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ABSTRACT 

The disposal of waste into landfill sites is currently the most commonly employed method of 

dealing with waste in South Africa as well as internationally. However the global trend towards 

operating waste management systems in a more sustainable way has lead to the need to reverse this 

situation towards a waste management system that predominantly makes use of waste minimization 

schemes to deal with waste and relies minimally on waste disposal. The focus of this research was 

to determine which waste minimization schemes would be most effective in the Municipal Solid 

Waste Management Systems (MSWMS) of Cape Town and Johannesburg with regard to achieving 

this reversal in an economically sustainable manner. 

The method used to achieve this objective was threefold, firstly requiring the development of a 

waste flow diagram for each respective city, followed by the development of a waste stream model 

based on the specific flow diagram and finally the extension of this material model into an 

economic model. The models were developed in Microsoft Excel and work on the premise that each 

particular stream (separate collected waste, transfer station waste, etc) of the MSWMS concerned 

has a particular associated cost (defined as cost per ton of waste processed). The model operates on 

the principle that under several pre-determined constraints the Excel Solver function calculates the 

optimal flow rates of the various waste streams which give the minimum overall MSWMS cost for 

future years. 

The developed model has shown that the recovery of waste reduces the overall MSWMS costs until 

a threshold value (at which point under the proposed system all economically recoverable waste has 

been exhausted). Different waste minimization schemes were found to be appropriate for each 

respective city. However, the use of Material Recovery Facilities (MRFs) to recover recyclables has 

been shown to be a viable waste recovery scheme for both Cape Town and Johannesburg. Cape 

Town is in the process of implementing the development of MRFs in conjunction with existing 

transfer stations, while it is envisaged that MRFs will be developed on all of Johannesburg's 

Municipal landfill sites in the future. 

Significant changes to the MSWMS of both cities are required for their respective landfilling waste 

streams to be substantially reduced in accordance with the Polokwane Declaration. Decreasing the 

landfilled waste stream is not only required by legislation, but the developed model has shown that 

the recovery of waste also reduces the overall MSWMS costs. 
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Chapter 1: Introduction 

1.1 CONTEXT 

The disposal of waste into landfill sites is currently the most commonly employed method of 

dealing with waste in South Africa as well as internationally. Ongoing research into the social and 

environmental impacts of disposing waste in landfill sites has however proved that the landfilling of 

waste is not a sustainable way of dealing with refuse. None-the-less landfilling remains the 

predominant waste management scheme due to the fact that it is firstly the oldest and most 

developed of the currently employed waste management schemes, and secondly due to its 

classification as being the most economical waste management scheme. The latter reason is proving 

to no longer always qualify as being accurate due to the "factoring in" of external costs into the 

analysis of different waste management schemes as well as through the discovery of alternative 

ways of dealing with waste (many of which are proving to be more economically sustainable than 

landfilling). These schemes predominantly involve the recovery of waste and are proving to be 

more economical due to the fact that they generate an income in the form of recovered material 

sales and also result in a direct cost saving in the form of minimising waste sent to landfill sites for 

disposal. The overall objectives of this dissertation are as follows: 

• To develop an economic model of both Cape Town and Johannesburg's Solid Waste 

Management System in order to analyse the financial feasibility of various municipal waste 

minimization schemes that are either currently employed or proposed for future use by these 

respective Municipalities. This will in turn be utilized as a management tool for determining 

which waste minimization schemes can be most effectively employed in both the Cape Town 

and Johannesburg context (this type of management tool is often referred to as a Decision 

Support System). 

• To determine the effect of both income and inflation increases on the economic feasibility of 

the various waste minimization operations through the use of sensitivity analyses. 

• To compare the waste minimization schemes employed by the Cape Town and Johannesburg 

Municipal Solid Waste Divisions in order to facilitate the integration of ideas between these 

two respective municipalities. 

In understanding the background to waste management in South Africa it is important to develop an 

awareness of the South African legislation that applies to waste management, and hence the 

following sub-chapter presents an overview of this legislation. 
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Chapter 1: Introduction 

1.2 OVERVIEW OF RELEVANT LEGISLATION 

Legislation relevant to waste management is divided into national/provincial legislation and 

local government legislation. 

1.2.1 NATIONAL AND PROVINCIAL LEGISLATION 

Currently there is no single national or provincial Act that brings together all aspects of waste 

management and defines what overall regulations apply when dealing with waste (a National 

Integrated Waste Management Bill is however currently being developed). The current 

national and provincial waste management legislation is specific to certain types of waste (eg: 

National Water Act; Nuclear Energy Act). As a result of this, South African legislation on 

waste is quite fragmented because each of these focussed waste legislations exhibit their own 

specific regulations. In the past, waste management legislation was also generally left to local 

authorities to formulate, and hence a large amount of municipal bylaws and local regulations 

exist which differ from one area to the next (Mega-Tech Inc; 2004). The main national and 

provincial legislation that looks at the broad aspects of waste management are as follows: 

• National Waste Management Strategies and Action Plans - NWMS (1999): 

This strategy is the foundation document for the development of a National Integrated 

Waste Management Bill (set to be drafted in the near future). It highlights numerous 

strategies and action plans for the management of waste, and more specifically for the 

minimisation/prevention of waste. It is important to note that this document deals with 

both hazardous and non-hazardous (general) waste, and for the purpose of this study only 

the latter will be considered. In terms of general waste, an objective of this document is to 

develop integrated waste management plans (IWMPs) at local government level with the 

aim of optimising waste management practices. The process of achieving this goal with 

regard to general waste is as follows: 

• Firstly, the Department of Environmental Affairs and Tourism (DEAT) was tasked 

with the drafting and circulation of regulations and guidelines outlining the method to 

be used by local government (municipalities) when compiling their particular IWMP. 

• Following this, the first generation plan of a particular municipality's IWMP was 

(according to the deadlines set) to be compiled during 2001, and to be submitted to 

provincial government by 2002. 

3 



Chapter 1: Introduction 

• The IWMP must incorporate the views of the general public, and hence a public 

participation process is required to ensure involvement of all stakeholders. 

• The final Integrated Waste Management Plans were scheduled to be submitted to the 

provincial government (under which a particular municipality served) by the end of 

2003, and are expected to be implemented by 2006. 

• A summary of the final Integrated Waste Management Plans is scheduled to be drawn 

up by each specific provincial government with the aim of incorporating this into 

their particular Provincial Environmental Management Plan. This plan would be 

reviewed by the Committee for Environmental Co-ordination (CEC) every 4 years. 

(http://www. environment. gov.za/ProjProg/WasteMgmt/waste. html; accessed 18/09/2005) 

This process should result in the waste management system exhibiting a greater 

efficiency, whereby associated impacts and financial costs associated with waste 

management are minimised. 

• White Paper on Integrated Pollution and Waste Management (2000): 

This paper was drawn up as a result of the NWMS and is a useful document that outlines 

certain legislation on waste management, which is used throughout the country. This 

legislation promotes the use of the waste hierarchy concept shown below. 

> 
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Figure 1.1: Waste hierarchy concept. 
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This concept outlines the different stages that must be followed to ultimately minimize 

the waste that must be disposed. The first stage is to encourage manufacturers and 

producers to minimize the amount of waste that they generate through the use of cleaner 

production technologies that result in more efficient usage of raw materials. The next 

stage (reuse of waste materials) is often possible as a result of the fact that many waste 

materials can be washed and repaired such that they can be reused to fulfil the same 

purpose that they originally served. Hence this waste material can be diverted from the 

waste stream and reused. Following this, recyclable materials in the waste stream can 

then be removed and used to produce new raw materials. Organic waste can also be 

recovered and used to make compost. After all these avenues have been used to minimize 

the waste stream then waste should be treated (physically, chemically and/or biologically) 

and then sent to a landfill site for disposal. (Mega-Tech Inc; 2004) 

• Polokwane Declaration on Waste Management (2001): 

This declaration's aim was to reaffirm the need for implementing the waste hierarchy 

concept in the South African waste management industry. Industries were encouraged to 

make use of the waste hierarchy concept to minimize their waste. The goal of the 

declaration was that waste generation and waste disposal should be reduced by 50% and 

25% respectively by the year 2012, with the overall goal of developing a "zero waste" 

strategy by the year 2022. "Zero waste" refers to the process whereby all waste produced 

is somehow reused or recovered so that no waste ends up going to landfill sites. (Mega-

Tech Inc; 2004) 

There is a large body of other legislation that is relevant to the theme of waste management, 

but only the important legislation is highlighted as follows. The National Environmental 

Management Act (107 of 1998) is the overriding legislation governing environmental 

matters, and thus all other relevant legislation is subject to its provisions. South Africa's 

Constitution also highlights the environmental rights of citizens and is thus also a relevant 

body of legislation. In terms of the operation of landfills and the development of landfills, the 

Department of Water Affairs and Forestry determines what procedures should be put in place 

to minimize the environmental impacts of leachate production on a particular landfill site, and 

these are highlighted in their guideline document termed Minimum Requirements for 

Waste Disposal by Landfill (Draft 3rd Edition compiled in 2005). (Mega-Tech Inc; 2004) 
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1.2.2 LOCAL AND MUNICIPAL LEGISLATION 

This basically outlines the responsibilities of all waste producers (industry, residents, etc) in terms 

of how they should deal with their waste. The following regulations are commonly applied: 

• Solid waste must be placed in the provided municipal black bags or Wheeli-bins and placed 

outside of dwellings on the day of refuse collection. 

• Industries that produce large amounts of waste must request the use of a skip or waste container 

from either their local Municipal Waste Services Department or else from a private Waste 

Management Company. 

• Only the permitted solid waste may be disposed. Garden refuse and builders' rubble must be 

kept separate and transported to nearby municipal refuse/drop-off facilities. 

• The dumping of waste in public spaces or anywhere other than at the designated refuse sites is a 

serious criminal offence. 

• Any builder's rubble that is transported to a landfill site will be charged according to the waste 

tariff, unless the rubble is deemed to be appropriate landfill covering material. 

• Every dwelling must provide easy access to their waste receptacles so that waste can be 

collected without hassle. 

• The service of waste collection is provided under a particular tariff system decided upon by the 

local Municipal Waste Services Department. (Mega-Tech Inc; 2004) 
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2.1 OVERVIEW OF WASTE MANAGEMENT MODELLING 

It is inevitable that the progression of knowledge into the social and environmental impacts of the 

disposal of waste into landfill sites has created a need to develop a more sustainable method of 

managing waste in a society that no longer tolerates human activities that lead to its current and 

future detriment. Due to this increased awareness of human impact on the surrounding environment 

an acceptance of responsibility to maintain the surrounding environment has been developed. This 

has lead to the need to better manage human processes that impact on the environment. To this end 

comes the need to develop an effective waste management system that mitigates the resultant social 

and environmental impacts of this respective system as far as possible, while at the same time 

ensuring that the system is economically feasible. As a result of the fact that there is no single 

optimum waste management scheme that can fulfil these criteria it is necessary to manage waste 

according to a multi-disciplinary approach, termed an Integrated Waste Management Plan (IWMP). 

This approach involves the use of various waste management schemes, namely waste avoidance, 

waste recovery, waste incineration and finally waste disposal. 

The operation of an Integrated Waste Management Plan requires careful planning due to its 

complex multi-disciplinary nature. The different schemes employed in a particular waste 

management system are inter-connected due to the fact that they influence the amount and nature of 

waste being sent to schemes further done the line. An example of this phenomenon is illustrated in 

the fact that a recycling scheme will reduce the amount of waste requiring final disposal, as well as 

decreasing the recyclables content within the waste, and thereby affecting the nature of the waste. It 

is thus evident that the planning of such a system requires the use of a management tool that allows 

for interactions between the different waste management schemes within a particular waste 

management system, and the tool generally used to achieve this objective is a model. At this stage it 

is important to define what is exactly meant by the term "model". A model is a schematic 

representation of a particular system, which allows one to simulate the operation of the particular 

system concerned. Hence a "waste management model" representing a particular waste 

management system allows one to simulate the operation of that particular waste management 

system. Waste management models are usually developed for particular regions or cities due to the 

fact that the geographical, environmental and socio-economic conditions of a particular region 

largely influence the efficiency of a particular waste management system. Hence these factors need 

to be considered in determining the most appropriate waste management system for that particular 

region. (AbouNajm and El-Fadel, 2004) 

8 



Chapter 2: Literature Review 

The following subchapters describe the three types of models that are utilized to simulate waste 

management systems and include models based on Cost Benefit Analyses, Life Cycle Assessments 

and Multi-criteria Decision Analyses. 

2.1.1 MODEL TYPE 1: COST BENEFIT ANALYSIS 

This model type evaluates the effectiveness of different waste management schemes in 

monetary terms. Generally it involves the optimisation of a particular waste management 

system by determining the combination of waste management schemes that result in the 

lowest operating cost. Two examples of the application of this waste management tool being 

applied to plan certain waste management systems are found in the following papers: MCCK 

& Consultancy, 1998 and Fiorucci et al, 2003. The former of these two articles describes the 

use of a waste management model based on cost benefit analysis (CBA) that has aided in the 

planning of an effective waste management system in Dublin, Ireland, while the latter 

involves the development of a CBA model that has been applied to the Italian city of Genova. 

In order to assess the usefulness of this model type it is important to list its associated 

advantages and disadvantages, and these are presented in the following table. 

Table 2.1: Advantages and disadvantages of using CBA type models. 

ADVANTAGES 

1) The model gives a single 

monetary figure as its output and 

is hence easily understood. 

2) Allows management to analyse 

which waste management 

schemes are most effective. 

DISADVANTAGES 

1) It is often difficult to express environmental and/or 

social impacts in monetary terms that allow these 

considerations to be incorporated into the model. 

2) Prices given to certain waste management schemes 

are assumed to increase at a constant rate, but 

operational changes to these schemes may change 

these prices from their original estimated value. 

As is evident in Table 2.1 the advantages of CBA type models prove that this model type is a 

very useful management tool. The first disadvantage listed with regard to CBA type models is 

often rectifiable with the onset of increased knowledge into the environmental costs 

associated with mitigating certain impacts, for instance the costs of monitoring and treating 

leachate run-off from landfill sites to protect the surrounding environment. The social impacts 

are often difficult to quantify in monetary terms, however these are often inter-related to the 

environmental costs and in this way receive partial consideration. The second disadvantage of 
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CBA type models cannot easily be reconciled, but none-the-less this model type still remains 

a useful first step in the development of an effective Integrated Waste Management Plan. 

(Morrissey and Browne, 2004) 

2.1.2 MODEL TYPE 2: LIFE CYCLE ASSESSMENT 

This model type studies the potential impacts of certain activities (or schemes in the case of a 

waste management system) on the environment from the stage of raw material sourcing for 

the development of an activity to the operation and production stages to the final disposal of 

waste products formed as a result of that particular activity. This type of analysis is 

commonly referred to as a "cradle to grave" investigation. Several general life cycle 

assessment (LCA) packages exist which allow the usage of a large database of figures linked 

to the impacts of different activities. Some of these LCA programmes are specifically 

focussed on waste management, including the likes of OR WARE and WISARD. The former 

of these was developed by several research institutions in Sweden and is commonly used in 

this region, while the latter was developed by the Ecoliban Group and has been extensively 

used in the United Kingdom. An example of the usage of the OR WARE LCA software to 

model a waste management system is found in the paper by Eriksson et al, 2002, and involves 

the investigation of the waste management system employed in the Swedish city called 

Uppsala. The usefulness of this model type is investigated in the following table, which lists 

the advantages and disadvantages of LCA models. (Morrissey and Browne, 2004) 

Table 2.2: Advantages and disadvantages of using LCA type models. 

ADVANTAGES 

1) Facilitates an analysis into which 

waste management schemes are 

most environmentally friendly. 

2) Although these models focus on 

environmental impacts only it is 

possible to incorporate 

environmental costs into such 

models. 

DISADVANTAGES 

1) The resultant environmental impact analysis often 

does not reflect exactly what will happen in reality, 

because the impacts are strongly determined by the 

place, time and method in which a particular 

scheme is operated (not incorporated into model). 

2) It is often difficult to define the boundaries which 

allow for only those associated impacts that have a 

significant effect to be considered. LCA's also 

generally neglect economic factors and never 

consider social impacts. 

10 
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• 

Out of the three model types, those models that are based on LCA's can potentially best 

determine the real impacts on the surrounding environment. As Table 2.2 above illustrates, 

LCA models have serious shortcomings, but they still serve as useful management tools. 

2.1.3 MODEL TYPE 3: MULTI-CRITERIA DECISION ANALYSIS 

This model type evaluates the effectiveness of different waste management schemes in a 

multi-dimensional way that allows for several variable criteria to be included in the model. 

The model operates on the principle that a series of unit weighting values are assigned to 

different criteria, which are based on practical experience, and these weightings are used to 

rank different schemes. For a particular waste management scheme to be analysed the 

resultant model weighting of that scheme for the different criteria (which may include social, 

environmental and economic impacts etc) is tallied and the overall value can then be 

compared with the overall weighting of other alternative waste management schemes. The 

most commonly used software used to develop models based on Multi-Criteria Decision 

Analyses (MCDA) include EXPERT CHOICE and ELECTRE TRI Assistant. The advantages 

and disadvantages of MCDA models are presented in the table below. (Morrissey and 

Browne, 2004) 

Table 2.3: Advantages and disadvantages of using MCDA type models. 

ADVANTAGES 

1) Allows the input of both quantitative 

and qualitative information and hence 

facilitates the incorporation of non-

economic criteria (eg: social and 

environmental criteria). 

2) The preference of various stakeholder 

groups with differing needs can be 

incorporated into MCDA type models. 

DISADVANTAGES 

1) The resultant scheme ranking analysis 

produces a set of favourable schemes rather 

than an optimum combination of schemes 

that produce the best solution. 

2) Criteria weight allocation is a subjective 

process and may lead to misconceptions of 

reality if values are poorly chosen. 

Table 2.3 above indicates that out of the three model types MCDA type models are the most 

effective in incorporating all the different criterion that are important in an analysis that 

determines which waste management schemes are the most favourable. However it is evident 

that this model type is limited in its ability to analyse the influence of one scheme on another 

and hence cannot determine a combination of schemes that would complement each other. 

11 
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2.2 WASTE MANAGEMENT SCHEME BACKGROUND 

It was highlighted in Chapter 1 that the currently employed and recommended approach to dealing 

with waste is a broad Integrated Waste Management Plan in which several waste management 

schemes are employed in order to deal with waste in an appropriate way rather than using a single 

scheme to achieve this goal. The management of waste is developing into a very broad field which 

provides many different options to dealing with waste and these are highlighted in the following 

sub-chapter. 

2.2.1 LANDFILLS AND LANDFILL CHARACTERISATION IN SOUTH AFRICA 

Landfills are disposal sites onto which waste is deposited and isolated from the surrounding 

environment by encapsulation. The process of encapsulating waste in a landfill involves 

laying down lining material onto the land which will receive waste and then covering the 

waste with appropriate materials. The degree of encapsulation required varies as a function of 

various local factors and hence proposed landfill sites have to be classified in order to 

determine the extent of encapsulation that is deemed appropriate for that particular site. In 

classifying landfills three classification categories are examined, namely: type of waste to be 

disposed; the size of the waste stream; and the potential for leachate generation in the landfill 

site. Waste types are divided into two classes, which include general and hazardous waste. 

General waste exhibits characteristics and compositions that do not pose a significant hazard 

to public health or the environment if the waste is properly managed. Typical general waste 

includes domestic and commercial waste, certain industrial wastes, garden refuse and 

builders' rubble. It may also include small amounts of hazardous wastes including batteries, 

insecticide, medical waste, etc that is thrown into domestic and commercial waste. Hazardous 

waste is waste that may cause adverse effects to public health and/or the environment, and 

includes waste that may have any one or more of the following properties: toxic, ignitable, 

corrosive, carcinogenic, etc. (http://www. dwaf.gov.za; accessed 11/11/2006) 

Hazardous wastes are categorised according to a hazard rating system, which is based on the 

toxicity, environmental fate and other criteria of the particular hazardous waste concerned. 

There are four hazard ratings, namely: Hazard Rating 1 (Extreme Hazard); Hazard Rating 2 

(High Hazard); Hazard Rating 3 (Moderate Hazard); and Hazard Rating 4 (Low Hazard). 

Landfill sites that are to accept wastes of all hazard ratings (1-4) are classified as H:H sites, 

12 
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whereas sites classified as H:h sites can only accept waste with a hazard rating of 3 and 4 (i.e: 

moderate and low hazard waste). (http://www. dwaf.gov.za; accessed 11/11/2006) 

With Regard to the classification of the size of the waste stream to be disposed of on a 

particular landfill site, the waste deposition is analysed by determining the maximum rate of 

deposition (MRD) for a particular site. The MRD is the projected maximum waste deposition 

expressed in tonnes per day for the entire expected life of a particular landfill site. It is 

calculated by the following formula: 

MRD = IRD*( 1 +d)' Where IRD = the initial determined rate of deposition 

for a particular landfill; d = estimated percentage increase in 

waste received per year based on annual population growth 

rate; t = expected lifetime of landfill site. 

Four size categories exist, including Communal, Small, Medium, and Large. Landfill sites 

are classed in these size categories according to the following table: 

Table 2.4: Landfill size classification. 

Disposal Site Size Class 

Communal (C) 

Small (S) 

Medium (M) 

Large (L) 

Maximum Rate of Deposition - MRD (tonnes/day) 

<25 

25-150 

150-500 

>500 

N.B: Values are based on a 5-day week operation. 

Only general landfill sites are classified according to size. The classification of hazardous 

waste disposal sites does not take size into account, and is based solely on the hazard rating of 

waste. (http://www. dwaf.gov.za; accessed 11/11/2006) 

The last classification category deals with the potential for significant leachate generation 

from the disposal site. All hazardous landfill sites are required to be designed with leachate 

collection systems, and hence this classification category is only used to determine whether 

general landfill sites require leachate collection systems. In order to determine whether 

significant leachate will be generated by a particular site, average annual rainfall data (R) and 
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A-pan evaporation data (Ea) for the area is gathered and compared in a climatic water balance. 

Essentially this balance states that if the data collected shows that R > 0.4Ea for the bulk of 

the data gathered then the site requires leachate collection systems, and if R < 0.4Ea for the 

majority of data gathered for the site then leachate generation for the site can be considered to 

not be significant. General landfills that require leachate collection systems are classified as 

B+ sites, while disposal sites that do not require leachate collection are termed B" sites. Hence, 

for example the full classification for a general disposal site that is classified as a large site, 

and requires leachate collection systems would be reported as G:L:B+ 

(http://www. dwaf.gov.za; accessed 11/11/2006). The following figure is an illustration of the 

Shongweni Landfill Site in Durban. 

Figure 2.1: The lining of the Shongweni Landfill Site. 

(http://www.engineer ed-linings.co.za; accessed 10/07/2006) 

Figure 2.1 illustrates the structure of landfill lining systems. The Shongweni site depicted in 

the diagram is a privately operated landfill site in Durban. 

2.2.2 TRANSFER STATIONS 

The function of a transfer station is to accept collected waste that is collected by municipal 

and private refuse trucks and to compact the received waste ready for transport by bulk 

haulage vehicles or railway to disposal facilities. The reason for operating transfer stations as 
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an intermediate process between the collection and disposal of refuse is that these facilities 

help to minimise transport costs if the distance required to be travelled between the refuse 

collection and disposal point is very large. This situation occurs when landfill space within a 

city becomes of great shortage, resulting in the need to develop landfill sites outside of the 

city or else in non-centralised positions. Other advantages associated with operating transfer 

stations include the fact that refuse collection vehicles operate more productively (due to 

shorter travelling distances) and require less maintenance due to the fact that they only travel 

on tarred roads (which is not the case when they are required to travel on gravel roads in 

landfill sites), as well as the fact that landfill sites experience less traffic congestion due to 

decreased vehicle visits (Chang et al, 1991). The general layout of a transfer station is shown 

in the diagram below. 

Figure 2.2: Layout of a typical transfer station. 

(http://www.akura.co.za/compactors/transfer%20durban%20site2.jpg; accessed 10/07/2006) 

Figure 2.2 illustrates that typical transfer station infrastructure includes a raised platform from 

which refuse trucks can be emptied into a feed hopper that feeds the waste into waste 

compactors (shown as containers 2 and 7). The waste compactors compact the waste and are 

transported by road or rail once completely full to landfill sites, where they are emptied and 

then returned for re-use. 
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2.2.3 COMPOSTING 

Composting is the process whereby organic material (garden refuse, food waste, etc) is 

converted into a stable soil-like product. The process involves a controlled biological 

degradation of organic material in the presence or absence of oxygen. The former of these 

two is termed aerobic degradation while the latter is called an anaerobic degradation process. 

