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Abstract 
Network intrusion detection is a real-world problem that involves detecting intrusions on a computer 

network. Detecting whether a network connection is intrusive or non-intrusive is essentially a binary 

classification problem. However, the type of intrusive connections can be categorised into a number 

of network attack classes and the task of associating an intrusion to a particular network type is 

multiclass classification.  

A number of artificial intelligence techniques have been used for network intrusion detection 

including Evolutionary Algorithms. This thesis investigates the application of evolutionary algorithms 

namely, Genetic Programming (GP), Grammatical Evolution (GE) and Multi-Expression Programming 

(MEP) in the network intrusion detection domain. Grammatical evolution and multi-expression 

programming are considered to be variants of GP. In this thesis, a comparison of the effectiveness of 

classifiers evolved by the three EAs within the network intrusion detection domain is performed. The 

comparison is performed on the publicly available KDD99 dataset. Furthermore, the effectiveness of 

a number of fitness functions is evaluated.    

From the results obtained, standard genetic programming performs better than grammatical 

evolution and multi-expression programming. The findings indicate that binary classifiers evolved 

using standard genetic programming outperformed classifiers evolved using grammatical evolution 

and multi-expression programming. For evolving multiclass classifiers different fitness functions used 

produced classifiers with different characteristics resulting in some classifiers achieving higher 

detection rates for specific network intrusion attacks as compared to other intrusion attacks. The 

findings indicate that classifiers evolved using multi-expression programming and genetic 

programming achieved high detection rates as compared to classifiers evolved using grammatical 

evolution. 
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1 Introduction 

 Purpose of the Study 
 
 Network intrusion detection is a real-world problem that involves detecting intrusions on a computer 

network. Detecting whether a network connection is intrusive or non-intrusive is essentially a binary 

classification problem. However, the type of intrusive connections can be categorized into a number 

of network attack classes and the task of associating an intrusion to a particular network type is 

multiclass classification.   

Various techniques have been used for network intrusion detection including Naive Bayes 

classification, decision tree classification, neural networks and evolutionary algorithms, amongst 

others. Evolutionary algorithms such as genetic programming and its variants have been widely 

applied for network intrusion detection but a comparison of the performance of each variant within 

network intrusion detection has not been addressed. This dissertation also seeks to conduct a 

thorough analysis of related literature on the application of genetic programming and its variants for 

network intrusion detection. 

 Aims and Objectives 
The primary objective of this dissertation is to develop, and evaluate the classification performance of 

genetic programming and variants of genetic programming, grammatical evolution and multi-

expression programming for network intrusion detection. The objectives of this dissertation are:  

Objective 1: Development and evaluation of applying grammatical evolution (GE) for generating 

intrusion detection classifiers 

To propose and implement binary and multi-class classifiers for network intrusion detection (NID) and 

evaluate the performance of applying GE for evolving NID classifiers. 
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Objective 2: Development and evaluation of applying Multi-expression programming (MEP) for 

generating binary and multi-class classifiers for network intrusion detection.  

To propose, implement and evaluate the performance of evolving classifiers using MEP for intrusion 

detection.  

Objective 3: Development and evaluation of applying genetic programming (GP) for generating 

binary and multiclass classifiers for network intrusion detection.  

Investigate the performance of binary and multi-class classifiers evolved using GP and compare the 

performance of the classifiers to state-of-the-art approaches. 

Objective 4: Investigate the effectiveness of fitness functions for multi-class network intrusion 

detection  

To investigate the effects of applying different fitness functions for the generation of intrusion 

detection classifiers and if there a correlation between the detection rate achieved by the classifier 

and the fitness function used. 

Objective 5: Comparative analysis of GE, MEP and GP for network intrusion detection. 

A comparative analysis of binary and multi-class classifiers evolved using grammatical evolution, multi-

expression programming and genetic programming will be performed to evaluate which of the 

approaches generates the most effective classifiers. 

 Contributions 
This dissertation makes the following contributions: 

• Design and evaluation of generating effective classifiers using genetic programming, 

grammatical evolution and multi-expression programming. 

• Comparative analysis of the effects of fitness functions when evolving binary and multi-class 

intrusion detection classifiers. 

• Comparative analysis of the performance of intrusion detection classifiers generated using 

different variants of genetic programming. 

 

 Dissertation Layout 
This section provides a summary of the chapters in this dissertation. 

Chapter 2 – Genetic Programming 
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This chapter provides an introduction to genetic programming and its variants, grammatical evolution 

and multi-expression programming. A thorough description of each process within the variants is 

provided.    

Chapter 3 – Network intrusion detection 

Network intrusion detection (NID) is introduced in this chapter. The datasets and performance 

measures used within NID are also described as well as current and previous research work done 

within the network intrusion detection domain. 

Chapter 4 – Genetic Programming and Network Intrusion Detection 

This chapter reviews studies conducted within the network intrusion detection domain as well as an 

analysis of using genetic programming and its variants for network intrusion detection. 

Chapter 5 – Methodology 

The methodology used to achieve the aims and objectives outlined in Section 1.2 is discussed in this 

chapter. The statistical tests used to evaluate the performance of algorithms is provided in this chapter 

as well as a detailed description of the datasets used for this thesis. 

Chapter 6 – Genetic Programming for Network Intrusion Detection 

This chapter details the proposed genetic programming approach for binary and multi-class network 

intrusion detection. 

Chapter 7 – Grammatical Evolution for Network Intrusion Detection 

The grammatical evolution approach for binary and multi-class network intrusion detection is 

presented in this chapter. 

Chapter 8 – Multi-Expression Programming for Network Intrusion Detection 

The multi-expression programming approach used for binary and multi-class classification is 

presented in this chapter.  

Chapter 9 – Results and Discussion 

This chapter presents the results of each of the proposed approaches discussed from chapter six to 

eight. A comparison of the performance between each of the genetic programming variants is 

performed.  
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Chapter 10 – Conclusion and Future Work 

This chapter summarizes the findings presented in this thesis and a conclusion to each of the 

objectives outlined in Chapter 1. The chapter also discusses future work which will be investigated.   
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2 Genetic Programming 
 

 Introduction 
This chapter introduces genetic programming and its variants as well as provides details of the 

different aspects of the algorithm. 

Sections 2.2 introduces genetic programming, followed by an overview of genetic programming in 

section 2.3. Representation in genetic programming is discussed in section 2.4, initial population 

generation methods are discussed in section 2.5. Each individual within a genetic programming 

population is evaluated for performance and these evaluation methods are discussed in section 2.6. 

Selection methods are provided in section 2.7 and genetic operators are discussed in section 2.8. 

Control models are discussed in section 2.9 and termination criteria used in GP are described in section 

2.10. Introns and bloat are discussed in section 2.11, details of modularisation are provided in section 

2.12  and the strengths and weaknesses of genetic programming are provided in section 2.13. 

Section 2.14 introduces grammatical evolution, one of the variants of genetic programming. 

Section 2.15 provides an overview of grammatical evolution, followed by the representation in section 

2.16. Initial population generation in grammatical evolution is discussed in section 2.17 and the 

genetic operators used in grammatical evolution are described in section 2.18. Introns and bloat in 

the context of grammatical evolution is discussed in section 2.19 followed by an overview of the 

strengths and weakness of grammatical evolution in section 2.20. 

Multi-expression programming is introduced in section 2.21. Multi-expression programming is one 

of the variants of genetic programming. The overview of multi-expression programming is provided in 

section 2.22, followed by the representation in section 2.23. Section 2.24 discusses the initial 

population generation for multi-expression programming and genetic operators are discussed in 

section 2.25. Introns and modularisation within multi-expression programming is discussed in section 

Chapter  2 
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2.26 followed by the strengths and weaknesses of multi-expression programming in section 2.27. 

Section 2.28 presents a summary of the critical aspects of genetic programming and its variants.  

 Introduction to Genetic Programming 
Evolutionary algorithms (EA) are a class of optimization algorithms from artificial intelligence which 

take an analogy from evolution to solve computer science problems. The user defines a goal in the 

form of a quality criterion and the EA uses the defined goal to measure and compare solutions through 

a number of iterations until an optimal or near optimal solution is found [3]. Solutions are found in 

the search space. The search space is a search area which contains potential solutions to a problem. 

Most evolutionary algorithms adopt processes such as reproduction, selection and mutation from 

Darwin’s theory of natural selection and evolution in order to efficiently find solutions within the 

search space [81]. The theory of natural selection states that individuals with certain characteristics 

(stored in the genes) are more likely to survive and replicate their characteristics to the offspring and 

gradually improve the characteristics of the population created [25]. Different EAs differ in the way in 

which solutions are represented and the way in which new solutions are derived from existing 

solutions. A genetic algorithm (GA) is an evolutionary population-based algorithm that was inspired 

by John Holland in the early 1970s to model Darwin’s theory of natural selection. A GA evolves a 

population of individuals towards better solutions. Each individual within the population is encoded 

as a string which represents a potential solution to a given problem. The GA searches for solutions to 

problems within the solution space [53, 81]. 

Genetic programming (GP) pioneered by Koza [40], is a problem solving EA in which programs are 

evolved to find solutions to problems. GP conducts search for a solution program to a problem in the 

program space. GP mimics the theory of natural selection and it is closely related to GAs. GP searches 

a program space and a GA searches a solution space resulting in the structure of the representations 

being different. GP is stochastic in nature; it is not guaranteed to find the global optimum, but a good 

enough solution defined by the researcher.  

 Overview of the GP Algorithm 
A suitable representation is initially required before the GP algorithm is executed. The GP algorithm 

begins by generating a population of individuals made up from a combination of functions and 

terminals suitable for the domain. The population of individuals initially created is termed the initial 

population. Each individual in the initial population is assigned a value to determine how fit the 

individual is. The assigned value is termed as the fitness. Based on the fitness of the individual, the 
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algorithm can terminate execution. If a solution is found in the initial population, the algorithm 

terminates and returns the solution individual.  

If a solution is not found in the initial population, the individuals go through transformations using 

genetic operators to create better individuals. Each transformation creates a generation. A generation 

is a population of individuals which are created using genetic operators. A selection method is used to 

select individuals from the population. Genetic operators are applied to the individuals selected. 

Individuals created from the application of genetic operators are referred to as offspring. After each 

generation, each offspring created is evaluated for quality. The generation of offspring iteratively 

continues until a solution is found or termination criterion is reached. The iterative process can either 

replace the whole population of individuals or specific individuals with a low fitness. The process from 

initial population generation, genetic operator applications, generations until a termination criterion 

is met is defined as a run. Each of the fundamental aspects of a GP run are discussed further in the 

following sections. 

 Representation 
Elements of the GP population are programs, commonly represented as parse trees [74]. Other 

program representations include linear and graph representations [3]. A number of factors are 

considered when selecting the representation to use, these factors include efficiency, ease of 

implementation and information to be represented by the individuals [74]. A parse tree is comprised 

of elements of the function and terminal sets. The elements of the function and terminal sets are 

collectively called primitives. Genetic programming using a parse tree representation is also known as 

tree-based GP. Tree-based GP, functions and terminals are discussed below. 

2.4.1 Tree Based GP 
Each individual is represented as a parse tree for tree-based GP. Koza [40] represented programs in 

LISP (S-expression) which is equivalent to a parse tree representing a computer program. Pre-order 

notation is usually used to express parse trees for easy interpretation. Each parse tree is made up of 

one or several nodes. The first node within the parse tree is referred to as the root and the nodes that 

are found at the bottom of the parse tree are the leaves. 

2.4.2 Function Set 
The function set contains domain dependent functions. Mathematical functions, conditional 

statements, logical operators are examples of some of the functions. User defined functions can also 

be included in the function set. Each function has an arity. Arity is the number of arguments which a 

function takes [3]. 
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2.4.3 Terminal Set 
The terminal set is comprised of variables that make up the trees used to solve the GP problem. The 

variables can be of type string, real, integer or character. Constants such as ephemeral constants can 

be included in the trees used to solve the problem. Random ephemeral constants are values that fall 

within a specific range and remain unchanged during the entire duration of the run. For example, a 

random ephemeral constant with a range of integer values [1, 10] can be used, during a GP run if the 

ephemeral constant is selected, a random integer will be selected from the range [1, 10] and remain 

fixed for the duration of the GP run. Multiple ephemeral constants with different values can be used 

and the range is problem dependent. Elements of the terminal set have an arity of zero [3]. 

 Initial Population Generation 
The initial population is made up of randomly created individuals. Three methods exist for the 

generation of the initial population namely full, grow, and ramped half and half [40]. The generation 

of each individual begins by randomly selecting a function from the function set to represent the root 

node of the individual. The root node of the tree is selected from the function set in order to eliminate 

the creation of trivial trees (trees with a terminal element as the root node). Based on the arity of the 

root node selected, children are randomly chosen from the function and terminal sets and these are 

expanded iteratively in a depth first manner until a complete tree is created. The maximum depth of 

a tree is the distance from the root node to the bottom-most leaf node.  In Figure 2.1, the root node 

of the individual is located at depth 1, whilst the child nodes of the root are located at depth 2 and 

the maximum depth of the tree is depth 4. The maximum depth of a tree is specified when creating 

the initial population in order to limit the size of the tree during initial population generation.  

depth 1

depth 2

depth 3

depth 4

Maximum depth =  4  

Figure 2.1: Tree depth 
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If the search space is not sufficiently represented during initial population generation, it may lead 

to premature convergence to a local optimum of the GP algorithm. The search space has to be 

sufficiently represented in order to increase the chances of finding a global optimum. The number of 

individuals created is controlled by the population size which is specified as one of the parameters of 

a GP algorithm. 

2.5.1 Full Method 
The full method creates individuals which have a balanced tree. Balanced trees have all the leaf nodes 

at the same depth. The internal nodes for the trees are randomly selected from the function set only 

until the maximum tree depth is reached. At the maximum tree depth, only nodes from the terminal 

set are selected. Figure 2.2a illustrates a tree created using the full method. Trees created using full 

might not have the same number of nodes due to different functions possessing different arity values. 

The method promotes less variety within the population due to the similarity in the structure of the 

individuals created. 

AND

Notx

b

XOR

AND NOT

xba

a) b)
 

Figure 2.2: Tree individuals created using a) Full method and b) Grow method 

2.5.2 Grow Method 
The grow method creates individuals with irregular shapes and sizes [40]. The root of the individual is 

randomly selected from the function set. The rest of the nodes are randomly selected from either the 

function or terminal set until the tree depth limit is reached. Once the tree depth limit is reached only 

elements from the terminal set are selected. Figure 2.2b illustrates an individual created by the grow 

method. The grow method promotes greater variety within the population due to individuals 

possessing different shapes and sizes. 
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2.5.3 Ramped Half and Half Method 
The ramped half and half method combine the full and grow methods discussed above. Half the 

population is created using the full method and the other half of the population is created using the 

grow method. An equal number of trees of each depth are also created. Koza [40] introduced this 

method of generation to provide a wide variety of trees created with different sizes and shapes.  

For example, given a population size of 16 with a maximum tree depth of 5, at each tree depth half 

the population is created using the full method and the other half using the grow method. This means 

that at depth of 2, two individuals are created using the grow method and another two using the full 

method, at depth 3, two individuals using grow and two individuals using full, this continues until the 

maximum tree depth of 5 is reached. Figure 2.3 illustrates individuals created using the ramped half-

and-half method. 

 

Full Grow
Depth 2

 

Full Grow
Depth 3

 

Full Grow
Depth 4

 

Full Grow
Depth 5

 

Figure 2.3: Ramped half-and-half 

 Evaluation  
Each individual within a population is evaluated in terms of how well it solves a problem. Fitness 

provides a measure to the GP algorithm regarding which individuals should be given a higher 



 

11 

 

probability of being removed from the population as well as which individuals should be allowed to 

reproduce and recombine with other individuals within the population [3]. Evaluating the fitness of 

an individual is problem dependent and literature provides a vast amount of methods to use. Fitness 

cases and fitness functions are used to calculate fitness.  

2.6.1 Fitness Cases 
Programs within the population are executed over a set of different training cases. These training 

cases are referred to as fitness cases. Fitness cases are input-output pairs which describe the output 

to be produced by individuals given particular input values [3]. The success of a GP algorithm is to an 

extent dependent on the choice of fitness cases. Fitness cases should provide a good ratio of 

representing the problem domain to ensure generalization over the solutions produced by a GP run. 

The fitness of an individual is a function of the output produced by the individual and the target value 

for each fitness case. Table 2.1 provides an illustration of fitness cases. 

Input 

Values 

 

Output 

X Y 

4 10 116 

5 7 74 

6 3 45 

7 9 130 

Table 2.1: Fitness Cases 

2.6.2 Fitness Functions 
A numerical measure of how well an individual represents a solution is calculated using a fitness 

function. They can be used to evaluate how well an individual expresses the fitness cases [3]. The 

fitness function is a fitness measure that is used to compare different individuals within the population 

with respect to how far or close an individual is from the desired output. Different fitness functions 

are used for different problem domains. Fitness functions play an important role in driving the GP 

algorithm towards the global optimum and they should be designed carefully in order to prevent them 

from driving the algorithm towards local optima [42]. Raw fitness is one of the simplest and most 

commonly used fitness measures. It measures how promising an individual is at solving the problem. 

The error function is another commonly used fitness function. In some domains a high raw fitness 

represents a better individual whereas in some domains, it represents a weak individual [40]. Another 

fitness measure commonly used is the number of hits. The number of hits is the number of fitness 

cases for which the value produced by an individual is the same for each fitness case. It is used to 
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determine whether a solution has been found. For example, if a GP individual represents an expression 

𝑥𝑥2 + 𝑦𝑦2 based on the fitness cases provided in Table 2.1, the number of hits would be 4 signifying a 

solution to the problem since there are four fitness cases. The greater the number of hits, the better 

the individual. In certain problem domains, the raw fitness is equivalent to the hits ratio.  

Fitness functions have either a single objective or multiple objectives where two or more different 

measures are combined to solve a problem. These fitness functions are referred to as multi-objective 

fitness functions [3]. 

 Selection Methods 
Selection methods are methods used to select individuals responsible for offspring generation. The 

selected individuals are referred to as parents. Selection methods use fitness measures to select 

parents. Commonly employed selection methods are tournament selection and fitness-proportionate 

selection [40, 74]. Other selection methods used include truncation, ranking, linear and exponential 

selection [3]. 

Selection methods offer different effects on evolution and offspring generation. One of the effects 

is referred to as selection pressure.  Selection pressure is the degree to which fitter individuals are 

favoured. Algorithms with high selection pressure favour fitter individuals as compared to algorithms 

with lower selection pressure. Selection pressure also controls the convergence rate of a GP approach; 

very high selection pressure may lead to premature convergence whilst a low selection pressure leads 

to a slower rate of convergence [52]. 

2.7.1 Tournament Selection 
A random number of individuals are selected from the population to perform in a tournament. 

Comparison of each of the individuals within the tournament using the fitness value is performed. 

Based on the fitness the best individual is returned. The number of individuals randomly selected is 

referred to as the tournament size. A small tournament size promotes lower selection pressure and a 

high tournament size promotes higher selection pressure [3]. Tournament selection is commonly used 

within GP. 

Tournament selection can also be applied inversely. Inverse tournament selection is applied in the 

same manner with tournament selection but instead of returning the best individual from the 

tournament, the worst individual is returned. Inverse tournament selection is used within the steady 

state GP control method discussed later in this chapter. 
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 Genetic Operators 
Genetic operators are search operators used to create individuals within a population. Genetic 

operators alter existing individuals in the hope of generating better offspring which solve the problem 

[40]. The offspring created are of different sizes and shapes as compared to their parents. Genetic 

operators are used to explore different areas of the program space through exploitation and 

exploration. Exploration is used to visit entirely new regions of the program space and genetic 

operators which favour exploration are termed as global search operators. Exploitation on the other 

hand is used to visit regions of the program space within the neighbourhood of previously visited 

areas. Local search operators is the term associated with genetic operators which make use of 

exploitation [14]. A good ratio between exploitation and exploration needs to be maintained to ensure 

the search converges to a global optimum. During the evolution process, exploration is recommended 

at the early stages rather than exploitation to ensure the best area of the program space is explored 

and as the evolution progresses exploitation is more favoured to ensure that the algorithm converges. 

Various genetic operators have been used during the evolutionary process of GP. The three most 

commonly used genetic operators, reproduction, mutation and crossover, are discussed in detail 

below. Other genetic operators include permutation, decimation, encapsulation, hoist, create [40].  

The choice of genetic operators to use is usually probabilistic and the probability of application is 

referred to as operator application rates [74]. The operator rates are used to determine the number 

of offspring created by each of the genetic operators. The rates can be represented as percentage 

values, for example, a population of 200 individuals and a 50%, 30% and 20% application rate for 

crossover, mutation and reproduction respectively results in 100 individuals being created using 

crossover, 60 offspring created using mutation and 40 individuals created using the reproduction 

operator. Operator application rates are specified at the beginning of a GP run. 

Genetic operators can create very large offspring and pruning can be used to ensure that the 

individuals do not grow beyond a certain size. This is achieved by replacing all the function nodes at a 

specified tree depth (offspring depth) with randomly selected terminal nodes.  

Some genetic operators have been criticized for being destructive. One of the destructive effects 

is breaking good building blocks that could be used to form part of a solution [57]. 

2.8.1 Reproduction 
During reproduction, an individual is selected using one of the selection methods and copied to  the 

next generation without any alterations [3, 40, 74].  



