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ABSTRACT 

 

The need to develop a renewable, environmentally friendly source of energy has become a 

primary focus in modern science, with biogas showing considerable potential.  Interest in the 

methanogenic Archaea has therefore grown in recent years and extensive studies have been 

carried out to investigate the population diversity in various habitats.  Presently, there are only a 

few studies that have evaluated the microbial communities inhabiting the gastrointestinal tract 

of wildlife native to southern Africa.  This study aimed to investigate the microbial diversity, in 

particular the bacterial and methanogen communities involved in fermentative digestion in the 

gastrointestinal tract of zebra.   

Assessment of the microbial diversity in zebra faeces included both culture-based techniques 

and nucleic acid targeting analysis via 16S rRNA gene sequencing.  Quantitative analysis using 

selected solid media revealed high counts for aerobic and anaerobic Bacteria (7.51x10
8
 and 

2.45x10
9
/gram of faecal sample respectively).  The majority of aerobic colonies that were 

detected exhibited Bacillus-like morphology. 

Nucleic acid based analysis of the diversity of both Bacteria and methanogenic Archaea in 

zebra faecal material was performed.  Both manual and kit based extractions were used for 

DNA isolation in order to compare the efficiency of the two methods.  Results show that a 

vigorous mechanical treatment was best for the release of DNA from the faecal matter.  

Amplification of target gene regions was carried out using established primer pairs 

(ARCH69F/ARCH915R and EUB338F/EUB907R) for methanogen and bacterial DNA 

respectively.  Amplified 16S rRNA gene regions were cloned into a high copy number vector 

and random clones were selected for evaluation.  Clones containing the target gene were further 

analysed by ARDRA and were assigned to a specific phylotype.  Two bacterial (105 clones in 

total) and three methanogen (178 clones in total) clone libraries were constructed, of which 24 

phylotypes were established for Bacteria and 25 for methanogenic Archaea.  A representative of 

each phylotype was analysed by sequencing and further phylogenetic analysis was conducted. 

Six bacterial phylotypes, which represented 56% of all bacterial clones, exhibited 99% sequence 

similarity to Bacillus species.  Six methanogen phylotypes, which exhibited 99% sequence 

similarity to the hydrogenotrophic species Methanobrevibacter gottschalkii strain PG, were 

established to be predominant in zebra faeces.  These phylotypes represented 71% of all 

archaeal clones selected for analysis in this study.   
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CHAPTER 1 

Introduction 

 

Substitution of fossil fuels, such as coal and oil, has gained much attention in recent years.  This 

divergence from traditionally used fuels is owed not only to ever depleting resources, but also to 

the increased awareness of global warming from greenhouse gases resulting directly from the 

combustion of these fossil fuels.  Alternative energy sources, with emphasis on renewable and 

environmentally friendly, have therefore become a focus of modern scientific research 

(Chynoweth et al., 2001; Demirel & Scherer, 2008; Weiland, 2010; Biswas et al., 2011; 

Liebetrau et al., 2011; Demirel, 2013). 

The production of biogas, the main constituent of which is methane gas, from biomass 

substrates via anaerobic digestion has considerable potential.  Substrates that can be utilised 

include a variety of biodegradable organic materials, such as paper waste (Yen & Brune, 2007), 

fruit and vegetable waste (Mandal & Mandal, 1997), kitchen waste (Lee et al., 2009), 

supermarket wastes (Alkanok et al., 2013), agricultural waste and plant biomass (Jagadish et al., 

1998), dairy waste (Demirel et al., 2013), animal manure (Vijayaraghavan et al., 2006; Zhu et 

al., 2011; Nasir et al., 2012) and even the organic fraction of municipal solid waste (Owens & 

Chynoweth, 1993; Bareither et al., 2013).  Biogas generation potential differs between the 

various organic substrates.  Although mono-digestion of energy crops has gained more attention 

in recent years (Demirel, 2013), co-digestion of energy crops with supplementation of manure is 

also regarded as having a high biogas generation potential (Mandal & Mandal, 1997; Weiland, 

2010; Westerholm et al., 2012).   

The use of faecal matter as an inoculum or additional co-substrate for biogas production has its 

advantages.  With this type of organic substrate, the microbial community required for 

anaerobic digestion already exists.  Both methanogenic Archaea and hydrolytic fermentative 

Bacteria naturally inhabit the gastrointestinal tract of various animals, including cattle (Wright 

et al., 2007; Lwin et al., 2012), pigs (Zhu et al., 2009), sheep (Wright et al., 2008), buffaloes 

(Lwin et al., 2012) chickens (Saengkerdsub et al., 2007) and humans (Fricke et al., 2006). 

Faecal matter also serves as a supply of essential trace elements such as iron, nickel, cobalt and 

selenium that are required by various members of the anaerobic food chain, including 

methanogens (Angelidaki & Ellegaard, 2003; Demirel & Scherer, 2011).  Both anaerobic 

fermentation and microbial growth rate are dependent on the availability of adequate 

micronutrients (Weiland, 2010; Demirel & Scherer, 2011), which would otherwise have to be 

supplemented in cases such as mono-digestion of energy crops (Weiland, 2010) where the 

availabilty of nutrients is deficient (Demirel, 2013).  The importance of nutrient availabilty was 
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demonstrated by Pobeheim et al. (2011) where the supplementation of nickel to the mono-

digestion of energy crops resulted in a 20% increase in methane production. 

Anaerobic digestion is considered as a favourable option in the treatment of biological wastes 

(Demirel et al., 2010) and shows several advantages over its aerobic counterpart.  These 

advantages include a volume reduction in biomass, thereby minimising biomass disposal costs.  

Most organic wastes accumulate in landfills, which leads to the release of harmful gases into the 

atmosphere.  A volume reduction of biomass through the use of anaerobic biotechnology would 

also help in the reduction of pollutants released into the atmosphere, which may ultimately 

mitigate the effect of hazardous gases on global warming (Chynoweth et al., 2001).  Anaerobic 

digestion has the ability to biodegrade and stabilise organic matter (Chen et al., 2008), thereby 

assisting in reducing the toxicity levels of many organic wastes.  Anaerobic digestion also 

results in the production of beneficial resources, an environmentally friendly fuel source in the 

form of biogas and, if the organic waste is treated under thermophilic conditions (Gong, 2007), 

a potentially pathogen-free digested residue that may be utilised as a compost or fertiliser on 

agricultural crops (Six & De Baere, 1992; Möller & Müller, 2012). 

The harnessing of operational factors such as substrate feedstock, temperature, salinity and pH 

in anaerobic digesters would need to be incorporated to optimise or enhance the methane 

producing capacity of the microbial community (Sekiguchi, 2006).  However, in order to 

optimise methane production, an initial understanding of the microbial community that is 

present in the inoculum or the organic substrate is firstly required, in particular the 

methanogenic Archaea that are involved in the final stage of the anaerobic food chain. 

Extensive research studies have been carried out to investigate the diversity of both the general 

microbial community and the methanogenic population in manures of numerous domesticated 

animals including cows, sheep, goats (Shi et al., 2008) and horses (Miller & Lin, 2002).  

However, only a few studies have focused on the microbial communities inhabiting the 

gastrointestinal tract of wildlife native to southern Africa (Nelson et al., 2003; Ley et al., 2008). 

Studies which investigated the equine gastrointestinal tract (Mackie & Wilkins, 1988; Daly et 

al., 2001; Yamona et al., 2008) established the presence of an extremely diverse microbial 

community, suggesting high fermentative potential and therefore substantial biogas generation 

potential (Jensen, 1996; Mandal & Mandal, 1997). 

Owing to their similarities to horses, zebras are of particular interest as it may be presumed that 

the microbial communities that inhabit the gastrointestinal tract of zebras may have comparable 

fermentative potential.  While Ellis & Schmidt (2011) recently reported the biogas production 

potential of faeces from South African indigenous ungulates such as zebra and wildebeest, other 
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authors showed that the total gas produced from maize stover via fermentation was comparable 

when using either horse or zebra faeces as inoculum (Fon & Nsahlai, 2012). 

 

This study aimed to investigate the microbial diversity in zebra faecal matter.  It focused 

particularly on the methanogenic community present in these materials that is potentially 

involved in methane production by employing a culture-independent approach. The specific 

objectives were to: 

 Quantitatively assess the general non-archaeal microbial community via cultural 

techniques by use of selected solid media.   

 Extraction of genomic DNA using both kit and manual based methods in order to 

compare these two methods. 

 Amplification of both methanogen and bacterial partial 16S rRNA genes by use of 

specific primer pairs. 

 Establishment of methanogen and bacterial clone libraries followed by restriction 

digestion and diversity analysis.  
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Background Information 

1.1 Methane 

Methane is the major constituent of biogas, which is a product of methanogenesis.  Chynoweth 

(1992) reported that the primary source of atmospheric methane is of biological origin, namely 

methanogen bioactivity (Kubota et al., 2008).  Other sources, as indicated in Figure 1.1, include 

methane gas emissions derived from coal mine resources and incomplete combustion of 

biomass.  As a result, the concentration of atmospheric methane has steadily increased and it is 

now considered as a significant greenhouse gas (Chynoweth, 1992).  In fact, the effect of 

methane as a greenhouse gas is greater than that of CO2, with the global warming potential of 

methane measured at 72 times greater than CO2 over a 20 year period (IPCC, 2007). 

 

 

Figure 1.1: Sources of atmospheric methane gas (Values adapted from Chynoweth, 1992) 

 

The odourless, colourless hydrocarbon is found in the gaseous state at ambient temperatures 

(Table 1.1).  It is readily combustible in an environment where the oxygen to methane ratio 

exceeds that of 2 (Chynoweth, 1996), and is therefore regarded as a potentially high energy 

content fuel (Chynoweth, 1992) with a calorific value of 783 kJ/mol.  It is important to note that 

because methane is the simplest hydrocarbon, it has little adverse effects when combusted, as it 

burns without the release of hazardous gases such as oxides of sulphur and nitrogen 

(Chynoweth, 1992). 

 

Table 1.1 Basic properties of methane 

Enteric 
fermentation 

28% 

Manure 
4% 

Rice 
11% 

Natural Gas  
15% 

Coal 
8% 

Oil  
1% 

Solid Waste 
13% 

Waste Water 
10% 

Fuel and Mobile 
1% 

Biofuel Combustion 
4% 

Biomass Burning 
5% 
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Property Value 

Molecular Formula CH4 

Molar Mass 16.04 g mol
−1

 

Appearance Colourless Gas 

Odour Odourless 

Density 0.6556 g L
-1

 

Melting Point -183˚C 

Boiling Point - 164˚C to - 160˚C 

Solubility in water 22.7 mg L
-1

 

Molecular Shape Tetrahedron 

(Matheson et al., 2013) 

 

According to Chynoweth et al. (2001), a conventional reactor (mixed, fed once or more times a 

day, run under mesophilic conditions, with a hydraulic retention time of 20-30 days) can 

achieve a methane yield of 0.24 m
3
 per kg volatile solids (organic matter as ash-free dry 

weight).  Because of its high energy content, methane has been widely used as a fuel in many 

countries.  Common applications include the use of methane for generation of electricity, 

heating and cooking.  Methane has also been used in the operation of small engines 

(Chynoweth, 1992) and in the manufacture of many organic chemicals. 

Biogas production via anaerobic digestion is advantageous compared to other bioenergies 

(Weiland, 2010) as it is considered as one of the more energy efficient and environmentally 

friendly bioenergies.  The number of biogas systems in the United States is said to have 

increased by 30% between 2005 and 2007 (Abraham et al., 2007).  Biogas usage in European 

Union countries have also increased in recent years with a projected energy production from 

biogas estimated at 209 TWh/year by 2020 (Abraham et al., 2007).  More recently, the BP 

Statistical Review of World Energy (2011) reported the most rapid increase in global 

consumption of natural gas in almost three decades, with the United States being the world’s 

largest producer.  Although the use of fossil fuels accounted for 87% of global energy 

consumption in 2012, it was recorded that the global production and consumption of natural gas 

grew by 3.1% and 2.2% respectively (BP, 2012). 

The use of domestic anaerobic digesters has increased considerably in developing countries with 

an estimated 5 million household digesters being operated in China in 2007 and an estimated 3.8 

million household digesters that were being operated in India by the end of 2005 (Abraham et 

al., 2007).  Biogas technology is also gaining favour in Africa, from plastic digester units on 

Tanzanian farms to larger scale fermenters that are operated in Rwanda (Brown, 2006).  It is 
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estimated that biomass usage for biogas production could provide approximately a third of the 

global energy required in 2050 (Dornburg et al., 2010). 

With the ever growing global need for renewable energy, controlled methanogenesis could 

prove to be the major approach in providing a sustainable and environmentally friendly energy 

source (Chynoweth et al., 2001; Weiland, 2010) and in the process reduce atmospheric methane 

emissions.  The use of renewable biomass (such as energy crops) in an anaerobic digester to 

produce methane potentially represents a closed and balanced carbon cycle, meaning that this 

activity would not contribute to increasing levels of atmospheric carbon dioxide (CO2).  

Although CO2 is emitted during biogas production, an equivalent amount of CO2 would have 

been initially required for the production of the plant biomass thereby creating a closed and CO2 

neutral system (Chynoweth, 1992).  The methanogenic Archaea, the micro-organisms 

responsible for methane production during anaerobic digestion, have therefore received much 

attention in recent years. 

 

1.2 The methanogens 

Methanogenic Archaea are a large and diverse group of micro-organisms which have three 

common features: 

 They produce methane as an end-product of anaerobic respiration / energy metabolism. 

 They are strict anaerobes. 

 They belong to the Archaea which constitute the third domain of life next to that of 

Bacteria and Eukarya (Woese et al., 1990).  

 

1.2.1 Methanogen diversity 

Methanogens are a phylogenetically diverse group of anaerobic Archaea.  Historically, 

methanogen taxonomy was not reflective of this phylogenetic diversity owing to the fact that a 

revision of this taxonomy was created following conventions common to other prokaryote 

groups (Garrity & Holt, 2001). 

The current taxonomy of methanogens is based primarily on 16S rRNA gene sequence 

similarity (Whitman et al., 2006; Liu & Whitman, 2008).  Methanogens grouped into different 

orders have less than 82% 16S rRNA gene sequence similarity.  Methanogens have also been 

categorised into orders according to phenotypic differences such as shape and cell wall 

structure, as represented in Table 1.2.  Methanogen cell surface structures are diverse and are 

different to those of Bacteria (Kubota et al., 2008). Substrate utilisation and other biological 

properties such as metabolic pathways are also indicative of order groupings.   
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According to Bergey’s Manual of Systematic Bacteriology (Brenner et al., 2001), orders may be 

further classified into families where there is less than 88-93% 16S rRNA gene sequence 

similarity.  Families are further divided into genera where gene sequence similarity is less than 

93-96%, and a gene sequence similarity of less than 98% is considered as a separate species 

(Whitman et al., 2001; Liu & Whitman, 2008).  These numerical thresholds for phylogenetic 

classification of Archaea are derived from the comparison of DNA-DNA hybridisation studies 

and the rRNA sequence analysis (Schleifer, 2009).  Generally organisms with less than 98.7% 

16S rRNA gene sequence similarity can be considered as separate species (Schleifer, 2009).  

However, organisms that have more than 98.7% sequence similarity, can still be distinct species 

as Scheifer (2009) argues that with rRNA sequencing it is not always possible to define a 

separate species as the rRNA molecule is highly conserved and sequencing may not recognise 

closely related species as separate species as in the case of Bacillus globisporus W25
T
, Bacillus 

psychrophilus W16A
T
 and Bacillus psychrophilus W5, where more than 99.5% sequence 

similarity is exhibited between different species (Fox et al., 1992). 

At present five well-established orders, Methanobacteriales, Methanococcales, 

Methanomicrobiales, Methanosarcinales and Methanopyrales, are recognised.  These orders are 

further divided into 10 families and 28 genera (Table 1.2) with approximately a hundred species 

that have been isolated (Kubota et al., 2008).  To date only a few cultured strains are known to 

have been completely sequenced (Janssen & Kirs, 2008).  Sizes of genomes of the methanogens 

completely sequenced to date vary from 1.6 Mbp to about 5.8 Mbp, with species from the order 

Methanosarcina showing the greatest genome size (Liu & Whitman, 2008). 
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Table 1.2: Characteristics of recognised taxonomic groups of methanogenic Archaea (Whitman et al., 2001; Liu & Whitman, 2008) 

*
Not formally placed within the family. 

**
Not formally placed within family but includes species originally placed within a genus of a family. 
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1.2.2 Methane production 

Anaerobic digestion is a naturally occurring process which results in the degradation of particulate 

organic matter, or biomass to the principle product, biogas.  Biogas is typically comprised of mainly 

methane (50 – 75%) (Weiland, 2010) and CO2. 

A predominant feature of methanogens is their substrate range which is limited to a few simple, 

usually one or two-carbon compounds.  Such substrates include C1-substrates such as CO2 and the C2-

substrate acetate.  Methanogens do not possess the ability to catabolise longer-chain volatile organic 

acids which contain three or more carbon atoms such as propionate and butyrate (Whitman et al., 

2006).  As a result, most methanogens are very much dependent on other microbes in their 

environment to metabolise polymeric substrates to their simple precursors via anaerobic digestion. 

Exceptions to this dependence on other microbial communities for reduced substrates are a few 

hydrogenotrophic methanogens such as Methanothermobacter thermoautotrophicus and 

Methanococcus thermolithotrophicus which inhabit terrestrial and marine hot springs respectively 

(Zinder, 1993).  Both hydrogen (H2) and CO2 are amongst the gases which flush terrestrial hot 

springs, making it an ideal habitat for thermophilic, hydrogen-utilising methanogens.  Marine hot 

springs also have the ability to support communities of hydrogen-utilising methanogens as the 

hydrothermal fluid contains compounds in the form of H2 and CO2 (Zinder, 1993).   

Production of methane is a complex process and in most environments requires the interaction of 

various groups of anaerobes, namely syntrophic relationships.  One such syntrophic relationship 

involves the interaction between carbohydrate utilising fermentative anaerobes and H2 and formate 

utilising methanogens (Zinder, 1993).  During sugar and amino acid metabolism (acidogenesis), the 

production of acetate by fermentative Bacteria is favoured.  This is due to the presence of an extra 

ATP that is produced from acetyl-CoA (Whitman et al., 2006).  When acetate is produced through 

this pathway, NADH + H
+
 is generated and re-oxidation to NAD

+
 + H2 is thereafter required.  NADH 

+ H
+
 oxidation to NAD

+
 + H2 is only favourable under conditions of very low H2 concentrations (less 

than 1 µM) as an increase in partial pressure of H2 may hinder the metabolism of acetate-utilising 

Bacteria (Weiland, 2010).  Formate concentrations also need to be maintained at low (less than 

100 µM) levels (Whitman et al., 2006).  If methanogens that utilise H2 and formate are present, these 

substances remain at a constant low concentration, thereby allowing these substances to be favourable 

products of NADH and H
+
oxidation.  Hydrogen and formate utilising methanogens are considered as 

the regulators of the fermentation process (Schink, 1997).  An inhibition of hydrogenotrophic 

methanogens would result in a high H2 partial pressure which in turn leads to an inhibition of volatile 

fatty acid and ethanol production via fermentation and thus ultimately the failure of complete 

fermentation (Schink, 1997).  In environments where this type of syntrophic interaction exists, 

fermentative Bacteria are known to produce more acetate (Zinder, 1993; Whitman et al., 2006).  This 

interaction is extremely important and advantageous to fermentative Bacteria as it results in greater 
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energy conservation (Zinder, 1993).  However, since fermentative Bacteria are able to grow and 

survive without the presence of methanogens, this type of syntrophic interaction is referred to as non-

obligate interspecies electron transfer. 

Another type of syntrophic relationship, referred to as obligate interspecies electron transfer, involves 

the interaction between a group of Bacteria known as obligate syntrophs which are able to oxidise 

fatty acids such as propionate and longer-chain volatile organic acids, and H2 and formate utilising 

methanogens.  Accumulation of electrons results from the catabolism of organic substrates by these 

obligate syntrophs.  Excess electrons must be disposed of and this occurs either by reduction of 

protons to H2 or the reduction of CO2 to formate (Whitman et al., 2006).  Low concentrations of both 

H2 and formate are therefore required.  High concentrations of these substances would result in end-

product inhibition and prevent substrate oxidation.  The activities of H2 and formate utilising 

methanogens maintain an environment with low concentrations of these substances, thereby allowing 

continued catabolism of organic substrates by obligate syntrophs (Whitman et al., 2006).  Because 

these obligate syntrophs are limited to a few fermentative reactions and therefore do not possess the 

ability to oxidise other organic substrates, and methanogens are unable to grow on the longer-chain 

organic substrates, these two groups of microbes are dependent of the other’s activities for survival 

(Zinder, 1993).  

The effectiveness and efficiency of anaerobic respiration and hence biogas production is therefore 

highly dependent on the microbial community, namely Bacteria and Archaea, which is present in the 

environment (Sekiguchi, 2006; Demirel & Scherer, 2008).  Despite a variation in the gastrointestinal 

microbial community between animals, certain microbes tend to be present.  These include 

Enterococci, Bacteriodes, Clostridia and Bacilli (Daly et al., 2001; Józefiak et al., 2004; Klocke et al., 

2007; Yokoyama et al., 2007; Ley et al., 2008;), while methanogenic Archaea tend to comprise the 

majority of the archael community in the rumen (Janssen & Kirs, 2008). 

The overall conversion to methane, as depicted in Figure 1.2, can be divided into four key catabolic 

stages: Hydrolysis, Acidogenesis, Acetogenesis and Methanogenesis. 
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Figure 1.2: Anaerobic conversion of particulate organic matter to biogas (Demirel & Scherer, 

2008) 

H.O. = Homoacetogenic Oxidation / Syntrophic Acetate Oxidation;                  

R.H. = Reductive Homoacetogenesis              

Reductive Homoacetogenesis (R.H.) (and hydrogenotrophic methanogenesis) is favoured at high H2 

partial pressures >500Pa.  Acetate Oxidation by syntrophs to CO2 and H2 is favoured at low H2 partial 

pressures <40Pa (Demirel & Scherer, 2008). 

 

 

The digestion process begins with the microbial hydrolysis of polymeric substrates.  In most cases the 

initial biomass is composed of complex polymeric organic compounds such as carbohydrates, proteins 
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and lipids.  In order for micro-organisms to access the energy potential of the particular organic 

matter, these polymers must first be broken down into their smaller constituents or monomers.  

Hydrolytic-fermentative Bacteria are responsible for the breakdown of insoluble carbohydrates, 

proteins and lipids to their respective monomers – sugars, amino acids and fatty acids.  This is 

regarded as the rate limiting step in anaerobic digestion because cellulose is not easily degradable 

(Noike et al., 1985).  Key cellulose degrading Bacteria of the rumen were reported to belong to the 

Firmicutes.  Wang et al. (2010) found that Clostridium-like species were predominant in the 

fermentation of grass silage. 

Organic monomers resulting from hydrolysis are utilised as substrates by fermentative organisms and 

anaerobic oxidisers (Demirel & Scherer, 2008).  The process known as acidogenesis results in the 

production of acetate or other intermediate products such as propionic acid and butyric acid.  

Hydrogen, CO2 and hydrogen sulphide are also emitted.  The consumption of O2 by facultative 

anaerobes during acidogenesis is important since methanogens are strict anaerobes.  Acidogenesis is 

typically carried out by members of the Bacteria such as Clostridium spp. 

