

Network Intrusion Detection using Genetic

Programming

by

Tatenda H Chareka

Submitted in fulfilment of the academic requirements of

Master of Science

in the

School of Mathematics, Statistics, and Computer Science

College of Agriculture, Engineering and Science

University of KwaZulu-Natal

Pietermaritzburg

South Africa

November 2018

 As the candidate’s supervisor, I have/have not approved this thesis/dissertation for submission

Signed: ____________________________

Name: Prof. Nelishia Pillay

Date: ____________________________

i

PREFACE

The research contained in this dissertation was completed by the candidate while based in

the Discipline of Computer Science, School of Mathematics, Statistics and Computer Science

of the College of Agriculture, Engineering and Science, University of KwaZulu-Natal,

Pietermaritzburg, South Africa. National Research Funding financially supported the research.

The contents of this work have not been submitted in any form to another university and,

except where the work of others is acknowledged in the text, the results reported are due to

investigations by the candidate.

_________________________ _________________________

Signed: Professor Nelishia Pillay Signed: Tatenda Chareka

Date: 20 November 2018 Date: 28 November 2018

ii

DECLARATION 1: PLAGIARISM
I, Tatenda Chareka (student number: 211506553), declare that:

(i) the research reported in this dissertation, except where otherwise indicated or acknowledged,

is my original work;

(ii) this dissertation has not been submitted in full or in part for any degree or examination to any

other university;

(iii) this dissertation does not contain other persons’ data, pictures, graphs or other information,

unless specifically acknowledged as being sourced from other persons;

(iv) this dissertation does not contain other persons’ writing, unless specifically acknowledged as

being sourced from other researchers. Where other written sources have been quoted, then:

a) their words have been re-written but the general information attributed to them has

been referenced;

b) where their exact words have been used, their writing has been placed inside quotation

marks, and referenced;

(v) where I have used material for which publications followed, I have indicated in detail my role

in the work;

(vi) this dissertation is primarily a collection of material, prepared by myself, published as journal

articles or presented as a poster and oral presentations at conferences. In some cases,

additional material has been included;

(vii) this dissertation does not contain text, graphics or tables copied and pasted from the Internet,

unless specifically acknowledged, and the source being detailed in the dissertation and in the

References sections.

Signed: Tatenda Chareka

Date: 28 November 2018

iii

DECLARATION 2: PUBLICATIONS
DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and/or include research presented in

this thesis

Publication 1:

CHAREKA, T. & PILLAY, N. A study of fitness functions for data classification using grammatical

evolution. Pattern Recognition Association of South Africa and Robotics and Mechatronics

International Conference (PRASA-RobMech), 2016, 2016. IEEE, 1-4.

iv

Abstract
Network intrusion detection is a real-world problem that involves detecting intrusions on a computer

network. Detecting whether a network connection is intrusive or non-intrusive is essentially a binary

classification problem. However, the type of intrusive connections can be categorised into a number

of network attack classes and the task of associating an intrusion to a particular network type is

multiclass classification.

A number of artificial intelligence techniques have been used for network intrusion detection

including Evolutionary Algorithms. This thesis investigates the application of evolutionary algorithms

namely, Genetic Programming (GP), Grammatical Evolution (GE) and Multi-Expression Programming

(MEP) in the network intrusion detection domain. Grammatical evolution and multi-expression

programming are considered to be variants of GP. In this thesis, a comparison of the effectiveness of

classifiers evolved by the three EAs within the network intrusion detection domain is performed. The

comparison is performed on the publicly available KDD99 dataset. Furthermore, the effectiveness of

a number of fitness functions is evaluated.

From the results obtained, standard genetic programming performs better than grammatical

evolution and multi-expression programming. The findings indicate that binary classifiers evolved

using standard genetic programming outperformed classifiers evolved using grammatical evolution

and multi-expression programming. For evolving multiclass classifiers different fitness functions used

produced classifiers with different characteristics resulting in some classifiers achieving higher

detection rates for specific network intrusion attacks as compared to other intrusion attacks. The

findings indicate that classifiers evolved using multi-expression programming and genetic

programming achieved high detection rates as compared to classifiers evolved using grammatical

evolution.

v

Acknowledgements
I would like to thank the National Research Foundation (NRF) for the financial assistance. The opinions

raised and conclusions reached, are those of the author and are not attributed to the NRF. The Centre

of High-Performance Computing (CHPC) for granting access to their resources.

 I would like to thank my supervisor, Professor Nelishia Pillay for her constant support and guidance

throughout the compilation of this thesis. I would also like to thank my family members, friends and

colleagues for their continuous support and motivation.

vi

Contents

PREFACE .. i

DECLARATION 1: PLAGIARISM ... ii

DECLARATION 2: PUBLICATIONS .. iii

Abstract .. iv

Acknowledgements ... v

Contents .. vi

List of Figures ... xii

List of Tables .. xiv

List of Algorithms .. xvi

List of Abbreviations ... xvii

1 Introduction ... 1

 Purpose of the Study .. 1

 Aims and Objectives ... 1

 Contributions ... 2

 Dissertation Layout ... 2

2 Genetic Programming .. 5

 Introduction ... 5

 Introduction to Genetic Programming ... 6

 Overview of the GP Algorithm ... 6

 Representation ... 7

2.4.1 Tree Based GP ... 7

2.4.2 Function Set ... 7

2.4.3 Terminal Set .. 8

 Initial Population Generation .. 8

2.5.1 Full Method ... 9

2.5.2 Grow Method .. 9

2.5.3 Ramped Half and Half Method ... 10

 Evaluation .. 10

2.6.1 Fitness Cases ... 11

vii

2.6.2 Fitness Functions ... 11

 Selection Methods ... 12

2.7.1 Tournament Selection .. 12

 Genetic Operators .. 13

2.8.1 Reproduction ... 13

2.8.2 Mutation .. 14

2.8.3 Crossover ... 14

 GP Control Models .. 15

2.9.1 Generational Model ... 16

2.9.2 Steady State Model .. 16

 Termination ... 17

 Introns and Bloat ... 17

 Modularisation ... 18

 Strengths and Weaknesses of GP .. 18

2.13.1 Strengths .. 18

2.13.2 Weaknesses ... 18

 Introduction to Grammatical Evolution .. 19

 Overview of the Generational GE Algorithm ... 19

 Representation ... 20

2.16.1 BNF Grammar ... 20

2.16.2 Mapping Process ... 21

 Initial Population Generation and Evaluation ... 23

 Genetic Operators .. 23

2.18.1 Crossover ... 24

2.18.2 Mutation .. 25

 Introns and Bloat ... 26

 Strengths and Weakness of GE ... 27

2.20.1 Strengths .. 27

2.20.2 Weaknesses ... 27

 Introduction to Multi-Expression Programming ... 28

 Overview of the Steady State MEP Algorithm ... 28

 Representation ... 29

 Initial Population Generation and Evaluation ... 29

viii

 Genetic Operators .. 31

2.25.1 Crossover ... 31

2.25.2 Mutation .. 33

 Introns and Modularisation ... 34

 Strengths and Weakness of MEP .. 34

2.27.1 Strengths .. 34

2.27.2 Weaknesses ... 34

 Chapter Summary .. 34

3 Network Intrusion Detection ... 36

 Introduction ... 36

 Network Intrusion Detection ... 37

 Datasets for Network Intrusion Detection ... 38

3.3.1 DARPA 1998 and 1999 ... 39

3.3.2 KDD Cup 99 .. 40

3.3.3 NSL-KDD dataset ... 41

3.3.4 Network Attack Categories ... 41

 Performance Measures .. 42

3.4.1 Confusion matrix ... 43

3.4.2 Accuracy and False Positive Rate ... 43

3.4.3 Sensitivity and Specificity ... 44

3.4.4 Precision and F-measure ... 44

3.4.5 Receiver operating characteristics ... 44

 Feature Selection ... 45

 Previous Work on Network Intrusion Detection ... 46

3.6.1 Evolutionary Algorithms ... 46

3.6.2 Neural Networks .. 46

3.6.3 Bayesian Networks .. 47

3.6.4 Decision Trees ... 47

 Chapter Summary .. 48

4 GP and Network Intrusion Detection .. 49

 Introduction ... 49

 Using genetic programming for network intrusion detection 49

 Binary Classification for NID using GP .. 50

ix

4.3.1 Genetic Programming .. 50

4.3.2 Grammatical Evolution ... 52

4.3.3 Linear Genetic Programming .. 53

 Multiclass Classification for NID using GP .. 53

4.4.1 Genetic Programming .. 53

4.4.2 Grammatical Evolution ... 54

4.4.3 Multi-expression Programming ... 54

4.4.4 Linear genetic programming ... 54

 Strengths and Weaknesses of GP in NID .. 55

4.5.1 Strengths .. 55

4.5.2 Weaknesses ... 55

 Analysis of genetic programming in network intrusion detection 55

 Chapter Summary .. 57

5 Methodology ... 58

 Introduction ... 58

 Research Methodology .. 58

5.2.1 Aims and Objectives ... 58

 Proof by Demonstration Methodology .. 59

5.3.1 Evaluation of approach .. 60

5.3.2 Refinement of approach .. 60

5.3.3 Termination Criterion .. 61

 Statistical Tests .. 61

5.4.1 Statistical Testing .. 61

 Dataset ... 62

5.5.1 Dataset description .. 62

5.5.2 Dataset Pre-processing .. 62

5.5.3 Binary classification dataset .. 63

5.5.4 Multi-class classification dataset ... 64

 Distributed Architecture for Proposed Approaches 64

 Technical Specifications .. 65

 Chapter Summary .. 65

6 Genetic Programming for Network Intrusion Detection ... 66

 Introduction ... 66

x

 GP Algorithm .. 66

 Representation and initial population generation .. 67

 Evaluation .. 68

 Selection Method and Genetic Operators .. 71

 Parameters ... 73

 Chapter Summary .. 74

7 Grammatical Evolution for Network Intrusion Detection 75

 Introduction ... 75

 Representation ... 75

 Initial Population Generation and Evaluation ... 77

 Selection Method and Genetic Operators .. 78

 Parameters ... 79

 Chapter Summary .. 80

8 Multi-Expression Programming for Network Intrusion Detection 81

 Introduction ... 81

 MEP Algorithm ... 81

 Representation ... 82

 Initial Population Generation and Evaluation ... 83

 Selection Method and Genetic Operators .. 83

 Parameters ... 85

 Chapter Summary .. 86

9 Results and Discussion .. 87

 Introduction ... 87

 Grammatical Evolution ... 88

9.2.1 Binary Classification ... 88

9.2.2 Multi-class classification ... 88

9.2.3 Analysis of multi-class classification for GE approach 93

 Multi-Expression Programming .. 94

9.3.1 Binary Classification ... 94

9.3.2 Multi-class classification ... 94

9.3.3 Analysis of multi-class classification for MEP approach 99

 Genetic Programming .. 100

9.4.1 Binary Classification ... 100

xi

9.4.2 Multi-class classification ... 101

9.4.3 Analysis of multi-class classification for the GP approach 105

 Comparison of GP, GE and MEP .. 106

9.5.1 Binary classification .. 106

9.5.2 Multi-class classification ... 108

 Comparison with state of the art .. 109

9.6.1 Binary Classification ... 109

9.6.2 Multi-class classification ... 110

 Chapter Summary .. 111

10 Conclusion and Future Work .. 113

 Introduction ... 113

 Objectives and Conclusion .. 113

Bibliography .. 116

A. User Manual .. 124

Program requirements ... 124

Initialising the Program ... 124

Overview of the program .. 124

Experiment Configurations ... 125

xii

List of Figures
Figure 2.1: Tree depth .. 8

Figure 2.2: Full and Grow Tree Generation... 9

Figure 2.3: Ramped half-and-half .. 10

Figure 2.4: Mutation operation .. 14

Figure 2.5: Crossover operation ... 15

Figure 2.6: GE fixed length one-point crossover ... 24

Figure 2.7: GE two-point crossover ... 24

Figure 2.8: Homologous Crossover ... 25

Figure 2.9: Mutation Operator Variations ... 26

Figure 2.10: MEP chromosome genes represented as trees ... 31

Figure 2.11: MEP one-point crossover .. 32

Figure 2.12: MEP two-point crossover .. 32

Figure 2.13: MEP uniform crossover... 33

Figure 2.14: MEP Mutation ... 33

Figure 3.1: The NID process .. 37

Figure 3.2: DARPA, KDD99 and NSL-KDD relation. ... 39

Figure 3.3: ROC graph ... 45

Figure 5.1: Binary classification distribution... 64

Figure 5.2: Multi-class Classification distribution... 64

Figure 6.1: Example of an individual .. 68

Figure 6.2: Evaluation process ... 70

xiii

Figure 6.3: GP Crossover ... 72

Figure 6.4: GP Mutation .. 73

Figure 7.1: Binary to denary conversion.. 77

Figure 7.2: GE Individual .. 77

Figure 7.3: GE uniform crossover ... 78

Figure 8.1: MEP Individual ... 83

Figure 8.2: MEP Uniform Crossover ... 85

Figure 9.1: GE comparison of fitness function performance ... 93

Figure 9.2: MEP comparison of fitness function performance .. 100

Figure 9.3: GP comparison of fitness function performance ... 105

Figure 9.4: Binary classification comparison .. 106

Figure 9.5: Multi-class classification comparison ... 108

Figure A.1: Network Intrusion Detection System Main Menu .. 124

Figure A.2: Train and Test using NID System .. 125

Figure A.3: End of run Message .. 126

Figure A.4: Selecting best classifier .. 126

Figure A.5: Results of evaluation .. 127

xiv

List of Tables
Table 2.1: Fitness Cases ... 11

Table 2.2: The number of choices for each production rule .. 22

Table 3.1: KDD Cup 99 Sample Distribution .. 40

Table 3.2: KDD Cup Class distribution ... 41

Table 3.3: Network intrusion detection categories .. 42

Table 3.4: Binary confusion Matrix ... 43

Table 5.1: Z-hypothesis test table .. 61

Table 5.2: NSL-KDD sample distribution ... 62

Table 5.3: Data transformation .. 63

Table 6.1: Function descriptions .. 68

Table 6.2: Confusion Matrix .. 71

Table 6.3: GP Parameters for binary classifiers... 73

Table 6.4: GP Parameters for multi-class classifiers ... 74

Table 7.1: GE Parameters for binary classification ... 79

Table 7.2: GE Parameters for multi-class classification .. 80

Table 8.1: MEP Parameters for binary classification .. 86

Table 8.2: MEP Parameters for multi-class classification ... 86

Table 9.1: Grammatical Evolution binary classification results .. 88

Table 9.2: Grammatical Evolution accuracy multi-classification results 89

Table 9.3: Grammatical Evolution MCC multi-classification results 90

Table 9.4: Grammatical Evolution f-score multi-classification results 90

xv

Table 9.5: Grammatical Evolution TPR multi-classification results 91

Table 9.6: Grammatical Evolution precision multi-classification results 92

Table 9.7: Grammatical Evolution FPR multi-classification results 93

Table 9.8: Multi-Expression programming binary classification results 94

Table 9.9: MEP accuracy multi-classification results .. 95

Table 9.10: MEP Matthews’s coefficient correlation multi-classification results 96

Table 9.11: MEP f-score multi-classification results ... 96

Table 9.12: MEP true positive rate multi-classification results ... 97

Table 9.13: MEP precision multi-classification results ... 98

Table 9.14: MEP false positive rate multi-classification results .. 98

Table 9.15: Genetic programming binary classification results .. 100

Table 9.16: GP accuracy multi-classification results ... 102

Table 9.17: GP Matthews’s coefficient correlation multi-classification results 102

Table 9.18: GP f-score multi-classification results .. 103

Table 9.19: GP true positive rate multi-classification results .. 104

Table 9.20: GP precision multi-classification results .. 104

Table 9.21: GP false positive rate multi-classification results ... 105

Table 9.22: Statistical test results for binary classification .. 107

Table 9.23: Statistical test results for multi-class classification .. 109

Table 9.24: State of the art for binary classification .. 110

Table 9.25: State of the art for multi-class classification ... 111

xvi

List of Algorithms

Algorithm 2.1: Generational GP .. 16

Algorithm 2.2: Steady State GP ... 17

Algorithm 2.3: Generational GE Algorithm .. 19

Algorithm 2.4: Steady-State MEP Algorithm .. 28

Algorithm 5.1: Proof by demonstration ... 59

Algorithm 6.1: GP Algorithm .. 67

Algorithm 6.2: Tournament selection .. 71

Algorithm 8.1: MEP algorithm .. 82

xvii

List of Abbreviations
Abbreviation Definition

NID Network Intrusion Detection

GP Genetic Programming

MEP Multi-Expression Programming

GE Grammatical Evolution

EA Evolutionary Algorithms

GA Genetic Algorithm

ADF Automatically Defined Functions

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

DARPA Defence Advanced Research Projects Agents

AFRL Air Force Research Laboratory

TCP Transmission Control Protocol

DOS Denial of Service

R2L Remote to Local

L2R Local to Root

TP True Positive

TN True Negative

FP False Positive

FN False Negative

Acc Accuracy

FPR False Positive rate

TPR True Positive Rate

TNR True Negative Rate

PPV Precision

ROC Receiver Operating Characteristics

SVM Support Vector Machine

RBF Radial Basis Function

SOM Self-Organization Map

WEKA Waikato Environment for Knowledge Analysis

xviii

UADR Unknown attack detection rate

LERAD Learning Rules for Anomaly Detection

LBNL Lawrence Berkeley National Laboratory

MANET Mobile Ad hoc Networks

LGP Linear Genetic Programming

DT Decision Trees

MCC Matthews’s coefficient correlation

1

1 Introduction

 Purpose of the Study

 Network intrusion detection is a real-world problem that involves detecting intrusions on a computer

network. Detecting whether a network connection is intrusive or non-intrusive is essentially a binary

classification problem. However, the type of intrusive connections can be categorized into a number

of network attack classes and the task of associating an intrusion to a particular network type is

multiclass classification.

Various techniques have been used for network intrusion detection including Naive Bayes

classification, decision tree classification, neural networks and evolutionary algorithms, amongst

others. Evolutionary algorithms such as genetic programming and its variants have been widely

applied for network intrusion detection but a comparison of the performance of each variant within

network intrusion detection has not been addressed. This dissertation also seeks to conduct a

thorough analysis of related literature on the application of genetic programming and its variants for

network intrusion detection.

 Aims and Objectives
The primary objective of this dissertation is to develop, and evaluate the classification performance of

genetic programming and variants of genetic programming, grammatical evolution and multi-

expression programming for network intrusion detection. The objectives of this dissertation are:

Objective 1: Development and evaluation of applying grammatical evolution (GE) for generating

intrusion detection classifiers

To propose and implement binary and multi-class classifiers for network intrusion detection (NID) and

evaluate the performance of applying GE for evolving NID classifiers.

Chapter 1

2

Objective 2: Development and evaluation of applying Multi-expression programming (MEP) for

generating binary and multi-class classifiers for network intrusion detection.

To propose, implement and evaluate the performance of evolving classifiers using MEP for intrusion

detection.

Objective 3: Development and evaluation of applying genetic programming (GP) for generating

binary and multiclass classifiers for network intrusion detection.

Investigate the performance of binary and multi-class classifiers evolved using GP and compare the

performance of the classifiers to state-of-the-art approaches.

Objective 4: Investigate the effectiveness of fitness functions for multi-class network intrusion

detection

To investigate the effects of applying different fitness functions for the generation of intrusion

detection classifiers and if there a correlation between the detection rate achieved by the classifier

and the fitness function used.

Objective 5: Comparative analysis of GE, MEP and GP for network intrusion detection.

A comparative analysis of binary and multi-class classifiers evolved using grammatical evolution, multi-

expression programming and genetic programming will be performed to evaluate which of the

approaches generates the most effective classifiers.

 Contributions
This dissertation makes the following contributions:

• Design and evaluation of generating effective classifiers using genetic programming,

grammatical evolution and multi-expression programming.

• Comparative analysis of the effects of fitness functions when evolving binary and multi-class

intrusion detection classifiers.

• Comparative analysis of the performance of intrusion detection classifiers generated using

different variants of genetic programming.

 Dissertation Layout
This section provides a summary of the chapters in this dissertation.

Chapter 2 – Genetic Programming

3

This chapter provides an introduction to genetic programming and its variants, grammatical evolution

and multi-expression programming. A thorough description of each process within the variants is

provided.

Chapter 3 – Network intrusion detection

Network intrusion detection (NID) is introduced in this chapter. The datasets and performance

measures used within NID are also described as well as current and previous research work done

within the network intrusion detection domain.

Chapter 4 – Genetic Programming and Network Intrusion Detection

This chapter reviews studies conducted within the network intrusion detection domain as well as an

analysis of using genetic programming and its variants for network intrusion detection.

Chapter 5 – Methodology

The methodology used to achieve the aims and objectives outlined in Section 1.2 is discussed in this

chapter. The statistical tests used to evaluate the performance of algorithms is provided in this chapter

as well as a detailed description of the datasets used for this thesis.

Chapter 6 – Genetic Programming for Network Intrusion Detection

This chapter details the proposed genetic programming approach for binary and multi-class network

intrusion detection.

Chapter 7 – Grammatical Evolution for Network Intrusion Detection

The grammatical evolution approach for binary and multi-class network intrusion detection is

presented in this chapter.

Chapter 8 – Multi-Expression Programming for Network Intrusion Detection

The multi-expression programming approach used for binary and multi-class classification is

presented in this chapter.

Chapter 9 – Results and Discussion

This chapter presents the results of each of the proposed approaches discussed from chapter six to

eight. A comparison of the performance between each of the genetic programming variants is

performed.

4

Chapter 10 – Conclusion and Future Work

This chapter summarizes the findings presented in this thesis and a conclusion to each of the

objectives outlined in Chapter 1. The chapter also discusses future work which will be investigated.

5

2 Genetic Programming

 Introduction
This chapter introduces genetic programming and its variants as well as provides details of the

different aspects of the algorithm.

Sections 2.2 introduces genetic programming, followed by an overview of genetic programming in

section 2.3. Representation in genetic programming is discussed in section 2.4, initial population

generation methods are discussed in section 2.5. Each individual within a genetic programming

population is evaluated for performance and these evaluation methods are discussed in section 2.6.

Selection methods are provided in section 2.7 and genetic operators are discussed in section 2.8.

Control models are discussed in section 2.9 and termination criteria used in GP are described in section

2.10. Introns and bloat are discussed in section 2.11, details of modularisation are provided in section

2.12 and the strengths and weaknesses of genetic programming are provided in section 2.13.

Section 2.14 introduces grammatical evolution, one of the variants of genetic programming.

Section 2.15 provides an overview of grammatical evolution, followed by the representation in section

2.16. Initial population generation in grammatical evolution is discussed in section 2.17 and the

genetic operators used in grammatical evolution are described in section 2.18. Introns and bloat in

the context of grammatical evolution is discussed in section 2.19 followed by an overview of the

strengths and weakness of grammatical evolution in section 2.20.

Multi-expression programming is introduced in section 2.21. Multi-expression programming is one

of the variants of genetic programming. The overview of multi-expression programming is provided in

section 2.22, followed by the representation in section 2.23. Section 2.24 discusses the initial

population generation for multi-expression programming and genetic operators are discussed in

section 2.25. Introns and modularisation within multi-expression programming is discussed in section

Chapter 2

6

2.26 followed by the strengths and weaknesses of multi-expression programming in section 2.27.

Section 2.28 presents a summary of the critical aspects of genetic programming and its variants.

 Introduction to Genetic Programming
Evolutionary algorithms (EA) are a class of optimization algorithms from artificial intelligence which

take an analogy from evolution to solve computer science problems. The user defines a goal in the

form of a quality criterion and the EA uses the defined goal to measure and compare solutions through

a number of iterations until an optimal or near optimal solution is found [3]. Solutions are found in

the search space. The search space is a search area which contains potential solutions to a problem.

Most evolutionary algorithms adopt processes such as reproduction, selection and mutation from

Darwin’s theory of natural selection and evolution in order to efficiently find solutions within the

search space [81]. The theory of natural selection states that individuals with certain characteristics

(stored in the genes) are more likely to survive and replicate their characteristics to the offspring and

gradually improve the characteristics of the population created [25]. Different EAs differ in the way in

which solutions are represented and the way in which new solutions are derived from existing

solutions. A genetic algorithm (GA) is an evolutionary population-based algorithm that was inspired

by John Holland in the early 1970s to model Darwin’s theory of natural selection. A GA evolves a

population of individuals towards better solutions. Each individual within the population is encoded

as a string which represents a potential solution to a given problem. The GA searches for solutions to

problems within the solution space [53, 81].

Genetic programming (GP) pioneered by Koza [40], is a problem solving EA in which programs are

evolved to find solutions to problems. GP conducts search for a solution program to a problem in the

program space. GP mimics the theory of natural selection and it is closely related to GAs. GP searches

a program space and a GA searches a solution space resulting in the structure of the representations

being different. GP is stochastic in nature; it is not guaranteed to find the global optimum, but a good

enough solution defined by the researcher.

 Overview of the GP Algorithm
A suitable representation is initially required before the GP algorithm is executed. The GP algorithm

begins by generating a population of individuals made up from a combination of functions and

terminals suitable for the domain. The population of individuals initially created is termed the initial

population. Each individual in the initial population is assigned a value to determine how fit the

individual is. The assigned value is termed as the fitness. Based on the fitness of the individual, the

7

algorithm can terminate execution. If a solution is found in the initial population, the algorithm

terminates and returns the solution individual.

If a solution is not found in the initial population, the individuals go through transformations using

genetic operators to create better individuals. Each transformation creates a generation. A generation

is a population of individuals which are created using genetic operators. A selection method is used to

select individuals from the population. Genetic operators are applied to the individuals selected.

Individuals created from the application of genetic operators are referred to as offspring. After each

generation, each offspring created is evaluated for quality. The generation of offspring iteratively

continues until a solution is found or termination criterion is reached. The iterative process can either

replace the whole population of individuals or specific individuals with a low fitness. The process from

initial population generation, genetic operator applications, generations until a termination criterion

is met is defined as a run. Each of the fundamental aspects of a GP run are discussed further in the

following sections.