Anaerobic degradation produces a number of odorous and potentially hazardous gases and 

hence this process requires careful control and gas treatment is an essential component of this 

process. Aerobic degradation is a much simpler process and is thus generally the preferred 

degradation method in composting processes. There are several ways to carry out aerobic 

degradation of organic material but the most commonly used method in South African 

Municipalities is the Open Windrow System, whereby shredded organic waste is placed in 

hill-like rows (windrows) as illustrated in the figure below, which are lifted and deposited 

again by a composting machine to re-aerate the windrows throughout the composting process. 

(Mega-Tech Inc, 2004) 

Figure 2.3: Composting machine turning shredded garden waste for re-aeration. 

(http://www.pikitup.co.za/upload/images/Composting-Machine.gif; accessed 12/04/2006) 

Figure 2.3 above was taken at the Johannesburg Waste Management Services' first Garden 

Refuse Composting Plant situated in Panorama. The composting machine depicted is a Ritlee 
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Xecutech SP 4, and its function is to turn the shredded garden refuse to allow for the re-

aeration of the windrows. In understanding why it is necessary to turn the windrows it must 

be taken into account that the micro-organisms carrying out the aerobic degradation of the 

garden refuse require oxygen to break down the waste and hence turning is required to bring a 

supply of oxygen into the centre of the windrow where oxygen has been depleted by the 

aerobic micro-organisms. During the degradation of waste gases are given off, and in the case 

of aerobic degradation carbon dioxide (C02) and water vapour (H20) is given off. This 

emission of gas results in a decrease in the mass of the organic material being composted, and 

this material decrease is quantified through the use of a Degradation Factor (D). The 

degradation factor represents the fraction of the initial organic mass that remains after 

degradation. The mass reduction of composted organic material is reported by Renkow and 

Rubin (1998) to be between 0.25 and 0.6, and since the degradation factor represents the mass 

that remains after degradation, the degradation factor ranges between 0.4 and 0.75. 

2.2.4 DROP-OFFS 

Drop-off facilities serve the function of providing a delivery point for bulky wastes, which 

typically include garden and garage refuse. Some drop-off facilities also accept builders 

rubble and recycling depots are also often incorporated into drop-off facilities. The figure 

below reveals the general layout of a drop-off facility 

Figure 2.4: Gordon's Bay drop-off facility. (Mega-Tech Inc, 2004) 

17 



Chapter 2: Literature Review 

Refuse that is delivered to drop-off facilities is usually placed into skips - large open 

containers designed to store bulky waste. Drop-off facilities are an integral part of any 

effective Municipal waste management system and should ideally be positioned such that all 

of the inhabitants of a particular city have easy access to these facilities. 

2.2.5 MATERIAL RECOVERY FACILITIES 

A Material Recovery Facility (MRF) is a processing centre where recyclables are removed 

from mixed or partially sorted waste and differentiated into different recyclables. There are 

two main types of MRFs, namely "Clean" MRFs and "Dirty" MRFs. The former involves the 

processing of separately collected waste that is almost entirely composed of recyclables that 

need to be sorted into their various types, while the latter deals with the processing of mixed 

general waste and is thus a more complicated operation in terms of sorting due to the added 

separation process being required to separate recyclable waste from non-recyclable waste. 

This initial sorting stage required in "Dirty" MRFs is carried out by a series of mechanically 

operated separation processes, while the recyclables sorting stage common to both "Clean" 

and "Dirty" MRFs normally involves hand-sorting of recyclables across a slow-moving 

conveyor belt system by the facility personnel, as is illustrated in the figure below. 

Figure 2.5: Hand-sorting of recyclables in an MRF. 

(www.godiversified.com/MRF.ht4.jpg; accessed 10/07/2006) 

The separation of recyclables into different recyclable types as illustrated in Figure 2.5 is a 

very labour-intensive process with a number of personnel being stationed at the same 

conveyor belt in order to ensure a good recovery of recyclables. The material that comes to 

the end of the sorting conveyor is stored ready for collection and disposal into a landfill site. 
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3.1 MODELLING METHODOLOGY 

The previous Chapter reveals that there are three types of models used to simulate waste 

management systems, and hence it is important to first explain how and why a particular model type 

was chosen to carry out the objectives of this research. The most important decision criterion in 

deciding which of the three model types (namely CBA, LCA or MCDA) was most appropriate for 

this research was the ability of a particular model type to facilitate the development of an effective 

Integrated Waste Management Plan (IWMP). As has already been mentioned in Chapter 2, an 

IWMP inevitably creates an inter-connected relationship between the different waste management 

schemes employed in that particular plan, and for this reason the development of an effective 

IWMP can only be carried out through the use of a model type that is able to take into account the 

influence of one scheme on another. Models based on either Cost Benefit Analyses, or Life Cycle 

Assessment are designed to accommodate the inter-connected nature of the schemes employed in an 

IWMP, while models based on Multi-Criteria Decision Analyses are unfortunately only able to rate 

the effectiveness of specific waste management schemes on an individual basis and are thus not 

able to easily analyse the effect of one scheme on another. For this reason the latter model type was 

not employed in conducting this research. In deciding between the use of CBA or LCA type 

models, the former was chosen due to the fact that unlike LCA type models, which more readily 

require expensive software packages, CBA type models can easily be developed from the inception 

stage and thus do not require expensive software packages for their development. The development 

of a model from the inception stage rather than from building a model on the foundation of an 

already existing modelling software package results in a greater incorporation of local conditions 

and waste management system requirements, and for this reason CBA type models were found to be 

favoured over LCA type models. 

The disadvantages of using CBA models have been described in Chapter 2, and the most pertinent 

of these involves the fact that CBA models often neglect the social and environmental impacts of 

modelled processes. In order to rectify this CBA modelling flaw, the philosophy of the waste 

hierarchy was incorporated into the model through the provision of landfill airspace cost saving 

values to the various waste minimization schemes (which ultimately reduced the amount of waste 

being sent to landfill sites). In understanding this rationale it is important to note that the waste 

hierarchy was developed from an environmental and social perspective and states that the disposal 

of waste is the least appropriate waste management scheme, and hence those schemes that help to 

reduce the quantity of waste going to landfill are environmentally and socially favoured. 
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3.2 COMPUTATIONAL METHODOLOGY 

The development of an economic model of a Municipal Solid Waste Management System 

(MSWMS) requires three steps, which include: 

i. The development of a flow diagram of the MSWMS. 

ii. The development of a waste stream mass balance with the aid of the MSWMS flow 

diagram, 

iii. The development of a model that links the waste stream mass balance to financial indicators 

in order to provide a tool for determining the best waste minimization strategies. 

3.2.1 DEVELOPMENT OF THE FLOW DIAGRAM 

The flow diagrams were developed through the collection of data on the structure and 

characteristics of both Cape Town and Johannesburg's MSWMS, and collated to formulate a 

flow diagram for each respective city. Each waste management scheme (eg: landfilling, 

recycling, etc) was assigned to a particular box, and the streams that were discerned to be 

inputs and outputs of a particular scheme were indicated as arrows into or out of that 

particular box. The various streams were then assigned different numbers, and streams that 

were facilitated by the Municipal Council were marked in bold. 

The reasoning for this was that the model is designed to only focus on those streams that 

represent a cost to the City Council, and hence streams that represent private company 

involvement are not considered as a result of the fact that these respective companies would 

cover the cost of the associated stream. The input stream to recycling centres/depots is also 

included in the analysis as a result of the fact that this sector has been subsidised by both City 

Council's for the reason that many of the organisations that are involved in this sector are not 

financially viable and thus depend on funding to cover their revenue shortfall in relation to 

their expenses. It is evident that the City Council derives a direct benefit from financially 

aiding recycling centres/depots as a result of the fact that this sector helps to minimise the 

amount of waste that would have otherwise represented a collection and disposal cost to the 

City Council. The sectors of the waste flow diagram facilitated by private companies are 

profitable and hence are self-sustaining without the assistance of outside funding. 
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3.2.2 DEVELOPMENT OF THE WASTE STREAM MASS BALANCE 

In order to develop the waste stream mass balance (WSMB) in Excel a workbook was sub­

divided into two sheets, the first (termed the Data Sheet) containing all the data required for 

the waste stream analysis and the second (termed Stream Sheet) comprising of a series of 

columns that represent the various streams present in the particular Waste Management 

System concerned. The Data Sheet is presented in the figure below, and contains both fixed 

and input data. 

Table Al: Cape Town Waste Characterisation (Mega-Tech, May 2004) 
Recyclables Fractions 
Builder's Rubble 
Green Waste 
Organics 
Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

Household 
-
-

0.47 
0.05 
0.08 
0.19 
0.13 
0.08 

Commercial/Industrial 
-
-

0.31 
0.01 
0.02 
0.18 
0.02 
0.47 

TOTAL 1.00 1.00 

Table A4: Analysis of Overall Waste Generated {Mega-Tech, May 2004) 
Source 
Household 
Commercial and Industrial 
Green 
Builder's Rubble 

TOTAL 

Parameters: 
Total Generated Waste 
Transfer Station(s) Capacity 
Cost to Landfill ton of waste 
Landfill/TS Splitting Ratio (Fl): 
MRF/Landfill Split Ratio (F2): 
Vissershok Waste (Private) 
Baseline Year (2003/2004) 
Year Analysed 
Inflation Rate 
Overheads/Admin. For SWC 
End-of-Life Deposit Bottles (t/yr) 
Income Increase Rate 
Number of MRFs 

Amount (t/yr) 
935835 
1034344 
123136 
369408 

Mass Fraction 
0.38 
0.42 
0.05 
0.15 

2462723 1 

2462723 
606724 
44.20 
0.29 
0.00 

320000 
2003 
2005 
0.05 
0.26 
6000 
0.07 

0 

2-Bag stream 
-
-
-

0.05 
0.32 
0.54 
0.09 

-

1.00 

Figure 3.1: Waste stream mass balance Data Sheet developed in Excel for Cape Town. 
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Figure 3.1 indicates the format of the Data Sheet and includes data labelled as "Parameters", 

which incorporates all data input into the sheet at the start of a WSMB, as well as tabulated 

data that represents all fixed data that was assumed to be constant in the model and is data 

that is required to determine the immediate post-generation stream compositions. The 

immediate post-generation streams are those streams that involve the collection of waste 

directly from the generation source. Data required for only some of these streams is presented 

in the figure as an example of the data format. In order to calculate the immediate post­

generation stream flow rates each stream was assigned a mass fraction, that when multiplied 

by the Total Generated Waste value (which is input as a parameter in the Data Sheet as 

illustrated in Figure 3.1) for a particular year would give the flow rate of that particular 

stream, as indicated below: 

where Yt is the mass fraction of the total generated waste sent to a 

particular waste management scheme(i), Mota is the total annual 

mass flow rate of generated waste, and Mi is the annual mass flow 

rate of waste sent to a particular waste management scheme(i). 

The mass fraction Y; is a changeable variable, and it will later be explained how this fraction 

for the various streams is changed by the economic model to yield a MSWMS of minimal net 

cost (see Section 3.2.3). The initial values of the mass fraction Y; for the various waste 

streams were calculated using information taken from the Solid Waste Status Quo Reports for 

Cape Town and Johannesburg respectively (Mega-Tech Inc, 2004-1; Jarrod Ball & 

Associates, 2003), and these acted as the baseline mass fraction values for the various streams 

sent to specific waste management schemes. This baseline data is of the year 2002/2003 in the 

case of Cape Town, while the baseline data for Johannesburg is from 2001/2002. It was 

important to gather all the data from one particular year to ensure consistency in the data, and 

the data chosen was the most recent comprehensive compilation of data of the entire Cape 

Town and Johannesburg waste management systems. An example of how these mass fraction 

values are used to calculate the immediate post-generation stream flow rates in the above-

mentioned Stream Sheet is presented in the figure below, and includes an illustration of the 

method used to determine the composition of specific streams using the data from the Data 

Sheet. 

YixMtotal = Mi 
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Table A3: Stream Mass Fractions 

Stream 
Waste Landfilled (excl. DO) 
Recovered Landfill Waste 
MRF Recovery 
Waste Recycled (2 Bag) 
Separate Organics Collection 
Waste Recycled (Centres) 
Council Composted Waste 
Drop-off Waste 

TOTAL 

Mass Fraction 
0.84 

6E-04 
0.00 

4E-05 
0.00 
0.09 
0.01 
0.05 

1.0000 

STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 
Builder's Rubble (t/yr) 
Disposed 
Recycled 
Landfill Cover (t/yr) 
Soil 
Organics (t/yr): 
Agricultural waste 
Green Waste 
Household Organics 
Compost Product 
Recyclables (t/yr): 
Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

Balance Check: 

2A 
Recycling (2 Bag) 

Enviroglass 

102 

-
-

-

-
-
-
-

5 
33 
55 
9 
-

102 

Figure 3.2: Portion of the waste stream mass balance Stream Sheet for Cape Town. 

Figure 3.2 highlights the format of the Stream Sheet in Excel, and is intended to illustrate 

how the total and component flow rates of a specific stream are calculated in the waste stream 

analysis. The example stream chosen to illustrate the method used in the WSMB is the 2-Bag 

Recycling Scheme (which is a stream for the separate collection of recyclables from 

households). The data set labelled Table A3 in Figure 3.2 is a table of the baseline mass 

fractions described above for the various immediate post-generation waste streams, and 

includes the baseline mass fraction for the Waste Recycled (2-Bag) stream, namely 4E-05. 

This value is multiplied by the Total Generated Waste value of 2,462,723 tonnes/year (which 

is the input parameter of the Data Sheet shown in Figure 3.1) to yield a waste flow rate of 102 

tonnes/year. This flow rate value is calculated in the Recycling (2-Bag) column under the row 

labelled total as is indicated in Figure 3.2. 

In order to determine the component flow rates of the 2-Bag Recycling stream the calculated 

total stream flow rate is multiplied by the respective component composition values tabulated 

24 



Chapter 3: Methodological Approach 

in the Data Sheet (as shown in Figure 3.1 under the 2-Bag Stream column of Table Al). For 

example the component mass fraction of metal recyclables for the 2-Bag Recycling stream is 

0.05 (see Figure 3.1) and when this value is multiplied by the total flow rate of this stream the 

resultant metal recyclables component flow rate is calculated to be 5 tonnes/year (as is shown 

in figure 3.2). The components analysed include builder's rubble, organic and recyclable 

material. Organic material was further split into green waste and food waste, while 

recyclables were split into metal, glass, paper and cardboard, plastic and other material 

(which includes all unclassified material). This same procedure is used to calculate the stream 

flow rates for several of the variable streams that are listed in Figure 3.2 in the table labelled 

as Table A3. The complete Excel Data and Stream Sheets for both cities can be found in 

Appendix A and Appendix B respectively. 

All of the streams that follow the immediate post-generation waste streams are calculated 

through the accounting of mass flow rates going from one scheme to another, and are thus 

calculated through mass balancing techniques. Only recovery and splitting schemes change 

the flow rate of waste moving from one scheme to another, and special mass balancing 

techniques are required to account for these changes. 

In the case of the recovery streams, those recovery stream component characteristics that 

include non-recoverable material in their composition were re-calculated excluding the non-

recoverable component (which was included in the Combined Collected Waste stream) as a 

result of the fact that all non-recoverable material would ultimately be collected and disposed 

in a landfill. The Combined Collected Waste stream includes all waste that is collected by the 

Waste Management Department concerned and is destined for disposal (except in the case 

where MRFs are employed to recover useful materials from this waste stream). 

There are only two splitting schemes in the WSMB, and the first of these is the Combined 

Collected Waste stream, which was modelled to split into two streams, namely the Direct 

Feed to Landfill and the Feed to Transfer Stations. A split fraction (Fl) was used to determine 

the respective flow rates for each particular stream by multiplying this fraction with the total 

and component values of the Combined Collected Waste. A second split fraction (F2) is 

employed in order to determine what portion of waste sent to Transfer Stations in the case of 

Cape Town or Landfill Sites in the case of Johannesburg is initially sent through an MRF. 

Examples of the stream equations used in the mass balance are highlighted in Appendix C. 
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3.2.3 DEVELOPMENT OF THE COST MINIMIZATION MODEL 

As mentioned earlier the cost minimization model operates through changing the stream 

fractions that determine the flow rates of the immediate post-generation streams in the 

MSWMS. Each stream is assigned an income and airspace credit value (for recovery 

schemes) from which the corresponding economic operational cost (with some streams also 

including a capital cost element) is subtracted and then multiplied by the calculated stream 

flow rate to determine the net cost of that specific stream, and hence its effect on the overall 

MSWMS net cost. An example of the procedure used in this model type is shown below. 

Table A3: Stream Mass Fractions 

Stream 
Collected Waste 
Waste Landfilled (excl. DO) 
Recovered Landfill Waste 
MRF Recovery 
Waste Recycled (2 Bag) 
Separate Organics Collection 
Waste Recycled (Centres) 
Council Composted Waste 
Drop-off Waste 

Mass Fraction 
0.65 
0.59 

4E-04 
0.05 

0.06 
0.15 
0.09 
0.00 
0.05 

TOTAL 1.00 

Objective Function: 514.6 

STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 
Builder's Rubble (t/yr) 
Disposed 
Recycled 
Landfill Cover (t/yr) 
Soil 
Organics (t/yr): 
Agricultural waste 
Green Waste 
Household Organics 
Compost Product 
Recyclables (t/yr): 
Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

Balance Check 
ECONOMIC ANALYSIS 
Variable Cost (Kit) 
Operational Costs 
Income-based Benefit 
Airspace Cost Benefit 
Capital Cost 

Total Profit/Loss 

24 
Organics Recovery 

SWM 

544247 

-
-

-

54425 
489822 

0 
-
-
-
-

544247 
* 

588.6 
320366347.7 
202912675.4 
187788715.4 
24306165.4 

46.0 

Figure 3.3: Portion of the Cost Minimization Model for Cape Town. 
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The stream example illustrated in Figure 3.3 is the Organics Recovery stream, which 

encompasses all of the Council-based organics recovery schemes that produce compost 

product. The economic data for the stream is shown at the bottom of the stream column under 

the title "Economic Analysis". The first value displayed in this section is the variable 

operational cost, which is multiplied by the total flow rate of the stream to give the 

Operational Cost displayed in the row that follows. The same method is used to determine the 

income generated from the scheme whereby the sales price of compost is multiplied by the 

amount of compost product produced to give the total income for this scheme. The airspace 

credit income refers to the recovery streams which are credited with an unseen income of the 

cost that would have been associated with these materials had they been sent through a 

transfer station and then to a landfill. The airspace credit income value is calculated as the 

cost of landfilling plus the product of the transfer station split fraction and the cost of 

processing transfer station waste, and the resultant value is multiplied by the total amount of 

waste diverted from being disposed to give the airspace credit income. The last economic 

variable displayed in the Organics Recovery stream column illustrated in Figure 3.3 is the 

Capital Cost, which is an annualised calculation of the capital required to develop the 

infrastructure necessary for this scheme. 

The stream costs (Capital Costs; Operational Costs) are then added and subtracted from the 

addition of the income values (Income; Airspace Credit Income) to yield a net stream cost 

that is labelled "Total Profit/Loss". This value is reported in millions of Rands and hence is 

reported differently to the other economic variables. The net stream cost/profit of all of the 

modelled streams are then added together to obtain the Overall MSWMS Cost/Profit value 

which is reported as the Objective Function in Figure 3.3. The Overall MSWMS Cost 

reported is that of Cape Town for the modelled year 2030/2031. It is important to note that 

positive values of the Objective Function indicate a profit, while negative values indicate a 

net cost. The model was set up using Excel's Solver function to change the stream mass 

fractions reported in Figure 3.3 with the aim of maximizing the abovementioned Objective 

Function (the target cell in Solver). The way Solver operates is that it changes the values of 

the variable stream mass fractions until the resultant values of the different stream mass 

fractions give the maximum possible Objective Function value. The format of the Solver tool 

in Excel is illustrated in the following figure: 
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1 Solver Paiameters 

Set Target Cell: | "~ 

Equal To: (* Max C 

* j 
Min <~ Value of: [o~ 

\ |$F$3:$F$7| 

Subject to the Constraints: 

U 

1 

Guess 

Add 

Change 

Delete 

I 

J 
1 

HE3I 

Solve 

Close 

Options 

Reset All 

Help 

Figure 3.4: Solver function format in Excel. (http://www.dslimited.biz: accessed 10/07/2006) 

Figure 3.4 is displayed to illustrate how the economic model calculations are facilitated by the 

Solver function in Excel. Firstly, the "Set Target Cell" was input as the Objective Function, 

which is the Overall MSWMS Cost/Profit value. The "Max" function was checked so that 

Solver would calculate the maximum value for the set target cell. The variables to be changed 

by Solver to achieve the objective of obtaining the maximum Objective Function are the 

stream mass fractions and are input into the "By Changing Cells" field. A number of 

constraints were input into the Solver Function to ensure that the model operated from a 

perspective that is logical to real life scenarios, and these are listed in Appendix C. 

The specific data required to carry out the development of both the Cape Town and 

Johannesburg models is given in the respective Chapters that cover these two case studies. 
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Chapter 4: Case study of Cape Town's Waste Stream 

4.1 INTRODUCTION 

4.1.1 BACKGROUND 

Cape Town is situated in the Western Cape and is South Africa's third most populous city. 

Cape Town also has the second largest city economy in South Africa, and currently produces 

approximately 2.45 million tonnes of solid waste per year. Cape Town currently makes use of 

six different landfills to dispose of waste generated in the city. The Vissershok Waste 

Management Facility (VFTWMF) is the only operational landfill that is privately owned by the 

waste management company Enviroserv, with the rest of the landfills being owned and operated 

by the Cape Town Municipal Council. The Municipal landfills include Bellville South (GLB+), 

Coastal Park (GLB+), Faure (GLB+), Swartklip (GLB+) and Vissershok (GLB+; H:h), which is 

adjacent to VHWMF. (Coetzee and Botes, 2005) 

The Bellville South and Faure landfills are expected to be closed during the second half of 

2006. The former of these contains enough land to be able to accept waste until approximately 

2010, but is being closed prematurely due to the health and environmental risks associated with 

this site. These risks include the fact that the Bellville landfill site is situated very close to 

residential areas, as well as the fact that the landfill lies directly over the Cape Flats aquifer, and 

hence has the potential to pollute this sensitive groundwater source. Resistance towards the 

operation of landfills close to residential areas has already resulted in the closure of one of Cape 

Town's former landfill sites, namely the Brackenfell landfill, which was closed in 2005. The 

Swartklip landfill site was officially closed in 2004, but continues to accept builder's rubble, 

with a maximum disposal capacity of 30,000 tonnes per year. Similar to the Swartklip landfill, 

the Faure landfill site will also continue to accept builder's rubble (maximum of 30,000 tonnes 

per year) after its closure in 2006. Both sites will serve this purpose for at least the next five 

years. (Coetzee and Botes, 2005) 

The Coastal Park landfill site is scheduled to be closed in 2016, but proposed extensions to the 

landfill site would extend its lifespan to 2025. The VHWMF (private) and Vissershok 

(Municipal) landfills are expected to reach capacity by 2014 and 2015 respectively. As a result 

of the rapid closure of Cape Town's existing landfills, as well as the scarcity of suitable land for 

landfill development within the city, the Municipal Council has decided to develop a regional 

landfill site that serves the entire city. This regional landfill site will ultimately be served by 
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seven transfer stations situated in different areas of the city. As Cape Town's existing landfill 

sites reach their capacity they will be substituted by transfer stations that will take over the role 

of these respective landfills as collection points for the waste generated in the different areas of 

the city. The existing landfills as well as the placement of the proposed transfer stations is 

highlighted in the figure below. (Mega-Tech Inc, 2004-1) 

Figure 4.1: Cape Town's existing landfill sites and proposed transfer stations. 

