SEO data sets, to determine 

the most suitable and pragmatic approach which can be adopted for water resources 

management purposes.  

Furthermore, these investigations were supplemented by a parallel study which focused on the 

continuous monitoring of the groundwater phreatic surface and hydraulic characterisation of 

aquifer properties, to determine baseline estimates of losses and gains along the river (Riddell 

et al., 2017). It was envisaged that the improved hydrological understanding gained from this 

integrated analysis along the portion of river reach studied, would enable the comprehensive 

and quantitative conceptual representation of the system, which can then be integrated into 

future hydrological modelling applications. Figure 1.2 illustrates the approach adopted to fulfil 

the aim and objectives of this particular study.  

Considering the overall aim of the study, the thesis is divided into two parts which 

progressively documents existing and innovative approaches which are intended to fulfil the 

following specific objectives; 

i. Development of a satellite based approach and time-series to adequately represent ET 

within the study area. 

ii. Employ a multi-disciplinary approach, using stable isotope analysis, hydrological and 

geohydrological data in conjunction with the satellite-derived ET time-series to 

quantify TL’s within the study area. 
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Figure 1.2 The conceptual framework of the study 

i. O1: Selection of satellite based 

evaporation model  

• Identify a model that has been extensively 

applied and shown to be a credible approach 

for the estimation of ET and energy fluxes. 

i. Evaluating the potential of using satellite earth observation data to quantify the contribution 

of riparian total evaporation to streamflow transmission losses: A case study of the Groot 

Letaba River  

• In arid and semi-arid environments, total evaporation is a considerably large component of the water 

cycle. To what extent does riparian total evaporation, influence the magnitude of TL’s that occur?  

i. O1: Selection of requisite SEO data sets 

• Identify requisite SEO data sets which can be 

used to capture ET and energy fluxes at 

representative spatial and temporal resolutions. 

• Freely available. 

i. O1: Establish whether the model and the SEO data sets that are used, can adequately 

represent ET and energy fluxes within the study area at appropriate spatial and temporal 

i. Evaluation of model performance through comparisons against in-situ ET measurements 

• O1: Establish if there are limitations associated with the satellite-based ET model and SEO data sets 

that are used. 

• O2 and O3: Identify and evaluate potential solutions to address these limitations. 

 

ii. Identify seasonal and spatial variations in plant water use dynamics 

• O4: Characterize seasonal and spatial trends in plant water uptake through 

the development of a satellite-derived ET time series and stable isotope 

analysis. 

Synthesis of key findings and recommendations 

ii. Determine the contribution of total evaporation to TL’s along 

the length of river reach studied 

• O5: Employ a mass balance approach with the aim of verifying the ET 

losses measured in this study and determine the contribution of these 

losses to TL’s. 
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Considering the significant role total ET plays in the water balance of river systems flowing 

through arid and semi-arid environments, it is essential to develop techniques or approaches 

which can be used to accurately quantify riparian ET at varying spatial and temporal scales, to 

better understand and quantify how this process influences the magnitude of TL’s in these 

environments.  

While the use of satellite-based ET models and SEO data provide an opportunity to acquire 

such information. The trade-off between the spatial and temporal resolution of available 

imagery (Gokool et al., 2016), may restrict the feasibility of using SEO data for operational 

water resources management. Previous studies inter alia by; Hong et al. (2011), Spiliotopolous 

et al. (2013) and Bhattarai et al. (2015) have reported potential solutions to address spatio-

temporal limitations, through the application of downscaling/disaggregation procedures. 

However, the success of these techniques is ultimately dependent on the ability of the satellite-

based ET model to capture ET for a particular area of interest, within an acceptable accuracy 

range (AAR) (± 15 to 30 %) when compared to in-situ observations (Kalma et al., 2008; 

Seneviratne et al., 2010; Gibson, 2013). 

Given these limitations, an evaluation study was undertaken by selecting an appropriate 

satellite-based ET model and the requisite SEO data sets, to model ET within the study area. 

The following hypothesis and sub-objectives were tested in chapters 2 and 3 respectively.  

H0: The selected satellite-based ET model and associated data sets are able to adequately 

represent spatio-temporal dynamics in ET within the study area 

O1: Evaluate the performance of the selected satellite-based ET model and associated data 

sets through comparisons against in-situ measurements of ET (chapter 2). 

O2: Identify limitations associated with the SEO data sets and evaluate potential solutions to 

address these limitations (chapter 2). 

O3: Identify limitations associated with the satellite based ET model and evaluate potential 

solutions to address these limitations (chapter 3). 
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Once the aforementioned objectives were achieved and the ability of the model to adequately 

represent ET within the study area confirmed, seasonal and spatial variations in plant water use 

dynamics could then be investigated. As previously mentioned, there remains a fair degree of 

uncertainty regarding the contribution of groundwater to riparian ET. Consequently, the 

following hypothesis and sub-objective were tested in chapter 4. 

H0: Riparian vegetation within the study area become increasingly reliant on groundwater to 

fulfil a portion of their daily water use requirements during arid conditions. 

O4: Quantify spatial and seasonal variations in the proportional and volumetric contribution 

of sources to ET by developing a daily moderate spatial resolution satellite-derived ET time 

series and coupling this data with stable isotope analysis. 

Once spatial and seasonal variations in the contribution of sources to ET was determined, the 

following hypothesis and sub-objective were tested in chapter 5.  

H0: Riparian ET is a key contributing process to TL’s within the study area. 

O5: Employ a mass balance approach with the aim of verifying the ET losses measured in this 

study and determine the contribution of these losses to TL’s. 

A synthesis of the key findings relating to the various methodologies that were adopted to fulfil 

the aim and objectives of this thesis, as well as recommendations for future studies are 

presented in chapter 6. A brief introduction, as well as Figure 1.2 (with the relevant parts being 

highlighted) is presented before the beginning of each chapter, to provide an indication of the 

research that is to be discussed. 

It should also be noted that chapters 2 to 5 of this thesis will be presented as a series of research 

papers which have been submitted for publication in ISI rated peer-reviewed journals, 

following the approach that has been accepted by the University of KwaZulu-Natal. While 

every attempt was made to present each chapter as an independent investigation, some overlap 

was inevitable due to the structure adopted in this thesis.  
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This overlap, primarily relates to the description of the study area and the satellite-based ET 

model that was selected. A traditional literature review is not provided in this thesis, instead a 

review of relevant literature relating to the objective and implemented methodology is 

presented in each research paper. The referencing style for each of the research papers 

conforms to the journal in which the paper has been published or submitted to, in accordance 

with University of KwaZulu-Natal thesis guidelines. 
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 ***** 

Lead into chapter 2: While the use of SEO data provides an opportunity to acquire spatially 

explicit hydrological process information, the trade-off between the spatial and temporal 

resolution of available imagery and the ability of the associated models to accurately estimate 

fluxes and ET in different environmental settings, may restrict the feasibility of using SEO data 

for operational water resources management. The objective of chapter 2 was to evaluate an 

appropriate satellite-based ET model and the requisite SEO data sets, through comparisons 

against in-situ measurements of ET. This was done to identify potential limitations to possible 

solutions for improving the mapping of ET within the study area. Supplementary information 

and/or data which was used during the various analyses undertaken in this chapter but not 

presented herein, are provided in Appendix A. 
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ABSTRACT 

 
The use of satellite earth observation data for the estimation of evapotranspiration has been well 

documented and represents a viable approach for the quantification of riparian water use at landscape 

to regional scales. However, the trade-off between the spatial and temporal resolution associated with 

imagery can limit the reliability of satellite-based evapotranspiration modelling. This study investigated 

two approaches to quantify evapotranspiration at a moderate spatial resolution (30 m) on a daily time 

step, for a perennial river flowing through a semi-arid, savanna landscape. The Surface Energy Balance 

System (SEBS) Model was used to derive daily evapotranspiration from satellite imagery.  

                                                 

 

1S Gokool, C Jarmain, ES Riddell, A Swemmer, R Lerm and KT Chetty. 2017. Quantifying riparian total evaporation along the Groot Letaba river: A comparison between 
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The actual crop coefficient (Kcact) and output downscaling with linear regression (ODLR) approaches 

were then evaluated by comparing their respective estimates against Eddy covariance (ECET) 

measurements at two locations. Comparisons of ET estimates acquired using the Kcact and ODLR 

approaches against ECET, yielded RMSE values of; 1.88 and 2.57 mm d-1 and 1.10 and 2.39 mm d-1 (for 

two replicate transects), respectively. The poor performance of these techniques was largely attributed 

to the SEBS ET estimates used as inputs to these techniques, as SEBS may overestimate 

evapotranspiration during conditions of water stress.  

 

Keywords: Total evaporation; Satellite imagery; SEBS; Infilling; Downscaling 

 

 Introduction 

Riparian vegetation plays a significant role in the interaction between surface water and ground 

water systems, by reducing the recharge of aquifers, as a result of water uptake and/or alteration 

of the flow path of precipitation to the water table in recharge zones (LeMaitre et al., 

1999).While, the significance of riparian vegetation water use has been acknowledged, there 

remains a paucity of research on the water use requirements of riparian species in South Africa 

(Le Maitre et al., 1999; Schachtshneider, 2010). According to Hughes (2008), one such area 

which necessitates the need for our current knowledge to be expanded upon, is the relationship 

between streamflow transmission losses (TL) and riparian evapotranspiration (ET).  

Numerous studies have been published regarding the estimation of TL’s for different 

environmental settings and have successfully demonstrated the effects of several factors which 

influence the TL process (Cataldo et al., 2010). However, the influence of riparian ET on TL 

has rarely been included or sufficiently represented in these estimation procedures (Hacker, 

2005; Martinet et al., 2009; Cataldo et al., 2010; Shanafield and Cook, 2014).  

Previous research has shown that, riparian ET can significantly influence the water balance of 

alluvial aquifers and its effects may be further accentuated in river systems flowing through 

arid and semi-arid regions (Everson, 2001; McKenzie, 2001; Smakhtin, 2001; Tanner, 2013 

and Shanafield and Cook, 2014). Therefore, it is essential to develop techniques or approaches 

which can be used to accurately quantify riparian ET, to better understand and quantify how 

this process influences the rapport between subsurface water storage processes, streamflow and 

TL. 
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Conventional ET estimation approaches, have been extensively applied and proven to be 

invaluable in furthering our understanding of the role which ET plays in various environmental 

processes (Jarmain et al. 2009b). However, these techniques are only able to provide point or 

line averaged estimates of ET, which are representative of localised conditions only and cannot 

be easily extended to provide estimates of ET over larger areas (Lu et al., 2013; Liou and Kar, 

2014; Zhuo et al., 2014; Jassas et al., 2015).  

Furthermore, gauging and monitoring in arid and semi-arid environments remains fairly limited 

due to lower populations, remote location of hydrological gauging stations and financial 

constraints (Lange et al., 2005, Costa et al., 2013). Consequently, this has hindered the ability 

for expansive hydrological research to be undertaken (Lange et al., 2005). In such situations, 

the use of satellite earth-observation (SEO) data represents the most suitable and efficient 

alternative to obtain spatial hydrological process information.  

The use of SEO data enables representative information to be captured for large geographic 

scales, as well as data scarce regions, at near real time. Moreover, the periodic updating of 

information, allows for invaluable time series compilations of data (van Dijk and Renzullo, 

2011; Fernández-Prieto et al., 2012; Xu et al., 2014). However, one of the major challenges 

facing ET modelling using SEO data, is the trade-off between the spatial and temporal 

resolution associated with imagery (Singh et al., 2014b). Coarse spatial resolution (CSR) 

imagery, such as MODIS Level 1 B Geotiff imagery (250 m, 500 m and 1 km), are ideally 

suited for the routine monitoring and estimation of ET due to their high temporal resolution 

(HTR) (available daily) (Hong et al., 2011; Ha et al., 2013).  

However, it is often the case that CSR pixel sizes generally exceed the size of the area under 

observation. Consequently, CSR imagery may prove to be inadequate in providing useful 

information for field scale hydrological applications (Spiliotopolous et al., 2013; Singh et al. 

2014b; Bhattarai et al., 2015). Conversely, moderate spatial resolution (MSR) imagery, such 

as Landsat Level 1 Geotiff imagery (30 m), are ideally suited for the estimation of ET at the 

field scale to local levels (Anderson et al. 2012; Ha et al. 2013). However, their limited 

temporal resolution (available every 16 days) may prove to be inadequate for the operational 

monitoring of ET (Singh et al., 2014b).  
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The continuous advancement in SEO technologies and capabilities has seen an increase in the 

demand for MSR ET products for field and catchment scale applications (Bhattarai et al. 2015). 

Consequently, recent studies inter alia by Hong et al. (2011) and Spiliotopolous et al. (2013) 

have attempted to overcome the spatial and temporal scaling issues associated with satellite 

imagery, through the application of relatively simplistic downscaling procedures, in order to 

facilitate the quantification of ET at both a MSR and HTR. 

While the findings of Hong et al. (2011) and Spiliotopolous et al. (2013) highlight the potential 

of these procedures to facilitate the estimation of ET at both a MSR and HTR, Bhattarai (2015) 

notes that these procedures have not yet been applied to obtain seasonal continuous MSR ET 

estimates. Consequently, the suitability of applying such approaches to generate daily ET at a 

MSR remains relatively unknown. 

The objective of this paper was to address this knowledge gap through the evaluation of; 

relatively simplistic satellite-based approaches used to quantify ET at a MSR on a daily time 

step, within the riparian zone along a portion of the Groot Letaba River. Two techniques, a 

simple output downscaling with linear regression (ODLR) procedure and an infilling approach, 

were evaluated. The performance of these techniques was assessed, by comparing their 

respective ET estimates against (i) modelled ET estimates derived from Landsat Level 1 

Geotiff imagery and (ii) measured ET obtained from a one-sensor Eddy Covariance system 

(ECET).  

 Materials and methodology 

   Study site and data sets 

The study area is situated along a portion of the Groot Letaba River, located in the Letaba 

catchment in north-eastern South Africa, as depicted in Figure 2.1. The Groot Letaba River 

frequently experiences water shortages and curtailments (Pollard and du Toit, 2011a). 

Consequently, the system has a high incidence of non-compliance with environmental flow 

requirements (Pollard and du Toit, 2011a). This is particularly concerning, as the river flows 

through various conservation areas, most notably the Kruger National Park. The acquisition of 

accurate hydrological process information is therefore crucial for water resources managers in 

this region, to maintain the natural functioning of this environment.  
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The catchment experiences a semi-arid climate and receives seasonal rainfall, with majority of 

the rainfall occurring in the summer months (October to March) (Katambara and Ndiritu, 2010; 

Pollard and du Toit, 2011a). According to Katambara and Ndiritu (2010) approximately 40 to 

50% of the rainfall generally occurs during January and February. The mean annual 

precipitation and the mean annual potential evaporation (as measured by A-pan) are 

approximately 417.5 mm and 2097.93 mm, respectively (Schulze et al., 2008). Mean annual 

temperatures range from 18 0C in the mountainous regions to 28 0C in the eastern regions. The 

elevation of the riparian zone within the study area is approximately 332 m above mean sea 

level.  

Heritage et al. (2001) state that approximately three quarters of the catchment is underlain by 

gneiss and granite. The varied distribution of sediment along the Letaba River has given rise 

to a variety of morphological units, which has resulted in the formation of various channel 

types, each displaying a particular morphology and vegetative nature. The river system within 

the study area is largely dominated by alluvial channel types (Heritage et al., 2001). 

The study site is characterized by savanna vegetation with Phragmites mauritianus, Ficus 

sycomorus (Fig), Philenoptera violacea (Apple leaf) and Diospyros mespiliformis 

(Jackalberry) predominantly found within and along the riparian zone. Additionally, numerous 

agricultural fields, predominantly planted with Cucurbita moschata (Butternut) and Medicago 

sativa (Lucerne) are situated adjacent to the riparian zone.  

A one sensor eddy covariance (EC) system (excludes Infrared Gas Analyzer) was installed 

within a portion of the Groot Letaba River channel and was used to determine the latent heat 

flux as a residual of the shortened energy balance equation, which is given as: 

Rn = 𝐺𝑜 + 𝐻 +  𝜆𝐸        (2.1) 

Where Rn is net radiation (W m-2), G0 is soil heat flux (W m-2), H is sensible heat flux  

(W m-2) and λE is the latent heat flux (W m-2). The EC system was installed at two separate 

locations along the Groot Letaba River between Letaba Ranch (23.6580 S; 31.0470 E) and 

Mahale weirs (23.6690 S; 30.9910 E) during the drier low flow periods of the study (May to 

October). The EC system was first installed within the river channel (Figure 2.2) within the 

vicinity of an irrigated farm and measurements were acquired from the 17th June to 13th August 

2015.   
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Figure 2.1 Location of the study area within the quaternary B81J (Schulze et al., 2008), 

situated in the Letaba Catchment, South Africa 

The system was then moved to a pristine protected area (transect 2) approximately 1.2 km 

further downstream within the river channel and measurements were acquired from the 21st 

August to 22nd October 2015. The width of the riparian corridor studied at each of these 

locations is approximately 60 m (only inclusive of river channel width). As the channel 

morphology, does not change within this 1.2 km reach the ECET estimates at these locations 

were representative of the morphological reach. 

The EC system, was equipped with a CSAT 3-D sonic anemometer that measures the sonic air 

temperature, wind speed and direction. The anemometer was connected to a CR3000 

datalogger and measurements were taken with a sampling frequency of 10 Hz. The averages 

of these high frequency measurements (from instantaneous data) were then used to compute a 

half-hourly sensible heat flux (Riddell et al., 2017).  
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The sonic anemometer was installed at a placement height of 2.0 m above the soil surface and 

approximately 1.0 m above the average vegetation (Phragmites mauritianus) height within the 

river channel. 

 

Figure 2.2  Location of the EC system and the general land cover distribution for transects 1 

and 2 

Meteorological instrumentation and energy balance sensors were used to provide 

measurements of; net radiation, a computed soil heat flux density, soil temperature, relative 

humidity, horizontal wind speed and wind direction, solar radiation, air temperature and 

rainfall. Observations were made every 10 seconds and the appropriate statistical outputs were 

stored on a data logger (CR23 X, Campbell Scientific Inc., Logan, UT, USA) at 10-minute 

intervals. 
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These values were then used to compute the daily estimates. The instrumentation consisted of; 

two Kipp and Zonen NR Lite-2 net radiometers installed at approximately 1.0 m above the bare 

soil surface and vegetation, respectively, in order to provide representative and integrated 

estimates of Rn above these surfaces, Licor LI200X Pyranometer, RM Young wind sentry, 

HMP60 temperature and relative humidity sensor and a Texas Tipping bucket raingauge (0.1 

mm), six HFP01 HukseFlux soil heat flux plates (installed approximately 0.08 m below the 

soil surface), three pairs of soil temperature averaging probes (installed at 0.02 and 0.06 m 

below the surface) and two CS616 soil water reflectometers (approximately 0.08 m below the 

soil surface). The soil heat flux was determined as the weighted average of the computed soil 

heat flux for bare soil, vegetation and open water heat flux (Riddell et al., 2017). 

ECET values were estimated by weighting the contribution of the components of the energy 

balance, according to the percentage coverage of landcover classes across the area in which the 

system was situated. The average net radiation measured over bare soil and vegetation and the 

weighted soil heat flux density were used as inputs to Equation 2.1. The soil heat flux density 

was weighted according to the percentage composition of the dominant landcover classes 

present in this riparian environment, which are P. mauritianus, bare soils and open water. Table 

2.1 provides an approximation of the percentage cover for each of the aforementioned classes 

within each of the transects, with the value for P. mauritianus representing the percentage of 

basal cover.  

Table 2.1 Percentage cover of the dominant landcover classes within each of the sites in 

which the EC system was situated 

Land Cover class Transect 1 Transect 2 

P. mauritianus 40 % 60 % 

Bare Soils 40 % 20 % 

Open Water 20 % 20 % 

 

The percentage contributions shown in Table 1 were determined from a visual assessment of 

the study site through a field survey and using imagery captured from a DJI Phantom 3 

Advanced Unmanned Aerial Vehicle (UAV). These images were captured at a 5 cm resolution, 

by an on-board 12 megapixel DJI camera at an altitude of 120 m above ground level. An 

orthophoto was then created using the Open Drone Map Software 

(https://github.com/OpenDroneMap/OpenDroneMap). 

https://github.com/OpenDroneMap/OpenDroneMap
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A sensitivity analysis was performed to assess, the influence which the weighting of the soil 

heat flux density may have on the ECET. For the sensitivity analysis, the weighting of the 

contributions for bare soil, as well as vegetation were incrementally increased and decreased 

respectively. While the contribution of the open water heat flux density was kept constant, as 

there was no difference in the percentage area of open water between transects 1 and 2. The 

results of the sensitivity analysis indicated that changes in the weighting of the contributions 

for bare soil and vegetation did not significantly impact the ECET. 

The rationale for moving the EC system from transect 1 to transect 2, was to capture the ET 

associated with distinctive land cover compositions and environmental conditions in a riparian 

environment. From Table 2.1, it can be seen that there is a higher percentage of basal cover for 

P. mauritianus at transect 2. Livestock (cattle) are allowed to graze within the river channel at 

transect 1, whereas transect 2 is situated within a pristine protected area where livestock are 

prevented from grazing. Although buffalo and elephant graze this region their densities are 

significantly lower than the cattle.  

Consequently, both the percentage of basal cover and canopy cover associated with P. 

mauritianus were different at both these locations. Changes in environmental conditions during 

the period of measurement, such as seasonal and climatic changes from winter to summer 

which influence environmental stress conditions may have also contributed to the higher 

percentage of basal cover at location 2.  

Furthermore, the timing of this study coincided with a large El Nino induced drought period 

(Kogan and Guo, 2016).  While the measuring tower was installed within a riparian 

environment, it should be noted that soil water availability is quite variable along the portion 

of river that was studied and has been further exacerbated by the drought. Therefore, while the 

two locations are situated within the same morphological reach, their respective evaporative 

surfaces are different in both their basal and canopy cover, as well as soil moisture status. 

ECET measurements taken during the period 17th June to 22nd October 2015, were used to 

validate ET estimates derived from SEO data. Thirteen Clear sky Landsat (7 and 8) Level 1 

Geotiff products (16-day temporal resolution), as well as 114 MODIS Level 1 B Terra images 

(Daily temporal resolution) for the corresponding period, were selected to estimate ET using 

the SEBS Model. The pre-processing of images was conducted, using the Integrated Land and 

Water Information System (ILWIS) and the MODIS Swath Tool.  
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The procedures outlined in Su and Wang (2013), Singh et al. (2014a) and USGS (2015), were 

used to derive the necessary land surface parameters required as inputs to SEBS for the 

estimation of ET. 

   The Simplified Surface Energy Balance System (SEBS) 

The SEBS Model was selected for application in this study, as it has been extensively applied 

for the estimation of regional fluxes and ET and has been shown, to provide accurate estimates 

of ET and terrestrial heat fluxes (Jarmain et al., 2009a; Yang et al., 2010; Zhuo et al., 2014). 

Whilst the conceptualization of SEBS is discussed in Su (2002), the principle is that SEBS 

estimates atmospheric turbulent fluxes using both SEO and spatially representative 

meteorological data (Su, 2002).  

The model consists of a suite of tools to estimate; land surface physical parameters from 

spectral reflectance and radiance (Su et al., 1999), a comprehensive model for the 

approximation of the roughness length of heat transfer (Su et al., 2001) and an innovative 

procedure for the estimation of the evaporative fraction (EF) on the basis of the energy balance 

at limiting cases (Su, 2002). The model applies Equation 2.1 to partition the available energy 

into sensible (H) and latent heat flux density (LE). The daily ET is estimated, assuming the EF 

remains constant throughout the day (Su, 2002). 

SEBS was therefore applied in this study, using SEO data acquired from open access imagery 

derived from Landsat (7&8) and MODIS, to estimate ET for the riparian zone along the Letaba 

River. The spatial resolution of the SEBS ET estimate is dependent on the spatial resolution of 

the thermal band (Su, 2002; Alidoost et al., 2015) and therefore the study was limited to the 

spatial resolution of these open access products.  

MSR imagery acquired by Landsat (7&8) provides thermal bands at a spatial resolution of 60m 

and 100 m, respectively, which are resampled to 30 m and possess a temporal resolution of 16-

days (USGS, 2015), however; data can be obtained with an 8-day gap between consecutive 

data acquisitions, if data from both Landsat 7 and 8 is available and used (USGS, 2015). CSR 

imagery acquired by MODIS provides thermal bands at a spatial resolution of 1 km at a daily 

temporal resolution.  
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In order to, obtain a complete daily MSR ET record for the riparian zone along the Letaba 

River for the study period; a combination of two approaches were followed: (a) the ODLR 

approach (Hong et al., 2011) and (b) an infilling approach using an actual crop coefficient 

(Kcact) (Santos et al., 2008). 

   Spatial Downscaling of Satellite Derived ET 

Bierkens et al. (2000) and Liang (2004) define downscaling as the increase in spatial resolution 

resulting from the disaggregation of the original dataset. Downscaling procedures attempt to 

restore spatial variations at a particular scale, by assuming the values at the larger scale 

represent the average of the values at the smaller scale (Bierkens et al. 2000). The procedure 

results in an increase of the number of pixels within an image, with the output of each pixel 

representing a smaller area (Hong et al. 2011).  

According to Ha et al. (2013) and Spiliotopolous et al. (2013) downscaling procedures can be 

broadly classified into two categories; (i) scale based traditional downscaling and (ii) pan 

sharpening or data fusion techniques. In this study, a relatively simplistic ODLR approach 

(Hong et al., 2011) was tested, as it has been shown by Hong et al. (2011) and Spiliotopolous 

et al. (2013) to produce credible results.  

The aforementioned approach disaggregates CSR imagery, by applying a linear regression 

between two CSR images to a preceding or subsequent MSR image covering the same area of 

interest (Hong et al., 2011). The technique is predicated on the assumption that the linear 

relationship between CSR imagery remains valid between MSR imagery (Hong et al., 2011). 

In order, to create a daily MSR ET dataset for the period of investigation in this study, a linear 

regression was initially applied between two consecutive MODIS ET estimates (M1 and M2) 

generated using SEBS, to obtain regression coefficients. These coefficients were then applied 

to the Landsat ET image (L1) generated using SEBS for the same date as the first MODIS ET 

image (M1), in order to generate an ET image (L2) at the Landsat spatial resolution, for the 

same date as the subsequent MODIS ET image (M2).  
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This procedure was repeated, however; the linear regression was then performed between the 

MODIS ET image for day one (M1) and the MODIS ET image for day three (M3) to obtain 

regression coefficients. These coefficients were then applied to the Landsat ET image (L1) 

obtained for the same date as the first MODIS ET image (M1), in order to generate an ET image 

(L3) at the Landsat spatial resolution, for the same date as the subsequent MODIS ET image 

(M3). 

This procedure was systematically repeated, until a new Landsat Level 1 Geotiff product was 

available. Once this product was available, the abovementioned procedure was repeated. 