 Representation
Elements of the GP population are programs, commonly represented as parse trees [74]. Other

program representations include linear and graph representations [3]. A number of factors are

considered when selecting the representation to use, these factors include efficiency, ease of

implementation and information to be represented by the individuals [74]. A parse tree is comprised

of elements of the function and terminal sets. The elements of the function and terminal sets are

collectively called primitives. Genetic programming using a parse tree representation is also known as

tree-based GP. Tree-based GP, functions and terminals are discussed below.

2.4.1 Tree Based GP
Each individual is represented as a parse tree for tree-based GP. Koza [40] represented programs in

LISP (S-expression) which is equivalent to a parse tree representing a computer program. Pre-order

notation is usually used to express parse trees for easy interpretation. Each parse tree is made up of

one or several nodes. The first node within the parse tree is referred to as the root and the nodes that

are found at the bottom of the parse tree are the leaves.

2.4.2 Function Set
The function set contains domain dependent functions. Mathematical functions, conditional

statements, logical operators are examples of some of the functions. User defined functions can also

be included in the function set. Each function has an arity. Arity is the number of arguments which a

function takes [3].

8

2.4.3 Terminal Set
The terminal set is comprised of variables that make up the trees used to solve the GP problem. The

variables can be of type string, real, integer or character. Constants such as ephemeral constants can

be included in the trees used to solve the problem. Random ephemeral constants are values that fall

within a specific range and remain unchanged during the entire duration of the run. For example, a

random ephemeral constant with a range of integer values [1, 10] can be used, during a GP run if the

ephemeral constant is selected, a random integer will be selected from the range [1, 10] and remain

fixed for the duration of the GP run. Multiple ephemeral constants with different values can be used

and the range is problem dependent. Elements of the terminal set have an arity of zero [3].

 Initial Population Generation
The initial population is made up of randomly created individuals. Three methods exist for the

generation of the initial population namely full, grow, and ramped half and half [40]. The generation

of each individual begins by randomly selecting a function from the function set to represent the root

node of the individual. The root node of the tree is selected from the function set in order to eliminate

the creation of trivial trees (trees with a terminal element as the root node). Based on the arity of the

root node selected, children are randomly chosen from the function and terminal sets and these are

expanded iteratively in a depth first manner until a complete tree is created. The maximum depth of

a tree is the distance from the root node to the bottom-most leaf node. In Figure 2.1, the root node

of the individual is located at depth 1, whilst the child nodes of the root are located at depth 2 and

the maximum depth of the tree is depth 4. The maximum depth of a tree is specified when creating

the initial population in order to limit the size of the tree during initial population generation.

depth 1

depth 2

depth 3

depth 4

Maximum depth = 4

Figure 2.1: Tree depth

9

If the search space is not sufficiently represented during initial population generation, it may lead

to premature convergence to a local optimum of the GP algorithm. The search space has to be

sufficiently represented in order to increase the chances of finding a global optimum. The number of

individuals created is controlled by the population size which is specified as one of the parameters of

a GP algorithm.

2.5.1 Full Method
The full method creates individuals which have a balanced tree. Balanced trees have all the leaf nodes

at the same depth. The internal nodes for the trees are randomly selected from the function set only

until the maximum tree depth is reached. At the maximum tree depth, only nodes from the terminal

set are selected. Figure 2.2a illustrates a tree created using the full method. Trees created using full

might not have the same number of nodes due to different functions possessing different arity values.

The method promotes less variety within the population due to the similarity in the structure of the

individuals created.

AND

Notx

b

XOR

AND NOT

xba

a) b)

Figure 2.2: Tree individuals created using a) Full method and b) Grow method

2.5.2 Grow Method
The grow method creates individuals with irregular shapes and sizes [40]. The root of the individual is

randomly selected from the function set. The rest of the nodes are randomly selected from either the

function or terminal set until the tree depth limit is reached. Once the tree depth limit is reached only

elements from the terminal set are selected. Figure 2.2b illustrates an individual created by the grow

method. The grow method promotes greater variety within the population due to individuals

possessing different shapes and sizes.

10

2.5.3 Ramped Half and Half Method
The ramped half and half method combine the full and grow methods discussed above. Half the

population is created using the full method and the other half of the population is created using the

grow method. An equal number of trees of each depth are also created. Koza [40] introduced this

method of generation to provide a wide variety of trees created with different sizes and shapes.

For example, given a population size of 16 with a maximum tree depth of 5, at each tree depth half

the population is created using the full method and the other half using the grow method. This means

that at depth of 2, two individuals are created using the grow method and another two using the full

method, at depth 3, two individuals using grow and two individuals using full, this continues until the

maximum tree depth of 5 is reached. Figure 2.3 illustrates individuals created using the ramped half-

and-half method.

Full Grow
Depth 2

Full Grow
Depth 3

Full Grow
Depth 4

Full Grow
Depth 5

Figure 2.3: Ramped half-and-half

 Evaluation
Each individual within a population is evaluated in terms of how well it solves a problem. Fitness

provides a measure to the GP algorithm regarding which individuals should be given a higher

11

probability of being removed from the population as well as which individuals should be allowed to

reproduce and recombine with other individuals within the population [3]. Evaluating the fitness of

an individual is problem dependent and literature provides a vast amount of methods to use. Fitness

cases and fitness functions are used to calculate fitness.

2.6.1 Fitness Cases
Programs within the population are executed over a set of different training cases. These training

cases are referred to as fitness cases. Fitness cases are input-output pairs which describe the output

to be produced by individuals given particular input values [3]. The success of a GP algorithm is to an

extent dependent on the choice of fitness cases. Fitness cases should provide a good ratio of

representing the problem domain to ensure generalization over the solutions produced by a GP run.

The fitness of an individual is a function of the output produced by the individual and the target value

for each fitness case. Table 2.1 provides an illustration of fitness cases.

Input

Values

Output

X Y

4 10 116

5 7 74

6 3 45

7 9 130

Table 2.1: Fitness Cases

2.6.2 Fitness Functions
A numerical measure of how well an individual represents a solution is calculated using a fitness

function. They can be used to evaluate how well an individual expresses the fitness cases [3]. The

fitness function is a fitness measure that is used to compare different individuals within the population

with respect to how far or close an individual is from the desired output. Different fitness functions

are used for different problem domains. Fitness functions play an important role in driving the GP

algorithm towards the global optimum and they should be designed carefully in order to prevent them

from driving the algorithm towards local optima [42]. Raw fitness is one of the simplest and most

commonly used fitness measures. It measures how promising an individual is at solving the problem.

The error function is another commonly used fitness function. In some domains a high raw fitness

represents a better individual whereas in some domains, it represents a weak individual [40]. Another

fitness measure commonly used is the number of hits. The number of hits is the number of fitness

cases for which the value produced by an individual is the same for each fitness case. It is used to

12

determine whether a solution has been found. For example, if a GP individual represents an expression

𝑥𝑥2 + 𝑦𝑦2 based on the fitness cases provided in Table 2.1, the number of hits would be 4 signifying a

solution to the problem since there are four fitness cases. The greater the number of hits, the better

the individual. In certain problem domains, the raw fitness is equivalent to the hits ratio.

Fitness functions have either a single objective or multiple objectives where two or more different

measures are combined to solve a problem. These fitness functions are referred to as multi-objective

fitness functions [3].

 Selection Methods
Selection methods are methods used to select individuals responsible for offspring generation. The

selected individuals are referred to as parents. Selection methods use fitness measures to select

parents. Commonly employed selection methods are tournament selection and fitness-proportionate

selection [40, 74]. Other selection methods used include truncation, ranking, linear and exponential

selection [3].

Selection methods offer different effects on evolution and offspring generation. One of the effects

is referred to as selection pressure. Selection pressure is the degree to which fitter individuals are

favoured. Algorithms with high selection pressure favour fitter individuals as compared to algorithms

with lower selection pressure. Selection pressure also controls the convergence rate of a GP approach;

very high selection pressure may lead to premature convergence whilst a low selection pressure leads

to a slower rate of convergence [52].

2.7.1 Tournament Selection
A random number of individuals are selected from the population to perform in a tournament.

Comparison of each of the individuals within the tournament using the fitness value is performed.

Based on the fitness the best individual is returned. The number of individuals randomly selected is

referred to as the tournament size. A small tournament size promotes lower selection pressure and a

high tournament size promotes higher selection pressure [3]. Tournament selection is commonly used

within GP.

Tournament selection can also be applied inversely. Inverse tournament selection is applied in the

same manner with tournament selection but instead of returning the best individual from the

tournament, the worst individual is returned. Inverse tournament selection is used within the steady

state GP control method discussed later in this chapter.

13

 Genetic Operators
Genetic operators are search operators used to create individuals within a population. Genetic

operators alter existing individuals in the hope of generating better offspring which solve the problem

[40]. The offspring created are of different sizes and shapes as compared to their parents. Genetic

operators are used to explore different areas of the program space through exploitation and

exploration. Exploration is used to visit entirely new regions of the program space and genetic

operators which favour exploration are termed as global search operators. Exploitation on the other

hand is used to visit regions of the program space within the neighbourhood of previously visited

areas. Local search operators is the term associated with genetic operators which make use of

exploitation [14]. A good ratio between exploitation and exploration needs to be maintained to ensure

the search converges to a global optimum. During the evolution process, exploration is recommended

at the early stages rather than exploitation to ensure the best area of the program space is explored

and as the evolution progresses exploitation is more favoured to ensure that the algorithm converges.

Various genetic operators have been used during the evolutionary process of GP. The three most

commonly used genetic operators, reproduction, mutation and crossover, are discussed in detail

below. Other genetic operators include permutation, decimation, encapsulation, hoist, create [40].

The choice of genetic operators to use is usually probabilistic and the probability of application is

referred to as operator application rates [74]. The operator rates are used to determine the number

of offspring created by each of the genetic operators. The rates can be represented as percentage

values, for example, a population of 200 individuals and a 50%, 30% and 20% application rate for

crossover, mutation and reproduction respectively results in 100 individuals being created using

crossover, 60 offspring created using mutation and 40 individuals created using the reproduction

operator. Operator application rates are specified at the beginning of a GP run.

Genetic operators can create very large offspring and pruning can be used to ensure that the

individuals do not grow beyond a certain size. This is achieved by replacing all the function nodes at a

specified tree depth (offspring depth) with randomly selected terminal nodes.

Some genetic operators have been criticized for being destructive. One of the destructive effects

is breaking good building blocks that could be used to form part of a solution [57].

2.8.1 Reproduction
During reproduction, an individual is selected using one of the selection methods and copied to the

next generation without any alterations [3, 40, 74].

14

2.8.2 Mutation
Mutation is a global search operator which creates an offspring by changing components of a single

parent selected using one of the selection methods. Different variations of mutation exist such as

shrink mutation, point mutation and subtree mutation. Subtree mutation is the most widely used form

of mutation. Subtree mutation randomly selects a point within the selected individual (referred to as

the mutation point) and replaces the subtree rooted at the mutation point with a newly randomly

created subtree [40]. The grow method of population generation is generally used to create the

subtree and mutation depth controls the depth of the subtree. Figure 2.4 illustrates the subtree

mutation operator. Mutation promotes diversity within the population.

XOR

AND

xy

OR

bx

AND

NOTx

x

XOR

AND

y

OR

bxAND

NOTx

x

Parent

Subtree

Offspring

Mutation
point

Figure 2.4: Mutation operation

2.8.3 Crossover
The crossover operator is a local search operator which generates two offspring by exchanging

different components (genetic material) between two parents. Two parents are selected using a

selection method. A crossover point is randomly selected in each of the two parents. The subtrees at

the selected points are exchanged between the two parents to create two offspring [3]. Figure 2.5

Illustrates subtree crossover. Crossover promotes convergence within the population.

15

XOR

AND

y

OR

bxAND

NOTx

x

Parent 1

AND

Notx

b

Parent 2

Crossover
point

XOR

AND

y

OR

bx

Offspring 1

AND

Not

b

Offspring 2

x

AND

NOTx

x

Figure 2.5: Crossover operation

Crossover has been criticised for being a destructive genetic operator. It has the ability to insert a

good building block into an individual that does not make proper use for it. Some authors have argued

that the closer a tree is to a solution the more susceptible it is to the destructive effect of crossover

[57].

 GP Control Models
There are two major models used to control the implementation of GP, the generational model and

the steady-state model [3]. In generational GP, individuals in the population are replaced by new

individuals after each iteration (termed as a generation). In steady-state GP, the weaker individuals

are replaced as the evolutionary process continues. The two models are discussed further below.

16

2.9.1 Generational Model
The generational control model illustrated by Algorithm 2.1 creates a new population from the

previous population [3]. The algorithm randomly initializes the population using one of the initial

population generation methods discussed in above. The fitness of the individuals in the generation

are evaluated. A selection method is used to select parents which the genetic operators are applied

to. The offspring created from the results of genetic operators are inserted in the next population.

Iterations of the fitness evaluation and offspring creation are performed until a termination criterion

is met.

2.9.2 Steady State Model
Algorithm 2.1 provides the steady-state control GP algorithm. Individuals are selected from the

population using selection methods. Genetic operators are performed on the offspring returned from

the selection methods [3]. Inverse selection methods are used to select the individual replaced by the

offspring.

Generational GP Algorithm

Begin

• Randomly initialize the population

• Repeat

o Evaluate the individual programs in the existing population.

o Select an individual or individuals in the population using selection methods.

o Perform genetic operators on the selected individual or individuals.

o Insert the results of genetic operators into the new population.

• Until a termination criterion is met.

End

Return the best individual from the population or solution to the problem.

Algorithm 2.1: Generational GP

17

 Termination
Termination criteria are measures used to stop the execution of the GP run. Different termination

criteria are used within GP. Termination is problem dependent [74]. One of the most commonly used

termination criteria is when a solution is found. In the event that a solution is not found, the best

individual throughout all the generations is returned. The maximum number of generations can also

be used as a termination criterion [40].

 Introns and Bloat
Introns are blocks of redundant code that have no effect on the fitness of an individual. (NOT(NOT(X))

is an example of an intron, this block of code does nothing within an individual. Bloat is the

exponential program growth without any significant increase in terms of fitness [74]. Rapid increase

of introns leads to bloat [3]. Bloat increases exponentially towards the end of a GP run and causes the

GP algorithm to be stagnate. Introns can reduce the destructive effects of genetic operators [3].

Different methods such as the use of parsimony pressure have been implemented to reduce bloat.

Modularisation has also been used to reduce introns and bloat [49].

Steady-State GP Algorithm

Begin

• Randomly initialize the population

• Repeat

o Randomly choose a subset of existing population to take part in tournament.

o Evaluate subset individuals in the tournament.

o Obtain the winner or winners from subset tournament.

o Perform genetic operations on the winner or winners.

o Apply inverse selection method and replace individual with results of genetic

operations.

• Until a termination criterion is met.

End

Return the best individual from the population or solution to the problem.

Algorithm 2.2: Steady State GP

18

 Modularisation
Modularisation is commonly used for problem-solving by which functional units of a program are

identified and packaged for reuse. The methods encapsulate blocks of code. The encapsulated blocks

of code become functions added to the function set and used in the creation of offspring.

Modularisation attempts to tackle some of the main problems associated with GP; scaling and

inefficiency [3]. Operators such as encapsulation and compression are some of methods which cater

for modularisation of programs in GP [2, 40]. Automatically defined functions (ADFs) [8, 39] also caters

for modularisation and enables GP to solve problems better [73].

 Strengths and Weaknesses of GP
2.13.1 Strengths

• Seeding is used for each GP run and this results in different solutions obtained for each run.

• Easy interpretation and execution of solutions since each solution resembles a computer

program.

2.13.2 Weaknesses
• Premature convergence due to lack of genetic diversity and the destructive effect of genetic

operators.

• A number of parameters are required to execute a GP run. Optimization of these parameters

is essential in order to get the best solution for each problem domain.

• No guarantee that GP will find a global optimum solution due to the stochastic nature of

genetic programming.

• Large run times can be experienced during GP execution.

19

 Introduction to Grammatical Evolution
Grammatical Evolution (GE) is a grammar-based variation of Genetic Programming pioneered by Ryan

et al. [59, 76]. GE performs the evolutionary process on variable-length binary strings unlike GP which

performs its evolutionary process on actual programs. A bit within the binary string is referred to as

an allele and a combination of 8 alleles form a codon. Each binary string codon represents an integer

value which is used in a mapping process. GE is inspired by the biological process of generating a

protein from the genetic material of an organism follows a similar mapping process. GE unlike GP, is a

population of linear genotypic binary strings, which are transformed into functional programs through

a genotypic-to-phenotypic mapping process [19, 60]. One of the weakness of GP is the inclusion of

redundant code within individuals and GE minimizes redundant code [63].

 Overview of the Generational GE Algorithm
The genotypic-to-phenotypic mapping process is governed by the use of a Backus-Naur Form (BNF)

grammar, which describes the syntax of the language for the problem. Algorithm 2.3 provides an

overview of the generational GE algorithm. The mapping process takes input (BNF grammar) and

produces an output (programs). The created individuals within the population are evaluated for

fitness. If a solution is not found within the initial population, the algorithm iteratively selects parents

from the population using one of the selection methods. Genetic operators are applied to the

Generational GE Algorithm

Begin

• Randomly initialize the population

• Repeat

o Evaluate the individual programs in the existing population.

o Select an individual(s) in the population using selection methods.

o Perform genetic operations on the selected individuals genotypic string(s).

o Perform mapping process and generate phenotype.

o Insert the offspring into the new population.

• Until a termination criterion is met.

End

Return the best individual from the population or solution to the problem.

Algorithm 2.3: Generational GE Algorithm

20

genotypic strings. The mapping process is repeated using the new genotypic strings created after

genetic operators. The offspring created are evaluated for fitness. If a solution is not found, the

evolutionary process iteratively continues until a termination condition is met.

 Representation
Each element of the population is a made up of a randomly generated binary string or denary string.

This genotype is then converted to a program by the mapping process. The BNF grammar is used to

define the syntax of valid programs [34]. BNF grammar and the mapping process are discussed in detail

in the following sections.

2.16.1 BNF Grammar
BNF is a metalanguage (i.e. a language used to describe a language) which consists of the symbol ‘: : =’,

denoting “is composed of”; and ‘|’ meaning a choice. It provides a notation for expressing the

grammar of a language in the form of production rules. The BNF grammar is made up of the tuple N,

T, P, S; where N is the set of all non-terminal symbols, T is the set of terminals, P is the set of

productions rules that map N to T, and S is a member of N and the start symbol [60]. An example

production rule is of the form:

 < expression > : : = < variable > <operator> ge

 | ge

Where the non-terminals take the form < expression > (enclosed in angle brackets), and ge is an

example of a terminal symbol.

The above production rule states that an < expression > is composed of the non-terminal grammar

for <variable> and <operator> as well as the terminal symbol ge. Alternatively, <expression> is

composed solely of the terminal symbol ge. Production rules which can generate terminal symbols are

referred to as terminal-producing production rules [13].

Terminals in the context of GE are elements that appear in the program produced by GE. These

terminals include operators such as *, +, -, / and the values they operate on such as constants,

variables. Terminals are not limited to just operators and values; control statements and other

structures can be referred to as terminals.

The evolutionary process evolves binary strings and uses the binary strings evolved, the grammar

and the mapping process in order to generate complete phenotypic programs [19, 60]. Domain

21

knowledge of a problem can be included within the grammar resulting in the generation of good

solutions.

2.16.2 Mapping Process
The mapping process provides a distinction between the search space and the solution space [60]. A

suitable BNF must be defined. This grammar specifies the syntax of the phenotypic programs to be

produced by the GE. The genotype is used to map the start symbol to the terminals by converting the

8-bit codons into integer values. Taking the leftmost integer codon value, the following mapping

function is applied when selecting the appropriate production rule to use:

 Rule = Codon Integer Value MOD number of rules for the current non-terminal

Where the MOD function returns the remainder after a division operation (e.g. 3 MOD 2 = 1).

The result produced after applying the mapping function corresponds to the production rule used

to replace the Start symbol. If the production rule selected contains non-terminals, the leftmost non-

terminal is expanded first. The next integer codon in the chromosome is selected and the mapping

function is applied to the next non-terminal. An example of the mapping process is provided below.

If a production rule selected contains non-terminals, the mapping function is iteratively applied to

the leftmost nonterminal symbol until one of the following situations arises:

1. When all the non-terminals are converted to elements from the terminal set.

2. The end of the genome is reached and the wrapping operator is applied whereby the mapping

is iteratively repeated until a threshold of the maximum number of iterative repeats has been

reached during mapping process.

During the mapping process when individuals run out of codons to traverse the genome, the

individuals are wrapped around and the codons are reused from the leftmost codon integer value.

When the maximum number of wrapping is reached and the individual is still incompletely mapped,

the mapping process is stopped and the individual is assigned the lowest fitness value [63]. Another

termination criterion of the mapping process is also provided in Genr8 [34] where only the production

rules that generate terminals are used to replace the non-terminals in the expression when the

threshold of the number of wraps is exceeded.

2.16.2.1 Mapping process example

Consider the grammar:

 R = {N, T, S, P}

22

Where:

 Nonterminal symbols (N) are {exp, op, var},

Terminal set (T) is {+, -, /, *, X, 1},

Start symbol (S) is <exp> and

Production rules (P) are:

 <exp> : : = <exp> <op> <exp> (0)

 | <var> (1)

 <op> : : = + (0)

 | - (1)

 | / (2)

 | * (3)

 <var> : : = X (0)

 | 1 (1)

Rule

Number

Choices

<exp> 2

<op> 4

<var> 2

Table 2.2: The number of choices for each production rule

Binary String (this is an element of the population)

00010100 00100001 00010010 00010011 00100011 00000111 00001111 00100000 …

 Binary to Integer (Denary) conversion

Denary Values

20 33 18 19 35 7 15 32 …

23

Start = <exp> 20 % 2 = 0

 <exp> <op> <exp> 33 % 2 = 1

 <var> <op> <exp> 18 % 2 = 0

 X <op> <exp> 19 % 4 = 3

 X * <exp> 35 % 2 = 1

 X * <var> 7 % 2 = 1

 X * 1 Mapping Complete

From the example above the individual created (phenotypic program) from the genotypes and the

mapping process is(𝑥𝑥 ∗ 1). Some of the integer genotypes where not used during the mapping

process.

 Initial Population Generation and Evaluation
Initial population generation involves creating random chromosomes. The number of chromosomes

created is determined by the population size specified in the parameters. Each chromosome is

composed of random binary strings. The number of codons specified as a parameter determines the

number of binary strings in each chromosome. Each binary string codon in the chromosome is

converted to a denary value.

Evaluation of the chromosome takes place by applying the mapping process using the denary

values and the grammar provided to generate a program. The wrap-over threshold limit is also

specified as one of the parameters before the program executes to ensure the mapping process

terminates when a specified number of wraps is exceeded. Evaluation methods, selection methods

and termination criterion used within GE are the same as processes described for genetic

programming in sections 2.6, 2.7 and 2.10 respectively.

 Genetic Operators
Genetic operators are used to create the next generation during the evolution process. Dempsey [19]

stated that genetic operators from Holland’s Genetic Algorithm (GA) can be applied to the genotypic

strings. Some of the operators employed from GAs are discussed below.

24

2.18.1 Crossover
Crossover generates offspring by combining genotypic material from two parents selected using

selection methods. A number of crossover operators have been applied in GE. These include one-point

crossover, two-point crossover and homologous crossover.

One-point crossover [60] randomly selects a crossover point in each of the parent binary string

codons. Alleles located after the crossover point are swapped between the two individuals to generate

two offspring. Figure 2.6 illustrates one-point crossover, where the crossover point is four. The

highlighted strings represent alleles from parent 1 and the non-highlighted strings represent alleles

from parent 2.

Parent 1 10011010 01010111 ….

Parent 2 10111100 00011101 …

Offspring 1 10011100 01011101 …

Offspring 2 10111010 00010111 ..

Figure 2.6: GE fixed length one-point crossover

For each codon in the parents, two-point crossover randomly selects two crossover points and

swaps alleles located between the crossover points [60]. Figure 2.7 illustrates two-point crossover,

where the crossover points are at position three and 7.

Parent 1 10011010 01010111 ….

Parent 2 10111100 00011101 …

Offspring 1 10011100 01011101 …

Offspring 2 10111010 00010111 ..

Figure 2.7: GE two-point crossover

Homologous crossover [60] is a modified two-point crossover where the mapping process history

of production rules used is kept for each of the individuals. Homologous crossover is applied to the

denary values and not the binary strings. The mapping process history of the selected individuals is

read from the left until a region of similarity (when the same production rule is selected on both

individuals) is found. The first crossover point is selected at the boundary of the region of similarity in

25

both the individuals. The second crossover point is randomly selected from the region of dissimilarity

(when the production rules selected are different on both individuals). The codons located between

the two crossovers points are then swapped between the individuals. Homologous crossover has two

variations, one that swaps blocks of the same size and the other which swaps blocks of differing

lengths.

Figure 2.8 illustrates homologous crossover which swaps blocks of the same size.

Figure 2.8: Homologous Crossover

In Figure 2.8, the region of similarity is denoted by the area highlighted in the parent integer

codons. The second crossover point is the same in both individuals and the region highlighted in the

offspring signifies the codons which were swapped between the two parents.

Homologous crossover requires more memory for execution compared to the other approaches

and there is no clear procedure in the event that there is no region of similarity between the parents.

2.18.2 Mutation
A suitable parent is selected using the selection methods and mutation changes a bit or an integer

value to another random value within the genotype of the parent generating an offspring. Changes

 Crossover Point 1

 Crossover Point 2

Parent 1
Integer codons 20 33 18 19 35 07 15 32 …

Production Rules 0 1 0 3 1 1 0 0 …

Parent 2
Integer codons 34 25 15 18 20 06 45 66 …

Production Rules 3 2 0 3 2 0 1 1 …

 Crossover Point 2

 Crossover Point 1

 Integer codons

Offspring 1 20 33 18 19 20 06 45 32 …

Offspring 2 34 25 15 18 35 07 15 66 …

26

within the genotypic strings might however have no effect on the phenotype. For example, given the

following BNF production rule:

 <var> : : = X (0)

 | 1 (1)

where <var> can either be replaced by variable X or 1. If mutation is performed and each time a binary

string which evaluates to an even number is created, the production rule will always select the same

variable X. This is termed to as neutral mutation [19].