The acetate, H2 and CO2 that are produced in these initial stages can be directly utilised by 

methanogens.  Other molecules however, such as volatile fatty acids with a greater chain length to 

that of acetate, require catabolism before being used by methane producers.  These molecules are 

further digested by acetogenic Bacteria to produce largely acetate, as well as CO2 and H2, a process 

known as acetogenesis. 

The final stage of anaerobic digestion is the production of methane.  Here, either of two independent 

pathways may be employed, namely hydrogenotrophic (syntrophic) and aceticlastic methanogenesis 

(Schnürer & Nordberg, 2008).  In aceticlastic methanogenesis, acetotrophic (acetate-utilising) 

methanogens can directly utilise acetate as a substrate for methane production.  In the second 

pathway, known as hydrogenotrophic methanogenesis or the syntrophic pathway, acetate is first 

utilised by fermentative Bacteria resulting in the production of H2 which is oxidised by using CO2 or 

formate as a carbon source. These substrates are subsequently utilised by hydrogenotrophic 

(hydrogen-utilising) methanogens to produce methane.  Many factors are believed to influence the 

degree to which either of these pathways proceeds.  The syntrophic pathway has been demonstrated to 

be favoured under thermophilic conditions with high ammonium concentrations (Schnürer & 

Nordberg, 2008).  Hydrogenotrophic methanogenesis is dominant in the rumen (Janssen & Kirs, 

2008), with extremely limited metabolism of acetate to methane via the aceticlastic pathway.  This is 

probably because the rate at which the rumen contents pass through the rumen is greater than the 

growth rate of acetotrophic methanogens (Wolin, 1979), and also because acetate is used as an energy 

source by the host (Janssen & Kirs, 2008). 
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1.2.2.1 Methanogenesis 

Substrates that can be utilised by methanogens can in principle be divided into three types: CO2, other 

one-carbon compounds (such as methylamine and formate) and acetate. 

a) Carbon dioxide and hydrogen 

Most methanogens, with the exception of a few obligate methylotrophic and acetotrophic species, are 

hydrogenotrophic.  That is, CO2 and molecular H2 are the principal energy substrates utilised.  The 

reduction of carbon to methane is important in anaerobic habitats such as the gastrointestinal tract as it 

assists in the maintenance of an environment low in H2 and formate concentrations, thereby 

promoting hydrogen interspecies transfer (Whitman et al., 2006). 

Carbon dioxide (electron acceptor) is reduced to methane gas with predominantly H2 as the electron 

donor, with other substrates such as formate, having also been recognised as electron donors 

(Whitman et al., 2006; Liu & Whitman, 2008).  Formate is considered as a major electron donor, 

although concentrations of formate are low in natural methanogenic environments (Demirel & 

Scherer, 2008).  Here, four molecules of formate are oxidised by formate dehydrogenase to CO2 

which is subsequently reduced to methane. 

To a lesser extent, alcohols such as 2-propanol, 2-butanol, cyclopentanol and even ethanol, by a select 

few methanogens, can be used as substrate (Widdel, 1986; Frimmer & Widdel, 1989).  Alcohols as 

electron donors are scarce and growth on such a substrate is slow, however it is important to note as it 

is atypical to a group of micro-organisms that are otherwise not known for directly breaking down 

organic compounds (Liu & Whitman, 2008).  Widdel (1986) showed that 2-propanol and ethanol 

could be used directly by mixed culture methanogens under anaerobic, sulphate-free conditions.  

Utilisation of secondary alcohols is made possible by oxidation of these alcohols via secondary 

alcohol dehydrogenases to respective ketones (Widdel, 1986; Widdel et al., 1988).  It has been 

confirmed that Methanogenium organophilium can oxidise ethanol through the use of a nicotinamide 

adenine dinucleotide phosphate (NADP
+
) – dependent dehydrogenase, to acetate (Frimmer & Widdel, 

1989). 

Carbon monoxide (CO) is also known to be used for CO2 based methanogenesis.  Two species, 

Methanothermobacter thermoautotrophicus and Methanosarcina barkeri, reportedly oxidise four 

molecules of carbon monoxide to one molecule of CO2, before CO2 in turn is reduced to methane (Liu 

& Whitman, 2008; Ferry, 2010).  Daniels et al. (1977) stated that CO is oxidised by M. barkeri, 

although growth of the organism in a CO environment is slower, with a growth rate estimated at only 

1% of the growth observed in a CO2 and H2 environment.  When grown on CO, the doubling time was 

recorded at 200 hours for M. thermoautotrophicus and at least 65 hours for M. barkeri (Daniels et al., 

1977; O’Brien et al., 1984).    

Progression through steps known as the formyl, methylene and methyl levels result in the reduction of 

CO2 to methane.  The reaction makes use of a number of unique C-1 compound carrying cofactors, 
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namely methanofuran (MFR), tetrahydromethanopterin (H4MPT) and coenzyme M (CoM).  Overall, 

under standard conditions, this is thermodynamically a highly exergonic process according to the 

equation:  4H2 + CO2 → CH4 + 2H2O (ΔG˚
’
 = -135 kJ/mol) (Liu & Whitman, 2008). 

The two reactions essential in energy conservation are the transfer of methyl from H4MPT to CoM 

and the final reduction of the heterodisulphide (Liu & Whitman, 2008).  However, it is important to 

note that in natural methanogenic environments such as the rumen, the partial pressure of H2 is kept at 

a low concentration, generally between 1 Pa and 10 Pa.  The free energy change associated with 

fermentation of CO2 and H2 is therefore highly decreased to about 30 kJ/mol.  Given that under 

physiological conditions, 50 kJ/mol is required for the synthesis of ATP from ADP and inorganic 

phosphate, less than 1 mol of ATP can be generated per 1 mol of methane that is formed (Müller et 

al., 1993; Thauer et al., 1993) under such conditions. 

The initial reduction results from the binding of CO2 by MFR to form formyl-MFR (Figure 1.3A), 

otherwise known as the formyl level.  Here, ferredoxin (Fd), which is reduced with H2, acts as the 

direct electron donor (Liu & Whitman, 2008).  Under standard conditions this reaction is endergonic, 

with the required ATP being derived from the final step of methane production (Whitman et al., 

2006). 

The formyl group is transferred to H4MPT, thereby forming formyl-H4MPT.  Subsequently 

dehydration and reduction results in the methylene and methyl levels via the production of methylene-

H4MPT and methyl-H4MPT respectively.  Electrons for both these reactions are sourced from reduced 

coenzyme F420 (F420H2). Coenzyme M binds to the methyl group to form methyl-CoM (Whitman et 

al., 2006; Liu & Whitman, 2008). 

Finally, methyl-CoM is reduced via the methyl coenzyme M reductase system (Mcr) to methane, with 

coenzyme B (CoB) directly supplying the electrons.  Coenzyme M is transferred to the oxidized CoB 

to form a heterosulphide, which in turn is reduced for the regeneration of thiols (Liu & Whitman, 

2008).  Energy in the form of ATP is released due to the reduction of the disulphide bond.  Energy 

derived from this final stage completes the cycle by actively promoting the reduction of CO2 to 

formylmethanofuran which is an endergonic reaction (Whitman et al., 2006).   
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Figure 1.3A: Methanogenesis from hydrogen / carbon dioxide (Liu & Whitman, 2008) 

Abbreviations: Fdred= reduced form of ferredoxin; Fdox= oxidised form of ferredoxin; F420H2= reduced form 

coenzyme F420; MFR= methanofuran; H4MPT= tetrahydromethanopterin; CoM-SH= coenzyme M; CoB-SH= 

coenzyme B; CoM-S-S-CoB= heterodisulphide of CoM and CoB; CoA-SH= coenzyme A. Enzymes: 1= 

energy-conserving hydrogenase (Ech); 2= formyl-MRF dehydrogenase; 3= formyl-MFR:H4MPT 

formyltransferase; 4= methenyl-H4MPT cyclohydrolase; 5= methylene-H4MPT dehydrogenase; 6= F420-

reducing hydrogenases; 7= methylene-H4MPT reductase; 8= methyl-H4MPT:HS-CoM methyltransferase; 9= 

methyl-CoM reductase; 10= heterodisulfide reductase. 
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b) One-carbon methylated compounds 

Methylotrophic methanogens are those methanogens that can use methyl-group containing 

compounds as substrates for methanogenesis.  These compounds include methanol, methylated 

amines (such as monomethylamine, dimethylamine, trimethylamine and tetramethylammonium 

(Burke & Krzycki, 1997)) and methylated sulphides (which include methanethiol and 

dimethylsulphide) (Whitman et al., 2006; Liu & Whitman, 2008). 

Methylotrophy seems to be restricted to the order Methanosarcinales, with about 20 species showing 

capability to use methylated compounds as substrate (Boone et al., 1993).  A high number of these 

species have been isolated from marine or salt lake environments, which normally have increased 

sulphate concentrations (Keltjens & Vogels, 1993).  Hydrogenotrophic methanogens do not thrive 

under these conditions as they are easily outcompeted by Bacteria capable of reducing sulphate.  

However, because of their ability to grow on methylated compounds, methylotrophic methanogens 

are able to compete with sulphate-reducing Bacteria in these environments (Keltjens & Vogels, 

1993).  Two exceptions of Methanosphaera species, M. stadtmanae (Miller & Wolin, 1983) and 

M. cuniculi (Biavati et al., 1988) also show growth on methanol with H2 as the electron donor. 

During this type of methanogenesis (Figure 1.3B), methyl groups from substrates are transferred to a 

corrinoid protein (Ferguson et al., 2000) and are then subsequently transferred to coenzyme M (Burke 

& Krzycki, 1997).  Both reactions require methyltransferases, which are substrate specific (Burke & 

Krzycki, 1997; Ferguson et al., 2000).  The methyl-coenzyme M structure then enters the 

methanogenesis pathway, resulting in the production of methane. 

Electrons that are needed for the reduction of the methyl-group to methane can come from two 

sources.  The two species of the genus Methanosphaera are dependent on H2 to provide electrons 

(Whitman et al., 2006).  However, in most cases, in the absence of H2, electrons are obtained when 

methyl-groups are oxidised to CO2.  Here, additional methyl-groups are oxidised through a stepwise 

reverse reaction of hydrogenotrophic methanogenesis.  This is known as disproportionation (Liu & 

Whitman, 2008), where a part of the substrate is oxidised to obtain electrons, which are then utilised 

in the reduction of remaining substrate.  The oxidation of one methyl group is enough to reduce 3 

methyl groups to methane according to the equation: 4CH3OH→ 3CH4 + CO2 + 2H2O (ΔG˚
’
 = -105 

kJ/mol) (Liu & Whitman, 2008). 
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Figure 1.3B: Methanogenesis from one-carbon methylated compounds (Liu & Whitman, 2008).  

Abbreviations: Fdred= reduced form of ferredoxin; Fdox= oxidised form of ferredoxin; F420H2= reduced form 

coenzyme F420; MFR= methanofuran; H4MPT= tetrahydromethanopterin; CoM-SH= coenzyme M; CoB-SH= 

coenzyme B; CoM-S-S-CoB= heterodisulphide of CoM and CoB; CoA-SH= coenzyme A. Enzymes:  1= 

energy-conserving hydrogenase (Ech); 2= formyl-MRF dehydrogenase; 3= formyl-MFR:H4MPT 

formyltransferase; 4= methenyl-H4MPT cyclohydrolase; 5= methylene-H4MPT dehydrogenase; 6= F420-

reducing hydrogenases; 7= methylene-H4MPT reductase; 8= methyl-H4MPT:HS-CoM methyltransferase; 9= 

methyl-CoM reductase; 10= heterodisulfide reductase; 11= methyltransferase. 

c) Acetate 
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Acetate, a methylated two-carbon compound, is the final type of substrate that can be used by certain 

methanogens.  Acetate is considered the chief end-product of anaerobic fermentation in natural 

habitats, and 65-70% of methane that is produced is derived from acetate (Liu & Whitman, 2008).  In 

a study investigating the methanogenic community within biogas plants containing manure or sludge, 

Karakashev et al. (2005) identified acetotrophs as the dominating methanogens regardless of the inital 

inoculum populations.  However, Karakashev et al. (2005) did note that the apparent lack of 

hydrogenotrophic methanogens such as Methanobacteriales identified in the samples could be due to 

the difficulty of visualising these methanogens using fluorescence in situ hybridisation.  In a more 

recent study conducted by Krakat et al. (2010
c
), biogas fermenters containing fodder and sugar beet 

silage, the hydrogenotrophic methanogens (Methanobacteriales and Methanomicrobiales) were found 

to be the dominanting methanogens, while acetotrophs made up less than 10% of the population. 

Acetotrophic methanogens are limited to two genera, namely Methanosarcina and Methanosaeta.  Of 

these, Methanosarcina seems to grow more rapidly when acetate concentrations are high (Ferry, 

1993), although growth of Methanosaeta, which is considered the superior utiliser, is favoured at low 

acetate concentrations, with the minimum threshold concentrations for growth estimated at 5– 20 µM 

(Liu & Whitman, 2008). 

The catabolism of acetate proceeds via the acetoclastic reaction (Figure 1.3C).  Initially, acetate is 

activated to acetyl-CoA (Ferry, 1993).  Thereafter, carbon-carbon bonds and carbon-sulphur bonds are 

cleaved by a CO dehydrogenase enzyme system.  The carbonyl-group is oxidised by a nickel/sulphur 

component of the CO dehydrogenase system to form CO2, whilst the methyl-group is transferred to 

coenzyme M via H4MPT and a corrinoid/iron-sulphur component of the enzyme complex (Ferry, 

1993; Whitman et al., 2006).  The CO enzyme complex is further oxidised to generate H2 and CO2, 

with H2 providing the electrons to reduce methyl-coenzyme M to methane.  Methane is produced from 

acetate according to the equation: CH3COOH → CH4 + CO2 (ΔG˚
’
 = -33 kJ/mol) (Liu & Whitman, 

2008). 
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Figure 1.3C: Methanogenesis from Acetate (Liu & Whitman, 2008).  Abbreviations: Fdred =reduced 

form of ferredoxin; Fdox= oxidised form of ferredoxin; F420H2= reduced form coenzyme F420; MFR= 

methanofuran; H4MPT= tetrahydromethanopterin; CoM-SH= coenzyme M; CoB-SH= coenzyme B; CoM-S-S-

CoB= heterodisulphide of CoM and CoB; CoA-SH= coenzyme A. Enzymes: 1= energy-conserving 

hydrogenase (Ech); 8= methyl-H4MPT:HS-CoM methyltransferase; 9= methyl-CoM reductase; 10= 

heterodisulfide reductase; 12= acetate kinase (AK)-phosphotransacetylase (PTA) system / AMP-forming acetyl-

CoA synthetase; 13= CO dehydrogenase/acetyl-CoA synthase. 
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1.2.3 Methanogen ecophysiology 

Methanogens have been found to naturally occupy a wide variety of anaerobic environments.  These 

habitats range from marine and freshwater sediments and geothermal areas to the gastrointestinal tract 

of animals and humans.  They have also been shown to thrive in landfills and anaerobic digester 

systems. 

 

1.2.3.1 Adaptations to environment 

a) Salinity 

Methanogens have been found to inhabit environments with a wide range of salinities, extending from 

freshwater to hypersaline habitats. Characteristically, methanogens inhabiting freshwater 

environments require at least a 1 mM sodium concentration.  The reason for this is due to a sodium 

motive force that is employed by methanogens.  This sodium motive force, which is inwardly 

directed, functions in the bioenergetics of the organism’s methanogenesis cycle (Kaesler & Schönheit, 

1989; Zinder, 1993).  

Both freshwater and marine methanogen communities show extensive diversity, although only a few 

halophilic methanogens, all of which belong to the order Methanosarcinales, are commonly known 

(Zinder, 1993).  In a recent study investigating the sediment and plankton from a freshwater pond, 

Briée et al. (2007) found a diverse achaeal community including Methanosarcinales, 

Methanomicrobiales and a few divergent linages. 

It has been suggested that the increased quantity of methylated osmoprotectants, such as betaine and 

dimethylpropiothetin, present in methylotrophic methanogens, enables this select group to tolerate 

extreme salt concentrations (Mathrani et al., 1988).  It has also been shown that methanogens have the 

ability to accumulate betaine if it exists in the surrounding environment (Robertson et al., 1990
a
).  

Common to most organisms, adjustment to salinity occurs by accumulation of suitable compounds in 

the cytoplasm to create an equilibrium between internal and external osmolarity (Zinder, 1993).  

α-Glutamate, β-glutamate and N
ε
-acetyl-β-lysine are such compatible solutes that have been detected 

in methanogens (Robertson et al., 1990
b
).  α-Glutamate seems to be the primary solute in the 

cytoplasm under conditions of low osmolarity, while the occurrence of N
ε
-acetyl-β-lysine in the 

cytoplasm is proportional to salinity (ie increasing N
ε
-acetyl-β-lysine quantities in higher salinities) 

(Zinder, 1993). 

 

 

b) Temperature 

Methanogen populations are known to tolerate extreme temperatures, ranging from about 2˚C in 

marine sediments to geothermal areas which reach temperatures above 100˚C (Zinder, 1993).  Both 

mesophilic and thermophilic methanogens show great diversity.  However, it has been noticed that 
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thermophilic species grow at a quicker rate when compared with corresponding mesophiles.  Jones et 

al. (1983) reported that the doubling time for Methanococcus voltae in a H2-CO2 enriched 

environment at 37˚C is nearly twice that of Methanococcus thermolithotrophicus (now 

Methanothermococcus) at 65˚C, while the shortest doubling time was recorded at 25 minutes for 

Methanococcus jannaschii (now Methanocaldococcus) at 85˚C. 

The ability to optimally function under thermophilic conditions is common among methanogens 

(Zinder, 1993).  Although methanogens appear to survive extremities in temperature, there seems to 

be an impediment on methanogenesis.  Thummes et al. (2007) investigated the optimum temperature 

required for methanogensis in different compost materials.  Results indicated that in six compost 

materials, optimal methanogenic activity was achieved at 50˚C (thermophilic), while only two 

compost materials achieved optimal methanogenic activity at 65˚C (hyperthermophilic).  Lee et al. 

(2009) evaluated the performance of anaerobic digester systems with the same substrate feedstock at 

hyperthermophilic (70˚C), thermophilic (55˚C) and mesophilic (35˚C) conditions.  Results showed 

that although optimal temperatures for treating substrates during the acidogenesis stages were in the 

hyperthermophilic range, thermophilic conditions were favoured for methanogenesis.  It is important 

to note that together with temperature, the partial pressure of H2 present in the environment plays a 

role in acidogenesis and methanogensis.  As earlier indicated in Figure 1.2, a high H2 partial pressure 

will favour hydrogenotrophic methanogenesis, whilst a low H2 partial pressure will favour 

acidogenesis (Demirel & Scherer, 2008).  Although biogas production was greatly diminished at 

hyperthermophilic and mesophilic conditions as compared to thermophilic conditions, the fact that the 

methanogen population was still able to survive and produce methane demonstrates the ability to 

adapt to adverse conditions (Lee et al., 2009).  It has been suggested that the ability of prokaryotes, 

including methanogenic Archaea, to adapt to an unfamiliar or adverse environment is a result of a 

phenomenon known as horizontal gene transfer, where prokaryote cells are capable of transferring 

genetic information between each other.  This is achieved by means of transformation, transduction 

and conjugation (Gribaldo & Brochier, 2009). 

Several studies have also stressed the importance of temperature on methanogen diversity.  In a study 

investigating mesophilic fermentation of beet silage (Krakat et al., 2010
b
) it was shown that 

hydrogenotrophic methanogens were dominant in a digester that was initially fed with a mixed 

acetotrophic and hydrogenotrophic methanogen inoculum.  These results correspond to numerous 

studies where hydrogenotrophic methanogens were established to be the dominanting methanogens in 

the gastrointestinal tracts, which in fact represents a mesophilic fermenter (Krakat et al., 2010
b
), of 

various animals (Wright et al., 2004; Wright et al., 2007; Janssen & Kirs, 2008; Chaudhary & Sirohi, 

2009; Evans et al., 2009).  In the mono-digestion of swine faeces under mesophilic conditions, Zhu et 

al. (2011) reported that 57.7% and 34.2% of the clones assessed were affiliated to Methanobacteriales 
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and Methanomicrobiales respectively, meaning that over 90% of the clones assessed were affiliated to 

hydrogenotrophic methanogens.      

Krakat et al. (2010
a
) also demonstrated that only hydrogenotrophic Methanobacteriales were present 

in a thermophilic biogas fermentor operated at 60˚C, with a slight change in populaion diversity at 

55˚C, where Methanobacteriales still dominated but Methanomicrobiales and Methanosarcinales 

were also identified.  Similarly, Bauer et al. (2008) reported a dominance of Methanobacteriales in 

thermophilic digesters, with a shift to a dominace of Methanomicrobiales in mesophilic digesters.  

This shift in methanogen diversity could be explained by the availability of hydrogen.  In a study 

investigating hydrogen production in a mixed culture digestion of starch, Akutsu et al. (2009) 

reported that hydrogen production was not stable at mesophilic temperatures, but rather there was 

dominance of mesophilic non-hydrogen producing Bacteria such as hydrogenotrophic homoactogens.  

At thermophilic temperatures, hydrogen producing Bacteria were more easily cultivated, allowing for 

sustainable hydrogen production.  Hydrogen would therefore be constantly available under 

thermophilic conditions which would result in the dominance of hydrogentrophic methanogens for the 

conversion of hydrogen and carbon dioxide to methane (Krakat et al., 2010
c
). 

While Karakashev et al. (2005) showed greater methanogenic diversity in mesophilic operated 

reactors, Xing et al. (2007) descibed the lowering of temperatures, from 20˚C to 15˚C, resulted in a 

drastic change in methanogenic diversity in anaerobic sludge.  There was a progressive decrease of 

most methanogen species, with the exception of possible psychrophilic methanogens such as 

Methanocorpusculum parvum.  However, after continued operation, it was observed that species that 

initially decreased later recovered and increased in number, suggesting that temperature does govern 

methanogen diversity (Xing et al., 2007). 

 

c) pH 

A pH optimum near neutral is common to most methanogens (Jones et al., 1987), although there have 

been cases of methanogens inhabiting environments with extreme pH levels (Zinder, 1993).  More 

recently, Bräuer et al. (2006) isolated an acidiphilic methanogen, belonging to the order 

Methanomicrobiales, from an acidic (pH 4.1) peat bog habitat.  

An optimum of pH 6 has been typically reported for methanogenesis. Goodwin & Zeikus (1987) 

demonstrated that methanogenesis using both CO2 and acetate as substrates was possible at pH 4, 

however methanogenesis reached an optimum when the pH value approached 6.  Low pH, which can 

be established by an accumulation of fatty acids or an accumulation of acetate in the environment 

(Russell, 1991) inhibits methanogenesis probably due to acetate or acetic acid build-up inside the cells 

(Russell, 1991).  