Figures 2.3 and 2.4 provide a schematic representation of the abovementioned process to better 

understand how the daily continuous MSR ET dataset was generated and an example of a 

downscaled ET map generated for this study, respectively. 

 

Figure 2.3 Schematic of the output downscaling with linear regression methodology, where a 

and b are the linear regression coefficients and L2 and L3 are the subsequent 

spatially downscaled ET maps at the Landsat resolution (adapted from Hong et al., 

2011) 
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Figure 2.4  An illustration of SEBS ET at varying spatial resolutions for the 24th August 2015; 

a) MODIS (1 km), b) Landsat (30 m) and c) Downscaled (30 m) 

  The Kcact infilling approach 

The Kcact approach discussed in Santos et al. (2008), was applied to generate a daily MSR ET 

time series. The actual ET and reference evaporation required for the application of this 

technique were acquired, respectively, from SEBS ET estimates derived using Landsat and 

FAO Penman-Monteith reference evaporation derived from meteorological data collected for 

the study area. The calculation of Kcact is given as: 

Kcact = 
𝐸𝑇𝑎

𝐸𝑇𝑟𝑒𝑓
          (2.2) 

Where Kcact can be defined as the actual crop coefficient which accounts for the effects of 

environmental stress (Allen et al., 2005), ETa is the ET (mm d-1) and ETref  is the grass reference 

evaporation determined using the FAO Penman-Monteith reference evaporation approach (mm 

d-1). The advantage of utilising the Kcact approach is that; (i) it is relatively simplistic to apply 

with fairly short processing times and (ii) ET estimates extending from only one satellite earth 

observation data set is required. The successful application of the Kcact approach is predicated 

on the assumption that the conditions which are used to derive Kcact remain the same for the 

period in which it is applied. Furthermore, spatially representative meteorological data is 

required for the determination of ETref, in order to estimate spatially representative ETa.  
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Thirteen useable Landsat (7&8) Level 1 Geotiff products were available during the study 

period. These values were then used to develop a Kcact curve as shown in Figure 2.5. An 

exponential curve was generated, to interpolate values between images so that the temporal 

progression of Kcact can be accounted for (Santos et al., 2008). The Kcact values were used in 

conjunction with ETref to estimate the SEBS ET at Landsat resolution for the study period. 

 

Figure 2.5  Kcact curve generated for the study area using SEBS estimates of ET, derived from 

Landsat imagery. The black dots represent the Kcact values calculated from the 

thirteen available Landsat images, which were then used to quantify the temporal 

progression of Kcact 

The downscaled ET estimates and the ET estimated using the Kcact approach were compared 

to the original SEBS ET estimates derived using Landsat (7 and 8), as well as against the ECET. 

The satellite pixel/s located in close proximity to the EC system was selected as areas of interest 

and only the data within these pixels were used for data comparisons. 
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  Results  

 A comparison of SEBS ET derived using Landsat against infilled ET and 

downscaled ET 

Descriptive statistics of the comparisons between the Kcact and downscaled ET against the 

original SEBS ET derived using Landsat are presented in Table 2.2. The relative volume error 

(RVE) indicates that on average the Kcact approach over-estimated ET by approximately 3% 

compared to the original SEBS ET.  The Mean Absolute Difference (MAD) and RMSE values 

are 0.68 and 0.69 mm d-1, respectively. While, the results of the ANOVA test at the 95% 

confidence level, indicate that there is no significant difference between the Kcact ET and the 

original SEBS ET derived using Landsat. 

The RVE indicates that on average the ODLR approach under-estimated ET by approximately 

5% compared to the original SEBS ET. The MAD and RMSE values are 1.21 and 1.41 mm d-

1, respectively. While, the results of the ANOVA test at the 95% confidence level, indicate that 

the differences between the downscaled ET and the original SEBS ET derived using Landsat 

are not significant. The original SEBS ET estimates derived using Landsat, the Kcact ET 

estimates and the downscaled ET estimates were accumulated for the 13 days in which useable 

Landsat Level 1 Geotiff imagery was available and are illustrated in Figure 2.6. Both the Kcact 

and the downscaled ET estimates appear to follow the cumulative trend of the original SEBS 

ET estimates derived using Landsat.  

Table 2.2 A comparison of SEBS ET estimates derived using Landsat, Kcact ET and 

downscaled ET for the 13 days in which useable Landsat Level 1 Geotiff imagery 

was available 

 Original SEBS ET derived using 

Landsat (7 and 8) (mm) 

Kcact ET(mm) Downscaled ET (mm) 

 
Total 39.30 37.73 35.23 

Daily Average 3.02 2.90 

 

2.71 

Median 3.32 2.90 2.37 

Variance 0.61 0.03 2.06 

Std Dev 0.80 0.19 1.39 

RVE  

 

-2.56 5.36 

MAD 0.68 1.21 

RMSE 0.69 1.41 

ANOVA (p value) 0.55 0.45 

Pearson correlation  0.48 0.27 
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Figure 2.6 Comparison of accumulated SEBS ET estimates derived using Landsat, Kcact ET 

and downscaled ET  

 A comparison of satellite derived ET against ET measured in-situ for the period 

17th June to 22nd October 2015 

The Kcact and the ODLR approach was used to derive daily ET estimates during the period 17th 

June to 22nd October 2015. These estimates were then compared to the ECET. SEBS ET 

estimates derived using MODIS and Landsat imagery, which were required as inputs to the 

abovementioned techniques are illustrated in Figure 2.7. A statistical comparison between the 

original SEBS ET derived using MODIS and Landsat imagery, against the ECET for the days 

in which clear sky imagery was available, is provided in Table 2.3.  
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Figure 2.7 A comparison of SEBS ET derived using Landsat and MODIS imagery against 

ECET for the period 17th June to 22nd October 

Table 2.3  Comparison of SEBS ET estimates derived using Landsat and MODIS against 

ECET 

  
ECET 

(mm) 

SEBS Landsat  

ET(mm) 
  

ECET 

(mm) 

SEBS MODIS 

ET(mm) 

Total 28.40 29.30 Total 217.72 418.74 

Daily Average 2.18 3.02 Daily Average 1.80 3.67 

Median 2.34 3.32 Median 1.08 3.75 

Variance 2.09 0.61 Variance 1.57 2.89 

Std Dev 1.45 0.80 Std Dev 1.25 1.70 

ANOVA (p value) 0.05 ANOVA (p value) 0.00   

Pearson 

correlation 
0.32 Pearson correlation 0.30   

Statistical comparisons between the Kcact and downscaled ET estimates against the ECET for 

transects 1 and 2 are presented in Tables 2.4 and 2.5, respectively. In general, the comparisons 

between the satellite derived ET estimates and the measured ECET was fairly poor, as illustrated 

in Figure 2.8. The comparisons between Kcact ET against the ECET were in better agreement 

for transect 2 as compared to transect 1. The MAD and RMSE values for transect 1 were 1.82 

and 1.88 mm d-1, respectively. While, the MAD and RMSE values for transect 2 were 0.89 and 

1.10 mm d-1, respectively.   
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Overall, the comparison between the downscaled ET and the ECET was fairly poor, as 

illustrated in Figure 2.8. The MAD and RMSE values for transect 1 were 2.33 and  

2.57 mm d-1, respectively. While, the MAD and RMSE values for transect 2 were 1.87 and 

2.39 mm d-1, respectively. 

Table 2.4 A comparison of ECET, Kcact ET and downscaled ET for the period 17th June to 

13th August 2015 (Transect 1) 

 EC ET (mm) Kcact ET(mm) Downscaled ET (mm) 

 
Total 52.92 151.08 183.96 

Average 0.91 2.80 3.23 

Median 0.94 2.89 3.44 

Variance 0.04 0.14 1.43 

Std Dev 0.20 0.37 1.20 

RVE  -199.74 -260.40 

MAD  1.82 2.33 

RMSE  1.88 2.57 

ANOVA (p-value)  0.00 0.00 

Pearson correlation 0.14 0.19 

Table 2.5  Comparison of ECET, Kcact ET and downscaled ET for the period 21st August to 

22nd October 2015 (Transect 2) 

 EC ET (mm) Kcact ET(mm) Downscaled ET (mm) 

 
Total 164.80 177.78 229.57 

Average 
2.62 2.82 3.64 

Median 
2.02 2.95 3.80 

Variance 
0.45 0.01 2.15 

Std Dev 
0.67 0.10 1.47 

RVE  
 -29.43 -94.88 

MAD 
 0.89 1.87 

RMSE  1.10 2.39 

ANOVA (p-value)  0.14 0.00 

Pearson correlation  0.50 0.36 
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Figure 2.8 A comparison of ECET, Kcact ET and the downscaled ET for the period 17th June to 

22nd October 2015  

 Discussion 

The Kcact and ODLR provided credible approaches for the estimation of ET at a MSR. Both 

techniques were able to produce estimates which were of similar magnitude to the original 

SEBS ET derived using Landsat. The results of this investigation further support the proposed 

application of these techniques for the estimation of daily ET at a MSR. While statistical 

comparisons of the downscaled ET estimates and the original SEBS ET estimates, derived 

using Landsat, showed no significant differences, there were noticeable differences in the 

spatial distribution of ET (Figure 2.4). This can be attributed to the spatial characteristics of 

the Landsat image used as an input for the downscaling procedure. According to Hong et al. 

(2011) the overall spatial distribution of ET in the downscaled image should resemble the 

original SEBS ET map derived using Landsat.  

The comparisons between ET estimates acquired from the application of the Kcact and ODLR 

approaches against ECET were generally found to be poor. The poor performance of these 

techniques can be attributed to the original SEBS ET estimates derived using Landsat and 

MODIS imagery. SEBS does not explicitly account for the influence of soil moisture and 

biophysical parameters during the derivation of surface fluxes, instead their influence is 

implicitly encompassed in input variables, ignoring their direct impact on ET estimates 

(Gokmen et al., 2012; Pardo et al., 2014; Huang et al., 2015).  

0.00

2.00

4.00

6.00

8.00

10.00

17-Jun-15 17-Jul-15 17-Aug-15 17-Sep-15 17-Oct-15

E
T

 (
m

m
 d

-1
)

Date

EC ET Landsat (7 and 8) ET, with infilling Downscaled ET

EC flux tower situated at Transect 2 EC flux tower situated at Transect 1 

EC
ET

 



 

 87 

While this assumption may hold true for environments in which the available energy is the 

limiting factor for ET, SEBS may overestimate the EF and LE for environments in which the 

availability of water is the limiting factor for ET (Huang et al., 2015). This in turn may result 

in the over estimation of ET. As both the Kcact and the downscaled ET estimates were generated 

from the original SEBS ET estimates, it can therefore be expected that uncertainties associated 

with these estimates, will be introduced to the downscaled/infilled ET.  

It has been shown that the Kcact and downscaled ET estimates are generally higher than the 

ECET. However, the results presented in Figure 2.8 as well as in Tables 2.4 and 2.5, indicate 

that the discrepancies between the satellite derived ET estimates and the ECET were higher for 

transect 1. The apportionment of the net radiation to the soil heat flux is noticeably higher for 

transect 1 compared to transect 2, as illustrated in Figure 2.9.  

 

Figure 2.9 An illustration of the apportionment of net radiation to the soil heat flux for 

transects 1 and 2, where fraction of the day on the x-axis represents a combination 

of the Julian day and time 

The proportion of bare soil in each transect significantly influences the energy available for 

sensible and latent heat transfer (Huang et al., 2015). Transect 1 possesses a greater bare soil 

fraction compared to transect 2, as illustrated in Figure 2.9. Furthermore, the soil’s in transect 

1 are relatively drier (Riddell et al., 2017). Consequently, the associated soil heat flux density 

measured at transect 1 was higher (Sauer and Horton, 2005).   
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As there was a greater apportionment of net radiation to the soil heat flux for transect 1, the 

energy available for sensible and latent heat transfer was lower, hence the lower ECET measured 

at transect 1. While Huang et al. (2015) acknowledges that SEBS may overestimate ET for 

water limited environments, Gokmen et al. (2012) and Pardo et al. (2014) note that the 

overestimation of EF and LE in SEBS may be markedly higher when the soil is dry and lacks 

vegetation coverage. Consequently, the general degree of over-estimation associated with the 

comparisons between the satellite derived ET estimates and the ECET, was further exacerbated 

for the period in which the ECET measurements were taken at transect 1.  

The results obtained for comparisons between the Kcact ET estimates and ECET are noticeably 

different, with the Kcact ET estimates showing fairly limited variability. While, the limited 

variability in the Kcact ET estimates may be due to relatively stable conditions experienced 

during each of the investigation periods, the poor correlations between the Kcact ET estimates 

and ECET can be largely attributed to the original SEBS ET derived using Landsat.  As shown 

in Figure 2.8 Kcact ET estimates were in better agreement with the ECET for transect 2 as 

compared to transect 1. Hence, the Kcact ET estimates and ECET were generally found to be in 

better agreement for transect 2. The successful application of the Kcact approach is contingent 

to the settings in which the Kcact values were derived, remaining stable for the period in which 

it is applied.  

For transect 1 this assumption was generally not upheld. The original SEBS ET derived using 

Landsat was generally higher than the ETref for this period. However, for the thirteen selected 

days in which KCact values were derived for the study, the original SEBS ET estimates derived 

using Landsat were generally lower than the ETref. Consequently, the values obtained from the 

Kcact curves, which were used to generate daily MSR ET for transect 1, were not representative 

of the conditions for the period in which it was applied.  

For transect 2, the abovementioned assumption for which the successful application of the Kcact 

approach is predicated upon, was upheld. The original SEBS ET derived using Landsat was 

generally lower than the ETref for this period. Consequently, the values acquired from the Kcact 

curves, which were used to generate daily MSR ET for transect 2, were representative of the 

conditions for the period in which it was applied. Consequently, the Kcact ET estimates were 

found to be in better agreement with the ECET for this period, although these estimates are still 

substantially higher than the observed values. 
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The results obtained for comparisons between the downscaled ET estimates and ECET are 

noticeably different. The original SEBS ET derived using MODIS was in better agreement 

with the ECET for transect 2 as compared to transect 1, as shown in Figure 2.8. Hence, the 

downscaled ET estimates and ECET were generally found to be in better agreement for transect 

2. 

Although the downscaling approach performed better for transect 2, the technique generally 

performed poorly for the period of study. This poor performance can be largely attributed to 

the original SEBS ET estimates derived using MODIS. As the spatial resolution of MODIS is 

1 km, there is potentially a greater contribution of other land covers being encompassed within 

the ET estimate. The downscaled ET estimate is dependent on the regression and slope of the 

two SEBS ET images derived using MODIS (Hong et al. 2011). Consequently, the downscaled 

ET estimate is largely influenced by the ET captured at the MODIS spatial resolution.  

Furthermore, the ET contribution of riparian vegetation and irrigated agriculture situated 

outside the footprint of the EC system, which are captured within the original SEBS ET derived 

using MODIS, may have also further exacerbated the degree of overestimation for the 

downscaling approach at transect 1. Hong et al. (2011) acknowledges that while the ODLR 

approach may provide credible estimates of ET for riparian and desert environments which 

experience less dynamic changes in their climates and plant phenology, he technique may 

prove to be inadequate for regions experiencing dynamic temporal changes over a short period, 

such as irrigated agricultural fields (Hong et al., 2011). 

 Conclusion 

Both the Kcact infilling and ODLR approaches were found to perform well, as these approaches 

were able to produce ET estimates, which were consistent with the original SEBS ET estimate 

derived using Landsat. The results presented in this investigation indicated that, these methods 

could be applied to estimate the ET at a MSR for the riparian zone. The comparison between 

the ET estimates acquired from the abovementioned techniques against daily ECET 

measurements were less than satisfactory. Both techniques were shown to perform poorly when 

compared to the daily ECET. This poor correlation was largely attributed to the inability of 

SEBS to explicitly account for the influence of soil moisture and biophysical parameters during 

the derivation of surface fluxes. Consequently, SEBS may overestimate the EF and LE for 

environments experiencing water stress, which in turn results in an overestimation of ET.  
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Recent studies have highlighted potential solutions to address this limitation. While the testing 

and validation of these procedures could not be undertaken during the duration of this study, it 

is highly recommended that future investigations should attempt to incorporate these 

procedures when applying the SEBS model in conjunction with downscaling/infilling 

procedures in semi-arid and arid environments. This may facilitate more meaningful 

comparisons to be drawn between the techniques used to estimate daily ET at a MSR and in-

situ ET measurements.  

Furthering our knowledge in this regard, provides a prospective opportunity to broaden our 

existing knowledge base and exploit the potential of using satellite EO data to better understand 

and quantify the temporal progression of ET at a MSR. The coupling of existing knowledge 

with data captured by practical alternatives, such as those presented in this study assist in 

improving our understanding of hydrological processes, which in turn can facilitate improved 

water resources management for arid and semi-arid environments. 
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***** 

Lead into chapter 3: The findings of the previous chapter have demonstrated potential 

solutions to address the trade-off between the spatial and temporal resolution associated with 

the SEO data sets (MODIS and Landsat) used as inputs to SEBS to derive daily ET. However, 

it was noted that the inability of the model to adequately represent ET during water stressed 

conditions, ultimately influenced the successful application of these approaches. Consequently, 

the objective of chapter 3 was to establish and implement an approach which could be 

integrated within SEBS to more adequately represent ET within the study area during water 

stressed conditions. Supplementary information and/or data which was used during the various 

analyses undertaken in this chapter but not presented herein, are provided in Appendix A. 
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ABSTRACT 

Surface energy balance models such as the surface energy balance system (SEBS) assume that the 

influence of soil moisture and biophysical parameters on evapotranspiration, are implicitly 

encompassed in model input variables such as the land surface temperature. This simplification may 

generally be suitable for environments in which the available energy constrains ET, but may prove to 

be inadequate during conditions of water stress. To address this limitation, a modified version of SEBS 

(SEBSESF) was applied, using a calibration factor that considers the combined influence of soil moisture, 

vegetation characteristics and temperature on fluxes. SEBSESF was evaluated by comparing the modelled 

ET estimates against Eddy covariance ET measurements (ECET) at two sites, with contrasting 

environmental conditions. Comparisons between ECET and modelled ET indicated that the 

implementation of SEBSESF resulted in an improved correlation between ECET and modelled ET 

estimates, as well as an increase in the percentage of modelled ET estimates within an acceptable 

accuracy range (± 15 to 30 %).  

                                                 

 

2S Gokool, ES Riddell, C Jarmain and KT Chetty. 2017. Integration of an environmental stress factor in SEBS for improving the estimation of evapotranspiration in 

environments during conditions of water stress. Submitted to Water SA 
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The potential improvements in mapping of ET by SEBSESF provides an opportunity to better understand 

and quantify localized energy and water fluxes, in arid and semi-arid environments for varying 

landcover conditions.  

 

Keywords:  Total evaporation; SEBS; water stress; Evaporative fraction; Calibration Factor 

 

 Introduction 

Monitoring and gauging of hydro-meteorological fluxes in arid and semi-arid environments 

remains fairly constrained due to limitations, such as inter alia; lower populations, financial 

limitations and the remote locality of hydrological gauging stations (Lange et al., 2005). 

Consequently, this has generally restricted the ability for extensive hydrological research to be 

undertaken in these environments (Lange et al., 2005). In such circumstances, the use of 

satellite earth observation (SEO) technologies represents the most suitable and efficient method 

to acquire hydrological process information (Gokool et al., 2017).  

In recent times satellite-based approaches are being utilized more frequently to determine the 

parameters of the shortened surface energy balance, with an emphasis being placed upon 

assessing the spatio-temporal distribution of evapotranspiration (ET) (Gokmen et al., 2012). 

While numerous satellite-based methods have been formulated for the estimation of ET, 

techniques predicated on semi-physical and physical approaches have been most extensively 

applied for both scientific research and operational purposes (Bastiaanssen., et al 1998; Senay 

et al., 2007; Gokmen et al., 2012). 

Some of the most commonly applied models include; the Simplified Surface Energy Balance 

Index (S-SEBI) (Roerink et al., 2000), Surface Energy Balance System (SEBS) (Su, 2002); 

Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998) and Mapping 

Evapotranspiration at High Resolution with Internalized Calibration (METRIC) (Allen et al, 

2007). The implementation of the aforementioned models makes allowance for the relatively 

timeous and inexpensive quantification of ET, which can prove to be invaluable for operational 

water resources management. However, two of the major challenges which are limiting factors 

to the modelling of ET, using these technologies is; i) the trade-off between the spatial and 

temporal resolution of available imagery (Gokool et al., 2017) and ii) the accuracy of the 

models and the requisite data used to capture hydrological processes (Seneviratne et al., 2010). 
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Previous studies inter alia by; Hong et al. (2011), Spiliotopolous et al. (2013) and Bhattarai et 

al. (2015) have reported potential solutions to address spatio-temporal limitations, through the 

application of downscaling/disaggregation procedures. However, the success of these 

techniques is ultimately dependent on the ability of the satellite-based ET model to capture the 

ET for a particular area of interest, within an acceptable accuracy range (AAR) (± 15 to 30 %) 

when compared to in-situ observations (Kalma et al., 2008; Gibson, 2013). 

According to Seneviratne et al. (2010), satellite-based ET estimation approaches often 

overestimate ET in areas of arid and semi-arid climatic regimes in which the availability of 

water is limiting ET. Studies undertaken by Timmermans and Meijerink (1999), Lubczynski 

and Gurwin (2005) and van der Kwast et al. (2009) in these environments, have shown that 

satellite-based ET estimation models may overestimate ET in the magnitude of 0.50 to 3.00 

mm d-1, as a result of an under-estimation of the sensible heat flux (H).  

The poor performance of these models can largely be attributed to their inability to adequately 

account for the influence of soil moisture availability, land surface temperature (LST) and 

physical characteristics of vegetation during the estimation of fluxes (Gokmen et al., 2012; 

Pardo et al., 2014; Long et al., 2014; Li et al., 2015; Huang et al., 2015). The influence of soil 

moisture and vegetation on fluxes, are implicitly encompassed in input variables, ignoring their 

direct impact on ET estimates (Gokmen et al., 2012; Huang et al., 2015; Li et al., 2015).  

While, the aforementioned approach may be suitable for environmental settings in which the 

available energy is limiting ET such as in the high latitude regions, it may prove to be 

inadequate where water availability is the principle limiting factor to ET (Seneviratne et al., 

2010). Hence, satellite-based ET modelling necessitates an improvement for the estimation of 

fluxes for different land covers experiencing conditions of water stress (Wagle et al., 2017).  

In this study the pre-packaged version of the single-source SEBS model available in the 

Integrated Land and Water Information System (ILWIS), was implemented to determine the 

ET within a semi-arid, savanna landscape in the north-eastern region of South Africa. SEBS 

has been extensively applied for the estimation of regional fluxes and ET and has been shown, 

to generally provide accurate estimates of ET and terrestrial heat fluxes (Yang et al., 2010; 

Zhuo et al., 2014).  
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However, previous studies have reported uncertainties in flux and ET estimates acquired from 

the implementation of SEBS over arid and semi-arid environments (Timmermans and 

Meijerink, 1999; Lubczynski and Gurwin, 2005; van der Kwast et al., 2009). Furthermore, 

Pardo et al. (2014) and Gokool et al. (2017) reported that the general degree of overestimation 

of the daily ET was significantly higher for an environmental setting dominated by sparse 

vegetation coverage and drier soils.  

Recent studies by Gokmen et al. (2012), Pardo et al. (2014) and Huang et al. (2015) have 

discussed the application of a modified version of SEBS to improve the estimation of the 

evaporative fraction (EF), latent heat (LE) and H fluxes through the integration of a scaling 

factor in SEBS to better represent the influence of soil moisture availability and vegetation 

characteristics during the estimation of ET.  

In this particular study, we propose the use of an empirically derived calibration factor that 

considers the combined influence of soil moisture, temperature and vegetation characteristics 

on fluxes, which can be integrated into the original SEBS formulation following the approach 

adopted in Pardo et al. (2014). The integration of this factor in SEBS is proposed as an 

alternative approach to improve upon the localized estimation of ET for water limited 

environments, using the SEBS model. The aim of this study was to implement the modified 

version of SEBS to improve the local mapping of ET within the study area, as Gokool et al. 

(2017) showed that the implementation of the original SEBS formulation within this region 

resulted in the over-estimation of ET. The performance of the original SEBS (SEBS0) and 

Modified SEBS formulation (SEBSESF) were evaluated by comparing the estimated fluxes  

(H and LE), as well as daily ET estimates against in situ observations.  

 Measuring site 

Flux tower data records were acquired from two sites (Malopeni, Kruger National Park and 

within the riparian zone along a portion of the Groot Letaba river) within the Letaba catchment 

and the northern region of the Kruger National Park, both of which are situated in the semi-

arid north-eastern half of South Africa, as illustrated in Figure 3.1.  
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Figure 3.1 Geographical location of the measuring sites within the Letaba Catchment in South 

Africa (adapted from Schulze et al., 2008) 

The Groot Letaba River which flows through this catchment, often experiences water scarcities 

due to high water demands in its upper reaches for commercial agriculture, this has 

consequently given rise to frequent occurrences of non-compliance with environmental flow 

requirements (Pollard and du Toit, 2011b). This situation is particularly concerning, as the river 

flows through numerous conservation areas, including the Kruger National Park.  

The measurement sites are situated in a semi-arid region, which experiences seasonal rainfall. 

A vast majority of this rainfall is received during the summer months between October and 

March (Katambara and Ndiritu, 2010; Pollard and du Toit, 2011a), with 40 to 50 %, occurring 

during January and February (Katambara and Ndiritu, 2010). Mean annual potential 

evaporation (2097.3 mm as measured by A-pan) exceeds the mean annual precipitation (417.5 

mm) (Schulze et al., 2008).  
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Temperatures across the catchment vary from warm conditions in the eastern region (mean 

annual temperature approximately 28°C) to cooler conditions in the mountainous regions (mean 

annual temperature approximately 18°C). The vast majority of the catchment is underlain by 

gneiss and granite, with a varied distribution of sediment along the river channel (Heritage et 

al., 2001). This has given rise to the formation of numerous channel types, characterized by 

distinct morphologies and vegetative composition.  

The Malopeni study site is situated in the ephemeral Malopeni catchment of the Letaba, and the 

area is pristine savanna dominated by broad-leafed Colophosopermum mopane (Ramoelo et al., 

2014). Savanna vegetation such as Diospyros mespiliformis, Philenoptera violacea, Ficus 

sycomorus and Phragmites mauritianus (Lowveld Reed) is predominantly found within and along 

the riparian zone of the perennial Groot Letaba River. Furthermore, numerous irrigated agricultural 

fields can be found situated adjacent to the riparian zone at the Groot Letaba site.  

 Instrumentation and data 

 Micrometeorological and energy flux measurements 

A measuring tower was installed within a selected portion of the Groot Letaba River channel 

(Site 1) to measure energy fluxes, as well as all meteorological variables required to describe 

the ecosystem of the site in detail. The system was alternated between two positions within the 

river channel during the drier low flow periods of the study (May to October) between Mahale 

(23.669° S; 30.991° E) and Letaba Ranch Weirs (23.658° S; 31.047° E). The width of the 

riparian corridor studied at each of these locations is approximately 60 m (only inclusive of 

river channel width) (Gokool et al., 2017). 

