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Abstract

It is well known that the general geometric Lévy market models are
incomplete, except for the geometric Brownian and the geometric Poisso-
nian, but such a market can be completed by enlarging it with power-jump
assets as Corcuera and Nualart [12] did on their paper. With the knowl-
edge that an incomplete market due to jumps can be completed, we look
at other cases of incompleteness. We will consider incompleteness due to
more sources of randomness than tradable assets, transactions costs and
stochastic volatility. We will show that such markets are incomplete and
propose a way to complete them. By doing this we show that such markets
can be completed.
In the case of incompleteness due to more randomness than tradable as-
sets, we will enlarge the market using the market’s underlying quadratic
variation assets. By doing this we show that the market can be completed.
Looking at a market paying transactional costs, which is also an incomplete
market model due to indifference between the buyers and sellers price, we
will show that a market paying transactional costs as the one given by, Cvi-
tanic and Karatzas [13] can be completed.
Empirical findings have shown that the Black and Scholes assumption of
constant volatility is inaccurate (see Tompkins [40] for empirical evidence).
Volatility is in some sense stochastic, and is divided into two broad classes.
The first class being single-factor models, which have only one source of
randomness, and are complete markets models. The other class being the
multi-factor models in which other random elements are introduced, hence
are an incomplete markets models. In this project we look at some com-
monly used multi-factor models and attempt to complete one of them.

Keywords
Complete markets, equivalent martingale measure, variation processes
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Chapter 1

Introduction

A market model consisting of investment in a safe asset X0(t) (bank account)
and a single risky asset X1(t) like stock modeled by a stochastic differential
equation (SDE) driven by a two dimensional Brownian motion
B = {B1(t), B2(t), t > 0} , satisfying the following condition

dX0 = qX0dt

dX1 = αdt+ σ1dB1(t) + σ2dB2(t)

is an incomplete market which has many equivalent martingale measures.
Claims in such markets cannot be hedged by a self financing portfolio. In this
dissertation we will suggest to enlarge the market by a series of very special
assets related to the quadratic variation process. These processes are related to
the power-jump process introduced by Corcuera and Nualart [12]. A martingale
representative theorem in terms of these quadratic variation processes leads us
to market completion.

There are many reasons for incompleteness, for instance, the above market is
incomplete because there are more than one equivalent martingale measures,
which gives different prices for the contingent claims under each measure. We
also have more sources of risk than tradable asset, it will thus be very diffi-
cult to hedge away the risk associated with the second source of randomness.
If all uncertainty in a market is generated by independent Brownian motions,
then completeness roughly corresponds to the requirement that the number of
tradable assets be at least as large as the number of Brownian motions. When
enlarging such a market, we are in fact creating a market with at least as much
tradable asset as Brownian motion processes. After enlargement, we then cre-
ate a self financing portfolio which we propose to be a hedging portfolio for a
market enlarged with quadratic variation asset. This proposition is the main
result of the project we are presenting.

We also consider a market portfolio paying transactional costs, like the one pre-
sented by Cvitanić and Karatzas [13]. A market paying transactional costs is by
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definition an incomplete market model. Hedging in such a market is expensive
and thus the buyers price of the (European) contingent claim will conflict with
the sellers price. We also show that there are claims in such a market which
cannot be hedged, hence, the market is incomplete. In the presence of trans-
actional costs, the usual Black-Scholes style of hedging is no longer riskless,
which is the reason why we have so much research, attempting to deal with
the problem of transactional costs. An important breakthrough was achieved
by Leland [32]. He introduced a method of pricing a call option from the seller’s
view-point in the presence of transactional costs. His main idea was to increase
the volatility in the Black-Scholes PDE to offset the increased risk of the seller.
He gave his argument for the call option. However, it works as long as the
payoff function is convex. In this dissertation, we are only concerned with the
completion of the market model paying transactional costs instead of finding a
cheapest or optimal hedging strategy. Our hedging strategy in the presence of
transactional costs is of course of no interest to practitioners, as they will be
only concerned with an optimal trading strategy.

We then move away from Black and Scholes’ assumptions of constant volatility
and interest rate. We consider stochastic volatility models introduced by Stein
and Stein [38], who developed a stochastic volatility model in which the volatil-
ity follows an Ornstein-Uhlinbeck process, which raises the possibility that the
volatility σ(t) can be negative. Assuming volatility is uncorrelated with the
asset price, they derived an exact closed-form solution for the stock price distri-
bution. They also used analytic techniques to develop an approximation to the
distribution. Then, they used their results to develop closed form option pricing
formulas, and to sketch some links between stochastic volatility and the nature
of fat tails in stock price distributions.

The model for stock price introduced by Stein and Stein [38] is incomplete mar-
ket, due to the extra randomness introduced by stochastic volatility. The volatil-
ity coefficient introduces an additional source of randomness for every tradable
asset which renders the market incomplete. Other stochastic volatility models
are models by Heston [26] who used characteristic functions to derive a closed-
form solution for the price of a European call option on an asset with stochastic
volatility. He assumed that the spot asset’s price is correlated with the volatil-
ity and concluded that correlation between the spot asset’s price and the volatil-
ity is important for explaining return skewness and strike-price biases in the
Black-Scholes model. The Cox-Ingersoll-Ross (CIR) model and the Hull and
White [28] model. We show that such market models can be completed in the
same manner as in the case of having more risk than tradable assets, which
makes sense since stochastic volatility models are also incomplete due to more
sources of randomness than tradable assets.

The addition of jumps into the stock price process was another method intro-
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duced to correct the imperfections of the Black-Scholes model of stock price
evolution. The motivation for this model is the fact that stock markets do even-
tually crash and when they do there is no opportunity to carry out a continu-
ously changing delta hedge. One consequence of this will be the impossibility of
perfect hedging. At any given time the stock price can increase slightly or de-
crease slightly or fall a lot. It is impossible to hedge against all these scenarios
simultaneously. Such an impossibility of perfect hedging imply that the market
is incomplete. That is, not every option can be replicated by a self-financing
portfolio. Chapter 7 of our dissertation therefore looks at incompleteness due to
jumps and how Corcuera and Nualart [12] managed to complete a market which
is incomplete due to jumps.

The remainder of this dissertation is as follow
Chapter 2 contains background theory as well as necessary instruments for the
implementation of the theory contained in the later Chapters. Chapter 3 intro-
duces the famous Black-Scholes option pricing formula which is the frequently
used formula to predict future movement of stock prices. We also look at the dis-
advantages of using such a formula to predict future movement of stock prices.
The main objective of this Chapter is to introduce the concept of pricing deriva-
tives in both the complete and incomplete market settings. Even though this
dissertation is mainly concerned with the concept of completing an incomplete
market, one might also be interested in looking at the price of the derivative in
an incomplete market so as to compare with the price after completion. Chap-
ter 4 contains the main Propositions of this dissertation. This Chapter shows
how to complete an incomplete market with more sources of randomness than
tradable assets. This is used to complete a market which is incomplete due to
transactional costs in Chapter 5, when transactional costs are stochastic and to
completion a market with stochastic volatility in Chapter 6.

3



Chapter 2

The Background and Basic
Tools of Mathematics of
Finance

2.1 General Probability Theory

The purpose of this section is to introduce basic probability theory and the def-
initions which we will frequently encounter throughout this dissertation. The
following definitions are taken from Shreve [39].

Definition 2.1. If Ω is a given set, then a σ-algebra F on Ω is a family F of
subsets of Ω with the following properties:

(i) ∅ ∈ F ,

(ii) F ∈ F ⇒ FC ∈ F ,

(iii) A1, A2, . . . ∈ F .

The pair (Ω,F) is called a measurable space.

Definition 2.2. Let Ω be a nonempty set, and let F be a σ-algebra of subset of
Ω. A probability measure P is a function that, to every set A ∈ F , assigns a
number in [0, 1], called the probability of A and written P (A). We require:
(a) P (∅) = 0, P (Ω) = 1,
(b) if (Ai∈N) is a sequence of mutually disjoint sets in F then

P

(⋃∞
i=1Ai

)
=
∑∞

i=1 P (Ai).

The triple (Ω,F , P ) is called a probability space.

Definition 2.3. Let Ω be a nonempty set. Let T be a fixed positive number, and
assume that for each t ∈ [0, T ] there is a σ-algebra F(t) on Ω. Assume further
that if s ≤ t, then every set in F(s) is also in F(t). Then we call the collection of
σ-algebras F(t), 0 ≤ t ≤ T , a filtration.
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2.1. General Probability Theory

A filtration describes the information we will have at future times t. More
precisely, when we get to time t, we will know for each set in F(t) whether the
true ω ∈ Ω lies in that set.

Definition 2.4. A sample space or universal sample space, often denoted S or
Ω, of an experiment or random trial is the set of all possible outcomes.

For example, if the experiment is tossing a coin, the sample space is the set
{head,tail}.

Definition 2.5. A Borel set is a set in the σ-field generated by the class of all
bounded, semi-closed intervals of the form [a, b) of the real line.

Definition 2.6. Let X be a random variable defined on a nonempty sample
space Ω. The σ-algebra generated by X, denoted σ(X), is the collection of all
subsets of Ω of the form {ω ∈ Ω, X(ω) ∈ B}, where B ranges over the Borel
subsets of R.

Definition 2.7. Let (Ω,F , P ) be a probability space. A random variable is a
real-valued function X defined on Ω with the property that for every Borel sub-
set B of R, the subset of Ω given by

{X ∈ B} = {ω ∈ Ω;X(ω) ∈ B}

is in the σ-algebra F .

We sometimes also permit a random variable to take the values +∞ and
−∞.

Definition 2.8. Let X be a random variable defined on a nonempty sample
space Ω. Let G be a σ-algebra of subsets of Ω. If every set in σ(X) is also in G,
we say that X is G-measurable.

A random variable X is G-measurable if and only if the information in G is
sufficient to determine the value of X. If X is G-measurable, then f(X) is also
G-measurable for any measurable function f .

Definition 2.9. Given a probability space (Ω,F , P ) a stochastic process (or ran-
dom process) is a parameterized collection of random variables X(t)t∈[0,T ] de-
fined on a probability space (Ω,F , P ) and assuming values in Rn, where n ∈ N.
We say that X(t) is an n-dimensional stochastic process.

In probability theory, a stochastic process which is sometimes referred to as
an Itô process, is the counterpart to a deterministic process. Instead of dealing
with only one possible reality of how the process might evolve under time (as
is the case, for example, for solutions of an ordinary differential equation), in a
stochastic or random process there is some indeterminacy in its future evolu-
tion described by probability distributions. This means that even if the initial
condition is known, there are many possibilities the process might go to, but
some paths may be more probable and others less so.
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2.1. General Probability Theory

Definition 2.10. Let Ω be a nonempty sample space with a filtration F(t), 0 ≤
t ≤ T . Let X(t) be a collection of random variables indexed by t ∈ [0, T ]. We say
this collection of random variables is an F(t)- adapted stochastic process if, for
each t, the random variable X(t) is F(t)-measurable.

Definition 2.11. A stochastic process {X(t), t ∈ [0, T ]} is a stationary process
if the joint distribution of {Xt1 , Xt2 , . . . , Xtn} and {Xt1+k, Xt2+k, . . . , Xtn+k} are
identical for all the {t1, t2, . . . , tn} ∈ [0, T ] and all k ∈ R.

Definition 2.12. The increments of a stochastic process {X(t), t ∈ [0, T ]} are
defined as {Xt+u −Xt}, ∀t, t+ u ∈ [0, T ] and u > 0.

Definition 2.13. A stochastic process {X(t), t ∈ [0, T ]} has independent incre-
ments if for all t ∈ [0, T ] and every u > 0, the increments {Xt+u − Xt} is inde-
pendent of the past of the process {Xs, 0 ≤ s ≤ t}, stated differently,

Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 ,

are independent random variables for all t0 < t1 < . . . < tn, ti ∈ [0, T ] and ∀i ∈ N.

A stochastic process {X(t), t ∈ [0, T ]} is said to have stationary increments
if {Xt+s −Xt} has the same distribution for all t ∈ [0, T ], s+ t ∈ [0, T ] and s ≥ 0.

Definition 2.14. Two stochastic processes on the same probability space X and
Y are modifications if X(t) = Y (t) almost surely (a.s.,) for each t.
Two stochastic processes on the same probability space X and Y are indistin-
guishable if for all t, X(t) = Y (t) a.s.

Definition 2.15. If {X(t), t ∈ [0, T ]} is a stochastic process, a sample path for
the process is the function on [0, T ] to the range of the process which assigns to
each t the value Xt(ω).

Definition 2.16. A stochastic process X = {X(t), t ≥ 0} on (Ω,F , P ) is said
to be càdlàg or right continuous with left limits (RCLL) if it a.s., has sample
paths which are right continuous, with left limits. That is for each t the limits
X(t−) = lims→tX(s) and X(t+) = lims←tX(s) exist for every s < t

6



2.2. Market, Portfolio and Arbitrage

2.2 Market, Portfolio and Arbitrage

Definition 2.17. (A), A market is an F (m)
t -adapted (n+1)-dimensional Itô pro-

cess
X(t) = (X0(t), X1(t), ..., Xn(t)), 0 ≤ t ≤ T , which satisfies the following
stochastic differential equation (SDE)

dX0(t) = ρ(t, ω)X0(t)dt, X0(0) = 1, (2.1)

and

dXi(t) = µi(t, ω)dt+
m∑

j=1

σij(t, ω)dBj(t) (2.2)

= µi(t, ω)dt+ σi(t, ω)dB(t), Xi(0) = xi,

where σi is row number i of the n×m matrix [σij ]; 1 ≤ i ≤ n ∈ N.

The stochastic differential equation above describes the evolution of asset prices
in the market. Where the first equation is showing changes in the bank account
(which is known as the risk free asset, X0), with initial amount of one rand in
the bank given by X0(0). The second stochastic differential equation is show-
ing changes in stock prices (which are risky assets due to the presence of their
diffusion term). The coefficients ρ(t, ω) and µi(t, ω) represent the mean rate of
return for the bank account and stocks, respectively.
Note that the bank account, X0, is riskless due to the absence of the diffusion
terms B(t) (although ρ(t, ω) may depend on ω), hence, we can precisely deter-
mine the future value of the bank account.
For example, consider an investment of R100 into the bank account or govern-
ment bond that paysR10 per anum, which is the interest on our fixed deposit for
the bank account and coupon payment for government bonds, for five years. We
are almost sure with probability one that after five years we will have received
150. There are possibilities that the bank will collapse or that the government
will renege on its promise to pay, but such possibilities are sufficiently remote
and are thus neglected for practical purposes.

(B) The market {X(t)}t∈[0,T ] is called normalized if X0(t) ≡ 1.

C) A portfolio in the market {X(t)}t∈[0,T ] is an (n+1) dimensional (t, ω)-measurable
and F (m)

t -adapted stochastic process

θ(t, ω) = (θ0(t, ω), θ1(t, ω), ..., θn(t, ω)); 0 ≤ t ≤ T, (2.3)

which represents the number of stocks and bonds an individual investor holds
at any time t.

7



2.2. Market, Portfolio and Arbitrage

(D) The value at time t of a portfolio θ(t) is defined by

V (t, ω) = V θ(t, ω) = θ(t).X(t) =
n∑

i=0

θi(t)Xi(t). (2.4)

(E) The portfolio θ(t) is called self-financing if

dV (t) = θ(t).dX(t) for t ∈ [0, T ], (2.5)

that is, if

V (t) = V (0) +
∫ t

0
θ(s)dX(s). (2.6)

A self-financing portfolio is thus a trading strategy without external cash-flow.
Any changes in the value of the portfolio are entirely due to changes in the
value of the underlying assets and not due to money being put in or out of the
portfolio in order to fund assets sales or purchases.

Definition 2.18. An arbitrage opportunity is an admissible strategy θ such
that V0(θ) = 0, Vt(θ) ≥ 0 for all t ∈ [0, T ], and E[VT (θ)] > 0.

Therefore an arbitrage is a guaranteed profit without exposure to risk.

Example 2.1 (Foreign exchange)
Suppose a £1 is worth $1.23 and a $1 is worth R8. If for some reason the ex-
change rate between the British pound and the South African rand is worth
R11 for a pound. As an arbitrageur you can do the following

• Sell £2 for rand’s and get R22

• Use R16 from his R22 to buy $2 and keep the remaining R6 aside

• Use $1.25 from his $2 to repurchase one of his pounds and use $0.75 to buy
R6 leaving himself with £1 and R12

• Keep R1 in his pocket (free lunch) from his R12 and use the remaining
R11 to repurchase another pound. Thus leaving him with his initial £2
and a free R1 without any risk in his pocket.
Increasing the amount of pounds the arbitrageur initially sells or contin-
uously following the above process, will increase the amount of free lunch.
The above action will drive the pounds/rand rate down to R10 for a pound,
which is what it should have been initially. Thus the arbitrage opportunity
will be short lived. In the real financial market, arbitrage opportunities
can exist but they will generally be very small and disappear quickly. An
inverse argument can be applied when a pound is worth less than R10.
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2.3. Martingales

2.3 Martingales

Definition 2.19. Suppose (Ω,F , P ) is the probability space with filtration
{Ft}, t ∈ [0, T ]. A real-valued adapted stochastic process {Xt} is said to be a
supermartingale (submartingale) with respect to the filtration {Ft} if
a) E[Xt] <∞ for all t ∈ [0, T ],
b) E[Xt|Fs] ≤ Xs if s ≤ t, (rep., E[Xt|Fs] ≥ Xs)
If E[Xt|Fs] = Xs for s ≤ t then {Xt}is said to be martingale.

Remark 2.1. The filtration Ft represent the history of the Brownian motion B(t)
(which we will define in section 2.4) up to time t. We require the process X(t) to
be adapted to the filtration Ft, meaning that the value of X(t) is determined by
the history of the Brownian motion up to time t.

2.3.1 The Doob-Meyer decomposition

The Doob-Meyer decomposition states that any submartingale can be written
as a sum of a martingale and an increasing process, that is, if X(t) is a sub-
martingale, then X(t) = M(t) +A(t) where M(t) is a martingale and A(t) is an
increasing process. Thus if X(t) is a martingale, then

X(t)2 = M(t) +A(t) 0 ≤ t <∞ (2.7)

where M(t) is a martingale and A(t) is a natural increasing process.

Definition 2.20. For X ∈ M2 , we define the quadratic variation of X to be a
process 〈X〉t ≡ A(t) where A(t) is the natural increasing process in the Doob-
Meyer Decomposition of X2. In other words, 〈X〉 is that unique up to indis-
tinguishable adapted, natural increasing process for which 〈X〉0 = 0 a.s and
X2 − 〈X〉 is a martingale.

Where M2 is a square integrable processes such that whenever X ∈M2 then
X(0) = 0.

2.4 Brownian Motion

The Brownian Motion is the most important example of a continuous time-
martingale which was named after Robert Brown, a Scottish botanist.

Definition 2.21. Let (Ω,F , P ) be a probability space. For each ω ∈ Ω, suppose
there is a continuous function B(t) of t ≥ 0 that satisfies that B(0) = 0 and that
depends on ω. Then B(t), t ≥ 0, is a Brownian motion if for all 0 = t0 < t1 <
... < tn the increments

B(t1) = B(t1)−B(t0), B(t2)−B(t1), ..., B(tn)−B(tn−1), (2.8)

9
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are independent and each of these increments are normally distributed with

E[B(ti+1)−B(ti)] = 0. (2.9)

Theorem 2.1. Suppose B(t) is a Brownian motion with respect to the filtration
Ft, t ≥ 0. Then Bt is an Ft-martingale and B2

t − t is also an Ft-martingale.

Proof

E[B(t)|Fs] = E[B(t)−B(s) +B(s)|Fs]
= E[B(t− s) +B(s)|Fs]
= E[B(t− s)|Fs] + E[B(s)|Fs]
= E[B(s)|Fs] independence
= B(s) for every s ≤ t,

and

E[B2(t)− t|Fs] = E[(B(t)−B(s) +B(s))2 − t|Fs]
= E[(B(t− s) +B(s))2|Fs]− t

= E[B2(t− s) + 2B(t− s)B(s) +B(s)|Fs]− t

= E[B2(t− s)|Fs]− t+B2(s) independence
= t− s+B2(s)− t

= B2(s)− s.

The first part of our theorem shows that a Brownian motion is a martingale
while the second part shows us that the quadratic variation of a Brownian mo-
tion is just t, that is 〈B〉t = t , where At = t is the natural increasing process in
the Doob-Meyer Decomposition of B2.

Also note that if (Mt)t∈R+ is a continuous martingale such that M2
t − t is also a

martingale, then Mt is a Brownian motion.

2.5 Itô Integral

Definition 2.22. (The Itô integral) Let ∆(t, ω), 0 ≤ t ≤ T be an adapted stochas-
tic process. Then the Itô integral of ∆(t, ω) is defined by∫ T

0
∆(t, ω)dBt(ω) = lim

n→∞

∫ T

0
φn(t, ω)dBt(ω), (2.10)

where {φn} is a sequence of elementary functions such that

E[
∫ T

0
(∆(t, ω)− φn(t, ω))2dt] → 0 as n→∞. (2.11)

10
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2.5.1 Properties of Itô Integral

• (The Itô Isometry)

E[(
∫ T

0
(∆(t, ω)dB(t))2] = E[

∫ T

0
∆2(t, ω)dt] for all t ∈ [0, T ], (2.12)

• (Mean Zero)

E[(
∫ T

0
(∆(t, ω)dB(t))] = 0, (2.13)

• (Linearity)∫ T

0
a∆(t, ω) + bΛ(t, ω)dB(t)

= a

∫ T

0
∆(t, ω)dB(t) + b

∫ T

0
Λ(t, ω)dB(t),

• (Martingale)

E[(
∫ T

0
(∆(t, ω)dB(t)) FS(ω)]

=
∫ S

0
(∆(t, ω)dB(t)),

• (Local Property)∫ T

0
∆(t, ω)dB(t) = 0 a.s., (2.14)

on the set G = {ω ∈ Ω :
∫ T
0 ∆2(t, ω)dt = 0}.

For the proof of the above properties of an Itô integral see Shreve [39], Chapter
4.

2.6 Quadratic Variation

In the Doob-Meyer decomposition, we introduced the concept of quadratic vari-
ation and we define the quadratic variation ofX to be a process 〈X〉t ≡ At where
At is the natural increasing process in the Doob-Meyer Decomposition of X2. In
this section we will further define this quadratic variation which we will use
later on to complete incomplete markets. For the case of Lévy processes like the
Brownian motion defined above, their paths are unusual in the sense that their
quadratic variation is not zero. This is what makes stochastic calculus different
from ordinary calculus.

11
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Definition 2.23. Let f(t) be a function defined on 0 ≤ t ≤ T . The quadratic
variation of f up to time T is

〈f〉T = lim
‖Π‖→0

n−1∑
j=0

[f(tj+1)− f(tj)]2. (2.15)

Where Π = t0, t1, . . . , tn and 0 = t0 < t1 < . . . < tn = T is a partition of the
interval [0, T ]. The maximum step size of the partition is denoted by
‖Π‖ = maxj=0,...,n−1(tj+1 − tj).

Suppose the function f has a continuous derivative. Hence

n−1∑
j=0

[f(tj+1)− f(tj)]2 =
n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj)2

≤ ‖Π‖
n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj),

and

〈f〉T ≤ lim
‖Π‖→0

[
‖Π‖

n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj)
]

= lim
‖Π‖→0

‖Π‖. lim
‖Π‖→∞

[
‖Π‖

n−1∑
j=0

|f ′(t∗j )|2(tj+1 − tj)
]

= lim
‖Π‖→0

‖Π‖.
∫ T

0
|f ′(t∗j )|2dt = 0.

Which concludes that in ordinary calculus where f is continuous we have zero
quadratic variation.