 

14 

 

2.8.2 Mutation 
Mutation is a global search operator which creates an offspring by changing components of a single 

parent selected using one of the selection methods. Different variations of mutation exist such as 

shrink mutation, point mutation and subtree mutation. Subtree mutation is the most widely used form 

of mutation. Subtree mutation randomly selects a point within the selected individual (referred to as 

the mutation point) and replaces the subtree rooted at the mutation point with a newly randomly 

created subtree [40]. The grow method of population generation is generally used to create the 

subtree and mutation depth controls the depth of the subtree. Figure 2.4 illustrates the subtree 

mutation operator. Mutation promotes diversity within the population. 

XOR

AND

xy

OR

bx

AND

NOTx

x

XOR

AND

y

OR

bxAND

NOTx

x

Parent

Subtree

Offspring

Mutation 
point

 

Figure 2.4: Mutation operation 

2.8.3 Crossover 
The crossover operator is a local search operator which generates two offspring by exchanging 

different components (genetic material) between two parents. Two parents are selected using a 

selection method. A crossover point is randomly selected in each of the two parents. The subtrees at 

the selected points are exchanged between the two parents to create two offspring [3]. Figure 2.5 

Illustrates subtree crossover. Crossover promotes convergence within the population. 
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Figure 2.5: Crossover operation 

Crossover has been criticised for being a destructive genetic operator. It has the ability to insert a 

good building block into an individual that does not make proper use for it. Some authors have argued 

that the closer a tree is to a solution the more susceptible it is to the destructive effect of crossover 

[57].  

 GP Control Models 
There are two major models used to control the implementation of GP, the generational model and 

the steady-state model [3]. In generational GP, individuals in the population are replaced by new 

individuals after each iteration (termed as a generation). In steady-state GP, the weaker individuals 

are replaced as the evolutionary process continues. The two models are discussed further below. 
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2.9.1 Generational Model 
The generational control model illustrated by Algorithm 2.1 creates a new population from the 

previous population [3]. The algorithm randomly initializes the population using one of the initial 

population generation methods discussed in above. The fitness of the individuals in the generation 

are evaluated. A selection method is used to select parents which the genetic operators are applied 

to. The offspring created from the results of genetic operators are inserted in the next population. 

Iterations of the fitness evaluation and offspring creation are performed until a termination criterion 

is met.  

2.9.2 Steady State Model 
Algorithm 2.1 provides the steady-state control GP algorithm. Individuals are selected from the 

population using selection methods. Genetic operators are performed on the offspring returned from 

the selection methods [3]. Inverse selection methods are used to select the individual replaced by the 

offspring. 

Generational GP Algorithm 

Begin 

• Randomly initialize the population 

• Repeat 

o Evaluate the individual programs in the existing population. 

o Select an individual or individuals in the population using selection methods. 

o Perform genetic operators on the selected individual or individuals. 

o Insert the results of genetic operators into the new population. 

• Until a termination criterion is met. 

End 

Return the best individual from the population or solution to the problem. 

Algorithm 2.1: Generational GP 
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 Termination 
Termination criteria are measures used to stop the execution of the GP run. Different termination 

criteria are used within GP. Termination is problem dependent [74]. One of the most commonly used 

termination criteria is when a solution is found. In the event that a solution is not found, the best 

individual throughout all the generations is returned. The maximum number of generations can also 

be used as a termination criterion [40]. 

 Introns and Bloat 
Introns are blocks of redundant code that have no effect on the fitness of an individual. (NOT(NOT(X)) 

is an example of an intron, this block of code does nothing within an individual.  Bloat is the 

exponential program growth without any significant increase in terms of fitness [74]. Rapid increase 

of introns leads to bloat [3]. Bloat increases exponentially towards the end of a GP run and causes the 

GP algorithm to be stagnate. Introns can reduce the destructive effects of genetic operators [3]. 

Different methods such as the use of parsimony pressure have been implemented to reduce bloat. 

Modularisation has also been used to reduce introns and bloat [49]. 

Steady-State GP Algorithm 

Begin 

• Randomly initialize the population 

• Repeat 

o Randomly choose a subset of existing population to take part in tournament. 

o Evaluate subset individuals in the tournament. 

o Obtain the winner or winners from subset tournament. 

o Perform genetic operations on the winner or winners. 

o Apply inverse selection method and replace individual with results of genetic 

operations. 

• Until a termination criterion is met. 

End 

Return the best individual from the population or solution to the problem. 

Algorithm 2.2: Steady State GP 
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 Modularisation 
Modularisation is commonly used for problem-solving by which functional units of a program are 

identified and packaged for reuse. The methods encapsulate blocks of code. The encapsulated blocks 

of code become functions added to the function set and used in the creation of offspring. 

Modularisation attempts to tackle some of the main problems associated with GP; scaling and 

inefficiency [3]. Operators such as encapsulation and compression are some of methods which cater 

for modularisation of programs in GP [2, 40]. Automatically defined functions (ADFs) [8, 39] also caters 

for modularisation and enables GP to solve problems better [73]. 

 Strengths and Weaknesses of GP 
2.13.1 Strengths 

• Seeding is used for each GP run and this results in different solutions obtained for each run. 

• Easy interpretation and execution of solutions since each solution resembles a computer 

program. 

2.13.2 Weaknesses 
• Premature convergence due to lack of genetic diversity and the destructive effect of genetic 

operators. 

• A number of parameters are required to execute a GP run. Optimization of these parameters 

is essential in order to get the best solution for each problem domain. 

• No guarantee that GP will find a global optimum solution due to the stochastic nature of 

genetic programming. 

• Large run times can be experienced during GP execution. 
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 Introduction to Grammatical Evolution 
Grammatical Evolution (GE) is a grammar-based variation of Genetic Programming pioneered by Ryan 

et al. [59, 76]. GE performs the evolutionary process on variable-length binary strings unlike GP which 

performs its evolutionary process on actual programs. A bit within the binary string is referred to as 

an allele and a combination of 8 alleles form a codon. Each binary string codon represents an integer 

value which is used in a mapping process. GE is inspired by the biological process of generating a 

protein from the genetic material of an organism follows a similar mapping process. GE unlike GP, is a 

population of linear genotypic binary strings, which are transformed into functional programs through 

a genotypic-to-phenotypic mapping process [19, 60]. One of the weakness of GP is the inclusion of 

redundant code within individuals and GE minimizes redundant code [63]. 

 Overview of the Generational GE Algorithm 
The genotypic-to-phenotypic mapping process is governed by the use of a Backus-Naur Form (BNF) 

grammar, which describes the syntax of the language for the problem. Algorithm 2.3 provides an 

overview of the generational GE algorithm. The mapping process takes input (BNF grammar) and 

produces an output (programs). The created individuals within the population are evaluated for 

fitness. If a solution is not found within the initial population, the algorithm iteratively selects parents 

from the population using one of the selection methods. Genetic operators are applied to the 

Generational GE Algorithm 

Begin 

• Randomly initialize the population 

• Repeat 

o Evaluate the individual programs in the existing population. 

o Select an individual(s) in the population using selection methods. 

o Perform genetic operations on the selected individuals genotypic string(s). 

o Perform mapping process and generate phenotype. 

o Insert the offspring into the new population. 

• Until a termination criterion is met. 

End 

Return the best individual from the population or solution to the problem. 

Algorithm 2.3: Generational GE Algorithm 
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genotypic strings. The mapping process is repeated using the new genotypic strings created after 

genetic operators. The offspring created are evaluated for fitness. If a solution is not found, the 

evolutionary process iteratively continues until a termination condition is met.  

 Representation 
Each element of the population is a made up of a randomly generated binary string or denary string. 

This genotype is then converted to a program by the mapping process. The BNF grammar is used to 

define the syntax of valid programs [34]. BNF grammar and the mapping process are discussed in detail 

in the following sections. 

2.16.1 BNF Grammar 
BNF is a metalanguage (i.e. a language used to describe a language) which consists of the symbol ‘: : =’, 

denoting “is composed of”; and ‘|’ meaning a choice. It provides a notation for expressing the 

grammar of a language in the form of production rules. The BNF grammar is made up of the tuple N, 

T, P, S; where N is the set of all non-terminal symbols, T is the set of terminals, P is the set of 

productions rules that map N to T, and S is a member of N and the start symbol [60].  An example 

production rule is of the form: 

 < expression > : : = < variable > <operator> ge 

   | ge 

Where the non-terminals take the form < expression > (enclosed in angle brackets), and ge is an 

example of a terminal symbol.  

The above production rule states that an < expression > is composed of the non-terminal grammar 

for <variable> and <operator> as well as the terminal symbol ge. Alternatively, <expression> is 

composed solely of the terminal symbol ge. Production rules which can generate terminal symbols are 

referred to as terminal-producing production rules [13].  

Terminals in the context of GE are elements that appear in the program produced by GE. These 

terminals include operators such as *, +, -, / and the values they operate on such as constants, 

variables. Terminals are not limited to just operators and values; control statements and other 

structures can be referred to as terminals.  

The evolutionary process evolves binary strings and uses the binary strings evolved, the grammar 

and the mapping process in order to generate complete phenotypic programs [19, 60]. Domain 
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knowledge of a problem can be included within the grammar resulting in the generation of good 

solutions. 

2.16.2 Mapping Process 
The mapping process provides a distinction between the search space and the solution space [60]. A 

suitable BNF must be defined. This grammar specifies the syntax of the phenotypic programs to be 

produced by the GE. The genotype is used to map the start symbol to the terminals by converting the 

8-bit codons into integer values. Taking the leftmost integer codon value, the following mapping 

function is applied when selecting the appropriate production rule to use: 

 Rule = Codon Integer Value MOD number of rules for the current non-terminal 

Where the MOD function returns the remainder after a division operation (e.g. 3 MOD 2 = 1).  

The result produced after applying the mapping function corresponds to the production rule used 

to replace the Start symbol. If the production rule selected contains non-terminals, the leftmost non-

terminal is expanded first. The next integer codon in the chromosome is selected and the mapping 

function is applied to the next non-terminal. An example of the mapping process is provided below. 

If a production rule selected contains non-terminals, the mapping function is iteratively applied to 

the leftmost nonterminal symbol until one of the following situations arises: 

1. When all the non-terminals are converted to elements from the terminal set. 

2. The end of the genome is reached and the wrapping operator is applied whereby the mapping 

is iteratively repeated until a threshold of the maximum number of iterative repeats has been 

reached during mapping process. 

During the mapping process when individuals run out of codons to traverse the genome, the 

individuals are wrapped around and the codons are reused from the leftmost codon integer value. 

When the maximum number of wrapping is reached and the individual is still incompletely mapped, 

the mapping process is stopped and the individual is assigned the lowest fitness value [63].  Another 

termination criterion of the mapping process is also provided in Genr8 [34] where only the production 

rules that generate terminals are used to replace the non-terminals in the expression when the 

threshold of the number of wraps is exceeded. 

2.16.2.1 Mapping process example 

Consider the grammar: 

 R = {N, T, S, P} 
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Where:  

 Nonterminal symbols (N) are {exp, op, var}, 

Terminal set (T) is {+, -, /, *, X, 1}, 

Start symbol (S) is <exp> and 

Production rules (P) are: 

 <exp> : : = <exp> <op> <exp> (0) 

  | <var>   (1) 

 <op> : : = +   (0) 

  | -   (1) 

  | /   (2) 

  | *   (3) 

 <var> : : = X   (0) 

  | 1   (1) 

 

Rule 

Number 

Choices 

<exp> 2 

<op> 4 

<var> 2 

Table 2.2: The number of choices for each production rule 

Binary String (this is an element of the population) 

00010100 00100001 00010010 00010011 00100011 00000111 00001111 00100000 … 

 

    Binary to Integer (Denary) conversion 

Denary Values 

20 33 18 19 35 7 15 32 … 
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Start = <exp>      20 % 2 = 0 

  <exp> <op> <exp>    33 % 2 = 1 

  <var> <op> <exp>    18 % 2 = 0 

     X <op> <exp>    19 % 4 = 3 

     X    * <exp>    35 % 2 = 1 

     X    * <var>     7 % 2 = 1 

     X    *     1    Mapping Complete 

From the example above the individual created (phenotypic program) from the genotypes and the 

mapping process is(𝑥𝑥 ∗ 1). Some of the integer genotypes where not used during the mapping 

process. 

 Initial Population Generation and Evaluation 
Initial population generation involves creating random chromosomes. The number of chromosomes 

created is determined by the population size specified in the parameters. Each chromosome is 

composed of random binary strings. The number of codons specified as a parameter determines the 

number of binary strings in each chromosome. Each binary string codon in the chromosome is 

converted to a denary value. 

Evaluation of the chromosome takes place by applying the mapping process using the denary 

values and the grammar provided to generate a program. The wrap-over threshold limit is also 

specified as one of the parameters before the program executes to ensure the mapping process 

terminates when a specified number of wraps is exceeded. Evaluation methods, selection methods 

and termination criterion used within GE are the same as processes described for genetic 

programming in sections 2.6, 2.7 and 2.10 respectively. 

 Genetic Operators 
Genetic operators are used to create the next generation during the evolution process. Dempsey [19] 

stated that genetic operators from Holland’s Genetic Algorithm (GA) can be applied to the  genotypic 

strings. Some of the operators employed from GAs are discussed below.  
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2.18.1 Crossover 
Crossover generates offspring by combining genotypic material from two parents selected using 

selection methods. A number of crossover operators have been applied in GE. These include one-point 

crossover, two-point crossover and homologous crossover. 

One-point crossover [60] randomly selects a crossover point in each of the parent binary string 

codons. Alleles located after the crossover point are swapped between the two individuals to generate 

two offspring. Figure 2.6 illustrates one-point crossover, where the crossover point is four. The 

highlighted strings represent alleles from parent 1 and the non-highlighted strings represent alleles 

from parent 2. 

Parent 1   10011010 01010111 …. 

     

Parent 2  10111100 00011101 … 

     

Offspring 1  10011100 01011101 … 

     

Offspring 2  10111010 00010111 .. 

Figure 2.6: GE fixed length one-point crossover 

For each codon in the parents, two-point crossover randomly selects two crossover points and 

swaps alleles located between the crossover points [60]. Figure 2.7 illustrates two-point crossover, 

where the crossover points are at position three and 7.  

Parent 1   10011010 01010111 …. 

     

Parent 2  10111100 00011101 … 

     

Offspring 1  10011100 01011101 … 

     

Offspring 2  10111010 00010111 .. 

Figure 2.7: GE two-point crossover 

Homologous crossover [60] is a modified two-point crossover where the mapping process history 

of production rules used is kept for each of the individuals. Homologous crossover is applied to the 

denary values and not the binary strings. The mapping process history of the selected individuals is 

read from the left until a region of similarity (when the same production rule is selected on both 

individuals) is found. The first crossover point is selected at the boundary of the region of similarity in 
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both the individuals. The second crossover point is randomly selected from the region of dissimilarity 

(when the production rules selected are different on both individuals). The codons located between 

the two crossovers points are then swapped between the individuals. Homologous crossover has two 

variations, one that swaps blocks of the same size and the other which swaps blocks of differing 

lengths.  

Figure 2.8 illustrates homologous crossover which swaps blocks of the same size. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Homologous Crossover 

In Figure 2.8, the region of similarity is denoted by the area highlighted in the parent integer 

codons. The second crossover point is the same in both individuals and the region highlighted in the 

offspring signifies the codons which were swapped between the two parents.  

Homologous crossover requires more memory for execution compared to the other approaches 

and there is no clear procedure in the event that there is no region of similarity between the parents. 

2.18.2 Mutation 
A suitable parent is selected using the selection methods and mutation changes a bit or an integer 

value to another random value within the genotype of the parent generating an offspring. Changes 

                                                                   Crossover Point 1 

 

 Crossover Point 2 

 

Parent 1 
Integer codons 20 33 18 19 35 07 15 32 … 

Production Rules 0 1 0 3 1 1 0 0 … 

 
 

Parent 2 
Integer codons 34 25 15 18 20 06 45 66 … 

Production Rules 3 2 0 3 2 0 1 1 … 

 

    Crossover Point 2 

                                                                  Crossover Point 1 

 Integer codons 

Offspring 1 20 33 18 19 20 06 45 32 … 

Offspring 2 34 25 15 18 35 07 15 66 … 
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within the genotypic strings might however have no effect on the phenotype. For example, given the 

following BNF production rule: 

 <var> : : = X  (0) 

   | 1  (1) 

where <var> can either be replaced by variable X or 1. If mutation is performed and each time a binary 

string which evaluates to an even number is created, the production rule will always select the same 

variable X. This is termed to as neutral mutation [19]. 

Different mutation operators are adopted from GA. Some of the mutation operators are discussed 

below. The bit flip mutation operator inverts the alleles in the binary string meaning that if an allele is 

a 0, it is changed to 1 or if it is a 1, it is changed to 0. Interchanging mutation randomly selects two 

points within the binary codon and the alleles corresponding to the positions are interchanged. 

Flipping mutation randomly generates a binary string (mutation chromosome). The mutation 

chromosome is aligned with the parent binary codon and traversed from left to right. Whenever a 1 

is found in the mutation chromosome, the corresponding bit in the parent binary codon is flipped (0 

to1 and 1 to 0) generating the offspring [81]. Figure 2.9 illustrates the different mutation operators 

discussed above. The highlighted alleles represent where the changes took place. 

Bit Flip mutation Parent 10101010 

Offspring 01010101 
   

 

Interchanging mutation 

Parent 10111110 

Mutation points Points 4 and 8 

Offspring 10101111 
   

 

Flipping mutation 

Parent  00101110 

Mutation Chromosome 10001001 

Offspring 10000001 
   

Figure 2.9: Mutation Operator Variations 

 Introns and Bloat 
Introns are part of the genotypic strings which are not used during the mapping process. If all the non-

terminals are not expanded without using all the codons, all the remaining codons are introns. If 

introns within individuals grow exponentially, they result in bloat as previously discussed in section 

2.11. Different methods of controlling introns and bloat have been applied within GE. The use of 
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parsimony pressure and modularisation are among the methods used to control bloat within GE [33, 

58]. 

 Strengths and Weakness of GE 
GE benefits from some of the strengths and weakness addressed in section 2.13 but it also has other 

strengths and shortcomings different from GP which are discussed below. 

2.20.1 Strengths 
• The GE wrapping operator allows short chromosomes to translate into very long expressions 

and provides an efficient way of avoiding invalid expressions. 

• Domain knowledge can be included within the BNF grammar resulting in better tailor-made 

solutions to problems. 

• Bloat does not occur in the phenotype solutions, making solutions produced easy to 

understand. 

2.20.2 Weaknesses 
• Longer computational time is required to translate from the genotype to the phenotype 

during program execution. 

• Different genotype strings can map to the same phenotype string reducing the diversity of 

using different genotypic strings. 

  



 

28 

 

 Introduction to Multi-Expression Programming 
Multi-Expression Programming (MEP) was first introduced by Oltean [62] as a variant of Genetic 

Programming (GP). MEP enables the automatic generation of computer programs in a similar manner 

to standard GP. MEP use a linear solution representation and each MEP individual (chromosome) 

encodes multiple linear expressions (computer programs) referred to as genes. MEP individuals have 

the ability to encode several syntactically correct expressions in a chromosome, this ability is referred 

to as strong implicit parallelism. MEP has been applied to many different domains such as symbolic 

regression, classification, data analysis, evolving evolutionary algorithms, intrusion detection. 

 Overview of the Steady State MEP Algorithm 
Similar to standard GP, the first step is to randomly create an initial population of MEP individuals. 

Each individual in the population is evaluated based on the fitness function. The algorithm iteratively 

selects two parents randomly from the current population and applies the crossover operator to both 

parents obtaining two offspring. The mutation operator is then applied to both offspring and if the 

fitness of the best offspring is better than inverse selection method individual (poorer individual), the 

poorer individual is replaced with the best offspring. The iteration continues until a termination 

criterion is met [61]. Typically, the termination criterion is met when a solution is found or the 

Steady-State MEP Algorithm 

Begin 

• Randomly create an initial population 

• Repeat 

o Randomly select two parents from current population. 

o Apply crossover to the parents to generate two offspring. 

o Apply mutation to offspring. 

o If the fitness of the best offspring is better than inverse selection method individual, 

then 

Replace inverse selection individual with best offspring. 

End if 

• Until a termination criterion is met. 

End 

Return the best individual from the population. 

Algorithm 2.4: Steady-State MEP Algorithm 
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maximum number of iterations is reached [40]. If a solution is not found, then the best solution found 

during evolution is returned. Algorithm 2.4 illustrates a steady-state MEP algorithm. 

 

 Representation 
MEP chromosomes are made up of genes of variable length. The length of a chromosome is equivalent 

to the number of genes within the chromosome. A gene can either be a terminal gene or a function 

gene [61]. A gene within a chromosome is similar to an individual generated using standard GP. A 

terminal gene is created when only a terminal symbol is selected from the terminal set. A function 

gene is created by combining a function symbol from the function set and pointers representing other 

genes within the chromosome. The length of a chromosome is specified as one of the parameters for 

a MEP run. Evaluation of MEP individuals is similar to the evaluation for standard GP. 

 Initial Population Generation and Evaluation 
The first gene of a chromosome must be a terminal symbol in order to allow syntactically correct 

programs to be generated. For all the other genes, either a terminal gene or function gene can be 

encoded. Function genes include pointers to the function arguments. Function arguments always have 

positions of lower numerical value than the position of the function gene. Each of the genes in the 

chromosome are evaluated for fitness and the gene with the best fitness is used to represent the 

overall fitness of the chromosome. When more than one gene possess the best fitness, the first 

detected is chosen to represent the chromosome [29, 61]. The MEP chromosome is interpreted into 

a computer program in a top down manner. A terminal gene specifies a simple expression. A function 

gene specifies an expression obtained by connecting the operands specified by the argument positions 

with the function symbol. An example to explain the initial population generation process is provided 

below and Figure 2.10 illustrates the genes within the chromosome expressed as trees. 

