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Abstract

On-farm trials techniques have become an integral part of research aimed at improving

agricultural production especially in subsistence farming. The poor performance of

certain technologies on the farmers' fields known to have performed well on stations have

been of concern. Traditionally, on-farm trials are meant to address such discrepancies.

The main problems associated with on-farm trials in most developing countries are high

variability and inappropriate application of statistical knowledge known to work on

station to on-farm situation. Characterisation of various on-farm variability and

orientation ofexisting statistical methods may lead to improved agricultural research.

Characterization of the various forms of variability in on-farm trials was conducted.

Based on these forms of variability, estimation procedures and their strength have been

assessed. Special analytical tools for handling non-replicated experiments known to be

common to on-farm trials are presented. The above stated procedures have been

illustrated through a review of Uganda case. To understand on-farm variability require

grouping of sources of variability into agronomic, animal and socioeconomic

components. This led to a deeper understanding of levels of variability and appropriate

estimation procedures. The mixed model, modified stability analysis and additive main

effects and multiplicative interaction methods have been found to play a role in on-farm

trials. Proper approach to on-farm trials and application of appropriate statistical tools

will lead to efficient results that will subsequently enhance agricultural production

especially under subsistence farming.
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Chapter 1

Introduction

1.1 Background

Uganda enjoys a long agricultural research tradition, starting from the early colonial pe­

riod when reputable and outstanding research stations at Kawanda, Namulonge, Serere

and Entebbe were established. The faculty of Agriculture and Forestry(Makerere Univer­

sity) commenced agricultural research in 1957 (NARO, 2002). The impact on agricultural

production of on-station research results has been slow. One of the reasons has been the

lack of on-farm trials component in technology development and evaluation.

On-farm trials are experiments conducted on the farms, usually with the co-operation

of and participation of the farmers (Njuho and Milliken, 1995). One of the major objec­

tives of an on-farm trial is to test the performance of one or more improved technologies,

usually in comparison with the farmer's own practices, under real farm conditions and

under farmer management. Mutsaers, Weber, Walker and Fischer (1997) argued that tri­

als conducted under maximum farmer management are the only valid way of testing new

technology provided the farmers treat the trial fields in the same way as their other fields.

In Uganda, national (Kawanda, Namulonge, Serere) and international(International Insti­

tute of Tropical Agriculture (UTA), International Center for Tropical Agriculture (CIAT),

etc ) agricultural research institutes have left the confines of their research stations to test

new technologies under the small-scale farmer's conditions. It has become a policy of

the research institutes in Uganda to test all their new technologies under the farmer's

condition before giving recommendations to farmers (NARO, 2002). In on-farm trials,

1
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scientist have to cope with experimental conditions which frequently have only a remote

resemblance to controlled experimental conditions of the research stations.

Involvement of farmers and the use of their field/farms in agricultural research result

in a high variability in the responses being measured (Mutsaers et al., 1997) . Field­

ing and Riley (1998) stated that variability in responses resulting from many sources

in the farmer's field is likely to be greater than that from sources in the research sta­

tion. Large variability between and within farms complicates on-farm trial design and

analysis, and provides major challenges to biometricians and data analysts (Nokoe, 1999;

Oyejola, 1999). Based on the findings by Fielding and Riley (1998), Nokoe (1999) and

Oyejola (1999), there is a need for understanding the nature of on-farm variability and

the suggested remedial approaches.

Uganda is a very diverse country in terms of biophysical, cultural, socioeconomic and

religious aspects. This gives rise to a large number of sources of variability encountered

by scientists as they cross biophysical, cultural, socioeconomic and religious boundaries

in the course of carrying on-farm trials. Trials conducted under the above mentioned

conditions and under the farmers' management exhibit various forms of variability some

of which are inherent. Research reports from Uganda (University theses and National

Agricultural Research Organization (NARO) annual reports) indicate handling of these

various forms of variability as a major problem in on-farm trials.

Although variability in on-farm trials has been cited as a major problem, less attention

has been given to understanding the different forms (biophysical, cultural, socioeconomic,

etc) of variability. Questions such as 'what are the non-experimental factors likely to

affect my trials or over what area of my trial will a particular factor have influence?'

remain unanswered. Knowledge of various forms of on-farm trial variation would enable

researchers to focus their attention on effective methodologies. Such methodologies will

consider the levels of variability in the design and analysis of data from on-farm trials.

Despite the realization of the usefulness of on-farm research, scientists were initially

reluctant to carry out on-farm research due to doubts on publication of results from such
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a highly variable experimental condition (Oyejola, 1999; Njuho and Chui, 1999). Many

researchers are yet to be convinced of the statistical validity of on-farm trials (Njuho and

Milliken, 1995; Nokoe, 1999). Some groups of researchers do not regard any research

conducted on farms as scientific because many on-farm researchers disregard basic sta­

tistical principles (Njuho and Milliken, 1995). Most scientists in developing countries are

trained for conventional on-station research and these are the methods they are applying

in on-farm trials. The traditional on-station experimental designs such as randomized

complete block design have been transferred to on-farm trials without any modification.

A review carried out in Uganda (see section 5.1) indicates that 100% of the on-farm trials

carried in the last five years (1997 - 2001) used the traditional Randomized Complete

Block (RCB) design and all those experiments were analyzed using ordinary analysis of

variance (ANOVA) methods. Mutsaers and Walker (1991) argued that scientists working

under such a highly variable situation (on-farm) need reliable research methods and an­

alytical techniques which are often outside the realm of conventional on-station research.

As noted by Riley and Alexander (1997), as agricultural research becomes multidisci­

plinary, deficiencies in statistical methods are likely to increase with greater complexity

and thus new approaches ought to be availed to researchers.

Many approaches for analysis of variability in on-farm trials have been developed/proposed

(see Hildebrand, 1984; Njuho and Milliken, 1995; Hildebrand and Russell, 1996; Mutsaers

et al., 1997; Njuho and Chui, 1999). However, the main question that remains to be an­

swered is 'why are those methodologies not being utilized by researchers especially those

in the developing countries like Uganda?' Riley and Alexander (1997) pointed out that

statistical methodology for use in participatory on-farm trials is available but not neces­

sarily documented in a form easily used by non-statisticians. This conforms to a general

statement made by Mclean, Williams and Stroup (1991) that researchers (practitioners)

consistently report that the statistical literature to date falls well short of providing them

with adequate guidelines for making informed choices of the methods to use. Whilst stan­

dard methodology is widely and clearly documented, statistical techniques for handling
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on-farm trials is not catered for in the standard statistical training courses and literature

on them is quite scanty and sometimes difficult to understand. Statistical methodologies

should be availed to the researchers in a more tractable and easy to use form.

There is great need to motivate on-farm researchers to use new or improved approaches

of analysis of data from on-farm trials. Demonstrating to on-farm researchers how these

methodologies can improve their results can give them confidence in on-farm trial, statis­

tical methodologies and encourage more researchers to get involved.

This study concentrated on identification and understanding of the various sources of

variability that occur in on-farm trials and the methods of analysis of variability. For a

proper understanding of the various sources of variability in on-farm trials we need sta­

tistical methods for analyzing the variability. We also looked at various statistical stools

that can be used for analyzing data from such trials. Identification and understanding

of the different sources of variability and their relative importance in on-farm trials to­

gether with the use of the right data analytical techniques can improve the efficiency of

these trials. This will not only improve the quality of research work but also encourage

more researchers to get involved in on-farm trials, which is the basis of development and

adoption of new technologies.

Chapter 2 reviews literature on on-farm trials, with emphasis on variability, designs

and analyzes. Chapter 3 deals with the characterization of the possible sources of vari­

ability in on-farm trials. Variability in agronomic and animal on-farm trials, levels at

which variabilities occur and possible indicator variables to be measured are discussed.

Finally the possible utilization of indicator variables are suggested. Chapter 4 focuses on

procedures for analysis of variability in on-farm trials. A mixed model is proposed and

discussed as an alternative method for assessment of variability in on-farm trials. The

additive main effect and multiplicative interaction effect model (AMMI) and adaptability

analysis (AA) are discussed as useful tools for handling variability in on-farm trials. In

Chapter 5 we examine cases of on-farm trials in Uganda. An overview of the status of

on-farm trials in Uganda is presented and briefly discussed. Three examples are used to
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illustrate analysis of variability using the mixed model and the usefulness of AMMI and

AA. Chapter 6 consists of the conclusions.

1.2 Objectives

Overall objective

To determine the causes of variability in on-farm trials and propose some methods of

analysis of this variability.

Specific objectives

• To review the status of on-farm trials in Uganda.

• To characterize the different sources of on-farm variability and their causes.

• To assess methods of analysis of variability in on-farm trials.

• To provide illustrative examples on the analysis of variability of on-farm trials.



Chapter 2

Literature Review

2.1 On-farm research

On-farm research is conducting an important part of research together with farmers in

their own environment with aim of finding adaptable and sustainable solutions to their

production constraints. On-farm research has two major components which are on-farm

trial and diagnosis (see Mutsaers et al., 1997; Oyejola, 1999). Diagnosis help in strat­

ification of farming environments and regions and identification of farmers' production

problems so that appropriate solution can be found (Mutsaers et al., 1997). On-farm tri­

als are therefore a component of a broader on-farm research. Most literature treat on-farm

trials under the broader heading of on-farm research. There are many reasons for con­

ducting on-farm trials, and most of them are presented under the importance of on-farm

research (see Sumberg and Okali, 1988; Mutsaers et al., 1997; Janice 2000 and Francis,

2001). On-farm trials are classified according to the level of participation/involvement

of the farmer and the researcher. The categories include researcher designed and man­

aged; researcher designed and researcher-farmer managed; researcher designed and farmer

managed, and farmer designed and farmer managed (Okali and Farrigton, 1994; Coe and

Franzel, 1995; Riley and Alexander, 1997). Mutsaers et al., (1997) pointed out that the

above classifications of on-farm trials are more confusing than useful and stressed that

the basic principles of on-farm trial is that the degree of farmers' management should be

maximized.

6
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2.2 Variability in on-farm trial

The high degree of variability in the responses of on-farm trials has been reported by many

authors (Njuho and Milliken, 1995; Fielding and Riley, 1997; Mutsaers et al., 1997; Njuho

and Chui, 1999 and Nokoe, 1999). The fact that conditions on the farms are very variable

owing to different degrees of farm management and other factors greatly contribute to

high variability in on-farm trials (Njuho and Chui, 1999). Mutsaers and Walker (1990)

pointed out that the two main sources of variation in on-farm trials are between farms or

between sites variation and within-farm or within site variation. Between-farm or between

site variation is due to differences in such factors as site fertility, shading, temperature,

humidity, rainfall, crop disorders, etc, as well as differences in planting dates and other

basal treatments often lumped together as 'management'. Within-farm or within site

variation can result from farmers carrying out operations such as weeding unevenly over

trial plots, localized incidence of crop damage, micro-variation of soil conditions, shade

and premature harvest of part of the plots (Mutsaers and Walker, 1990; Mutsaers et al.,

1997). In the case of animal trials within farm variation can be due to differences in

feeding, housing or the management of individual animals. Farm differences (variation)

arise from social, cultural and economic factors as well as from biophysical factors such

as soils, vegetation and climatic influences (Hildebrand 1984). Conducting experiment

in the farmer's field/farm enables the researchers to monitor variation in climate, soils

and biology (Collinson, 1987). With the farmer's participation in the trial, researchers

can assess the effect of the interaction between treatments and the farmer's management.

Collision (1987) further argued that the flexibility in management practice is perhaps the

major small farmer's strategy for managing climatic and resource variation, and hence it

should be carefully considered in on-farm trials. Nokoe (1999) echoed the same sentiment

when he stated that high variability is a natural and indeed a desirable consequence of

on-farm trials. The high variability in on-farm trials posed problems in the design and

analysis of on-farm trials and led to the belief among some researchers that on-farm trials

cannot be planned (Nokoe, 1999).
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Effect of variability on estimation of treatment effects

Treatment effects in on-farm trials depend heavily on farmer practices and farm location

(interaction between treatment and environment). On-farm trials are often criticized for

their lack of precision due to uncontrollable factors which overshadow treatment effects

(Nokoe, per. com). By using farm (site) and plot/animal as covariates, it is possible by

use of a combination of standard statistical techniques to separate treatment effects from

environmental effects, and more importantly to show how the environment may influence

the treatment effects (Mutsaers and Walker, 1991). In theory variation between farms can

be accounted for by increasing the number of replications between and within farm. On­

farm trials are often not replicated within farms. Thus the interaction between treatment

and farms end up being part of the error term. Important information on farm differences

would be lost unless the covariates are recorded and statistical techniques are used to

separate a relevant part of the interaction from the rest of the error term (Mutsaers and

Walker, 1990). Nokoe (1999), suggested two approaches for solving the problem of high

variability in on-farm trials: (1) use of appropriate experimental design that takes between

and within farm variability into account and (2) examining the data sets from such trials

and searching for suitable models that best fit the data.

2.3 On-farm trial designs and sizes

Trial designs

The experimental designs used in on-farm trials belong to the class of nested designs

(plot/animal nested within farm and farm nested within village), and more often there

are no replications within the farm in order that the burden and interference on the

farmers' routine farming activities are kept minimum (Korie and Okechukwu, 1999). Ex­

perimentation on the farmers' field/farm poses problems not encountered on experimental

stations (Fielding, 1990). One main problem with on-farm trials is the limit on the num­

ber of treatments allowable per farmer's field or site. It is often recommended that where

there is a high degree of involvement of farmers, the number of treatments should not ex-
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ceed six so that farmers do not lose sight of the purpose of the trial (Mutsaers et al.,1997;

Oyejola, 1999). This puts constraint on the type of design and number of replications. Al­

though the Statistical Service Center (2001a) accepted that a large number of treatments

leads to complexity in design, which in turn can lead to partial failure of the trials, they

observed that the experiments are time consuming and hence costly and it would often

be wasteful to go for an on-farm trial with just three or four treatments. The Statistical

Service Center (2001a) suggested that a complex study could be split into simpler related

experiments that may differ in their level of farmer participation.

Another issue of concern in on-farm trial design is the definition of controls or standard

treatments. In on-farm trials the control is often the farmer's normal practices, which vary

from one farmer to another (Njuho and Milliken, 1995; Mutsaers et al., 1997; Statistical

Service Center, 200la). For example, local varieties or practices vary between farmers

and seasons. Where the objective is to compare new varieties with the local one, each

farmer's local variety can be used as control, and where there is need to standardize across

farms, a typical practice or system may be used (Oyejola et al., 1999). Lack of a common

control makes it difficult to evaluate the treatment effects efficiently across farms (Njuho

and Milliken, 1995). The farmer's normal practise cannot be regarded as a control in

the usual sense, i.e. as a baseline treatment for the whole experiment against which other

treatments are compared. The farmer's normal practice will be useful as a baseline for

each farmer, but the researcher may also wish to have a common baseline in addition

(Statistical Service Center, 2001a).

All basic and extended designs are possible in on-farm trials (Nokoe, 1999). The choice

of a design to be used on a given farm depends on the nature of the on-farm variation to be

controlled and number of treatments involved. Neeley et al. (1991) stated that the most

commonly used design in on-farm trials was randomized complete block, and that row

and column designs were not recommended for 'general use' in on-farm trials. However,

results from the study done by Fielding (1990) suggested that row and column designs

should be used as alternatives to randomized block designs as they can improve precision
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by about 10% compared to randomize block designs. Fielding (1990) further argued

that as row and column designs are relatively easy to design and can be analyzed by a

larger range of computer software packages than is available for spatial analysis, they are

doubly suitable where statistical support is limited. Nokoe (1999) also noted that most

on-farm trials have complete or incomplete block structures and have single or multi­

factor treatment structures. Split-plot and blocked designs, particularly incomplete block

designs, give the flexibility needed to accommodate farm/site conditions and treatment

management factors, which often play a major part in the researchers' decision on the

design to be used (Collinsons, 1987). As 'preventive' approach, Nokoe (1999) illustrated

some useful designs for on-farm trials. The designs included augmented block designs,

confounding and fractional replication schemes, latin squares and related designs, and

optimal row-column designs. Mutsaers et al. (1997) recommended the use of stepwise

and criss-cross designs. First order designs can be used for exploratory trials involving

many factors. Where there are many treatments to be tested, factorial replication and

confounding schemes are useful when the treatments have a factorial structure (Oyejola,

1999). Set up/down schemes described by Mutsaers et al. (1991) can also be used to

reduce the number of treatments. A combination of confounding and step up/down can

also be used.