Lemma 2.1. Let ∆(u) and Θ(u) be adapted stochastic processes. Then the
quadratic variation of the Itô processes (2.10) is given by

〈X〉t =
∫ t

0
∆2(u)du, (2.16)

where X(t) = X(0) +
∫ t
0 ∆(u)dB(u) +

∫ t
0 Θ(u)du, with X(0) being nonrandom.

Proof
see Shreve [39], Chapter4, page 143.

Theorem 2.2. For any continuous martingale Mt, the quadratic variation pro-
cess 〈M〉t is adapted and a.s., finite, continuous and increasing.

Proof
see Dempster [8]
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Remark 2.2. If Mt is a continuous martingale then on (some enrichment of)
(Ω,F , P ) there exists a Brownian motion B(t) such that, by Dempster [8],

Mt = B(〈M〉t). (2.17)

This is one reason why Brownian motion is so important, up to change of
time scale, every continuous martingale is a Brownian motion!

Example 2.2
Consider the following Ornstein-Uhlinbeck process given by

dX(t) = β(a−X(t))dt+ σdB(t). (2.18)

We can easily solve the above equation quite explicitly by considering its inte-
grating factor, eβt, which gives,

d[eβt(X(t)− a)] = eβt[dX(t) + β(X(t)− a)dt]
= σeβtdB(t).

So that

eβt(X(t)− a)− (X(0)− a) =
∫ t

0
σeβsdB(s),

and

X(t) = 1− e−βta+ e−βtX(0) +
∫ t

0
σeβ(s−t)dB(s)

= 1− e−βta+ e−βtX(0) + e−βtσ2W

(
e(2βt−1)

2β

)
,

for some Brownian motion W , in light of the key result of remark (2.2).

2.7 The Girsanov’s Theorem

Girsanov’s theorem is fundamental in the general theory of stochastic analysis.
It is also very important in many applications, for example in economics. Ba-
sically the Girsanov’s theorem says that if we change the drift coefficient of a
given Itô process, then the law of the process will not change dramatically. In
fact the law of the new process will be absolutely continuous w.r.t the law of the
original process.

2.7.1 Heuristic Introduction of Derivation

This introduction is taken from Foellmer [20]. It makes use of elementary
facts of independent normally distributed random variables which leads to the
Doléans-Dade exponential as a new density under a change of measure for the
Brownian motions. This by Foellmer [20] is called the heuristic derivation of
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the Girsanov transformation for the 1-dimensional Brownian motion based on
elementary probability concepts. Such an heuristic derivation will help us un-
derstand what happens under the Girsanov transformation.
Let X be a standard normally distributed random variable on the probability
space (Ω,F , P ) for some real world measure P . That is X ∼ N(0, 1) for standard
normal distribution. Then

P [X ≤ a] a ∈ R

=
1√
2π

∫ a

−∞
e−

1
2
x2
dx

=
1√
2π

∫ a

−∞
f(x)dx

= N(a).

Now consider another density function given by

f̂(x) = e(µx− 1
2
µ2)f(x)

= e−
1
2
(x2−2µx+µ2)

= e−
1
2
(x−µ)2 .

Then for some probability Q = P̂ we have

Q[X ≤ a] =
1√
2π

∫ a

−∞
e−

1
2
(x−µ)2dx

=
1√
2π

∫ a

−∞
f̂dx

=
1√
2π

∫ a

−∞
e−

1
2

bx2
dx̂

= N(a),

where X̂ = X − µ.
Hence the distribution ofX under P is equivalent to the distribution of X̂ under
Q, that is PX ≡ Q bX and X̂ ∼ N(0, 1). Also note that under Q, X ∼ N(µ, 1). The
Radon-Nikodym derivative for this change of measure is given by

dQX

dPX
(x) = e(µx− 1

2
µ2). (2.19)

Now suppose X ∼ N(0, σ2) under P and X ∼ N(µ, σ2) under Q, that is X̂ =
(X − µ) ∼ N(0, σ2). It then follows that the Radon-Nikodym derivative for this
change of measure is given by

dQX

dPX
(x) = e

1
σ2 (µx− 1

2
µ2). (2.20)

Application to Brownian Motion B(t) t ∈ [0, 1]
Let B(t) be a Brownian motion on the probability space (Ω,F , P ). Then B(t) ∼
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2.7. The Girsanov’s Theorem

N(0, t) under P and ∆B(t) = (B(t+∆t)−B(t)) ∼ N(0,∆t), independent of B(t).
Now consider a Brownian motion with drift given by

B̂(t) = B(t)−
∫ t

0
φ(s)ds,

for some stochastic process φ(s). Now the question is, under which measure Q
is B̂(t) again a Brownian motion without the drift term?
We discretize the unit interval [0, 1] by ti = i

n (i = 0, . . . , n).
It follows that

B(
j

n
) =

j∑
i=1

B

(
i

n

)
−B

(
i− 1
n

)
j = 1, . . . , n

=
j∑

i=1

Xi ∼ N(0,∆t),

under P .
The

∏n
i=1N(0,∆t) is a joint distribution of the random variables (X1, . . . , Xn)

under P . If we define X̂i = Xi−φ( i−1
n ).∆t, then X̂i ∼ N(0,∆t) under Q with the

Radon-Nikodym-derivative given by

dQX

dPX
(x) = e

1
∆t

(µxi− 1
2
µ2

i ), (2.21)

under P , where µi = φ( i−1
n ).∆t.

The joint distribution of X̂i under Q is thus given by

dQ(n) =
n∏

i=1

exp
{

1
∆t

(
φ

(
i− 1
n

)
.∆tXi −

1
2
φ2

(
i− 1
n

)
.∆t2

)}
dP (n)

= exp
{ n∑

i=1

φ
( i− 1

n

)(
B
( i
n

)
−B

( i− 1
n

))
− 1

2
φ2
( i− 1

n

)
.∆t
}
dP (n)

where

lim
n→∞

exp
{ n∑

i=1

φ
( i− 1

n

)(
B
( i
n

)
−B

( i− 1
n

))
− 1

2
φ2
( i− 1

n

)
.∆t
}
dP (n)

= exp
{∫ 1

0
φ(s)dB(s)− 1

2

∫ 1

0
φ2(s)ds

}
dP.

Hence, with L1 =
∫ 1
0 φ(s)dB(s), we have

dQ = Z(L1)dP

= exp{L1 −
1
2
〈L1〉}dP,
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2.7. The Girsanov’s Theorem

where Z(L1) = exp{L1− 1
2〈L1〉} is called the stochastic exponent or the Doléans-

Dade exponential. Note that the limit process above is only a heuristic argu-
ment. The actual derivation is given by the Girsanov transformation given
below.

Definition 2.24. Consider the probability P under the probability space
(Ω,F , P ). Let Q be another probability measure, then

(i)Q� P ⇔ P [A] = 0 ⇒ Q[A] = 0 ∀A ∈ F ,
(2.22)

(ii)Q ∼ P ⇔ Q� P and P � Q.

Theorem 2.3. (Radon-Nikodym)
Let Q� P . Then there exist a strictly positive F-measurable function Z(ω) with
Q = ZP , that is

Q[A] =
∫

A
Z(ω)P (dω) ∀A ∈ F ,

Z =
dQ

dP
, (2.23)

=⇒ Z(t) = EP [Z|Ft] = EP [
dQ

dP
|Ft].

Then Z(t) is a right continuous martingale, and EP [Z(t)] ≡ 1. Furthermore

(i)Z(t, ω) > 0 Q− a.s.,

(ii)Z(t) =
dQt

dPt
on Ft.

Proof
see Föllmer [20].

Equation (2.23) is called the Radon-Nikodym derivative.

Theorem 2.4. (The General Girsanov Theorem)
Let Y (t) ∈ Rn be an Itô process of the form

dY (t) = β(t, ω)dt+ θ(t, ω)dB(t) t ≤ T, (2.24)

where B(t) ∈ Rm and θ(t, ω) ∈ Rn×m. Suppose there exist processes u(t, ω)
and α(t, ω) such that

θ(t, ω)u(t, ω) = β(t, ω)− α(t, ω), (2.25)

and assume that u(t, ω) satisfies Nivikov’s condition

E[exp (
1
2

∫ T

0
u2(s, ω)ds)] <∞. (2.26)
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Put

Mt = exp (−
∫ t

0
u(s, ω)dB(s)− 1

2

∫ t

0
u2(s, ω)ds); t ≤ T, (2.27)

and

dQ(ω) = MT (ω)dP (ω) on F (m)
T . (2.28)

Then

B̂(t) ≡
∫ t

0
u(s, ω)ds+B(t); t ≤ T, (2.29)

is a Brownian motion with respect to Q and in terms of B̂(t) the process Y (t)
has the stochastic integral representation

dY (t) = α(t, ω)dt+ θ(t, ω)dB̂(t). (2.30)

Proof: see Øksendal [37] Chapter 8 page 156.

2.8 Attainability and Completeness of Contingent T-
Claims

2.8.1 Contingent Claims

A contingent claim (derivative) is a claim that can be paid only if one or more
specified outcomes occur. It is a contract between two parties that defines rights
and obligations of the parties. The value of the contract depends on the terms of
the contract. Depending on the underlying asset and the terms of the contract a
derivative may take on many forms. Some of the most widely spread ”standard”
derivatives today include those whose value is determined by the value of one or
more underlying variable. The analysis of such claims, and their pricing in par-
ticular, forms a large part of the modern theory of finance. Decisions about the
prices appropriate for such claims are made contingent on the price behavior of
these underlying securities and the theory of derivatives markets is primarily
concerned with these relationships. Construction of mathematical models for
this analysis often involves very sophisticated mathematical concepts. In this
dissertation we are more concerned with continuous models based on diffusions
and Itô processes. The main type of financial instruments currently traded are
forwards, futures, swaps and options.

2.8.2 Options

There are two basic types of options. A call option which gives its holder the
right to buy an asset by a certain date for a certain price. A put option gives
the holder the right to sell an asset by a certain date for certain price. The date
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specified in the contract is known as the expiration date on the maturity date.
The price specified is known as the exercise price or strike price. Options can be
either American or European. American options can be exercised at any time
up to expiration date, whereas European options can be exercise only on the
expiration date itself.

Call Option

Figure 2.1: Profit profile of a call option

Suppose the pre-specified date for the underlying security is T and the pre-
specified price (strike price) is K. Then the call option is exercised if the stock
price at terminal date S(T ) > K, otherwise it is abandoned. The pay off g(x) at
expiry date T for a European call option is

g(S(T )) = [S(T )−K]+, (2.31)

that is

g(S(T )) =
{

[S(t)−K] if S(t) > K,
0 if S(t) ≤ K.

In any option contract, there are two parties involved. An investor that buys
an option (that is, an option’s holder) and an investor that sells an option (that
is, an option’s writer). The option’s holder is said to take a long position while
the option’s writer is said to take a short position. In order to purchase an
option contract an option holder needs to pay an option price or premium to the
second party called the seller or the writer. The payment of the price is done at
the initial date when the contract is entered into. The payoff and profit diagram
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for buying European call option is given by figure 2.1 above where WPP1 and
WPP2 denote Without-Premium-Paid and With-Premium-Paid respectively. If
the cost of the call is c (premium) and we ignore the effects of discounting, then
the profit to the buyer of a European call option is

P (S(T )) =
{

[S(t)−K − c] if S(t) > K,
−c if S(t) ≤ K.

Put Option

Figure 2.2: Profit profile of a put option

Whereas the purchaser of a call option is hoping that the stock price will
increase, the purchaser of a put option is hoping that it will decrease. The
European put option is exercised if and only if the stock price at terminal date
S(T ) < K, otherwise it is also abandoned. The payoff f(x) at expiry date T for
a European put option is given by

f(S(T )) = [K − S(T )]+, (2.32)

that is

f(S(T )) =
{

[K − S(t)] if S(t) < K,
0 if S(t) ≥ K.

The profit and payoff diagram for a European put option is given by figure
2.2 above. The method of pricing such derivatives will depend on whether the
stochastic differential equation driving the stock price process S(t) is a complete
market model or not. In the complete market model setting, the price of the Eu-
ropean call and put option is given by the Black-Scholes formula which we will
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derive in the following Chapter. There is no unique price for such derivatives
in the incomplete market settings but there are numerical methods of pricing
such derivatives when the market is incomplete.

Definition 2.25. (a) A (European) contingent T-claim is a lower boundedF (m)
T -

measurable random variable F (ω).

(b) We say that the claim F (ω) is attainable in the market X(t)t∈[0,T ] if there
exists an admissible portfolio θ(t) and a real number z such that

F (ω) = V θ
z (T ) ≡ z +

∫ t

0
θ(t)dX(t) a.s. (2.33)

If such a θ(t) exist we call it a replicating or hedging portfolio for F .

(c) The market X(t)t∈[0,T ] is called complete if every bounded T-claim is at-
tainable.

In other words, a claim F (ω) is attainable if there exists a real number z
such that if we start with z as our initial fortune we can find an admissible
portfolio θ(t) which generates a value V θ

z (t) at time T which a.s. equals F :

V θ
z (T, ω) = F (ω) for a.a. ω. (2.34)

Lemma 2.2. Suppose u(t, ω) satisfies the condition that

E

[
exp (

1
2

∫ T

0
u2(s, ω)ds)

]
<∞. (2.35)

Define the measure Q = Qu on F (m)
T , where m is the number of diffusion terms

for the assets Xi(t), by

dQ(ω) = exp
(
−
∫ T

0
u(t, ω)dB(t)− 1

2

∫ T

0
u2(t, ω)dt

)
dP (ω). (2.36)

Then

B̃(t) :=
∫ t

0
u(s, ω)ds+B(t), (2.37)

is an F (m)
t -martingale ( and hence an F (m)

t -Brownian motion) with respect to
with respect to Q and any F ∈ L2(F (m)

T , Q) has a unique representation

F (ω) = EQ[F ] +
∫ T

0
φ(t, ω)dB̃(t). (2.38)

Where φ(t, ω) is an F (m)
t -adapted, (t, ω)-measurable Rm-valued process such

that

EQ[
∫ T

0
φ2(t, ω)dt] <∞. (2.39)
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Lemma 2.3. LetX(t) = X−1
0 (t)X(t) be a normalized price process, whereX0(t) =

exp (
∫ t
0 ρ(s, ω)ds). Then the market{X(t)} is complete if and only if the normal-

ized market {X(t)} is complete.

Lemma 2.4. Suppose there exists an m-dimensional process u(t, ω) such that,
with X̂(t, ω) = (X1(t, ω), ..., Xn(t, ω)),

σ(t, ω)u(t, ω) = µ(t, ω)− ρ(t, ω)X̂(t, ω) for a.a. (t, ω), (2.40)

and

E[exp (
1
2

∫ T

0
u2(s, ω)ds)] <∞. (2.41)

Define the measure Q = Qu and the process B̃(t) as in the Girsanov Theorem.
Then in terms of B̃(t) we have the following representation of the normalized
market X(t) = X−1

0 (t)X(t)

dX0(t) = 0, (2.42)
dXi(t) = X−1

0 σi(t)dB̃(t), 1 ≤ i ≤ n.

In particular, if
∫ T
0 EQ[X−2

0 (t)σ2
i (t)]dt < ∞, then Q is an equivalent martingale

measure.

Theorem 2.5. Suppose (2.40) and (2.41) holds. Then the market {X(t)} is com-
plete if and only if σ(t, ω) has a left inverse Λ(t, ω) for a.a (t, ω), i.e., there exists
an F (m)

t -adapted matrix valued process Λ(t, ω) ∈ R(m×n) such that

Λ(t, ω)σ(t, ω) = Im for a.a. (t, ω), (2.43)

which is equivalent to the property that

rank{σ(t, ω)} = m for a.a. (t, ω). (2.44)

Proof
see Øksendal [37] Chapter 12 page 262

Corollary 2.1. Suppose (2.40) and (2.41) holds.

(a) If n = m then the market is complete if and only if σ(t, ω) is invertible for
a.a.(t, ω).

(b) If the market is complete, then

rank{σ(t, ω)} = m for a.a. (t, ω), (2.45)

in particular, n ≥ m.
Moreover, the process u(t, ω) satisfying (2.43) is unique.
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Example 2.3
A market which is an F (m)

t -adapted 4-dimensional Itô process
X(t) = (X0(t), X1(t), ..., X3(t)); 0 ≤ t ≤ T which has a differential form

dX0(t) = 0,
dX1(t) = dt+ dB1(t),
dX2(t) = 2dt+ dB2(t),
dX3(t) = 3dt+ dB1(t) + dB2(t),

is a complete market.
Proof
Since this is a normalized market with X0(t) = 1, we have ρ = 0 and from (2.40)
we have that 1 0

0 1
1 1

( u1

u2

)
=

 1
2
3


which has a unique solution u1 = 1, u2 = 2. Since u is constant, it is clear that
(2.41) holds. The rankσ = 2, so equation (2.44) holds. Moreover, since

(
1 0 0
0 1 0

) 1 0
0 1
1 1

 =
(

1 0
0 1

)
= I2

which shows that

Λ =
(

1 0 0
0 1 0

)
is a left inverse of σ. We then conclude by Theorem 2.5 above that this is a
complete market.
Now consider our market, which is a market given in equation (1.1)

Example 2.4
A market, satisfying the conditions that

dX0 = qX0dt,

dX1 = αdt+ σ1dB1(t) + σ2dB2(t),

is an incomplete market.
Proof
Let our market be given by

dX0 = qX0dt,

dX1 = αdt+ σ1dB1(t) + σ2dB2(t).
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2.9. Pricing of European Options

We can show that (see Chapter 4, section 4.2) the above market can be written
as

dX1 = qX1(t)dt+ σ1dB̃1(t) + σ2dB̃2(t), (2.46)

after applying Girsanov’s theorem to change measure.
So we have µ = qX1, and

σ =
(
σ1 σ2

)
∈ R1×2.

So n = 1 < 2 = m. Hence this market is incomplete, by Corollary 2.1. Thus
there exist bounded T-claims which cannot be hedged.
The corresponding value process is given by

V θ
z = z +

∫ t

0
θ1(s)(σ1dB̃1(s) + σ2dB̃2(s)). (2.47)

Thus if θ hedges a T-claim F (ω) we have

F (ω) = z +
∫ T

0
θ1(s)(σ1dB̃1(s) + σ2dB̃2(s)). (2.48)

Choose F (ω) = g(B̃1(T )), where g : R → R is bounded. Then by the Itô rep-
resentation theorem applied to the two-dimensional Brownian motion B̃(t) =
(B̃1(t), B̃2(t)) there is a unique φ(t, ω) = (φ1(t, ω), φ2(t, ω)) such that

g(B̃1(T )) = EQ[g(B̃1(T ))] +
∫ T

0
φ1(s)dB̃1(s) + φ2(s)dB̃2(s), (2.49)

and by the Itô representation theorem applied to B̃1(t), we must have φ2 = 0.
That is

g(B̃1(T )) = EQ[g(B̃1(T ))] +
∫ T

0
φ1(s)dB̃1(s). (2.50)

Comparing this with (2.48) we see that no such θ1 exists. So F (ω) = g(B̃1(T ))
cannot be hedged.

2.9 Pricing of European Options

Consider a European contingent claim as defined in definition 2.25. Suppose
you were offered a guarantee to be paid such a contingent claim given by the
amount F (ω) at time t = T . The question is, how much would you be willing to
pay at time t = 0 for such a guarantee?
You could argue as follows:
If I-the buyer-pay the price y for this guarantee, then I have an initial fortune
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2.9. Pricing of European Options

−y in my investment strategy. With this initial fortune (debt) it must be possi-
ble to hedge at time T a value V θ

−y(T, ω) which, if the guaranteed payoff F (ω) is
added, gives me a nonnegative result such that

V θ
−y(T, ω) + F (ω) ≥ 0 a.s.

Thus the maximal price p = p(F ) the buyer is willing to pay is
(Buyer’s price of the (European) contingent claim F)

p(F ) = sup{y; There exists an admissible portfolio θ such that

V θ
−y(T, ω) := −y +

∫ T

0
θ(s)dX(s) ≥ −F (ω) a.s.}.

On the other hand, the seller of this guarantee could argue as follows:
If I-the seller-receive the price z for this guarantee, then I can use this as the
initial value in an investment strategy. With this initial fortune is must be
possible to hedge to time T a value V θ

z (T, ω) which is not less than the amount
F (ω) that I have promised to pay the buyer such that

V θ
z (T, ω) ≥ F (ω) a.s.

Thus the minimal price q = q(F ) the seller is willing to accept is
(Seller’s price of the (European) contingent claim F)

q(F ) = inf{z; There exists an admissible portfolio θ such that

V θ
z (T, ω) := z +

∫ T

0
θ(s)dX(s) ≥ F (ω) a.s.}.

Definition 2.26. If p(F ) = q(f) we call this common value the price (at t = 0)
of the (European) T -contingent claim F (ω)

Theorem 2.6. a) Suppose (2.40) and (2.41) hold and let Q be as in (2.36). Let
F be a (European) T-claim such that EQ[X−1

0 (T )F ] <∞. Then

ess inf{F (ω)} ≤ p(F ) ≤ EQ[ξ(T )F ] ≤ q(F ) ≤ ∞. (2.51)

Where the essential infimum of F , ess supp F, is the largest essential lower
bound.

b) Suppose in addition to condition in a), that the market {X(t)} is complete.
Then the price of the (European) T-claim F is

p(F ) = EQ[ξ(T )F ] = q(F ). (2.52)

Where

ξ(t) = X−1
0 (t) = exp

(
−
∫ t

0
ρ(s, ω)ds

)
for all t ∈ [0, T ]. (2.53)

Proof
see Øksendal [37], Chapter 12
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2.9. Pricing of European Options

Remark 2.3. The above theorem implies that if a market is incomplete, then the
buyers price p(F ) and the sellers price q(F ) are different. In fact any price in
the interval {p(F ), q(F )} is a possible price admissible to both buyer and seller
when the market is incomplete. Hence, we have infinitely many prices for con-
tingent claims in an incomplete market and equally infinitely many equivalent
martingale measures associated with each price. So when we look for the best
price we are also looking for the best equivalent martingale measure.

We shall look at some of the measures proposed, that gives an optimal price
when the market is incomplete, in the next Chapter. In this dissertation we are
mostly concerned with the completion of incomplete market models, as complete
market model have a unique martingale measure and hence, a unique price.
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Chapter 3

Pricing of Contingent Claims
and the Black-Scholes
Formula

The core of financial mathematics is the pricing of financial derivatives such as
options and futures. Almost all, if not all, books and literature of the subject-
matter of financial mathematics are concerned with finding an optimal pricing
formula for the value of a contingent claim. After four decades of its discovery,
the Black-Scholes formula is the universally accepted formula for option pricing
even though the formula fails when a market is incomplete. This is due to its
bias assumptions of constant volatility and no transactional costs.

3.1 Itô Formula

3.1.1 Basic One Dimensional Itô Formula

Suppose we have a stochastic differential equation given by:

dX(t) = µ(t,X)dt+ β(t,X)dB(t), (3.1)

for some random variable X(t). Where µ(t,X) is the drift term, β(t,X) is the
volatility and B(t) is the Brownian motion or the Wiener process. If we are
given a twice continuously differentiable function f(t,X), then we have, by the
Itô formula that

df =
∂f

∂t
dt+

∂f

∂x
dX +

1
2
∂2f

∂x2
(dX)2, (3.2)

where (dX)2 = (dX)(dX) is calculated according to the rules

dt.dt = dt.dB = dB.dt = 0, dB.dB = dt. (3.3)

Equation (3.2) is known as the one dimensional Itô formula.
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3.2. The Black-Scholes Model for Pricing Stock Options

3.1.2 The Multi-dimensional Itô Formula

Let B(t, ω) = (B1(t, ω), . . . , Bm(t, ω)) denote an m-dimensional Brownian motion
and X(t) = (X1(t), . . . , Xn(t)) be an n dimensional Itô process satisfying:

dXi(t) = µi(t,X)dt+ βi(t,X)dXi(t), (3.4)

for each i such that 1 6 i 6 n. Now suppose we have a twice-differentiable
function f(t,X1(t), . . . , Xn(t)). Then f is a Itô process, with an Itô formula given
by:

df =
∂f

∂t
dt+

n∑
i=1

∂f

∂X(i)
dX(i) +

1
2

n∑
i,j=1

∂2f

∂X(i)∂X(j)
dX(i)dX(j), (3.5)

where dB(i)dB(j) = δ(ij)dt. The above equation (3.5) is known as the multi-
dimensional Itô formula.