The numbers on the left represent gene positions. 

Function Set (F) = {+, *, -, /, sin}, 

Terminal Set (T) = {a, b, c}. 

An example of an individual using the sets F and T is given below: 

1: a 

2: b 

3: + 1, 2 

4: sin (2) 
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5: c 

6: - 5, 1 

7: / 2, 3 

8: / 2, 6 

9: * 8, 4 

10: - 7, 8 

11: + 1, 9 

Genes 1, 2 and 5 encode simple expressions formed by a single terminal symbol. These expressions 

are: 

  E1 = a, 

  E2 = b, 

  E5 = c. 

Gene 3 applies the operation + to the operands located at 1 and 2 of the chromosome. 

  E3 = a + b 

Gene 4 applies the operation sin to operands located at 2. 

  E4 = sin (b) 

Gene 6 applies the operation – to the operands located at 5 and 1. 

  E6 = c – a 

Gene 7 applies the operation / to the operands located at 2 and 3. 

  E7 = b / (a + b) 

Gene 8 applies the operation / to the operands located at 2 and 6. 

  E8 = b / (c – a) 

Gene 9 applies the operation * to the operands at 8 and 4 of the chromosome. 

  E9 = b / (c – a) * sin(b) 

Gene 10 applies the operation - to the operands at 7 and 8 of the chromosome. 

  E10 = b / (a + b) - b / (c - a) 
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Gene 11 applies the operation + to the operands at 1 and 9 of the chromosome. 

  E11 = a + b / (c - a) * sin (b) 

 

 

Figure 2.10: MEP chromosome genes represented as trees 

 Genetic Operators 
This section provides a description of the various genetic operators and how they are applied within 

MEP. The operators preserve the structure of the chromosome and the offspring produced are 

syntactically correct expressions. Each of the parents are selected using the same selection methods 

described for standard genetic programming in section 2.7. 

2.25.1 Crossover 
During crossover two parents are selected and recombined. Crossover operations change gene 

material between selected parents. Three variants of crossover have been used in MEP 

implementations: one-point, two-point and uniform crossover. 

One-point crossover randomly selects a crossover point and the parent chromosomes exchange 

the genes that appear after the crossover point. Figure 2.11 illustrates one-point crossover. The 
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crossover point is position 4. The genes from 4 onwards are exchanged between the parents to 

generate the offspring. The highlighted genes illustrate the changes between the parents. 

Parents  Offspring 

P1 P2  O1 02 

1: b 1: a  1: b 1: a 

2: * 1, 1 2: b  2: * 1, 1 2: b 

3: + 2, 1 3: + 1, 2  3: + 2, 1 3: + 1, 2 

4: a 4: c  4: c 4: a 

5: * 3, 2 5: d  5: d 5: * 3, 2 

6: a 6: + 4, 5  6: + 4, 5 6: a 

7: - 1, 4 7: * 3, 6  7: * 3, 6 7: - 1, 4 

Figure 2.11: MEP one-point crossover 

Two-point crossover randomly selects 2 points and genetic material is exchanged between the 

chromosomes. Figure 2.12 illustrates two-point crossover with crossover points at positions 3 and 5. 

The genes between 3 and 5 inclusive are exchanged between the parents. 

Parents  Offspring 

P1 P2  O1 02 

1: b 1: a  1: b 1: a 

2: * 1, 1 2: b  2: * 1, 1 2: b 

3: + 2, 1 3: + 1, 2  3: + 1, 2 3: + 2, 1 

4: a 4: c  4: c 4: a 

5: * 3, 2 5: d  5: d 5: * 3, 2 

6: a 6: + 4, 5  6: a 6: + 4, 5 

7: - 1, 4 7: * 3, 6  7: - 1, 4 7: * 3, 6 

Figure 2.12: MEP two-point crossover 

Uniform crossover randomly selects genes and exchanges these between the parents to generate 

offspring as illustrated in Figure 2.13 
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Parents  Offspring 

P1 P2  O1 02 

1: b 1: a  1: a 1: b 

2: * 1, 1 2: b  2: * 1, 1 2: b 

3: + 2, 1 3: + 1, 2  3: + 2, 1 3: + 1, 2 

4: a 4: c  4: c 4: a 

5: * 3, 2 5: d  5: * 3, 2 5: d 

6: a 6: + 4, 5  6: + 4, 5 6: a 

7: - 1, 4 7: * 3, 6  7: - 1, 4 7: * 3, 6 

Figure 2.13: MEP uniform crossover 

2.25.2 Mutation 
During mutation in order to maintain syntactically correct programs, the first gene must encode a 

terminal symbol. The mutation operator is applied to the genes within the chromosome. A random 

number of genes in the chromosome are selected for mutation. If a terminal gene is selected for 

mutation, it may be changed to another terminal symbol or to a randomly created function gene. If a 

function gene is selected for mutation, the gene may be mutated to a terminal symbol or the function 

arguments are altered to point to other genes.  

Parent  Offspring 

1: b  1: b 

2: * 1, 1  2: * 1, 1 

3: b  3: + 1, 2 

4: * 2, 2  4: * 2, 2 

5: b  5: b 

6: + 3, 5  6: + 1, 5 

7: a  7: a 

Figure 2.14: MEP Mutation 

In the example (Figure 2.14) above gene 3 and 6 were randomly selected for mutation. Gene 3 

changed from a terminal symbol to a function, with randomly created function arguments. The 

mutation operator was applied to gene 6 and one of the function arguments where altered. The 

function arguments mutated always point to lower positions than the function position. 
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 Introns and Modularisation 
Introns within MEP are the genes which are not used within the chromosome. These genes have no 

effect on the fitness of an individual. Introns are helpful if they reduce the destructive effects of 

genetic operators. Modularisation methods such automatically defined functions can be used to 

reduce introns. 

Automatically Defined Functions (ADF) have been implemented in a MEP context as reusable 

subroutines. An ADF in MEP maintains the same structure as a MEP chromosome and it is made up of 

a number of genes. The function symbols used for an ADF in MEP are the same as the ones used for 

standard MEP and the terminal symbols within ADFs are restricted to terminal symbols defined only 

for ADF’s and hence terminal symbols of standard MEP chromosomes cannot be used with ADF 

structures [61].  

 Strengths and Weakness of MEP 
Since a single MEP gene within a chromosome is closely related to a standard GP individual, MEP 

benefits from the same strengths standard GP possesses. Some strengths and shortcomings specific 

for MEP are discussed below. 

2.27.1 Strengths 
• Multiple expressions within the same individual can be used to represent the best solution as 

well as explore a bigger search space as compared to single expressions. 

2.27.2 Weaknesses 
• High computational effort since multiple expressions are encoded within a single individual. 

• Duplicate expressions within an individual can be found.  

 Chapter Summary 
This chapter described genetic programming and some of its variant’s grammatical evolution and 

multi-expression programming. An overview of the genetic programming algorithm was provided. 

Aspects of the GP algorithm: representation, initial population generation, evaluation, selection 

methods, genetic operators, control methods and termination criteria were included in this chapter. 

Introns and bloat which increases the time taken for evaluation were discussed. The strengths and 

shortcoming of genetic programming were provided in this chapter. Grammatical evolution, a variant 

of genetic programming was introduced in this chapter. The generational control model in the context 

of grammatical evolution was described. Representation and the mapping process within grammatical 

evolution was discussed. A description of genetic operators applied within grammatical evolution was 

provided as well as the strengths and weaknesses of grammatical evolution were discussed in this 
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chapter. Multi-expression programming, another variant of genetic programming was introduced in 

this chapter.  An overview of multi-expression programming using the steady state control model was 

provided in this chapter. The representation, initial population generation and evaluation of 

individuals in multi-expression programming were discussed in this chapter. Various genetic operators 

applied in multi-expression programming as well as the strengths and weaknesses of multi-expression 

programming were provided in this chapter. This chapter has provided a foundation of the different 

approaches that will be used throughout this thesis.  
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3 Network Intrusion Detection 

 Introduction 
This chapter firstly introduces intrusion detection, Section 3.2 outlines the network intrusion detection 

process, network intrusion datasets are discussed in section 3.3, details of performance measures 

used in network intrusion detection are provided in section 3.4, previous work on network intrusion 

detection is discussed in section 3.6. Section 3.7 provides a summary of the chapter. 

Since the inception of networks and the internet, computer security has become a fundamental 

aspect of ensuring information and access to information is kept as secure as possible. Computer 

security is the process of preventing and detecting unauthorised access to information. Computer 

security addresses three main aspects of any computer-related system: confidentiality, integrity and 

availability [72]. Various mechanisms such as computer-related attacks compromise computer 

security. These attacks or intrusions put the security of a system at risk. Either internal intruders or 

external intruders initiate intrusions. Internal intruders are entities with authorized permission to 

information but still wish to perform unauthorised activities and external intruders are entities 

without authorised permission but use various techniques to attempt to compromise the security of 

information [45]. Different mechanisms have been introduced to safeguard against intruders and 

unauthorised access to information. Some of the mechanisms include firewalls, access controls and 

encryption. These mechanisms have however failed to fully protect networks and information from 

the increasing evolutions of sophisticated intrusions. As a result, intrusion detection systems have 

become an essential technique to detect intrusions before they inflict widespread damage [89]. 

Intrusion detection is the process of monitoring computer systems or networks for signs of intrusions. 

Software which automates the intrusion detection process is referred to as Intrusion detections 

system (IDS) [78]. 

Chapter  3 
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 Network Intrusion Detection 
Network intrusion detection is a classification task that separates normal behaviours of networks from 

attacks [65]. A typical network intrusion detection system (NIDS) should be able to correctly identify 

intrusions within a network as well as ensure it does not identify normal connections within the 

network as possible intrusions [43]. Low time performance and fault tolerance are some of the other 

desired characteristics of a NIDS. Time performance is the total time required by the NIDS to detect 

an intrusion [18]. Figure 3.1 provides an illustration of the NID process. 

Collection of Data Prepare Dataset

Pre-data 
processingTraining Phase

Testing Phase Classifier
 

Figure 3.1: The NID process 

Network information over the monitored network is extracted into a collection of connection 

records containing features such as protocol type, service, flag [10]. The collected records termed a 

dataset, is used to train and develop a classifier. Espejo et al. [22] defined a classifier as “a model 

encoding a set of criteria that allows a data instance to be assigned to a particular class depending on 

the value of certain variables”. Supervised learning is the approach frequently used to induce a 

classifier. Supervised learning involves using a dataset which has records that are labelled with their 

correct classes to induce a classifier which is capable of correctly classifying each record within the 

dataset [22]. In the context of NID, two types of classifiers exist, binary classifiers and multi-class 

classifiers. Binary classifiers distinguish between an attack and a non-attack and multi-class classifiers 

distinguish between different attack classes, i.e. types of attacks. Classification algorithms are 
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techniques that are used to induce classifiers. Examples of classification algorithms include genetic 

programming, genetic algorithms, neural networks and Bayesian networks are examples of classifiers.  

Pre-processing of the dataset such as feature selection is performed if necessary before 

classification takes place. K-fold cross-validation and training and testing are some of the methods 

used to evaluate how well the classifier performs [7].  

Training and testing involve splitting the dataset into two sets, the training set and the testing set. 

Different studies split the dataset differently. Studies in [6, 7] applied a 70/30 split were the training 

set consisted of 70% of the dataset and the testing set consist of the remaining 30%. Records that 

make up the training set or testing set are randomly selected. The training set is used by the 

classification algorithm for developing a classifier. Performance measures are used by the 

classification algorithms to assess the performance of the classifier. After the classifier generated, it is 

evaluated over the testing set to evaluate how well the classifier performs. 

 K-fold cross-validation involves splitting the dataset into k-parts of equal (approximate equal) size. 

The algorithm is run k–times and for each run, one k-part is used as the testing set whilst the other k-

1 parts are used as the training set. If the dataset is not exactly divisible by k, the last k-part will contain 

fewer instances [6, 7].  

 Datasets for Network Intrusion Detection 
The following section provides a description of the supervised machine learning datasets that have 

been widely used in network intrusion detection. The most commonly used datasets in NID are DARPA, 

KDD99 and NSL-KDD. Figure 3.2 provides the relation between the DARPA, KDD99 and NSL-KDD 

datasets. 
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DARPA

Raw TCP/IP Dump Files

KDD99

NSL-KDD

Features Extracted

Duplicates Removed
Size Reduced

Training Size:         6.591.458 kb (6.2gb)
Testing Size:          3.853.522 kb (3.67gb)

Training Size: 4898431 
Testing Size:   311029

Training Size: 125973 
Testing Size:   22544

 

Figure 3.2: Relation between DARPA, KDD99 and NSL-KDD extracted from [65]. 

3.3.1 DARPA 1998 and 1999 
The Defence Advanced Research Projects Agents (DARPA) and the Air Force Research Laboratory 

(AFRL) funded a project for the development of an evaluation dataset for NIDS. This resulted in the 

development of the DARPA 1998 dataset by the MIT Lincoln laboratory [16]. The data that was used 

to develop the dataset was extracted from a simulated network. The dataset is made up of training 

data collected over 5 days of a week from Monday to Friday over a period of 7 weeks and 2 weeks of 

test data of normal and intrusion user data. The dataset contains around 5 million connections with 

each connection approximately 100 bytes in size. Each connection is a sequence of TCP packets which 

flows under a specific protocol from a source IP address to a target IP address [16].  

The dataset set was improved in 1999 to include Windows NT vulnerabilities and stealthier attacks 

resulting in the 1998 DARPA dataset. The 1999 dataset training set data was collected over 3 weeks 

and testing set data was collected over 2 weeks. The data in the datasets weeks one and weeks three 

consist of normal traffic and week two data consists of attacks. The network attack classes that were 

simulated in the DARPA set include Denial of service (DOS), Remote user to local (R2L), Local to Root 

(L2R), Probing and Anomalous behaviours [51]. These network attack classes are discussed in detail in 

section 3.3.4. 
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Some researchers [46, 50, 51] have criticized the dataset because the traffic generation software 

used is not publicly available and hence it is difficult to determine the accuracy of the background 

traffic data presented.  They also questioned the use of simulated data as compared to using real-life 

systems and the use of a specific attacker increased the likelihood of bias in the data recorded. 

3.3.2 KDD Cup 99 
Feature extraction and data pre-processing techniques were performed on the DARPA’99 dataset to 

generate the KDD Cup 99. The KDD was prepared by Lee et al. [44]. The packet information within TCP 

dump files from DARPA was extracted into connections using Bro IDS [71], resulting in 41 features 

representing each connection [92]. The dataset was split into three labelled samples that are used for 

training and testing. The details of each sample are summarized in Table 3.1  

 Attacks Normal Total 

10% KDD 396743 97277 494020 

Whole KDD 3925650 972781 4898431 

Corrected KDD 250436 60591 311027 

Table 3.1: KDD Cup 99 Sample Distribution 

The features representing each connection are made up of 38 continuous or discrete numerical 

attributes and 3 categorical attributes. Each connection is labelled as either normal or a specific 

network attack [26]. The specific network attacks fall into one of the following categories; DOS, Probe, 

R2L and U2R, discussed in section 3.3.4. The dataset contains 24 network attack types in the training 

set and 38 attack types in the testing set. Among the 38 attack types in the testing set, 14 of them do 

not exist within the training set enabling the IDS to test how well it performs on unknown attacks. The 

dataset is heavily imbalanced towards attack connections. Out of 4 898 431 connections which make 

up the whole dataset, 3 925 650 connections are attack records [65]. Table 3.2 shows the attack 

distribution for the training set and testing set. U2R and R2L attack connections within the dataset are 

very few in comparison to the other network attacks.  

Due to the huge size of the datasets, some researchers use smaller portions of the datasets. Some 

researchers have criticized the dataset for containing too many duplicate records within the training 

and testing set which has resulted in the creation of other datasets such as the NSL-KDD dataset [85]. 
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 Training 

Size 

Testing 

size 

Normal 972781 60591 

DOS 3883390 231455 

Probe 41102 4166 

U2R 52 245 

R2L 1106 14570 

Total 4898431 311027 

Table 3.2: KDD Cup Class distribution 

3.3.3 NSL-KDD dataset 
The dataset was proposed by Tavallaee et al. [85] and consists of selected records of the KDD-CUP’99 

dataset [1]. The NSL-KDD (NSL) dataset was created to solve some of the inherent problems of the 

KDD CUP (KDD) dataset. Tavallaee et al. [85] conducted an analysis of the KDD dataset and found 

problems within the KDD dataset. The KDD dataset suffered largely from a vast number of redundant 

records and from the results of the KDD analysis, about 78% and 75% of the records were duplicated 

in both the training and testing set, respectively. A large amount of redundancy within the KDD 

training set causes learning algorithms to be more partial towards the more frequent records as 

compared to infrequent records. Duplication within the testing set will cause the evaluation of 

learning algorithms to be more biased towards better detection rates of frequent records.  

3.3.4 Network Attack Categories 
Simulated attacks within the previously mentioned datasets fall into one of the following categories: 

Denial of Service (DOS), Probe, Remote to Local (R2L) and User to Root (U2R). 

3.3.4.1 Denial of Service Attacks (DOS)  

These are attacks where the attacker denies access to a machine by making the computing resources 

too busy to allow network requests placed by legitimate users. Different varieties of DOS attacks exist, 

some create malformed packets that confuse the system, whilst others take advantage of bugs located 

on particular networks. Smurf and Neptune are examples of applications that perform DOS attacks 

[38]. Distributed DOS (DDoS) attacks have also emerged which are a variant of DOS attacks but instead 

of using a single machine to perform this attack, multiple machines are used [43].  

3.3.4.2 Probing attacks 

When an attacker scans a machine or network in order to determine weaknesses that they might later 

exploit in order to compromise the system. Examples of probe attacks include portsweep and mscan. 
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3.3.4.3 Remote to Local (R2L) attacks 

External intruders who have the ability to send and collect information from a host machine or 

network by exploiting the different vulnerabilities that exist on the network or host mainly initiate 

these attacks. Ftp_write, Guest and Xnsnoop are some examples of R2L attacks which attempt to 

exploit the weak or misconfigured security policies within a network or host machine [38]. 

3.3.4.4 User to Root (U2R) attacks 

The intruder initially starts using the system as a normal user and attempts to abuse the vulnerabilities 

of the system in order to gain higher privileges within the system. Perl and xterm are examples of user 

to root attacks [84]. 

Table 3.3 illustrates categorisation of the attacks that exist in the datasets discussed above. 

Category Network attack type 

 

Denial of Service 

(DOS) 

Back, Land, Neptune, Pod, Smurf, 

Teardrop, Mailbomb, Processtable, 

Udpstorm, Apache2, Worm, Syslogd 

Probe Ipsweep, Nmap, Portsweep, 

Satan, Mscan, Saint 

 

 

Remote to Local 

(R2L) 

Ftp_write, Imap, Multihop, Phf, 

Spy, Warezclient, Warezmaster, 

Guess_passwd, Xlock, Xsnoop, 

Snmpguess, Snmpgetattack, 

Httptunnel, Sendmail, Named, 

Dictionary, Guest 

 

User to Root 

(U2R) 

Buffer_overflow, Loadmodule, 

Rootkit, Perl, Sqlattack, Xterm, 

Ps, Eject, Ffbconfig, Fdformat 

Table 3.3: Network intrusion detection categories and attack types [75] 

 Performance Measures 
Performance measures are used to evaluate the efficiency and quality of a classifier. This section 

describes the performance measures commonly used for network intrusion detection. 
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3.4.1 Confusion matrix 
The performance of a classifier is described using a confusion matrix. The matrix shows how frequently 

instances of a class x were correctly classified as class x or misclassified as some other class [7]. The 

confusion matrix illustrates performance for both binary and multi-class classifiers. The matrix 

illustrates the performance of the classifier using four measures: 

• True Positive (TP) – The number of intrusion connections correctly classified as intrusions 

• True Negative (TN) – The number of normal connections correctly classified as normal. 

• False Negative (FN) – The number of intrusion connections incorrectly classified as normal 

connections. 

• False Positive (FP) – The number of normal connections incorrectly classified as intrusion 

connections. 
 

Table 3.4 illustrates a confusion matrix for two classes (intrusion and normal). 

 Predicted connection label 

Intrusion Normal 

Correct 

connection 

label 

Intrusion True Positive 

(TP) 

False Negative 

(FN) 

Normal False Positive 

(FP) 

True Negative 

(TN) 

Table 3.4: Binary confusion Matrix 

The following sections describe performance measures which make use of information from the 

confusion matrix. 

3.4.2 Accuracy and False Positive Rate 
Accuracy is the proportion of the correctly classified connections amongst the total number of 
connections. Accuracy is calculated using the following formula [7]: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴) =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 +  𝑇𝑇𝑇𝑇
 

False Positive Rate (FPR) measures the proportion of normal connections incorrectly classified over all 

the normal connections.  

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

(1) 

(2) 
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3.4.3 Sensitivity and Specificity 
Sensitivity is the proportion of true positive connections that were correctly classified [82]. It is also 

referred to as Recall or True Positive Rate (TPR). In NID, the metric measures how well the classifier 

detects intrusive connections. Sensitivity provides a more accurate measure of the intrusion detection 

effectiveness of the classifier as compared to the Accuracy.  

𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

Specificity measures the proportion of true negative connections that were correctly classified within 

the dataset [82]. It is also referred to as True Negative Rate (TNR). 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

3.4.4 Precision and F-measure 
Precision measures how well the classifier correctly detects intrusive connections over all the positive 

connections returned by the classifier within the dataset. It is also referred to as the Positive Predictive 

Value (PPV) [7]. 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

F-Score is the weighted average of precision and recall. It is also referred to as the f-measure. It 

provides a compromise between recall and precision.  

𝐹𝐹_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇

 

3.4.5 Receiver operating characteristics 
Receiver operating characteristics (ROC) graphs are two-dimensional graphs which provide a visual 

representation of classifier performance. The TP rates are plotted on the y axis and the FP rates are 

plotted on the x axis [24]. They are commonly used for binary classification problems and depict the 

tradeoffs between the benefits (true positive rates) and the costs (false negative rates). Figure 3.3 

provides an example of a ROC graph. 

(3) 

(4) 

(5) 

(6) 
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Figure 3.3: ROC graph 

From the graph above, classifiers that perform well would be the ones found in the region labelled A, 

these classifiers correctly classify most of the instances. An ideal classifier would be one which 

generates the point (0.0, 1.0) meaning that all the instances are correctly classified. One classifier is 

better than the other if it is to the “north-west” of the others [7]. Classifiers found in the region 

labelled B, tend to have a high rate of false positives and are worse than random guessing which is 

depicted by the diagonal line running from point (0.0, 0.0) to point (1.0, 1.0) [7, 24]. 

 Feature Selection 
Feature selection or attribute selection is defined as “the process of selecting a subset of original 

features according to a certain criteria” [9]. Features within a dataset can be described as either 

irrelevant, redundant or relevant. Irrelevant features are features which have no effect on the 

accuracy of a generated NID classifier. Redundant features consist of features which can be used 

interchangeably and still have the same effect on the performance measure of the classifier. Relevant 

features are features which have a direct effect on the primary objective of a NID classifier [12]. 

Feature selection achieves two main goals, it selects high quality features which help ensure the 

classifier generated retains high accuracy rates and low false positive rates as well as minimize the 

computation required during the generation of classifiers [91]. Dash and Liu [17] provide a study on 

feature selection for classification as well as categorize feature selection based on the generation 

procedures and evaluation functions. 
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 Previous Work on Network Intrusion Detection 
The network intrusion detection domain has been widely researched. Different approaches have been 

used to generate efficient NID classifiers which can accurately allocate specific network connections 

to their appropriate classes. Some of the approaches that have been used are discussed below. These 

approaches were selected using two criteria; either the approach used the same dataset as the work 

presented in this thesis or produced state-of-the-art results. 

3.6.1 Evolutionary Algorithms 
Chittur [11] generated a binary classifier using a genetic algorithm (GA) in order to evaluate if a GA 

can produce classifiers with high accuracy rates. The KDD-99 dataset was used to evaluate the evolved 

classifiers. Chittur used a combination of the sensitivity and false positive rate as a measure of the 

fitness of an individual. The classifier generated performed well obtaining a high sensitivity rate and 

low false positive rate. The results also showed that genetic algorithms are able to produce classifiers 

with high accuracy rates. 

Gong et al. [27] evolved production rules for network intrusion detection. The production rules 

were evolved using a GA. The DARPA dataset was used to evaluate the classifier. The dataset was made 

up of normal connections and two network attacks portsweep and pod. Feature selection was used 

to reduce the number of features. Crossover and mutation were used to produce the offspring. The 

classifier performed fairly well, obtaining a high detection rate for detection of normal connections.  

Hoque et al. [35] generated a multi-class classifier using a genetic algorithm (GA) to efficiently 

detect various classes of intrusions. The classifier was generated using the KDD-99 dataset. False 

positive rate and sensitivity were used to evaluate the overall performance of the classifier. The 

classifier performed well obtaining a high sensitivity rate for detecting DOS attacks as well as obtaining 

a low false positive rate. 

3.6.2 Neural Networks 
Wang et al. [87] generated a classifier using artificial neural networks and fuzzy clustering for multi-

class classification. The KDD-99 dataset was used to evaluate the performance of the classifier. Wang 

et al. compared the performance of the hybrid neural network to other approaches (decision trees, 

back propagation neural networks and naïve Bayes) based on three performance metrics: precision, 

sensitivity and f-measure. The hybrid neural network outperformed the other approaches in terms of 

the three performance metrics. However, it achieved a higher training time as compared to the other 

approaches. 
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Govindarajan and Chandrasekaran [28] applied a hybrid neural network to generate a classifier. 

The classifier generated was a hybrid designed using a radial basis function (RBF) and support vector 

machine (SVM). The NSL-KDD dataset was used to evaluate the performance of the classifier. The 

ensemble was evaluated using the classification accuracy. The study also generated two classifiers, 

one using RBF and another using SVM and compared the three classifiers for performance. The hybrid 

classifier outperformed the other two classifiers obtaining a high classification accuracy. 

Ibrahim et al. [36] implemented a Self-Organization Map (SOM) artificial neural network for 

intrusion detection. The neural network distinguished between normal connections and the attack 

connections. The KDD-99 and the NSL-KDD datasets were used to evaluate the performance of the 

classifiers. The neural network performed well obtaining high accuracy rates for detecting intrusions 

in both the KDD-99 and NSL-KDD datasets. The neural network was also compared to other 

approaches [54, 66, 80] which used the same dataset and it outperformed all the approaches for 

binary classification. 

3.6.3 Bayesian Networks 
Panda et al. [66, 67] generated a naïve Bayes binary classifier for intrusion detection. Naïve Bayes 

classifiers using different data filtering configurations were generated and evaluated for performance. 

The NSL-KDD dataset was used to evaluate the classifiers.  Cross-validation was used to train and test 

the classifier. Sensitivity and false positive rate were used to evaluate the performance of the 

classifier. The classifier using principal component analysis as the filtering approach achieved a higher 

sensitivity rate and lower false positive rate outperforming the other classifiers. 

Mukherjee and Sharma [55] generated a naïve Bayes multi-class classifier for network intrusion 

detection. The NSL-KDD dataset was used to evaluate the evolved classifier. Feature selection was 

performed. Cross-validation was applied for testing the classifiers. The Waikato Environment for 

Knowledge Analysis (WEKA) [31], a toolkit which contains a collection of various algorithms and data 

processing tools was used for the experiments. Accuracy was used to evaluate the performance of the 

classifier. The classifier that was generated with 24 features outperformed the other classifiers 

generated. 

3.6.4 Decision Trees 
Thaseen and Kumar [86] evaluated the performance of several decision tree classification algorithms 

for generating binary classifiers. The classification algorithms include AD tree, C4.5, LAD tree, NB tree, 

random tree, random forest and REPTree. The classifiers generated were evaluated using the NSL-KDD 

dataset.  The experiments for generating the classifiers were performed using WEKA. Feature selection 



 

48 

 

was performed. Accuracy was used to evaluate the performance of the classifiers generated. The 

classifier generated using a random tree classification algorithm obtained the highest accuracy rate 

over the other classifiers. 

Chae et al. [9] generated a classifier using J48 for network intrusion detection. The NSL-KDD dataset 

was used to evaluate the classifiers. Ten-fold cross-validation was used to evaluate how the classifier 

performed. Accuracy was used to evaluate system performance. Several feature selection methods 

were compared and the feature selection method which used 22 out of the 41 features from the 

dataset obtained the highest accuracy rate. 

 Chapter Summary 
This chapter introduced network intrusion detection and provided a description of datasets used for 

network intrusion detection. Network attack categories were discussed. Performance measures used 

in network intrusion detection were discussed in this chapter. Previous studies in network intrusion 

detection were discussed. 
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4 GP and Network Intrusion Detection 

 Introduction 
This chapter reviews studies that have been conducted using genetic programming and its variants for 

network intrusion detection. Section 4.2 provides an overview of using genetic programming for 

network intrusion detection. Section 4.3 describes studies that have performed binary classification 

for network intrusion detection and section 4.4 reviews previous work where multi-class classification 

for network intrusion detection was performed. The strengths and weaknesses of applying genetic 

programming and its variants for network intrusion detection are provided in section 4.6. Section 4.5 

provides an analysis of genetic programming and its variants for network intrusion detection. The 

chapter is summarized in section 4.7. 

 Using genetic programming for network intrusion detection 
When using genetic programming (GP) for network intrusion detection (NID) the problem is treated 

as a classification problem. The classification problem is viewed as either a binary classification 

problem or a multi-class classification problem. Classification algorithms such as genetic programming 

is used to create a classifier to solve a classification problem. Binary classifiers are generated for binary 

classification problems and multi-class classifiers are generated for multi-class classification problems. 

Binary classifiers are generated to detect whether an intrusion exists or not and multi-class classifiers 

are generated to detect different types of intrusions. A classifier can be represented in the form of a 

rule. Genetic programming is used to evolve a rule and the rule can be in the form of either a logical 

tree or an arithmetic tree or a decision tree or a production rule. Logical trees are made up of logical 

operators such as the OR operator. Arithmetic trees represent mathematical expressions and the 

function set consists of mathematical operators such as +, -, *, / [20]. Decision trees represent the 

features as nodes and the leaf nodes as the classes. Production rules are rules which are used to 

represent classifiers using IF-THEN statements. 

Chapter  4 
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When using GP for multi-class classification problems different methods are used to generate 

multi-class classifiers. Binary decomposition, static range selection and dynamic range selection are 

some of the methods used by GP for performing multi-class classification. 

Binary decomposition [47] decomposes a problem with n-classes into a number of binary 

classification problems. Given a problem with 4 classes (1, 2, 3, 4) and each binary problem having two 

classes a and b, the binary decomposition is performed as follows: 

• In the first problem, a = (1) and b = (2, 3, 4). 
• In the second problem, a = (2) and b = (1, 3, 4). 
• In the third problem, a = (3) and b = (1, 2, 4). 
• In the fourth problem, a= (4) and b = (1, 2, 3). 

When static range selection [47] is used to solve a multi-class problem, each class is defined by 

specific boundary regions. Boundary regions are defined based on the problem domain and possible 

class boundary points. Boundary regions are defined before a GP run. During the GP run, the classifier 

is considered to have classified a connection to a specific class if the output falls within a specific 

boundary region. Given a problem with four classes, the following boundary regions can be used to 

represent the classes: Class 1 = [-infinity, -1], Class 2 = [-1, 0], Class 3 = [0, 1], Class 4 = [1, infinity]. In 

static range selection, each element in the population has the same boundary regions. Dynamic range 

selection is an alternate approach to static range selection, which dynamically allows each element in 

the population to use a different set of class boundary regions. 

 Binary Classification for NID using GP 
This section reviews studies which make use of genetic programming and its variants to evolve binary 

classifiers for NID.  

4.3.1 Genetic Programming 
This section focuses on reviewed studies which evolve binary classifiers using standard genetic 

programming for NID. 

Crosbie and Spafford [15] improved manually created rules using genetic programming. The manually 

created rules were encoded in the initial population.  Crosbie and Spafford’s work was one of the first 

implementations that applied genetic programming for intrusion detection. The authors used their 

own dataset for evaluation. The individuals in the population represented production rules. Each 

individual was comprised of arithmetic operators, conditional operators, logical operators and 

features of the dataset. The fitness function was the number of correctly classified intrusions and non-

intrusions. Crossover was applied during the evolutionary process. Training and testing were used to 
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evaluate the overall performance of the classifier. The classifier designed did not perform well but the 

work provided the foundation for applying genetic programming for intrusion detection. 

Lu and Traore [48] used genetic programming to improve manually created production rules. The 

individuals in the population represented production rules and the initial population was made up of 

the manually created production rules. The DARPA 1998 dataset was used to evaluate the 

performance of the classifier. False positive rate (FPR), false negative rate (FNR) and unknown attack 

detection rate (UADR) were used as fitness functions to evaluate the rules generated. UADR measured 

the rate of detecting unknown attacks. The genetic operators used were mutation, reproduction and 

crossover. The overall performance of the classifiers was measured using accuracy and FPR. The 

classifier performed fairly well achieving an average accuracy rate and FPR of 0.57% and 0.041% 

respectively over the 10000 runs that were performed. 

Yin et al. [90] applied genetic programming to generate a rule-based system to detect intrusions. 

The DARPA 1999 dataset was used for the experiments. The Learning Rules for Anomaly Detection 

(LERAD) presented by Mahoney et al. [50] were used to create the initial rules used by genetic 

programming during initial population generation. The individuals in the population represented 

production rules. The accuracy was used as the fitness function. Crossover and mutation were applied 

to improve existing rules. The overall performance of the classifiers was measured using the number 

of correctly classified intrusions. The classifier designed by Yin et al. outperformed other classifiers 

detecting 84 out of the 148 intrusions obtaining a 54% accuracy. 

Orfila et al. [64] designed an intrusion detection classifier using genetic programming. The classifier 

was compared with the machine learning algorithm C4.5 in terms of efficiency and effectiveness. The 

Lawrence Berkeley National Laboratory (LBNL) Dataset [68] was used to evaluate and compare the 

performance of the classifiers. The individuals in the population represented logical trees. Logical and 

bitwise operators formed the function set whilst the terminal set was comprised of the features of the 

dataset as well as an ephemeral random constant. The fitness of a classifier was calculated as the 

difference between sensitivity and false positive rate multiplied by the accuracy. Crossover was 

applied during the evolutionary process. The authors evaluated the classifiers using cross-validation. 

GP generated more effective rules than C4.5 rules. GP also had simpler solutions with fewer nodes as 

compared to the best individual derived by C4.5. 

Blasco et al. [5] evaluated the performance of classifiers generated using different fitness functions. 

The KDD-99 dataset and a modified version of the KDD-99 were used for the experiments. The 

individuals represented logical trees. The terminal set was composed of the features of the dataset as 
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well as two ephemeral random constants. Two fitness functions were considered for evaluation. The 

first fitness function was the difference between sensitivity and false positive rate whilst the second 

fitness function was a function of the sensitivity, false positive rate as well as the frequency of attacks 

within the dataset. Tournament selection was used as the selection method. Genetic operators 

crossover and mutation were applied during the evolution process. The overall performance of the 

classifiers was measured based on the accuracy. The classifier generated based on the function of 

sensitivity, FPR and frequency of attacks achieved a higher accuracy rate. The classifiers were also 

compared to other classifiers [30] evaluated on the KDD dataset and they outperformed 3 out of the 

6 classifiers compared. 

Pastrana et al. [69, 70] applied genetic programming to generate intrusion detection classifiers. 

The Lawrence Berkeley National Laboratory (LBNL) and the KDD-99 dataset were used to evaluate the 

classifiers. The individuals represented logical trees. The features of the datasets formed the terminal 

set. Tournament selection was applied as the selection method. Crossover and mutation were applied 

during the evolutionary process. Cross-validation was used for the experiments that involved the 

LBNL. Training and testing were used for the KDD-99 experiments. FPR was used to measure the 

overall performance of the classifiers. The LBNL and KDD-99 NIDS classifiers performed well obtaining 

an FPR of 4% and 3% respectively. The LBNL classifier was also compared to the classifiers generated 

using C4.5 and naïve Bayes. The LBNL classifier outperformed the other two classifiers obtaining a 

lower FPR. 

4.3.2 Grammatical Evolution 
The study reviewed in this section used grammatical evolution to generate binary classifiers for 

network intrusion detection.  

Sen and Clark [79] applied grammatical evolution to mobile ad hoc networks (MANETs). The 

objective of the study was to model a classifier that could detect intrusions on MANETs. The authors 

used their own dataset. The BNF production rules of the grammar were composed of a combination 

of arithmetic operators, binary operators and MANET’s features. Individuals were represented as 

production rules. The difference between the accuracy and the false positive rate was used as the 

fitness function. Mutation and crossover were applied during the evolutionary process. The training 

and testing method was used. The overall performance of the classifiers was measured based on the 

accuracy. The classifier designed achieved high accuracy rates.  
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4.3.3 Linear Genetic Programming 
The work discussed in this section applied linear genetic programming to generate classifiers for 

network intrusion detection. 

Song et al. [83] applied linear genetic programming for network intrusion detection. The KDD-99 

dataset was used to evaluate the performance of the classifier. Linear genetic programming was used 

to represent individuals. The individuals were defined in terms of the number of pages and 

instructions. Three fitness functions were considered for evaluation: equal class cost, variable class 

cost and hierarchical cost. The equal class cost fitness function measured the number of correctly 

classified intrusions and non-intrusions. The variable class cost fitness function favoured infrequent 

classes by assigning a higher weighting to infrequent class detection as compared to frequent classes. 

The hierarchical cost fitness function measured the number of misclassified connections. Tournament 

selection, crossover and mutation were applied during evolution. The overall performance of the 

classifiers was measured based on the accuracy and the false positive rate. Individuals using 

hierarchical cost as the fitness function obtained the best results for both the false positive rate and 

accuracy.  

 Multiclass Classification for NID using GP 
This section reviews work which generated multi-class classifiers for network intrusion detection using 

genetic programming and its variants.  

4.4.1 Genetic Programming 
This sections reviews studies which applied standard genetic programming to generate multi-class 

classifiers for network intrusion detection. 

Faraoun et al. [23] applied genetic programming to perform multi-class classification for network 

intrusion detection. The KDD-99 dataset was used to evaluate the performance of the classifier. The 

individuals represented arithmetic trees. The terminal set was comprised of the features from the 

dataset and constants. The function set contained arithmetic operators. Fitness proportionate 

selection was used as the selection method. Genetic operators crossover and mutation were applied 

during the evolutionary process. The training and testing method was used. The overall performance 

of the classifier was measured based on accuracy and the FPR. The classifier obtained high accuracy 

rates and low false positive rates. The classifier also outperformed other classifiers [21, 44] generated 

using the same dataset. 
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4.4.2 Grammatical Evolution 
This section reviews work which has applied grammatical evolution for generating multi-class 

classifiers for network intrusion detection. 

Wilson and Kaul [88] applied grammatical evolution for automating the generation of intrusion 

detection rules. The KDD-99 dataset was used to evaluate the performance of the classifier. Rank 

selection was used as the selection method. The fitness of the rules was based on a combination of 

the features and the specific output class for each rule. Crossover and mutation were applied during 

the evolutionary process. The classification accuracy was used to evaluate the performance of the 

classifier in detecting the different network attacks. The best classifier evolved achieved a high 

classification accuracy for detecting attacks such as DOS but also achieved very low detection rates 

for other attacks such as R2L attacks.  

4.4.3 Multi-expression Programming 
This section reviews a study which applied multi-expression programming for generating multi-class 

classifiers for network intrusion detection. 

Grosan et al. [29] applied multi-expression programming (MEP) for multi-class classification and 

compared the performance of the classifier generated to linear genetic programming (LGP), support 

vector machines (SVM) and decision trees (DT). The 1998 DARPA dataset was used for classifier 

evaluation. LGP applied tournament selection, crossover and mutation during evolution. The MEP 

individuals represented arithmetic trees.  The MEP function set was comprised of a combination of 

arithmetic and logical operators. The terminal set comprised the 41 features from the dataset. 

Crossover was applied to generate offspring and accuracy was used as the fitness for MEP. The training 

and testing method was used for the experiments and accuracy was used to evaluate the performance 

of the classifiers. MEP outperformed LGP, SVM and DT classifiers for detecting normal, U2R and R2L 

attacks and LGP outperformed the rest of the classifiers in accurately detecting DOS and Probe attacks.  

4.4.4 Linear genetic programming 
Mukkamala et al. [56] investigated the use of linear genetic programming for modelling intrusion 

detection systems. The performance of linear genetic programming (LGP) was compared to support 

vector machines (SVM) and a neural network trained using resilient backpropagation (RBP) learning 

models in terms of scalability, the time it took to train and test the approaches and detection accuracy. 

The DARPA 1998 dataset was used for evaluation. The crossover operator was used to exchange 

sequences of instructions between two tournament winners. For each network attack category, an 

LGP classifier was evolved. LGP outperformed SVMs and RBP in terms of detection accuracies for each 

of the network attack type categories. 
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Hansen et al. [32] applied GP to evolve a classifier for network intrusion detection. The authors 

performed a comparative evaluation of two classifiers: one using standard crossover and the other 

using the homologous crossover operator, in order to determine the best crossover operator to use 

for intrusion detection. The KDD-99 dataset was used to evaluate the classifiers. Mutation and 

crossover were applied. The GP classifier using homologous crossover performed better than the 

standard crossover classifier. Hansen et al. also compared the state-of-the-art approaches with the 

GP classifier using homologous crossover and the classifier performed better than the state-of-the-art 

classifiers for DOS, Probe, U2R and R2L attacks. 

 Strengths and Weaknesses of GP in NID 
This section highlights the strengths and weaknesses of using genetic programming and its variants 

for network intrusion detection.  

4.5.1 Strengths 
• Automatic feature selection 

During the evolution process, the GP run indirectly performs the process of feature selection by 

selecting the best features to use in representing the solution to the problem. This eliminates 

additional feature selection tasks usually performed. 

• Flexibility  

Different representations can be used to represent classifiers for network intrusion detection. 

Quality of classifiers generated can also be improved by using modified fitness functions and 

genetic operators. 

4.5.2 Weaknesses 
• Introns 

Some classifiers generated by GP become very large because of redundant code within the 

classifier. 