Replication

For precise treatment comparisons there is need for sufficient replication - but at what

levels? It is usually preferable to have more farms and fewer repeats of treatments per

farm rather than fewer farms and more replications within the farm. Maximizing the

number of farms is generally more important in on-farm trials than replications within

farm (Mutsaers et al.) 1991). Consequently in on-farm trials, it is frequently the case

that there are many farmers but each farmer has only one replicate of a given set of

treatments (Statistical Service Center, 2001a). Njuho and Chui (1999) suggested that for

researcher-designed and farmer managed type of on-farm trials, at most two replications

per farm is needed to protect against missing values within a farm. The problem with
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having no within farm replication is that the farm-by-treatment interaction variation is

then normally used as the random (or residual) variation. However, the treatment effects

may really be different for the different farmers, and understanding such interaction e.g.

which treatments are most effective for which types of farmers, may be an objective of the

research. In such a case one would like to distinguish between interaction and residual and

having some replication within the farm allows this distinction. The Statistical Service

Center (2001a) suggests that consideration be given to a design where each farmer repeats

a single treatment. Alternatively, several (ten or more) farmers could repeat one treatment

not necessarily the same one through out. Fielding and Riley (1998) concluded from

their studies in Jamaica, that when only a few trials can be done, as many within farm

replications as possible must be included, but when 15 or more trials are used there is

little to be gained from replication. Several authors have advanced very strong practical

argument for the use of few within farm replications in on-farm trials (Mutsaers and

Walker, 1990; Mutsaers et al., 1991; Stroup et al., 1991; Mutsaers et al., 1997,). According

to Hildebrand and Russell (1996), the number of farm environments that need to be

included will vary depending on the number of factors, but 15 to 20 should be adequate

in most cases.

Plot sizes

The literature suggest that plot sizes for on-farm trials should be larger than those in on­

station trials (Collisons, 1987; Mutsears et al., 1997; Fielding and Riley, 1998). Fielding

and Riley (1998) noted that the sizes of the plots often must be large to incorporate the

possibilities of greater spatial variation caused by soil heterogeneity or interference to the

growth or yield of the plot. However, Collinsons (1987) argued that plot sizes should be

larger in a closer approximation to field scale.
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2.4 Nature of data from on-farm trials

The type of data to be collected depends on the objective(s) of the experiment. Different

types of trials require different types of data to be collected, and researchers should

carefully spell out at the inception of the trial the type of data to be collected and most

importantly how they will be used in the analysis (Mutsaers, 1991). The higher the degree

of farmer decision making the more need there is to observe and measure non-treatment

conditions in the trials. In on-farm trials data in most cases have hierarchical or multilevel

structure, Le. data is collected at different levels. For example, there can be information

at village, farm and plots or animal level (Statistical Service Center, 2001b).

In agronomic trials and at plot level, the relevant agronomic variables are crop yields,

stand counts, weed scores, farmers' relative assessment (e.g. better or worse), input vari­

ables (including labor) (Mutsaers, 1991; Mutsaers et al., 1997). In animal on-farm trials

and at animal level important variables include animal's breed, weight (birth, weaning

or live weight), growth rate, feed gain ratio, reproductive performance (kidding or calv­

ing rate, twining rate, live birth, etc), milk yield, mean milk yield per lactation, body

condition scores, feed and water intake, mortality rate, counts (faecal egg counts, tick

counts, etc), packed cell volume (PVC), worm burden, blood sample test result (positive

or negative, infected or non infected) (KARI, 1994). Farmers' assessments (ordinal) at

the treatment level are also appropriate. At farm level, soil characteristics (such as tex­

ture, pH), management practices, history of experimental site (field), vegetation, farmer's

demographic data, management of animals (housing, feeding, health care, breeding pro­

gramme etc) are useful (Ames and Ray, 1983; Mutsaers, 1991; Mutsaers et al., 1997 ).

Rainfall, temperature, humidity socioeconomic data (labor and input costs, prices of com­

modities) are needed at village/environment level (Mutsaers, 1991; Mutsaers et al., 1997).

Data on covariates appropriate to the objective of the trials must be selected. Such data

may be collected through surveys or other studies (Oyejola, 1999).

According to Njuho and Chui (1999) on-farm trials are characterized by missing ob­

servations, unbalanced data and some inflicted variations due to improper management
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of the trials. They recommended that efforts should be made to understand data coming

from such situations. Riley and Fielding (2001) noted that data from on-farm participa­

tory research are of poor quality and parametric assumptions might not always hold. On

the type of data to be collected, Riley and Fielding suggested that the limited resources

and time should be spent on the collection of data that characterize the environment and

farmers practices and that accuracy of measurement should not be over emphasized in on­

farm trials. Jiggins (1989) mentioned reduced quantity of numerical data and increased

quantity of fuzzy data among the disadvantages of participatory on-farm trials.

Most authors have not been clear on who should collect data from on-farm trials al­

though their reports indicate collective efforts of researchers, extension agents and farmers

during the trial period. Eremie et al. (1991) stated that most research institutes in Nige­

ria prefer to send their own technicians to collect data from on-farm trials than allowing

agricultural project development officers and subject matter specialist to do it. The use

of field assistants to monitor the field and collect management data was reported in maize

trial in Benin (Versteeg and Huijsman, 1991). The harvesting of the crop to determine

the yield is always done by the farmers together with field assistants or extension agents.

2.5 Analysis of on-farm trials

Because of the peculiarity of data collected from on-farm trials, care must be taken not to

apply the conventional methods incorrectly to analyze and interpret such data (Oyejola,

1999). Riley and Fielding (1998) demonstrated how non-parametric methods could be

used to analyze some data that may not lend themselves to the usual analysis of vari­

ance (ANOVA). Oyejola (1999) listed the following methods for analyzing on-farm trial

data: Analysis of unbalanced and non-orthogonal designs; Analysis of multiple levels of

variation; Analysis of repeated measures; Categorical data analysis (using procedures like

CATMOD in SAS); Economic analysis and farmer assessment. In what he described as

'Surgical' approach Nokoe (1999) enumerated a number of options for handling data from

on-farm trials which included graphical analysis as in modified 'stability' analysis (Hilde-
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brand, 1984) and incorporation of a environmental or site index in a conventional analy­

sis of variance (Mutsaers et al., 1997); Multiplicative interaction modelling (Milliken and

Johnson, 1989; Guach (MATMODEL), 1993 and Eauwijk, 1995); Correspondence analy­

sis; Regression modelling with covariates; Mixed model and Meta-analysis. Nokoe (1999),

suggested combined use of meta-analysis and mixed modelling as a very strong surgical

option for analysis of unplanned multi-site trials. Njuho and Milliken (1995) demonstrated

how a mixed model approach can be used as an alternative to meta-analysis for comparing

one treatment to possibly different controls. Grouping of farms/site as means of reducing

variability in analysis of on-farm trial data by monitoring changes in Coefficient of Varia­

tion (CV) has been discussed at length by Njuho and Chui (1999). Conventional analysis

of variance (including MANOVA) may be appropriate when the usual assumptions are

valid. When data are categorical, generalized linear modelling enables analysis of a wide

range of responses (nominal, ordinal and binary). Mixed model analysis allows for recog­

nition of the multiple levels of variation. It also allows for a distinction between fixed

factor effects (treatment effects etc) and random factor effects (effects of random errors,

block, farms, environments and their interaction with treatments). This method allows

one to combine experiments, which would otherwise have been conducted and analyzed

separately (Oyejola, 1999).

Participatory on-farm trial is a very important component of applied research since it

leads to finding adaptable and sustainable solution to the farmer's production constraints.

However, involvement of farmers in these trials results into high degree of variability which

most researchers are not well equipped statistically to handle. Variability in on-farm trials

come from many sources which are often not very well understood by most researchers

and data analysts. As a result, the design and analysis of on-farm trials are often more

complicated and needs special statistical attention as compared to on-station trials.



Chapter 3

Characterization of variability
on-farm trials

3.1 Introduction

•In

Studies related to on-farm trials take different forms which depend on the scientists' inter­

est. For instance an animal scientist may be interested in developing a feeding technology

for a particular area. The choice of the experimental material would depend on avail­

ability, knowledge and willingness of the farmers in that area. An agronomist may also

wish to conduct an on-farm trial to investigate the performance of a particular technology

compared to the farmers' one. Again the choice of experimental material would depend

on what would be readily available in the region of study. The highlighted situations

involve different sources of variability some of which are inherent. The term 'variability'

is viewed in the context of farmer's knowledge, socioeconomic status, cultural practices

and the general environment within which he or she lives. High variability therefore exist

both between farmers and between and within the farm environments. Different groups

of farmers and environments would have different constraints which require different so­

lutions or even different solutions for the same constraints. Uganda like most developing

countries in the tropics is diverse in climatic, biophysical, social, cultural, religious and

socioeconomic aspects. Farmers in different parts of Uganda have different farming sys­

tems characterized by the type of crops, crop combination and animals kept on the farm.

Farmers differ not only in farming practices but also in educational status, wealth, and

15
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other cultural and socioeconomic aspects. With a large number of forms of variability

from many sources and possibility of overlap between them there is need to point out

clearly the sources of variability that are likely to be encountered in on-farm trials so that

the design, analysis and interpretation of such trials is simplified.

3.2 Variability in an agronomic on-farm trial

The high variability in agronomic on-farm trials is due to various sources which can be

grouped broadly into four categories: plant genotype, management practices (past and

present management practices), socioeconomic and biophysical environment (see Figure

3.1). Each of these broad categories has components which contribute to the total vari­

ability either directly or indirectly. The importance of the contribution of each sources of

variability will dependent on the type of trial under consideration. For instance biophysi­

cal factors may have more influence on on-farm trials involving soil conservation methods

than plant genotype.

A stochastic relationship between the response variable Y and the effects of the dif­

ferent sources of variability can be given as:

Y = !(G,E,M,S) +c (3.1)

where! is a general mathematical function which can take any form, G is the effect of

the plant genotype, E is the effect of the biophysical environment of the crop, M is the

effect of past and present management, S is the effect of socioeconomic factors and c is

random error. The plant response is a function of the effects of genotype, environment,

management, and socioeconomic characteristics of the farmer and the farming community.

The plant genetic composition, environmental conditions, management practices and so­

cioeconomic disparities all contribute individually or collectively to the total variability

in plant responses. These sources of variability are briefly discussed in the next section.
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Figure 3.1: Schematic illustration of agronomic variability
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3.2.1 Plant genotype

Plant material used by farmers are often of different genetic composition and this leads to

variation in plant responses to both experimental and non-experimental factors. Plants of

different genotype vary in their response to pests and disease attacks, nutrient deficiencies

and other biophysical stresses such as extreme temperatures and humidity.

3.2.2 Biophysical environment

In this study biophysical environment consists of field characteristics and the climatic

conditions of the area of trial. Possible causes of variation of the fields are:

• Physical, chemical and biological properties of the soil

• Topography

• Susceptibility to pest and disease infestation

• Vegetation

• Field size

Greater variability is brought about by differences in soil types. Different soils respond

differently to rainfall and management inputs. For example, heavier fertile soils respond

well to high rainfall levels giving good yields but these areas show low productivity under

poor rainfall conditions. Chemical and biological properties of the soil are more prompt

to variation as compared to the physical properties to the extent that they can even vary

within the same field. This is due to the fact that chemical and biological characteristics

of the soil are easily affected by management practices. Soil characteristics can vary both

within and between farms. According FAO Uganda has about 40 different soil types

(FAO-UNESCO, 1978). However, in terms of agricultural productivity there are six

categories: soils of high to very high productivity, soils of moderate productivity, soils

of fair productivity, soils of low productivity, soils of negligible productivity and soil nil

productivity (Anon, 1996).
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Variation in topography mostly occurs between farms in different locations e.g. differ­

ent villages, counties, districts, regions or agro-ecological zones. Topographical variation

can also occur within the same location. The variation as a result of topographical dif­

ferences is much high for on-farm trials that cover a large part of the country. Uganda's

land form comprise of plateaus, highlands, mountains, rolling hills and flat lands. Most

of the country consists of plateaus between which there are valleys. The above differences

in topography can have great influence on the results of on-farm trials.

Vegetation also leads to variation in the responses of the fields since it can influence

the amount of shading experience by the crops, chemical, physical and biological charac­

teristics of the soil and occurrence of diseases and pests. Differences always exist between

fields due to the types and amount of vegetation in or surrounding the fields. Uganda has

ten (10) different types of vegetation: high altitude moorland and health, medium altitude

forests, forest/savanna mosaic, moist thicket, woodland, wooded savanna, grass savanna,

bushland and dry thicket, swamps (wet lands) and cultivation communities (Anon, 1996

). With increasing human activities there are too many changes in vegetation even within

those areas with the major types of vegetation.

Different fields sometimes have different susceptibility to pest and disease infestation.

Fields with a lot of weed seeds in the soil tend to be dominated by weeds and vice versa,

and the amount of weed/weeds sometimes depends on the method used to control weed

in the past. Diseases and pests sometimes move from one field to another implying that

fields which are more closer to the source of diseases and pests are prone to attack than

the ones which are far away. Some diseases are soil borne. Thus field which has the disease

causing agent is likely to suffer from disease attack as compared to the one without. The

effects of pests and diseases usually result in very high variability in agronomic on-farm

trials.

The differences in farm temperatures, wind speeds, humidity, rainfall and solar ra­

diation is due to differences in climate which varies from one place to another. The

differences in climate mainly occurs between places which are far apart. Using rainfall



20

received in an area as the most important climatic variable, Uganda is classified into

five major climatic zones: lake Victoria, Karamoja, western Uganda, Acholi-Kiyoga and

Ankole-western Uganda zones. These rainfall zones are defined more in terms of simi­

larities of rainfall distribution rather than by amount of rainfall. According to Scoones

(1998) variation in rainfall is the primary factor influencing pattern of crop out put in dry

land areas. The variation in climate exists between farms as well as between and within

seasons.

3.2.3 Management

The participation of the farmers in on-farm trials lead to variation due to their different

management practices. These practices differ due to the fact that the farms are on different

soils, have different environmental conditions and that the farmers' levels of understanding

are different. Management can vary both between and within farm (a farm can treat

different plots differently). The variation in management can be due to past or present

agronomic management practices.

Past management practices (Cropping history)

Fields are often put to different use by farmers and even when they are used for the same

purpose the management practices might be different. Variation in past management can

stem from differences in use of inputs such as fertilizers, pesticides, new crop varieties, etc.

Variation can also arise from differences in past cultural practices such as fallowing, crop

rotation, mulching, intercropping, erosion control and other soil conservation methods.

The same cultural practice can be performed in different ways by the different farmers.

For example other farmers have different fallow periods. The crops used for crop rotations

are always not the same or the same pattern is not followed by all the farmers. All the

differences in past cropping history have different effects on the fields thus leading to high

variability in agronomic on-farm trials.
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Present agronomic management practices

In farmer managed on-farm trials, agronomic practices which are not part of the treatment

are supposed to be entirely under the management of the farmer without interference from

the researchers (Mutsaers et al., 1997). Differences are bound to occur in planting dates,

land preparations, pest and disease control methods and the time, frequency and quality

of weeding since each farmer would do it his/her own way. Some farmers may decide to

use different crop varieties from others or some may apply fertilizers while others do not.

All these differences lead to high variability in data collected from on-farm trials.

3.2.4 Socioeconomic factors

Variation in educational background, ethnic or cultural background, age, sex and occu­

pation exist among farmers irrespective of their biophysical environment. The farmers

can be classified as commercial, subsistence, progressive or part time farmers depending

on the time and resources they allocate to farming as well as the purpose of production.

Access to cash and credits vary amongst farmers depending on whether a farmer has other

sources of income or has collateral security (to enable him/her acquire loan) or belongs to

a farmers' organization. Wealthy farmers can use hired labor while poor ones have to de­

pend on family labor. Land ownership, cattle ownership, labor availability, access to cash

and ownership of tools can all be expected to have direct impact on variability (Scoones,

1998). Health and living conditions of the farmer and his family also vary greatly and

this affects other farm operations.

Socioeconomic variations also exist between the farming communities. There are vari­

ations in policy, power sources, water sources, market, schools, hospital and other infras­

tructures. Socioeconomic characteristics do not affect crop response directly but indirectly

through their effects on other factors such as present agronomic practices as well as past

management practices which in turn affect field conditions.
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3.3 Variability in animal on-farm trials

Variability in animal on-farm trials can be broadly classified into two: environmental and

genetic variations.

3.3.1 Genetic variation

Genetic variation stems from the different breeds (exotic, cross or local) which are present

on a given farm. The different breeds differ in growth rates, reproduction, productivity

(milk, meat, eggs, wool etc), tolerance to adverse conditions (pests, diseases and unfavor­

able climate) etc. Variation also exist among individual animals of the same breed (age,

sex, body condition scores, weight, size and shape). The above differences affect animal

responses to management practices. Some of the individual animal characteristics are as a

result of interaction between genotype and environment. Thus genotype variation affects

the animal responses directly and indirectly through interaction with the environment.

Genotypic effects variation together with their interaction with the environment result in

variation among animals (see Figure 3.2).

3.3.2 Environmental variation

Animal environment can be divided into biophysical and managerial environments. The

biophysical environment of the animal consists of climate, soil characteristics, topography

and vegetation. Variation in climate is due to differences in rainfall (amount, distribution

and pattern), temperature, humidity, wind and solar radiation. The main components of

managerial environment are feed, water supply, housing, management of animal health

and other husbandry practices. Biophysical factors such as climatic conditions, topogra­

phy, soil characteristics and vegetation affect animals both directly and indirectly. Direct

effects include the effect of temperatures, humidity, solar radiation, on the growth and

development of the animal while indirect effects include environment-genotype interac­

tions. Animal environment in this case is the sum total of all external conditions and

circumstances that affect the health, well being as well as productive and reproductive
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Figure 3.2: Schematic illustration of genetic variation
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performance of the animal.