Maintenance of an environment with a pH within the optimum range for micro-organism growth and 

metabolism is essential since pH directly influences the toxicity of inhibitors such as ammonia or 
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hydrogen sulphide.  Ammonia is present in two forms, the ammonium ion (NH4
+
) and free ammonia 

(NH3), the latter of which is considered to be the primary cause of inhibition.  Hydrophobic free 

ammonia can passively permeate the cell membrane, resulting in either a proton imbalance or 

potassium deficiency (Sprott & Patel, 1986; Chen et al., 2008).  At an increased temperature and pH 

there is an adjustment to a higher free ammonium to ammonium ion concentration ratio, which 

subsequently leads to increased toxicity (Angelidaki & Ahring, 1993; Borja et al., 1996).  Angelidaki 

& Ahring (1993) observed that under thermophilic conditions, digestion of cattle manure was 

inhibited at ammonia concentrations of 4 g N/l or more.  It was also reported that acetotrophic 

methanogens were more susceptible to increasing ammonia concentrations, where the growth rate of 

aceticlastic and hydrogentrophic methanogens were halved at ammonia concentrations of 3.5 g N/l 

and 7 g N/l respectively (Angelidaki & Ahring, 1993). 

Hydrogen sulphide (H2S) has been reported as the toxic form of sulphide owing to its easy diffusion 

into the cell, where it may have the ability to denature proteins (Conn et al., 1987).  More recently, it 

was observed that sulphide inhibition was related to non-ionised sulphide and total sulphide inhibition 

concentrations at certain pH ranges (O’Flaherty et al., 1998), where sulphide inhibition of aceticlastic 

methanogen activity was dependent on non-ionised sulphide concentration or total sulphide 

concentration within the pH range of 6.4-7.2 and 7.8-8.0 respectively. 

 

d) Oxygen 

Methanogens are strict anaerobes.  Although they are unable to grow or produce methane in the 

presence of oxygen, they have been shown to be reasonably tolerant to oxygen exposure.  Substantial 

variability of sensitivity to oxygen exists among methanogens.  In a study undertaken by Kiener & 

Leisinger (1983) it was documented that the viability of methanogens such as Methanococcus voltae 

and Methanococcus vannielii dropped about 100-fold after 10 hours of oxygen exposure.  Others, 

such as Methanobrevibacter arboriphilus and Methanothermobacter thermoautotrophicus, sustained 

viability for several hours, and after a period of 24 hours Methanosarcina barkeri still maintained 

viability.  Leadbetter & Breznak (1996) observerd the oxygen tolerance of two hydrogentrophic 

Methanobrevibacter spp. isolated from gut homogenates of a subterranean termite.  It was reported 

that both strains possessed catalase-like activity and were able to initate growth in H2-CO2 oxygen 

gradient tubes.  In a study investigating the presence of thermophilic methanogens in compost 

materials (Thummes et al., 2007), oxic drying of the compost material was carried out.  When 

compared to fresh compost, the methane production in the dried compost material was found to have 

slightly increased and demonstrated the abilty of the methanogens to survive stress stimuli (Thummes 

et al., 2007). 

Adaptations to oxygen, including the presence of superoxide dismutase in low levels, have been 

reported in some methanogens (Kirby et al., 1981).  Another adaptation found in 
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Methanothermobacter thermoautotrophicus is the formation of an ester between the AMP or GMP 

and deazaflavin ring in coenzyme F420 (Hausinger et al., 1985).  This modification which only occurs 

when exposed to O2 acts by “switching off” reductive metabolism in the organism. 

 

e) Metabolic regulations 

Interaction between an organism and the surrounding environment is important as activities of the 

organisms are regulated as a result of the ever changing environmental conditions.  These responses 

include short-term regulation of enzyme activity (Zinder, 1993) and a few noted long-term 

regulations, which entail alteration of gene expression.  Although many methanogens are known to 

utilise only one or two subtrates, enzyme activity regulation has been particularly noted in response to 

substrate availability. 

Methanobacterium formicicum showed a slight increase in formate dehydrogenase (FDH) activity 

when grown on formate as compared with growth on H2 and CO2 (Schauer & Ferry, 1980), and 

Methanococcus (now Methanocaldococcus) thermolithotrophicus showed an almost 10-fold increase 

in FDH activity when grown on formate when compared to a mixed substrate environment (Sparling 

& Daniels, 1990).  Limitation of H2 in the environment can induce the synthesis of 

pseudomureinendopeptidase in the hydrogenotrophic Methanothermobacter wolfei (Kiener et al., 

1987).   

Regulation of methanogenesis from acetate has been well studied.  Smith & Mah (1978) proposed that 

catabolism of acetate by Methanosarcina strain 227 was highly regulated by the presence of more 

easily metabolised substrates in the environment.  In the presence of substrates such as methanol and 

H2-CO2 there was a suggested repression of acetate catabolism, with preference of methanol or H2-

CO2 as a substrate for methanogenesis (Smith & Mah, 1978).  As earlier mentioned, growth of 

acetotrophic methanogens is influenced by acetate concentrations.  Methanosarcina spp. grow more 

rapidly when acetate concentrations are high, while low acetate concentrations are favoured for 

Methanosaeta spp. growth (Ferry, 1993).  
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f) Mobility and gas vesicles 

Both Methanococcales and Methanomicrobiales display mobility via flagella that show distinct 

resemblance to their eubacterial counterpart (Jones et al., 1987).  Methanococcus voltae and 

Methanospirillum hungatei show chemotaxis toward required substrates, namely acetate, leucine and 

isoleucine (Migas et al., 1988; Sment & Konisky, 1989).  In prokaryotes, the response to non-uniform 

distribution of substrates occurs through use of components known as methyl-accepting chemotaxis 

proteins (MCPs).  It has been suggested that the location of these MCPs within the cell may influence 

the regulation of chemotaxis (Bray et al., 1998).  Gestwicki et al. (2000) showed that in a varied panel 

of both bacterial and archaeal elongated cells, the MCPs were located primarily at the poles and along 

the length of the cells, suggesting that the location of these MCPs, and therefore the regulation of 

chemotaxis, is some what conserved between Bacteria and Archaea. 

Adjustments of position can also be achieved through the use of gas vesicles for floatation.  To date 

only some Methanosarcina strains (Kamagata & Mikami, 1991) exhibit the presence of these vesicles. 

The formation of biofilms within anaerobic digesters allows for the accumulation of certain micro-

organisms on solid materials.  Zheng & Raskin (2000) demonstrated the dominance of filamentous 

Methanosaeta species in anaerobic bio-digesters with low acetate concentrations.  This was due to the 

formation of a dense biofilm in a high solids and high retention time digester.  Krakat et al. (2010
b
) 

investigated the effect of hydraulic retention time on the diversity of methane producing methanogens 

in a mesophilic digestor.  It was demonstrated that a reduction in hydraulic retention time allowed for 

an increase in organic matter availability, which permitted the increased abundance of methanogens 

that were previously under represented in the digestor, and therefore resulted in increased methanogen 

diversity (Krakat et al., 2010
b
). 

 

g) Reserve materials 

A substitution for unavailable exogenous sources of energy and nutrients is required by all organisms.  

Endogenous or reserve materials are normally polymers which can be used as a source of energy.  

Glycogen (Murray and Zinder, 1987) and polyphosphate (Rudnick et al., 1990) have both been found 

in various methanogens including Methanosarcina.  The classic limitation of nitrogen and carbon 

excess resulted in increased accumulation of glycogen in Methanolobus tindarius (Murray & Zinder, 

1987), while the accumulation of stored polyphosphate in Methanosarcina frisia was found to be 

proportional to the phosphate concentration in the environment (Rudnick et al., 1991). 

 

 

1.2.3.2 Competition for substrates 

In natural habitats, methanogens have been found to compete for substrates, specifically H2, with 

mainly three anaerobic groups of the Bacteria.  These are the sulphate-reducing Bacteria, the 
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acetogens and the iron-reducing Bacteria (Zinder, 1993; Liu & Whitman, 2008).  When electron 

acceptors like NO3
-
, Fe

3+
 and SO4

2-
 are found in high concentration, hydrogenotrophic methanogens 

are usually outcompeted by these other hydrogen utilising Bacteria. 

Hydrogen is an important substrate of sulphate-reducing Bacteria, acetogens and hydrogenotrophic 

methanogens. Growth kinetic parameters suggest that methanogens are potentially able to compete 

with other anaerobic groups when H2 and CO2 are the sole available substrates.  However, it has been 

shown that in the presence of excess sulphate, sulphate-reducing Bacteria and acetogens completely 

outcompeted methanogens (Weijma et al., 2002).  This is probably due to the fact that the reduction 

of these compounds is thermodynamically more favourable when compared to CO2 reduction to 

methane (Liu & Whitman, 2008).  Hydrogenotrophic methanogens are therefore usually found in 

environments where such electron acceptors are limited and therefore dominates in environments 

where CO2 is the only abundant electron acceptor for anaerobic respiration. 

 

1.2.3.3 Symbiosis 

Symbiosis between Bacteria and Archaea is well documented.  These syntrophic relationships, as 

described earlier, are considered to be either non-obligate interspecies electron transfer or obligate 

species electron transfer.  The former involves fermentative Bacteria that utilise carbohydrates to 

produce substrates to be utilised by methanogens.  In such a syntrophic interaction, where both 

Bacteria and Archaea benefit, the environment is kept at favourable low H2 concentrations for 

carbohydrate fermentation by the hydrogen-utilising methanogens.  With the latter interaction, both 

Bacteria and methanogens are dependent on each other for survival.  Syntrophic Bacteria are 

responsible for oxidising longer-chain organic substrates while methanogens maintain a low H2 and 

formate concentration environment required for continual organic substrate reduction (Zinder, 1993; 

Whitman et al., 2006).  

Another type of symbiosis occurs between methanogens and protozoa.  Vogels et al. (1980) first 

suggested an association between methanogens and rumen ciliate protozoa.  Since then many 

associations with either methanogens on the surface (ectosymbionts) and inside (endosymbionts) 

protozoa have been observed in various anoxic environments including anaerobic sediments and 

gastrointestinal tracts (Zinder, 1993; Narayanan et al., 2009).  Endosymbiotic associations have been 

observed in protozoa such as Pelomyxa palustris (Narayanan et al., 2009) and ciliates such as 

Trymyema compressum (Holler & Pfennig, 1991).  The advantages of such symbiotic associations to 

the host are not clearly understood, although it has been suggested that in the presence of symbiotic 

methanogens the host grows more rapidly (Zinder, 1993; Narayanan et al., 2009) which might be due 

to an increased production of volatile fatty acids in the presence of H2-consuming methanogens.  

 

 



39 

  
 

 

1.2.3.4 The gastrointestinal tract as a habitat 

The gastrointestinal tract of many animals provides a potential environment for fermentation.  

Organic matter content in the tract is high, especially in herbivores where continual grazing is 

required.  This, coupled with the fact that oxygen diffusion is low and both pH and temperature are 

stable (Zinder, 1993), make it the ideal environment for anaerobic microbial processes.  Such an 

anaerobic microbial community may include Bacteria, fungi and methanogens (Wright et al., 2004; 

Yokoyama et al., 2007; Liu & Whitman, 2008) that work together in a symbiotic relationship to 

degrade complex organic matter that would otherwise be poorly digested. 

Extensive studies have been carried out on the gastrointestinal microbial communities of ruminants.  

In ruminants, which include cows, sheep, goats and deer, fermentation of cellulosic plant material 

occurs in the foregut.  In a study conducted by Wright et al. (2007) the diversity of methanogens 

found in the rumen of cattle was investigated.  From the phylogenetic analysis of 16S rRNA gene 

libraries that were generated, it was found that almost 33% of clones were of the species 

Methanobrevibacter ruminantium, with about 56% of all clones exhibiting a ≥89.9% similarity to 

methanogens belonging to the Methanobacteriales, Methanomicrobiales and Methanosarcinales 

(Wright et al., 2007).  Similarly, Wright et al. (2004) found that members of the order 

Methanobacteriales, i.e. hydrogenotrophic methanogens, were the predominant methanogens in sheep 

rumen, with over 90% of all clones identified as a Methanobrevibacter strain. 

The microbial communities of monogastric animals, such as horses (Mackie & Wilkins, 1988), pigs 

(Zhu et al., 2009) and chickens (Saengkerdsub et al., 2007), have also been studied.  Although 

methane production has been shown to be lower in monogastric animals when compared to ruminants, 

large herbivorous monogastric animals such as horses and mules have shown substantial methane 

production (Mandal & Mandal, 1995; Jensen, 1996).  Species of Methanobrevibacterium tend to be 

the predominant methanogens present in monogastric animals (Jensen, 1996), with the exception of 

chickens and turkeys (Scupham et al., 2008), where Methanogenium is predominant.  

The zebra, together with horses and donkeys, belong to the family Equidae (Mackie & Wilkins, 

1988).  Although domesticated animals have been well studied, little or no investigations have 

explored the microbial communities, in particular the methanogen populations, in wild herbivore 

gastrointestinal tracts (Nelson et al., 2003). 
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1.3 Culture based techniques 

Culture methodology is an important technique in analysis of prokaryote diversity.  Isolation and 

culturing allows for the phenotypic characterisation, such as morphology, physiological and 

biochemical identification, of micro-organisms (Pontes et al., 2007).  Both liquid and solid media 

containing nutrients required for cell growth are widely used, although Schoenborn et al. (2004) 

demonstrated that culturing of soil Bacteria on solid media was superior to liquid serial dilution 

media. 

However, many micro-organisms, especially those that are slow-growing or fastidious, cannot be 

isolated and cultured due to the limitations of currently available culturing methods, restricting 

recovery of diversity of micro-organisms found in an environmental sample (Pontes et al., 2007). 

 

1.4 Culture independent techniques 

To overcome the limitations and difficulties of culture-based techniques to assess the microbial 

diversity in environmental samples, a nucleic acid based technique was used for the analysis of both 

Bacteria and methanogenic Archaea. 

 

1.4.1 DNA extraction from microbial cells 

DNA extraction is both fast and convenient when compared to traditional isolation and culture 

methods.  This, together with the fact that many microorganisms are currently not easily cultured from 

environmental samples, makes DNA extraction the preferred technique to collect DNA for molecular 

diversity analysis (Yeates et al., 1998).  The method chosen for both the extraction and purification 

steps highly influences the quantity and quality of the nucleic acid extracted (Thakuria et al., 2009) 

which subsequently affects the performance of downstream molecular techniques such as Polymerase 

Chain Reaction (PCR).  DNA extraction has therefore been described as one of the most important 

stages in molecular based investigations.  A study carried out by Thakurai et al. (2009) showed that 

DNA of poor quality resulted in a modified or distorted interpretation of the sample’s microbial 

diversity. 

DNA extraction begins with the disruption of the cellular envelope which allows for the release of 

DNA.  Lysis of the cellular envelope can be achieved through either mechanical or chemical 

treatment.  Enzymatic lysis involves the addition of chemicals such as lysozyme.  Lysozyme targets 

the 1,4-beta linkages between N-acetyl-D-glucosamine (NAG) and N-acetylmuramic acid (NAM) 

residues in bacterial peptidoglycan, making this type of treatment effective in the lysis of Gram-

positive bacterial cells.  However, in the case of Gram-negative Bacteria, lysis of the lipid bilayer is 

initially required to provide access for lysozyme to the murein layer.  Here, ethylene diamine tetra 

acetic acid (EDTA) can be used as it removes Mg
++

and Ca
++

ions which are needed to preserve the 
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overall structure of the outer membrane.  However, methanogenic Archaea do not have a cell wall 

that is composed of peptidoglycan and therefore are not susceptible to lysozyme treatment. 

Physical treatments, such as French press, bead-beating and sonication, result in the release of cellular 

contents due to a mechanical force being applied to the cell.  Past research shows that mechanical 

treatments are not only less expensive when compared to chemical treatments, but also more 

effective.  A study carried out by Yeates et al. (1998) demonstrated that an extraction method that 

incorporated bead-beating consistently extracted DNA of higher quantity and quality when compared 

to other methods that included the use of lysozyme for enzymatic lysis and sonication.  The use of 

beads in the lysis step in a study carried out by Thakuria et al. (2009) increased DNA yield by up to 

50%. 

Thereafter, the removal of membrane lipids is then required.  This is achieved by addition of a 

detergent such as sodium dodecyl sulphate (SDS).  This is followed by removal of contaminating 

protein with pronase or proteinase K treatment which breaks polypeptides into smaller units (i.e. 

amino acids) which are then easily removed.  Cetyl trimethyl ammonium bromide (CTAB) is 

commonly used as it forms complexes with both proteins and polysaccharides.  The lipid precipitates 

are removed upon centrifugation by phenol/chloroform extraction. 

The final step involves the precipitation of the DNA by a short chain alcohol, usually ethanol or 

isopropanol.  The DNA is insoluble in these alcohols and will therefore aggregate and form a pellet 

upon centrifugation. 

However, quantitative extraction of nucleic acids from environmental samples including faeces has 

proven problematic (Yeates et al., 1998; Peršoh et al., 2008; Tang et al., 2008), owing mainly to the 

presence of co-extracted inhibitors.  Faeces are complex samples that can inhibit subsequent 

molecular based manipulations such as amplification by PCR (Tang et al., 2008).  Humic substances, 

a major contaminant, have similar chemical properties to that of nucleic acids and are therefore not 

removed during standard extraction procedures (Peršoh et al., 2008).  Treatment with 

polyvinylpolypyrollidone (PVP) has been shown to effectively remove co-extracted inhibitors (Tang 

et al., 2008) and dilution of the extracted DNA has also been suggested to reduce inhibition by 

contaminants (Yeates et al., 1998).     

In recent years commercial extraction kits have been favoured over traditional manual extractions 

because of high nucleic acid purity, convenience, speed and simplicity.  Five commercially available 

kits were assessed by Dauphin et al. (2009) for DNA recovery from environmental samples.  Results 

showed that a kit that combined bead-beating together with a silica spin column had the greatest 

efficiency regarding DNA recovery, although it has also been indicated that use of such kits is 

problematic as DNA yield efficiency could be impeded (Tang et al., 2008). 
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1.4.2 16S rRNA target gene amplification 

The sequence analysis of 16S small sub-unit ribosomal nucleic acid molecules has allowed for 

examination of the phylogenetic and evolutionary relationships between prokaryotes (Woese, 1987).  

The 16S rRNA gene region is stable, ubiquitous, functionally constant, conserved and homologous, 

making it an ideal molecular marker (Schleifer, 2009).  Because this method omits the need for 

culturing, it enables the isolation of novel and uncultured microorganisms, thereby providing 

knowledge of the diversity of microbial communities from various environments (Macrae, 2000). 

Although 16S rRNA gene amplification is considered as the “gold standard” (Schleifer, 2009) in 

inferring phylogenetic relationships between micro-organisms, multiple 16S rRNA genes do exist in a 

single organism, potentially creating a 16S rRNA sequence divergence of up to 1-2% (Schleifer, 

2009) within the same organism.   

Molecular based methods are widely preferred over culture based methods, however there are 

potential problems that could be encountered with the use of these techniques.  One such problem is 

unequal amplification which distorts the distribution of PCR products.  PCR bias, which results in 

unequal amplification, is thought to occur due to either using templates with differing amplification 

efficiency or self-annealing of templates in the final cycles of amplification which results in 

amplification inhibition (Acinas et al., 2005).  Sequence artifacts can also occur due to PCR errors.  

The formation of these artifact sequences seems to occur from a Taq polymerase error, heteroduplex 

molecule formation or chimeric molecule formation (Acinas et al., 2005).  Possible solutions to these 

problems include minimising the number of amplification cycles and introducing a reconditioning 

PCR step (Acinas et al., 2005).  

 

1.4.3 Cloning 

Cloning is the insertion of a foreign DNA fragment into a cloning vector or plasmid which often 

contains an antibiotic resistance gene marker.  By applying an initial restriction digest, the foreign 

DNA may subsequently be ligated into the vector.  Recombinant plasmids are then inserted into 

competent carrier cells such as E. coli.  Thereafter, cells are exposed to an appropriate antibiotic such 

as ampicillin for selection of transformed cells.  Only cells that carry the recombinant plasmid will be 

able to grow on media containing the antibiotic.  Clones can then be selected to confirm the presence 

of the correct target insert by colony PCR. 

1.4.4 Amplified ribosomal “DNA” restriction analysis 

Amplified Ribosomal “DNA” Restriction Analysis (ARDRA) involves amplification of the conserved 

16S rRNA gene with the use of specific primers that target this region.  Amplicons of the targeted 

regions are then digested with restriction enzymes.  Restriction enzymes have specific recognition 

sites (Roberts, 1976) and therefore the amplified gene regions are digested into varying fragment 

sizes.  These fragments are detected as different size bands on an agarose gel, thereby creating a 
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pattern unique to the amplicon and therefore representing that specific 16S rRNA region.  Each 

dissimilar pattern suggests a different operational taxonomic unit (OTU) (the term used to indicate an 

individual strain) or phylotype.  Sequence analysis of representative OTUs is then performed to 

establish phylogenetic relationships.  Although this technique is usually complemented with a probe 

hybridisation technique, Krakat et al. (2010
a
) verified the reliability of ARDRA by spiking 

experiments. 

 

1.4.5 Other culture independent techniques that can be used to assess diversity 

Other techniques that can be used to analyse diversity in environmental samples by targeting nucleic 

acids include an alternative target gene to the 16S rRNA gene.  For methanogenic Archaea and 

alternative target gene is the mcrA gene which codes for the terminal enzyme complex in the methane 

generation pathway.  Therefore this type of gene targeting is methanogen-specific (Luton et al., 

2002).  It was shown that the analysis of methanogen diversity via the 16S rRNA and mcrA gene 

regions were highly comparable (Luton et al., 2002; Kormas et al., 2008). 

Other culture independent techniques that can be used to assess diversity include Denaturing gradient 

gel electrophoresis (DGGE), Temperature gradient gel electrophoresis (TGGE), Terminal-restriction 

fragment length polymorphism (T-RFLP) and Fluorescence in situ hybridisation (FISH). 

DGGE is used to separate PCR amplified DNA via differential mobility through the denaturing 

gradient of the gel based on dissimilar G-C content of the sequences.  With DGGE, the chemical 

denaturing gradient compounds are usually urea and formamide.  The increasing denaturing gradient 

along the gel allows for the separation of double-stranded amplified DNA into single-stranded DNA, 

and the sequence becomes increasingly denatured as it passes throught the gel and comes to a stop 

when it is nearly fully denatured.  Therefore different sequences will be visualised at different 

positions on the gel (Spiegelman et al., 2005; Li et al., 2009).  TGGE works on the same principle as 

DGGE, except that the denaturing gradient is obtained through the use of heat (Li et al., 2009). 

T-RFLP is an adapted version of ARDRA, where fluorescently labeled PCR primers are used to 

amplify rDNA genes and restriction digestion is applied, resulting in a fluorescently labelled fragment 

(Spiegelman et al., 2005).  An automated scanner is then used to read the size and the intensity of the 

different restriction fragements.  Fluorescence in situ hybridisation detects the presence or absence of 

specific RNA sequences by using fluorescent labelled specific probes which bind only to parts of the 

ribosome that have a high degree of sequence similarity.  Thereafter, fluorescent microscopy can be 

used to locate the ribosome-bound fluorescent probe.  This technique is often used to compare 

genomes of two species to deduce evolutionary relationships. 