3.2 The Black-Scholes Model for Pricing Stock Op-
tions

There are some assumptions underlining the behavior of stock prices over time.
These assumptions may be the difference between pricing in a complete or in-
complete market. Like any other model, the Nobel prize winning Black-Scholes
model also known as Black-Scholes-Marton model has its own assumptions
about how stock prices evolve over time.

3.2.1 Assumptions Underlying The Black-Scholes Model

• Stock price behavior follows a geometric Brownian motion given by:

dS(t) = S(t)(µdt+ σdB(t) (3.6)

for some constant µ and σ, where as before B(t) is a standard Brownian
motion.

• There are no transactional costs or tax. All securities are perfectly divisi-
ble

• There are no dividends on the stock during the life of the option.

• There are no riskless arbitrage opportunities.
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3.2. The Black-Scholes Model for Pricing Stock Options

• Security trading is continuous.

• Investors can borrow or lend at the same risk-free rate of interest.

• The short-term risk-free rate of interest, r, is also constant.

3.2.2 Derivation of the Black-Scholes Equation

Suppose we have a European call option f(S, t) with the behavior of stock prices
S(t) given above by the Black-Scholes assumptions, where the payoff is given
by f(S, T ) = Φ(S). Now given a portfolio consisting of one option and −∆ unit
of the underlying asset, the value of this portfolio is

Π = f −∆S. (3.7)

The change of the portfolio is thus given by

dΠ = df −∆dS. (3.8)

Then by Itô’s formula

df =
∂f

∂t
dt+

∂f

∂S
dS +

1
2
∂2f

∂S2
(dS)2, (3.9)

with

(dS)2 = σ2S2dt,

it follows that

df =
∂f

∂t
dt+

∂f

∂S
(µSdt+ σSdB) +

1
2
∂2f

∂S2
(σ2S2dt). (3.10)

After substituting we obtain

dΠ =
(
∂f

∂t
+ µS

∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dB −∆(µSdt+ σSdB)

=
[
∂f

∂t
+ µS(

∂f

∂S
−∆) +

1
2
σ2S2 ∂

2f

∂S2

]
dt+ σS

(
∂f

∂S
−∆

)
dB.

By choosing ∆ = ∂f
∂S we are able to remove the randomness dB and Π will

consequently become risk-free, which means

dΠ =
(
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2

)
dt, (3.11)
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3.2. The Black-Scholes Model for Pricing Stock Options

but by the principal of no-arbitrage, Π must therefore instantaneously earn the
risk-free interest rate, hence:

dΠ = rΠdt
= (rf − r∆S)dt.

Which then imply that

rf − r∆S =
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
(3.12)

rf − rS
∂f

∂S
=
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
.

Which gives the nondividend Black-Scholes partial differential equation (PDE)
for a European option:

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
= rf. (3.13)

One can solve the above equation to get the price of a European option, by
either the two transformation methods given in Zhu-Wu-Chern [41] where they
reduce the above Black-Scholes (PDE) to a heat equation. Because Green’s
function of the heat equation has analytic expression, they obtain an analytic
expression of Green’s function for the Black-Scholes equation using the inverse
transformation. Based on these analytic expressions, a European option price
can be derived. One may also use numerical methods or the Feynman-Kac
formulae (3.29) to solve the above (PDE) which gives the famous Black-Scholes
option pricing formula.

3.2.3 The Black-Scholes Option Pricing Formula

The derivation of the Black-Scholes option pricing formula Black and Scholes
[9] is considered as one of the most important developments in the field of math-
ematics of finance. Based on Black-Scholes given assumptions of the evolution
of stock prices, the solution of the Black-Scholes (PDE) (3.13) for a European
call option is given by

C = SN(d1)−Ke−r(T−t)N(d2), (3.14)

which is known as the Black-Scholes option pricing formula.
Where d1 = log( S

K
)+(r+ 1

2
σ2)(T−t)

σ
√

T−t
and d2 = d1 − σ

√
T − t.

Also note that for a call option f(S, T ) = [S − K, 0]+. The standard normal
distribution function is given by

N(d) =
1√
2π

∫ d

−∞
e−

x2

2 dx. (3.15)
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3.2. The Black-Scholes Model for Pricing Stock Options

By arbitrage arguments, it can be shown that the relationship between the
European call option and put option is given by

C = P + S −Ke−r(T−t), (3.16)

which is called the put-call parity. By using the put-call parity we can derive
the put price, which is given by

P = Ke−r(T−t)N(−d2)− SN(−d1). (3.17)

3.2.4 Robustness Property of The Black-Scholes Hedging Pro-
cedure

The result of this section can be found in Fouque, Papanicolaou and Sircar [22],
which aims at finding an error or contrast between a chosen model for the stock
price process and the actual stock price process for a European contingent claim
f(t, S(t)).
Suppose the stock price process in reality is not modeled by the Black-Scholes
price process given in equation (3.6), but modeled by a stock price process given
by

dS(t) = α(t)S(t)dt+ β(t)dB(t). (3.18)

Where the drift term α and the volatility term β are general Ft-adapted pro-
cesses, which could also depend on S(t). Now suppose a trader believes that the
price process for stock prices is actually given by the Black-Scholes model with
some specific volatility σ. Then the trader will automatically hedge according
to the Black-Scholes dynamics, by holding ∆(t) = ∂f

∂S units of stocks and placing
the remaining amount which is given by (V (t)−∆(t)S(t)) into the bank account.
Where f(t, S(t)) is the solution of the Black-Scholes PDE given by (3.13).
The change in the value of our portfolio is thus given by

dV (t) = ∆(t)dS(t) + (V (t)−∆(t)S(t))rdt (3.19)

For a self-financing portfolio, where V (0) = f(0, S(0)) if we write the option at
the Black-Scholes price.
Define the process Y (t) = V (t)− f(t, S(t)), then dY (t) = dV (t)− df(t, S(t))
Itô lemma thus gives

df =
∂f

∂t
+
∂f

∂S
dS +

1
2
β2S2 ∂

2f

∂S2
dt (3.20)

So that

dY = ∆dS + (V −∆S)∆rdt− df

=
∂f

∂S
dS + (V − ∂f

∂S
)rdt− ∂f

∂t
− ∂f

∂S
dS − 1

2
β2S2 ∂

2f

∂S2
dt
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3.2. The Black-Scholes Model for Pricing Stock Options

Now substituting the Black-Scholes PDF, equation (3.13), into ∂f
∂t we get

dY = (V − f)rdt+
1
2
S2 ∂

2f

∂S2
(σ2 − β2)dt

= Y rdt+
1
2
S2 ∂

2f

∂S2
(σ2 − β2)dt

Now using an integrating factor on Y we see that

de−rtY = −re−rtY dt+ e−rtdY

=
1
2
e−rtS2 ∂

2f

∂S2
(σ2 − β2)dt

So that

e−rtY =
1
2

∫ T

0
e−rtS2 ∂

2f

∂S2
(σ2 − β2)dt

⇒ Y (T ) =
1
2

∫ T

0
er(T−t)S2 ∂

2f

∂S2
(σ2 − β2)dt

Where Y (0) = 0.
The gamma of a call option or any option with a convex pay-off is positive for
any log-type model. For the proof of this argument see Joshi [31] Chapter 15. A
function is said to be convex if the chord between any two point on the graph
lies above the graph, that is, a function is convex if the second derivative is
non-negative. We therefore have that ∂2f

∂S2 > 0 for a put and call option, hence
Y (T ) ≥ 0
Thus our hedging strategy makes a profit with probability one as long as σ2 ≥
β2. This shows that successful hedging is entirely a matter of good volatility
estimation. We consistently make a profit if the Black-Scholes volatility σ dom-
inates the true volatility β regardless of other details of the price dynamistic. In
fact the difference between the true volatility (β) and the Black-Scholes volatil-
ity (σ) is known as the hedging error of the Black-Scholes model.

3.2.5 Time Dependent Parameters

Suppose we allow the parameters of the Black-Scholes model to be deterministic
function of time. That is, we assume that r(t) and σ = β(t) vary as in equation
(3.18) according to some prescribed rule. Then the market given by

dR(t) = r(t)R(t)dt,
dS(t) = S(t)µ(t)dt+ σ(t)S(t)dB(t),

is a complete market model with a unique equivalent martingale measure Q
with a Black-Scholes PDE for a European option given by

∂f

∂t
+ r(t)S

∂f

∂S
+

1
2
σ2(t)S2 ∂

2f

∂S2
= r(t)f. (3.21)
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And a unique price for a European call option given by

f = SN(d̃1)−Ke−
R T
0 r(t)dtN(d̃2)

Where

d̃1 =
ln( S

K ) +
∫ T
0

(
r(t) + 1

2σ
2(t)
)
dt√∫ T

0 σ2(t)dt

And

d̃2 = d̃1 −

√∫ T

0
σ2(t)dt

3.2.6 Derivation Of Black-Scholes Option Pricing Formula

We will make use of the Feynman-Kac formulae to derive the Black-Scholes
Option Pricing Formula, which does not depend on the expected future price
nor investors attitudes towards risk.

The Generation of an Itô Diffusion

Definition 3.1. Let X(t) be an Itô diffusion, then the generator A of X(t) is

Af(X) = limt→0−
Ex[f(Xt)]− f(X)

t
for all x ∈ R (3.22)

The set of functions f : Rn → R such that the limit exists at x is denoted by
DA(x) while DA denote the set of functions for which the limit exists for all
x ∈ Rn

Theorem 3.1. Let X(t) be an Itô diffusion of the form

dX(t) = b(X(t))dt+ σ(X(t))dB(t) (3.23)

if f ∈ C2(R)n and f has compact support, then f ∈ DA and

Af(x) = Σibi(x)
∂f

∂xi
+

1
2

∑
i,j

(σσT )i,jσ(x)
∂2f

∂xi∂xj
(3.24)

Proof see Øksendal [37], Chapter 7, page 118

Example 3.1

Let B(t) denote a 1-dimensional Brownian motion and let X =
(
X1

X2

)
be the

solution of the stochastic differential equation given by

dX1(t) = dt, X1(0) = t0

dX2(t) = dB(t), X2(0) = x0
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that is

dX(t) = µdt+ σdB(t) X(0) =
(
t0
x0

)
(3.25)

where µ =
(

1
0

)
and σ =

(
0
1

)
. Then the generator A of X is given by

Af =
∂f

∂t
+

1
2
∂2f

∂x2
f(t, x) ∈ C2(R)n (3.26)

The Dynkin Formula

Let f ∈ C2(Rn). Suppose t is a stopping time. Ex[t] <∞. Then

Ex[f(X(t))] = f(x) + Ex

[ ∫ t

0
Af(X(s))ds

]
(3.27)

Kolmogorov’s Backward Equation

Let f ∈ C2(Rn) and define

u(t, x) = Ex[f(X(t))] (3.28)

Then u(t, x) ∈ DA for each t and

∂u

∂t
= Au, t > o x ∈ Rn

u(0, x) = f(x) x ∈ Rn

The Feynman-Kac Formula

Let f ∈ C2(Rn) and q ∈ C(Rn). Assume that q is lower bounded.
Put

v(t, x) = Ex[e(−
R t
0 q(X(s))ds)f(X(t))] (3.29)

Then
∂v

∂t
= Av − qv, t > 0 x ∈ Rn

v(0, x) = f(x) x ∈ Rn

The Feynman-Kac Formula establishes a relationship between the martingale
approach (which was pioneered by Harrison and Kreps [24] and Harrison and
Pliska [25]) to option pricing and the original Black-Scholes approach which
leads to solving PDE’s under boundary constraints. We can now use the above
Feynman-Kac Formula to solve the Black-Scholes option price for a call option
f(S(t)) = [S(t)−K]+
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Example 3.2
Given the Black-Scholes PDE with initial condition f(0, S) = [S − K]+ for a
European call option, we can use Feynman-Kac Formula to show that

f(x, t) =
e−rt

√
2πt

∫
R
(x.exp[(r − 1

2
σ2)t+ σy]−K)+e−

y2

2t dy (3.30)

Proof
In connection with the deduction of the Black-Scholes formula for the price of a
European option, we showed that its PDE (3.13) is given by

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
= rf (3.31)

with f(0, S) = (S − K)+ and S(0) = x. Then by the Feynman-Kac formula we
see that

Af − qf = −rf + rS
∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
, (3.32)

so that

Af = rS
∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
, (3.33)

when q = r. If we apply the generator of the Itô diffusion we see that

dS(t) = rS(t)dt+ σS(t)dB(t). (3.34)

Integrating the above stochastic differential equation yields

S(t) = x exp[(r − 1
2
σ2)t+ σB(t)] S(0) = x. (3.35)

Also note that Girsanov’s theorem gives the same value for the discounted stock
price S(t).
The Feynman-Kac formula thus gives

f(t, x) = Ex[e(−
R t
0 q(X(s))ds)f(X(t))], (3.36)

as a solution of the above PDE, so substituting the obtained value for f(S(t))
and q(X(s)) we get

f(t, x) = Ex[e(−
R t
0 rds)f(x exp[(r − 1

2
σ2)t+ σB(t)])]] (3.37)

= Ex[e(−
R t
0 rds)(x exp[(r − 1

2
σ2)t+ σB(t)]−K)+]]

=
e−rt

√
2πt

∫
R
(x exp[(r − 1

2
σ2)t+ σy]−K)+.e(

−y2

2t
)dy

as required. We can further solve the above claim f(t, x) to derive the Black-
Scholes option pricing formula for a European call option by noting that y =
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B(t) ∼ N(0, t). We also know that if f(x) = [x−K]+ for a European call option,
then x > K otherwise f(x) = 0. So

x exp[(r − 1
2
σ2)t+ σB(t)] > K for all t ∈ [0, T ]. (3.38)

Then

−B(t) <
log( x

K ) + (r − 1
2σ

2)t
σ

= d. (3.39)

Let y = −B(t) so that

f(t, x) =
e−rt

√
2πt

∫ d

−∞
(x exp[(r − 1

2
σ2)t− σy]−K).e(

−y2

2t
)dy

= x
e−rt

√
2πt

e(r−
1
2
σ2)t

∫ d

−∞
exp− 1

2t
(y2 + 2σty)dy −Ke−rtP [Y ≤ d]

= x
e−

1
2
σ2t

√
2πt

∫ d

−∞
exp− 1

2t
(y + σt)2 +

σ2t

2
dy −Ke−rtN(d2)

= x
1√
2πt

∫ d

−∞
exp− 1

2t
(y + σt)2dy −Ke−rtN(d2).

Where d2 = d√
t

= log( x
K

)+(r− 1
2
σ2)t

σ
√

t
since for the standardized normal distribution

we have y√
t
∼ N(0, 1). Now let z = y + tσ so that dz = dy.

This gives

f(t, S) = x
1√
2πt

∫ d∗

−∞
exp− 1

2t
(z)2dz −Ke−rtN(d2)

= xP [Z < d∗]−Ke−rtN(d2)
= xN(d1)− e−rtKN(d2)
= SN(d1)− e−rtKN(d2),

where d∗ = d+ σt and d1 = d∗√
t

= log( x
K

)+(r+ 1
2
σ2)t

σ
√

t
.

Which is the Black-Scholes option pricing formula for a European call option.
Similarly one can derive the Black-Scholes price for a put option by setting
f(x) = (k − x)+ or by just using the put call parity.

3.3 Pricing in Incomplete Markets

In this section we will try to answer the question of pricing non attainable con-
tingent claims. We assume that the market is free of arbitrage, that is there
exist equivalent martingale measures which are not necessarily unique. Due
to the fact that the EMM’s are not unique, we must have claims that cannot
be hedged by a self-financing portfolio in this market. We impose a method
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3.3. Pricing in Incomplete Markets

of pricing the non-attainable contingent claims by selecting out of the pool of
EMM’s an equivalent martingale measure that minimizes the risk. Further
approaches to the problems of pricing and hedging contingent claims in incom-
plete markets are treated in {[1], [10], [11], [20], [32], [34]}. With [33] covering the
general theory of incomplete markets. This section is based on the work by
Bingham and Kiesel [8].

3.3.1 A General Option Pricing Formula

Utility Function

Definition 3.2. A continuous function U : (0,∞) → R which is strictly increas-
ing, strictly concave and continuously differentiable with limx→∞ U

′(x) = 0 and
limx→0 U

′(x) = ∞ is called a utility function.

The function U(x), where x denotes a cash payoff, is used to measure the
satisfaction of the investor attitude towards risk.
One of the most commonly used utility functions is the exponential utility func-
tion given by:

U(X) = 1− e−cX (c > 0) (3.40)

Where c is the risk-aversion constant, X is the amount of money, and U(X)
measures the satisfaction of the investor.
An investor with such utility function U and initial endowment x trading only in
the underlying asset S = {S0, . . . , Sd} forms a dynamic portfolio ϕ, whose value
at time t is given by Vϕ,x(t). His objective is to maximize his expected utility
under the original probability measure of his final wealth at time T given that
he is allowed to choose his trading strategy ϕ from a suitable subset Φa of the
set of self-financing trading strategies. We write

Ũ(x) = sup
ϕ∈Φa

E[U(Vϕ,x(T ))] (3.41)

for the maximal utility. Now suppose that a contingent claim X is made avail-
able for trading with current purchase price p. The question in hand is if the
maximal utility given above could be increased. To find a fair price p̂ for a
contingent claim we follow a martingale rate of substitution argument’ quite
commonly used in pricing: p̂ is a fair price for the contingent claim if divert-
ing a little of funds into it at time zero has a neutral effect on the investor’s
achievable utility. More precisely, if we set

W (δ, x, p) = sup
φ∈Φa

{E
[
U

(
Vϕ,x−δ(T ) +

δ

p
X

)]
, (3.42)

we can then state,
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3.3. Pricing in Incomplete Markets

Definition 3.3. Suppose that for each fixed (x, p) the function W (δ, x, p) is dif-
ferentiable as a function of δ for δ = 0, that there is a unique solution p̂(x) of
the equation

∂W

∂δ
(0, p, x) = 0,

then p̂(x) is the fair option price at time t = 0.

Theorem 3.2. (Davis)
Suppose that Ũ is differentiable at each x ∈ R+ and that Ũ ′(x) > 0. Then the
fair price p̂(x) of Definition [3.2] is given by

p̂ =
E

[
U ′
(
Vϕ∗,x(T )

)
X

]
Ũ ′(x)

(3.43)

Proof
see Bingham and Kiesel [8]

3.3.2 The Esscher Measure

Let S(t) denote the price at time t of a non-dividend paying stock. Assume
that there is a stochastic process {X(t)} with independent and stationary in-
crements such that

S(t) = S(0)eX(t) t ≥ 0 (3.44)

Assume that the moment-generating function of X(t), given by

M(h, t) = E

[
ehX(t)

]
exists, then

M(h, t) = [M(h, 1)]t

the process{
ehX(t)M(h, 1)−t

}
t≥0

is a positive martingale and can be used to define a change of probability mea-
sure, i.e., it can be used to define the Radon-Nikodym derivative dQ

dP of a new
probability measure Q with respect to the original probability measure P . Q
is called the Esscher measure of parameter h. Gerber and Shiu [23] introduced
the risk-neutral Esscher measure: the Esscher measure of parameter h = h∗

such that the discounted price process

{e−rtS(t)}t≥0,
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3.3. Pricing in Incomplete Markets

is a martingale. The condition that

E[e−rtS(t);h∗] = S(0),

yields

ert = E
[
eX(t);h∗

]
= E

[
eX(t)+h∗X(t)

M(h∗, 1)t

]
=

[
M(1 + h∗, 1)
M(h∗, 1)

]t

or er = M(1+h∗,1)
M(h∗,1) .

This equation then uniquely determines the parameter h∗, because for t ≥ 0

ehX(t)M(h, 1)−t =
ehX(t)

E[ehX(t)]

=
S(t)h

E[S(t)h]
.

We thus have the following lemma.

Lemma 3.1. (Factorization Formula)

For g a measurable function and h, k and t real numbers, with t ≥ 0

E[S(t)kg(S(t));h] = E[S(t)k;h]E[g(S(t)); k + h] (3.45)

Proof
see Bingham and Kiesel [8]. The above Esscher measure offers us an attrac-
tive way of finding an equivalent martingale measure in an incomplete market
model.

Example 3.3
Consider the following incomplete market model :

dS(t) = S(t)[µdt+ σ1dB1(t) + σ2dB2(t)] (3.46)

integrating the above (S.D.E) gives

ln(S(t))− ln(S(0)) = µt+ σ1B1(t) + σ2B2(t),

so that

S(t) = S(o)e[µt+σ1B1(t)+σ2B2(t)]. (3.47)

But by the Itô formula applied to two dimensional Brownian motion we have

dS(t) = S(t)µdt+ S(t)[σ1dB1(t) + σ2dB2(t)] +
1
2
(σ2

1 + σ2
2)dt. (3.48)
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3.3. Pricing in Incomplete Markets

Hence, we must have

S(t) = S(0)e[(µ−
1
2
(σ2

1+σ2
2))t+σ1B1(t)+σ2B2(t)]. (3.49)

Let

X(t) = [(µ− 1
2
(σ2

1 + σ2
2))t+ σ1B1(t) + σ2B2(t)],

so that

S(t) = S(0)eX(t).

We can thus apply the Esscher measure technique to evaluate the price of a
European call option with maturity T and strike price K on the underlying
stock, with price dynamics S(t). By the risk-neutral valuation principle, we
have to calculate

E[e−rT (S(T )−K)+;h∗]
= E[e−rT (S(T )−K)1{S(T )>K};h

∗]

= e−rT

[
E[S(T )1{S(T )>K};h

∗]−KE[1{S(T )>K};h
∗]
]
.

To evaluate the first term we apply the factorization formula with k = 1, h = h∗

and g(x) = 1{x>K} and get

E[S(T )1{S(T )>K};h
∗] = E[S(T );h∗]E[1{S(T )>K};h

∗ + 1]

= E[e−rTS(T );h∗]erTP [S(T ) > K;h∗ + 1]
= S(0)erTP [S(T ) > K;h∗ + 1],

where we have used the martingale property of the discounted stock price pro-
cess e−rtS(t) under the risk-neutral Esscher measure for the last step. Thus the
pricing formula for a European call option becomes

S(0)P [S(T ) > K;h∗ + 1]− e−rTKP [S(T ) > K;h∗], (3.50)

when σ2 = 0, that is when there is only one source of randomness, the above
formula recovers the Black-Scholes pricing formula.
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Chapter 4

Completion of a Market that is
Incomplete Due to More
Randomness than Tradable
Assets

In a complete market every contingent claim can be replicated by trading in
the underlying assets. That is, every contingent claim is attainable. While in
an incomplete market we have claims that cannot be hedged by a self financing
portfolio. In this chapter we look at a market with one tradable risky asset and
two sources of risk. We show that such a market is incomplete, i.e, has more
randomness than tradable assets. We then suggest a method of completing
such a market, and show that such a market can be completed by trading in
the stock and its quadratic variation.