3.3.3 Management variation

The domestic livestock performance is strongly influenced by biophysical environment,

management system and husbandry practices (Carpenter, 1998). Small scale farmers in

developing countries do very little to alter the biophysical environment of the farm animals

but try to improve the production of their animals through various management practices.

Due to various socioeconomic factors the level and type of management practices carried

by these farmers vary greatly. Management practices are aimed at improving animal

health, nutrition, housing, and breeding. We can therefore break management into health

management, feeding and water supply, housing, breeding and other husbandry practices

(Figure 3.3).

Nutrition and
feeding

Figure 3.3: Schematic diagram of components of management practices that result in
variability
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Animal health management

There is a high variability in the way farmers manage the health of their animals. The way

the farmer manages the health of his/her animals depends on the resources available, how

he/she views the problem, his/her level of knowledge, the physical environment and the

breed and the characteristics of the individual animal under consideration. Farmers apply

different methods for the control of diseases and parasites affecting their animals. Control

methods such as immunization, dipping, spraying, control grazing, burning of grazing land

are performed differently by farmers depending mainly on the prevailing socioeconomic

factors. Farmers' response to disease control programmes vary greatly. For example, some

farmers do not immunize their animals due to cultural beliefs. Farmers often use different

treatment methods for a given disease and in most cases even the same drug may be

administered differently. The above differences in animal health management result in

very high variability in on-farm trials. This variability occurs both between and within

farms.

Nutrition and feeding

Nutrition and feeding are regarded as important factors affecting livestock productivity

(KARI, 1994). In developing countries high variability is expected to exist in nutrition and

feeding of animals between regions, seasons, farms and even within farms. This variation

results from differences in quality and quantity of feed, and the method of feeding and

watering. The quantity and quality of fodders, forages and other feedstuffs used for

feeding livestock vary from one farm to another and from one region to another reflecting

both the prevailing farming system, agro-ecological zones and marketing opportunities for

products as well as the farmer's ability to purchase. In Uganda there are a lot of variations

in method of feeding animals. Some farmers practice confinement feeding regime (e.g. zero

grazing, intensive poultry system) while others allow their animals to wonder around (e.g.

free range system in poultry). Variation also exists in the supply, source and availability

of water to the animals. All the above differences contribute to variability in on-farm
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trials.

Housing of animals

Housing of animals is another source of variability in management especially in the de­

veloping countries. Variation exists in the type of housing provided to animals, housing

material, environmental condition (microclimate) inside the house, facilities provided and

the spaces available to the animals. Most small scale farmers in developing countries

like Uganda never provide sufficient shelter for their livestock especially cattle which are

always kept in an open kraal. Differences in housing of animals on the farms can result

in variation in animal responses.

Other animal husbandry practices

Other animal husbandry practices that contribute to variation in management include

breeding methods, dehorning in goats and sheep, tail docking in pigs, debeaking in chicken,

etc. Farmers use different methods of breeding such as artificial insemination and natural

mating. In case of natural mating, some farmers may control breeding by castrating most

males leaving only those with desired characteristics. Breeding methods used will vary

from farm to farm and region to region due to socioeconomic factors such as ability of the

farmer to afford the method and level of knowledge of the farmer.

3.4 Indicator variables related to the sources of vari­
ability in on-farm trials

In order to analyze the variability that exist in on-farm trials, appropriate indicator

variables for the different sources of variability discussed in the previous sections need to

be established. These indicator variables can either be used at the planning stages of the

trial or during the analysis of the trials. For a given source of variability (management,

biophysical etc), we need to specify the variable(s) that can be used as it's indicator

variables (see Tables 3.1 and 3.2).

In case of uncertainties, a number of variables can be measured and the statistical
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Table 3 1· Biophysical attributes..
Characteristic Possible indicator variables

Soil related characteristics Fertility status, soil textural class,
(e.g. sandy Vs loam), water
retention capacity, etc

Vegetation related characteristic Dominant species, species diversity
species diversity degree, shadiness, etc

Pest and disease related characteristics Types, range and abundance of
pests, incidence, occurrence and
prevalence of disease, sources of
disease of pest(presence of other host),
weed infestation, etc

Climate related characteristics Rainfall (amount, availability and
distribution, pattern), temperature
(maximum, minimum and mean), humidity,
solar radiation, etc

Topography related characteristics Slope steepness, aspect, altitude
terrain etc

Size and other characteristics of the field
Field size, distance from home to

Ithe field, distance from other field

Table 3.2: Sources of variability in animal on-farm trials and possible indicator variables
Sources of Variability Possible indicator variables
Climate Rainfall (amount, distribution, intensity, etc)

temperatures, humidity, solar radiation
Physical environment Topography, vegetation (type, dominance,

shadiness, etc), soil characteristics

Managerial environment
Feed and nutrition Quality, quantity and types of feeds, water supply,

feeding regime and method, supplementation, etc
Health care Methods used for control of diseases and parasites

(Immunization, deworming, dipping spraying, drug
administration), frequency of application of each
control method and efficiency of carrying out each
method

Housing of animals Housing material, microclimate (ventilation,
humidity, temperature), spaces available to the
animals, facilities (bedding, waterers, feeding
troughs, etc)

Genetics Variability
Breeds Different breeds available
Individual animal characteristics Age, sex, body condition, size, weight, shape
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methodologies used to help us choose variables which are of importance in a particular

trial. Researchers' knowledge is also of great importance in choosing appropriate variables

to be used as indicators in on-farm trials. The different sources of variability may affect

part of or whole of the farm. For example, some may affect only the experimental plots

whereas others may affect the whole farm. \Ve need to determine what is affected by each

source of variability. This is especially important in multilevel on-farm trials.

In multilevel on-farm trials, variability occurs at each of the different levels. We

need to explain the variability at those levels. Each of the levels can be treated as

an investigational or sampling unit. The main task is therefore to identify the sources

of variability at play in each level and the attributes or characteristics which can be

associated with the different sources of variability. These attributes can be measured or

recorded and used to help explain variability at each level.

In agronomic trials, variation exists between plots within a farm, between farms in

a village and between villages. In a case like Uganda where the country is divided into

agro-ecological zones, variability exist between plots within a farm, between farm within

a village, betweens villages within a county or villages within district and between district

within an agro-ecological zone (Figure 3.4). Thus we have variation at plot, farm, village,

county/ district and agro-ecological zone levels.

Any of the components of the four main sources of variability can be used as attribute

at one or more of the levels (i.e. the attribute can be management practices, environment

characteristics or socioeconomic factors). For example, village to village differences can

be attributed to rainfall or temperature differences while farm to farm differences can be

due to soil types, household income or management practices. Plots to plot differences

may be due to treatment effects, unequal pest attacks, etc. In this way each level has

one or more attributes that can help in explaining the variation that occurs in the final

response. For possible biophysical attributes (indicator variables) that can be used to

characterize levels of variability in on-farm trials see Table 3.l.

The following socioeconomic characteristics can be used as attributes to characterize
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Figure 3.4: Schematic diagram of levels of variability in an agronomic on-farm trials
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levels at which variability occur in on-farm trials: sex, age, occupation and educational

status of the farmer, his/her family size and health status, labor availability, access to cash,

agricultural input, availability of social services such as hospitals, transport, market, etc.

The possible indicator variables for management practices that can be used to characterize

levels at which variation occurs in on-farm trials include dates of planting, depth of

planting, spacing (plant population), weeding (frequency, quality, timing, and date of

weeding). Management practices can vary at all levels e.g. at plot within a farm and at

farm within village (location) levels.

Animal on-farm trials have the similar levels at which variability occurs as agronomic

trials. Variation can occur between individual animals within a unit (management unit,

e.g. herd or pens or house), between units within a farm and between farms within a given

village/location as well as between different village/locations (see Figure 3.5).

Any of the components of the two main sources of variability in animal on-farm trial

can be used as attribute at one or more of the levels as in the case of agronomic trial

described earlier. For the various sources of variability in animal on-farm trials and

possible indicator variables that can be measured or recorded to represent the various

forms of variability were given in Table 3.2. Socioeconomic factors can also be used to

characterize levels at which variability occurs in animal on-farm trials in the same way

they are used in agronomic on-farm trials.
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Figure 3.5: Schematic diagram of levels of variability in an animal on-farm trials
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Guides on utilization of indictor variables and handling of responses

The indicator variables measured at the various levels can be used to explain variability

in many ways. The quantitative or qualitative nature of these variables dictate how they

can be used in the analysis of data from on-farm trials. Table 3.3 suggest how indicator

variables can be utilized in the analysis of on-farm trials. The method to be used to

analyze a given on-farm trial data depend -on the nature of indicator variables as well as

the response variables measured. Figure 3.6 give a general guide on possible methods of

analysis of trial data based on scale of measurement of the response variables

Table 33: Utilisation of indicator variables in analysis ofon farm trials-
Nature ofvariable Application

l. Covariate in ANOVA and Mixed model
2. Explanatory variable in linear and

generalised linear models (multiple

Quantitative
regression, logistics or probit, Poisson
models, etc)

3. Variables in multivariate techniques
4. Characterise environment in adaptability

analysis and additive main effect and
multiplicative interaction (AMMI)
models

Qualitative l. Dummy variables in linear and
generalised linear models

2. Factors in ANOVA and mixed models
3. Characterise environment in adaptability

analysis, AMMI models, variab les in
multivariate techniques



Binary data

'4 ..

Logistic or probit models,
Generalized linear mixed
models

Counts data

Poisson model, log-linear
models for contingency
table, ordinary chi-square,
generalized linear mixed
model

Binary data

Logistic or probit
models, generalized
linear mixed model

Logistic or
probit models,
Generalized
linear mixed
model

ANOVA, linear
Mixed model,
general linear
models, AMMI,
Adaptability
analysis,
MANOVA

Figure 3.6: Possible methods of analysis of responses from on-farm trials
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3.5 Conclusion

Variability in on-farm trials arise from many sources both experimental (treatments) and

non-experimental. For proper design and analysis of on-farm trials, there is need to

understand all the possible sources of variability and their likely influence on the results

of the trials. Of great concern are the non-experimental sources of variability which

are biophysical or socioeconomic. In farmer managed trials, management is one of the

main sources of variability in both agronomic and animal trials. Each source can have

an influence over a small area e.g. a plot or animal or over a wide area for example a

whole farm, village or agro-ecological zone. For any source of variability to be utilized in

the design or analysis of on-farm trial, we need a means of measuring it. One or more

variables can be measured or recorded and used as an indicator(s) of that source. The

indictor variables can be used in explaining the differences in responses from the farms.



Chapter 4

Analysis of Variability in On-farm
trials

Analysis of variability is a very important part of on-farm trials. Unlike in on-station

experiments where non-experimental variability is highly controlled, in on-farm trials the

main aim is to explain rather than control variation. Analysis of on-farm trial data there­

fore involve both understanding of the different treatments/technologies and the varying

farm environments. In order to be in a position to fully explain variability in on-farm

trials, there is need to quantify the amount of variation that exist at the different levels in

the trials. Understanding the different methods of quantifying/analysing variability can

lead to a better understanding of on-farm trial results. The different methods of analysis

and other statistical tools for on-farm trials are discussed in this chapter.

4.1 Approaches of analysis of on-farm variability

An understanding of the different sources of variability and the nature and extent of mea­

surement of variability is of fundamental importance. Application of this understanding

range from answering questions about experimental designs, such as how many replicates

or animals are needed to achieve a certain level of precision, at what level should we

replicate in the case of nested experiment, or what combination of blocking factors makes

best use of the experimental resources, to the estimation of standard errors of complex

surveys and the design of multi-stage selection or breeding programmes, particularly to

estimate genetic gains (Robinson, 1987). In on-farm trials determination of the variance

35
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components can help us to determine assignable causes of the observed variability.

There are two main approaches to the analysis of variability. These are the tradi­

tional analysis of variance (using the fixed effects linear models) and the mixed linear

model approach. The traditional analysis of variance approach uses the method of mo­

ments to estimate the factor effects whereas the mixed linear model approach uses, among

other estimation methods, the maximum likelihood (ML) and/or the restricted maximum

likelihood (REML) methods.

4.1.1 The traditional analysis of variance approach (ANOVA)

Analysis of variance is generally regarded as the best method of quantifying variability

(Horgan and Hunter, 1993). The resulting estimators of variance components are always

unbiased, although they can yield negative estimates. The estimators are also minimum

variance quadratic unbiased.

The ANOVA method of estimating variance components is to equate expected sums

of square to the corresponding calculated values, the solution for the variance components

are taken as the ANOVA estimates. Searle et al.(1992, chapter 4) has extensive details

for the balanced data case. For unbalanced data (characteristics of most on-farm trials),

the utility of ANOVA is severely limited. This is because with many cases of unbalanced

data, there is more than one set of sums of squares that might be laid out as an analysis

of variance. In such cases there are no unique estimators of variance components. An

extension of this is to use not just sums of squares but the quadratic form of the data.

There are also methods of the 1970's such as LaMotte's various quadratic estimators, some

of which utilize a priori values of the variance components. Searle et al.(1992 section 11.3)

discuss these methods in some detail and give extensive references. From a theoretical

statistics perspective, in unbalanced data ANOVA estimators are not always based on

sufficient statistics; and minimum, complete, sufficient statistics do not exist (McCulloch

and Searle, 2001 p 173). As a result there is no uniform optimal ANOVA estimators.

The following are some of the practical reasons which make the traditional ANOVA

approach unsuitable for analysis of variability in on-farm trials:
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• There is high possibility of having data with correlated structures in on-farm trials.

• Most often heterogeneity of variance occurs in on-farm trials especially for trials

with multiple levels

• On-farm trials are characterized by unbalanced/non-orthogonal designs and missing

observations

• Factors involved in on-farm trials are both fixed and random.

The traditional analysis of variance approach assumes that all factor effects are fixed

and this sometimes leads to underestimation of the mean treatment error term. The

suitability of the ANOVA method in on-farm trial is restricted to balanced experiments

with few missing observations. The multi-level nature of data from on-farm trials puts

a severe limitation in the application of this approach to analyzing variability from such

trials and thus the mixed model would be more suitable.

4.1.2 Mixed Model Approach

A mixed linear model is a linear model that contains both fixed and random effects. A

factor is said to be fixed if the levels in the study represent all the possible levels of the

factor, or at least all levels about which inferences are to be made while on the other

hand factor effects are random if the factor levels that are used in the study represent

only a random sample of a larger set of potential levels. We can use linear mixed model

or generalized linear mixed model in analysis of on-farm trials.

The linear mixed model can be written for a vector of observations y as:

y=X{3+ZU+E (4.1)

where y is an N x 1 vector of observations, {3 is p x 1 vector of unknown parameters, ({3 is

the vector of the fixed effects), X is an N x p design matrix of full rank corresponding to {3

(p < N), Z is an N x m design matrix associated with random effects, U is a m x 1 vector

of random effects. A key model assumption is that U and E are normally distributed with
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G contains variance components along its diagonal and R =a2I where I denotes n x n

identity matrix. Hence y has a multivariate normal distribution with means and variance

E(y) = X(3 and var (y) = V = ZGZ' + R, respectively (Corbel and Searle, 1976; Kackar

and Harville, 1984 and Littell et al., 1996). It can be seen that the fixed and the random

effects models are special cases of the mixed effects model. In the former u = 0 while in

the latter (3 = O.

In case the response variables are not normally distributed, for example counts, binary

data or proportions (binomial and poisson distributed variables), we use the generalized

linear mixed model. As in the linear mixed model, a generalized linear mixed model

includes fixed effect vector (3, random effects vector u rv N(O, G), design matrices X

and Z, and a vector of observations y whose conditional distribution given the random

effects has mean J1 and covariance R. In addition, a generalized linear mixed model

includes a linear predictor 1], and a link and/or inverse link function. The conditional

mean of y, J1 depends on the linear predictor through an inverse link function h(1]) and

covariance matrix R depends on the conditional mean J1 through a variance function. It is

an extension of generalized linear model by appending Zu to the generalized linear model

(McCulloch and Searle, 2001 p221). As in the linear mixed model the fixed and random

are combined to form a linear predictor

1] = X(3 + Zu (4.2)

The inverse link function is used to map the value of the linear predictor for the observation

i to the conditional mean for the observation i. For the linear mixed model, the inverse

link function is the identity function. In this thesis we concentrated our effort on linear

mixed model (generalized linear mixed models is considered as it's modification).



39

Why mixed model is suitable for on-farm trials

In on-farm trials new technologies are tested in the farmers' fields under their own condi­

tions. Because we cannot use all the farms for the trial, a sample is selected from which

inferences are to be made about the entire population of farms in the area under consider­

ation. In this case since the farms used in the study are a random sample from population

of farms, the farm effect is therefore considered random. The treatments/technologies un­

der investigation constitute the fixed effects in the model (if those are only one we are

interested in). Since on-farm trials have both fixed and random factors, a mixed model

is appropriate for such trials.