 Analysis of genetic programming in network intrusion detection 
From the studies discussed above genetic programming has been widely used to generate classifiers 

for NID. There have been studies which have applied linear genetic programming and from the studies, 

linear genetic programming has been able to achieve high accuracy rates. From the literature, it can 

be seen that a lot of research effort has gone into linear genetic programming which has been able to 

attain high accuracy rates. The work in MEP and GE is still in its initial stages and from the studies 

reviewed, the two approaches tend to show promise of generating classifiers which can achieve high 
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accuracy rates. For the work presented in this thesis, MEP and GE will be investigated for generating 

classifiers for network intrusion detection. Genetic programming will be used to generate classifiers 

to provide a baseline to compare the performance of the classifiers generated by GE and MEP. Binary 

and multi-class classifiers will be generated using each of the approaches.  

From the studies which generated binary classifiers, the accuracy rate has been successfully used 

as the fitness function in order to generate classifiers with high overall accuracies [5, 64, 79, 90]. For 

this study, the accuracy rate will be used as the fitness function for binary classifiers generated using 

the three approaches (GP, GE and MEP). Different fitness functions have been used for generating 

multi-class classifiers for NID. Investigations into the effects of different fitness functions have not 

been conducted and for the study in this thesis, investigations into the use of different fitness 

functions will be conducted in order to determine the effects of fitness functions on the overall 

performance of classifiers generated. Based on work done by Loveard et al. [47], dynamic range 

selection and binary decomposition performed better than other approaches for solving classification 

problems and for the study in this thesis, binary decomposition will be used to generate multi-class 

classifiers for NID. 

In the literature reviewed genetic programming has been widely applied for network intrusion 

detection. Individuals in genetic programming have been represented using arithmetic trees [23], 

production rules [15, 48, 90] and logical trees [5, 64, 69, 70]. Logical trees have been applied more 

frequently and have achieved higher accuracy rates. For this reason, logical trees will be used to 

represent individuals in this study. Tournament selection which has been applied in a number of 

studies [5, 29, 69, 70, 83] which have achieved high accuracy rates will be used in this study. Crossover 

and mutation have been widely used in the studies reviewed in this chapter. In this study, both genetic 

operators will be applied during the evolutionary process.  

Grammatical evolution has been applied in a few studies for network intrusion detection [79, 88]. 

From the reviewed studies on grammatical evolution, production rules have been used to represent 

individuals. Production rules have not been able to achieve a high accuracy rate and for this study, 

logical trees will be used to represent individuals in order to investigate their potential for generating 

classifiers with better accuracy rates. Studies which have used tournament selection, crossover and 

mutation have achieved high accuracy rates and for the study in this thesis, tournament selection, 

crossover and mutation will be used. 
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Multi-expression programming has been applied once for network intrusion detection [29]. For this 

study, using logical trees to represent the individuals will be investigated. Genetic operators crossover 

and mutation will be applied during the evolutionary process for this study. 

Different datasets have been used for network intrusion detection. The KDD-99 dataset has been 

widely used in the literature provided in this chapter compared to the other datasets used for NID. 

The KDD-99 dataset has however been criticized for being outdated and containing redundant records 

[50, 77, 85]. The NSL-KDD [85] dataset was proposed to overcome some of the limitations of the KDD-

99 dataset possessed. In order to overcome the limitations of the KDD-99 dataset the following 

processes were performed on the NSL-KDD: 

- Removal of redundant and duplicate records in both the training and testing sets. 

- Reduction in the number of records in the training and testing sets, eliminating the need to 

randomly select small portions of the data set. 

 
The NSL-KDD dataset offers a streamlined version of the KDD-99 dataset and for the work 

presented in this thesis, the NSL-KDD dataset will be used. The accuracy has been widely used in 

reviewed studies [5, 29, 48, 79, 83, 88, 90] to evaluate the overall performance of the classifiers 

generated. For this study, the accuracy will also be used to evaluate classifier performance. 

 Chapter Summary 
This chapter discussed genetic programming and its variants for network intrusion. An overview of the 

application of genetic programming for network intrusion detection (NID) was discussed. Previous 

studies which generated binary classifiers for NID using genetic programming and its variants were 

discussed followed by studies which generated multi-class classifiers for NID. An analysis of previous 

work which used genetic programming and its variants for generating classifiers for NID was discussed 

and the strengths and weaknesses of using genetic programming for NID were provided. 
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5 Methodology 

 Introduction 
This chapter describes the methodology applied in order to achieve the aims and objectives of the 

study presented in the thesis. Section 5.2 discusses the aims and objectives of this study. Section 5.3  

and section 5.4 discuss the methodologies used to achieve the aims and objectives. Section 5.5 

discusses the details of the dataset including the pre-processing methods applied to the dataset. 

Section 5.6 describes the distributed architecture used for the proposed approaches. Section 5.7 

provides the technical specifications and section 5.8 summaries the chapter. 

 Research Methodology 
Different research methodologies have been used in the field of computer science. Johnson [37] 

suggests four methods namely empiricism, mathematical proof approaches, hermeneutics (formal 

proof techniques) and proof by demonstration which have been used in computer science. Empiricism 

is used to determine the hypothesis validity. it follows a sequence of steps hypothesis, methods and 

results and conclusion. Mathematical proof approaches use formal proofs to reason about the validity 

of a hypothesis given some evidence. It can either be by verification; attempts to establish that some 

good property will hold in a given system, or by refutation.  If a model is created and tested in the 

environment which it is intended to represent, the research methodology is regarded as 

hermeneutics. Proof by demonstration involves designing a system and iteratively refining the system 

based on feedback provided after each iteration cycle until the desired output is achieved or no further 

changes can be made to the system. 

The following section outlines the aims and objectives of the work presented in this thesis as well 

as how each of the objectives will be achieved using the methodology discussed in this chapter. 

5.2.1 Aims and Objectives 
The main aim of this study is to evaluate the different variants of genetic programming, namely 

grammatical evolution and multi-expression programming for evolving network intrusion detection 
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classifiers. Proof by demonstration will be used in order to achieve the aims of this study. The following 

outlines the objectives of the study presented in this thesis.  

• Objective 1: Detecting intrusions using grammatical evolution (GE) 
• Objective 2: Classifying network attack types using GE 
• Objective 3: Detecting intrusions using multi-expression programming (MEP)  
• Objective 4: Classifying network attack types using MEP 
• Objective 5: Detecting intrusions using genetic programming (GP) 
• Objective 6: Classifying network attack types using GP 
• Objective 7: Comparative analysis of GE, MEP and GP for network intrusion detection 

Two methodologies will be used in order to achieve the objectives outlined above. Objectives 1 to 6 

will be fulfilled using the methodology discussed in section 5.3 (methodology one) and objective seven 

will be fulfilled using the methodology discussed in section 5.4 (methodology two). 

 Proof by Demonstration Methodology 
Proof by demonstration will be used as the methodology. An initial approach will be implemented 

based on the critical analysis of the literature discussed in section 4.6. The approach will be iteratively 

refined if the approach is not performing well enough when compared to previous literature until a 

termination criterion has been met. During iterative refinement, the approach will be evaluated by 

testing the performance of the implementation on the dataset. If the implementation is not 

performing well based on the evaluation, the implementation is refined until the desired output is 

achieved. The algorithm for proof by demonstration is outlined in Algorithm 5.1 and the following 

sections discuss how each of the steps in the algorithm will be achieved. 

Proof by demonstration 

Begin 

• Implement initial approach 

• Repeat 

o Evaluate the approach. 

o Refine approach (if necessary). 

• Until a termination criterion is met. 

End 

Return implemented approach. 

Algorithm 5.1: Proof by demonstration 
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5.3.1 Evaluation of approach 
Training and testing will be used to evaluate the performance of the approach. The approach will be 

evaluated on the datasets described in section 5.5. Due to the stochastic nature of genetic 

programming and its variants, multiple runs of the proposed approaches will be performed. Thirty 

runs will be performed on the training dataset. A random seed will be used for each of the runs 

performed. The classifier with the highest fitness from the 30 runs will be considered the best 

classifier. The best classifier will be run on the test dataset in order to evaluate the overall 

performance of the approach. Accuracy will be used to evaluate how well the approach performs. 

5.3.2 Refinement of approach 
During the refinement of the approach different aspects of the approach will be changed in order to 

improve the performance of the approach. Aspects of the approach that will be changed include: 

• Parameter values 

A combination of different parameter values affects the performance of the approach. Parameters 

values such as the maximum tree depth of an individual have an overall effect on the generation of 

efficient classifiers and the population size which controls the number of individuals created has an 

effect on the chances of the approach finding a global optimum classifier for network intrusion 

detection. Changes in parameter values have to be performed in order to increase the performance 

of the implementation. Parameters that will be changed include the population size, application rates 

of the genetic operators, the maximum number of generations, maximum tree depth, BNF grammar 

and the number of genes in a MEP chromosome. 

• Representation of individuals 

Different representations have different effects for the generation of classifiers. Changes in the 

representation of individuals may lead to the generation of efficient classifiers. Logical trees will be 

tested in order to evaluate the best representation. 

• Fitness Function 

Fitness functions have an effect on the overall performance of implementations. Different fitness 
functions will direct the approach to different areas of the search space. 
 

• Selection Method 

The choice of selection method has an effect on the overall performance of an approach. Tournament 

selection has been widely used in the literature. Selection pressure has an effect on tournament 

selection. Selection pressure, which is the degree to which high accuracy classifiers are favoured has 

an effect on the convergence rate of an approach. 
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• Genetic Operators 

Genetic operators generate offspring of different shapes and sizes. Different genetic operators are 

used to explore different areas of the search space and changes in the genetic operators applied may 

lead to the generation of high accuracy classifiers. 

5.3.3 Termination Criterion 
The termination criteria of the methodology will be met when one of the following is achieved: 

• No further improvements in the performance of the classifiers were achieved. 
• Performance of the classifier is better than existing implementations from literature. 

 Statistical Tests 
The statistical significance of each of the approaches will be evaluated. More than 30 runs will be 

performed for each experiment using the previous methodology in order to obtain a normal 

distribution which will be used to perform statistical tests. 

5.4.1 Statistical Testing 
Hypothesis tests will be used to test for the significance of the results when comparing the different 

variations of genetic programming to evolve classifiers. A one-tailed hypothesis test (Z-test) will be 

used for the work presented in this thesis, to determine the statistical significance of results obtained 

when comparing different approaches. Table 5.1 provides the level of significance, critical values and 

decision rules for the Z-test. Assume two classification approaches, A and B are being compared, with 

means µA and µB respectively. In order to apply the Z-test, the first step is to formulate the null 

hypothesis and the alternative hypothesis as follows: 

H0 : µA = µB 

Ha : µA > µB 

The value of Z is calculated and compared to the critical value. If the Z-value is less than the critical 

value, there is no statistical significance in comparing the means resulting in the null hypothesis (H0) 

being accepted. If the Z-value is greater than the critical value, there is a statistical difference between 

the two means resulting in the alternate hypothesis being accepted (Ha). 

Significance (α) Critical Value Decision Rule 

0.01 2.33 Accept H0 – if Z < 2.33 

0.05 1.64 Accept H0 – if Z < 1.64 

0.1 1.28 Accept H0 – if Z < 1.28 

Table 5.1: Z-hypothesis test table showing levels of significance, critical values and decision rules 
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 Dataset 
This section describes the datasets that will be used for the work presented in this thesis. This section 

will also provide the pre-processing steps that will be applied to the datasets.  

5.5.1 Dataset description 
Datasets which have been used in network intrusion detection have been discussed in section 3.3. The 

NSL-KDD dataset will be used for the work presented in this study based on the critical analysis of the 

previous work discussed in section 4.6. 

The KDD Train+ set from the NSL-KDD dataset will be used for training and modelling the classifiers. 

The KDD Test+ set will be used to test the performance and effectiveness of the modelled classifiers. 

Table 5.2 provides the distribution of network attack categories and the total number of connections 

for each sample. 

 Normal U2R DOS R2L Probe Total 

KDD Train+ 67343 52 45927 995 11656 125973 

KDD Test+ 9711 67 7460 2885 2421 22544 

Table 5.2: NSL-KDD sample distribution 

5.5.2 Dataset Pre-processing 
Data pre-processing transform data into a format that will be easier and more effective to use for the 

purpose of the study. The NSL-KDD contains a combination of nominal and numeric values in the 41 

features that make up the dataset. Data preprocessing will be applied to the dataset in order to refine 

the dataset and make it easier to use for this study. Data transformation and normalization will be 

performed on the dataset based on previous work [4, 28, 36]. 

5.5.2.1 Data transformation 

Data transformation involves converting all the nominal feature values to distinct numerical values. 

For each of the nominal features (Protocol_type, Service and Flag), the distinct elements for each 

feature will be mapped to distinct numerical values [4, 36]. Table 5.3 provides the feature name and 

the mapped numerical value. 

Feature Feature Name Numerical 

Value 

 

Protocol_Type 

TCP 0 

UDP 1 

ICMP 2 
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Flag 

S0 0 

S1 1 

S2 2 

S3 3 

SF 4 

SH 5 

OTH 6 

REJ 7 

RSTR 8 

RSTO 9 

RSTOS0 10 

Service All services 0 to 69 

Table 5.3: Data transformation 

5.5.2.2 Dataset normalization 

Connections within the dataset contain varying ranges. The numerical values will be scaled using the 

min-max method of normalisation [36]. Each attribute will be scaled to fall within the range [0, 1], 

which is consistent with reviewed studies that have used the NSL-KDD dataset [4, 28, 36]. 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑋𝑋 − 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀
 

5.5.3 Binary classification dataset 
The NSL-KDD dataset was prepared for binary classification by setting all the intrusive connections as 

one class and the normal connections as another class. The KDD Train+ subset of the NSL-KDD will be 

used as the training set and the KDD Test+ will be used as the testing set. Figure 5.1 provides the 

distributions of connections within the binary dataset that will be used for the study presented in this 

thesis. 

(7) 



 

64 

 

 

Figure 5.1: Binary classification distribution 

5.5.4 Multi-class classification dataset 
The attack class for each connection in the dataset which will be used for the experiments presented 

in this thesis were converted from the specific network attack to the network attack category 

presented in Table 3.3. The KDD Train+ subset of the NSL-KDD will be used as the training set and the 

KDD Test+ will be used as the testing set. Figure 5.2 provides the distribution of attacks within the 

training and testing sets of the NSL-KDD dataset.  

 

Figure 5.2: Multi-class Classification distribution 

 Distributed Architecture for Proposed Approaches 
Genetic programming has high runtimes when evolving classifiers and in order to reduce the high 

runtimes associated with GP, a multicore architecture will be applied. The multicore architecture will 

be applied during the training phase of the proposed approaches described in this thesis. Two 
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processes, initial population generation and creation of the new population, are distributed because 

that is where mainly high runtimes are experienced.  

The process of creating the initial population and evaluation of the population is distributed over 

the architecture by dividing the number of individuals created over the number of cores. If n 

individuals are to be generated initially and t cores are available, each core will generate 𝑛𝑛
𝑡𝑡
 individuals 

in parallel. For instance, if the population size is 200 and 8 cores are allocated, each of the 8 cores will 

generate 25 individuals in parallel.  

Similarly, the creation of the new population for each generation (regeneration) is distributed over 

the architecture by dividing the number of individuals created by each of genetic operators over the 

number of cores. For instance, if two genetic operators are used with 8 cores and each genetic 

operator has an application rate of 50% and a population size of 200, 25 individuals will be generated 

on each of the 8 cores. 

 Technical Specifications 
The algorithms proposed in this dissertation were written in Java 1.8 using NetBeans 8.1. The technical 

specifications of the computer used to develop the proposed algorithms were as follows: Intel(R) Core 

(TM) i7-3770S Quad Core @ 3.10GHz with 8GB RAM running 64bit Windows 7. Statistical tests were 

performed using Microsoft Excel 2016. The simulations were performed on the Centre for High-

Performance Computing Lengau cluster. 

 Chapter Summary 
This chapter discussed the methodology used to achieve the aims and objectives outlined in chapter 

1. Methodologies that will be used to achieve the objectives have been discussed. The dataset that 

will be used to evaluate the performance was described as well as dataset pre-processing which will 

be performed. This chapter concludes by providing a description of the distributed architecture for 

the proposed approaches and the technical specifications.  
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6 Genetic Programming for Network 

Intrusion Detection 
 

 Introduction 
This chapter discusses the proposed genetic programming approach for network intrusion detection. 

Section 6.2 provides an overview of the algorithm used for the proposed approach. The initial 

population generation is discussed in section 6.3. The evaluation process of an individual is detailed in 

section 6.4. Section 6.5 discusses the selection methods and genetic operators. The parameters used 

are presented in section 6.6 and section 6.7 summarizes the chapter. 

 GP Algorithm 
The generational control model is used for the genetic programming approach presented in this 

chapter. An initial population is created and evaluated. The parent(s) used for genetic operators are 

selected using tournament selection. The genetic operators generate offspring. The offspring is 

evaluated and forms part of the new population. The algorithm repeats until the maximum number 

of generations is reached. Algorithm 2.1 provides an overview of the algorithm. The best classifier 

returned is evaluated on the testing set using accuracy in order to evaluate how well the classifier 

performs. 
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 Representation and initial population generation 
Each individual in the population is a logical tree representing a classifier. The terminal set is composed 

of the 41 features from the NSL-KDD dataset. The function set is made up of nine functions (and, not, 

or, equal, different, max, min, greater, least). The functions were selected based on the critical analysis 

of previous literature in section 4.6. Figure 6.1 illustrates the representation of an individual and Table 

6.1 provides descriptions of the functions in the function set. 

Function Description Arity 

AND Performs the logical AND operation between two values 2 

NOT Performs the logical NOT operation on a single value 1 

OR Performs the logical OR operation between two values 2 

EQUAL Compares two values and returns 1 if two numbers are the same, otherwise, 

0 is returned. 

2 

GP Algorithm 

Begin 

• Create an initial population 

• Repeat 

o Evaluate individuals in the population. 

o Select parents using tournament selection. 

o Apply genetic operators to selected parents. 

o Insert offspring into new population. 

• Until a maximum number of generations. 

End 

Return the best individual and evaluate on the testing set. 

Algorithm 6.1: GP Algorithm 
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DIFFERENT Compares two values and returns 1 if two numbers are different, otherwise, 

0 is returned. 

2 

MAX Compares two values and returns the maximum of the two values. 2 

MIN Compares two values and returns the minimum of the two values. 2 

GREATER Compares two numbers and returns 1 if the first number is greater than the 

second number, otherwise, 0 is returned. 

2 

LEAST Compares two numbers and returns 1 if the first number is lower than the 

second number, otherwise, 0 is returned. 

2 

Table 6.1: Function descriptions 

OR

OR

38 MAX

7 OR

40 9

OR

24 26

 

Figure 6.1: Example of an individual 

The individual in Figure 6.1 is made up of five functions from the function set, each with an arity of 

2. The numbers in the individual represent the feature numbers from the dataset. Each element in the 

individual is randomly selected beginning with the root node (highlighted node). 

The ramped half-and-half method discussed in section 2.5.3 is used for initial population 

generation. The initial population is generated based on the parameters provided in Table 6.3 and 

Table 6.4.  

 Evaluation 
The NSL-KDD training set discussed in section 5.5 is used in the training and generation of the 

classifiers. The training set is used to calculate the fitness of each individual in the population. The 

connections in the training set are the fitness cases discussed in section 2.6.1. Each individual in the 
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population is interpreted and evaluated to produce a single value representing the fitness of the 

individual. Each individual in the population evaluates to either a 0 or 1. 

In order to interpret each individual in the population, each individual cases is applied to the fitness 

cases to produce a predicted class. The variable representing the features in the individuals are 

replaced with the actual values in the fitness case. Each of the functions in the individuals are 

evaluated in a bottom-up manner until all the functions in the individual are evaluated and a single 

value is produced. Figure 6.2 illustrates the interpretation of the individual in Figure 6.1. The following 

is a fitness case which will be used to illustrate the interpretation process. Each feature value is 

separated by a comma and the last single value in the fitness case represents the actual class output. 

0.00,0.50,0.80,0.40,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0

.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.59,0.10,0.17,0.03,0.17,0.00,0.00,0.00,0.05,0.

00,0 

Each Interpretation is performed in a bottom-up manner beginning by replacing each of the feature 

numbers with the actual values from the fitness cases and then evaluating each function until all the 

functions are evaluated and a single value is returned. Using the fitness case above, the individual in 

Figure 6.1 evaluates to a single value of 0 which represents the predicted class.  
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OR

OR

0.00 MAX

0.00 OR

0.05 0.00

OR

0.00 0.00

Replace feature number with 
actual values from fitness case

1  

OR

OR

0.00 MAX

0.00 OR

0.05 0.00

OR

0.00 0.00

OR operation on values 0.05 and 0.00 
Replaced with 0

2

OR

OR

0.00 MAX

0.00 0

OR

0.00 0.00

Returns the higher value between 0.00 and EVALUATION 1 
(EVALUATION 2)

3

OR

OR

0.00 0

OR

0.00 0.00

OR operation on 0.00 and EVALUATION 2 
(EVALUATION 3)

4
OR

0 OR

0.00 0.00

OR operation on 0.00 and 0.00 
Replaced with 0

5

OR

0 0

OR operation on EVALUATION 3 and EVALUATION 4 
(EVALUATION 5) resulting in a single value of 0

6  

Figure 6.2: Evaluation process 

The output from the individual represents the predicted class. The predicted class is compared to 

the actual class of each of the fitness cases. Based on the results of the comparisons a confusion matrix 

discussed in section 3.4.1 is constructed. Table 6.2 provides an example of the confusion matrix 

constructed for the individual in Figure 6.1 after the individual is evaluated over the training set. 
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 Predicted Class 

Intrusion Normal 

Actual 

Class 

Intrusion 40367 (TP) 18263 (FN) 

Normal 16887 (FP) 50456 (TN) 

Table 6.2: Confusion Matrix 

  Based on the results from the confusion matrix, the fitness of an individual is calculated using one 

of the performance measures described in section 3.4. Different performance measures will be 

compared as fitness measures. 

