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ABSTRACT

The reduced fresh water input into the St Lucia Estuary combined with the increase

of sediment in the St Lucia Lake System has necessitated the implementation of a

dredging programme. To ensure the effectiveness of the dredging programme, the

behaviour of the sediment under various flow and tidal conditions needs to be

determined.

To establish how sediment will move, it is necessary to understand the hydrodynamics

of the estuary. To achieve this, a hydrodynamic model which can be linked to a

sediment transport model needs to be developed. Various existing types of

hydrodynamic and sediment transport models are reviewed, to determine their

suitability for the above purpose. Results of the analysis indicate that a two­

dimensional hydrodynamic model is required.

The two-dimensional hydrodynamic model developed is based on the momentum and

continuity equations for an unsteady, non-uniform, free-surface flow for an

incompressible fluid. The two dimensions are in the horizontal plane and flow is

averaged over the depth. The equations are non-linear and are not decoupled, thus

a numerical technique was needed to solve them. An Alternating Direction Implicit

technique has been used. Boundary conditions in the modelled region were specified

as flow velocity at the upstream boundary, and water levels, relative to the Mean

Lake Level, at the downstream boundary.

Two short simulations using hypothetical data were run on a 80826 IBM compatible.

Results of the simulation indicate two areas where irregularities in the model output

are a consequence of the use of hypothetical data in defining the boundary conditions.

Recommendations for the collection of data in order to improve and calibrate the

model are discussed.
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CHAPTER 1

INTRODUCTION

Decisions that have far reaching economical and environmental implications can

·seldom be made on the basis of intuition alone. This is the problem faced by the

Natal Parks Board (NPB), regarding the management of the St Lucia Estuary Mouth.

The physical properties of the estuary have been noted since 1918 (Hutchison, 1976)

and the impact of changes in the hydrology, topography, meteorology and ecology of

the drainage basin have been recorded. These changes can be due to either natural

phenomena, for example the floods following cyclone Demonia in 1984; or man's

interference such as the separation of the St Lucia and Mfolozi River Mouths which

reduced the freshwater input into the St Lucia Lake system. At present these records

exist in the form of several scientific papers and aerial photographs. In more recent

years NBP personnel have monitored such variables as water levels, salinities and flow

discharges. However as the pressures on the estuary increase due to :

(1) its expansion as a recreational resort;

(2) the deterioration of the catchment resulting from poor farming

techniques;

(3) the greater demands on water resources and the increased pollution as

the town of St Lucia grows;

a more detailed and scientific management approach IS required making use of

regular monitoring of the predominant variables.

This need for a scientific approach was identified and thus a Joint Venture

Programme between the Foundation for Research and Development, the Department

of Water Affairs, the Department of Environment Affairs, Portnet and the Natal

Provincial Administration, was established to look at the Estuary-Coastal Lake
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Systems. The objectives outlined in the research programme were to get a better

understanding of how the abiotic and biotic components of and estuary affect the

mouth dynamics, and consequently how estuaries should be managed, monitored and

utilised.

Some of the questions that arose in the Joint Venture Programme relating to the

abiotic components of an estuary were: how fluvial and tidal flushing affect an

estuary; what are the consequences of artificially changing river courses; and which

options of bank stabilisation are suitable for specific estuaries. To partially answer

these questions a hydrodynamic model for estuarine systems needs to be developed.

The aim of this study is to look at the hydrodynamics of estuarine systems, with

particular emphasis on the St Lucia estuary system, noting previous observations and

studies, and to express the physical processes in a mathematical model. At this stage

insufficient data is available for the St Lucia estuary to calibrate a model and to get

accurate results. The model will thus only used hypothetical data. Ultimately,

although not in this study, the aim is to integrate the fluid dynamic model with a

sediment transport model. At this stage several sediment transport models will be

reviewed and the constraints under which they operate will be borne in mind when

developing the hydrodynamic model.

The purpose of a model is not to describe complex physical processes accurately, but

to rather to simplify them so that the relationships between the major influencing

factors can be determined. From these relationships predictions can be made as to

how the physical processes will behave when these factors are altered. To include all

the factors influencing the hydrodynamics of an estuarine system would make a model

extremely complex and too cumbersome to computerise. To simplify the process the

effects of several variables were assumed to be negligible and these variables were

omitted from the model. This process also enhanced computerisation.
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To decide which type of hydrodynamic model should be used the flow within an

estuary must be examined.

Firstly, looking at a river one can see that the water flows predominantly in the

direction parallel to the river banks but secondary movement also occurs across the

breadth and depth of a river. In an estuary, flow patterns are similar to a river.

However the flow direction is periodically reversed due to the changing tides. The

flow is thus 3-dimensional.

Secondly, due to the fact that the flow in an estuary depends on time variable

phenomena such as the tides, the amount of rainfall, the wind velocity, and the depth

and gradient of the channel, the t10w is continually changing. Hydrodynamically this

type of flow is termed unsteady.

Thirdly, due to changes in the channel geometry the fluid motion varies according to

where it is being observed. This change in flow between different spatia! locations

is termed non-uniform.

Fourthly, water in an estuary is confined by the bed and the banks and the surface

is free to rise or fall. In other words flow occurs under a free-surface.

Finally, water is assumed to be incompressible.

Thus the hydrodynamics of an estuary can be described by setting up 3-dimensional,

unsteady, non-uniform, free-surface flow equations for an incompr~ssible fluid.

The hydrodynamic equations are expressed as partial differential equations (PDEs),

as fluid motion exists in the continuum of space and the continuum of time.

However, the exact solution of these equations is often impossible due to their non­

linearity and complexity. To overcome this problem the equations defining the fluid

behaviour must be written in discrete terms. This is done by describing the

continuous motion by a finite sequence of numbers, which describe the flow at
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different spatial locations, and these are transformed by a set of operations to

simulate the change in flow as time progresses. There are several numerical methods

that can be used to solve these equations: finite difference methods; finite element

methods; and the method of characteristics to name but a few. These methods can

be further classified into implicit and explicit methods of solution. Each technique

will be briefly discussed in Chapter 5.

The steps taken in this thesis to develop a hydrodynamical model based on the St

Lucia Estuary Mouth were as follows:

(1) review existing sediment transport models in order to formulate a set

of guide lines when developing a hydrodynamical model;

(2) review one-dimensional models which have been previously applied to

the St Lucia Estuary Mouth;

(3) derive a system of equations which will describe the hydrodynamics of

the estuary, taking boundary and initial conditions into account;

(4) determine which numerical method is best suited to the solution of the

hydrodynamic equations while taking into consideration the computer

facilities available;

(5) develop a computer program based on the above solution technique

using hypothetical data;

(6) note the results of the model using hypothetical data and discuss its

shortfalls and recommend further modifications so that the model may

become an integral tool for management decision making.
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CHAPTER 2

SEDIMENT TRANSPORT

2.1 NOTATION

d grain diameter of uniform sand mm

D grain diameter of uniform sand m

D so grain diameter of bed material for

which 50% of the grains have a smaller

diameter m

k inverse of Manning coefficient m1l3.s-l

qbv transport rate by volume of the bed

load per unit width m2.s-l.

qbw transport rate by weight of the bed

load per unit width kg.m-l.s-l

w terminal velocity of a grain in water m.s-l

y specific weight of a grain in water N.m-3

'to shear stress exerted by the flow on

the bed N.m-2

't c critical shear stress required to

initiate sediment movement N.m-2

2.2 INTRODUCfION TO SEDIMENT TRANSPORT

Sediment transport in fluvial environments is a component of the broad discipline of

Physical Sedimentology. Physical Sedimentology is about: (1) the interplay that occurs

within the Earth's natural environments between solid transportable particles and

transporting (or potentially transporting) fluids; and (2) the sedimentary consequences

of that interplay (AlIen, 1985).
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The fluvial environment is an integral part of man's existence. Since the development

of early civilizations along rivers such as the Yellow River in China, the Nile River

in Egypt and the Tigris-Euphrates in Iraq, until present day, man has relied on rivers

for fresh water, irrigation, transportation and as an energy source. A river is

characterised by the geology, hydrology, topography, hydraulics and ecology of its

drainage basin. The dependence of man on rivers has necessitated the study of the

influence of these factors on river systems. Changes in these factors may be either

due to natural phenomena or due to human interference.

An example of the effect of changes on a river system can be seen at St Lucia

Estuary Mouth. In the last 50 years poor farming techniques have increased erosion

in the catchment resulting in increased siltation of the estuary mouth region. This

illustrates the consequences of mans' interference: the scouring of the estuary mouth

by the September 1987 floods is a good example of the effects of a change due to a

natural event.

The histories of hydraulic and sediment engineering are well documented in Simons

and Senturk (1976). A brief summary of the major contributions is given here. The

earliest records of hydraulic engineering are from about 4000 B.C. when Yu

constructed several dikes to protect the fertile plains of China from floods. At about

the same time King Menes of Egypt had a dam constructed on the Nile River as part

of an irrigation scheme. The first reference to sediment transport is attributed to

Hippocrates, 400 BC, who separated sediment particles into size fractions based on

settling velocities. The Greek and the Romans were notable hydraulic engineers but

neglected to develop sediment transport and river hydrology theory. From this

period until the Renaissance progress in these fields was slow and sporadic.

Leonardo Da Vinci (1452-1519) observed sediment movement in flume experiments

and related bed material to the type of water motion. Guglielmini (1655-1710)

published the first book on sediment engineering "Della Natura de Fiumi", which is

based on field observations. During the Eighteenth century several notable advances

occurred. Dubuat (1734-1809) wrote "Principe d'Hydraulique". In this he noted: the
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velocities necessary to move rock particles of various sizes; the formation and

migration of sand waves; and the armouring effects by coarser fractions of the bed

load. Chezy (1718-1798) devised the uniform flow formula used to estimate the

average flow velocity in an open channel which is dependent on slope, hydraulic

radius and a resistance factor which reflects the boundary conditions. This equation

is still in wide use today.

The development of sediment transport technology during the eighteenth century was

greatly enhanced by the contributions of the following mathematicians and physicists;

Bernoulli, Euler, Laplace, Lagrange and Gauss. This trend continued into the

nineteenth century when several flow equations were developed by the likes of

Navier, Froude, Barre de Saint Venant, Manning, Stokes, Reynolds and Boussinesq.

The first explanation for sediment transportation by suspension was given by Dupuit

in 1848, who ascribed this phenomenon to the greater flow velocity above the particle

as opposed to below. In 1871 Partiot observed saltation and noted that most

sediment is transported as bed load except in areas of great turbulence. Du Boys in

1879 was the first to formulate a sediment transport equation for the bed load. He

described a tractive force and determined a critical value for each kind of material

based on size. He derived his equation on the assumption that only once the tractive

force exceeded the critical value could sediment transport occur. He also stated that

the amount of sediment transported was influenced primarily by slope and secondly

by flow depth.

Since Du Boys work numerous transport equations for both suspended and bed load

sediment have been developed. These equations can be classified by the way in

which they were derived. Some of the different types of derivations for bed load

transport equations are based on:

(1) excess tractive force, ego Duboys (1879);

(2) probabilistic theory, ego Einstein (1942);
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(3) empirical data, ego Meyer-Peter and Muller (1948);

(4) non-fluctuating time averaging techniques, ego Yalin (1963);

(5) stream energy considerations, ego Bagnold (1966).

Each of the above types of equation and their inherent assumptions will be discussed.

Then, by looking at the properties of St Lucia Estuary Mouth, a recommendation will

be made for the selection of a particular bed load sediment transport equation best

suited to the study area.

It is important to note that all the sediment transport models were derived for the

idealised conditions of steady uniform flow and for cohesionless sediment particles.

Recently attempts have been made to model sediment transport for more realistic

conditions, for example: "Unsteady Sediment Transport Modelling", by D.A. Lyn

(1987); and "Sediment Transport in Oscillatory Flow over Flat Beds", by R.V. Ahilan

& J.F.A. Sealth (1987). These models are still in their infancy and thorough testing

is still required.
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2.3 DU BOYS' EQUATION

2.3.1 Symbols used by Du Boys

Cd characteristic sediment coefficient

C t a dimensionless frictional coefficient

d' thickness of sediment layer m

n

~u difference of velocity between

adjacent sediment layers

number of layers in motion

2.3.2 Derivation of Du Boys' Equation

m.s-1

The Du Boys type equation relates the sediment volume transport rate to the excess

shear stress, as follows:

Where A is a coefficient

(2.1)

dependent on sediment size.