There is a great deal of imbalance in the data from on-farm trials. Many authors argue

against having many treatments in a farmer's field implying that in case the researcher is

interested in testing all his/her treatments then he/she may have to resort to incomplete

block designs which in most cases are unbalanced. Incidence of missing data is also very

frequent in on-farm trials often making even a balanced experiment to become unbalanced.

All this makes the use of traditional analysis of variance less appealing and thus mixed

model approach becomes a better alternative under such circumstances. Other attributes

of on-farm trials that make mixed models suitable for use are possibilities of having both

heterogeneity of variance and correlated observations. The variances at the different levels

are rarely constant, and most often observations in on-farm trials are highly correlated

depending on the experimental setup. For example, observations from farms from the

same village are more correlated compared to those from other villages.

Illustrative models

The primary objective of conducting on-farm trials is to address farmers production prob­

lems. For instance, in Uganda most on-farm trials are designed in such a way that the

needs of the farmers in different parts of the country are met. Conducting on-farm trials

over a wide area requires consideration of the farm types and regions where they are lo­

cated. Within the African context, villages are composed of farms, and the villages may



40

cut across agro-ecological zones. Involvement of farmers in the trials requires selection of

representative samples of either the farms or the villages. The nesting of farms within the

villages, villages within agro-ecological zones, etc., suggests for the use of the multi-level

approach in handling on-farm trials. Consideration of the auxiliary information collected

in farm surveys need to be made when analyzing actual on-farm trials data which is mainly

biophysical. In recognition of the fact that on-farm trials are multi-level in nature, mixed

models for agronomic and animal on-farm trials are considered below.

Agronomic on-farm trials

The nature of the response of an agronomic trial takes different forms depending on the

interest of the study. The general model likely to be adopted is of the form:

Yijklm = J.-l + ai + v(a)ij + f(V)jk + t51+ at5il + t5v(a)ijl + t5f(V)jkl + tijklm (4.3)

i = 1, 2, ... , a; j= 1, 2, ... ,v; k = 1, 2, .... , f; l = 1, 2, ... , t; m = 1, 2, ... , b.

Where Yijklm is the observation from the mth replicate of the lth treatment from the kth

farm in the jth village in the ith agro-ecological zone, ai is the effect of the ith agro­

ecological zone, v(a )ij is the effect of the jth village nested in the ith agro-ecological

zone, f(V)jk is the effect of the kth farm nested in the jth village, t51 is the effect of

lth treatment, at5il is the (il)th interaction between the ith agro-ecological zone and the

lth treatment, <5v(a)ijl is the (jl)th interaction between the lth treatment effect and the

jth village nested within the ith agro-ecological zone, <5f(V)jkl is the (lk)th interaction

between the lth treatment and the kth farm nested in the jth village and tijklm is the

random error term. The effects v(a)ij, f(V)jk' t5v(a)ijl' t5f(V)jkl and tijklm are assumed

to be iid normal with means 0 and variance components o-;(a)' 0-; (v) , o-tv(et)' o-tf(v) and 0-2 ,

respectively. The effects of the agro-ecological zones and the treatment are assumed to

be fixed. In this case we have 4 levels at which variability can occur:

At level 1 we have plots within farms;

At level 2 we have farms within villages;

At level 3 we have villages within agro-ecological zones;
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At level 4 we have agro-ecological zones.

Animal on-farm trial

The general model likely to be adopted for animal on-farm trial is of the form:

Yijklmn = J.l+ai+v(a)ij+ j(v)jk+u(fhl+ 8m+WSim+8v(a)ijm+8j(V)jkm+8u(f)lm+Eijklmn

(4.4)

i = 1, 2, ... , a; j = 1, 2, ... ,v; k= 1, 2, .... , f; L= 1, 2, ... , t; m = 1, 2, ... , b; n = 1, 2,

.... , N.

Where Yijklm is the observation from the nth animal receiving the mth treatment in the

Lth unit (unit used as defined in Section 3.4) on the kth farm in the jth village in the

ith agro-ecological zone, ai is the effect of the ith agro-ecological zone, v(a)ij is the effect

of the jth village nested in the ith agro-ecological zone, j(V)jk is the effect of the kth

farm nested in the jth village, u(fhl is the effect of the L unit nested in the kth farm,

8m is the effect of mth treatment, a8im is the (im)th interaction between the ith agro­

ecological zone and the mth treatment, 8v(a)ijm is the (jm)th interaction between the

mth treatment and the jth village nested within the ith agro-ecological zone, 8j(V)jkm is

the (km)th interaction between the mth treatment and the kth farm nested in the jth

village, 8u(f)lmk is the (Lm)th interaction between the mth treatment and Lth unit in

the kth farm and Eijklmn is the random error term. The effects v(a)ij, j(V)jk, bv(a)jk,

8j(V)jkm, u(fhl, 8u(f)lm and Eijklm are assumed to be iid normal with means 0 and vari­

ance components 0';(0:)' a-;(v)' O'Jv(o:)' O'J!(v)' O'~(J)' O'Ju and 0'2, respectively. The effects of

the agro-ecological zones and treatment are assumed to be fixed. In this case we have five

(5) levels at which variability occurs:

At level 1 we have animals within animal units;

At level 2 we have animal units within farms;

At level 3 we have farms within villages;

At level 4 we have villages within agro-ecological zones;
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At level 5 we have agro-ecological zones.

Possible setup of on-farm trials and suggested on-farm models

The agronomic trial model will be used for illustration purposes.

Setup 1

Consider a simple agronomic on-farm trial model with two levels at which variability

occurs (farm and plot) no replication within a farm as is always the case in most trials

for reasons cited in section 2.4:

(4.5)

i = 1, .. , t; j = 1, ... , f;

where Yij is an observation from the ith treatment in the jth farm, p is the overall mean,

Ji is the jth farm effect, Ti is the ith treatment effect and fTij is the effect of the (ij)th

interaction between treatment i and farm j with fi rv iidN(O, aJ), fTij rv iidN(O, aJ-r).

The model assumes constant variance and zero correlation among random effects. Thus

equation (4.5) can be written in the form of equation (4.1):

where:

y=X{3+Zu+€ (4.6)

X{3 = l'p + XtT, or X = (I' X t), {3 = (p T)';

ZU = Zff + Zf-rfT or Z = (Zf Zf-r) u = (f fT)'.

In this case the variance components to be estimated are aJ and aJ-r. Between farm

variability is measured by the value of aJ whereas aJ-r measures the combined interaction

and unexplained within farm variability. The estimate of aJ-r is used as the error term in

testing the significance of the fixed effects since lack of replication implies that the pure

experimental error is not estimable.
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Setup 2

Under some circumstances a researcher may be interested in replicating treatments within

the farms. In this case the number of levels at which variability occurs increases from two

in the above to three, the new level being block within farm. The model for an on-farm

trial where we have replications within a farm is:

(4.7)

i=I,2, ... ,t; j=I,2, ... ,f; k=I,2, ... ,r;

where Yijk is an observation of the kth replicate of the ith treatment in the jth farm, /1

is overall mean, h is the jth farm effect and Ti is the ith treatment effect, b(J)jk is the

effect of the kth block nested in the jth farm, fTij is the farm-by-treatment interaction

effects Eijk is the error term. The random effects h, fTij, b(J)jk and Eijk are assumed to

be iid normal with means 0 and variances er;, er;r, eri and er2 , respectively.

Equation (4.7) can be written in the form of equation (4.1) where

X/3 = 1'/1 + XtT or X = (I' X t), /3 = (/1 T)';

ZU = Zjf + Zbb + ZjrfT or Z = (Zj Zb Zjr); u = (J b fT)'.

Here the variance components to be estimated are er2 , er;, eri, er;r with er2 measuring

the variability between plots within farm, er; measures the variability between farms,

eri measures variability between blocks within farm and er;r measures variation due to

interaction between treatment and environment represented by farms.

In case farm effects are considered as fixed effects, i.e. when the specific farms are of

interest, then all the above models become fixed effects models.

Setup 3

In both models (4.5) and (4.7), we assume that the farms do not share many characteristics

in common. However, since other sources of variation have influence over a wide area,

this implies that a number of farms may share similar characteristics thus can be put in
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one group. They could share biophysical or socio-economic characteristics. The group

effects can be treated as fixed or random. This tantamount to including another level

in the hierarchy. The groups can for example be villages or locations or agro-ecological

zones, etc. The farms in this case will be nested within the groups.

The models for trials where farms are in groups, which share similar charac­
teristics

(i) When there are replicates within the farm and the group effects are considered as fixed

effects (assume these are the only groups we want to draw inference on. For example

groups can be based on agro-ecological zones of the farms) the model is:

(4.8)

(ii) When there are replicates within farm and the group effects are considered random

(farms from the different villages can constitute groups whose effects can be assumed to

be random) the model is:

Yijkl = J-l + Ti + b(f)jk + f(g)jl + gl + fTij + gTil + tijkl (4.9)

In both (4.8) and (4.9), i = 1,2, ... , t; j = 1, 2, ... , f; l = 1,2, ... , m; k = 1, 2, ... , T.

Furthermore Yijkl is an observation of the kth replicate of the ith treatment in the jth

farm belonging to the lth group, J-l is overall mean, Ti is the ith treatment effect, b(f)jk

is the effect of the kth replicate within the jth farm, gl is the lth group effect(random),

PI is the lth group effect (fixed) and fTij is the farm-by-treatment interaction effect, PTil

and gTil are group-by-treatment interaction effects and tijkl is the error term. In models

(4.8 and 4.9) the random effects, f(p)jl' f(g)jl b(f)jk, fTij, gl, gTi(l) and tijkl are assumed

iid normal with means 0 and variance components a}(p) a}(g)' (J";U)' (J"IT' (J";, (J";T and (J"2,

respectively. These are the variance components to be estimated.

Equation (4.8 and 4.9) can also be written in the form of equation (4.1).

Estimation procedure for a linear mixed model

For estimation of variance components in a linear mixed model, the method of maximum

likelihood (ML) and the restricted maximum likelihood (REML) methods are used among
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others. The description and illustration of ML and REML procedures is available in

several textbooks, journals and theses ( Hartely and Rao, 1967; Patterson and Thompson,

1971; Harville, 1977; Robinson 1987; Kackar and Harville, 1988; Levin, 1999; McCulloch

and Searle, 2001).

Model selection in mixed model analysis

In mixed model, two distinct test of hypotheses (i.e. fixed and random effects)need to be

done. The likelihood ratio test like the one described for standard linear models can be

used to test hypotheses about random effects, Le. we can examine the change in the log­

likelihood due to adding one or more random effects in the model, and compare this change

to the percentage points of a chi-squared distribution with q* degrees of freedom, where q*

is the number of additional dispersal parameters (such as components of variance) added

to the model (Levin, 1999).

The REML procedure in Genstat gives the model deviance (for theory on model

deviance see Dobson, 1990), and thus tests on the random effects can be carried out by

fitting models with the same fixed effects, but having different random effects.

A number of model fitting information (goodness of fit statistics) are provided by SAS

PROC MIXED (SAS 1996, 1999) and these include model deviance (-2 loglikelihood),

Akaike's Information Criterion (AIC), Schwarz's Bayesian Criterion (SBC) and the 'Null

model LRT chi-square' statistic. All these can be used in deciding on the random effects

to be included in the model, and for each of them the larger the value the better the fit

of the model to the data.

For testing hypotheses about fixed effects, large sample Wald tests and F-tests can

be used. We consider estimable linear combinations of the form Lf3 (L is a matrix of

contrasts), and consider testing the hypothesis:

Ho: Lf3 = 0 against the general alternative hypothesis (Ho: Lf3 =I 0). The Wald statistic

for testing this hypothesis is given by (L/3f(LT (XT V-1X)-lL)-1(L/3). Under Ho the

Wald statistic is approximately distributed as chi-squared with II degrees of freedom,

where II = rank(L) (Littel et al., 1996, Chapter 11 and Appendix 1). In the REML
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procedure in Genstat the Wald statistics are calculated from the Cholesky decomposition

of the matrix yTV-1y, where Y is the fixed model design matrix X augmented with the

vector of responses y (Levin, 1999) . The Cholesky decomposition sequentially removes

the sums of square due to each of the fixed effects in turn, ignoring all terms following

later in the model (Levin 1999). Therefore the vVald statistics assess the change in fit due

to adding current term to the model containing all the terms that precede the term under

consideration. By default PROC MIXED in SAS uses a Type III statistics for testing

the significance of the fixed effects. It computes the test statistics by first constructing a

Type III statistic matrix L for each treatment effect. This L is then used to compute the

following F-statistic:

(4.10)

A p-value for the test is computed as the tail area beyond this statistic on an F-distribution

with numerator degrees of freedom (NDF) and denominator degree of freedom (DDF).

The NDF is the row rank of L, the DDF is computed using methods such as Satterthwaite

(1946) or else using 'method of containment' (SAS PROC MIXED) (SAS, 1996, 1999).

The method to be used can be specified in PROC MIXED.

The asymptotic approximation of a chi-squared distribution for the Wald statistics

under the null hypothesis is reasonable when the number of degrees of freedom used to

estimate the variance parameters is large. The Wald chi-square is more liberal compared

to the F-test (Type Ill) because it effectively assumes an infinite denominator degrees of

freedom.

4.2 Other statistical approaches for analysis of on­
farm trials

The problems associated with design and execution of on-farm trials often make it quite

hard to apply conventional methods of statistical analysis to data from such trials. As

mentioned earlier (Chapter 2) on-farm trials are associated with single replication, missing

observations and high variability, and thus there is need for special methods of analyzes
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which take care of the above mentioned problems. For on-farm trials to meet their set

objectives, there is need to establish a clear relationship between the quantified variability

and the various sources of variability that exist in the trials. We need to utilize the

observed variability in drawing inferences (about the treatment effects) and coming up

with recommendation domain. In addition to the mixed model approach discussed in

section 4.1, a number of useful statistical approaches are available and can be used to

analyze these trials. Two of these approaches are discussed below.

4.2.1 Additive main effects and multiplicative interaction mod­
els (AMMI)

Traditional ANOVA test for interaction between treatments and farms when the exper-

iment is replicated. In non-replicated experiments such as those carried out on farms,

interaction effects between treatments and farms are lumped together with random er­

rors, and the combined effects are used to test the treatment main effects (additive part

of the model). Thus the analysis provides little or no insight into the particular pattern

or structure of the treatment-by-farm interactions. Multiplicative models have been pro­

posed as one of the ways of extracting information on treatment-by-farm interactions from

such trials. According to Shaffii and Price (1998), in analyzes of genotype-environment

interaction, the additive main effects and multiplicative interaction model (AMMI) incor­

porates both additive and multiplicative components of a two-way data structure which

can explain effectively the underlying interaction patterns.

Consider a non-replicated on-farm trial. The analysis of variance model can be given

as:

(4.11)

where Yij is observation from the ith treatment in the jth farm, J.L is overall mean, Ti is

the additive main effect of the ith treatment, !J is the additive main effect of the jth

farm and Eij is the residual effect. The residual is decomposed into multiplicative terms

which equal the interaction between the treatments and farms plus the error terms. The

additive main effect and multiplicative interaction model represents an observation as
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consisting of a systematic component that includes the main effect as well as one or more

multiplicative interaction terms, besides a random component for residual variation or

'error' (Eeuwijk, 1995).

The use of AMMI has in the recent years been mainly in plant breeding for mod­

elling the genotype-by-environment interaction in a two-way table. Some authors have

suggested that the model can also be used to model treatment-by-farm (location) interac­

tion in on-farm trials (Nokoe, 1999; Oyejola, 1999). In this case genotype is replaced by

the technology (treatment) being tested and the farms replace the environment. Nokoe

(per. comm.) suggested that instead of using individual farm/field as an environment,

farms/fields can be put in groups with similar characteristics to represent the different

environments (the farms/fields within each group are used as replicates).

To apply AMMI, the main effects are first estimated using the standard additive (i.e.

no interaction) ANOVA model. Principal Component analysis is then applied to the

interaction (residual) portion from the additive ANOVA model to extract a new set of

coordinate axes which account more effectively for the interaction pattern (Shaffii and

Price, 1998). Statistical computations and estimation of AMMI can be performed by,

among others, PROC GLM and PROC IML of SAS (SAS 1996) and Genstat Release 6.1

(2000) has incorporated direct method of analysis using AMMI.

Visual display of interaction by means of biplot

The biplot technique (Gabriel, 1971), provides a graphical representation of the pattern

of interaction which allows each treatment in each farm/environment predicted by the

multiplicative models to be directly identified. Regularities in the pattern of response

and individual outliers are quickly identified by the method which thus provides a useful

initial exploratory analysis prior to setting up formal hypotheses. Biplot constitute a

powerful tool for displaying interaction, which is described by the multiplicative terms

in an AMMI model (Gabriel, 1971; Kempton, 1984). From a given data set a number

of plots can be made and this include Finlay-Wilkison plot of mean yields (Finlay and

Wilkison, 1963)and sensitivity coefficient and plot of principle components. If a set of
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adjusted yields for variety/treatment j,

Y~=Y:J"-YJ'-~+YJt • . •. ..