Different mutation operators are adopted from GA. Some of the mutation operators are discussed

below. The bit flip mutation operator inverts the alleles in the binary string meaning that if an allele is

a 0, it is changed to 1 or if it is a 1, it is changed to 0. Interchanging mutation randomly selects two

points within the binary codon and the alleles corresponding to the positions are interchanged.

Flipping mutation randomly generates a binary string (mutation chromosome). The mutation

chromosome is aligned with the parent binary codon and traversed from left to right. Whenever a 1

is found in the mutation chromosome, the corresponding bit in the parent binary codon is flipped (0

to1 and 1 to 0) generating the offspring [81]. Figure 2.9 illustrates the different mutation operators

discussed above. The highlighted alleles represent where the changes took place.

Bit Flip mutation Parent 10101010

Offspring 01010101

Interchanging mutation

Parent 10111110

Mutation points Points 4 and 8

Offspring 10101111

Flipping mutation

Parent 00101110

Mutation Chromosome 10001001

Offspring 10000001

Figure 2.9: Mutation Operator Variations

 Introns and Bloat
Introns are part of the genotypic strings which are not used during the mapping process. If all the non-

terminals are not expanded without using all the codons, all the remaining codons are introns. If

introns within individuals grow exponentially, they result in bloat as previously discussed in section

2.11. Different methods of controlling introns and bloat have been applied within GE. The use of

27

parsimony pressure and modularisation are among the methods used to control bloat within GE [33,

58].

 Strengths and Weakness of GE
GE benefits from some of the strengths and weakness addressed in section 2.13 but it also has other

strengths and shortcomings different from GP which are discussed below.

2.20.1 Strengths
• The GE wrapping operator allows short chromosomes to translate into very long expressions

and provides an efficient way of avoiding invalid expressions.

• Domain knowledge can be included within the BNF grammar resulting in better tailor-made

solutions to problems.

• Bloat does not occur in the phenotype solutions, making solutions produced easy to

understand.

2.20.2 Weaknesses
• Longer computational time is required to translate from the genotype to the phenotype

during program execution.

• Different genotype strings can map to the same phenotype string reducing the diversity of

using different genotypic strings.

28

 Introduction to Multi-Expression Programming
Multi-Expression Programming (MEP) was first introduced by Oltean [62] as a variant of Genetic

Programming (GP). MEP enables the automatic generation of computer programs in a similar manner

to standard GP. MEP use a linear solution representation and each MEP individual (chromosome)

encodes multiple linear expressions (computer programs) referred to as genes. MEP individuals have

the ability to encode several syntactically correct expressions in a chromosome, this ability is referred

to as strong implicit parallelism. MEP has been applied to many different domains such as symbolic

regression, classification, data analysis, evolving evolutionary algorithms, intrusion detection.

 Overview of the Steady State MEP Algorithm
Similar to standard GP, the first step is to randomly create an initial population of MEP individuals.

Each individual in the population is evaluated based on the fitness function. The algorithm iteratively

selects two parents randomly from the current population and applies the crossover operator to both

parents obtaining two offspring. The mutation operator is then applied to both offspring and if the

fitness of the best offspring is better than inverse selection method individual (poorer individual), the

poorer individual is replaced with the best offspring. The iteration continues until a termination

criterion is met [61]. Typically, the termination criterion is met when a solution is found or the

Steady-State MEP Algorithm

Begin

• Randomly create an initial population

• Repeat

o Randomly select two parents from current population.

o Apply crossover to the parents to generate two offspring.

o Apply mutation to offspring.

o If the fitness of the best offspring is better than inverse selection method individual,

then

Replace inverse selection individual with best offspring.

End if

• Until a termination criterion is met.

End

Return the best individual from the population.

Algorithm 2.4: Steady-State MEP Algorithm

29

maximum number of iterations is reached [40]. If a solution is not found, then the best solution found

during evolution is returned. Algorithm 2.4 illustrates a steady-state MEP algorithm.

 Representation
MEP chromosomes are made up of genes of variable length. The length of a chromosome is equivalent

to the number of genes within the chromosome. A gene can either be a terminal gene or a function

gene [61]. A gene within a chromosome is similar to an individual generated using standard GP. A

terminal gene is created when only a terminal symbol is selected from the terminal set. A function

gene is created by combining a function symbol from the function set and pointers representing other

genes within the chromosome. The length of a chromosome is specified as one of the parameters for

a MEP run. Evaluation of MEP individuals is similar to the evaluation for standard GP.

 Initial Population Generation and Evaluation
The first gene of a chromosome must be a terminal symbol in order to allow syntactically correct

programs to be generated. For all the other genes, either a terminal gene or function gene can be

encoded. Function genes include pointers to the function arguments. Function arguments always have

positions of lower numerical value than the position of the function gene. Each of the genes in the

chromosome are evaluated for fitness and the gene with the best fitness is used to represent the

overall fitness of the chromosome. When more than one gene possess the best fitness, the first

detected is chosen to represent the chromosome [29, 61]. The MEP chromosome is interpreted into

a computer program in a top down manner. A terminal gene specifies a simple expression. A function

gene specifies an expression obtained by connecting the operands specified by the argument positions

with the function symbol. An example to explain the initial population generation process is provided

below and Figure 2.10 illustrates the genes within the chromosome expressed as trees.

The numbers on the left represent gene positions.

Function Set (F) = {+, *, -, /, sin},

Terminal Set (T) = {a, b, c}.

An example of an individual using the sets F and T is given below:

1: a

2: b

3: + 1, 2

4: sin (2)

30

5: c

6: - 5, 1

7: / 2, 3

8: / 2, 6

9: * 8, 4

10: - 7, 8

11: + 1, 9

Genes 1, 2 and 5 encode simple expressions formed by a single terminal symbol. These expressions

are:

 E1 = a,

 E2 = b,

 E5 = c.

Gene 3 applies the operation + to the operands located at 1 and 2 of the chromosome.

 E3 = a + b

Gene 4 applies the operation sin to operands located at 2.

 E4 = sin (b)

Gene 6 applies the operation – to the operands located at 5 and 1.

 E6 = c – a

Gene 7 applies the operation / to the operands located at 2 and 3.

 E7 = b / (a + b)

Gene 8 applies the operation / to the operands located at 2 and 6.

 E8 = b / (c – a)

Gene 9 applies the operation * to the operands at 8 and 4 of the chromosome.

 E9 = b / (c – a) * sin(b)

Gene 10 applies the operation - to the operands at 7 and 8 of the chromosome.

 E10 = b / (a + b) - b / (c - a)

31

Gene 11 applies the operation + to the operands at 1 and 9 of the chromosome.

 E11 = a + b / (c - a) * sin (b)

Figure 2.10: MEP chromosome genes represented as trees

 Genetic Operators
This section provides a description of the various genetic operators and how they are applied within

MEP. The operators preserve the structure of the chromosome and the offspring produced are

syntactically correct expressions. Each of the parents are selected using the same selection methods

described for standard genetic programming in section 2.7.

2.25.1 Crossover
During crossover two parents are selected and recombined. Crossover operations change gene

material between selected parents. Three variants of crossover have been used in MEP

implementations: one-point, two-point and uniform crossover.

One-point crossover randomly selects a crossover point and the parent chromosomes exchange

the genes that appear after the crossover point. Figure 2.11 illustrates one-point crossover. The

32

crossover point is position 4. The genes from 4 onwards are exchanged between the parents to

generate the offspring. The highlighted genes illustrate the changes between the parents.

Parents Offspring

P1 P2 O1 02

1: b 1: a 1: b 1: a

2: * 1, 1 2: b 2: * 1, 1 2: b

3: + 2, 1 3: + 1, 2 3: + 2, 1 3: + 1, 2

4: a 4: c 4: c 4: a

5: * 3, 2 5: d 5: d 5: * 3, 2

6: a 6: + 4, 5 6: + 4, 5 6: a

7: - 1, 4 7: * 3, 6 7: * 3, 6 7: - 1, 4

Figure 2.11: MEP one-point crossover

Two-point crossover randomly selects 2 points and genetic material is exchanged between the

chromosomes. Figure 2.12 illustrates two-point crossover with crossover points at positions 3 and 5.

The genes between 3 and 5 inclusive are exchanged between the parents.

Parents Offspring

P1 P2 O1 02

1: b 1: a 1: b 1: a

2: * 1, 1 2: b 2: * 1, 1 2: b

3: + 2, 1 3: + 1, 2 3: + 1, 2 3: + 2, 1

4: a 4: c 4: c 4: a

5: * 3, 2 5: d 5: d 5: * 3, 2

6: a 6: + 4, 5 6: a 6: + 4, 5

7: - 1, 4 7: * 3, 6 7: - 1, 4 7: * 3, 6

Figure 2.12: MEP two-point crossover

Uniform crossover randomly selects genes and exchanges these between the parents to generate

offspring as illustrated in Figure 2.13

33

Parents Offspring

P1 P2 O1 02

1: b 1: a 1: a 1: b

2: * 1, 1 2: b 2: * 1, 1 2: b

3: + 2, 1 3: + 1, 2 3: + 2, 1 3: + 1, 2

4: a 4: c 4: c 4: a

5: * 3, 2 5: d 5: * 3, 2 5: d

6: a 6: + 4, 5 6: + 4, 5 6: a

7: - 1, 4 7: * 3, 6 7: - 1, 4 7: * 3, 6

Figure 2.13: MEP uniform crossover

2.25.2 Mutation
During mutation in order to maintain syntactically correct programs, the first gene must encode a

terminal symbol. The mutation operator is applied to the genes within the chromosome. A random

number of genes in the chromosome are selected for mutation. If a terminal gene is selected for

mutation, it may be changed to another terminal symbol or to a randomly created function gene. If a

function gene is selected for mutation, the gene may be mutated to a terminal symbol or the function

arguments are altered to point to other genes.

Parent Offspring

1: b 1: b

2: * 1, 1 2: * 1, 1

3: b 3: + 1, 2

4: * 2, 2 4: * 2, 2

5: b 5: b

6: + 3, 5 6: + 1, 5

7: a 7: a

Figure 2.14: MEP Mutation

In the example (Figure 2.14) above gene 3 and 6 were randomly selected for mutation. Gene 3

changed from a terminal symbol to a function, with randomly created function arguments. The

mutation operator was applied to gene 6 and one of the function arguments where altered. The

function arguments mutated always point to lower positions than the function position.

34

 Introns and Modularisation
Introns within MEP are the genes which are not used within the chromosome. These genes have no

effect on the fitness of an individual. Introns are helpful if they reduce the destructive effects of

genetic operators. Modularisation methods such automatically defined functions can be used to

reduce introns.

Automatically Defined Functions (ADF) have been implemented in a MEP context as reusable

subroutines. An ADF in MEP maintains the same structure as a MEP chromosome and it is made up of

a number of genes. The function symbols used for an ADF in MEP are the same as the ones used for

standard MEP and the terminal symbols within ADFs are restricted to terminal symbols defined only

for ADF’s and hence terminal symbols of standard MEP chromosomes cannot be used with ADF

structures [61].

 Strengths and Weakness of MEP
Since a single MEP gene within a chromosome is closely related to a standard GP individual, MEP

benefits from the same strengths standard GP possesses. Some strengths and shortcomings specific

for MEP are discussed below.

2.27.1 Strengths
• Multiple expressions within the same individual can be used to represent the best solution as

well as explore a bigger search space as compared to single expressions.

2.27.2 Weaknesses
• High computational effort since multiple expressions are encoded within a single individual.

• Duplicate expressions within an individual can be found.

 Chapter Summary
This chapter described genetic programming and some of its variant’s grammatical evolution and

multi-expression programming. An overview of the genetic programming algorithm was provided.

Aspects of the GP algorithm: representation, initial population generation, evaluation, selection

methods, genetic operators, control methods and termination criteria were included in this chapter.

Introns and bloat which increases the time taken for evaluation were discussed. The strengths and

shortcoming of genetic programming were provided in this chapter. Grammatical evolution, a variant

of genetic programming was introduced in this chapter. The generational control model in the context

of grammatical evolution was described. Representation and the mapping process within grammatical

evolution was discussed. A description of genetic operators applied within grammatical evolution was

provided as well as the strengths and weaknesses of grammatical evolution were discussed in this

35

chapter. Multi-expression programming, another variant of genetic programming was introduced in

this chapter. An overview of multi-expression programming using the steady state control model was

provided in this chapter. The representation, initial population generation and evaluation of

individuals in multi-expression programming were discussed in this chapter. Various genetic operators

applied in multi-expression programming as well as the strengths and weaknesses of multi-expression

programming were provided in this chapter. This chapter has provided a foundation of the different

approaches that will be used throughout this thesis.

36

3 Network Intrusion Detection

 Introduction
This chapter firstly introduces intrusion detection, Section 3.2 outlines the network intrusion detection

process, network intrusion datasets are discussed in section 3.3, details of performance measures

used in network intrusion detection are provided in section 3.4, previous work on network intrusion

detection is discussed in section 3.6. Section 3.7 provides a summary of the chapter.

Since the inception of networks and the internet, computer security has become a fundamental

aspect of ensuring information and access to information is kept as secure as possible. Computer

security is the process of preventing and detecting unauthorised access to information. Computer

security addresses three main aspects of any computer-related system: confidentiality, integrity and

availability [72]. Various mechanisms such as computer-related attacks compromise computer

security. These attacks or intrusions put the security of a system at risk. Either internal intruders or

external intruders initiate intrusions. Internal intruders are entities with authorized permission to

information but still wish to perform unauthorised activities and external intruders are entities

without authorised permission but use various techniques to attempt to compromise the security of

information [45]. Different mechanisms have been introduced to safeguard against intruders and

unauthorised access to information. Some of the mechanisms include firewalls, access controls and

encryption. These mechanisms have however failed to fully protect networks and information from

the increasing evolutions of sophisticated intrusions. As a result, intrusion detection systems have

become an essential technique to detect intrusions before they inflict widespread damage [89].

Intrusion detection is the process of monitoring computer systems or networks for signs of intrusions.

Software which automates the intrusion detection process is referred to as Intrusion detections

system (IDS) [78].

Chapter 3

37

 Network Intrusion Detection
Network intrusion detection is a classification task that separates normal behaviours of networks from

attacks [65]. A typical network intrusion detection system (NIDS) should be able to correctly identify

intrusions within a network as well as ensure it does not identify normal connections within the

network as possible intrusions [43]. Low time performance and fault tolerance are some of the other

desired characteristics of a NIDS. Time performance is the total time required by the NIDS to detect

an intrusion [18]. Figure 3.1 provides an illustration of the NID process.

Collection of Data Prepare Dataset

Pre-data
processingTraining Phase

Testing Phase Classifier

Figure 3.1: The NID process

Network information over the monitored network is extracted into a collection of connection

records containing features such as protocol type, service, flag [10]. The collected records termed a

dataset, is used to train and develop a classifier. Espejo et al. [22] defined a classifier as “a model

encoding a set of criteria that allows a data instance to be assigned to a particular class depending on

the value of certain variables”. Supervised learning is the approach frequently used to induce a

classifier. Supervised learning involves using a dataset which has records that are labelled with their

correct classes to induce a classifier which is capable of correctly classifying each record within the

dataset [22]. In the context of NID, two types of classifiers exist, binary classifiers and multi-class

classifiers. Binary classifiers distinguish between an attack and a non-attack and multi-class classifiers

distinguish between different attack classes, i.e. types of attacks. Classification algorithms are

38

techniques that are used to induce classifiers. Examples of classification algorithms include genetic

programming, genetic algorithms, neural networks and Bayesian networks are examples of classifiers.

Pre-processing of the dataset such as feature selection is performed if necessary before

classification takes place. K-fold cross-validation and training and testing are some of the methods

used to evaluate how well the classifier performs [7].

Training and testing involve splitting the dataset into two sets, the training set and the testing set.

Different studies split the dataset differently. Studies in [6, 7] applied a 70/30 split were the training

set consisted of 70% of the dataset and the testing set consist of the remaining 30%. Records that

make up the training set or testing set are randomly selected. The training set is used by the

classification algorithm for developing a classifier. Performance measures are used by the

classification algorithms to assess the performance of the classifier. After the classifier generated, it is

evaluated over the testing set to evaluate how well the classifier performs.

 K-fold cross-validation involves splitting the dataset into k-parts of equal (approximate equal) size.

The algorithm is run k–times and for each run, one k-part is used as the testing set whilst the other k-

1 parts are used as the training set. If the dataset is not exactly divisible by k, the last k-part will contain

fewer instances [6, 7].

 Datasets for Network Intrusion Detection
The following section provides a description of the supervised machine learning datasets that have

been widely used in network intrusion detection. The most commonly used datasets in NID are DARPA,

KDD99 and NSL-KDD. Figure 3.2 provides the relation between the DARPA, KDD99 and NSL-KDD

datasets.

39

DARPA

Raw TCP/IP Dump Files

KDD99

NSL-KDD

Features Extracted

Duplicates Removed
Size Reduced

Training Size: 6.591.458 kb (6.2gb)
Testing Size: 3.853.522 kb (3.67gb)

Training Size: 4898431
Testing Size: 311029

Training Size: 125973
Testing Size: 22544

Figure 3.2: Relation between DARPA, KDD99 and NSL-KDD extracted from [65].

3.3.1 DARPA 1998 and 1999
The Defence Advanced Research Projects Agents (DARPA) and the Air Force Research Laboratory

(AFRL) funded a project for the development of an evaluation dataset for NIDS. This resulted in the

development of the DARPA 1998 dataset by the MIT Lincoln laboratory [16]. The data that was used

to develop the dataset was extracted from a simulated network. The dataset is made up of training

data collected over 5 days of a week from Monday to Friday over a period of 7 weeks and 2 weeks of

test data of normal and intrusion user data. The dataset contains around 5 million connections with

each connection approximately 100 bytes in size. Each connection is a sequence of TCP packets which

flows under a specific protocol from a source IP address to a target IP address [16].

The dataset set was improved in 1999 to include Windows NT vulnerabilities and stealthier attacks

resulting in the 1998 DARPA dataset. The 1999 dataset training set data was collected over 3 weeks

and testing set data was collected over 2 weeks. The data in the datasets weeks one and weeks three

consist of normal traffic and week two data consists of attacks. The network attack classes that were

simulated in the DARPA set include Denial of service (DOS), Remote user to local (R2L), Local to Root

(L2R), Probing and Anomalous behaviours [51]. These network attack classes are discussed in detail in

section 3.3.4.

40

Some researchers [46, 50, 51] have criticized the dataset because the traffic generation software

used is not publicly available and hence it is difficult to determine the accuracy of the background

traffic data presented. They also questioned the use of simulated data as compared to using real-life

systems and the use of a specific attacker increased the likelihood of bias in the data recorded.

3.3.2 KDD Cup 99
Feature extraction and data pre-processing techniques were performed on the DARPA’99 dataset to

generate the KDD Cup 99. The KDD was prepared by Lee et al. [44]. The packet information within TCP

dump files from DARPA was extracted into connections using Bro IDS [71], resulting in 41 features

representing each connection [92]. The dataset was split into three labelled samples that are used for

training and testing. The details of each sample are summarized in Table 3.1

 Attacks Normal Total

10% KDD 396743 97277 494020

Whole KDD 3925650 972781 4898431

Corrected KDD 250436 60591 311027

Table 3.1: KDD Cup 99 Sample Distribution

The features representing each connection are made up of 38 continuous or discrete numerical

attributes and 3 categorical attributes. Each connection is labelled as either normal or a specific

network attack [26]. The specific network attacks fall into one of the following categories; DOS, Probe,

R2L and U2R, discussed in section 3.3.4. The dataset contains 24 network attack types in the training

set and 38 attack types in the testing set. Among the 38 attack types in the testing set, 14 of them do

not exist within the training set enabling the IDS to test how well it performs on unknown attacks. The

dataset is heavily imbalanced towards attack connections. Out of 4 898 431 connections which make

up the whole dataset, 3 925 650 connections are attack records [65]. Table 3.2 shows the attack

distribution for the training set and testing set. U2R and R2L attack connections within the dataset are

very few in comparison to the other network attacks.

Due to the huge size of the datasets, some researchers use smaller portions of the datasets. Some

researchers have criticized the dataset for containing too many duplicate records within the training

and testing set which has resulted in the creation of other datasets such as the NSL-KDD dataset [85].

41

 Training

Size

Testing

size

Normal 972781 60591

DOS 3883390 231455

Probe 41102 4166

U2R 52 245

R2L 1106 14570

Total 4898431 311027

Table 3.2: KDD Cup Class distribution

3.3.3 NSL-KDD dataset
The dataset was proposed by Tavallaee et al. [85] and consists of selected records of the KDD-CUP’99

dataset [1]. The NSL-KDD (NSL) dataset was created to solve some of the inherent problems of the

KDD CUP (KDD) dataset. Tavallaee et al. [85] conducted an analysis of the KDD dataset and found

problems within the KDD dataset. The KDD dataset suffered largely from a vast number of redundant

records and from the results of the KDD analysis, about 78% and 75% of the records were duplicated

in both the training and testing set, respectively. A large amount of redundancy within the KDD

training set causes learning algorithms to be more partial towards the more frequent records as

compared to infrequent records. Duplication within the testing set will cause the evaluation of

learning algorithms to be more biased towards better detection rates of frequent records.

3.3.4 Network Attack Categories
Simulated attacks within the previously mentioned datasets fall into one of the following categories:

Denial of Service (DOS), Probe, Remote to Local (R2L) and User to Root (U2R).

3.3.4.1 Denial of Service Attacks (DOS)

These are attacks where the attacker denies access to a machine by making the computing resources

too busy to allow network requests placed by legitimate users. Different varieties of DOS attacks exist,

some create malformed packets that confuse the system, whilst others take advantage of bugs located

on particular networks. Smurf and Neptune are examples of applications that perform DOS attacks

[38]. Distributed DOS (DDoS) attacks have also emerged which are a variant of DOS attacks but instead

of using a single machine to perform this attack, multiple machines are used [43].

3.3.4.2 Probing attacks

When an attacker scans a machine or network in order to determine weaknesses that they might later

exploit in order to compromise the system. Examples of probe attacks include portsweep and mscan.

42

3.3.4.3 Remote to Local (R2L) attacks

External intruders who have the ability to send and collect information from a host machine or

network by exploiting the different vulnerabilities that exist on the network or host mainly initiate

these attacks. Ftp_write, Guest and Xnsnoop are some examples of R2L attacks which attempt to

exploit the weak or misconfigured security policies within a network or host machine [38].

3.3.4.4 User to Root (U2R) attacks

The intruder initially starts using the system as a normal user and attempts to abuse the vulnerabilities

of the system in order to gain higher privileges within the system. Perl and xterm are examples of user

to root attacks [84].

Table 3.3 illustrates categorisation of the attacks that exist in the datasets discussed above.

Category Network attack type

Denial of Service

(DOS)

Back, Land, Neptune, Pod, Smurf,

Teardrop, Mailbomb, Processtable,

Udpstorm, Apache2, Worm, Syslogd

Probe Ipsweep, Nmap, Portsweep,

Satan, Mscan, Saint

Remote to Local

(R2L)

Ftp_write, Imap, Multihop, Phf,

Spy, Warezclient, Warezmaster,

Guess_passwd, Xlock, Xsnoop,

Snmpguess, Snmpgetattack,

Httptunnel, Sendmail, Named,

Dictionary, Guest

User to Root

(U2R)

Buffer_overflow, Loadmodule,

Rootkit, Perl, Sqlattack, Xterm,

Ps, Eject, Ffbconfig, Fdformat

Table 3.3: Network intrusion detection categories and attack types [75]

 Performance Measures
Performance measures are used to evaluate the efficiency and quality of a classifier. This section

describes the performance measures commonly used for network intrusion detection.

43

3.4.1 Confusion matrix
The performance of a classifier is described using a confusion matrix. The matrix shows how frequently

instances of a class x were correctly classified as class x or misclassified as some other class [7]. The

confusion matrix illustrates performance for both binary and multi-class classifiers. The matrix

illustrates the performance of the classifier using four measures:

• True Positive (TP) – The number of intrusion connections correctly classified as intrusions

• True Negative (TN) – The number of normal connections correctly classified as normal.

• False Negative (FN) – The number of intrusion connections incorrectly classified as normal

connections.

• False Positive (FP) – The number of normal connections incorrectly classified as intrusion

connections.

Table 3.4 illustrates a confusion matrix for two classes (intrusion and normal).

 Predicted connection label

Intrusion Normal

Correct

connection

label

Intrusion True Positive

(TP)

False Negative

(FN)

Normal False Positive

(FP)

True Negative

(TN)

Table 3.4: Binary confusion Matrix

The following sections describe performance measures which make use of information from the

confusion matrix.

3.4.2 Accuracy and False Positive Rate
Accuracy is the proportion of the correctly classified connections amongst the total number of
connections. Accuracy is calculated using the following formula [7]:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴) =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

False Positive Rate (FPR) measures the proportion of normal connections incorrectly classified over all

the normal connections.

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

(1)

(2)

44

3.4.3 Sensitivity and Specificity
Sensitivity is the proportion of true positive connections that were correctly classified [82]. It is also

referred to as Recall or True Positive Rate (TPR). In NID, the metric measures how well the classifier

detects intrusive connections. Sensitivity provides a more accurate measure of the intrusion detection

effectiveness of the classifier as compared to the Accuracy.

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

Specificity measures the proportion of true negative connections that were correctly classified within

the dataset [82]. It is also referred to as True Negative Rate (TNR).

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

3.4.4 Precision and F-measure
Precision measures how well the classifier correctly detects intrusive connections over all the positive

connections returned by the classifier within the dataset. It is also referred to as the Positive Predictive

Value (PPV) [7].