In his derivation Du Boys

assumed that when the flow

velocity increased to such an

extent that the critical shear

stress required to initiate

sediment movement was

exceeded, a carpet of

sediment with a thickness of

one grain diameter started

moving. This movement then

induced motion in the layer

--_TO
Uo:(n-1)~U

n

5r-L....~~~~~~~~~
4~_~~~~~~~~@~~~~~
3

1
~~~~~~~~~~~~~~~~

O~~~~~~~W2~~~~~

Figure 2.1 DuBoys' model of bed-load transport
(DuBoys 1879 in Simons & Senturk, 1976)
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of grains directly below it. This process of inducing motion In the layer below

continued until the tractive force of the flow was balanced by the frictional force

between the successive layers. Du Boys assumed that the layers have the same

thickness d' and the mean velocity of the successive layers decreased linearly down

to the stationary layer. If the velocity decrement between two adjacent layers is given

by au and the nth layer is stationary, as seen in figure (2.1), then the volume transport

rate of the bed load per unit width is given by the product of the average velocity (n •

1)An/2 and the total thickness od', that is,

(2.2)

The shear stress exerted by the flow on the bed, 1:0, is balanced by the frictional

forces between the successive layers, thus,

(2.3)

where er is a dimensionless frictional coefficient.

The critical shear stress required to initiate motion occurs when the top layer is about

to start moving or in other words when 0 = 1. Thus,

(2.4)

or,

(2.5)
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Substituting this expression back into equation (2.2), gives Du Boys bed load transport

equation:

qbv=Cd'to( 't 0 -'tc) (2.6)

Where Cd is the characteristic sediment coefficient. According to Vanoni (1977),

Straub carried out a series of experiments using a small laboratory flume with a sand

bed to determine expressions for Cd and 'te• In metric units they are as follows,

'tc =0.061 +0.093d

(2.7)

(2.8)

Although the concept of critical shear stress has become a fundamental part of

sedimentology, the actual mechanical process of sediment transport described by Du

Boys has since been shown to be incorrect. According to Yalin (1972), it was Krey

in 1910 who first observed that only the grains on the bed surface can be brought

into motion by the flow. The 'carpet like' movement has also been shown to be

inaccurate. If the shear stress exceeds the critical shear stress the grains advance

either in a series of small jumps, this process is known as saltation, or less commonly

by rolling. A small proportion of the larger grains may slide. If the shear stress

continues to increase further and exceeds a second critical value only a part of the

sediment is transported as bed load the remainder is transported in suspension.
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2.4 EINSTEIN'S EQUATION

2.4.1 Symbols used by Einstein

A.

B.

L

universal constant formed by combining

all the ai'S defined in Einsteins

derivation, i E {l;b;L;t;w}

universal constant

saltation length

probability of n saltations in time T

time of grain

hiding factor

universal constant

dimensionless sediment transport rate

of H. A. Einstein

unit area

m

s

2.4.2 Derivation of Einstein's Equation

Einstein used an approach which deviated from the conventional wisdom at the time.

He avoided the critical flow criterion for the initiation of sediment movement due to

the fact that after interpreting the results of his and several other scientists

experiments, no distinct critical value could be established. He also attributed bed

load transport to turbulent fluctuations rather than the average values of the forces

that the flow exerts on the sediment particles. This second assumption was justified

with the following logic: if the sediment transport rate is a function of the average

flow velocity alone, then once the flow velocity is increased to such a rate that the

first particle starts moving, the force acting on all similar particles will start moving

these too. If the bed consists of uniform particles, they would all start moving

simultaneously, they would be unable to settle and the sediment transport rate would

be determined by the availability of particles only. From experimental evidence this

hypothesis is incorrect. He thus approached the problem from a statistical view point
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by introducing a probability function which related the insta.ntaneous hydrodynamic

lift forces and the particles submerged weight. Using this function his sediment

transport equations do not show a sudden discontinuity at the critical shear stress

level. In a series of experiments Einstein (1942), noted the following about the

relationship between the bed material and the bed load:

(1) a steady exchange between the particles of bed material and the bed

load occurs;

(2) particles are transported in a series of steps, the average step length

being proportional to the particle size, and do not stay constantly in

motion but are deposited after a few steps:

(3) the rate of deposition depends on: (a) the transport rate past a given

point; and (b) the probability that the hydrodynamic lift forces are such

that the particles may be deposited.

(4) the rate of erosion depends on: (a) the number and properties of the

particles; and (b) the probability that the instantaneous hydrodynamic

lift forces are large enough to move the particles.

Using the above assumptions Einstein's equations can be derived as follows:

Note that when deriving the equations identical grains are assumed, the

procedure may also be used for a mixed bed by replacing the uniform grain

characteristics with the average grain characteristics.

Consider an area a on the channel bed which is large in comparison to the grain area

(ltD2 and a time interval T which is large compared to the average duration of a

grain's jump. Let Pn be the probability of a grain having n detachments in a time T.

Each detachment means the grain undergoing an average jump of length L. Note

that in Einstein's original paper, "Formulas for the Transportation of Bed Load",
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(1942) he specified P, instead of Pn, where P is just the probability of a detachment.

The more complex statistical approach of Pn was presented in his paper, "The Bed

Load Function for Sediment Transport in Open Channel Flow", (1950). The later

approach will be used here.

From the above the number of grains from an area C, which are displaced by a

distance of at least nL, during the time interval T can be given as,

(2.9)

Let C have unit width and a length equal to an average jump length L, that is, C =
\

L.1 ,see figure (2.2).

I

I
flow

--~oo'----L--~

Figure 2.2 Einstein's model of bed load transport (After Yalin, 1972)

The number of grains passing through a point section I-I will thus be,

(2.10)
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Dividing the above expression by T gives the number of grains passing through the

section per unit time. Then multiplying this by the volume uD3 of the individual

grains gives an expression for the sediment discharge rate by volume at the section

I-I. This is converted to a sediment discharge rate by weight by multiplying by the

specific weight of the grains in water y S.

(2.11)

As mentioned earlier Einstein assumed that the jump length is proportional to the

size of the grain D, thus,

L-a. D- L (2.12)

Another assumption of his was that T is proportional to the 'time of the grain', or in

other words the time a particle requires to settle, a distance equal to its own

diameter, in water. The reason for choosing this time was that it is the only

expression with dimensions of time, which is representative for the behaviour of the

particle in a liquid, without including any flow characteristiccs. Thus T can be

expressed as follows,

DT=a-t
w

(2.13)
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The terminal velocity w can obtained using the equation for settling velocity derived

by Rubey (1933), which is,

(2.14)

where Ub Ut and U w are regarded as constants. Combining all the proportionality

constants to give A. and forming the dimensionless sediment discharge rate 4>

equation (2.11) becomes,

(2.15)

where A. and 4> are as follows,

Now using probability theory Einstein stated that,

~Pn=~P1n
n=1 n=1

(2.16)

(2.17)

(2.18)
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and since P 1 < 1, the sum on the right hand side converges to the limit,

(2.19)

The events 'at least one detachment' and 'no detachments' are complementary, or in

other words P 1 = 1 • Po. The probability of no detachments can be expressed as a

function of "P. The variable "P which is introduced is just the inverse of the sediment

mobility number. The sediment mobility number relates the lift forces on a grain to

the submerged grain weight. Thus an increase of 1f implies a greater probability of

'no detachments'. Using this and fitting the probability of 'no detachments' to a

normal distribution curve Einstein arrived at his bed load transport equation,

(2.20)

Where Einstein stated that A. , B. and 1'10 are universal constants, (a statement which

was later shown to be incorrect by Yalin (1972)). A derivation of equation (2.20),

including expressions of B., ~ and 1'10, is given in Einstein (1942). In Einstein's (1950)

work, he introduced a more sophisticated probability function which allowed for the

incorporation of different sediment particle sizes. To do this a factor <: was

introduced into the expression of "P. The factor <: is known as the hiding factor. This

allows for the correction of the lift force which is required when smaller grains 'hide'

between the other grains. Obviously for uniform sediment as was used in the above

derivation <: = 1. Fitting this theory to experimental data Einstein drew up the

'~ • "P' curve, see figure (2.3).
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2.5. MEYER-PETER & MULLER'S EQUATION

2.5.1 Symbols used by Meyer-Peter and Muller

q

S'

k'

flow rate of Meyer-Peter

bed load transport rate of Meyer­

Peter

part of slope required to overcome

the grain resistance

grain roughness

Ib.ft-1.s-1

Ib.ft-1.S-1

2.5.2 Derivation of Meyer-Peter & Muller's Equation

Meyer-Peter had carried out a series of experiments on well- sorted, coarse grained

sediments in flumes with varying width and flow depth. According to the ASCE Task

Committee (1971), from the results he developed the empirical formula,

(2.21)

This equation being valid only for the foot-pound-second system of units. Noting that

the coarse sediments used did

not produce rugged bedforms, this equation should only be used in flow where

resistance due to bedforms constitutes a small part of the total resistance.

After further experiments with a greater range of sediment type, grain size, flume

width and flow depth, a more sophisticated sediment transport equation was put

forward by Meyer-Peter & Muller. This equation relates the bedload discharge to the

difference between the effective shear and the critical shear. The equation has the

improvement of being dimensionally homogeneous thus it is applicable to any

consistent set of units.
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The equation IS adapted to include graded sediments by defining an effective

diameter Dm ,

i =...
D =~p.d.m ••

i=O

(2.22)

Where d t is the grain diameter for the jtb fraction of the total bed load and constitutes

Pt of the total bed load weight. The sediment transport equation is,

(2.23)

The quantities k and k' are the reciprocals of the Manning roughness coefficient, that

IS,

(2.24)

(2.25)

where S' is the part of the total slope, S, required to overcome the grain resistance.

k' can be obtained from Strickler's formula for grain roughness,
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k/ = 26
(D

90
) 1/8

(2.26)

D90 is the grain size of the bed material for which 90% of the grains are smaller.

The advantage of this later formula over the Meyer-Peter formula is that it can be

used for graded sediments which give rise to bed forms. The experiments had no

appreciable amounts of suspended sediment and thus the equation should only be

used as a bed load formula.
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2.6 YALIN'S EQUATION

2.6.1 Symbols used by Yalin

a function of Z and Yer

Cx.m the horizontal component of the mean

grain velocity during a saltation m.s-1

qb' dimensionless sediment transport rate

s dimensionless excess shear stress

W dimensionless flow depth

X grain size Reynolds number

Y mobility number

Z density ratio of solid and fluid phases

~ dimensionless flow velocity

E sublayer to which grain motion is

confined m

eAC dimensionless duration of the grain

motion from A to C

a dimensionless distance of the grain

motion from A to C

inverse of the grain mobility number

Y, which is a dimensionless variable

2.6.2 Derivation of Yalin's Equation

Before proceeding to discuss Yalin's equations the concept of dimensionless variables

and the Shields' curve must be introduced. Consider steady, uniform, two­

dimensional flow with a free surface of a cohesionless moveable bed. The two-phase

motion, or in other words the motion of the fluid and bed material, can be defined

by the seven parameters 0, P, Ps, D, d, Sand g. Sand g can be substituted with the

combinations Ys = (Ps· p)g and v. = J(gSd). Hence any mechanical quantity, ego qb

or the bed load discharge, of the two-phase motion can be expressed as a function
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of the seven characteristic parameters. Since this functional relation qb is

independent of the choice of units of measure, it can be expressed in a dimensionless

form qb' which is a function of the dimensionless variables W, X, Y, and Z. These

dimensionless variables are,

dW=-
D

Dv.
X=­

v

z=2..
Ps

(2.27)

(2.28)

(2.29)

(2.30)

The advantage of this approach is that these four dimensionless variables reflect the

influences of the individual parameters d, u, ys and Ps respectively. The variables X

and Y are more commonly known as the grain-size Reynolds number, which relates

the inertial forces of the grain to the viscous forces 9f the fluid, and the mobility

number, which relates the lift forces to the submerged weight of a particle,

respectively. In 1936 Shields, according to Yalin (1963), attempted to plot

experimental values of Ycr against Xcr to produce a curve determining the initiation

of sediment movement. The subscript 'er' indicating the critical value at which

sediment movement commences. He obtained a curve, see figure (2.4), which is still

used in engineering applications today.
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Figure 2.4 Shield's diagram for InIcIpent motIon. (ShIelds, 1936 In Chung, 1988)
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Yalin derived a bed load transport equation for steady, uniform flow of a viscous fluid

over a cohesionless moveable bed with uniform sediment particles. He assumed the

flow to be turbulent with a laminar sublayer having a thickness less than the bed

roughness. He also assumed that the particles are brought into motion once the

tractive forces exerted on the particle exceed a critical value, and that when in motion

the particles advance by saltation.

Yalin (1963), noted that although Einstein's bed load transport equation correlated

well to experimental results in the range 0 < et> < 1, it deviated from the experimental

points for et> > 1. Yalin attributed this downfall in the equation to the assumptions

made by Einstein. Firstly, Yalin stated that the omission of a critical tractive force