(Coetzee and Botes, 2005) 
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The above figure, Figure 4.1, assigns numbers to the transfer stations according to the 

chronology of their development. The Athlone Refuse Transfer Station (Tl in Figure 4.1) and 

the Swartklip Refuse Transfer Station (T2 in Figure 4.1) have already been developed, with the 

former being built in 1978 and recently upgraded, while the Swartklip Refuse Transfer Station 

has only been in operation since 2003. Both sites are designed to process a maximum waste 

capacity of 250,000 tonnes/year. The waste that is sent to these transfer stations is compacted 

into sealed containers that are sent to the Vissershok landfill site by rail. It is envisaged that all 

of the compacted waste coming from the existing and proposed transfer stations will be 

transported to the operating landfills by rail. (Coetzee and Botes, 2005) 

Figure 4.1 above also reveals the positioning of the proposed regional landfill site, and the 

reasons for this choice are described as follows: Development in Cape Town is restricted by 

two natural barriers, which include the Atlantic/Indian Oceans and the mountains that surround 

the city. The former barrier restricts development on the southern and western sides of the city, 

while mountainous regions on the eastern side of the city as well as mountain ranges within the 

south-western section of the city also restrict development. Hence due to Cape Town's urban 

expansion, the only area containing sufficient land space (that is suitably separated from 

residential areas) for the development of the proposed regional landfill site lies in the north­

western section of the city. Two suitable sites have been identified near Atlantis and 

Kalbaskraal respectively, with both sites being situated close to Cape Town's municipal 

boundary. The proposed site near Atlantis is shown in the above figure, Figure 4.1. 

4.1.2 OBJECTIVES OF STUDY 

• To develop a waste flow diagram of the MSWMS in Cape Town. 

• To develop an economic model of Cape Town's Solid Waste Management System in order 

to analyse the financial feasibility of various municipal waste minimization schemes that 

are either currently employed or proposed for future use by the Cape Town Municipal 

Council. 

• To determine the effect of inflation and income increase changes on the financial feasibility 

of the various waste minimization schemes through the use of sensitivity analyses. 
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4.1.3 CONTEXT 

Waste Reduction Schemes 

• Waste Minimisation Clubs: A Dutch environmental management company called Beco 

facilitates the formation of these clubs in Cape Town. Waste Minimisation Clubs in Cape 

Town exist in several industries, namely the plastics, meat products, retail motor and textile 

industries, among others. (Mega-Tech Inc, 2004-1) 

Waste Reuse Schemes 

• Integrated Waste Exchange (IWEX) Programme: The City of Cape Town launched their 

IWEX website in May 2000, with the aim of listing wastes that companies either produce or 

require as a raw material and then trying to link the companies that require a particular 

waste as a raw material with a company that may produce that particular waste material. In 

so doing, waste materials can be diverted and reused as raw materials. The main focus of 

this programme is based on reducing the amount of hazardous wastes that are sent to 

landfills, as well as trying to expand the recycling market in Cape Town. In this sense this 

programme not only facilitates the reuse of wastes, but it also deals with the recycling of 

wastes. Most of the non4iazardous (general) solid waste that is minimised through this 

programme is as a result of these wastes being sent to recycling companies and as such only 

a limited amount of wastes that are relevant to this study are being reused as a result of this 

programme. (Mega-Tech Inc, 2004-1) 

• Reuse of Deposit Bottles: Deposit bottles in excess of 6000 tonnes per year are being reused 

to package beverages. Returnable deposit bottles are used by several beverage companies in 

Cape Town including Coca-Cola, South African Breweries as well as a few other liquor 

manufacturers. 

• Reuse of Second-hand Materials by Charities: Empty yoghurt containers and other used 

food packaging are reused by several soup kitchens to serve meals. Another programme 

that involves the reuse of waste materials is the programme run by the charity organisations 

Shawco and Haven Shelter Organisation that empowers poor communities by aiding them 

in the production of artwork from waste materials. (Mega-Tech Inc, 2004-1) 
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Waste Recovery Schemes 

Recycling Schemes 

• 2 Bag Programme: This programme was first implemented in the Marina da Gama 

complex in Muizenburg with the issuing of yellow bags for recyclables, and black bags for 

non-recyclable waste. The Marina da Gama complex has 1000 households, and of these 50-

60% participate in the programme on a weekly basis, while 75-80% of the households place 

a yellow bag outside their homes at least once a month. The programme has thus exhibited 

a high participation rate from the community concerned, but it still remains economically 

unviable due to high collection costs. The yellow bags (recyclables) are collected by a 

contractor, namely Enviroglass, and the black bags are collected by the City Council. A 

further proposed collection plan is to use a single Council truck with a separate 

compartment for recyclables to collect both the black and yellow bags. The yellow bags 

would be placed in the recyclables compartment while the black bags would be placed in 

the truck compactor. The implementation of this phase should improve the economic 

feasibility of this programme. A similar 2-bag system is proposed for the Cape Town 

suburb of Sea Point, but this programme has not yet been implemented. Sea Point is 

comprised predominantly of flat complexes and restaurants, so the potential for recyclables 

recovery in the area is quite high, because there is a high waste generation rate per square 

metre of land. (Mega-Tech Inc, 2004-1) 

• Recycling Centres/Depots: Many of the schools in Cape Town operate recycling depots, 

some of which also collect recyclables from restaurants. A large number of buy-back 

centres also exist in Cape Town, with the majority accepting only paper and cardboard. 

(Mega-Tech Inc, 2004-1) 

• Landfill Scavenging for Recyclables: The Bellville South, Coastal Park and Vissershok 

Waste Disposal facilities allow landfill recyclers to collect recyclables from the landfill 

during the operating times of the landfill. The recyclables collected are sold to a contractor, 

Interwaste, that manages the landfill scavenging operations. (Mega-Tech Inc, 2004-1) 

Composting 

• Mixed Waste Composting Plants: The City Council operates two composting facilities, 

namely Radnor and Sacks Circle Composting Plants, that mainly process mixed household 

waste with the aim of recovering organic waste to produce compost. Both facilities were 

initially equipped with a magnetic separator (that separates out metal from the mixed waste) 
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but only the one present at the Sacks Circle Composting Plant is currently operational. The 

waste is split into two fractions, namely compostable and non-compostable materials. The 

non-compostable materials are sent to landfills, and the compostable material is further 

processed. The Radnor Composting Plant makes use of an aerated rotating drum fermenter 

followed by windrows (that are turned every 10 days) to biologically degrade the organic 

fraction of the waste received at the plant. Sacks Circle Composting Plant only makes use 

of windrows, with the waste being turned and wetted every month. Approximately 50% of 

the waste received at these facilities is sent to landfills. (Mega-Tech Inc, 2004-1) 

• Drop-off Facilities: The City Council's aim is to have a drop-off facility within 5-7 km 

away from every business/household/industry. Some of the current drop-offs are managed 

by private contractors, including Interwaste. The contractor managed drop-offs have pre­

processing facilities that include garden waste chipping facilities used to decrease the 

bulking factor of the garden waste and hence decreasing transportation costs. Garden waste 

is sold to one of three private composting companies, namely Biocircle, Master Organics or 

Reliance Compost Trust. (Mega-Tech Inc, 2004-1) 

Builder's Rubble Recovery 

• Landfill Cover Material: Builders' rubble up to 1 ton that is suitable as landfill cover can be 

delivered free of charge to landfills. This offers building firms an incentive to deliver their 

building rubble for use as the daily landfill cover material which is required by each landfill 

to cover the disposed waste at the end of each day of operation. The City Council has a 

shortage of landfill cover material and hence relies quite heavily on builders' bringing their 

rubble to the various landfills as landfill cover material (Mega-Tech Inc, 2004-1). 

Considering this as well as the fact that the daily landfill cover requirement is 150mm 

(www.dwaf.gov.za; accessed 11/11/2006), the scope for increase in builders' rubble 

recovery is fairly limited. 

• Clean Builders' Rubble Recycling: There are a few companies involved in the gathering, 

processing (crushing and grading) and reselling of building materials. The largest of these 

companies is Malan's Quarry. (Mega-Tech Inc, 2004-1) 
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4.2 REQUIRED METHODOLOGICAL DATA 

The specific information required for the development of Cape Town's Municipal Solid Waste 

Management System (MSWMS) economic model is grouped into the different stages of the model 

formation as follows: 

i. Flow diagram data. 

ii. Waste stream mass balance data. 

iii. Economic model data. 

4.2.1 FLOW DIAGRAM DATA 

The data used to develop Cape Town's Waste Flow Diagram was captured from the City of 

Cape Town's Solid Waste Management Status Quo Report (Mega-Tech Inc, 2004-1). The 

proposed use of material recovery facilities (MRFs) to recover recyclables from general waste 

was included in the model and information on the possible characteristics of this scheme was 

gathered from Novella (2002). The proposed scheme works on the premise that in the future the 

majority of Cape Town's collected waste will first go through a transfer station before being 

disposed on operating landfill sites. Hence, an effective waste recovery scheme would be to 

combine the transfer stations with MRFs and Composting Facilities. Recyclables and organic 

waste would be recovered from the general waste at each of these respective facilities before the 

waste stream is sent to the transfer station, and then ultimately to a landfill. The separate 

collection schemes for recyclables and organic waste (proposed) were designed to be sent to the 

MRFs and Composting Facilities respectively. (Novella, 2002) 

The developed flow diagram for Cape Town is shown on the following page (note that the 

streams marked in bold are those streams that are facilitated or assisted by the Municipal 

Council and represent the streams that are considered in the model). 
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4.2.2 WASTE STREAM MASS BALANCE DATA 

The waste composition of Household and Commercial/Industrial waste is presented in the table 

below. 

Table 4.1: Composition of household and commercial/industrial waste. 

Component 

Organics 

Metal 

Glass 

Paper & Cardboard 

Plastic 

Other 

TOTAL 

Household (%) 

47% 

5% 

8% 

19% 

13% 

8% 

100% 

Commercial/Industrial (%) 

31% 

1% 

2% 

18% 

1% 

47% 

100% 

The data presented in Table 4.1 was extracted from the City of Cape Town's Solid Waste 

Management Draft Assessment Report (Mega-Tech Inc, 2004-2). The household waste 

composition data was calculated through the compilation of the data from two separate reports 

(Ingerop Africa, 1999; Wright-Pierce et al, 1999) that investigated the composition of 

household waste from three different income groups, namely low, middle and high income. The 

data from both studies was collected through the characterisation of waste collected from 

specific areas in Cape Town, including all three economic groups. The overall household waste 

component characteristics were calculated by multiplying a specific components composition 

for each income group by the respective fraction of the total amount of household waste each 

economic group produces and then summing these values to give each overall component 

composition. The composition of commercial/industrial waste was not referenced and thus the 

source of this data is unknown. Since no other information on the commercial/industrial waste 

composition could be obtained this reported data was used as an estimate. Only the recyclable 

fractions were reported in this waste composition characterisation and hence the unclassified 

composition of 78% was assumed to be 40% organics and 60% other material, which gave the 

respective component composition reported in the Commercial/Industrial composition column 

of Table 4.1. 

Data on the characterisation of the total generated waste stream into four components, namely 

household, commercial/industrial, green and builder's rubble waste was gathered from the City 
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of Cape Town's Solid Waste Management Status Quo Report (Mega-Tech Inc, 2004-1), and is 

presented in the figure below: 

1 5 0 / 0 - l 

T | 
4 2 % ^ ^ 

p\ 
\38% 

^ ^ 

D Household 

• Commercial and 
Industrial 

• Garden 

D Builder's Rubble 

Figure 4.3: Overall composition of generated waste. 

Garden waste is further classified as having three sources in the City of Cape Town's Solid 

Waste Management Draft Assessment Report (Mega-Tech Inc, 2004-2), which include garden 

services (44%), topping up of bin (32%) and parks authority (24%). The parks authority and 

garden services garden waste was assumed to all be transported to drop-off facilities and hence 

knowing that garden refuse comprises 65% of drop-off waste the total drop-off waste stream 

flow rate can be determined with the rest of the waste being builder's rubble. The recovery of 

garden refuse from drop-offs was reported as 64% in City of Cape Town's Solid Waste 

Management Draft Assessment Report (Mega-Tech Inc, 2004-2), and this was used to 

determine the amount of recovered material from drop-offs, with all of the builder's rubble 

received at drop-offs taken as being sent to landfill. 

The component characterisations of all of the recycling streams (including 2-Bag Collection, 

Recycling Centres/Depots and Landfill Recycling) were determined through the use of the 

baseline data (2002/2003), and these compositions were assumed to remain constant for the 

purpose of the model. The Separate Organics Collection stream was assumed to be comprised 

of 90% recoverable material and the rest being non-recoverable, with the waste source being 

household waste (as the Council does not collect any commercial waste). This assumption is in 

line with the Marina da Gama 2-Bag Collection data that revealed that 10% of the materials in 
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the recyclable bags collected were non-recoverable. The 90% recoverable fraction of the 

Separate Organics Collection stream was further split into one tenth garden waste and nine 

tenths food waste. The Sacks Circle Composting plant was contacted to determine the amount 

of metal recovered from the plant, and this yielded that 2% of the recovered waste is metal, with 

the rest being organics. 

As is highlighted in the Methodological Approach chapter (Chapter 3), two split fractions are 

used to determine the flow rate of two scheme split procedures whereby firstly the Combined 

Collected Waste stream is split into waste sent directly to Landfill Sites and into waste that is 

sent to Transfer Stations, and secondly the split fraction that splits the resultant Transfer Station 

waste into waste sent to MRFs prior to transfer and waste sent directly to the Transfer Station. 

The first split fraction (Fl) values were manually changed according to the year modelled, 

using data from Coetzee and Botes (2005), which forecasts the fraction of waste that will be 

sent to transfer stations for several future years. Values for the total amount of generated waste 

for future years were also extracted from the presentation by Coetzee and Botes (2005). The 

second split fraction used in the waste stream analysis is used to split waste sent to transfer 

stations into waste that is first processed in Material Recovery Facilities (MRFs) and waste that 

is not processed in the MRFs, and the values of this fraction are determined from the MRF 

Recovery stream mass fraction that is determined by the model. 
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4.2.3 COST MINIMIZATION MODEL DATA 

The various streams that are changed in the model, as well as the variables associated with 

them, are shown in Table 4.2. 

Table 4.2: The stream fractions that are changed in the model and their associated variables. 

Stream 

Landfill Waste' 

Recovered Landfill Waste 

MRF Recovery23 

Recycling (Co-Collection) 4 

Organics Collection 1,s 

Recycling (Centres) 

Mixed Waste Composting ' 

Drop-Off (DO) Waste 

Operational Cost for 

2003/2004 (R/tonne) 

40.1 

-

38.9*(M)+5753727*n 

108.3*McO+5753727*n 

560.6 

-

240.1 

-

Stream Income Values for 

2003/2004 (R7tonne) 

74.3 (bulk waste only) 

-

413*mm+155*mg+525*mpc+800*mp 

-

D*100*mo 

-

D*100*mo+413*mm 

-

Table 4.2 summarises the cost and income values for the various streams that are changed by 

the model to give the minimal overall net MSWMS cost. It is important to note that the reported 

cost of landfilling waste includes the cost of operating Drop-Off Sites due the fact that these 

sites serve as Intermediate Disposal sites for Garden and Builders' Rubble refuse. The disposal 

cost was determined by dividing the non-administrative Landfill and Drop-Off Site operational 

cost of R68.9 million (2003/2004) by the amount of landfilled waste for the year 2003/2004, 

namely 1,719,000 tonnes, yielding the resultant value of R40.1/tonne (Mega-Tech Inc, 2004-1). 

In terms of the income gained from bulk landfill waste it is important to note that this is only a 

small fraction of the waste that is disposed in the landfills. Bulk waste represents all 

commercial waste that is collected by private Waste Management Companies (or delivered by 

individual companies) and is brought to one of the Municipal landfills for disposal. The 

Recovered Landfill Waste stream is operated by a private company, and hence exhibits no costs 

or income for the Municipal Council. The flow rate of this stream was kept constant at 1469 

1 Mega-Tech Inc, 2004-1 
2 Chang et al, 2005; Glossary: M=input flow rate to MRFs, n=number of MRFs in operation. 
3 Beningfield, 2002; Glossary: m(i)=mass of material (i) recovered (m=metal, g=glass, pc=paper & cardboard, p=plastic). 
4 DSM Environmental, 2004 
5 Jarrod Ball & Associates, 2003 
5 Renkow and Rubin, 1998; Glossary: mh=household waste sent to compost plant, ms=separate organics collection. 
7 http://www.defra.gov.uk/corporate/consult/animalbvprod/purpose.htm; Glossary: D=degradation factor. 
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tonnes/year for all years modelled as a result of the fact that landfill picking is not a favourable 

recovery scheme from a social perspective. 

The MRF operational costs were obtained from Chang et al (2005) in which a plot of the 

operation costs of various existing MRFs in the United States of America versus the input flow 

rate (design capacity) yielded a linear regression for the MRFs with high input rates. The R2 

value for the regression was 0.99, which is testimony of the linear nature of the data. Processing 

plants normally exhibit an economy of scale in terms of the design capacity of the particular 

plant, and this was also shown by Chang et al (2005). This design capacity economy of scale 

translates into the fact that the bigger the plant the lower the operational cost per tonne of 

processed material, which is not a linear function. However, the reason that the MRF data 

plotted in the Chang et al (2005) article is linear is that the data plotted was of high input flow 

rates and hence at these design capacities the operational cost exhibits the best economy of 

scale and becomes a linear function. The reason the y-intercept of the linear equation is 

multiplied by the number of MRFs in operation is that this initial cost is required for each 

individual MRF to be shifted from the region of cost per design capacity that exhibits an 

increasing design capacity scale economy to the linear region in which the operational cost per 

tonne is a constant. The original equation was converted from US$ to Rand through the use of 

engineering techniques (see Appendix Dl). An important constraint in the design of MRFs is 

the requirement that the organics feed to the plant must be fairly low for hygienic reasons. The 

chosen specification of the MRF feed was <25% organics. This constraint is the driving force 

behind operating expensive composting plants and influences the material recovery rates in the 

MRFs. The recovery rate at this specification was taken as 50%, which is the approximate value 

reported in a recent Pikitup Material Reclamation study (DSM Environmental, 2004). Material 

collected in the 2-Bag recycling scheme which is sent to the MRFs was given a recovery rate of 

80%, which is the middle value reported for clean MRFs in a report written for the European 

Commission on the costs of various waste management techniques employed in Europe 

(http://europa.eu.int/comm/environment/waste/studies/pdf/euwastemanagement annexes.pdf.; 

accessed 23/03/2006). 

The 2-Bag Recycling stream economic variables in Table 4.2 were also taken from Piktup's 

recent Material Reclamation study (DSM Environmental, 2004). The values of the economic 

variables given in Chapter 8 of the City of Cape Town's Solid Waste Management Status Quo 

Report (Mega-Tech Inc, 2004-1) were only used for the year 2005/2006, as these values 
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correspond to the current separate collection method of having a private contractor collecting 

the recyclables and the Council collecting the rest of the waste. The economic variables 

reported in Piktup's Material Reclamation study (DSM Environmental, 2004), however, are 

valid for the proposed future collection system whereby recyclables and the remaining 

household waste are collected by the same collection vehicle. Hence, with the exception of the 

year 2005/2006, all of the modelled years make use of the latter economic variables. 

The separate Organics Collection stream operational cost reported in Table 4.2 is comprised of 

the separate organics collection cost as well as the cost of operating Composting Plants that 

convert this raw material into compost product. The collection cost was assumed to be equal to 

the product of the Separate Organics Collection Cost for Johannesburg (reported in Chapter 5) 

and the Collection Cost Location Factor calculated for Cape Town relative to Johannesburg. 

The Collection Cost Location Factor was determined by dividing the refuse collection cost of 

Cape Town by the respective cost for Johannesburg, yielding a value of 1.3. The resultant 

collection cost is R400.4/tonne of organics collected. The cost involved in operating a 

Composting Plant with input streams of high organics purity was reported in 

http://www.defra.gov.uk/corporate/consult/animalbyprod/purpose.htm (accessed 05/01/2006) to 

be R160.2/tonne of input (converted cost from pounds to rands). 

The Recycling Centres stream is operated independently of the Municipal Council, however as 

mentioned earlier recycling subsidies are often given to the organisations that run these 

schemes. The subsidies given are calculated through the use of airspace credits where the 

organisations that run recycling schemes are credited with the money that the Council would 

have had to pay if the recovered waste had to be processed. The airspace credit is taken to 

include the cost of processing waste through transfer stations as well as the disposal cost to 

landfill the waste, and along with each individual stream income is subtracted from the 

operational and capital costs of all of the respective recovery streams to yield the net cost for 

each specific stream. The airspace credit value is calculated by adding the landfill disposal costs 

to the product of the fraction of waste sent to transfer stations with the transfer station 

operational cost per tonne. The fraction of collected waste that is sent through transfer stations 

will increase from its current 2005/2006 value of 0.2 to approximately 1 by 2016 as reported by 

Coetzee and Botes (2005). The 2003/2004 operational cost of the Athlone Refuse Transfer 

Station was reported as being R13.34 million in Chapter 7 (pg. 7-8) of the City of Cape Town's 

Solid Waste Management Status Quo Report (Mega-Tech Inc, 2004-1). Hence taking into 
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account that this transfer station has a design capacity of approximately 250,000 tonnes/year the 

operational cost for this facility was R53.3/tonne for 2003/2004. 

The operational cost for the Mixed Waste Composting Plants reported in Table 4.2 was 

extracted from Renkow and Rubin (1998). This source was a study of the operational and 

capital costs of a number of existing Mixed Waste Composting Facilities in the USA, and 

reported an average operating cost of US$28/tonne of waste processed in these facilities. This 

was also converted through the use of engineering techniques to a cost in South African Rand 

terms (see Appendix Dl). The resultant cost of R240.1/tonne is similar to the cost reported for 

the existing Sacks Circle Composting Plant of R288/tonne (from Chapter 7 of the Status Quo 

Report by Mega-Tech Inc, 2004-1). The former of these two costs was used in the model as a 

result of the fact that the Composting Plants are to be upgraded to current technologies that are 

represented by the former cost. The cost of processing general household waste in Composting 

Facilities was thus calculated by multiplying the reported Mixed Waste Composting operational 

cost by the amount of household waste sent to the Composting Plants. The reason that the 

Mixed Waste operational cost is significantly higher than the operational cost of the separate 

Organics Collection Composting Plants is that the waste from the separate Organics Collection 

stream requires little or no pre-sorting and processing before it is composted in windrows. 

Hence the cost reported for processing the separate Organics Collection waste stream is the 

operational cost of producing compost from a relatively pure organic feedstock, while the 

Mixed Waste Composting operational cost incorporates this function as well as the function of 

separating out the organic fraction of the general waste. The income generated from producing 

the compost comes from the recovery of ferrous metals and the sale of compost product. The 

compost was assumed to be sold at the lowest value of bagged compost product, namely 

RlOO/tonne (which is the price reported in Chapter 7 of the Status Quo Report by Mega-Tech 

Inc, 2004-1). The degradation factor used in determining the compost product income is the 

fraction of the initial organic mass that remains after degradation. The composting degradation 

factor is reported by Renkow and Rubin (1998) to be between 0.4 and 0.75, and hence the value 

of 0.6 was chosen. 

As mentioned earlier the Drop-Off facility costs are incorporated in the Waste Disposal costs, 

and it is important to note that this waste management scheme is a pre-requisite of a good 

MSWMS and hence is mandatory. If the general public is not given the opportunity to deliver 
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garden and builders' rubble waste to facilities close to where they live then waste dumping 

would become more prevalent. The Drop-Off flow rate fraction of the total generated waste 

stream was thus taken as being constant, with a value of 0.053 (the value calculated for 

2002/2003 is 0.035, however since the number of operating landfills is decreasing all the time 

the Parks Authority waste was assumed to be sent to Drop-Offs for future years). 

In terms of the Combined Collected Waste stream the cost of collection was determined by 

dividing the operational cost for collection services by the total amount of waste collected by 

the Municipal Council (which encompasses Drop-Off waste and all of the unrecovered 

generated household waste). The collection services operational cost for 2003/2004 was 

reported as R379.18 million in Chapter 6 of the City of Cape Town's Solid Waste Management 

Status Quo Report (Mega-Tech Inc, 2004-1). It was assumed that the administration/overhead 

costs encompassed in this cost were 25.9% (which is the administrative portion of the Waste 

Disposal cost reported for 2003/2004 in Chapter 7 of the Status Quo Report by Mega-Tech Inc, 

2004-1). As a result of the fact that the administrative/overhead costs would be in place 

regardless of the quantity collected this portion of the cost was subtracted from the collection 

services operational cost and the resultant value is divided by the quantity to waste collected by 

the Municipality to yield the collection cost/tonne operational cost of R313.6/tonne. 