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

F-Score is the weighted average of precision and recall. It is also referred to as the f-measure. It

provides a compromise between recall and precision.

𝐹𝐹_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇

3.4.5 Receiver operating characteristics
Receiver operating characteristics (ROC) graphs are two-dimensional graphs which provide a visual

representation of classifier performance. The TP rates are plotted on the y axis and the FP rates are

plotted on the x axis [24]. They are commonly used for binary classification problems and depict the

tradeoffs between the benefits (true positive rates) and the costs (false negative rates). Figure 3.3

provides an example of a ROC graph.

(3)

(4)

(5)

(6)

45

Figure 3.3: ROC graph

From the graph above, classifiers that perform well would be the ones found in the region labelled A,

these classifiers correctly classify most of the instances. An ideal classifier would be one which

generates the point (0.0, 1.0) meaning that all the instances are correctly classified. One classifier is

better than the other if it is to the “north-west” of the others [7]. Classifiers found in the region

labelled B, tend to have a high rate of false positives and are worse than random guessing which is

depicted by the diagonal line running from point (0.0, 0.0) to point (1.0, 1.0) [7, 24].

 Feature Selection
Feature selection or attribute selection is defined as “the process of selecting a subset of original

features according to a certain criteria” [9]. Features within a dataset can be described as either

irrelevant, redundant or relevant. Irrelevant features are features which have no effect on the

accuracy of a generated NID classifier. Redundant features consist of features which can be used

interchangeably and still have the same effect on the performance measure of the classifier. Relevant

features are features which have a direct effect on the primary objective of a NID classifier [12].

Feature selection achieves two main goals, it selects high quality features which help ensure the

classifier generated retains high accuracy rates and low false positive rates as well as minimize the

computation required during the generation of classifiers [91]. Dash and Liu [17] provide a study on

feature selection for classification as well as categorize feature selection based on the generation

procedures and evaluation functions.

46

 Previous Work on Network Intrusion Detection
The network intrusion detection domain has been widely researched. Different approaches have been

used to generate efficient NID classifiers which can accurately allocate specific network connections

to their appropriate classes. Some of the approaches that have been used are discussed below. These

approaches were selected using two criteria; either the approach used the same dataset as the work

presented in this thesis or produced state-of-the-art results.

3.6.1 Evolutionary Algorithms
Chittur [11] generated a binary classifier using a genetic algorithm (GA) in order to evaluate if a GA

can produce classifiers with high accuracy rates. The KDD-99 dataset was used to evaluate the evolved

classifiers. Chittur used a combination of the sensitivity and false positive rate as a measure of the

fitness of an individual. The classifier generated performed well obtaining a high sensitivity rate and

low false positive rate. The results also showed that genetic algorithms are able to produce classifiers

with high accuracy rates.

Gong et al. [27] evolved production rules for network intrusion detection. The production rules

were evolved using a GA. The DARPA dataset was used to evaluate the classifier. The dataset was made

up of normal connections and two network attacks portsweep and pod. Feature selection was used

to reduce the number of features. Crossover and mutation were used to produce the offspring. The

classifier performed fairly well, obtaining a high detection rate for detection of normal connections.

Hoque et al. [35] generated a multi-class classifier using a genetic algorithm (GA) to efficiently

detect various classes of intrusions. The classifier was generated using the KDD-99 dataset. False

positive rate and sensitivity were used to evaluate the overall performance of the classifier. The

classifier performed well obtaining a high sensitivity rate for detecting DOS attacks as well as obtaining

a low false positive rate.

3.6.2 Neural Networks
Wang et al. [87] generated a classifier using artificial neural networks and fuzzy clustering for multi-

class classification. The KDD-99 dataset was used to evaluate the performance of the classifier. Wang

et al. compared the performance of the hybrid neural network to other approaches (decision trees,

back propagation neural networks and naïve Bayes) based on three performance metrics: precision,

sensitivity and f-measure. The hybrid neural network outperformed the other approaches in terms of

the three performance metrics. However, it achieved a higher training time as compared to the other

approaches.

47

Govindarajan and Chandrasekaran [28] applied a hybrid neural network to generate a classifier.

The classifier generated was a hybrid designed using a radial basis function (RBF) and support vector

machine (SVM). The NSL-KDD dataset was used to evaluate the performance of the classifier. The

ensemble was evaluated using the classification accuracy. The study also generated two classifiers,

one using RBF and another using SVM and compared the three classifiers for performance. The hybrid

classifier outperformed the other two classifiers obtaining a high classification accuracy.

Ibrahim et al. [36] implemented a Self-Organization Map (SOM) artificial neural network for

intrusion detection. The neural network distinguished between normal connections and the attack

connections. The KDD-99 and the NSL-KDD datasets were used to evaluate the performance of the

classifiers. The neural network performed well obtaining high accuracy rates for detecting intrusions

in both the KDD-99 and NSL-KDD datasets. The neural network was also compared to other

approaches [54, 66, 80] which used the same dataset and it outperformed all the approaches for

binary classification.

3.6.3 Bayesian Networks
Panda et al. [66, 67] generated a naïve Bayes binary classifier for intrusion detection. Naïve Bayes

classifiers using different data filtering configurations were generated and evaluated for performance.

The NSL-KDD dataset was used to evaluate the classifiers. Cross-validation was used to train and test

the classifier. Sensitivity and false positive rate were used to evaluate the performance of the

classifier. The classifier using principal component analysis as the filtering approach achieved a higher

sensitivity rate and lower false positive rate outperforming the other classifiers.

Mukherjee and Sharma [55] generated a naïve Bayes multi-class classifier for network intrusion

detection. The NSL-KDD dataset was used to evaluate the evolved classifier. Feature selection was

performed. Cross-validation was applied for testing the classifiers. The Waikato Environment for

Knowledge Analysis (WEKA) [31], a toolkit which contains a collection of various algorithms and data

processing tools was used for the experiments. Accuracy was used to evaluate the performance of the

classifier. The classifier that was generated with 24 features outperformed the other classifiers

generated.

3.6.4 Decision Trees
Thaseen and Kumar [86] evaluated the performance of several decision tree classification algorithms

for generating binary classifiers. The classification algorithms include AD tree, C4.5, LAD tree, NB tree,

random tree, random forest and REPTree. The classifiers generated were evaluated using the NSL-KDD

dataset. The experiments for generating the classifiers were performed using WEKA. Feature selection

48

was performed. Accuracy was used to evaluate the performance of the classifiers generated. The

classifier generated using a random tree classification algorithm obtained the highest accuracy rate

over the other classifiers.

Chae et al. [9] generated a classifier using J48 for network intrusion detection. The NSL-KDD dataset

was used to evaluate the classifiers. Ten-fold cross-validation was used to evaluate how the classifier

performed. Accuracy was used to evaluate system performance. Several feature selection methods

were compared and the feature selection method which used 22 out of the 41 features from the

dataset obtained the highest accuracy rate.

 Chapter Summary
This chapter introduced network intrusion detection and provided a description of datasets used for

network intrusion detection. Network attack categories were discussed. Performance measures used

in network intrusion detection were discussed in this chapter. Previous studies in network intrusion

detection were discussed.

49

4 GP and Network Intrusion Detection

 Introduction
This chapter reviews studies that have been conducted using genetic programming and its variants for

network intrusion detection. Section 4.2 provides an overview of using genetic programming for

network intrusion detection. Section 4.3 describes studies that have performed binary classification

for network intrusion detection and section 4.4 reviews previous work where multi-class classification

for network intrusion detection was performed. The strengths and weaknesses of applying genetic

programming and its variants for network intrusion detection are provided in section 4.6. Section 4.5

provides an analysis of genetic programming and its variants for network intrusion detection. The

chapter is summarized in section 4.7.

 Using genetic programming for network intrusion detection
When using genetic programming (GP) for network intrusion detection (NID) the problem is treated

as a classification problem. The classification problem is viewed as either a binary classification

problem or a multi-class classification problem. Classification algorithms such as genetic programming

is used to create a classifier to solve a classification problem. Binary classifiers are generated for binary

classification problems and multi-class classifiers are generated for multi-class classification problems.

Binary classifiers are generated to detect whether an intrusion exists or not and multi-class classifiers

are generated to detect different types of intrusions. A classifier can be represented in the form of a

rule. Genetic programming is used to evolve a rule and the rule can be in the form of either a logical

tree or an arithmetic tree or a decision tree or a production rule. Logical trees are made up of logical

operators such as the OR operator. Arithmetic trees represent mathematical expressions and the

function set consists of mathematical operators such as +, -, *, / [20]. Decision trees represent the

features as nodes and the leaf nodes as the classes. Production rules are rules which are used to

represent classifiers using IF-THEN statements.

Chapter 4

50

When using GP for multi-class classification problems different methods are used to generate

multi-class classifiers. Binary decomposition, static range selection and dynamic range selection are

some of the methods used by GP for performing multi-class classification.

Binary decomposition [47] decomposes a problem with n-classes into a number of binary

classification problems. Given a problem with 4 classes (1, 2, 3, 4) and each binary problem having two

classes a and b, the binary decomposition is performed as follows:

• In the first problem, a = (1) and b = (2, 3, 4).
• In the second problem, a = (2) and b = (1, 3, 4).
• In the third problem, a = (3) and b = (1, 2, 4).
• In the fourth problem, a= (4) and b = (1, 2, 3).

When static range selection [47] is used to solve a multi-class problem, each class is defined by

specific boundary regions. Boundary regions are defined based on the problem domain and possible

class boundary points. Boundary regions are defined before a GP run. During the GP run, the classifier

is considered to have classified a connection to a specific class if the output falls within a specific

boundary region. Given a problem with four classes, the following boundary regions can be used to

represent the classes: Class 1 = [-infinity, -1], Class 2 = [-1, 0], Class 3 = [0, 1], Class 4 = [1, infinity]. In

static range selection, each element in the population has the same boundary regions. Dynamic range

selection is an alternate approach to static range selection, which dynamically allows each element in

the population to use a different set of class boundary regions.

 Binary Classification for NID using GP
This section reviews studies which make use of genetic programming and its variants to evolve binary

classifiers for NID.

4.3.1 Genetic Programming
This section focuses on reviewed studies which evolve binary classifiers using standard genetic

programming for NID.

Crosbie and Spafford [15] improved manually created rules using genetic programming. The manually

created rules were encoded in the initial population. Crosbie and Spafford’s work was one of the first

implementations that applied genetic programming for intrusion detection. The authors used their

own dataset for evaluation. The individuals in the population represented production rules. Each

individual was comprised of arithmetic operators, conditional operators, logical operators and

features of the dataset. The fitness function was the number of correctly classified intrusions and non-

intrusions. Crossover was applied during the evolutionary process. Training and testing were used to

51

evaluate the overall performance of the classifier. The classifier designed did not perform well but the

work provided the foundation for applying genetic programming for intrusion detection.

Lu and Traore [48] used genetic programming to improve manually created production rules. The

individuals in the population represented production rules and the initial population was made up of

the manually created production rules. The DARPA 1998 dataset was used to evaluate the

performance of the classifier. False positive rate (FPR), false negative rate (FNR) and unknown attack

detection rate (UADR) were used as fitness functions to evaluate the rules generated. UADR measured

the rate of detecting unknown attacks. The genetic operators used were mutation, reproduction and

crossover. The overall performance of the classifiers was measured using accuracy and FPR. The

classifier performed fairly well achieving an average accuracy rate and FPR of 0.57% and 0.041%

respectively over the 10000 runs that were performed.

Yin et al. [90] applied genetic programming to generate a rule-based system to detect intrusions.

The DARPA 1999 dataset was used for the experiments. The Learning Rules for Anomaly Detection

(LERAD) presented by Mahoney et al. [50] were used to create the initial rules used by genetic

programming during initial population generation. The individuals in the population represented

production rules. The accuracy was used as the fitness function. Crossover and mutation were applied

to improve existing rules. The overall performance of the classifiers was measured using the number

of correctly classified intrusions. The classifier designed by Yin et al. outperformed other classifiers

detecting 84 out of the 148 intrusions obtaining a 54% accuracy.

Orfila et al. [64] designed an intrusion detection classifier using genetic programming. The classifier

was compared with the machine learning algorithm C4.5 in terms of efficiency and effectiveness. The

Lawrence Berkeley National Laboratory (LBNL) Dataset [68] was used to evaluate and compare the

performance of the classifiers. The individuals in the population represented logical trees. Logical and

bitwise operators formed the function set whilst the terminal set was comprised of the features of the

dataset as well as an ephemeral random constant. The fitness of a classifier was calculated as the

difference between sensitivity and false positive rate multiplied by the accuracy. Crossover was

applied during the evolutionary process. The authors evaluated the classifiers using cross-validation.

GP generated more effective rules than C4.5 rules. GP also had simpler solutions with fewer nodes as

compared to the best individual derived by C4.5.

Blasco et al. [5] evaluated the performance of classifiers generated using different fitness functions.

The KDD-99 dataset and a modified version of the KDD-99 were used for the experiments. The

individuals represented logical trees. The terminal set was composed of the features of the dataset as

52

well as two ephemeral random constants. Two fitness functions were considered for evaluation. The

first fitness function was the difference between sensitivity and false positive rate whilst the second

fitness function was a function of the sensitivity, false positive rate as well as the frequency of attacks

within the dataset. Tournament selection was used as the selection method. Genetic operators

crossover and mutation were applied during the evolution process. The overall performance of the

classifiers was measured based on the accuracy. The classifier generated based on the function of

sensitivity, FPR and frequency of attacks achieved a higher accuracy rate. The classifiers were also

compared to other classifiers [30] evaluated on the KDD dataset and they outperformed 3 out of the

6 classifiers compared.

Pastrana et al. [69, 70] applied genetic programming to generate intrusion detection classifiers.

The Lawrence Berkeley National Laboratory (LBNL) and the KDD-99 dataset were used to evaluate the

classifiers. The individuals represented logical trees. The features of the datasets formed the terminal

set. Tournament selection was applied as the selection method. Crossover and mutation were applied

during the evolutionary process. Cross-validation was used for the experiments that involved the

LBNL. Training and testing were used for the KDD-99 experiments. FPR was used to measure the

overall performance of the classifiers. The LBNL and KDD-99 NIDS classifiers performed well obtaining

an FPR of 4% and 3% respectively. The LBNL classifier was also compared to the classifiers generated

using C4.5 and naïve Bayes. The LBNL classifier outperformed the other two classifiers obtaining a

lower FPR.

4.3.2 Grammatical Evolution
The study reviewed in this section used grammatical evolution to generate binary classifiers for

network intrusion detection.

Sen and Clark [79] applied grammatical evolution to mobile ad hoc networks (MANETs). The

objective of the study was to model a classifier that could detect intrusions on MANETs. The authors

used their own dataset. The BNF production rules of the grammar were composed of a combination

of arithmetic operators, binary operators and MANET’s features. Individuals were represented as

production rules. The difference between the accuracy and the false positive rate was used as the

fitness function. Mutation and crossover were applied during the evolutionary process. The training

and testing method was used. The overall performance of the classifiers was measured based on the

accuracy. The classifier designed achieved high accuracy rates.

53

4.3.3 Linear Genetic Programming
The work discussed in this section applied linear genetic programming to generate classifiers for

network intrusion detection.

Song et al. [83] applied linear genetic programming for network intrusion detection. The KDD-99

dataset was used to evaluate the performance of the classifier. Linear genetic programming was used

to represent individuals. The individuals were defined in terms of the number of pages and

instructions. Three fitness functions were considered for evaluation: equal class cost, variable class

cost and hierarchical cost. The equal class cost fitness function measured the number of correctly

classified intrusions and non-intrusions. The variable class cost fitness function favoured infrequent

classes by assigning a higher weighting to infrequent class detection as compared to frequent classes.

The hierarchical cost fitness function measured the number of misclassified connections. Tournament

selection, crossover and mutation were applied during evolution. The overall performance of the

classifiers was measured based on the accuracy and the false positive rate. Individuals using

hierarchical cost as the fitness function obtained the best results for both the false positive rate and

accuracy.

 Multiclass Classification for NID using GP
This section reviews work which generated multi-class classifiers for network intrusion detection using

genetic programming and its variants.

4.4.1 Genetic Programming
This sections reviews studies which applied standard genetic programming to generate multi-class

classifiers for network intrusion detection.

Faraoun et al. [23] applied genetic programming to perform multi-class classification for network

intrusion detection. The KDD-99 dataset was used to evaluate the performance of the classifier. The

individuals represented arithmetic trees. The terminal set was comprised of the features from the

dataset and constants. The function set contained arithmetic operators. Fitness proportionate

selection was used as the selection method. Genetic operators crossover and mutation were applied

during the evolutionary process. The training and testing method was used. The overall performance

of the classifier was measured based on accuracy and the FPR. The classifier obtained high accuracy

rates and low false positive rates. The classifier also outperformed other classifiers [21, 44] generated

using the same dataset.

54

4.4.2 Grammatical Evolution
This section reviews work which has applied grammatical evolution for generating multi-class

classifiers for network intrusion detection.

Wilson and Kaul [88] applied grammatical evolution for automating the generation of intrusion

detection rules. The KDD-99 dataset was used to evaluate the performance of the classifier. Rank

selection was used as the selection method. The fitness of the rules was based on a combination of

the features and the specific output class for each rule. Crossover and mutation were applied during

the evolutionary process. The classification accuracy was used to evaluate the performance of the

classifier in detecting the different network attacks. The best classifier evolved achieved a high

classification accuracy for detecting attacks such as DOS but also achieved very low detection rates

for other attacks such as R2L attacks.

4.4.3 Multi-expression Programming
This section reviews a study which applied multi-expression programming for generating multi-class

classifiers for network intrusion detection.

Grosan et al. [29] applied multi-expression programming (MEP) for multi-class classification and

compared the performance of the classifier generated to linear genetic programming (LGP), support

vector machines (SVM) and decision trees (DT). The 1998 DARPA dataset was used for classifier

evaluation. LGP applied tournament selection, crossover and mutation during evolution. The MEP

individuals represented arithmetic trees. The MEP function set was comprised of a combination of

arithmetic and logical operators. The terminal set comprised the 41 features from the dataset.

Crossover was applied to generate offspring and accuracy was used as the fitness for MEP. The training

and testing method was used for the experiments and accuracy was used to evaluate the performance

of the classifiers. MEP outperformed LGP, SVM and DT classifiers for detecting normal, U2R and R2L

attacks and LGP outperformed the rest of the classifiers in accurately detecting DOS and Probe attacks.

4.4.4 Linear genetic programming
Mukkamala et al. [56] investigated the use of linear genetic programming for modelling intrusion

detection systems. The performance of linear genetic programming (LGP) was compared to support

vector machines (SVM) and a neural network trained using resilient backpropagation (RBP) learning

models in terms of scalability, the time it took to train and test the approaches and detection accuracy.

The DARPA 1998 dataset was used for evaluation. The crossover operator was used to exchange

sequences of instructions between two tournament winners. For each network attack category, an

LGP classifier was evolved. LGP outperformed SVMs and RBP in terms of detection accuracies for each

of the network attack type categories.

55

Hansen et al. [32] applied GP to evolve a classifier for network intrusion detection. The authors

performed a comparative evaluation of two classifiers: one using standard crossover and the other

using the homologous crossover operator, in order to determine the best crossover operator to use

for intrusion detection. The KDD-99 dataset was used to evaluate the classifiers. Mutation and

crossover were applied. The GP classifier using homologous crossover performed better than the

standard crossover classifier. Hansen et al. also compared the state-of-the-art approaches with the

GP classifier using homologous crossover and the classifier performed better than the state-of-the-art

classifiers for DOS, Probe, U2R and R2L attacks.

 Strengths and Weaknesses of GP in NID
This section highlights the strengths and weaknesses of using genetic programming and its variants

for network intrusion detection.

4.5.1 Strengths
• Automatic feature selection

During the evolution process, the GP run indirectly performs the process of feature selection by

selecting the best features to use in representing the solution to the problem. This eliminates

additional feature selection tasks usually performed.

• Flexibility

Different representations can be used to represent classifiers for network intrusion detection.

Quality of classifiers generated can also be improved by using modified fitness functions and

genetic operators.

4.5.2 Weaknesses
• Introns

Some classifiers generated by GP become very large because of redundant code within the

classifier.

 Analysis of genetic programming in network intrusion detection
From the studies discussed above genetic programming has been widely used to generate classifiers

for NID. There have been studies which have applied linear genetic programming and from the studies,

linear genetic programming has been able to achieve high accuracy rates. From the literature, it can

be seen that a lot of research effort has gone into linear genetic programming which has been able to

attain high accuracy rates. The work in MEP and GE is still in its initial stages and from the studies

reviewed, the two approaches tend to show promise of generating classifiers which can achieve high

56

accuracy rates. For the work presented in this thesis, MEP and GE will be investigated for generating

classifiers for network intrusion detection. Genetic programming will be used to generate classifiers

to provide a baseline to compare the performance of the classifiers generated by GE and MEP. Binary

and multi-class classifiers will be generated using each of the approaches.

From the studies which generated binary classifiers, the accuracy rate has been successfully used

as the fitness function in order to generate classifiers with high overall accuracies [5, 64, 79, 90]. For

this study, the accuracy rate will be used as the fitness function for binary classifiers generated using

the three approaches (GP, GE and MEP). Different fitness functions have been used for generating

multi-class classifiers for NID. Investigations into the effects of different fitness functions have not

been conducted and for the study in this thesis, investigations into the use of different fitness

functions will be conducted in order to determine the effects of fitness functions on the overall

performance of classifiers generated. Based on work done by Loveard et al. [47], dynamic range

selection and binary decomposition performed better than other approaches for solving classification

problems and for the study in this thesis, binary decomposition will be used to generate multi-class

classifiers for NID.

In the literature reviewed genetic programming has been widely applied for network intrusion

detection. Individuals in genetic programming have been represented using arithmetic trees [23],

production rules [15, 48, 90] and logical trees [5, 64, 69, 70]. Logical trees have been applied more

frequently and have achieved higher accuracy rates. For this reason, logical trees will be used to

represent individuals in this study. Tournament selection which has been applied in a number of

studies [5, 29, 69, 70, 83] which have achieved high accuracy rates will be used in this study. Crossover

and mutation have been widely used in the studies reviewed in this chapter. In this study, both genetic

operators will be applied during the evolutionary process.

Grammatical evolution has been applied in a few studies for network intrusion detection [79, 88].

From the reviewed studies on grammatical evolution, production rules have been used to represent

individuals. Production rules have not been able to achieve a high accuracy rate and for this study,

logical trees will be used to represent individuals in order to investigate their potential for generating

classifiers with better accuracy rates. Studies which have used tournament selection, crossover and

mutation have achieved high accuracy rates and for the study in this thesis, tournament selection,

crossover and mutation will be used.

57

Multi-expression programming has been applied once for network intrusion detection [29]. For this

study, using logical trees to represent the individuals will be investigated. Genetic operators crossover

and mutation will be applied during the evolutionary process for this study.

Different datasets have been used for network intrusion detection. The KDD-99 dataset has been

widely used in the literature provided in this chapter compared to the other datasets used for NID.

The KDD-99 dataset has however been criticized for being outdated and containing redundant records

[50, 77, 85]. The NSL-KDD [85] dataset was proposed to overcome some of the limitations of the KDD-

99 dataset possessed. In order to overcome the limitations of the KDD-99 dataset the following

processes were performed on the NSL-KDD:

- Removal of redundant and duplicate records in both the training and testing sets.

- Reduction in the number of records in the training and testing sets, eliminating the need to

randomly select small portions of the data set.

The NSL-KDD dataset offers a streamlined version of the KDD-99 dataset and for the work

presented in this thesis, the NSL-KDD dataset will be used. The accuracy has been widely used in

reviewed studies [5, 29, 48, 79, 83, 88, 90] to evaluate the overall performance of the classifiers

generated. For this study, the accuracy will also be used to evaluate classifier performance.

 Chapter Summary
This chapter discussed genetic programming and its variants for network intrusion. An overview of the

application of genetic programming for network intrusion detection (NID) was discussed. Previous

studies which generated binary classifiers for NID using genetic programming and its variants were

discussed followed by studies which generated multi-class classifiers for NID. An analysis of previous

work which used genetic programming and its variants for generating classifiers for NID was discussed

and the strengths and weaknesses of using genetic programming for NID were provided.

58

5 Methodology

 Introduction
This chapter describes the methodology applied in order to achieve the aims and objectives of the

study presented in the thesis. Section 5.2 discusses the aims and objectives of this study. Section 5.3

and section 5.4 discuss the methodologies used to achieve the aims and objectives. Section 5.5

discusses the details of the dataset including the pre-processing methods applied to the dataset.

Section 5.6 describes the distributed architecture used for the proposed approaches. Section 5.7

provides the technical specifications and section 5.8 summaries the chapter.

 Research Methodology
Different research methodologies have been used in the field of computer science. Johnson [37]

suggests four methods namely empiricism, mathematical proof approaches, hermeneutics (formal

proof techniques) and proof by demonstration which have been used in computer science. Empiricism

is used to determine the hypothesis validity. it follows a sequence of steps hypothesis, methods and

results and conclusion. Mathematical proof approaches use formal proofs to reason about the validity

of a hypothesis given some evidence. It can either be by verification; attempts to establish that some

good property will hold in a given system, or by refutation. If a model is created and tested in the

environment which it is intended to represent, the research methodology is regarded as

hermeneutics. Proof by demonstration involves designing a system and iteratively refining the system

based on feedback provided after each iteration cycle until the desired output is achieved or no further

changes can be made to the system.

The following section outlines the aims and objectives of the work presented in this thesis as well

as how each of the objectives will be achieved using the methodology discussed in this chapter.

5.2.1 Aims and Objectives
The main aim of this study is to evaluate the different variants of genetic programming, namely

grammatical evolution and multi-expression programming for evolving network intrusion detection

Chapter 5

59

classifiers. Proof by demonstration will be used in order to achieve the aims of this study. The following

outlines the objectives of the study presented in this thesis.