The measuring tower was first installed at a point upstream of Mahale weir within the river 

channel (Location 1) from 17th June to 13th August 2015. The measuring tower was then moved 

approximately 1.2 km further upstream (Location 2) and measurements were acquired from 

21st August to 22nd October 2015 (Gokool et al., 2017). The same procedure was repeated for 

2016. The measuring tower was first installed at Location 1 from 18th May to 25th July 2016. 

The measuring tower was then moved approximately 2.0 km further upstream from the 2015 

Location 2 position and measurements were acquired from 27th July to 11th November 2016. 

The situation of the measuring tower further upstream from the position of the 2015 location 

2, was due to the removal of an electric fence which previously separated Location 2 from 

Location 1.  
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Consequently, this area no longer represented a pristine protected area, as livestock were no 

longer prevented from grazing in this region (Riddell et al., 2017). Therefore, the system was 

moved to the 2016 location 2, which had similar characteristics to the 2015 Site 2. The channel 

morphology remained unchanged within this 3.2 km reach, therefore the ECET estimates 

acquired at these locations were considered to be characteristic of the morphological river reach 

(Gokool et al., 2017).  

The measuring tower which incorporated a one sensor EC system (excluding Infra-Red Gas 

Analyzer) was equipped with a CSAT 3-D sonic anemometer, which was situated at a placement 

height of 2.0 m above the soil surface and 1.0 m above the average vegetation (Phragmites 

mauritianus) height, a HMP60 temperature and relative humidity sensor and energy balance 

sensors consisting of two Kipp and Zonen NR Lite-2 net radiometers (situated approximately 1.0 

m above the bare soil and vegetation, respectively), six soil heat flux plates (inserted at a depth of 

0.08 m), three pairs of soil temperature averaging probes (inserted at a depth of 0.02 and 0.06 m), 

two CS616 soil water reflectometers (inserted at a depth of 0.06 m), a Licor LI200X Pyranometer, 

RM Young wind sentry, HMP60 temperature and relative humidity sensor and a Texas Tipping 

bucket raingauge (0.1 mm) (Gokool et al., 2017).  

The system measures net radiation, a computed soil heat flux density, a computed sensible heat 

flux, temperature, relative humidity, horizontal wind speed and wind direction, solar radiation, air 

temperature and rainfall (Gokool et al., 2017). Further details regarding the site characteristics 

and instrumentation setup are provided in Gokool et al. (2017). The average integrated estimates 

of net radiation (Rn), the computed H and the weighted average of the computed soil heat flux (G0) 

were then used to determine the LE as a residual of the shortened energy balance equation, which 

is given as: 

Rn = 𝐺0 + 𝐻 +  𝐿𝐸         (3.1) 

In addition to the data collected from the measuring tower installed in this particular study, 

energy-flux and meteorological data were also acquired from the Malopeni flux tower (Site 2) 

(23.833°S; 31.215°E). The Malopeni flux tower was established in 2009 as part of the 

CARBOAFRICA network. The tower is situated in a hot and dry savanna region, 

approximately 12 km from the town of Phalaborwa (Ramoelo et al., 2014). Further details 

regarding the Malopeni flux tower study area and instrumentation specifications are provided 

in Ramoelo et al. (2014) and available at www.csir.co.za/eddy-covariance-flux-towers.  

http://www.csir.co.za/eddy-covariance-flux-towers
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The differences in environmental characteristics associated at the two study sites provided the 

ideal platform to assess the performance of implementing the SEBS0 and SEBSESF formulations 

for environments characterized by distinctive land cover compositions and meteorological 

conditions, in a semi-arid region. 

 Satellite earth observation data collection and processing 

215 clear sky MODIS Level 1 B Terra images (MOD21 and MOD 03 data products) were 

collected and analysed for 2015 and 2016 (17th June to 22nd October), respectively. 26 clear 

sky Landsat (7 & 8) Level 1 GeoTiff products were collected for the corresponding periods. 

According to Alidoost et al. (2015) the spatial resolution of the daily ET map output by SEBS 

is dependent upon the spatial resolution of the thermal band used to derive LST. MODIS 

thermal bands are provided daily at a 1 km spatial resolution. Whereas Landsat 7 and 8 thermal 

bands are provided every 16 days at a spatial resolution of 60 m and 100 m, respectively, which 

are then resampled to 30 m.  

The Modis Swath Tool and ILWIS, were used for the pre-processing and processing of the 

abovementioned images, based on the procedures detailed in Su and Wang (2013), Singh et al. 

(2014a) and USGS (2015), in order to derive the requisite land surface parameters (such as 

Albedo, LST, Emissivity and NDVI) which are required in conjunction with meteorological 

data as inputs to SEBS for the estimation of ET. 

 Methodology 

 SEBS Methodology 

The SEBS Model computes all surface energy balance components, as well as the evaporative 

fraction (EF) using meteorological data and land surface parameters, which are acquired from 

meteorological and SEO sources, respectively. A brief description of the model methodology 

is presented below. A detailed discussion of the model formulation is presented in Su (2002). 

SEBS employs the shortened surface energy balance equation (Equation 3.1) and partitions the 

available energy into H and LE fluxes. 

The equation to determine the net radiation term in Equation 3.1 is given as (Su, 2002): 

Rn  =  (1 −  𝛼)𝑅𝑠𝑤𝑑 +  𝜀𝑅𝑙𝑤𝑑 −  𝜀𝜎𝑇𝑜
4     (3.2) 
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Where α is the albedo (surface reflectance), Rswd is the downward solar radiation (W m-2), Rlwd 

is the downward longwave radiation (W m-2), ε is the emissivity of the surface, σ is the Stefan-

Boltzman constant and To is the surface temperature (K). 

The soil heat flux equation is parameterised as (Su, 2002): 

Go  = 𝑅𝑛[Γ + (1 − 𝑓𝑐)(Γ𝑠 − Γ𝑐)]      (3.3) 

Where the ratio of soil heat flux to net radiation Гc is assumed to be 0.05 for a fully vegetated 

canopy (Monteith, 1973) and Гs is assumed to be 0.315 for a bare soil surface (Kustas and 

Daughtry, 1989). The fractional vegetation coverage fc is used to perform an interpolation 

between the aforementioned limiting cases, to separate land surfaces into non-vegetated, 

partially vegetated and densely vegetated surfaces. 

SEBS makes use of the Monin-Obukhov similarity theory (MOST) for the estimation of the H 

and LE. MOST relates surface variables and variables in the atmospheric surface layer to 

surface fluxes (Su et al., 2001).  

Su (2002) states that the similarity relationships for profiles of the mean wind speed and mean 

temperature difference (θo - θa) in the ASL, are usually written in integral form as: 

u  = 
𝑢∗

𝑘
[ln (

𝑧−𝑑𝑜

𝑧𝑜ℎ
) − 𝜓𝑚 (

𝑧−𝑑𝑜

𝐿
) + 𝜓𝑚 (

𝑧𝑜𝑚

𝐿
)]     (3.4) 

θo - θa = 
𝐻

𝑘𝑢∗𝜌𝐶𝑝
[ln (

𝑧−𝑑𝑜

𝑧𝑜ℎ
) −  𝜓ℎ (

𝑧−𝑑𝑜

𝐿
) +  𝜓ℎ (

𝑧𝑜ℎ

𝐿
)]     (3.5) 

Where z is the reference meteorological height (m), u* is the friction velocity (m s-1), ρ is the 

density of air (kg m-3), Cp is the heat capacity of dry air (Jkg-1), k = 0.4 is von Karman’s 

constant, do is the zero plane displacement height (m), zom is the roughness height for 

momentum transfer (m), θo and θa are the potential surface temperature and potential air 

temperature at height (z) respectively (K), zoh is the scalar roughness height for heat transfer, 

ψm and ψh are the stability correction factors for momentum and heat transfer respectively and 

L is the Obukhov length (m) 
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The scalar roughness height for heat transfer can be derived as: 

zoh = 
𝑧𝑜𝑚

exp (𝑘𝐵−1)
         (3.6) 

Where the parameter kB-1 value is dependent upon the soil and fractional vegetation coverage. 

The estimation of this parameter can be determined using the extended physical model 

proposed by Su et al. (2001). H is recalculated iteratively in SEBS using the MOST parameters 

until the lowest possible error is obtained (Su, 2002). Su (2002) discusses the derivation of a 

formulation for the estimation of EF on the basis of the energy balance at limiting cases.  

In SEBS, H is constrained in the range set by the H at the wet limit (Hwet) and H at the dry limit 

(Hdry) (Su, 2002). Due to the limitation of soil moisture, LE (or the evaporation) becomes zero, 

at the dry limit, and H attains its maximum value (Su, 2002). H attains its minimum value, at 

the wet limit, as evaporation can take place at potential rates (evaporation is constrained, only 

by the energy available for given surface and atmospheric conditions). Therefore, the relative 

evaporation can be calculated as: 

Λr  =  1 − 
𝐻−𝐻𝑤𝑒𝑡

𝐻𝑑𝑟𝑦−𝐻𝑤𝑒𝑡
         (3.7) 

The EF can then be derived as follows: 

Λ  =  Λ𝑟
𝑅𝑛−𝐺𝑜−𝐻𝑤𝑒𝑡 

𝑅𝑛−𝐺𝑜
        (3.8) 

Consequently, the ET can be computed by assuming the EF is constant throughout the day.  

 SEBS modifications 

Gokmen et al. (2012) and Pardo et al. (2014) discuss two separate approaches involving the 

integration of scaling factors into SEBS0 to improve the estimation of H, LE and EF during 

conditions of water stress. The poor performance of SEBS0 during conditions of water stress 

can be ascribed to the inability of the model, to explicitly account for biophysical feedbacks 

between aerodynamic conductance, surface conductance and vapor pressure deficit. Instead an 

extra resistance parameter (kB-1) is used to overcome the difference between aerodynamic and 

radiometric temperature (Tr).  
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However, this may lead to uncertainties during the estimation of ET during conditions of water 

stress, such as the underestimation of H. In order to address this limitation and correct the 

underestimation of H, so that an overestimation of EF and LE can be avoided, Gokmen et al. 

(2012) integrated a soil moisture scaling factor (SEBSSM) to adjust kB-1. Alternatively,Pardo et 

al. (2014) used LST and the normalized difference vegetation index (NDVI) to scale (SEBSNDVI) 

EF. 

Pardo et al. (2014) evaluated the SEBS0 algorithm, as well as the aforementioned modifications 

in order to determine whether these approaches resulted in the improved estimation of fluxes 

and ET during water stressed conditions. The results of the study indicated that while the 

application of both the SEBSSM and SEBSNDVI approaches resulted in an improved agreement 

between the observed and modelled H. Only SEBSNDVI, was shown to have significantly 

improved modelled LE and EF when compared with observed values. According to Pardo et 

al. (2014) other factors in addition to soil moisture, viz. biophysical parameters associated with 

different vegetation types, may have a significant influence on the SEBS0 algorithm, as these 

parameters influence the roughness heights for momentum transfer.  

While the SEBSNDVI approach accounts for these factors, the SEBSSM approach does not 

adequately do so. Consequently, the application of the SEBSSM approach may not be suitable 

for application in environmental settings in which there are great differences in the biophysical 

parameters characterizing the vegetation in a particular area of interest (Pardo et al., 2014). 

Considering the findings of Pardo et al. (2014) and the characteristics of our study site (site 1), 

a similar approach to SEBSNDVI was implemented in this study.  

Previous studies have shown that as environmental stress increases, the EF and ET 

consequently decrease. In order to better represent this influence of stress on the EF and LE 

derived in SEBS0, calibration factors were empirically derived as indicators of stress, to better 

represent the influence of environmental stress on fluxes within the study areas. To derive the 

aforementioned factors, we first computed the ratio of actual ET(ETa) to ETo (FAO Penman-

Monteith reference evaporation) during the 2015 measurement period at site 1, to represent the 

influence of environmental stress on ET. This is given as  

Kcact = 
𝐸𝑇𝑎

𝐸𝑇𝑜
                                (3.9) 
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Where Kcact (dimensionless), hereafter referred to as the environmental stress factor (ESF), can 

be defined as the actual crop coefficient which accounts for the influence of environmental 

stress (Allen et al., 2005), ETa is the ET measured in-situ (mm d-1) and ETo is the FAO Penman-

Monteith reference evaporation (mm d-1).  

Thereafter we quantified the dependence of the ESF on soil moisture (SM), temperature (T) 

and NDVI by performing a simplistic multi-variable ordinary least squares regression. SM (m3 

m-3) and T (0C) were obtained from in-situ meteorological measurements. Although, SM data 

can be retrieved using satellite-earth observation, point based in-situ measurements were the 

preferred option, as data available through satellite-earth observation sources were too course 

to fulfil the objectives outlined in this study. NDVI was derived from Landsat data, as: 

NDVI  = 
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑
        (3.10) 

Where NIR is the Near-Infra Red band (W m-2 µm-1) and Red is the red band (W m-2 µm-1). 

As Landsat data was only available every 8 days (using both Landsat 7 and 8), only 

measurements of SM and T which coincided with these days were used during the regression 

analysis. The results of this analysis showed the there is a strong correlation between the ESF 

and these variables (R2 = 0.81) within our study site.  Consequently, ESF can alternatively be 

determined as: 

ESF = 0.2𝑁𝐷𝑉𝐼 + 0.03𝑆𝑀 − 0.01𝑇 + 0.25     (3.11) 

Using Equation 3.11 daily ESF was estimated, using daily measurements of SM and T, whereas 

we assumed that NDVI values remained unchanged between Landsat image acquisitions.  ESF 

was then incorporated into Equations 3.12 and 3.13, to obtain EFnew and Hnew, respectively 

(Pardo et al., 2014).  

EFnew = 𝐸𝐹𝑜𝑙𝑑 ∗ 𝐸𝑆𝐹                                         (3.12) 

Hnew = (1 − 𝐸𝑆𝐹)(𝑅𝑛 − 𝐺0)                            (3.13) 

Once the EFnew has been determined, it could be applied in conjunction with the Rn and G0 

previously determined in SEBS0, to estimate the daily ET.  
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To assess if the implementation of SEBSESF improves the estimation of ET in this semi-arid 

region; daily ET, H and LE flux estimates acquired using the SEBS0 and SEBSESF, were 

compared against EC measurements obtained at Site 1 during the 2015 measurement period.  

In general, the footprint of EC measurements can extend to hundreds of meters depending on 

the instrument heights of the system (Huang et al., 2015).  In this study, we did not derive the 

flux tower footprint. Instead we adopted the approach described in Huang et al. (2015), 

comparing estimations of the pixel/s covering the location of the EC flux tower with 

measurements from the EC system.   

Furthermore, to test if the ESF approach was robust and applicable to other environmental 

settings and for changing climatic conditions, we used the relationship described in Equation 

3.11, to derive ESF values during the 2016 measurement period at site 1, as well as for the 

2015 and 2016 measurement period at site 2. These values were then used to estimate daily ET 

using the SEBSESF approach.  

 Results  

 Comparison of satellite derived fluxes and ET against EC measurements at  

Site 1 during the 2015 measurement period 

In general, our results show that the modelled values of H from SEBS0 are clearly 

underestimated when compared against observed values, as illustrated in Figure 3.2, whereas 

LE is overestimated when compared against observed values. To assess the effect of integrating 

ESF values in SEBS0, bias and root mean square error (RMSE) values for SEBS0 and SEBSESF 

were compared against observed H and LE fluxes.  

The implementation of SEBSESF, resulted in a significant improvement in the correlation 

between modelled and observed values of H and LE (Table 3.1). Furthermore, there is a 29.30 

and 28.37W m-2 reduction in the bias and RMSE for modelled H, respectively. Whereas the 

bias and RMSE for modelled LE was reduced by 19.67 and 44.03 W m-2, respectively, when 

ESF is integrated into SEBS0. 
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Table 3.1 Error evaluation of the estimated H and LE derived from implementing SEBS0 and 

SEBSESF during the 2015 measurement period at site 1 

 
H LE 

 
SEBS0 SEBSESF SEBS0 SEBSESF 

RMSE 66.48 37.18 48.11 28.43 

Bias 56.23 28.25 66.59 22.55 

Correlation coefficient 0.20 0.40 0.54 0.73 

T test p value 0.00 0.99 0.00 0.27 

 

ECET was then compared with modelled ET estimates acquired from using MODIS data as 

inputs to SEBS0 and SEBSESF, during the 2015 field campaign. The implementation of SEBSESF 

resulted in an improved estimation of the ET derived at the MODIS spatial resolution, as shown 

in Table 3.2 and Figure 3.3. Bias and RMSE values for ET estimates derived using SEBSESF, 

decreased by 1.41 and 1.48 mm d-1. Furthermore, increases in the Nash-Sutcliffe efficiency 

values, as well as the percentage of values within an AAR, indicated that there was a significant 

improvement in the association between the ECET and the ET estimates derived from 

implementing SEBSESF. 
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Figure 3.2 Comparison of observed and modelled fluxes at site 1 during the 2015 

measurement period; a) and b) show a time series comparison of H and LE values, 

respectively. Whereas c) and d) show cumulative plots of H and LE values, 

respectively 

 Comparison of observed and satellite derived ET estimates using MODIS data, at 

site 1 during the 2016 measurement period 

Comparisons between observed and modelled daily ET (Table 3.3 and Figure 3.4), show that 

the implementation of SEBSESF resulted in the improved estimation of modelled ET derived at 

the MODIS spatial resolution within the study site during the 2016 measurement period. Bias 

and RMSE values for ET estimates derived using SEBSESF decreased by 0.35 and  

0.28 mm d-1. Moreover, there was an increase in the Nash-Sutcliffe efficiency values, as well 

as the percentage of values within an AAR, further indicating that there was a significant 

improvement in the association between the ECET and the ET estimates derived from 

implementing SEBSESF. 
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Table 3.2 Statistical comparison of SEBS0 and SEBSESF ET estimates derived at the 

MODIS spatial resolution, against ECET at Site 1 during the 2015 measurement 

period 

 SEBS0  SEBSESF  

Relative volume error (RVE) -181.40 -22.84 

Bias 2.17 0.71 

RMSE 2.51 1.13 

Kruskal-Wallis (p value) 0.00 0.07 

Correlation coefficient 0.30 0.64 

Nash-Sutcliffe -2.77 0.24 

AAR (± 15 %) 17 % 41 % 

AAR (± 30 %) 24 % 57 % 

  

 

 

 

 

 

 

Figure 3.3 A time-series comparison of SEBS0 and SEBSESF ET estimates derived at the 

MODIS spatial resolution, against ECET during the 2015 measurement period 
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Table 3.3 Statistical comparison of SEBS0 and SEBSESF ET estimates derived at the MODIS 

spatial resolution, against ECET at Site 1 during the 2016 measurement period 

 SEBS0  SEBSESF  

RVE -29.86 1.56 

Bias 1.18 0.83 

RMSE 1.48 1.17 

Kruskal-Wallis (p value) 0.03 0.14 

Correlation coefficient 0.12 0.47 

Nash-Sutcliffe -0.83 -0.14 

AAR (± 15 %) 24 % 38 % 

AAR (± 30 %) 40 % 61 % 

 

 

 

 

 

 

 

Figure 3.4 A time-series comparison of SEBS0 and SEBSESF ET estimates derived at the 

MODIS spatial resolution, against ECET during the 2016 measurement period 

 

 Comparison of observed and satellite derived ET estimates using Landsat data, at 

site 1 during the 2015 and 2016 measurement period 

Due to the limited number of Landsat images acquired during the investigation period we 

combined our results for 2015 and 2016 at site 1. This was done to increase the population size 

used during the statistical analysis, so that a more meaningful assessment of integrating ESF 

values in SEBS0 could be ascertained. Similar to our previous observations for site 1, the 

implementation of SEBSESF resulted in the improved estimation of ET at the Landsat resolution, 

when compared against ECET (Table 3.4 and Figure 3.5). 
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Table 3.4 Statistical comparison of SEBS0 and SEBSESF ET estimates derived at the Landsat 

spatial resolution, against ECET at Site 1 during the 2015 and 2016 measurement 

period 

 SEBS0  SEBSESF  

RVE -72.34 12.12 

Bias 1.19 0.69 

RMSE 1.43 0.94 

Kruskal-Wallis (p value) 0.33 0.24 

Correlation coefficient 0.33 0.79 

Nash-Sutcliffe -0.14 0.51 

AAR (± 15 %) 22 % 35 % 

AAR (± 30 %) 35 % 65 % 

 

Bias and RMSE values for ET estimates derived using SEBSESF decreased from 1.19 to  

0.69 mm d-1 and 1.43 to 0.94 mm d-1, respectively, while there were significant increases in the 

Nash-Sutcliffe efficiency and the percentage of values within an AAR.  

 

Figure 3.5 A time-series comparison of SEBS0 and SEBSESF ET estimates derived at the 

Landsat spatial resolution, against ECET during the; a) 2015 and b) 2016 

measurement period  
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 Comparison of observed and satellite derived ET estimates using MODIS data, at 

site 2 during the 2015 and 2016 measurement period 

As mentioned previously, there were only a limited number of Landsat images available during 

the investigation period which restricted our statistical analysis to a relatively small sample 

size. However, we attempted to overcome this limitation by combining our results for 2015 

and 2016. While this approach was successful for analyses at site 1, we were unable to adopt a 

similar approach at site 2. This was largely attributed to frequent occurrences of insufficient 

measurements (less than 40 thirty-minute ET measurements per day) in the observed ET data 

record (Ramoelo et al., 2014). Consequently, the results discussed herein (Table 3.5 and Figure 

3.6) are limited, to comparisons between observed and modelled daily ET derived at the 

MODIS spatial resolution during the 2015 and 2016 measurement periods.  

It should be noted that the observed ET data used during these data comparisons seldom fit the 

aforementioned criteria discussed in Ramoelo et al. (2014). Therefore, to increase the number 

of observed ET data records which could be used for data comparisons, we limited this 

selection criteria to a minimum of 17 thirty-minute diurnal (6:00 to 18:00) ET measurements 

per day, assuming that ET only occurs between sunrise and sunset (Gribovski et al., 2010).  

The integration of ESF in SEBS0 significantly reduced the degree of overestimation in the 

modelled ET estimates derived at the MODIS spatial resolution. Bias and RMSE values for ET 

estimates derived using SEBSESF decreased by 2.21 and 2.66 mm d-1 and 1.38 to 1.70 mm d-1, 

for 2015 and 2016 respectively. Furthermore, there were increases in Nash-Sutcliffe efficiency 

values indicating that there is an improvement in the model performance when compared 

against observed ET. While these results indicate that the modelled ET estimates improved 

through the integration of ESF in SEBS0, this approach was only able to marginally increase 

the percentage of estimates within an AAR. 
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Table 3.5 Statistical comparison of SEBS0 and SEBSESF ET estimates derived at the MODIS 

spatial resolution, against ECET at Site 2 during the 2015 and 2016 measurement 

period 

 2015 2016 

 SEBS0  SEBSESF  SEBS0  SEBSESF  

RVE -359.80 -26.61 -274.36 -37.27 

Bias 2.69 0.48 1.81 0.43 

RMSE 2.96 0.30 2.20 0.50 

Kruskal-Wallis (p value) 0.00 0.22 0.00 0.07 

Correlation coefficient 0.33 0.57 0.56 0.65 

Nash-Sutcliffe -20.91 0.45 -13.67 0.23 

AAR (± 15 %) 0.00 % 0.00 % 6.00 % 6.00 % 

AAR (± 30 %) 0.00 % 30.40 % 12.00 % 18.00 % 

 

Figure 3.6 A time-series comparison of SEBS0 and SEBSESF ET estimates derived at the 

MODIS spatial resolution, against ECET during the; a) 2015 and b) 2016 

measurement period 

 Discussion 

Overall our results have shown that the implementation of SEBSESF was able to significantly 

improve the estimation of ET under conditions of water stress within the study sites. This 

observation is reaffirmed in Figures 3.7 and 3.8, which provides an illustration of the 

differences in ET derived using SEBS0 and SEBSESF at sites 1 and 2. Using 21st June 2015 as 

an example, it is evident that SEBS0 ET estimates derived at the Landsat and MODIS spatial 

resolutions, are generally greater than 2.50 mm d-1 at sites 1 and 2.  
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These values are significantly higher than ECET which was less than 1.00 mm d-1 at sites 1 and 

2. However, after ESF is integrated into SEBS0 the overestimation of ET is significantly reduced 

and is typically less than 1.20 mm d-1 at sites 1 and 2.  

 

Figure 3.7 Daily ET maps of the study area derived at the Landsat spatial resolution for the 

21st June 2015 

 

Figure 3.8 Daily ET maps of the study area derived at the MODIS spatial resolution for the 

21st June 2015 
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While the implementation of SEBSESF was generally shown to improve ET estimation, there 

were discernable trends identified during our analysis which indicated poor performance of the 

approach. These are given as follows; i) ET estimates derived at the Landsat spatial resolution 

were generally in better agreement with ECET ii) inter-annual comparisons at site 1 showed that 

the SEBSESF approach generally perfomed better during 2015 and iii) only a marginal increase 

in the percentage of ET estimates within an AAR at site 2 was obtained using the SEBSESF 

approach. 

The correlation coefficient and Nash-Sutcliffe efficiency values were relatively higher for ET 

estimates derived at the Landsat resolution. The larger discrepancies between the MODIS 

derived ET estimates and ECET can essentially be attributed to the mixed pixel effect (Gibson 

et al., 2013) associated with the single MODIS pixel. Due to the spatial resolution of MODIS 

pixels, ET contribution of land-uses outside the footprint of the EC system were captured 

(Gokool et al., 2017). Whereas for Landsat there are several pixels which fall within the 

footprint of the EC system. Furthermore, the higher correlations achieved for Landsat may also 

be a consequence of the population size used during statistical analysis, viz. 26 days for Landsat 

and 215 days for MODIS. 

The poorer correlation between SEBSESF ET estimates and ECET during 2016 can be explained 

by the ESF values derived during each of the measurement periods, as ESF values ultimately 

influences the degree to which the overestimation of the modelled ET is reduced by. During 

the 2015 measurement period ESF values were lower than 2016 and did not approach 1. 

Whereas for 2016 there were numerous instances in which ESF values were equal to 1. This 

variation in the ESF can be attributed to inter-annual changes in the factors NDVI, temperature 

and soil moisture. However, since variations in the NDVI and temperature were relatively 

similar and of comparable magnitude for 2015 and 2016 (Figure 3.9), these factors would have 

presumably had a marginal influence on the observed differences in the 2015 and 2016 ESF 

values (Figure 3.10).  
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Figure 3.9 Inter-annual comparison of NDVI and temperature values at site 1 

Ultimately, the differences in ESF values were largely attributed to changes in the soil moisture 

content in the root zone. During the initial stages of the investigation periods when volumetric 

water content (VWC) in the root zone was less than 0.14 m3 m-3, the integration of ESF into 

SEBS0 was able to significantly reduce the overestimation in the modelled ET estimates. 