The capital costs required to develop the infrastructure needed to operate several of the waste 

management schemes are highlighted in Table 4.3 below: 

Table 4.3: The capital costs considered in the cost minimization model for 2003/2004. 

Scheme 

Transfer Stations 

MRFs 

Composting Facilities 

Co-Collection 

Organics Collection 

Capital Cost (Rand) 

(51500*(MTS/260)+48000000*n)/y 

(48876.7*(MMRF/260)+14172062*n)/y 

222.9*mh+ 

(276.2*ms+4269027.7*n)/y 

(9.5*S)/5+49.2*Mco 

(643246*(ms/2772))/y 

Source 

Coetzee and Botes, 2005 

Chang et al, 2005 

Renkow and Rubin, 1998; 

http://www. defra. gov. za 

Jarrod Ball & Associates, 2003 

DSMEnvironmental, 2004 
Glossary: Mjs=combined transfer station input flow rate; n=number of transfer stations, MRFs or Composting 

Facilities in operation; y=number of years over which capital was paid; MMRF=combined MRF input flow rate; 

m^household waste sent to compost plant; ms=separate organics collection; S=number of collection service points; 

Mco=co-collection recyclables flow rate. 
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The capital costs are included in the cost functions for each stream by calculating the total 

capital cost required to develop the various facilities and then dividing this value by the number 

of years over which these capital costs are paid. The number of years of payment is determined 

by subtracting the model year from the year 2005/2006, which is the year that capital spending 

on all of these proposed plants is expected to commence - as reported in Chapter 7 of the Status 

Quo Report by Mega-Tech Inc, 2004-1 (as indicated on pg. 7.7). As reported earlier the costs to 

process General Household Waste as compared to separate Organics Collection Waste are very 

different, hence the inclusion of two separate terms in the capital cost of Composting Facilities. 

As is seen in Table 3.3 the first term of the capital cost reported for composting facilities (which 

represents General Household Waste composting) is reported as an annual dept service value 

(annual repayment value), and hence this term is not divided by the number of years of capital 

payment. Another important fact to note regarding the format of the data presented in Table 4.3 

is that all of the capital costs were reported using the cost basis year 2003/2004. 

The capital cost equations shown in Table 4.3 for both the Transfer Stations and MRFs are 

reported on a tonnes per day capacity basis, and hence the formula involves the division of the 

annual input flow rates to these respective units by 260 - which is the number of working days 

in a year. In terms of the capital cost equation reported for Co-Collection in Table 4.3, the cost 

is broken up into two components, with the first being the cost of providing bins for recyclables 

to all of the city's households and the second representing the cost of converting the current 

collection vehicle to include a recyclables compartment. The former of these two component 

costs is broken down into a R9.50 cost per bin, and is divided by 5 due to the fact that the 

average reported lifespan of Council bins is five years (DSM Environmental, 2004). The 

Organics Collection capital cost is made up of the cost of purchasing new REL refuse trucks for 

the purpose of separate organics collection, with each REL refuse truck costing R643,246 as 

determined from a newspaper article written in the Dispatch newspaper on 18/11/1997 

(http://www.dispatch.co.za/1997/ll/18/page%203.htm; accessed on 31/03/2006). The refuse 

truck is multiplied by the quotient of the total separate organics collection flow rate and the 

value 2772. The value 2772 (units: tonnes/year/truck) represents the average annual collection 

capacity of a refuse truck in Cape Town, as calculated in Appendix Dl. 

In forecasting both capital and operation costs an inflation rate of 5% was assumed, while 

income was modelled to increase at 7% per year. 
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4.3 RESULTS AND DISCUSSION 

The results are split into two sections, namely material flow rate results and economic results. 

4.3.1 MATERIAL FLOW RATE RESULTS 

The table below illustrates the stream compositions calculated by the model for several years. 

Table 4.4: Modelled stream compositions of the total generated waste stream for several years. 

Stream Percentage 

Landfill Waste (Excl. DO) 

Recovered Landfill Waste 

MRF Recovery (Dirty) 

Recycling (2-Bag) 

Recycling (Centres) 

Organics Collection 

Mixed Waste Composting 

Drop-Off (DO) Waste 

TOTAL 

2005/2006 (%) 

84.34 

0.06 

0.00 

4E-03 

9.18 

0.00 

1.19 

5.23 

100.00 

2015/2016 (%) 

70.21 

0.05 

1.42 

5.88 

9.18 

8.03 

0.00 

5.23 

100.00 

2030/2031 (%) 

59.49 

0.04 

5.51 

5.88 

9.18 

14.67 

0.00 

5.23 

100.00 

The first trend observed in Table 4.4 is that the amount of material sent to landfills decreases as 

time progresses, which is indicative of the fact that by decreasing the amount of material sent to 

landfills the Overall MSWMS net cost decreases. Hence, contrary to popular belief, it makes 

economic sense to divert material from landfills until a certain threshold value (which 

represents the point at which, under the proposed management system, all of the available 

material that is economically feasible to recover is depleted). The second trend is the increased 

amount of waste sent through MRFs as time progresses, which shows that the MRF scheme is a 

favoured waste recovery option in terms of its economic feasibility. It is important to note that 

the material sent through the MRFs is the sum of both the Dirty MRF Recovery and the 2-Bag 

Recycling streams. Table 4.4 reveals that the 2-Bag Recycling scheme is the favoured method 

of material recovery for materials sent to MRFs. This is as a result of the fact that clean 

recyclables yield higher recovery rates when passed through MRFs. The Recycling (Centres) 

stream is initially the favoured recovery mechanism, with the MRFs substituting this role once 
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they are sufficiently developed and hence the model later attempts to minimise the flow rate of 

the Recycling (Centres) stream - as this stream ultimately diverts recoverable material away 

from the income-generating MRFs. The Recycling (Centres) stream was given the constraint 

that the mass fraction of this stream cannot go below the initial value reported for 2005/2006 as 

a result of the fact that this sector represents private recycling operations that will not likely fall 

away. This is the reason that the mass fraction for this stream remains constant. It is interesting 

to note that the Recycling (Centres) stream was the favoured recovery mechanism for the early 

modelled years despite the airspace credit subsidies paid out to private recyclers being kept at 

100%. This illustrates that for the current years of operation it is better to fully subsidise the 

Recycling (Centres) stream than to send this waste to the landfill. Another interesting trend 

shown in Table 4.4 is that the stream mass fraction of Household Composted Material is 

immediately given a zero value after the current year as a result of the fact that the costs 

associated with this stream are enormous. The Organics Collection stream, however, increases 

with time due to the fact that this stream helps to minimise the amount of putrescible waste in 

the commingled waste sent to MRFs, and hence ensures that a greater amount of commingled 

waste can be fed into the MRFs while still obeying the constraint of keeping the feed organics 

composition less than 25%. The Cape Town Municipal Council has developed several future 

landfill targets , which are highlighted in the following figure along with the model values. 
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Figure 4.4: Model and target waste disposal flow rates for several future years. 
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Figure 4.4 above reveals that the target and model values are initially very similar, indicating 

that the targets set by the Cape Town City Council (reported in Mega-Tech Inc, 2004-1) can 

certainly be achieved at minimal cost to the Council. The targeted landfill waste becomes lower 

than the model values after 2020, which reveals that if the targets are to be met for the years 

following 2020, then the MSWMS has to be operated at a Overall Cost/Profit value lower than 

the maximum (at which the model values are set), or else alternative recovery schemes need to 

also be developed. The figure below plots the model and target generated waste recovery rates. 

^ 70 

2005 

-*— Targets 

-•—Model 

2010 2015 2020 2025 2030 

Year 

Figure 4.5: Model and target generated waste recovery rates for several future years. 

As shown in Figure 4.5 the increases in the generated waste recovery rates for both the model 

and the target values are fairly parallel from 2005-2020. The plotted waste recovery target 

values exhibit a small initial five year lapse period, where the recovery rate remains fairly 

constant. According to the model it is favourable to start the commencement on recovery rate 

increases immediately, and the initial targets exhibit an unnecessary delay of the inevitable. The 

reason the model recovery rate starts to level off to the value of approximately 37.5% after 2015 

is that this point represents the stage at which all of the economically recoverable material has 

been exploited and the remaining waste is either unrecoverable or too expensive to recover. To 

inform the decisions on how to properly increase the recovery rates of generated waste in line 
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with the target values it is imperative that the composition of the waste modelled to be sent to 

landfills be analysed. As a result the composition of landfilled material as well as the 

composition of recovered material for the model year 2030/2031 are displayed below. 

2030/2031 

10% 

35% 

35% 

• Food Waste 

• Plastic 

• Metal 

• Paper/Cardboard 

D Glass 

• Garden Waste 

2030/2031 

24% 

36% 

31% 

• Other l Organics 

• Builders' Rubble • Recyclables 

Figure 4.6: Recovered material composition. Figure 4.7: Landfill material composition. 

Figure 4.6 reveals that 45% of the recovered material is organic (food waste and garden waste), 

indicating the importance of organic material recovery from the perspective of ensuring a feed 

to the MRFs with an organic composition of <25%. Due to the fact that the composting 

facilities operating costs are higher than the generated income from them, the model only 

favours these recovery schemes because they allow for greater inputs of material to the income-

generating MRFs. Aside from the above-mentioned reason it is also vital to recover organic 

waste if a significant amount of the generated waste stream is to be diverted from being sent to 

landfills. As is to be expected the recyclable material that exhibits the greatest recovery in 

Figure 4.6 is paper and cardboard. Figure 4.7 above shows that 36% of the material sent to 

landfills is material that is not readily recyclable (classed as Other). In order to reduce the 

amount of other material and hence the amount of waste sent to landfills the government has to 

develop laws that ensure manufacturers only use readily recyclable material to produce 

products as well as in packaging materials. 
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4.3.2 ECONOMIC RESULTS 

The net cost/profit values for the various years modelled are plotted below. These values are the 

resultant objective function values determined by Solver to be the maximum Overall MSWMS 

Cost/Profit values for the particular year concerned, under the programmed constraints. 
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Figure 4.8: Plot of modelled net cost/profit (objective function values) for various years. 

Figure 4.8 reveals that the payback period for the development of the proposed MSWMS is 18 

years, meaning that if the MRF type MSWMS is chosen to be implemented in Cape Town then 

it will take 18 years for the income generated from the system to pay back the capital required 

for this MSWMS to be developed. The total calculated capital costs for the MRFs, Composting 

Facilities, Transfer Stations and Separate Collection Capital until 2030 are R2.36 billion, R0.61 

billion, R0.76 billion, and R1.32 billion respectively. This indicates that the Cape Town 

Municipal Council requires a large amount of capital to start up this MSWMS, but when it is 

fully operational it will generate a large amount of income. After 2024, the Council will start to 

generate a net profit from the MSWMS, which will continue to increase. This profit could be 

used to implement further projects to increase the recovery of waste materials, and thereby 

decreasing the amount of waste sent to landfills. 
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4.4 SENSITIVITY ANALYSIS 

The effects of annual income and inflation rate changes on the net cost/profit values exhibited by 

the model are highlighted in the figure below. 
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Figure 4.9: Sensitivity analyses of the income increase and inflation rates used in the model. 

The model values used for the annual income increase and inflation rates are 7% and 5% 

respectively. Sensitivity analyses on these two important model parameters yielded the graphs 

shown in Figure 4.9. When carrying out the analyses only one parameter was changed at a time 

with the other being kept at its original model value. The inflation rate analyses at 3% and 7% 

revealed that the payback periods changed from the original model value of 18 years to 9 and 

infinite years respectively. An infinite payback period means that the MSWMS costs will always 

exceed the income generated from the MSWMS, as demonstrated in the 7% inflation rate graph. 

On the other hand when keeping the inflation rate at the original value of 5% and changing the 

annual income increase rate to 6% and 8% the payback period determined was 35 and 13 years 

respectively. These analyses have shown that changes in both the inflation rate and annual income 

increase rate have a major influence on the economic feasibility of the modelled MSWMS. 
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5.1 INTRODUCTION 

5.1.1 BACKGROUND 

Situated in the Gauteng Province, Johannesburg is South Africa's most populous city. 

Johannesburg is also South Africa's largest metropolitan economy, and presently generates 

approximately 2.47 million tonnes of general waste per annum. The majority of generated waste 

is disposed in the city's five Council-owned landfill sites, which are operated by the Council 

appointed waste management company Pikitup. Pikitup carries out the solid waste management 

function of the Johannesburg Municipal Council. Approximately 600,000 tonnes/annum of 

waste that is collected by private waste management companies is disposed into landfills 

outside of the Johannesburg Municipal boundaries, including the privately owned landfill site 

called Chloorkop, which is operated by the waste management company Enviroserv. The five 

operational Council landfill sites include Ennerdale (GMB), Goudkoppies (GLB+), Linbro Park 

(GLB), Marie Louise (GLB) and Robinson Deep (GLB). (Jarrod Ball & Associates, 2003) 

The Johannesburg waste management scheme makes use of a depot system, whereby waste 

collection is facilitated by depots set up in the various administrative areas of Johannesburg. 

The various waste management functions for the different areas of Johannesburg are hence co­

ordinated by the depot within a particular area. These waste collection functions include Round 

Collected Waste (RCW), Dailies (daily organics collection from commercial enterprises), 

Illegal dumping, Street Cleaning and Bulk Services. There are currently 11 depots in operation 

within the Johannesburg Municipality. The collection of garden refuse is facilitated through the 

operation of Garden Refuse Sites throughout Johannesburg. These sites operate on the basis that 

garden waste is delivered and tipped into skips on these sites. Johannesburg currently makes use 

of 48 Garden Refuse Sites, some of which also have containers for recyclable material, but all 

of these sites do not accept builders' rubble. Builders' rubble has to thus be transported directly 

to the city's general landfill sites, or else contracted to be collected in skips by one of the city's 

waste management facilities. (Jarrod Ball & Associates, 2003) 

Pikitup also currently operates an incinerator for medical wastes that is situated on the premises 

of the Robinson Deep Landfill Site. The following figure illustrates the positioning of the 

various landfill sites within the Johannesburg Municipality, as well as highlighting the waste 

loadings of these disposal facilities. 
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LANDFILL SITES 
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Figure 5.1: Johannesburg's operational and recently closed landfill sites. 

(http://ceroi.net, accessed 16/03/2006) 
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Figure 5.1 above illustrates the location of Johannesburg's five operational Council landfill sites 

as well as the recently closed Kya Sands Landfill Site. Kya Sands Landfill Site was closed in 

2002 after reaching final capacity. The proposed replacement for the closed Kya Sands landfill 

is the planned Northern Works Landfill Site, which is still being investigated under the 

Environmental Impact Assessment and DWAF Permit procedures. (Jarrod Ball & Associates, 

2003) 

Currently waste that was previously disposed of on the Kya Sands Landfill Site is being 

transported to the Linbro Park Landfill Site, or else is sent via transfer station to the private 

Chloorkop Landfill Site. Johannesburg's only transfer stations are the Dale Road and 

Olifantsfontein Transfer Stations that are situated in the Midrand/Ivory Park district. Chloorkop 

Landfill Site is situated in the Kempton Park area, which lies outside the north-eastern border of 

the Johannesburg Municipality. Hence the Chloorkop Landfill Site is not shown in Figure 5.1, 

which only illustrates the area covered by the Johannesburg Municipality. (Jarrod Ball & 

Associates, 2003) 

The Linbro Park Landfill Site is expected to be closed by the end of 2006, which will result in 

increased amounts of waste from the northern areas of the Johannesburg Municipality being 

sent to the Chloorkop Landfill Site. This situation exacerbates the need for the Northern Works 

Landfill site to come into operation as soon as possible. Waste generated in the immediate 

surroundings of the Linbro Park Landfill will be sent to the Marie Louise Landfill Site once the 

former landfill is closed. The closure of the Marie Louise Landfill Site is expected to only take 

place in the year 2024, however the lifespan of this landfill is dependant on the extra waste 

loading that will be placed on the site once neighbouring landfill sites are closed. (Jarrod Ball 

& Associates, 2003) 

With regard to the other three landfill sites the Robinson Deep, Ennerdale and Goudkoppies 

Landfills are expected to be closed in 2009, 2014 and 2040 respectively. (Jarrod Ball & 

Associates, 2003) 
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5.1.2 OBJECTIVES OF STUDY 

• To develop a waste flow diagram of the Solid Waste Management System in Johannesburg. 

• To develop an economic model of Johannesburg's Solid Waste Management System in 

order to analyse the financial feasibility of various municipal waste minimization schemes 

that are either currently employed or proposed for future use by Pikitup. 

• To determine the effect of inflation and income increase changes on the financial feasibility 

of the various waste minimization schemes through the use of sensitivity analyses. 

5.1.3 CONTEXT 

Waste Reduction Schemes 

• Waste Minimisation Clubs: Johannesburg has a number of Waste Minimisation Clubs in 

several different industries, namely the plastics, meat products, retail motor and metal 

finishing industries, among others. The Dutch company Beco is involved in facilitating 

these clubs. (JarrodBall & Associates, 2003) 

Waste Reuse Schemes 

• Reuse of Deposit Bottles: The Gauteng Province operates a deposit bottle recovery scheme 

called Ecowash, which aims at recovering liquor deposit bottles used to package alcoholic 

beverages produced by the Distell Group. It is estimated that the Ecowash programme 

results in the recovery of 1.5 million Distell deposit bottles from Johannesburg. Some of the 

beverage brands which make use of the deposit bottle system are the Distell Group, Coca-

Cola and South African Breweries (SAB). (JarrodBall & Associates, 2003) 

Waste Recovery Schemes 

Recycling Schemes 

• Recycling Centres/Depots: Many of the schools in Johannesburg operate recycling depots. 

Five Pikitup-supported buy-back centres also exist in Johannesburg, with the majority 

accepting paper, cardboard, glass bottles and jars, tins and expanded styrene. Several of the 
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Garden Refuse Sites contain receptacles for recyclables that are serviced by the various 

recycling companies in the city. (Jarrod Ball & Associates, 2003) 

• Landfill Scavenging for Recyclables: Waste scavenging by Landfill Recyclers occurs on all 

five Pikitup operated landfill sites during the operating times of the landfill. Several 

empowerment companies, including Tshabala Waste and Vuma Waste manage the landfill 

scavenging operations, ensuring that the Landfill Recyclers collect recyclables under safe 

conditions. (Jarrod Ball & Associates, 2003) 

• Dirty Landfill MRFs: MBB Consulting constructed a landfill MRF close to the Robinson 

Deep Landfill Site in 1988. This plant is operated by the waste management company Skip 

Waste, and incorporates a rotary drum screen that sorts the waste into low (organics) and 

high value (recyclables) waste, with the latter fraction being sent onto a conveyor for 

further hand sorting. The low value waste as well as the unrecoverable high value waste is 

then transported to the landfill, (http://www.mbb.co.za, accessed 21/03/2006) 

• Mondi's Ronnie Bag Scheme: Roughly 3% of the waste paper collected for recycling in 

Johannesburg comes from the operation of this scheme that involves the provision of 

separate bags to households for the kerbside collection of paper. (Jarrod Ball & Associates, 

2003) 

Composting 

• Municipal Composting Plants: The City Council operates two Sewage Sludge Composting 

Plants, one in the southern part of Johannesburg (Olifantsvlei Works) and another in the 

northern part of Johannesburg (Northern Works). Both these plants make use of chipped 

recovered garden waste as an additive to the waste sewage sludge in order to improve the 

quality of the resultant compost product. The garden waste is sourced from the Garden 

Refuse Drop-off Facilities. (Jarrod Ball & Associates, 2003) 

• Drop-off Facilities: Pikitup operates 48 Drop-off Facilities (termed Garden Sites by 

Pikitup) in the city of Johannesburg, which accept garden refuse, but not builders' rubble. A 

number of these facilities also provide containers for the deposit of recyclable materials. 

(http://www.pikitup.co.za/default.asp?id=686, accessed21/03/2006) 

• Garden Refuse Composting Facility: Recovered garden waste from several Drop-Off 

Facilities, including Ballyclare, Fairlands, Victory Park, Waterval and Woodmead, is sent 

to the Panorama Garden Refuse Composting Facility to be converted into compost product. 

(http://www.pikitup.co.za/default.asp?id=629 , accessed 21/03/2006). The produced 

compost is sold to the surrounding community, and is registered by the Department of 
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Agriculture as a Type 2 fertiliser. The Panorama Composting Plant was constructed to 

process a maximum garden refuse capacity of 60,000 tons per annum. 

(http://www.pikitup. co. za/default, asp ? id= 763, accessed 21/03/2006) 

Builder's Rubble Recovery 

• Landfill Cover Material: Soil material or builders' rubble that is suitable as landfill cover 

can be delivered free of charge to landfills. Cover material is used daily to encapsulate 

waste disposed, and this material needs to be sourced from outside if the landfill does not 

contain stockpiles of this material. Considering this as well as the fact that the daily landfill 

cover requirement is 150mm (www.dwaf.gov.za; accessed 11/11/2006), the scope for 

increase in builders' rubble recovery is fairly limited. (Jarrod Ball & Associates, 2003) 

• Builders' Rubble Usage as Fill Material: There are a few construction companies that 

make use of builders' rubble as a fill material when constructing buildings. (Jarrod Ball & 

Associates, 2003) 
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5.2 REQUIRED METHODOLOGICAL DATA 

The specific information required for the development of Johannesburg's Municipal Solid Waste 

Management System (MSWMS) economic model is grouped into the different stages of the model 

formation as follows: 

i. Flow diagram data. 

ii. Waste stream mass balance data. 

iii. Economic model data. 

5.2.1 FLOW DIAGRAM DATA 

The data used to develop Johannesburg's Waste Flow Diagram was captured from the City of 

Johannesburg's Solid Waste Management Status Quo Report (JarrodBall & Associates, 2003). 

Several waste minimization schemes were proposed for use as part of the Johannesburg Waste 

Management System in DSM Environmental Services (2004). The most cost-effective of these 

schemes were added to the flow diagram, and include: 

• The use of a separate collection system whereby recyclables and remaining refuse are 

collected by the same Refuse Truck, but in separate compartments. The recyclables would 

then be sent to Clean MRFs for sorting and recovery. 

• Developing Dirty MRFs similar to the Skip Waste MRF, mentioned earlier, at all of the 

Pikitup landfill sites in Johannesburg. For this scheme, Waste Inspectors would be stationed 

at the weighbridge of a particular landfill with the role of diverting incoming refuse loads 

with high recyclables compositions to the particular landfill MRF concerned. 

Another proposed waste minimization scheme included in the flow diagram was a separate 

organics collection scheme whereby putrescible waste would be collected from commercial 

enterprises and sent to food waste composting plants. Pikitup already runs a collection 

programme for the daily collection of putrescible waste (termed Dailies), however the 

programme involves the collection of only a small portion of available food waste. 

The developed flow diagram for Johannesburg is shown on the following page (note that the 

streams marked in bold are those streams that are facilitated or assisted by Pikitup and represent 

the streams that are considered in the model). 
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5.2.2 WASTE STREAM MASS BALANCE DATA 

The waste composition of Household and Commercial/Industrial waste is presented in the table 

below. 

Table 5.1: Composition of household and commercial/industrial waste. 

Component 

Builders' Rubble 

Green Waste 

Organics 

Metal 

Glass 

Paper & Cardboard 

Plastic 

Other 

TOTAL 

Household (%) 

2% 

23% 

12% 

3% 

4% 

17% 

10% 

29% 

100% 

Commercial/Industrial (%) 

-

-

31% 

2% 

4% 

10% 

7% 

46% 

100% 

The household waste composition data in Table 5.1 was calculated through the compilation of 

data gathered from landfill sampling of waste at three different landfill sites in Johannesburg, 

namely Linbro Park, Marie Louise and Robinson Deep. The data gathered from these studies 

was reported by Jarrod Ball & Associates (2001). The waste sampling was carried out 

randomly choosing refuse loads brought in by truck from a particular area which was to be 

analysed, and the waste load was then emptied onto the landfill and a sample of this waste was 

taken by a Front-End-Loader. The sample was then analysed by a task team, and this same 

procedure was used to determine the composition of waste from other areas as well. Different 

areas were classed according to different socio-economic categories, and the categories 

included areas of low, medium and high income as well as the CBD classification for business 

waste (Jarrod Ball & Associates, 2001). The overall household waste component characteristics 

were calculated by multiplying a specific component's composition for each income group by 

the respective fraction of the total amount of household waste each economic group produces 

and then summing these values to give each overall component composition. Data on the 

composition of commercial/industrial waste was taken from van der Walt and Liebenberg 

(2004). Only the recyclable fractions were reported in this waste composition characterisation 

and hence the unclassified composition of 77% was assumed to be 
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40%) organics and 60%> other material, which gave the respective component composition for 

these components as reported in the Commercial/Industrial composition column of Table 5.1. 