4.1 Incompleteness Due to More Randomness than
Tradable Assets

Suppose one has an incomplete market given by

dX0 = qX0dt,

dX1 = αdt+ σ1dB1(t) + σ2dB2(t). (4.1)

We have shown in Chapter 2 (example 2.4) that this market is incomplete, and
that any claim given by F{ω} = g(B2(t)) in this market cannot be hedged. We
will make use of the Girsanov’s Theorem to change the probability measure
P to a new risk neutral measure Q, and enlarge the market using quadratic
variation assets to show that such a market can be completed in a similar fash-
ion as Corcuera and Nualart [12] did in their paper on incomplete markets due
to jumps. We will then complete this market using two independent options,
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4.2. Quadratic Variation Assets

where we will use the second option to hedge away the risk associated with the
second Brownian motion.

4.2 Quadratic Variation Assets

By Girsanov’s Theorem, applied to the above market (4.1), we have(
σ1 σ2

)( u1

u2

)
= α− qX1(t).

It follows that

σ1u1 + σ2u2 = α− qX1(t).

Therefore

u1 =
α− qX1(t)− σ2λ

σ1
,

u2 = λ,

for some constant λ ∈ R.
One can immediately see from the above market price of risk u, that the equiv-
alent risk neutral measure Q is not unique and depends on the chosen value of
λ. Hence, the market is incomplete. Also B̃(t) given by dB̃(t) = u(t)dt+ dB(t) is
by Girsanov’s Theorem a Q Brownian motion where

dQ(ω)
dP (ω)

= M(t),

with

M(t) = exp{−
∫ t

0
u(s)dB(s)− 1

2

∫ t

0
u2(s)ds}, 0 ≤ t ≤ T.

Thus

dB̃1(t) =
α− qX1(t)− σ2λ

σ1
dt+ dB1(t),

dB̃2(t) = λdt+ dB2(t),

our market in (4.1) then becomes,

dX1(t) = αd(t) + σ1dB1(t) + σ2dB2(t)

= αdt+ σ1[dB̃1(t)−
α− qX1(t)− σ2λ

σ1
dt] + σ2[dB̃2(t)− λdt]

= qX1(t)dt+ σ1dB̃1(t) + σ2dB̃2(t). (4.2)

Which is the equivalent martingale measure Q under which our market in (1.1)
remains the same. It is well known that a classical friction free model contain-
ing a risky stock and a bank account admits no arbitrage if and only if there
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4.2. Quadratic Variation Assets

exists a probability measure Q on the model under which the stock price dis-
counted by the interest rate on the bank account is a martingale. Thus the
discounted stock price process given by Y (t) = Y1(t) = X1(t)

X0(t) remains a Q mar-
tingale. We will enlarge our market with what we will call the ith-variation
process.

Let Z1(t) = Y 2
1 (t)− 〈Y1〉t.

We know from the Doob-Meyer decomposition that the process Z1(t) is martin-
gale. Also let W1(t) = eqtZ1(t) where we assume the riskless rate of interest q
to be a constant and X0(t) = eqt is the riskfree bond or bank account at time t

Note that the discounted process W1(t) is a Q martingale since

E[e−qtW1(t)|Fs]
= E[Z1(t)|Fs]
= Z1(s) 0 ≤ s ≤ t.

Also note that

dZ1(t) = 2Y1(t)dY1(t) (4.3)

where
dY1(t)
Y1(t)

=
dX1(t)
X1(t)

− dX0(t)
X0(t)

− dX1(t)
X1(t)

dX0(t)
X0(t)

− (
dX0(t)
X0(t)

)2 (4.4)

= qdt+
1

X1(t)
[σ1dB̃1(t) + σ2dB̃2(t)]− qdt

=
1

X1(t)
[σ1dB̃1(t) + σ2dB̃2(t)]

hence

dY1(t) = X−1
0 [σ1dB̃1 + σ2dB̃2(t)] (4.5)

and

dZ1(t) = 2Y1(t)e−qt[σ1dB̃1(t) + σ2dB̃2(t)] (4.6)

so that

dW1(t) = qeqtZ1(t)dt+ eqtdZ1(t)
= qeqtZ1(t)dt+ 2Y1(t)[σ1dB̃1(t) + σ2dB̃2(t)].

Now let Y2(t) = e−qtW1(t), which we have shown to be a martingale under the
risk neutral measure Q equivalent to the real world measure P . We thus have
again that

Z2(t) = Y 2
2 (t)− 〈Y2〉t,
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4.2. Quadratic Variation Assets

is again a Q martingale, so if we let

W2(t) = eqtZ2(t),

we know that its discounted version given by

Y3(t) = e−qtW2(t),

is a martingale with respect to Q and its differential form is given by

dW2(t) = qeqtZ2(t)dt+ eqtdZ2(t). (4.7)

Where

dZ2(t) = 2Y2(t)dY2(t) + dY2(t)dY2(t)− d〈Y2〉t
= 2Y2(t)dY2(t)
= 4Y1(t)Y2(t)X−1

0 [σ1dB̃1(t) + σ2dB̃2(t)].

Thus

dW2(t) = qeqtZ2(t)dt+ eqtdZ2(t)
= qeqtZ2(t)dt+ 4eqtY1(t)Y2(t)X−1

0 [σ1dB̃1(t) + σ2dB̃2(t)]

which justifies the fact that the process Z(t) is indeed a martingale with respect
to Q as it does not contain the drift part (dt) and the fact that it is driven by the
two dimensional Q Brownian motion B̃(t) = {B̃1(t), B̃2(t)}. Now if we let

Z3(t) = Y 2
3 (t)− 〈Y3〉t,

the process Z3(t) is again a Q martingale, so we have

W3(t) = eqtZ3(t),

where

dW3(t) = qeqtZ3(t)dt+ eqtdZ3(t) (4.8)

and

dZ3(t) = 2Y3(t)dY3(t) + dY3(t)dY3(t)− d〈Y3〉t
= 2Y3(t)dY3(t)
= 8Y1(t)Y2(t)Y3(t)X−1

0 [σ1dB̃1(t) + σ2dB̃2(t)],

so that

dW3(t) = qeqtZ3(t)dt+ eqtdZ3(t)
= qeqtZ3(t)dt+ eqt8Y1(t)Y2(t)Y3(t)X−1

0 [σ1dB̃1(t) + σ2dB̃2(t)].
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4.3. Completeness and Martingale Representation

The above mentioned process gives us three additional tradable asset with price
process Wi(t) = {W1(t),W2(t),W3(t)} driven by the following stochastic differ-
ential equations

dW1(t) = qeqtZ1(t)dt+ 2Y1(t)[σ1dB̃1(t) + σ2dB̃2(t)],
dW2(t) = qeqtZ2(t)dt+ 4eqtY1(t)Y2(t)X−1

0 [σ1dB̃1(t) + σ2dB̃2(t)],

dW3(t) = qeqtZ3(t)dt+ eqt8Y1(t)Y2(t)Y3(t)X−1
0 [σ1dB̃1(t) + σ2dB̃2(t)].

We call our processes Wi = {Wi(t), t ≥ 0} quadratic variation processes.

4.3 Completeness and Martingale Representation

Theorem 4.1. (The Martingale Representation Theorem)]

Let B(t) = (B1(t), B2(t), ..., Bn(t)) be n-dimensional. Suppose Mt is an F (n)
t -

martingale (w.r.t P) for all t. Then there exists a unique stochastic process
Γ(u) = {Γ1(u),Γ2(u), ...,Γn(t)} for every t > 0 such that

Mt(u) = E[M0] +
∫ t

0
Γ(u)dB(u) a.s. for all t ≥ 0. (4.9)

Proof
see Øksendal [37]

We will make use of martingale representative property (MRP) which says that
any square-integrable Q-martingale Mt can be represented as follows:

Mt = M0 +
∫ t

0
Γ(u)dB̃(u) 0 < t < T (4.10)

such that

E[
∫ t

0
|Γ(u)|2du] <∞.

Now consider an incomplete market driven by an SDE given below

dX0(t) = qX0(t)dt,
dX1(t) = αdt+ σ1dB1(t) + σ2dB2(t) + ...+ σpdBp(t).

Then by Girsanov’s Theorem we have

(
σ1 σ2 . . . σp

)


u1

u2
...
up

 = α− qX1(t).
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Which in the same way as our previous example (4.1) gives

dX1(t) = qX1(t)dt+ σ1dB̃1(t) + σ2dB̃2(t) + ...+ σpdB̃P (t), (4.11)

which is an equivalent martingale measure Q under which our market remains
the same and the discounted price process Y1(t) =

bX1(t)
X0(t) remains aQmartingale.

We can easily derive the set of quadratic variation processes using the method
described in section 4.2, which we will use to enlarge our market model. These
quadratic variation processes are given by

W (t) = {W1(t);W2(t); ...;WN (t)}.

Proposition 4.1. An incomplete model given above enlarged using the quadratic
variation process, can be completed, in the sense that any square-integrable con-
tingent claim X(t) can be replicated.

Proof
Consider a square-integrable contingent claim X(t) with maturity T.
Let Mt = EQ[e−qTX|Ft]
By the (MRP) given by Theorem 4.1, define:

MN
t = M0 +

∫ t

0
ω1(u)dY (u) +

N∑
i=2

∫ t

0
ωi(u)dZi(u),

where ωi(u),{i = 1, 2, . . . , N} are predictable processes, such that

E[
∫ t

0
|ωi(u)|2du] <∞.

Define the sequence of portfolios

θN = {θN
t = (αN

t ;β1(t);β2(t); ...;βN (t)) t ≥ 0} (4.12)

by

αN
t = MN

t − β1(t)X1(t)e−qt − e−qt
N∑

i=2

βi(t)Wi(t),

β1(t) = eqtω(t)X−1
0 (t),

βi(t) = ωi(t) i ≥ 2.

The portfolio {θN , N ≥ 2} is the sequence of self-financing portfolios which repli-
cates X(t). In fact the value of θN at time t is given by

V N
t = αN

t e
qt + β1(t)X1(t) +

N∑
i=2

βi(t)Wi(t)

= eqtMN
t ,
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so the sequence of portfolios {θN , N > 2} is replicating the claim. Denote by

GN
u = q

∫ u

0
αN

t e
qtdt+

∫ u

0
β1(t)dX1(t) +

N∑
i=2

∫ u

0
βi(t)dWi(t), (4.13)

the gain process.
We want to show that GN

u + M0 = MN
u e

qu. Which implies that the portfolio is
self-financing.
We have

GN
u = q

∫ u

0
MN

t e
qtdt− q

∫ u

0
ωte

qtdt− q
N∑

i=2

∫ u

0
ωi(t)Wi(t)dt

+
∫ u

0
ω(t)eqtX−1

0 (t)dX1(t) +
N∑

i=2

∫ u

0
ωi(t)dWi(t). (4.14)

Now integrating by part gives us

q

∫ u

0
MN

t e
qtdt

= equMN
u −M0 −

∫ u

0
ω1(t)eqtdY (t)−

N∑
i=2

∫ u

0
ωi(t)eqtdZi(t) (4.15)

since dMN
t = ω1(t)dY (t) +

∑N
i=2 ωi(t)dZi(t).

Now substituting (4.15) into (4.14) yields

GN
u = equMN

u −M0 −
∫ t

o
ω1(t)eqtdY (t)−

N∑
i=2

∫ u

0
ωi(t)eqtdZi(t)

−q
∫ u

0
ω1(t)Y (t)eqtdt− q

N∑
i=2

∫ u

0
ωi(t)Wi(t)dt

+
∫ u

0
ω(t)eqtX−1

0 dX1(t) +
N∑

i=2

∫ u

0
ωi(t)dWi(t)

= equMN
u −M0 − q

∫ u

0
ω1(t)Y (t)eqtdt−

∫ u

0
ω1(t)eqtdY (t)

+
∫ u

0
ω(t)eqtX−1

0 (t)dX1(t)

= eqtMN
u −M0.

Which completes our market model as required.
Thus such an incomplete market model can be completed as shown in this
project irrespective of the number of diffusion terms, since such terms can be
compensated by increasing the quadratic variation process shown in this paper
to account for the extra diffusion terms.
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Now returning to the incomplete market model given in (4.1) we have the fol-
lowing proposition

Proposition 4.2. An incomplete model enlarged using the quadratic variation
process as shown is complete, in the sense that any square-integrable contingent
claim X(t) can be replicated.

Proof
Consider a square-integrable contingent claim X(t) with maturity T.
Let Mt = EQ[e−qTX|Ft].
By the (MRP) given in theorem (4.1), define:

M3
t = M0 +

∫ t

0
ω1(u)dY (u) +

3∑
i=2

∫ t

0
ωi(u)dZi(u).

Where ωi(u),{i = 1, 2, . . . , N} are predictable processes, such that

E[
∫ t

0
|ωi(u)|2du] <∞.

Define the sequence of portfolios

θ3 = {θ3
t = (α3

t ;β1(t);β2(t);β3(t)) t ≥ 0}, (4.16)

by

α3
t = M3

t − β1(t)X1(t)e−qt − e−qt
3∑

i=2

βi(t)Wi(t),

β1(t) = eqtω(t)X−1
0 (t),

βi(t) = ωi(t) i = 2, 3.

Where α3
t is the amount of money in the bank account at time t, β1(t) is the

number of stocks at time t and βi(t) i = 2, 3 is the number of quadratic varia-
tion assets {Wi(t)}, that one need to hold at time t.
The portfolio {θ3} is the sequence of self-financing portfolios which replicates
X(t). In fact the value of θ3 at time t is given by

V 3
t = α3

t e
qt + β1(t)X1(t) +

3∑
i=2

βi(t)Wi(t)

= eqtM3
t

so the sequence of portfolios {θ3} is replicating the claim. Denote by

G3
u = q

∫ u

0
α3

t e
qtdt+

∫ u

0
β1(t)dX1(t) +

3∑
i=2

∫ u

0
βi(t)dWi(t) (4.17)
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4.3. Completeness and Martingale Representation

the gain process. We want to show that G3
u +M0 = M3

ue
qu. Which implies that

our portfolio given above is self-financing hedging portfolio that replicates any
contingent claim X(T ).
We have

G3
u = q

∫ u

0
M3

t e
qtdt− q

∫ u

0
ω1(t)Y (t)eqtdt− q

3∑
i=2

∫ u

0
ωi(t)Wi(t)dt

+
∫ u

0
ω1(t)eqtX−1

0 (t)dX1(t) +
3∑

i=2

∫ u

0
ωi(t)dWi(t). (4.18)

Now integrating by part we get

q

∫ u

0
M3

t e
qtdt

= equM3
u −M0 −

∫ u

0
eqtdM3

t

= equM3
u −M0 −

∫ u

0
ω1(t)eqtdY (t)−

3∑
i=2

∫ u

0
ωi(t)eqtdZi(t), (4.19)

since dM3
t = ω1(t)dY (t) +

∑3
i=2 ωi(t)dZi(t).

Now substituting (4.19) into (4.18) yields

G3
u = equM3

u −M0 −
∫ t

o
ω1(t)eqtdY (t)−

3∑
i=2

∫ u

0
ωi(t)eqtdZi(t)

−q
∫ u

0
ω1(t)Y (t)eqtdt− q

3∑
i=2

∫ u

0
ωi(t)Wi(t)dt

+
∫ u

0
ω1(t)eqtX−1

0 dX1(t) +
3∑

i=2

∫ u

0
ωi(t)dWi(t) (4.20)

= equM3
u −M0 − q

∫ u

0
ω1(t)Y (t)eqtdt−

∫ u

0
ω1(t)eqtdY (t)

+
∫ u

0
ω1(t)eqtX−1

0 (t)dX1(t) (4.21)

= eqtM3
u −M0 (4.22)

which complete our market model as required. We have thus obtained a self-
financing portfolio which hedges any contingent claim F (ω) = X(t)) in this
market
Note that the equality sign from the first line above (4.20) to the second line
(4.21) comes from the fact that Zi(t) = e−qtWi(t) which then implies that

dZi(t) = −qe−qtWi(t)dt+ e−qtdWi(t), (4.23)
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4.4. Construction of The Hedging Portfolio

so we must have
3∑

i=2

∫ u

0
ωi(t)eqtdZi(t)

=
3∑

i=2

∫ u

0
ωi(t)eqt(−qe−qtWi(t)dt+ e−qtdWi(t))

= −q
3∑

i=2

∫ u

0
ωi(t)Wi(t)dt+

3∑
i=2

∫ u

0
ωi(t)dWi(t).

Which after substitution gives the required result. The equality from the second
line (4.21) above to the last line above (4.22), comes from the fact that

dY (t) = X−1
0 (t)(σ1dB̃1(t) + σ2dB̃2(t))

dX1(t) = qX1(t)dt+ σ1dB̃1(t) + σ2dB̃2(t).

Which after equating the two equations above gives

dX1(t) = qX1(t)dt+X0(t)dY (t). (4.24)

So we have∫ u

0
ω1(t)eqtX−1

0 (t)dX1(t)

=
∫ u

0
ω1(t)eqtX−1

0 (t)(qX1(t)dt+X0(t)dY (t))

= q

∫ u

0
ω1(t)eqtX−1

0 (t)X1(t)dt+
∫ u

0
ω1(t)eqtX−1

0 (t)X0(t)dY (t)

= q

∫ u

0
ω1(t)eqtY (t)dt+

∫ u

0
ω1(t)eqtdY (t).

Where as before Y (t) = X−1
0 (t)X1(t), thus the result follows.

4.4 Construction of The Hedging Portfolio

In this section we show how to construct the self financing portfolio used to
hedge contingent claims in the enlarged market, which consist of bonds (or
bank account), quadratic variation asset and stocks.
Consider a market given by

dX1 = qX1dt+ σ1dB1 + σ2dB2,

dZ2 = φ2(t)dt+ ξ2(t)[σ1dB1 + σ2dB2],
dZ3 = φ3(t)dt+ ξ3(t)[σ1dB1 + σ2dB2],
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4.4. Construction of The Hedging Portfolio

where X1(t) is our stock price process while Z2(t) and Z3(t) is our second and
third quadratic variation price process respectively as defined in section (4.2).
A contingent claim X(t) = f(S(T )) at time t is given by

F (t, S) = exp (−q(T − t))EQ[f(S(T )) Ft]

We call F (t, x) the price of the contingent claim X
A portfolio consisting of −∆ units of the underlying is given by

Π = f −∆X1

And the change in the value of this portfolio is given by

dΠ = df −∆dX1

When we apply the Itô lemma on f , we get

df = ∂f
∂t dt+ ∂f

∂X1
dX1 + 1

2

∑3
(i,j)=1

∂2f
∂Zi∂Zj

ξiξj(σ2
1 + σ2

2)dt+
∑3

i=2
∂f
∂Zi

dZi

Where we have, without loss of generality,
let X1 = Z1, φ1(t) = qX1(t) and ξ1(t) = 1. So we must have

dΠ = [
∂f

∂t
+

1
2

3∑
(i,j)=1

∂2f

∂Zi∂Zj
ξiξj(σ2

1 + σ2
2)]dt

+(
∂f

∂X1
−∆)dX1 +

3∑
i=2

∂f

∂Zi
dZi

Now setting ∆ = ∂f
∂X1

and using the no-arbitrage argument used in the Black-
Scholes model of Chapter (3) we have

dΠ = [
∂f

∂t
+

1
2

3∑
(i,j)=1

∂2f

∂Zi∂Zj
ξiξj(σ2

1 + σ2
2)]dt+

3∑
i=2

∂f

∂Zi
dZi

= q(f −∆X1)dt

= q(f −X1
∂f

∂X1
)dt

Now comparing the dt terms we see that

∂f

∂t
+

1
2

3∑
(i,j)=1

∂2f

∂Zi∂Zj
ξiξj(σ2

1 + σ2
2) = q(f −X1

∂f

∂X1
). (4.25)

Hence

1
2

3∑
(i,j)=1

∂2f

∂Zi∂Zj
ξiξj(σ2

1 + σ2
2) =

∂f

∂t
+ qf − qX1

∂f

∂X1
. (4.26)
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4.4. Construction of The Hedging Portfolio

We can now calculate the sequence of self-financing portfolios that replicates
the contingent claim X(t).

Proposition 4.3. The sequence of self-financing portfolios replicating a contin-
gent claim X with a payoff only depending on the stock price value equation
(4.14) at maturity and the price function F (t, x) ∈ C2 is given at time t by

ΦN
t = {ΦN

t = (αN
t , β1(t), . . . , βN (t)), t ≥ 0} (4.27)

number of bonds = αN
t = X−1

0 (f −X1
∂f

∂X1
)−X−1

0

N∑
2

X−1
0

∂f

∂Zi(t)
Wi(t)

number of stocks = β1(t) =
∂f

∂X1(t)

number of quadratic variation assets = βi(t) = X−1
0

∂f

∂Zi(t)
i = 2, 3, . . . , N.

Proof
Applying Itô lemma to f(t,X1(t)) for the price process given in equation (4.14),
gives us

f(t,X1)− f(0, x) =
∫ t

0

∂f

∂t
ds+

∫ t

0

1
2

N∑
(i,j)=1

∂2f

∂Zi∂Zj
ξiξj(σ2

1 + σ2
2)ds+

∫ t

0

∂f

∂X1
dX1

+
∫ t

0

N∑
2

∂f

∂Zi(t)
dZi

=
∫ t

0

∂f
∂t +

∫ t
0

1
2

∑N
(i,j)=1

∂2f
∂Zi∂Zj

ξiξj(σ2
1 + σ2

2)

qX0
dX0

+
∫ t

0

∂f

∂X1
dX1 +

∫ t

0

N∑
2

∂f

∂Zi(t)
dZi

=
∫ t

0

∂f
∂t +

∫ t
0

1
2

∑N
(i,j)=1

∂2f
∂Zi∂Zj

ξiξj(σ2
1 + σ2

2)− q
∑N

2 Zi
∂f
∂Zi

qX0
dX0

+
∫ t

0

∂f

∂X1
dX1 +

∫ t

0

N∑
2

X−1
0

∂f

∂Zi(t)
dWi(t)

=
∫ t

0
X−1

0

[
f +X1

∂f

∂X1
−

N∑
2

X−1
0

∂f

∂Zi
Wi(t)

]
dX0

+
∫ t

0

∂f

∂X1
dX1 +

∫ t

0

N∑
2

X−1
0

∂f

∂Zi(t)
dWi(t).
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4.5. Pricing in an Incomplete Market with more Randomness than Tradable Assets

Where we have used the PDE given by

1
2

N∑
(i,j)=1

∂2f

∂Zi∂Zj
ξiξj(σ2

1 + σ2
2) =

∂f

∂t
+ qf − qX1

∂f

∂X1
, (4.28)

for the market consisting of N quadratic variation price processes and the fact
that Zi(t) = e(−qt)Wi(t) (for i ≥ 2) or equivalently we have

dZi(t) = −qe(−qt)Wi(t)dt+ e(−qt)dWi(t) (4.29)
= −qZi(t)dt+X−1

0 dWi(t).

For the market given in equation (4.27) for N = 3 we have the following propo-
sition.

Proposition 4.4. The sequence of self-financing portfolios replicating a contin-
gent claimX with a payoff only depending on the stock price value equation (4.3)
at maturity and the price function F (t, x) ∈ C2 is given at time t by

Φ3
t = {Φ3

t = (α3
t , β1(t), β2(t), β3(t)), t ≥ 0} (4.30)

number of bonds = α3
t = X−1

0 (f −X1
∂f

∂X1
)−X−1

0

3∑
2

X−1
0

∂f

∂Zi(t)
Wi(t)

number of stocks = β1(t) =
∂f

∂X1(t)

number of quadratic variation assets = βi(t) = X−1
0

∂f

∂Zi(t)
i = 2, 3.

4.5 Pricing in an Incomplete Market with more Ran-
domness than Tradable Assets

Consider again the incomplete market given by

dX0 = qX0dt,

dX1 = αdt+ σ1dB1(t) + σ2dB2(t).