However, when VWC in the root zone increased above 0.22 m3 m-3, SEBSESF ET estimates 

were similar to those of SEBS0. It is presumable that during these periods there was minimal 

water stress within the study area. Consequently, ET was regulated by the available energy 

rather than soil moisture, hence SEBS0 and SEBSESF ET estimates were of similar magnitude. 
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Figure 3.10   Inter-annual comparison of VWC and ESF values at site 1  

Although the integration of ESF in SEBS0 significantly improved the correlation between ECET 

and modelled ET at site 2, this approach was only able to marginally increase the percentage 

of estimates within an AAR. This occurrence can be ascribed to uncertainties associated with 

the flux tower measurement record.  

During the 2015 and 2016 investigation periods, only 42 and 14 % of the observed ET values 

that were captured accounted for the maximum number (24) of thirty-minute diurnal ET 

measurements per day. Consequently, the daily ET for this region is presumably higher than 

the values used during validation. Therefore, the degree of overestimation in our modelled ET 

estimates may have been exaggerated, due to the underrepresentation of ET captured within 

the observed record.  

Furthermore, it should be noted that the poorer performance of SEBSESF approach during 2016, 

as well as at site 2 may also be partially due to the effect of the calibration effort required to 

derive ESF values.  

 Conclusions 

Physically-based surface energy balance such as SEBS are generally found to perform well for 

a variety of crop types and moderate/dense land covers. However, these models may 

overestimate the ET for regions experiencing conditions of water stress, especially those 

characterized by drier soils with sparse vegetation coverage.  
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The integration of scaling factors, dependent on soil moisture or biophysical parameters into 

SEBS0 has been proposed as a potential solution to address these limitations. In this study, we 

evaluated the performance of SEBSESF which integrates a calibration factor that considers the 

influence of environmental stress on energy fluxes and daily ET. SEBSESF was first evaluated 

by comparing the modelled daily ET, H and LE flux estimates against EC measurements 

obtained at Site 1 during the 2015 measurement period.  

Integrating the ESF into SEBS0 resulted in the EF decreasing as water stress increases. This in 

turn resulted in a decrease in the modelled LE, while there was an increase in the modelled H. 

The results also showed significant improvements in the correlation, as well as the percentage 

of values within an AAR between ECET and modelled ET estimates. Furthermore, to test if the 

ESF approach is robust and applicable to other environmental settings and for changing 

climatic conditions. ESF values were derived during the 2016 measurement period at site 1, as 

well as for the 2015 and 2016 measurement period at site 2.  

Thereafter we implemented SEBSESF and evaluated the modelled daily ET estimates against 

ECET. Significant improvements in the correlation, as well as the percentage of values within 

an AAR between the modelled ET and ECET were attained through the integration of the ESF 

into SEBS0 for each of these scenarios. Overall the proposed integration of ESF into SEBS0 was 

shown to be a credible approach for estimating ET during conditions of water stress. Only a 

limited number of observed ET measurements are required, thereafter the factors; NDVI, soil 

moisture and LST can be used to derive the ESF scaling factors. However, the feasibility of 

utilizing this approach in data scarce regions may be limited by the need for observed ET 

measurements to initially derive the ESF calibration equation.  

The ESF scaling factors were derived using in-situ measurements of soil moisture and 

temperature, as the aim of this study was to improve the localized mapping of ET within the 

study area. Nevertheless, the SEBSESF approach may potentially be applicable for regional 

applications, by acquiring estimates of the aforementioned meteorological variables from 

satellite-earth observation data products. However, this may only be possible if the 

environmental conditions within the greater study area are similar to the region in which the 

ESF calibration values are derived. Furthermore, the implementation of the SEBSESF approach 

negates the advantage that SEBS has over other satellite-based ET estimation models, viz. that 

it is a purely physical process of the model and consequently provides credible results 

irrespective of season or location. 
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Although it was beyond the scope of this study, we recommend that future investigations 

regarding the application of the SEBSESF approach are also compared against other modified 

versions of SEBS in additional environmental settings, to truly gauge if the proposed method 

offers any significant improvement to the localized mapping of ET in arid and semi-arid 

environments. Additionally, future research efforts could be focused on improving the 

modelling of the kB-1 parameter or extra (stomatal) resistance terms when deriving H, during 

conditions of water stress.  

Notwithstanding the aforementioned limitations, the results presented in this study highlight 

the potential of implementing SEBSESF for the mapping of ET in this region. This can prove to 

be extremely beneficial in furthering our understanding of the rapport between hydro-

meteorological fluxes and the natural functioning of ecosystems, at varying spatial scales. This 

provides an opportunity to facilitate the improved management of our limited water resources, 

through the relatively timeous and cost-effective quantification of ET. 
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***** 

Lead into chapter 4: The integration of the ESF values into SEBS0 was shown to considerably 

improve the representation of modelled ET estimates within the study area. With the ability of 

the modified version of SEBS, to more adequately represent ET within the study area 

confirmed (chapter 3), the objective of chapter 4 was to quantify seasonal and spatial variations 

in plant water use dynamics through the development of a satellite-derived ET time series and 

stable isotope analysis. Supplementary information and/or data which was used during the 

various analyses undertaken in this chapter but not presented herein, are provided in 

Appendices A and B. 
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ABSTRACT 

The relative importance of groundwater (GW) to sustain terrestrial vegetation has been well 

documented. However, quantifying GW use by riparian vegetation in data scarce regions may prove to 

be challenging. For this purpose, we coupled evapotranspiration (ET) estimates from the satellite-based 

surface energy balance system (SEBS) model with stable isotope analysis, to map and quantify the 

contribution of GW to transpiration (ETg), along the lower reaches of a perennial river system, in the 

semi-arid north-eastern region of South Africa. Plant stem, soil, stream and GW samples were collected 

on 3 sampling occasions during the 2016 dry season. δ2H and δ18O values of the respective samples 

were measured and analysed.  
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evapotranspiration estimates coupled with stable isotope analysis. Accepted for publication in Journal of Arid Environments  

*Referencing conforms to format of Journal of Arid Environments 

*It should be noted that minor variations in the text may exist between the published version of the manuscript and the version presented herein, due to recommendations put 

forward by the examiners of the thesis. 

mailto:shaedengokool@gmail.com


 

 129 

We found that while GW use was prevalent and increased with aridity, overall ETg was fairly minimal. 

During the initial stages of the dry season ETg for the study area was extremely low, approximately 0.10 

% of daily ET or 0.01 mm d-1. However, as aridity increased, ETg increased to approximately 10 % of 

daily ET or 0.30 mm d-1. The results of these various investigations undertaken demonstrates the 

potential of coupling satellite-based ET approaches with stable isotope analysis, to quantify spatial and 

seasonal dynamics in ETg. 

Keywords:  SEBS, Satellite-based ET, Stable isotopes, Riparian vegetation, Groundwater 

dependency 

 Introduction 

In arid and semi-arid environments groundwater (GW) is often the most important source of 

freshwater for human consumption and vegetation and makes a significant contribution to 

streamflow (Lange et al., 2005). Therefore, balancing the amount of GW that is used for basic 

human needs with environmental water requirements (EWR) is crucial for successful water 

resource management in these regions (Tanner and Hughes, 2015).  According to Eamus et al. 

(2015), quantifying seasonal and spatial variations GW consumption by vegetation is one of 

the key areas which can facilitate the sustainable management of GW resources, especially the 

EWR flow allocations of this resource.  

In the last decade, ET estimation, has substantially benefited from advancements in satellite 

earth observation techniques (SEO) (Nourhi et al., 2013). SEO techniques can be used to 

quantify the water use of riparian vegetation and are often utilized to overcome spatial 

limitations generally associated with conventional approaches, such as inter alia; FAO 56 

Penman Monteith reference evaporation, eddy covariance, scintillometry (Allen et al., 1998; 

Savage et al., 2004; Fernández-Prieto et al., 2012; Jassas et al., 2015). Furthermore, SEO can 

be used to acquire data in remote and data scarce regions, as well as allowing for seasonal and 

inter-annual comparisons of hydro-meteorological variables due to the periodic updating of 

information (Gokool et al., 2017).   

Despite these advantages, the trade-off between the spatial and temporal resolution of available 

imagery and the ability of the models to accurately estimate fluxes and ET in different 

environmental settings, may limit the use of SEO technologies to guide water resources 

management decisions (Gokool et al., 2017).  
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While there exist approaches to address these limitations and improve upon the accuracy of ET 

estimates (Hong et al., 2011; Pardo et al., 2014; Gokool et al., 2017), the ET estimate provided 

is often the total water used from multiple sources such as; soil water, GW or stream water. 

Therefore, the ET estimate acquired by these techniques requires further disaggregation to 

determine ETg (Eamus et al., 2015).  

Several studies have identified approaches to quantify subsurface moisture dynamics at varying 

spatial and temporal scales, because the movement of water in the soil-root system plays a 

significant role in regulating ecohydrological processes at the surface (Kumar et al., 2014; Daly 

et al., 2017). These techniques include; conventional approaches (time-domain reflectometry, 

gravimetric methods and neutron probes), isotope hydrology, geophysical techniques 

(electrical resistivity imaging), the cosmic ray probe, SEO data and root water uptake models 

(Robinson et al., 2012; Villarreyes et al., 2013; Kumar et al., 2014; Mares et al., 2016; Daly et 

al., 2017; Zhang et al., 2017).  

Isotope hydrology and in particular environmental isotopes (stable and radioactive) techniques 

are amongst the most effective and frequently used tools to understand and quantify soil-plant-

water dynamics (Yang et al., 2010; Penna et al., 2013). While both radioactive and stable 

isotopes have been extensively applied for ecohydrological investigations (Marwick et al., 

2015; Thaw et al., 2016; Zhang et al., 2017; Evaristo and McDonnell, 2017), the use of stable 

isotope techniques has generally been applied more frequently for quantifying the depth and 

sources of water uptake for transpiration (Penna et al., 2013; Thaw et al., 2016).  

For most species and locations, the uptake of water during transpiration does not generally 

result in the fractionation of oxygen-18 (18O) and deuterium (2H) within non-photosynthesising 

tissue (Evaristo and McDonnell, 2017). The isotopic composition of 18O and 2H of xylem water 

should represent the sources present within the root zone (Evaristo and McDonnell, 2017). 

Although this assumption has been supported and well documented in various soil-plant-water 

interaction studies (Zimmerman et al., 1966, White et al., 1985; Walker and Richardson, 1991; 

Dawson et al., 2002), it should be noted that certain plant species within particular 

environmental settings may fractionate 2H during root water uptake (see: Lin and Sternberg, 

1993; Ellsworth and Williams, 2007; Zhao et al., 2016; Evaristo et al., 2017).  
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In this study, we aimed to quantify ETg along the riparian zone situated in the lower reaches of 

a perennial river system in the semi-arid north-eastern region of South Africa, employing a 

relatively simplistic approach that required two independent types of data; (i) daily estimates 

of ET and (ii) the stable isotopic composition of 18O and 2H of xylem water from all possible 

sources. Once the proportional contribution of these sources to the xylem water has been 

established, ETg could be derived as the product of the GW proportion and ET (Eamus et al., 

2015).  

Based on the aforementioned approach, we implemented the satellite-based Surface Energy 

Balance System (SEBS) Model and two approaches, to quantify daily ET at a moderate spatial 

resolution (MSR) (Gokool et al., 2017). ET estimates acquired from these approaches were 

evaluated against in-situ measurements of ET acquired from a one-sensor (excludes Infra-Red 

Gas Analyzer) Eddy Covariance system (ECET), in order to determine which approach most 

adequately represented the ET for the portion of river reach studied. During a separate 

investigation, we coupled isotope analysis of 18O and 2H with a Bayesian mixing model to 

determine the proportional contribution of water sources to transpiration.  

The results from these investigations were then used to provide insights on spatial and seasonal 

dynamics in ETg within the study area. Furthermore, the timing of this study also coincided 

with a large El Nino induced drought period (Kogan and Guo, 2016), providing further insights 

into plant water use dynamics during extreme drought conditions. 

 Methodology 

 Study Area 

The study site is situated in the Limpopo Province in the north-eastern region of South Africa, 

along the lower reaches of the Groot Letaba River between Letaba Ranch  

(B8H007; 23.6580 S; 31.0470 E) and Mahale (B8H007; 23.6690 S; 30.9910 E) weirs, as depicted 

in Figure 4.1. According to Pollard and du Toit (2011), the Letaba River system often 

experiences water shortages and restrictions and has frequently been unable to meet its EWR. 

Therefore, understanding and accurately quantifying the dynamics of vegetation water use 

requirements in this region, is essential to maintain the natural functioning of this environment. 

A semi-arid climate, characterized by hot wet summers and mild dry winters is experienced 

across the region. Mean annual temperatures vary across the region ranging from 18 0C in the 

mountainous areas to 28 0C in the eastern regions (Katambara and Ndiritu, 2010).   
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A majority of the rainfall occurs in the summer months (October to March) and is 

predominantly characterized by thundershowers occurring from the north and north-east, as 

well as from tropical cyclones originating over the Indian Ocean (Katambara and Ndiritu, 2010; 

February et al., 2007). According to Heritage et al. (2001) approximately three quarters of the 

catchment is underlain by granite and gneiss. There exists a variety of morphological units 

within the study area which is due to the varied distribution of sediment along the river.  

The portion of the Groot Letaba River flowing through the study area is largely characterized 

by alluvial channel types (Heritage et al., 2001). The study area was categorized into three 

separate geomorphological zones during sampling. These were; i) the near stream northern and 

ii) southern banks which includes the alluvial terrace situated adjacent to the active stream 

channel, as well as iii) within the active river channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Letaba Farm’s Letaba Ranch 

Figure 4.1 Location of the study area and stable isotope sampling points (Google Earth TM 

image), situated along the lower reach of the Groot Letaba River within the 

Quaternary catchment B81J (adapted from Schulze et al., 1997) 
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The total area of the river channel and riparian zone contributing to ET was estimated to be 

approximately 1.96 km2. This was calculated by summing up the width of the river channel 

(approximately 60 m and constitutes 50 % vegetation, 30 % bare soil and  

20 % open water) and riparian zone (40 m on either side of the channel and complete vegetation 

coverage) and multiplying it by the longitudinal distance of the portion of river reach studied 

between the two weirs (⁓14 000 m) (Gokool et al., 2017; Riddell et al., 2017). 

A variety of woody plant species were situated along geomorphological zones i and ii. The 

common species included; Ficus sycomorus, Philenoptera violacea, Diospyros mespiliformis, 

Colophosphermum mopane, Combretum microphyllum, Gymnosporia senegalensis, Cassia 

abbreviata and Ziziphus mucronata. While the predominant plant species situated within 

geomorphological zone iii is Phragmites mauritianus.  Additionally, numerous agricultural 

fields, predominantly planted with Cucurbita moschata and Medicago sativa are situated 

further away from the active river channel.  These were however not considered during 

sampling. Although the abundance of the trees within the study area (given as a percentage of 

total land cover) was not provided, the trees that were sampled are the predominant vegetation 

found within the study area. 

43 individual trees from the abovementioned species; 9 F. sycomorus, 8 P. violacea, 10 D. 

mespiliformis, 3 C. mopane, 3 C. microphyllum, 5 G. senegalensis and 5 Z. mucronata 

distributed among the six sampling regions, were randomly selected and sampled for 

subsequent stable isotope analysis (Lin et al., 2016). These sampling regions were categorized, 

according to their respective locations with regards to Letaba Farm (20 trees) and Letaba Ranch 

(26 trees). Figure 4.1 provides a Google EarthTM illustration of the sampling regions distributed 

between the farming areas and Letaba Ranch. 

 Estimation of daily ET using satellite earth observation data 

SEBS was applied in this study to estimate daily ET. Su (2002) provides a detailed 

conceptualization of the model. However, the underlying principle of SEBS, is to compute all 

components of the shortened surface energy balance (Equation 4.1), as well as the evaporative 

fraction (EF), using land surface parameters which are derived from meteorological and SEO 

sources, respectively (Su, 2002).  
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Rn = G0 + H +  λE        (4.1) 

Where Rn is net radiation (W m-2), G0 is soil heat flux (W m-2), H is sensible heat flux  

(W m-2) and λE is the latent heat flux (W m-2). 

The original SEBS formulation (SEBS0) has been widely implemented and shown to be a 

credible approach for the estimation of regional fluxes and ET. However, studies have shown, 

that the model may over-estimate the EF and consequently the ET during conditions of water 

stress, as it is unable to adequately account for the influence of soil moisture availability and 

biophysical characteristics during the estimation of ET (Pardo et al., 2014; Gokool et al., 2017). 

Consequently, a modified version of SEBS (SEBSESF), which was proposed as a means to 

improve upon ET estimation for water limited environments, was applied in this study. The 

SEBSESF approach detailed in Riddell et al. (2017) attempts to improve upon the estimation of 

the EF and daily ET, through the integration of a calibration factor in SEBS0, so that the 

influence of environmental stress is more adequately represented during the estimation of ET.  

Daily ET estimates were derived in SEBSESF using SEO data acquired from both Landsat and 

MODIS, as well as meteorological data measured in situ (Riddell et al., 2017). 215 clear sky 

MODIS Level 1 B Terra images (MOD21 and MOD 03 data products, available daily at a 1 

km spatial resolution), as well as 26 clear sky Landsat (7 and 8) Level 1 GeoTiff images 

(available every 16 days at a 30 m spatial resolution) were acquired, during 2015 and 2016 

(18th June to 31st October). Pre-processing and processing of these images were undertaken 

based on the procedures detailed in Su and Wang (2013), Singh et al. (2014) and USGS (2015). 

Although the use of Landsat and MODIS data in SEBS facilitates the relatively timeous and 

inexpensive quantification of ET.  The spatial and temporal resolutions associated with these 

data sets may limit their feasibility to estimate ET for operational water resources management 

(Gokool et al., 2017). In order to, overcome these limitations; two techniques viz. a simple 

output downscaling with linear regression (ODLR) and the actual crop coefficient (Kcact) 

approach as described in Gokool et al. (2017) were applied and evaluated.  

The daily ET estimates derived from implementing SEBSESF were used as inputs to these 

approaches to produce a time-series of daily ET at a MSR. The ODLR and Kcact derived ET 

estimates were then evaluated through statistical comparisons with ECET. Only the values from 

satellite-pixels covering the location of the EC system were used during data comparisons.  
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The results from these investigations were then used to determine which approach most 

adequately represented the riparian ET within the study area. A detailed description of the 

instrumentation setup, study site and data collection for ET and meteorological variables is 

given in Gokool et al. (2017) and Riddell et al. (2017). 

 Water sampling and isotope analyses 

Plant stem/s, soil, stream and GW samples were collected on 3 sampling occasions during the 

2016 dry season (in May, August and October) which were representative of the late autumn, 

late winter and mid spring seasons, respectively in the study area.  

During this period (from May to October) the study area usually experiences drier conditions 

and low flows, a critical period with regards to water shortages. From the 43 individual trees, 

twig samples of mature wood approximately 0.30 to 1.00 cm in diameter and 4.00 to 7.00 cm 

in length were collected. These samples were collected from randomized locations from each 

tree and the epidermis was removed immediately, before being transferred into small airtight 

glass vials (Lin et al., 2016). Soil samples at depths of 30, 60, 100 and 140 cm were collected 

concurrently with the twig samples. The soil samples were obtained using a hand auger and 

then transferred and sealed into airtight 500 ml plastic bottles.  

Stream samples were collected at sampling points 1, 3 and 6 and stored in airtight 500 ml 

plastic bottles. Each sample bottle was rinsed three times with the sample water before the 

actual sample was taken. GW samples were collected from 5 boreholes situated adjacent to the 

active river channel at sampling points 1, 3, 4 and 5, as well as from a borehole situated within 

the active river channel at sampling point 6. The boreholes were purged, ensuring steady state 

chemical conditions (stable electrical conductivity and pH) were reached, so that a GW sample 

representative of the surrounding aquifer could be collected.  

These samples were then stored in airtight 500 ml plastic bottles. In order to ensure that an 

unevaporated sample was collected from the borehole, the pump was left to run continuously 

while the representative sample was being collected (Riddell et al., 2016).  The various samples 

collected in field were stored in a cooler bag and then stored in a fridge prior to transportation 

to the laboratory for analysis in the following days. Rainfall data for the study area was 

collected from a DavisTM Vantage Pro2 station situated in Phalaubeni, approximately 6 km 

north of the study site.  
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However, there were very few rain events experienced on site due to the drought. 

Consequently, only a limited number of samples were available for analysis. 10 rainfall 

samples from 15th November 2015 to 19th May 2016 were collected and analysed. The δ2H and 

δ18O values for these precipitation events were then used to construct a local meteoric water 

line (LMWL) for the study site. The δ2H and δ18O values for all samples were then plotted and 

compared relative to this LMWL. 

2H and 18O contents of rainfall, stream and GW samples were measured using a Los Gatos 

Research (LGR) DLT-100 Liquid Water Isotope Analyser. Plant stem and soil waters were 

extracted using a 2-step cryogenic open manifold system that facilitated the removal of non-

condensable gases and potential organic contaminants (Nippert and Knapp, 2007). This 

extraction procedure minimizes the likelihood of organic molecules influencing the isotopic 

signature of the water extracted from plants and soils.  Furthermore, the "ChemCorrect" 

software offered by Picarro, was used to screen the samples post-analysis (West et al., 2011), 

to identify samples that should be excluded from further analysis.  

2H and 18O contents of the xylem water and soil water were measured using a Picarro L1102-i 

CRDS analyser (Picarro, Santa Clara, California, USA). The overall analytical precision of 

both the spectrometers was less than 2 permil (0.002‰) for 2H and less than 0.3 permil 

(0.0003‰) for 18O.  

The 2H and 18O of the various samples (2H and 18O) were expressed in delta notation relative 

to the Vienna Standard Mean Oceanic Water (VSMOW), as: 

δ = (
Rsample

Rstandard
− 1)*1000        (4.2) 

Where δ (expressed in ‰ notation) represents changes in the ratio of the uncommon to common 

isotopes (2H/1H and 18O/16O) for the sample (Rsample) and standard (Rstandard).  

The freely available stable isotope mixing model package in R (Simmr), which has been 

designed to solve mixing equations for stable isotope data using a Bayesian statistical 

framework (Parnell and Inger, 2016), was used to identify proportional contributions of sources 

to transpiration. Bayesian mixing models such as Simmr possess several advantages over 

conventional linear mixing models, such as their ability to quantify; i) the proportional 

contribution of water sources to transpiration, ii) account for uncertainties associated with the 

sources and iii) allow for the input of isotope data from multiple sources (Ma and Song, 2016). 
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The Simmr package requires three sets of input data as a minimum, to determine the 

proportions of water used from a particular source, this includes; i) δ2H and δ18O of the xylem 

water, ii) mean δ2H and δ18O for the various sources and iii) standard deviations of δ2H and 

δ18O for the various sources (Parnell and Inger, 2016). The isotopic composition of GW and 

stream water was found to be statistically different (non-parametric Mann-Whitney test p < 

0.05).  

Similarly, soil δ2H and δ18O values at each of the depth regions that were sampled were found 

to be statistically different from each other (Mann-Whitney test p < 0.05). Consequently, the 

potential sources of water used during transpiration were considered to be soil water (at each 

depth region sampled), GW and stream water (Penna et al., 2013; Phillips et al., 2014; Zhang 

et al., 2017). Simmr was implemented with 100 000 iterations (discarding the first 10 000), no 

prior information was used to guide the model, thus all sources had an equal likelihood of 

contribution (Zhang et al., 2017). Trophic enrichment factors and concentration dependence 

values were set to zero.  

The estimated proportions of source contribution to the xylem mixture were Consequently 

determined using a Markov Chain Monte Carlo function to repeatedly estimate the proportions 

of the various sources in the mixture and determine the values which best fit the mixture data 

(Parnell and Inger, 2016). The median (50 % quantile) source contribution value determined 

for each of the sources was then used during analytical comparisons and subsequent 

investigations.  

 Results  

 Estimation of daily ET using satellite earth observation data  

Statistical comparisons between the Kcact and ODLR ET estimates against the ECET are 

presented in Table 4.1. The implementation of SEBSESF resulted in an improved estimation of 

the daily ET derived at a MSR for both the Kcact and ODLR approaches, as illustrated in Figure 

4.2. The correlation between modelled and observed ET, improved from 0.48 to 0.79 and 0.30 

to 0.74, respectively for Kcact and ODLR ET estimates. Furthermore, there was a significant 

increase in Nash-Sutcliffe efficiency values. While the use of SEBSESF ET estimates as inputs 

to the Kcact and ODLR approaches, resulted in an improved estimation of the daily ET at a 

MSR. The Kcact approach was selected to quantify daily ET, due to the reduced bias and higher 

correlations achieved between the modelled and observed ET.  
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Table 4.1 Statistical comparison of Kcact and ODLR ET estimates derived from implementing 

SEBS0 and SEBSESF, against ECET during the 2015 and 2016 period of investigation 

 
Kcact ET derived 

from SEBS0 

Kcact ET derived 

from SEBSESF 

ODLR ET derived 

from SEBS0 

ODLR ET derived 

from SEBSESF 

RVE -72.24 -5.82 -100.25 8.40 

Bias 1.10 0.62 1.68 0.76 

RMSE 1.35 0.87 2.03 1.04 

Kruskal-Wallis (p value) 0.00 0.60 0.00 0.05 

Correlation Coefficient 0.48 0.79 0.30 0.74 

Nash-Sutcliffe 0.03 0.60 -1.21 0.42 

 

Figure 4.2 A comparison of observed and modelled ET derived using the Kcact and ODLR 

approaches during the 2015 (i and ii) and 2016 (iii and iv) period of investigation 

 Isotopic composition of water 

δ2H in rainfall ranged from -22.9 to 15.30 ‰, with a mean value of 0.20 ‰ (± 11.60 ‰), whereas 

δ18O in rainfall ranged from -4.30 to 0.90 ‰, with a mean value of -1.70 ‰ (± 1.60 ‰). The 

LMWL for our study site, as shown in Figure 4.3, was established as δ2H = 7.06δ18O + 12.13, 

with a R2 value of 0.89.  
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The slope of the LMWL is lower than the slope of the global meteoric water line, described 

respectively in Craig (1961) and Liu et al. (2014), as δ2H = 8δ18O + 10 and δ2H = 7.94δ18O + 

3.92. This can be attributed to rapid evaporation of falling raindrops (Ma and Song, 2016), 

which would be expected in this semi-arid region.  Due to the limited number of rainfall 

samples collected, the LMWL that was generated may not be representative of the conditions 

experienced during the collection of the other isotope samples.  

Consequently, we also plotted the Pretoria meteoric water line described in Mekiso et al. 

(2015), as δ2H = 7.05δ 18O + 7.60 (Figure 4.3), for a site approximately 400 km away and based 

on a far longer time series, so that any regional climatic differences in the rainfall received 

within our study site could also be determined. Rainfall during the study period was generally 

dominated by convective rainfall with lighter isotopes, the exception being the rain during 

March and a single event in May 2016 which had a much more depleted signature.  