• Objective 1: Detecting intrusions using grammatical evolution (GE)
• Objective 2: Classifying network attack types using GE
• Objective 3: Detecting intrusions using multi-expression programming (MEP)
• Objective 4: Classifying network attack types using MEP
• Objective 5: Detecting intrusions using genetic programming (GP)
• Objective 6: Classifying network attack types using GP
• Objective 7: Comparative analysis of GE, MEP and GP for network intrusion detection

Two methodologies will be used in order to achieve the objectives outlined above. Objectives 1 to 6

will be fulfilled using the methodology discussed in section 5.3 (methodology one) and objective seven

will be fulfilled using the methodology discussed in section 5.4 (methodology two).

 Proof by Demonstration Methodology
Proof by demonstration will be used as the methodology. An initial approach will be implemented

based on the critical analysis of the literature discussed in section 4.6. The approach will be iteratively

refined if the approach is not performing well enough when compared to previous literature until a

termination criterion has been met. During iterative refinement, the approach will be evaluated by

testing the performance of the implementation on the dataset. If the implementation is not

performing well based on the evaluation, the implementation is refined until the desired output is

achieved. The algorithm for proof by demonstration is outlined in Algorithm 5.1 and the following

sections discuss how each of the steps in the algorithm will be achieved.

Proof by demonstration

Begin

• Implement initial approach

• Repeat

o Evaluate the approach.

o Refine approach (if necessary).

• Until a termination criterion is met.

End

Return implemented approach.

Algorithm 5.1: Proof by demonstration

60

5.3.1 Evaluation of approach
Training and testing will be used to evaluate the performance of the approach. The approach will be

evaluated on the datasets described in section 5.5. Due to the stochastic nature of genetic

programming and its variants, multiple runs of the proposed approaches will be performed. Thirty

runs will be performed on the training dataset. A random seed will be used for each of the runs

performed. The classifier with the highest fitness from the 30 runs will be considered the best

classifier. The best classifier will be run on the test dataset in order to evaluate the overall

performance of the approach. Accuracy will be used to evaluate how well the approach performs.

5.3.2 Refinement of approach
During the refinement of the approach different aspects of the approach will be changed in order to

improve the performance of the approach. Aspects of the approach that will be changed include:

• Parameter values

A combination of different parameter values affects the performance of the approach. Parameters

values such as the maximum tree depth of an individual have an overall effect on the generation of

efficient classifiers and the population size which controls the number of individuals created has an

effect on the chances of the approach finding a global optimum classifier for network intrusion

detection. Changes in parameter values have to be performed in order to increase the performance

of the implementation. Parameters that will be changed include the population size, application rates

of the genetic operators, the maximum number of generations, maximum tree depth, BNF grammar

and the number of genes in a MEP chromosome.

• Representation of individuals

Different representations have different effects for the generation of classifiers. Changes in the

representation of individuals may lead to the generation of efficient classifiers. Logical trees will be

tested in order to evaluate the best representation.

• Fitness Function

Fitness functions have an effect on the overall performance of implementations. Different fitness
functions will direct the approach to different areas of the search space.

• Selection Method

The choice of selection method has an effect on the overall performance of an approach. Tournament

selection has been widely used in the literature. Selection pressure has an effect on tournament

selection. Selection pressure, which is the degree to which high accuracy classifiers are favoured has

an effect on the convergence rate of an approach.

61

• Genetic Operators

Genetic operators generate offspring of different shapes and sizes. Different genetic operators are

used to explore different areas of the search space and changes in the genetic operators applied may

lead to the generation of high accuracy classifiers.

5.3.3 Termination Criterion
The termination criteria of the methodology will be met when one of the following is achieved:

• No further improvements in the performance of the classifiers were achieved.
• Performance of the classifier is better than existing implementations from literature.

 Statistical Tests
The statistical significance of each of the approaches will be evaluated. More than 30 runs will be

performed for each experiment using the previous methodology in order to obtain a normal

distribution which will be used to perform statistical tests.

5.4.1 Statistical Testing
Hypothesis tests will be used to test for the significance of the results when comparing the different

variations of genetic programming to evolve classifiers. A one-tailed hypothesis test (Z-test) will be

used for the work presented in this thesis, to determine the statistical significance of results obtained

when comparing different approaches. Table 5.1 provides the level of significance, critical values and

decision rules for the Z-test. Assume two classification approaches, A and B are being compared, with

means µA and µB respectively. In order to apply the Z-test, the first step is to formulate the null

hypothesis and the alternative hypothesis as follows:

H0 : µA = µB

Ha : µA > µB

The value of Z is calculated and compared to the critical value. If the Z-value is less than the critical

value, there is no statistical significance in comparing the means resulting in the null hypothesis (H0)

being accepted. If the Z-value is greater than the critical value, there is a statistical difference between

the two means resulting in the alternate hypothesis being accepted (Ha).

Significance (α) Critical Value Decision Rule

0.01 2.33 Accept H0 – if Z < 2.33

0.05 1.64 Accept H0 – if Z < 1.64

0.1 1.28 Accept H0 – if Z < 1.28

Table 5.1: Z-hypothesis test table showing levels of significance, critical values and decision rules

62

 Dataset
This section describes the datasets that will be used for the work presented in this thesis. This section

will also provide the pre-processing steps that will be applied to the datasets.

5.5.1 Dataset description
Datasets which have been used in network intrusion detection have been discussed in section 3.3. The

NSL-KDD dataset will be used for the work presented in this study based on the critical analysis of the

previous work discussed in section 4.6.

The KDD Train+ set from the NSL-KDD dataset will be used for training and modelling the classifiers.

The KDD Test+ set will be used to test the performance and effectiveness of the modelled classifiers.

Table 5.2 provides the distribution of network attack categories and the total number of connections

for each sample.

 Normal U2R DOS R2L Probe Total

KDD Train+ 67343 52 45927 995 11656 125973

KDD Test+ 9711 67 7460 2885 2421 22544

Table 5.2: NSL-KDD sample distribution

5.5.2 Dataset Pre-processing
Data pre-processing transform data into a format that will be easier and more effective to use for the

purpose of the study. The NSL-KDD contains a combination of nominal and numeric values in the 41

features that make up the dataset. Data preprocessing will be applied to the dataset in order to refine

the dataset and make it easier to use for this study. Data transformation and normalization will be

performed on the dataset based on previous work [4, 28, 36].

5.5.2.1 Data transformation

Data transformation involves converting all the nominal feature values to distinct numerical values.

For each of the nominal features (Protocol_type, Service and Flag), the distinct elements for each

feature will be mapped to distinct numerical values [4, 36]. Table 5.3 provides the feature name and

the mapped numerical value.

Feature Feature Name Numerical

Value

Protocol_Type

TCP 0

UDP 1

ICMP 2

63

Flag

S0 0

S1 1

S2 2

S3 3

SF 4

SH 5

OTH 6

REJ 7

RSTR 8

RSTO 9

RSTOS0 10

Service All services 0 to 69

Table 5.3: Data transformation

5.5.2.2 Dataset normalization

Connections within the dataset contain varying ranges. The numerical values will be scaled using the

min-max method of normalisation [36]. Each attribute will be scaled to fall within the range [0, 1],

which is consistent with reviewed studies that have used the NSL-KDD dataset [4, 28, 36].

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑋𝑋 − 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀

5.5.3 Binary classification dataset
The NSL-KDD dataset was prepared for binary classification by setting all the intrusive connections as

one class and the normal connections as another class. The KDD Train+ subset of the NSL-KDD will be

used as the training set and the KDD Test+ will be used as the testing set. Figure 5.1 provides the

distributions of connections within the binary dataset that will be used for the study presented in this

thesis.

(7)

64

Figure 5.1: Binary classification distribution

5.5.4 Multi-class classification dataset
The attack class for each connection in the dataset which will be used for the experiments presented

in this thesis were converted from the specific network attack to the network attack category

presented in Table 3.3. The KDD Train+ subset of the NSL-KDD will be used as the training set and the

KDD Test+ will be used as the testing set. Figure 5.2 provides the distribution of attacks within the

training and testing sets of the NSL-KDD dataset.

Figure 5.2: Multi-class Classification distribution

 Distributed Architecture for Proposed Approaches
Genetic programming has high runtimes when evolving classifiers and in order to reduce the high

runtimes associated with GP, a multicore architecture will be applied. The multicore architecture will

be applied during the training phase of the proposed approaches described in this thesis. Two

6734358630

KDD Train+

Normal

Attacks

971112833

KDD Test+

Normal

Attacks

Normal
54%

U2R
0%

DOS
36%

R2L
1% Probe

9%

KDD Train+

Normal
43%

U2R
0%

DOS
33%

R2L
13%

Probe
11%

KDD Test+

65

processes, initial population generation and creation of the new population, are distributed because

that is where mainly high runtimes are experienced.

The process of creating the initial population and evaluation of the population is distributed over

the architecture by dividing the number of individuals created over the number of cores. If n

individuals are to be generated initially and t cores are available, each core will generate 𝑛𝑛
𝑡𝑡
 individuals

in parallel. For instance, if the population size is 200 and 8 cores are allocated, each of the 8 cores will

generate 25 individuals in parallel.

Similarly, the creation of the new population for each generation (regeneration) is distributed over

the architecture by dividing the number of individuals created by each of genetic operators over the

number of cores. For instance, if two genetic operators are used with 8 cores and each genetic

operator has an application rate of 50% and a population size of 200, 25 individuals will be generated

on each of the 8 cores.

 Technical Specifications
The algorithms proposed in this dissertation were written in Java 1.8 using NetBeans 8.1. The technical

specifications of the computer used to develop the proposed algorithms were as follows: Intel(R) Core

(TM) i7-3770S Quad Core @ 3.10GHz with 8GB RAM running 64bit Windows 7. Statistical tests were

performed using Microsoft Excel 2016. The simulations were performed on the Centre for High-

Performance Computing Lengau cluster.

 Chapter Summary
This chapter discussed the methodology used to achieve the aims and objectives outlined in chapter

1. Methodologies that will be used to achieve the objectives have been discussed. The dataset that

will be used to evaluate the performance was described as well as dataset pre-processing which will

be performed. This chapter concludes by providing a description of the distributed architecture for

the proposed approaches and the technical specifications.

66

6 Genetic Programming for Network

Intrusion Detection

 Introduction
This chapter discusses the proposed genetic programming approach for network intrusion detection.

Section 6.2 provides an overview of the algorithm used for the proposed approach. The initial

population generation is discussed in section 6.3. The evaluation process of an individual is detailed in

section 6.4. Section 6.5 discusses the selection methods and genetic operators. The parameters used

are presented in section 6.6 and section 6.7 summarizes the chapter.

 GP Algorithm
The generational control model is used for the genetic programming approach presented in this

chapter. An initial population is created and evaluated. The parent(s) used for genetic operators are

selected using tournament selection. The genetic operators generate offspring. The offspring is

evaluated and forms part of the new population. The algorithm repeats until the maximum number

of generations is reached. Algorithm 2.1 provides an overview of the algorithm. The best classifier

returned is evaluated on the testing set using accuracy in order to evaluate how well the classifier

performs.

Chapter 6

67

 Representation and initial population generation
Each individual in the population is a logical tree representing a classifier. The terminal set is composed

of the 41 features from the NSL-KDD dataset. The function set is made up of nine functions (and, not,

or, equal, different, max, min, greater, least). The functions were selected based on the critical analysis

of previous literature in section 4.6. Figure 6.1 illustrates the representation of an individual and Table

6.1 provides descriptions of the functions in the function set.

Function Description Arity

AND Performs the logical AND operation between two values 2

NOT Performs the logical NOT operation on a single value 1

OR Performs the logical OR operation between two values 2

EQUAL Compares two values and returns 1 if two numbers are the same, otherwise,

0 is returned.

2

GP Algorithm

Begin

• Create an initial population

• Repeat

o Evaluate individuals in the population.

o Select parents using tournament selection.

o Apply genetic operators to selected parents.

o Insert offspring into new population.

• Until a maximum number of generations.

End

Return the best individual and evaluate on the testing set.

Algorithm 6.1: GP Algorithm

68

DIFFERENT Compares two values and returns 1 if two numbers are different, otherwise,

0 is returned.

2

MAX Compares two values and returns the maximum of the two values. 2

MIN Compares two values and returns the minimum of the two values. 2

GREATER Compares two numbers and returns 1 if the first number is greater than the

second number, otherwise, 0 is returned.

2

LEAST Compares two numbers and returns 1 if the first number is lower than the

second number, otherwise, 0 is returned.

2

Table 6.1: Function descriptions

OR

OR

38 MAX

7 OR

40 9

OR

24 26

Figure 6.1: Example of an individual

The individual in Figure 6.1 is made up of five functions from the function set, each with an arity of

2. The numbers in the individual represent the feature numbers from the dataset. Each element in the

individual is randomly selected beginning with the root node (highlighted node).

The ramped half-and-half method discussed in section 2.5.3 is used for initial population

generation. The initial population is generated based on the parameters provided in Table 6.3 and

Table 6.4.

 Evaluation
The NSL-KDD training set discussed in section 5.5 is used in the training and generation of the

classifiers. The training set is used to calculate the fitness of each individual in the population. The

connections in the training set are the fitness cases discussed in section 2.6.1. Each individual in the

69

population is interpreted and evaluated to produce a single value representing the fitness of the

individual. Each individual in the population evaluates to either a 0 or 1.

In order to interpret each individual in the population, each individual cases is applied to the fitness

cases to produce a predicted class. The variable representing the features in the individuals are

replaced with the actual values in the fitness case. Each of the functions in the individuals are

evaluated in a bottom-up manner until all the functions in the individual are evaluated and a single

value is produced. Figure 6.2 illustrates the interpretation of the individual in Figure 6.1. The following

is a fitness case which will be used to illustrate the interpretation process. Each feature value is

separated by a comma and the last single value in the fitness case represents the actual class output.

0.00,0.50,0.80,0.40,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0

.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.59,0.10,0.17,0.03,0.17,0.00,0.00,0.00,0.05,0.

00,0

Each Interpretation is performed in a bottom-up manner beginning by replacing each of the feature

numbers with the actual values from the fitness cases and then evaluating each function until all the

functions are evaluated and a single value is returned. Using the fitness case above, the individual in

Figure 6.1 evaluates to a single value of 0 which represents the predicted class.

70

OR

OR

0.00 MAX

0.00 OR

0.05 0.00

OR

0.00 0.00

Replace feature number with
actual values from fitness case

1

OR

OR

0.00 MAX

0.00 OR

0.05 0.00

OR

0.00 0.00

OR operation on values 0.05 and 0.00
Replaced with 0

2

OR

OR

0.00 MAX

0.00 0

OR

0.00 0.00

Returns the higher value between 0.00 and EVALUATION 1
(EVALUATION 2)

3

OR

OR

0.00 0

OR

0.00 0.00

OR operation on 0.00 and EVALUATION 2
(EVALUATION 3)

4
OR

0 OR

0.00 0.00

OR operation on 0.00 and 0.00
Replaced with 0

5

OR

0 0

OR operation on EVALUATION 3 and EVALUATION 4
(EVALUATION 5) resulting in a single value of 0

6

Figure 6.2: Evaluation process

The output from the individual represents the predicted class. The predicted class is compared to

the actual class of each of the fitness cases. Based on the results of the comparisons a confusion matrix

discussed in section 3.4.1 is constructed. Table 6.2 provides an example of the confusion matrix

constructed for the individual in Figure 6.1 after the individual is evaluated over the training set.

71

 Predicted Class

Intrusion Normal

Actual

Class

Intrusion 40367 (TP) 18263 (FN)

Normal 16887 (FP) 50456 (TN)

Table 6.2: Confusion Matrix

 Based on the results from the confusion matrix, the fitness of an individual is calculated using one

of the performance measures described in section 3.4. Different performance measures will be

compared as fitness measures.

 Selection Method and Genetic Operators
Selections methods have been discussed in section 2.7. Tournament selection is used as the selection

method and it is outlined in Algorithm 6.2. Individuals are randomly selected from the population. The

number of individuals selected is determined by the tournament size. The individual with the best

fitness in the tournament is returned as the tournament winner.

Mutation and crossover discussed in section 2.8.2 were used to generate offspring. These genetic

operators have been widely used in previous studies. Figure 6.3 and Figure 6.4 illustrates the genetic

operators crossover and mutation.

Tournament selection

• Randomly select t (tournament size) individuals from the population creating sample.

• Set first individual in sample as best individual (b).

• Repeat

o Compare the fitness of b with individuals in sample.

o If fitness of individual in sample is higher than fitness of b, set b equal to individual

with higher fitness.

• Until all individuals in sample have been compared for fitness.

Return the best individual.

Algorithm 6.2: Tournament selection

72

In crossover, random crossover points are selected in each of the two parents selected using

tournament selection. The subtrees located at the crossover points were exchanged between the two

parents generating the offspring. In Figure 6.3 the highlighted nodes represent the crossover points.

OR

OR

38 MAX

7 OR

40 9

OR

24 26

EQUAL

LEAST

NOT

NOT

8

4

OR

24 40

Crossover
point

Parent 1 Parent 2

OR

OR

38

OR

24 26

EQUAL

LEAST

NOT

NOT

8

4

MAX

7 OR

40 9

OR

24 40

Offspring 1 Offspring 2

Figure 6.3: GP Crossover

For mutation, a random mutation point is selected in the parent. A randomly generated tree is

generated using the grow method of initial population generation. After the random tree is generated,

it replaces the subtree at the mutation point of the parent generating the offspring. The mutation

point is highlighted in both the parent and offspring in Figure 6.4.

73

EQUAL

LEAST

NOT

NOT

8

4

MAX

7 OR

40 9

AND

3 21

Parent Subtree

Mutation
point

EQUAL

MAX

7 OR

40 9

AND

3 21

Offspring

Figure 6.4: GP Mutation

 Parameters
The parameters used for the generation of binary classifiers are provided in Table 6.3. These

parameters were determined empirically through multiple trial runs.

GP Parameter Value

Population size 200

Initial population generation method Ramped half and half

Initial population maximum tree size 4

Selection method Tournament with a size of 20

Fitness function Accuracy

Mutation application rate 50%

Crossover application rate 50%

Maximum mutation depth 3

Maximum offspring depth 8

Maximum number of generations 500

Table 6.3: GP Parameters for binary classifiers

74

The parameters summarised in Table 6.4 were used during the generation of multi-class classifiers.

These parameters were determined empirically through multiple trial runs. Different fitness functions

were used in order to evaluate the performance of the classifiers.

GP Parameter Value

Population size 200

Initial population generation method Ramped half and half

Initial population maximum tree size 4

Selection method Tournament with a size of 10

Fitness functions Accuracy

F-Score

Matthews correlation coefficient

False positive rate

Precision

True positive rate

Mutation application rate 60

Crossover application rate 40

Maximum mutation depth 3

Maximum offspring depth 8

Maximum number of generations 500

Table 6.4: GP Parameters for multi-class classifiers

 Chapter Summary
This chapter presented the proposed GP approach for generating binary and multi-class classifiers for

network intrusion detection using genetic programming. An overview of the GP algorithm used for the

generation of the classifiers was outlined. Representation of individuals, evaluation, selection

methods and the genetic operators used for generating the classifiers were discussed. The parameters

that were used for the generation of the classifiers were also provided.

75

7 Grammatical Evolution for Network

Intrusion Detection

 Introduction
This chapter describes a grammatical evolution approach for generating binary and multi-class

classifiers for network intrusion detection. Section 7.2 discusses the representation of individuals and

the grammar used for generating the classifiers. The initial population generation and evaluation is

discussed in section 7.3. Genetic operators and the selection method that will be used are discussed

in section 7.4. Section 7.5 provides the parameters for the proposed approach and section 7.6

concludes the chapter.

 Representation
The GE algorithm discussed in section 2.15 is used for the generation of the classifiers described in this

chapter. The best individual evolved will be evaluated on the testing set of the NSL-KDD dataset. Each

individual is made up of multiple binary strings. Eight-bits are used to represent a binary string. Each

bit in the binary string is randomly selected to be either 0 or 1. The following are examples of randomly

created binary strings representing an individual:

01010010 10100001 00011100 00011111 11111001 01000101 11100001

The grammar is described below.

R = {N, T, S, P}

Where

N = {exp, op}

T = {and, not, or, equal, different, max, min, greater, least, 1 … 41}

Chapter 7

76

S = {<op> <exp> <exp>}

Production rules (P) are:

(1) <exp> ::= <op> <exp> <exp> (0)

| <var> (1)

(2) <op> ::= AND (0)

| NOT (1)

| OR (2)

| EQUAL (3)

| DIFFERENT (4)

| MAX (5)

| MIN (6)

| GREATER (7)

| LEAST (8)

(3) <var> ::= attr_1 (0)

| attr_2 (1)

| … …

| attr_41 (40)

Each of the productions rules (<exp>, <op> and <var>) map to other variables as illustrated above.

Each variable in the production rule maps to a numerical value used to distinguish it from other

variables and the numerical value is also used during the mapping process. The functions contained in

the production rule <op> perform the same functions as the ones described in section 6.3 and the

terminal symbols contained in <var> are the 41 features of the dataset. The variables that are mapped

from expanding <exp> in production rule (1) are considered as non-terminating symbols and the

variables in production rules (2) and (3) are considered as terminating symbols.

77

 Initial Population Generation and Evaluation
Each individual in the population is randomly created as discussed in section 2.17. The number of

individuals created is determined by the population size. The number of codons determines the size

of the individual (binary string length).

Each individual is evaluated by converting the binary strings to denary values and then mapping

the denary values to an expression tree. The grammar described above is used during the mapping

process. The expression tree generated after the mapping process is a logical tree. Figure 7.1 illustrates

conversion of binary strings to denary values.

Binary strings of 8-bits randomly created. (Number of codons = 9)

01010010 10100001 00011100 00011111 11111001 01000101 11100001 11100101 11111010

Convert each binary string to a denary value

82 161 28 31 249 69 225 229 250

Figure 7.1: Binary to denary conversion

After the conversion of binary strings to denary values, the mapping process outlined in section

2.16.2 is applied, generating an expression tree used to calculate the fitness of the individual. Figure

7.2 illustrates the denary values and the expression tree.

OR

LEAST

29 MIN

30 27

LEAST

1725

Expression: OR LEAST 29 25 LEAST 17 MIN 30 27

Denary Codons: 82 161 28 31 249 69 225 229 250 47 255 16 114 109 91 193 247

…

Figure 7.2: GE Individual

78

The individual in Figure 7.2 is made up of 18 denary codons which were used in the generation of

the expression tree. The expression tree is made up of 4 functions and 5 terminal nodes. The OR

function represents the root node of the expression tree.

After the expression tree is generated, the expression tree is evaluated on the training set as

discussed in section 6.5. The fitness of an individual is determined by the fitness of the expression

tree. After evaluation of the expression tree, the fitness of the expression tree is calculated using one

of the performance measures described in section 3.4. Accuracy will be used as the fitness function

for binary classifiers and different performance measures will be compared as fitness functions for

multi-class classifiers. Analysis of previous literature conducted in Chapter 4.6 has shown that accuracy

has been successfully applied for generating binary classifiers which achieve high accuracies, and

different performance measures have been used as fitness functions for generating multi-class

classifiers with high accuracies and investigations into the effects of different performance measures

is worth researching.

 Selection Method and Genetic Operators
Tournament selection discussed in section 2.7.1 where a single individual is selected from a sample of

individuals is used as the selection method for the proposed grammatical evolution approach.

Genetic operators crossover and mutation are applied during the GE run. Bit flip mutation

discussed in section 2.18.2 is applied as the mutation operator. During bit flip mutation, each bit in

the individual is inverted (0 is changed to 1 and 1 is changed to 0) generating an offspring. Uniform

crossover is applied as the crossover operator. Uniform crossover randomly selects alleles within each

of the parents and swaps them between the parents to generate offspring. Figure 7.3 illustrates

uniform crossover were alleles at index 1,2,4,5,8 from the first binary string and index 1,4,6,7,8 from

the second binary string were exchanged between the two parents to generate the offspring. The

alleles highlighted in grey represent alleles from parent 1 and the alleles highlighted in blue represent

alleles from parent 2.

Parent 1 10011010 01010111 ….

Parent 2 10111100 00011101 …

Offspring 1 10111110 01011101 …

Offspring 2 10111000 00010111 ..

Figure 7.3: GE uniform crossover

79

 Parameters
The parameters that were used for the generation of the proposed binary classifiers are summarized

in the Table 7.1. These parameters were determined empirically through multiple trial runs.

GE Parameter Value

GE model Generational Model

Population size 200

Number of codons [30,100]

Wrap-over limit 12

Nonterminal limit 10

Selection method Tournament with a size of 14

Fitness function Accuracy

Mutation application rate 50%

Crossover application rate 50%

Maximum number of generations 500

Table 7.1: GE Parameters for binary classification

The parameters summarized in the Table 7.2 were used for the GE approach producing the

proposed multi-class classifiers. These parameters were determined empirically through multiple trial

runs. The performance measures which will be compared are mentioned as fitness functions.

GE Parameter Value

GE model Generational model

Population size 200

Number of codons [30,100]

Wrap-over limit 10

Nonterminal limit 8

Selection method Tournament with a size of 8

Fitness functions Accuracy

F-Score

Matthews correlation coefficient

False positive rate

Precision

80

True positive rate

Mutation application rate 40

Crossover application rate 60

Maximum number of generations 500

Table 7.2: GE Parameters for multi-class classification

 Chapter Summary
This chapter presented a grammatical evolution approach for generating binary and multi-class

classifiers for network intrusion detection. The grammar used was presented. Genetic operators and

the evaluation of the individuals were discussed. The parameters which were used in the generation

of the classifiers were provided.

81

8 Multi-Expression Programming for

Network Intrusion Detection

 Introduction
This chapter describes a multi-expression programming approach for generating binary and multi-

class classifiers for network intrusion detection. Section 8.2 provides an overview of the MEP

algorithm used for the generation of the proposed classifiers. The representation is discussed in

section 8.3. Section 8.4 discusses the initial population generation and the evaluation of individuals.

The selection method and the genetic operators used are discussed in section 8.5. The parameters

used are provided in section 8.6 and section 8.7 summarizes the chapter.