Now consider a portfolio consisting of the option we wish to use to price the
underlying stock f as well as another option, independent of our first option f1,
to hedge the risk associated with the second randomness. Then the value of our
portfolio is given by

Π = f −∆S −∆1f1

dΠ = df −∆dS −∆1df1.
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4.5. Pricing in an Incomplete Market with more Randomness than Tradable Assets

By the Itô Lemma on f we have that

df =
∂f

∂t
dt+

∂f

∂X0
dX0 +

∂f

∂S
dS +

1
2
∂2f

∂S2
(dS)2

=
∂f

∂t
dt+ qX0

∂f

∂X0
dt+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
dt+

α
∂f

∂S
dt+

∂f

∂s
(σ1dB1(t) + σ2dB2(t))

=
[
∂f

∂t
+ qX0

∂f

∂X0
+ α

∂f

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2

]
dt+

σ1
∂f

∂S
dB1(t) + σ2

∂f

∂S
dB2(t)

We can produce a similar process for f1. Substituting both f and f1 into our
portfolio equation (4.29) we get

dΠ =
[
∂f

∂t
+ qX0

∂f

∂X0
+ α

∂f

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2

]
dt

−∆1

[
∂f1

∂t
+ qX0

∂f1

∂X0
+ α

∂f1

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f1

∂S2

]
dt+

(σ1
∂f

∂S
−∆1σ1

∂f1

∂S
)dB1(t) + (σ2

∂f

∂S
−∆1σ2

∂f1

∂S
)dB2(t)

−α∆dt−∆σ1dB1(t)−∆σ2dB2(t)

Which then implies that

dΠ =
[
∂f

∂t
+ qX0

∂f

∂X0
+ α

∂f

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
− α∆

]
dt

−∆1

[
∂f1

∂t
+ qX0

∂f1

∂X0
+ α

∂f1

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f1

∂S2

]
dt+

(σ1
∂f

∂S
−∆1σ1

∂f1

∂S
−∆σ1)dB1(t) + (σ2

∂f

∂S
−∆1σ2

∂f1

∂S
−∆σ2)dB2(t)

To remove the randomness from our portfolio, we must choose ∆ and ∆1 in such
a way that

σ1
∂f

∂S
−∆1σ1

∂f1

∂S
−∆σ1 = 0 (4.31)

and

σ2
∂f

∂S
−∆1σ2

∂f1

∂S
−∆σ2 = 0. (4.32)

This change of our portfolio then gives us a portfolio consisting of only the dt
term which we call the return of the portfolio. Keeping in mind that we are
working in a no-arbitrage environment and thus our portfolio cannot earn more
than the risk-free rate. That is

dΠ = qΠdt (4.33)
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for no-arbitrage opportunities to exist, which then gives

dΠ =
[
∂f

∂t
+ qX0

∂f

∂X0
+ α

∂f

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
− α∆

]
dt

−∆1

[
∂f1

∂t
+ qX0

∂f1

∂X0
+ α

∂f1

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f1

∂S2

]
dt

= qΠdt
= q(f −∆S −∆1f1)dt.

This then implies that

∂f

∂t
+ qX0

∂f

∂X0
+ α

∂f

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
− α∆

−∆1

[
∂f1

∂t
+ qX0

∂f1

∂X0
+ α

∂f1

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f1

∂S2

]
= qf −∆qS −∆1f1.

But ∆ = ∂f
∂S −∆1

∂f1

∂S , so we must have

∂f

∂t
+ qX0

∂f

∂X0
+ α

∂f

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
− α

∂f

∂S
+ α∆1

∂f1

∂S
− rf

= ∆1

[
∂f1

∂t
+ qX0

∂f1

∂X0
+ α

∂f1

∂S
+

1
2
(σ2

1 + σ2
2)
∂2f1

∂S2

]
−qS ∂f

∂S
+ ∆1qS

∂f1

∂S
−∆1qf1.

Which then implies that

∂f

∂t
+ qX0

∂f

∂X0
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
+ qS

∂f

∂S
− rf

= ∆1

[
∂f1

∂t
+ qX0

∂f1

∂X0
+

1
2
(σ2

1 + σ2
2)
∂2f1

∂S2
+ qS

∂f1

∂S
− qf1

]
.

Now by setting ∆1 = ∂f
∂S /

∂f1

∂S as the value of the number of second options f1

required in other to hedge our portfolio, our equation above then becomes

∂f
∂t + qX0

∂f
∂X0

+ 1
2(σ2

1 + σ2
2)

∂2f
∂S2 + qS ∂f

∂S − qf
∂f
∂s

=
∂f1

∂t + qX0
∂f1

∂X0
+ 1

2(σ2
1 + σ2

2)
∂2f1

∂S2 + qS ∂f1

∂S − qf1

∂f1

∂S

.

From this equation one can see that the left-hand side of the equation is a func-
tion of f which is independent of f1, similarly the right-hand side is a function
of f1 which is also independent of f .
Since both f and f1 will generally have different payoffs, time to maturities and
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strike price for an option, the only way the above equation will hold is if both
sides are independent of contract type. Since each side is independent of our
chosen derivatives f and f1, we can put both sides equal to some arbitrary func-
tion λ(t, S),
which gives us

∂f
∂t + qX0

∂f
∂X0

+ 1
2(σ2

1 + σ2
2)

∂2f
∂S2 + qS ∂f

∂S − qf
∂f
∂s

= λ(t, S). (4.34)

Hence

∂f

∂t
+ qX0

∂f

∂X0
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
+ (qS − λ)

∂f

∂S
− qf = 0. (4.35)

In fact

∂f

∂t
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
+ (qS − λ)

∂f

∂S
− qf = 0. (4.36)

Similarly for f1

∂f1

∂t
+

1
2
(σ2

1 + σ2
2)
∂2f1

∂S2
+ (qS − λ)

∂f1

∂S
− qf1 = 0, (4.37)

the function λ(t, S) is called the market price of risk.

Proposition 4.5. The above options f and f1 are the options that complete our
market model 4.1 in the sense that the claims Fω = g(B2(t)), which we could not
hedge before, can now be hedged by the options f and f1.

Proof
Consider the PDE obtained above for the price of the option f given by

∂f

∂t
+

1
2
(σ2

1 + σ2
2)
∂2f

∂S2
+ (qS − λ)

∂f

∂S
− qf = 0. (4.38)

Applying the Feynman-Kac formula to the above PDE we get that

Af − qf = −qf +
1
2
(σ2

1 + σ2
2)
∂2f

∂S2
+ (qS − λ)

∂f

∂S

⇒ Af =
1
2
(σ2

1 + σ2
2)
∂2f

∂S2
+ (qS − λ)

∂f

∂S
.

If we apply the generator of the Itô diffusion we get that

dX1(t) = (qX1(t)− λ(t,X1))dt+ σ∗dW (t). (4.39)

Where X1 = S, σ2
∗ = (σ2

1 + σ2
2) and W (t) is a Brownian motion, which complete

our market model as required.
If for example one wanted to price a contingent claim for f given by a European
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call option f(t,X1) = (X1 − K)+ in the above market. By the Feynman-Kac
formula we have that

f(t, x) = Ex[e(−
R t
0 q(X(s))ds)f(X(t))]

= Ex[eqtf(X1(t))].

Where X1(t) is given by

X1(t) = X1(0) +
∫ t

0
δ(t,X1)dt+ σ∗W (t). (4.40)

With the mean and variance of X1 given by

E[X1] = ζ(X1) (4.41)
V ar[X1] = E[X2

1 ] + (E[X1])2

= ζ2 +
∫ t

0
σ2
∗dt− ζ2

= σ2
∗t.

For easy notation we have made δ(t,X1) = (qX1(t) − λ(t,X1)) and ζ(X1) =
X1(0) +

∫ t
0 δ(t,X1)dt. Now returning to our price for a European call option we

have

f(t,X1) =
e−qt

√
2πσ∗

∫
R
(X1 −K)+e−

1
2σ∗

(X1−ζ)2dX1. (4.42)

If we use the fact that −W (t) ∼ N(0, t) and that X1(t) > K for a European call
option, otherwise the option is not exercised, we have that

X1(0) +
∫ t

0
δ(t,X1)dt+ σ∗W (t) > K,

−W (t) <
−K +X1(0) +

∫ t
0 δ(t,X1)dt

σ∗
= d,

so that

f(t,X1) =
e−qt

√
2πt

∫ d

−∞
(ζ − σ∗y −K)e−

1
2t

y2
dy

= Ψ +
e−qt

√
2πt

σ∗t

∫ d1

−∞
eudu−K

e−qt

√
2πt

∫ d

−∞
e−

1
2t

y2
dy

= Ψ +
e(d1−qt)

√
2πt

σ∗t−Ke−qtN(d2).

Where d1 = −d2

2t ,

d2 =
−K +X1(0) +

∫ t
0 δ(t,X1)dt

σ∗
√
t

(4.43)
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and

Ψ =
e−qt

√
2πt

∫ d

−∞
ζe−

1
2t

y2
dy. (4.44)

Using the same argument we can also obtain a price for the contingency claim
f1(t,X1). When we compare our price with the one obtained in the Black-
Scholes option price for a call option, we see that the only difference lies in
the dynamics of the actual underlying stock price process. The Black-Scholes
model has stocks being modeled by a geometric Brownian motion, where else
our completed market had stocks being modeled by a process with a determin-
istic rate of return.

57



Chapter 5

Market Paying Transactional
Costs

Transactional costs are costs of buying and selling stocks and bonds in the mar-
ket. The process of buying and selling assets is not free, there are costs incurred
when one buys and sells assets. We will make use of a continuous market model
considered in the paper by Cvitanić and Karatzas [8], where they find an opti-
mal hedging portfolio under transactional costs. Such markets are incomplete
due to the cost incurred when buying and selling stocks and bonds. Hedging
is expensive, buyer’s and seller’s prices do not agree to the same value. Rather
than finding an optimal portfolio for the market, we attempt to complete such
a market model.

5.1 Transactional Costs Model

Consider a financial market consisting of a bond or bank account (riskless asset)
and one stock (risky asset) driven by the stochastic equation

dS0(t) = S0(t)r(t)dt, S0(0) = 1, (5.1)
dS(t) = S(t)[b(t)dt+ σ(t)dB(t)], S(0) = x, xε(0,∞), (5.2)

where as before, t ∈ [0, T ] and B(t) is a one-dimensional Brownian motion.
Now, a trading strategy is a pair (L,M) of F-adapted processes on [0, T ] with
left continuous-nondecreasing paths and L(0) = M(0) = 0.
L(t) (respectively, M(t)) represent the total amount of funds transferred from
bank account to stock (respectively from stock to bank account) by time t. Given
proportional transactional costs 0 < λ, µ < 1 for such transfers, and initial
holdings x and y in bank and stock respectively. The portfolio holding X(t) and
Y (t) corresponding to a given trading strategy (M,L),
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evolve according to the equations

X(t) = x− (1 + λ)L(t) + (1− µ)M(t) +
∫ t

0
X(u)r(u)du, 0 ≤ t ≤ T,

Y (t) = y + L(t)−M(t) +
∫ t

0
Y (u)[b(u)du+ σ(u)dB(u)],

is an incomplete market model. Hence, there are claims in this market which
cannot be hedged by a self financing portfolio.

5.2 Claims that Cannot be Hedged in a Market Pay-
ing Transactional Costs

If one holds θ1 funds in the bank account and θ2 funds in stocks then the value
of such a portfolio holding is given by

V (t) = θ1(t)X(t) + θ2(t)Y (t) tε[0, T ] (5.3)

For such a self financing portfolio we have

dV (t) = θ1(t)dX(t) + θ2(t)dY (t) (5.4)
= θ1(t)X(t)r(t)dt+ θ1(t)(1− µ)dM(t)− θ1(t)(1 + λ)dL(t) +

θ2(t)Y (t)b(t)dt+ θ2(t)Y (t)σ(t)dB(t) + θ2(t)[dL(t)− dM(t)]
= r(t)[V (t)− θ2(t)Y (t)]dt+ θ2(t)b(t)Y (t)dt+ θ1(t)(1− µ)dM(t)−

θ1(t)(1 + λ)dL(t) + θ2(t)σ(t)Y (t)dB(t) + θ2(t)[dL(t)− dM(t)]

= r(t)V (t)dt+
[b(t)− r(t)

σ(t)

]
θ2(t)Y (t)σ(t)dt+ θ2(t)σ(t)Y (t)dB(t) +

θ1(t)(1− µ)dM(t)− θ1(t)(1 + λ)dL(t) + θ2(t)[dL(t)− dM(t)]
= r(t)V (t)dt+ θ2(t)Y (t)σ(t)dB̃(t) + θ1(t)(1− µ)dM(t)

−θ1(t)(1 + λ)dL(t) + θ2(t)[dL(t)− dM(t)]
= r(t)V (t)dt+ θ2(t)Y (t)σ(t)dB̃(t) + [θ1(t)(1− µ)− θ2(t)]dM(t)

+[θ2(t)− θ1(t)(1 + λ)]dL(t).

After integration gives the value at time t of our portfolio to be given by

V (t) = V (0) +
∫ t

0
r(s)V (s)ds+

∫ t

0
θ2(s)Y (s)σ(s)dB̃(s)

+[θ1(t)(1− µ)− θ2(t)]M(t) + [θ2(t)− θ1(t)(1 + λ)]L(t), (5.5)

where θ = (θ1, θ2) are self-financing trading strategies.
Now if our portfolio θ = (θ1, θ2) hedges a contingent T-claim F (ω) we have

F (ω) = V (0) +
∫ T

0
r(s)V (s)ds+

∫ T

0
θ2(s)Y (s)σ(s)dB̃(s) +

[θ1(T )(1− µ)− θ2(T )]M(T ) + [θ2(T )− θ1(T )(1 + λ)]L(T ).

59



5.3. Completion of the Market Model

If we choose the claim to be given by any claim F (ω) = g(B̃(T )), then by the Itô
representation theorem applied to the one dimensional Brownian motion B̃(T )
there is a unique φ(t, ω) such that

g(B̃(T ) = EQ[g(B̃(T )] +
∫ T

0
φ(t, ω)dB̃(t). (5.6)

For this to be true we must have φ(t) = σ(t)θ2(t)Y (t) and EQ[g(B̃(T )] = V (0),
i.e. we must have

[θ1(t)(1− µ)− θ2(t)]M(t) + [θ2(t)− θ1(t)(1 + λ)]L(t) = 0.

Therefore the market is incomplete due to nonzero transactional costs incurred
when we transfer funds from bank to stock. Holding such a portfolio will be
very expensive and risky since we are not sure of how large the amount
ϕ(M,L) = [θ1(t)(1 − µ) − θ2(t)]M(t) + [θ2(t) − θ1(t)(1 + λ)]L(t) will be at some
future time T when we continuously transfer funds from bank to stock and vice
versa. Any claim of the amount ϕ(M,L) cannot be hedged by a self financing
portfolio if they are non-zero. Hence this market is an incomplete market.

5.3 Completion of the Market Model

To complete a market model paying transactional costs with a trading strategy
given by

dX(t) = X(t)r(t)dt+ (1− µ)dM(t)− (1 + λ)dL(t), (5.7)
dY (t) = Y (t)b(t)dt+ Y (t)σ(t)dB(t) + dL(t)− dM(t), (5.8)

we first consider the case when dM(t) = M(t)b(t)dt and dL(t) = L(t)r(t)dt then
we have

dY (t) = Y (t)b(t)dt+ Y (t)σ(t)dB(t) + L(t)r(t)dt−M(t)b(t)dt
= [L(t)r(t) + Y (t)b(t)−M(t)b(t)]dt+ Y (t)σ(t)dB(t)

= L(t)r(t)dt+ Y (t)σ(t)b(t)
[
Y (t)−M(t)
Y (t)σ(t)

dt+ dB(t)
]

= L(t)r(t)dt+ Y (t)σ(t)b(t)dB̃(t),

and

dX(t) = X(t)r(t)dt+ µ̃M(t)b(t)dt− λ̃L(t)r(t)dt
= (X(t)r(t)− λ̃L(t)r(t) + µ̃M(t)b(t))dt.

We therefore have under the risk-neutral measure Q, which is equivalent to the
real world measure P , a market consisting of

dX(t) = X∗(L,M, r, t)dt funds in bank account,
dY (t) = L(t)r(t)dt+ Y (t)b(t)σ(t)dB̃(t) funds in stock.
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We thus easily see that this is a complete market model with only one source
of randomness. Even though this market is complete it is very expensive to
hedge due to continuous payment of transactional costs when we continuously
transfer funds from stock to bank account and vice-versa. Now consider the
case when dM(t) = M(t)[b(t)dt + σ(t)dB(t)] and dL(t) = r(t)L(t)dt. The reason
we consider such a case is the fact that the amount of funds taken out of the
bank gains the same interest rate r(t) as any other funds in the bank account,
while the amount of funds in stock has the same risk B(t), the same interest
rate r(t) and volatility σ(t). Our bank and stock account satisfy:

dX(t) = Xrdt+ (1− µ)M [bdt+ σdB(t)]− (1 + λ)rLdt (5.9)

and

dY (t) = Y (t)b(t)dt+ Y (t)σ(t)dB(t) + r(t)L(t)dt−M(t)[b(t)dt+ σ(t)dB(t)]
= [Y (t)b(t) + r(t)L(t)−M(t)b(t)]dt+ [Y (t)−M(t)]σ(t)dB(t)

=
[
r(t)L(t) +

Y (t)−M(t)
σ(t)

σ(t)b(t)
]
dt+

Y (t)−M(t)
σ(t)

σ2(t)dB(t)

= [r(t)L(t) + M̃(t)σ(t)b(t)]dt+ M̃(t)σ2(t)dB(t)
= r(t)L(t)dt+ σ(t)dB̃(t).

Where dB̃(t) = M̃(t)b(t)dt+ M̃(t)σ(t)dB(t) and M̃(t) = Y (t)−M(t)
σ(t) .

Letting µ̃ = (1− µ) and λ̃ = (1 + λ) we get

dX(t) = X(t)r(t)dt+ µ̃(Y (t)− σ(t)M̃(t))[b(t)dt+ σ(t)dB(t)]− λ̃r(t)L(t)dt
= X(t)r(t)dt− λ̃r(t)L(t)dt+ µ̃Y (t)b(t)dt+ µ̃Y (t)σ(t)dB(t)

−µ̃σ(t)M̃(t)b(t)dt− µ̃σ2(t)M̃(t)dB(t)
= X(t)r(t)dt− λ̃r(t)L(t)dt+ µ̃Y (t)b(t)dt+ µ̃Y (t)σ(t)dB(t)

−µ̃σ(t)dB̃(t)
= X(t)r(t)dt− λ̃r(t)L(t)dt+ µ̃Y (t)b(t)dt+

µ̃Y (t)
[dB̃(t)− M̃(t)b(t)dt

M̃(t)

]
− µ̃σ(t)dB̃(t)

= X(t)r(t)dt− λ̃r(t)L(t)dt+ µ̃Y (t)b(t)dt−
µ̃Y (t)b(t)dt+ µ̃Y (t)M̃−1(t)dB̃(t)− µ̃σ(t)dB̃(t)

= [X(t)− λ̃L(t)]r(t)dt+
[ Y (t)
Y (t)−M(t)

− 1
]
µ̃σ(t)dB̃(t)

= [X(t)− λ̃L(t)]r(t)dt+
M(t)

Y (t)−M(t)
µ̃σ(t)dB̃(t)

= X̂(t)r(t)dt+M∗(t)µ̃σ(t)dB̃(t),

which gives us a market, under an equivalent measure Q, driven by the follow-
ing stochastic differential equation

dX(t) = X̂(t)r(t)dt+M∗(t)µ̃σ(t)dB̃(t), (5.10)
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dY (t) = r(t)L(t)dt+ σ(t)dB̃(t). (5.11)

Proposition 5.1. A market model driven by the following SDE

dX(t) = X̂(t)r(t)dt+M∗(t)µ̃σ(t)dB̃(t), (5.12)
dY (t) = r(t)L(t)dt+ σ(t)dB̃(t), (5.13)

is a complete market model.

Proof
Using Girsanov’s Theorem we have(

M∗(t)µ̃σ(t)
σ(t)

)
u =

(
X̂(t)r(t)
r(t)L(t)

)
(

0 1
σ(t)

)( M∗(t)µ̃σ(t)
σ(t)

)
u =

(
0 1

σ(t)

)(
X̂(t)r(t)
r(t)L(t)

)

∴ u = r(t)L(t)
σ(t) , thus Λ =

(
0 1

σ(t)

)
is a left inverse of σ =

(
M∗(t)µ̃σ(t)

σ(t)

)
hence by theorem [2.5] the market is complete. Hence, a market paying contin-
uous transactional costs is in fact a complete market model, if we consider the
funds transferred from stocks to the bank account to be stochastic and driven
by the same Brownian motion as our stocks.
Note that even though our market is complete, we are still not sure of how large
our transactional costs will be when we continuously transfer funds from stock
to bank account, thus holding such a portfolio will be very expensive.
Now suppose dM(t) = M(t)b(t)dt+M(t)σ2(t)dB2(t) and as before dL(t) = L(t)r(t)dt,
where B2(t) is a Brownian motion which has zero correlation with B(t), that is
dB(t)dB2(t) = 0. Then

dY (t) = Y bdt+ Y σdB(t) + Lrdt−Mbdt−Mσ2dB2(t)
= [Y b+ Lr −Mb]dt+ Y σdB(t)−Mσ2dB2(t),

and

dX(t) = Xrdt+ µ̃Mbdt+ µ̃Mσ2dB2(t)− λ̃Lrdt

= [Xr + µ̃Mb− λ̃Lr]dt+ µ̃Mσ2dB2(t).

It is easy to see that the market given by

dX(t) = [X(t)r(t) + µ̃M(t)b(t)− λ̃L(t)r(t)]dt+ µ̃M(t)σ2(t)dB2(t),
dY (t) = [Y (t)b(t) + L(t)r(t)−M(t)b(t)]dt+ Y (t)σ(t)dB(t)−M(t)σ2(t)dB2(t),

62



5.3. Completion of the Market Model

is a complete market model, and from Corollary 2.1 we have that,

(
Y σ −Mσ2

0 µ̃Mσ2

)( 1
Y σ

1eµY σ

0 1eµMσ2

)
=
(

1 0
0 1

)

Hence σ(t) =
(
Y σ −Mσ2

0 µ̃Mσ2

)
is invertible, therefore the market is complete.

Now consider the case when

dM(t) = M(t)b(t)dt+M(t)σ1(t)dB1(t),
dL(t) = L(t)dt+ L(t)σ2(t)dB2(t).

Where (B(t), B1(t), B2(t)) are Brownian motions with zero correlation between
them. We therefore have

dY (t) = Y (t)b(t)dt+ Y (t)σ(t)dB(t) + L(t)r(t)dt+ L(t)σ2(t)dB2(t)
−M(t)b(t)dt−M(t)σ1(t)dB1(t)

= [Y (t)b(t) + L(t)r(t)−M(t)b(t)]dt+ Y (t)σ(t)dB(t)
−M(t)σ1(t)dB1(t) + L(t)σ2(t)dB2(t),

and

dX(t) = [X(t)r(t) + µ̃M(t)b(t)− λ̃L(t)r(t)]dt
+M(t)σ1(t)dB1(t)− λ̃L(t)σ2(t)dB2(t).

We thus get a market consisting of

dX(t) = X∗(L,M, t)dt+M(t)σ1(t)dB1(t)− λ̃L(t)σ2(t)dB2(t),
dY (t) = Y ∗(L,M, t)dt+ Y (t)σ(t)dB(t)−M(t)σ1(t)dB1(t) + L(t)σ2(t)dB2(t),

which is an incomplete market model, since we have three sources of random-
ness and only two tradable assets. We know that there exist an equivalent
martingale measure Q for the above market. Also note that transactional costs
can never create arbitrage, in other words, if a price cannot be arbitrage in a
world free of transactional costs, it cannot be arbitrage in world with them ei-
ther.
Joshi [31], Chapter 4 uses the following argument for the above proof.