 

Figure 4.3 i) Stable isotopes of rainfall during the study period against LMWL and ii) time-

series comparison 

The δ2H and δ18O of stream water, soil water and xylem water plot below the LMWL, showing 

evaporative enrichment in these samples relative to rainfall (Figure 4.4). δ2H and δ18O values 

for GW plot closest to the LMWL providing evidence that precipitation is one of the principal 

sources to GW. δ2H in surface water ranged from -9.16 to 9.48 ‰, with a mean value of -1.32 

‰ (± 6.78 ‰). Whereas δ18O in surface water ranged from -1.85 to 2.75 ‰, with a mean value 

of 0.19 (± 1.79 ‰).   
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δ2H in soil water (30, 60, 100 and 140cm) ranged from -53.00 to  

7.00 ‰, with a mean value of -23.95 ‰ (± 14.89 ‰). Whereas δ18O in soil water (30, 60, 100 and 

140 cm) ranged from -6.90 to 7.90 ‰, with a mean value of -1.06 (± 3.25 ‰). δ2H and δ18O in 

soil water were enriched in the top soil layers and generally depleted with depth. The higher 

levels of enrichment associated with the δ2H and δ18O values of soil water in the upper soil 

layers are due to the effects of evaporation at the surface.  

This observation is reaffirmed by the lower slope of the fitting line of the soil water δ2H and 

δ18O (SEL) relationship in comparison to the LMWL (Figure 4.4), being indicative of the 

strong evaporation effect on soil moisture which is characteristically associated with semi-arid 

regions. The higher levels of depletion generally associated with soil water deeper down the 

profile could presumably be attributed to deep preferential infiltration of heavy rainfall events. 

 

Figure 4.4 A plot of the relationship between δ2H and δ18O values for all water samples 
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δ2H in xylem water ranged from -65.00 to 6.00 ‰, with a mean value of -29.56 ‰ (± 19.65 ‰). 

δ18O in xylem water ranged from -8.00 to 6.20 ‰, with a mean value of -2.63 

(± 3.19 ‰). The isotopic composition of δ2H and δ18O in the xylem water were shown to 

generally plot closest to the SEL (Figure 4.5), indicating that soil water is one of the main 

contributors to ET. δ2H and δ18O values of xylem water were generally concentrated around an 

uptake depth between 60 and 140 cm.  This observation is reaffirmed by the results of the 

proportional contributions of sources to ET, shown in Table 4.2. 

 

Figure 4.5 A plot of the relationship between δ2H and δ18O values for individual plant species 
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Table 4.2 Average proportional contribution of sources to individual plant species for the 

three sampling campaigns 

Tree Species 
Ground 

Water 

Surface 

Water 

Soil Water 

(30cm) 

Soil Water 

(60cm) 

Soil Water 

(100cm) 

Soil Water 

(140cm) 

F. sycamorus 1.50 % 1.70 % 1.60 % 1.70 % 72.40 % 20.20 % 

P. violecia 4.40 % 3.50 % 4.90 % 5.60 % 73.60 % 5.40 % 

D. mespiliformis 2.30 % 2.90 % 2.60 % 2.80 % 70.00 % 17.50 % 

C. mopane 1.10 % 0.70 % 1.50 % 2.00 % 3.80 % 89.50 % 

C. Microphyllum 1.20 % 0.90 % 1.50 % 1.90 % 16.10 % 77.50 % 

G. senegalensis 1.50 % 1.70 % 1.60 % 1.80 % 67.00 % 25.40 % 

Z. mucronata 1.10 % 0.60 % 1.50 % 2.00 % 3.30 % 90.00 % 

 

 Discussion 

It has been shown that the water uptake patterns vary considerably amongst the trees that were 

sampled. However, these results could not be combined with the satellite-derived ET estimates 

to determine seasonal variations in ETg for each plant species due to the mixed-pixel effect 

(Gibson et al., 2011). Due to this limitation, seasonal variations in ETg at each location, as well 

as for the entire study area were quantified instead. Location specific δ2H and δ18O values of 

xylem and source waters were used as inputs to a mixing model (Simmr) to determine the 

proportional contribution of GW to ET during each month (Table 4.3). ETg was then 

determined as the product of these values and the average daily ET for each month, as shown 

in Figure 4.6.  

During the three sampling campaigns soil water was found to be the major contributing source 

to ET at each sampling location (approximately 88 %). Whereas GW contribution to ET was 

relatively low ranging from 0.20 to 10.00 %. The average daily ETg during these periods ranged 

from 0.00 to 0.38 mm d-1, with a mean value of 0.12 mm d-1. Whereas average daily ET along 

the river reach ranged from 1.78 to 3.70 mm d-1, with a mean value of 2.89 mm d-1. Although 

GW contribution to ET was fairly low, it is evident that there are seasonal changes in water 

uptake patterns at each sampling location. 
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Table 4.3 Proportional contribution of sources to ET during the three sampling campaigns 

 
Location 

Ground 

Water 

Surface 

Water 

Soil Water 

(30cm) 

Soil Water 

(60cm) 

Soil Water 

(100cm) 

Soil Water 

(140cm) 
M

a
y
 

1 1.40% 1.00% 2.00% 1.00% 1.20% 89.00% 

2 0.40% 17.50% 0.40% 0.40% 80.80% 0.30% 

3 0.20% 0.10% 0.60% 1.20% 0.10% 97.00% 

4 0.80% 41.00% 0.80% 0.90% 54.60% 1.70% 

5 1.30 % 1.70 % 1.40 % 1.50 % 56.70 % 36.40 % 

6 2.10% 0.70% 10.80% 22.20% 62.40% 1.10% 

A
u

g
 

1 8.30% 8.50% 43.00% 6.20% 22.70% 8.50% 

2 10.20% 6.00% 11.30% 25.00% 17.00% 26.00% 

3 2.00% 3.00% 1.60% 1.80% 6.20% 85.00% 

4 6.00% 3.00% 14.00% 30.00% 42.00% 3.40% 

5 0.50% 0.50% 0.50% 0.70% 67.10% 30.40% 

6 6.10% 1.50% 32.60% 53.90% 2.90% 1.90% 

O
ct

 

1 6.10% 4.00% 8.00% 7.40% 9.00% 61.00% 

2 4.20% 2.20% 5.00% 6.00% 4.00% 76.00% 

3 0.90% 1.20% 0.90% 0.10% 43.00% 53.00% 

4 7.00% 14.00% 6.10% 6.10% 8.00% 56.00% 

5 0.30% 0.20% 0.40% 0.40% 40.20% 58.30% 

6 10.40% 6.00% 15.00% 20.00% 31.00% 12.00% 

 

This occurrence can be largely attributed to the antecedent moisture conditions experienced at 

the study site (Chimner and Cooper, 2004; McLendon et al., 2008).  Rainfall received in the 

study area from June 2015 till October 2016 was extremely low as shown in Figure 4.7, with 

approximately 180 mm received during this period. However, a significant proportion of this 

rainfall was received from a single high magnitude event during March 2016, with only 73 mm 

being received prior to this event.  

The rainfall received from this high magnitude event and the minor contributions from 

subsequent events, would have significantly increased soil water availability during the initial 

stages of the dry season, compared to the rest of study period (Riddell et al., 2017).  

Consequently, during May there was minimal ETg; however, as the dry season progressed and 

aridity increased, there was an increase in GW uptake to fulfil a portion of the daily 

transpiration demand.  
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Figure 4.6 Contribution of sources to ET (mm d-1) at each sampling location during; i) May, 

ii) August and iii) October 2016 

 

Figure 4.7 Rainfall measured at Phalaubeni for the 2015/2016 hydrological year 
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In addition to the seasonal changes in water uptake patterns, the species of riparian vegetation 

and their respective locations also showed variability in ETg. Riparian vegetation situated along 

the southern bank of the study area generally used more GW to fulfil a portion of their 

transpiration demands, a trend which was consistent for each of the sampling campaigns. 

Whereas GW uptake by riparian vegetation situated within the river channel was consistently 

low. 

Although GW represents a potential source to fulfil a portion of daily transpiration demands, 

especially as aridity increases, the accessibility of this resource for consumption and the 

amount used is largely controlled by the physiological characteristics of the plant/tree species 

(McLendon et al., 2008). In a similar environmental setting, February et al. (2007) showed that 

deep-rooted P. violecia were able to grow conservatively but consistently during conditions of 

water stress as they were able to access groundwater. However, the shallow rooted C. mopane 

predominantly relied upon available soil moisture and grew in rapid pulses in response to 

rainfall events. 

These findings reaffirm our observations and provide further indication that individual tree 

species adopt alternative water use strategies to cope with conditions of water stress. Moreover, 

the depth to GW, as well as the physical properties of the soil and underlying aquifer may 

further influence the accessibility and use of this resource for plant water uptake (McLendon 

et al., 2008; Evaristo and McDonnell, 2017).  

In order to quantify seasonal changes in GW use for the entire study area, all δ2H and δ18O 

values of xylem and source waters were respectively averaged for each sampling campaign. 

These values were then used as inputs to Simmr to determine source water contribution to 

transpiration. Spatial and seasonal variations in ETg along the length of river reach studied was 

then determined as the product of these values (Table 4.4) and the satellite-derived ET pixel 

values covering the area of interest, as shown in Figure 4.8. During May, the average ETg for 

the entire study area was extremely low (0.01 mm d-1), accounting for only 0.10 % of daily ET. 

Whereas there was an increase in the average ETg for August and October, with approximately 

0.30 mm d-1 of GW being utilized during these months, as shown in Figure 4.9.  
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Table 4.4 Average proportional contribution of water sources to ET for the study site during 

each sampling campaign 

Period (2016) 
Ground 

Water 

Surface 

Water 

Soil Water 

(30cm) 

Soil Water 

(60cm) 

Soil Water 

(100cm) 

Soil Water 

(140cm) 

May (Late Autumn) 0.10 % 0.10 % 0.10 % 0.10 % 46.40 % 53.10 % 

Aug (Mid-Winter) 10.00 % 6.00 % 12.00 % 17.00 % 38.40 % 13.00 % 

Oct (Mid-Spring) 7.00 % 6.20 % 6.30 % 7.00 % 8.00 % 63.00 % 

 

 

Figure 4.8 A comparison of seasonal and spatial variations in ETg (mm d-1) along the length 

of river reach studied 
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Figure 4.9 A comparison of seasonal variations in the contribution of sources to ET during the 

three sampling campaigns 

Overall our results indicate that while GW use is prevalent and increases with aridity, the 

magnitude of ETg is fairly minimal and lower than the global average (approximately 23 %) 

reported in Evaristo and McDonnell (2017). Furthermore the results of the stable isotope 

analysis presented in Figure 4.5 provides some evidence of ecohydrological separation 

(Evaristo et al., 2015) within our study site. δ2H and δ18O values for rainfall, stream water and 

GW from each of the sampling locations plot closely along the LMWL. However, δ2H and 

δ18O values for soil and xylem waters generally plot below these sources on the LMWL, 

signifying that the plant species within the study site are using soil water stores that are not 

contributing to streamflow or GW recharge (Evaristo et al., 2015).  

Although the coupling of ET estimates from the satellite-based SEBS model with stable isotope 

analysis facilitated the quantification of seasonal and spatial variations in ETg, the use of stable 

isotope analysis and a mixing model in this study may not necessarily provide an adequate 

insight on the actual plant water use dynamics within the study area, especially with regards to 

seasonal water use dynamics. This can be largely attributed to; i) the limited sampling 

frequency and number of samples collected for analysis and ii) general limitations and sources 

of uncertainty when using mixing models (Phillips et al., 2014). Furthermore, potentially 

significant differences in δ2H composition between xylem and source waters due to isotopic 

fractionation during root water uptake may also lead to erroneous results, when using a single 

isotope ratio system (using δ2H over δ18O) in a mixing model (Zhao et al., 2016; Evaristo et 

al., 2017). However, Evaristo et al. (2017) notes that a Bayesian mixing model approach (such 

as Simmr) may be insensitive to 2H/1H fractionation when using both δ2H and δ18O. 
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While the aforementioned limitations may hinder the feasibility of applying the methodology 

described herein to estimate ETg, this approach is neither site or model specific. Therefore, 

these constraints may be addressed by; increasing the water sampling frequency and the 

number of water samples collected during various seasons, adhering to recommended 

guidelines for best practices in the use of stable isotope mixing models or implementing a 

satellite-based ET model which is able to better capture ET and energy fluxes in this particular 

environment.   

 Conclusion 

The relative importance of GW as a resource to sustain terrestrial vegetation, especially during 

conditions of water stress has been well documented. However, understanding and accurately 

quantifying GW dependency by riparian vegetation in data scarce regions may prove to be 

challenging. For this purpose, we employed the satellite-based SEBS model to estimate ET. 

These estimates were coupled with stable isotope analysis to determine spatial and seasonal 

variations in GW use during transpiration. The results of these investigations showed that soil 

water was the main contributing source to ET. In general, GW use was prevalent within the 

study area, however, the magnitude of its contribution to transpiration was fairly minimal and 

not as significant as generally reported in literature.  

While the integration of satellite-based ET estimates and stable isotope analyses enabled us to 

acquire estimates of seasonal and spatial variations in ETg, it is important to take cognisance 

of the various limitations associated with this approach, as addressing these constraints will 

ultimately influence the accuracy of quantifying spatial and seasonal dynamics in ETg, using 

the methodology adopted in this study.  

Nevertheless, the coupling of the satellite-derived ET estimates with stable isotope analysis 

provides a relatively simplistic and inexpensive means of quantifying and spatially 

extrapolating, not only the contribution of GW to transpiration but soil and stream water as 

well.  Such information can prove to be extremely useful in deriving seasonal and spatially 

explicit water balances, which in turn can facilitate predicting how anthropogenic, climatic and 

environmental changes affect the rapport between plant growth and hydrological processes.  
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This may prove particularly beneficial to inform water resources management decisions in data 

scarce regions, as it can be used to provide baseline estimates of seasonal and spatial GW 

dependency by riparian vegetation, facilitating the improved allocation of this resource for 

human and environmental requirements.  
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***** 

Lead into chapter 5: With the ability of the SEO data sets and modified version of SEBS to 

more adequately represent ET within the study area confirmed (chapters 2 and 3), as well as an 

improved understanding of the seasonal and spatial variations in plant water use dynamics 

gained (chapter 4), chapter 5 addresses the overall objective of the thesis, which is to reduce 

the uncertainty associated with TL’s by attempting to understand and quantify the hydrological 

processes which contribute to TL’s along the Groot Letaba River. During these investigations, 

particular emphasis was placed upon establishing the influence of riparian total evaporation on 

TL’s. Supplementary information and/or data which was used during the various analyses 

undertaken in this chapter but not presented herein, are provided in Appendices C and D. 
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ABSTRACT 

The Groot Letaba River which is situated in the semi-arid north-eastern region of South Africa, 

is an example of a river system in which the uncertainty associated with transmission losses 

(TL’s) has limited the effective management of environmental water requirement flows. For 

this purpose, we performed a detailed characterization of hydrological processes along the 

lower reaches of the river, which centred around the estimation of riparian total evaporation 

and quantifying the rapport between surface and subsurface water storage processes.  

 

                                                 

 

4S Gokool, ES Riddell, JM Nel, R Raubenheimer, T Strydom, A Swemmer, and KT Chetty. 2017. Quantifying the contribution of riparian total evaporation to streamflow 

transmission losses: Preliminary investigations along the lower reach of the Groot Letaba River. Submitted to Journal of Hydrology: Regional Studies  

*Referencing conforms to format of Journal of Hydrology: Regional Studies  
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Riparian total evaporation losses were estimated using the satellite-based surface energy 

balance system (SEBS) model, soil water evaporation measurements and open water 

evaporation estimates. Losses from the river system to the adjacent aquifer were determined 

from the continuous monitoring of the groundwater phreatic surface and characterization of 

aquifer hydraulic properties. The results of these investigations indicated that total evaporation 

and losses from the river system to the adjacent aquifer accounted for approximately 5 to 15 % 

of the flow in the river system. Furthermore, it was shown that present flows within the system 

are likely to be insufficient to satisfy gazetted median and extreme low flow targets whilst 

simultaneously accounting for losses. 

Keywords: Transmission loss, environmental water requirements, total evaporation, 

SEBS, subsurface water storage 

 Introduction 

Globally, water scarcity has been exacerbated by the effects of increasing population growth, 

socio-economic development and climate change (Molle et al, 2010; Pittock and Lankford, 

2010). As a result, the availability of water to sustain the natural functioning of riverine 

ecosystems and the provision of ecosystem goods and services has fallen under threat (Pittock 

and Lankford, 2010). In a South African context, numerous perennial river systems have 

become severely constrained, as water resources abstractions are close to exceeding or have 

exceeded the available supply and ecosystem resilience (Molle et al, 2010).  

According to Pollard and Du Toit (2011a) during the latter periods of the 20th century, the 

environmental water requirements (EWR) in various catchments of the South African Lowveld 

have been on the decline. This has been attributed to the compounded effects of land-use 

change, as well as the improper management of water resources within these catchments 

(Pollard and Du Toit, 2011a). Consequently, the natural ecological functioning of the riverine 

ecosystems and surrounding environments have begun to steadily decline (Pollard and Du Toit, 

2011a), despite the EWR’s possessing the only ‘right’ to water, in addition to the Basic Human 

Needs reserve under South Africa’s National Water Act (NWA, Act 36 of 1998). 
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Intensive management of the EWR flows is therefore required, to ensure that all water users 

receive an acceptable quantity and quality of water which can be supplied and sustained at an 

acceptable assurance level without impeding the ability to maintain the EWR (Riddell et al., 

2017). Presently, knowledge regarding precipitation inputs to a river system, releases from 

dams and permitted water abstractions from river systems, are used to manage the flows for 

river operations within these environments (Riddell et al., 2017).  

However, the lack of an adequate quantitative understanding with regards to the loss of water 

to streamflow transmission losses (TL’s), remains a constraint to the effective management of 

flows especially in arid and semi-arid environments (Hughes, 2008; Costa et al., 2013). TL’s 

are defined as a reduction in the volume of flow in a river system between upstream and 

downstream points, due to the loss of water through three natural processes i.e. (a) Riparian 

ET, (b) open-water evaporation or infiltration of flood waters stored in channel depressions or 

the flood plain and (c) the recharge of ground water as water infiltrates the stream channel or 

open-water evaporation directly from the stream channel (Cataldo et al., 2010). 

The significance of TL’s as a contributing process to the water balance of river systems 

particularly in arid and semi-arid environments has been well documented internationally 

(Hughes and Sami, 1992; Lange, 2005; Costelloe et al., 2003; Costa et al., 2013; Shanafield 

and Cook, 2014). However, there remains a paucity of studies of this process in southern Africa 

(Hughes, 2008; Tanner and Hughes, 2015). Whilst, TL’s have not been adequately quantified 

through hydrological process definition for any South African river system (Riddell et al., 

2017), the magnitude of these losses is estimated to be high, especially for perennial river 

systems flowing through arid and semi-arid environments (Everson et al., 2001; Boroto and 

Gorgens, 2003). Therefore, to ensure that EWR flows and water provisions are managed 

efficiently, it is essential that the hydrological processes contributing to this process in these 

environments are understood and quantified at various spatial and temporal scales. (Gu and 

Deutschman, 2001).  
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The use of conceptual models and time series analysis may perhaps allow for the reliable 

prediction of TL’s for regions possessing long time series of streamflow data (Sharma and 

Murthy, 1994a; Costa et al., 2012). However, in arid and semi-arid environments the routine 

monitoring of streamflow is generally limited (Lange et al., 2005). In such circumstances, the 

use of process-orientated models, which are parameterized using representative measurements 

of hydrological parameters represent the most suitable tool to quantify TL (El-Hames and 

Richard, 1998; Gheith and Sultan, 2002).  

For this purpose, we performed detailed characterizations of hydrological processes along a 14 

km reach of the Groot Letaba River. In this study, particular emphasis was placed on accurately 

determining the contribution of riparian total evaporation to TL’s, as it is often the case that 

this process is ignored or inadequately accounted for during the estimation of TL’s (Hacker, 

2005; Cataldo et al., 2010; Shanafield and Cook, 2014), even though it is generally the second 

largest component of the water balance in semi-arid and arid environments and has been shown 

to be a dominant contributing process to TL’s (Everson et al., 2001).  

These investigations were supplemented by a parallel study which focused on the continuous 

monitoring of the groundwater phreatic surface and hydraulic characterisation of aquifer 

properties using a multi-piezometer borehole network along the selected river reach (Riddell 

et al., 2017), to determine the hydraulic gradients between river and surrounding aquifer and 

thereby baseline estimates of losses and gains along the river. 

 Study area 

 Selection of the study area 

The Letaba River is a typical example of a river system in which poor water governance and 

infrastructural development have resulted in flows within the river no longer resembling the 

natural flow regime (Vlok and Engelbrecht, 2000; Katambara and Ndiritu, 2010; Pollard and 

du Toit, 2011a). These circumstances have placed additional pressure on water resources 

managers in this region, as they attempt to balance the demands of various water users within 

the catchment, whilst attempting to maintain the mandated EWR flows.  
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This situation has improved to some extent, after the establishment of the river operating rules, 

whereby flows released from the Tzaneen Dam are monitored further downstream by the 

Kruger National Park and information is relayed back to dam operators through an adaptive 

feedback mechanism (Pollard and du Toit, 2011a; McLoughlin et al., 2011).  

The Letaba operating rules were established in 2006 by the Department of Water Affairs and 

facilitated by a real time EWR implementation model (SPATSIM) (Hughes et al., 2008; 

Sawunyama and Hughes, 2010). However, one of the major challenges to the successful 

application of the model to date, has been the uncertainty regarding the magnitude and 

influence of TL’s on flows within the river system (Riddell et al., 2017). TL’s along the Groot 

Letaba are thought to significantly impact EWR flows, as it is often the case that specified 

EWR releases from the Tzaneen dam are not adequately met further downstream at the Letaba 

Ranch (B8H008) gauging weir close to the Kruger National Park (Sinha and Kumar, 2015). 

This therefore makes it challenging to operate the river, using downstream targets far from the 

source of operations. 

 Site description 

The catchment generally experiences a semi-arid climate with hot and wet summer and mild 

and dry winter conditions. The mean annual precipitation within the catchment is 

approximately 612 mm, which predominantly occurs during the summer months (October to 

March). According to Katambara and Ndiritu (2010) 40 to 50 % of this rainfall is received 

during January and February, with the majority (60 %) of this rainfall being received in the 

mountainous western region (≈ 6 % of the total catchment area) (WRC, 2001).  

In general, temperatures vary across the catchment with cooler conditions in the mountainous 

western region (≈ 180 C) to hotter conditions in the eastern region (≈ 280 C). Approximately 

three quarters of the catchment is underlain by granite and gneiss. The varied distribution of 

sediment along the Letaba River has resulted in the formation of varying channel types with 

distinctive vegetative compositions and morphological characteristics (Heritage et al., 2001). 

There are numerous land-use activities distributed throughout the Letaba catchment, amongst 

these the dominant land-uses include; intensive commercial afforestation and agriculture 

(predominantly citrus crops), densely-populated rural villages with informal dryland 

agriculture and conservation areas in the eastern regions of the catchment (Pollard and du Toit, 

2011a).  
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The TL’s study site is situated within the Letaba Catchment along the lower reach of the Groot 

Letaba river between the now defunct Mahale weir (B8H007) and the Letaba Ranch gauging 

weir (B8H008) situated approximately 14 km further downstream, as illustrated in Figure 5.1. 

The rationale for this site selection was to employ a mass balance approach (Costa et al., 2013) 

with the aim of; i) verifying the losses measured in this study and ii) determining the 

contribution of riparian total evaporation to these losses. 

 

Figure 5.1 Location of the study area and distribution of borehole sampling points across the 

four geohydrological transects (Google EarthTM image), situated along the lower 

reach of the Groot Letaba River within the Quaternary catchment B81J (adapted 

from Riddell et al., 2017) 
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Between these two gauging weirs, there are no contributing tributaries. Agricultural areas are 

situated adjacent to the riparian zone in the west before the river traverses conservation areas 

further downstream (Riddell et al., 2017). The section of river studied between these weirs is 

largely dominated by riparian vegetation such as; Ficus sycomorus, Philenoptera violacea and 

Diospyros mespiliformis, with Phragmites mauritianus dominant in the river microchannel. 

Detailed descriptions of the soils, lithology, stream networks and topography are provided in 

Riddell et al. (2017).  

TL’s were estimated during the latter stages of the 2016 low flow period (August to October), 

which typically represents a critical period with regards to water scarcity. While TL’s during 

higher flow periods are equally important for the estimation of EWR flows, during the dry 

season soil water availability is substantially lower. Consequently, riparian vegetation may 

access alternate water sources (stream and groundwater) if available to fulfil a portion of their 

daily transpiration demands (Gribovski et al., 2008; Cadol et al., 2012). Therefore, estimating 

riparian total evaporation during this period provides the ideal scenario to quantify the 

contribution of this process to TL’s.  

 Methodology  

 Data Collection 

Streamflow 

Daily average flow data (m3 s-1) was acquired from B8H007 and B8H008, in order to verify 

the estimated losses along the length of river reach studied using a mass balance approach. 

Verified flow data for B8H008 was made available from the Department of Water and 

Sanitation (DWS) HYDSRTA data base (http://www.dwa.gov.za/Hydrology/). The now 

ungauged B8H007 weir was fitted with a SolinstTM Level Logger Junior to determine stage 

height, in a stilling pipe bolted to the upstream side of the weir in order to record the river stage 

at a 5-minute time step. A rating was then attempted for B8H007 to obtain the stage height 

discharge relationship. However, the unrefined structure of the weir wall prevented a full rating 

from being undertaken (Riddell et al., 2017). Therefore, when the level logger data showed a 

constant stage, it was assumed that there was no overtopping of the weir, but rather a continuous 

discharge through two low flow scour sluices located at the base of the structure.  
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This was determined as the product of the cross-sectional area of pipe and outflow rate 

measured using a PascoTM 2000 flow meter (Table 5.1). 

Table 5.1 Low flow rating for Mahale weir 

 Flow (m s-1) Pipe diameter (m) Discharge (m3 s-1) Total Discharge (m3 s-1) 

Sluice 1 3.4 0.3 0.24 
0.50 

Sluice 2 3.7 0.3 0.26 

Artificial abstractions 

Artificial abstractions along the portion of river reach studied are relatively low (Riddell et al., 

2017). However, these volumes needed to be determined in order to accurately quantify the 

losses between the two gauging weirs associated with natural processes. A hydro-census was 

undertaken within the surrounding areas of the study site, to determine the reliance of the local 

community on stream and ground water resources for domestic use and small scale-irrigation 

(Gokool et al., 2015). The results of this survey revealed that direct river abstractions were 

relatively low and estimated to be in the magnitude of 52 m3 d-1 (Riddell et al., 2017). 