(i = 1, ...n)

is represented as a point in n-dimensional space then the first principal component is

obtained as that axis drawn through the space which maximizes variation between treat­

ments. The second principal component is that axis, at right angles to the first, which

maximizes the remaining variation, and so on(Kempton, 1984). When the majority of the

variation in treatment responses is accounted for by the first two principal components,

a plot of treatments on these two axes provides a succinic description of the data.

According to Kempton, (1984) an alternative and possibly more instructive derivation

of principal component plots for displaying treatment-environment interactions identifies

the distances between a pairs of treatments in the n-dimensional space with their inter-

action over environments. The interaction sums of square for treatment j and jf over the

n environments is

1jj, = ~ 2:i (Y:; - y:;,)2,

and the total treatment-environment interaction sum of squares may be expressed as a

sum of I jj , for all pairs of treatments j and jf,

'" '" y* _ '" '" I; .~j ~i ij - 2~j ~j'<j ~.

Now djj , = 2Ijj , is the squared Euclidean distance between two points j and jf in the

n-dimensional space. Thus pairs of treatments for which djj , is small will have small joint

interaction sum of squares and show similar pattern of response over the environments,

although possibly differing overall mean yield. The principal components technique now

displays the treatments in a small number of dimension (usually two or three) so that the

graphical distances between all pairs of treatments j and jf is as close as possible to the
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actual squared Euclidean distances djj
, . Milliken and Johnson (1989) gave a detail look

at AMMI modelling.

Suitability of AMMI for on-farm trial

The ability of AMMI to effectively handle both replicated and un-replicated experiments

makes it a suitable tool for use in on-farm trials where non-replicated experiments are

very common. Gauch, (1990) found AMMI useful for understanding complex interactions,

gaining accuracy and increasing experimental efficiency. Whenever interactions exist, the

multiplicative part of the model can enable us to detect which treatments are interacting

with the farms and which ones are not. The result can be graphed in a very informative

biplot that show both main effects and interactions for both treatments and farms. The

plots can also enable us to group farms according to similar environment. Besides indi­

cating farm differences, the use of AMMI can also contribute to identification of major

environmental variables and treatment factors related to the interaction between farm

and treatment. Additive main effect and multiplicative interaction modelling is a very

useful tool for interpreting association between environmental variables and components

of treatment-by-farm interaction. This is done by correlating AMMI parameters with en­

vironmental data. This can allow a researcher to come up with recommendation domain

for the technology under consideration.

The greatest weakness of AMMI modelling is that it considers farm effect as being

fixed. Many authors have also argued that biologically it is very complicated to explain

.the multiplicative part of AMMI models. AMMI modelling is requires data to be in a

two-way table layout and this necessitates that the data be converted into a two-way

table format before analysis. AMMI modelling is appropriate for quantitative data with

normally distributed errors. However a generalized version of AMMI, (GAMMI) has

been developed to accommodate other error structures(see Eeuwijk, 1995). The natural

application of GAMMI has been to disease incidences on plants, which frequently have

non normal error distribution.
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4.2.2 Adaptability Analysis (AA)

Adaptability Analysis (AA) also described as modified stability analysis(MSA) aim at par­

titioning farms into more homogenous groups for the purposes of making recommendations

for each group. These homogenous groups are called recommendation domains (Byerlee,

Collinson et al., 1980). Adaptability analysis incorporates variation in farm management

as well as soils and climate, to help the agronomist evaluate responses to technologies/

treatments, and partitions farms into recommendation domains (Hildebrand, 1984). In

the case of farmer managed trial AA is mainly used to study the response of different ma­

terials or technologies to both good and poor management practices. Initially this method

of analysis was used for multi-location variety trials where the interest was mainly in the

determination of performance of a variety over a range of environments (Eberhat and Rus­

sell, 1966). Eberhat and Russell (1966) utilized mean varietal yields at each location in a

multi-location trial to define stability parameters to be used to describe the performance

of a variety over a series of environments. Mackenzi et al., 1976, expanded this concept

by including farmer management as one of the sources of variation. Hildebrand (1984),

argued that the explicit incorporation of different environments while not negating year

to year variation, should reduce concern with that variation so that recommendations can

be delivered to the farmers in the shortest possible time.

In AA we assume all the plots or animals in a given farm are identical, and variation

between the farms is considered as the most important since they influence the treat­

ment effects. In order to quantify this variation we need a simple indicator value which

characterizes the overall conditions in a particular farm. An obvious choice is the mean

performance of all experimental plots or animals in a given farm which is referred to as

the environmental or site index. This index is an estimate of each environment's capacity

to produce the crop or livestock product in question under the technology being tested.

The site index can be used to determine how treatment effects vary with farm conditions

(farm-by-treatment interaction).

For illustration, consider an on-farm trial in which the effects of three different varieties
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(or new technologies) A, B, and C are being tested. If we assume that the farmers

maintain their usual practices, the only constants at each farm are the three varieties

under investigation. Each farmer subjects them to different soil conditions, planting

dates, pest control, fertilizer and other management practices. A farm for which the

average yield of the three varieties is high for whatever reasons is considered a 'good'

environment for the varieties as measured by the average yield while the one for which

the average yields is low is considered a 'poor' environment. Environment then becomes

a continuous, quantifiable variable whose range is the range of the average yields.

In the adaptability analysis the yield of a given variety can be related to the environ-

ment by simple linear regression for each treatment as:

i = 1, 2, ... , t; j = 1, 2, ... , f·

where Yij is yield of the ith variety obtained from farm j with site index X{

x. - LiYij
J - t

(4.12)

(4.13)

where t is the number of technology being tested (in the variety example t = 3).

By fitting the above equation independently for each variety and looking at the slope

(regression coefficient), the adaptability of each variety can be determined.

Interpretation of regression coefficient in AA

Adaptability analysis uses regression of treatment response on environment (environmen­

tal treatment means) to identify those technologies/treatments that are best adapted to a

particular environment. Following Finlay and Wilkinson (1963) and Eberhart and Russell

(1966), a technology/treatment for which f3i = 1 is considered to have 'average stability'

or 'well adapted to most environments'. A technology/treatment for which f3i < 1 would

perform better than the average of all tested technologies (.i.e., is well adapted) in low­

performing environments; those for which f3i > 1 would perform better than the average

(and therefore better adapted) to high-performing environments. A treatment/technology
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for which regression slope ({3i) close to 1.0 is less responsive to changing environments (i.e.

has little interaction with environment). A smaller R2 value is associated with erratic re­

sponses to the various environments and hence less stability.

A plot of performance of each treatment/technology against the environmental index

makes it possible to visually compare the performance of treatments/technologies across

environments and come up with recommendation domains based on whether there are in­

teractions or not. Cross-over of lines (nonparallellines) signify the presence of interactions

of treatments with environments.

A test of the significance of the slope differences is equivalent to the test for the

presence of the interactions between 'site index' and treatment in the ANOVA. The test

for the significance of the slopes can be performed using most statistical packages. In

Genstat statistical package the directive 'simple linear regression with group' gives the

tests for site index and site index-by-treatment interactions. The environmental index can

also be used in ordinary ANOVA as a quantitative factor with number of environment

acting as the levels of the quantitative factor. In this case we can determine at least

linear and quadratic components of interaction between the treatment and environment

without replication (the higher order interaction is used as error term). This can easily

be performed using most statistical packages.

According to Hildebrand and Russell, (1996 pp 30 - 31), the following steps should be

followed in AA.

1. Conduct the trial according to the planned methods of analysis. The trial to be ana­

lyzed using AA should include data which adequately characterize each environment

and permit calculation of relevant evaluation criteria.

2. Calculate the environmental index (El).

3. Relate treatment response to El through regression analysis and/or scatter plot.

4. Compare the response of treatments to El and estimate treatment-by-environment

interaction
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5. If the treatment-by-environment interactions are present, relate El to environmental

characterization and divide environments into potential recommendation domains.

If no clear relationship can be shown between El and any of the environmental

characteristics on which the data were collected, divide environments based on yield

of 'checks' i.e. of farmers' current practices.

6. Interpret results and define recommendation domains.

Short eornings of adaptability analysis (AA)

Statistically the main weakness of adaptability analysis is that the environmental index

on which it is based is not independent of the treatments effects. This type of analysis

violates an assumption of least-squares regression that the dependent and independent

regression variables be independent of each other (error terms are correlated in this case).

The main problem with this is that the estimates of f3i and other regression statistics, as

well as tests of significance are biased (Hildebrand and Russell, 1996, p 24). Despite the

above concerns, many authors including Freeman (1973) and Lin, Bin and Leftkoviteh

(1986) have maintained that until multivariate techniques using independent environ­

mental measures are developed, linear regression on means still remains a very useful

technique. It's advantages are that it is relatively simple and more importantly, that it

permits an analysis of structure of interactions, i.e. a graphical representation, of the

treatment-by-environment interaction.

If we are using adaptability analysis for identification of specifically adapted technolo­

gies, particular care must be given to ensure that the range of environments in a trial

be representative of the range of the environments that exist over years (Hildebrand and

Russell, 1996, p 33). This is sometimes hard to achieve unless enough information is avail­

able. Experience has shown that for the estimates of environment-treatment responses to

be consistent across years, the followings three conditions should be met in each year's

trial (Hildebrand and Russell, 1996, p 33):

1. The range of the environmental indices (El) should be at least as large as the mean
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of the index values, i.e. the ratio of the range to mean should be at least one.

2. The distribution of environmental indices (EIs) should be reasonably uniform from

smallest to largest index.

3. The range and distribution of the yield/performance of farmers' current practices

should approximate those normally expected over a period of years.

Dividing the range of EIs by the overall mean El is a useful measure of the representa­

tiveness of the data. On-farm data usually have greater range than station trials. A very

narrow range, resulting in ratios less than one usually indicates that the mean yields were

very high and probably that the best farms were selected for the study or the trials were

highly controlled.

Adaptability analysis also requires that all the treatments should appear in all site

or farms. This can be of great problem since most on-farm trials are characterized by

missing observations and are unbalanced in nature.

4.3 Conclusion

On-farm trials in most cases are multilevel in nature and at each level, variability from

the different sources described in chapter 3 occurs. This implies that each level (e.g.

plot/individual animal, farm, village or agro-ecological zone) contributes to the total

variability in the observed response. It is important therefore to estimate variability

associated with those levels for proper understanding of the trial result. For estimation

of variability in on-farm trials mixed model approach is preferred. The distributional

assumptions of the random terms in the traditional analysis of variance (linear model)

is too restrictive. The assumptions of zero correlation and homogeneity of variance are

most often violated in on-farm trial and these put sever limitation on application of

traditional ANOVA in such trials. The applicability of traditional ANOVA in on-farm

trial is restricted to balanced experiment with limited amount of missing observations.

Mixed model on the other hand does not require the trial to be balanced and allows
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for both correlation and heterogenous variances as part of the model. Mixed model

in particular is more suitable for multilevel trials compared to the traditional ANOVA

approach.

Interaction between the farms and treatment/technology can also contribute tremen­

dously to the variability observed in the response. In conventional on-station statisti­

cal methods, this interaction can only be tested when there is replication within the

farm. Additive main effect and multiplicative interaction(AMMI) model and adaptabil­

ity analysis provide us with options for understanding this interaction without the need

for within farm replication. Graphical representation from these two methods provides

simple method understanding farm-by-treatment interaction.



Chapter 5

Case study

The bulk of agricultural production in Uganda is carried out by subsistence farmers.

These resource limited farmers operate under very high production constraints. The

government recognizes this fact as noted from the direction taken by agricultural research

in Uganda. On-farm trial has been one of the main tools used by the national agricultural

research organization to address the production constraints faced by subsistence farmers

in Uganda. The problem faced by subsistence farmers and the needs for on-farm trials as

a mean of finding solutions to them is common to most developing countries, and thus

Uganda can be used as a case study. The efficient analysis of on-farm trials is a single most

important factor that determines how the solutions to farmers' problems can be reached.

Given that high variability is associated with on-farm trials, their analysis requires the

efficient estimation of this variability. The main purpose of this chapter therefore, is to

present and illustrate procedures introduced in Chapter 4 in handling on-farm variability

in some on-farm trials carried out in Uganda. The three examples that have been taken

as representatives of the on-farm trial activities taking place in Uganda are used for this

purpose.

5.1 An overview of status of on-farm trials in Uganda

5.1.1 Introduction

The main aim of the overview of status of on-farm trials in Uganda is to find out how

researchers are coping with problems of on-farm trials in the country. Also of interest is

57
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the assessment of the methods used by researchers in Uganda in comparison to the general

methods recommended by statisticians/biometricians for on-farm trials. The understand­

ing of this is thought to be necessary before discussing the methods presented in Chapter

4. This overview was based on research works done by the faculty of agriculture of Mak­

erere University Kampala (MUK), and national research institutes: Kawanda Agricultural

Research Institute (KARI), Serere Agricultural and Animal Research Institute (SAARI)

and Namulonge Agricultural and Animal production Research Institute (NAARI) from

the period 1997 to 2001. The information presented here was extracted from samples of

annual reports of national research institutes and postgraduate theses from Makerere uni­

versity, most of which are unpublished. The information sought included types of on-farm

trials, types of the designs used in those trials, number of farms used in each trial, number

of replications within farm/site, plot sizes, number of treatments per trial and methods

of analysis used in each case. Forty (40) agronomic trial reports were reviewed (15 from

MUK, 10 from KARI, 10 from ITAARI and 5 from SAARI). Reports from animal trials

and socioeconomic studies were not readily available.

5.1.2 Types of on-farm trials

For the purpose of this study on-farm trials have been classified according to the level of

participation of the farmer as far as management and decision-making is concerned. We

have four categories/types:

• Researcher designed and managed where the farmer provided land and labor. The

researcher makes all the decision concerning management and only instructs the

farmer on how to carry out management practices.

• Researcher designed and researcher-farmer managed; here the farmer and researcher

plan management activities together but the farmer is free to decide when to carry

out those activities within some specified period of time.

• Researcher designed and farmer managed; in this case after setting up the experi­

ment with the farmer, the researcher leaves all the decisions concerning the manage-
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ment with the farmer. The researcher only monitors the progress of the experiment .

• Farmer designed and managed; unlike in the above three cases where the researcher

designs the experiment, in this case it is the farmer who designs and manage the

experiment with researcher as possibly an adviser. In most cases, the researcher's

role is just to monitor and obtain information not even advisory.

From the review most trials in Uganda fall in the first category, i.e. researcher designed

and managed (50% of the trials) trials (Table 5.1). This is probably due to the fact that

Table 5.1: Types of on-farm trials conducted in Uganda between 1997 - 2001
Type of on-farm trial Frequency Percentage
Researcher designed and managed 20 50
Researcher designed, researcher-farmer managed 11 27.5
Researcher designed, farmer managed 9 22.5
Farmer designed and farmer managed 0 0
Total 40 100

high levels of participation by farmers would introduce high variability which researchers

do not feel confident enough to handle. The students, for example, have just two years

to finish the master's degree programme, thus any complication in the trial would mean

delay in completion of the study. Hence there is the tendency for researchers to main­

tain the status quo, i.e. maintain the experimental setup similar to the one on-station.

Most researchers still believe that variability has to be controlled but not analyzed and

explained. However the number of experiments being left entirely to be managed by farm-

el's is increasing due to the introduction of farmers' school field where an experiment is

set up in one farmer's field and it is collectively managed in a group of 10 - 20 farmers in

an area. Because the study used information only from the university and research insti­

tutes, farmer designed and managed on-farm trials were not reviewed. This is because it

is very rare for farmers in developing countries like Uganda to send their farming/activity

records to be documented either by the university or the research institutes. It is hoped

that with increased interest in farmers' school field experimentation even farmer designed

and managed trials will be taken up in the near future.
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5.1.3 Types of experimental designs applied

The review of on-farm trials carried out in Uganda between 1997 and 2001 revealed that

the most common experimental design applied in on-farm trials in Uganda is a randomized

complete block design (RCBD). All the forty experiments applied the RCBD (Table 5.2).

Seventeen of out 40 used the RCBD with a split-plot arrangement, one used it with strip

plot arrangement and the other twenty-two used ordinary RCBD (Table 5.2).