Since both the methanogenic and bacterial diversity were to be assessed in this study, appropriate 

primers specific to the 16S rRNA gene regions were chosen.  This was followed by construction of 

clone libraries, restriction digestion of the amplified 16S rRNA gene regions from selected clones and 
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sequencing of a respresentative from each phylotype.  Ramos et al. (2010) have shown that this 

combined methodology was advantageous since only a representative of each phylotype would 

require analysis and therefore decreased the sequencing effort required.  It was also demonstrated that 

the sequencing of one representative per phylotype was reliable by randomly selecting three clones 

with the same restriction pattern profile, the resulting sequences of which were identical (Ramos et 

al., 2010). 
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CHAPTER 2 

Materials and Methods 

 

2.1 Zebra faecal sample collection 

Samples of fresh zebra faeces (Equus quagga formerly Equus burchelli) were collected into sterile 

bags from the Queen Elizabeth Park, Pietermaritzburg, KwaZulu-Natal, South Africa in June and 

July.  These are the winter months in South Africa.  This is typically the dry season in the KwaZulu-

Natal region.  Samples were collected at least every two weeks, in the mornings before temperatures 

rose above 20˚C.  The number of samples that were collected per day depended on availability and the 

freshness of the sample and ranged between 1 and 3 samples.  The freshness of the wet weight 

samples was approximated by on-site temperature readings with a standard lab thermometer (cleaned 

prior to use with 70% ethanol) inserted into the faecal matter.  The samples were transported to the 

laboratory in a polystyrene box where pH-Fix test strips (Macherey-Nagel) were used to determine 

the pH of the sample.  

 

2.2 Quantification of selected Bacteria and fungi 

10 g of wet weight faecal sample was diluted in 90 ml of sterile saline solution (Oxoid Saline Tablets, 

1 tablet dissolved in 500 ml distilled water) in a Nerbe Plus (Germany) filter bag to achieve a particle-

free effluent in a 1:10 dilution (10
-1

) of substrate to total volume.  Further dilution in saline solution 

was carried out to obtain a decimal dilution series in the range of 10
-2

-10
-8

.  Thereafter, 100 µl of each 

decimal dilution was pipetted and spread plated under aseptic conditions on to solid media in triplicate 

unless otherwise stated.  After the required incubation times and conditions for each medium (as 

described below), the colony forming unit (CFU) counts were established for plates (ie: 

10 < CFUs < 300) for at least two neighbouring decimal dilutions.  The weighted mean was calculated 

where possible (ie: 10 < CFUs < 300).  Between 10 and 20 random colonies were microscopically 

examined by Gram stain. 

 

2.2.1 Viable heterotrophic Bacteria (Plate Count Agar (PCA)) 

Preparation of PCA: 5.0 g tryptone, 2.5 g yeast extract, 1.0 g glucose in 800 ml distilled H2O, adjusted 

to pH 7.0 (± 0.2).  Addition of 15.0 g agar, adjusted to a final volume of 1 L with distilled H2O.  

Medium autoclaved at 121˚C for 15 minutes, cooled to 50˚C prior to pouring plates.  Prepared 

medium was beige in colour (Martley et al., 1970).   

For the quantification of total aerobic heterotrophic Bacteria:  Medium was poured into sterile petri 

dishes and allowed to set.  Plates were inoculated by spread plating as described in 2.2.  Inoculated 

plates were aerobically incubated at 35˚C for 48 hours. 
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For the quantification of spore forming aerobic heterotrophic Bacteria: Plates were inoculated by 

spread plating using a second dilution series where the original 10
-1

 dilution was first heat treated at 

70˚C for 10 minutes and thereafter diluted in sterile saline solution to obtain a 10
-2

-10
-8

 dilution series.  

Inoculated plates were aerobically incubated at 35˚C for 48 hours. 

For the quantification of total and spore forming anaerobic Bacteria:  Both serial dilutions from above 

were further utilised for the inoculation of PCA (pour plating).  100 µl of the decimal dilution samples 

were aseptically added to empty petri dishes, 15 ml PCA kept at 45˚C was then added and the petri 

dishes were swirled in order to mix the sample and medium and allowed to set.  Plates were then 

anaerobically incubated in anaerobic jars at 35˚C for 48 hours.  An anaerobic environment was 

created using an anaerobic jar (Oxoid, SA) and the Oxoid Gas Generating Kit Anaerobic System 

(Oxoid, SA). 

All visible colonies that were present after the required incubation period were included in the final 

CFU value.  

 

2.2.2 Gram-negative lactose and non-lactose fermenting Bacteria (MacConkey with crystal 

violet (CV) agar) 

Preparation of MacConkey agar: 50 g of MacConkey agar with CV (Biolab Diagnostics, India) was 

added to 1 L distilled H2O and boiled until completely dissolved.  Medium autoclaved at 121˚C for 

15 minutes, allowed cooled to 50˚C prior to pouring plates.  Prepared medium was deep red in colour 

(MacConkey, 1905).  Plates were inoculated by spread plating using the decimal dilution samples as 

described under 2.2 and were incubated aerobically at 37˚C for 24 hours. 

 

2.2.3 Yeasts and moulds (Rose Bengal Chloramphenicol (RBC) agar)  

Preparation of RBC agar: 5.0 g mycological peptone, 10.0 g glucose, 1.0 g potassium dihydrogen 

phosphate, 0.5 g magnesium sulphate, 0.05 g rose bengal, 0.1 g chloramphenicol in 800 ml distilled 

water and heated to boiling point until completely dissolved and allowed to cool, adjusted to pH 7.2 

(± 0.2).  Addition of 15.5 g agar, adjusted to a final volume of 1 L with distilled H2O.  Medium 

autoclaved at 121˚C for 15 minutes, cooled to 50˚C prior to pouring plates.  Prepared medium was 

pinkish-red in colour (Jarvis, 1973).  Plates were inoculated by spread plating using the decimal 

dilution samples as described under 2.2 and were incubated aerobically in the dark at room 

temperature (22˚C) for 4 days. 

 

2.2.4 Clostridium spp. 

Clostridium spp. have been previously described as an important group of the Bacteria present in the 

gastrointestinal tract (Daly et al., 2001) and are known to contribute to hydrolysis, acidogenesis and 

acetogenesis in the anaerobic food chain.  Selective Clostridium solid media (Differential Clostridial 
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Agar (DCA) and Shahidi-Ferguson Perfringens (SFP) agar) were used to determine whether 

Clostridium would also be present as an important fermentative member of the Bacteria in the 

gastrointestinal tracts of zebra.  The decimal dilution samples used for the Clostridium quantification 

were prepared where the original 10
-1 

dilution was initially heat treated at 70˚C for 10 minutes before 

subsequent dilution.  

 

2.2.4.1 Differential Clostridial Agar (DCA) 

Preparation of DCA agar: 5.0 g tryptone, 5.0 g peptone from meat, 8.0 g meat extract, 1.5 g yeast 

extract, 1.0 g starch, 1.0 g glucose, 0.5 g L-cystein, 5.0 g sodium acetate, 1.0 g sodium sulphite, 0.7 g 

ammonium iron (III) citrate, 0.002 g resazurin in 800 ml distilled H2O, adjusted to pH 7.1 (± 0.2).  

Addition of 14 g agar, adjusted to a final volume of 1 L with distilled H2O.  Medium autoclaved at 

121˚C for 15 minutes, cooled to 50˚C prior to pouring plates.  Prepared medium was brown in colour 

(Weenk et al., 1991).  Plates were inoculated by spread plating 100 µl of heat treated decimal dilution 

samples and were then anaerobically incubated in anaerobic jars at 35˚C for 72 hours.  An anaerobic 

environment was created using an anaerobic jar (Oxoid, SA) and the Oxoid Gas Generating Kit 

Anaerobic System (Oxoid, SA).  If no visible colony growth was detected after 72 hours incubation, 

the plates were incubated for a further 72 hours. 

 

2.2.4.2 Shahidi-Ferguson Perfringens (SFP) agar  

Preparation of SFP agar: 15.0 g tryptose, 5.0 g yeast extract, 1.0 g ferric ammonium citrate, 1.0 g 

sodium metabisulfite in 800 ml distilled H2O, adjusted to pH 7.6.  Addition of 20 g agar, adjusted to a 

final volume of 950 ml with distilled H2O.  Medium autoclaved at 121˚C for 15 minutes and cooled 

to 50˚C.  30,000 units Polymyxin B sulphate, 0.012 g kanamycin sulphate and 50 ml of 50% egg yolk 

emulsion was aseptically added to the cooled medium and mixed well before pouring plates.  

Prepared medium was creamy-beige in colour (Shahidi & Ferguson, 1971).  100 µl of heat treated 

decimal dilution samples were used to inoculate plates by spread plating.  Inoculated plates were 

anaerobically incubated in anaerobic jars at 35˚C for 24 hours.  An anaerobic environment was 

created using an anaerobic jar (Oxoid, SA) and the Oxoid Gas Generating Kit Anaerobic System 

(Oxoid, SA).  If no visible colony growth was detected after 24 hours incubation, plates were 

incubated for a further 24 hours. 

 

2.3 Phenotypic confirmation of random colonies 

2.3.1 Gram stain technique 

Between 10 and 20 randomly selected colonies from each medium type were microscopically 

examined after performing a Gram stain as follows:  A sterile loop was used to transfer material from 

a colony to a drop of distilled H2O on a glass slide, mixed and allowed to air dry before passing the 
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slide through the Bunsen flame 2-3 times without directly exposing the dried film to the flame.  The 

slide was flooded with crystal violet for 1 minute and rinsed in a gentle stream of distilled H2O.  The 

slide was flooded with Lugol’s iodine for 1 minute and was rinsed with distilled H2O as before.  The 

slide was then flooded with 95% ethanol for 10 seconds and rinsed with distilled H2O.  Finally, the 

slide was flooded with safranin for 30 seconds, rinsed with distilled H2O, dried and examined by light 

microscopy.  E.coli and B. subtilis were used as Gram-negative and Gram-positive controls 

respectively.  

 

2.3.2 Malachite green stain technique 

Between 10 and 20 randomly selected colonies were microscopically examined after performing the 

malachite green stain to check for the presence of endospores.  A sterile loop was used to transfer 

material from a colony to a drop of distilled H2O on a glass slide, mixed and allowed to air dry.  The 

slide was placed over a steam bath and flooded with malachite green.  The slide was kept over the 

steam bath for 5 minutes and re-covering with malachite green as it evaporated.  The slide was then 

rinsed in a gentle stream of distilled H2O to remove excess stain.  Thereafter, the slide was flooded 

with safranin (counter stain) for 30 seconds, rinsed with distilled H2O, dried and examined by light 

microscopy. 

 

 

 

 

2.4 DNA extraction from zebra faeces  

Three approaches were employed for the extraction of genomic DNA from zebra faecal samples.  A 

manual approach, with two different sample pre-treatments, and a commercial kit were used in order 

to ascertain which type of approach would be best in the extraction of methanogenic DNA.  Only the 

commercial kit was used for the extraction of bacterial DNA. 

 

2.4.1 Commercial kit 

The ZR Soil Microbe DNA Kit
TM

 (Zymo Research, USA) was used for genomic DNA extraction 

according to the manufacturer’s protocol.  Extracted DNA was stored at -20˚C until further use. 

 

2.4.2 Manual approach 

Two procedures were employed for the initial treatment of faecal sample, followed by a single DNA 

extraction procedure according to Tang et al. (2008). 
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Pre-treatment A:  1.6 g (wet weight) faecal sample was aseptically added to 30 ml sterile 

ice-cold 50 mM phosphate-buffered saline (PBS) (Preparation of 50 mM PBS: 150 mM NaCl, 10 mM 

Na2HPO4, 20 mM NaH2PO4 in 800 ml distilled H2O, adjusted to pH 7.4 and a final volume of 1 L 

with distilled H2O, autoclaved at 121˚C for 15 minutes, stored at 4˚C) in a sterile 50 ml centrifuge 

tube and vortexed (Vortex-Genie, Scientific Industries) at maximum speed for 30 seconds.  The 

sample was centrifuged in an Avanti
®
 J-26 XPI Centrifuge (Beckman Coulter) at 500 x g for 

4 minutes at room temperature.  The supernatant was transferred to a new sterile centrifuge tube.  The 

resulting pellet was re-suspended in 30 ml PBS buffer, briefly vortexed and centrifuged again.  This 

procedure was repeated twice.  Combined supernatants were centrifuged at 9000 x g for 5 minutes.  

The supernatant was discarded, while the pellet was re-suspended in 4 ml Tris-EDTA (TE) buffer and 

stored at -20˚C until further use. (Preparation of TE Buffer: 10 ml 1 M Tris (pH 8.0) and 200 µl of 

0.5M Na2EDTA (pH 8.0) in 800 ml distilled H2O, mixed and adjusted to a final volume of 1 L with 

distilled H2O, autoclaved at 121˚C for 15 minutes, stored at room temperature.)  

 

Pre-treatment B:  1.6 g (wet weight) faecal sample was added to 10 ml sterile ice-cold 

50 mM PBS buffer (as above) in a sterile 50 ml centrifuge tube and homogenised by addition of 5 

sterile glass beads (5 mm in diameter) and vortexed at maximum speed for 3 minutes.  Thereafter, the 

sample was centrifuged at 400 x g for 2 minutes to remove both glass beads and larger particles from 

the sample.  The resulting suspension was transferred to a new sterile centrifuge tube.  Addition of 3 

volumes of 4% paraformaldehyde to the suspension was followed by incubation on ice for 1 hour.  

The cell suspension was centrifuged at 8000 x g for 3 minutes at room temperature.  The supernatant 

was discarded, while the pellet was re-suspended in 4 ml PBS buffer and mixed with 4 ml absolute 

ethanol and incubated at -20˚C for 20 minutes.  Thereafter, the sample was centrifuged at 8000 x g for 

3 minutes at room temperature and the pellet was re-suspended in 4 ml TE buffer (as above) and 

stored at -20˚C until further use. 

 

DNA extraction: Genomic DNA extraction was carried out on samples from both pre-

treatment A and pre-treatment B in parallel according to the method described by Tang et al. (2008) 

with modifications as specified below.  323.5 µl of pre-treated sample was transferred to a new sterile 

1.5 ml Eppendorf tube, centrifuged in a GenFuge 24D (Progen) bench-top centrifuge at 16,000 x g for 

10 minutes.  646.5 µl of pre-heated (at 65˚C in a water bath) cetyl trimethyl ammonium bromide 

(CTAB) extraction buffer was added and the mixture vortexed at maximum speed for 30 seconds. 

(Preparation of CTAB extraction buffer: 100 mM Tris-HCl, 2.0 M NaCl, 20 mM EDTA, 2% CTAB 

in 800 ml distilled H2O, adjusted to pH 8.0 and a final volume of 1 L with distilled H2O, autoclaved at 

121˚C for 15 minutes.) 
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10 µl (1%) polyvinylpyrrolidone (PVP) solution was added and vortexed at maximum speed for 30 

seconds, followed by the addition 20 µl (2%) β-mercaptoethanol (98% solution) and vortexed at 

maximum speed for 30 seconds.  The sample was incubated for 2 hours in a 65˚C water bath (the 

sample was mixed by inversion of the centrifuge tube every 15 minutes).  After incubation, the 

sample was centrifuged at 16,000 x g for 10 minutes.  The supernatant was transferred to a new sterile 

1.5 ml Eppendorf tube.   

An equal volume of chloroform:isoamyl alcohol (24:1, v/v) was added to the collected supernatant 

and centrifuged at 16,000 x g for 10 minutes.  Thereafter, the supernatant was transferred to a new 

sterile Eppendorf tube, an equal volume of chloroform added, and centrifuged at 16,000 x g for 

10 minutes at 4˚C.  The resulting supernatant was transferred to a new sterile Eppendorf tube, 

2 volumes of ice-cold absolute ethanol added, and incubated at -20˚C for 30 minutes.  Following 

centrifugation at 16,000 x g for 10 minutes at 4˚C, the supernatant was removed by pipetting. 

The remaining pellet was washed with ice-cold 70% ethanol.  The pellet was completely air dried 

(~ 30 minutes on benchtop), re-suspended in 50 µl sterile milli-Q H2O with added RNase (20 µg/ml, 

incubated at 37˚C for 30 minutes).  The DNA was stored at -20˚C until further use. 

 

2.4.3 Verification and analysis of genomic DNA extraction 

Genomic DNA extraction was verified on a 0.8% agarose gel (0.24 g molecular grade agarose in 

30 ml of 1 x Tris-Borate-EDTA (TBE) buffer).  (Preparation of 10 x TBE buffer: 108 g Tris, 55 g 

boric acid dissolved in 900 ml distilled H2O.  40 ml 0.5 M Na2EDTA (pH 8.0) was added and final 

volume adjusted to 1 L with distilled H2O, autoclaved at 121˚C for 15 minutes.  1 x TBE was 

prepared by adding 100 ml of 10 x TBE to 900 ml distilled H2O.) 

An O’GeneRuler 100 bp DNA Ladder (Fermentas, USA) was used as a molecular weight marker.  

For each sample that was loaded on the gel, 10 µl of sample was first mixed with 2 µl of 6x loading 

dye solution (Fermentas, USA) and then pipetted into the well.  The gel was run at 80 V for 90 

minutes.  The gel was post-stained in ethidium bromide (EtBr) solution (100 µg EtBr in 200 ml 1 x 

TBE buffer) and visualised under UV light. 

Spectrophotometer readings (BioRad SmartSpec
TM

Plus Spectrophotometer) of manual based DNA 

extractions were taken at the following wavelengths: A230, A260 and A280. 

 

2.5 Amplification of the 16S rRNA gene 

The 16S rRNA genes of methanogens and the 16S rRNA genes of Bacteria present in the faecal 

sample were amplified from extracted DNA using the commercial kit and the maunal based extraction 

using pre-treatment B.  (The manual based extraction using pre-treatment A was not used in further 

downstream applications.)   

 



51 

  
 

2.5.1 PCR parameters and primer pairs 

Polymerase chain reactions (PCRs) were carried out with the use of KAPATaq
TM 

HotStart 

(KAPABiosystems, South Africa) in a MultiGene
TM

 II Personal Thermal Cycler (Labnet 

International, Inc, USA).  Both component and cycling parameters for the amplification of 

methanogen and bacterial 16S rRNA genes (Tables 2.1 & 2.2) were used for all PCRs unless 

otherwise stated.  

The following primer pairs, obtained from Inqaba Biotechnical Industries (Pty) Ltd, (South Africa), 

were used for the amplification of the methanogen partial 16S rRNA genes (Krakat et al., 2010
a
) and 

bacterial partial 16S rRNA genes (Amann et al., 1990; Muyzer et al., 1995) respectively. 

 

 

i) Methanogen:        Forward: ARCH 69F (5’-YGAYTAAGCCATGCRAGT-3’) 

             Reverse: ARCH 915R (5’ TCGTCCCCCGCCAATTCCT 3’) 

ii) Bacteria:           Forward: EUB338F (5’ GCTGCCTCCCGTAGGAGT 3’) 

          Reverse: EUB907R (5’ AAACTCAAAGGAATTGAC 3’) 

 

Table 2.1: PCR master mix per reaction (for both Bacteria and methanogens)  

Component Final concentration Volume per reaction 

5x KAPATaq HotStart Buffer 1x 5 µl 

MgCl2 (25mM) 5 mM 5 µl 

dNTP mix (10mM each) 0.2 mM each dNTP 0.5 µl 

Forward primer (10µM) 0.1 µM 0.25 µl 

Reverse primer (10µM) 0.1 µM 0.25 µl 

KAPA DNA Polymerase (5units/µl)  0.625 units  0.125 µl 

Autoclaved MilliQ water  - 13.875 µl 

Total   25 µl 

 

A PCR master mix containing the above components was initially made and aliquoted (25 µl each) 

into PCR tubes.  Thereafter, 1 µl DNA samples were added to each tube before amplification.  Sterile 

water samples were employed as negative controls. 
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Table 2.2: Thermal cycling parameters used for PCR 

Step Temperature (˚C) Time  No. of cycles 

Initial denaturation 95 2 min 1 

Denaturation 95 30 sec   

Primer annealing*          

(methanogen) 53 60 sec 30 

(bacterial) 72  60 sec   

Extension 72 60 sec   

Final extension 72 5 min 1 

Resting 4 ∞  - 

* Primer annealing temperatures differed according to the primer pair utilised.  For the methanogenic primer 

pair an annealing temperature of 53˚C was used, whilst an annealing temperature of 72˚C was used for the 

bacterial primer pair.  

 

2.5.2 Verification and analysis of amplified 16S rRNA genes 

The presence and length of amplified 16S rRNA gene PCR products after PCR was verified on a 2% 

agarose gel (0.6 g molecular grade agarose in 30 ml 1 x TBE Buffer).  An O’GeneRuler™ 100 bp 

DNA Ladder (Fermentas, USA) was used as a molecular weight marker.  For each sample that was 

loaded on the gel, 3 µl of the PCR sample was mixed with 1 µl of 6x loading dye and then pipetted 

into the well.  The gel was run at 100 V for 30 minutes.  The gel was post-stained in EtBr solution for 

15 minutes as specified under 2.4.3 and visualised under UV light. 

 

2.6 Purification of amplified 16S rRNA gene PCR product 

Purification of the amplified 16S rRNA gene PCR product was carried out by use of the Wizard
®
 SV 

Gel and PCR Clean-Up System (Promega, USA) as per manufacturer’s instructions.  To verify the 

presence of the amplified product after purification, gel analysis was done as described under 2.5.2.  

 

2.7 Cloning 

A total of five clone libraries, 3 clone libraries based on amplified 16S rRNA genes of methanogens 

and 2 clone libraries based on the amplified 16S rRNA genes of Bacteria, were constructed as 

summarised in Table 2.3.  For each of the 5 clone libraries only one of two DNA extractions were 

used (commercial kit or manual based extraction using pre-treatment B).  After amplification of the 

16S rRNA gene regions (as described under 2.5) and ligation of PCR gene products into a high copy 

plasmid vector, two types of competent cells were used as described under 2.7.2.   
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Table 2.3: Summary of clone libraries constructed 

Clone 

Library DNA extraction Amplification primers Ligation Competent Cells 

Methanogen1 Commercial kit   ARCH 69F/ARCH 915R CloneJet Lucigen E. cloni 

Methanogen2 Commercial kit   ARCH 69F/ARCH 915R CloneJet CaCl2-E.coli ATCC 8739 

Methanogen3 Manual*  ARCH 69F/ARCH 915R CloneJet Lucigen E. cloni 

Bacterial1 Commercial kit   EUB 338F/ EUB 907R CloneJet Lucigen E. cloni 

Bacterial2 Commercial kit   EUB 338F/ EUB 907R CloneJet Lucigen E. cloni 

* = The manual based extraction using pre-treatment B was used for DNA extraction. 

 

2.7.1 Preparation of ligation mixture 

The amplified 16S rRNA gene PCR products were ligated into the high copy plasmid vector 

pJET1.2/BLUNT with the use of the CloneJet
™

 PCR Cloning Kit (Fementas, USA) according to 

manufacturer’s instructions with the following amendments:   

 2 µl of purified PCR product was used instead of 1 µl.   

 The mixture was not vortexed in order to prevent shearing of the PCR product.  Instead the 

Eppendorf tube was gently inverted to mix contents.   

 Final incubation of the ligation mixture was extended to 30 minutes at room temperature (22-

25˚C).   

 

2.7.2 Transformation of competent cells and selection of clones 

Two types of competent cells were employed, laboratory prepared competent cells using the calcium 

chloride method and the commercially available E. cloni
®
 Chemically Competent Cells (Lucigen 

Corporation, USA).  Commercially available E. cloni
®
 Chemically Competent Cells were utilised 

with 4 of the prepared ligation mixtures, while laboratory prepared competent cells were utilised with 

a single preparation of the ligation mixture (Table 2.3). 