 Selection Method and Genetic Operators 
Selections methods have been discussed in section 2.7. Tournament selection is used as the selection 

method and it is outlined in Algorithm 6.2. Individuals are randomly selected from the population. The 

number of individuals selected is determined by the tournament size. The individual with the best 

fitness in the tournament is returned as the tournament winner. 

Mutation and crossover discussed in section 2.8.2 were used to generate offspring. These genetic 

operators have been widely used in previous studies. Figure 6.3 and Figure 6.4 illustrates the genetic 

operators crossover and mutation.  

Tournament selection 

• Randomly select t (tournament size) individuals from the population creating sample.  

• Set first individual in sample as best individual (b). 

• Repeat 

o Compare the fitness of b with individuals in sample. 

o If fitness of individual in sample is higher than fitness of b, set b equal to individual 

with higher fitness. 

• Until all individuals in sample have been compared for fitness. 

Return the best individual. 

Algorithm 6.2: Tournament selection 
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In crossover, random crossover points are selected in each of the two parents selected using 

tournament selection. The subtrees located at the crossover points were exchanged between the two 

parents generating the offspring. In Figure 6.3 the highlighted nodes represent the crossover points. 

OR

OR

38 MAX

7 OR

40 9

OR

24 26

EQUAL

LEAST

NOT

NOT

8

4

OR

24 40

Crossover 
point

Parent 1 Parent 2

 

OR

OR

38

OR

24 26

EQUAL

LEAST

NOT

NOT

8

4

MAX

7 OR

40 9

OR

24 40

Offspring 1 Offspring 2

 

Figure 6.3: GP Crossover 

For mutation, a random mutation point is selected in the parent. A randomly generated tree is 

generated using the grow method of initial population generation. After the random tree is generated, 

it replaces the subtree at the mutation point of the parent generating the offspring. The mutation 

point is highlighted in both the parent and offspring in Figure 6.4. 
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Figure 6.4: GP Mutation 

 Parameters 
The parameters used for the generation of binary classifiers are provided in Table 6.3. These 

parameters were determined empirically through multiple trial runs. 

GP Parameter Value 

Population size 200 

Initial population generation method Ramped half and half 

Initial population maximum tree size 4 

Selection method Tournament with a size of 20 

Fitness function Accuracy 

Mutation application rate 50% 

Crossover application rate 50% 

Maximum mutation depth 3 

Maximum offspring depth 8 

Maximum number of generations 500 

Table 6.3: GP Parameters for binary classifiers 
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The parameters summarised in Table 6.4 were used during the generation of multi-class classifiers. 

These parameters were determined empirically through multiple trial runs. Different fitness functions 

were used in order to evaluate the performance of the classifiers.  

GP Parameter Value 

Population size 200 

Initial population generation method Ramped half and half 

Initial population maximum tree size 4 

Selection method Tournament with a size of 10 

Fitness functions Accuracy 

F-Score 

Matthews correlation coefficient 

False positive rate 

Precision  

True positive rate 

Mutation application rate 60 

Crossover application rate 40 

Maximum mutation depth 3 

Maximum offspring depth 8 

Maximum number of generations 500 

Table 6.4: GP Parameters for multi-class classifiers 

 Chapter Summary 
This chapter presented the proposed GP approach for generating binary and multi-class classifiers for 

network intrusion detection using genetic programming. An overview of the GP algorithm used for the 

generation of the classifiers was outlined. Representation of individuals, evaluation, selection 

methods and the genetic operators used for generating the classifiers were discussed. The parameters 

that were used for the generation of the classifiers were also provided. 
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7 Grammatical Evolution for Network 

Intrusion Detection 
 

 Introduction 
This chapter describes a grammatical evolution approach for generating binary and multi-class 

classifiers for network intrusion detection. Section 7.2 discusses the representation of individuals and 

the grammar used for generating the classifiers. The initial population generation and evaluation is 

discussed in section 7.3. Genetic operators and the selection method that will be used are discussed 

in section 7.4. Section 7.5 provides the parameters for the proposed approach and section 7.6 

concludes the chapter.  

 Representation 
The GE algorithm discussed in section 2.15 is used for the generation of the classifiers described in this 

chapter. The best individual evolved will be evaluated on the testing set of the NSL-KDD dataset. Each 

individual is made up of multiple binary strings. Eight-bits are used to represent a binary string. Each 

bit in the binary string is randomly selected to be either 0 or 1. The following are examples of randomly 

created binary strings representing an individual: 

01010010 10100001 00011100 00011111 11111001 01000101 11100001 

The grammar is described below. 

R = {N, T, S, P} 

Where 

N = {exp, op}  

T = {and, not, or, equal, different, max, min, greater, least, 1 … 41}  

Chapter  7 
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S = {<op> <exp> <exp>} 

Production rules (P) are: 

(1)  <exp> ::=  <op> <exp> <exp>  (0)  

|  <var>    (1)  

(2)  <op> ::=  AND    (0)  

|  NOT    (1)  

|  OR    (2)  

|  EQUAL    (3)  

|  DIFFERENT   (4)  

|  MAX    (5)  

|  MIN    (6)  

|  GREATER   (7)  

|  LEAST    (8)  

(3)  <var> ::=  attr_1    (0)  

|  attr_2    (1)  

|  …   …  

|  attr_41    (40) 

Each of the productions rules (<exp>, <op> and <var>) map to other variables as illustrated above. 

Each variable in the production rule maps to a numerical value used to distinguish it from other 

variables and the numerical value is also used during the mapping process. The functions contained in 

the production rule <op> perform the same functions as the ones described in section 6.3 and the 

terminal symbols contained in <var> are the 41 features of the dataset. The variables that are mapped 

from expanding <exp> in production rule (1) are considered as non-terminating symbols and the 

variables in production rules (2) and (3) are considered as terminating symbols. 
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 Initial Population Generation and Evaluation 
Each individual in the population is randomly created as discussed in section 2.17. The number of 

individuals created is determined by the population size. The number of codons determines the size 

of the individual (binary string length).  

Each individual is evaluated by converting the binary strings to denary values and then mapping 

the denary values to an expression tree. The grammar described above is used during the mapping 

process. The expression tree generated after the mapping process is a logical tree. Figure 7.1 illustrates 

conversion of binary strings to denary values. 

Binary strings of 8-bits randomly created. (Number of codons = 9) 

 

01010010 10100001 00011100 00011111 11111001 01000101 11100001 11100101 11111010  

 

Convert each binary string to a denary value 

 

82          161          28          31          249          69          225          229          250           

 

Figure 7.1: Binary to denary conversion 

After the conversion of binary strings to denary values, the mapping process outlined in section 

2.16.2 is applied, generating an expression tree used to calculate the fitness of the individual. Figure 

7.2 illustrates the denary values and the expression tree.  

OR

LEAST

29 MIN

30 27

LEAST

1725

Expression: OR LEAST 29 25 LEAST 17 MIN 30 27

Denary Codons: 82 161 28 31 249 69 225 229 250 47 255 16 114 109 91 193 247 

…

 

Figure 7.2: GE Individual 
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The individual in Figure 7.2 is made up of 18 denary codons which were used in the generation of 

the expression tree. The expression tree is made up of 4 functions and 5 terminal nodes. The OR 

function represents the root node of the expression tree. 

After the expression tree is generated, the expression tree is evaluated on the training set as 

discussed in section 6.5. The fitness of an individual is determined by the fitness of the expression 

tree. After evaluation of the expression tree, the fitness of the expression tree is calculated using one 

of the performance measures described in section 3.4. Accuracy will be used as the fitness function 

for binary classifiers and different performance measures will be compared as fitness functions for 

multi-class classifiers. Analysis of previous literature conducted in Chapter 4.6 has shown that accuracy 

has been successfully applied for generating binary classifiers which achieve high accuracies, and 

different performance measures have been used as fitness functions for generating multi-class 

classifiers with high accuracies and investigations into the effects of different performance measures 

is worth researching.  

 Selection Method and Genetic Operators 
Tournament selection discussed in section 2.7.1 where a single individual is selected from a sample of 

individuals is used as the selection method for the proposed grammatical evolution approach. 

Genetic operators crossover and mutation are applied during the GE run. Bit flip mutation 

discussed in section 2.18.2 is applied as the mutation operator. During bit flip mutation, each bit in 

the individual is inverted (0 is changed to 1 and 1 is changed to 0) generating an offspring. Uniform 

crossover is applied as the crossover operator. Uniform crossover randomly selects alleles within each 

of the parents and swaps them between the parents to generate offspring. Figure 7.3 illustrates 

uniform crossover were alleles at index 1,2,4,5,8 from the first binary string and index 1,4,6,7,8 from 

the second binary string were exchanged between the two parents to generate the offspring. The 

alleles highlighted in grey represent alleles from parent 1 and the alleles highlighted in blue represent 

alleles from parent 2. 

Parent 1   10011010 01010111 …. 
     

Parent 2  10111100 00011101 … 
     

Offspring 1  10111110 01011101 … 
     

Offspring 2  10111000 00010111 .. 

Figure 7.3: GE uniform crossover 
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 Parameters 
The parameters that were used for the generation of the proposed binary classifiers are summarized 

in the Table 7.1. These parameters were determined empirically through multiple trial runs. 

GE Parameter Value 

GE model Generational Model 

Population size 200 

Number of codons [30,100] 

Wrap-over limit 12 

Nonterminal limit 10 

Selection method Tournament with a size of 14 

Fitness function Accuracy 

Mutation application rate 50% 

Crossover application rate 50% 

Maximum number of generations 500 

Table 7.1: GE Parameters for binary classification 

The parameters summarized in the Table 7.2 were used for the GE approach producing the 

proposed multi-class classifiers. These parameters were determined empirically through multiple trial 

runs. The performance measures which will be compared are mentioned as fitness functions. 

GE Parameter Value 

GE model Generational model 

Population size 200 

Number of codons [30,100] 

Wrap-over limit 10 

Nonterminal limit 8 

Selection method Tournament with a size of 8 

Fitness functions Accuracy 

F-Score 

Matthews correlation coefficient 

False positive rate 

Precision  
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True positive rate 

Mutation application rate 40 

Crossover application rate 60 

Maximum number of generations 500 

Table 7.2: GE Parameters for multi-class classification 

 Chapter Summary 
This chapter presented a grammatical evolution approach for generating binary and multi-class 

classifiers for network intrusion detection. The grammar used was presented. Genetic operators and 

the evaluation of the individuals were discussed. The parameters which were used in the generation 

of the classifiers were provided.  
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8 Multi-Expression Programming for 

Network Intrusion Detection 
 

 Introduction 
This chapter describes a multi-expression programming approach for generating binary and multi-

class classifiers for network intrusion detection. Section 8.2 provides an overview of the MEP 

algorithm used for the generation of the proposed classifiers. The representation is discussed in 

section 8.3. Section 8.4 discusses the initial population generation and the evaluation of individuals. 

The selection method and the genetic operators used are discussed in section 8.5. The parameters 

used are provided in section 8.6 and section 8.7 summarizes the chapter. 

 MEP Algorithm 
The generational control model is used. The initial population is created and evaluated. Each individual 

in the population is evaluated using the training set of the NSL-KDD dataset. Tournament selection is 

used to select the parents used for genetic operators. New individuals are generated by the genetic 

operators and form part of the new population. The evaluation and generation of individuals is 

iteratively repeated until the maximum number of generations is reached. The best individual from 

the MEP run is returned and evaluated using the testing set of the NSL-KDD dataset. Algorithm 8.1 

summarizes the MEP algorithm used to generate the classifiers. 

Chapter  8 
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 Representation 
MEP individuals are made up of genes of variable length as discussed in section 2.23. Each gene within 

an individual is either a terminal gene or function gene. A terminal gene is created whenever a single 

terminal symbol is selected from the terminal set to represent the gene. The terminal set is made up 

of the 41 features from the dataset.  A function gene is created by combining a function symbol from 

the function set and pointers representing other genes within the same individual. The function set is 

made up of nine functions (and, not, or, equal, different, max, min, greater, least). These functions 

perform the same functions as described in section 6.3. Each gene in an individual is similar to an 

individual generated using GP. The number of genes which make up an individual is a MEP parameter. 

Figure 8.1 illustrates an individual with 11 genes and the pointers representing other genes within the 

same individuals. Individuals in the population are logical trees representing classifiers. 

MEP Algorithm 

Begin 

• Create an initial population 

• Repeat 

o Evaluate individuals in the population. 

o Select parents using tournament selection. 

o Apply genetic operators to selected parents to generate offspring. 

o Offspring form new population. 

• Until a maximum number of generations. 

End 

Return the best individual and evaluate on the testing set. 

Algorithm 8.1: MEP algorithm 
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Figure 8.1: MEP Individual 

The individual in Figure 8.1 is made up of 5 terminal genes and 6 function genes. The gene pointers 

illustrate the function arguments used to create each function gene. Gene 7 is a function gene created 

from the combination of gene 3, gene 1 and the MAX function. 

 Initial Population Generation and Evaluation 
The first gene in an individual is a terminal symbol and the rest of the genes in the individual are either 

terminal or function genes as discussed in section 2.24. The number of individuals created during initial 

population generation is determined by the population size.  

In order to evaluate the performance of an individual, each gene in the individual is evaluated using 

the NSL-KDD training set in the same manner as the evaluation of GP individuals discussed in 6.4. After 

each gene is evaluated, the gene with the best fitness represents the overall fitness of the individual.  

 Selection Method and Genetic Operators 
Tournament selection discussed in section 2.7.1 is used as the selection method. From the analysis of 

previous work provided in Chapter 4, tournament selection was widely used in previous literature. 

  Gene       Gene pointer(s) 

gene1   38 

gene2  37 

gene3  MIN 37 38     MIN gene2 gene1 

gene4  MIN 37 MIN 37 38    MIN gene2 gene3 

gene5  36 

gene6  31 

gene7  MAX MIN 37 38 38    MAX gene3 gene1 

gene8  NOT MIN 37 MIN 37 38    NOT gene4 

gene9  EQUAL 38 38     EQUAL gene1 gene1 

gene10  40 

gene11  EQUAL MIN 37 MIN 37 38 MIN 37 38  EQUAL gene4 gene3 
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Genetic operators mutation and crossover are applied during the generation of MEP classifiers. 

Uniform crossover is used as the crossover operator and the mutation operator discussed in section 

2.25.2 is used. Figure 8.2 illustrates uniform crossover applied to a MEP individual. For uniform 

crossover, after genes have been exchanged between the parents, each of the function genes 

exchanged update the function pointers to point to the genes within the individual. For example, for 

the individual in Figure 8.2, gene 2 in parent 2 is expressed as (AND 36 36) evaluating to (AND gene1 

gene1), after the gene is exchanged to form part of offspring 1, it updates its function pointer 

evaluating to (AND 38 38). 

        

 Parent 1 

1. 38 

2. 37 

3. MIN 37 38 

4. MIN 37 MIN 37 38 

5. 36 

6. 31 

7. MAX MIN 37 38 38 

8. NOT MIN 37 MIN 37 38 

9. EQUAL 38 38 

  

          

 Parent 2 

1.  36 

2.  AND 36 36 

3.  29 

4.  28 

5.  LEAST 36 28 

6.  27 

7.  40 

8.  OR LEAST 36 28 36 

9.  MIN 28 40 
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Figure 8.2: MEP Uniform Crossover 

 Parameters 
Table 8.1 lists the parameters that were used for the generation of MEP binary classifiers proposed in 

this chapter. The parameters were determined empirically through multiple trial runs.  

 Offspring 1 

1. 38 

2. AND 38 38 

3. MIN AND 38 38 38 

4. MIN AND 38 38 MIN AND 38 38 38 

5. LEAST 38 MIN 37 MIN 37 38 

6. 31 

7. MAX MIN AND 38 38 38 38 

8. NOT MIN AND 38 38 MIN AND 38 38 38 

9. EQUAL 38 38 

  

                

 Offspring 2 

1.  36 

2.  37 

3.  29 

4.  28 

5.  36 

6.  27 

7.  40 

8.  OR LEAST 36 28 36 

9.  MIN 28 40 
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MEP Parameter Value 

Population size 200 

Number of genes per individual 30 

Selection method Tournament with a size of 15 

Fitness function Accuracy 

Mutation application rate 60% 

Crossover application rate 40% 

Maximum number of generations 600 

Table 8.1: MEP Parameters for binary classification 

The MEP parameters that were used for the generation of multi-class classifiers proposed in this 

chapter are summarized in the Table 8.2. These parameters were determined empirically through 

multiple trial runs. 

MEP Parameter Value 

Population size 200 

Number of genes per individual 30 

Selection method Tournament with a size of 8 

Fitness functions Accuracy 

F-Score 

Matthews correlation coefficient 

False positive rate 

Precision  

True positive rate 

Mutation application rate 40 

Crossover application rate 60 

Maximum number of generations 500 

Table 8.2: MEP Parameters for multi-class classification 

 Chapter Summary 
This chapter presented the multi-expression programming approach for generating classifiers for 

network intrusion detection. An overview of the algorithm was provided and each aspect of the 

algorithm was discussed. The parameters that were used for the generation of the binary and multi-

class classifiers were provided.  



 

87 

 

 
9 Results and Discussion  

 Introduction 
 
This chapter presents the results obtained from applying the proposed approaches presented in this 

thesis for generating binary and multi-class classifiers for network intrusion detection. The following 

summarizes the objectives of the study presented in this thesis outlined in Chapter 1: 

• Develop and analyse the performance of using grammatical evolution for generating intrusion 

detection classifiers.  

• Development and evaluation of applying Multi-expression programming (MEP) for generating 

binary and multi-class classifiers for network intrusion detection.  

• Develop and analyse the performance of using genetic programming (GP) for generating 

binary and multiclass classifiers for network intrusion detection.  

• Investigate the effectiveness of fitness functions for network intrusion detection.  

• Comparative analysis of GE, MEP and GP for network intrusion detection.  

 
Section 9.2 presents the results of applying the proposed grammatical evolution approach 

described in Chapter (GE), Section 9.3 presents the results of applying the proposed Multi-Expression 

Programming approach described in Chapter (MEP) and Section 9.4 presents the results obtained from 

applying the proposed genetic programming approach described in Chapter (GP). Section 9.5 

compares the results for binary and multi-class classifiers presented for each of the approaches 

presented in this thesis. Section 9.6 compares the results of the proposed approaches to state of the 

art approaches for network intrusion detection and section 9.7 summarizes the chapter. 
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 Grammatical Evolution 
This section presents the results obtained by applying the GE approach described in Chapter 7 for 

binary and multi-class classification. 

9.2.1 Binary Classification 
The classifiers that produced best and worst results for detecting intrusions using grammatical 

evolution are presented in Table 9.1. The results in the table represent the accuracy for detecting both 

intrusive and non-intrusive connections during training and testing. The classifier achieved a high 

accuracy of 94.06% during training and 74.55% during testing, a true positive rate of 94.13% during 

training and 60.41% during testing. The classifier achieved a true negative rate of 95.38% during 

training and 86.78% during testing. The classifier achieved a false positive rate of 6.77% during testing 

as compared to 6% achieved during training of the classifier. 

 Training Testing 

Accuracy 

Best classifier 94.06 ± 0.13 74.55 ± 0.24 

Worst classifier 88.93 ± 0.17 73.19 ± 0.24 

Average 91.39 ± 0.15  

Table 9.1: Grammatical Evolution binary classification results 

The average runtime of GE to evolve a classifier was 3 hours during training and evaluation of the 

classifier on the testing set took an average runtime of 30 seconds. 

9.2.2 Multi-class classification 
The subsections below present the results of each of the six performance measures which were used 

as fitness functions for generating multi-class classifiers for network intrusion detection using 

grammatical evolution.  The average runtime of GE to evolve each of the classifiers discussed below 

was 3 hours during training and evaluation of performance on the testing set took an average runtime 

of 20 seconds for each of the classifiers. 

9.2.2.1 Accuracy  

Table 9.2 presents the results of the best and worst classifiers generated from using accuracy as the 

fitness function for generating multi-class classifiers using grammatical evolution. The best classifier 

obtained a low false positive rate of 3.6% during training and 5.5% during testing. High detection rates 
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were achieved for detecting U2R attacks with the best classifier achieving a 90% true positive rate 

during testing and 86.56% during training. 

 

 DOS Probe U2R R2L 

 

Training 

Best 95.57 ± 0.11 95.10 ± 0.12 99.97 ± 0.01 99.44 ± 0.04 

Worst 92.80 ± 0.14 90.78 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

Average 94.30 ± 0.13 92.80 ± 0.14 99.96 ± 0.01 99.27 ± 0.05 

 

 

Testing 

Best 85.33 ± 0.19 92.18 ± 0.15 99.71 ± 0.03 87.21 ± 0.18 

Worst 86.39 ± 0.19 89.27 ± 0.17 99.71 ± 0.03 87.20 ± 0.18 

Average 84.66 ± 0.20 91.68 ± 0.15 99.71 ± 0.03 88.17 ± 0.18 

Table 9.2: Grammatical Evolution accuracy multi-classification results 

The classifiers generated during training achieved similar detecting rates for U2R attacks resulting 

in the similar classification rates during testing for U2R. Probe attacks achieved high detection rates 

during testing despite achieving the lowest detection rates during training.   