disregarded the whole concept of the Shields' curve. The Shields' curve indicates

experimentally that a critical tractive force exists and also shows how it responds to

changes in the grain-size Reynolds number. Secondly, Yalin accepted that the lift

forces experienced by individual grains are unequal. However, he attributed this

inequality to the sediment particle arrangement as opposed to turbulent fluctuations
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suggested by Einstein. Yalin shows this in figure (2.5), where it can be seen if all of

the sediment grains are organised in a geometrically perfect sense, the lift forces

exerted on each grain would be identical, but this perfection is unrealistic in nature.

Yalin (1963) claimed that Einstein's

assumptions are, in a sense, contradictory. He

noted: (i) that flow passes through a laminar

range prior to becoming turbulent; (ii) that if

the critical tractive force does not exist, grain

motion can begin immediately after zero

velocity. Yalin said that the source of sufficient

lift force can not be turbulent fluctuation. On

the contrary, if grains are lifted because of

turbulent fluctuation, then grain movement

cannot begin with the start of flow.

Figure 2.5 Inequalities of lift forces
due to imperfect packing. (Yalin,
1972)

Although Yalin raises and criticises these relevant points Einstein's work still has

merit for two reasons. Firstly, Einstein fits the probability of no detachments to a

normal distribution curve, thus the mean value of 11 can be interpreted as a 'critical'

value of 11 at which sediment movement is likely to commence. The reason for no

sharp discontinuity at this point is that for the values of 11 greater than the mean, that

is where no motion is likely to occur, turbulence may cause variations in 11 which

decrease the local value of 11 to the mean or 'critical' value. Similarly, for values of

11 less than the mean, a turbulent fluctuation might increase the value of 11 to the

mean value, thus increasing the likelihood of sediment movement. Thus Einstein is

not stating that grains begin moving with the commencement of flow. He is implying

that in turbulent flow the mean flow velocity may be a lot less than the critical

velocity but turbulent fluctuation may cause local flow to be greater than the critical

flow.
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Secondly, Yalin assumes turbulent flow having a laminar sublayer with a thickness less

than the bed roughness. Grains will therefore protrude into the turbulent layer and

will be exposed to fluctuations resulting from turbulence. Thus his assumption that

inequalities in lift forces are only due to grain organisation is incorrect. The complete

picture for varying lift forces would thus be best described by turbulent fluctuation,

uneven grain organisation and other factors not discussed here, for example, the

macro bed topography.

Yalin derived his equations from the dimensionless variable approach. He broke

down the motion into two stages, namely, the initiation of motion and the dynamics

of the saltation, then determined which variables influenced each stage. He assumed

that the bed material consisted of uniform grains but due to accepting that the lift

forces are unequal he could not assume an identical saltation for all the grains. To

overcome this complication he used an 'average' lift force resulting in an 'average'

saltation. His derivation can thus be described as a non-fluctuating time-averaging

technique. The full derivation will not be given here but the underlying principles will

be explained.

As stated earlier qb' can be described by the variables W, X, Y and Z. At the bed the

shear stress, 'to = pv.2, does not vary with H, however the shear stress distribution,

't, is affected by H. If the grain motion is confined to a small sublayer, e, so that e/H

approaches 0, then 't can be assumed to be constant. Using this approximation, the

influence of H and thus W no longer affects qb'. Sediment transport can only

commence once the lift force at the bed, Lo, exceeds the grain's submerged weight,

G. The number of grains in motion, N, is thus a function of Lo and G. Since N is

dimensionless the above function must be in the form of the ratio of the two forces,

that is, LJG. This ratio can be equated to the ratio Y/Ycr, and sediment movement

only occurs when Y/Ycr > 1. Therefore N is in fact a function of s = Y/Ycr • 1.

Assuming that the number of grains lifted is directly proportional to the excess

tractive force, N =constant s. From the Shields' curve Vcr can be related to Xcr.

Thus the initiation of sediment motion varies with changes in X and Y.
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According to Bagnold (1960), the initial direction of a grain in motion is 'upwards',

(figure (2.6)), with a driving force of Lo • G • R", where R" is the resistance of the

fluid. During this upward motion in the region OA the grain receives its 'initial'

velocity for the remainder of the saltation described by ABC. Expressing the grain

motion as a differential equation and solving, gives the initial velocity.

C'

Figure 2.6 Path of a saltating grain. (Yalin,,1972)

In nature, the whole saltation of a grain occurs within the turbulent layer, therefore

the effect of 0 and thus X can be

neglected during the saltation. Bearing this in mind the equations of a particle in

motion for both the x and y directions can be set up with the previously obtained

velocity being used as an initial condition. From these the duration, height and mean

horizontal velocity, Cx,m, of the saltation can be determined.

The expression for Cx,m is given as,

1
Cxm=v. P[1--log(1 +0)]

, (J
(2.31)

where p = 10 and a = peAC which is the dimensionless expression of the distance

taken for a grain to move from A to C.
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The value of qb' is given by product of the number of grains in motion and the mean

horizontal velocity of the grains,

(2.32)

From experiments a = as where a is a function of Z and Ycr, and s is the

dimensionless excess of the shear stress. Thus Yalin's sediment transport equation

can be expressed as,

1
qb

l =constant s[1 --log{1 +as)]
as

(2.33)

where the value of the constant can only be determined experimentally. Using the

same data as that used by Einstein, Yalin obtained the value for the constant and

converting his qb' function into the 1f function of Einstein's compared the two sets of

results, see figure (2.7). Yalin's equation can be seen as a family of curves

orresponding to different grain diameters.
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2.7 BAGNOLD'S EQUATION

2.7.1 Symbols used by Bagnold

e transport efficiency

transport rate of solids by immersed

weight per unit width N.S-l

m mass of transported solids over unit

bed area kg

P stress transmitted from solid to

solid normal to the shear plane N

T stress transmitted from solid to

solid tangential to the shear plane N

U mean flow velocity m.s-1

V fall velocity of suspended solids m.s-1

tana coefficient of solid friction

e dimensionless shear stress

(] density of solids kg.m-3

't mean boundary shear stress N

Cl stream power per unit length of whole

stream W.m-1

stream power per unit boundary area W.m-1

Subscipts

b bed load

s suspended load

2.7.2 Derivation of Bagnold's Equation

Bagnold originally derived a bed load sediment transport formula based on energy

principles (1956). Bagnold enhanced this idea and in 1966 he published his paper"

An Approach to the Sediment Transport Problem from General Physics" (Bagnold,
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1966) in which he derived a total load sediment transport formula. Until now only

the bed load formulae of several authors have been discussed, however Bagnold's

total load equations will be examined as in his 1966 paper Bagnold simplified and

modified his original tentative conclusions.

Bagnold's total load expression relates the sediment transport rate to the expenditure

of power by the fluid flow. According to Bagnold (1966) previous sediment transport

studies tended to avoid energy considerations due to the obvious difficulty in

predicting precise energy states at any point within the flow. To avoid this problem,

Bagnold used a statistically steady flow; or in other words, a flow which is

representative of the average flow along a channel reach taking into consideration

irregularities in physical boundary conditions and consequent fluctuations in energy

states. Other specifications required for the total load formula to hold are: (i) that

there is an unlimited availability of transportable solids; and (ii) that the concentration

of solids in the liquid is such that the gravitational pull on the solids has no

appreciable effect on the tractive stress of the fluid.

Approaching sediment transport from the principles of general physics the following

factors need to be identified:

1. the type of motion;

2. how the motion is maintained;

3. how the magnitude of the maintaining forces and the sediment

transport rate are related.

Bagnold claimed that sediment transport is a two phase flow with successive layers

of sediment shearing over each other. This is much the same as the Du Boys-type

carpet movement. For a solid to shear it must undergo some dispersion (Reynolds,

1885) and thus an upward supporting stress is required below a shear plane. For

steady motion the upward supporting stress at any point must equal the immersed

weight of the solids above it. Bagnold stated that the upward supporting stress is

generated by momentum transfer either from solid to solid or from fluid to
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unsupported solid. He later used these two mechanisms to distinguish between bed

load (solid to solid) and suspended load (fluid to solid) sediment transport. The

maintenance of the upward supporting stress is attributed by Bagnold to the tractive

force of the fluid. Bagnold relied on the power equation to relate the magnitude of

the forces to the sediment transport rate,

rate of work = available power x efficiency (2.34)

The available power of a liquid per unit of channel length, Q, is the amount of kinetic

energy that is liberated as it descends a slope, S.

(1 =pgQS (2.35)

Thus the mean available power supply to the column of fluid over bed area, (a), is

therefore

o
(a) = =pgdSU =tU

flow width

where U is the mean flow velocity and t the mean boundary shear stress.

(2.36)

Bagnold calculated the work rate as two components; the separate work rates

associated with transporting the bed load and suspended load sediments

independently. Using principles of solid friction, he derived the equation for the bed

load work rate as the product of the transport rate of the immersed sediment ,ib, and

the coefficient of dynamic friction, TIP.
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Where ib is

(2.37)

and TIP is the ratio of the tangential shear stress required to initiate sediment motion

and the normal pressure. According to Bagnold (1956) the coefficient of dynamic

friction is of the same order as the coefficient of static friction, the latter being easily

measurable as tan«, where « is the angle of repose at which shearing commences.

Thus, using eb as the efficiency associated with bed load work rate, equation (2.34)

becomes

. web
l =--
b tana

(2.38)

When deriving the expression for the suspended load work rate Bagnold used the

logic that, although the sediment in suspension is falling with a mean velocity of V

relative to the fluid, the centre of mass of the sediment remains in suspension. From

this he deduced that the fluid must be lifting the sediments with the equivalent

velocity V. Noting that is is defined as

(2.39)

and that after bed load transport the available power left for suspended load

transport is 6>(1 • eb), equation (2.34) for suspended load becomes

(2.40)
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From equations (2.38) and (2.40) Bagnold gave a total transport rate for the

immersed sediment weight, i, where,

(2.41)

In the above equation eb' es, tanu and Us must be specified. Bagnold assumed that

Us is equivalent U, thus he had only to determine values for the remaining three

parameters.

To obtain a range of values for eb' Bagnold looked at the work done by the fluid on

the flow boundary. The flow boundary being a zone of finite thickness, at or within

which the shear stress of the fluid is reduced to zero by transfer to another medium.

A flow boundary might be in motion relative to the ground. Bagnold noted that if

the fluid shear stress is sufficiently large, the bed load increases to such an extent that

it becomes a moving carpet which occludes the stationary bed from the fluid. If this

carpet or boundary layer is moving with velocity U c, the flow velocity relative to the

boundary is U . Uc' Two further observations were also made namely:

(1) that the flow law may be written as

't =const (U - UC>1t (2.42)

where n ranges from 1 for laminar flow to 2 for turbulent flow;

(2) that when the thickness of the flow boundary IS negligible In

comparison to the flow depth
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t=T

where T is the solid transmitted shear stress.

From the above, the work done in transporting the flow boundary is

(2.43)

(2.44)

This expression has a maximum value when Vc = (1 + n)-n, thus the maxImum

efficiency with which the boundary may be transported, ec, is

TUc 1
e =--=--

c tU 1 +n

Thus ec = 1/3 for fully turbulent flow.

(2.45)

Dispersed solids do not behave as a continuous carpet as individual grains move

relative to each other, thus a further efficiency factor, eg, is required so that

(2.46)

To obtain eg Bagnold used similar reasoning as above resulting in an expression

1e =--
g n l + 1

(2.47)

where n' is found from the relationship between the drag coefficient and the Reynolds
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number of the grain. (See figure (2.8) for values of eh and eg.)

The total energy expended transporting the bed load is thus eh" plus the ineffective

power dissipation ec<a>(l • eg) involved in local transfer of stress from fluid to solid.

Summing these two, the stream power utilised is ec<a> but ec = 1/3, thus 2/3 of the

initial available stream power remains for the transportation of a suspended load.
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Figure 2.8 Values of theoretIcal bed load efficiency factors. (Bagnold, 1966)

Bagnold noted that 13na, and thus the dynamic bed load friction coefficient, vary by

a factor of two depending on the effects of the grain's inertia and the fluid viscosity

on the grain motion. The change from viscous to inertial conditions of motion of a

grain are related to its diameter and thus the Reynolds number,
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Re=D r--;
v ~ p

(2.48)

provided that the flow is at high stages so that T = 't, and that the linear spatial

concentration of the grains is such that the grains behave as a fluid and not as a

'paste'. Using this relationship and introducing the dimensionless bed shear stress,

8,

t6=----
(0 - p)D

(2.49)

Bagnold obtained a family of curves relating tanu to 8 for quartz-density solids of

various sizes in water (figure (2.9)). The critical values of 8, ex, being merely the

values of 8, and thus 't, beyond which the theory becomes applicable.
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Figure 2.9 Values of the solid friction coefficient tana in terms of the
criterion. (Bagnold, 1966)

bed-stress

Finally, to determine the suspended load transport efficiency es, it must be noted that