 

 

2.7.2.1 Preparation of competent cells by the calcium chloride method 

Day 1:  10 ml of Luria-Bertani (LB) medium was inoculated with E. coli ATCC 8739 and cultured in 

a shaking incubator (250 rpm) at 37˚C overnight.  (Preparation of LB medium: 10 g tryptone, 

5 g yeast extract, 10 g sodium chloride in 800 ml distilled H2O, adjusted to pH 7.0 and a final volume 

of 1 L with distilled H2O.  Medium was autoclaved at 121˚C for 15 minutes.) 

Day 2:  25 ml of LB medium was inoculated with 1 ml of an E.coli (ATCC 8739) overnight culture 

and was allowed to grow in a shaking incubator (250 rpm) at 37˚C to an OD578 = 1.  Culture was 

transferred to a sterile 50 ml centrifuge tube and thereafter all procedures were performed on ice with 
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chilled apparatus.  A pellet was obtained by centrifugation (5 minutes, 5000 rpm, 0˚C).  The 

supernatant was discarded and cells were re-suspended in 10 ml chilled 50 mM CaCl2-solution and 

incubated on ice for 30 minutes, centrifuged again, supernatant discarded and the pellet re-suspended 

in 0.5 ml chilled 50 mM CaCl2-solution.  Competent cells were stored in an ice-bath in the refrigerator 

for at least 12 hours prior to use. 

 

Transformation of E. Cloni
®
 Chemically Competent Cells was carried out according to the 

manufacturer’s instructions with the following amendments: 

 The ligation mixture was heat treated at 70˚C for 5 minutes according to the CloneJet
™

 PCR 

Cloning Kit Protocol. 

 2.5 µl of ligation reaction was added to 50 µl competent cells on ice. 

 900 µl of room temperature Recovery Medium was added to the cells and incubated at 37˚C. 

 Transformed cells were plated on LB agar containing ampicillin. (LB agar was prepared as 

described for LB medium as above with the addition of 15 g agar before autoclaving.  

Medium cooled to 50˚C, 2 ml of sterile filtered ampicillin stock solution (50 mg/ml) was 

added and mixed prior to pouring plates.)  

Transformation of competent cells prepared by the calcium chloride method was carried out as 

follows:  50 µl of competent cells were added to a chilled reaction tube.  2.5 µl of ligation mixture 

was added and mixed gently by pipette.  Cells were transformed for 30 minutes in an ice-bath.  Heat 

shock was applied for 45 seconds at 42.5˚C and thereafter the suspension was immediately returned to 

the ice-bath.  900 µl of LB-ampicillin medium was added to the transformed cells and incubated in a 

shaking incubator (250 rpm) for 90 minutes at 37˚C and 100 µl samples of the suspension were then 

plated onto LB-ampicillin agar and incubated at 37˚C overnight.   

After overnight incubation at 37˚C, plates were checked for the presence of colonies.  For each clone 

library (Table 2.3), one hundred colonies grown on LB-ampicillin agar were randomly selected and 

sub-cultured on LB-ampicillin agar at 37˚C overnight.    

  

2.7.3 Verification of presence of 16S rRNA inserts in plasmid vector by colony PCR 

After overnight incubation of sub-cultured colonies, a colony suspension for each colony was 

prepared by submerging material from the colony in 100 µl sterile distilled H2O and vortexing at 

maximum speed for 10 minutes.  The PCR master mix (Table 2.1) was prepared and aliquoted into 

PCR reaction tubes.  Primer pairs, which allowed for amplification of 16S rRNA vector insert, were 

as follows:  

 

Methanogen clone libraries: 

 Forward: ARCH 69F (5’ YGAYTAAGCCATGCRAGT 3’) 
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 Reverse: ARCH 915R (5’ TCGTCCCCCGCCAATTCCT 3’) 

Bacterial clone libraries: 

 pJET1.2 Forward Primer, 23-mer (5’-CGACTCACTATAGGGAGAGCGGC-3’) 

 pJET1.2 Reverse Primer, 24-mer (5’-AAGAACATCGATTTTCCATGGCAG-3’) 

(The pJET1.2 primer pair was provided with CloneJet
™

 PCR Cloning Kit (Fermentas, USA)) 

 

1 µl of each colony suspension was added to aliquoted master mix and was amplified according to 

parameters described in Table 2.2 with the following amendment:  

 The pJET1.2 primer pair was used for the bacterial clone libraries.  This primer pair had an 

annealing temperature of 60˚C. 

Thereafter, PCR products were analysed by running samples on a 2% agarose gel at 80 V for 2 hours.  

An O’GeneRuler™ 100 bp DNA Ladder (Fermentas, USA) was used as a molecular weight marker.  

For each sample that was loaded on the gel, 3 µl of sample was mixed with 1 µl of 6x loading dye and 

then pipetted into the well.  The gel was post-stained in EtBr solution for 15 minutes (as described 

under 2.4.3) and visualised under UV light. 

 

 

2.8 Amplified ribosomal “DNA” restriction analysis 

Colonies containing inserts of the expected size (ie: 800-900 base pairs for methanogens and 600-700 

base pairs for Bacteria) were considered positive clones and were further evaluated by restriction 

digestion of the amplified 16S rRNA gene.   

 

2.8.1 Restriction digestion of cloned 16S rRNA genes 

Two restriction enzymes, FastDigest
®
 HinP1I (Hin6I) (Fermentas, USA) and FastDigest

®
 HaeIII 

(BsuRI) (Fermentas, USA) were used for digestion according to manufacturer’s protocol with the 

following amendments: 

 0.5 µl of each enzyme solution was used instead of 1 µl. 

 Incubation at 37˚C was carried out for 1 hour instead of 5 minutes. 

 After incubation at 37˚C, the reaction was immediately transferred to ice to stop enzymatic 

activity. 

 

2.8.2 Phylotype analysis  

After enzymatic digestion, products were run on a 2.5% gel at 80 V for 2.5 - 3 hours.  An 

O’GeneRuler™ 100 bp DNA Ladder (Fermentas, USA) was used as a molecular weight marker.  For 
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each sample that was loaded on the gel, 15 µl of sample was mixed with 3 µl of 6x loading dye and 

then pipetted into the well.  The gel was post-stained in EtBr solution for 15 minutes (as described 

under 2.4.3) and visualised under UV light. 

For each sample, restriction patterns were analysed on agarose gel.  From these patterns, samples with 

identical patterns were grouped as a single phylotype.  A representative of each phylotype was 

sequenced (Inqaba Biotechnologies (Pty) Ltd, South Africa).  The sequences were aligned using 

CLUSTAL W and compared to those of known methanogenic and bacterial species from GenBank.  

Phylogenetic evolutionary analysis was conducted for each clone library using MEGA version 5.2 

(Tamura et al., 2011).  The trees were constructed using the Neighbour-Joining (Saitou & Nei, 1987) 

and Maximum Likelihood based on the JTT matrix-based model (Jones et al., 1992) methods (1000 

replicates) and evolutionary distances were computed using the p-distance method. 

 

 

 

2.8.3 Rarefaction analysis and indices of species diversity 

Rarefaction analysis of both the methanogen and bacterial clone libraries was performed to determine 

whether the number of clones picked for each microbial population were sufficient to give a reliable 

reflection of the microbial population diversity.  Rarefaction curves were constructed using the Mao 

Tau values from output data obtained from Estimate S Version 8.2 (Colwell, 2009).  Chao-1, Shannon 

and Simpson indexes of diversity were also calculated using Estimate S.  
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CHAPTER 3 

Results 

 

3.1 Collection of zebra faecal samples 

On-site temperature readings of wet weight zebra faeces ranged from 26˚C to 35˚C, whilst pH 

readings ranged from 6-8.  Samples collected on two occasions were used for further analysis as these 

samples were considered to be the freshest and the most suitable since the temperature (33˚C and 

35˚C) of these samples best reflected the environment of the gastrointestinal tract.   

 

3.2 Quantification of selected micro-organisms from zebra faecal samples 

Media for target micro-organisms were inoculated with serially diluted sample solutions and 

incubated according to specific conditions for each medium.  After incubation, colonies that were 

formed on the plates were macroscopically (size, colour, shape) evaluated.  Microscopic analysis of at 

least 20 randomly selected colonies was conducted after performing staining techniques as descibed in 

section 2.3.  Colony formation on representative agar plates are shown in Figures 3.1 – 3.4.  The data 

for the quantification of target micro-organisms in zebra faeces are summarised in Table 3.1. 
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3.2.1 Viable heterotrophic Bacteria 

Plate Count Agar (PCA) was used under four different conditions (as described in 2.2.1) to quantify 

viable heterotrophic Bacteria in the zebra faecal sample as A) aerobic, B) aerobic spore forming, 

C) anaerobic and D) anaerobic spore forming Bacteria as shown in Figure 3.1.   

 

 

Figure 3.1:  Representative PCA plates inoculated with the decimal dilutions of zebra faecal 

sample showing distinct colonies for A) aerobic, B) aerobic spore forming, C) anaerobic and 

D) anaerobic spore forming viable heterotrophic Bacteria. 

Three types of colonies were detected for aerobic conditions, 1) creamish-white, circular colonies 

with irregular edges, colonies were 6-12 mm in diameter 2) yellow, circular colonies with a smooth, 

shiny surface which were 3-6 mm in diameter 3) white, circular colonies with a smooth, shiny surface 

which were 2-4 mm in diameter.  Aerobic spore forming bacterial colonies were 5-10 mm in 

diameter, creamish-beige in colour and circular with irregular edges.  An apparently high proportion 

of the colonies that were visualised exhibited Bacillus-like morphology (motile, Gram-positive rods, 

endospore positive). 

Colonies formed on plates under anaerobic conditions were 3-8 mm in diameter, beige in colour and 

circular, with a smooth and shiny surface, while anaerobic spore forming bacterial colonies were 0.5-

2 mm in diameter, circular and cream in colour.  The edges and surface of all colonies were smooth.  
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Microscopic analysis of randomly selected colonies showed that these colonies were Gram-positive 

rods (Gram stain) and endospore positive (malachite green stain).   

 

3.2.2 Gram-negative lactose and non-lactose fermenting Bacteria 

MacConkey agar was used to evaluate the presence of Gram-negative Bacteria in the zebra faecal 

sample.  Because this medium contains the pH indicator neutral red, further distinction could be made 

between Gram-negative Bacteria that can or cannot ferment lactose.  Gram-negative lactose 

fermenting Bacteria will form pink colonies while Gram-negative non-lactose fermenting Bacteria 

will form opaque colonies. 

 

Figure 3.2: Representative MacConkey agar plate (A) inoculated with the decimal dilutions of 

zebra faecal sample showing distinct Gram-negative lactose fermenting and non-fermenting 

(circled in white) bacterial colonies. 

As shown in Figure 3.2, two distinct colony types were present after 24 hours incubation at 37˚C.  

Pink colonies (Gram-negative lactose fermenting Bacteria) that were 2-6 mm in diameter formed on 

the plate.  These colonies were circular with a raised margin.  The surface of each colony was smooth 

and shiny.  Gram staining confirmed that cells from pink colonies were Gram-negative rods. 

Larger, opaque colonies (Gram-negative non-lactose fermenting Bacteria) that were 7-8 mm in 

diameter were also present on the plate.  These colonies were also circular with a raised margin.  The 

surface of each colony was smooth. Gram staining confirmed that cells from opaque colonies were 

Gram-negative rods.  

3.2.3 Presumptive sulphite reducing clostridia 

Differential Clostridial Agar (DCA) and Shahidi-Ferguson Prefringens (SFP) agar plates were used to 

evaluate the presence of sulphite reducing clostridia in the zebra faecal sample.  Sulphite reducing 

clostridia produce sulphide from sulphite and will give a black precipitate since iron is present in the 

medium and therefore presumptive clostridia colonies formed on both media are expected to appear 

black in colour. 
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Figure 3.3: Representative DCA plate (A) inoculated with the decimal dilutions of zebra faecal 

sample showing sulphite reducing black colonies (circled in black). 

Only a few distinct black colonies were visible on DCA plates after 6 days incubation at 35˚C under 

anaerobic conditions inoculated with the lowest dilution of faecal sample (10
-1

) after numerous 

attempts.  Colonies were circular, 2-3 mm in diameter and were black in colour.  The surface of each 

colony was shiny and smooth.  Microscopic evaluation of black colonies showed these colonies to be 

Gram-positive rods (Gram stain) and endospore positive (malachite green stain). 

SFP agar plates inoculated with decimal dilutions were checked for colony formation after incubation 

for 48 hours at 35˚C under anaerobic conditions.  No growth was observed on any of the plates after 

numerous attempts. 

 

 

 

 

 

 

3.2.4 Yeast and moulds 

Rose Bengal Chloramphenicol (RBC) agar was used for the enumeration of fungi (yeast and mould) 

in the zebra faecal sample.  Because rose bengal is incorporated into the cell, yeast colonies will 

appear pink in colour and mould will grow as filamentous colonies with shades of pink on the reverse. 
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Figure 3.4: Representative RBC Agar plate (A) inoculated with the decimal dilutions of zebra 

faecal sample showing distinct yeast colonies (circled in black). 

The uptake of rose bengal dye from the agar by the yeast colonies resulted in the colonies appearing 

pink in colour.  Colonies were circular, 2-5 mm in diameter with a slight opaque zone surrounding 

each colony, while the margin appeared convex.  The surface of each colony was shiny and smooth.  

Microscopic analysis of random pink colonies confirmed that cells of these colonies were spherical 

yeast cells (presence of a nucleus) with a cell diameter of 5-7 µm. 

  

 

 

 

 

 

 

 

 

Table 3.1: Calculated colony forming units (CFUs) per gram of zebra faecal sample for selected 

micro-organisms 
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#:g refers to gram (wet weight) 

The colony forming units (CFUs) as mentioned in 2.2 were established via weighted mean where 

possible (Table 3.1).  Plate count agar (PCA) was used to establish counts for both total aerobic and 

anaerobic heterotrophic Bacteria.  As expected, the CFU/g of zebra faecal sample for total anaerobic 

Bacteria (2.45 x 10
9
/g) was greater than the CFU/g of zebra faecal sample for total aerobic Bacteria 

(7.51 x 10
8
/g).  Following heat treatment of decimal dilutions of zebra faecal sample as described in 

2.2.1, quantification of spore forming heterotrophic Bacteria formed on PCA was possible.  Here, as 

with the total viable counts, the CFU/g of zebra faecal sample for anaerobic spore forming Bacteria 

(1.57 x 10
8
/g) was greater than aerobic spore forming Bacteria (1.74 x 10

6
/g).  From this data it could 

be established that spore forming heterotrophic Bacteria found in the zebra faecal sample made up 

<1% and 6.4% of the total aerobic and anaerobic heterotrophic Bacteria respectively.  MacConkey 

(MC) agar was used to establish the CFU/g for Gram-negative Bacteria in the zebra faecal sample.  

The CFU/g of zebra sample for Gram-negative lactose fermenting Bacteria was established as 9.6 x 

10
6
/g, while the CFU/g for Gram-negative non-lactose fermenting Bacteria was <100/g.  Yeast counts 

established with Rose Bengal Chloramphenicol (RBC) agar was 8.4 x 10
6
/g, while there was no 

detectable growth of moulds on the plates.  The CFU/g for presumptive sulphite reducing Clostridium 

spp. (DCA) was <100/g. 

 

 

 

 

TARGET ORGANISM MEDIUM CFU/g#

Moulds RBC Not detected

Presumptive sulphite reducing 

clostridia
DCA <100

Yeasts RBC 8.4 x 106

Gram-negative lactose 

fermenting Bacteria

MC(pink 

colonies)
9.6 x 106

Gram-negative non-lactose 

fermenting Bacteria

MC(opaque 

colonies
<100

Anaerobic heterotrophic 

Bacteria
PCA 2.45 x 109

Anaerobic spore forming 

heterotrophic Bacteria
PCA 1.57 x 108

Aerobic heterotrophic Bacteria PCA 7.51 x 108

Aerobic spore forming 

heterotrophic Bacteria
PCA 1.74 x 106
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3.3 DNA extraction from zebra faeces 

DNA was isolated from zebra faeces using a commercial kit extraction procedure and a manual 

extraction procedure with two differing pre-treatments as described in 2.4.  Successful DNA 

extraction from the zebra faecal sample using the commercial kit is shown in Figure 3.5.  No 

spectophotometric analysis was carried out for the kit DNA extraction since column particles from the 

kit interferes with these measurements. 

 

 

Figure 3.5:  Gel electrophoresis showing extracted genomic DNA from zebra faecal sample 

using the commercial ZR Microbe Soil Kit.  Lane 1 = O’GeneRuler™ 100 bp DNA Ladder (100 base 

pairs – 1000 base pairs.)  Lane 2 = Negative control.  Lane 3 = Extracted genomic DNA visible in well. 

 

Gel electrophoresis of the extracted DNA from manual based extraction procedures showed no visible 

bands (figure not shown).  This indicated that no or little DNA was extracted using the manual 

extraction procedures.  Spectrophotometric analysis was carried out to check for the presence of 

extracted DNA, the values of which are summarised in Table 3.2.  
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Table 3.2:  Spectrophotometric analysis of quality of DNA obtained from manual based 

extractions 

Extraction A230 A260 A280 A260/A230 A260/A280 

MA1 1.00 0.45 0.31 0.45 1.48 

MA2 1.04 0.63 0.43 0.61 1.47 

MB1 1.76 1.41 1.11 0.80 1.27 

MB2 1.46 0.96 0.75 0.66 1.29 

MA1, MA2 = Manual extraction using pre-treatment A in duplicate.  MB1, MB2 = Manual extraction using pre-

treatment B in duplicate. 

 

All manual extractions, regardless of the pre-treatment used, showed that DNA was extracted.  

However, the purity of the isolated DNA was not within the ideal value range according to the 

calculated A260/A230 and A260/A280 ratios where values of >2 and >1.7 respectively are indicative 

of high purity DNA (Yeates et al., 1998).  This was expected since faecal sample material is a highly 

complex organic substrate containing many inhibitors (Tang et al., 2008) and relatively low DNA 

yields are usually obtained (Yu & Morrison, 2004).  Only MA2 and MB1 were utilised for 

downstream applications and will subsequently be referred to as MA and MB respectively.    

 

3.4 Amplification of the partial 16S rRNA gene 

Amplified partial methanogenic (Figure 3.6) and bacterial (Figure 3.7) 16S rRNA gene products were 

analysed by gel electrophoresis and detected under UV light after staining with ethidium bromide. 

A size of approximately 860 base pairs was expected for the amplified partial methanogenic 

16S rRNA gene products (Westphal et al., 2007).  A distinct band between 800 and 900 base pairs 

was visible for amplified 16S rRNA gene products from both the commercial kit extraction procedure 

(Figure 3.6 lane 2) and the manual extraction procedure that was preceded by pre-treatment B (Figure 

3.6 lane 3).  No distinct band was visible for the manual extraction procedure that was preceded by 

pre-treatment A (Figure 3.6 lane 4).  

This result demonstrates that both the commercial kit procedure and manual extraction procedure that 

was preceded by pre-treatment B were successful in extracting methanogenic DNA from the zebra 

faecal sample, whereas the manual extraction procedure that was preceded by pre-treatment A was not 

successful.  This result suggests the importance of a bead beating technique for the release of 

methanogenic DNA from the faecal samples, since beads were common to both the commercial kit 

and the manual extraction preceded by pre-treatment B, while the manual extraction preceded by pre-

treatment A did not employ a bead based technique.  

 



65 

  
 

 

Figure 3.6: Gel electrophoresis showing amplified partial methanogenic 16S rRNA gene 

products by PCR from extracted DNA employing both the commercial and manual based 

extraction procedures.  Lane 1, 5 = O’GeneRuler™ 100 bp DNA Ladder (100 base pairs – 1000 base pairs.)  

Lane 2 = Amplified partial methanogenic 16S rRNA gene product of DNA extracted with commercial ZR Soil 

Microbe DNA Kit.  Lane 3 = MB (Amplified partial methanogenic 16S rRNA gene product of diluted (1:10) 

DNA extracted using the manual extraction procedure preceded by pre-treatment B.  Lane 4 = MA (Amplified 

partial methanogenic 16S rRNA gene product of diluted (1:10) DNA extracted using the manual extraction 

procedure preceded by pre-treatment A). 

 

 

 

 

 

As expected, bands exhibiting a size between 400 and 500 base pairs were visible for the amplified 

partial bacterial 16S rRNA gene products from DNA extracted with the commercial kit procedure 

(Figure 3.7 lane 2) and the positive control (Figure 3.7 lane 3).  This result demonstrates that the 

commercial kit procedure was successful in extracting bacterial DNA from the zebra faecal sample. 
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Figure 3.7: Gel electrophoresis showing amplified partial bacterial 16S rRNA gene products by 

PCR from extracted DNA employing the commercial ZR Soil Microbe DNA Kit.  Lane 1 = 

O’GeneRuler™ 100 bp DNA Ladder (100 base pairs – 1000 base pairs.)  Lane 2 = Amplified partial bacterial 

16S rRNA gene products of DNA extracted with commercial ZR Soil Microbe DNA Kit.  Lane 3 = Positive 

control of amplified partial 16S rRNA gene product of B. subtilis DNA extracted by freeze-thaw.  Lane 4 = 

Negative control. 

 

3.5   Selection of clones following cloning and colony PCR 

As previously described in 2.7, five clone libraries were constructed.  To verify the presence of the 

partial 16S rRNA inserts in the plasmid vector, 10 randomly selected colonies from both methanogen 

clone library 1 and bacterial clone library 1 were used for amplification of the partial 16S rRNA gene 

(colony PCR) and thereafter analysed by gel electrophoresis under UV light (Figure 3.8 and Figure 

3.9). 
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Figure 3.8:  Representative gel electrophoresis showing PCR amplification of partial 16S rRNA 

gene vector inserts of 10 randomly selected colonies from methanogen clone library 1 using 

primer pair ARCH 69F/ARCH 915R.  Lane 1 = O’GeneRuler™ 100 bp DNA Ladder (100 base pairs – 

1000 base pairs.)  Lanes 2-11 =  Randomly selected clones 3, 9, 18, 20, 23, 29, 33, 39, 48 & 50 respectively.   

 

For colonies selected from methanogen clone library 1, the detection of PCR amplicons between 800-

900 base pairs was considered a positive sample (a clone carrying a methanogenic partial 16S rRNA 

gene insert).  The absence of detectable PCR amplicons (ie: no visible band) was considered a 

negative sample (a clone carrying no methanogenic partial 16S rRNA gene insert).  In Figure 3.8, 

samples 3, 18, 20, 23, 29, 33 & 50 (lanes 2, 4, 5, 6, 7, 8 and 11) had visible bands between 800-900 

base pairs and were therefore considered positive samples, whereas samples 9, 39 & 48 (lanes 3, 9 & 

10) formed no visible band between 800-900 base pairs and were therefore considered negative 

samples.  Thereafter, a total of 100 colonies from each of the three methanogen clone libraries were 

selected for verification of a partial methanogenic 16S rRNA gene insert.  Only positive clones were 

subsequently used for amplified ribosomal “DNA” restriction analysis (ARDRA).  
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Figure 3.9: Representative gel electrophoresis showing PCR amplification of partial 16S rRNA 

gene vector inserts of 10 randomly selected colonies from bacterial clone library 1 using primer 

pair pJET1.2For-23-mer/pJET1.2Rev-24-mer. Lane 1 = O’GeneRuler™ 100 bp DNA Ladder (100 base 

pairs – 1000 base pairs).  Lanes 2-11 =  Randomly selected clones 4, 6, 8, 9, 12, 13, 14, 16, 20 & 23 

respectively.     