Suppose a price is arbitrageurs in the world with transactional costs. Then
we can set up a portfolio taking into account transactional costs at zero or neg-
ative costs today, which will be of non-negative and possible positive value in
future. If we neglect to take into account transactional costs then the initial set
up cost of the portfolio will be even lower and thus still negative or zero. The
final value of the portfolio will be at least as high as there will be no cash drain
from any transactional costs during the portfolio’s life. We therefore conclude
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that the portfolio is also an arbitrage portfolio in a world free of transactional
costs. Thus the existence of arbitrage in the world with transactional costs
implies arbitrage in the world free of them. Under the equivalent martingale
measure Q we have

dX̃(t) = M(t)σ1(t)dB̃1(t)− λ̃L(t)σ2(t)dB̃2(t),
dỸ (t) = Y (t)σ(t)dB̃(t)−M(t)σ1(t)dB̃1(t) + L(t)σ2(t)dB̃2(t).

Following proposition (4.1), Chapter 4, we can construct a self financing portfo-
lio consisting of the bonds, stocks and quadratic variation asset (Z1, Z2, Z3, Z4)
given by φ3 = φ3

t = (α3
t , β1(t), β2(t), β3(t)) to complete the incomplete market

given above as the above market is incomplete due to more sources of random-
ness than tradable asset.

Consider another market paying transactional costs given by

dS(t) = bS(t)dt+ σS(t)dB(t),
dY (t) = dL(t)− dM(t),
dX(t) = rX(t)dt− (1 + λ)dL(t) + (1− µ)dM(t).

Where as before X and Y representing funds held in bank and stocks respec-
tively, with transactional costs given by 0 < λ, µ < 1 and the funds transferred
from bank to stock, respectively stock to bank given by L(t) and M(t). If we
again let

dL(t) = L(t)rdt,
dM(t) = bM(t)dt+ σM(t)dB(t),

so that

dY (t) = L(t)rdt− bM(t)dt− σM(t)dB(t),
dX(t) = rX(t)dt− (1 + λ)L(t)rdt+ (1− µ)[bM(t)dt+ σM(t)dB(t)].

Thus

dY (t) = L(t)rdt− σM(t)
[
b

σ
dt+ dB(t)

]
= L(t)rdt− σM(t)dB̃(t),

where dB̃(t) = b
σdt+ dB(t).

The change in our bank account is then given by

dX(t) = rX(t)dt− λ̃L(t)rdt+ µ̃bM(t)dt+ µ̃σM(t)dB(t)

= rX(t)dt− λ̃L(t)rdt+ µ̃bM(t)dt+ µ̃σM(t)
[
dB̃(t)− b

σ
dt

]
= rX(t)dt− λ̃L(t)rdt+ µ̃σM(t)dB̃(t)
= X∗(t)rdt+ µ̃σM(t)dB̃(t),
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where X∗(t) = X(t)− λ̃L(t). We therefore have under the risk neutral measure
Q, a market model given by

dX(t) = X∗(t)rdt+ µ̃σM(t)dB̃(t),
dY (t) = L(t)rdt− σM(t)dB̃(t).

We can thus easily see that the above market is a complete market model. If
we normalize the above market using X(t) as a numeraire, that is, if we let
Z(t) = Y (t)

X(t) for the normalized process we get

dZ

Z
=

1
Y

[Lrdt− σMdB̃]− µ̃σ2M2

XY
dt+

µ̃2σ2M2

X2
dt− 1

X
[X∗rdt+ µ̃σMdB̃]

=
1
XY

[
[XLr − Y X∗r +

(
µ̃Y

X
− 1
)
µ̃σ2M2]dt− (X + µ̃Y )σMdB̃

]
=

1
XY

[
[XLr − Y X∗r]dt− (X + µ̃Y )σMdB̂(t)

]
,

where

dB̂(t) =
eµY
X − 1
X + µ̃Y

µ̃σMdt+ dB̃

= φ(X,Y,M, σ, t)dt+ dB̃

is a Brownian motion for some measure Q∗ ∼ Q .
One can thus compare the above price process with the time dependent param-
eter model of Chapter 3 to show that the price of a European call option for a
market paying transactional costs is given by

f = ZN(d̃1)−Ke−
R T
0 ( 1

XY
(XLr−Y X∗r))dtN(d̃2)

Where

d̃1 =
ln( Z

K ) +
∫ T
0 ( 1

XY (XLr − Y X∗r) + 1
2( 1

XY (X + µ̃Y )σM)2)dt√∫ T
0 (( 1

XY (X + µ̃Y )σM)2)dt

And

d̃2 = d̃1 −

√∫ T

0
((

1
XY

(X + µ̃Y )σM)2)dt.
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Chapter 6

Stochastic Volatility

There is evidence that volatility is not constant but stochastic, that is, volatility
changes randomly according to some stochastic differential equation. There is
thus an immense volume of research furthering the field of stochastic volatility.
It is known that models with stochastic volatility are incomplete market models
due to the extra source of risk introduced by the volatility coefficient. We shall
look at a few models with stochastic volatility, and attempt to complete one
of the models. We suppose that the stock price process S(t) and its volatility
process σ(t) evolves according to the following SDE:

dS(t) = µ(t)S(t)dt+ σ(t)dB1(t), (6.1)
dσ(t) = α(t, S, σ)dt+ β(t, S, σ)dB2(t).

Where B1(t) and B2(t) are correlated Brownian motions. It is a popular opinion
to choose the function α and β to have mean-reverting volatility process, where
volatility strives to reach a certain level in the long run.

6.1 Cox-Ingersoll-Ross (CIR) Model

The Cox-Ingersoll-Ross (CIR) model is a mean-reverting model with a stochastic
differential equation given by

dS(t) = µS(t)dt+ σ(t)S(t)dB1(t), (6.2)
dυ(t) = (a+ bυ(t))dt+ c

√
υ(t)dB2(t). (6.3)

Where a, b and c are constant. The volatility is given by υ(t) = σ2(t). The
process B1(t) and B2(t) are correlated according to

dB2(t) = ρdB1(t) +
√

1− ρ2dB3(t). (6.4)

Where B1(t) and B3(t) are correlated. The process υ(t) is mean-reverting if
a > 0 and b < 0. In the CIR model υ(t) is a non-central chi-square distribution
with mean of

E[υ(t) υ(0) = y] = −a
b

+ (y +
a

b
)e−bt, (6.5)
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and variance of

V ar[υ(t) υ(0) = y] =
ac2

2b2
− c2

b
(y +

a

b
)e−bt +

c2

b
(y +

a

2b
)e−2bt. (6.6)

Using the above equation we can find the limiting distribution of υ(t) which is
a gamma distribution with mean of −a

b and the variance of ac2

2b2
.

6.2 The Heston Model

The model proposed by Heston [Heston [42]] extends the Black and Scholes
model for stock prices. The model is derived from the the CIR model of Cox,
Ingersoll and Ross, which also cites the Feller[17] paper. Heston’s model take
into account non-lognormal distribution of assets returns, leverage effect and
the mean-reverting property of stochastic volatility. It is not possible to build a
replicating portfolio if we formulate the statement that the volatility of the as-
set varies stochastically due to the fact that volatility is not a tradable security.
This implies that the model is an incomplete market model which is driven by
the following stochastic differential equation:

dS(t) = µ(t)S(t)dt+
√
σ(t)S(t)dB1(t), (6.7)

dσ(t) = δ(θ − σ(t))dt+ κ
√
σ(t)dB2(t).

Where δ is the speed of σ’s reversion to long-run mean θ and the correlation
between the two Brownian motions dB1 and dB2 is ρ. This model is one of the
few stochastic volatility models with a tractable closed form solution as well as
a non-zero correlation between stock prices and volatility.

6.3 The Hull and White Model

The stochastic volatility model presented in (Hull and White [22] model) is a
two-factor model in which the variance follows a lognormal stochastic process.
In their model, Hull and White considered a derivative asset f with a price that
depends on some security price, S(t), and instantaneous variance, υ(t) = σ2(t),
which obey the following stochastic processes:

dS(t) = r(t)S(t)dt+ σ(t)S(t)dB1(t), (6.8)
dυ(t) = µυ(t)dt+ κυ(t)dB2(t).

Where µ and κ may depend on σ and t, but they do not depend on S. The two
Brownian motions have correlation ρ. Hull and White [22] analyzed the model
for the case when ρ = 0 and ρ 6= 0.
When ρ = 0, the price of a call option can be shown to be given by

C(t, S, y) = E[CBS(t, S,K, T,
√
σ2)|υ(t) = y] (6.9)

where σ2 = 1
T−t

∫ T
t f(υ(x))2dx and υ(t) is a Markov process with two states. CBS

denotes the standard Black-Scholes formula.

67



6.4. The Stein and Stein Model

6.4 The Stein and Stein Model

Stein and Stein [38] studied stock price processes with stochastically vary-
ing volatility parameter. They assumed that the volatility is governed by an
arithmetic Ornstein-Uhlenbeck process, where the volatility tends to a long-run
mean, and where the Brownian motions describing the randomness of the stock
price and volatility are independent. Assuming volatility is uncorrelated with
the asset price, an exact closed-form solution for the stock price distribution
was derived. They also used analytic techniques to develop an approximation
to the distribution. Then they used their results to develop closed form option
pricing formulas, and to sketch some links between stochastic volatility and the
nature of fat tails in stock price distributions.
The Stein and Stein model is described by the following processes:

dS(t) = µS(t)dt+ σ(t)S(t)dB1(t), (6.10)
dσ(t) = δ(σ(t)− θ)dt+ κdB2(t).

Where S(t) is the stock price, σ(t) is the volatility of the stock, κ, µ, δ and θ are
fixed constants. The two Brownian motions dB1 and dB2 are independent.

6.5 Market Completeness

For the stochastic volatility market model given by:

dS(t) = µ(t)S(t)dt+ σ(t)dB1(t) (6.11)
dσ(t) = α(t, S, σ)dt+ β(t, S, σ)dB2(t)

with dB1(t)dB2(t) = ρdt. We can write B2(t) = ρB1(t) + ρ
′
B

′
1(t) where B′

1(t) is
a Brownian motion independent of B1(t) and ρ

′
=
√

1− ρ2. The risk neutral
measures Q thus has a density of the form

dQ

dP
= exp

(∫ T

0
Φ(s)dB1(s)−

1
2

∫ T

0
Φ2(s)ds

+
∫ T

0
Ψ(s)dB

′
1(s)−

1
2

∫ T

0
Ψ2(s)ds

)
for some integrands Φ and Ψ. Taking Φ = r−µ

σ and Ψ = Ψ(S, σ) we find that
under the risk neutral measure Q our stochastic volatility model becomes

dS(t) = r(t)S(t)dt+ σ(t)dB̃1(t) (6.12)
dσ(t) = α̃(t, S, σ)dt+ β(t, S, σ)dB̃2(t)

where B̃1 and B̃2 are Q-Brownian motions with dB̃1dB̃2 = ρdt and α̃(t, S, σ) =
α + βρΦ + βρ

′
Ψ. Then S(t) has the riskless growth rate r, but σ is not a traded

asset, so arbitrage conditions do not determine the drift of σ, leaving Ψ as an
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6.6. Completion of a Market with Stochastic Volatility

arbitrary choice.
Now letting Z(t) = S(t)

σ(t) we get

dZ(t)
Z(t)

=
dS(t)
S(t)

− dσ(t)
σ(t)

− (
dS(t)
S(t)

)(
dσ(t)
σ(t)

) + (
dσ(t)
σ(t)

)2

= rdt+ σ(t)dB̃1(t)− σ−1(t)α̃dt−
σ−1(t)βdB̃2(t)− ρβdt+ β2dt

= [r(t)− σ−1(t)α̃− ρβ + β2]dt+
σ(t)dB̃1(t)− σ−1(t)βdB̃2(t).

The market given by Z(t) above is an incomplete market model (incomplete due
more randomness than tradable assets). We have shown in Chapter 2, example
2.4, that for such a market, any claim given by Fω = g(B̃2(t)) cannot be hedged
by a self-financing portfolio.

6.6 Completion of a Market with Stochastic Volatil-
ity

For the market given by

dS(t) = r(t)S(t)dt+ σ(t)dB1(t), (6.13)
dσ(t) = α̃(t, S, σ)dt+ β(t, S, σ)dB2(t), (6.14)

setting Z(t) = S(t)
σ(t) gives:

dZ(t)
Z(t)

=
dS(t)
S(t)

− dσ(t)
σ(t)

− (
dS(t)
S(t)

)(
dσ(t)
σ(t)

) + (
dσ(t)
σ(t)

)2

=
dS(t)
S(t)

− dσ(t)
σ(t)

− β(t, S, σ)ρdt+ β2(t, S, σ)dt,

but by Back [4], Z(t) is a normalized price process with the volatility process as
its numeraire, hence must be a martingale. Thus the drift of the process Z(t)
must be zero. Therefore the drift of dσ(t)

σ(t) must be (r(t)+β2(t, S, σ)) and the drift

of dS(t)
S(t) must be (r(t) + ρβ(t, S, σ)− σ−1(t)α̃(t, S, σ)). This implies that

dS(t)
S(t)

= [r(t) + ρβ(t, S, σ)− σ−1(t)α̃(t, S, σ)]dt+ σ(t)dB̂1(t)

dσ(t)
σ(t)

= [r(t) + β2(t, S, σ)]dt− σ−1(t)β(t, S, σ)dB̂2(t),

where B̂1 and B̂2 are correlated Brownian motions. This implies that our mar-
tingale process Z(t) is given by:

dZ(t)
Z(t)

= σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t). (6.15)
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6.6. Completion of a Market with Stochastic Volatility

6.6.1 Enlarging the Stochastic Volatility Model with Quadratic
Variation Assets

Without loss of generality consider the normalized market given by

dY (t) = Y (t)[σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t)]. (6.16)

Using the same method employed in Chapter 4, section 4.2, we construct quadratic
variation assets for the normalized stochastic volatility given by (6.16) as fol-
lows:

Let Z1(t) = Y 2
1 (t)− 〈Y1〉t.

Then by the Doob-Meyer decomposition Z1(t) is a martingale. The differential
form of Z1(t) is then given by

dZ1(t) = 2Y1(t)dY1(t).

Now if we let W1(t) = e
R t
0 r(s)dsZ1(t), the discounted process of W1(t) is again a

martingale, where r(t) is the deterministic riskless rate of interest for our bank
account since

E[e−
R t
0 r(s)dsW1(t)|Fs]

= E[Z1(t)|Fs]
= Z1(s) 0 ≤ s ≤ t.

Thus

dW1(t) = r(t)e−
R t
0 r(s)dsZ1(t)dt+ e−

R t
0 r(s)dsdZ1(t)

= r(t)e−
R t
0 r(s)dsZ1(t)dt+ 2e−

R t
0 r(s)dsY1(t)dY1(t)

= r(t)e−
R t
0 r(s)dsZ1(t)dt+

2e
R t
0 r(s)dsY 2

1 (t)[σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t)].

Let Y2(t) = e−qtW1(t) which we have shown to be a Q martingale, then
Z2(t) = Y 2

2 (t)− 〈Y2〉t is again a Q martingale with its differential form given by

dZ2(t) = 2Y2(t)dY2(t)

and W2(t) = e−
R t
0 r(s)dsZ2(t), which in its differential form is given by

dW2(t) = r(t)e
R t
0 r(s)dsZ2(t)dt+ e

R t
0 r(s)dsdZ2(t)

= r(t)e
R t
0 r(s)dsZ2(t)dt+ 4e

R t
0 r(s)dsY2(t)Y1(t)dY1(t)

= r(t)e
R t
0 r(s)dsZ2dt+ 4e

R t
0 r(s)dsY2Y

2
1 [σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t)].

The process Y3(t) = e−
R t
0 r(s)dsW2(t) is again a Q martingale, so that

Z3(t) = Y 2
3 (t)− 〈Y3〉t,

70



6.6. Completion of a Market with Stochastic Volatility

according to the Doob-Meyer decomposition is a Q martingale with a differen-
tial form given by

dZ3(t) = 2Y3(t)dY3(t)

and W3(t) = e
R t
0 r(s)dsZ3(t) with

dW3(t) = r(t)e
R t
0 r(s)dsZ3(t)dt+ e

R t
0 r(s)dsdZ3(t)

= r(t)e
R t
0 r(s)dsZ3(t)dt+ 2e

R t
0 r(s)dsY3(t)dY3(t)

= re
R t
0 r(s)dsZ3dt+ 8e

R t
0 r(s)dsY3Y2Y

2
1 [σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t)]

We thus have additional tradable assets, called the quadratic variation assets,
to hedge away the risk associated with the second randomness given by the
non-tradable volatility coefficient.

6.6.2 Hedging with Quadratic Variation Assets in the Presence
of Stochastic Volatility

The quadratic variation assets, W (t) = W1(t),W2(t),W3(t) driven by the follow-
ing stochastic differential equation:

dW1 = re−
R t
0 r(s)dsZ1dt+ 2e

R t
0 r(s)dsY 2

1 [σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t)],

dW2 = r(t)e
R t
0 r(s)dsZ2dt+ 4e

R t
0 r(s)dsY2Y

2
1 [σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t)],

dW3 = re
R t
0 r(s)dsZ3dt+ 8e

R t
0 r(s)dsY3Y2Y

2
1 [σ(t)dB̂1(t)− σ−1(t)β(t, S, σ)dB̂2(t)],

will be used to enlarge our market model, (6.16), to a new market model con-
sisting of quadratic variation assets, stocks and bonds. We can easily verify
by using Proposition 4.1 or Proposition 4.2 with N = 3 of Chapter 4 that these
quadratic variation assets complete a markets model with stochastic volatil-
ity given by equation (6.13) and equation (6.14). The portfolio that hedges the
market model is given by

φ3 = φ3
t = (α3

t , β1(t), β2(t), β3(t))

where

α3
t = M3

t − β1(t)S(t)e−
R t
0 r(s)ds − e

R t
0 r(s)ds

3∑
i=2

βi(t)Wi(t)

β1(t) = e
R t
0 r(s)dsω(t)S−1(t)

βi(t) = ωi(t) i = 2, 3

with α3
t corresponding to the number of bonds (or funds in bank account) at time

t, β1(t) is the number of stocks at time t and βi(t) is the number of quadratic
variation assets Wi(t) that one needs to hold at time t in order to replicate any
contingent claim F (S).
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6.7 Pricing In A Market With Stochastic Volatility

Consider again the stochastic volatility model given by

dS(t) = µ(t)S(t)dt+ σ(t)dB1(t), (6.17)
dσ(t) = α(t, S, σ)dt+ β(t, S, σ)dB2(t).

Now consider a portfolio consisting of an option with value f(S, σ, t) and another
option with value f1(S, σ, t), both dependent on the same stochastic volatility
and stock price, but with different strike price and different expiration date
given by

Π = f −∆S −∆1f1,

dΠ = df −∆dS −∆1df1. (6.18)

From Itô Lemma we have

df =
∂f

∂t
dt+

∂f

∂σ
dσ +

∂f

∂S
dS +

∂2f

∂σ∂S
dSdσ +

1
2
∂2f

∂S2
(dS)2 +

1
2
∂2f

∂σ2
(dσ)2

=
[
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+

1
2
β2 ∂

2f

∂σ2
+ ρσβS

∂2f

∂σ∂S

]
dt

+
∂f

∂σ
dσ +

∂f

∂S
dS.

We can produce a similar process for f1. Now substituting f and f1 into our
portfolio (6.18) we get

dΠ =
[
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+

1
2
β2 ∂

2f

∂σ2
+ ρσβS

∂2f

∂σ∂S

]
dt

−∆1

[
∂f1

∂t
+

1
2
σ2S2∂

2f1

∂S2
+

1
2
β2∂

2f1

∂σ2
+ ρσβS

∂2f1

∂σ∂S

]
dt

+
(
∂f

∂S
−∆1

∂f1

∂S
−∆

)
dS +

(
∂f

∂σ
−∆1

∂f1

∂σ

)
dσ.

We then choose ∆ and ∆1 in such a way that the randomness is removed from
our portfolio in order to have a riskless hedge. All the risk lies in the dS and dσ
terms, so we need to make the coefficient of these terms zero by choosing ∆ and
∆1 to satisfy(

∂f

∂S
−∆1

∂f1

∂S
−∆

)
= 0,(

∂f

∂σ
−∆1

∂f1

∂σ

)
= 0,

which gives the hedge ratios

∆ =
∂f

∂S
−∆1

∂f1

∂S
,

∆1 =
∂f

∂σ

/
∂f1

∂σ
.
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6.7. Pricing In A Market With Stochastic Volatility

With these hedges in place, the change in the value of our hedged portfolio is
then given by

dΠ =
[
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+

1
2
β2 ∂

2f

∂σ2
+ ρσβS

∂2f

∂σ∂S

]
dt

−∆1

[
∂f1

∂t
+

1
2
σ2S2∂

2f1

∂S2
+

1
2
β2∂

2f1

∂σ2
+ ρσβS

∂2f1

∂σ∂S

]
dt

= rΠdt
= r(f −∆S −∆1f1)dt.

Where we have used the no-arbitrage condition as before (Chapter 3 and 4).
Now rearranging and substituting for ∆ and ∆1 we get

∂f
∂t + 1

2σ
2S2 ∂2f

∂S2 + 1
2β

2 ∂2f
∂σ2 + ρσβS ∂2f

∂σ∂S + rs ∂f
∂S − rf

∂f
∂σ

=
∂f1

∂t + 1
2σ

2S2 ∂2f1

∂S2 + 1
2β

2 ∂2f1

∂σ2 + ρσβS ∂2f1

∂σ∂S + rs∂f1

∂S − rf1

∂f1

∂σ

.

As before, the left-hand side is therefore a function of f which is independent
of f1, similarly the right-hand side is a function of f1 independent of f . We
can thus as before (Chapter 4) put both sides equal to some arbitrary function
−λ(t, S, σ) which is called the market price of volatility risk. We therefore have

∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+

1
2
β2 ∂

2f

∂σ2

+ρσβS
∂2f

∂σ∂S
+ rs

∂f

∂S
+ λ

∂f

∂σ
− rf = 0.

Which gives the partial differential equation for the value of as option with
stochastic volatility.
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Chapter 7

Lévy Processes

Lévy market models, except of course for the geometric Brownian model which
we have in the previous chapters (Chapter 3 to be precise) shown to be a com-
plete market model, are incomplete market models. Every claim in the market
with its price process following a geometric Brownian motion can be hedged
and the unique price is given by the Black-Scholes formula. The geometric
Poissonian Lévy market model is also a complete market model with a unique
equivalent martingale measure (EMM). General geometric Lévy market mod-
els, defined below, on the other hand are incomplete and have many equivalent
martingale measures. In this chapter we will follow the work by Corécuera
and Nualart [12] which shows that general Lévy processes market model can be
completed by their so called power-jump processes. We then find an equivalent
martingale measure Q with minimal relative entropy for the market completed
with power jump assets.

Definition 7.1. A stochastic process X = X(t), t ≥ 0 is said to be a Lévy process
if

• Each X(0) = 0 (a.s.)

• X has independent and stationary increments

• X is stochastically continuous, i.e. for all a 6= 0 and for all s ≥ 0

limt→s P (| X(t)−X(s) |> a) = 0.