isotropic turbulence is incapable of maintaining an upward directed stress to support
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a suspended load. This is a

consequence of the fact that In

isotropic conditions the net upward

flux of eddy momentum is equal to

the net downward flux, thus any

grains will fall through the fluid

under the influence of gravity.

According to Bagnold (1966), in Figure 2.10 Characteristics of turbulent fluid

1952 P d I h d h h fl
Od motion. (Prandtl, 1952 in Bagnold, 1966)

, ran t s owe tat t e UI

motion, relative to the shear boundary, which is induced by turbulence is highly

asymmetrical. As can be seen from figure (2.10), there is an initial upward pull of a

mass into the upper faster moving layers. The crest of this mass is 'torn' off and the

remaining mass gradually sinks back. Obviously no net normal transport can occur,

thus for the rapid upwelling to balance the gradual sinking, the upward velocity must

exceed the downward velocity of the return flow. Based on Prandtl's obserVations

and work done by Laufer (1954) and Townsend (1956), which related the momentum

flux propagation to the shear velocity, Bagnold obtained a constant value for es in

fully developed turbulent flow

es =0.015 (2.50)

Thus returning to equation (2.41), the total transport rate for the immersed sediment

weight becomes

i=w(~+ 0.01 U)
tana V

(2.51)

Where the coefficient 0.01 is the product of es and the available stream power

remaining for the transportation of a suspended load, namely two-thirds of the

original power.
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2.8 SUITABILITY OF MODELS FOR ST LUCIA

All the sediment transport models discussed were derived for idealised conditions thus

none would be able to give an exact mathematical formulation for sediment

movements within the St. Lucia Estuary Mouth. Du Boys' model was included in the

discussion mainly for historical purposes, as his carpet type motion has been shown

to be incorrect. The statistical approach of Einstein has merit, but the data

requirements to adapt and utilise such a model would be too large and time­

consuming to be a practical proposition. Similarly, the Meyer-Peter and Muller

formula, which was obtained empirically for gravitational flow, would have to be

altered to tidal conditions, again requiring vast amounts of data.

Finally we are left with Yalin's formula, which looks at individual grain I11otion, and

Bagnold's formula based on stream energy principles. The importance of fluid

velocity and the fluid shear stress is common to the models. Both authors make two

assumptions: (i) the zone in which bed load transport occurs is negligible compared

to the flow depth; and (ii) the flow conditions for which the formulae hold occur

when the bedform features (sedimentary structures) vanish. These assumptions do

not hold for St Lucia Estuary Mouth due to the existence of large tidal flats, ego Shark

Basin, and different kinds of sedimentary structure ranging in size from flood tidal

deltas to small ripple sets. Bagnold also specifies the available energy as a function

of the slope, in the St Lucia Estuary Mouth the available energy is also a result of

tidal fluctuations. Despite this added complication Bagnold's ideas are probably more

suitable than Yalin's. Yalin's model was derived for microscale sediment movements,

thus when trying to extrapolate to a scale where the physical properties of both the

fluid and solids are continually changing, several problems will be encountered.

From the above it is clearly seen that the first step toward a mathematical model of

the sediment movements within the St Lucia Estuary Mouth, would be a

hydrodynamic model giving tlow velocities at all locations within the channel.

The second step would be to approach the sediment movement problem from stream
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energy principles, although a new method, which incorporates tidal fluctuations when

determining the available stream power available for the transportation of solids, must

be derived. Tidal fluctuations will cause a waxing and waning effect on the stream

energy. During flood tides the normal river flow will be opposed by the tidal influx

thus reducing both the flow velocity and thus the available stream energy. The

opposite occurs during the ebb tide when the tidal flow is in the same direction as the

normal river flow, thus the flow velocity and available stream power will be increased.

Moreover, when looking at sediment transport in estuarine systems, flocculation of

suspended sediment must be considered. According to Swart (1987), 88% of the total

sediment load of a river in flood is suspended sediment. When suspended sediment

comes into contact with saline water a reaction occurs which causes the grains to

accrete, often to such an extent that they can no longer be carried in suspension. The

rate at which the suspended load becomes bed load obviously will effect sediment

transport rates.

To successfully carry out both these steps a substantial amount of data, regarding flow

velocities, under different tidal and lake level conditions, and sediment movements,

will have to be collected. In this thesis only the hydrodynamic model will be

developed and this using only hypothetical data. In the next chapter one-dimensional

models that have been applied to the St Lucia estuary will be reviewed in order to

see whether they are suitable to link to a sediment transport model.

40



CHAPTER 3

ONE-DIMENSIONAL HYDRODYNAMIC MODELS

3.1 NOTATION

a cross-sectional area of flow region m2

A total cross-sectional area m2

b flow region breadth m

B total channel breadth m

C Chezy's friction coefficient m If2. S-1

f acceleration m.s-2

g gravitational acceleration m.s-2

H hydraulic depth (NB) m

J storage region inflow momentum factor

k contraction or headloss coefficient

m mass kg

P wetted perimeter of channel m

q rate of lateral inflow of water m3.s-1

Q discharge in y-direction m3.s-1

R hydraulic radius (NP) m

t time s

U flow velocity in the y-direction m.s-1

W wind shear N

y flow axis m

z water level m

a energy correction factor

p momentum correction factor

<f>(h) frictional function dependant on h

y specific weight of water N.m-3
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3.2 HISTORY OF THE ST LUCIA ESTUARY MOUTH

An estuary is the part of a river effected by tides. Applying this definition to the St

Lucia System, the estuarine part of the system constitutes the region stretching from

the estuary mouth to a point 16 km upstream, called the Forks (lames & Horne,

1969: figure (3.1)). To develop a hydrodynamic model for the entire estuary would

require a computer with a large memory region due to the necessary number of grid

points (this is discussed later in Chapter 5). Thus for this thesis a hypothetical estuary

based on the data available for the region extending from the 400 metres inland of

the estuary mouth to Honeymoon Bend, which is 2 kilometres inland, is modelled.

At a later stage the model could be expanded to incorporate the whole estuary.

St Lucia Estuary provides a vital link between the main St Lucia Lake and the sea

(figure 3.2). In the first half of this century poor farming techniques in the Mfolozi

River catchment caused increased siltation of the Mfolozi-St Lucia mouth. The

Mfolozi River was diverted to a separate mouth in an attempt to relieve the problem.

The consequences of this interference were:

(1) to reduce the freshwater input into the main lake system;

(2) to reduce the hydraulic head of St Lucia estuary, thus decreasing its

ability to scour the shoals within the mouth.

The unique ecosystem in the lake was adversely affected by the resultant increase in

salinity. At this stage a series of hydrodynamic studies on the St Lucia Lake System

were initiated.

This chapter discusses the suitability of linking a sediment transport model to some

of the mathematical hydrodynamic models which were previously applied to the

estuarine region of the St Lucia Lake System. This will be achieved by:

42



(1) comparing existing mathematical hydrodynamic models which have

been applied to the study area;

(2) discussing the requirements for a sediment transport model;

(3) investigating if any of the models satisfy these requirements.
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Figure 3.2 Geography of the St Lucia Estuary Mouth
(After Wright 1990)
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3.3 REVIEW OF ONE-DIMENSIONAL HYDRODYNAMIC MODELS

Several hydrological models have been applied to the St Lucia Estuary. The models

can be classified into two groups:

(1) physical models, ego Sauermann (1966);

(2) mathematical models.

The mathematical models are of concern in this thesis. Three of the most used

models were developed by James & Horne (1969), Hutchison (1976) and Huizinga

(1987). Hereafter these will be referred to as models 1, 2 and 3 respectively. All

three models solve the one-dimensional unsteady (flow varies with time), nonuniform

(flow varies with distance along the flow axis), flow equations. These are classified

as mass continuity and momentum equations. Model 2 uses the energy equation for

reaches where significant changes in channel cross-sectional area occur, such as occurs

at the estuary mouth. This is due to the fact that within the proximity of a severe

constriction the momentum equation does not deal adequately with the Bernoulli

effect. The Bernoulli effect is experienced when an object is subjected to lift forces

caused by an imbalance of pressure above and below it: the forces originate from

high speed fluid flow around the object. To compare the models the three equations

will be written in full, and then, referring to each model, terms which have been

neglected will be noted. The method of solution will then be discussed.

3.3.1 Continuity

In order for continuity requirements to be satisfied in a given channel section for a

specified time period, the average rates of water outflow and storage area increase

must be equal to the average rate of water inflow.

This is expressed by the following equation:
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aQ +B aZ =.!L
ax at ox

(3.1)

Models 1 and 3 assume that the lateral inflow is negligible, thus the last term in the

above equation is zero. lames and Horne (1969) justify this assumption from the

observation, noted by Natal University Civil Engineering students, under lames'

supervision (1968), that an abrupt change in flow direction occurs immediately after

slack water. If it is not a mixed estuary, or alternatively, if it is an estuary where the

fresh river water flows over a tapering salt wedge, exchange flow would have been

observed (Leeder, 1982). From this result they assume that the salinity and density

in the estuary is constant and thus lateral inflow of freshwater must be negligible.

3.3.2 Momentum

The momentum equation is derived from Newton's Second Law which states that the

sum of the forces acting on a body is equal to the product of the mass, rn, and

acceleration, f, of the body. The dominant forces applicable to this problem are as

follows:

F +F +Ff+F +F +F +F =mifp g s q W 0

Fp = Force due to pressure (N)

Fg = Force due to gravity (N)

Fr = Force due to boundary friction (N)

Fs = Force due to water entering f~om storage region

(N)

Fq = Force due to lateral inflow (N)

Fw = Force due to wind shear (N)

Fo = Force due to obstructions to flow (N)

(3.2)
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The Coriolis force is neglected from the above equation as St Lucia Estuary's

dimensions and latitude cause it to have negligible effect, see section 4.3.1.

The above equation is expressed as follows in the various models:

Model 1:

(3.3)

Model 2:

az+~+~ aQ _az{ ~Q (b+Hab)+j(B-b) Q}
ax C2A 2H gA at at gA 2 az gA 2 (3.4)

+ a.Q aQ _ cr.Q2 aA +!i ay + ~qQ _ w+~=o
gA 2 ax gA 3 ax 2y ax gA 20x yH 2gA 20x

Model 3:

az 1 aQ 1 2B az
-=----;:- 2 2 IQIQ+-2Q:u
ax gAUI. CAR gA u£

(3.5)

Full derivations of the above terms and how they are expressed as finite differences

in the respective models can be obtained in the appropriate references (lames &

Horne, 1969; Hutchison, 1976; Huizinga, 1987). Models 1 and 3 both assume that the

dominant forces are those due to gravity, friction and pressure. All other terms are

thus omitted from the respective equations. lames and Horne (1969) justify the

omission of the lateral inflow term by using the same reasoning as in the continuity

equation. Although Model 1 and 3 equations differ, they are essentially the same, as

Model 1 uses velocity as a variable whilst Model 3 uses discharge, discharge being
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merely the product of velocity and cross-sectional area. Model 1 also allows for the

fact that wind set arises when wind blows over a free surface. It includes this effect

by calculating the wind set at Charters Creek, extrapolating this to the confluence of

the Mpate River and The Narrows, and then filtering out the 'wind tide' from the

mean water level at the confluence. Model 3 allows the wind shear term to be

included should it be considered significant. Model 2 is the only model which

incorporates all the above forces. Model 2 uses the technique of dividing the channel

cross-section into two regions:

(1) the flow region, where the major water transfer occurs;

(2) the storage region, which is relatively shallow and has negligible velocities.

The model solves both the momentum and continuity equations for the flow region.
\

The term, Fs' due to lateral inflow from the storage region, is applicable to this model

only. This term has no contribution unless the water levels are falling, which accounts

for the factor 'j', in the momentum equation, which is greater than 0 only if the water

levels are falling.

3.3.3 Energy

(3.6)

Subscripts nand n+1 denote adjacent channel reaches.

The energy equation is used solely by model 2. When applying this model a small

channel reach between the sea and the estuary mouth is defined, as it is here, where

a rapid change in channel cross-sectional area occurs, this means that Bernoulli

effects may become significant.
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3.3.4 Solution technique

All the models use finite difference methods for the solution of the continuity and

momentum equations. Models 1 and 3 use explicit techniques whilst Model 2 uses

an implicit technique. The advantage of an implicit solution is that for any time step

used in the iteration the solution is stable; however implicit techniques usually are

more demanding on computer facilities. For both methods the solution becomes less

accurate as the time step for the iteration is increased.

3.3.5 Boundary conditions

At the estuary mouth the tidal range of the water elevation relative to the Mean Lake

Level is the boundary condition which is used by all the models. Flow velocity does

not need to be specified at the estuary mouth. Model 2 has an additional channel

reach at the estuary mouth boundary where the energy equation is solved. The

solution to the energy equation is used as the boundary condition for the momentum

and continuity equations. The upstream boundary conditions are as follows:

Model 1 -

Model 2 ­

Model 3 -

inflow or outflow at the confluence of the Mpate River and the

Narrows depending on lake levels and wind set at Charters

Creek;

river inflow at any specified boundary;

allows for three types of boundary conditions:

(1) a dead end where no discharge occurs;

(2) a river where inflow into the estuary occurs;

(3) a lake where the water levels can vary either due to