9.2.2.2 Matthews coefficient correlation  

The training and testing results of the classifiers that were generated using Matthews’s coefficient 

correlation as the fitness function for multi-class classification using grammatical evolution are 

presented in Table 9.3.   

During training, the best classifier achieved a high accuracy rate and a low true positive rate of 

3%. The false positive rate during testing was higher than training at 5%. Using MCC as the fitness 

function during training and testing resulted in a high average classification rate. The high average 

classification is attributed to the balance between the true positive rate and true negative rate by the 

fitness function. 
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 DOS Probe U2R R2L 

 

Training 

Best 96.21 ± 0.11 95.47 ± 0.11 99.97 ± 0.01 99.21 ± 0.05 

Worst 63.54 ± 0.26 90.75 ± 0.16 99.94 ± 0.01 98.44 ± 0.07 

Average 92.15 ± 0.13 92.94 ± 0.14 99.96 ± 0.01 98.98 ± 0.05 

 

 

Testing 

Best 84.35 ± 0.20 88.94 ± 0.17 99.74 ± 0.02 86.91 ± 0.19 

Worst 66.91 ± 0.26 89.26 ± 0.17 99.71 ± 0.03 89.11 ± 0.17 

Average 83.56 ± 0.20 90.42 ± 0.16 99.71 ± 0.03 87.15 ± 0.18 

Table 9.3: Grammatical Evolution MCC multi-classification results 

9.2.2.3 F-Score  

Table 9.4 presents the results of the best and worst classifiers generated from applying f-score as the 

fitness function for multi-class classification using grammatical evolution. The best classifier achieved 

a false positive rate of 3.7% during training and 6.34% during testing. The best classifier achieved high 

detection rates with the detection of U2R intrusions achieving above 99% during both training and 

testing. 

 DOS Probe U2R R2L 

 

Training 

Best 96.17 ± 0.11 95.10 ± 0.12 99.97 ± 0.01 99.42 ± 0.04 

Worst 92.85 ± 0.14 92.44 ± 0.15 58.63 ± 0.27 80.38 ± 0.22 

  Average 94.45 ± 0.13 92.95 ± 0.14 97.16 ± 0.03 92.64 ± 0.12 

 

 

Testing 

Best 87.54 ± 0.18 92.18 ± 0.15 99.70 ± 0.03 89.26 ± 0.17 

Worst 84.38 ± 0.20 91.93 ± 0.15 46.52 ± 0.27 84.26 ± 0.20 

Average 84.42 ± 0.20 91.35 ± 0.15 96.13 ± 0.05 85.61 ± 0.19 

Table 9.4: Grammatical Evolution f-score multi-classification results 

The best classifier achieved a low detection rate for DOS attacks during testing as compared to 

the detection of all the other intrusive attacks. The average detection rate and the worst performing 
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classifier achieved similar results for detecting DOS attacks. The worst classifier also struggled to 

detect U2R attacks both during training and testing.   

9.2.2.4 True Positive Rate  

The training and testing results of the multi-class classifiers generated using grammatical evolution 

and using the true positive rate as the fitness function are presented in Table 9.5. The classifiers 

achieved low detection rates with the best classifier achieving a detection rate of 39.14% during 

training and 39.44% during testing. The approach (grammatical evolution using TPR as the fitness 

function) achieved the lowest detection rates as compared to the other grammatical evolution 

approaches. The classifiers achieved low detection rates due to the datasets including a large portion 

of normal connections as compared to the intrusive connections. The classifiers correctly classified 

intrusive connections and also achieved a high rate of false positives resulting in a low accuracy of the 

classifiers.  

 

 DOS Probe U2R R2L 

 

Training 

Best 39.14 ± 0.27 10.25 ± 0.17 36.21 ± 0.26 28.55 ± 0.25 

Worst 36.46 ± 0.26 9.25 ± 0.16 0.04 ± 0.01 0.79 ± 0.05 

Average 37.08 ± 0.27 9.48 ± 0.16 7.42 ± 0.08 8.88 ± 0.11 

 

 

Testing 

Best 39.44 ± 0.27 11.43 ± 0.18 22.84 ± 0.23 21.74 ± 0.23 

Worst 33.09 ± 0.26 10.74 ± 0.17 0.30 ± 0.03 12.8 ± 0.18 

Average 33.65 ± 0.26 10.91 ± 0.17 7.42 ± 0.08 16.42 ± 0.20 

Table 9.5: Grammatical Evolution TPR multi-classification results 

The best classifier achieved a true positive rate of 67% during training and 70% during testing. The 

rate of true negatives (correct detection of normal connections) was low resulting in high false positive 

rates of 60% during training and 56% during testing. 

9.2.2.5 Precision  

Table 9.6 presents the results of the multi-class classifiers generated using grammatical evolution and 

using precision as the fitness function. The best classifier achieved a false positive rate of 7% during 

training and 14% during testing.  
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 DOS Probe U2R R2L 

 

Training 

Best 64.51 ± 0.26 90.76 ± 0.16 99.96 ± 0.01 99.25 ± 0.05 

Worst 63.54 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

Average 64.20 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

 

 

Testing 

Best 66.34 ± 0.26 89.25 ± 0.17 99.71 ± 0.03 87.37 ± 0.18 

Worst 66.91 ± 0.26 89.15 ± 0.17 99.69 ± 0.03 87.20 ± 0.18 

Average 66.83 ± 0.26 89.24 ± 0.17 99.70 ± 0.03 87.22 ± 0.18 

Table 9.6: Grammatical Evolution precision multi-classification results 

The classifiers achieved low DOS detection rate during training and testing. The average detection 

rate, worst classifier detection rate and best classifier intrusion detection rates were similar during 

training and testing. The approach achieved a high detection rate for Probe attacks during testing and 

a lower detection rate during training as compared to the detection of R2L attacks. 

9.2.2.6 False Positive Rate  

The results of the training and testing of the multi-class classifiers generated using grammatical 

evolution and using false positive rate as the fitness function are presented in Table 9.6. The classifiers 

achieved low false positive rates of 6% during training and 9% during testing. The classifiers also 

achieved similar detection rates both during training and testing as summarized in the table.  
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 DOS Probe U2R R2L 

 

Training 

Best 63.82 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

Worst 63.54 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

Average 63.55 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

 

 

Testing 

Best 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18 

Worst 66.86 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18 

Average 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18 

Table 9.7: Grammatical Evolution FPR multi-classification results 

9.2.3 Analysis of multi-class classification for GE approach 
The results of the testing phase using the different performance measures as fitness functions for 

generating multi- class classifiers for GE are summarised in Figure 9.1. 

 

The classifier generated using f-score as the fitness function outperformed the other classifiers. 

The results were not statistically significant when compared to the results of the classifier produced 
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Figure 9.1: GE comparison of fitness function performance 
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using accuracy as the fitness function. Grammatical evolution performed well achieving generally high 

accuracy rates for both binary classification and multi-class classification. Classifiers that were 

produced using f-score, accuracy and Matthews’s coefficient correlation achieved higher accuracy 

rates.  The higher accuracy rates suggest that the performance measures perform well for detecting 

both intrusive and normal connections as well as unknown data. Both classifiers achieved the same 

accuracy for detecting Probe attacks. The classifier using f-score will be used when comparing the 

different approaches. 

 Multi-Expression Programming 
This section presents the results obtained by the applying the MEP approach described in Chapter 8 

for binary and multi-class classification. 

9.3.1 Binary Classification 
Multi-expression programming was successfully applied for the generation of binary classifiers. The 

results of the approach are presented in Table 9.8. The best classifier achieved a true positive rate of 

93.2% during training and 66% during testing. The classifier achieved a higher false positive rate of 5.6% 

during testing as compared to 3.95% achieved during the training and generation of the classifier. The 

overall performance of the classifier was high achieving a high accuracy rate of 78.23% during testing 

as summarised in Table 9.8.  

 Training Testing 

Accuracy 

Best classifier 94.72 ± 0.12 78.23 ± 0.23 

Worst classifier 76.69 ± 0.23 76.69 ± 0.23 

Average 92.59 ± 0.14  

Table 9.8: Multi-Expression programming binary classification results 

The average runtime of MEP to evolve a classifier was 6 hours during training and evaluation of 

the classifier on the testing set took an average runtime of 1 minute. 

9.3.2 Multi-class classification 
The subsections below present the results of applying MEP using each of the six performance 

measures outlined in section 8.6 as fitness functions for generating multi-class classifiers for network 

intrusion detection. The average runtime of MEP to evolve each of the classifiers discussed below was 
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6 hours during training and evaluation of performance on the testing set took an average runtime of 

1 minute for each of the classifiers. 

9.3.2.1 Accuracy  

The training and testing results of the classifiers that were generated using accuracy as the fitness 

function for multi-class classification using multi-expression programming are presented in Table 9.9. 

The best classifier obtained a high false positive rate of 5% during training and 7% during testing. Tests 

were performed to find the possible reasons for the high false positive rate. High accuracy rates were 

achieved for detecting intrusive connections with the best classifier achieving a 96% true positive rate 

during testing. 

 DOS Probe U2R R2L 

 

Training 

Best 97.42 ± 0.09 96.08 ± 0.11 99.97 ± 0.01 99.33 ± 0.05 

Worst 93.5 ± 0.14 91.12 ± 0.16 99.96 ± 0.01 99.25 ± 0.04 

Average 95.28 ± 0.12 92.67 ± 0.14 99.96 ± 0.01 99.28 ± 0.04 

 

 

Testing 

Best 86.10 ± 0.19 91.24 ± 0.16 99.70 ± 0.03 88.98 ± 0.17 

Worst 85.65 ± 0.19 89.63 ± 0.17 99.70 ± 0.03 87.20 ± 0.18 

Average 85.00 ± 0.20 90.95 ± 0.16 99.70 ± 0.03 88.44 ± 0.18 

Table 9.9: MEP accuracy multi-classification results 

The best MEP classifier achieved high detection rates during the training of U2R and R2L intrusive 

connections and achieved high detection rates for detecting U2R and Probe intrusive connections 

during testing. The high detection rate for U2R can be attributed to fewer connections existing in the 

dataset for U2R. Probe attacks achieved the lowest detection rates during training but during testing 

achieved the second highest detection rates.  

9.3.2.2 Matthews’s coefficient correlation  

The following table presents the results obtained from applying MCC as the fitness function for 

generating multi-class classifiers. During training, the best classifier achieved a high accuracy rate and a low false 

positive rate of 4%. The low positive rate during testing was low (3.5%) similar to the one achieved during training. 

Individuals generated using MCC as a performance measure have a balance between the true positive rate and the true 
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negative rate resulting in low false positive rates.  The low false positive rate and high true positive rate resulted in classifiers 

achieving a high accuracy as summarised in Table 9.10. 

 DOS Probe U2R R2L 

 

Training 

Best 97.51 ± 0.09 95.97 ± 0.11 99.97 ± 0.01 99.33 ± 0.05 

Worst 92.8 ± 0.14 92.37 ± 0.15 99.95 ± 0.01 98.32 ± 0.07 

Average 94.94 ± 0.12 94.04 ± 0.13 99.96 ± 0.01 98.98 ± 0.05 

 

 

Testing 

Best 85.72 ± 0.19 92.21 ± 0.15 99.71 ± 0.03 88.72 ± 0.17 

Worst 82.49 ± 0.21 91.75 ± 0.15 99.69 ± 0.03 90.41 ± 0.16 

Average 85.23 ± 0.19 90.15 ± 0.16 99.71 ± 0.03 90.68 ± 0.18 

Table 9.10: MEP Matthews’s coefficient correlation multi-classification results 

9.3.2.3 F-Score  

Table 9.11 presents the results of the best and worst classifiers generated from using f-score as the 

fitness function for generating multi-class classifiers using multi gene programming. The best classifier 

during training achieved high accuracies for detecting intrusions with the highest accuracy achieved 

for the detection of U2R attacks and DOS attacks. The best classifier achieved a false positive rate of 3.7% 

during training and 5.4% during testing. 

 DOS Probe U2R R2L 

 

Training 

Best 98.16 ± 0.07 96.45 ± 0.10 99.97 ± 0.01 99.32 ± 0.05 

Worst 92.94 ± 0.14 91.32 ± 0.15 71.46 ± 0.25 79.54 ± 0.22 

Average 95.82 ± 0.11 93.98 ± 0.13 91.49 ± 0.10 90.51 ± 0.14 

 

 

Testing 

Best 86.24 ± 0.19 94.03 ± 0.13 99.76 ± 0.03 87.06 ± 0.18 

Worst 85.26 ± 0.20 91.21 ± 0.16 62.34 ± 0.27 77.83 ± 0.17 

Average 85.30 ± 0.19 90.74 ± 0.16 90.14 ± 0.11 85.44 ± 0.19 

Table 9.11: MEP f-score multi-classification results  
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The worst classifier achieved the lowest detection rate for detecting U2R attacks both during 

training and testing even though the number of U2R connections within the dataset were the lowest. 

The low classification rate was a result of a low true positive rate and high false positive rate of 60%. 

9.3.2.4 True Positive Rate  

Table 9.12 presents the results obtained from applying MEP using the true positive rate as the fitness 

function. The best classifier achieved a true positive rate of 95% during testing but could not correctly 

distinguish between normal connections and intrusive connections resulting in a high false positive 

rate of 18%.  

 DOS Probe U2R R2L 

 

Training 

Best 64.36 ± 0.26 92.33 ± 0.15 99.21 ± 0.05 99.21 ± 0.05 

Worst 63.54 ± 0.27 90.75 ± 0.16 96.49 ± 0.10 96.49 ± 0.10 

Average 63.60 ± 0.27 90.82 ± 0.16 99.05 ± 0.05 99.05 ± 0.05 

 

 

Testing 

Best 66.87 ± 0.27 91.55 ± 0.15 87.20 ± 0.18 87.20 ± 0.18 

Worst 66.91 ± 0.26 89.26 ± 0.17 81.71 ± 0.21 81.71 ± 0.20 

Average 66.90 ± 0.26 89.37 ± 0.17 86.82 ± 0.19 86.92 ± 0.19 

Table 9.12: MEP true positive rate multi-classification results 

The high true positive rate and high false positive rate resulted in the classifier achieving a low 

accuracy rate both during training and testing. 

9.3.2.5 Precision  

The results obtained from applying MEP for generating multi-class classifiers using precision as the 

fitness function are presented in Table 9.13. The best classifier achieved a true positive of 85% during 

testing and 90% during training. The classifier also achieved a high false positive rate of 20% during 

training and 15% during testing. The performance measure measures how well the classifier detects 

intrusive connections over all the positive connections (true positive rate and false positive rate) 

returned during training and testing. The high false positive rate and high true positive rate resulted 

in the classifier achieving a low overall accuracy. 
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 DOS Probe U2R R2L 

 

Training 

Best 63.54 ± 0.27 90.75 ± 0.16 99.21 ± 0.05 99.21 ± 0.05 

Worst 63.54 ± 0.27 89.81 ± 0.17 99.21 ± 0.05 99.21 ± 0.05 

Average 63.54 ± 0.27 90.71 ± 0.16 99.21 ± 0.05 99.21 ± 0.05 

 

 

Testing 

Best 66.91 ± 0.26 89.26 ± 0.17 87.21 ± 0.18 87.21 ± 0.18 

Worst 66.91 ± 0.26 84.71 ± 0.20 87.21 ± 0.18 87.21 ± 0.18 

Average 66.91 ± 0.26 89.28 ± 0.17 87.21 ± 0.18 87.21 ± 0.18 

Table 9.13: MEP precision multi-classification results 

9.3.2.6 False Positive Rate  

The training and testing results of the classifiers that were generated using the false positive rate as 

the fitness function for multi-class classification using multi-expression programming are presented in 

Table 9.14. The best classifier correctly detected 80% of normal connections (true negative rate) 

during training and 85% during testing. The best classifier achieved a low false positive rate during 

training of 0.02% and 2.1% during testing but failed to correctly detect intrusive connections resulting 

in the overall performance of the classifier being low. 

 

 DOS Probe U2R R2L 

 

Training 

Best 63.54 ± 0.27 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

Worst 63.54 ± 0.27 90.75 ± 0.16 93.38 ± 0.13 99.16 ± 0.05 

Average 63.54 ± 0.27 90.75 ± 0.16 99.49 ± 0.02 99.21 ± 0.05 

 

 

Testing 

Best 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18 

Worst 66.91 ± 0.26 89.26 ± 0.17 95.08 ± 0.12 87.19 ± 0.18 

Average 66.91 ± 0.26 89.26 ± 0.17 99.37 ± 0.03 87.20 ± 0.18 

Table 9.14: MEP false positive rate multi-classification results 
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Detection of intrusive connections using the false positive rate as the fitness function resulted in 

low detection rates for DOS attacks in comparison to previous classifiers using different fitness 

functions. The approach generated similar solutions during training resulting in all the classifiers 

trained achieving the same detection rate. 

9.3.3 Analysis of multi-class classification for MEP approach 
Figure 9.2 illustrates the results of the testing phase using the different performance measures for 

evolving multi-class classifiers using MEP. 

From the results presented for multi-class classification using multi-expression programming, the 

classifiers which were generated using the f-score as the fitness function achieved higher detection 

rates than the other classifiers generated using the different fitness functions.  There was no statistical 

significance in the results when statistical tests were conducted. It should be noted that even though 

no statistical significance of the results was achieved, the classifiers using the f-score as the fitness 

function will be used for comparison with other approaches. 
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 Genetic Programming 
This section presents the results obtained by the applying the GP approach described in Chapter 6 for 

binary and multi-class classification. 

9.4.1 Binary Classification 
The training and testing results of the GP approach are presented in Table 9.1. The table presents the 

details of the classifier which achieved the highest accuracy (best classifier) as well as the classifier 

which achieved the lowest accuracy (worst classifier) during training.  

 Training Testing 

Accuracy 

Best classifier 98.06 ± 0.08 80.30 ± 0.22 

Worst classifier 96.43 ± 0.10 74.39 ± 0.24 

Training Average 97.74 ± 0.08  

Table 9.15: Genetic programming binary classification results 

Fscore Accuracy MCC FPR PPV
  

R2L U2R Prob
 

DOS 

100 

 

90 

 

80 

 

70 

 

60 

 

 

MEP 
Ac

cu
ra

cy
 

Figure 9.2: MEP comparison of fitness function performance 
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The two classifiers were evaluated on the testing set of the NSL-KDD dataset in order to evaluate 

the overall performance of the classifiers. The average runtime of GP to evolve a classifier was 5 hours 

during training and evaluation of the classifier on the testing set took an average runtime of 30 

seconds. The best classifier achieved a false positive rate of 1.79% during training. The classifier 

correctly classified 97.88% of intrusive connections as intrusions and correctly classified 98.21% of 

normal connections during training. During testing, the best classifier achieved a false positive rate 

of 3.6%, correctly classified 68.11% of intrusive connections as intrusions and correctly classified 

96.40% of normal connections. 

9.4.2 Multi-class classification 
The results of the six performance measures used as fitness functions for generating multi-class 

classifiers using the genetic programming approach outlined in Section 6.6 are presented in the 

subsections below. The average runtime of MEP to evolve each of the classifiers discussed below was 

2 hours during training and evaluation of performance on the testing set took an average runtime of 

1 minute for each of the classifiers. 

9.4.2.1 Accuracy  

Table 9.2 presents the results of using accuracy as the fitness function for generating a multiclass 

classifier. The best classifier achieved high detection rates of more than 99% for each of the network 

attacks during training and the detection rates reduced during testing. The false positive rate of the 

best classifier was 6%. The classifier achieved the highest detection rates for U2R attacks. The high 

detection of U2R attacks can be attributed to the few U2R connections which exist in both the training 

and the testing sets. The classifier also achieved a high detection rate for Probe attacks which 

contribute 9% of the training set and 11% of the testing set. This contributes in the classifier achieving 

an overall high detection rate. 
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 DOS Probe U2R R2L 

 

Training 

Best 99.76 ± 0.03 98.97 ± 0.06 99.98 ± 0.01 99.7 ± 0.03 

Worst 94.52 ± 0.13 92.48 ± 0.14 99.96 ± 0.01 99.21 ± 0.05 

Average 97.89 ± 0.07 96.74 ± 0.09 99.97 ± 0.01 99.32 ± 0.05 

 

 

Testing 

Best 88.93 ± 0.17 92.97 ± 0.14 99.73 ± 0.03 88.34 ± 0.18 

Worst 84.47 ± 0.20 91.69 ± 0.15 99.70 ± 0.03 87.20 ± 0.18 

Average 86.84 ± 0.19 92.36 ± 0.15 99.71 ± 0.03 87.61 ± 0.18 

Table 9.16: GP accuracy multi-classification results 

9.4.2.2 Matthews’s coefficient correlation (MCC)   

The results obtained from applying GP for generating multi-class classifiers using MCC as the fitness 

function are presented in Table 9.3. The best classifier achieved a false positive rate of 4% during 

testing. During training, the sensitivity rate of the best classifier was high, correctly detecting most of 

the intrusive connections. The best classifier achieved the same U2R detection rate as the best 

classifier generated using accuracy as the fitness function during training but during testing, the 

classifier using accuracy outperformed the classifier generated from using MCC in correctly detecting 

two of the four network attacks. 