Groundwater piezometric monitoring network 

The rapport between stream water and groundwater interactions was established by performing 

a detailed hydraulic characterisation of the aquifer properties and through the continuous 

monitoring of groundwater levels. In order to continuously monitor stream water and 

groundwater interactions, a piezometric borehole network was drilled by the Department of 

Water and Sanitation Limpopo Drilling Division, along the northern and southern banks of the 

study site. This network consisted of paired piezometric boreholes which were drilled into 

shallow weathered material and deep fractured hard rock. The rationale for this was to 

determine gains/losses associated for both alluvial and hard rock material, as Hughes (2008) 

states that TL’s from non-alluvial rivers can also be substantial due to the highly-fractured 

nature of the material of bed-rock channels. The groundwater piezometric network was divided 

into four geohydrological transects (Figure 5.1) and the river reach length represented by the 

adjacent aquifers was estimated.  
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Riparian total evaporation 

In this study, riparian total evaporation was defined as the combined contribution of 

transpiration, soil water evaporation and open water evaporation. Open water losses were 

determined using the Priestley-Taylor method (Priestley and Taylor, 1972). Average daily soil 

water evaporation from August to October was measured as 0.15, 0.47 and 0.45 mm d-1, 

respectively within the river channel. These measurements were obtained using from three to 

six micro-lysimeters, which were installed at various points within and adjacent to the active 

river channel.  

The microlysimeters were made of 2 mm thick PVC pipe, were 100 mm deep and had an 

internal diameter of 50 mm. Each micro-lysimeter was equipped with one external cylinder 

made of 3 mm thick PVC pipe which was 80 mm in diameter and 145 mm deep. The external 

cylinders were placed at fixed positions, whilst the internal cylinders were filled with soil 

samples extracted from selected areas within the river channel.  

Extraction of soil samples from the top soil layer was typically done at the start of the day, 

generally around 09:00 AM. The rate of soil water evaporation was calculated as; 

Es =  
Δ𝑀𝑎𝑠𝑠∗10−3

𝐴
        (5.1) 

Where ES is soil water evaporation in mm d-1, ΔMass is the mass difference between soil 

samples (g) and A is the surface area of the microlysimeter (0.0196 m2).  

We did not measure soil water evaporation along the banks of the riparian zone during this low 

flow period, as flow within the channel did not exceed bank full storage. Consequently, there 

would have been no enhanced loss of stream water due to soil water evaporation.  

Transpiration was estimated indirectly by calculating the difference between soil water 

evaporation and daily evapotranspiration (ET) estimates acquired from a satellite-based 

evapotranspiration (ET) model. Satellite earth observation (SEO) data was used in this study, 

to obtain spatially representative estimates of ET within the study area.  
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The SEBS Model (Su, 2002) was applied in this study to estimate daily ET. SEBS computes 

all components of the shortened surface energy balance (Equation 5.2), as well as the 

evaporative fraction (EF), using land surface parameters which are derived from 

meteorological and satellite earth observation (SEO) sources, respectively.  

Rn = 𝐺𝑜 + 𝐻 +  𝐿𝐸        (5.2) 

Where Rn is net radiation (W m-2), G0 is the soil heat flux (W m-2), H is the sensible heat flux 

(W m-2) and LE is the latent heat flux (W m-2). 

SEBS has been extensively applied and shown to provide fairly accurate estimates of ET. A 

modified version of SEBS (Riddell et al., 2017) was applied to acquire daily ET estimates at 

the Landsat spatial resolution.  

This was due to the inability of the original model formulation to adequately represent fluxes 

and ET within the study area (Gokool et al., 2017). These ET estimates were then used as inputs 

to the Kcact infilling procedure as described by Gokool et al. (2017), to develop a moderate 

spatial resolution daily satellite-based ET time series. Comparisons between this data set and 

in-situ ET observations, were found to be in fairly good agreement, yielding correlation 

coefficient and Nash-Sutcliffe efficiency values of 0.79 and 0.60, respectively. 

 Estimation of transmission losses 

It was initially envisaged that the losses estimated in this study would be verified using a mass 

balance approach. However, this was not possible as we were unable to obtain accurate inflow 

data from B8H007. It was assumed that when the data showed a constant stage height, there 

was no overtopping of the weir and a continuous discharge of 0.5 m3 s-1 was experienced. 

However, this was seldom the case. Consequently, the abovementioned discharge could not be 

used to perform the mass balance calculation. Instead, we computed the inflow as a residual of 

the mass balance (Equation 5.3). It should be noted that while the magnitude of the estimated 

losses was compared relative to this estimated inflow, this inflow volume was not necessarily 

an accurate representation of the flow within the system. 
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Inflow  = 𝑂𝑢𝑡𝑓𝑙𝑜𝑤 +  𝑇𝐿       (5.3) 

Following the groundwater hydraulic characterisation undertaken by Riddell et al. (2017), the 

interaction between the river and adjacent aquifers was quantified in terms of either gains or 

losses from the watercourse (Table 5.3). Further details regarding the borehole drilling 

information, fluid logging and derivation of undisturbed in-situ borehole parameters used to 

obtain these baseline estimates are provided in Riddell et al. (2017).  

As shown in Table 5.3, there is a net loss from the river to the adjacent aquifer within the 

agricultural areas, with the highest loss occurring to the deep fractured hard rock aquifer. 

Whereas further downstream within the conservation areas, there is a net gain from the adjacent 

aquifer to the river, with the highest gains occurring from the shallow aquifer. In general, the 

length of river reach studied was shown to be a losing system, with a net loss of 253.98  

m3 d-1 to the adjacent aquifers within the riparian zone. 

Table 5.2 Estimated gains and losses from the watercourse to the adjacent aquifers within 

the riparian zone during the dry season (adapted from Riddell et al., 2017) 

  Borehole ID Loss to Aquifer (m3 d-1) 
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LR004 -51.57 

LR005 60.67 

Total  33.47 

 

 



 

 167 

The daily transpiration estimated in this study represents the total water used by riparian 

vegetation from multiple sources such as; soil water, groundwater and streamflow. Although 

transpiration demands are generally met by available soil moisture (Gokool et al, 2017), in arid 

settings, riparian vegetation generally becomes increasingly reliant on groundwater and 

streamflow to fulfil a portion of their daily water requirements (Gribovski et al., 2008).  The 

groundwater used during transpiration is typically replenished by subsurface flows further 

away from the stream channel or flow maybe redirected from the stream channel into the 

adjacent aquifer due to an inverse in the hydraulic gradient, ultimately resulting in a loss of 

streamflow (Gribovski et al., 2008; Tanner and Hughes, 2015).  

Riparian ET of waters stored within the river banks may enhance TL’s during high flow periods 

when flood waters exceed the bank full storage. During low flow periods, TL’s may comprise 

the proportion of water consumed by riparian vegetation from stream and groundwater. 

Therefore, in order to estimate the contribution of transpiration to TL’s, the proportional 

contribution from these sources needed to be quantified. For this purpose, Riddell et al. (2017) 

coupled stable isotope analysis of 2H and 18O contents of plant water, soil water, stream and 

groundwater with a Bayesian mixing model (Stable Isotope Mixing Model package available 

in R). 

 Results and Discussion 

According to Cadol et al. (2012) the volume of water lost from stream and groundwater to 

transpiration, should equal the volume of water transpired over an area of influence within and 

adjacent to the stream. Therefore, the average proportion of surface and groundwater 

contributing to transpiration were used in conjunction with the satellite-derived daily ET 

estimates to determine the volume of water used from these sources. According to Riddell et 

al. (2017) the contribution of groundwater and stream water to transpiration during the latter 

stages of the 2016 dry season, was approximately 15%. However, this proportional contribution 

was only used to determine transpiration losses for vegetation situated on either side of the 

river channel (riparian forest). For riparian vegetation situated within the active river channel 

(P. mauritianus), it was assumed that daily transpiration demands are fulfilled by accessing 

water in the upper levels of the saturated zone (water table) and stream water (Everson et al., 

2001), as P. mauritianus were predominantly located in areas in which the root zone was 

inundated by water.  
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Using the areas from Table 5.3, the volume of riparian total evaporation was determined as the 

combined contribution of transpiration, soil and open water evaporation. These losses were 

then combined with the baseline estimates of losses to the adjacent aquifer and artificial 

abstractions to determine the total volume lost in the system. The estimated reduction in flow 

for 2016 for the length of river reach that was investigated, is shown in Figure 5.2. The total 

volume of water loss 2016 ranged from 985.85 to 4066.06 m3 d-1, with a mean loss of 3209.26 

m3 d-1.  

Table 5.3 Distribution of riparian vegetation along a 14 km reach of the lower Groot Letaba 

River (adapted from Riddell et al., 2017) 

Land Cover Category 

 Riparian vegetation Soils Open Water Total 

 Riparian Forest P. mauritianus    

Area (km2) 1.09 0.41 0.25 0.16 1.91 

Relative area (%) 57.00 21.00 13.00 9.00 100.00 

In general, the inflow rate for August and September were fairly similar and the magnitude of 

flow reduction ranged between 5 and 10 %, as shown in Table 5.4. During these months, the 

average inflow (0.57 and 0.50 m3 s-1), was much higher than the loss of water due to natural 

processes (≈ 0.04 m3 s-1). During this period, the flow would have been approximately   

8.00 % higher, without the influence of these losses.  
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Figure 5.2 Daily TL’s along a 14 km reach of the Groot Letaba River during the latter stages 

of the 2016 dry season 

Table 5.4 Frequency range of TL’s during the latter stages of the 2015 and 2016 dry season 

Range 2016 Frequency (%) 

 Aug Sep Oct 

0 %< TL< 5 % 3.33 3.33  

5 %< TL< 10 % 96.67 96.67 6.45 

10 %< TL< 15 %   32.26 

15 %< TL< 20 %   35.48 

20 %< TL   25.81 

However, during October there was an increase in the magnitude of streamflow reduction with 

losses generally ranging between 10 and 20 % and in a few instances exceeding 20 %. The 

inflow rates during this period were relatively lower (0.25 m3 s-1). Consequently, there is a 

greater influence of these natural losses on streamflow. The average reduction in flow during 

this period increased to approximately 17.00 %.  
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Comparisons of the different contributing processes to TL’s, indicated that throughout the 

period of investigation, riparian total evaporation losses were found to be the chief contributing 

process to TL’s along this portion of river reach, as shown in Figure 5.3. The average 

contribution of riparian total evaporation was approximately 2871.72 m3 d-1 or approximately 

90.00 % of daily TL’s. Whereas the contribution of artificial abstractions and losses to the 

adjacent aquifer were only 2.00 and 8.00 %, respectively.  

Riparian total evaporation losses were largely due to the proportion of water transpired from 

stream and groundwater, as shown in Figure 5.4. The average loss due to transpiration from 

the river banks and within the river channel was approximately 563.80 and 1263.64 m3 d-1, 

contributing a combined average of 56.00 % of TL’s. Whereas the combined contribution of 

open water and soil water evaporation losses were approximately 34% of TL’s.  

 

Figure 5.3 Contribution of riparian total evaporation to daily TL’s during the latter stages 

of the 2016 dry season 
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Figure 5.4 Percentage contribution of riparian total evaporation processes to TL’s 

In light of the recent gazetting of the Letaba Management Class and the mandatory 

implementation of EWR flows. The quantification of TL’s takes on added significance to 

ensure that EWR flows are adequately managed and maintained so that the natural functioning 

of the riparian ecosystem is not compromised. Table 5 depicts the low flow assurance rules for 

the median (60th percentile) and ultra-low flows (90th percentile) at B8H008, respectively. 

These flow values have been gazetted for implementation prior to and proceeding the 

construction of the proposed Nwamitwa dam. Comparisons between the daily flows at B8H008 

for 2016 against these target flows, indicates that the daily flows at B8H008 are currently 

unable to meet the mandated target flows, as shown in Figure 5.5.  

Table 5.5 Low flow assurance rules for median (60th percentile) and extreme low flows 

(90th percentile) 

  Median Target Flow at B8H008 (m3 s-1) 

 Prior to Construction Post Construction 

Month  90% 60% 90% 60% 

Aug 0.597 0.597 0.605 0.778 

Sep 0.594 0.598 0.552 0.632 

Oct 0.497 0.597 0.523 0.554 
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Figure 5.5 A comparison of the flow at B8H008 against gazetted flows for implementation 

prior to and subsequent to the construction of the proposed Nwamitwa dam. 

Consequently, flows traversing B8H007 are required to be increased in order to satisfy both 

median and extreme low flow targets, whilst simultaneously accounting for TL’s. To facilitate 

this process, baseline estimates of the required increases to the flow emanating from B8H007 

were determined (Table 5.6), using monthly averages of the estimated TL’s and inflow 

volumes. The magnitude of this increase in flow for B8H007for 2016 ranges from; 0.069 (11.99 

%) to 0.449 (181.22 %) m3 s-1 prior to the construction of the dam. Whereas post dam 

construction the magnitude of flow increase for B8H007 ranges from; 0.077 (13.49 %) to 0.399 

(160.96 %) m3 s-1. 

The proposed increases in flow required to meet the gazetted target flows should be considered 

preliminary findings, as it was not possible to quantify the uncertainty in our estimated TL’s. 

due to the lack of accurate inflow data. Nevertheless, the temporal progression and magnitude 

of these losses in relation to streamflow are analogous to the losses reported by DWAF (2006a) 

(between 8 and 50%) and Everson et al. (2001) (approximately 15 %) in similar environmental 

settings, lending some credibility to the TL’s estimated in this study. 

Based on the estimated current inflows from B8H007 and TL’s within this portion of river 

reach, the gazetted target flows will not be reached without further increases to the flow 

emanating from B8H007 (Table 5.6). While this situation is particularly concerning, it may be 

further compounded by the effects of anthropogenic driven land use changes. 
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Table 5.6 Baseline estimates of the required increases to the flow emanating from B8H007 

to meet the gazetted low flow assurance rules for the median and extreme low flows 

at B8H008 

 

  Target Flow 

(m3 s-1) 

B8H007 average 

Inflow (m3 s-1) 
TL's (%) 

Required increase to 

inflow (m3 s-1) 

Required increase 

to inflow (%) 

2
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(9
0

 %
) Aug 0.597 0.573 7.00 0.069 11.99 

Sep 0.594 0.504 8.00 0.137 27.22 

Oct 0.497 0.248 17.00 0.333 134.11 
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(6
0

 %
) Aug 0.597 0.573 7.00 0.069 11.99 

Sep 0.598 0.504 8.00 0.141 28.07 

Oct 0.597 0.248 17.00 0.449 181.22 
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o
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o
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u
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 (
9

0
 %

) Aug 0.605 0.573 7.00 0.077 13.49 

Sep 0.552 0.504 8.00 0.092 18.22 

Oct 0.523 0.248 17.00 0.363 146.36 

P
o

st
 

C
o

n
st

r
u

c
ti

o
n

  

(6
0

 %
) Aug 0.778 0.573 7.00 0.263 49.95 

Sep 0.632 0.504 8.00 0.178 35.35 

Oct 0.554 0.248 17.00 0.399 160.96 

 

Everson et al. (2001) noted that the degradation of the riparian forests and increased 

sedimentation may result in a shift towards more reed-based communities within the riparian 

zone. Consequently, this may significantly alter the magnitude and temporal progression of 

TL’s within the system.  

For this purpose, Everson et al. (2001) simulated evapotranspiration losses that would occur if 

riparian forests were completely replaced with reed communities and Consequently determined 

how this would influence TL’s along the Sabie River. Following this approach (Everson et al., 

2001), we attempted to quantify how such a change in land use would affect the estimated TL’s 

in this study, as well as the implementation of the gazetted target flows. This scenario was 

simulated by assuming that there are no further changes in the losses of stream water to the 

aquifer or to artificial abstractions and the riparian zone consisted entirely of P.mauritianus 

with the root zone being inundated by stream water.  

Using the estimated inflows from B8H007, the estimated TL’s and the proposed increase to 

the flow are presented in Figure 5.6 and Table 5.7, respectively. These results show that there 

would be a substantial increase in the magnitude of TL’s within this portion of river, with TL’s 

in the range of 10 to 25 % occurring most frequently, if the aforementioned change in land use 

were to occur.  
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The magnitude of this increase in flow for B8H007for the land use change scenario ranges 

from; 0.101 (17.63%) to 0.546 (222.87 %) m3 s-1 prior to the construction of the dam. Whereas 

post dam construction the magnitude of flow increase for B8H007 ranges from; 0.110 (14.66 

%) to 0.489 (164.50 %) m3 s-1.  

Although this is a rudimentary approach at modelling the effect that the proposed land use 

change would have on TL’s. It clearly demonstrates how such changes can alter the flow 

dynamics within the river system and constrain the successful implementation of EWR flow 

targets if these changes are unaccounted for. While this scenario was used to provide further 

insights on the effects of land use changes on TL’s. This approach can be easily adapted to 

assess the effects that changing water uptake patterns (stream and groundwater uptake) during 

varying climatic conditions has on the magnitude of TL’s.  

 

Figure 5.6 Daily TL’s along a 14 km reach of the Groot Letaba River during the latter stages 

of the 2016 dry season for the land use change scenario 
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Table 5.7 Baseline estimates of the required increases to the flow emanating from B8H007 

to meet the gazetted low flow assurance rules for the median and extreme low flows 

at B8H008 for the land use change scenario 

 

  Target Flow 

(m3 s-1) 

B8H007 average 

Inflow (m3 s-1) 
TL's (%) 

Required increase to 

inflow (m3 s-1) 

Required increase 

to inflow (%) 
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) Aug 0.597 0.573 0.13 0.099 17.23 

Sep 0.594 0.504 0.14 0.174 34.55 

Oct 0.497 0.248 0.33 0.411 165.67 
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) Aug 0.597 0.573 0.13 0.099 17.23 

Sep 0.598 0.504 0.14 0.179 35.45 

Oct 0.597 0.248 0.33 0.543 219.13 
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) Aug 0.605 0.573 0.13 0.099 17.23 

Sep 0.552 0.504 0.14 0.126 25.03 

Oct 0.523 0.248 0.33 0.445 179.57 
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(6
0

 %
) Aug 0.778 0.573 0.13 0.302 52.78 

Sep 0.632 0.504 0.14 0.217 43.15 

Oct 0.554 0.248 0.33 0.486 196.14 

 

 Conclusion 

In order to, reduce the uncertainty associated with TL’s along the Groot Letaba River system, 

detailed characterization of hydrological processes along the lower reaches of the river, which 

was centred around the estimation of riparian total evaporation and quantifying the rapport 

between surface and subsurface water storage processes, was undertaken.  The results of these 

investigations showed that there is a net loss from the river to the adjacent aquifer within the 

agricultural areas. While further downstream within the conservation areas, there is a net gain 

from the adjacent aquifer to the river. However, over the length of river reach studied, the river 

was shown to be a losing system. 

A modified version of the satellite-based SEBS model was used to estimate ET along the length 

of river reach studied. These estimates were then coupled with soil water evaporation 

measurements and open water evaporation estimates to determine the riparian total 

evaporation. The riparian total evaporation estimates and losses from the river system to the 

adjacent aquifer were then used to determine TL’s. The findings presented in this study 

indicated that TL’s generally accounted for 5 to 15 % of the flow in the river system.  
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Riparian total evaporation and transpiration in particular were found to be the most significant 

contributing processes to these losses. This finding is of particular relevance, as riparian total 

evaporation has generally been considered to be a minor contributing process to TL’s and is 

often inadequately represented or excluded from TL estimation procedures.  

In general, it was shown that flows within the river system are unable to meet the gazetted low 

flow targets and are required to be increased in order to fulfil this requirement, whilst 

simultaneously accounting for TL’s. Furthermore, the results of the land use change scenario 

reaffirmed the importance of understanding and quantifying riparian water use requirements, 

as it can assist in providing a more accurate estimate of the flows required to meet EWR flow 

targets under changing land use conditions.  

Overall the study has detailed key hydrological processes influencing TL’s along the Groot 

Letaba River. However, it should be noted that while the study site was extensively gauged, 

these observations only provide an understanding of the system for a limited period in time. 

Therefore, it would prove to be advantageous to continue longer term monitoring at the site, 

which may facilitate an improved understanding of the system under changing environmental 

conditions, as well as allowing for a reduction in the assumptions and related uncertainties that 

had to be factored into the analysis.  

Moreover, these preliminary investigations only enabled the localized estimation of TL’s. 

Recent studies have demonstrated how satellite earth observation data can be used to quantify 

losses or gains to the adjacent aquifer. Although it was not within the scope of this study, the 

coupling of these methodologies with the use of satellite-derived ET estimates provides an 

opportunity to obtain spatially explicit estimates of TL’s at catchment and field scales. This in 

turn can prove to be extremely beneficial to the future effective management of EWR flows in 

the system. 
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With the overall objective of the study to understand and quantify the hydrological processes 

which contribute to TL’s along the Letaba River, particularly focusing upon establishing the 

influence of riparian total evaporation on TL’s, being addressed in chapter 5, chapter 6 details 

key findings of the research and proposes recommendations for future investigations. 
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6. SYNTHESIS: KEY FINDINGS AND RECOMMENDATIONS FOR FUTURE 

INVESTIGATIONS 

 Introduction 

During the latter stages of the 20th century the implementation and preservation of EWR flows 

in various catchments of the South African Lowveld has become increasingly difficult, due to 

the compounded effects of climate and land-use changes, as well as the improper management 

of water resources within these catchments. The efficient management of limited water 

resources in these environments is therefore dependent on comprehensively quantifying all 

hydrological processes, to understand and account for how these processes impact the flows 

within these river systems.  

To date, the limited hydrological process understanding associated with system losses via TL’s 

remains a constraint to the effective planning and management of water resources in arid and 

semi-arid climatic regimes and particularly the implementation of EWR flows. The Letaba 

River is an archetypal example of a river system in which EWR flow management has been 

adversely impacted by the lack of a quantitative understanding of TL’s 

In order to improve water provisions and proficiently manage EWR flows in this environment, 

it is imperative that hydrological processes contributing to TL’s are understood and accurately 

quantified at various spatial and temporal scales. For this purpose, the research presented in 

this thesis progressively documents approaches which can be used to obtain spatially explicit 

estimates of evapotranspiration (ET), which is a major contributing process to the water 

balance of arid and semi-arid environments, yet has seldom been incorporated or adequately 

represented into TL’s estimation procedures. 

This research was centred around evaluating the potential of using a satellite-based approach 

to estimate ET along the length of river reach studied, to determine the most suitable and 

pragmatic approach which can be adopted for operational water resources management. To 

achieve this; existing and innovative approaches were employed and evaluated against in-situ 

observations, providing further insights into their application.  
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Furthermore, these investigations were supplemented by a parallel study focusing on 

quantifying surface and subsurface water storage processes. The coupling of this information 

with that acquired from the ET investigations, provided invaluable insights on the natural 

drivers of TL’s in this river system.  

 Revisiting the objectives of the study and summary of key findings 

The overall objective of this thesis was to reduce the uncertainty associated with TL’s by 

attempting to understand and accurately quantify the hydrological processes which contribute 

to TL’s along the Groot Letaba River, with particular emphasis being placed upon improving 

the estimation of riparian total evaporation and establishing the influence of this process on 

TL’s.  Considering the significant role that riparian ET plays in the water balance of river 

systems flowing through arid and semi-arid environments, it is essential to develop techniques 

or approaches which can be used to accurately quantify riparian ET at varying spatial and 

temporal scales, to better understand and quantify how this process influences the magnitude 

of TL’s in these environments.  

The use of satellite-based ET models and SEO data provide an opportunity to acquire such 

information. However, chapter 2 showed that limitations such as the trade-off between the 

spatial and temporal resolution of available imagery and the ability of the associated models to 

accurately estimate fluxes and ET in different environmental settings, may limit the feasibility 

of employing these approaches for operational water resources management.  

The SEBS model, as well as Landsat and MODIS data were selected to estimate ET within a 

portion of the Groot Letaba River. While SEBS and these data sets have been extensively 

applied for the estimation of ET, limitations associated with the spatial and temporal resolution 

of these images presented challenges to the estimation of daily ET at the required spatial scale. 

Procedures detailed in Hong et al. (2011) (Output Downscaling with Linear Regression or 

ODLR) and Gokool et al. (2016) (Kcact) were identified as suitable approaches to address these 

limitations. However, to establish confidence in the implementation of these approaches 

comparisons against in-situ ET observations were essential. 

The results of these investigations showed that comparisons against daily ECET measurements 

were less than satisfactory. This poor correlation was largely attributed to the inability of SEBS 

to explicitly account for the influence of soil moisture and biophysical parameters during the 

derivation of surface fluxes.  



 

 184 

Consequently, SEBS overestimated ET for this water stressed environment with the degree of 

overestimation of the evaporative fraction (EF) and (LE) being markedly higher for drier soils 

lacking vegetation coverage. Recent studies have identified potential solutions to address this 

limitation through the integration of a scaling factor into the original model formulation 

(SEBS0) to correct for the overestimation of the evaporative fraction (EF) and the latent heat 

flux (LE) within the model.  

After conducting a detailed review of the available literature with regards to approaches that 

could be implemented to address this particular limitation associated with SEBS0, the 

integration of an evaporative calibration factor (ESF) into SEBS0 was proposed in chapter 3, as 

the most pragmatic approach to address this limitation. This factor was derived from SEO and 

in-situ data which had been collected in this study, thereby limiting the time required for further 

data acquisition and processing. The integration of the ESF into SEBS0 was shown to 

significantly improve the correlation between ECET and modelled ET estimates, as well as 

increasing the percentage of modelled ET estimates within an acceptable accuracy range.  

Through the application of this modified version of SEBS (SEBSESF), the ability of the ODLR 

and Kcact approaches to develop a time-series of daily moderate spatial resolution ET estimates 

could now be demonstrated (chapter 4).  The use of the SEBSESF derived ET estimates as inputs 

to the aforementioned approaches improved the estimation of the daily ET at a MSR when 

compared against in-situ observations, the Kcact approach was shown to compare most 

favourably to ECET, yielding correlation coefficient and Nash-Sutcliffe efficiency values of 

0.79 and 0.60, respectively.   

With the ability of this satellite-based approach to adequately represent ET within this 

environment now confirmed. Stable isotope analysis (of 18O and 2H) and a Bayesian mixing 

model were coupled with the Kcact derived ET estimates, to further investigate spatial and 

seasonal variations in plant water uptake dynamics. The results of these investigations showed 

that soil water was the main contributing source to ET (approximately 88%), with soil water at 

depths between 60 and 140 cm being the dominant contributing source during plant water 

uptake, throughout the period of investigation.  
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Stream and groundwater use during transpiration was also prevalent within the study area 

(approximately 15 %) and increased with aridity, however, the magnitude of its contribution to 

transpiration was fairly minimal and not as significant as generally reported in literature. 

However, it should be noted that in other environmental settings the contribution of 

groundwater to riparian ET may be somewhat different depending on the riparian plant species 

present and their respective locations. 