exchange of water with the estuary (or with other

sources), or due to wind set.

The initial conditions required for Models 2 and 3 are water level and discharge to

be specified at all estuary channel reaches, whilst Model 1 requires water levels and

velocities to be specified for the reaches.
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3.4 REQUIREMENTS FOR SEDIMENT TRANSPORT MODELS

For sediment transport to occur certain requirements need to be met. First, a

sediment source must exist; second, a transporting medium is required; and third, the

motion and physical properties of the transporting medium must be such that it can

initiate and sustain sediment movement. The first two requirements will be discussed

briefly below, however it is the motion and physical properties of the transporting

medium which must be described by a hydrodynamic model.

In the St Lucia Estuary there are three main sediment sources:

(1) marine sediment introduced into the estuary VIa the process of

longshore drift;

(2) aeolian sediment which is blown into the estuary whenever the

prevailing winds blow over the exposed banks and across the estuary;

(3) catchment-derived sediment which is brought down into the estuary via

the Narrows.

Wright (1990) established a rudimentary sediment budget for the 28-month period

following the September 1987 floods. From this he concluded that approximately

239x103 m3 of marine sediment, 21x103 m3 of catchment derived sediment, and 7x103

m3 of aeolian sediment were introduced annually into the estuary. Badenhorst (1989)

estimated that 20Ox103 m3 of the marine sediment was removed annually by dredging.

Other sources do exist, ego bank erosion, but these occur sporadically and thus should

not be included in the sediment transport model unless they contribute a significant

quantity of sediment within a specified time period.

The physical properties of the sediment from each source, (size, density, and

availability), must be determined as they will effect the mode and rate of

transportation.

81



The second requirement for a sediment transport model is a transporting medium.

The two transporting media occurring within the environs of the estuary are water

and air. This study was initiated in order to determine sediment movement within the

estuary mouth so aeolian transport is not considered. It is important to note that

wind transports a significant volume of fine-grained sandy sediment into the estuary.

The final requirement is to describe the behaviour and properties of the transporting

medium and to determine whether it can cause sediment movement. If movement

is possible, then the sediment flux in all directions must be established. From the

sediment fluxes areas and rates of erosion or deposition must be identified. Thus the

hydrodynamic models need to specify:

(1) the flow velocity, (velocity is used rather than speed to emphasis the

importance of flow direction), at all given depths and locations;

(2) turbulence effects as these enhance the sediment transporting ability;

(3) energy states of the flow at all locations as this will determine the

quantity of sediment transported.

If the above can be determined then using a suitable sediment movement model,

sediment transport rates can be calculated for the different modes of transport and

sediment types.
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3.5 SUITABILITY OF EARLIER HYDRODYNAMIC MODELS FOR LINKING

TO A SEDIMENT TRANSPORT MODEL

There are essentially two assumptions made in all of the earlier models which make

them unsuitable for linking to a sediment transport model. First, that the flow is one

dimensional and second, that the channel reach behaves as a single body. Models 1

and 3 have additional problems associated with neglecting the effects of wind. Model

2 has drawbacks owing to the assumption that rates of flow velocity are negligible

within the storage area. It must be remembered that these models were not designed

for explaining sediment movement but rather for water quality, as the high lake

salinity level was the original concern which caused them to be developed.

When discussing the problems associated with the assumptions incorporated into the

earlier models, it must be noted that the rate of sediment transport, as well as the

spatial relocation of the sediment, is of importance.

Using a one dimensional model the following problems arise.

First, flow is in uni-directional and thus sediment movement can only occur in this

direction. This is clearly inadequate as secondary currents, which may deviate from

the flow direction, occur and may have sufficient velocity to initiate and sustain

sediment transport.

Second, the velocity is averaged for the channel cross-section, although the specific

velocity at any point may vary greatly from this value. Commonly used sediment

transport rate equations of Bagnold (1966), equation (2.51), Einstein (1950), equation

(2.23), and Yalin (1963), equation (2.33), are all dependent on the flow velocity and

thus distortion of results will occur.

The assumption that the reach behaves as a single body leads to the further problem

that ebb and flood channel characteristics are ignored. Figure (3.3) shows the

existence of ebb and flood channels in the study area. These features are important

as they dictate the type of sediment which occurs within them, ego fine catchment-
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Overlooking the importance of wind (models 1 and 3), creates the following

problems:

(1) secondary currents caused by wind stress may move sediment directions

other than the flow direction;

(2) wave energy and orientation are neglected.

In St Lucia the most common prevailing winds are southwest and northeast. To

demonstrate the effect of these winds a simple observational experiment on

sedimentary structures was carried out. A 20 m long and 0.1 m high sand wave was

observed in Shark Basin. The sand front was staked and after two tidal cycles the

sand wave's movement was noted. The front was then re-staked and the front

movement noted after a further two tidal cycles. During the first period a strong

southwesterly wind was blowing, thus waves moving straight into the estuary from the

ocean enhanced the energy level of the flood tidal flow. During this period the sand
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wave moved approximately 1 m. In the second stage there was a strong northeasterly

wind, the estuary was thus protected from the wave action by the northern spit and

.the wind opposed the flood tidal flow, as a result the sand wave progressed only 0.1

m.

The one-dimensional hydrodynamic models discussed are inadequate for the desired

purpose of linking them to a sediment transport model. The problems associated

with these models could be alleviated by using a hydrodynamic model that:

(1) solves the two (horizontal) dimensional flow equations, with the vertical

velocity profile being described by a velocity distribution law;

(2) is solved on a grid where flow velocity is specified for each nodal grid

point, thus allowing for variations of sediment type and morphological

features;

(3) includes a wind velocity factor, which specifies the effect that the wind

will have on flow velocities and wave energies;

Hydrodynamic models incorporating some or all of the above do exist in various

forms. Davis (1976) developed a finite element method for modelling two­

dimensional unsteady flow. He applied it to tidal flow in coastal waters and wind­

induced currents in shallow lakes. He assumed that the flow velocities and water

densities are uniform with depth. Leendertse and Liu (1976) developed a model

simulating three-dimensional flow in estuaries. Their underlying assumptions were

that water movement is caused by tides, wind and pressure differences. Black (1987)

developed a two-dimensional hydrodynamic model with the specific purpose of linking

it to a sediment movement model and thus includes all of the above requirements.

The hydrodynamic model developed in this thesis is based on these and other

hydrodynmaic models. The derivation of this model is presented in the following

chapter.

BB



CHAPTER 4

DERIVATION OF THE HYDRODYNAMIC EQUATIONS

4.1 NOTATION

a acceleration m.s-2

A cross-sectional area of a unit m2

Cc Chezy's coefficient m112. S-1

F force N

g gravitational acceleration m.s-2

h free-surface elevation relative to

the Mean Lake Level (MLL) m

H depth of bed below the (MLL) m

H- hydraulic depth (H- = H + h) m

m mass kg

P wetted perimeter of channel m

R hydraulic radius (AlP) m

t time s

u flow velocity in the x-direction m.s-1

v flow velocity in the y-direction m.s-1

Vw velocity of the wind m.s-1

P density of water kg.m-3

Pa density of air kg.m-3

't shear stress N.m-2
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4.2 FACfORS INFLUENCING THE ST LUCIA ESTUARY

Natal Parks Board (NPB) have identified sediment movement as a problem in the

management of the St Lucia Estuary Mouth and they thus need to be able to predict

how the sediment will move under various flow, tidal and climatic conditions. For

sediment to move, it requires a transporting medium. In the environs of the St Lucia

Estuary Mouth, there are two transporting mediums, namely: air and water.

According to Wright (1990), it is the latter which has the greatest effect on the

estuary and it is therefore necessary to develop a hydrodynamic model of the St Lucia

Estuary Mouth.

An estuary is a three dimensional body of water which is continually being influenced

by numerous factors, namely:

Sea: (i) Tidal action: the change in the water level between high and low

tides as well as that between spring and neap tides continually changes

the pressure gradient within the estuary;

(ii) Wave action: the orientation and energy of the waves affect the

flow velocities as well as the turbulence within the estuary;

(iii) Salinity: changes in the concentration of the salt alters the density

of the water and hence affects the pressure gradient. The salinity also

affects the rate of flocculation;

(iv) Local currents: longshore drift, refraction and reflection affect the

orientation of the flow;

Catchment (i) Lake levels: these affect the discharge into the estuary;

(ii) Farm Management: poor farm management has resulted In

increased silt concentrations in the St Lucia Lake System;
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Geology:

Climate:

Weather:

Biology:

Man:

(iii) Urbanisation: the construction of dams and the increased demand

on water supplies reduces the discharge into the estuary;

(i) Slope Stability: the degree to which the banks and the bed of the

estuary can be eroded affects the sediment content in the water;

(ii) Sediment: the transportation of sediment, whether in the

suspended, saltated or bed load form requires energy and this reduces

the energy available for the fluid flow;

(iii) Bed Composition: this affects the frictional resistance opposing the

flow;

(i) Drought: St Lucia Estuary is in an area that is characterised by dry

and wet cycles which occur over several years. This affects the lake

levels;

(i) Wind: this affects the flow velocity as well as the wave energy and

orientation;

(ii) Precipitation and Evaporation: these affect the inflow and outflow

of water from the estuary;

(i) Flora and fauna: these affect the chemical composition and the

sediment content of the water in the estuary;

(i) Emuent: this affects the chemical composition of the water;

(ii) Recreational Usage: this affects the turbulence and bank stability of

the estuary.
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To incorporate all these parameters into a mathematical model would make the

model cumbersome. The mathematical model should simplify the situation by

utilising only the dominant factors yet it must still provide a good approximation of

the real situation so that, once it is refined, it can be utilised as a management tool

by the NPB.
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4.3 DECISION ON DIMENSIONS

As mentioned earlier, an estuary is a three dimensional body, and thus, depending on

the simplification of the mathematical model used to describe its behaviour, it can be

either a one-, two- or three-dimensional model.

One-dimensional models have been successfully applied to rivers and estuaries to

predict flow velocities, salinity diffusion and, to a limited extent, sediment transport

rates. In a one-dimensional problem the flow direction is assumed to be parallel to

the river banks. However, in an estuarine environment, the opposing flow of the

flood tide can create situations, where in one cross-section of the estuary, there might

be two or more areas with considerably different flow velocities. Thus to predict

anything more complex than the net discharge or the net inflow of saline water more

than one dimension will have to be considered.

To decide between two- and three-dimensional models it is necessary to establish

what causes vertical flows and whether these vertical flows will have a significant

effect on the desired accuracy of the model.

It is important to note that turbulence will not be included when discussing vertical

currents. This is due to the fact that movements resulting from turbulence have no

net vertical movement. As can be seen in figure (2.10), when discussing Bagnold's

Sediment Transport equation, the upward currents are balanced by downward

currents.

Some of the main causes of vertical movements in fluids are strong salinity and

temperature gradients, flow around bends, waves and wind induced tides.

Salinity: The whole St Lucia Lake System is very susceptible to variations in

salinity, see figure (4.1). In dry cycles there is an influx of saline water

into the system due to the reduced hydraulic head of the lake.

However, during high rainfall periods the system is flushed resulting in
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a low salinity, ego a salinity of 2.5 parts per thousand (ppt) compared

to the sea 36 ppt have been recorded at the jetty which is 0.5 km

inland. Despite this, the salinity of the region of the estuary to be

modelled (i.e. between 0.4 km and 2.0 km upstream of the sea) is fairly

uniform and thus no major saline wedges are likely to develop.

Temperature: The differences in temperature between the sea and estuary are not

great due to the fact that the Aghulas Current is warm and that Natal

experiences a warm climate. Also, the fact that the estuary is relatively

shallow, with a mean depth of 3 m in the study region, no major

temperature differences are likely to be generated through insolation.

Topography: The region of the estuary to be modelled approximates a rectangular

shape, see figure (3.1), and thus no large bends occur. The bed

topography includes large features, ego flood- and ebb-tidal channels.

The flow in these channels is generally greater than in other areas of

the estuary and thus any vertical flow is small relative to the horizontal

flow.

Waves: Waves generally occur as swells within the estuary mouth, having

broken on the ebb-tidal deltas before entering the mouth. The motion

of individual water particles within swells is circular, see figure (4.2),

and thus the net upward motion is equal to the net downward motion.

Wind: Wind blowing across large stretches of water causes a heaping effect,

or wind tide, which generates a pressure gradient resulting in a circular

flow, as can be seen in figure (4.3). However, in St Lucia the dominant

winds are northeasterly or southwesterly, see figure (4.4), which are

across the width of the estuary. The maximum width is 500 m and thus

no major wind tide is likely to be generated.