Data on the characterisation of the total generated waste stream into four components, namely 

household, commercial/industrial, area cleaning and green refuse was gathered from the City of 

Johannesburg's Solid Waste Management Status Quo Report (Jarrod Ball & Associates, 2003), 

and is presented in the figure below: 
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Figure 5.3: Overall composition of generated waste. 

Garden waste is further classified as having three sources in the City of Johannesburg's Solid 

Waste Management Status Quo Report (Jarrod Ball & Associates, 2003), which include garden 

services/drop-offs (61%>), topping up of bin (35%) and street cleaning (4%). The garden 

services and street cleaning waste is transported to drop-off facilities and hence as a result of 

the fact that only garden refuse is accepted at Drop-Offs the total flow rate of waste going to the 

Drop-Offs can be calculated. The 2005/2006 recovery of garden refuse from drop-offs was 

reported as 12% (http://www.pikitup.co.za/jit default 763.html, accessed 23/03/2006), and this 

was used to determine the amount of recovered material from drop-offs for the model year 

2005/2006. 

The component characterisations of the Recycling Centres/Depots and Landfill Recycling 

schemes were determined through the use of the baseline data (2001/2002), and these 

compositions were assumed to remain constant for the purpose of the model. The Co-
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Collections (2-Bag) recycling scheme component characterisations was determined by 

summing the products of the specific Household and Commercial/Industrial component 

characterisations and their respective collection factors. The collection factors are the mass 

fractions of the total refuse collection that represent the amount of Household and 

Commercial/Industrial waste collected respectively, and are as follows: Household Collection 

represents 69.9% of the total collected waste, while Commercial/Industrial waste collection 

represents 30.1% (Jarrod Ball & Associates, 2003). Pikitup currently runs a Separate Organics 

Collection scheme (termed Dailies collection), whereby putrescible waste is collected from 

businesses on a daily basis.. The Separate Organics Collection stream is modelled to be sent to 

Food Waste Composting Facilities developed after the year 2015/2016, before which the waste 

was assumed to be sent to landfill. 

The Combined Collected Waste stream was modelled to split into two streams, namely the 

MRF/Landfill Feed and the Feed to Transfer Stations. The split fraction for each of these 

respective streams was multiplied by the total and component values of the Combined Collected 

Waste stream to determine the respective flows for that particular stream. The split fraction was 

kept constant as a result of the fact that it is not likely that the amount of waste sent to Transfer 

Stations will increase in the modelled timeframe, due to the fact that Johannesburg has a large 

amount of space still available for Landfills in the various areas of the city. Values for the total 

amount of generated waste for future years were extracted from Appendix 18 of the City of 

Johannesburg's Solid Waste Management Status Quo Report. (Jarrod Ball & Associates, 2003) 

The second split fraction used in the waste stream mass balance divides the waste sent to 

Landfills into waste that is first processed in Material Recovery Facilities (MRFs) and waste 

that is not processed in the MRFs. 
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5.2.3 COST MINIMIZATION MODEL DATA 

The various streams that are changed in the model, as well as the variables associated with 

them, are shown in the following table. 

Table 5.2: The stream fractions that are changed in the model and their associated variables. 

Stream 

Landfill Waste8 

Landfill Waste Recovery 

Dirty MRF Recovery9 

Co-Collection (2-Bag)1'2 

Organics Collection '•10 

Recycling (Centres) 

DO Waste Composted11 

DO Waste Landfilled 

Operational Cost for 2004/2005 

(R/tonne) 

26.7 

-

40.3*Md+164,365*Ndmrff35*(Md-Mr)+ 

130*mdra+90*mdg+l 50*mdpc+200*mdp 

110.6*Mc+31,719*Ncmrf+35*(l-R)*Mc 

+130*mcm+90*mcg+l 50*mcpc+200*mcp 

644.5 

-

69.9*Mrgw+491,273*Ngwcf 

-

Stream Income Values 

for 2004/2005 (R/tonne) 

85.22 (bulk waste only) 

-

400*mdm+250*mdg+ 

315*mdpc+755*mdp 

400*mcm+250*mcg+ 

315*mcpc+755*mcp 

(565.5+100*D) 

-

D*100 

-

Table 5.2 summarises the cost and income values for the various streams that are changed by 

the model to give the minimal overall net MSWMS cost. In terms of the income gained from 

bulk landfill waste it is important to note that this is only a small fraction of the waste that is 

disposed in the landfills, with much of the privately collected waste being transported to 

privately operated landfill sites outside of the City of Johannesburg. It is important to note that 

the reported cost of landfilling waste includes the cost of operating Drop-Off Sites due the fact 

that these sites serve as Intermediate Disposal sites for garden and garage refuse. The disposal 

cost was determined by dividing the non-administrative Landfill and Drop-Off Site operational 

cost of R43.1 million (2004/2005) by the amount of landfilled waste for the year 2004/2005, 

namely 1,612,469 tonnes, yielding the resultant value of R26.7/tonne. Bulk waste represents all 

commercial waste that is collected by private Waste Management Companies (or 

8 Jarrod Ball & Associates, 2003 
9 DSM Environmental Services, 2004; Glossary: Md= dirty MRF input, Mr=recovered material, Ndm^no. of 

dirty MRFs, mdi=flow rate of recovered material i for dirty MRFs; Mc=Co-Collection material, R=stream 
recyclables fraction, Ncimr=no. of clean MRFs, mci=flow rate of recovered material i for clean MRFs. 

10 Renkow and Rubin, 1998; Glossary: D=degradation factor 
11 http://europa.eu.int%OQ/comm/environment/waste/studies/pdf/euwastemanagement annexes.pdf; Glossary: 

Mrgw=flow rate of recovered Green Waste, N^rmo. of GW Composting Facilities ,D=degradation factor. 
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delivered by individual companies) and is brought to one of the Pikitup landfills for disposal. 

The Recovered Landfill Waste stream is operated by a private company, and hence exhibits no 

costs or income for Pikitup. The flow rate of this stream was kept constant at 12,350 

tonnes/year for all years modelled as a result of the fact that landfill scavenging is not a 

favourable recovery scheme from a social perspective. (Jarrod Ball & Associates, 2003) 

The Dirty Landfill MRF operational costs were obtained from DSM Environmental Services 

(2004) in which several waste recovery schemes were analysed in terms of their economic 

feasibility. The Dirty Landfill MRF operational cost included a variable cost of R40.3/tonne, a 

fixed cost of R164,365 per plant, a waste tipping charge of R35/tonne of waste disposed and the 

MRF Recyclists Revenue Costs for recovering various amounts of different recyclables. The 

variable cost was assumed to be constant for all plant sizes. The Clean Landfill MRF 

operational costs reported in Table 5.2 are also taken from the DSM Environmental Services 

(2004) material recovery study. It is important to note that the reported variable operational cost 

for Clean Landfill MRFs of R110.6/tonne is made up of a Recyclables Collection Cost of 

R72.9/tonne and the MRF plant operational cost of R37.7/tonne. The fixed operational cost of 

the Clean Landfill MRFs is R31,719 per plant, which is considerably lower than the respective 

Dirty Landfill MRF fixed operational cost as a result of the fact that a Dirty Landfill MRF is 

much more complex in operation than a Clean Landfill MRF (which only requires limited pre­

sorting of the material sent into the plant). An important constraint in the design of MRFs is the 

requirement that the organics feed to the plant must be fairly low for hygienic reasons, and this 

constraint is well accommodated by the modelled system due to the separate organics collection 

scheme. The stream recyclables fraction for the Clean Landfill MRFs was taken as 0.9, which is 

equivalent to the resultant recyclables fraction of the recycling bags collected in the 2-Bag 

Marina da Gama programme in Cape Town (Mega-Tech Inc, 2004). Hence 10% of the feed to 

the Clean Landfill MRFs is disposed due to its non-recyclable nature and this amount is 

multiplied by the waste tipping cost of R35/tonne to determine the disposal costs of this 

particular scheme. The Clean Landfill MRF also exhibits Recyclists Revenue Costs for the 

recovery of recyclables. The revenue generated from the different materials recovered is the 

same for both the Dirty and Clean Landfill MRFs as the materials are taken as being of the 

same quality, however it is important to note that only 90% of the recyclable material sent to 

the Dirty Landfill MRFs is recovered, while 100% of the recyclable material sent to the Clean 

Landfill MRFs is assumed to be recovered. The material revenue data was also taken from DSM 

Environmental Services (2004). 

66 



Chapter 5: Case Study of Johannesburg's Waste Stream 

The separate Organics Collection stream operational cost reported in Table 5.2 was calculated 

by dividing the annual Dailies Collection Operational Cost of R5,703,397 (which excludes the 

administrative/overhead cost) by the annual amount of waste collected by the Dailies Collection 

scheme, namely 16,046 tonnes/year, yielding a value of R355.4/tonne (Jarrod Ball & 

Associates, 2003). The composition of the Dailies collection was assumed to be the same as the 

Commercial Waste composition reported in section 5.2.2 of this report, and is thus a general 

(mixed) waste stream. The reason that the reported value for the Organics Collection 

operational cost in Table 4.2 is R644.5/tonne is as a result of the fact that this cost includes the 

operational cost of the Food Waste Composting Facilities to which this stream is sent for 

processing into compost product. Data on the operational costs of General Waste Composting 

Facilities was taken from an article written by Renkow and Rubin (1998). This reference 

reported the average General Waste Composting Facilities operating cost as US$28/tonne of 

waste processed in these facilities for the year 1995. This value was converted into the baseline 

and South African Rand terms through the use of engineering techniques. Hence the resultant 

Food Waste Compost Facilities operational cost for the baseline year 2004/2005 came to 

R289.1/tonne (which makes up the difference of the total Organics Collection operational cost 

of R644.5/tonne reported in Table 5.2 and the Dailies Collection cost of R355.4/tonne). 

The Recycling Centres stream is operated independently of Pikitup, however, as mentioned 

earlier recycling subsidies are often given to the organisations that run these schemes to aid 

them in making these schemes financially feasible. The subsidies given are calculated through 

the use of airspace credits where the organisations that run recycling schemes are credited with 

the money that the Council would have had to pay if the recovered waste had to be processed. 

The airspace credit is taken to include the cost of processing waste through transfer stations as 

well as the disposal cost to landfill the waste. The airspace credit value is calculated by adding 

the landfill disposal costs to the product of the fraction of waste sent to transfer stations with the 

transfer station operational cost per tonne (taken as R53.4/tonne - Mega-Tech Inc, 2004-1). As 

stated earlier, the fraction of collected waste that is sent through transfer stations was assumed 

to remain constant for the years modelled. The operational cost of the Waste Collection 

Services for Johannesburg for the year 2004/2005 was calculated using data reported in the City 

of Johannesburg's Solid Waste Management Status Quo Report (Jarrod Ball & 

Associates,2003), and yielded a value of R271.29 million (see Appendix D2). The fraction of 

this cost that makes up the administrative/overhead cost was assumed to be the same as that of 

the Waste Disposal Services, which exhibits a 24.72% cost fraction for administrative/overhead 
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costs (http://www.gautengleg.gov.za; accessed 20/03/2006). The administrative/overhead costs 

were subtracted from the collection services operational cost and the resultant value was 

divided by the quantity to waste collected by Pikitup in 2004/2005, namely 698,621 tonnes, to 

yield the collection cost/tonne operational cost of R292.3/tonne. (Jarrod Ball & Associates, 

2003) 

The operational cost for the Drop-Off Garden Refuse Composting Plants reported in Table 5.2 

was determined through the use of the following website, accessed on the 04/04/2006: 

http://europa.eu.int%OQ/comm/environment/waste/studies/pdf/euwastemanagement annexes.pd 

f. The reference contains a study of the operational and capital costs for Garden Waste 

Composting Facilities as reported on page A224 of this Acrobat file. The reported costs were 

converted through the substitution of local utility (electricity, water, etc) costs for those reported 

in the report to determine the costs in South African Rand terms (see Appendix D2). The 

resultant cost is comprised of a variable cost that is a function of the design capacity of the 

Composting Facility concerned, namely R69.9/tonne, as well as a fixed cost per Composting 

Facility of R491,273. The income generated from producing the compost comes from the 

recovery of ferrous metals and the sale of compost product. The compost was assumed to be 

sold at RIOO/tonne (which is the price reported in Chapter 7 of the Status Quo Report by Mega-

Tech Inc, 2004-1). The degradation factor (D) is the fraction of the initial organic mass that 

remains after degradation. The degradation factor reported by Renkow and Rubin (1998) was 

indicated to be between 0.4 and 0.75 (a value of 0.6 was thus chosen). 

As mentioned earlier the Drop-Off facility costs are incorporated in the Waste Disposal costs, 

and it is important to note that this waste management scheme is a pre-requisite of a good 

MSWMS and hence is mandatory. If the general public is not given the opportunity to deliver 

garden and garage waste to facilities close to where they live then waste dumping would 

become more prevalent. The Drop-Off flow rate fraction of the total generated waste stream 

was thus taken as being constant, with a value of 0.100. The portion of Drop-Off garden refuse 

sent to either Landfill Sites or Garden Waste Composting Facilities were, however, allowed to 

vary. 
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The capital costs required to develop the infrastructure needed to operate several of the waste 

management schemes, namely the Transfer Stations, MRFs and the Composting Plants are 

highlighted in the following table. 

Table 5.3: The capital costs considered in the cost minimization model for 2004/2005. 

Scheme 

Transfer Stations 

MRFs 

Composting Facilities 

Capital Cost (Rand) 

(51500*(MTS/260)+48000000*n)/y 

(251.9*Md)/y+{(202.5*Mc)/y+(10*S)/5} 

234.1 *mcom+(675408*(mcom/4015))/y + 

(65.8*Mrgw)/y 

Source 

Coetzee and Botes, 2005 

DSM Environmental, 2004 

Renkow and Rubin, 1998; 

http://europa.eu. int 
Glossary: Mj^=combined transfer station input flow rate; n=number of transfer stations in operation; y=number of 

years over which capital was paid; Md=dirty MRF input flow rate; Mc=clean MRF input flow rate; S=number of 

collection service points; mcom=mixed commercial waste sent to compost plant; mrgw=recovered garden waste sent 

to garden waste composting plants. 

The capital costs are included in the cost functions for each stream by calculating the total 

capital cost required to develop the various facilities and then dividing this value by the number 

of years over which these capital costs are paid. The number of years of payment is determined 

by subtracting the model year from the year 2005/2006, which is the year that capital spending 

on all of these proposed plants is expected to commence. Dirty MRFs require greater amounts 

of capital than clean MRFs as a result of the fact that the former requires a greater amount of 

pre-sorting equipment. However the clean MRFs rely on the effective operation of a separate 

collection scheme which operates on the premise that refuse is placed in two separate bins: the 

existing bins being used to dispose of non-recyclable and putrescible waste, while the second 

bin is to be used for the storage of recyclables. The latter bins need to be purchased and 

distributed for the commencement of this programme, and since the bins have a lifespan of five 

years the capital costs incurred from the purchase of these bins is divided by this figure. The 

recyclables bins are provided free-of-charge as an incentive to encourage recycling. 

Table 5.3 illustrates the capital costs of both the Mixed Commercial Waste Composting 

Facilities and the Garden Waste Composting Facilities. The former capital cost is made up of 

two components, with the first being the capital required to develop the Composting Facilities 

and the second being the cost of purchasing extra REL Collection Vehicles for the collection of 

the refuse to be processed in these facilities. Each REL Collection Vehicle costs approximately 

R675,408 as determined from a newspaper article written in the Dispatch newspaper on 
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18/11/1997 (http://www.dispatch.co.za/1997/l 1/18/page%203.htm; accessed on 31/03/2006). 

The refuse truck is multiplied by the quotient of the total commercial organics collection flow 

rate and the value 4015. The value 4015 (units: tonnes/year/truck) represents the average annual 

collection capacity of a refuse truck in Johannesburg, as reported in Jarrod Ball & Associates 

(2003). 

In forecasting both capital and operation costs an inflation rate of 5% was assumed, while 

income was modelled to increase at 6% per year. 
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5.3 RESULTS AND DISCUSSION 

The results are split into two sections, namely material flow rate results and economic results. 

5.3.1 MATERIAL FLOW RATE RESULTS 

The table below illustrates the stream compositions calculated by the model for several years. 

Table 5.4: Modelled stream compositions of the total generated waste stream for several years. 

Stream Percentage 

Landfill Waste (Excl. DO) 

Recovered Landfill Waste 

Dirty MRF Recovery 

Recycling (2-Bag) 

Recycling (Centres) 

Organics Collection (Dailies) 

DO Waste Recovered 

DO Waste Disposed 

TOTAL 

2005/2006 (%) 

77.58 

0.66 

0.00 

0.00 

10.85 

0.88 

2.28 

7.74 

100.00 

2015/2016 (%) 

71.37 

0.56 

0.00 

3.60 

10.85 

3.60 

10.02 

0.00 

100.00 

2030/2031 (%) 

67.33 

0.43 

0.00 

4.92 

10.85 

6.45 

10.02 

0.00 

100.00 

Table 5.4 highlights the stream compositions that give the maximum Overall MSWMS 

Cost/Profit value for several modelled years. The first trend observed is that the amount of 

material sent to landfills decreases as time progresses, which is indicative of the fact that by 

decreasing the amount of material sent to landfills the overall MSWMS net cost decreases. 

Hence it makes economic sense to divert material from landfills until a certain threshold value 

(which represents the point at which, under the proposed management system, all of the 

available material that is economically feasible to recover is depleted). The second trend is the 

stable zero input assigned to the Dirty MRFs as time progresses, indicating that this recovery 

scheme is not a favoured option in terms of economic feasibility. However, Table 5.4 also 

reveals that the 2-Bag Recycling scheme increases with time (indicating that it is a favoured 

method of material recovery) and since this material is also sent to MRFs, the use of this 

recovery scheme in conjunction with a separate recyclables collection operation is indeed a 

viable option. This is as a result of the fact that clean recyclables yield higher recovery rates and 

require very little pre-sorting when passed through MRFs, unlike the processing of mixed 

general wastes in MRFs, which require greater pre-sorting operations and yield lower recovery 
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rates due to a greater contamination of the recyclables. The model attempts to minimise the 

flow rate of the Recycling (Centres) stream throughout the modelled period due to the fact that 

this stream ultimately diverts recoverable material away from the income-generating MRFs. 

The Recycling (Centres) stream was given the constraint that the mass fraction of this stream 

cannot go below the initial value reported for 2005/2006 as a result of the fact that this sector 

represents private recycling operations that will not likely fall away. This is the reason that the 

mass fraction for this stream remains constant. 

Another interesting trend shown in Table 5.4 is that the stream mass fraction of the Organics 

Collection stream increases with time, and this trend is attributed to the fact that the Organics 

Collection stream is sourced from the commercial sector and thus the tariffs charged for the 

collection of this waste stream are high enough to cover the collection and Compost Plant 

expenses. The Garden Waste Composting scheme, termed as DO Waste Recovery in Table 5.4, 

is favoured to such a great degree that the model already brought the value of this stream to its 

highest possible value by the year 2015/2016. Pikitup has developed a single landfill target for 

the year 2020, and as a result this target was extrapolated for future years. The resultant target 

values are highlighted in the following figure along with the values received from the model. 
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Figure 5.4: Model and target waste disposal flow rates for several future years. 
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Figure 5.4 above reveals that the targets stipulate that waste disposal should immediately be 

reduced in a fairly linear way. The model, however suggests that it is best to keep the amount of 

waste sent to landfills fairly constant until 2020, after which there is a slight rise in the amount 

of waste sent to landfill sites. The targeted landfill waste values become significantly lower than 

the model values after 2015, which reveals that if the targets are to be met for the years 

following 2015, then the MSWMS has to be operated at a Overall Cost/Profit value lower than 

the maximum (at which the model values are set), or else alternative recovery schemes need to 

also be developed. The figure below plots the corresponding model and target generated waste 

recovery rates. 

~ 56 
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Figure 5.5: Model and target generated waste recovery rates for several future years. 

As shown in Figure 5.5 the recovery rates determined by the model increase until the year 2020, 

at which point the recovery rate reaches a maximum threshold value and remains constant at 

this value of 31.3% for future years. The only target value that is reported for Johannesburg in 

Mega-Tech Inc (2004-1) is that for the year 2020, and hence extrapolated target estimates were 

used for earlier years. The waste recovery target for 2020 is significantly higher than the 

recovery rate produced by the model for this year, and as a result if this target is to be met then 

the MSWMS of Johannesburg either needs to be operated at an Overall Cost/Profit value lower 
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than the maximum or else several other recovery schemes need to be implemented into the 

system along side those proposed in the model. To inform the decisions on how to properly 

increase the recovery rates of generated waste in line with the target values it is imperative that 

the composition of the waste modelled to be sent to landfills be analysed. As a result the 

disposed and recovered material compositions for the model year 2030/2031 are displayed in 

the following two figures. 

Figure 5.6: Recovered material composition. Figure 5.7: Landfill material composition. 

Figure 5.6 reveals that 52% of the recovered material is organic (food waste and garden waste), 

indicating that organics composting can indeed be a viable waste recovery scheme. The 

recovery of organic waste is imperative if a significant amount of the generated waste stream is 

to be diverted from being sent to landfills. As is to be expected the recyclable material that 

exhibits the greatest recovery in Figure 5.6 is paper and cardboard. Figure 5.7 above shows that 

53% of the material sent to landfills is material that is not readily recyclable (classed as Other). 

In order to reduce the amount of other material and hence the amount of waste sent to landfills 

the government has to develop laws that ensure manufacturers only use readily recyclable 

material to produce products as well as in packaging materials. 
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5.3.2 ECONOMIC RESULTS 

The net cost/profit values for the various years modelled are plotted below. These values are the 

resultant objective function values determined by Solver to be the maximum Overall MSWMS 

Cost/Profit values for the particular year concerned, under the programmed constraints. 
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Figure 5.8: Plot of modelled net cost/profit (objective function values) for various years. 

Figure 5.8 reveals that the implementation of the proposed changes to the Johannesburg 

MSWMS do not result in the system expenses exceeding the income generated, but merely slow 

down the increase in income until 2020, at which point the income increase becomes linear with 

time. The total calculated capital costs for the MRFs, Garden Waste and Mixed Waste 

Composting Facilities until 2030 are R75.9 million, R17.0 million, and R359.3 million 

respectively. This indicates that Pikitup requires a large amount of capital to start up the latter 

scheme, while the former two schemes require a minimal amount of capital. The MSWMS 

exhibits a large profit margin for all years, and continues to grow. This profit could be used to 

implement further projects to increase the recovery of waste materials, and thereby decreasing 

the amount of waste sent to landfills. 
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5.4 SENSITIVITY ANALYSIS 

The effects of annual income and inflation rate changes on the net cost/profit values exhibited by 

the model are highlighted in the figure below. 
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Figure 5.9: Sensitivity analyses of the income increase and inflation rates used in the model. 

The model values used for the annual income increase and inflation rates are 6% and 5% 

respectively. Sensitivity analyses on these two important model parameters yielded the graphs 

shown in Figure 5.9. When carrying out the analyses only one parameter was changed at a time 

with the other being kept at its original model value. The inflation rate analysis at 3% revealed that 

a decrease in inflation rate greatly increases the profit margin of the MSWMS, while the inflation 

analysis at 7% revealed that such an inflation rate increase would prevent an increase in the profit 

margin and eventually result in a decreased profit margin. On the other hand when keeping the 

inflation rate at the original value of 5% and changing the annual income increase rate to 5% and 

7%, the resultant graphs in relation to the model plot exhibit a slower profit margin increase and a 

faster profit margin increase respectively. These analyses have shown that changes in both the 

inflation rate and annual income increase rate have a major influence on the economic feasibility of 

the modelled MSWMS. 
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6.1 ECONOMIC DATA COMPARISON 

The economic variables used in both the Cape Town (CT) and Johannesburg (JHB) models are 

illustrated in the Table below in order to allow for the comparison of the system costs for both 

Municipal Solid Waste Management Systems. 