Table 5.2: Commonly used experimental designs in on-farm trials conducted in Uganda
between 1997 - 2001

Number of trials with
Type of Design
RCBD (Ordinary)
RCBD with split-plot
RCBD with strip plot
Total

Freq.
22
17
1

40

less than 5 treatments 5 to 10 treatments
18 4
10 7
1 0

29 11

The researchers seem to be more comfortably with RCBD probably because it is easier

to setup in the field, and to analyze since it is not different from what they use in on­

station experimentation. Using farm as a complete block appears to be more appealing

and convenient to researchers as it is easier to setup and to analyze using packages like

MSTATC which is readily available. Furthermore, the most common and easy to read

statistical literature dwell more on completely randomize designs(CRD) and RCBD. The

frequent (17 out of 40) use of split-plot arrangement may be due to inclusion of many

treatments/treatment combinations (Table 5.2) in the trials, or, putting emphasis on some

treatments. Twenty-nine trials had less than five treatments per trial while 11 trials had

between 5 and 10 treatments each. No trial had more than 10 treatments and of the

11 trials with more than 5 treatments per trials, 7 had split plot arrangement. Many

statisticians/biometricians have argued for fewer (less than 5) treatments for on-farm

trials so as to make the farmers not to loose track about what is being done. The use

of designs such as balanced incomplete block (IBD) could lead to the reduction in the

number of treatments per farm and would be much more efficient. However, the ovedy

use of RCBD suggests lack of proper understanding on behalf of researchers about IBD.
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5.1.4 Plot sizes

Eight reports did not have any information on the plot sizes used in the trials, 12 trials

used plot sizes ranging between 40 and 50 m2
; 16 used between 20 and 30 m2 and 4 had

plot sizes between 10 and 20 m2 (Table 5.3). These plot sizes are not different from the

ones used in on-station trials in Uganda indicating that researchers are transferring the

same practices to on-farm trials. Lack of land and other resources have been cited as some

of the factors that limit plot sizes. In most cases the farmers are not willing to sacrifice

big pieces of land for the experimental purposes (Akizza pers. corn).

Table 5.3: Plot sizes used in on-farm trials in Uganda
Plot size (m2 Number of trials
10-20 4
20 -30 16
30-40 0
40- 50 12
Not indicated 8
Total 40

5.1.5 The number of farms and replicates per farm

In most trials treatments were not replicated within farm/site, but instead the farms were

used as replicates. Replication within farm increases the size of land which the farmers

should sacrifice for the trials, and in most cases either this land is not available or the

farmer is not willing to give it. If the farmer is the one to manage the trial, this will also

interfere with management routine of the farmer for his/her other activities.

In on-farm trials which involved less than 5 farms there were at least 3 replicates within

farm whereas trials with more than 5 farms had mainly a single replicate per farm/site

(Table 5.4). Replication within farm in trials involving more than 10 farms becomes more

expensive in terms of time and other resources such as land. This can explain why a single

replicate is often used for experiments with many treatments.
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Table 5.4: Number of farms and replicates within farm/site in trials
No. rep within farm and corresponding freq.

No. of farms per trials
Less than 5
5 - 10
11 - 15
Above 15
Total

No. of trials
15
18
o
7

40

123 4
o 0 14 1
18 0 0 0
o 0 0 0
610 0
24 1 14 1

5.1.6 Methods of analysis

All the analyzes of the 40 trials reviewed were carried out using traditional analysis of

variance (ANOVA), and the treatment means were compared using the least significant

difference (LSD). Only one researcher used multiple regression in addition to traditional

ANOVA. All the researchers except one ignored interaction between treatments and farms,

and even the one who appreciated the presence of interaction did not do any statistical

analysis on it. The use of ANOVA stems from the fact that this is the method most com-

monly used in on-station experiments and most of the researchers are well acquainted with

it, and the most used statistical package in agricultural research in Uganda is MSTATC,

easily performs analysis of variance. The disadvantage with this analysis of variance is

that it fails to isolate interaction between treatment and farm when there is no replica­

tion within the farm, the latter is the most common occurrence in on-farm trials. This

interaction in most cases masks the treatment effects by increasing the size of the random

error leading to non-significance of the treatment effects.

The analyzes of all the 40 trials indicated high variability which remained unexplained.

Those reports which quoted the coefficient of variation (CV) values, the highest recorded

was 350% (Table 5.5) indicating that either there was lack of precision or there was a lot

of unexplained variability. The latter is more likely to be the case.



63

Table 5.5: Range of maximum CV obtained from 40 on-farm trials conducted in Uganda
between 1997 - 2,~OgO~1__:--_:--_~:-;-;__---:T---;~--;-_-;:-;-:-""--

Range of maximum CV (percent) Number of trials.
10 - 20 1
21 - 40 4
41 - 60 8
61 - 100 10
Above 100 1
No CV given 16
Total 40

These CV values were very high compared to the accepted level of less than 20%

(Harvey pers.com). This is not surprising given the various sources of variability in on­

farm trials.

In the sections that follow methods, i.e. mixed model approach, AMMI and AA that

can handle variability to enable efficient analysis of on-farm trials are presented and used.

5.2 Examples

Three on-farm trials' data from Uganda are used for illustration of mixed model, AMMI

and AA methods. The procedures entail studying the hierarchal structure of the data and

variability at the different levels, and estimating variability using different models. As­

sessing variability involves assessing the contribution of the different sources of variability

to the total variability in the observed response. In the present study, PROC MIXED in

SAS (SAS Institute, 2001) was used in the illustrations (PROC MIXED used restricted

maximum likelihood (REML) estimation method) for fitting mixed models. Additive

main effect and multiplicative interaction models were fitted using AMMI procedure (un­

der the directive "analysis of multiple experiments") in Genstat (Genstat Release 6.2),

whereas AA was carried out using the linear regression procedure in Genstat Release 6.2

(6th edition)). It is to be noted that these three approaches, i.e. mixed model, AMMI

and AA are complementary.
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5.2.1 Example 1: Cotton trial SAARI - 1998

This trial was conducted by SAARI in 1998 on 36 farms in 9 districts of Uganda. The

main aim of the trial was to evaluate the effect of different planting spacings (population)

on cotton performance (yield and quality of cotton boIls). The trial spanned 2 districts

in the north and 4 in the east, and 2 districts in west and one in the central part of the

country. Due to biophysical similarities, districts from the north and east were classified

as region I districts and those from the west and central as region Il. Six spacings/plant

populations were involved, and these included farmer's practice, old recommendations

for region I and region Il, and three (3) new recommendations (see appendix A 1). The

management of the trials was left entirely to the farmers. The analysis was carried out

on yield in kilogram per hectare (kg/ha)

Estimation of variance components

In this setup, assuming farms were selected at random from each district, and district were

also selected at random from the regions, there are 5 levels at which variability occurs

namely at region, district, farm and plot levels (.i.e. between regions, districts within

regions, farms within districts and plots within farms). Interest, therefore would be to

explore variability at the different levels in order to answer questions such as:

• which level has the highest contribution to the total variability?

• can we assume homogeneity of variance within a given level (for example districts

within regions, farms within districts or farms within regions)?

• at what level can data analyzes be combined (region, district, etc) or combined at

all the levels?

• which are the most appropriate random effects to include in the final model?

In all the models we assumed that the district and farm effects, and the interaction terms

involving them were random while region and spacing effects were fixed. To answer all
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the above questions we need to fit a series of sub-models of the general model given below.

Consider a general model for a trial:

where Yijkl is an observation from the ith spacing, in the lth farm in the kth district from

the jth region, f.l is overall mean, Ti is the ith spacing effect, 'Yj is the effect of the jth

region, d k is the effect of the kth district, f(d)ljk is the lth farm effect nested in the kth

district in the jth region, the other terms are interactions among the main effects and

Eijkl is the error term. The terms f(d)ljk , fTil' d k , dTik' and Eijkl are assumed to be iid

normal with means 0 and variance components erJ, erJr, er~, er~r, and er2 respectively.

The following sub-models of the general model 5.1 are used to explore variability in

the data

1. Yijkl = f.l + Ti + 'Yj + 'YTij + Eijkl (fixed effects model)

2. Yijkl = f.l + Ti + 'Yj + f(d)ljk + 'YTij + Eijkl (er; is homogenous in all districts)

3. Yijkl = f.l + Ti + 'Yj + f(d)ljk + 'YTij + Eijkl (erJ/ is non homogenous in all districts)

4. Yijkl = f.l + Ti + 'Yj + fb)lj + 'YTij + Eijkl (erJj is non homogenous in all regions)

5. Yijkl = f.l + Ti + 'Yj + db)jk + 'YTij + Eijkl (er~ is homogenous in all regions)

6. Yijkl = f.l + Ti + 'Yj + db)jk + 'YTij + Eijkl (er~ is non homogenous in all regions)
]

The main differences between models 2, 3, and 4 are the assumptions made about the

between-farm variability each model. In model 2 the between-farm variability is assumed

to be constant in all the districts whereas in 3 and 4 the between-farm variability is

assumed to be non homogenous in the districts and regions respectively. In model 5 we

assumed that between-district variability is homogenous in the two regions whereas in
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Models Variance components Estimates % contnbution Fit statistics

1 Residual 595151 100 -21 = 3324.8
AIC = 3326.8
AICC = 3326.8
SIC = 3330.1

2 a)farm(district) 482831 81.13 -21 = 3096.4
b)residual 112320 18.87 AIC = 3100.4

AICC = 3100.5
BIC = 3103.6

3 a) farm(district) 81.13 -21 = 3081.0
district 1 88892 AIC = 3101.0
district 2 748492 AICC = 3102.2
district 3 155760 SIC = 3116.8
district 4 123363
district 5 129110
district 6 252369
district 7 272023
district 8 1850870
district 9 588694

b) residual 112324 18.87

4 a) farm (region) 81.13 -21 = 3095.6
region 1 541894 AIC = 3101.6
region 2 318766 AICC = 3101. 8

b)residual 112320 18.87 SIC = 3106.4
5 a) district(region) 99713 16.09 -21 = 3309.2

b) residual 520197 83.91 AIC = 3313.2
AICC = 3313.2
BIC = 3313.6

6 a) district(region) 16.09 -21 = 3308.7
region 1 71674 AIC = 3314.7
region 2 191930 AICC = 3314.7

b) residual 519577 83.91 SIC = 3315.3
7 a) farm(district) 482829 81.13 -21 = 3096.4

b) district(region) 0 00.00 AIC = 3100.4
c) residual 112321 18.87 AICC = 3100.5

SIC = 3103.6
8 a) farm(district) 482875 81.13 -21 = 3096.4

b) district(region) 0 0.00 AIC = 3102.4
c) dist*treatment 1376.43 0.23 AICC = 3102.5
d) residual 111196 18.64 SIC = 3107.1
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model 6 between-district variability is assumed to be non homogenous in the two regions.

Models 7 and 8 are based on the assumptions of models 2 and 5 (variability of farm within

districts and districts within regions are constant).

The fixed effects model (model 1, Table 5.6) forms the basis for assessing the impor­

tance of the different random effects (see Section 4.1.3). Model fit statistics were used.

From Table 5.6, model 1 is associated with -210glikelihood (-21) value of 3324.8 while

model 2 has 3096.4. Thus addition of farm effect to fixed effects model is associated with

(a change in -2loglikelihood of 228.4 (3324.8 - 3096.4)). This change in -21 (228.4 on

1 degree of freedom (df)) is significant. This indicates the importance of between-farm

variability as a major cause of variation in the observed responses (yield in kilogram per

hectare). Between farm variability alone accounted for about 81.13% (% contribution

= variance component. X 100) of total observed variability in the response (see
Total of variance components estImates

Table 5.6). The difference in values of -210glikelihood (-2/) between models 2 and 3 en­

ables the test for heterogeneity of between-farms variability in the 9 districts. From Table

5.6 model 3 is not significantly different from model 2 (change in -210glikelihood of 15.4

(3096.4 - 3081.0) on 8 (10 - 2) degrees of freedom), thus we can conclude that overall

statistically between-farms variance is constant in the 9 districts. Although statistically

between farm variances are constant in the 9 districts, closer inspection indicate that

three districts (2, 8 and 9) have very high between-farm's variability compared to other

districts. Similarly the difference in the values of -210glikelihood between model 2 and

model 4 tests for heterogeneity of between-farms variability in the two regions. Based on

the change in the -210glikelihood (0.8 on 1 degree of freedom) between models 2 and 4

it is clear that between farm variability was constant in the two regions, although there

appear to be more variation in region 1.

The contribution of between districts variability to the total observed variability was

very low (see variance components of models 5, 6, 7 and 8). This is not surprising given

that the majority of the districts are from one region and have similar biophysical char­

acteristics (districts are administrative units). Thus, district as a level of variability does
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not capture much variability (16.09% see model 5 and 6). Variability between districts in

the regions was constant as evidenced by the -210glikelihood of models 5 and 6.

Based on the change in -210glikelihood, model 2 is the best model for the data.

Based on the above results the following suggestions are given;

• If similar trials are to be conducted in future, there would be need for increas­

ing the number of farms instead of districts so that the different farm conditions

are represented (since between farm variability had the highest contribution to the

total variability in response). In particular districts 2, 8 and 9 should have more

farms investigated compared to other districts since the farms in those districts vary

greatly.

• Data from districts 2, 8 and 9 should be analyzed separately whereas the rest ana­

lyzed as a unit. This is because these districts (2, 8 and 9) show very high variability

compared to others and thus they would have more influence on the result of the

analysis and makes the finding unreliable.

• More attention needs to be put in finding out the main causes of the high variability

between farms.

Between farm variability has been identified as the main contributor to the total vari­

ability in the observed responses. The main question to be answered is 'how can we

account for this variability?' Differences in management practices or biophysical factors

such soil characteristics, rainfall, temperature, etc could be responsible for the large be­

tween farm variability. Information on the various factors recorded at farm level could

be of great help in explaining this. In this study only information on two management

practices, i.e. planting date and pesticide applications used were available. Both pesticide

used (used as a factor) and number of days (used as covariate) from the earliest planting

(1 st June) were introduced into the mixed model but both did not have any significant

effect (p = 0.2598 and 0.5451) on the yield (Appendix A 3).
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Thus, in summary using a mixed model is more efficient in identifying and modelling

variability at the different levels in an on-farm trial. The hierarchical stages through

which mixed models are built up leads to efficient evaluation of each level. It also allows

for use of subsidiary information in modelling.

Application of AMMI

On the assumption that the 36 farms were representative of different cotton growing

environments in Uganda, AMMI enables us to explore the interaction that exist between

these farm environments and the treatments (plant spacings). The results of analysis

of variance using the AMMI model are in Table 5.7. The results indicate that farm

Table 5.7: AMMI analysis of cotton yield
Source df SS MS F P

0.0000
0.0000

0.0025
0.0000
0.0001

1.91
3.24
2.96

117036
198288
180879
61166

20481215
7733243
6692512
6055459

o
126655410

175
39
37
99
o

215

Treatments 5 3091959 618392 10.11
Farms 35 103082236 2945207 48.15
Block
Interactions
IPCA1
IPCA2
Residuals
Error
Total

and spacing (treatment) accounted for 81.39% and 2.44%, respectively, of the total sums

of squares (% contribution = s~mt ~fSquar\dUe effect X 100), while the interaction plus error
o a sums 0 squares

accounted for the remaining 16.17%. This is an indication that more variation was due to

farm and farm-by-spacing interaction than spacing alone. The basic analysis of variance

indicated that the spacing, farm and first 2 interaction principle components or IPCA's

(see section 4.2.1 for explanation on principle components) are significant (p = 0.0000,

0.0000,0.0000,0.0001, respectively Table 5.7). The F-test in this case was done using the

residual after decomposition of interaction sums of squares as the error term. It should

be noted that testing of main effect is not of concern since this can be done using the

traditional analysis of variance.
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The first 2 IPCA's can explain about 70.43% (total % contribution of sums of squares

of the first 2 IPCA) of the variability due the interaction effects. We can use the biplot of

the first 2 IPCA's to visualize interaction between spacing and farms (environment). The

b· I t I· d b t 95 22 fJ1 (sums of square due to spacing, farms and first 2 IPCAs X 100) of totalIp 0 exp ame a ou . /0 total sums of squares

observed variability, and thus can give effective interpretation of main effects of spacing,

farms and their interaction. The biplot allows us to visualize any relationship between the

six plant spacings and the farms. The displacement from the center of the biplot exhibits

differences in interaction (Manrique and Hermann, 2000). The results in Figure 5.1 show

that the different plant spacings respond differently to the different farm conditions. The

biplot (Figure 5.1) revealed that plant spacings 2,4 and 5 are least interactive, indicating a

broad adaptability, while high interaction was shown by plant spacings 1, 6 and 3. Plant

spacing 6 (86) showed high specific adaptability to farms with large negative IPCAl

scores (E27, E7 and E18) while plant spacing 3 (83) showed specific adaptability to farms

with positive IPCA2 scores (E20, El and E5) and plant spacing 4 (84) does not showed

specific adaptability to any particular farm environment. Plant spacing 1 showed specific

adaptability to farms with negative IPCA2 scores. Based on the biplot one can group

farms according to the adaptability of the different plant spacings. For example, farms

E27, E7, E6 could be put in one recommendation domain (suitable for plant spacing 6)

whereas E33, E26, E16 E23 could also be put in another group (suitable for plant spacing

1) etc. In this way AMMI with its biplot cautions researchers against giving general

recommendations based on maximum overall yield. There is need to characterize farms in

the different recommendation domains so that the same recommendation can be applied

to other farms with similar characteristics.
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Application of modified stability analysis

If we assume that the farmers did not alter their usual practices, then the farmers had

only the six plant spacings being tested in common. Each farmer subjected the plant

spacings to different soil conditions, planting dates, pest control methods, fertilizers and

other management practices. The average yield from all the six plant spacings in a given

farm acts as an estimate of that farm's capacity to produce cotton using the different plant

spacings being tested (in this case the best environment for cotton is farm 26; Appendix

A4). This average is what is referred to as environmental index (El). The ratio of the

range of El to the mean of El is used as a measure of the representativeness of the farms

used in the trial. For this particular trial the ratio of the range of El to the mean of El

is 2.98. This indicates that a very broad sample of farm environments was included in

the cotton trial. Given that the distribution of EIs (see Appendix A4) is quite uniform

over the 'poor' and 'good' farm environments this trial meets the requirement stated in

Section 4.2.2 (i.e. one could expect any observed relationships between plant spacings and

farms to be consistent over time). We can relate the response for each plant spacing to

the environmental index by simple linear regression below:

(5.2)

i = 1, 2, ... , t; j = 1, 2, ... , f;

where Yij is yield from the ith spacing in the jth farm, Xj is the jth farm/site index.