The insights acquired from chapter 4 on the spatial and seasonal variations in plant water use 

dynamics, assisted in deriving baseline estimates of TL’s the during the latter stages of the 

2016 low flow period (August to October), which typically represents a critical period with 

regards to water shortages. This involved using the satellite-derived daily ET time series in 

conjunction with data obtained from a parallel investigation (Riddell et al., 2017), which 

focused on quantifying the rapport between surface and sub-surface water storage processes.  

The results presented in chapter 5, showed that TL’s during this period generally accounted for 

between 5 and 15 % of streamflow. Riparian total evaporation and transpiration in particular 

were found to be the dominant contributing processes to these losses. This finding was 

considered particularly relevant, as riparian total evaporation has generally been considered to 

be a minor contributing process to TL’s and is often inadequately represented or excluded from 

TL’s estimation procedures. In general, it was shown that flows within the river system were 

unable to meet gazetted low flow targets and are required to be increased in order to fulfil this 

requirement, whilst simultaneously accounting for TL’s. Furthermore, the results of the land 

use change scenario reaffirmed the importance of understanding and quantifying riparian water 

use requirements, as it can assist in providing a more accurate estimate of the flows required to 

meet EWR flow targets under changing land use conditions. 

The aforementioned findings relate to the specific objectives described within chapters 2 to 5. 

In general, there was an important observation which continuously re-emerged during these 

various investigations, which essentially relates to the need for accurate long-term in-situ data 

records. The use of SEO data and satellite-based evaporation models allows for the spatially 

explicit estimation of ET which generally can’t be attained by conventional approaches. 

Furthermore, these techniques are inexpensive and can be used to provide detailed hydrological 

process information in data scarce regions. Consequently, in recent times there has been an 

increase in the use of these data sets and models for various applications, inter alia; irrigation 

scheduling, water resources management and as data source for hydrological modelling.  



 

 186 

While satellite-earth observation provides an alternative approach to obtain hydrological 

process information, these approaches are generally evaluated against conventional approaches 

before they are applied with any degree of confidence. Furthermore, these in-situ observations 

are required to understand inherent limitations associated with the model or data sets, so that 

existing approaches can be improved upon or new approaches can be developed. Using the 

investigations and results of this study as an example, the importance of accurate data acquired 

from conventional approaches can be emphasized as follows;  

i) Uncertainties associated with the modelled ET estimates, especially the inability of 

SEBS0 to adequately capture energy fluxes and ET during water stressed conditions 

would have not been identified without comparisons against in-situ ET 

observations. 

ii) Evaluation of the SEBSESF approach as a potential solution to address this limitation 

would have not been possible without in-situ ET observations. 

iii) The uncertainty associated with flux tower estimates acquired from the EC system 

in the Malopeni study area could have led to a false perception in the performance 

of the SEBSESF approach.  

iv) Uncertainties associated with the TL’s estimated in this study could not be 

quantified due to a lack of accurate streamflow data.  

These observations clearly demonstrate that while the use of satellite-earth observation 

approaches is utilized more frequently and are being advocated as an alternative to obtain 

hydrological process information, the successful application of these approaches for present 

and future studies will to some degree be dependent on data collected from conventional in-

situ approaches. Therefore, it is imperative that; these conventional approaches continue to be 

used for the provision of hydrological process information, existing in-situ networks are 

adequately maintained and additional networks are established in the future. 

 Contributions of this research to new knowledge 

Overall the study has detailed key hydrological processes influencing TL’s along the Groot 

Letaba River. It is envisaged that this will enable the establishment of an improved conceptual 

model of the system, which may prove to be beneficial for future hydrological modelling 

applications in this region.  
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Specific contributions of this research to new knowledge and how these contributions met the 

objectives described within each chapter (chapters 2 to 5) are summarised as follows: 

i) The implementation of the Kcact and ODLR approaches assisted in overcoming 

the spatial and temporal resolution issues associated with the SEO data sets used 

in this study, enabling the development of a daily satellite-derived ET time-

series suitable for field scale applications within the study area (chapters 2 and 

4).  

ii) Prior to the investigations discussed in chapters 2 and 4, the ODLR procedure 

had not yet been applied to obtain seasonal continuous moderate spatial 

resolution (MSR) ET estimates. Consequently, the suitability of applying this 

approach to generate daily ET at a MSR was relatively unknown (Bhattarai et 

al., 2015). The results presented in these chapters have to a large extent, 

addressed this knowledge gap by providing invaluable insights on the suitability 

of this approach for the estimation of daily ET at a MSR. 

iii) From a South African perspective, chapters 2 and 3 have facilitated an improved 

hydrological process understanding of the factors which influence the 

performance of satellite-based ET estimation approaches for different climatic 

conditions. Thus, providing further insights on the factors to consider before 

selecting and implementing a satellite-based ET model.  

iv) The SEBSESF approach was proposed and evaluated as an alternative approach 

to address the shortcomings of implementing SEBS0 during conditions of water 

stress (chapter 3). The results of these investigations showed that the integration 

of the ESF into SEBS0 significantly improved the estimation of energy fluxes 

and ET during conditions of water stress within the study area. This approach 

has merits to improve the localized mapping of energy fluxes and ET in arid 

and semi-arid climatic regimes. Furthermore, the ESF can be derived from data 

which had been previously collected for the implementation of SEBS0, therefore 

limiting the time required for further data acquisition and processing. 

v) The use of SEBS and stable isotope analysis are well established and frequently 

applied approaches to estimate ET and investigate the sources of plant water 

uptake, respectively. The coupling of the data emanating from these 

independent approaches (chapter 4) provides an innovative means of 

quantifying spatial and seasonal variations in source contribution to ET.  
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vi) Bayesian mixing models have seldom been applied to determine the 

proportional contribution of sources to plant water uptake and to the author’s 

knowledge Simmr has not yet been applied for hydrological applications. 

Therefore, the results discussed in chapter 4 provide valuable insights as to how 

Simmr can be used to investigate plant water use dynamics. 

vii) Previous TL’s estimation procedures have seldom included or adequately 

incorporated the influence of riparian total evaporation. The investigations and 

results presented in chapter 5, have shown that this process can play a significant 

role in the water balance of river systems flowing through arid and semi-arid 

environments. Furthermore, the use of satellite-derived ET estimates has 

enabled the spatially explicit quantification of the contribution of ET to TL’s in 

this environment, which was previously unattainable using conventional ET 

estimation procedures. This can prove to be particularly advantageous for the 

future effective management of EWR flows in the system at both catchment and 

regional levels. 

viii) The results presented in chapter 5 provided new insights, as to how gazetted 

target flows within this portion of river reach can be achieved through the 

improved estimation of TL’s under present or changing environmental 

conditions (Overall objective).  

ix) The timing of this study coincided with a large El-Nino induced drought period 

(Kogan and Guo, 2016). Consequently, the results of the various investigations 

have provided invaluable insights on the dynamics of hydrological processes 

within this region, during extreme drought conditions. 

 Challenges experienced during the duration of this study 

Due to capacity constraints, such as finances, human resources and duration of the study inter 

alia, there were various limitations experienced throughout the investigation period. These are 

summarized as follows; 

i) In order to apply a SEO approach to obtain hydrological process information 

with any degree of confidence, the data emanating from these approaches were 

compared against in-situ observations. Therefore, investigations were limited to 

the periods in which adequate observed data were available.  
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ii) Due to the nature of the investigations and the methodology applied herein, a 

large volume of satellite-imagery was required. These images were manually 

collected and processed to derive the requisite data sets used in this study. While 

automated bulk-processing of this imagery is an option, the necessary software 

and training required to implement such an approach was not available within 

the time frames of this project. Consequently, we were only able to perform 

analysis for a limited number of sites over a 2-year period. 

iii) Comparisons between the satellite derived ET estimates against observed ET 

data, allows for the quantification of errors and uncertainties associated with the 

modelled estimate. However, uncertainties associated with the observed data, 

such as the Malopeni flux data may have led to a false perception of the model 

performance or the data sets that were used, if these inaccuracies remained 

unaccounted for. Furthermore, while the SEBSESF was shown to improve the 

estimation of ET in the Malopeni study site, the degree to which this approach 

improved ET estimation could not be truly gauged.  

iv) the implementation of the SEBSESF approach negates the advantage that SEBS 

has over other satellite-based ET estimation models, viz. that it is a purely 

physical process of the model and consequently provides credible results 

irrespective of season or location.  

v) Due to the remote locality of the study site, collection of samples for stable 

isotope analysis was undertaken during three window periods. Consequently, 

these observations may not adequately represent the seasonal variations in plant 

water use dynamics. 

vi) Uncertainties in the estimated TL’s could not be verified using a mass balance 

approach, due to the lack of accurate observed streamflow data. Consequently, 

these estimates as well as the proposed increases in flow required to meet the 

gazetted target flows should be considered preliminary findings.  

vii) Although the study site was extensively gauged during the period of 

investigation, these observations only provide an understanding of the system 

for a limited period in time. 
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 Future research opportunities 

Throughout the duration of this thesis; detailed analysis of available literature was undertaken 

to guide the various approaches which were eventually implemented and tested, in order to 

fulfil the objectives of this study. However, considering the additional knowledge that has been 

acquired with regards to the research subject, the following are proposed as opportunities for 

possible future investigations: 

i) While MODIS and Landsat data, as well as the SEBS model were selected for 

implementation in this study, largely due to their extensive use in research and 

operational studies. Alternate data sets and satellite-based ET models which 

meet these criteria, were not considered as they were not freely available. 

Depending on the resources available and the objectives of the study; the use of 

data acquired from higher resolution imagery, the application of alternate 

satellite-based ET models such as the Surface Energy Balance Algorithm for 

Land (SEBAL; Bastiaanssen et al., 1998) and Mapping Evapotranspiration with 

High Resolution and Internalized Calibration (METRIC; Allen et al., 2007) or 

satellite-based ET products (MOD-16) can be used to obtain spatially explicit 

estimates of ET. Furthermore, recent advances in google earth engine and the 

SEBS Global Land ET product (Chen, 2017) offers new and exciting research 

opportunities. 

ii) The use of the ODLR and Kcact approaches were selected for application in this 

study due to their relative ease of application and minimal data requirements, 

which may prove to be appealing for operational water resources management. 

However, there are additional downscaling and image fusion based approaches 

such as those detailed in; Ha et al. (2011), Singh et al. (2014), Alidoost et al. 

(2015) and Bhattarai et al. (2015), which may enable the more accurate 

estimation of daily ET at a MSR but were not considered due to the 

aforementioned criteria.  
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iii) While the proposed integration of ESF into SEBS0 was shown to be a credible 

approach for estimating ET during conditions of water stress, future 

investigations regarding the application of the SEBSESF approach should also be 

compared against other modified versions of SEBS (Gokmen et al., 2012; Pardo 

et al., 2014; Hueng et al., 2015), to truly gauge if the proposed method offers 

any significant improvement to the mapping of ET in arid and semi-arid 

environments. Additionally, future research efforts could be focused on 

improving the modelling of the kB-1 parameter or extra (stomatal) resistance 

terms when deriving H, during conditions of water stress. 

iv) Increasing the sampling frequency and number of water samples collected 

during stable isotope analyses would facilitate an improved representation of 

source contributions to ET, which in turn may allow for invaluable time-series 

comparisons of seasonal and spatial variations in plant water uptake dynamics. 

v) The preliminary estimates of TL’s and proposed increases the in flow required 

to meet the gazetted target flows, could not be verified in this study. The 

methodology used to obtain this information was neither site or model specific 

and therefore has the potential to be applied in other environmental settings. 

vi) The preliminary investigations in this study only enabled the localized 

estimation of TL’s. Recent studies (Walter et al., 2011; Costa et al., 2013) have 

demonstrated how satellite earth observation data can be used to quantify losses 

or gains to the adjacent aquifer. The coupling of these methodologies with the 

use of satellite-derived ET estimates provides an opportunity to obtain spatially 

explicit estimates of TL’s at both catchment and regional scales. This in turn 

can prove to be extremely beneficial to the future effective management of 

EWR flows in the system. 
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vii) The study site was extensively gauged and detailed investigations of 

hydrological processes contributing to TL’s were undertaken during the low 

flow period, which typically represents a critical period with regards to water 

shortages. However, these observations only provide an understanding of the 

system for a limited period in time. Therefore, it would prove to be 

advantageous to continue longer term monitoring at the site, which may 

facilitate an improved understanding of the system during higher flow periods 

and under changing environmental conditions. Furthermore, this may allow for 

a reduction in the assumptions and related uncertainties that had to be factored 

into the analysis.  
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APPENDIX A: IMAGE PROCESSING AND METEOROLOGICAL DATA 

The procedures outlined in Su and Wang (2013), Singh et al. (2014a) and USGS (2015), used 

to derive the necessary land surface parameters required as inputs to SEBS for the estimation 

of ET are detailed as follows. 

Pre-processing of Landsat 7 Level 1 Geotiff data products 

The data provided in Landsat 7 bands, are represented as digital numbers (DN) and therefore 

need to be converted into at-sensor radiance and top of the atmosphere (TOA) reflectance. 

Radiometric rescaling coefficients provided in the meta-data file are used to perform this 

conversion.  

Conversion to at-sensor radiance 

The conversion to at-sensor radiance is given as: 

L = 
(𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

)(𝐷𝑁−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)

(𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
+ 𝐿𝑚𝑖𝑛     (A1) 

Where L is the spectral radiance (W m-2 sr-1 µm-1), Lmax is the maximum rescaling factor (W 

m-2 sr-1 µm-1), Lmin is the minimum rescaling factor (W m-2 sr-1 µm-1), DN is the quantized 

calibrated pixel value, Qcalmax is the quantized calibrated pixel value related to Lmax and Qcalmin 

is the quantized calibrated pixel value related to Lmin. 

Conversion to planetary TOA reflectance 

ρ = 
𝜋 x 𝐿

(𝐸𝑠𝑢𝑛 x 𝐶𝑜𝑠𝜃 x 𝑑𝑟)
        (A2) 

Where ρ is the planetary TOA reflectance, dr is the earth sun distance parameter, Esun is the 

mean exoatmospheric solar irradiance (W m-2 µm-1) and θ is the solar zenith angle (0). Esun can 

be obtained from the LPSO (2006). 

Computation of SEBS input maps (albedo, NDVI, emissivity and land surface temperature) 

The TOA albedo can be calculated as: 

αtoa  = ∑(𝜌 x 𝑤𝜆)         (A3) 
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Where αtoa is the top of the atmosphere albedo and wλ is a weighting coefficient given as: 

wλ  = 
𝐸𝑠𝑢𝑛

∑𝐸𝑠𝑢𝑛
          (A4) 

The surface albedo can then be computed as: 

α  = 
(𝛼𝑡𝑜𝑎− 𝛼𝑝𝑎𝑡ℎ 

 )

𝜏𝑠𝑤
2         (A5) 

Where α is the surface albedo, αpath is the albedo path radiance ranging between 0.025 and 0.04 

(Singh et al., 2014a) and τsw is the transmittance, which is calculated as: 

τsw  = (0.75 + 2x10−5) x 𝑍       (A6) 

Where Z is the altitude above mean sea level (m). 

The NDVI can be calculated as: 

NDVI  = 
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑
        (A7) 

Where NIR is the Near-Infra Red band (W m-2 µm-1) and Red is the red band (W m-2 µm-1). 

The surface emissivity is computed as: 

εo  = (1.009 + 0.047)x ln(𝑁𝐷𝑉𝐼)      (A8) 

The land surface temperature (LST) is computed as: 

Ts = 
𝑇𝑏𝑏

𝜀𝑜
0.25         (A9) 

Where Ts is the LST (K) and Tbb is the at-satellite brightness temperature (K). 

Tbb is estimated as:  

Tbb  = 
𝐾2

ln(
𝐾1
𝐿𝜆

)+1
         (A10) 

Where K2 and K1 are calibration constants, respectively (1282.71 K and 666.09 W m-2 sr-1 µm-

1) and Lλ is the band 6 spectral radiance (W m-2 sr-1 µm-1). 
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Pre-processing of Landsat 8 Level 1 Geotiff data products 

Conversion to at-sensor radiance 

The conversion to at-sensor radiance is given as: 

Lλ = 𝑀𝐿x 𝑄𝑐𝑎𝑙 + 𝐴𝐿        (A11) 

Where Lλ is the spectral radiance (W m-2 sr-1 µm-1), ML is the radiance multiplicative scaling 

factor for the band (RADIANCE_MULT_BAND acquired from the MTL file), AL is the radiance 

additive scaling factor for the band (RADIANCE_ADD_BAND acquired from the MTL file) and 

Qcal is the Level 1 pixel value in DN (USGS, 2015).  

Conversion to OLI TOA reflectance 

ρλ' = 𝑀𝜌x 𝑄𝑐𝑎𝑙 + 𝐴𝜌       (A12) 

Where ρλ' is the TOA planetary spectral reflectance, without correction for solar angle, Mρ is 

the reflectance multiplicative scaling factor for the band (REFLECTANCE_MULT_BAND 

acquired from the MTL file) and Aρ is the radiance additive scaling factor for the band 

(REFLECTANCE _ADD_BAND acquired from the MTL file) (USGS, 2015). The ρλ' is not a 

true TOA reflectance, as it has not been corrected for the solar elevation angle. The solar 

elevation angle can either be calculated or acquired from the MTL file. Once this value has 

been ascertained, the true TOA reflectance can be calculated (USGS, 2015) as: 

ρλ = 
𝜌𝜆′

sin 𝜃
         (A13) 

Where ρλ is the TOA planetary reflectance and sin θ is the solar angle (calculated or acquired 

from the MTL file). 

Computation of SEBS input maps (albedo, NDVI, emissivity and LST) 

Equations A3 to A6 can be applied to derive the surface albedo. However, Esun values are not 

provided for Landsat 8 Level 1 Geotiff data products, as they are not required for the conversion 

of DN to reflectances. Consequently, these values have to be calculated.  

Esun values for Landsat 8 Level 1, bands 2 to 5 and 7 are determined as: 
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Esun  = (𝜋 x 𝑑2)(
𝑅𝐴𝐷_𝑀𝐴𝑋

𝑅𝐸𝐹_𝑀𝐴𝑋
)       (A14) 

Where d is the earth sun distance, RAD_MAX is the maximum radiance for the respective band 

and REF_MAX is the maximum reflectance for the respective band (acquired from the MTL 

file). Equations A7 and A8 can be applied to determine the NDVI and εo, respectively. Equation 

A9 is used to convert the radiance values of bands 10 and 11 to at-satellite brightness 

temperature. The thermal conversion constants K1 and K2 can be obtained from the MTL file 

(K1_CONSTANT_BAND and K2_CONSTANT_BAND) (USGS, 2015). Band 10 and 11, 

represent low and high gain conditions, respectively. Therefore, one band may be better suited to 

estimate the LST for a particular surface. For example, a high gain is suited for grassland 

environments. However due to the heterogeneity of the study area it was decided that the at-satellite 

brightness temperature for bands 10 and 11 would be the averaged and then applied in Equation 

A10, to determine the LST. 

 

 

 

 

 

 

Figure A1 An axample of a Landsat 7 and 8 Level 1 natural colour composite covering the 

location of the study area 

Pre-processing of MODIS Level 1_B data products 

MODIS Level 1_B calibrated radiances and geolocation files are given in an orbit based format. 

These files therefore need to be projected into a standard format and projection, in order to be 

compatible with Geographic Information System (GIS) software. The aforementioned files can 

be converted into geographic projection and GeotTiff format, using the MODIS reprojection 

Swath Tool. MODIS provides multispectral data for 36 bands, however; only 13 bands were 

utilized to derive the inputs necessary for the application of the SEBS Model. These bands are 

presented in Table 1.  

Landsat 8 Landsat 7 
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Table A1 MODIS bands used to derive the inputs necessary for the application of the 

SEBS Model (adapted from Su and Wang, 2013) 

MODIS band GeoTiff Filename File name in ILWIS 

EV 250 Aggr1km RefSB bo.tif Band1_dn 

EV 250 Aggr1km RefSB b1.tif Band2_dn 

EV 500 Aggr1km RefSB b0.tif Band3_dn 

EV 500 Aggr1km RefSB b1.tif Band4_dn 

EV 500 Aggr1km RefSB b2.tif Band5_dn 

EV 500 Aggr1km RefSB b4.tif Band7_dn 

EV 1KM Emissive RefSB b10.tif Band31_dn 

EV 1KM Emissive RefSB b11.tif Band32_dn 

Solar Zenith.tif Sza_dn 

Solar Azimuth.tif Saa_dn 

Sensor Zenith.tif Vza_dn 

Sensor Azimuth.tif Vaa_dn 

Height.tif Height 

 

Conversion to radiance and reflectance 

The data provided in the 13 MODIS Level 1_B bands, are represented as digital numbers (DN) 

and therefore need to be converted into radiance and reflectance values. The HDF View 2.9 

Software Tool can be used to view the metadata associated with the MODIS Level 1_B data, 

in order to obtain the calibration coefficients required to perform the abovementioned 

conversion.  The reflectance and radiance calibration coefficients were applied to convert band 

1_dn to band 5_dn, as well as band 7_dn into reflectance values and band 31_dn and band 

32_dn into radiance values. Additionally, a scaling factor (0.01) was applied to the Sza_dn, 

Saa_dn, Vza_dn, and Saa_dn. 

Application of a simplified method for the atmospheric correction of satellite measurements 

(SMAC) 

It is essential to correct for atmospheric absorption and scattering effects in the visible channels, 

when dealing with approaches which are predicated on the shortened surface energy balance. 

The SMAC algorithm is available as a tool within ILWIS to perform atmospheric calibrations 

for the visible channels. The SMAC algorithm is applied to Band 1_dn to Band 7_dn, to obtain 

atmospherically corrected bands which can be used for albedo, NDVI and emissivity 

computations. 
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Computation of SEBS input maps (albedo, NDVI, emissivity and LST) 

The atmospherically corrected MODIS reflectance bands are used to compute the surface 

albedo, which is computed as: 

α = (0.16𝐵1) + (0.291𝐵2) + (0.243𝐵3) +  (0.116𝐵4) + (0.112𝐵5) +

                           (0.018𝐵7) − 0.0015       (A15) 

Where B1, B2, B3, B4, B5 and B7 are the atmospherically corrected surface reflectance bands 

derived from MODIS bands 1, 2, 3, 4, 5 and 7, respectively. The NDVI can be determined by 

using the atmospherically corrected Red and Near Infra-Red bands in Equation A7. The NDVI 

values are then used to compute the land surface emissivity. The NDVI value is used to 

differentiate between different types of pixels i.e. bare soil, vegetation and mixed pixels. 

Contingent, to these values the surface emissivity can be estimated using the atmospherically 

corrected Red and Near Infra-Red bands. During the computation of the land surface emissivity 

in ILWIS, optional parameters can be generated, these include the spectral emissivity 

difference and the fc. Furthermore, Su (2002) state that the NDVI can also be used as a surrogate 

when detailed vegetation information is unavailable. Internal routines and models available 

within SEBS can be used to provide this information using NDVI as a basis for these estimation 

procedures. Due, to the lack of detailed vegetation information in this study, the 

aforementioned approach was adopted when implementing SEBS. 

The following formula is used for the LST computation: 

LST = 𝑏𝑡𝑚31 + 1.02 + 1.79(𝑏𝑡𝑚31 − 𝑏𝑡𝑚32) + 1.2(𝑏𝑡𝑚31 − 𝑏𝑡𝑚32)2 +

                           (34.83 − 0.68𝑊) x (1 − 𝜀𝑜 ) + (−73.27 − 5.19𝑊) x 𝑑𝜀𝑜   (A16) 

Where btm31 is the brightness temperature obtained from MODIS band 31, btm32 is the brightness 

temperature obtained from MODIS band 32, W is the water vapour content and dεo is the 

emissivity difference. In the absence of a water vapour data set, a simplified form of the 

Equation 16 can be used to estimate LST, which is given as: 

LST = 𝑏𝑡𝑚31 + 1.02 + 1.79(𝑏𝑡𝑚31 − 𝑏𝑡𝑚32) + 1.2(𝑏𝑡𝑚31 − 𝑏𝑡𝑚32)2  (A17) 

The brightness temperature can be derived by converting MODIS bands 31 and 32 from 

radiances to blackbody temperatures, using the Planck equation, which is given as: 
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Tc = 
𝐶2

𝜆𝑐 log(
𝐶1

𝜆5𝜋𝐿𝑠
)+1

         (A18) 

Where Tc is the brightness temperature from a central wavelength, λc is the sensor’s central 

wavelength, C1 and C2 are the blackbody constants and Ls is the radiance for the respective 

band. 

 

Figure A2 An example of a MOD21 Level1 B visible composite covering the location of 

the study area 

Meteorological and Energy Balance Data 

Observations of meteorological variables were made every 10 seconds and the appropriate 

statistical outputs were stored on a data logger at 10-minute intervals, as shown in Figure A3. 

Whereas, the EC system was equipped with a CSAT 3-D sonic anemometer that was connected 

to a CR3000 datalogger and measurements of the sonic air temperature, wind speed and 

direction were taken with a sampling frequency of 10 Hz. The averages of these high frequency 

measurements (from instantaneous data) were then used to compute a half-hourly sensible heat 

flux (Figure A4). The aforementioned data is displayed using the View Pro 4.2 utility available 

in Loggernet 4.2.1. 
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Figure A3   An example of the meteorological and energy balance data captured by the various sensors and stored on the CR23X logger output 

file 
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Figure A4 An example of the data captured by the CSAT 3-D sonic anemometer and stored on the CR3000 logger output file 
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APPENDIX B: STABLE ISOTOPE SAMPLING AND ANALYSES 

The samples collected for stable isotope analysis are presented in Tables B1. The measured 

δ2H and δ18O for each of the potential sources were then used as inputs to Simmr to determine 

the proportional contribution of sources to ET (Figure B1). In this particular study, the potential 

sources of water used by the vegetation was considered to be soil water (assumed to have mixed 

proportionally with older soil moisture) at the different sampling depths, GW and stream water. 

The isotopic composition of these samples was generally distinguishable, therefore the source 

input data used in Simmr was the measured δ2H and δ18O for plant stem water, soil water (30, 

60, 100 and 1400 cm), GW and SW. 

As previously mentioned, the package implements a Markov Chain Monte Carlo (MCMC) 

function to repeatedly estimate the proportions of the various sources in the mixture and 

determine the values which best fit the mixture data. It should be noted that the isotopic 

composition of δ2H and δ18O in the xylem water must fall between those of the potential water 

source EM, in order to be explained as a mixture of them (Figure B2).  

While the model is able to compute a mathematical solution of the proportion of sources that 

sum to 1, if the aforementioned condition is not met, the proportion of one of the sources will 

be negative, while the proportion of one of the remaining sources will be greater than one, 

neither of which is hydrologically possible.  