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For the above reasons the horizontal velocities are likely to be much greater than the

vertical velocities over a time period of a tidal cycle or more. The data requirements

are also much greater for a three-dimensional hydrodynamic model. The collection

of this data would be extremely time consuming and expensive. Thus a two­

dimensional hydrodynamical model using depth-averaged flow would probably best

suit the management needs of the NPB. Having decided on a two-dimensional model

it should be noted that the flow is non-uniform and unsteady.
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4.4 DERIVATION OF THE EQUATIONS

The model is two dimensional with the velocities being averaged over the depth. The

two dimensions will be in the horizontal plane with one direction taken parallel to the

estuary banks, (the y-direction), and the other orthogonal to this, (the x-direction).

Flow in the y-direction will be denoted by v and in the x-direction by u.

The equations which are to be the basis of this model are two fundamental laws of

Physics, namely:

(i) Newton's 2nd Law of Motion or the conservation of momentum;

(ii) Continuity which is the principle that matter can neither be created nor

destroyed.

4.4.1 Newton's 2nd Law

Newton's 2nd Law states that the sum of the forces acting on a body is equal to the

product of the mass of the body and the acceleration of the body.

L F = ma (1)

As 'stated earlier there are numerous factors which intluence an estuary. In this

model only the forces that affect the physical tlow conditions will be considered, and

of these, only the dominant forces will be incorporated into the model.

(i) Pressure Gradient: If we consider a unit volume of water in a river, the water

upstream of the unit exerts a pressure force on the water within the unit. Similarly,

the water downstream of the unit exerts a force on the unit. Thus the net force

exerted on the unit is the difference between the upstream, Fu' and downstream, Fd,
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pressure forces. The force due to pressure can be

F = -pg(H + h)Ap
(4.2)

where A is the cross-sectional area of the unit, H the depth of the bed below the

datum, which is the Mean Lake Level (MLL), and h the height of the free-surface

relative to the MLL, p is the density of the water and g is the gravitational

acceleration. Thus the net pressure force, Fp, in the x-direction can be expressed as:

- p 9 a(H + h). 0 x. A
ax

(4.3)

The product ox.A is just the volume of a unit and therefore equation (4.3) can be

simplified to:

and in the y-direction as :

F = - 9vol a(H + h)
p p ax (4.4)

(4.5)

(ii) Bed Friction: flow over a surface that is not perfectly smooth is obviously going

to generate stresses. If the flow is no longer laminar then Chezy's coefficient for

arbitrary shapes can be introduced. It is based on the absolute roughness, a, or the

size of the ripples and the texture of the bed material, and the hydraulic radius, R,

which is the cross sectional area divided by the wetted perimeter of the channel.
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There is also a third term based on the thickness of the laminar sublayer, t>, however

this is usually negligible in open channel flow (Abbott & Basco, 1989). Chezy's

coefficient can be written as:

C = 18Log 6R
C a + 0/7

or neglecting the laminar sublayer viscous effect:

Cc = 18Log 6R
a

(4.6)

(4.7)

Now using Chezy's hypothesis the stress generated due to bed friction, in the x­

direction is:

(4.8)

and similarly in the y-direction is:

where

v = Vu 2 + v2

(4.9)

(4.10)
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Thus the force due to friction is the product of the stress and the area over which it

is exerted. The area is the product of the perimeter of the channel, P, and the

change in either the x-direction, ()x, or y-direction, ()y. The wetted perimeter can be

written as the quotient of the cross sectional area, A, and the hydraulic depth, (H +

h). Thus the force due to bed friction in the x-direction can be written as:

F
bx

= -Aox gpu'v' = -pvol. gu'v'
(H + h) C: (H + h)C:

and similarly in the y-direction:

Fby = - Pvol. gv'v'
(H + h)C:

(4.11)

(4.12)

(iii) Wind Stress: Wind causes a circular flow in the vertical plane and thus generates

stresses both at the surface and the bed. If these two stress are assumed to be

linearly related then the total wind stress, 'tw, can be written as the product of a

constant, A, and the surface wind stress, 'tws ' This stress is easily calculated as

'r' - '\ 'r' = '\ ,.,\2 P V2
~ w - 11. ~ WS 11. UJ a w

(4.13)

where Vw is the wind velocity and Pa is the atmospheric density. ~ is a constant which

must be calculated using real data. At present the only data is an erratic supply from

Voluntarily Observing Ships (VaS). Thus, as the goal of this project is only to

indicate how the model could be used as a management tool, it has been left out of

the simulation. At a later, stage a comprehensive wind data set could be collected

and, the wind stress term then included in the model.
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(iv) Coriolis Force: The Coriolis force is due to the rotation of the earth and causes

particles in motion to be deflected to the left relative to the horizontal component of

their velocity in the southern hemisphere. The acceleration, a, of a particle under the

influence of the Coriolis force can be calculated as:

a = 2wvsine (4.14)

where w is 21t/86400, (ie. one revolution in 86400 seconds) and eis the latitude. Thus,

noting that St. Lucia Estuary Mouth is at 28° S and that the maximum recorded flow

is 0.7 m.s-l, this gives an acceleration of each particle of 4.8 x 10-4 m.s-2• From this it

can be seen that the Coriolis force is negligible and it has thus been omitted from the

model.

Having now identified the forces involved, the acceleration needs to be determined.

Calculating the acceleration in the y-direction first, it is important to note that, v,is a

function of both space dimensions and time, and thus should be written as v(x,y,t).

Thus acceleration, which is the rate of change of velocity with respect to time can be

written as:

a = dv(x, y, t) = av
dt at

av ax
+ +

ax·-at
av ay
ay· at

(4.15)

However, dx/at is just u and ay/at is v, thus a can be written as:

av av ava = + u- + v-
at ax ay

(4.16)
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Similarly, the acceleration in the x-direction is given as:

a = au + u au + v au
at ax ay

(4.17)

Thus the equations for Newton's 2nd Law are, in the x-direction and y-direction

respectively:

_pg a(H + h) vol _ pguV'vol = (pvol)(au + u au + v au)
ax (H + h)C~ at ax ay

(4.18)

_pg a(H + h)vol _ pgvV'vol = (pvOI)(av + u av + v av)
ay (H + h)C; at ax ay

(4.19)

and dividing through by the product of density and volume the equations become:

_g a(H + h)
ax

_ga(H+h)
ay

guV'

(H + h)C;

gvV'

(H + h)C~

au + u au + v au
at ax ay

av + u av + v av
at ax ay

(4.20)

(4.21)

71



4.4.2 Continuity

The continuity equation is based on the fact that the average rate of inflow into a

section of the estuary must equal the sum of the average rate of outflow and the

average rate of increase of storage area. When deriving this equation, third order

differentials are assumed to be negligible. Flow is the product of the flow velocity

and the cross-sectional area. The average hydraulic depth in the x-direction, H*' is

H * = (H + h) + a(H + h) ay
2ay

and thus the average inflow is

average inflow = uayH * + .1.~ (u 0 yH *) ot
2 at

(4.22)

(4.23)

To determine the outflow it must be noted that the flow velocity and cross-sectional

area must be calculated at a distance ~x downstream. Thus the average outflow is

(u + au 0X + .1. au 0t) (0 yH * + ~ (0 yH *) 0X + .1.~ (0 yH *) 0t)
ax 2 at ax 2 at

(4.24)

The difference between inflow and outflow in the x-direction can be shown to be

inflow - outflow = - ~ [u (H + h)] 0X0yax (4.25)
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and similarly in the y-direction

inflow - outflow = - ~ [v (H + h)] 0x0y
ay

The average rate of increase of the storage area is

average increase of storage area = 0 x 0 y _a~(H_+_h....!...)
at

(4.26)

(4.27)

It must be noted that the depth of the bed relative to the datum (MLL) is constant

with time thus o(H + h)/ ot is equal to oh/ot. Thus the continuity equation can be

written as

- ~[u(H + h)]oxoy - ~[v(H + h)]oxoy - oxoyah = 0
ax ay at

(4.28)

Dividing through by -oxoy the continuity equation becomes

ah a a- + -[u(H + h)] + -[v(H + h)] = 0at ax ay
(4.29)

Thus the flow can be described by the equations (4.20), (4.21) and (4.29). These

equations are non-linear and are not decoupled and thus need to be solved using the

technique described in the next chapter.
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CHAPTER 5

SOLUTION TECHNIQUE

5.1 TYPES OF NUMERICAL METHODS

There are many different ways of translating equations in the continuum to equations

which can be dealt with by a computer. A computer can only manipulate discrete bits

of information and thus a numerical solution must create an illusion of continuity by

using a series of finite values. The principal numerical methods being used in

Computational Fluid Dynamics at present are:

(1)

(2)

(3)

Finite-difference Methods (FDM);

Finite-element Methods (FEM);

Method of Characteristics (MOC).

In the case of FDMs, the continuum of space is divided into a series of fixed grid

points. Hydrodynamic equations are then written so that derivatives are

approximated by Taylor series expansions. The number of terms used depends on

the desired accuracy of the model. These equations are then solved using fixed time

intervals. The equations can be solved by either using explicit or implicit techniques.

Explicit techniques are the simplest but short wave oscillations can occur due to the

non-linear terms, and stability conditions restrict the time step used. This will be

discussed in more detail later. Implicit techniques are more complex and difficult to

compute but are inherently stable, thus enabling a greater time step to be used.

In the case of FEMs, the space continuum is divided into discrete elements centred

around nodal points, see figure (5.1) (Abbott & Basco, 1989). The value of any space

dependent variable is specified at the nodal points and the value at any intermediate

point can be calculated by using any linear or higher-order polynomial interpolation.

The values of the variables are fixed at the nodal points, thus the spatial derivatives

at these points are zero. The spatial derivatives for an element are formed by
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looking at the derivatives of the variable on either side of the nodal point. The

advantages of this method are that the elements can be designed to fit complex

boundary shapes and the size of elements can be altered in areas of the estuary

where greater detail is required (McDowell, 1976). The equations are however, more

complex than those obtained when using FDMs and consequently require more

computing time.

LEFT SIDE

-1~(') ~
o

RIGHT SIDE

~~'~1-----{')1---~ ~
1 2

(Nodes)

Figure 5.1 : One-dimensional finite element around node No. 1. (Abbott & Basco,
1989)

The MOC begins with a fixed grid but computations are then advanced along

characteristic lines in the space-time plane. Solutions are obtained where

characteristic lines from different ends of the grid intersect. These points of

intersection can occur anywhere within the area for which a solution is being sought

and at these points data is required. This makes it necessary to collect and store

large quantities of data.

The computer facilities available for this project were limited to an 80826 IBM

compatible PC. Thus the FDM was selected as it is the simplest to develop and

requires the least data points.
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5.2 FINITE-DIFFERENCE NUMERICAL METHOD

The actual finite difference technique used in the model that has been developed is

an Alternating Direction Implicit (ADI) technique. The ADI method was originally

put forward by Peaceman and Rachford (1955). This is a scheme that is decomposed

into two steps, or in other words, the time operator is split into two time steps, t =
n + 1/2 and t = n + 1. Each step solves the hydrodynamic equations along lines

parallel to the x - and y - directions. The solutions of these equations involve setting

up and solving a pent-diagonal matrix equation. The actual solution of the pent­

diagonal matrix equation in each step is based on the Preissmann Scheme. According

to Abbott & Basco (1989), Preissmann invented this implicit finite-difference scheme

in 1960 for the solution of one dimensional open-channel hydraulics problems.

Preissmann's operator is a 4 - point operator, where for any flow depende\lt variable,

f, which is a function of space and time i.e. f( ,t) the approximations to continuity are

as follows:

f" + 1 f"af(x,t) z (1 _ ) i - i

at <p ~ t
f "+1 f"
i+1 - i+1

+ <p-----
~t

(5.1)

f" f" f"+1 f"+1af(x,t) z (1 _ e) i + 1 - i + e i + 1 - i

ax ~x ~x

(5.2)

wh.ere cp and 6 are in the range [0,1] and the points ~t the time step n are known.

The superscripts denote the time coordinate and the subscript the spatial coordinate.

By taking cp = 1/2 and 6 = 1/2 equal weighting is given to the different values. The

equations (4.20), (4.21) and (4.29) are hyperbolic as can be seen by the terms u.au/ax,
v.av/ay etc. In order to apply Preissmann's Scheme the equations must be linearised.

This is done by giving u, v and h approximate values based on predicted values at the

next time step, obtained by linear extrapolation, values in adjacent grid points, and

the present values:
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f
n+1 ~
Lj .1/

fn+ 1
i,j

"(\

f i,j~-------l__-=---~
x

Figure 5.2 Grid points used to generate
approximations.

f " + 1 f f" + 1 " f" + 1 f"
__ i,j + i,j + i + 1,j + fi + 1,j + i,j + 1 + i,j + 1

f·~I,J
(5.3)

where f is any of the variables u, v or hand r is the approximate value, see figure

(5.2).

Equations (4.20), (4.21) and (4,29) now become

_g a(H + h)
ax

_ga(H + h)
ay

gu*'v'
2(H + h)Cc

2(H + h)Cc

au + u * au + V * au
at ax ay

av + u * av av+ v*-at ax ay

(5.4)

(5.5)

ah +u*a(H +h) +(H +h*)(au + ay) +v*a{H +h) =0 (5.6)
at ax ax ay ay
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Equations (5.4), (5.5) and (5.6) are not decoupled (in other words the variables u, v

and h occur in all three equations). To overcome this, when solving the equations

parallel to the x - direction, the variables in the y - direction are kept constant with

time and similarly, when solving along the lines parallel to the y - direction, the

variables in the x - direction are kept constant with time. This means that in the first

time step, t = n to t = n + 1/2,where t is the time coordinate, equations (5.4) and

(5.6) can be solved using the double sweep implicit method, and equation (5.5) can

be solved explicitly. Similarly during the second time step, t = n + 1/2 to t = n +

1, equation (5.4) is solved explicitly and the double sweep method is used to solve

equations (5.5) and (5.6), see figure (5.3). Only the solution method for the first time

step is discussed in the following sections as the solution method for the second time

step is similar.

5.2.1 The Double Sweep Method

Using the implicit method for equations (5.4) and (5.6) requires the solution of either

a pent-diagonal or hept-diagonal matrix depending on whether a forward-difference

or central-difference scheme is used. A forward-difference operator is

at
ag

(5.7)