 DOS Probe U2R R2L 

 

Training 

Best 99.78 ± 0.03 98.10 ± 0.08 99.98 ± 0.01 99.67 ± 0.03 

Worst 63.54 ± 0.26 92.49 ± 0.14 99.96 ± 0.01 99.02 ± 0.05 

Average 89.02 ± 0.12 95.23 ± 0.11 99.97 ± 0.01 99.35 ± 0.04 

 

 

Testing 

Best 87.84 ± 0.18 92.43 ± 0.15 99.75 ± 0.03 89.23 ± 0.17 

Worst 66.91 ± 0.26 94.08 ± 0.13 99.70 ± 0.03 87.98 ± 0.18 

Average 81.87 ± 0.20 90.78 ± 0.16 99.73 ± 0.03 88.10 ± 0.18 

Table 9.17: GP Matthews’s coefficient correlation multi-classification results 
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9.4.2.3 F-Score   

The training and testing results of the classifiers that were generated using f-score as the fitness 

function for multi-class classification using genetic programming are presented in Table 9.4. The 

classifiers generated using f-score achieved high accuracy rates with a high detection of U2R attacks 

as compared to other network attacks. The best classifier achieved a false positive rate of 2% during 

training and 3% during testing. The classifier generated using the f-score as the fitness measure 

achieved the lowest false positive rate as compared to the classifiers generated using accuracy and 

MCC as the fitness measure. 

 DOS Probe U2R R2L 

 

Training 

Best 99.79 ± 0.03 98.62 ± 0.06 99.98 ± 0.01 99.75 ± 0.03 

Worst 95.16 ± 0.12 92.43 ± 0.15 77.40 ± 0.23 86.63 ± 0.19 

Average 97.91 ± 0.07 96.83 ± 0.06 95.30 ± 0.09 98.85 ± 0.05 

 

 

Testing 

Best 90.31 ± 0.16 90.12 ± 0.16 99.73 ± 0.03 87.27 ± 0.18 

Worst 84.13 ± 0.20 91.37 ± 0.15 70.76 ± 0.25 86.33 ± 0.19 

Average 87.29 ± 0.18 91.27 ± 0.15 93.22 ± 0.11 87.97 ± 0.18 

Table 9.18: GP f-score multi-classification results 

9.4.2.4 True Positive Rate   

Table 9.5 presents the results of using the true positive rate as the fitness function for generating 

multi-class classifiers using genetic programming. The best classifier achieved a high true positive rate 

of 96% during training and 92% during testing because the fitness measure favours detection of true 

positives within a dataset. The overall performance of the classifier was lower because the false 

positive rate of the classifier was high. The classifier achieved a false positive rate of 16% during 

training and 20% during testing. The high false positive rate was a result of a low detection rate of 

intrusive connections. 
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 DOS Probe U2R R2L 

 

Training 

Best 64.36 ± 0.26 92.33 ± 0.15 99.21 ± 0.05 99.21 ± 0.05 

Worst 63.54 ± 0.27 90.75 ± 0.16 96.49 ± 0.10 96.49 ± 0.10 

Average 63.60 ± 0.27 90.82 ± 0.16 99.05 ± 0.05 99.05 ± 0.05 

 

 

Testing 

Best 66.87 ± 0.27 91.55 ± 0.15 87.20 ± 0.18 87.20 ± 0.18 

Worst 66.91 ± 0.26 89.26 ± 0.17 81.71 ± 0.21 81.71 ± 0.20 

Average 66.90 ± 0.26 89.37 ± 0.17 86.82 ± 0.19 86.92 ± 0.19 

Table 9.19: GP true positive rate multi-classification results 

9.4.2.5 Precision   

The results of applying precision as the fitness function for generating multi-class classifiers for 

intrusion detection are presented in Table 9.6. The best classifier achieved high accuracy rates during 

training but did not achieve a similar accuracy rate during testing. The best classifier achieved a false 

positive rate of 6% during training and 9% during testing. 

 DOS Probe U2R R2L 

 

Training 

Best 90.02 ± 0.16 92.87 ± 0.14 99.96 ± 0.01 99.25 ± 0.05 

Worst 63.54 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.20 ± 0.05 

Average 65.59 ± 0.26 90.89 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

 

 Best 71.97 ± 0.25 89.78 ± 0.17 99.72 ± 0.03 87.37 ± 0.18 

Testing Worst 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.21 ± 0.18 

Average 67.11 ± 0.26 89.29 ± 0.17 99.71 ± 0.03 87.21 ± 0.18 

Table 9.20: GP precision multi-classification results 

9.4.2.6 False Positive Rate   

The training and testing results of the classifiers that were generated using the false positive rate as 

the fitness function for multi-class classification using genetic programming are presented in Table 
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9.7. The fitness function favours generating effective classifiers which are similar in structure resulting 

in both the best and worst classifiers obtaining the similar classification results. The best classifier 

achieved a low false positive rate of 3% during training and 5% during testing. 

 DOS Probe U2R R2L 

 

Training 

Best 63.54 ± 0.27 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05 

Worst 63.54 ± 0.27 90.75 ± 0.16 93.38 ± 0.13 99.16 ± 0.05 

Average 63.54 ± 0.27 90.75 ± 0.16 99.49 ± 0.02 99.21 ± 0.05 

 

 

Testing 

Best 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18 

Worst 66.91 ± 0.26 89.26 ± 0.17 95.08 ± 0.12 87.19 ± 0.18 

Average 66.91 ± 0.26 89.26 ± 0.17 99.37 ± 0.03 87.20 ± 0.18 

Table 9.21: GP false positive rate multi-classification results 

9.4.3 Analysis of multi-class classification for the GP approach 
Figure 9.3 illustrates the test results of using the different performance measures for evolving multi-

class classifiers using GP. 

 

Figure 9.3: GP comparison of fitness function performance 

50

60

70

80

90

100

DOS Probe U2R r2L

Ac
cu

rA
CY

GP

Fscore Accuracy MCC FPR PPV TPR

R2L 



 

106 

 

From the results presented for multi-class classification using genetic programming, the classifiers 

which were generated using the Matthews coefficient correlation as the fitness function achieved 

higher detection rates than the other classifiers generated using the different fitness functions. The 

difference in the detection rates were not statistically significant when compared to the results 

achieved by using f-score and accuracy as fitness functions. It should be noted that even though these 

results were not statistically significant, the classifiers using the MCC as the fitness function will be 

used for comparison with other approaches. 

 Comparison of GP, GE and MEP 
The following sections compare the results produced from using Genetic Programming, Multi-

Expression programming and Grammatical Evolution for evolving binary and multi-class classifiers. 

9.5.1 Binary classification 
The results of the best classifiers for the three approaches GP, GE and MEP described in this thesis are 

presented in Figure 9.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the results presented in the previous sections, the proposed genetic programming approach 

outperforms the other two approaches for binary classification. The GP binary classifier achieves a 

high accuracy during both training and testing. MEP achieves similar results compared to GP during 

testing. The results also show that MEP can generalize well on unseen data. During the comparison of 
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Figure 9.4: Binary classification comparison 
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the three approaches, the GE approach had a lower runtime during training compared to the other two 

approaches.  

9.5.1.1 Statistical Comparison  

The section below outlines the statistical tests used to evaluate the statistical significance of the 

differences in performance of GE, MEP and GP for binary class classification. 

The one-tailed Z- test discussed in section 5.4.1 was used to determine the statistical significance. The 

results of the Z-test were used to determine whether to accept or reject the null hypothesis. The value 

of Z was calculated and compared to the critical value. If the Z- value was lower than the critical value 

(1.64), the null hypothesis (H0) was accepted, otherwise the alternate hypothesis was accepted (Ha). 

The tests were evaluated at the 0.05 significance level.  

Hypothesis 1: 

• H0: There is no difference in the mean objective value for genetic programming and 

grammatical evolution. 

• Ha: The objective mean value for genetic programming is greater than the objective mean 

value for grammatical evolution. 

Hypothesis 2: 

• H0: There is no difference in the mean objective value for genetic programming and multi-

expression programming. 

• Ha: The objective mean value for genetic programming is greater than the objective mean 

value for multi-expression programming. 

 

 GP vs GE Test GP vs MEP Test 

Z-Value 24.80 8.60 

Table 9.22: Statistical test results for binary classification 

Table 9.22 presents the Z-value for Hypothesis 1 and for Hypothesis 2 for binary classification.  From 

the results presented in the table above, the Z-value for GP vs GE test was greater than the critical 

value resulting in the null hypothesis being rejected. The alternate hypothesis was accepted and from 

the results of the performance, genetic programming performed significantly better than grammatical 

evolution resulting in the performance of genetic programming being statistically significant. From the 

Z-value for GP vs MEP test, the null hypothesis was also rejected and the performance of genetic 
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programming was significantly better than multi-expression programming performance resulting in 

the alternate hypothesis being accepted.  

9.5.2 Multi-class classification 
Figure 9.5 presents a summary of the results achieved from applying grammatical evolution, genetic 

programming and multi-expression programming for multi-class classification. The results represent a 

comparison of the best performing classifiers obtained using each of the approaches. 

Figure 9.5: Multi-class classification comparison 

 
From the results presented in the previous sections, all the classifiers achieved high detection 

rates during both training and testing for user to root attacks (U2R) and also achieved high detection 

rates for remote to user (R2L) during training but achieved lower detection rates during testing. Each 

approach achieved similar results for detection of the different network attacks. For the detection of 

probe attacks, the classifier generated using MEP outperforms the other 2 approaches, for the 

detection of DOS attacks, the GP classifier achieves higher detection rates as compare to the other 

two approaches and for the detection of R2L attacks, the classifier generated from applying GE 

achieves a higher detection rates as compared to the other two classifiers. The GE approach averaged 

5 hours for generating the classifier whilst MEP averaged 8 hours and GP averaging around 14 hours 

per run. 
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9.5.2.1 Statistical Comparison 

The section below outlines the statistical tests used to evaluate the statistical significance of the 

differences in performance of GE, MEP and GP for multi-class classification. 

Hypothesis 1: 

• H0: There is no difference in the mean objective value for genetic programming and 

grammatical evolution. 

• Ha: The objective mean value for genetic programming is greater than the objective mean 

value for grammatical evolution. 

Hypothesis 2: 

• H0: There is no difference in the mean objective value for genetic programming and multi-

expression programming. 

• Ha: The objective mean value for genetic programming is greater than the objective mean 

value for multi-expression programming. 

 

 GP vs GE Test GP vs MEP Test 

Z-Value -2.70 -3.38 

Table 9.23: Statistical test results for multi-class classification 

From the results presented in the Table 9.23, the Z-value for GP vs GE test was lower than the critical 

value resulting in the alternate hypothesis being rejected. The null hypothesis was accepted and from 

the results of the performance, both the performance of grammatical evolution and genetic 

programming achieved similar detection rates resulting in the performance of grammatical evolution 

and genetic programming not being statistically significant. The null hypothesis was also accepted the 

alternate hypothesis rejected based on the Z-value for GP vs MEP, with both multi-expression 

programming and genetic programming achieving similar results for intrusion detection. 

 Comparison with state of the art 
The following sections compare the performance of the proposed approaches to the state-of-the-art 

methods for network intrusion detection. 

9.6.1 Binary Classification 
Table 9.23 presents a comparison of the proposed binary classifier described in this thesis with state-

of-the-art binary classifiers within network intrusion detection. 
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The comparison was empirical in nature as a formal performance comparison was not possible due 

to the different experimental setup applied in each of the studies used for comparison. Furthermore, 

it was not clear in all of studies whether all records were used or only a subset of the training and 

testing sets. The proposed approaches performed well with the proposed GP approach outperforming 

four of the seven approaches used for comparison. The proposed approaches where also compared 

to other approaches such as Self-Organization Map (SOM) and Support Vector Machine (SVM). The 

state-of the-art approaches which applied neural networks for intrusion detection also performed 

feature selection which resulted in the approaches achieving higher detection rates as compared to 

the proposed approaches. Different unsupervised and supervised filter approaches such as Random 

Projection (RP) and Nominal-to-Binary (N2B) where applied by some state-of-the-art approaches such 

as Naïve Bayes which resulted in the approach achieving higher detection rates as compared to the 

proposed approaches in this thesis 

Approach Accuracy 

Proposed GP 80.30 

Proposed MEP 78.23 

Proposed GE 74.55 

Decision Tree (J48) [85] 81.05 

Naïve Bayes [85] 76.56 

Support Vector Machine [85] 69.52 

Multi-layer Perceptron [85] 77.41 

Multinomial naïve Bayes [66] 96.50 

Hybrid (Fuzzy logic + GP) [41] 82.74 

Self-Organization Map (SOM) [36] 75.49 

Table 9.24: State of the art for binary classification. 

9.6.2 Multi-class classification 
Table 9.24 presents a comparison of the proposed approaches presented in this thesis with state-of-

the-art approaches for multi-class classifications. The proposed approaches outperform the state-of-

the-art approaches for the detection of U2R attacks. The proposed approaches also outperform some 
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of the state-of-the-art approaches for the detection of probe attacks and obtain similar results for 

detecting R2L attacks.  

Support Vector Machines outperformed the proposed approaches for detecting DOS attacks and 

R2L attacks. Random Forests which applied feature selection to determine the 13 most effective 

features from the 41 features in the dataset outperformed the proposed approaches for detecting all 

the network attacks. 

 

 

 

Approach Network Attack 

 DOS Probe U2R R2L 

Proposed GP 87.84 92.43 99.75 89.23 

Proposed GE 87.54 92.18 99.70 89.26 

Proposed MEP 86.24 94.03 99.76 87.06 

Random Forest [75] 98.70 97.60 97.50 96.80 

J48 decision Tree [75] 82.40 80.20 73.90 87.60 

Support Vector Machine [75] 97.80 90.70 93.70 91.80 

Naïve Bayes [75] 72.70 70.90 70.70 69.80 

CART [75] 82.70 82.10 73.10 80.80 

Table 9.25: State of the art for multi-class classification 

 Chapter Summary 
This chapter presented and discussed the results of the proposed approaches discussed in the 

previous chapters. The investigations discussed in this chapter include determining the best fitness 

function measure for generating classifiers which can obtain high detection rates for intrusive 

connections. The chapter also compared the classifiers generated from approaches genetic 

programming, grammatical evolution and multi-expression programming for the detection of intrusive 

connections. Furthermore, a comparison between the proposed approaches and state of the art 

approaches for network intrusion detection was conducted. 
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10 Conclusion and Future Work  

 Introduction 
This chapter summarizes the findings of this dissertation and provides a conclusion to each of the 

objectives outlined in chapter 1. Possible future work based on the research provided in this thesis is 

also provided. 

 Objectives and Conclusion 
The section provides a summary of how each of the objectives outlined in Chapter 1 was met and a 

summary of the findings. Future work based on the objective is also provided. 

10.2.1 Effectiveness of using grammatical evolution (GE) for generating intrusion detection 
classifiers 

 

Grammatical Evolution (GE) was used to evolve intrusion detection classifiers. Few studies from 

previous literature had successfully applied GE for generating classifiers achieving high detection 

rates.  Experiments presented in this thesis were conducted on the KDD’99 dataset. The results from 

the experiments revealed that classifiers generated from applying GE for network intrusion detection 

achieve high detection rates for binary and multi-class classifiers. Multi-class classifiers achieved 

higher detection rates for R2L attacks than detecting other network attack categories. The classifiers 

did not outperform some of the state-of-the-art approaches. Future work will investigate different 

ways to efficiently explore the search space when evolving classifiers using GE. 

10.2.2 Development and evaluation of applying multi-expression programming (MEP) for 
generating binary and multi-class classifiers for network intrusion detection.  

 

Binary and multi-class intrusion detection classifiers were evolved using multi-expression 

programming. Multi-expression programming (MEP) was used for evolving the classifiers based on the 

analysis of previous literature. The proof by demonstration methodology was applied to refine the 

evolved classifiers. 

Chapter  10 
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The results from the experiments conducted revealed that binary classifiers evolved using MEP 

were able to generalize well on unseen data. The implementation also revealed that even though the 

use for MEP to evolve intrusion detection classifiers has not been common, the approach has the 

potential to evolve classifiers which can achieve high detection rates. The classifiers generated 

outperformed some of the state-of-the-art approaches which used the same dataset for binary and 

multi-class intrusion detection. Future work will investigate different representations of MEP 

individuals for generating effective intrusion detection classifiers. 

10.2.3 Develop and analyze the performance of using genetic programming (GP) for generating 
binary and multiclass classifiers for network intrusion detection.  

 

Genetic programming (GP) was applied to evolve network intrusion detection (NID) classifiers and 

evaluate the performance of the classifiers on the publicly available KDD’99 dataset. GP was widely 

used for generating NID classifiers in previous literature with some of the evolved classifiers achieving 

high detection rates. The results presented in this thesis show that binary and multi-class classifiers 

evolved using GP can achieve high detection rates which can outperform other state of the art 

approaches used in previous literature. Future research will aim to investigate using different 

representations for GP individuals. 

10.2.4 Investigate the effectiveness of fitness functions for network intrusion detection  
 

This study investigated the effectiveness of using different fitness functions for the generating multi-

class intrusion detection classifiers. Six fitness functions were proposed based on analysis of previous 

literature within the network intrusion detection domain. Each of the six fitness functions were 

applied during the generation of multi-class classifiers. The motivation behind this study was based 

on different studies applying different fitness functions for the generation of intrusive detection 

classifiers and achieving different detection rates. Experiments were conducted using the KDD’99 

dataset. The results revealed that different fitness functions affected the detection rates of classifiers 

evolved. Using accuracy, f-score and Matthew’s correlation coefficient as fitness functions yielded 

classifiers which achieved high detection rates. 

Future research will aim to investigate the use of weighted fitness functions for generating 

intrusion detection classifiers. Future work will also include evaluating other fitness functions not 

commonly used for intrusion detection. 

10.2.5 Comparative analysis of GE, MEP and GP for network intrusion detection. 
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This study compared the performance of using three variants of genetic programming (GE, MEP and 

GP) to evolve binary and multi-class intrusion detection classifiers. The rationale behind this study was 

based on an analysis of previous literature in which a comparison of the effect of using different 

variants of genetic programming for network intrusion detection was not performed.  

Binary intrusion detection classifiers evolved using genetic programming obtained high detection 

rates as compared to binary classifiers evolved using multi-expression programming and grammatical 

evolution. The results from evolving multi-class classifiers revealed that classifiers evolved using 

genetic programming achieved high detection rate for detecting DOS attacks, multi-expression 

programming classifiers achieved high detection rates for detecting Probe attacks and grammatical 

evolution classifiers achieved high detection rate for detecting R2L attacks. Similar results were 

achieved for detecting U2R attacks using classifiers evolved using the three approaches. Future 

research will investigate the generation of a hybridized intrusion detection classifier which combines 

the different variants of genetic programming.  
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A. User Manual 
Program requirements 
In order to run the NID system, Java must be installed. Java can be obtained from the following website 

(https://java.com/en/download/). Once Java has been installed the program can be used. 

Initialising the Program 
The program can be started by executing the NetworkIntrusionDetection.jar located in the SYSTEM 

folder on the CD. The main menu will appear as shown in the Figure A.1. 

 

Figure A.1: Network Intrusion Detection System Main Menu 

Overview of the program 
The Top-level tab menu is made up of the Genetic Programming approaches discussed in this thesis. 

Each top-level tab menu has two lower level tab menu binary classification and multi-class 

classification. 

• Genetic Programming – corresponds to using Genetic Programming for Network Intrusion 

Detection described in Chapter 6. 

• Grammatical Evolution – corresponds to using Grammatical Evolution for Network Intrusion 

Detection described in Chapter 7. 

• Multi-Expression Programming – corresponds to using Multi-Expression Programming for 

network Intrusion Detection described in Chapter 8.  

https://java.com/en/download/
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Experiment Configurations 
Two configurations are provided for interacting with the program. Each configuration requires either 

a training dataset, testing dataset or both training and testing dataset. These datasets are located in 

the Datasets folder on the CD provided. The datasets are divided into Binary Classification datasets 

and Multi-class datasets. The multi-class datasets are split based on the attack category described in 

Chapter 5. 

• Train and Test  
All the parameters must be entered before the run can start as illustrated in Figure A.2. After training 

and testing datasets have been selected. The run will begin by selecting Start Experiment. The run will 

continue running in the background for the duration of the experiment until it has completed and a 

popup message has appeared. The experiments use the distributed architecture discussed in Chapter 

5. 

 

Figure A.2: Train and Test using NID System 

Once training and testing has completed a popup message will appear as in illustrated in Figure 

A.3. This message indicates the location of the output file. The output file contains information about 

run, and performance measures for the evolved classifier.  
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Figure A.3: End of run Message 

• Test using best classifier  
This Configuration is used to evaluate the performance of pre-defined classifiers on different datasets. 

For example, if you want to evaluate just how well the best classifier achieved from using Genetic 

Programming for Multi-class classification, the user selects the test dataset using the File chooser 

option invoked when “Browse” on the Testing panel is selected.  

 

Figure A.4: Selecting best classifier 

After selecting a test dataset, click “Test Using best Classifier” which will open a file choose dialog 

and navigate to …/Datasets/Best_Classifiers folder which contains all the best classifiers for the 

experiments conducted in this thesis. Once the preferred classifier has been selected the system will 

evaluate the performance of the classifier on the dataset and write the results to an output file. Figure 

A.4 and Figure A.5 illustrate test using best classifier for multi-class genetic programming for DOS 
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attacks.

 

Figure A.5: Results of evaluation 
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