One can thus use the above definition to determine whether a particular
process is a Lévy process or not. It is very easy to check that processes like
Brownian motion, Gaussian, Poisson, Compound Poisson and Interlacing pro-
cesses are indeed Lévy processes as they all satisfy the condition of definition
7.1
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The model that we will consider for the behavior of stock prices in the mar-
ket will be the geometric Lévy market model. Under the real world measure
P , the dynamics of stock prices S = {S(t), t ≥ 0} are modeled by a stochastic
differential equation (SDE) driven by a general Lévy process Z = {Z(t), t ≥ 0}
satisfying the following conditions:

dR(t) = rR(t)dt R(0) = 1,
dS(t) = S(t−)[bdt+ dZ(t)]. (7.1)

7.1 The General Lévy Process

General Lévy processes take into account jumps, which is the cause of incom-
pleteness. They have many equivalent martingale measures and thus contin-
gent claims cannot be hedged by a self-financing portfolio. Before we can look at
the completion of such models, we will need to understand the representation
of jump processes and their integrals. Such a representation is made possible
by the Lévy-Kintchine formula. Given a stochastic process Z = {Z(t), t ≥ 0} is
a Lévy process with characteristic function φ(z).
The function ψ(z) = log φ(z) = logE[e(izZ1)] is called the characteristic exponent
and it satisfies the following Lévy-khintchine formula

ψ(z) = iαz − c2

2
z2 +

∫ +∞

−∞
e(izx) − 1− izx1{|x|<1}ν(dx), (7.2)

where α ∈ R,c ≥ 0 and ν is a σ-finite measure on R− {0} satisfying

ν{0} = 0 and
∫
−∞+∞(1 ∧ x2)ν(dx).

The infinitely divisible distribution is said to have a triplet of Lévy character-
istics [α, c2, ν(dx)]. The measure ν(dx) is called the Lévy measure of Z and
indicates how the jumps occur. Jumps of sizes in the set A occur according to a
Poisson process with parameter

∫
A ν(dx).

From the Lévy-Khintchine formula, we can deduce that Z must be a linear com-
bination of a standard Brownian motion W = {W (t), t ≥ 0} and a pure jump
process X = {X(t), t ≥ 0} such that

Z(t) = σW (t) +X(t),

and W is independent of X. Moreover,

X(t) = µt+
∫
{|x|<1}

xÑ(t, dx) +
∫
{|x|≥1}

xN(t, dx), (7.3)

where N(t, A) is a Poisson process, with intensity parameter ν(A), that count
the number of jumps up to time t, and the Borel subsetA represents the range of
possible jump sizes. The compensated Poisson measure, which is a martingale-
valued measure, is given by the process {Ñ(t, A), t ≥ 0} defined by,

Ñ(t, A) = N(t, A)− tν(A).
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A stochastic process Z = {Z(t), t ≥ 0} is said to be a semimartingale if it is an
adapted process that admits representation as

Z(t) = Z(0) +M(t) + C(t), (7.4)

where M = {M(t), t ≥)} is a martingale and C = {C(t), t ≥)} is an adapted
process.
Since the compensated Poisson process Ñ(t, A) and the Brownian motion W (t)
are both martingale, if we define

M∗(t) = σW (t) +
∫
{|x|<1} xÑ(t, dx) and C(t) = µt+

∫
{|x|≥1} xN(t, dx)

we see that the Lévy process Z(t) is indeed a semimartingale.
For the purpose of our model we require the process Z(t) to satisfy certain con-
ditions. We will suppose that the Lévy measure satisfies for some ε > 0, and
λ > 0∫

(−ε,ε)c

exp (λ | x |)ν(dx) <∞ (7.5)

This implies that∫ ∞
−∞

| x |i ν(dx) <∞ i ≥ 1,

and that

E[exp (−θZ1)] <∞ for all θ ∈ (−θ1, θ2),

where 0 < θ1, θ2 ≤ ∞. Such a requirement will then imply that Z(t) has finite
moment of all order.
With this requirement imposed on the Lévy process {Z(t), t ≥ 0} we can thus
write the Lévy-Itó decomposition as

Z(t) = at+ σW (t) +
∫

R
xÑ(t, dx), (7.6)

where a = E(X1) , {W (t), t ≥ 0} is the standard Brownian motion and {M(t) =∫
R xÑ(t, dx)} is the process responsible for all the jumps which is independent

of the Brownian motion. From (7.3) we see that

E[X(t)] = E

[ ∫
{|x|<1}

xÑ(t, dx)
]

+ E

[ ∫
{|x|≥1}

xN(t, dx) + µt

]
= E

[ ∫
{|x|≥1}

xN(t, dx)
]

+ µt, (7.7)

the compensated Poisson process is a martingale, and thus has zero expecta-
tion. Equation (7.7) then gives

µ = E[X1]−
∫
{|x|≥1}

xN(1, dx)
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Since every Lévy process is a semimartingale, we can write X(t) as a sum of a
martingale and a predictable process of finite variation as follows:

X(t) = M(t) + at (7.8)

where M = {M(t), t ≥ 0} is a martingale and E[L1] = a.
We can thus write the SDE for stock prices (7.1) as follows

dS(t) = S(t−)[(a+ b)dt+ σdW (t) + dM(t), (7.9)

with Z(t) as defined in (7.6).
We will need the following theorem to solve the above SDE for stock prices.

Theorem 7.1. (Itô Lemma for Lévy processes)
Let X = {X(t), t ≥ 0} be a càdlàg semimartingale stochastic process, then for
each f ∈ C1,2(R+,R) we have with probability one that

f(t,Xt)− f(0, X0) =
∫ t

0

∂f

∂s
(s,Xs−)ds+

∫ t

0

∂f

∂x
(s,Xs−)dXs

+
1
2

∫ t

0

∂2f

∂x2
(s,Xs−)d〈Xc〉s

+
∑

0≤s≤t

[f(s,Xs)− f(s,Xs−)− ∂f

∂x
(s,Xs−)∆Xs]. (7.10)

Proof
see Applebaum [3]

Where the Lévy process can be broken up into continuous and discontinuous
part such that

(X(t) = Xc(t) +Xd(t),

where Xc(t) represent the continuous part and Xd(t) represent the discontin-
uous part of the Lévy process. We can thus split up the quadratic variation of
the Lévy process in the similar manner as follows

〈X〉t = 〈Xc〉t +
∑

0≤s≤t

(∆Xsd)2, (7.11)

and hence

〈X〉t = t+
∫
{|x| ≤1}

x2N(t, dx) +
∫
{|x|≥1}

x2N(t, dx). (7.12)

Returning to the SDE for stock prices (7.9), we can find a solution to this equa-
tion by applying the above Itô lemma for Lévy processes to the function lnS(t),
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noting that ∆S(t) = S(s−)∆Z(t) = S(s−)∆M(s) and 〈Zc〉t = 〈W 〉t = t which
then gives us

lnS(t) = lnS(0) +
∫ t

0

1
S(u−)

dS(u) +
1
2

∫ t

0

(
−1

S2(u−)

)
d〈Sc〉u

+
∑

0≤u≤t

[ lnS(u)− lnS(u−)− 1
S(u−)

∆S(u)]

= lnS(0) +
∫ t

0

(
(a+ b)du+ σdW (u) + dM(u)

)
− 1

2

∫ t

0
σ2du

+
∑

0≤u≤t

[ ln
S(u)
S(u−)

− 1
S(u−)

∆S(u)]

= lnS(0) +
∫ t

0
(a+ b− 1

2
σ2)du+

∫ t

0

(
σdW (u) + dM(u)

)
+
∑

0≤u≤t

[ ln(1 + ∆M(u))−∆M(u)]

= lnS(0) + (a+ b− 1
2
σ2)t+ σW (t) +M(t)

+
∑

0≤u≤t

[ ln(1 + ∆M(u))−∆M(u)].

We finally get

S(t) = S(0) exp
(
σW (t) +M(t) + (a+ b− 1

2
σ2)t

)
×∏

0≤s≤t

(1 + ∆M(s)) exp (−∆M(s)). (7.13)

Since the stock price process has to be non-negative for all time t in order to
guarantee that 1 + ∆M(t) ≥ 0 for every t ≥ 0 a.s., we should put the constraint
that ∆ M(t) ≥ −1. We thus need that the Lévy measure ν to be supported on
the subset of [−1,+∞]. The riskless rate of interest is assumed to be a constant
r.

7.2 Power-Jump Processes

Corécuera and Nualart [12] considers the following transformation of the Lévy
process
Z = {Z(t), t ≥ 0} which will play an important role in our analysis. Where they
set

Z(i)(t) =
∑

0<s≤t

(∆Z(s))i i ≥ 2. (7.14)

The jump process ∆Z(t) = {∆Z(t), t ≥ 0} is defined by

∆Z(t) = Z(t)− Z(t−). (7.15)
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Where Z(t−) is the left limit of Z at time point t (i.e., Z(t−) = lims↑t Z(s)).
For convenience we set Z(1)(t) = Z(t). We should also note that
Z(t) =

∑
0<s≤t ∆Z(s) is not necessarily true, it is only true in the bounded

variation case. If we define X(i)(t) in the same way, we have that X(i)(t) =
Z(i)(t), i ≥ 2 and clearly the quadratic variation 〈X〉t = X(2)(t).
The processes X(i) = {X(i)(t), t ≥ 0}, i ≥ 2, are again Lévy processes and are
called the ith-power-jump processes (or the power jump processes of order i).
They jump at the same point as the original Lévy process, but the jumps sizes
are the ith power of the jump size of the original Lévy process.
We have E[X(t)] = E[X(1)] = ta = tm1 <∞ and

E[X(i)(t)] = E[
∑

0<s≤t

(∆X(s))i] = t

∫ ∞
−∞

xiν(dx) = mit <∞, i ≥ 2. (7.16)

We denote by

Y (i)(t) = Z(i)(t)− [Z(i)(t)] = Z(i)(t)−mit, i ≥ 1 (7.17)

the compensated processes. We then orthonormalize the sequence of martin-
gales {Y (i), i ≥ 1} (see Corécuera and Nualart [12]) and take a suitable linear
combination of the Y (i) to obtain a set of pairwise strongly orthonormal martin-
gales {T (i), i ≥ 1}. Each T (i) is a linear combination of the Y (j), j = 1, 2, . . . , i
such that

T (i) = ci,iY
(i) + ci,i−1Y

(i−1) + . . .+ ci,1Y
(1) i ≥ 1. (7.18)

The constants can be calculated as described in Nualart and Schoutens [35],
they correspond to the coefficients of the orthonormalization of the polynomials
{xn, n ≥ 0} with respect to the measure µ(dx) = x2ν(dx) + c2δ0(dx). The result-
ing processes T (i) = {T (i)(t), t ≥ 0} are called the orthormalized ith-power-jump
processes.

7.3 Equivalent Martingale Measure for Lévy Processes

We are interested in finding an equivalent probability measure Q, for which the
discounted price process of (7.1) is a martingale under the probability measure
Q. If at least one of such measures exist, then we know that our discounted
price process does not allow arbitrage. If on the other hand the equivalent
martingale measure Q is unique, then our market is complete and every claim
in the market is attainable. The unique price of a contingent claim for the
complete market will be given by the expectation of the discounted payoff at
maturity under the equivalent martingale measure Q. In order to find such a
Q we need to consider the following stochastic differential equation

dL(t) = L(t−)
[
h(t)dW (t) +

∫
{|x|<1}

(H(t, x)− 1)Ñ(dt, dx)

+
∫
{|x|≥1}

(F (t, x)− 1)Ñ(dt, dx)
]

(7.19)
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Where the integrands are predictable processes, with H : R → (0,∞) a Borel
function satisfying∫ +∞
−∞

(
1−

√
H(x)

)2
ν(dx) <∞

If we let

Y (t) =
∫ t

0
h(t)dW (t) +

∫ t

0

∫
{|x|<1}

(H(t, x)− 1)Ñ(dt, dx)

+
∫ t

0

∫
{|x|≥1}

(F (t, x)− 1)Ñ(dt, dx) (7.20)

then the process Y = {Y (t), t ≥ 0} is a Lévy process. We can thus rewrite (7.19)
as

dL(t) = L(t−)dY (t), (7.21)

which has a solution given by the stochastic exponential process ( also known
as the Doléans-Dade exponential) defined (see R.J. Elliot [17]) by

L(t) = exp
(
Y (t)− 1

2
〈Y c〉t

∏
0≤s≤t

[1 + ∆Y (s)]e−∆Y (s)

)
, (7.22)

where L(t) is strictly positive for all time t. The following Girsanov’s Theorem
for Lévy processes, will be used to change the standard Brownian motion under
the real world measure P to a standard Browian motion under the equivalent
martingale measure Q.

Theorem 7.2. Girsanov’s Theorem
Let {W (t), t ≥ 0} be a standard Brownian motion under the measure P . Then if
the stochastic exponential defined by

L(t) = exp
(
Y (t)− 1

2
〈Y c〉t

∏
0≤s≤t

[1 + ∆Y (s)]e−∆Y (s)

)
, (7.23)

is a martingale under the measure P for which EP [L(t)] = 1 where the process
Y = {Y (t), t ≥ 0} is a Lévy process containing the Brownian motion, then a new
process W̃ = {W̃ (t), t ≥ 0} defined by

W̃ (t) = W (t)−
∫ t

0
h(s)ds, (7.24)

has a standard Brownian motion under the measure Q defined by the following
Radon-Nikodym derivative linking P to Q

dQ

dP
= L(T ). (7.25)
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Proof
see Elliott [17]

We can also represent the jump processes of the Lévy process as a martingale
under the measure Q by considering the process M = {M(t), t ≥ 0} under the
measure P which is defined by

M(t) =
∫ t

0

∫
|x|<1

F (s, x)Ñ(ds, dx), (7.26)

where

EP

[ ∫ T

0

∫
|x|<1

F 2(s, x)ν(dx)ds
]
<∞. (7.27)

If we define the change of measure P to an equivalent martingale measure Q
by

dQ

dP
= L(T ),

and define a new process M̃ = {M̃(t), t ≥ 0} by

M̃(t) = M(t)−
∫ t

0

∫
|x|<1

F (s, x)(H(s, x)− 1)ν(dx)ds

=
∫ t

0
F (s, x)[N(ds, dx)−H(s, x)ν(dx)ds]

=
∫ t

0
F (s, x)ÑQ(ds, dx), (7.28)

where ÑQ(ds, dx) = N(ds, dx) − H(s, x)ν(dx)ds. It can thus be shown that the
process M̃ = {M̃(t), t ≥ 0} is a Q martingale, see Jacod and Shriyaev [30]. In
general martingales of the form

J(t) =
∫ t

0

∫
|x|<1

K(s, x)Ñ(ds, dx), (7.29)

under the measure P have a representation as a martingale under the measure
Q given by

J̃(t) = J(t)−
∫ t

0

∫
|x|<1

K(s, x)(F (s, x)− 1)ν(dx)ds. (7.30)

Now returning to the stock price process (7.1), if we let S̃(t) = S(t)
R(t) be our dis-

counted price process with the bank account R(t) as our pricing numeraire, we
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have that

dS̃(t)

S̃(t)
=

dS(t)
S(t)

− dR(t)
R(t)

− dS(t)
S(t)

dR(t)
R(t)

+
(
dR(t)
R(t)

)
=

S(t−)
S(t)

[
bdt+ dZ(t)

]
− rdt

⇒ dS̃(t) =
S(t−)
R(t)

[
bdt+ dZ(t)

]
− S(t)
R(t)

rdt,

so that

S̃(t) = S̃(0) +
∫ t

0
S̃(u−)(b− r)du+

∫ t

0
S̃(u−)dZ(u)

= S̃(0) +
∫ t

0
S̃(u−)(b− r)du+

∫ t

0
S̃(u−)d[au+ σW (u) +M(u)]

= S̃(0) +
∫ t

0
S̃(u−)(a+ b− r)du

+
∫ t

0
S̃(u−)σdW (u) +

∫ t

0
S̃(u−)dM(u).

Now substituting (7.24) of Girsanov’s Theorem gives

S̃(t) = S̃(0) +
∫ t

0
S̃(u−)(a+ b− r)du

+
∫ t

0
S̃(u−)σ

[
dW̃ (u) + h(u)du

]
+
∫ t

0
S̃(u−)dM(u)

= S̃(0) +
∫ t

0
S̃(u−)

[
a+ b+ h(u)− r

]
du

+
∫ t

0
S̃(u−)σdW̃ +

∫ t

0
S̃(u−)dM(u).

Using (7.30) to change the measure for the jump processes M(t) we get

S̃(t) = S̃(0) +
∫ t

0
S̃(u−)

[
a+ b+ h(u)− r

]
du

+
∫ t

0
S̃(u−)σdW̃ +

∫ t

0
S̃(u−)(dM̃(u) +

∫
|x|<1

x(H(s, x)− 1)ν(dx)du

= S̃(0) +
∫ t

0
S̃(u−)

[
a+ b+ h(u)− r +

∫
|x|<1

x(H(s, x)− 1)ν(dx)
]
du

+
∫ t

0
S̃(u−)σdW̃ +

∫ t

0
S̃(u−)dM̃(u). (7.31)

But the discounted stock price process is a martingale under the equivalent
measure Q. The du term of (7.31) must be zero, hence

a+ b+ h(u)− r +
∫
|x|<1

x(H(s, x)− 1)ν(dx) = 0, (7.32)
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so that the discounted stock price price process under the measureQ equivalent
to P is given by

S̃(t) = S̃(0) +
∫ t

0
S̃(u)σdW̃ (u) +

∫ t

0
S̃(u)dM̃(u). (7.33)

Which in it differential form is given by

dS̃(t) = S̃(t)σdW̃ (t) + S̃(t)dM̃(t), (7.34)

where

EQ

[ ∫ T

0
S̃2(u)σ2du

]
<∞, (7.35)

and

EQ

[ ∫ T

0

∫
R
S̃2(u−)x2H2(u, x)ν(dx)du

]
<∞, (7.36)

is a Q martingale. Since (7.32) does not uniquely determine the function h(t)
and H(t, x), the resulting equivalent martingale measure is defined by the
Radon-Nikodym derivative linking P to Q given by

dQ

dP
= L(T ),

is not unique martingale measure. We thus have infinitely many equivalent
martingale measure’s, one for each choice of the function h(t) andH(t, x). Hence
our market given by (7.1) is an incomplete market model with infinitely many
prices, one for each choice of Q. In order to complete such a market model
Corécuera and Nualart [12] proposed an enlargement of the market model, with
the so called power-jump assets defined in section 7.2 and prove that such an
enlargement complete the Lévy market model given by (7.1)

7.4 Enlarging the Lévy Market Model

Corécuera and Nualart [12] enlarge the market with the orthonormalized ith-
power-jump assets introduced in section 7.1. More precisely they allow trade in
assets with price process H(i) = {H(i)(t), t ≥ 0}, where

H
(i)(t) = exp(rt)T (i)(t),i = 2, 3, . . .

Corécuera and Nualart [12] also considers an enlargement based on assets with
price process H(i) = {H(i)(t), t ≥ 0}, where

H(i)(t) = exp(rt)Y (i)(t) i = 2, 3, . . .
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Also note that the discounted version of the assets H(i) (and H
(i)) are the (or-

thonormalized) power-jump assets, and hence martingale

EQ[exp(−rt)H(i)(t)|Fs] = EQ[T (i)(t)|Fs] = T (i)(s), 0 ≤ s ≤ t,

and

EQ[exp(−rt)H(i)(t)|Fs] = EQ[Y (i)(t)|Fs] = Y (i)(s), 0 ≤ s ≤ t.

Hence the market allowing trade in the bank account, stocks and (orthonormal-
ized) power-jump assets remains arbitrage free.

”Corécuera and Nualart [12] motivate trading in the power jump assets by the
fact that one can trade in volatility, which is a trading strategy designed to
speculate on changes in the volatility of the market rather than the direction
of the market”. The power-jump assets are also trading strategies based on the
volatility of stock prices. If we consider the 2nd power-jump asset for instance
which is just the quadratic variation assets defined in Chapter 4, section 4.2,
for Lévy type processes. This quadratic variation process measures the volatil-
ity of the stock, since it accounts for the square of the jumps. If one believes
that in the future there will be a more volatile environment than the current
market’s anticipate, trading in the quadratic variation asset can be of inter-
est. Also if one would like to cover against periods of high (or low) volatility,
they can be useful: Buying 2nd quadratic variation assets can thus cover the
possible losses due to such unfavorable periods. The same strategy holds for
higher order variation assets. Where the 3rd-power-jump assets is measuring
asymmetry (or skewness) while the 4th power-jump asset measures extremal
movements (or kurtosis). Trade in these assets can be useful if one likes to bet
on the realized skewness or realized kurtosis of the stock. If one believes that
the market is not counting in asymmetry and possible extremal moves rightly.
An insurance against a possible crash can be easily built from the 4th-power-
jump (or ith-power jump, i ≥ 4) assets.

7.5 Completion of the Market with Jumps

The method of completion makes use of the martingale representative property
(MRP) derived in Nualart and Schoutens [35], which says that any square-
integrable Q martingale M(t) can be represented as follows:

M(t) = M(0) +
∫ t

0
h(s)dZ̃(s) +

∞∑
i=2

∫ t

0
h(i)(s)dT (i)(s), (7.37)

where h(s) and h(i)(s), i ≥ 2 are predictable processes such that

E

[ ∫ t

0
| h(s) |2 ds

]
<∞,
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and

E

[ ∫ t

0

∞∑
i=2

| h(i)(s) |2 ds
]
<∞.

Theorem 7.3. The Lévy market model enlarged with the ith-power-jump assets
is complete, in the sense that any square-integrable contingent claim X can be
replicated.

Proof
Consider a square-integrable contingent claim X with maturity T . Let

M(t) = EQ[exp(−rT )X|Ft].

We apply to this martingale the MRP given by (7.37). We then look for a self-
financing strategy

φ = {φ(t) = (α(t), β(t), β(2)(t), β(3)(t), . . .), t ≥ 0}, (7.38)

to replicate the contingent claim X. We claim that the self-financing strategy
replicating the claim is given by

α(t) = M(t−)− β(t)S(t−)R−1(t)−
∞∑
i=2

β(i)(t)H(i)(t−)R−1(t)

β(t) = h(t)R(t)S−1(t)
β(i)(t) = h(i)(t) i = 2, 3, . . .

where α(t) corresponds to the number of bonds at time t; β(t) is the number
of stocks at that time and β(i)(t) is the number of assets H(i), i = 2, 3, . . . , that
one needs to hold at time t. We claim that φ(t) is a sequence of self-financing
portfolios which replicates X. In fact, the value V (t) of φ at time t is given by

V (t) = α(t)R(t) + β(t)S(t) +
∞∑
i=2

β(i)(t)H(i)(t) = R(t)M(t),

which is the price of the claim at time t. So the sequence of portfolio φ is repli-
cating the claim. To show that the sequence of portfolio φ is self-financing, we
let

G(u) =
∫ u

0
α(t)dR(t) +

∫ u

0
β(t)dS(t) +

∞∑
i=2

∫ u

0
β(i)(t)dH(i)(t),

denote the gain process, i.e., the gains or losses obtained up to time u by follow-
ing φ. We will show that

G(u) +M(0) = M(u)R(u)
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which implies that the portfolio φ is self-financing.
We have

G(u) =
∫ u

0
Mt−dR(t)−

∫ u

0
h(t)dR(t)−

∞∑
i=2

∫ u

0
h

(i)
t H

(i)
t R−1(t)dR(t)

+
∫ u

0
h(t)R(t)S−1(t−)dS(t) +

∞∑
i=2

∫ u

0
h(i)(t)dH(i)(t−).