Where f is any function dependent on the variable g, and where the subscripts are the

coordinates for the variable g. Using the same notation a central-difference operator

IS

af
ag

fj + 1 - fj - 1
::::----

2dg
(5.8)

The advantage of using a central difference scheme is that the truncation error order

is O(~t2,AX2,~y2), provided that values are equally weighted between the time
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coordinates nand n + 1/2 during the first time step and n + 1/2 and n + 1 during

the second time step. The disadvantage of the hept-diagonal scheme is that it is more

complex than the pent-diagonal scheme. The forward difference scheme has been

used in this model and it has a truncation error of order O(~t,fJ(,~Y).

Using the approximations described in equation (5.3) to linearise the equations and

the Preissmann Scheme with cp =1/2 and e =1/2 the equations (5.4) and (5.6) can

be rewritten as follows:

(u ~+1/2 " n+1/2 " .\
1,1 - Ui,j + U1+1,j - Ui+1,y +

2at
2

(
"+1/2 _ U.".+1/2 n nu· 1 . + U· l' - U·.)

U
* 1+ ,J I,J 1+ ,J I,J +

1,1 2ax
(2H 2H hn+1/2 hn+1/2 n n

9 1+1,j - I,; + i+1,; - I,j + hl+1,J - hi,j) +

2ax
g U.~V

I,)

(5.9)

and

(5.10)

(h.~+1/2 _ h.~ + h.n+1.'2 _ h.n .\
I,J I,J 1+1,J 1+1,JI

+
2at

2

(
n+1/2

(H h *) Ui+1,j
I,J + i,j

_ U.~+1/2 n n
I,J + U· l' - U·· )1+ ,I I,J +

2ax
U.~ (2Hi+1,j - 2Hi,j + hl~1,j - hl,~ + hl~;~/2 - hl~+1/2)

I,J 2ax +

* (H
"
,J'+1 - H·. + h·~ 1 - h.~) (v n - V")

V.. I,J 1,)+ I,J + (H.. + h.~) l,j+1 i,; = 0
I,J ay I,J I,J ay
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Equations (5.9) and (5.10) can be re-written as

A1 U~ +1/2 + 81 h.~ +1/2 + C1 U." +1.'2 + 01 h." +1.'2 = E1. (5.11)
I,j I,) I + 1,) I + 1,j I,)

A2U.~+1/2 + 82h.~+1/2 + C2U" +1/2 + 02h" +1/2 = E2.. (5.12)
I,j I,) I + 1,j I + 1,j I,)

where
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and where
A2 = -~(H + h*)

4~x

82 = 1 - ~u * = A1
2 4~x

C2 = ~(H + h *) =-A2
4~x

02=1+~u* =1-A1
2 4~x

1"" h *) ~ t (" ")E2 = 2(hl,J - hi+1,V + (HI,J + 1,1 4~ x ul,) - UI+1,j +

• ~ t h" h".'ul,J4~x(2HI,J - 2H1+1,) + I,J - 1+1,y +

v.~~(H.. - H.. 1 + h.~ - h.~ 1) +
IIJ2~y I,j I,j+ I,j I,j+

.• ~t " ")(H·lj, + hjJ.)--(VjJ. - Vjj'+1
, I 2~y' ,

(5.14)

Thus the following pent-diagonal matrix equation needs to be solved

A1 1 81 1 C1 1 01 1 0 0 0 U
1
"+1/2 E1 1

A21 821 C21 021 0 0 0 h~+1/2 E21

0 0 A1 2 81 2 C1 2 01 2 0 0 0 "+1/2 E1 2U2

0 0 A22 822 C22 O~ 0 0 0 . h;+1/2 = E22
(SlS)

o 0

o 0

o A1, 81, C1 1 01 1

o A2, 82, C2, 02,

where the subscript is the spatial coordinate in the x-direction and I is the number

of grid points in the x - direction.
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Now the new variables F1 and G1 are introduced so that u and h are linearly related

as follows:

U'"j+11
2 = F1 .. hj , + G1' jI, I,j,j I,

(5.16)

At i = 1, U is known for all time, thus to ensure linear independence of u and h at

this boundary

F1 1 , = 0
,j

"+112G1 1 , = U1 ·,j ,j
j E [1 ;dim2]

(5.17)

By substituting the right hand side of equation (5.16) into equations (5.11) and (5.13)

and by carrying out suitable manipulations the h1/+1I2 terms can be eliminated thus,

the following recursive equations for F1 and G1 can be derived:

F1 = [(A1F1 + B1)(E2 - A2G1) - (A2F1 + B2)01] (5.18)
1+1,j (A2F1 + B2)C1 - (A1 F1 + B1)C2

G1. . = [(A2F1 + B2)(E1 - A1 G1) - (A1 F1 + B1)(E2 - A2G1)]
1+1,j (A2F1 + B2)C1 - (A1 F1 + B1)C2

(5.19)

All subscripts, which are the spatial coordinates, are IJ unless otherwise stated. This

recursive operation forms the first sweep from i =1 to i = I.
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At i = I, h is known for all time and thus U can be calculated at i = I from equation

(5.16)

n+1/2 F1 hn+1/2 G1
UI ,j = 1,1 1,1 + 1,1

(5.20)

Now, by substituting equation (5.16) into (5.11) and making h1Jo+U2 the subject of the

formula the following recursive equation for h is obtained:

and hence the recursive equation for u is

n+1/2 F1 hn+1/2 G1
Ui,j = i,l I,j + i,j

(5.21)

(5.22)

Thus all values for U and h can be calculated. This recursive operation forms the

second sweep from i =I to i =1. Note that during the second sweep, U LJ
o

+U2 should

not be recalculated as it is defined here. It is important to note that this double

sweep operation is done for j in the range [l,dim2]. In the above derivation the

subscript j has been omitted where it is not necessary in order to simplify the

derivation of equations. There is no superscript necessary for H as the depth of the

estuary bed below Mean Lake Level (MLL) is assumed to be constant.
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5.2.2 Explicit Method

Assuming that variables in the y - direction are fixed with time, equation (5.5) can be

rewritten as

(5.23)

Rearranging equation (5.23), v can be solved for all i E [l,diml] andj E [1,dim2] by

the following

n+1/2 n * At ( n n) * 6. t ( n n)
vi,l = vi,l - u1,1 2AX V1+1,1 - vi,l - vi,J 2Ay v1,1+1 - vi,1

gvnv
+ 9~(H.. - H·· 1 + h.~ - h.~ ) - At i,j2 Ay I,) 1,)+ I,) 1,)+1 2 '* 2

(Hi,1 + hi,j) Cc

(5.24)

5.3 CONSTANTS

5.3.1 Depth of the bed below the Mean Lake Level

The region of the St Lucia Estuary Mouth that is being modelled is approximately

rectangular. The maximum depth of the bed below the MLL within the modelled

region of the estuary is 6 m according to the Anderson & Huizinga (1990). However

this occurs in a narrow channel. The model which has been developed cannot cope

with large changes in depth over a single grid spacing ~x, which is 50 m in the
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simulations that have been run, without making the time step very small. Thus, as the

aim of this study is to establish a model that with time and a good data set could be

refined and used on the St Lucia Estuary the depth was averaged over each grid cell,

thus resulting in the depth ranging from 1.6 m to 2.2 m, see figure (5.3). The location

of features such as ebb and flood tidal channels was obtained from Anderson &

Huizinga (1990).

5.3.2 Absolute Roughness

According to Abbott & Basco (1989) Chezy's resistance coefficient, C" can be

calculated by the following formula when using the metric system:

C = 1810g 6A
c 0

a+-
7

(5.25)

where R is the hydraulic radius, 0 is the thickness of the laminar sublayer and a is the

absolute roughness or ripple height. According to Anderson & Huizinga (1990) the

absolute roughness within the modelled section of the estuary is approximately 0.06

m and it was assumed that this value would remain comstant. The thickness of the

laminar sublayer, 0, is directly proportional to the kinematic viscosity and inversely

proportional to the shear velocity and is usually very small relative to the absolute

roughness. Thus the 0/7 term can be omitted from equation (5.25).
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Figure 5.3: The depth of the bed below the MLL which was used In the
simulations,

86



5.4 INITIAL CONDITIONS

Time t = 0 for the model is taken as that time half way between high tide and low

tide for the sea at the St Lucia Estuary Mouth.

5.4.1 Initial Free-surface elevation

The elevation of the free-surface ranges from 0.62 m at the downstream side of the

estuary, to 0.59 m at the upstream side of the estuary. These values are based on the

recordings taken by the CSIR on 11 March 1989 (Anderson & Huizinga, 1990). The

recordings were taken at the mouth and at the bridge which is located 5 km from the

mouth. These records were then linearly interpolated for the modelled region.

5.4.2 Initial Velocity

No continuous recordings of the water velocity occur as up until now only one­

dimensional hydrodynamic models have been used on the St Lucia Estuary and these

usually use discharge as opposed to flow velocity. Wright (1990) recorded velocities

for a full tidal cycle at spring tide. The maximum flood-tidal velocity was +0.7 m.s-1

and maximum ebb-tidal velocity was -0.4 m.s-1
• (Note that flow from the estuary to

the sea is taken as positive, +, and from the sea into the estuary as negative, -).

These values were used as guidelines. However, the initial velocities used in this

model were generated by looking at the discharge recorded by the CSIR on 11 March

1989 (Anderson & Huizinga, 1990) and then a mean flow velocity for a given cross­

section was calculated by dividing the discharge by the cross-sectional area of the

estuary. In general the flow is greater in the deeper regions of the estuary. Thus the

mean flow velocity was increased or decreased by comparing the depth at a given grid

point to the mean cross-sectional depth. The actual formula for doing this is

I - 1j (1 0.5 (HI,j + hl,j - Hj)ve. j - - + )
I, A. H

J j

(5.26)
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where ~ is the flow velocity, Aj is the cross-sectional area and Dj is the mean cross­

sectional depth of the bed below the MLL for cross-section j. This initial flow

velocity is then broken down into two components, one parallel to the x - direction

and one to the y - direction. The values of these are based on the flow orientations

depicted by Wright (1990).

5.5 BOUNDARY CONDITIONS

At each boundary, one of the three variables u, v or h has to be specified. At the

upstream side of the estuary v is specified. On both banks of the estuary, U is

assumed to be O. This is because it is assumed there is no inflow to or outflow from

the estuary other than from the lake system and the sea. At the banks, v does not

have to be 0, or in other words, full slip boundary conditions are used. At the

downstream side of the estuary the free-surface levels are specified. When solving

for either u or v explicitly, the predicted values are used on the boundaries where

values are not specified.

5.5.1 Free-surface

The free-surface is specified at the downstream side of the estuary. Due to the tides,

the water-levels at the sea form a sinusoidal curve, see figure (5.4). However, the

effects of the changing tide take a while to propagate up the estuary. Thus, there is

a phase shift of the free-surface curve within the estuary.

The boundary values of the free-surface levels can be written as follows:

h(t) = - (X sin (J t + 4» + P (5.27)

where Cl is the amplitude, which is half the difference between the free-surface level

at high tide and at low tide; (J is a constant which converts time in seconds to an
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Figure 5.4: Water-levels at the sea and in the mouth of the modelled region of the
estuary (Anderson & Huizinga, 1990).

angle in radian measure; <I> is the phase shift; and ~ is the datum, which is the mean

of the free-surface values at high tide and low tide.

The St Lucia Estuary was ebb-tidal dominated when the recordings were taken, thus

the phase shift, <1>, was not constant throughout the tidal cycle. It can be seen in

figure (5.4) that on 11 March 1989, there was a phase shift of 2 hours 06 minutes at

low tide whilst only 44 minutes at high tide. To cope with this, the phase shifts at

high and low tides are specified, and then the phase shift at any other time is

calculated by doing a linear interpolation.

5.5.2 Flow Velocity

The flow of water within the estuary does not change in synchronisation with the tides

due to the momentum of the water. Depending on the lake levels, the estuary will

either be flood-tidal dominated if the lake levels are lower than the sea level or ebb­

tidal dominated if the lake levels are high relative to the sea. Although the flow

velocities are cyclical a sinusoidal curve is not suitable for the description of the flow

velocity, see figure (5.5).
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Figure 5.5: Discharge at the upstream boundary of the modelled region of the
estuary (Anderson & Huizinga, 1990).

The model uses a series of linear relationships for the flow velocity. This requires

that the minimum and maximum flow velocities are specified as well as the following

times, see figure (5.5): A, the time taken from low tide at sea to that when a reversal

in flow direction is noted in the estuary; B, the delay after low tide at sea before the

maximum flow velocity is recorded in the estuary; C, the time taken from high tide

at sea to that time when a reversal in flow direction is noted in the estuary; and D,

the delay after high tide at sea before the minimum flow velocity is recorded in the

estuary. The curve is then broken into a series of straight lines AB, BC, CD and DA2

(where A2 is the time taken from low tide at sea to that when a reversal in flow

direction is noted in the estuary during the following tidal cycle). Linear interpolation

is then used to determine the flow velocity at intermediate times.

As no data have been collected with regard to the change in orientation of the flow

throughout a tidal cycle the orientation used in the model is fixed, although reversals

of 1800 occur as the flow changes from ebb-tidal to flood-tidal flow.
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5.6 STABILITY

For the explicit solution to be stable the Courant Number, Cr, must be less than or

equal to one. The Courant-Friedrichs-Lewy, (CFL), condition interprets the Courant

Number as the ratio of the analytically calculated celerity of propagation, C, to the

numerically calculated celerity of propagation As/At. This ensures that calculated

values at a future time do not use values outside their domain of dependence, which

is determined from the characteristics. In an estuary, tidal disturbances travel with

a celerity which according to McDowell & O'Connor (1977) can be approximated by

(5.28)

For a linearised, two-dimensional operator, the domain of dependence is now a

characteristic cone, and thus this cone should lie within or on the region of

interpolation of the surrounding points (Abbott & Basco, 1989), see figure (5.6).

Thus the CFL condition becomes

cer = --- < 1as
y2a t

(5.29)

where As is the distance between two adjacent grid points in either spatial direction.

Thus As =Ax =Ay. In the model As =50 ID and the sum of maximum depth of the

bed below MLL and the free-surface elevation above the MLL at any time is 3 m.

Thus At < 7.4 s. The double-sweep scheme, which is an implicit scheme, is stable for

all values of Cr. However with Cr > 1, phase errors increase as the numerical waves

move too slowly and thus the solution to the scheme becomes inaccurate.
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The implementation of this

Alternating Direction Implicit finite

difference technique is discussed in the

next chapter.

As

AS

Figure 5.6: Limits for the characteristic cone
for a two-dimensional operator
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CHAPTER 6

COMPUTER SIMULATION

6.1 INTODUCfION

In this chapter the computer facilities available for the development of the

hydrodynamic model will be specified; and the boundary conditions and results of two

trial simulations will be discussed. The trial simulations are used to determine the

areas where the model must be improved before it can be calibrated and used for the

St Lucia Estuary.

6.2 THE COMPUTER PROGRAM

The hydrodynamic model was developed on an IBM compatible 80826 (without a

numeric co-processor) and 640 KB memory. The programming language used was

Turbo Pascal version 5.0.

The hydrodynamic equations are solved using a grid system to describe the variables

at any spatial location throughout the estuary. At the centre of each grid cell the flow

speed in both the x- and y-direction and the

free-surface elevation above the MLL are

specified, see figure (6.1). The centre of each

cell will now be referred to as a datum point.

These data are stored on the computer as a

matrix with the same dimensions as the grid. In