 

The expected size of the amplified products for bacterial clone library 1 was between 600-700 base 

pairs (size of amplified partial bacterial 16S rRNA gene plus the multiple cloning site).  Amplified 

products with a band size between 600 and 700 base pairs were considered to be from a positive 

colony.  However, amplified products with a band size of approximately 150 base pairs were 

considered a negative sample as the multiple cloning site of the plasmid would still be amplified in the 

absence of an insert to yield a product of 150 base pairs. 

In Figure 3.9, samples 9, 12 & 20 (lanes 5, 6 & 10) had visible bands in the 600-700 base pair region 

and were therefore considered positive samples.  Samples 4, 6, 8, 13, 14, 16 & 23 (lanes 2, 3, 4, 7, 8, 9 

& 11) showed bands in the 150 base pair region and were therefore considered as negative samples.  

Thereafter, a total of 100 colonies from each of the two bacterial clone libraries were selected for 

verification of a partial bacterial 16S rRNA gene insert.  Only positive clones were subsequently used 

for amplified ribosomal “DNA” restriction analysis (ARDRA).  
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3.6 Amplified ribosomal “DNA” restriction analysis 

Amplified partial 16S rRNA gene inserts of positive clones for methanogenic and bacterial clone 

libraries were then digested with the two restriction enzymes Hin6I and BsuRI as suggested by Krakat 

et al. (2010
a
), resulting in unique band patterns for each positive clone.  Each unique pattern indicates 

a different operational taxonomic unit (OTU) (the term used to indicate an individual strain) or 

phylotype.  Colonies that were verified as positive in Figure 3.8 (methanogen clone library 1) were 

further analysed.  Patterns of the digested product were detected by gel electrophoresis under UV light 

as shown in Figure 3.10. 

 

Figure 3.10: Representative gel electrophoresis showing restriction digest patterns of partial 

amplified 16S rRNA gene products from randomly selected positive clones from methanogen 

clone library 1 using restriction enzymes Hin6I and BsuRI.  Lane 1 = O’GeneRuler™ 100bp DNA 

Ladder (100 base pairs – 1000 base pairs.) Lanes 3-8 = Samples 3, 18, 20, 23, 29, 33 & 50 respectively. 

Samples 3, 20, 29, 33 & 50 (lanes 2, 4, 6, 7 & 8) show identical band patterns (ringed in blue, bands at 

100, 170, 225 base pairs) and can therefore be grouped together as a single phylotype, while samples 

18 & 23 (lanes 3 & 5, with bands at <100, 150, 200, 320 base pairs for sample 18 and bands at 100, 
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170, 225, 380 for sample 23) show different band patterns and can each be considered as a different 

phylotype (ringed in red and green respectively). 

 

Table 3.3:  Summary of number of positive clones assigned to a specific phylotype for each clone 

library 

Clone Library M1 M2 M3 B1 B2 

Positive clones / phylotype 76 / 16 53 / 13 49 / 9 52 / 16  53 / 12  

M1, M2, M3 = methanogen clone library 1, 2 and 3 respectively.  B1, 2 = bacterial clone library 1 and 2 

respectively. 

 

Table 3.3 summarises the number of positive clones that were assigned to a specific phylotype for 

each of the clone libaries constructed.  For the three methanogen clone libraries, 76 positive clones 

from methanogen clone library 1 were assigned to 16 phylotypes, 53 positive clones from methanogen 

clone library 2 were assigned to 13 phylotypes and 49 positive clones from methanogen clone library 

3 were assigned to 9 phylotyes.  For the two bacterial clone libraries, 52 positive clones from bacterial 

clone library 1 were assigned to 16 phylotypes and 53 positive clones from bacterial clone library 2 

were assigned to 12 phylotypes.  A total of 178 positive clones from methanogen clone libraries 1, 2 

& 3 were assigned to 25 phylotypes and 105 positive clones from bacterial clone libraries 1 & 2 were 

assigned to 24 phylotypes (Table 3.4).  A representative of each phylotype was sequenced. 
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Table 3.4:  Band Patterns for each identified methanogen and bacterial phylotype 

Phylotype Band Sizes (base pairs) Phylotype Band Sizes (base pairs) 

MA 100, 170, 225 BA 100, 200 

MB 375, 500 BB 100, 225, 320 

MC 100, 225, 475 BC 100, 225 

MD 50, 100, 400 BD 200, 250, 400 

ME <100, 150, 200, 320 BE 120, 250 

MF 100, 170, 225, 380 BF 100, 150, 375 

MG <100, 160, 250 BG 250, 375 

MH 150, 225, 280 BH 300, 350 

MI 100, 150, 200 BI 275, 350 

MJ 100, 160, 600 BJ 160, 200, 275 

MK <100, 100, 200, 500 BK 150, 200 

ML 160, 200, 250 BL 150, 180, 225 

MM 100, 160 BM 180, 200 

MN <100, 700 BN 120, 160 

MO 250, 330 BO 140, 160 

MP <100, 100, 150, 250, 400 BP 200, 300 

MQ 140, 160, 225 BQ 100, 150 

MR <100, 200, 550 BR 250 

MS 100, 180, 400 BS <100, 120, 250 

MT 100, 170, 500 BT <100, 160 

MU 160, 225, 300 BU 140, 250 

MV <100, 160, 300 BV <100 X2, 100, 250 

MW <100, 150, 250, 350 BW <100, 100, 250 

MX 100, 180 BX 100, 250 

MY <100, 250, 350 

  Methanogen phylotypes = MA-MY.  Bacterial phylotypes = BA-BX 

. 

 

 

 

 

 

 

The sequencing results for each phylotype from the methanogen clone libraries were compared to 

sequences in GenBank by using the NCBI BLAST search algorithm, the results of which are 

summarised below. 
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Table 3.5: Clones assigned to a specific phylotype for methanogen clone library 1

 GenBank accessed: 14/11/2013 

 

In methanogen clone library 1, 76 positive clones were assigned to 16 phylotypes.  Table 3.5 outlines 

the nearest known or unknown Archaea to which each phylotype had the greatest sequence similarity 

from BLAST searches.  Four phylotypes (MA, MB, MF and MM) had a 99% sequence similarity to 

Methanobrevibacter gottschalkii strain PG.  These four phylotypes represented the majority (69.7%) 

of positive clones (53 out of 76) in methanogen clone library 1.  The remaining 12 phylotypes (23 

positive clones) showed between 82 – 99% sequence similarity to uncultured archaeon clones, of 

which phylotype ME represented 43.5% (10 out of 23). 

 

Table 3.6: Clones assigned to a specific phylotype for methanogen clone library 2

 GenBank accessed: 14/11/2013 

 

In methanogen clone library 2, 53 positive clones were assigned to 13 phylotypes.  Table 3.6 outlines 

the nearest known or unknown Archaea to which each phylotype had the greatest sequence similarity 

Phylotype
No. Of 

clones

% of Clone 

Library
Nearest known and uncultured Archaea

% Sequence 

Similarty

MA 46 60.5 Methanobrevibacter gottschalkii  strain PG 99

MB 1 1.3 Methanobrevibacter gottschalkii  strain PG 99

MC 1 1.3 Uncultured archaeon clone GHLW-A59 98

MD 1 1.3 Uncultured archaeon clone arc93 93

ME 10 13.1 Uncultured Methanomicrobiales archaeon clone 17-1F 96

MF 5 6.6 Methanobrevibacter gottschalkii  strain PG 99

MG 1 1.3 Uncultured archaeon clone GHLW-A59 98

MH 2 2.6 Unidentified methanogen ARC25 99

MI 1 1.3 Uncultured archaeon clone ma77 90

MJ 2 2.6 Uncultured archaeon clone sy-904231058-87-i 83

MK 1 1.3 Uncultured archaeon clone WN-FWA-8 82

ML 1 1.3 Uncultured archaeon clone A0-260405-109F-32 85

MM 1 1.3 Methanobrevibacter gottschalkii  strain PG 99

MN 1 1.3 Uncultured archaeon clone sy-904231058-87-i 84

MO 1 1.3 Uncultured archaeon clone ER2_11 82

MP 1 1.3 Uncultured archaeon clone A0-260405-109F-32 84

M1 M2 M3

Phylotype No. Of clones
% of Clone 

Library
Nearest known and uncultured Archaea

% Sequence 

Similarty

MA 34 64.1 Methanobrevibacter gottschalkii  strain PG 99

ME 6 11.3 Uncultured Methanomicrobiales archaeon clone 17-1F 96

MH 1 1.9 Unidentified methanogen ARC25 99

MK 1 1.9 Uncultured archaeon clone WN-FWA-8 82

MQ 2 3.8 Uncultured archaeon clone A0-080607-344Fa-b3 89

MR 1 1.9 Uncultured archaeon clone ER2_11 83

MS 1 1.9 Methanobrevibacter gottschalkii  strain PG 99

MT 1 1.9 Uncultured archaeon clone 081030-OL-KR13:7I:1 91

MU 1 1.9 Uncultured archaeon clone MC118_31D15 83

MV 2 3.8 Uncultured archaeon clone K09_0_17 93

MW 1 1.9 Uncultured archaeon clone sy-904231058-87-i 83

MX 1 1.9 Methanobrevibacter gottschalkii  strain PG 99

MY 1 1.9 Uncultured archaeon clone ER2_11 82
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from BLAST searches.  Three phylotypes (MA, MS and MX) had a 99% sequence similarity to 

Methanobrevibacter gottschalkii strain PG.  These three phylotypes represented the majority (67.9%) 

of positive clones (36 out of 53) in methanogen clone library 2.  The remaining 10 phylotypes (17 

positive clones) showed between 82 – 99% sequence similarity to uncultured archaeon clones, of 

which phylotype ME represented 35.3% (6 out of 17). 

 

Table 3.7: Clones assigned to a specific phylotype for methanogen clone library 3

 GenBank accessed: 14/11/2013 

 

In methanogen clone library 3, 49 positive clones were assigned to 9 phylotypes.  Table 3.7 outlines 

the nearest known or unknown Archaea to which each phylotype had the greatest sequence similarity 

from BLAST searches.  Four phylotypes (MA, MB, MF and MX) had a 99% sequence similarity to 

Methanobrevibacter gottschalkii strain PG.  These four phylotypes represented the majority (77.5%) 

of positive clones (38 out of 49) in methanogen clone library 3.  The remaining 5 phylotypes (11 

positive clones) showed between 82 – 98%  sequence similarity to uncultured archaeon clones, of 

which phylotype ME represented 63.6% (7 out of 11). 

To assess the distribution of each phylotype across the three methanogen clone libraries, the data from 

Tables 3.5 – 3.7 are graphically presented below. 

 

 

Figure 3.11:  Distribution of phylotypes between methanogen clone libraries.  

M1-M3 = Methanogen clone libraries 1-3.  

The clones assigned to phylotype MA formed the primary phylotype group across all three 

methanogen clone libraries (M1 = 60.5%, M2 = 64.1% and M3 = 71.4%).  This phylotype exhibited 

Phylotype No. Of clones
% of Clone 

Library
Nearest known and uncultured Archaea

% Sequence 

Similarty

MA 35 71.4 Methanobrevibacter gottschalkii  strain PG 99

MB 1 2 Methanobrevibacter gottschalkii  strain PG 99

ME 7 14.3 Uncultured Methanomicrobiales archaeon clone 17-1F 96

MF 1 2 Methanobrevibacter gottschalkii  strain PG 99

MG 1 2 Uncultured archaeon clone GHLW-A59 98

MN 1 2 Uncultured archaeon clone sy-904231058-87-i 84

MV 1 2 Uncultured archaeon clone K09_0_17 93

MX 1 2 Methanobrevibacter gottschalkii  strain PG 99

MY 1 2 Uncultured archaeon clone ER2_11 82
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99% sequence similarity to Methanobrevibacter gottschalkii strain PG.  Phylotype ME, which 

exhibited 96% sequence similarity to an uncultured Methanomicrobiales archaeon clone, also formed 

a distinct phylotype group across all methanogen clone libraries (M1 = 13.1%, M2 = 11.3%, M3 = 

14.3%).   

However, as mentioned above, certain phylotypes in each methanogen clone library exhibited an 

equal sequence similarity to the same known or unknown Archaea. (ie: in methanogen clone library 1, 

phylotypes MA, MB, MF and MM all had a 99% sequence similarity to Methanobrevibacter 

gottschalkii strain PG.)  Because these phylotypes were identical, they were grouped together to give 

a corrected distribution of the different phylotypes for each clone library (Figure 3.12).   

 

 

 

Figure 3.12:  Corrected distribution of phylotypes between methanogen clone libraries.  

M1-M3 = Methanogen clone libraries 1-3.  

The corrected distribution of phylotypes showed that the majority of the clones that were assessed in 

each clone library were affiliated with Methanobrevibacter gottschalkii (M1 = 69.7%, M2 = 67.9% 

and M3 = 77.5%).  A large proportion of clones (M1 = 13.1%, M2 = 11.3%, M3 = 14.3%) were 

affiliated with an uncultured Methanomicrobiales archaeon clone.  These results indicate that the 

three clone libraries are structurely comparable despite differing DNA extraction methods 

(methanogen clone library 1 & 3), differing clone numbers (M1 = 76, M2 = 53, M3 = 49) and the two 

different types of competent cells used (methanogen clone library 1 & 2). 

 

The sequencing results for each phylotype from the bacterial clone libraries were compared to known 

sequences in GenBank by using the NCBI BLAST search algorithm, the results of which are 

summarised below. 

Table 3.8: Clones assigned to a specific phylotype for bacterial clone library 1 
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GenBank accessed: 14/11/2013 

In bacterial clone library 1, 52 positive clones were assigned to 16 phylotypes.  Table 3.8 outlines the 

nearest known taxon to which each phylotype had the greatest sequence similarity from BLAST 

searches.  Six phylotypes (BA, BB, BD, BG, BH and BI) had a 99% sequence similarity to Bacillus 

spp.  These six phylotypes represented the majority (69.2%) of positive clones (36 out of 52) in 

bacterial clone library 1.  The remaining 10 phylotypes (16 positive clones) showed between 84 – 

94% sequence similarity to known taxa. 

 

Table 3.9: Clones assigned to a specific phylotype for bacterial clone library 2 

GenBank accessed: 14/11/2013 

 

In bacterial clone library 2, 53 positive clones were assigned to 12 phylotypes.  Table 3.9 outlines the 

nearest known taxon to which each phylotype had the greatest sequence similarity from BLAST 

searches.  Two phylotypes (BG and BH) had a 99% sequence similarity to Bacillus sp. FSL h8526.  

Phylotype
No. Of 

clones

% of Clone 

Library
Nearest Valid Taxon

% Sequence 

Similarty

BA 3 5.8 Bacillus  sp. FSL h8526 99

BB 1 1.9 Bacillus odysseyi  strain 3P01SB 99

BC 2 3.8 Treponema maltophilum  strain BR 94

BD 1 1.9 Bacillus  sp. S7-3 99

BE 1 1.9 Chryseobacterium daecheongense  strain CPW406 88

BF 1 1.9 Blautia schinkii  strain B 93

BG 17 32.7 Bacillus  sp. FSL h8526 99

BH 13 25 Bacillus  sp. FSL h8526 99

BI 1 1.9 Bacillus  sp. S7-3 99

BJ 4 7.7 Holdemania filiformis  strain J1-31B-1 87

BK 2 3.8 Desulfitibacter alkalitolerans  strain sk.kt5 91

BL 1 1.9 Holdemania filiformis  strain J1-31B-1 87

BM 1 1.9 Succiniclasticum ruminis  strain DSM 9236 92

BN 1 1.9 Gluconacetobacter europaeus  strain DESII 84

BO 1 1.9 Prevotella dentalis  strain ES2772 84

BP 2 3.8 Shuttleworthia satelles  strain VPI D143k-13 93

Phylotype
No. Of 

clones

% of Clone 

Library
Nearest Valid Taxon

% Sequence 

Similarty

BC 1 1.9 Treponema maltophilum  strain BR 94

BG 11 20.7 Bacillus  sp. FSL h8526 99

BH 12 22.6 Bacillus  sp. FSL h8526 99

BJ 3 5.7 Holdemania filiformis strain  J1-31B-1 87

BQ 1 1.9 Gluconacetobacter europaeus  strain DESII 84

BR 1 1.9 Clostridium orbiscindens  strain 265 96

BS 7 13.2 Prevotella dentalis  strain ES2772 85

BT 1 1.9 Gluconacetobacter europaeus  strain DESII 84

BU 4 7.5 Holdemania filiformis  strain J1-31B-1 87

BV 2 3.8 Prevotella dentalis strain  ES2772 85

BW 1 1.9 Prevotella dentalis  strain ES2772 85

BX 9 17 Prevotella dentalis  strain ES2772 85



76 

  
 

These two phylotypes represented the majority (43.4%) of positive clones (23 out of 53) in bacterial 

clone library 2.  The remaining 10 phylotypes (30 positive clones) showed between 84 – 96% 

sequence similarity to known taxa. 

 

 

To assess the distribution of each phylotype across the two bacterial clone libraries, the data from 

Tables 3.8 and 3.9 are graphically presented below. 

 

Figure 3.13:  Distribution of phylotypes in bacterial clone libraries.  B1-B2 = Bacterial clone 

libraries 1-2.  

The clones assigned to phylotypes BG and BH formed the primary phylotype groups across both 

bacterial clone libraries (B1 = 32.7% and 25% respectively, B2 = 20.7% and 22.6% respectively).  

Both these phylotypes exhibited 99% sequence similarity to Bacillus sp. FSL h8526.  These two 

phylotypes accounted for >40% of the total clones in both bacterial libraries. 

As with the methanogen clone libraries, certain phylotypes showed identical sequence similarity to 

the same taxon and were therefore grouped together to give a corrected distribution of the different 

phylotypes for each clone library (Figure 3.14).   
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Figure 3.14:  Corrected distribution of phylotypes in bacterial clone libraries.  B1-B2 = Bacterial 

clone libraries 1-2.  

The corrected distribution of phylotypes showed that the majority of the clones that were assessed in 

both bacterial clone library were affiliated with Bacillus sp. FSL h8526 (B1 = 63.5%, B2 = 43.3%).  

This result indicates that the two bacterial clone libraries are comparable.  A great proportion of 

clones (35.9%) in bacterial clone library 2 were affiliated with Prevotella dentalis strain ES2772.   

 

3.7 Phylogenetic analysis 

To assess phylogenetic relationships for the clones representing methanogens and Bacteria in the 

differnent clone libraires, MEGA Version 5.2 (Tamura et al., 2011) was used to create phylogenetic 

trees for each clone library as discussed in 2.8.2. 

For the three individual methanogen clone libraries (Figure 3.15 –Figure 3.17), phylotypes MA, MB, 

MF, MM, MS and MX (127 clones of 178 clones) grouped with Methanobrevibacter gottschalkii.  

These phylotypes represented 70.7% of all methanogen clones.  Phylotype ME (23 clones of 178 

clones) grouped with an uncultured Methanomicrobiales clone in each tree, while the remaining 

phylotypes (29 clones of 178 clones) grouped with the uncultured archaeon clones to which they had 

showed 82 – 99% sequence similarity in Table 3.5 – Table 3.7. 

For the bacterial clone libraries (Figure 3.18 and Figure 3.19), phylotypes BA, BB, BD, BG, BH and 

BI (59 clones of 105 clones) grouped with Bacillus species.  These phylotypes represented 56% of all 

bacterial clones.  The other bacterial phylotypes grouped with the micro-organisms to which they 

showed 84 – 96% sequence similarity in Table 3.8 and table 3.9. 
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Figure 3.15: Phylogenetic relationships within the methanogenic Archaea for methanogen clone 

library 1.  Methanogenic Archaea sequences for the unrooted neighbour-joining tree were obtained from 

GenBank.  Methanogenic Archaea referenced Methanogen A – P were representative of all phylotypes that were 

identified in the zebra faecal sample for methanogen clone library 1.  The tree was constructed according to 

specifications indicated in 2.8.2.  The scale bar indicates 5 nucleotide changes per 100 nucleotides. 
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Figure 3.16: Phylogenetic relationships within the methanogenic Archaea for methanogen clone 

library 2. Methanogenic Archaea sequences for the unrooted neighbour-joining tree were obtained from 

GenBank.  Methanogenic Archaea referenced Methanogen A – Y were representative of all phylotypes that 

were identified in the zebra faecal sample for methanogen clone library 2.  The tree was constructed according 

to specifications indicated in 2.8.2.  The scale bar indicates 5 nucleotide changes per 100 nucleotides. 
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Figure 3.17: Phylogenetic relationships within the methanogenic Archaea for methanogen clone 

library 3. Methanogenic Archaea sequences for the unrooted neighbour-joining tree were obtained from 

GenBank.  Methanogenic Archaea referenced Methanogen A – Y were representative of all phylotypes that 

were identified in the zebra faecal sample for methanogen clone library 3. The tree was constructed according to 

specifications indicated in 2.8.2.  The scale bar indicates 5 nucleotide changes per 100 nucleotides. 

 

The tree topologies for the three different methanogen clone libraries were similar using the 

neighbour-joining method.  When the alternative maximum likelihood method was used to construct 

phylogenetic trees (Appendix), the tree topologies were also similar and each phylotype still grouped 

with the known or unknown Archaea to which they showed the highest sequence similarity.  This 

indicates that the three clone libraries are a reliable reflection of the methanogen diversity in the 

sampled zebra faeces. 
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Figure 3.18: Phylogenetic relationships within Bacteria for bacterial clone library 1.  Bacteria 

sequences for the unrooted neighbour-joining tree were obtained from GenBank.  Bacteria referenced 

Bacterium A – P were representative of all phylotypes that were identified in the zebra faecal sample for 

bacterial clone library 1.  The tree was constructed according to specifications indicated in 2.8.2.  The scale bar 

indicates 2 nucleotide changes per 100 nucleotides. 
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Figure 3.19: Phylogenetic relationships within Bacteria for bacterial clone library 2.  Bacteria 

sequences for the unrooted neighbour-joining tree were obtained from GenBank. Bacteria referenced Bacterium 

C – X were representative of all phylotypes that were identified in the zebra faecal sample for bacterial clone 

library 2.  The tree was constructed according to specifications indicated in 2.8.2.  The scale bar indicates 2 

nucleotide changes per 100 nucleotides. 

 

The tree topologies for both of the bacterial clone libraries were similar using the neighbor-joining 

method. When the alternative maximum likelihood method was used to construct phylogenetic trees 

(Appendix), the tree topologies were also similar and each phylotype still grouped with the known 
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taxon to which they showed the highest sequence similarity.  This indicates that the clone libraries are 

a reliable reflection of the bacterial diversity in the sampled zebra faeces. 

 

3.8 Rarefaction analysis and indexes of species diversity 

Rarefaction analysis for both the methanogen clone libraries and the bacterial clone libraries were 

performed to determine whether the number of clones selected for evaluation were a sufficient 

number to give a reliable representation of the diversity of microbial population of the faecal sample.  