The initial estimates are usually poor and are discarded as part of the burn-in phase (initial 

phase). The subsequent iterations are then used to determine the best estimates of the source 

proportions. Convergence diagnostics can then be used to check if the model has run correctly 

(Figure B3), as it can take thousands of iterations to depart from the initial guesses. Once the 

model has run correctly the contribution of each source to ET at various percentiles is provided 

in tabular and graphical form (Figure B3). 
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Table B1 Stable isotope samples collected during the three window period sampling campaigns 

Sample ID 
Location 

(South) 

Location 

(East) 
Source Description 

δ 2H 

(‰) 

δ 2H 

std (‰) 

δ 18O 

(‰) 

δ 18O std 

(‰) 

mthimkulu (r1)-Avg 23.66 31.05 Rainfall Rainfall sample at Letaba Ranch 7.81 1.10 -1.52 0.16 

mahale farm (r2)-Avg 23.67 31.02 Rainfall Rainfall Sample at Malisa's farm 2.03 0.70 -1.71 0.08 

mahale farm (r3)-Avg 23.67 31.02 Rainfall Rainfall Sample at Malisa's farm 12.92 0.68 0.94 0.11 

mahale farm (r4)-Avg 23.67 31.02 Rainfall Rainfall Sample at Malisa's farm 12.31 0.40 0.27 0.18 

mthimkulu (r12)-Avg 23.66 31.05 Rainfall Rainfall sample at Letaba Ranch -9.79 0.21 -2.36 0.30 

mahale farm (r14)-Avg 23.67 31.02 Rainfall Rainfall Sample at Malisa's farm -1.08 0.32 -1.90 0.13 

mthimkulu (r16)-Avg 23.66 31.05 Rainfall Rainfall sample at Letaba Ranch -1.00 2.17 -2.18 0.03 

mthimkulu (r18)-Avg 23.66 31.05 Rainfall Rainfall sample at Letaba Ranch 15.26 0.69 0.45 0.03 

mthimkulu (r19)-Avg 23.66 31.05 Rainfall Rainfall sample at Letaba Ranch 5.20 0.32 -1.44 0.20 

mthimkulu (r20)-Avg 23.66 31.05 Rainfall Rainfall sample at Letaba Ranch -6.38 1.43 -3.05 0.07 

mthimkulu (r1)-Avg 23.66 31.05 Rainfall Rainfall sample at Letaba Ranch 7.81 1.10 -1.52 0.16 

mahale farm (r2)-Avg 23.67 31.02 Rainfall Rainfall Sample at Malisa's farm 2.03 0.70 -1.71 0.08 

id7 may 23.67 31.02 Stream Stream sample at Malisa's Farm -9.20 0.40 -1.90 0.10 

id11a may 23.67 31.02 Stream Stream sample at Malisa's Farm -8.10 1.10 -1.40 0.20 

id20a may 23.66 31.05 Stream Stream sample in Letaba Ranch -9.00 2.40 -1.30 0.20 

id24a may 23.66 31.05 Stream Letaba Ranch weir stream sample -7.60 0.50 -1.20 0.10 

id24a may 23.66 31.05 Stream Letaba Ranch weir stream sample -8.00 1.30 -1.30 0.20 

cstream aug 23.67 31.02 Stream Stream sample at Malisa's Farm 3.40 1.30 -0.40 0.20 

estream aug -23.68 31.00 Stream Stream sample (LF near stream NB) 3.40 2.70 0.00 0.10 

13 23.67 31.02 Stream stream sample near malisa's farm 2.50 1.00 2.30 0.20 

15 -23.68 31.00 Stream stream sample (LF near stream NB) 3.50 0.70 2.30 0.20 

11 23.66 31.05 Stream stream sample letaba ranch nb (Northern Bank) 9.50 0.60 2.30 0.10 

2 -23.66 31.05 Stream stream sample from letaba ranch weir 6.70 0.30 2.40 0.10 

17 -23.66 31.05 Stream stream sample letaba ranch (Southern Bank) 5.00 0.70 2.70 0.20 

id7 may 23.67 31.02 Stream Stream sample at Malisa's Farm -9.20 0.40 -1.90 0.10 
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23.67 31.02 Stream Stream sample at Malisa's Farm -8.10 1.10 -1.40 0.20 

id1b may 23.67 31.02 Groundwater Shallow borehole in Malisa's Farm (Northern Bank) -20.20 0.60 -3.60 0.10 

id4 may 23.67 31.00 Groundwater Borehole near Mahale weir (Northern Bank) -21.90 0.60 -3.60 0.10 

5.2 23.67 31.02 Groundwater Borehole in Letaba Ranch (Northern Bank) -19.50 1.60 -3.90 0.20 

id23a may 23.66 31.05 Groundwater Borehole within river channel near Letaba Ranch -20.00 1.10 -3.30 0.10 

cbore aug -23.67 31.02 Groundwater Borehole in Malisa's Farm (Northern Bank) -18.70 0.90 -3.30 0.20 

ebore aug -23.67 31.00 Groundwater Borehole near Mahale weir (LF near stream NB) -6.00 1.50 -1.50 0.20 

bbore aug -23.66 31.05 Groundwater Borehole in Letaba Ranch (Northern Bank) -20.70 1.50 -4.00 0.10 

abore aug -23.66 31.05 Groundwater Borehole within river channel (Letaba Ranch near weir) -15.50 1.60 -3.50 0.10 

gbore aug -23.66 31.05 Groundwater Borehole in Letaba Ranch (Southern Bank) -21.40 1.70 -3.50 0.10 

gbore aug -23.66 31.05 Groundwater Borehole in Letaba Ranch (Southern Bank) -20.90 1.60 -3.30 0.10 

gbore aug -23.66 31.05 Groundwater Borehole in Letaba Ranch (Southern Bank) -21.20 1.70 -3.40 0.00 

12 -23.67 31.02 Groundwater borehole at malisa's farm (Northern Bank) -25.10 1.60 -4.10 0.30 

14 -23.67 31.00 Groundwater borehole sample near mahale weir (LF near stream NB) -12.50 0.10 -1.20 0.30 

10 -23.66 31.05 Groundwater borehole letaba ranch nb (Northern Bank) -25.50 0.60 -4.70 0.20 

1 -23.66 31.05 Groundwater borehole within river letaba ranch (Letaba Ranch near weir) -24.30 0.70 -3.70 0.30 

16 -23.66 31.05 Groundwater borehole sample letaba ranch sb (Southern Bank) -30.00 0.50 -4.50 0.20 

6 -23.66 31.05 Soil Soil at 30 cm depth (LR within river channel and near stream NB) -12.0 0.3 4.1 0.0 

23 -23.66 31.05 Soil Soil at 30 cm depth (LR near stream NB) -2.0 0.1 3.8 0.0 

31 -23.67 31.02 Soil Soil at 30 cm depth (LF near stream NB) -8.0 0.9 3.6 0.1 

35 -23.68 31.00 Soil Soil at 30 cm depth (LF near stream NB) 7.0 0.7 7.9 0.3 

42 -23.66 31.05 Soil Soil at 30 cm depth (LR near stream SB) -9.0 1.8 3.9 0.2 

A30 -23.66 31.05 Soil Soil at 30 cm depth (LR within river channel and near stream NB) -15.0 0.2 1.6 0.0 

C30 -23.67 31.02 Soil Soil at 30 cm depth (LF near stream NB) -9.0 0.5 1.0 0.1 

D30 -23.67 31.02 Soil Soil at 30 cm depth (LF near stream SB) -6.0 5.9 4.1 0.3 

E30 -23.68 31.00 Soil Soil at 30 cm depth (LF near stream NB) -7.0 1.1 1.4 0.2 

G30 -23.66 31.05 Soil Soil at 30 cm depth (LR near stream SB) 6.0 0.0 5.6 0.1 

A 23.67 31.02 Soil Soil samples (30 cm) on Northern Bank, near Mahale weir -9.0 0.3 -0.9 0.0 
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D 23.67 31.02 Soil Soil samples (30 cm) on Southern Bank, near Malisa's Farm -36.0 0.2 -4.4 0.1 

J 23.68 31.00 Soil Soil samples (30 cm) on Northern Bank, near Mahale weir -37.0 0.2 -2.5 0.0 

N 23.66 31.05 Soil Soil samples (30 cm) on Southern Bank, near Letaba Ranch weir -9.0 0.4 0.2 0.1 

O  23.66 31.05 Soil Soil (30 cm) on Northern Bank, near Letaba Ranch weir -23.0 0.1 -0.5 0.1 

7 -23.66 31.05 Soil Soil at 60 cm depth (LR within river channel and near stream NB) -16.0 0.6 -1.5 0.1 

24 -23.66 31.05 Soil Soil at 60 cm depth (LR near stream NB) -20.0 0.2 -1.8 0.1 

32 -23.67 31.02 Soil Soil at 60 cm depth (LF near stream NB) -10.0 0.5 2.0 1.0 

36 -23.68 31.00 Soil Soil at 60 cm depth (LF near stream NB) -35.0 0.8 -2.4 0.1 

43 -23.66 31.05 Soil Soil at 60 cm depth (LR near stream SB) -20.0 0.8 -1.1 0.1 

A60 -23.66 31.05 Soil Soil at 60 cm depth (LR within river channel and near stream NB) -15.0 0.9 0.9 0.2 

B60 -23.66 31.05 Soil Soil at 60 cm depth (LR near stream NB) -23.0 2.4 -0.4 0.2 

C60 -23.67 31.02 Soil Soil at 60 cm depth (LF near stream NB) -39.0 0.3 -0.3 0.0 

D60 -23.67 31.02 Soil Soil at 60 cm depth (LF near stream SB) -44.0 0.7 -0.3 0.2 

E60 -23.68 31.00 Soil Soil at 60 cm depth (LF near stream NB) -36.0 1.3 -3.6 0.2 

G60 -23.66 31.05 Soil Soil at 60 cm depth (LR near stream SB) -16.0 0.7 0.1 0.1 

F 23.68 31.00 Soil Soil samples (60 cm) on Northern Bank, near Mahale weir -22.0 0.1 -1.8 0.0 

G 23.67 31.02 Soil Soil samples (60 cm) on Southern Bank, near Malisa's Farm -25.0 0.3 -3.7 0.1 

P 23.66 31.05 Soil Soil samples (60 cm) on Southern Bank, near Letaba Ranch weir -22.0 0.3 -1.3 0.1 

R  23.66 31.05 Soil Soil (60 cm) on Northern Bank, near Letaba Ranch weir -21.0 0.1 -1.5 0.0 

8 -23.66 31.05 Soil Soil at 100 cm depth (LR within river channel and near stream NB) -4.0 1.2 2.4 0.2 

25 -23.66 31.05 Soil Soil at 100 cm depth (LR near stream NB) -42.0 0.1 -5.0 0.1 

33 -23.67 31.02 Soil Soil at 100 cm depth (LF near stream NB) -32.0 0.2 -3.3 0.0 

37 -23.68 31.00 Soil Soil at 100 cm depth (LF near stream NB) -23.0 1.6 -2.8 0.1 

44 -23.66 31.05 Soil Soil at 100 cm depth (LR near stream SB) -30.0 0.3 -3.3 0.1 

A120 -23.66 31.05 Soil Soil at 100 cm depth (LR within river channel and near stream NB) -32.0 0.1 -2.0 0.1 

B80 -23.66 31.05 Soil Soil at 100 cm depth (LR near stream NB) -15.0 0.4 0.8 0.1 

C120 -23.67 31.02 Soil Soil at 100 cm depth (LF near stream NB) -30.0 0.5 -1.5 0.1 

D120 -23.67 31.02 Soil Soil at 100 cm depth (LF near stream SB) -9.0 0.7 0.6 0.3 

E120 -23.68 31.00 Soil Soil at 100 cm depth (LF near stream NB) -26.0 0.4 -3.9 0.1 

G120 -23.66 31.05 Soil Soil at 100 cm depth (LR near stream SB) -42.0 0.2 -3.6 0.1 
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L 23.66 31.05 Soil Soil samples (100 cm) on Southern Bank, near Letaba Ranch weir -32.0 0.3 -3.5 0.1 

C 23.67 31.02 Soil Soil samples (100 cm) on Northern Bank, near Mahale weir -27.0 0.2 -4.4 0.1 

E 23.67 31.02 Soil Soil samples (100 cm) on Southern Bank, near Malisa's Farm -53.0 0.2 -6.9 0.1 

I 23.68 31.00 Soil Soil samples (100 cm) on Northern Bank, near Mahale weir -42.0 0.1 -4.7 0.0 

M 23.66 31.05 Soil Soil (100 cm), Northern Bank, near Letaba Ranch weir -39.0 0.1 -6.6 0.1 

9 -23.66 31.05 Soil Soil at 140 cm depth (LR within river channel and near stream NB) -42.5 0.4 -4.3 0.0 

26 -23.66 31.05 Soil Soil at 140 cm depth (LR near stream NB) -40.0 0.5 -4.6 0.0 

34 -23.67 31.02 Soil Soil at 140 cm depth (LF near stream NB) -45.0 0.4 -3.9 0.0 

38 -23.68 31.00 Soil Soil at 140 cm depth (LF near stream NB) -44.0 0.1 -4.6 0.1 

45 -23.66 31.05 Soil Soil at 140 cm depth (LR near stream SB) -41.0 0.5 -4.2 0.0 

C2 -23.67 31.02 Stem P. violacea (LF near stream NB) -14.00 0.10 -2.80 0.10 

E4 -23.68 31.00 Stem P. violacea (LF near stream NB) -21.00 0.30 -3.10 0.00 

27 -23.67 31.01 Stem P. violacea (LF near stream NB) -32.00 0.10 -3.30 0.10 

B2 -23.66 31.05 Stem P. violacea (LR near stream NB) -4.00 0.80 1.30 0.20 

F1 -23.66 31.05 Stem P. violacea (LR near stream SB) 5.00 0.60 6.20 0.20 

A4 -23.66 31.05 Stem P. violacea (LR within river channel and near stream NB) -17.00 0.20 -1.50 0.00 

5 -23.66 31.05 Stem P. violacea (LR within river channel and near stream NB) -50.00 1.30 -7.50 0.00 

17 23.66 31.05 Stem P. violacea on Northern Bank, near Letaba Ranch weir -49.00 0.50 -3.60 0.00 

B1 -23.66 31.05 Stem Z. mucronata 6.00 1.20 5.70 0.40 

E2 -23.68 31.00 Stem Z. mucronata (LF near stream NB) -65.00 0.60 -7.60 0.10 

A1 -23.66 31.05 Stem Z. mucronata (LR within river channel and near stream NB) -46.00 0.30 -5.10 0.00 

28 23.66 31.05 Stem Z. mucronata on Southern Bank, near Letaba Ranch weir -61.00 0.30 -7.90 0.00 

25 23.66 31.05 Stem Z. mucronata within River Channel, near Letaba Ranch weir -47.00 0.30 -4.10 0.00 

30 -23.67 31.00 Stem C. microphyllum (LF near stream NB) -50.00 0.30 -8.00 0.10 

40 -23.68 31.01 Stem C. microphyllum (LF near stream SB) -32.00 0.10 -5.60 0.00 

D2 -23.67 31.02 Stem C. microphyllum (LF near stream SB) -41.00 1.20 -6.70 0.10 

29 -23.67 31.00 Stem F. sycamorous (LF near stream NB) -39.00 0.20 -4.30 0.00 

E1 -23.68 31.00 Stem F. sycamorous (LF near stream NB) -53.00 0.10 -3.30 0.20 

D1 -23.67 31.02 Stem F. sycamorous (LF near stream SB) 0.00 0.20 0.70 0.10 

39 -23.67 31.01 Stem F. sycamorous (LF near stream SB) -42.00 0.60 -2.40 0.20 
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G2 23.66 31.05 Stem F. sycamorous (LR near stream SB) 0.00 0.20 0.80 0.10 

46 -23.66 31.05 Stem F. sycamorous (LR near stream SB) -26.00 0.40 -3.10 0.00 

48 -23.66 31.05 Stem F. sycamorous (LR near stream SB) -10.00 0.10 1.30 0.10 

26 23.66 31.05 Stem F. sycamorous on Southern Bank, near Letaba Ranch weir -29.00 0.10 -2.10 0.10 

9 23.67 31.02 Stem F. sycamorous on Southern Bank, near Malisa's Farm -55.00 0.30 -3.90 0.00 

47 -23.66 31.05 Stem G. senegalensis (LR near stream SB) -7.00 3.00 0.00 0.10 

14 B 23.68 31.00 Stem G. senegalensis on Northern Bank, near Mahale weir -48.00 0.30 -4.50 0.00 

4 -23.66 31.05 Stem G. senegalensis (LR within river channel and near stream NB) -48.00 0.50 -4.40 0.00 

G1 -23.66 31.05 Stem G. senegalensis (LR near stream SB) -9.00 0.10 0.90 0.00 

A2 -23.66 31.05 Stem G. senegalensis (LR within river channel and near stream NB) -20.00 0.20 -0.90 0.00 

3 23.67 31.02 Stem D. mespiliformis on Northern Bank, near Malisa's Farm -41.00 0.10 -4.40 0.00 

C1 -23.67 31.02 Stem D. mespiliformis (LF near stream NB) -8.00 0.70 -1.70 0.10 

E3 -23.68 31.00 Stem D. mespiliformis (LF near stream NB) -24.00 0.20 -3.20 0.10 

28 -23.67 31.02 Stem D. mespiliformis (LF near stream NB) -28.00 3.20 -3.80 0.10 

B4 -23.66 31.05 Stem D. mespiliformis (LR near stream NB) -27.00 0.10 -3.70 0.10 

20 -23.66 31.05 Stem D. mespiliformis (LR near stream NB) -22.00 2.70 -2.30 0.10 

F3 -23.66 31.05 Stem D. mespiliformis (LR near stream SB) -21.00 0.00 1.00 0.10 

A3 -23.66 31.05 Stem D. mespiliformis (LR within river channel and near stream NB) -21.00 0.60 -2.70 0.10 

3 -23.66 31.05 Stem D. mespiliformis (LR within river channel and near stream NB) -14.00 0.30 -1.00 0.10 

21 23.66 31.05 Stem D. mespiliformis on Northern Bank, near Letaba Ranch weir -61.00 0.20 -5.40 0.00 

B3 -23.66 31.05 Stem C. mopane (LR near stream NB) -26.00 0.10 -3.20 0.10 

19 -23.66 31.05 Stem C. mopane (LR near stream NB) -39.00 0.40 -5.00 0.10 

18 23.66 31.05 Stem C. mopane on Northern Bank, near Letaba Ranch weir -55.00 0.40 -4.10 0.10 
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Figure B1 An example of the script (adapted from  https://cran.r-project.org/web/packages/simmr/vignettes/simmr.html) used in the R studio 

statistical software package to estimate the proportional contribution of sources to ET 

https://cran.r-project.org/web/packages/simmr/vignettes/simmr.html
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Figure B2 An example of the different water sources plotted within the dual stable isotope space 
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Figure B3 An example of a successful model run in Simmr 
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APPENDIX C: LYSIMETER AND GROUNDWATER PIEZOMETRIC DATA 

Measurements of soil water evaporation during August, September and October were derived 

from data collected in-situ, using micro-lysimeters. *Information relating to these 

measurements are provided in Tables C1 and C2. Borehole drilling information and hydraulic 

characteristics relating to the paired piezometric borehole network drilled into the deep 

fractured hard rock and shallow weathered material is provided in Tables C3 and C4.  

Table C1 Micro-Lysimeter dimensions  

 
Outer Sleeve Inner Sleeve 

Thickness 2 mm 2 mm 

Internal Diameter 80 mm 50 mm 

Depth 145 mm 50 mm 

  

 Table C2 An example of micro-lysimeter measurements collected during a field sampling 

campaign  

Mass of Samples (g) 

  Bank nearest Letaba Farm Inner Channel Far end of Channel 

Time Lys 1 Lys 2 Lys 3 Lys 4 Lys 5 Lys 6 

08:00 AM 340.28 347.52 398.64    

09:00 AM 340.010 347.300 398.480 387.420 395.310 420.010 

10:00 AM 338.980 346.430 397.540 386.750 394.720 419.050 

11:00 AM 337.140 344.980 396.120 385.680 393.820 418.020 

12:00 PM 335.360 343.480 394.720 384.570 392.870 417.090 

01:00 PM 333.190 341.710 393.060 383.220 391.810 415.800 

02:00 PM 331.540 340.320 391.680 381.830 390.800 414.600 

03:00 PM 329.940 339.040 390.420 380.430 390.000 413.350 

04:00 PM 328.680 338.030 389.440 379.140 389.220 412.110 

 

                                                 

 

* Lysimeter measurements were generally conducted from 8:00 am to 4:00pm due to the remote locality of the study area and the requirement of a game-guard during sampling. 

Consequently, this limited the amount of time that could be spent in the field to obtain measurements. 
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Table C3 *Borehole drilling information.  

 

*The naming convention for these boreholes are given as follows; Letaba Farms (LF), Letaba Ranch (LR) and Letaba River Water (within active 

river channel, LRW). These names are then followed by a number (eg. 01 or 001), where more than two numerals imply that the borehole was 

drilled away from the riparian zone and an alphabet (A or B) is used to identify deep and shallow boreholes, respectively (Riddell et al., 2017). 

LF002A Mabunda/Baloi -23.674299259 31.005508751 332.816 60 6 0.51 08/10/2015 11.51 11 1

LF002 B Mabunda/Baloi -23.674297937 31.005498881 332.966 15 6 0.58 10/09/2015 11.78 11 0.4 864

LF0021 Mabunda/Baloi in river -23.674764519 31.004662622 329.940 24 6 0.63 01/11/2015 8.26

LF003 A Maliesa's Farm -23.669515034 31.016633354 332.840 72 36 0.7 25/05/2015 10.97 15 0.3 1740

LF003 B Maliesa's Farm -23.669519698 31.016568496 328.683 20 14 0.8 01/06/2015 10.76 12 <0.5 1446

LF003C Maliesa's Farm -23.669494574 31.016672592 333.985 Dry

LF0031 A Maliesa's Farm -23.667002914 31.016215720 333.183 60 24 0.22 25/05/2015 12.95 21 3 1518

LF0031 B Maliesa's Farm -23.667069700 31.016260718 335.904 20 6 0.255 26/06/2015 12.68 19 1 2535

LF004 A Abram's Farm -23.677412130 31.005063317 337.243 72 24 0.43 22/10/2015 13.385 25 0.5 3413

LF004 B Abram's Farm -23.677413088 31.005053265 338.883 15 10 0.46 23/10/2015 13.39 12 0.5 3996.00

LF005 A Bongele,s Farm -23.671245070 31.017841574 328.391 72 30 0.29 04/06/2015 12.33 32 0.5 2800

LF005 B Bongele,s Farm -23.671308501 31.017884338 330.151 42 6 0.305 09/06/2015 12.15 13 <0.5 3354

LF005 C Bongele,s Farm -23.671222963 31.017831282 332.179 18 6 0.345 14/07/2015 10.97 13 0.5 3074

LF0051 A Bongele,s Farm -23.673002919 31.018831950 328.978 54 36 0.54 11/06/2015 14.29 25/40 1.5 1446

LF0051 B Bongele,s Farm -23.673047435 31.018857310 327.363 30 6 0.36 25/06/2015 14.26 16 1 1393

LR001 A Mthimkhulu  -23.661769123 31.046823055 328.039 60 30 0.46 03/09/2015 10.35 10 0.5 5600 - 7000

LR001 B Mthimkhulu  -23.661764275 31.046805745 330.826 12 6 0.355 08/09/2015 11.93 10 >10 000

LR0011 A Mthimkhulu  -23.662934730 31.045922747 324.700 72 24 0.3 14/09/2015 10.3 10 0.1 >10 200

LR0011 B Mthimkhulu  -23.662913645 31.045961774 331.089 10 6 0.315 15/09/2015 10.15 10 11 100

LR002 A Mthimkhulu  -23.666323042 31.040506466 330.907 42 24 0.43 28/09/2015 10.59 25 0.5 2478.00

LR002 B Mthimkhulu  -23.666330049 31.040511463 329.536 10 6 DRY 01/10/2015

LR003 Mthimkhulu. Tercias BH -23.661232653 31.047126602 326.855 10 4 0.355 26/09/2015 Initially dry 0 0 5595

LR004 A Letaba Ranch -23.669463099 31.042411630 327.109 54 30 0.57 02/12/2015

LR004 B Letaba Ranch -23.669447874 31.042414074 326.388 24 0 0.505 03/12/2015

LR005 A Letaba Ranch -23.662268314 31.049551881 327.444 60 42 0.265 09/07/2015 8.95 25/38/50 5.7 1740

LR005 B Letaba Ranch -23.662269810 31.049502905 328.971 24 6 0.56 13/07/2015 8.94 19 1.8 1580

LRW001 Mthimkhulu in river -23.659273246 31.048663193 316.063 12 0 0.35 26/11/2015 1.23 5 0.2

LRW002 Mthimkhulu in river -23.659964290 31.048604409 317.902 6 0 0.52 30/11/2015 1 4 0.2

LR006 Mthimkhulu Near camp 75 0 24/11/2015

Initial Water 

Level (m) Strike (m)

Blow Out 

yield (l/s)Site Name EC (uS/cm)

Fa
rm

s
re

se
rv

e
s

Date 

completed

Casing height 

(m)

Solid Casing Depth 

(m)Depth (m)Altitude (m)LongitudeLatitudeSite Description
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Table C4 Hydraulic characteristics of the boreholes within the study site (adapted from 

Riddell et al., 2017) 

   Section Length (m) T (m2 d-1) Hydraulic Gradient Loss to Aquifer (m3 d-1) 

D
ee

p
 B

o
re

h
o

le
 D

a
ta

 (
A

) 

F
a

rm
s 

LF002 2200.00 0.08 0.00 -0.70 

LF003 2180.00 0.05 0.02 2.18 

LF004 2200.00 0.87 0.01 15.31 

LF005 2180.00 1.18 -0.06 -141.48 

Total     -124.69 

R
es

er
v

es
 LR001 880.00 0.98 0.01 5.17 

LR002 1580.00 0.16 0.01 2.69 

LR004 1580.00 0.68 -0.01 -11.82 

LR005 880.00 3.83 0.01 26.96 

Total     23.01 

S
h

a
ll

o
w

 B
o

re
h

o
le

 D
a

ta
 (

B
) 

F
a

rm
s 

LF002 2200.00 18.00 0.00 -118.80 

LF003 2180.00 1.00 -0.04 -89.38 

LF004 2200.00 0.67 0.02 26.46 

LF005 2180.00 0.06 -0.03 -4.05 

Total     -185.76 

R
es

er
v

es
 LR001 880.00 0.98 0.02 20.70 

LR002 1580.00 0.16 0.02 3.67 

LR004 1580.00 2.04 -0.02 -51.57 

LR005 880.00 3.83 0.02 60.67 

Total     33.47 

     Net Gain/Loss -253.98 
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APPENDIX D: MAHALE AND LETABA RANCH WEIRS 

 

 

Figure D1 An illustration of the gauging weirs used in this study, with Mahale weir on the left 

and Letaba Ranch weir on the right (Riddell et al., 2017) 

 

Figure D2 An illustration of the Solinst Level Logger installed at the Mahale weir to record 

streamflow head, which was installed on 22 April 2015 (Riddell et al., 2017)  

 