Table 6.1: Operating costs of the streams to be optimised by Solver for CT and JHB. 

Stream 

Landfill Waste l2'li 

Recovered Landfill Waste 

Material Recovery Facilities -

MRF (Dirty)1415 

Recycling (Co-Collection) 

with MRF 14'15 

Organics Collection 12',3 

Recycling (Private) 

Mixed Waste Composting 16'1? 

Drop-Off (DO) Composting '8 

Operational Cost for CT 

2004/2005 (R/tonne) 

42.1 

-

40.8*(M)+6041413*n 

113.7*Mco+6041413*n 

588.6 

-

252.1 

N.A. 

Operational Cost for JHB 

2004/2005 (R/tonne) 

26.7 

-

40.3*Md+164,365*Ndmrf+35* 

(Md-Mr)+130*mdm+ 90*mdg 

+150*mdpc+200*mdp 

110.6*Mc+31,719*Ncmrf+35* 

(l-R)*Mc+130*mcm 

+90*mcg+l 50*mcpc+200*mcp 

644.5 

-

-
69.9*Mrgw+491,273 *Ngwcf 

Before analysing the data displayed in Table 6.1 above, it is important to note that the economic 

variables reported in the Cape Town Case Study (Chapter 4) were reported for the baseline year of 

2003/2004, and hence these values were all inflated by 5% in order to convert this data to the same 

baseline year as Johannesburg, namely 2004/2005. 

Table 6.1 indicates that the waste disposal costs in Cape Town are significantly higher than the 

same costs for landfill sites in Johannesburg, and the reason for this lies in the fact that all of Cape 

12 Mega-Tech Inc, 2004 
13 Jarrod Ball & Associates, 2003 
14 Chang et al, 2005; Glossary: M=input flow rate to MRFs, n=number of MRFs in operation. 
15 DSM Environmental, 2004; Glossary: Md= dirty MRF input, Mr=recovered material, Ndmr)=no. of dirty MRFs, 

mdi=flow rate of recovered material i for dirty MRFs; Mc=Co-Collection material, R=stream recyclables fraction, 
Ncmrf̂ no. of clean MRFs, m^Aow rate of recovered material ifor clean MRFs. 

16 Renkow and Rubin, 1998; Glossary: mh=household waste sent to compost plant, ms=separate organics collection. 
1 http://www.defra.gov.uk/corporate/consult/animalbyprod/purpose.htm; Glossary: D=degradation factor. 
18 http://euroDa.eu.int%00/comm/environment/waste/studies/pdf/euwastemanagement annexes.pdf; Glossary: Mrgw=flow 
rate of recovered Green Waste, N ^ f ^ o . of GW Composting Facilities ,D=degradation factor. 
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Town's Landfill Sites are classified as requiring leachate collection systems (B+), while only one of 

the Pikitup operated landfill sites in Johannesburg is classified as requiring leachate collection 

systems. Landfill sites that require leachate collection systems incur significantly greater 

operational costs than those that do not require these systems, and hence the difference in costs 

described above. The Cape Town City Council waste collection costs are also greater than those 

exhibited by Pikitup, with the former incurring a waste collection cost of R329.3/tonne as compared 

to the same cost for Pikitup of R292.3/tonne (both values are reported for the year 2004/2005). The 

reason for this difference in cost is that Johannesburg has two more fully-functional centralised 

landfill sites than its Cape Town counterpart, which effectively only has three fully-functional 

centralised Council landfill sites, one of which is scheduled to be closed at the end of 2006 due to 

health concerns (namely the Bellville South landfill site). Despite the fact that refuse collection 

costs are greater in Cape Town, the average refuse tariff in Johannesburg is higher than that charged 

in Cape Town. Cape Town's average refuse tariff for 2004/2005 was R434.0/service point, while 

that of Johannesburg was R467.4/service point. 

As is evident in Table 6.1, the Dirty MRF variable cost term of R40.8/tonne displayed for Cape 

Town is very similar to its Johannesburg counterpart exhibiting a R40.3/tonne cost, and the same is 

true for the Co-Collection stream which exhibits a variable cost of R113.7/tonne and R110.6/tonne 

for Cape Town and Johannesburg respectively. This observation reveals that the reported costs are 

relatively consistent due to the fact that two separate references were used to compile these costs. In 

analysing this result it is important to note that the variable costs for the Cape Town and 

Johannesburg MRFs were sourced from two separate references, the one being used to determine 

the cost of developing and operating Transfer Station MRFs in Cape Town and the other being 

utilized to provide the variables cost for Landfill MRFs which are to be developed in Johannesburg. 

As is evident from Table 6.1 the Co-Collection cost variables include the cost of the Clean MRFs 

required to process this stream into sorted recyclables. Unlike the Transfer Station MRFs proposed 

for Cape Town, the Landfill MRFs to be developed in Johannesburg include a tipping cost of 

R35/tonne, which is the cost incurred from material that is not recovered in this facility. The reason 

that a tipping cost is not included in the cost reported for Transfer Station MRFs is that Transfer 

Stations are designed for the transportation of waste and hence the waste from the adjacent MRFs is 

fed directly into the Transfer Station for further processing. 

The final stream economic variables in Table 6.1 to be compared are the Organics Collection stream 

variables, which exhibit a marked difference in magnitude between the value reported for Cape 
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Town and Johannesburg respectively. The Organics Collection cost reported for Cape Town is 

significantly lower than the same cost reported for its Johannesburg counterpart due to the fact that 

the proposed collection of organics in Cape Town is a separate collection stream that is processed 

by a Clean Composting Facility, unlike the Organics Collection stream proposed for Johannesburg, 

which operates under the premise that mixed commercial waste is collected and processed in a 

Dirty Composting Facility. The income generated from the various streams is indicated in the 

following table: 

Table 6.2: Income values of the streams to be optimised by Solver for CT and JHB. 

Stream 

Landfill Waste a'w 

Landfill Waste Recovery 

MRF Recovery (Dirty)21,22 

Co-Collection (2-Bag)21'22 

Organics Collection 19,20 

Recycling (Private) 

Mixed Waste Compost19'2' 

DO Waste Composting19 

Income Values for CT 

2004/2005 (R/tonne) 

78.0 (private waste only) 

-

(434*mm+163*mg+ 

551*mpc+2100*mp)*Rm 

(434*mm+163*mg+ 

551*mpc+2100*mp)*Rco 

D*100*mo 

-

D*100*mo+434*mm 

N.A. 

Income Values for JHB 

2004/2005 (R/tonne) 

85.22 (private waste only) 

-

(400*mdm+250*mdg+ 

315*m,|ie+755*m#)*Rd 

(400*mcm+250*mcg+ 

315*1^^+755*111^)*^ 

(565.5+100*D) 

-

N.A. 

D*100 

As displayed in Table 6.2, the landfill waste disposal tariff reported for Cape Town is substantially 

lower than the disposal tariff charged by Pikitup in Johannesburg. This observation is unexpected 

due to the fact that the disposal costs are higher in Cape Town than they are in Johannesburg, and 

hence one would expect the reverse to be true. As a result it can be deducted that the Cape Town 

disposal tariff is well below the value at which it should be set. In analysing the amount of income 

generated from charging disposal tariffs it is important to note that the majority of waste sent to 

landfill sites is made up of Domestic and Area Collection waste, which is collected by the Council 

and hence does not generate disposal tariff income. Commercial and Industrial waste is generally 

Mega-Tech Inc, 2004 
Jarrod Ball & Associates, 2003 
Beningfield, 2002; Glossary: m(i)=mass of material (i) recovered (m=metal, g=glass, pc=paper & cardboard, p=plastic), 
Ri=overall material recovery fraction for MRF (i). 
DSM Environmental, 2004; Glossary: ms=separate organics collection, Rj=overall recovery fraction for MRF (i). 
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not collected by Municipal Councils and is thus the only waste that represents a potential income 

generator in the form of disposal tariffs. 

The prices paid for recyclables depend on the form of the recyclables sold, for example glass sorted 

into its various colours would generate more income than mixed glass, and it is for this reason that 

the recyclables income reported in Table 6.2 differs between Cape Town and Johannesburg. Table 

6.2 also reveals that a collection tariff is only generated from the Organics Collection scheme in 

Johannesburg, and amounts to R565.5/tonne. The reason for this is that the Organics Collection 

scheme in Cape Town involves the collection of sorted Domestic organic waste, and hence is 

proposed as a free service, while the Organics Collection scheme in Johannesburg involves the 

collection of mixed Commercial waste and thus generates income in the form of collection tariffs. 

Mixed Domestic waste composting only currently takes place in Cape Town and this scheme is not 

proposed as a future recovery scheme to be utilized by Pikitup. The Drop-Off garden waste 

composting scheme in Cape Town is operated by private companies, and hence the Cape Town City 

Council generates no income from this scheme. Conversely, Pikitup operates its own garden refuse 

facility for the recovery of garden waste from waste sent to Drop-Off facilities and hence generates 

income through the sale of the resultant compost product. 

Table 6.3: Capital costs of the streams to be optimised by Solver for CT and JHB. 

Scheme 

Transfer Stations2i 

Dirty MRFs24'2b 

Composting Facilities 
26, 27, 28 

Co-Collection29 

Organics Collection 30 

Capital Cost CT 

2004/2005 (Rand) 

(54075 *(MTS/260)+50400000*n)/y 

(51320.5*(MMRF/260)+14880665*n)/y 

234.0*mh+ 

(290.0*ms+4482479.1 *n)/y 

(10*S)/5+51.7*Mco 

(675408*(ms/Tct))/y 

Capital Cost JHB 

2004/2005 (Rand) 

(54075 *(MTS/260)+50400000*n)/y 

(251.9*Md)/y 

234.0*mcom+ 

(65.8*Mrgw)/y 

(10*S)/5+51.7*Mco 

(675408*(mcom/TJHB))/y 

Coetzee and Botes, 2005; Glossary MTS=combined transfer station input flow rate; n=number of transfer stations, 
MRFs or Composting Facilities in operation; y=number of years over which capital was paid. 
Chang et al, 2005; Glossary: MMRF=combined MRF input flow rate. 
DSM Environmental, 2004; Glossary: Md= dirty MRF input. 
Renkow and Rubin, 1998; Glossary: mh=household waste sent to compost plant, ny=separate organics collection, 
mcom=h°usehold waste sent to compost plant. 
httD://www.defra.gov.uk/corporate/consult/animalbvprod/purpose.htm; Glossary: n=no. of Composting Facilities. 
httD://europa.eu.int%OQ/comm/environment/waste/studies/pdf/euwastemanagement annexes.pdf; Glossary: Mrgw=flow 
rate of recovered Green Waste. 
Jarrod Ball & Associates, 2003; S=number of collection service points; MCo=co-collection recyclables flow rate. 

http://www.dispatch.co.za/1997/ll/18/page%203.htrn; T—average annual refuse truck collection capacity for city i. 
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The majority of the capital cost equations reported in Table 5.3 above are equivalent for both Cape 

Town and Johannesburg. The reason for this is that several of the proposed schemes are to be 

utilised in both cities. In comparing the Organics Collection capital costs for both cities the annual 

refuse truck collection capacity for Cape Town and Johannesburg need to be compared. T,* was 

calculated to be 2772 tonnes/year/truck (Mega-Tech Inc, 2004), while TJHB was reported as being 

4015 tonnes/year/truck (Jarrod Ball & Associates, 2003). It is evident from these values that the 

annual refuse truck collection capacity for Cape Town is significantly lower than that of 

Johannesburg, and this is attributed to several reasons. The main reason was alluded to earlier and 

involves the fact that Johannesburg has a more centralised collection system than its Cape Town 

counterpart due to physical land constraints exhibited by the latter city. This translates into refuse 

trucks in Cape Town travelling greater distances in order to empty their collected refuse in a landfill 

site when compared to refuse trucks in Johannesburg, which in turn means a greater travel time per 

collection trip. Another possible reason for the difference in refuse truck collection capacity 

between the two cities is the difference in the collection truck fleet age utilised by each respective 

city (bearing in mind that the older the vehicles the more frequently they need to be serviced and 

hence the greater the amount of replacement vehicles required - note that the calculated values 

include the need for replacement vehicles). 
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6.2 MATERIAL FLOW RATE COMPARISONS 

The following comparisons deal with the material differences exhibited by the developed models 

for both Cape Town and Johannesburg. 

6.2.1 COMPARISON OF RESULTANT MODEL STREAM FRACTIONS 

The following table depicts the optimum mass percentages (from an economic perspective) of 

the various streams that form part of both cities' MSWMS, as determined by Solver. 

Table 6.4: Optimum mass percentages of the various variable streams changed by Solver. 

Stream Mass % 

Waste Landfilled (excl. DO) 

Recovered Landfill Waste 

MRF Recovery (Mixed) 

Co-Collection (2 Bag) 

Separate Organics Collection 

Waste Recycled (Private) 

Mixed Waste Composting 

Drop-off Waste Recovered 

Drop-off Waste Disposed 

CT (2005) 

84.34 

0.06 

0.00 

0.00 

0.00 

9.18 

1.19 

3.35 

1.88 

CT (2030) 

59.49 

0.04 

5.51 

5.88 

14.67 

9.18 

0.00 

3.35 

1.88 

JHB (2005) 

76.62 

0.66 

0.00 

0.00 

0.00 

10.85 

0.00 

2.28 

8.70 

JHB (2030) 

67.33 

0.43 

0.00 

4.92 

0.00 

10.85 

6.45 

10.02 

0.00 

As is evident in Table 6.4, for both cities it is favourable to decrease the amount of waste sent 

to landfill sites in order to improve the financial feasibility of the MSWMS of both respective 

cities. Table 6.4 indicates that it is both economically feasible to send mixed general waste 

and separately collected recyclables (Co-Collection) to the proposed MRFs in the Cape Town 

model, while the Johannesburg model indicates that it is only favourable to send separately 

collected recyclables to the proposed MRFs to be developed in this city. The reason for this, 

which has already been alluded to, is that transport and disposal costs are greater in Cape 

Town than in Johannesburg and hence this provides a platform for the greater recovery of 

recyclables which under the economic variables of Johannesburg would be considered 

uneconomical to recover. The MRFs, however, need to be operated under strict input 

constraints that specifiy that the input waste must contain less than 25% organic material (by 

mass), or else the operation bears serious health risks and the contamination factor of the 

waste would be too great to allow for a significant amount of uncontaminated recyclables to 
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be recovered. As a result of this constraint the separate collection of organics waste in Cape 

Town is made favoured by the model, due to the fact that this scheme helps to regulate the 

quality of waste sent to the mixed MRFs. 

The material recovered by the private recycling stream reduces the amount of recyclables 

available for recovery by the Council of both cities, however these stream mass fractions are 

kept constant due to the fact that this scheme will not likely fall away. The recovery of mixed 

compostable waste is indicated in Table 6.4 to be favoured by the Johannesburg model, but 

not by the Cape Town model. The reason for this is that the input for the former model is 

commercial waste which generates a greater collection cost, while the input for this scheme in 

the latter model is domestic waste (which provides a more modest income). The recovery of 

Drop-Off garden refuse is a favourable scheme, but is facilitated by private companies in 

Cape Town, while in Johannesburg this scheme is operated by Pikitup itself. 

6.2.2 COMPARISON OF QUANTITY AND TYPE OF RECOVERED MATERIAL 

The following figure depicts the optimum recovery rates for both cities for several years. 

2005 

-•— Cape Town 
-•— Johannesburg 

2010 2015 2020 2025 2030 

Year 

Figure 6.1: Modelled optimum waste recovery rates for several years for both CT and JHB. 
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Figure 6.1 illustrates that according to the developed models it makes economic sense to 

increase the recovery of waste materials until a certain threshold value for both Cape Town 

and Johannesburg. The threshold value represents the point at which, under the proposed 

management system, all of the available material that is economically feasible to recover is 

depleted. 

An interesting observation determined for the Cape Town MSWMS model is that until the 

year 2010 it is more favourable to give extensive recycling subsidies (up to 100% 

subsidisation) to private recyclers than to send recyclable materials to the Council's landfill 

sites. This is as a result of the fact that the Cape Town City Council has developed very few 

recycling initiatives thus far, and this coupled with the fact that waste collection and disposal 

is becoming extensively more expensive translates into the need to support existing private 

recycling initiatives until the Council has developed its own recovery infrastructure. It will 

take some time before Cape Town has developed the material recovery infrastructure required 

to optimise its MSWMS and for this reason the plot of Cape Town's recovery rate, shown in 

Figure 5.1, initially increases at a slower rate than the recovery rate of Johannesburg (which 

currently has more extensive material recovery infrastructure). 

The recovery rate increase for both cities levels off to a constant value after 2020, and the 

reason for this is explained above under the pretext of the threshold value. It is interesting to 

note that the threshold value for Cape Town is 6% higher than that of Johannesburg, and the 

reason for this was mentioned earlier, namely that the scope for recyclables collection in Cape 

Town is greater due to collection and disposal costs for the Cape Town City Council being 

significantly higher than those of the Solid Waste Co-ordinators of Johannesburg, namely 

Pikitup. The following figure illustrates the component flow rates of recovered material for 

both cities for the model year 2030/2031. 
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Figure 6.2: Recovered component flow rates for the model year 2030/2031 for CT & JHB. 

Figure 6.2 reveals that a large portion of the recovered material in Cape Town is food waste 

(which is recovered from the separate organics collection stream), while very little food waste 

is recovered in Johannesburg. Garden waste is recovered to a larger extent in Johannesburg as 

compared to Cape Town. As is to be expected, Figure 6.2 also indicates that the most 

recovered recyclable material for both cities is Paper/Cardboard (which comprises the 

greatest portion of recyclable material in most waste streams). The importance of Figure 6.2 

does not only lie in the fact that it illustrates the differences in material recoveries exhibited 

by the model for both respective cities, but it also acts as the basis for a market study into 

whether the modelled recovered material will be in demand by the market. This type of study 

is beyond the scope of this dissertation, but it is imperative that this type of study be 

conducted to determine whether the modelled material recoveries are realistic. 

Figure 6.2 indicates that the amount of recovered material exhibited for Cape Town is 

significantly higher than the recovered material for Johannesburg for all recyclables except 

plastics. The reason for Cape Town's greater recyclables recovery is again as a result of the 

fact that Cape Town's threshold recovery rate is higher than its Johannesburg counterpart, and 

hence the greater recovery of recyclable material in Cape Town. It is interesting that plastics 
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recyclables are the exception to this trend, and the reason for this is that the recovery of 

plastics is far more developed in Johannesburg than in Cape Town and hence despite the 

lower threshold recovery rate of materials in Johannesburg the amount of plastics recovered 

in Johannesburg is almost equivalent to Cape Town. This is due to the fact that, unlike Cape 

Town, Johannesburg operates the highly successful Green Cage project for the recovery of 

plastics. The Green Cage project involves the placement of large Green Cage containers at 

recycling depots for storage of all major plastic types. These containers are sponsored by the 

plastics industry and are serviced by private sorting companies that empty the containers and 

separate the plastics into the various types, which are then sold to buyers of the various 

respective plastic types. (http://www. dispatch, co. za/2000/09/14/business/B US5. HTM; 

accessed 22/06/2006) 

6.2.3 COMPARISON OF LANDFILL WASTE COMPOSITION 

The following figure is plotted to depict the waste composition of waste sent to landfill sites 

for the model year 2030/2031 for both Cape Town and Johannesburg. 
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Figure 6.3: Landfill waste composition for the model year 2030/2031 for CT and JHB. 
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Figure 6.3 indicates that for both cities the greatest component of the material sent to landfill 

sites is the other fraction, which represents material that is not easily recoverable. In order to 

reduce the amount of other material and hence the amount of waste sent to landfills the 

government has to develop laws that ensure manufacturers only use readily recyclable 

material to produce products as well as in packaging materials. 
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6.3 OVERALL MSWMS ECONOMIC COMPARISON 

The following graph plots the minimum overall operational costs, as determined by Solver, for both 

cities as a function of time. 

2500 

1 2000 
(0 
K 

2 1500 
c 
o 

JE 1000 

0-

(0 
o o 
o 

z 

500 

-500 

2005 -2945-

Cape Town 
Johannesburg 

2030 

Year 

Figure 6.4: Modelled net cost/profit for various years for CT and JHB. 

As is shown in Figure 6.4, the Solid Waste Division in Johannesburg (Pikitup) exhibits a profit 

margin while the Cape Town Solid Waste Department has a slight shortfall with regard to expenses 

incurred being covered by generated income. These graphs do not include the Area Collection costs, 

which are difficult to model, and in any event this incurred cost will always be necessary to keep 

both cities clean. It is important to bear this in mind when observing perceived versus actual profit 

margins. The 2004/2005 Area Collection costs for Cape Town was R243.13 million, while that of 

Pikitup was R245.85 million. Hence as is indicated by the similarity in these cost values the Area 

Collection costs are relatively constant because the function served by this division of both Solid 

Waste Departments is to fulfil an essential service. To determine the overall all-inclusive Solid 

Waste Services net cost both graphs need to be shifted down by an inflated index of the Area 

Collection costs detailed above (this is not carried out so that only the modelled scenario can be 

analysed). 
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Figure 6.4 also reveals that as time progresses the incurred expenses for Cape Town initially 

increase to a greater degree than the income increase and as a result the plot for Cape Town starts to 

increase the expenses versus income shortfall before the turning point at 2015 (which represents the 

point at which the income generated starts to increase above the expenses incurred, resulting in a 

gradual payback of the shortfall experienced in previous years). The reason that the Cape Town 

graph exhibits these characteristics is that Cape Town is running out of landfill space within the 

city, and hence to continue the centralised collection of waste several Transfer Stations are to be 

developed as alternatives in the various collection areas in Cape Town, and the function of these 

stations will be to compact waste and then send it to the proposed landfill site outside of Cape Town 

(still to be developed). For this reason the extra transportation and capital costs that will be incurred 

by this required scheme, as well as the costs incurred to try and minimise these costs in the long-

term through the development of waste minimisation schemes, will initially create a growth in 

expenses above that of generated income. All these reasons contribute to explaining why it 

especially makes economic sense to minimise waste to be collected and disposed in the Cape Town 

region. 

In contrast to the graph plotted for Cape Town, the Johannesburg plot indicated in Figure 6.4 

reveals that the waste minimisation schemes to be implemented in Johannesburg will initially only 

slow down the growth in profit margin rather than creating a scenario in which the incurred 

expenses start to initially exceed the generated income. It is evident in Figure 5.4 that the income 

generated from the waste minimisation schemes to be implemented will eventually increase the 

Solid Waste Services profit margin for both cities once these schemes have been fully implemented 

and the capital costs paid back by the generated income. Only the Cape Town model incurs capital 

costs that are large enough to result in an overall MSWMS cost which exhibits a definite payback 

period. The payback period for the required changes to the Cape Town MSWMS was determined to 

be approximately 18 years. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 
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7.1 CAPE TOWN CASE STUDY 

Several conclusions can be drawn from the Cape Town case study with regard to the way the city's 

MSWMS operates, and these conclusions and associated recommendations are highlighted below. 

7.1.1 CONCLUSIONS 

It is evident that due to the shortage of land space within Cape Town the only viable option for 

the future MSWMS of Cape Town is the design of a network of transfer stations which act as 

the mechanism of waste delivery from collection points to a regional landfill site developed 

outside of the city. In order for the City Council to meet its targets of decreasing the amount of 

waste sent to landfills it needs to adopt a waste recovery scheme that works best with the future 

MSWMS described above. The developed model has shown that the recovery scheme that 

operates most effectively with this MSWMS is the creation of MRFs and Composting Facilities 

in conjunction with the proposed transfer stations. The capital costs required for the 

development of this particular MSWMS are very high, but once fully operational can generate a 

large amount of income for the City Council. It would also take a number of years before this 

proposed MSWMS becomes fully developed, and hence it is vital that the currently existing 

recovery schemes be fully utilised until the proposed MRF/Composting Facility recovery 

scheme is sufficiently developed to substitute the role of these schemes. In light of this the 

model has shown that it is in the interest of the City Council to provide airspace credit subsidies 

for the private organisations currently carrying out recycling operations in the city until the 

MRF/Composting Facility recovery scheme is in place. 