 MEP Algorithm
The generational control model is used. The initial population is created and evaluated. Each individual

in the population is evaluated using the training set of the NSL-KDD dataset. Tournament selection is

used to select the parents used for genetic operators. New individuals are generated by the genetic

operators and form part of the new population. The evaluation and generation of individuals is

iteratively repeated until the maximum number of generations is reached. The best individual from

the MEP run is returned and evaluated using the testing set of the NSL-KDD dataset. Algorithm 8.1

summarizes the MEP algorithm used to generate the classifiers.

Chapter 8

82

 Representation
MEP individuals are made up of genes of variable length as discussed in section 2.23. Each gene within

an individual is either a terminal gene or function gene. A terminal gene is created whenever a single

terminal symbol is selected from the terminal set to represent the gene. The terminal set is made up

of the 41 features from the dataset. A function gene is created by combining a function symbol from

the function set and pointers representing other genes within the same individual. The function set is

made up of nine functions (and, not, or, equal, different, max, min, greater, least). These functions

perform the same functions as described in section 6.3. Each gene in an individual is similar to an

individual generated using GP. The number of genes which make up an individual is a MEP parameter.

Figure 8.1 illustrates an individual with 11 genes and the pointers representing other genes within the

same individuals. Individuals in the population are logical trees representing classifiers.

MEP Algorithm

Begin

• Create an initial population

• Repeat

o Evaluate individuals in the population.

o Select parents using tournament selection.

o Apply genetic operators to selected parents to generate offspring.

o Offspring form new population.

• Until a maximum number of generations.

End

Return the best individual and evaluate on the testing set.

Algorithm 8.1: MEP algorithm

83

Figure 8.1: MEP Individual

The individual in Figure 8.1 is made up of 5 terminal genes and 6 function genes. The gene pointers

illustrate the function arguments used to create each function gene. Gene 7 is a function gene created

from the combination of gene 3, gene 1 and the MAX function.

 Initial Population Generation and Evaluation
The first gene in an individual is a terminal symbol and the rest of the genes in the individual are either

terminal or function genes as discussed in section 2.24. The number of individuals created during initial

population generation is determined by the population size.

In order to evaluate the performance of an individual, each gene in the individual is evaluated using

the NSL-KDD training set in the same manner as the evaluation of GP individuals discussed in 6.4. After

each gene is evaluated, the gene with the best fitness represents the overall fitness of the individual.

 Selection Method and Genetic Operators
Tournament selection discussed in section 2.7.1 is used as the selection method. From the analysis of

previous work provided in Chapter 4, tournament selection was widely used in previous literature.

 Gene Gene pointer(s)

gene1 38

gene2 37

gene3 MIN 37 38 MIN gene2 gene1

gene4 MIN 37 MIN 37 38 MIN gene2 gene3

gene5 36

gene6 31

gene7 MAX MIN 37 38 38 MAX gene3 gene1

gene8 NOT MIN 37 MIN 37 38 NOT gene4

gene9 EQUAL 38 38 EQUAL gene1 gene1

gene10 40

gene11 EQUAL MIN 37 MIN 37 38 MIN 37 38 EQUAL gene4 gene3

84

Genetic operators mutation and crossover are applied during the generation of MEP classifiers.

Uniform crossover is used as the crossover operator and the mutation operator discussed in section

2.25.2 is used. Figure 8.2 illustrates uniform crossover applied to a MEP individual. For uniform

crossover, after genes have been exchanged between the parents, each of the function genes

exchanged update the function pointers to point to the genes within the individual. For example, for

the individual in Figure 8.2, gene 2 in parent 2 is expressed as (AND 36 36) evaluating to (AND gene1

gene1), after the gene is exchanged to form part of offspring 1, it updates its function pointer

evaluating to (AND 38 38).

 Parent 1

1. 38

2. 37

3. MIN 37 38

4. MIN 37 MIN 37 38

5. 36

6. 31

7. MAX MIN 37 38 38

8. NOT MIN 37 MIN 37 38

9. EQUAL 38 38

 Parent 2

1. 36

2. AND 36 36

3. 29

4. 28

5. LEAST 36 28

6. 27

7. 40

8. OR LEAST 36 28 36

9. MIN 28 40

85

Figure 8.2: MEP Uniform Crossover

 Parameters
Table 8.1 lists the parameters that were used for the generation of MEP binary classifiers proposed in

this chapter. The parameters were determined empirically through multiple trial runs.

 Offspring 1

1. 38

2. AND 38 38

3. MIN AND 38 38 38

4. MIN AND 38 38 MIN AND 38 38 38

5. LEAST 38 MIN 37 MIN 37 38

6. 31

7. MAX MIN AND 38 38 38 38

8. NOT MIN AND 38 38 MIN AND 38 38 38

9. EQUAL 38 38

 Offspring 2

1. 36

2. 37

3. 29

4. 28

5. 36

6. 27

7. 40

8. OR LEAST 36 28 36

9. MIN 28 40

86

MEP Parameter Value

Population size 200

Number of genes per individual 30

Selection method Tournament with a size of 15

Fitness function Accuracy

Mutation application rate 60%

Crossover application rate 40%

Maximum number of generations 600

Table 8.1: MEP Parameters for binary classification

The MEP parameters that were used for the generation of multi-class classifiers proposed in this

chapter are summarized in the Table 8.2. These parameters were determined empirically through

multiple trial runs.

MEP Parameter Value

Population size 200

Number of genes per individual 30

Selection method Tournament with a size of 8

Fitness functions Accuracy

F-Score

Matthews correlation coefficient

False positive rate

Precision

True positive rate

Mutation application rate 40

Crossover application rate 60

Maximum number of generations 500

Table 8.2: MEP Parameters for multi-class classification

 Chapter Summary
This chapter presented the multi-expression programming approach for generating classifiers for

network intrusion detection. An overview of the algorithm was provided and each aspect of the

algorithm was discussed. The parameters that were used for the generation of the binary and multi-

class classifiers were provided.

87

9 Results and Discussion

 Introduction

This chapter presents the results obtained from applying the proposed approaches presented in this

thesis for generating binary and multi-class classifiers for network intrusion detection. The following

summarizes the objectives of the study presented in this thesis outlined in Chapter 1:

• Develop and analyse the performance of using grammatical evolution for generating intrusion

detection classifiers.

• Development and evaluation of applying Multi-expression programming (MEP) for generating

binary and multi-class classifiers for network intrusion detection.

• Develop and analyse the performance of using genetic programming (GP) for generating

binary and multiclass classifiers for network intrusion detection.

• Investigate the effectiveness of fitness functions for network intrusion detection.

• Comparative analysis of GE, MEP and GP for network intrusion detection.

Section 9.2 presents the results of applying the proposed grammatical evolution approach

described in Chapter (GE), Section 9.3 presents the results of applying the proposed Multi-Expression

Programming approach described in Chapter (MEP) and Section 9.4 presents the results obtained from

applying the proposed genetic programming approach described in Chapter (GP). Section 9.5

compares the results for binary and multi-class classifiers presented for each of the approaches

presented in this thesis. Section 9.6 compares the results of the proposed approaches to state of the

art approaches for network intrusion detection and section 9.7 summarizes the chapter.

Chapter 9

88

 Grammatical Evolution
This section presents the results obtained by applying the GE approach described in Chapter 7 for

binary and multi-class classification.

9.2.1 Binary Classification
The classifiers that produced best and worst results for detecting intrusions using grammatical

evolution are presented in Table 9.1. The results in the table represent the accuracy for detecting both

intrusive and non-intrusive connections during training and testing. The classifier achieved a high

accuracy of 94.06% during training and 74.55% during testing, a true positive rate of 94.13% during

training and 60.41% during testing. The classifier achieved a true negative rate of 95.38% during

training and 86.78% during testing. The classifier achieved a false positive rate of 6.77% during testing

as compared to 6% achieved during training of the classifier.

 Training Testing

Accuracy

Best classifier 94.06 ± 0.13 74.55 ± 0.24

Worst classifier 88.93 ± 0.17 73.19 ± 0.24

Average 91.39 ± 0.15

Table 9.1: Grammatical Evolution binary classification results

The average runtime of GE to evolve a classifier was 3 hours during training and evaluation of the

classifier on the testing set took an average runtime of 30 seconds.

9.2.2 Multi-class classification
The subsections below present the results of each of the six performance measures which were used

as fitness functions for generating multi-class classifiers for network intrusion detection using

grammatical evolution. The average runtime of GE to evolve each of the classifiers discussed below

was 3 hours during training and evaluation of performance on the testing set took an average runtime

of 20 seconds for each of the classifiers.

9.2.2.1 Accuracy

Table 9.2 presents the results of the best and worst classifiers generated from using accuracy as the

fitness function for generating multi-class classifiers using grammatical evolution. The best classifier

obtained a low false positive rate of 3.6% during training and 5.5% during testing. High detection rates

89

were achieved for detecting U2R attacks with the best classifier achieving a 90% true positive rate

during testing and 86.56% during training.

 DOS Probe U2R R2L

Training

Best 95.57 ± 0.11 95.10 ± 0.12 99.97 ± 0.01 99.44 ± 0.04

Worst 92.80 ± 0.14 90.78 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Average 94.30 ± 0.13 92.80 ± 0.14 99.96 ± 0.01 99.27 ± 0.05

Testing

Best 85.33 ± 0.19 92.18 ± 0.15 99.71 ± 0.03 87.21 ± 0.18

Worst 86.39 ± 0.19 89.27 ± 0.17 99.71 ± 0.03 87.20 ± 0.18

Average 84.66 ± 0.20 91.68 ± 0.15 99.71 ± 0.03 88.17 ± 0.18

Table 9.2: Grammatical Evolution accuracy multi-classification results

The classifiers generated during training achieved similar detecting rates for U2R attacks resulting

in the similar classification rates during testing for U2R. Probe attacks achieved high detection rates

during testing despite achieving the lowest detection rates during training.

9.2.2.2 Matthews coefficient correlation

The training and testing results of the classifiers that were generated using Matthews’s coefficient

correlation as the fitness function for multi-class classification using grammatical evolution are

presented in Table 9.3.

During training, the best classifier achieved a high accuracy rate and a low true positive rate of

3%. The false positive rate during testing was higher than training at 5%. Using MCC as the fitness

function during training and testing resulted in a high average classification rate. The high average

classification is attributed to the balance between the true positive rate and true negative rate by the

fitness function.

90

 DOS Probe U2R R2L

Training

Best 96.21 ± 0.11 95.47 ± 0.11 99.97 ± 0.01 99.21 ± 0.05

Worst 63.54 ± 0.26 90.75 ± 0.16 99.94 ± 0.01 98.44 ± 0.07

Average 92.15 ± 0.13 92.94 ± 0.14 99.96 ± 0.01 98.98 ± 0.05

Testing

Best 84.35 ± 0.20 88.94 ± 0.17 99.74 ± 0.02 86.91 ± 0.19

Worst 66.91 ± 0.26 89.26 ± 0.17 99.71 ± 0.03 89.11 ± 0.17

Average 83.56 ± 0.20 90.42 ± 0.16 99.71 ± 0.03 87.15 ± 0.18

Table 9.3: Grammatical Evolution MCC multi-classification results

9.2.2.3 F-Score

Table 9.4 presents the results of the best and worst classifiers generated from applying f-score as the

fitness function for multi-class classification using grammatical evolution. The best classifier achieved

a false positive rate of 3.7% during training and 6.34% during testing. The best classifier achieved high

detection rates with the detection of U2R intrusions achieving above 99% during both training and

testing.

 DOS Probe U2R R2L

Training

Best 96.17 ± 0.11 95.10 ± 0.12 99.97 ± 0.01 99.42 ± 0.04

Worst 92.85 ± 0.14 92.44 ± 0.15 58.63 ± 0.27 80.38 ± 0.22

 Average 94.45 ± 0.13 92.95 ± 0.14 97.16 ± 0.03 92.64 ± 0.12

Testing

Best 87.54 ± 0.18 92.18 ± 0.15 99.70 ± 0.03 89.26 ± 0.17

Worst 84.38 ± 0.20 91.93 ± 0.15 46.52 ± 0.27 84.26 ± 0.20

Average 84.42 ± 0.20 91.35 ± 0.15 96.13 ± 0.05 85.61 ± 0.19

Table 9.4: Grammatical Evolution f-score multi-classification results

The best classifier achieved a low detection rate for DOS attacks during testing as compared to

the detection of all the other intrusive attacks. The average detection rate and the worst performing

91

classifier achieved similar results for detecting DOS attacks. The worst classifier also struggled to

detect U2R attacks both during training and testing.

9.2.2.4 True Positive Rate

The training and testing results of the multi-class classifiers generated using grammatical evolution

and using the true positive rate as the fitness function are presented in Table 9.5. The classifiers

achieved low detection rates with the best classifier achieving a detection rate of 39.14% during

training and 39.44% during testing. The approach (grammatical evolution using TPR as the fitness

function) achieved the lowest detection rates as compared to the other grammatical evolution

approaches. The classifiers achieved low detection rates due to the datasets including a large portion

of normal connections as compared to the intrusive connections. The classifiers correctly classified

intrusive connections and also achieved a high rate of false positives resulting in a low accuracy of the

classifiers.

 DOS Probe U2R R2L

Training

Best 39.14 ± 0.27 10.25 ± 0.17 36.21 ± 0.26 28.55 ± 0.25

Worst 36.46 ± 0.26 9.25 ± 0.16 0.04 ± 0.01 0.79 ± 0.05

Average 37.08 ± 0.27 9.48 ± 0.16 7.42 ± 0.08 8.88 ± 0.11

Testing

Best 39.44 ± 0.27 11.43 ± 0.18 22.84 ± 0.23 21.74 ± 0.23

Worst 33.09 ± 0.26 10.74 ± 0.17 0.30 ± 0.03 12.8 ± 0.18

Average 33.65 ± 0.26 10.91 ± 0.17 7.42 ± 0.08 16.42 ± 0.20

Table 9.5: Grammatical Evolution TPR multi-classification results

The best classifier achieved a true positive rate of 67% during training and 70% during testing. The

rate of true negatives (correct detection of normal connections) was low resulting in high false positive

rates of 60% during training and 56% during testing.

9.2.2.5 Precision

Table 9.6 presents the results of the multi-class classifiers generated using grammatical evolution and

using precision as the fitness function. The best classifier achieved a false positive rate of 7% during

training and 14% during testing.

92

 DOS Probe U2R R2L

Training

Best 64.51 ± 0.26 90.76 ± 0.16 99.96 ± 0.01 99.25 ± 0.05

Worst 63.54 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Average 64.20 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Testing

Best 66.34 ± 0.26 89.25 ± 0.17 99.71 ± 0.03 87.37 ± 0.18

Worst 66.91 ± 0.26 89.15 ± 0.17 99.69 ± 0.03 87.20 ± 0.18

Average 66.83 ± 0.26 89.24 ± 0.17 99.70 ± 0.03 87.22 ± 0.18

Table 9.6: Grammatical Evolution precision multi-classification results

The classifiers achieved low DOS detection rate during training and testing. The average detection

rate, worst classifier detection rate and best classifier intrusion detection rates were similar during

training and testing. The approach achieved a high detection rate for Probe attacks during testing and

a lower detection rate during training as compared to the detection of R2L attacks.

9.2.2.6 False Positive Rate

The results of the training and testing of the multi-class classifiers generated using grammatical

evolution and using false positive rate as the fitness function are presented in Table 9.6. The classifiers

achieved low false positive rates of 6% during training and 9% during testing. The classifiers also

achieved similar detection rates both during training and testing as summarized in the table.

93

 DOS Probe U2R R2L

Training

Best 63.82 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Worst 63.54 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Average 63.55 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Testing

Best 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18

Worst 66.86 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18

Average 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18

Table 9.7: Grammatical Evolution FPR multi-classification results

9.2.3 Analysis of multi-class classification for GE approach
The results of the testing phase using the different performance measures as fitness functions for

generating multi- class classifiers for GE are summarised in Figure 9.1.

The classifier generated using f-score as the fitness function outperformed the other classifiers.

The results were not statistically significant when compared to the results of the classifier produced

Ac
cu

ra
cy

Figure 9.1: GE comparison of fitness function performance

GE
100

90

80

70

60

DOS Probe U2R R2L

Fscore Accuracy MCC FPR PPV TPR

94

using accuracy as the fitness function. Grammatical evolution performed well achieving generally high

accuracy rates for both binary classification and multi-class classification. Classifiers that were

produced using f-score, accuracy and Matthews’s coefficient correlation achieved higher accuracy

rates. The higher accuracy rates suggest that the performance measures perform well for detecting

both intrusive and normal connections as well as unknown data. Both classifiers achieved the same

accuracy for detecting Probe attacks. The classifier using f-score will be used when comparing the

different approaches.

 Multi-Expression Programming
This section presents the results obtained by the applying the MEP approach described in Chapter 8

for binary and multi-class classification.

9.3.1 Binary Classification
Multi-expression programming was successfully applied for the generation of binary classifiers. The

results of the approach are presented in Table 9.8. The best classifier achieved a true positive rate of

93.2% during training and 66% during testing. The classifier achieved a higher false positive rate of 5.6%

during testing as compared to 3.95% achieved during the training and generation of the classifier. The

overall performance of the classifier was high achieving a high accuracy rate of 78.23% during testing

as summarised in Table 9.8.

 Training Testing

Accuracy

Best classifier 94.72 ± 0.12 78.23 ± 0.23

Worst classifier 76.69 ± 0.23 76.69 ± 0.23

Average 92.59 ± 0.14

Table 9.8: Multi-Expression programming binary classification results

The average runtime of MEP to evolve a classifier was 6 hours during training and evaluation of

the classifier on the testing set took an average runtime of 1 minute.

9.3.2 Multi-class classification
The subsections below present the results of applying MEP using each of the six performance

measures outlined in section 8.6 as fitness functions for generating multi-class classifiers for network

intrusion detection. The average runtime of MEP to evolve each of the classifiers discussed below was

95

6 hours during training and evaluation of performance on the testing set took an average runtime of

1 minute for each of the classifiers.

9.3.2.1 Accuracy

The training and testing results of the classifiers that were generated using accuracy as the fitness

function for multi-class classification using multi-expression programming are presented in Table 9.9.

The best classifier obtained a high false positive rate of 5% during training and 7% during testing. Tests

were performed to find the possible reasons for the high false positive rate. High accuracy rates were

achieved for detecting intrusive connections with the best classifier achieving a 96% true positive rate

during testing.

 DOS Probe U2R R2L

Training

Best 97.42 ± 0.09 96.08 ± 0.11 99.97 ± 0.01 99.33 ± 0.05

Worst 93.5 ± 0.14 91.12 ± 0.16 99.96 ± 0.01 99.25 ± 0.04

Average 95.28 ± 0.12 92.67 ± 0.14 99.96 ± 0.01 99.28 ± 0.04

Testing

Best 86.10 ± 0.19 91.24 ± 0.16 99.70 ± 0.03 88.98 ± 0.17

Worst 85.65 ± 0.19 89.63 ± 0.17 99.70 ± 0.03 87.20 ± 0.18

Average 85.00 ± 0.20 90.95 ± 0.16 99.70 ± 0.03 88.44 ± 0.18

Table 9.9: MEP accuracy multi-classification results

The best MEP classifier achieved high detection rates during the training of U2R and R2L intrusive

connections and achieved high detection rates for detecting U2R and Probe intrusive connections

during testing. The high detection rate for U2R can be attributed to fewer connections existing in the

dataset for U2R. Probe attacks achieved the lowest detection rates during training but during testing

achieved the second highest detection rates.

9.3.2.2 Matthews’s coefficient correlation

The following table presents the results obtained from applying MCC as the fitness function for

generating multi-class classifiers. During training, the best classifier achieved a high accuracy rate and a low false

positive rate of 4%. The low positive rate during testing was low (3.5%) similar to the one achieved during training.

Individuals generated using MCC as a performance measure have a balance between the true positive rate and the true

96

negative rate resulting in low false positive rates. The low false positive rate and high true positive rate resulted in classifiers

achieving a high accuracy as summarised in Table 9.10.

 DOS Probe U2R R2L

Training

Best 97.51 ± 0.09 95.97 ± 0.11 99.97 ± 0.01 99.33 ± 0.05

Worst 92.8 ± 0.14 92.37 ± 0.15 99.95 ± 0.01 98.32 ± 0.07

Average 94.94 ± 0.12 94.04 ± 0.13 99.96 ± 0.01 98.98 ± 0.05

Testing

Best 85.72 ± 0.19 92.21 ± 0.15 99.71 ± 0.03 88.72 ± 0.17

Worst 82.49 ± 0.21 91.75 ± 0.15 99.69 ± 0.03 90.41 ± 0.16

Average 85.23 ± 0.19 90.15 ± 0.16 99.71 ± 0.03 90.68 ± 0.18

Table 9.10: MEP Matthews’s coefficient correlation multi-classification results

9.3.2.3 F-Score

Table 9.11 presents the results of the best and worst classifiers generated from using f-score as the

fitness function for generating multi-class classifiers using multi gene programming. The best classifier

during training achieved high accuracies for detecting intrusions with the highest accuracy achieved

for the detection of U2R attacks and DOS attacks. The best classifier achieved a false positive rate of 3.7%

during training and 5.4% during testing.

 DOS Probe U2R R2L

Training

Best 98.16 ± 0.07 96.45 ± 0.10 99.97 ± 0.01 99.32 ± 0.05

Worst 92.94 ± 0.14 91.32 ± 0.15 71.46 ± 0.25 79.54 ± 0.22

Average 95.82 ± 0.11 93.98 ± 0.13 91.49 ± 0.10 90.51 ± 0.14

Testing

Best 86.24 ± 0.19 94.03 ± 0.13 99.76 ± 0.03 87.06 ± 0.18

Worst 85.26 ± 0.20 91.21 ± 0.16 62.34 ± 0.27 77.83 ± 0.17

Average 85.30 ± 0.19 90.74 ± 0.16 90.14 ± 0.11 85.44 ± 0.19

Table 9.11: MEP f-score multi-classification results

97

The worst classifier achieved the lowest detection rate for detecting U2R attacks both during

training and testing even though the number of U2R connections within the dataset were the lowest.

The low classification rate was a result of a low true positive rate and high false positive rate of 60%.

9.3.2.4 True Positive Rate

Table 9.12 presents the results obtained from applying MEP using the true positive rate as the fitness

function. The best classifier achieved a true positive rate of 95% during testing but could not correctly

distinguish between normal connections and intrusive connections resulting in a high false positive

rate of 18%.

 DOS Probe U2R R2L

Training

Best 64.36 ± 0.26 92.33 ± 0.15 99.21 ± 0.05 99.21 ± 0.05

Worst 63.54 ± 0.27 90.75 ± 0.16 96.49 ± 0.10 96.49 ± 0.10

Average 63.60 ± 0.27 90.82 ± 0.16 99.05 ± 0.05 99.05 ± 0.05

Testing

Best 66.87 ± 0.27 91.55 ± 0.15 87.20 ± 0.18 87.20 ± 0.18

Worst 66.91 ± 0.26 89.26 ± 0.17 81.71 ± 0.21 81.71 ± 0.20

Average 66.90 ± 0.26 89.37 ± 0.17 86.82 ± 0.19 86.92 ± 0.19

Table 9.12: MEP true positive rate multi-classification results

The high true positive rate and high false positive rate resulted in the classifier achieving a low

accuracy rate both during training and testing.

9.3.2.5 Precision

The results obtained from applying MEP for generating multi-class classifiers using precision as the

fitness function are presented in Table 9.13. The best classifier achieved a true positive of 85% during

testing and 90% during training. The classifier also achieved a high false positive rate of 20% during

training and 15% during testing. The performance measure measures how well the classifier detects

intrusive connections over all the positive connections (true positive rate and false positive rate)

returned during training and testing. The high false positive rate and high true positive rate resulted

in the classifier achieving a low overall accuracy.

98

 DOS Probe U2R R2L

Training

Best 63.54 ± 0.27 90.75 ± 0.16 99.21 ± 0.05 99.21 ± 0.05

Worst 63.54 ± 0.27 89.81 ± 0.17 99.21 ± 0.05 99.21 ± 0.05

Average 63.54 ± 0.27 90.71 ± 0.16 99.21 ± 0.05 99.21 ± 0.05

Testing

Best 66.91 ± 0.26 89.26 ± 0.17 87.21 ± 0.18 87.21 ± 0.18

Worst 66.91 ± 0.26 84.71 ± 0.20 87.21 ± 0.18 87.21 ± 0.18

Average 66.91 ± 0.26 89.28 ± 0.17 87.21 ± 0.18 87.21 ± 0.18

Table 9.13: MEP precision multi-classification results

9.3.2.6 False Positive Rate

The training and testing results of the classifiers that were generated using the false positive rate as

the fitness function for multi-class classification using multi-expression programming are presented in

Table 9.14. The best classifier correctly detected 80% of normal connections (true negative rate)

during training and 85% during testing. The best classifier achieved a low false positive rate during

training of 0.02% and 2.1% during testing but failed to correctly detect intrusive connections resulting

in the overall performance of the classifier being low.

 DOS Probe U2R R2L

Training

Best 63.54 ± 0.27 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Worst 63.54 ± 0.27 90.75 ± 0.16 93.38 ± 0.13 99.16 ± 0.05

Average 63.54 ± 0.27 90.75 ± 0.16 99.49 ± 0.02 99.21 ± 0.05

Testing

Best 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18

Worst 66.91 ± 0.26 89.26 ± 0.17 95.08 ± 0.12 87.19 ± 0.18

Average 66.91 ± 0.26 89.26 ± 0.17 99.37 ± 0.03 87.20 ± 0.18

Table 9.14: MEP false positive rate multi-classification results

99

Detection of intrusive connections using the false positive rate as the fitness function resulted in

low detection rates for DOS attacks in comparison to previous classifiers using different fitness

functions. The approach generated similar solutions during training resulting in all the classifiers

trained achieving the same detection rate.

9.3.3 Analysis of multi-class classification for MEP approach
Figure 9.2 illustrates the results of the testing phase using the different performance measures for

evolving multi-class classifiers using MEP.