By fitting the above model independently for each spacing and examining the slope,

the adaptability (stability) of the spacings were determined (Table 5.8). The regression

coefficients of all the plant spacings are close to 1 thus they all have similar level of

adaptability. Plant spacing 1 (/3 > 1) would be expected to perform much better in high

yielding environments whereas the reverse should be true for plant spacing 3 based on

their /3i values. All the R~ values indicate that linear model give a good description of

relationship between plant spacings and environmental indices. The plot of fitted values

from linear regression against El (Figure 5.2) expressed a clear linear relationship between
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Table 5.8: Estimates of Regression parameters for Cotton-Spacing Stability Analysis
Spacing constant(ai) adaptability parameter(,8i) Standard error R~

1 -97.0 1.2052 0.0894 83.8
2 20.9 0.9174 0.0520 89.9
3 86.0 0.8952 0.0933 72.2
4 -84.9 0.9072 0.0495 90.6
5 -39.8 0.9832 0.0430 93.7
6 116 0.9782 0.1030 71.8

yields and environmental indices. The performance of all the plant spacings increases with

improvement in environmental conditions and this increase was highly marked in plant

spacing 1. Although spacing 1 was superior in most environments, it performed very

poorly in low yielding environment and was outperformed by plant spacing 6 in low­

yielding environments (El < 1000).

In terms of cotton yield therefore, Figure 5.2 suggests that the researcher could have

two recommendation domains, i.e. those suitable for plant spacing 1 and those for plant

spacing 6. However at low yielding environments there were no clear differences between

the performance of all planting spacings. In order to characterize the two (high and low

yielding environments) likely recommendation domains we need biophysical or socioeco­

nomic variables measured at farm level. For this data set only two variables (planting

dates and pesticide used) were available. Neither planting dates nor insecticide used

showed a clear relationship with environmental index (see also AMMI illustration above)

and thus can not be used to characterize the farms in the two recommendation domains.

We can use the yield of farmers' practice (plant spacing 4) to define the two recom­

mendation domains. Those farmers who expect to get cotton yield below 1200 kg/ha

(using their usual plant spacing) could use plant spacing 6 and the rest of the farms

could use plant spacing 1. The analysis of variance can be used to verify the existence

of the two domains. The combined ANOVA across the two domains confirmed that the

two domains are significantly different but the interaction between treatment and domain

was not significant( Le. the apparent rank interchange between plant spacings 1 and 6

observed in Figure 5.2 could have been purely due to chance) (Appendix A5). The lack of
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interaction between treatment and the recommendation domains could be due to the fact

that overall all plant spacings performed poorly in the poor environment (differences in

performance are only observed in the good environment). In this case it is quite difficult

to give recommendation in the low yielding environment. However, all farmers could be

recommended to use cotton spacing 1 but could be advised to follow some agronomic

practices that improve their farm conditions so as to get higher yield (yield increases with

improvement in farm conditions). It should also be noticed from Figure 5.2 that plant

spacing 4 has merged together with plant spacing 2 (the two spacings are identical in

their performance in all environments).

5.2.2 Example 2: Maize variety - fertilizer trials -1997

Namulonge agricultural and animal production research institute (NAARI) carried out

maize variety - fertilizer trials on twelve (12) farms in four districts (Mbale, Iganga,

Mpigi and Masindi) of Uganda. Each farm acted as a replicate of a randomize complete

block design. The districts were taken as representatives of the maize growing districts

of Uganda. The treatments were five maize varieties denoted as A, B, C, D, E and two

levels of N-fertilizer denoted as 1 and 2 resulting in 10 variety-fertilizer combinations (

defined as: T1 = A + 1, T2 = B + 1, T3 = C + 1, T4 = D + 1, T5 = E + 1, T6 = A

+ 2, T7 = B + 2, T8 = C + 2, T9 = D + 2 and T10 = E + 2 ). The response variable

measured was maize yield in tons/hectare (t/ha). The management of the trial was left

entirely to the farmers.

Estimation of variance components

Assuming the farms were selected randomly from each district, there are three levels at

which variability occurs (plot, farm and district levels), i.e. between districts, farms within

districts and plots within farms. Exploration of variability at each of these levels is of

main interest in this study.

The general model for this trial can written as:

Yijkl = J-l + ai + {3j + a{3ij + d l + f(dhl + fO:ik(l) + dail + f{3jk/ + d{3jl + Cijk (5.3)
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i = 1, 2, 3, 4, 5; j = 1, 2; k = 1, 2, ... , 12; l = 1, 2, 3, 4

where Yijkl is the yield of the ith variety, receiving the jth level of fertilizer, in the kth

farm in the lth district, JL is the overall mean, ai is the ith variety effect, (3j is the effect

of the jth level of fertilizer, f(dhl is the effect of the kth farm nested in the lth district,

d l is the lth district effect, a{3ij, f aik(l) , dail' f (3jk(I) , d{3jl are interaction terms and Cijkl

is the random error. The random effects faik(l), f{3I(j) , d l , daik' d{3ik, f(d)kl and Cijkl are

assumed to be iid normal with means 0 and their respective variance components are;

222222 d2
0"f 0:' 0"f {3' 0"d' 0"do:' 0"d{3' 0"f d an 0".

Variability in this trial was explored using the following sub-models of the general

model (5.3);

1. Yijk = JL + ai + {3j + a{3ij + Cijk (fixed effects model)

2. Yijkl = JL + ai + {3j + (a{3)ij + f(dhl + Cijk (O"J is homogenous in all districts)

3. Yijkl = JL + ai + {3j + a{3ij + f(dhl + Cijk (O"Jl is non homogenous in all districts)

6. Yijkl = JL + ai + (3j + a{3ij + d l + f(dhl + faik(l) + Cijk

7. Yijkl = JL + ai + (3j + a{3ij + d l + f(dhl + f{3jk(l) + Cijk



77

. 11 . thv·T bIa e 5.9: anance comDonents at varIOUS eve SIll e IIlaIZe-vanetv tna
Models Variancecomponen~ Estimates % contribution Fit statistics

1 Residual 0.2485 100 -21 = 404.3
AIC = 406.3
AICC = 406.3
SIC = 409.0

2 a)farm(district) 1.2211 66.26 -21 = 318.0
b)residual 0.6218 33.74 AIC = 322.0

AICC = 322.2
SIC = 323.0

3 a) farm(district) 66.26 -21 = 311. 6
district 1 0.8756 AIC = 319.6
district 2 0.8904 AICC = 320.0
district 3 1.1907 SIC = 321.6

b) residual 0.6218 33.74
4 a) district 0.5497 27.58 -21 = 382.9

b) residual 1. 4431 72.42 AIC = 386.9
AICC = 387.0
SIC = 385.1

5 a) farm(district) 0.9856 51.10 -21 = 317.4
b) district 0.3239 16.77 AIC = 323.4
c) residual 0.6218 32.13 AICC = 323.6

SIC = 324.9
6 a) farm(district) 0.9856 51.10 -21 = 317 .4

b) district 0.3238 16.77 AIC = 323.4
c) farm*fertilizer 0 00.00 AICC = 323.6
c) residual 0.6218 32.13 SIC = 324.9

7 a) farm(district) 0.9570 49.55 -21 = 308.8
b) district 0.3239 16.77 AIC = 316.8
c) farm*variety 0.2575 13.33 AICC = 317.2
c) residual 0.3928 20.35 SIC = 318.8

8 a) farm(district) 0.9931 50.76 -21 = 312.6
b) district 0.3006 15.36 AIC = 320.6
c) district*variety 0.1160 05.93 AICC = 321. 0
c) residual 0.5467 27.95 SIC = 322.6

9 a) farm(district) 0.9937 50.74 -21 = 312.5
b) district 0.2938 15.00 AIC = 322.5
c) district*variety 0.1168 05.96 AICC = 323.0
d) district*fertilizer 0.0134 00.68 SIC = 324.9
e) residual 0.5409 27.62

10 a) farm(district) 0.9658 49.64 -21 = 307.3
b) district 0.3065 15.75 AIC = 319.3
c) farm*variety 0.1983 10.19 AICC = 320.1
d)farm*fertilizer 0.0075 00.00 SIC = 322.2
c) district*variety 0.0867 04.46
e) residual 0.3853 19.57
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Again in this case farm effect still had the highest contribution to the total variability

in the response (Table 5.9). Between farms variability accounted for 66.26% of the total

variability (models 2 and 3). Based on the comparison of model 2 and 3, the between

farm variability in this trial was significantly different (p = 0.0401) in the three districts

(change in the value of -210glikehood of 6.4 (318.0 - 311.6) with 2 degrees of freedom).

Between farms variability in district 3 was about 1.5 times that in district 1 and 2 and

this could imply that combined analysis over the three districts may not be quite suitable

(Table 5.9). District also captured appreciable amount of variability. When the trial was

collapsed over the districts (i.e. districts used as a blocking factor), 27.58% of variability

was accounted for by district effect compared to 15.03% in the cotton trial in example 1.

District effect remained prominent in all the other models (Table 5.9). The three districts

are in different parts of the country and could have different biophysical characteristics

such as rainfall, temperature, soil properties. The interaction between variety and farm

also had a considerable contribution to the total observed variability (models 7 and 10).

This seems to suggest that the response of the variety is not constant/the same over the

different farms (environments). The interaction terms involving fertilizer had negligible

contribution to the total variability in the responses. The model fit statistics suggest that

the best covariance model is model 3.
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Application of AMMI

This trial can be examined in terms of the 10 variety-fertilizer treatment combinations

or each factor (variety and fertilizers) separately. Additive main effect and multiplicative

interaction models can help us to understand the nature of any interaction that exist be­

tween treatments and the environments represented by the farms. We have only discussed

the result of the 10 variety-fertilizer treatment combinations and the five varieties. The

analysis of variance of the AMMI model for the yield of the 10 treatment combinations

(Table 5.10) show significant differences of treatment and farms' main effects, and IPCA

1 and 2 (p = 0.0000, 0.0000, 0.0000 and 0.0316, respectively). The first two IPCA's ex-

plain about 65% of the total variability. The F values were calculated using the residual

Table 5.10: Analysis of variance for AMMI model for variety-fertilizer combination
Source df SS MS F P

0.0368
0.0000
0.0316

1.82
4.13
2.29

0.622
1.408
0.782
0.341
0.000

61.55
26.75
13.30
21.50
0.00

235.23

99
19
17
63
o

119

Treatments 9 32.52 3.613 10.60 0.0000
Farms 11 141.16 12.833 37.63 0.0000
Block
Interactions
IPCA1
IPCA2
Residuals
Error
Total

as the error term and their values were compared with the F-table values. The biplot

(Figure 5.3) of the first two significant axes (IPCA1 and IPCA2) for the yield show that

all the 10 variety-fertilizer treatment combinations and all the 12 farms are dispersed

around the center of the biplot, indicating high variability in treatment combinations and

farms. Most variety-fertilizer treatment combinations are far from the center of the bi­

plot indicating specific adaptability to certain farm environments. The least interactive

variety-fertilizer combination is T1 (variety A + fertilizer level 1) followed by T4 (variety

D + fertilizer level 1). Highest interactions were shown by combinations T9 T3 T8 T5, , , ,

T10, T6 and T2. Treatment combination T9 showed specific adaptability to farms E9

and E10, treatment combinations T3 and T8 showed specific adaptability to farms E2
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and Ell whereas T5, T6 and T10 seem to be favored in farms E7 and E8.

In case we are only considering variety (ignoring fertilizer, Le. assume the fertilizer

effect is not of importance), fertilizer levels provide error degrees of freedom for the testing

of variety and farm main effects as well as their interaction and the IPCA's (due to the

hidden replicate in the factorial design associated with variety-fertilizer trials).

Table 5.11: Analysis of variance for AMMI model for varieties
Source df SS MS F

0.0087
0.0006
0.0525
0.5699

1.94
3.29
1.90
0.91

0.908
1.543
0.889
0.426
0.468

39.95
21.60
10.67
7.67
28.10

235.23

44
14
12
18
60
119

Variety 4 26.02 6.505 13.89 0.0000
Farms 11 141.16 12.833 27.42 0.0000
Block
Interactions
IPCA1
IPCA2
Residuals
Error
Total

The first two IPCA's were significant and explain 80.78% of the total variability due

the interaction effects. The biplot of the IPCA1 and IPCA2 for the yield show a similar

pattern of dispersion to that in Figure 5.4. Variety A appears to be the least interactive

among all the varieties. Variety C has the highest interaction with farms followed by

D, E and B. Variety C showed specific adaptability to farms El, E2 and Ell whereas

varieties D and B appears to be favored by farms E9 and ElO. The least interactive

(most stable) farms are E5 and E4. The relationships obtained from the biplot together

with additional information measured at farm level can be utilized in understanding the

nature of interaction in non-replicated on-farm trials.
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Application of Stability analysis

Based on the assumption that the farmers did not alter their usual practices, then the

farms only had the different variety-fertilizer combinations being tested in common. The

environmental index (El) in this case is an estimate of each farm's potential to produce

maize under the different variety-fertilizer combinations. The farm with the highest El is

considered the best environment for maize production using the various variety-fertilizer

combinations (farm 9 would be considered the best environment and farm 8 the worst

environment for maize production (Appendix B 3)). In this data set the ratio of range of

El to mean of El is only 0.73 indicating that a narrow sample of environments was tested.

The selected environments may not represent the maize growing farms in other parts of

Uganda. This result should therefore be interpreted with caution since the data does not

meet all the three criteria for AA (see Section 4.2.2). The yield from each of the ten (10)

variety-fertilizer combinations can be related to the environmental index using a simple

linear regression:

(5.4)

i = 1, 2, ... , t; j = 1, 2, ... , j;

where Yij is the yield of the ith variety-fertilizer combination, Xj is the environmental

index for the jth farm. The index is as defined in Section 4.2.2.

Combinations
Tl
T6
T2
T7
T3
T8
T4
T9
T5
TI0

constant (ai)
0.954
1.15

0.574
-0.925
-1.426
-0.433
-0.383
-2.120
1.198
1.412

adaptability parameter(,Bi)
0.802
0.702
0.950
1.394
1.358
1.171
0.986
1.535
0.552
0.550

Standard error
0.146
0.211
0.193
0.110
0.195
0.161
0.145
0.263
0.179
0.145

72.5
47.7
67.9
93.5
81.2
82.5
80.2
75.0
43.8
54.8

The values of ,Bi (Table 5.12) for the various variety - fertilizer combinations indicate
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their adaptability to the range of environments presented. The combinations T5 and T10

(variety E and fertilizer levels 1 and 2) are highly adapted to low yielding environments

whereas combinations T7 (variety B and fertilizer level 2), T3 (variety C and fertilizer

level 1) and T9 (variety D and fertilizer level 2) are highly suitable for high yielding

environments. The other combinations with f3i values much closer to 1 generally do not

show specific adaptability to any environment. To simplify the analysis and make it more

visual, the levels of fertilizer can be separated. Plotting the yields across EIs for all five

varieties at each level of fertilizer (Figures 5.5 and 5.6) allows one to visualize the response

of maize varieties at each fertilizer level.

At fertilizer level 1 there is a rank interchange between variety Band C, i.e. variety

B was superior in 'poor' environments (El < 4.9) whereas variety C was superior in

'good' environments. Variety C particularly performed very poorly in very low yielding

environments and this agreed with the high f3i value (1.358) observed for combination T3

(Table 5.12). Thus under fertilizer level 1 we can define two recommendation domains for

each of varieties Band C. Variety B was superior in all the environments under fertilizer

level 2 (Figure 5.6) and this signifies a single recommendation domain for it. It is also

visually clear from Figure 5.6 that as environmental conditions improve (environment

becomes suitable for maize production) the yield gap between varieties Band D closes

but that between Band C widens under fertilizer level 2. Under both fertilizer levels 1

and 2 variety E was inferior compared to others on most farms except in very low yielding

environments (combinations T5 and TlO had very low regression coefficient values Table

5.12). Whether to give one or two recommendation domains will depend on the level of

fertilizer used by the farmers. However, as stated before, the adaptability analysis result

of this trial should be interpreted with caution since the range of environments tested is

narrow according to the criteria in Section 4.2.2.
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5.2.3 Example 3: Integrated nutrient management in sweet pota­
toes production - 2001

This trial was setup by a Postgraduate student (MSc. Agriculture) from Makerere uni­

versity in Kumi district in eastern Uganda. Fourteen (14) farms were selected at random

from five (5) villages and each farm acted as a replicate of a randomized complete block

design. The trial was conducted in two seasons (different sets of farmers were used in

each season). The treatments involved were combinations of green manure (GM) (Mu­

cuna sp.) and mineral fertilizers phosphorous (P) and potassium (K). The seven (7)

green manure-mineral fertilizer combinations were; absolute control (no organic manure

or mineral fertilizer), GM (relative control), GM + llkgha-1P, GM + 22kgha-1p, GM

+ 35.5kgha- 1P, GM + 71kgha- 1K and GM + llkgha- 1P + 35kgha- 1K.