7.1.2 RECOMMENDATIONS 

i. The substitution of closing Landfill Sites with Transfer Stations must be implemented to 

ensure a sustainable waste management system in the city. 

ii. It is imperative that the Cape Town Solid Waste Department develops the necessary waste 

recovery infrastructure needed to limit the amount of waste requiring disposal as soon as 

possible. The use of MRFs and composting facilities in conjunction with Transfer Stations 

to recover useful waste materials is the most recommended recovery scheme. 

iii. The Cape Town Solid Waste Department should provide subsidies to private recycling 

ventures until its own recovery infrastructure is properly developed. 
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7.2 JOHANNESBURG CASE STUDY 

The Johannesburg case study resulted in the formation of a number of conclusions that can be 

drawn with regard to the way the city's MSWMS operates. The developed conclusions as well as 

the associated recommendations are described in the following sub-chapters. 

7.2.1 CONCLUSIONS 

Johannesburg fortunately has not experienced a shortage of land space for the future 

development of Landfill Sites, and for this reason Pikitup will be able to continue operating a 

centralised waste management system that ensures minimal waste collection distances without 

the use of Transfer Stations. This situation may however change in the medium to long term 

and hence this provides no excuse for complacency with regard to minimising waste sent to 

disposal sites. Pikitup has already started to develop recovery infrastructure with regard to the 

recovery of garden refuse, and it is envisaged that in the short-term several composting plants 

will be developed with the aim of converting most of the garden refuse sent to Drop-off 

facilities into compost product. The developed model for Johannesburg has revealed that this 

composting scheme as well as the implementation of Clean MRFs on landfill sites are both 

favourable recovery schemes. The operation of clean MRFs is dependant on the implementation 

of an effective Separate Collection scheme for recyclables and this scheme requires the greatest 

amount of attention with regard to changing the current MSWMS employed to one that is more 

geared towards minimising waste than towards disposing of waste. 

7.2.2 RECOMMENDATIONS 

i. Pikitup should continue to develop garden refuse composting facilities in order to convert 

all of the garden refuse collected from Drop-off facilities into compost product, 

ii. The development of a Separate Collection scheme for recyclables and the corresponding 

MRFs for the processing of this stream should be incorporated into the Johannesburg 

MSWMS as soon as possible. 
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7.3 CASE STUDY COMPARISON 

7.3.1 CONCLUSIONS 

The disposal of waste into Landfill sites is significantly more expensive in Cape Town than in 

Johannesburg due to the need to operate extensive leachate recovery systems in all of Cape 

Town's Landfill Sites. The costs involved in collecting waste from service points is also 

substantially more expensive in Cape Town than in Johannesburg, due to the large travel 

distances from collection to disposal point exhibited in Cape Town, which is not the case in 

Johannesburg. These differences in waste management costs create the scenario in which clean 

and dirty MRFs are a viable recovery option in the case of Cape Town but only the more 

feasible of these two schemes, namely clean MRFs, is a viable recovery scheme for 

Johannesburg. 

According to the developed models for Cape Town and Johannesburg it makes economic sense 

to increase the recovery of waste materials until a certain threshold value for both Cape Town 

and Johannesburg. This proves that the traditional view that waste disposal is the most 

economical waste management scheme is not always necessarily true. The threshold recovery 

value for Cape Town is 6% higher than that of Johannesburg due to the greater waste 

management costs in Cape Town creating a bigger scope for the recovery of useful waste 

resources in Cape Town in relation to Johannesburg. The models predict that with the exception 

of garden refuse and plastics the recovery of all of the waste material components is 

significantly greater in Cape Town than in Johannesburg. The garden refuse recovery scheme is 

predicted to be greater in Johannesburg due to the fact that this scheme is co-ordinated by 

Pikitup itself, while in the case of Cape Town this scheme is operated by private companies that 

will only recover the portion of this waste stream that is of high value. 

The predicted Landfill waste compositions for both Cape Town and Johannesburg reveal that 

the majority of waste going to landfill is material that is not readily recoverable (termed the 

Other Fraction). These materials are not readily recoverable due to the fact that this waste 

material is either impractical or too cost-intensive to recover. It is for this reason that only a 

limited amount of material can be recovered from waste without the intervention of government 

into regulating the type of materials used by companies to produce and package their products. 
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Chapter 7: Conclusions & Recommendations 

Hence laws need to be passed to limit the amount of non-recoverable material that is generated 

as waste. 

The MSWMS of Johannesburg is operated much more cost-effectively than the MSWMS of 

Cape Town, with the latter system exhibiting a substantial economic shortfall. The waste 

management costs in Cape Town will also continue to rise significantly in the near future due to 

the need to substantially change the current MSWMS employed in Cape Town as a result of 

land space shortages to develop disposal facilities within the city. The waste management costs 

in Johannesburg are however not likely to increase nearly as dramatically as will be the case for 

Cape Town's waste management costs. The extra transportation and capital costs that will be 

incurred in Cape Town as a result of the need to develop several Transfer Stations to replace 

closed landfill sites within the city, as well as the costs incurred to try and minimise these costs 

in the long-term through the development of waste minimisation schemes, will initially create a 

growth in expenses above that of generated income. All these reasons contribute to explaining 

why it especially makes economic sense to minimise waste to be collected and disposed in the 

Cape Town region. In the Johannesburg MSWMS scenario the proposed waste minimization 

schemes will only initially slow down the growth in income from this system. The income 

generated from the waste minimisation schemes to be implemented will eventually increase the 

MSWMS profit margin for both cities once these schemes have been fully implemented and the 

capital costs paid back by the generated income. 

7.3.2 RECOMMENDATIONS 

i. MRFs should be implemented into the MSWMS of both cities in order to limit the amount 

of waste sent to disposal facilities. Economically feasible waste minimization schemes 

should be developed in both cities, as it has been shown that limiting the amount of waste 

sent to disposal sites helps to facilitate in the formation of a more economically sustainable 

MSWMS. 

ii. Legislation that stipulates that product manufacturers either use recyclable materials to 

produce and package their products or else are liable for the disposal costs of products that 

contain materials that are not readily recyclable must be developed at national, provincial 

and then at local government level. 
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APPENDIX A1: Data Sheet for the City of Cape Town 

Table A1.1: Cape Town Waste Characterisation (Mega-Tech, May 2004) 
Recyclables Fractions 

Builder's Rubble 
Green Waste 
Organics 
Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

Household 
• 

-

0.47 
0.05 
0.08 
0.19 
0.13 
0.08 

Comm./lnd. 
-
-

0.31 
0.01 
0.02 
0.18 
0.02 
0.47 

2-Bag stream 
-
-
-

0.05 
0.32 
0.54 
0.09 

-

RC Stream 
. 
-
. 

0.02 
0.05 
0.86 
0.07 

-

Landfill Recycling 
-
-
. 

0.18 
0.03 
0.61 
0.18 

-

DO Waste 
0.35 
0.65 

• 
-
-
-
-
-

Composting 
-
-

0.98 
0.02 

-
-
-
-

TOTAL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table A1.2: Garden Waste Sources (Mega-Tech, May 
2004) 

Source 
Garden Service / Drop-offs 
Topping up of bin 
Local Authority 

Amount (t/yr) 
81619 
59359 
44519 

Mass Frac. 
0.44 
0.32 
0.24 

TOTAL 185497 

Assumptions: 
1. Waste components going through transfer stations as compared to waste going directly to landfill are split according to the ratio of the 

total flow for each stream respectively (own assumption). 
2. 36% of garden waste sent to Drop-offs is not recovered while the rest is recovered (Mega-Tech, pg. 5.14 Draft Assessment Report, May 

2004). 

Table A1.3: Analysis of Drop-off Waste {Mega-Tech, May 2004) 
Source 

Garden Waste Not Recovered 
Garden Waste Recovered 

Mass Frac. 
0.36 
0.64 
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APPENDIX A1: Data Sheet for the City of Cape Town (Continued) 

Table A1.4: Analysis of Overall Waste Generated (Mega-Tech, May 2004) 
Source 

Household 
Commercial and Industrial 
Garden 
Builder's Rubble 

Amount (t/yr) 
1409778 
1558176 
185497 
556491 

Mass Frac. 
0.38 
0.42 
0.05 
0.15 

TOTAL 3709942 

Parameters: 
Total Generated Waste (t/yr) 
Transfer Station(s) Capacity (t/yr) 
Landfill Cost (R/tonne) 
Landfill/TS Splitting Ratio (F1): 
MRF/Landfill Split Ratio (F2): 
Private Vissershok Waste (t/yr) 
Baseline Year (2003/2004) 
Year Analysed 
Inflation Rate 
Overheads/Admin. For SWC 
End-of-Life Deposit Bottles (t/yr) 
Income Increase Rate 
Number of MRFs 

3709942 
2364731 
149.66 
0.98 
1.00 
0.00 
2003 
2030 
0.05 
0.26 
6000 
0.07 

7 

Assumed same as Waste Disposal Department 
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APPENDIX A2: Data Sheet for the City of Johannesburg 

Table A2.1: Cape Town Waste Characterisation (Mega-Tech, May 2004) 
Recyclables Fractions 

Builder's Rubble 
Green Waste 
Organics 
Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

Household 
0.02 
0.24 
0.12 
0.03 
0.05 
0.17 
0.10 
0.29 

Comm./lnd. 
-
-

0.31 
0.02 
0.04 
0.10 
0.07 
0.46 

Co-Collection 
-
-
-

0.08 
0.15 
0.48 
0.29 

-

RC Stream 
-
• 
. 

0.02 
0.09 
0.62 
0.27 

-

Landfill Recycling 
-
-
-

0.18 
0.03 
0.61 
0.18 

-

Area Cleaning 
0.50 
0.03 

• 

-
-
-
-

0.47 

Composting 
-
-

0.98 
0.02 

-
-
-
-

TOTAL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table A2.2: Sources of Garden Waste (Mega-Tech, May 2004) 
Source 

Garden Service / Drop-offs 
Topping up of bin 
Street Cleaning 

Amount (t/yr) 
266472 
153551 
16292 

Mass Frac. 
0.61 
0.35 
0.04 

TOTAL 436315 

Assumptions: 
1. Waste components going through transfer stations as compared to waste going directly to landfill are split according to the ratio of the 
total 

flow for each stream respectively (own assumption). 
2. 36% of garden waste sent to Drop-offs is not recovered while the rest is recovered (Mega-Tech, pg. 5.14 Draft Assessment Report, May 
2004). 

Table A2.3: Analysis of Drop-off Waste (Mega-Tech, May 2004) 
Source 

Garden Waste Not Recovered 
Garden Waste Recovered 

Mass Frac. 
0.91 
0.09 
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APPENDIX A2: Data Sheet for the City of Johannesburg (Continued) 

Table A2.4: Analysis of Overall Waste Generated (Mega-Tech, May 2004) 
Source 

Household 

Commercial and Industrial 

Green (excl. Household GW) 
Area Cleaning 

Amount (t/yr) 
773907 

1213134 
315997 

575170 

Mass Frac. 
0.27 

0.42 
0.11 
0.20 

TOTAL 2878208 

Parameters: 
Total Generated Waste (t/yr) 
Transfer Station Capacity (t/yr) 
Landfilling Cost (R/tonne) 
Landfill/TS Splitting Ratio (F1): 
MRF/Landfill Split Ratio (F2): 
Private Chloorkop Waste (t/yr) 
Baseline Year (2004/2005) 
Year Analysed 
Inflation Rate 

Overheads/Admin. For SWC 

End-of-Life Deposit Bottles (t/yr) 

Income Increase Rate 
Number of MRFs 
Number of GW Compost Plants 

No. of Dailies Compost Plants 

2878208 

40000 
95.08 
0.01 
0.00 
0.00 
2004 
2030 
0.05 

0.26 f 
6000 
0.06 

5 
4 

3 

Assumed same as Waste Disposal Department 
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APPENDIX B1: Stream Sheet (Mass 
STREAM NO: 

STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 
Builder's Rubble ( 
Disposed 

^ e £ ^ £ ' — _ _ _ _ 

Soil 

1 

Landfill Cover 
SWM 

52000 

Balance) 
2A 

2 Bag System 
Enviroglass 

218242 

-
-

-
-

52000 

2B 

Organics Collection 
SWM 

544247 

-

-

4A 

Household Waste 
SWM/Private 

9199956 

4B 

Comm./lnd. Waste 
SWM/Private 

1558176 

mmmmm^* 
-

. 
-

; | ; 

4 
Combined 

Collected Waste 
SWM/Private 

2412991 

' • . ' • ' . 

488571 
-

; | 

Agricultural waste 
Green Waste 
Household Organics 
Compost Product 

. 
-
-
-

Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

-
-
-
-

-

„ 

-
-
-

_ 

54425 
489822 

-

_ 
-

172773 
-

_ 
-

486151 
-

_ 

4934 
658924 

-

11584 
69709 
117857 
19099 

-

-
-
-
-

-

70489 
112782 
267858 
183271 
112782 

7791 
26489 

283588 
23373 
730784 

59888 
52543 
140847 
163717 
843567 

ECONOMIC ANALYSIS 
Variable Cost (R/t) 
Costs (R) 
Income-based Benefit (R) 
Airspace Cost Benefit (R) 
Capital Cost (R) 
Total Profit/Loss^Mill. RJ ̂ i ^ l^SH 

* 

259.0 
78519774 

0 
0 

46591393 

1494.9 
903979462 

0 
471509894 

-
-
. 

-
-
-
. 

* 

1170.8 
1834006889 
3142201076 

. 
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APPENDIX B1: Stream Sheet (Mass Balance) - Continued 
STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 

Disposed 
Recycled 

Soil 

5 
Feed to TS/MRF 

SWM/Private 

2364731 

478799 
-

-

5A 
MRF Recovery 

SWM 

2582974 

478799 
-

-

6 
Direct Feed to Landfill 

SWM/Private 

48260 

9771 
-

-

7 
Recyclables 

Private 

340397 

-
-

-

10 
Drop-off (DO) Waste 
Private Delivery/ACS 

194059 

67920 
-

-
^^O^il/t'frnffftWJM 

Agricultural waste 
Green Waste 
Household Organics 
Compost Product 

Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 
if: 
ECONOMIC ANALYSIS 
Variable Cost (R/t) 
Costs (R) 
Income-based Benefit (R) 
Airspace Cost Benefit (R) 
Capital Cost (R) 

-
4836 

645746 
-

W-'^M^:T<if':'\ .•^f'l'-'f'. 
58690 
51492 
138030 
160443 
826695 

* 

0 

-
4836 

645746 

70274 
121201 
255888 
179542 
826695 

207.6 
536274958 
1265286093 
147490970 

2358150840 

. 

99 
13178 

1198 
1051 
2817 
3274 
16871 

* 
-
-
-

-
-
-

6808 
17020 

292741 
23828 

0 

0 

117451575 
-

-

126138 
-
-

-
-
-
-

-

-
-
-

-
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APPENDIX B1: Stream Sheet (Mass Balance) -Continued 
STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 

Disposed 
Recycled 

12 
Transfer Station Output 

Rail (SWM) 

2160404 

478799 
-

15 
DO Material Sent to Landfill 

SWM 

113330 

67920 
-

17 
Recovered DO Waste 

Interwaste 

80728 

-

18 
Recovered Landfill Recyclables 

Informal Recyclists 

1469 

-

Soil f y J I I I 
Oiganics (t/yr): 
Agricultural waste 
Green Waste 
Household Organics 
CjompostProduct^^^^^ 

Metal 
Glass 
Paper & Cardboard 
Plastic 
O t ^ e r ^ ^ ^ ^ ^ ^ ^ ^ 

ECONOMIC ANALYSIS 
Variable Cost (R/t) 
Costs (R) 
Income-based Benefit (R) 
Airspace Cost Benefit (R) 
Capital Cost (R) 

-

4836 
645746 

29345 
25746 
69015 
80222 

^ ^ 8 2 6 6 9 5 ^ ^ 

199.4 
430712262 

763926110 

. 
45410 

-

-
-
. 

1170.8 
79522102 

-
80728 

. 

-
. 
-

* 

-
27854770 

-

-
-
-

269 
37 

901 
262 

* 

-
-

219886 
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APPENDIX B1: Stream Sheet (Mass Balance) - Continued 
STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 

24 
Council Composting 

SWM 

544247 

OUTPUT 
Waste Landfilled 

SWM 

2320531 

Disposed 
Recycled 

Soil 

-

-

_ 

556491 
-

_ 

Agricultural waste 
Green Waste 
Household Organics 
Compost Product 

Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

-

54425 
489822 

0 
-
. 
-

_ _ _ _ _ L _ _ . _ _ _ 

-
50344 

658924 

30274 
26759 
70931 
83234 
843567 

ECONOMIC ANALYSIS 
Variable Cost (R/t) 588.6 149.7 
Costs (R) 320366348 347300047 
Income-based Benefit (R) 
Airspace Cost Benefit (R) 

202912675 
187788715 

171143915 

Capital Cost (R) 24306165 

108 

Table B1: Optimum Stream Mass Fractions 
Stream 

Waste Landfilled (excl. DO) 
Recovered Landfill Waste 
MRF Recovery 
Waste Recycled (2 Bag) 
Separate Organics Collection 
Waste Recycled (Centres) 
Council Composted Waste 
Drop-off Waste 

Mass Frac. 
0.59 

4.E-04 
0.06 
0.06 
0.15 
0.09 
0.00 
0.05 

TOTAL 1.00 

Objective Function: 517.0 



APPENDIX B2: Stream Sheet (Mass Balance) 
STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 

1 2 
Landfill Cover Co-Collection 

Pikitup 

130461 

Pikitup 

80000 

4 
Depot Feed 

Pikitup 

1988600 

5A 
Hshd Waste 

Pikitup 

718019 

5B 
Comm./lnd. Waste 

Pikitup/Private 

1186343 

5C 
Area Cleaning 

Pikitup 

575170 

5D 
Dailies 
Pikitup 

185610 

5 
Collected Waste 
Pikitup/Private 

2091747 
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APPENDIX B2: Stream Sheet (Mass Balance)-Continued 
STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 

6 
MRF/Landfill Feed 

Pikitup 

2062676 

6A 
MRF Recovery 

Pikitup 

80000 

6B 
Direct Feed to Landfill 

Pikitup/Private 

1982676 

7 
Recyclables 

Private 

312410 

10 
Drop-off (DO) Waste 
Private Delivery/ACS 

288442 

Builder's Rubble (t/yr) 
Disposed 
Recycled 

295827 
-

0 
-

295827 -
-

-
-

Soil - - - -

Agricultural waste 
Green Waste 
Household Organics 
Compost Product 

Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

ECONOMIC ANALYSIS 
Variable Cost (R/t) 
Costs (R) 
Income-based Benefit (R) 
Airspace Cost Benefit (R) 
CapitalCosts(R)^^ 

_ 

225725 
278290 

32939 
55925 
61752 
77811 

1034407 

„ 

0 
0 

5620 
10442 
34899 
21038 
8000 

569.8 
45583123 
78981165 
5476769 

225725 
278290 

27319 
45483 
26853 
56773 

1026407 
1982676 

* 

95.1 
188518420 

-
-

_ 
-
-

6169 
26792 
195054 
84395 

0 
312410 

0 
-

30529233 
-

_ 

288442 
-
-

-
-
-
-
-

i^HHHHHl 
-
-
-
-
-
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APPENDIX B2: Stream Sheet (Mass Balance) - Continued 
STREAM NO 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components 

12 
TS Output 

Rail (Pikitup) 

29070 

15 
Landfilled DO Material 

Pikitup 

16 
GW Composting 

Pikitup 

258705 

17 
GW Sewage Composting 

Sewerage Waste Pep. 

29737 

18 
Recovered Landfill Recyclables 

Informal Recyclists 

12321 

ECONOMIC ANALYSIS 
Variable Cost (R/t) 
Costs (R) 
Income-based Benefit (R) 
Airspace Cost Benefit (R) 
Capital Cost (R) 

Total Profit/Loss (Mill. R) 

? 

189.9 
5519629 

0.0 
0 

* 

519.7 
134443613 

519.7 
15453591 

-

* 

_ 
_ 

1171536 

— — • • 

I l l 



APPENDIX B2: Stream Sheet (Mass 
STREAM NO: 
STREAM NAME: 
COLLECTOR: 
FLOWS: 
Total (t/yr): 
Components: 

24 
GW Compost 

Pikitup 

258705 

Balance) - Continued 
26 

Dailies Compost 
Pikitup 

185610 

OUTPUT 
Waste Landfilled 

Pikitup 

2021825 

Agricultural waste 
Green Waste 
Household Organics 
CoijtposlMProdiujct 

_ 

258705 
181624 

_ 

228906 
282212 

Metal 
Glass 
Paper & Cardboard 
Plastic 
Other 

0 
-
-
-

-

3985 26654 
48046 
27145 
59881 

1048985 

ECONOMIC ANALYSIS 
Variable Cost (R/t) 
Costs (R) 

Income-based Benefit (R) 
Airspace Cost Benefit (R) 
Capital Costs (R) 

* 

262.5 
67920077 

70616871 
257713826 
17031409 

3214.3 
596603519 

56828657 
18138053 
23166025 

95.08 
192240807.5 

151818086.0 
-

-544.8 
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Table B2: Optimum Stream Mass Fractions 
Stream 

Waste Landfilled (excl. DO) 
Recovered Landfill Waste 
MRF Recovery 
Waste Recycled (2 Bag) 
Separate Organics Collection 
Waste Recycled (Centres) 
Drop-off Waste Recovered 
Drop-off Waste Disposed 

Mass Frac. 
0.69 

4.E-03 
0.00 
0.03 
0.06 
0.11 
0.10 
0.00 

TOTAL 1.00 

Objective Function: 2103.1 



APPENDIX C 
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APPENDIX CI 

Background Notes: 

i. Component mass fractions for the system input streams (XI;J): These values for the Cape Town 

model are reported in Table Al.l of Appendix Al, where: 

I = the particular stream including R2B (2 Bag Recyclables); Hshd (Household Waste); C&I 

(Commercial/Industrial Waste); DO (Drop-off Waste); RC (Private Recycling); RLW 

(Recovered Landfill Waste); CW (Composted Waste). 

J = the stream component including br (Builders' Rubble); gw (Green Waste); ho (Household 

Organics); m (Metal); g (Glass); pc (Paper & Cardboard); p (Plastic); o (Other), 

ii. Variable stream mass fractions optimised by model (Yi): These values are changed by the 

developed model in order to optimise the MSWMS from an economic perspective, where: 

I = the particular stream including WL (Waste Landfilled); RLW (Recovered Landfill Waste); 

MRF (Material Recovery Facility); R2B (2 Bag Recyclables); SOC (Separate Organics 

Collection); RC (Private Recycling); MWC (Mixed Waste Composting); DO (Drop-off), 

iii. Waste source mass fractions (Zi): These values for the Cape Town model are reported in Table 

A1.4 of Appendix Al, where: I = Hshd (Household Waste); C&I (Commercial/Industrial 

Waste); BR (Builders' Rubble); GW (Green Waste), 

iv. Mass fractions of different Green Waste sources (Ui): Values reported in Table A1.2 of 

Appendix Al, where: I = DO (Drop-off); SB (Serviced Bin top-up); LA (Local Authority), 

v. Mass fractions of Drop-off Green Waste that recovered/not recovered (Vi): Values reported in 

Table A1.3 of Appendix Al, where: I = R (recovered GW); NR (GW not recovered), 

vi. Total amount of generated Municipal waste for year t (M(t)totai): These values where taken from 

the waste forecasts predicted in Coetzee and Botes (2005). 

vii. Split fraction separating the Combined Collected Waste stream into waste sent directly to 

Landfill Sites and into waste that is sent to Transfer Stations (Fi): These values where again 

taken from the transfer station waste forecasts predicted in Coetzee and Botes (2005). 

viii. Second split fraction splits transfer station waste into waste that is first processed in an MRF 

from waste which is not sent through the MRF (F2): Values determined by the model, 

ix. Annual inflation rate (/): This value was set at 5%. 

x. Annual revenue increase rate (r): This value was set at 7%. 

xi. Model year (tm): The value ranges between 2005 and 2030 in increments of 5 years, 

xii. Baseline year (tb): The baseline year for the Cape Town model is 2003. 

The equations for the various modelled streams are displayed on the following pages: 
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STREAM 2A: 2 Bag System 

Total Flow Rate: Y R 2 B X M(t) total 

Components Flows: 

Metals: 

Glass: 

Paper & Cardboard: 

Plastics: 

Other: 

Economic Analysis: 

Variable Cost: 

Costs: 

Capital Costs: 

XR2B;ITI X Y R 2 B X M(t ) t o t a l 

XR2B;g X Y R 2 B X M(t) t o t a i 

XR2B;PC X YR2B X M(t) total 

XR2B;P X Y R 2 B X M(t) t o t a i 

XR2B;O X Y R 2 B X M(t) total 

'V;R2B 
X (1 + 0 ('„-'»-!) 