 

 

Figure 3.20: Rarefaction curves of the methanogen clone libraries (MCL1; MCL2; MCL3 = 

Methanogen clone libraries 1-3.) 

The rarefaction analysis for the three methanogen clone libraries indicates that there was insufficient 

sampling.  This was confirmed by comparison of Chao-1 calculations (Table 3.10) and from the 

number of phylotypes assigned to each clone library (MCL1 = 16 phylotypes; MCL2 = 13 phylotypes 

and MCL3 = 9 phylotypes).  The diversity of methanogen clone library 1 was the highest of the three 

clone libraries as estimated by Shannon and Simpson’s reciprocal indexes (Table 3.10). 
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Figure 3.21: Rarefaction curves of bacterial clone libraries. (BCL1; BCL2 = Bacterial clone libraries 

1-2.) 

The rarefaction analysis for the two bacterial clone libraries indicates that an insufficient number of 

clones were sampled for bacterial clone library 1.  This was confirmed by comparison of Chao-1 

calculations (Table 3.10) and the number of phylotypes assigned to this clone library (BCL1 = 16 

phylotypes).  The rarefaction curve for bacterial clone library 2 indicates that an almost sufficient 

number of clones were sampled as a representation of the zebra faecal sample as the rarefaction 

curve approached saturation and this was confirmed by comparison of Chao-1 calculations (Table 

3.10) and the number of phylotypes assigned to bacterial clone library (BCL2 = 12 phylotypes).  The 

diversity of bacterial clone library 2 was the higher of the two clone libraries as estimated by Shannon 

and Simpson’s reciprocal indexes (Table 3.10). 

  

Table 3.10 Chao-1, Shannon and Simpson’s Reciprocal calculations 

Clone Library MCL1 MCL2 MCL3 BCL1 BCL2 

Chao-1 34 25 23 31 17 

Shannon Index 1.56 1.45 0.99 2.10 2.09 

Simpson's Reciprocal Index 2.60 2.38 1.83 5.66 7.36 
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CHAPTER 4 

Discussion 

 

Collection of zebra faecal samples 

Many studies have investigated the microbial diversity of the gastrointestinal tract (GIT) of ruminant 

herbivores (Wright et al., 2004; Wright et al., 2007; Lwin et al., 2012; St-Pierre & Wright, 2012; de 

Oliveira et al., 2013).  Investigation of the microbial diversity of the GIT of herbivorous monogastric 

animals have however in large been carried out in horses (Mackie & Wilkins, 1988; Daly et al., 2001; 

Yamano et al., 2008) with few studies investigating their wildlife counterparts (Nelson et al., 2003; 

Ley et al., 2008).  Animal faecal matter, which contains the intestinal microbia, has been long used as 

a source to study the diverse microbial community of the gastrointestinal tract (Zhang et al., 2006; 

Tang et al., 2008).  Although de Oliveira et al. (2013) recently showed that there was high variation in 

the microbial community between the faecal and rumen samples of a single Brazilian Nelore steer, 

faecal matter still remains a popular sample source used to study the microbial community of the 

gastrointestinal tract of animals (Ley et al., 2008; Tang et al., 2008; Yamano et al., 2008; Mao et al., 

2011).  The purpose of this study was to therefore investigate the microbial diversity of the GIT of 

zebras, a monogastric herbivore that is closely related to horses, using faecal matter as a sample 

source. 

Zebra faecal samples collected from the Queen Elizabeth Park were analysed for freshness by on-site 

temperature readings.  Temperature values ranged between 26˚C and 35˚C, with fresher samples 

exhibiting the higher temperature values (between 30˚C and 35˚C).  This range of temperature values 

was expected as it is in close accordance with the normal body temperature associated with zebras 

which averages between 37˚C – 38˚C (Fuller et al., 2000).  However, it is important to note that slight 

changes in faecal sample temperature could be attributed to environmental conditions.  Elements such 

as air temperature, humidity and direct exposure to sunlight would contribute to both the temperature 

and moisture content of the sample.   

 

Culture based quantitative analysis of selected micro-organisms 

An initial particle-free dilution of the zebra faecal sample (substrate) was obtained through use of 

Nerbe Plus filter bags.  The presence of a filter division within the filter bag permitted for the addition 

of solid substrate to saline solution on one side and the collection of effluent that was free of larger 

solid particles on the other side of the filter bag.  This subsequently allowed for preparation of a 

dilution series as an inoculation of the various media. 

Plate count agar (PCA) is a non-selective, general purpose agar that was used to evaluate the total 

bacterial count of the faecal sample.  Enzymatic digests of casein (tryptone) provided amino acids and 

other complex nitrogenous compounds while yeast extract and glucose supplied B-complex vitamins 

and an energy source respectively, all of which are necessary to support bacterial growth.  Both the 
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total aerobic and anaerobic bacterial populations were assessed.  As mentioned previously, samples 

were also heat treated to assess the viable aerobic and anaerobic spore forming Bacteria.  As 

expected, the analysis of the zebra faecal sample revealed that colony forming units for viable 

heterotrophic anaerobic Bacteria (2.45 x 10
9
/g) were about 3-fold higher than those of viable 

heterotrophic aerobic Bacteria (7.51 x 10
8
/g).  The number of colony forming units for spore forming 

heterotrophic anaerobic Bacteria (1.57 x 10
8
/g) was also greater than the number of colony forming 

units for spore forming heterotrophic aerobic Bacteria (1.74 x 10
6
/g) in the zebra faecal sample.  

While spore forming aerobic heterotrophic Bacteria only contributed to <1% of the total viable 

aerobic Bacteria in the faecal sample, a greater proportion (6.4%) of the viable anaerobic 

heterotrophic Bacteria were spore forming.     

In a study investigating the anaerobic bacterial community of eleven grass fed horses (Mackie & 

Wilkins, 1988) it was found that proteolytic Bacteria composed a high proportion of the total 

culturable Bacteria in the ruminal fluid taken from different locations in the gastrointestinal tract.  

The colony counts of total culturable anaerobic Bacteria in the cecum of horses (Mackie & Wilkins, 

1988) was 2.5 x 10
9
/gram of gut content which is comparable to 2.45 x 10

9
/gram of faecal matter for 

anaerobic heterotrophic Bacteria that was calculated for zebra faeces in this study.  In another study, 

Sorlini et al. (1988) showed that cattle had a considerably higher anaerobic bacterial count of 3 x 

10
11

/gram of dry weight faeces. In a more recent study, Al-Shadeedi et al. (2012) determined the total 

bacterial counts in the faeces of zoo animals.  Carnivorous animals were found to have a higher 

bacterial count than ponies and ruminants. 

MacConkey’s agar was utilised for the quantification of Gram-negative Bacteria from the sampled 

zebra faeces, while the growth of Gram-positive Bacteria was expected to be inhibited due to the 

presence of both crystal violet and bile salts in the medium.  By using this medium, which contains 

the pH indicator neutral red and the disaccharide lactose, it is also possible to differentiate between 

lactose fermenting and non-lactose fermenting Gram-negative Bacteria (Mossel et al., 1962).  Gram-

negative lactose fermenting Bacteria utilise the medium’s lactose and in the process will produce an 

acidic end-product.  This results in a colour change of the neutral red to pink and formed colonies will 

appear pink in colour.  These colonies are typically coliform Bacteria which include the genera 

Escherichia, Klebsiella, Enterobacter, Hafnia and Citrobacter of the family Enterobacteriaceae.  

With Gram-negative non-lactose fermenting Bacteria, there is no fermentation of lactose and 

therefore the formed colonies will appear opaque in colour.  These colonies are typically non-coliform 

Bacteria and may include species from the genera Proteus, Salmonella and Shigella of the family 

Enterobacteriaceae (Mossel et al., 1962; March & Ratnam, 1986).   

Inoculation of MacConkey agar plates with diluted zebra faecal samples resulted in the cultivation of 

numerous pink coloured colonies and only a few opaque colonies.  Microscopic analysis confirmed 

that both colony types were Gram-negative rods.  Enumeration of Gram-negative lactose fermenting 

bacterial colonies (pink colonies) was possible with colony forming units established at 9.6 x 
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10
6
/gram of faecal sample, while colony forming units of Gram-negative non-lactose fermenting 

Bacteria were <100 per gram in the zebra faecal sample.  A study by Clauss et al. (2008) reported the 

colony forming units of Enterobacteriaceae formed on MacConkey agar inoculated with decimal 

dilutions of faecal sample from a captive black rhinoceros (Diceros bicornis) fed on a conventional 

diet of  grass and lucerne hay.  It was found that the number of colony forming units was 9.5 x 10
6
/g 

of fresh rhinoceros faeces, which is comparable to the colony forming units per gram of zebra faecal 

sample found in this study.  The principle type of colony formed on MacConkey agar in this study 

was pink in colour, which is indicative of coliform Bacteria including E. coli.  Yukikiko et al. (1999) 

established that E. coli was the major coliform bacterium in foals with colonisation of the intestine 

occurring as early as three days.  

Quantification of clostridia in the faecal sample was attempted by use of two selective media, namely 

Differential Clostridial agar (DCA) and Shahidi-Ferguson Perfringens (SFP) agar.  Both media were 

inoculated with heat-treated dilutions of faecal sample.  Clostridia produce spores that are able to 

withstand harsh environmental conditions including extremely high temperatures (Nakamura & 

Converse, 1967) of up to 120˚C.  By heat-treating the samples at 70˚C for 10 minutes, most vegetative 

cells would have been destroyed.  However, heat resistant spores would still be present and spore 

germination would proceed after tolerable conditions had been re-established.  Because clostridia are 

obligate anaerobes, the inoculated agar plates were incubated under oxygen-free conditions in 

anaerobic jars.     

Differential clostridial medium, developed by Gibbs and Freame in 1965, is supplemented with starch 

which promotes spore germination after heat treatment.  It also contains peptones, beef extract and 

yeast extract that provide the nutrients and co-factors that are required for the growth of clostridia.  

Ferric ammonium citrate is included to detect sulphite reduction.  Sulphite reducing Clostridium spp. 

produce sulphide from sulphite and will give a black precipitate when iron is present in the medium 

(Kawabata, 1980), therefore clostridia colonies will appear black in colour.  Resazurin is used as a 

redox-indicator and the agar will turn from brownish-red to colourless when suitable anaerobic 

conditions are met.  Differential clostridial medium promotes the growth of several Clostridium 

species including C. perfringens, C. bifermentans and C. sporogenes. 

After 6 days of anaerobic incubation, growth was only observed on one of the plates that had been 

inoculated with samples from the lowest dilution factor (10
-1 

dilution).  The few visible colonies (<10 

distinct colonies) were black in colour, indicating that sulphite reduction did occur.  Gram staining 

was performed on the colonies that were present.  The cells of the Gram stained colonies were Gram-

positive rods, typical of clostridia with this staining technique.        

Shahidi-Ferguson Perfringens (SFP) agar was also used for the detection of clostridia present in the 

zebra faecal samples.  This selective and differential medium was initially developed for both the 

quantification and identification of Clostridium perfringens in food samples (Shahidi & Ferguson, 

1971).  The agar contains sodium metabisulfite and ferric ammonium citrate which both display the 
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hydrogen peroxide producing ability of Clostridium perfringens, while the addition of egg yolk 

exhibits the generation of lecithinase (Shahidi & Ferguson, 1971).  Typically, clostridia will produce 

black colonies on this agar. 

After the recommended 24 hour anaerobic incubation period, no growth was viewed on the SFP agar 

plates.  A further 24 hour anaerobic incubation period still did not yield growth in the form of black 

colonies.  It was noted by Shahidi & Ferguson (1971) that the SFP agar promoted the black colony 

growth of seven Clostridia species namely C. perfringens, C. bifermentans, C. botulinum, C. 

parabotulinum, C. sporogenes, C. novyi and C. haemolyticum, all of which are capable of hydrogen 

peroxide and lecithinase production.  As no growth was observed on SFP agar in this study, it may be 

assumed that the few colonies that formed on DCA did not belong to these above mentioned species, 

although it is important to note that the SFP agar plates were incubated for a much shorter time than 

the DCA plates.  

Both the analysis based on selective media and the data from later molecular analysis, where only a 

single clone from the bacterial clone libraries showed a 96% sequence similarity to Clostridium 

orbiscindens, suggest that Clostridium species do not appear to be abundant in the microbial 

population in the zebra faecal sample and therefore do not play a significant role in digestion in 

the zebra gastrointestinal tract.  This indicates possibly that anaerobic spore forming Bacteria 

(CFU = 1.57 x 10
8
/g zebra faeces) other than Clostridium species are responsible for fermentation in 

the gastrointestinal tract of zebra.  However, it is also possible that if Clostridium species were present 

in the zebra faeces that they were not sulphite reducing Clostridium species, and that the DNA 

extraction methods that were employed in this study were not effective in releasing DNA of 

Clostridium species from the faecal sample.  

Daly et al. (2001) identified cluster XIVa of the Clostridiaceae (to which many cellulolytic clostridia 

species belong) as comprising 37% of sequenced clones generated from equine large intestine samples 

and therefore identifying this cluster as a central cellulolytic group in the gastrointestinal tract of 

horses.  Although Yamano et al. (2008) recognised low percentage G+C Gram-positive (LGCGP) 

Bacteria as a main phylum in horse faeces, only two out of a total 104 sequenced clones could be 

assigned to a specific Clostridium species, with a majority of clones not corresponding to known 

sequences with similarity values of less than 90%.  Other studies (Donaldson & Palmer, 1999; 

Bacciarini et al., 2003) have associated high Clostridium species counts, namely for C. perfringens 

and C. difficile, with intestinal disease in horses, where alteration in the intestinal flora structure in 

horses with colic might assist in Clostridium species proliferation (Donaldson & Palmer, 1999). 

Rose Bengal Chloramphenicol (RBC) agar is a selective medium used for the quantification of fungi 

(yeasts and moulds) (Smith & Dawson, 1944).  The inclusion of both rose bengal and 

chloramphenicol inhibits the growth of Gram-positive and Gram-negative Bacteria.  Uptake of rose 

bengal dye by the growing yeast colonies means that these colonies will appear pink in colour, while 
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moulds will grow as filamentous colonies (Gamble & Orcutt, 1951).  Distinct pink yeast colonies 

formed on RBC agar inoculated with the zebra faecal dilution series.  Random colonies were also 

positively identified by microscopic evaluation where yeast cells appeared as large and spherical or 

oval in shape.  No mould growth was visible on the plates. 

The colony forming units for yeasts was calculated at 8.4 x 10
6
/g of zebra faecal sample, which was 

considerably lower than that of total Bacteria (aerobic and anaerobic) of 3.2 x 10
9
/g of zebra faecal 

sample.  Lin et al. (1997) suggested that the eukaryotic population density in the gastrointestinal tract 

was typically lower than that of the prokaryote population.  Al-Shadeedi et al. (2012) found that the 

prevalence of total Bacteria in zoo animals faeces (including bears, lions, ponies, camels and deer) 

were almost 3-fold higher than the total fungi count in all animals, with ponies and ruminant animals 

exhibiting higher fungi (yeasts and moulds) counts than the other animals.  Lund (1974) showed that 

in bovine rumen, yeast counts increased to 1.3 x 10
5
 per ml of rumen fluid depending on the type of 

feed the animal received.  In a study investigating yeasts in caecal contents (van Uden et al., 1958) 

only about half of the 252 horses examined showed the presence of yeasts. 

Anaerobic fungi, which include yeasts, are recognised as facilitators of plant degradation by either 

direct disruption of plant biomass or through interaction with cellulose degrading Bacteria present in 

the gastrointestinal tract (Bernalier et al., 1992; Lin et al., 1997).  In a study by Procházka et al. 

(2012) there was a 4 – 22% biogas yield increase after the addition of rumen fungi isolated from cow 

and deer faeces and rumen fluid into an anaerobic reactor containing pig slurry and energy crops. 

  

DNA extraction 

The choice of DNA extraction and purification procedures are widely considered as one of the most 

important steps in determining the microbial diversity present in environmental samples when 

molecular techniques are applied.  The method chosen for DNA extraction can influence both the 

quantity and quality (Thakuria et al., 2009) of the DNA extracted which may subsequently manipulate 

further downstream molecular techniques and consequently result in biased interpretations regarding 

microbial diversity of the sample (Thakuria et al., 2009).  

A wide variety of methodologies have been described for the initial lysis of the cellular envelope to 

release nucleic acids from cells.  This variety reflects the differences of cellular envelope composition 

among micro-organisms (van Huynh, 2008).  An efficient extraction method, especially in the case of 

methanogenic DNA (Leitner et al., 2011) is required in order to extract adequate amounts of DNA.  

Two extraction methods, a commercially available kit and a method developed by Tang et al. (2008) 

for isolation of DNA from faeces, were assessed to determine whether the method utilised impacted 

on the quantity and quality of recovered DNA, and if so, establish which method was more suitable in 

yielding high quantity and quality DNA from the zebra faecal sample.       

Firstly, the commercially available ZR Soil Microbe DNA Kit (Zymo Research) was utilised.  The 

manufacturers state that the kit may be used to simply and effectively isolate tough-to-lyse bacterial, 
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fungal or protozoal high quality DNA that is free of humic acid contaminants by use of a bead beating 

spin column.  Mechanical disruption of the cellular envelope by bead beating is considered as an 

efficient and consistently superior method for the release of nucleic acids from cells (Yeates et al., 

1998; Thakuria et al., 2009).     

DNA extraction with the kit was considered successful as a bright band was observed in the well 

loaded with isolated DNA on an agarose gel viewed under UV light.  Because the isolated DNA 

remained in the well after a 90 minute run at 80 V, it may be assumed that the extracted DNA was of 

a high molecular weight (above 1 Kb in size).  Spectrophotometric analysis of the DNA recovered 

from the kit extraction was not performed as the isolated DNA may have contained kit extraction 

particles from the procedure that would interfere with the readings.  

The second methodology used for nucleic acid recovery was developed by Tang et al. (2008) for the 

isolation of PCR-quality DNA from pig faeces.  The procedure employs two pre-treatments, one of 

which includes the use of glass beads and polyformaldehyde, followed by a common extraction 

protocol.  The procedure makes use of CTAB for denaturation of proteins (Tang et al., 2008), while 

the inclusion of PVP for the removal of possible co-precipitating inhibitors eliminates the utilisation 

of hazardous reagents such as phenol.   

Both manual extraction pre-treatments were carried out in duplicate.  No band was visible on an 

agarose gel loaded with isolated DNA, although spectrophotometric analysis confirmed the presence 

of DNA at a wavelength of 260nm.  Both the A260/A230 and A260/A280 ratios were below 2 and 1.7 

respectively, which are the ideal values expected for high purity DNA (Yeates et al., 1998).  The 

calculated A260/A230 and A260/A230 ratios indicate that the quality of the extracted DNA was 

compromised and that both humic acid and protein contaminants were present in the isolated DNA.  

However, this was expected given that the faecal sample is an organic substrate and contains many 

inhibitors (Tang et al., 2008) and relatively low DNA yields are usually obtained (Yu & Morrison, 

2004) from such samples.   Leitner et al. (2011) found that although CTAB-based manual extraction 

gave a higher DNA yield when compared to a commercial kit for the extraction of DNA from biogas 

reactor and sewage treatment samples, OD values for the manual extraction were not in the range of 

high purity DNA which would impede downstream applications.  For each pre-treatment in this study, 

the DNA with the apparent higher purity was subsequently used for 16S rRNA gene region 

amplification.                   

 

16S rRNA gene amplification 

Methanogenic 16S rRNA amplification products were attained by use of primers specific to the 16S 

rRNA gene regions of methanogens by polymerase chain reaction (PCR).  The primers have been 

used previously (Westphal et al., 2007; Krakat et al., 2011) for the amplification of 16S rRNA gene 

regions of methanogens.  The 16S rRNA gene amplification products were of the expected size, 

approximately 860 base pairs.  Because PCR product of high concentration was obtained without the 
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necessity of any additional purification steps prior to amplification, it would imply that the DNA 

recovered from the commercial kit extraction was of high quality with minimal inhibiting 

contaminants. 

However, with regard to the manual extraction developed by Tang et al. (2008), initial attempts to 

amplify DNA with primers specific to the partial 16S rRNA gene of methanogens were unsuccessful.  

It was only after DNA was diluted (1:10), which resulted in the dilution of inhibiting contaminants 

(Yeates et al., 1998), that amplification was achieved for the DNA that was isolated with the bead-

beating pre-treatment.  Amplification of partial 16S rRNA gene from DNA extracted which employed 

the pre-treatment without the use of glass beads was unsuccessful, even after dilution of eluted DNA.   

Amplification of partial methanogenic 16S rRNA genes was only successful from DNA that was 

extracted with the use of bead-beating (commercial kit extraction and manual extraction preceded by 

pre-treatment B) which allowed for the release of sufficient quantities of nucleic acids from 

methanogen cells.  This implies that a vigorous treatment is fundamental for the release of cells from 

the faecal matrix, disruption of cellular envelopes and the release of nucleic acids. 

Amplification of partial bacterial 16S rRNA genes was successfully obtained by PCR (using well 

established primers) of DNA extracted with use of the commercial kit.  The amplification products 

were between 400 – 500 base pairs when analysed by gel electrophoresis under UV light.   

 

Ligation, transformation and ARDRA 

The pJET1.2/BLUNT plasmid vector that was used is a positive selection vector that carries a lethal 

restriction enzyme gene, which is disrupted by the ligation of the DNA insert into the cloning site.  As 

a result, only those vectors containing a DNA insert (recombinant plasmids) and then subsequently 

introduced into an E. coli host cell should be able to form colonies on ampicillin agar.     

It was, however, observed that many of the randomly picked transformed clones carried a vector that 

contained no insert, regardless of the competent cell used.  E. coli strains may express increased levels 

of lac repressor, a DNA-binding protein which suppresses the expression of the lethal restriction 

enzyme gene.  The host cell can therefore continue to grow without ligation of DNA insert into the 

cloning site, allowing for the growth of smaller satellite colonies.  However, the growth of 

considerably smaller colonies was not noticeable. 

Another possibility is nuclease contamination of the ligation mixture.  Using compromised 

components, such as low quality water, results in contamination which impairs the lethal gene, again 

allowing for the selection of false positive clones (Rand, 1996).  However, this is unlikely as a new 

ligation mixture was prepared for each clone library and in this case the proportion of false positive 

colonies would have been higher.   

Other possible reasons, according to the manufacturer, could be due to vector end damage by 

thermophilic polymerases or nucleases.  Since PCR products were purified, it is unlikely that there 

was inhibition of ligation due to the presence of thermophilic polymerases.  It is however possible that 
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there was damage to the vector ends by nucleases.  The manufacturer recommends that the ligation 

mixture be incubated at room temperature (22˚C) for 5 minutes and this incubation can be extended to 

30 minutes for larger PCR product inserts.  In this study this incubation was extended to 30 minutes.  

However, this incubation at room temperature may have been too long and thereby increased the risk 

of nucleases damaging the vector ends and therefore preventing the ligation of inserts into the vector. 

Both the E. cloni
®
 Chemically Competent Cells (Lucigen Corporation) and the competent cells of E. 

coli 8739 prepared using the calcium chloride method were successfully transformed.  Interestingly, 

the two clone libraries constructed with these two differing types of competent cells (methanogen 

clone library 1 and methanogen clone library 2) lead to very similar results (see Table 3.8 and 3.9)  

thereby indicating that the two methods are comparable. 