From the results presented for multi-class classification using multi-expression programming, the

classifiers which were generated using the f-score as the fitness function achieved higher detection

rates than the other classifiers generated using the different fitness functions. There was no statistical

significance in the results when statistical tests were conducted. It should be noted that even though

no statistical significance of the results was achieved, the classifiers using the f-score as the fitness

function will be used for comparison with other approaches.

100

 Genetic Programming
This section presents the results obtained by the applying the GP approach described in Chapter 6 for

binary and multi-class classification.

9.4.1 Binary Classification
The training and testing results of the GP approach are presented in Table 9.1. The table presents the

details of the classifier which achieved the highest accuracy (best classifier) as well as the classifier

which achieved the lowest accuracy (worst classifier) during training.

 Training Testing

Accuracy

Best classifier 98.06 ± 0.08 80.30 ± 0.22

Worst classifier 96.43 ± 0.10 74.39 ± 0.24

Training Average 97.74 ± 0.08

Table 9.15: Genetic programming binary classification results

Fscore Accuracy MCC FPR PPV

R2L U2R Prob

DOS

100

90

80

70

60

MEP
Ac

cu
ra

cy

Figure 9.2: MEP comparison of fitness function performance

101

The two classifiers were evaluated on the testing set of the NSL-KDD dataset in order to evaluate

the overall performance of the classifiers. The average runtime of GP to evolve a classifier was 5 hours

during training and evaluation of the classifier on the testing set took an average runtime of 30

seconds. The best classifier achieved a false positive rate of 1.79% during training. The classifier

correctly classified 97.88% of intrusive connections as intrusions and correctly classified 98.21% of

normal connections during training. During testing, the best classifier achieved a false positive rate

of 3.6%, correctly classified 68.11% of intrusive connections as intrusions and correctly classified

96.40% of normal connections.

9.4.2 Multi-class classification
The results of the six performance measures used as fitness functions for generating multi-class

classifiers using the genetic programming approach outlined in Section 6.6 are presented in the

subsections below. The average runtime of MEP to evolve each of the classifiers discussed below was

2 hours during training and evaluation of performance on the testing set took an average runtime of

1 minute for each of the classifiers.

9.4.2.1 Accuracy

Table 9.2 presents the results of using accuracy as the fitness function for generating a multiclass

classifier. The best classifier achieved high detection rates of more than 99% for each of the network

attacks during training and the detection rates reduced during testing. The false positive rate of the

best classifier was 6%. The classifier achieved the highest detection rates for U2R attacks. The high

detection of U2R attacks can be attributed to the few U2R connections which exist in both the training

and the testing sets. The classifier also achieved a high detection rate for Probe attacks which

contribute 9% of the training set and 11% of the testing set. This contributes in the classifier achieving

an overall high detection rate.

102

 DOS Probe U2R R2L

Training

Best 99.76 ± 0.03 98.97 ± 0.06 99.98 ± 0.01 99.7 ± 0.03

Worst 94.52 ± 0.13 92.48 ± 0.14 99.96 ± 0.01 99.21 ± 0.05

Average 97.89 ± 0.07 96.74 ± 0.09 99.97 ± 0.01 99.32 ± 0.05

Testing

Best 88.93 ± 0.17 92.97 ± 0.14 99.73 ± 0.03 88.34 ± 0.18

Worst 84.47 ± 0.20 91.69 ± 0.15 99.70 ± 0.03 87.20 ± 0.18

Average 86.84 ± 0.19 92.36 ± 0.15 99.71 ± 0.03 87.61 ± 0.18

Table 9.16: GP accuracy multi-classification results

9.4.2.2 Matthews’s coefficient correlation (MCC)

The results obtained from applying GP for generating multi-class classifiers using MCC as the fitness

function are presented in Table 9.3. The best classifier achieved a false positive rate of 4% during

testing. During training, the sensitivity rate of the best classifier was high, correctly detecting most of

the intrusive connections. The best classifier achieved the same U2R detection rate as the best

classifier generated using accuracy as the fitness function during training but during testing, the

classifier using accuracy outperformed the classifier generated from using MCC in correctly detecting

two of the four network attacks.

 DOS Probe U2R R2L

Training

Best 99.78 ± 0.03 98.10 ± 0.08 99.98 ± 0.01 99.67 ± 0.03

Worst 63.54 ± 0.26 92.49 ± 0.14 99.96 ± 0.01 99.02 ± 0.05

Average 89.02 ± 0.12 95.23 ± 0.11 99.97 ± 0.01 99.35 ± 0.04

Testing

Best 87.84 ± 0.18 92.43 ± 0.15 99.75 ± 0.03 89.23 ± 0.17

Worst 66.91 ± 0.26 94.08 ± 0.13 99.70 ± 0.03 87.98 ± 0.18

Average 81.87 ± 0.20 90.78 ± 0.16 99.73 ± 0.03 88.10 ± 0.18

Table 9.17: GP Matthews’s coefficient correlation multi-classification results

103

9.4.2.3 F-Score

The training and testing results of the classifiers that were generated using f-score as the fitness

function for multi-class classification using genetic programming are presented in Table 9.4. The

classifiers generated using f-score achieved high accuracy rates with a high detection of U2R attacks

as compared to other network attacks. The best classifier achieved a false positive rate of 2% during

training and 3% during testing. The classifier generated using the f-score as the fitness measure

achieved the lowest false positive rate as compared to the classifiers generated using accuracy and

MCC as the fitness measure.

 DOS Probe U2R R2L

Training

Best 99.79 ± 0.03 98.62 ± 0.06 99.98 ± 0.01 99.75 ± 0.03

Worst 95.16 ± 0.12 92.43 ± 0.15 77.40 ± 0.23 86.63 ± 0.19

Average 97.91 ± 0.07 96.83 ± 0.06 95.30 ± 0.09 98.85 ± 0.05

Testing

Best 90.31 ± 0.16 90.12 ± 0.16 99.73 ± 0.03 87.27 ± 0.18

Worst 84.13 ± 0.20 91.37 ± 0.15 70.76 ± 0.25 86.33 ± 0.19

Average 87.29 ± 0.18 91.27 ± 0.15 93.22 ± 0.11 87.97 ± 0.18

Table 9.18: GP f-score multi-classification results

9.4.2.4 True Positive Rate

Table 9.5 presents the results of using the true positive rate as the fitness function for generating

multi-class classifiers using genetic programming. The best classifier achieved a high true positive rate

of 96% during training and 92% during testing because the fitness measure favours detection of true

positives within a dataset. The overall performance of the classifier was lower because the false

positive rate of the classifier was high. The classifier achieved a false positive rate of 16% during

training and 20% during testing. The high false positive rate was a result of a low detection rate of

intrusive connections.

104

 DOS Probe U2R R2L

Training

Best 64.36 ± 0.26 92.33 ± 0.15 99.21 ± 0.05 99.21 ± 0.05

Worst 63.54 ± 0.27 90.75 ± 0.16 96.49 ± 0.10 96.49 ± 0.10

Average 63.60 ± 0.27 90.82 ± 0.16 99.05 ± 0.05 99.05 ± 0.05

Testing

Best 66.87 ± 0.27 91.55 ± 0.15 87.20 ± 0.18 87.20 ± 0.18

Worst 66.91 ± 0.26 89.26 ± 0.17 81.71 ± 0.21 81.71 ± 0.20

Average 66.90 ± 0.26 89.37 ± 0.17 86.82 ± 0.19 86.92 ± 0.19

Table 9.19: GP true positive rate multi-classification results

9.4.2.5 Precision

The results of applying precision as the fitness function for generating multi-class classifiers for

intrusion detection are presented in Table 9.6. The best classifier achieved high accuracy rates during

training but did not achieve a similar accuracy rate during testing. The best classifier achieved a false

positive rate of 6% during training and 9% during testing.

 DOS Probe U2R R2L

Training

Best 90.02 ± 0.16 92.87 ± 0.14 99.96 ± 0.01 99.25 ± 0.05

Worst 63.54 ± 0.26 90.75 ± 0.16 99.96 ± 0.01 99.20 ± 0.05

Average 65.59 ± 0.26 90.89 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

 Best 71.97 ± 0.25 89.78 ± 0.17 99.72 ± 0.03 87.37 ± 0.18

Testing Worst 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.21 ± 0.18

Average 67.11 ± 0.26 89.29 ± 0.17 99.71 ± 0.03 87.21 ± 0.18

Table 9.20: GP precision multi-classification results

9.4.2.6 False Positive Rate

The training and testing results of the classifiers that were generated using the false positive rate as

the fitness function for multi-class classification using genetic programming are presented in Table

105

9.7. The fitness function favours generating effective classifiers which are similar in structure resulting

in both the best and worst classifiers obtaining the similar classification results. The best classifier

achieved a low false positive rate of 3% during training and 5% during testing.

 DOS Probe U2R R2L

Training

Best 63.54 ± 0.27 90.75 ± 0.16 99.96 ± 0.01 99.21 ± 0.05

Worst 63.54 ± 0.27 90.75 ± 0.16 93.38 ± 0.13 99.16 ± 0.05

Average 63.54 ± 0.27 90.75 ± 0.16 99.49 ± 0.02 99.21 ± 0.05

Testing

Best 66.91 ± 0.26 89.26 ± 0.17 99.70 ± 0.03 87.20 ± 0.18

Worst 66.91 ± 0.26 89.26 ± 0.17 95.08 ± 0.12 87.19 ± 0.18

Average 66.91 ± 0.26 89.26 ± 0.17 99.37 ± 0.03 87.20 ± 0.18

Table 9.21: GP false positive rate multi-classification results

9.4.3 Analysis of multi-class classification for the GP approach
Figure 9.3 illustrates the test results of using the different performance measures for evolving multi-

class classifiers using GP.

Figure 9.3: GP comparison of fitness function performance

50

60

70

80

90

100

DOS Probe U2R r2L

Ac
cu

rA
CY

GP

Fscore Accuracy MCC FPR PPV TPR

R2L

106

From the results presented for multi-class classification using genetic programming, the classifiers

which were generated using the Matthews coefficient correlation as the fitness function achieved

higher detection rates than the other classifiers generated using the different fitness functions. The

difference in the detection rates were not statistically significant when compared to the results

achieved by using f-score and accuracy as fitness functions. It should be noted that even though these

results were not statistically significant, the classifiers using the MCC as the fitness function will be

used for comparison with other approaches.

 Comparison of GP, GE and MEP
The following sections compare the results produced from using Genetic Programming, Multi-

Expression programming and Grammatical Evolution for evolving binary and multi-class classifiers.

9.5.1 Binary classification
The results of the best classifiers for the three approaches GP, GE and MEP described in this thesis are

presented in Figure 9.4.

From the results presented in the previous sections, the proposed genetic programming approach

outperforms the other two approaches for binary classification. The GP binary classifier achieves a

high accuracy during both training and testing. MEP achieves similar results compared to GP during

testing. The results also show that MEP can generalize well on unseen data. During the comparison of

Training Testing

GP GE MEP

50

60

70

80

90

100

Ac
cu

ra
cy

Figure 9.4: Binary classification comparison

107

the three approaches, the GE approach had a lower runtime during training compared to the other two

approaches.

9.5.1.1 Statistical Comparison

The section below outlines the statistical tests used to evaluate the statistical significance of the

differences in performance of GE, MEP and GP for binary class classification.

The one-tailed Z- test discussed in section 5.4.1 was used to determine the statistical significance. The

results of the Z-test were used to determine whether to accept or reject the null hypothesis. The value

of Z was calculated and compared to the critical value. If the Z- value was lower than the critical value

(1.64), the null hypothesis (H0) was accepted, otherwise the alternate hypothesis was accepted (Ha).

The tests were evaluated at the 0.05 significance level.

Hypothesis 1:

• H0: There is no difference in the mean objective value for genetic programming and

grammatical evolution.

• Ha: The objective mean value for genetic programming is greater than the objective mean

value for grammatical evolution.

Hypothesis 2:

• H0: There is no difference in the mean objective value for genetic programming and multi-

expression programming.

• Ha: The objective mean value for genetic programming is greater than the objective mean

value for multi-expression programming.

 GP vs GE Test GP vs MEP Test

Z-Value 24.80 8.60

Table 9.22: Statistical test results for binary classification

Table 9.22 presents the Z-value for Hypothesis 1 and for Hypothesis 2 for binary classification. From

the results presented in the table above, the Z-value for GP vs GE test was greater than the critical

value resulting in the null hypothesis being rejected. The alternate hypothesis was accepted and from

the results of the performance, genetic programming performed significantly better than grammatical

evolution resulting in the performance of genetic programming being statistically significant. From the

Z-value for GP vs MEP test, the null hypothesis was also rejected and the performance of genetic

108

programming was significantly better than multi-expression programming performance resulting in

the alternate hypothesis being accepted.

9.5.2 Multi-class classification
Figure 9.5 presents a summary of the results achieved from applying grammatical evolution, genetic

programming and multi-expression programming for multi-class classification. The results represent a

comparison of the best performing classifiers obtained using each of the approaches.

Figure 9.5: Multi-class classification comparison

From the results presented in the previous sections, all the classifiers achieved high detection

rates during both training and testing for user to root attacks (U2R) and also achieved high detection

rates for remote to user (R2L) during training but achieved lower detection rates during testing. Each

approach achieved similar results for detection of the different network attacks. For the detection of

probe attacks, the classifier generated using MEP outperforms the other 2 approaches, for the

detection of DOS attacks, the GP classifier achieves higher detection rates as compare to the other

two approaches and for the detection of R2L attacks, the classifier generated from applying GE

achieves a higher detection rates as compared to the other two classifiers. The GE approach averaged

5 hours for generating the classifier whilst MEP averaged 8 hours and GP averaging around 14 hours

per run.

70

80

90

100

GP GE MEP GP GE MEP GP GE MEP GP GE MEP

DOS Probe U2R R2L

Ac
cu

ra
cy

Train Test

109

9.5.2.1 Statistical Comparison

The section below outlines the statistical tests used to evaluate the statistical significance of the

differences in performance of GE, MEP and GP for multi-class classification.

Hypothesis 1:

• H0: There is no difference in the mean objective value for genetic programming and

grammatical evolution.

• Ha: The objective mean value for genetic programming is greater than the objective mean

value for grammatical evolution.

Hypothesis 2:

• H0: There is no difference in the mean objective value for genetic programming and multi-

expression programming.

• Ha: The objective mean value for genetic programming is greater than the objective mean

value for multi-expression programming.

 GP vs GE Test GP vs MEP Test

Z-Value -2.70 -3.38

Table 9.23: Statistical test results for multi-class classification

From the results presented in the Table 9.23, the Z-value for GP vs GE test was lower than the critical

value resulting in the alternate hypothesis being rejected. The null hypothesis was accepted and from

the results of the performance, both the performance of grammatical evolution and genetic

programming achieved similar detection rates resulting in the performance of grammatical evolution

and genetic programming not being statistically significant. The null hypothesis was also accepted the

alternate hypothesis rejected based on the Z-value for GP vs MEP, with both multi-expression

programming and genetic programming achieving similar results for intrusion detection.

 Comparison with state of the art
The following sections compare the performance of the proposed approaches to the state-of-the-art

methods for network intrusion detection.

9.6.1 Binary Classification
Table 9.23 presents a comparison of the proposed binary classifier described in this thesis with state-

of-the-art binary classifiers within network intrusion detection.

110

The comparison was empirical in nature as a formal performance comparison was not possible due

to the different experimental setup applied in each of the studies used for comparison. Furthermore,

it was not clear in all of studies whether all records were used or only a subset of the training and

testing sets. The proposed approaches performed well with the proposed GP approach outperforming

four of the seven approaches used for comparison. The proposed approaches where also compared

to other approaches such as Self-Organization Map (SOM) and Support Vector Machine (SVM). The

state-of the-art approaches which applied neural networks for intrusion detection also performed

feature selection which resulted in the approaches achieving higher detection rates as compared to

the proposed approaches. Different unsupervised and supervised filter approaches such as Random

Projection (RP) and Nominal-to-Binary (N2B) where applied by some state-of-the-art approaches such

as Naïve Bayes which resulted in the approach achieving higher detection rates as compared to the

proposed approaches in this thesis

Approach Accuracy

Proposed GP 80.30

Proposed MEP 78.23

Proposed GE 74.55

Decision Tree (J48) [85] 81.05

Naïve Bayes [85] 76.56

Support Vector Machine [85] 69.52

Multi-layer Perceptron [85] 77.41

Multinomial naïve Bayes [66] 96.50

Hybrid (Fuzzy logic + GP) [41] 82.74

Self-Organization Map (SOM) [36] 75.49

Table 9.24: State of the art for binary classification.

9.6.2 Multi-class classification
Table 9.24 presents a comparison of the proposed approaches presented in this thesis with state-of-

the-art approaches for multi-class classifications. The proposed approaches outperform the state-of-

the-art approaches for the detection of U2R attacks. The proposed approaches also outperform some

111

of the state-of-the-art approaches for the detection of probe attacks and obtain similar results for

detecting R2L attacks.

Support Vector Machines outperformed the proposed approaches for detecting DOS attacks and

R2L attacks. Random Forests which applied feature selection to determine the 13 most effective

features from the 41 features in the dataset outperformed the proposed approaches for detecting all

the network attacks.

Approach Network Attack

 DOS Probe U2R R2L

Proposed GP 87.84 92.43 99.75 89.23

Proposed GE 87.54 92.18 99.70 89.26

Proposed MEP 86.24 94.03 99.76 87.06

Random Forest [75] 98.70 97.60 97.50 96.80

J48 decision Tree [75] 82.40 80.20 73.90 87.60

Support Vector Machine [75] 97.80 90.70 93.70 91.80

Naïve Bayes [75] 72.70 70.90 70.70 69.80

CART [75] 82.70 82.10 73.10 80.80

Table 9.25: State of the art for multi-class classification

 Chapter Summary
This chapter presented and discussed the results of the proposed approaches discussed in the

previous chapters. The investigations discussed in this chapter include determining the best fitness

function measure for generating classifiers which can obtain high detection rates for intrusive

connections. The chapter also compared the classifiers generated from approaches genetic

programming, grammatical evolution and multi-expression programming for the detection of intrusive

connections. Furthermore, a comparison between the proposed approaches and state of the art

approaches for network intrusion detection was conducted.

112

113

10 Conclusion and Future Work

 Introduction
This chapter summarizes the findings of this dissertation and provides a conclusion to each of the

objectives outlined in chapter 1. Possible future work based on the research provided in this thesis is

also provided.

 Objectives and Conclusion
The section provides a summary of how each of the objectives outlined in Chapter 1 was met and a

summary of the findings. Future work based on the objective is also provided.

10.2.1 Effectiveness of using grammatical evolution (GE) for generating intrusion detection
classifiers

Grammatical Evolution (GE) was used to evolve intrusion detection classifiers. Few studies from

previous literature had successfully applied GE for generating classifiers achieving high detection

rates. Experiments presented in this thesis were conducted on the KDD’99 dataset. The results from

the experiments revealed that classifiers generated from applying GE for network intrusion detection

achieve high detection rates for binary and multi-class classifiers. Multi-class classifiers achieved

higher detection rates for R2L attacks than detecting other network attack categories. The classifiers

did not outperform some of the state-of-the-art approaches. Future work will investigate different

ways to efficiently explore the search space when evolving classifiers using GE.

10.2.2 Development and evaluation of applying multi-expression programming (MEP) for
generating binary and multi-class classifiers for network intrusion detection.

Binary and multi-class intrusion detection classifiers were evolved using multi-expression

programming. Multi-expression programming (MEP) was used for evolving the classifiers based on the

analysis of previous literature. The proof by demonstration methodology was applied to refine the

evolved classifiers.

Chapter 10

114

The results from the experiments conducted revealed that binary classifiers evolved using MEP

were able to generalize well on unseen data. The implementation also revealed that even though the

use for MEP to evolve intrusion detection classifiers has not been common, the approach has the

potential to evolve classifiers which can achieve high detection rates. The classifiers generated

outperformed some of the state-of-the-art approaches which used the same dataset for binary and

multi-class intrusion detection. Future work will investigate different representations of MEP

individuals for generating effective intrusion detection classifiers.

10.2.3 Develop and analyze the performance of using genetic programming (GP) for generating
binary and multiclass classifiers for network intrusion detection.

Genetic programming (GP) was applied to evolve network intrusion detection (NID) classifiers and

evaluate the performance of the classifiers on the publicly available KDD’99 dataset. GP was widely

used for generating NID classifiers in previous literature with some of the evolved classifiers achieving

high detection rates. The results presented in this thesis show that binary and multi-class classifiers

evolved using GP can achieve high detection rates which can outperform other state of the art

approaches used in previous literature. Future research will aim to investigate using different

representations for GP individuals.

10.2.4 Investigate the effectiveness of fitness functions for network intrusion detection

This study investigated the effectiveness of using different fitness functions for the generating multi-

class intrusion detection classifiers. Six fitness functions were proposed based on analysis of previous

literature within the network intrusion detection domain. Each of the six fitness functions were

applied during the generation of multi-class classifiers. The motivation behind this study was based

on different studies applying different fitness functions for the generation of intrusive detection

classifiers and achieving different detection rates. Experiments were conducted using the KDD’99

dataset. The results revealed that different fitness functions affected the detection rates of classifiers

evolved. Using accuracy, f-score and Matthew’s correlation coefficient as fitness functions yielded

classifiers which achieved high detection rates.

Future research will aim to investigate the use of weighted fitness functions for generating

intrusion detection classifiers. Future work will also include evaluating other fitness functions not

commonly used for intrusion detection.

10.2.5 Comparative analysis of GE, MEP and GP for network intrusion detection.

115

This study compared the performance of using three variants of genetic programming (GE, MEP and

GP) to evolve binary and multi-class intrusion detection classifiers. The rationale behind this study was

based on an analysis of previous literature in which a comparison of the effect of using different

variants of genetic programming for network intrusion detection was not performed.

Binary intrusion detection classifiers evolved using genetic programming obtained high detection

rates as compared to binary classifiers evolved using multi-expression programming and grammatical

evolution. The results from evolving multi-class classifiers revealed that classifiers evolved using

genetic programming achieved high detection rate for detecting DOS attacks, multi-expression

programming classifiers achieved high detection rates for detecting Probe attacks and grammatical

evolution classifiers achieved high detection rate for detecting R2L attacks. Similar results were

achieved for detecting U2R attacks using classifiers evolved using the three approaches. Future

research will investigate the generation of a hybridized intrusion detection classifier which combines

the different variants of genetic programming.

116

Bibliography
1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, accessed 05 March 2015

2 Angeline, P.J., and Pollack, J.: ‘Evolutionary module acquisition’, in Editor (Ed.)^(Eds.): ‘Book

Evolutionary module acquisition’ (Citeseer, 1993, edn.), pp. 154-163

3 Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D.: ‘Genetic programming: an

introduction’ (Morgan Kaufmann Publishers San Francisco, 1998. 1998)

4 Bhavsar, Y.B., and Waghmare, K.C.: ‘Intrusion detection system using data mining technique:

Support vector machine’, International Journal of Emerging Technology and Advanced

Engineering, 2013, 3, (3), pp. 581-586

5 Blasco, J., Orfila, A., and Ribagorda, A.: ‘Improving network intrusion detection by means of

domain-aware genetic programming’, in Editor (Ed.)^(Eds.): ‘Book Improving network

intrusion detection by means of domain-aware genetic programming’ (IEEE, 2010, edn.), pp.

327-332

6 Borovicka, T., Jirina Jr, M., Kordik, P., and Jirina, M.: ‘Selecting representative data sets’:

‘Advances in data mining knowledge discovery and applications’ (InTech, 2012)

7 Bramer, M.: ‘Principles of data mining’ (Springer, 2007. 2007)

8 Bruce, W.S.: ‘The application of genetic programming to the automatic generation of object-

oriented programs’, 1995

9 Chae, H.-s., Jo, B.-o., Choi, S.-H., and Park, T.: ‘Feature Selection for Intrusion Detection using

NSL-KDD’, Recent Advances in Computer Science, ISBN, 2015, pp. 978-960

10 Chebrolu, S., Abraham, A., and Thomas, J.P.: ‘Feature deduction and ensemble design of

intrusion detection systems’, Computers & Security, 2005, 24, pp. 295e307

11 Chittur, A.: ‘Model generation for an intrusion detection system using genetic algorithms’,

Internet link: http://www1.cs.columbia.edu/ids/publications/gaids-thesis01.pdf, 2001

12 Cios, K.J., Swiniarski, R.W., Pedrycz, W., and Kurgan, L.A.: ‘The knowledge discovery process’,

in Editor (Ed.)^(Eds.): ‘Book The knowledge discovery process’ (Springer, 2007, edn.), pp. 9-24

13 Cleary, R.: ‘Extending grammatical evolution with attribute grammars: An application to

knapsack problems’, Master of science thesis in computer science, University of Limerick,

Ireland, 2005

14 Črepinšek, M., Liu, S.-H., and Mernik, M.: ‘Exploration and exploitation in evolutionary

algorithms: A survey’, ACM Computing Surveys (CSUR), 2013, 45, (3), pp. 35

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www1.cs.columbia.edu/ids/publications/gaids-thesis01.pdf

117

15 Crosbie, M., and Spafford, G.: ‘Applying genetic programming to intrusion detection’, in Editor

(Ed.)^(Eds.): ‘Book Applying genetic programming to intrusion detection’ (MIT, Cambridge,

MA, USA: AAAI, 1995, edn.), pp. 1-8

16 Cunningham, R.K., Lippmann, R.P., Fried, D.J., Garfinkel, S.L., Graf, I., Kendall, K.R., Webster,

S.E., Wyschogrod, D., and Zissman, M.A.: ‘Evaluating intrusion detection systems without

attacking your friends: The 1998 DARPA intrusion detection evaluation’, in Editor (Ed.)^(Eds.):

‘Book Evaluating intrusion detection systems without attacking your friends: The 1998 DARPA

intrusion detection evaluation’ (DTIC Document, 1999, edn.), pp.