Now ∫ u

0
M(t)dR(t)

=
∫ u

0

(
M(0) +

∫ t−

0
h(s)dZ̃(s) +

∞∑
i=2

∫ t−

0
h(i)(s)dT (i)(s)

)
dR(t)

= M(0)(R(u)−R(0)) +
∫ u

0

∫ t−

0
h(s)dZ̃(s)dR(t)

+
∞∑
i=2

∫ u

0

∫ t−

0
h(i)(s)dT (i)(s)dR(t)

= M(0)(R(u)−R(0)) +
∫ u

0

∫ u

s+

h(s)dR(t)dZ̃(s)

+
∞∑
i=2

∫ u

0

∫ u

s+

h(i)(s)dR(t)dT (i)(s)

= M(0)(R(u)−R(0)) +
∫ u

0
h(s)(R(u)−R(s))dZ̃(s)

+
∞∑
i=2

∫ u

0
h(i)(s)(R(u)−R(s))dT (i)(s)

= M(0)(R(u)−R(0)) +R(u)
∫ u

0
h(s)dZ̃(s)−

∫ u

0
h(s)R(s)dZ̃(s)

+R(u)
∞∑
i=2

∫ u

0
h(i)(s)dT (i)(s)−

∞∑
i=2

∫ u

0
h(i)(s)R(s)dT (i)(s)

= M(0)(R(u)−R(0)) +R(u)
∫ u

0
dM(t)−

∫ u

0
h(s)R(s)dZ̃(s)

−
∞∑
i=2

∫ u

0
h(i)(s)R(s)dT (i)(s)

= M(0)(R(u)−R(0)) +R(u)(M(u)−M(0))−
∫ u

0
h(s)R(s)dZ̃(s)

−
∞∑
i=2

∫ u

0
h(i)(s)R(s)dT (i)(s).
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Where

dM(t) = h(t)dZ̃(t) +
∞∑
i=2

h(i)(t)dT (i)(t).

Hence

G(u)

= M(u)R(u)−M(0)−
∫ u

0
h(t)dR(t)−

∞∑
i=2

∫ u

0
h(i)(t)H(i)(t−)R−1(t)dR(t)

−
∫ u

0
h(s)R(s)dZ̃(s) +

∫ u

0
h(t)R(t)S−1(t−)dS(t)

+
∞∑
i=2

∫ u

0
h(i)(t)dH(i)(t−)−

∞∑
i=2

∫ u

0
h(i)(s)R(s)dT (i)(s)

= M(u)R(u)−M(0)−
∫ u

0
h(t)dR(t)−

∞∑
i=2

∫ u

0
h(i)(t)H(i)(t−)R−1(t)dR(t)−

∫ u

0
h(s)R(s)dZ̃(s) +

∫ u

0
h(t)R(t)S−1(t−)dS(t) +

∞∑
i=2

∫ u

0
h(i)(t)T (i)(t−)dR(t)

= M(u)R(u)−M(0)−
∫ u

0
h(t)dR(t)−∫ u

0
h(t)R(t)S−1(t−)dS(t) +

∫ u

0
h(t)dR(t) +

∫ u

0
h(t)R(t)S−1(t−)dS(t)

M(u)R(u)−M(0).

Where H(i)(t) = R(t)T (i)(t) implies that dH(i)(t) = R(t)dT (i)(t) + T (i)(t)dR(t)
and the derivative of the discounted stock price (7.33) gives dS(t) = S(t)dZ(t)

Which completes the proof.

7.6 Hedging Portfolio for Lévy Processes

The value of the contingent claim X = F (t, S(t)) at time t is given by

F (t, S(t)) = EQ[exp(−rt)X|Ft).

We call F (t, x) the price function of the contingent claim X. It is clear that
the discounted contingent claim e−rtF (t, S(t)) is a Q martingale. From the Itô
lemma for Lévy processes (7.10) we can write our contingent claim F (t, S(t)) as

F (t, S(t))− F (0, S(0)) =
∫ t

0

∂F

∂u
(u, S(u−))du+

∫ t

0

∂F

∂S
(u, S(u−))dS(u)
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+
1
2

∫ t

0

∂2F

∂S2
(u, S(u−))d〈Sc〉u

+
∑

0≤u≤t

[F (u, S(u))− F (u, S(u−))− ∂F

∂S
(u, S(u−))∆S(u)]. (7.39)

We can define the random finite sum of the jumps as∑
0≤u≤t

F (u,∆X(u))1(∆X(u)∈A) =
∫ t

0

∫
A
F (s, x)N(ds, dx), (7.40)

for some predictable process F (s, x) with

EP

[ ∫ t

0

∫
A
| F (s, x) |2 ν(dx)ds

]
<∞. (7.41)

Keeping in mind that ∆S(t) = S(t−)∆M(t) where ∆S(t) = S(t)− S(t−), we can
write (7.39) as

F (t, S(t))− F (0, S(0)) =
∫ t

0

∂F

∂u
(u, S(u−))du+

∫ t

0

∂F

∂S
(u, S(u−))dS(u)

+
1
2

∫ t

0

∂2F

∂S2
(u, S(u−))d〈Sc〉u

+
∫ t

0

∫
R

[F (u, S(u−)(1 + y))− F (u, S(u−))− S(u−)y
∂F

∂S
(u, S(u−))]N(du, dx).

Differentiating both sides gives

dF (t, S(t)) = D1F (t, S(t))dt+D2F (t, S(t−))dS(t) +
1
2
D22F (t, S(t−))d〈Sc〉t

+
∫

R
[F (t, S(t−)(1 + y))− F (t, S(t−))

−S(t−)yD2F (t, S(t−))]N(du, dx). (7.42)

Where D1 is the differential operation with respect to the time variable and D2

is the differential operator with respect to stock price S(t). Applying Itô lemma
to the discounted contingent claim e−rtF (t, S(t)) yields

d
(
e−rtF (t, S(t))

)
= −re−rtF (t, S(t))dt+ e−rtdF (t, S(t)). (7.43)

Substituting (7.42) into (7.43) gives

d
(
e−rtF (t, S(t))

)
= −re−rtF (t, St)dt+ e−rt

[
D1F (t, St)dt+D2F (t, St−)dS(t) +

1
2
D22F (t, St−)d〈Sc〉t

+
∫

R
[F (t, S(t−)(1 + y))− F (t, S(t−))− S(t−)yD2F (t, S(t−))]N(du, dx)

]
. (7.44)
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7.6. Hedging Portfolio for Lévy Processes

From (7.34) we can write the stocks price process under the risk neutral mea-
sure Q as

dS(t) = S(t)[rdt+ σdW̃ (t) + dM̃(t)], (7.45)

which we can substitute into (7.44) to get

d
(
e−rtF (t, S(t))

)
= −re−rtF (t, St)dt+ e−rt

[
D1F (t, St)dt+ σSt−D2F (t, St−)dW̃ (t) +

St−D2F (t, St−)dM̃(t) + rSt−D2F (t, St−)dt+
1
2
σ2S2

t−D
2
2F (t, St−)dt

+
∫

R
[F (t, S(t−)(1 + y))− F (t, S(t−))− S(t−)yD2F (t, S(t−))]ν̃(dy)

]
.

Where ν̃(dy) is the compensator of the Poisson process N(dt, dy) under the risk
neutral measure Q. Since the discounted contingent claim is a martingale un-
der Q, the dt terms must be zero. So we must have

D1F (t, x) + rxD2F (t, x) +
1
2
σ2x2D2

2F (t, x) +DF (t, x) = rF (t, x), (7.46)

where

DF (t, x) =
∫

R
[F (t, x(1 + y))− F (t, x)− xyD2F (t, x)]ν̃(dy).

Equation (7.46) is the partial differential equation for the value of an option
when the stocks price process is driven by Lévy processes with jumps. We will
need the following lemma to derive the hedging portfolio for our enlarged mar-
ket.

Lemma 7.1. Consider a real function h(s, x, y) ∈ R+×R+×R which is infinitely
differentiable in the y variable. Set

ai(s, x) =
1
i!
∂ih

∂yi
(s, x, 0),

and assume that

sup
x<K,s≤s0

∞∑
i=2

| ai(s, x) | Ri <∞ (7.47)

for all K,R > 0, s0 > 0.

Then we have∑
t<s≤T

h(s, Ss−,∆Xs) =
∞∑
i=2

∫ T

t

1
i!
∂i

∂yi
h(s, Ss−, 0)dY (i)

s +
∫ T

t

∫ ∞
−∞

h(s, Ss−, y)ν̃(dy)ds.
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7.6. Hedging Portfolio for Lévy Processes

Proof
see Corécuera and Nualart [12].

We now calculate the sequence of self-financing portfolios that replicates the
contingent claim X

Theorem 7.4. The sequence of self-financing portfolios replicating a contingent
claim X with a payoff only depending on the stock price value at maturity and
a price function F (t, x) ∈ C1,∞ which satisfies

sup
x<K,t≤t0

∞∑
n=2

|Dn
2F (t, x)|Rn <∞ (7.48)

for all K,R > 0, t0 > 0,

is given at time t by

number of bonds
α(t) = R−1(t)(F (t, St−)− St−D2F (t, St−))

−R−1(t)
∞∑
i=2

Si
t−D

i
2F (t, St−)
i!R(t)

H
(i)
t− ,

number of stocks
β(t) = D2F (t, St−),

number of ith-power-jump assets

β(i)(t) =
Si

t−D
i
2F (t, St−)
i!R(t)

i = 2, 3, . . .

Proof
An application of the Itô lemma to F (t, S(t)) gave us (7.39) which is

F (t, S(t))− F (0, S(0)) =
∫ t

0

∂F

∂u
(u, S(u−))du+

∫ t

0

∂F

∂S
(u, S(u−))dS(u)

+
1
2

∫ t

0

∂2F

∂S2
(u, S(u−))d〈Sc〉u

+
∑

0≤u≤t

[F (u, S(u))− F (u, S(u−))− ∂F

∂S
(u, S(u−))∆S(u)],

with ∆S(t) = S(t−)∆M(t) so that

F (t, S(t))− F (0, S(0)) =
∫ t

0
D1F (u, S(u−))du+

∫ t

0
D2(u, S(u−))dS(u)

+
1
2

∫ t

0
σ2S2(u−)D2

2F (u, S(u−))du

+
∑

0≤u≤t

[F (u, S(u−)(1 + ∆M(u)))− F (u, S(u−))−∆M(u)S(u−)D2F (u, S(u−))].
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7.6. Hedging Portfolio for Lévy Processes

If we let h(t, x, y) = F (u, x(1 + y))− F (u, x)− xyD2F (u, x). It is clear that

h(t, x, 0) = 0
∂

∂y
h(t, x, 0) = 0

∂n

∂yn
h(t, x, 0) = xnDn

2F (t, x) n = 2, 3, . . .

Since F (t, x) ∈ C1,∞ satisfies conditions of (7.48), then h satisfies conditions of
Lemma 7.1. Application of Lemma 7.1 gives

F (t, S(t))− F (0, S(0))

=
∫ t

0
D1F (u, S(u−))du+

1
2

∫ t

0
σ2S2(u−)D2

2F (u, S(u−))du

+
∫ t

0
D2(u, S(u−))dS(u) +

∞∑
i=2

∫ t

0

Si
u−D

i
2F (u, Su−)
i!

dY (i)(u)

+
∫ t

0

∫ ∞
−∞

F (u, x(1 + y))− F (u, x)− xyD2F (u, x)ν̃(dy)du

=
∫ t

0

D1F (u, Su−) + 1
2σ

2S2
u−D

2
2F (u, Su−) +DF (u, x)

rR(u)
dR(u)

+
∫ t

0
D2(u, S(u−))dS(u) +

∞∑
i=2

∫ t

0

Si
u−D

i
2F (u, Su−)
i!R(u)

dH(i)(u)

−
∞∑
i=2

∫ t

0

Si
u−D

i
2F (u, Su−)
i!R(u)

Y (i)(u−)dR(u).

Now using the partial differential equation for the price (7.46), we get

F (t, S(t))− F (0, S(0))

=
∫ t

0

F (u, Su−)− Su−D2F (u, Su−)−
∑∞

i=2

∫ t
0

Si
u−Di

2F (u,Su−)

i!R(u) H(i)(u−)

R(u)
dR(u)

+
∫ t

0
D2(u, S(u−))dS(u) +

∞∑
i=2

∫ t

0

Si
u−D

i
2F (u, Su−)
i!R(u)

dH(i)(u).

Which gives us the required hedging portfolio for the number of bonds, stocks
and ith-power-jump assets.

For the Black-Scholes model covered in Chapter 3, with the stock price process
S = {S(t), t ≥ 0} given by

S(t) = S(0) exp((r − 1
2
σ2)t+ σW (t)),

where W = {W (t), t ≥ 0} is a standard Brownian motion, all the power-jump
processes H(i), i = 2, 3, . . . are equal to zero. The market is already complete
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7.7. Pricing Formula for Lêvy Processes

and an enlargement is not necessary. The hedging portfolio is given by
F (u, S(u))− S(u)D2F (u, S(u))

R(u)

number of bonds and

D2F (u, S(u))

number of stocks.

7.7 Pricing Formula for Lêvy Processes

Consider the value at time t of a contingent claim X with a payoff function
f(S(T )) = F (T, S(T )) only depending on the stock price at maturity:

F (t, S(t)) = exp(−r(T − t))EQ[X|Ft]
= exp(−r(T − t))EQ[f(S(T ))|Ft] (7.49)

Where we have r = a+ b under the risk-neutral measure. Now using (7.13) we
get

F (t, S(t))

= exp(−r(T − t))EQ

[
f

(
St exp

(
σ(WT −Wt) + (MT −Mt) + (r − 1

2
σ2)(T − t)

)
∏

0≤s≤t

(
1 + ∆M(s)) exp (−∆M(s))

)∣∣∣∣Ft

]
= exp(−r(T − t))EQ

[
f

(
x exp

(
σ(WT−t) + (MT−t) + (r − 1

2
σ2)(T − t)

)
∏

0≤s≤t

(
1 + ∆M(s)) exp (−∆M(s))

)]
.

Introducing the Black-Scholes option price

FBS(t, x) = exp(−r(T − t))EQ

[
f

(
x exp

(
σ(WT−t) + (r − 1

2σ
2)(T − t)

))]
,

gives us

F (t, x) = EQ

[
FBS

(
t, xeMT−t

∏
0≤s≤t

(
1 + ∆M(s)) exp (−∆M(s))

)]
. (7.50)

The nth derivative with respect to x, which is needed in the formula for the
number of nth power-jump assets in the replicating portfolio is given by

Dn
2F (t, x) = EQ

[
enMT−t

Q
0≤s≤T−t(1+∆Ms)ne−n∆Ms×

Dn
2FBS

(
t, xeMT−t

∏
0≤s≤T−t

(
(1 + ∆M(s)) exp(−∆M(s))

)]
,
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for the European call option, the Dn
2FBS are very simple. They are given in

terms of cumulative probability distribution functionN(x) and the density func-
tion n(x) of a Standard Normal random variable by

D1
2FBS(t, x) = N(d1) = N

( log( x
T−t) + (r + 1

2σ
2)

σ
√
T − t

)
,

and

D2
2FBS =

n(d1)
xσ
√
T − t

,

which are also known as the delta and gamma of the option.

We can use the Esscher transformation described in Chapter 3, section 3.3, to
find an equivalent martingale measure Q with minimal relative entropy since
the stock price process S(t) is given by

S(t) = S(0) exp
(
σWt +Mt + (r − 1

2
σ2)t

) ∏
0≤s≤t

(1 + ∆M(s)) exp(−∆M(s))

= S(0) exp
(
σWt +Mt + (r − 1

2
σ2)t

) ∏
0≤s≤t

exp
(

ln(1 + ∆M(s))−∆M(s)
)

= S(0) exp
(
σWt +Mt + (r − 1

2
σ2)t

) ∑
0≤s≤t

(
ln(1 + ∆M(s))−∆M(s)

)
= S(0) exp

(
σWt + (r − 1

2
σ2)t+

∑
0≤s≤t

ln(1 + ∆M(s))
)
.

If we let U = ∆M(s) and assume that the intensity process of the jumps mod-
elled by the variable (1 + U) follows a log-normal distribution with mean δ and
variance β2, that is ln(1 + U) ∼ N(δ, β2) so that

S(t) = S(0) exp
(
σWt + (r − 1

2
σ2)t+

N(t)∑
i=1

ln(U + 1)
)

(7.51)

= S(0)eX
∗(t).

Since the stock price process S(t) is of the above form, we can indeed use the
Esscher transform of parameter θ to find a minimal martingale measure Q for
the above process. Chan [11] proves that θ(t) = h(t) = −λ(t)σ produces a mini-
mal change of measure P to an equivalent measure Q.

The Esscher transformation of parameter θ is given by

L(t) =
eθ

eX(t)

E

[
eθ eX(t)

] θ ∈ R,

93



7.7. Pricing Formula for Lêvy Processes

where

X̃(t) = σWt +
N(t)∑
i=1

ln(U + 1).

With

E

[
eθ

eX(t)

]
= E

[
eθσW (t)

]
E

[
eθ

PN(t)
i=1 ln(U+1)

]

= e
1
2
σ2θ2tE

[
E

[N(t)∏
i=1

eθ ln(U+1)| N(t)
]]

= e
1
2
σ2θ2tE

[N(t)∏
i=1

eθδ+ 1
2
β2θ2

]
= exp

{
1
2
σ2θ2t+ λt(eθδ+ 1

2
β2θ2 − 1)

}
,

so that

L(t) = exp
{
σθW (t) +

N(t)∑
i=1

ln(U + 1)− 1
2
σ2θ2t− λt(eθδ+ 1

2
β2θ2 − 1)

}
. (7.52)

The Radon-Nikodým derivative linking P to Q is thus given by

dQ

dP
= L(T ), (7.53)

where L(T ) is given in equation (7.52). Girsanov’s theorem states that there
exists a process W̃ = {W̃ (t), t ≥ 0}, such that

W̃ (t) = W (t)− θt, (7.54)

is a Brownian motion under Q, so that (7.51) becomes

S(t) = S(0) exp
(
σW̃t − σθt+ (r − 1

2
σ2)t+

N(t)∑
i=1

ln(U + 1)
)
.

Then by (7.49) we get

F (t, St)

= exp(−rτ)EQ

[
f

(
St exp

(
σW̃τ + (r − σθ − 1

2
σ2)τ +

N(τ)∑
i=1

ln(U + 1)
))

; θ
∣∣∣∣Ft

]
,
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where τ = T − t. For S(t) = x we have

F (t, x)

= exp(−rτ)EQ

[
f

(
x exp

(
σW̃τ + (r − σθ − 1

2
σ2)τ +

N(τ)∑
i=1

ln(U + 1)
))

; θ
]

= exp(−rτ)
∞∑

n=0

EQ

[
f

(
x exp

(
σW̃τ + (r − σθ − 1

2
σ2)τ +

N(τ)∑
i=1

ln(U + 1)
))

;

θ

∣∣∣∣N(τ) = n

]
×Q(N(τ) = n)

= exp(−rτ)
∞∑

n=0

EQ

[
f

(
x exp

(
σW̃τ + (r − σθ − 1

2
σ2)τ +

N(τ)∑
i=1

ln(U + 1)
))

;

θ

∣∣∣∣N(τ) = n

]
× (λ̃τ)ne−

eλτ

n!
,

where

σW̃τ + (r − σθ − 1
2
σ2)τ +

N(τ)∑
i=1

ln(U + 1) ∼ N

(
(r − σθ − 1

2
σ2)τ + nδ, σ2τ + nβ2

)
.

But

σW̃τ +
∑N(τ)

i=1 ln(U + 1)− nδ√
σ2τ + nβ2

∼ N(0, 1),

and

W̃ (τ)√
τ

∼ N(0, 1).

We have, by uniqueness of probability density function, that

σW̃τ +
∑N(τ)

i=1 ln(U + 1)− nδ√
σ2τ + nβ2

=
W̃ (τ)√

τ
,

so that

σW̃τ +
N(τ)∑
i=1

ln(U + 1) =

√
σ2τ + nβ2

τ
W̃ (τ) + nδ.

Hence

(r − σθ − 1
2
σ2)τ +

√
σ2τ + nβ2

τ
W̃ (τ) + nδ ∼ N

(
(r − σθ − 1

2
σ2)τ + nδ, σ2τ + nβ2

)
.
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Therefore (7.49) becomes

F (t, x) = exp(−rτ)
∞∑

n=0

(λ̃τ)ne−
eλτ

n!
×

EQ

[
f

(
x exp

(
(r − σθ − 1

2
σ2)τ +

√
σ2τ + nβ2

τ
W̃ (τ) + nδ

))]
.

By adding and subtracting nβ2

2τ into the exponential function we get

F (t, x) = exp(−rτ)
∞∑

n=0

(λ̃τ)ne−
eλτ

n!
×

EQ

[
f

(
x exp

(
(r − σθ − 1

2
σ2 +

nβ2

2τ
− nβ2

2τ
)τ +

√
σ2τ + nβ2

τ
W̃ (τ) + nδ

))]
F (t, x) = exp(−rτ)

∞∑
n=0

(λ̃τ)ne−
eλτ

n!
×

EQ

[
f

(
x exp

(
(r − σθ − 1

2
(σ2 +

nβ2

τ
) +

nβ2

2τ
)τ +

√
σ2τ + nβ2

τ
W̃ (τ) + nδ

))]
F (t, x) = exp(−rτ)

∞∑
n=0

(λ̃τ)ne−
eλτ

n!
×

EQ

[
f

(
x exp

(
(r − σθ − 1

2
σ2

n +
nβ2

2τ
)τ + σnW̃ (τ) + nδ

))]
F (t, x) = exp(−rτ)

∞∑
n=0

(λ̃τ)ne−
eλτ

n!
×

EQ

[
f

(
x exp

((
nδ − σθτ +

nβ2

2

))
× exp

(
(r − 1

2
σ2

n)τ + σnW̃ (τ)
))]

,

where σ2
n = σ2 + nβ2

τ . If we let Sn = x exp
((

nδ − σθτ + nβ2

τ

))
we get

F (t, S(t)) =
∞∑

n=0

(λ̃τ)ne−
eλτ

n!
exp(−rτ)EQ

[
f

(
Sn exp

(
(r − 1

2
σ2

n)τ + σnW̃ (τ)
))]

=
∞∑

n=0

(λ̃τ)ne−
eλτ

n!
FBS(τ, Sn; cn), (7.55)

which represents the weighted average of Black-Scholes price in terms of n
number of jumps. We thus have that

D1
2F (t, x) =

∞∑
n=0

(λ̃τ)ne−
eλτ

n!

[
exp

((
nδ−σθτ+nβ

2

2

))
×D1

2FBS(τ, Sn; cn)
]
.(7.56)
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Chapter 8

Conclusion

We have seen the imperfections of the Black and Scholes [9] option pricing the-
ory, in Chapter 3. One of them being its insufficiency for modelling stock prices
that jump discontinuously and the volatility of stock prices being stochastic.
With all of its drawbacks its still serves as a benchmark by which other option
pricing models are judged.

Features such as jumps and stochastic volatility of market assets prices may
cause incompleteness, depending on the available trading opportunities. For
example, in the Stein and Stein [38] (Chapter 6) model of stocks with stochastic
volatility, the market is incomplete because it is impossible to hedge the risk
factor associated with stochastic volatility. However, if our so called quadratic
variation assets on stocks (Chapter 4) were also to be marketed, both the risk
factors could be hedged by trading in the stocks and the quadratic variation
assets, and the market would be complete as shown in Chapter 6.

Jumps tend to cause incompleteness except in very simple or unusual models
(see for example Dritschel and Protter [15]). It is not that easy to hedge against
potential jumps of various sizes because their values are nonlinear. To complete
a market in which jumps of all sizes are possible might require many more mar-
keted securities, for example, vanilla European options of all strikes and matu-
rities or a larger number of power-jump assets as introduced by Corécuera and
Nualart [12]

Other phenomena causing incompleteness in the market which we covered in
this dissertation were market frictions such as transactional costs. For the case
of transactional costs we considered a market model paying continuous trans-
actional costs, like the one presented by Cvitanić and Karatzas [13]. We showed
that the market is already completed and there is no need to enlarge the market
if transactional costs are constant or deterministic. For the case when transac-
tional costs are stochastic, the market is incomplete, and an enlargement with
what we called quadratic variation assets to hedge away the risk associated
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with the extra source of randomness was required. Even though we were able
to complete the market paying transactional costs, trading is not optimal as the
hedging price for contingent claims in the completed market will be too expen-
sive for practitioners as it contains an unknown amount of transactional costs
which could be infinitely large.
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