order to solve the hydrodynamic equations, a

maximum of 16 matrices with these dimensions

.I
~ ..,

-.' --t------t--j~

--J+'i. . ~+1 ~
are required within the memory of the "., x.

computer at anyone time. For the simulations , 1
y y

done in thesis, the grid dimensions were 11 x Figure 8.1 Specification of

33. The data can be stored in numerous data variables within the grid
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types which depend on the range and number of significant digits which are stored.

The variables which are specified in the simulation are real, thus they could be stored

in the computer in any of the real types of data storage, two of which are 'real' and

'single', the former is 6 bytes in size and stores 11 significant digits and the latter is

4 bytes in size and stores 7 significant digits. Although, in the simulations done in this

thesis, the computer would have sufficient memory to use either data type it was

decided that 'single' would be used so that at any future stage estuaries with larger

grid dimensions could be modelled without having to make any changes to the

program. Also, due to the fact that the flow variables can only be measured

accurately to within a couple of decimal places and that they are all within a small

ranges, the flow velocity range is -1 m.s-1 to 1 m.s-1 and the free-surface elevation

relative to the MLL range is -1 m to 1 m, the use of 11 significant digits is

meaningless.

The computer model is split into two separate programs. The first, LOADALL, is

used to input all the necessary initial data and boundary conditions. When executing

LOADALL the following screen appears

:= ::::::::::::: ::: .::: :.-:::=::::::=.: :.-=:.--:::.:: ==

W1lictl data do YOLl wlsh to lr~put~?

1 -... I)e p t.. i·-j

.~ - Boundar-y -flows
~ Il-)i-ta:l ·free··~·sljrface data
5 ._- ~o (nCJ~'e DA"fA "to lili~ut

Figure 6.2 Screen displayed by LOADALL
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Option 1 prompts the user to input the depth of the estuary bed below the Mean

Lake Level (MLL) for all the data points. For the purpose of the simulations that

have been done in this thesis the depth was specified at every alternate datum point

in the x-direction and every 8th datum point in the y-direction. The computer then

used linear interpolation to calculate the remaining values. This was only done

because the simulations were carried out using hypothetical data. A minor

adjustment to the program would suffice for the input of all the real depth values.

Options 2 and 3 require the input of the variables which are needed to determine the

boundary conditions at any given time as discussed in section 5.5.1 and 5.5.2.

Option 4 requires the input of the initial free-surface elevations relative to the MLL.

The same method of data input is used as that used for the input of the depth of the

bed below MLL.

At this stage the initial flow velocity for each datum point can be calculated by the

method described in section 5.4.2.

Option 5 can be used at any stage to exit the program.

The second program SIMULATION performs the computer simulation. All

constants, user defined data types, and global variables used by SIMULATION, are

declared in the unit DSVARl. The only way of changing these is by changing this

unit. The duration for which the simulation is to run must also be preprogrammed

in SIMULATION. Figure (6.3) is a flow chart for the program SIMULATION.

Two data sets, one at time t =0 and the next at t =tm, where tm is the size of the

time step, are required to run the program. In the simulations done in this thesis, the

data loaded in LOADALL is assumed to be that for t =0 and to get
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Figure 6.3 Flow chart for the program SIMULATION

START
t = 0

-' /
I' If'
~

FRICTION

1
BOUNDARY

1
n = 0,
r -- "

if'

PREDICT

I
CONSTMAT

/ ~ n - n + 1-

r
\

CALCVPGM FIRST

1 1 READJUST
f\

CALCUPGM SECOND

~ /
is n - O~YES ...- ,

,r--.
,

J
NO

1
REPLACE

1
t = t + tm

1
is t < t*-.YES ...,

t
NO

1
STOP

96



the data necessary for t = tm, a constant value was added to the initial data.

Although this method is not accurate, it suffices when the simulation is only being

carried out for hypothetical data. For a simulation where accurate initial data is

available, two different data sets would have to be entered.

The unit FRICTIONMAT generates the Chezy coefficient for each datum point.

Although the absolute roughness is assumed to be constant, the hydraulic radius is

continually changing as the free-surface elevation changes. Thus the friction matrix

needs to be generated at each time step.

The unit BOUNDARY calculates the required boundary conditions as specified in

section 5.5. As the time operator is split into two levels, the boundary conditions are

calculated for both t = tm + 1/2 tm and t = 2 tm.

As discussed in section 5.2 the equations (4.20), (4.21) and (4.29) need to be

linearised. This is done by predicting values of the flow velocity and free-surface

elevation at t = 2 tm. Then using these predicted values and the values at t = 0 and

t = tm, approximate values for the flow velocity and free-surface elevation are

generated for the duration of the time step. This process is done in unit PREDICT.

CONSTMAT generates the second terms in equations (5.4) and (5.5). These terms

are constant throughout the complete iteration and thus this unit simplifies the

program.

The unit CALCVPGM solves equation (5.5) explicitly, thus generating the flow speed

in the y-direction at time t = tm + 1/2 tm. The unit FIRST performs the first

implicit double sweep procedure on equations (5.4) and (5.6), thus generating the

flow speed in the x-direction and the free-surface elevation at time t =tm + 1/2 tm.

The values of the flow variables at time t = tm + 1/2 tm are then used in the units

CALCUPGM and SECOND. CALCUPGM solves equation (5.4) explicitly, thus

generating the flow speed in the x-direction at t =2 tm, while SECOND performs
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the second double sweep procedure on equations (5.5) and (5.6) to generate the flow

speed in the y-direction and the free-surface elevation at time t =2 tm.

At this stage, the values of the flow variables that have been calculated for t = 2 tm

and the values for t = tm are compared, and the values at t = tm are altered in

order to give a better approximation to the real values. This is done as, initially, the

data at time t = tm was generated by just adding a constant value at all data points

throughout the estuary. The procedures from the unit PREDICT to SECOND are

repeated. This repetition improves the original predictions and thus gives better

approximations when the equations are linearised.

The final stage within the program is to change the data sets so that the data at t =
tm now becomes the initial data set the data at time t = 2 tm becomes the second

level data set. The process is repeated to calculate the flow variables at the next time

t = 3 tm.

The simulation halts when the time for which the flow variables are being calculated

exceeds some previously specified time, f.

6.2 DETAILS OF TWO SIMULATIONS PERFORMED

Two simulations of 120 seconds each were performed using the computer model,

where the time step for each iteration was 2 seconds. The reason for the short

duration of each simulation was, that at this stage, only hypothetical data were being

used and the intention was only to check whether the model worked and to identify

problem areas.

For the first simulation the initial time was taken as that time halfway between the

high and low tides for the sea moving towards the low tide. In figures (5.4) and (5.5)

this corresponds to the time t = 0 s. The second simulation was performed exactly

half a tidal cycle later, or in other words the initial time was t = 22320 s in figures

(5.4) and (5.5). For both simulations the same depth data were used, see figure (5.3).
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Figures (5.4) and (5.5) show water levels and flow velocity values which were

recorded during a spring tide on the 11 March 1989 by Anderson & Huizinga (1990).

The maximum and minimum values for the flow velocity and water levels were halved

in the simulations in order to approximate a tidal cycle mid way between spring and

neap tide. The output for the first simulation can be seen in figure (6.4) and for the

second simulation in figure (6.5). In the first simulation the initial flow velocity was

predominantly into the estuary from the sea, or in other words in a westerly direction

and in the second simulation the initial flow velocity was predominantly in a easterly

direction.

A notable fact in the output of both simulations is that on the northern side of the

estuary the flow velocity is great and directed towards the centre of the estuary. This

could be as a result of the steeper slope of the estuary bottom on the northern side

of the estuary as opposed to the southern side, see figure (5.3), or incorrect boundary

conditions on the northern bank. In both cases this has resulted in a heaping effect

of the water on the southern side of the estuary. It can also be seen that in the

shallower regions of the estuary, the flow is generally less, and in the proximity of the

ebb-tidal and tlood-tidal channels the flow is greater. This emphasises the heaping

effect on both the southern and northern sides of the estuary and the development

of a relative trough over the channels.

In the first simulation, the flow should be in a westerly direction. However a reversal

of the flow direction occurred in the eastern region of the estuary. Similarly, in the

second simulation a reversal of the expected flow direction occurred in the westerly

region of the estuary. There are a couple of possible causes for this phenomenon:

(1) the boundary conditions are not correct. Thus the in the first

simulation the specified water levels at the eastern side of the estuary

are not adequate to sustain the initial flow velocity in the westerly

direction. Similarly, in the second simulation the flow velocity specified

at the western side of the estuary is not great enough to counteract the

initial pressure gradient which is acting in the opposing direction;
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(2) due to the presence of ebb-tidal and flow-tidal channels, see figure

(5.4), eddies are being formed. In both simulations the flow in the

proximity of the channels is directed towards the channel centres.

A problem that is apparent in the results of both simulations is that the restriction

of the flow parallel to the banks on the northern and southern boundaries is

incorrect. As the flow velocity is specified at the centre of each grid cell, see figure

(6.1), flow should be possible in the x-direction, only on the edge of the grid cell

which forms the bank is flow in the x-direction impossible. However, to calculate

what the flow velocity should be at these data points would require a vast amount of

data. At present no such data have been collected. This problem also emphasises

the heaping effects on the northern and southern sides of the estuary. Water can

flow into these boundary regions from areas within the estuary. However once the

water is in the boundary regions it can only be displaced in the y-direction. This

accounts for the excessive heaping in the corners of the modelled area, especially the

south-western and south-eastern regions.

Finally, the assumption that the absolute roughness, which is used in Chezy's

coefficient, is uniform throughout the estuary is probably incorrect. The value for the

absolute roughness was taken as that used by the Anderson & Huizinga (1990) for

their one-dimensional model of the St Lucia estuary. Anderson & Huizinga (1990)

altered the value of the absolute roughness in order to calibrate their model and thus

it is possible that the value was not the correct value to have been used in the

simulations performed in this thesis.
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CHAPTER 7

DISCUSSION

Ultimately, a sediment transport model for estuarine environments is required by the

Joint Venture Programme. As discussed earlier, for sediment transport to occur, a

sediment source and a transporting medium, which is capable of initiating and

sustaining transport", are needed. All sediment transport models which were reviewed

in this thesis are ~ependent on the physical sediment properties. Thus, before a

sediment transport model for an estuary can be developed, the following steps must

be carried out:

(1) A study of the sediment types;

(2) A study of the sediment sources;

(3) A two-dimensional hydrodynamic model must be developed.

For the St Lucia Estuary, the first two steps have been completed by Wright (1990).

This thesis has partially fulfilled the third step. The two-dimensional hydrodynamic

model which has been developed in this thesis and applied to a hypothetical estuary,

which is based on the St Lucia Estuary, still needs to be refined. However, to refine

this model, a vast data collection programme must first be undertaken. The following

sets of data, over several tidal cycles, are necessary to refine this model:

(1) the free-surface elevations relative to the Mean Lake Level (MLL)

across the breadth of the mouth of the estuary;

(2) the flow velocities across the breadth of the estuary at the upstream

boundary and close to both the banks;

(3) the size and extent of bed features throughout the estuary to improve

the absolute roughness estimate;
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Upstream

Figure 7.1 Grid that can be used for
irregular shaped estuaries.

In its present form, the hydrodynamic model developed can be used on any estuary

which can be approximated by a rectangular shape. Although it has not been done

in this thesis, as the modelled region of St Lucia estuary is approximately rectangular,

the model could be adapted in the following way so that it may be used for irregular

shaped estuaries:

(1) a large rectangular grid is used so that the whole estuary falls within

the grid area, see figure (7.1);

(2) for all points on the grid which lie outside the estuary, the depth of the

bed below MLL,flow velocity, and the free-surface elevation relative to

the MLL are also set at 0 for the duration of the iteration;

(3) the boundary conditions are the same as for the rectangular model.

However, the program "realises" it has reached a boundary if the

following or preceding grid point's depth below MLL is O.

(4) once the program "realises" that it has reached the boundary, it must

use different versions of equations (5.11) and (5.12), so that only the

forward-difference operators that use values of the flow variables on

the boundary, are not used.
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The hydrodynamic model cannot cope with regIons within an estuary that may

become exposed during a tidal cycle. In order to develop a hydrodynamic model that

is capable of coping with this, the exact locations and times during the tidal cycle at

which the areas will be exposed, must be specified, and these must then be treated

in a similar way to the boundary conditions.

For reasons discussed in section 4.3.1 the wind stress factor was not incorporated into

this model. However, it could easily be included with only minor programming

changes. The effect that the wind has on the wave energy cannot at present be

included in the model.

Once this two-dimensional hydrodynamic model has been refined and calibrated for

the St Lucia Estuary, the final stage in the development of a sediment transport

model can begin.
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