17 Dash, M., and Liu, H.: ‘Feature selection for classification’, Intelligent data analysis, 1997, 1,

(3), pp. 131-156

18 Debar, H., Dacier, M., and Wespi, A.: ‘Towards a taxonomy of intrusion-detection systems’,

Computer Networks, 1999, 31, (8), pp. 805-822

19 Dempsey, I., O'Neill, M., and Brabazon, A.: ‘Foundations in grammatical evolution for dynamic

environments’ (Springer, 2009. 2009)

20 Dufourq, E., and Pillay, N.: ‘A comparison of genetic programming representations for binary

data classification’, in Editor (Ed.)^(Eds.): ‘Book A comparison of genetic programming

representations for binary data classification’ (IEEE, 2013, edn.), pp. 134-140

21 Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S.: ‘A geometric framework for

unsupervised anomaly detection’: ‘Applications of data mining in computer security’

(Springer, 2002), pp. 77-101

22 Espejo, P.G., Ventura, S., and Herrera, F.: ‘A survey on the application of genetic programming

to classification’, IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2010, 40, (2),

pp. 121-144

23 Faraoun, K., and Boukelif, A.: ‘Genetic programming approach for multi-category pattern

classification applied to network intrusions detection’, International Journal of Computational

Intelligence and Applications, 2006, 6, (01), pp. 77-99

24 Fawcett, T.: ‘An introduction to ROC analysis’, Pattern recognition letters, 2006, 27, (8), pp.

861-874

25 Fisher, R.A.: ‘The genetical theory of natural selection: a complete variorum edition’ (Oxford

University Press, 1930. 1930)

26 Gogoi, P., Bhuyan, M.H., Bhattacharyya, D., and Kalita, J.K.: ‘Packet and flow based network

intrusion dataset’: ‘Contemporary Computing’ (Springer, 2012), pp. 322-334

118

27 Gong, R.H., Zulkernine, M., and Abolmaesumi, P.: ‘A software implementation of a genetic

algorithm based approach to network intrusion detection’, in Editor (Ed.)^(Eds.): ‘Book A

software implementation of a genetic algorithm based approach to network intrusion

detection’ (IEEE, 2005, edn.), pp. 246-253

28 Govindarajan, M., and Chandrasekaran, R.: ‘Intrusion detection using an ensemble of

classification methods’, in Editor (Ed.)^(Eds.): ‘Book Intrusion detection using an ensemble of

classification methods’ (2012, edn.), pp.

29 Groşan, C., Abraham, A., and Han, S.Y.: ‘MEPIDS: Multi-expression programming for intrusion

detection system’: ‘Artificial Intelligence and Knowledge Engineering Applications: A

Bioinspired Approach’ (Springer, 2005), pp. 163-172

30 Gu, G., Fogla, P., Dagon, D., Lee, W., and Skoric, B.: ‘Towards an information-theoretic

framework for analyzing intrusion detection systems’, in Editor (Ed.)^(Eds.): ‘Book Towards an

information-theoretic framework for analyzing intrusion detection systems’ (Springer, 2006,

edn.), pp. 527-546

31 Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H.: ‘The WEKA data

mining software: an update’, ACM SIGKDD explorations newsletter, 2009, 11, (1), pp. 10-18

32 Hansen, J.V., Lowry, P.B., Meservy, R.D., and McDonald, D.M.: ‘Genetic programming for

prevention of cyberterrorism through dynamic and evolving intrusion detection’, Decision

Support Systems, 2007, 43, (4), pp. 1362-1374

33 Harper, R., and Blair, A.: ‘Dynamically defined functions in grammatical evolution’, in Editor

(Ed.)^(Eds.): ‘Book Dynamically defined functions in grammatical evolution’ (IEEE, 2006, edn.),

pp. 2638-2645

34 Hemberg, M., and O’Reilly, U.-M.: ‘Extending grammatical evolution to evolve digital surfaces

with genr8’: ‘Genetic Programming’ (Springer, 2004), pp. 299-308

35 Hoque, M.S., Mukit, M., Bikas, M., and Naser, A.: ‘An implementation of intrusion detection

system using genetic algorithm’, arXiv preprint arXiv:1204.1336, 2012

36 Ibrahim, L.M., Basheer, D.T., and Mahmod, M.S.: ‘A comparison study for intrusion database

(Kdd99, Nsl-Kdd) based on self organization map (SOM) artificial neural network’, Journal of

Engineering Science and Technology, 2013, 8, (1), pp. 107-119

37 Johnson, C.: ‘Basic Research Skills in Computing Science’, Department of Computer Science,

Glasgow University, UK, 2006

119

38 Kendall, K.: ‘A database of computer attacks for the evaluation of intrusion detection systems’,

in Editor (Ed.)^(Eds.): ‘Book A database of computer attacks for the evaluation of intrusion

detection systems’ (DTIC Document, 1999, edn.), pp.

39 Koza, J.R.: ‘Genetic programming II: Automatic discovery of reusable subprograms’,

Cambridge, MA, USA, 1994

40 Koza, J.R.: ‘Genetic programming: on the programming of computers by means of natural

selection’ (MIT press, 1992. 1992)

41 Krömer, P., Platoš, J., Snáael, V., and Abraham, A.: ‘Fuzzy classification by evolutionary

algorithms’, in Editor (Ed.)^(Eds.): ‘Book Fuzzy classification by evolutionary algorithms’ (IEEE,

2011, edn.), pp. 313-318

42 Langdon, W.: ‘Genetic Programming and Data Structures: Genetic Programming+ Data

Structures= Automatic Programming!’ (Springer Science & Business Media, 1998. 1998)

43 Lazarevic, A., Kumar, V., and Srivastava, J.: ‘Intrusion detection: A survey’: ‘Managing Cyber

Threats’ (Springer, 2005), pp. 19-78

44 Lee, W., Stolfo, S.J., and Mok, K.W.: ‘A data mining framework for building intrusion detection

models’, in Editor (Ed.)^(Eds.): ‘Book A data mining framework for building intrusion detection

models’ (IEEE, 1999, edn.), pp. 120-132

45 Li, W.: ‘Using genetic algorithm for network intrusion detection’, Proceedings of the United

States Department of Energy Cyber Security Group, 2004, pp. 1-8

46 Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., and Das, K.: ‘The 1999 DARPA off-line

intrusion detection evaluation’, Computer networks, 2000, 34, (4), pp. 579-595

47 Loveard, T., and Ciesielski, V.: ‘Representing classification problems in genetic programming’,

in Editor (Ed.)^(Eds.): ‘Book Representing classification problems in genetic programming’

(IEEE, 2001, edn.), pp. 1070-1077

48 Lu, W., and Traore, I.: ‘Detecting new forms of network intrusion using genetic programming’,

Computational Intelligence, 2004, 20, (3), pp. 475-494

49 Luke, S., and Panait, L.: ‘A comparison of bloat control methods for genetic programming’,

Evolutionary Computation, 2006, 14, (3), pp. 309-344

50 Mahoney, M.V., and Chan, P.K.: ‘An analysis of the 1999 DARPA/Lincoln Laboratory evaluation

data for network anomaly detection’, in Editor (Ed.)^(Eds.): ‘Book An analysis of the 1999

DARPA/Lincoln Laboratory evaluation data for network anomaly detection’ (Springer, 2003,

edn.), pp. 220-237

120

51 McHugh, J.: ‘Testing intrusion detection systems: a critique of the 1998 and 1999 darpa

intrusion detection system evaluations as performed by lincoln laboratory’, ACM transactions

on Information and system Security, 2000, 3, (4), pp. 262-294

52 Miller, B.L., and Goldberg, D.E.: ‘Genetic algorithms, tournament selection, and the effects of

noise’, Complex systems, 1995, 9, (3), pp. 193-212

53 Mitchell, M.: ‘An introduction to genetic algorithms’ (1998. 1998)

54 Moradi, M., and Zulkernine, M.: ‘A neural network based system for intrusion detection and

classification of attacks’, in Editor (Ed.)^(Eds.): ‘Book A neural network based system for

intrusion detection and classification of attacks’ (2004, edn.), pp.

55 Mukherjee, S., and Sharma, N.: ‘Intrusion detection using naive Bayes classifier with feature

reduction’, Procedia Technology, 2012, 4, pp. 119-128

56 Mukkamala, S., Sung, A.H., and Abraham, A.: ‘Modeling intrusion detection systems using

linear genetic programming approach’: ‘Innovations in Applied Artificial Intelligence’

(Springer, 2004), pp. 633-642

57 Nordin, P., Francone, F., and Banzhaf, W.: ‘Explicitly de ned introns and destructive crossover

in genetic programming’, Advances in genetic programming, 1995, 2, pp. 111-134

58 O'Neill, M., and Ryan, C.: ‘Grammar based function definition in Grammatical Evolution’, in

Editor (Ed.)^(Eds.): ‘Book Grammar based function definition in Grammatical Evolution’

(Morgan Kaufmann Publishers Inc., 2000, edn.), pp. 485-490

59 O'Neill, M., and Ryan, C.: ‘Grammatical evolution’, IEEE Transactions on Evolutionary

Computation, 2001, 5, (4), pp. 349-358

60 O'Neill, M., and Ryan, C.: ‘Grammatical Evolution: Evolutionary Automatic Programming in an

Arbitrary Language’ (Springer Science & Business Media, 2003. 2003)

61 Oltean, M.: ‘Multi expression programming’, 2006

62 Oltean, M., and Dumitrescu, D.: ‘Multi Expression Programming’, 2002

63 Oltean, M., and Grosan, C.: ‘A comparison of several linear genetic programming techniques’,

Complex Systems, 2003, 14, (4), pp. 285-314

64 Orfila, A., Estevez-Tapiador, J.M., and Ribagorda, A.: ‘Evolving high-speed, easy-to-understand

network intrusion detection rules with genetic programming’: ‘Applications of Evolutionary

Computing’ (Springer, 2009), pp. 93-98

65 Özgür, A., and Erdem, H.: ‘A review of KDD99 dataset usage in intrusion detection and machine

learning between 2010 and 2015’, PeerJ Preprints, 2016, 4, pp. e1954v1951

121

66 Panda, M., Abraham, A., and Patra, M.R.: ‘Discriminative multinomial naive bayes for network

intrusion detection’, in Editor (Ed.)^(Eds.): ‘Book Discriminative multinomial naive bayes for

network intrusion detection’ (IEEE, 2010, edn.), pp. 5-10

67 Panda, M., and Patra, M.R.: ‘Network intrusion detection using naive bayes’, International

journal of computer science and network security, 2007, 7, (12), pp. 258-263

68 Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., and Tierney, B.: ‘A first look at modern

enterprise traffic’, in Editor (Ed.)^(Eds.): ‘Book A first look at modern enterprise traffic’

(USENIX Association, 2005, edn.), pp. 2-2

69 Pastrana, S., Orfila, A., and Ribagorda, A.: ‘A functional framework to evade network IDS’, in

Editor (Ed.)^(Eds.): ‘Book A functional framework to evade network IDS’ (IEEE, 2011, edn.), pp.

1-10

70 Pastrana, S., Orfila, A., and Ribagorda, A.: ‘Modeling NIDS evasion with genetic programming’,

2010

71 Paxson, V.: ‘Bro: a system for detecting network intruders in real-time’, Computer networks,

1999, 31, (23), pp. 2435-2463

72 Pfleeger, C.P., and Pfleeger, S.L.: ‘Security in computing’ (Prentice Hall Professional Technical

Reference, 2002. 2002)

73 Pillay, N.: ‘An Investigation into the Use of Genetic Programming for the Induction of Novice

Procedural Programming Solution Algorithms in Intelligent Programming Tutors’, University

of Natal, 2004

74 Poli, R., Langdon, W.B., McPhee, N.F., and Koza, J.R.: ‘A field guide to genetic programming’

(Lulu. com, 2008. 2008)

75 Revathi, S., and Malathi, A.: ‘A Detailed Analysis on NSL-KDD Dataset Using Various Machine

Learning Techniques for Intrusion Detection’, in Editor (Ed.)^(Eds.): ‘Book A Detailed Analysis

on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion Detection’

(Citeseer, 2013, edn.), pp.

76 Ryan, C., Collins, J., and Neill, M.O.: ‘Grammatical evolution: Evolving programs for an arbitrary

language’: ‘Genetic Programming’ (Springer, 1998), pp. 83-96

77 Sabhnani, M., and Serpen, G.: ‘Why machine learning algorithms fail in misuse detection on

KDD intrusion detection data set’, Intelligent Data Analysis, 2004, 8, (4), pp. 403-415

78 Scarfone, K., and Mell, P.: ‘Guide to intrusion detection and prevention systems (idps)’, NIST

special publication, 2007, 800, (2007), pp. 94

122

79 Şen, S., and Clark, J.A.: ‘A grammatical evolution approach to intrusion detection on mobile

ad hoc networks’, in Editor (Ed.)^(Eds.): ‘Book A grammatical evolution approach to intrusion

detection on mobile ad hoc networks’ (ACM, 2009, edn.), pp. 95-102

80 Siddiqui, M.A.: ‘High performance data mining techniques for intrusion detection’, 2004

81 Sivanandam, S., and Deepa, S.: ‘Introduction to genetic algorithms’ (Springer Science &

Business Media, 2007. 2007)

82 Sokolova, M., and Lapalme, G.: ‘A systematic analysis of performance measures for

classification tasks’, Information Processing & Management, 2009, 45, (4), pp. 427-437

83 Song, D., Heywood, M.I., and Zincir-Heywood, A.N.: ‘Training genetic programming on half a

million patterns: an example from anomaly detection’, Evolutionary Computation, IEEE

Transactions on, 2005, 9, (3), pp. 225-239

84 Sung, A.H., and Mukkamala, S.: ‘Identifying important features for intrusion detection using

support vector machines and neural networks’, in Editor (Ed.)^(Eds.): ‘Book Identifying

important features for intrusion detection using support vector machines and neural

networks’ (IEEE, 2003, edn.), pp. 209-216

85 Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A.-A.: ‘A detailed analysis of the KDD CUP 99

data set’, in Editor (Ed.)^(Eds.): ‘Book A detailed analysis of the KDD CUP 99 data set’ (2009,

edn.), pp.

86 Thaseen, S., and Kumar, C.A.: ‘An analysis of supervised tree based classifiers for intrusion

detection system’, in Editor (Ed.)^(Eds.): ‘Book An analysis of supervised tree based classifiers

for intrusion detection system’ (IEEE, 2013, edn.), pp. 294-299

87 Wang, G., Hao, J., Ma, J., and Huang, L.: ‘A new approach to intrusion detection using Artificial

Neural Networks and fuzzy clustering’, Expert Systems with Applications, 2010, 37, (9), pp.

6225-6232

88 Wilson, D., and Kaur, D.: ‘Using grammatical evolution for evolving intrusion detection rules’,

WSEAS Transactions on Systems, 2007, 6, (2), pp. 346

89 Wu, S.X., and Banzhaf, W.: ‘The use of computational intelligence in intrusion detection

systems: A review’, Applied Soft Computing, 2010, 10, (1), pp. 1-35

90 Yin, C., Tian, S., Huang, H., and He, J.: ‘Applying genetic programming to evolve learned rules

for network anomaly detection’: ‘Advances in Natural Computation’ (Springer, 2005), pp. 323-

331

123

91 Zhang, F., and Wang, D.: ‘An effective feature selection approach for network intrusion

detection’, in Editor (Ed.)^(Eds.): ‘Book An effective feature selection approach for network

intrusion detection’ (IEEE, 2013, edn.), pp. 307-311

92 Zincir-Heywood, A.N., and Heywood, M.I.: ‘Selecting features for intrusion detection: A

feature relevance analysis on KDD 99 intrusion detection datasets’, in Editor (Ed.)^(Eds.):

‘Book Selecting features for intrusion detection: A feature relevance analysis on KDD 99

intrusion detection datasets’ (Citeseer, edn.), pp.

124

A. User Manual
Program requirements
In order to run the NID system, Java must be installed. Java can be obtained from the following website

(https://java.com/en/download/). Once Java has been installed the program can be used.

Initialising the Program
The program can be started by executing the NetworkIntrusionDetection.jar located in the SYSTEM

folder on the CD. The main menu will appear as shown in the Figure A.1.

Figure A.1: Network Intrusion Detection System Main Menu

Overview of the program
The Top-level tab menu is made up of the Genetic Programming approaches discussed in this thesis.

Each top-level tab menu has two lower level tab menu binary classification and multi-class

classification.

• Genetic Programming – corresponds to using Genetic Programming for Network Intrusion

Detection described in Chapter 6.

• Grammatical Evolution – corresponds to using Grammatical Evolution for Network Intrusion

Detection described in Chapter 7.

• Multi-Expression Programming – corresponds to using Multi-Expression Programming for

network Intrusion Detection described in Chapter 8.

https://java.com/en/download/

125

Experiment Configurations
Two configurations are provided for interacting with the program. Each configuration requires either

a training dataset, testing dataset or both training and testing dataset. These datasets are located in

the Datasets folder on the CD provided. The datasets are divided into Binary Classification datasets

and Multi-class datasets. The multi-class datasets are split based on the attack category described in

Chapter 5.

• Train and Test
All the parameters must be entered before the run can start as illustrated in Figure A.2. After training

and testing datasets have been selected. The run will begin by selecting Start Experiment. The run will

continue running in the background for the duration of the experiment until it has completed and a

popup message has appeared. The experiments use the distributed architecture discussed in Chapter

5.

Figure A.2: Train and Test using NID System

Once training and testing has completed a popup message will appear as in illustrated in Figure

A.3. This message indicates the location of the output file. The output file contains information about

run, and performance measures for the evolved classifier.

126

Figure A.3: End of run Message

• Test using best classifier
This Configuration is used to evaluate the performance of pre-defined classifiers on different datasets.

For example, if you want to evaluate just how well the best classifier achieved from using Genetic

Programming for Multi-class classification, the user selects the test dataset using the File chooser

option invoked when “Browse” on the Testing panel is selected.

Figure A.4: Selecting best classifier

After selecting a test dataset, click “Test Using best Classifier” which will open a file choose dialog

and navigate to …/Datasets/Best_Classifiers folder which contains all the best classifiers for the

experiments conducted in this thesis. Once the preferred classifier has been selected the system will

evaluate the performance of the classifier on the dataset and write the results to an output file. Figure

A.4 and Figure A.5 illustrate test using best classifier for multi-class genetic programming for DOS

127

attacks.

Figure A.5: Results of evaluation

	PREFACE
	DECLARATION 1: PLAGIARISM
	DECLARATION 2: PUBLICATIONS
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Purpose of the Study
	1.2 Aims and Objectives
	1.3 Contributions
	1.4 Dissertation Layout

	2 Genetic Programming
	2.1 Introduction
	2.2 Introduction to Genetic Programming
	2.3 Overview of the GP Algorithm
	2.4 Representation
	2.4.1 Tree Based GP
	2.4.2 Function Set
	2.4.3 Terminal Set

	2.5 Initial Population Generation
	2.5.1 Full Method
	2.5.2 Grow Method
	2.5.3 Ramped Half and Half Method

	2.6 Evaluation
	2.6.1 Fitness Cases
	2.6.2 Fitness Functions

	2.7 Selection Methods
	2.7.1 Tournament Selection

	2.8 Genetic Operators
	2.8.1 Reproduction
	2.8.2 Mutation
	2.8.3 Crossover

	2.9 GP Control Models
	2.9.1 Generational Model
	2.9.2 Steady State Model

	2.10 Termination
	2.11 Introns and Bloat
	2.12 Modularisation
	2.13 Strengths and Weaknesses of GP
	2.13.1 Strengths
	2.13.2 Weaknesses

	2.14 Introduction to Grammatical Evolution
	2.15 Overview of the Generational GE Algorithm
	2.16 Representation
	2.16.1 BNF Grammar
	2.16.2 Mapping Process
	2.16.2.1 Mapping process example

	2.17 Initial Population Generation and Evaluation
	2.18 Genetic Operators
	2.18.1 Crossover
	2.18.2 Mutation

	2.19 Introns and Bloat
	2.20 Strengths and Weakness of GE
	2.20.1 Strengths
	2.20.2 Weaknesses

	2.21 Introduction to Multi-Expression Programming
	2.22 Overview of the Steady State MEP Algorithm
	2.23 Representation
	2.24 Initial Population Generation and Evaluation
	2.25 Genetic Operators
	2.25.1 Crossover
	2.25.2 Mutation

	2.26 Introns and Modularisation
	2.27 Strengths and Weakness of MEP
	2.27.1 Strengths
	2.27.2 Weaknesses

	2.28 Chapter Summary

	3 Network Intrusion Detection
	3.1 Introduction
	3.2 Network Intrusion Detection
	3.3 Datasets for Network Intrusion Detection
	3.3.1 DARPA 1998 and 1999
	3.3.2 KDD Cup 99
	3.3.3 NSL-KDD dataset
	3.3.4 Network Attack Categories
	3.3.4.1 Denial of Service Attacks (DOS)
	3.3.4.2 Probing attacks
	3.3.4.3 Remote to Local (R2L) attacks
	3.3.4.4 User to Root (U2R) attacks

	3.4 Performance Measures
	3.4.1 Confusion matrix
	3.4.2 Accuracy and False Positive Rate
	3.4.3 Sensitivity and Specificity
	3.4.4 Precision and F-measure
	3.4.5 Receiver operating characteristics

	3.5 Feature Selection
	3.6 Previous Work on Network Intrusion Detection
	3.6.1 Evolutionary Algorithms
	3.6.2 Neural Networks
	3.6.3 Bayesian Networks
	3.6.4 Decision Trees

	3.7 Chapter Summary

	4 GP and Network Intrusion Detection
	4.1 Introduction
	4.2 Using genetic programming for network intrusion detection
	4.3 Binary Classification for NID using GP
	4.3.1 Genetic Programming
	4.3.2 Grammatical Evolution
	4.3.3 Linear Genetic Programming

	4.4 Multiclass Classification for NID using GP
	4.4.1 Genetic Programming
	4.4.2 Grammatical Evolution
	4.4.3 Multi-expression Programming
	4.4.4 Linear genetic programming

	4.5 Strengths and Weaknesses of GP in NID
	4.5.1 Strengths
	4.5.2 Weaknesses

	4.6 Analysis of genetic programming in network intrusion detection
	4.7 Chapter Summary

	5 Methodology
	5.1 Introduction
	5.2 Research Methodology
	5.2.1 Aims and Objectives

	5.3 Proof by Demonstration Methodology
	5.3.1 Evaluation of approach
	5.3.2 Refinement of approach
	5.3.3 Termination Criterion

	5.4 Statistical Tests
	5.4.1 Statistical Testing

	5.5 Dataset
	5.5.1 Dataset description
	5.5.2 Dataset Pre-processing
	5.5.2.1 Data transformation
	5.5.2.2 Dataset normalization

	5.5.3 Binary classification dataset
	5.5.4 Multi-class classification dataset

	5.6 Distributed Architecture for Proposed Approaches
	5.7 Technical Specifications
	5.8 Chapter Summary

	6 Genetic Programming for Network Intrusion Detection
	6.1 Introduction
	6.2 GP Algorithm
	6.3 Representation and initial population generation
	6.4 Evaluation
	6.5 Selection Method and Genetic Operators
	6.6 Parameters
	6.7 Chapter Summary

	7 Grammatical Evolution for Network Intrusion Detection
	7.1 Introduction
	7.2 Representation
	7.3 Initial Population Generation and Evaluation
	7.4 Selection Method and Genetic Operators
	7.5 Parameters
	7.6 Chapter Summary

	8 Multi-Expression Programming for Network Intrusion Detection
	8.1 Introduction
	8.2 MEP Algorithm
	8.3 Representation
	8.4 Initial Population Generation and Evaluation
	8.5 Selection Method and Genetic Operators
	8.6 Parameters
	8.7 Chapter Summary

	9 Results and Discussion
	9.1 Introduction
	9.2 Grammatical Evolution
	9.2.1 Binary Classification
	9.2.2 Multi-class classification
	9.2.2.1 Accuracy
	9.2.2.2 Matthews coefficient correlation
	9.2.2.3 F-Score
	9.2.2.4 True Positive Rate
	9.2.2.5 Precision
	9.2.2.6 False Positive Rate

	9.2.3 Analysis of multi-class classification for GE approach

	9.3 Multi-Expression Programming
	9.3.1 Binary Classification
	9.3.2 Multi-class classification
	9.3.2.1 Accuracy
	9.3.2.2 Matthews’s coefficient correlation
	9.3.2.3 F-Score
	9.3.2.4 True Positive Rate
	9.3.2.5 Precision
	9.3.2.6 False Positive Rate

	9.3.3 Analysis of multi-class classification for MEP approach

	9.4 Genetic Programming
	9.4.1 Binary Classification
	9.4.2 Multi-class classification
	9.4.2.1 Accuracy
	9.4.2.2 Matthews’s coefficient correlation (MCC)
	9.4.2.3 F-Score
	9.4.2.4 True Positive Rate
	9.4.2.5 Precision
	9.4.2.6 False Positive Rate

	9.4.3 Analysis of multi-class classification for the GP approach

	9.5 Comparison of GP, GE and MEP
	9.5.1 Binary classification
	9.5.1.1 Statistical Comparison

	9.5.2 Multi-class classification
	9.5.2.1 Statistical Comparison

	9.6 Comparison with state of the art
	9.6.1 Binary Classification
	9.6.2 Multi-class classification

	9.7 Chapter Summary

	10 Conclusion and Future Work
	10.1 Introduction
	10.2 Objectives and Conclusion
	10.2.1 Effectiveness of using grammatical evolution (GE) for generating intrusion detection classifiers
	10.2.2 Development and evaluation of applying multi-expression programming (MEP) for generating binary and multi-class classifiers for network intrusion detection.
	10.2.3 Develop and analyze the performance of using genetic programming (GP) for generating binary and multiclass classifiers for network intrusion detection.
	10.2.4 Investigate the effectiveness of fitness functions for network intrusion detection
	10.2.5 Comparative analysis of GE, MEP and GP for network intrusion detection.

	Bibliography
	A. User Manual
	Program requirements
	Initialising the Program
	Overview of the program
	Experiment Configurations