Response variables measured include: tuber weights (total, marketable and non-marketable

weights) and biomass of sweet potatoes. Only the analysis of total weight (kilogram/hectare

(kg/ha)) is discussed in this study. The student's interest was mainly on yield response

of sweet potatoes to the 7 treatment combinations. Although the trial was designed as

RCBD, some treatments were lost in some farms (i.e. some farms did not have measure­

ment for all the 7 treatment combinations)

Estimation of variance components

In this trial plots were nested within farms, farms within villages and farms were also

nested within seasons. In this study the interest is the estimation of variance components

at farm and village levels as well as within season.

Consider the general model

where Yijkl is an observed response from the ith treatment combination, in the jth season

from the kth farm in village l, J..l is the over-all-mean, (Xi is the ith treatment effect, {3j

is the jth season effect, f(dhl is the effect of the kth farm nested in the lth village, VI is
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the lth village effect, Cijkl is the random error and the remaining terms are interactions

between the main effects. The random components f(dhl' fCl'.ik' ff3jk, VI, Vf3ik and Cijk

are assumed to be iid normal with means 0 and variance components (JJ, (JJa, (JJI3' (J;,

(J;13 and (J2 respectively.

To estimate variance components at the different levels the following sub-models of

model (5.5) can be used.

1. Yijkl = J1 + Cl'.i + f3j + Cl'.f3ij + Cijkl (fixed effects model)

2. Yijkl = J1 + Cl'.i + f3j + Cl'.f3ij + f(vhl + Cijkl ((JJ is homogenous in all villages)

3. Yijkl = J1 + Cl'.i + f3j + Cl'.f3ij + f (v) kl + Cijkl ((JJ/ is not homogenous in all villages)

4. Yijkl = J1 + Cl'.i + f3j + Cl'.f3ij + f(f3)jk + Cijkl ((JJj is not homogenous in all seasons)

5. Yijkl = J1 + Cl'.i + f3j + Cl'.f3ij + VI + Cijkl

6. Yijkl = J1 + Cl'.i + f3j + Cl'.f3ij + f(vhl + VI + Cijkl

Models 5, 6, 7, 8 and 9 are based on the assumptions of model 2.



Table 5.13: Variance components at various levels in the sweet potatoes trial
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Models Variance components Estimates % contribution Fit statistics
1 Residual 11331 100 -21 = 924.3

AIC = 926.3
AICC = 926.3
BIC = 929.1

2 a)farm(village) 73.606 55.89 -21 = 872.7
b)residual 57.797 44.11 AIC = 876.7

AICC = 876.9
BIC = 877.9

3 a) furm(viIIage) 55.89 -21 = 865.7
village I 146.320 AIC = 877.7
village 2 7.357 AICC = 878.4
village 3 47.632 BIC = 881.1
village 4 283.630
village 5 62.455
b) residual 57.438 44.Il

4 a) furm(season) 55.89 -21 = 869.5
season I 139.200 AIC = 875.5
season 2 23.748 AICC = 875.5
b) residual 57.581 44.11 BIC = 877.2

5 a) village 76.64 49.77 -21 = 894.9
b) residual 8036 5023 AIC = 898.9

AICC = 899.0
BIC = 898.2

6 a) furm(village) 37.91 23.93 -21 = 869.5
b) village 62.82 39.65 AIC = 875.5
c) residual 57.72 36.42 AICC = 875.5

BIC = 877.2
7 a) fann(village) 4022 25.18 -21 = 867.1

b) village 59.14 37.02 AIC = 875.1
c) village*treatment 10.15 0635 AICC = 875.5
c) residual 5022 31.45 BIC = 877.4

8 a) fann(village) 37.68 23.67 -21 = 871.2
b) village 6329 39.76 AIC = 879.2
c) funn*treatment 335 0222 AICC = 879.5
c) residual 54.70 3435 BIC = 881. 4

9 a) funn(village) 4022 25.18 -21 = 867.1
b) village 59.18 37.02 AIC = 875.1
c) fann*treatment 0.00 00.00 AICC = 875.5
d) village*treatment 10.15 06.35 BIC = 877.4
c) residual 5022 31.45
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The between farm variability in the absence of other random effects accounted for

55.89% of the total variability observed (model 1, Table 5.13). Model 3 indicate that the

between farm variability was higher in villages 1 and 4 compared to others and similarly

model 4 suggest that it was high in season 1 compared to season 2. However, comparing

the values of -2loglikelihood of both models 3 and 4 with that of model 2, the change in

-2loglikelihood (7 (872.7 - 869.7) on 1 degree of freedom for model 3 and 3.2 (872.7 - 869.5)

on 1 degree of freedom for model 4) indicate that between farm variability was constant

both within village and season (see section 4.1.3). A possible reason for apparent high

variability in the first season could be that in the first season most farmers are always

involved in many agricultural activities compared to second season thus leading to more

variability in the former. Village effect also had a high contribution to the total variability

(see models 5 to 9 Table 5.13). The high between villages variability could have resulted

from socioeconomic differences. Farmers living in the same neighborhood tend to behave

in a similar way. The contribution of the interaction terms to total variability was quite

low. Models 8 and 9 have the same values of fit statistics thus are not statistically different.

Model 8 can be taken as the best model (since the contribution of farm*treatment is

negligible). We still need variables measured at both farm and village level in order to be

in position to account for the observed variation. The student should have taken more

records of non-experimental variables.

5.3 Conelusion

A large number of researchers/research institutions in Uganda are involved in on-farm

trials. However, most researchers still try to minimize the degree of farmer's involvement

in those trials. That is only 22.5% of the trials were managed entirely by farmers. This

could be due to fear of introducing high variability through farmers' involvement. The

designs and analysis of most on-farm trials in Uganda are still based on the conventional

on-station research methods (proposed designs such as incomplete blocks and other unbal­

anced designs are not being used). The most common method of analysis used in on-farm
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trial is the traditional ANOVA and the multilevel nature of these trial are ignored in

analysis. Very little efforts are made to estimate variability at the different levels in those

trials.

The illustrations in this chapter showed that mixed model approach can be used

successfully to explore and quantify variability at the different levels in on-farm trials. In

all the three on-farm trials used for illustration, variability between farms was the main

cause of variation in the observed response. The information provided by the researchers

were generally insufficient to explain the variability at the different levels.

We can also conclude that both AMMI and AA are very useful in understanding

treatment-by-farm interaction in non-replicated on-farm trials through both their esti­

mated parameters and graphical representation. Both are similar and may be used to

determine appropriate recommendation domains.



Chapter 6

Conclusions

Involvement of farmers and the use of their fields/farms or animals in the on-farm trials

result in the introduction of high variability from various sources. In agronomic trials,

variability comes from four main sources; plant genotype, management practices, socioeco­

nomic factors and crop environment. Sources of variability from animal on-farm trials can

broadly be classified as environmental and genetic. Environmental variation can be due

to differences in biophysical factors (rainfall, temperature, etc), or management practices

(feeding, health care, housing etc). All the above sources of variability are encountered

by on-farm researchers in Uganda.

Most on-farm trials are hierarchal in nature (have multilevel structure) e.g. plots/animals

nested within farms, farms nested within villages and villages nested within agro-ecological

zones. The above sources of variability (plant genotype, management, etc) cause varia­

tions at each of those levels (plot, farm, village, etc). The different sources of variability

dictates the type of variables (indicator variables) to be measured or recorded in on-farm

trials. The indicator variables help in explaining the importance of different sources of

variability in the trial. The information recorded at each level in the trial can be used

either in designing or in the analysis of the trial. Variability at each of those levels con­

tributes to the total variability in the observed response. It is important therefore to

estimate variability associated with those levels for proper designing and understanding

of the trial result.

The case study indicated that a large number of researchers/research institutions in

92
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Uganda are involved in on-farm trials. However, most researchers still try to minimize

the degree of farmer's involvement in those trials (only 22.5% of the trials reviewed were

managed entirely by farmers). This could be to avoid introducing high variability by

farmers' involvement. The designs and analysis of most on-farm trials in Uganda are

still based on the conventional on-station research methods (proposed designs such as

incomplete blocks and other unbalanced designs are not being used). The most common

method of analysis used in on-farm trial is the traditional ANOVA and the multilevel

nature of these trials are ignored in analysis. Very little efforts are made to estimate

variability at the different levels in those trials.

For estimation of variability in on-farm trials mixed model approach is preferred. The

distributional assumptions of the random terms in the traditional analysis of variance

(linear model) is too restrictive. The assumptions of zero correlation and homogene­

ity variance are most often violated in on-farm trial and these assumptions put severe

limitation on application of traditional ANOVA in such trials. The applicability of tradi­

tional ANOVA in on-farm trial is restricted to balanced experiment with limited amount

of missing observations. Mixed model on the other hand does not require the trial to

be balanced and allows for both correlation and heterogenous variances as part of the

model. Mixed model in particular is more suitable for multilevel trials compared to the

traditional ANOVA approach. The illustrations (Section 5.2) showed that mixed model

approach can be used successfully to explore and quantify variability at the different levels

in on-farm trial. In all the three on-farm trials used for illustration, variability between

farms was the main cause of observed variability in observed response. When farm are

nested in villages, districts or seasons, between farm variability tended to be different in

the different groups.

In non-replicated on-farm trials interaction between the farms (environment) and

treatment/technology can also contribute tremendously to the variability observed in

the response. In conventional on-station statistical methods, this interaction can only be

tested when there is replication within the farms. Additive main effect and multiplica-
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tive interaction(AMMI) model and adaptability analysis (AA) provide us with options

for understanding this interaction without the need for within farm replication. Graph­

ical representation from these two methods provides simple method for understanding

farm-by-treatment interaction.

The main lesson learnt from examples discussed in Section 5.2 is that for proper

understanding of on-farm trials we need to use more than one statistical tool. Mixed

model for example enables researchers to know the contribution of the various levels in

the trial to the total observed variation. The combined use of AMMI, AA and traditional

ANOVA can help researchers to put farm environments into more homogenous groups

on which the recommendation will be given. It becomes easier to explain the causes

of variability in the trial by concentrating on levels identified by mixed model as the

main contributor of variation observed. For example, in the case where between farm

variability is the main contributor to the total variability, the main task would be to try

to understand the relationship between non-experimental variables recorded at farm level

with the response.

Although mixed models have been suggested as the best alternative for estimation of

variability in on-farm trial, the main problem encountered in using this approach is lack

of convergence. This problem becomes more pronounced as the number of levels in the

trial increases. The performance of mixed model under various on-farm scenarios should

be assessed. The effect of methods for selection of farmers, villages or other levels to be

included in on-farm trials is another area for further research. In mixed models we assume

the farms and villages are selected at random but most often farmers are chosen based on

their willingness to participate in the trials. There is need to assess the validity of results

based on non random selection of farmers and villages.

Extensive studies on application of mixed models in on-farm trials needs to be done.

Much emphasis should be put on the effects of farmers' selection, sample sizes (number

of farms to be included in the trials)and number of levels (farm, village, agro-ecological

zones, etc) to be included in the model.
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Appendix A

Cotton trial

A.l Detail of treatments in the SAARI cotton trial
1998

Spacing Row width Within row Population Type of practice
(cm) (cm) (plants/ha)

6 60 30 111111 Old recommendation
for East & North

5 90 30 74074 Old recommendation
for Central & West

4 90 45 49382 Farmer's
3 90 25 88888 New recommendation 1
2 75 30 88888 New recommendation 2
1 75 15 88888 New recommendation 3

A.2 SAS PROC MIXED program used for estimat-
ing variability in cotton trial

Data Cotton;
input region district farm days chemical spacing yield
cards;

1
1
1

1

7
7
7

9

20
16
34

21

13
15
13

31
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1
1
1

2

1
1
1

6

1990
2240
795

2300
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1
1
1

9

9
9

27
35

8

26
24
25

2
2
2

6
6
6

2300
1707
700;

Proc mixed;
class region dist farm spacing;
model yield = Spacing Iregion /ddfm=satterth;

Proc mixed;
class region dist farm spacing;
model yield = Spacinglregion /ddfm=satterth;
random farmer(district);

Proc mixed;
class region dist farm spacing;
model yield = Spacinglregion /ddfm=satterth;
random farmer(district)/group = district;

Proc mixed;
class region dist farm spacing;
model yield = Spacinglregion /ddfm=satterth;
random farm(region)/group = region;

Proc mixed;
class region dist farm spacing;
model yield = Spacinglregion /ddfm=satterth;
random farm(district) district district*treatment;

Proc mixed;
class region dist farm spacing;
model yield = Spacinglregion /ddfm=satterth;
random farm(district) district;

Proc mixed;
class region dist farm spacing;
model yield = Spacinglregion /ddfm=satterth;
random farm(district) district;

A.3 Output for testing effect planting date and pes­
ticide used in cotton trial

491735
112320

Covariance Parameter
Estimates

EstimateCov Parm
farmer(dist)
Residual

Fit Statistics

-2 Res Log Likelihood
AlC (smaller is better)

3075.1
3079.1



AICC (smaller is better)
BIC (smaller is better)

3079.1
3082.3
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Type 3 Tests of Fixed Effects

Effect
region
treat
region*treat
chemical
days

Num
DF

1
5
5
1
1

Den
DF F Value
32 0.62

170 5.36
170 2.47

32 1. 32
32 0.37

Pr > F
0.4367
0.0001
0.0345
0.2598
0.5451

A.4 Farm(environment) indices for the cotton trial

region district farm index region district farm index
1 4 1 1551 2 2 19 1035
1 8 2 610 1 7 20 1977
1 1 3 960 1 9 21 2416
1 1 4 583 1 4 22 1093
2 6 5 1057 2 6 23 1435
2 3 6 1247 1 5 24 1332
2 6 7 1653 2 6 25 2411
1 9 8 857 1 8 26 4030
2 3 9 2025 1 9 27 1933
1 8 10 856 1 8 28 927
1 8 11 1570 1 7 29 789
1 4 12 1048 1 4 30 519
1 4 13 702 1 1 31 1405
2 2 14 315 1 1 32 1261
2 6 15 1106 1 5 33 1337
1 7 16 1486 1 7 34 999
2 3 17 1194 1 9 35 1515
1 5 18 542 1 7 36 222

A.5 ANOVA result for verifying the existence rec-
ommendation domain

120 "General Analysis of Variance."
121 BLOCK farm
122 TREATMENTS spacing*domain



123 COVARIATE "No Covariate"
124 ANOVA [PRINT=aovtable, information,means; FACT=32;\

FPROB=yes; PSE=diff] yield

***** Analysis of variance *****

Variate: yield

Source of variation d.f. s.s. m.s. v.r. F pr.

farm stratum domain 1 4. 165E+07 4.165E+07 23.05 <.001
Residual 34 6. 144E+07 1.807E+06 15.33
spacing 5 3.092E+06 6. 184E+05 5.25 <.001
spacing. domain 5 4.441E+05 8.883E+04 0.75 0.584
Residual 170 2.004E+07 1. 179E+05
Total 215 1.267E+08
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Appendix B

Maize variety - fertilizer trial

B.l SAS PROC MIXED programme used for estima­
tion of variability NAARI maize variety-fertilizer
trial

Data maize;
input district farm fertilizer variety yield;
cards;

1
1

1
1

1 1 5.17
1 2 4.05

3
3
3

12 2
12 2
12 2

3 4.53
4 4.25
5 4.68

Proe mixed;
elass district farm fertilizer variety;
model yield = fertilizerlvariety/ddfm=satterth;

Proe mixed;
class district farm fertilizer variety;
model yield = fertilizer Ivariety/ddfm=satterth;
random farm(district);

Proc mixed;
class district farm fertilizer variety;
model yield = fertilizerlvariety/ddfm=satterth;
random farm(district)/group = district;

Proc mixed;
class district farm fertilizer variety;
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model yield = fertilizerlvariety/ddfm=satterth;
random district;

Proc mixed;
class district farm fertilizer variety;
model yield = fertilizerlvariety/ddfm=satterth;
random farm(district) district;

B.2 Farm (environment)indices for the maize variety­
fertilizer trial

District Farm Index District Farm Index
1 1 4.252 2 7 4.742
1 2 5.692 2 8 2.911
1 3 3.571 3 9 6.302
1 4 3.715 3 10 5.631
2 5 5.008 3 11 6.193
2 6 3.642 3 12 3.882
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