C V ; R 2 B X ( 1 + 0 
(<„-<*-D 

R xP 
xY M B xM(t ) total 

C n xSxG ( ' " - ' 4 ) 

+ C C R 2 B x Y R 2 B X M ( t ) total X(l + /) :\('« -»»-« 

Total Profit / Loss : - YmB x M(t)total x (1 + /) ('«-'*-!). CBxSxG ( ' " _ ' k ) _ 
T ^ ^C;R2B T 

C V;R2B 

V 
R xP 
^ C M R F A rR2B / 

Notes: 

CV;R2B
 = Variable operational cost of collecting tonne of recyclables through the 2 Bag System. 

= R72.9/tonne of waste collected (DSMEnvironmental; 2004) 

RCMRF
 = Recyclables recovery fraction for clean MRFs. 

= 0.8 (httpJ/europa. eu. int: accessed 23/03/2006) 

PR2B
 = Purity of 2 Bag recyclables stream (what fraction of material is recyclable). 

= 0.9 (Mega-Tech Inc, 2004-1) 

CB = Sales price of 1001 round bins. 

= RIO/bin (DSMEnvironmental; 2004) 

S = Municipal waste collection service points (represents number of recyclables bins). 

= 600,000 (Mega-Tech Inc, 2004-1) 

G = Service point growth index (assumed to be same as population growth index). 

= 1.0157 (Mega-Tech Inc, 2004-1) 

115 



CC: C;R2B 

= Lifespan of round bin. 

= 5 years (DSMEnvironmental; 2004) 

= Variable capital cost of running a separate recyclables collection system. 

= R51.7/tonne of waste collected (DSM Environmental; 2004) 

STREAM 2B: Organics Collection 

Total Flow Rate: YSOc X M(t)totai 

Components Flows: 

Green Waste: XSoc;gw x YSOc x M(t)totai 

Household Organics: XSOc;ho x Ysoc x M(t)totai 

Economic Analysis: 

.... Xsoc;gw assumed to equal 0.1 

.... XSoc;ho assumed to equal 0.9 

Variable Cost: 

Costs: 

Capital Costs: 

Total Profit / Loss : 

-V;SOC 

'V;SOC 

x(l + 0 

x(l + z) 

('»-'*) 

(<„-<*) 
xYS 0 CxM(t) total 

SOC 

l x Y S 0 C x M ( t ) M l | x ( l + /)"--"» 
T 

V;SOC 
+ • 

'REL 

V 1 S O C Tx(tm-tb-2) 
xY s o c xM(t) t o t a l x( l + /) ('„-'») 

Notes: 

Cv;soc = Variable operational cost of Separate Organics Collection stream. 

= R400.4/tonne of waste collected (DSMEnvironmental; 2004) 

Psoc = Purity of Separate Organics Collection stream (fraction of material that is organic). 

= 0.9 (Mega-Tech Inc, 2004-1) - assumed to be the same as for the 2 Bag System 

CREL
 = Sales price of Rear-end Loader (REL) refuse collection vehicle. 

= R643,250/REL (http://www.dispatch.co.za/1997/1 l/18/pase%203.htm; accessed on 

31/03/2006) 

T = Annual REL vehicle tonnage capacity. 

= 2772 tonne/truck/year 
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STREAM 4A: Household Waste 

Total Flow Rate: (ZHshd- YMwc - XSOc;ho x YSOc) x M(t)totai 

Components Flows: 

Household Organics: (XHshd;ho X ZHshd- XMwc;ho x YMWC - XSOc;ho x YSOc) x M(t)totai 

Metals: 

Glass: 

Paper & Cardboard: 

Plastics: 

Other: 

(XHshd;m X Z H s hd — XM\VC;m X Y M W c ) X M ( t ) t o t a l 

XHshd;g X Znshd X M(t) total 

XHshd;pc X Znshd X M(t)total 

XHshd;p X ZHshd X M(t) to ta l 

;o * -^Hshd X M(t) total 

STREAM 4B: Commercial/Industrial Waste 

Total Flow Rate: Zc&1 x M(t)total 

Components Flows: 

Household Organics: Xc&i;ho X Zc&i x M(t)totai 

Metals: Xc&i;ra x Zc&i x M(t)totai 

Glass: Xc&i;g x Zc&i x M(t)total 

Paper & Cardboard: Xc&i;Pc x Zc&i x M(t)totai 

Plastics: Xc&i;P x Zc&i x M(t)totai 

Other: Xc&i;0 X Zc&i x M(t)total 

STREAM 4: Combined Collected Waste 

Total Flow Rate: Sum of component flows 

Components Flows: 

Builders' Rubble: (ZBR - XD0;br X YD0) x M(t)total 

Green Waste: (ZGW - XD0;gw x YD0 - XSOc;gw x Y s o c ) x M(t)tota, 

Household Organics: (XHshd;ho X ZHshd + Xc&i;ho x Zc&i - XMWc;ho x YMWc - XSOC;ho x Y s o c) x 

M(t)totai 

Metals: 

Glass: 

Paper & Cardboard: 

Plastics: 

Other: 

(X Hshd;i X Zushd + X( C&I;m • X Zr&i — X R2B;i X Y R2B ' X RC;m X Y R r -

XMWC;m X YMWc) X M(t) total 

(XHshd;g X ZHshd + Xc&I;g X ZQ&\ ~ XR2B;g X YR2B _ XRc ; g X YRc)X M(t)totai 

(Xnshdipc X ZHshd + XC&I;pC X ZC&I - XR2B;PC X YR2B - XRC;pc X YRC)XM(t)totai 

(XHshd;p X ZHshd + Xc&I;p X ZC&i - XR2B;P X YR2B — XRc ; p X YRC)X M(t)total 

(XHshd;o X ZHshlI + XC&I;0 X ZC&l) X M(t)totai 
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Economic Analysis: 

Variable Cost: CV;C x (1 + f)1'--'^ 

Costs : (ZHshd + UD 0 x VNR + USB + XD0;br x YDO)x M(t)tota, x CV;C x (1 + 0 ( ' " ^ 

Income: (IR +IV ; T xSxG ( ' -" ' ' ))x(H-r) ( ,-~'» ) 

Total Profit / Loss : (IR + IV;T x Sx G('""'ft))x (1 + rf™-'h) 

-(ZHshd + U D 0 x VNR +US B +XD0;br x YDO)xM(t) total xCV;C x(l + 0( '""4) 

Notes: (S, G are defined under Stream 2A) 

Cv;c
 = Variable solid waste collection cost 

= R313.6/tonne 

IR = Solid Waste rate income (based on city inhabitants property value) for 2003/2004. 

= R128,000,000 (Mega-Tech Inc, 2004-1) 

IV;T = Average tariff charged by Municipality for collection of solid waste. 

= R413.3 (Mega-Tech Inc, 2004-1; JarrodBall & Associates, 2003) 

STREAM 5: Feed to TS/MRF 

Total Flow Rate: Fi X Total Flow Rate of Stream 4 

Components Flows: 

Builders' Rubble: Fi x [(ZBR - XD0;br x YD 0) x M(t)totai] 

Green Waste: F, x [ ( Z G W - XD0;gW X Y D 0 - XSOc;gw X Y s o c ) X M(t)tota,] 

Household Organics: ¥i x [(XHshd;ho X ZHshd + Xc&i;ho X Zc&i - XMwc;ho X YMWc - XSOc;ho x Y s o c ) X 

M(t)total] 

Metals: F] X [(Xnshdim X ZHshd + Xc&l;m X Zc&i — XR2B;m X YR2B — XRC;m X YRC -

XMWC;m X YMWC) X M(t)total] 

Glass: F, x [(XHshd;g X ZHshd + XC&I;g X ZC&I - XR2B;g X YR2B ~ XRC;g X YRC) X 

M(t)tota,] 

Paper & Cardboard: F, x [(XHshd;pc x ZHshd + Xc&i;pC x Zc&1 - XR2B;PC X YR2B - XRC;pc x YRC) x 

M(t)total] 

Plastics: Fj x [(XHshd;p x ZHshd + XC&I;p X ZC&I - XR2B;P X YR2B — XRC;p X YRC)X 

M(t)total] 

Other: F, x [(XHshd;0 x ZHshd + Xc&i;0 x Zc&1) x M(t)total 
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STREAM 5A: MRF Recovery 

F, x FRT„,0, of Stream 4 _ 
MRF " r * R2BJ ** l v x W t o t a l Total Flow Rate : ' ^ Total x (YMRF + Y ^ ) x M(t) 

RDMRF x ^S t ream 5 Recyclables 

Components Flows: 

Builders Rubble: YMRF xM(t) total xfi xM(t)total _ x y 

RDMRF x 2^ Stream 5 Recyclables 

YMRF x M(t) t o a xF,xM(t ) r t 

RDMRF x V Stream 5 Recyclables 
Green Waste: ^ ^ Z ^ ^ ™ * (^ow "XD0;gw x YD0 -XS0C;gw x Y s o c) 

Household Organics: YMRF x M(t),ota, x F x M(t) x x + x 

RDMRF x ^S t ream 5 Recyclables 

^ C & I - ^MWC;ho X * MWC " ^-SOC;ho X *SOc) 

M e t a l s : MR>
 ^ W I O M 1 ^om_x(x xZHshd + Xc & I m xZ c 

R v V S t r p n m S R p r v p l n h l p c Hshd.m Hshd C&I,m C 
DMRF / U C d r u J JXCCyt/ldDlCS 

^ R 2 B ; m X * R2B " ^ R C ; m X *RC " ^MWC;m X Y M W c ) + -^R2B;m X Y R2B X M ( t ) t o t a l 

Paper & Cardboard : YMRF xM(t) tota, xF, xM(t)tota, ^ x ^ 
R v > S t r e a m ^ R p r v r l n h l f ^ : Hshd.pc Hshd c&I,pc 

^ C & l " ^ R 2 B ; p c X ^R2B " ^ R C ; p c X * RCV + "^R2B;pc X Y R 2 B X M ( t ) t o t a l 

RDMRF x ^ Stream 5 Recyclables s p 'p 

• ^ C & I " X R 2 B ; P X *R2B " ^ R C ; p X ^ R c ) + "^R2B;p X *R2B X M ( t ) t o t a l 

Other : YMRF
 xM(t) to ta l xF, xM(t)total 

RDMRFx ^S t r eam 5 Recyclables Hshd,° Hshd c&1'° c&1 

The other stream equations follow the same format as those presented above. The constraints 

programmed into the Cape Town model are reported in below: 
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CONSTRAINTS (Cape Town): 

i- (YSOC+YMWC) X M(t)totai > 29,328 composting capacity of current Compost Plants. 

ii. F 2<1 

in. Y u > 0 

iv. Z Y , j = l 

v. YRLW = 1469 + M(t)totai mass fraction is kept constant at the 2002/2003 value. 

vi. YRC = 0.0918 mass fraction kept constant at the original 2002/2003 value. 

vii. YD0 = [(UDO+TJLA) X ZGW] + XDo;gw 

Viii. Y R 2 B + Y R C — (XHshd;m+XHshd;g+XHshd;pc+XHshd;p)XZHshd+(Xc&I;m+Xc&I;g+Xc&I;pc+Xc&I;p)XZc&i 

ix. The constraint that limits the organics composition of the dirty MRF feed is as follows: 

*MRF
 x M(t)total x (XHshd;ho x ZHshd + Xc&1;ho x Zc&1 - XMWC;ho x YMWC - XSOC;ho x Ysoc) ) 

F R T o t a l 0 f S t r e a m 4 X ( YMRF + Y R 2 B ) 

Various streams that tended to give values below zero were also given the constraint of being 

greater than zero. 
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APPENDIX C2 

Background Notes: 

Component mass fractions for the system input streams (Xi;J): These values for the Johannesburg 

model are reported in Table A2.1 of Appendix A2, where: 

I = the particular stream including CO (Co-Collection); Hshd (Household Waste); C&I 

(Commercial/Industrial Waste); DO (Drop-off Waste); RC (Private Recycling); RLW (Recovered 

Landfill Waste); AC (Area Collection); CW (Composted Waste). 

J = the stream component including br (Builders' Rubble); gw (Green Waste); ho (Household 

Organics); m (Metal); g (Glass); pc (Paper & Cardboard); p (Plastic); o (Other). 

Variable stream mass fractions optimised by model (Yi): These values are changed by the 

developed model in order to optimise the MSWMS from an economic perspective, where: 

I = particular stream including WL (Waste Landfilled); RLW (Recovered Landfill Waste); MRF 

(Material Recovery Facility); CO (Co-Collection); SOC (Separate Organics Collection-Dailies); 

RC (Private Recycling); DOR (Recovered Drop-off waste); DOD (Disposed Drop-off waste). 

Waste source mass fractions (Zi): These values for the Johannesburg model are reported in Table 

A2.4 of Appendix A2, where: I = Hshd (Household Waste); C&I (Commercial/Industrial Waste); 

BR (Builders' Rubble); GW (Green Waste). 

Mass fractions of different Green Waste sources (Ui): Values reported in Table A2.2 of 

Appendix A2, where: I = DO (Drop-off); SB (Serviced Bin top-up); SC (Street Cleaning). 

Mass fractions of Drop-off Green Waste that recovered/not recovered (Vi): Values reported in 

Table A2.3 of Appendix A2, where: I = R (recovered GW); NR (GW not recovered). 

Total amount of generated Municipal waste for year t (M(t)totai): These values where taken from 

the waste forecasts predicted in JarrodBall & Associates (2003). 

Split fraction separating the Combined Collected Waste stream into waste sent directly to Landfill 

Sites and into waste that is sent to Transfer Stations (F^: Value kept constant. 

Second split fraction splits landfill waste into waste that is first processed in an MRF from waste 

which is not sent through the MRF (F2): Values determined by the model. 

Annual inflation rate (/): This value was set at 5%. 

Annual revenue increase rate (r): This value was set at 6%. 

Model year (tm): The value ranges between 2005 and 2030 in increments of 5 years. 

Baseline year (tb): The baseline year for the Johannesburg model is 2003. 

The stream equations for the Johannesburg model follow the same format as those for Cape Town. 
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CONSTRAINTS (Johannesburg): 

i. F2 < 1 

ii. Y u > 0 

iii. I Y,j - 1 

iv. YRLW = 12350 + M(t)tot«i mass fraction is kept constant at the 2001/2002 value. 

v. YRC = 0.1085 mass fraction kept constant at the original 2001/2002 value. 

vi. YD0 = [(UDo+Usw) X ZGW] + X D 0 ; g W 

Vii. Y R 2 B + Y R C < (XHshd;m+XHshd;g+XHshd;pc"t"XHshd;p)XZHshd+(Xc&I;m+Xc&I;g+Xc&I;pc+Xc&I;p)XZc&i 

viii.The constraint that limits the organics composition of the dirty MRF feed is as follows: 

*MRF X MWtotal X v-^Hshd;ho X ^Hshd + X c & [ ; h o X ̂ c&\ ~ X M W C ; h o X Y M W c ~ X S O C ; h o X Y s o c ) ) 

FRTo,ai of Stream 4 x (YMRF + YmB) 

Various streams that tended to give values below zero were also given the constraint of being 

greater than zero. 
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APPENDIX D 
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APPENDIX Dl (CAPE TOWN) 

i. Procedure used for the conversion of cost equations in foreign currencies from a certain time to 

South African Rand terms for the current year. 

Operational cost equation of dirty MRF for 2003 ($) = 1519.9 x Daily Plant Capacity + 864,572 

(Chang etal, 2005). 

The following equation is used to convert this cost equation to current South African terms: 

C R S A ( 2 0 0 5 ) = E X CUSA X (LRSA + 1 ) X (I2005 +12003) 

where CRSA=cost equation in South African terms; E=Rand/Dollar exchange rate; CUSA=original 

cost equation; LRSA=cost location factor for South Africa relative to USA; I2oo3J2oos=Chemical 

engineering Plant Cost Indexes for the years 2003 and 2005 respectively. 

The Rand/Dollar exchange rate was taken to be R6.05 per Dollar. The location factor for South 

Africa relative to USA is 1.1 (http://www.icoste.org/intldata.htm; accessed 20/02/2006). The 

CEPCI values were extracted from http://ca.geocities.eom/fhcurrv@rogers.com/CEIRev3.xls 

(accessed 20/02/2006). The reported CEPCI value for 2003 is 402.0, while the CEPCI value for 

2005 is 467.6. Hence the equation is converted as follows: 

CRSA(R; 2005) = 6.05 x [1519.9 x Daily Plant Capacity + 864,572] X (1.1) X (467.6 + 402.0) 

= 11765.5 9 x Daily Plant Capacity + 6,692,643 

The same procedure was used to determine the capital and operating cost of the composting 

facilities. 

ii. Calculation of Average Annual Refuse Truck Collection Capacity: 

It is reported on page 6.9 of the City of Cape Town's Solid Waste Management Status Quo 

Report (Mega-Tech Inc, 2004-1) that the amount of waste collected by the City Council 

compactor refuse trucks for the year 2003/2004 was 557,180 tonnes. The number of refuse 

compactor trucks stated to be owned by the City council totals 201 trucks (Mega-Tech Inc, 

124 

http://www.icoste.org/intldata.htm
http://ca.geocities.eom/fhcurrv@rogers.com/CEIRev3.xls


2004-1) and hence by dividing the annual collected waste by the number of trucks allocated to the 

collection of waste the resultant value of 2772 tonnes/truck/year is determined. 

iii. Curve fit of data used to determine Transfer Station capital cost: 
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Figure Dl.l : Curve fits of Transfer Station capital cost data. 

The above graph depicts the curve fit of data presented in Coetzee and Botes (2005) for the capital 

costs required for the development of Transfer Stations of different input capacities. 
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APPENDIX D2 (JOHANNESBURG) 

i. System operational cost calculations: 

Table D2.1: Operational Cost of Various Solid Waste Services. 

Service 

RCW1 

Dailies 
Bulk Services 1 

Garden Waste 
Informal Settlements 
Illegal Dumping 2 

Street Cleaning 2 

Depot Management1 

Landfilling 3 

Landfilling Overheads3 

Non-Disposal Overheads 

Tonnage 
2001/2002 
451,248 
15,094 
194,700 
172,369 
11,218 
247,795 
95,911 
1,188,334 
1,516,787 
-
-

Costs 
2001/2002 (R/yr) 
105,634,000 
-
25,542,000 

-
51,050,000 
14,981,400 
4,920,300 
-

Tonnage 
2004/2005 
479,714 
16,046 
206,982 
183,242 
11,926 
263,426 
101,961 
1,263,296 
1,612,469 
-
-

Costs 
2004/2005 (R/yr) 
122,284,559 
5,703,397 
29,568,058 
22,813,588 
28,516,985 
41,581,573 
121,877,026 
45,459,043 
20,305,689 
9,631,787 
-

Overhead 
Costs 
40,161,581 
1,873,151 
9,710,956 
7,492,604 
9,365,755 
13,656,522 
40,027,736 
14,929,989 

137,218,294 

Table D2.1 depicts the operational costs of the various services provided by Pikitup. All values 

highlighted in bold represent those values that were reported in the references given or else are a 

derivative of these values. Only three of the service operational costs were directly reported in the 

City of Johannesburg's Solid Waste Management Status Quo Report (Jarrod Ball & Associates, 

2003), namely for RCW (Round Collected Waste), Bulk Services and Depot Management. These 

values were reported as excluding Overhead Costs. 

The operational costs of operating the Illegal Dumping Collection and Street Cleaning services 

are reported in Pikitup's website as cited in the footnotes, and were reported for the year 

2005/2006 as being R58 million and R170 million respectively. In order to convert these values to 

the baseline year of 2004/2005 these values were divided by an inflation factor of 1.05. It is 

important to note that the operational cost is made up of a variable cost (Reported as "Costs" 

column) and a fixed cost (represented by the "Overhead Costs" column). These and other 

inclusive operational costs were split into these two segments through the use of the determined 

overhead cost fraction for the Landfill operations, namely 0.2472. The calculation of this value is 

described below. 

1 Jarrod Ball & Associates, 2003 
2http://www.pikitup.co.za/default.asp?id=624: accessed 21/03/2006 
3 http://www.gautengleg.gov.za; accessed 20/03/2006 
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The landfill operational costs were extracted from http://www.gautengleg.gov.za (accessed 

20/03/2006). The costs were reported for individual expenses and hence these expenses were 

analysed to determine whether they represented variable or overhead costs and these two segment 

expenses were tallied up to give the total variable and overhead operational costs which are 

depicted in Table D2.1 above. 

The operational costs of the Dailies, Garden Waste and Informal Settlement services were 

determined through the use of service cost fraction estimates reported in Jarrod Ball & Associates 

(2003). These service cost estimates represented the portion of the total Solid Waste Services 

expenses that was allocated to the different services, and the values reported for Dailies, Garden 

Waste and Informal Settlement services are 0.02, 0.08 and 0.10 respectively. Hence if the total 

Solid Waste Services expenses are known then that portion of these expenses that has not been 

spent on the other services already given operational costs represents the collective operational 

cost for the Dailies, Garden Waste and Informal Settlement services. The total Solid Waste 

Services expenses value was extracted from http://www.iohannesburgnews.co.za (accessed 

10/03/2006) and totals R584,960,000 for the year 2004/2005. The cost fraction estimates were 

then used to determine what portion of the remaining operational cost is allocated to each of the 

three services described above. 

ii. Calculating the Collection Services operational cost: 

The addition of the RCW (Round Collected Waste), Bulk Services and Informal Settlement 

Collection services as well as the portion of the Depot Management costs that involve waste 

collection yields the overall collection services cost. The depots serve both a waste collection and 

area cleaning function and hence to determine the portion of this cost that represents the former 

activity the fraction of waste collected by the waste collection services in relation to the total 

waste handled by these two streams was used as the factor to split the Depot Management cost 

into these two sections. The resultant factor is 0.53. Hence the collection cost was calculated as 

follows: 

Collection cost = RCW Cost + Bulk Services Cost + Informal Settlement Cost + 0.53 x Depot 

Management Cost 

= R271.29 million (including overhead costs) 
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iii. Calculation of Garden Waste Composting operational cost: 

The following table represents an operational cost determination for operating a Garden Refuse 

composting facility. The capital cost of developing a GW Composting Plant of the size analysed 

was found to be R3,950,000 (www.ioburg-archive.co.za/2004/budget/ch7.pdf; accessed 

01/04/2006). This is the total investment that is referred to in the table below. 

Table D2.2: Garden Waste Composting Plant Cost Calculations for 2004/2005. 

Cost 

Fixed Costs 
Salaries 
Maintenance, civil works 
Maintenance, equipment 
Electricity basic 
Misc. 
Total Fixed Costs 
Variable Costs 
Power 
Water and Wastewater 
Fuel 
Disposal of Residuals 
Miscellaneous 
Total Variable Costs 

No's 

3 
2 
10 
12 
10 

40000 
1500 

75000 
800 
10 

Unit 

person 
% of investment 
% of investment 

months 
% 

kWh 
cum 
litre 
ton 
% 

Unit Price 
(R/unit) 

854164 

1610415 
1738395 

91.5 5 

206048 

0.4174 5 

109.8 6 

5.475 7 

54.66 8 

635750 

Total 
(tonnes) 

256248 
32208 
173840 
8372 

20605 
491273 

16696 
164700 
410625 
43729 
63575 
699325 

Cost/tonne 
(R/tonne) 

-
-
-
-
-
. 

1.67 
16.47 
41.06 
4.37 
6.36 
69.93 

The template used to determine the operational costs of a typical Garden Waste Composting 

Facility, which are depicted in Table D2.2 above, was extracted from 

http://europa.eu.int/comm/environment/waste/studies/pdf/euwastemanagement_annexes.pdf 

(accessed 23/03/2006). 

4 http://www.statssa.gov.za/publications/P02772/P02772August2005.pdf: accessed 15/03/2006. 
5 http://www.ioburg.org.za/services/electricity tariffs.stm: accessed 15/03/2006. 
6 http://www.ioburg.org.za/services/water tariffs.stm: accessed 15/03/2006. 
7 http://www.shell.co.za/vpower/pprice.htm: accessed 15/03/2006. 
O 

http://europa.eu.int/comm/environment/waste/studies/pdf/euwastemanagement annexes.pdf: 
accessed 23/03/2006. 
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