Restriction analysis of the amplified ribosomal “DNA” was performed to assign clones to phylotypes 

and thus simplifing sequencing as only a representative of each phylotype required sequencing.  The 

sequencing of one sample per phylotype (Ramos et al., 2010) and the reliability of ARDRA through 

spiking experiments (Krakat et al., 2010
a
) has been recently verified.  Different phylotypes (ie: having 

differing restriction digest patterns) in this study were later found to display identical sequence 

similarity to the same reference micro-organism, thus showing the sensitivity of the ARDRA 

technique.     

 

Methanogen diversity in zebra faeces 

Three separate methanogen clone libraries were generated in this study.  A total of 178 randomly 

selected methanogen clones were examined.  Of these, 25 phylotypes were identified based on 

restriction analysis and a representative clone of each was submitted for sequencing. MEGA 

(Molecular Evolutionary Genetics Analysis) Version 5.2 (Tamura et al., 2011) was utilised for the 

construction of evolutionary trees to compare methanogenic 16S rRNA gene sequences from the 

zebra faecal sample and known methanogen species from GenBank. 

Six of the phylotypes (MA; MB; MF; MM; MS and MX) which represent the majority of clones 

present in the three methanogen clone libraries (126 clones out of a total 178 methanogen clones) 

exhibited a high degree of sequence similarity (99%) to Methanobrevibacter gottschalkii strain PG.  

This dominance of clones with high sequence similarity to Methanobrevibacter gottschalkii strain PG 

was evident across all methanogen clone libraries and ranged from 67.92-75.51% (methanogen clone 

library 1 = 69.74%, methanogen clone library 2 = 67.92%, methanogen clone library 3 = 75.51%).   

Various studies that have examined the methanogen diversity in the gastrointestinal tract environment, 

consistently identified Methanobrevibacter spp. as the dominant methanogen in various animals 

including chicken (Saengkerdsub et al., 2007), cattle (Whitford et al., 2001), sheep in Western 

Australia (Wright et al., 2004) and in Venezuela (Wright et al., 2008), cattle in Canada (Wright et al., 

2007), horses (Yamano et al., 2008) and alpaca (St-Pierre & Wright, 2012).  In the studies 

investigating sheep, Methanobrevibacter ruminantium (85 out of 241 clones) (Wright et al., 2007) 
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and Methanobrevibacter strains SM9, M6 and NT7 (>90% of clones) (Wright et al., 2004) were the 

dominant methanogens.  In alpaca (St-Pierre & Wright, 2012), clones showed a high sequence 

similarity to Methanobrevibacter millerae, while in chicken  10 out of the 11 phylotypes identified 

showed 99% sequence similarity to Methanobrevibacter woesei (Saengkerdsub et al., 2007).  

Methanobrevibacter gottschalkii strain HO and strain PG have been isolated from horse and pig 

faeces respectively (Lin & Miller, 1998).   

This study is consistent with other studies in identifing Methanobrevibacter, a hydrogenotrophic 

methanogen, as a key methanogen in the gastrointestinal tract.  Hydrogen-utilising methanogens are 

known to thrive in the gastrointestinal environment mainly due to their co-exsistance with hydrogen-

producing micro-organisms (Janssen & Kirs, 2008). 

To a lesser extent, colonies that accounted for a single phylotype (ME) and exhibited a 95% sequence 

similarity to the uncultured Methanomicrobiales archaeon clone 17-1F (Penner & Foght, 2010) can 

also be considered as an important component of the methanogen population found in the zebra 

gastrointestinal tract.  Over the three clone libraries, 23 clones represented this phylotype at very 

similar percentages (methanogen clone library 1 = 13.16%, methanogen clone library 2 = 11.32%, 

methanogen clone library 3 = 14.29%).  Clones that resembled (albeit at less than 97% sequence 

similarity) known methanogens of the order Methanomicrobiales have also been noted in a previous 

study where Wright et al. (2007) investigated the methanogen population composition in cattle, while 

Lin et al. (2007) described Methanomicrobiales to be predominant in the ovine rumen.   

Studies have reported the methanogen community present in plant based biogas fermenter systems 

(Klocke et al., 2007; Krakat et al., 2010
c
).  In the long term mesophilic fermentation of beet silage, 

Krakat et al. (2010
b
) demonstrated that 50 out of 60 phylotypes were assigned to the 

hydrogenotrophic Methanobacteriales and Methanomicrobiales, while Krakat et al. (2010
c
) reported 

that in the digestion of fodder and sugar beet silage, hydrolytic Bacteria were responsible for the 

conversion of biomass to H2 and CO2 and this allowed for the dominace of hydrogen-utilising 

methanogens (for the conversion of H2 and CO2 to methane) in the digester.  This study confirms that 

in the zebra (herbivore) gastrointestinal tract, which is similar to plant based biogas fermenter 

systems, the hydrogenotrophic methanogens are the most abundant Euryarchaeota. 

The remaining 18 identified phylotypes represent 29 clones from the three methanogen clone 

libraries, with between 1 and 4 clones being assigned to each phylotype.  Over the three clone 

libraries these phylotypes represented an average of 16% of the entire methanogen population in the 

zebra faecal sample (methanogen clone library 1 = 17.11%, methanogen clone library 2 = 20.75%, 

methanogen clone library 3 = 10.20%) and displayed between 81% - 99% sequence similarity to 

uncultured archaeon clones that have been recovered from various environmental samples.  In a study 

investigating the methanogen community in pig faeces, Mao et al. (2011) reported that 55.4% of the 

clones assessed were not closely related to known Euryarchaeota sequences (77% - 96% sequence 

similarity). 
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Bacterial diversity in zebra faeces 

To assess the bacterial diversity in the zebra faecal sample, two clone libraries were set up during this 

study.  A total of 105 randomly selected clones were examined and were grouped according to 

restriction digest patterns into 24 phylotypes.  A representative clone of each phylotype was analysed 

by sequencing and phylogenetic analysis was performed using MEGA (Molecular Evolutionary 

Genetics Analysis) Version 5.2 (Tamura et al., 2011) was utilised for the construction of evolutionary 

trees to compare bacterial 16S rRNA gene sequences from the zebra faecal sample and known 

bacterial species from GenBank. 

Two dominant phylotypes (BG and BH) represented 28 clones and 25 clones respectively of the total 

105 microbial clones analysed.  Both of these phylotypes (BG and BH), when compared to known 

microbes, showed a 99% sequence similarity to Bacillus species FSL h8526.  Phylotype BG (bacterial 

clone library 1 = 62.69%, bacterial clone library 2 = 20.75%) also demonstrated a 99% sequence 

similarity to the uncultured bacterium clone LC22 which Knapp et al. (2009) previously found to be 

present in the gut microbiota population of a species of earthworm, Lumbricus rubellus, while 

phylotype BH (bacterial clone library 1 = 25%, bacterial clone library 2 = 23.08%) also demonstrated 

a 99% sequence similarity to an uncultured bacterium clone isolated from Argali sheep (Ley et al., 

2008). 

Two phylotypes, BA and BB, displayed a 99% sequence similarity to uncultured bacterium clones 

isolated from neonatal calves (Paustain & Palmer, 2008) and an Argali sheep (Ley et al., 2008) 

respectively, which when compared to known microbes, exhibited a 99% sequence similarity to 

Bacillus species FSL h8526 and Bacillus odysseyi strain 3PO1SB.  Two other phylotypes, BD and BI, 

demonstrated a 99% sequence similarity to Bacillus species S7-3.    

In all, six phylotypes (BA; BB; BD; BG; BH and BI) which represented a majority (59 clones out of a 

total 105 microbial clones) displayed a high degree of sequence similarity to Bacillus species 

(bacterial clone library 1 = >69%, bacterial clone library 2 = >43%).  Of these phylotypes, BG and 

BH accounted for 89.83% of the 59 clones.   

Bacillus species have been identified as important inhabitants of the gastrointestinal tract that are 

capable of anaerobic metabolism and have been previously isolated from faecal material of broiler 

chickens (Barbosa et al., 2005).  Although Bacillus spp. are widely considered as aerobic, Fakhry et 

al. (2008) observed that Bacillus spp. isolated from the gastrointestinal tract were not only able to 

survive but also proliferate in this presumably anaerobic environment, proposing that a select few 

should be regarded as facultative anaerobes rather than strict aerobes (Fakhry et al., 2008), that are 

able to use either oxygen or a different electron acceptor depending on environmental conditions.   

The presence of these spore-forming Bacteria in the gastrointestinal tract was initially thought to be 

due to ingestion of soil, water and food sources, and remaining in the spore form until excretion.  

However, it has been suggested that Bacillus spp. might establish an endosymbiotic relationship with 

the host, being able to proliferate within the gut (Fakhry et al., 2008).  The cellulolytic activity of 
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Bacillus spp. under anaerobic conditions has been reported in studies carried out by Toerien (1967) 

and Beukes & Pletschke (2006) in anaerobic digesters and soil respectively.  In a study carried out by 

Klocke et al. (2007) it was shown that Bacilli of the phylum Firmicutes represented 22% clones 

analysed from a mesophilic, beet silage fed reactor.  Daly et al. (2001) showed that low %G+C Gram-

positive Bacteria (Firmicutes) accounted for 72% (from 272 clones analysed) of the bacterial 

diversity in the equine large intestine. 

In a study by Ley et al. (2008) investigating faecal microbial communities, numerous uncultured 

bacterial clones were isolated from both domesticated and wild mammals.  Five phylotypes 

determined in this study (BM; BN; BQ; BR and BT) corresponded to three uncultured bacterial clones 

which Ley et al. (2008) isolated from the gastrointestinal tract of horses.  Phylotype BM displayed 

only 95% sequence similarity to these bacterial clones, whilst BN, BQ, BR and BT demonstrated a 

high sequence similarity of between 98% and 99%.  However, when compared, none of these 

sequences from the zebra faecal sample demonstrated a high degree of sequence similarity to known 

microbial sequences from GenBank, with the closest resemblance displayed at 84% sequence 

similarity to Gluconacetobacter europaeus for phylotypes BN, BQ and BT, while phylotypes BM and 

BR (which each represented a single clone) exhibited a 92% sequence similarity to Succiniclasticum 

ruminis and a 96% sequence similarity to Clostridium orbiscindens respectively.  This was in contrast 

to the findings of Daly et al. (2001) where 37% of all clones analysed from the equine large intestine 

were affiliated with clostridial group cluster XIVa. 

Succiniclasticum ruminis, an anaerobic, non-spore forming rumen bacterium, is known for its ability 

to convert succinate to propionate (van Gylswyk, 1995), while Clostridium orbiscindens, an 

anaerobic, quercetin-degrading bacterium has been isolated from human faeces (Winter et al., 1991). 

Another phylotype, BF, demonstrated a 98% sequence similarity to an uncultured bacterium clone 

isolated by Ley et al. (2008) from a Somali wild ass, while phylotypes BJ, BL, BP and BU showed 

between 91% and 94% sequence similarity to isolates from the gastrointestinal tracts of either African 

or Asian elephants (Ley et al., 2008).  Three of these phylotypes, BJ, BL and BU, were affiliated with 

Holdemania filiformis with 87% sequence similarity when compared to known sequences from 

GenBank.  Holdemania filiformis has been previously isolated from human faeces (Willems et al., 

1997). 

Yamano et al. (2008) investigated the phylogenetic composition of hindgut Bacteria in horses.  It was 

found that most of the sequences found in either Hokkaido native horses or light horses did not 

correspond, with <90% sequence similarity, to any known sequences found in GenBank (Yamano et 

al., 2008).  Five phylotypes (BO; BS; BV; BW and BX) indicated a 99% sequence similarity to an 

uncultured bacterium clone established by Yamano et al. (2008) from light horses.  These phylotypes 

resembled between 84% and 85% sequence similarity to sequences of Prevotella dentalis, which is 

known to colonise the rumen and is responsible for degradation of carbohydrate to mainly acetate and 

succinate (Willems & Collins, 1995). 
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A single phylotype, BC, displayed a 98% sequence similarity to an uncultured eubacterium that was 

isolated from the equine large intestine (Daly et al., 2001).  When compared to known sequences, BC 

could be affiliated to Treponema maltophilum with a 94% sequence similarity.  Phylotype BE, which 

is represented by a single clone, showed a 94% sequence resemblance to a bacterial clone that was 

found in Bactrian camels (Huo et al., 2009). 

The final phylotype, BK, which represented two clones, was assigned with 91% sequence similarity to 

the sulphite-reducing bacterium Desulfitibacter alkalitolerans which was isolated from a heating plant 

(Nielsen et al., 2006).    

 

Rarefaction analysis of methanogen and bacterial clone libraries 

Rarefaction analysis for the three methanogen clone libraries and the two bacterial clone libraries 

were performed to determine whether the number of clones selected for evaluation were sufficient to 

give a reliable representation of the microbial population diversity of the zebra faecal sample. 

The rarefaction analysis for the three methanogen clone libraries indicates that the number of clones 

that were sampled for each of the clone libraries were insufficient.  This was also clear from Chao-1 

calculations and the high number of phylotypes assigned from the number of clones sampled for each 

clone library (MCL1 = 16 phylotypes out of 76 clones; MCL2 = 13 phylotypes out of 53 clones and 

MCL3 = 9 phylotypes out of 49 clones).  This indicates that the zebra faecal sample had a greater 

methanogen diversity than what was established in this study.  Although the number of clones 

sampled in this study was adequate to determine the dominant methanogen as Methanobrevibacter 

gottschalkii, a much larger number of clones will need to be sampled to better reflect the methanogen 

diversity in the sample.  However, using the ARDRA technique, it may not be possible to identify less 

abundant methanogens since the detection limit of this technique was reported to be about 10
5
 cells 

per ml (Krakat et al., 2010
a
).  

The rarefaction analysis for the two bacterial clone libraries indicates that an insufficient number of 

clones were sampled for bacterial clone library 1 and was confirmed by Chao-1 calculations.  The 

rarefaction curve for bacterial clone library 2 indicates that an almost sufficient number of clones 

were sampled as a representation of the zebra faecal sample.  This indicates that a high percentage of 

the bacterial diversity in the zebra faecal sample was identified which was confirmed by the Shannon 

index value of 2.09.  Although Bacillus spp. were identified as the dominant Bacteria in the zebra 

sample, further clone libraries would need to be constructed in order to better evaluate the bacterial 

diversity. 

 

Limitations 

This study was important in establishing the methanogenic and bacterial population present in zebra 

faecal matter as a means to assess the microbial community inhabiting the gastrointestinal tract of 

zebra.  Although this study has provided an initial insight into the diversity of these populations, in 
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particular an insight into the principal methanogens and Bacteria present, additional studies are 

required to further analyse the microbial diversity.  Future studies should increase the number of 

clones sampled for analyses in order to determine lesser occurring microbes. 

Since all the potential media to quantitatively assess the microbial population could not possibly be 

employed in this study, only selected media were chosen.  Most methanogens are difficult to culture 

or cannot be cultured.  Therefore, only a nucleic acid targeting approach was used to evaluate the 

methanogenic diversity in this study.  Other techniques that are used to assess the presence of 

methanogens in sample material such as FISH were not available for this study but could be employed 

for future investigations.   

 

Conclusions 

In this study, both the methanogenic and bacterial diversity in zebra faeces were assessed.  The 

presence of methanogens in the zebra faecal sample was determined by sequencing of amplified 

partial 16S rRNA genes.  Phylotypes exhibiting 99% sequence similarity to Methanobrevibacter 

gottschalkii strain PG, of the hydrogenotrophic order Methanobacteriales, were established to be 

predominant in the zebra faecal sample, representing >70% of archaeal clones selected for analysis in 

this study.  A single phylotype demonstrating a 95% sequence similarity to an uncultured 

Methanomicrobiales archaeon clone, represented 12.9% of the total archaeal clones sampled.  

Therefore, it was established in this study that hydrogen-utilising methanogens dominate in the zebra 

faeces.  Twelve phylotypes, representing 9% of archaeal clones displayed only 80-89% sequence 

similarity to previously uncultured archaeon clones which suggests the presence of unique Archaea 

that have not been recovered from previous studies.    

Selected non-archaeal microorganisms were quantitatively assessed.  As expected, the analysis of 

zebra faecal sample revealed that counts for anaerobic colony forming units were higher than that of 

aerobic colony forming units for both total and spore forming Bacteria. 

Sequencing of amplified partial 16S rRNA genes, indicated that six phylotypes exhibited 99% 

sequence similarity to Bacillus species.  These phylotypes accounted for 56% of all bacterial clones.  

Of the remaining clones, 12 phylotypes, which represents 34% of the selected bacterial clones, 

displayed only 95-99% sequence similarity to uncultured clones from various studies investigating 

gastrointestinal tract microflora.  However, when compared, these phylotypes exhibited only 80-89% 

sequence similarity to known micro-organisms.  Whether these phylotypes represent micro-organisms 

that are yet to be characterised and represented in culture collections requires further investigation. 

Although the predominant methanogens and Bacteria present in this sample matter have been 

identified, further investigation is required to ascertain the potential of not only zebra faeces, but also 

other wildlife faecal matter, as potential inocula and co-digestion substrates for methane generation.   
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APPENDIX 

 

Figure A1: Phylogenetic relationships within the methanogenic Archaea for methanogen 

clone library 1.  Methanogenic Archaea sequences for the unrooted maximum likelihood tree were obtained 

from GenBank.  Methanogenic Archaea referenced Methanogen A – P were representative of all phylotypes that 

were identified in the zebra faecal sample for methanogen clone library 1.  The tree was constructed according 

to specifications indicated in 2.8.2.  The scale bar indicates 5 nucleotide changes per 100 nucleotides. 

 

 Methanogen A (MA)

 Methanogen B (MB)

 Methanogen F (MF)

 Methanogen M (MM)

 S000437798 Methanobrevibacter gottschalkii PG U55239

 S000437797 Methanobrevibacter gottschalkii (T) HO U55238

 S000437795 Methanobrevibacter thaueri (T) CW U55236

 S000401556 Methanobrevibacter ruminantium (T) M1 AY196666

 S000438508 Methanobrevibacter filiformis (T) RFM-3 U82322

 S000336650 unidentified methanogen ARC25 AF029188

 Methanogen H (MH)

 Methanogen C (MC)

 Methanogen G (MG)

 S001164901 uncultured archaeon GHLW-A59 FJ155596

 Methanogen E (ME)

 S000819026 uncultured Methanomicrobiales archaeon 17-1F EF420159

 S000404839 Methanocorpusculum parvum DSM 3828 AY260435

 Methanogen D (MD)

 Methanogen O (MO)

 S000403294 uncultured archaeon ER2_11 AY231336

 S001565353 uncultured archaeon sy-904231058-87-i GQ255500

 Methanogen J (MJ)

 Methanogen K (MK)

 Methanogen N (MN)

 Methanogen I (MI)

 S001379255 uncultured archaeon 081030-OL-KR13:7I:1 FJ851588

 S001210691 uncultured archaeon A0-080607-344Fa-b3 EU814557

 S000665381 uncultured archaeon WN-FWA-8 DQ432506
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Figure A2: Phylogenetic relationships within the methanogenic Archaea for methanogen 

clone library 2. Methanogenic Archaea sequences for the unrooted maximum likelihood tree were obtained 

from GenBank.  Methanogenic Archaea referenced Methanogen A – Y were representative of all phylotypes 

that were identified in the zebra faecal sample for methanogen clone library 2.  The tree was constructed 

according to specifications indicated in 2.8.2.  The scale bar indicates 5 nucleotide changes per 100 nucleotides. 
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Figure A3: Phylogenetic relationships within the methanogenic Archaea for methanogen 

clone library 3.  Methanogenic Archaea sequences for the unrooted maximum likelihood tree were obtained 

from GenBank.  Methanogenic Archaea referenced Methanogen A – Y were representative of all phylotypes 

that were identified in the zebra faecal sample for methanogen clone library 3.  The tree was constructed 

according to specifications indicated in 2.8.2.  The scale bar indicates 5 nucleotide changes per 100 nucleotides 
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 Methanogen F (MF)

 Methanogen A (MA)

 S000437798 Methanobrevibacter gottschalkii PG U55239

 S000437797 Methanobrevibacter gottschalkii (T) HO U55238

 S000437795 Methanobrevibacter thaueri (T) CW U55236

 S000438508 Methanobrevibacter filiformis (T) RFM-3 U82322

 S000401556 Methanobrevibacter ruminantium (T) M1 AY196666

 S000336650 unidentified methanogen ARC25 AF029188

 Methanogen V (MV)

 Methanogen E (ME)

 S001164901 uncultured archaeon GHLW-A59 FJ155596

 Methanogen G (MG)

 S000819026 uncultured Methanomicrobiales archaeon 17-1F EF420159

 S000404839 Methanocorpusculum parvum DSM 3828 AY260435

 S000401566 Methanocorpusculum bavaricum (T) SZSXXZ AY196676

 Methanogen O (MO)

 Methanogen Y (MY)

 S000403294 uncultured archaeon ER2_11 AY231336

 S001565353 uncultured archaeon sy-904231058-87-i GQ255500

 S001379255 uncultured archaeon 081030-OL-KR13:7I:1 FJ851588

 Methanogen T (MT)

 Methanogen N (MN)

 Methanogen W (MW)

 S001614932 uncultured archaeon A0-260405-109F-8 EU878350

 Methanogen Q (MQ)

 S001210691 uncultured archaeon A0-080607-344Fa-b3 EU814557

 S000665381 uncultured archaeon WN-FWA-8 DQ432506
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Figure A4: Phylogenetic relationships within Bacteria for bacterial clone library 1.  

Bacteria sequences for the unrooted maximum likelihood tree were obtained from GenBank.  Bacteria 

referenced Bacterium A – P were representative of all phylotypes that were identified in the zebra faecal sample 

for bacterial clone library 1.  The tree was constructed according to specifications indicated in 2.8.2.  The scale 

bar indicates 5 nucleotide changes per 100 nucleotides. 

 S001152843 Bacillus sp. FSL_h8526 EU147193

 Bacterium A (BA)

 S001603740 uncultured bacterium calf784_6wks_grp2_F08 GQ448631

 Bacterium D (BD)

 S001328453 Bacillus sp. S7-3 FJ373039

 Bacterium G (BG)

 S001322198 uncultured bacterium LC22 FJ715985

 Bacterium I (BI)

 S001123829 uncultured bacterium AS2_aao36c03 EU772135

 Bacterium H (BH)

 S001610191 Bacillus odysseyi 3P01SB EU977788

 Bacterium B (BB)

 S000003485 Clostridium orbiscindens DSM 6740 Y18187

 S000420543 Desulfitibacter alkalitolerans (T) sk.kt5 AY538171

 Bacterium K (BK)

 S001127575 uncultured bacterium horsej_aai92h08 EU775881

 S000131229 Succiniclasticum ruminis (T) SE10 X81137

 Bacterium M (BM)

 Bacterium J (BJ)

 Bacterium L (BL)

 S001065013 uncultured bacterium AFEL3_aao14a03 EU465914

 S000006979 Holdemania filiformis (T) ATCC 51649 Y11466

 S001123049 uncultured bacterium AE2_aaa01f10 EU771355

 Bacterium P (BP)

 S000393168 Shuttleworthia satelles (T) D143K-13 AF399956

 S000001961 Clostridium saccharolyticum DSM 2544 Y18185

 S000005532 Blautia hydrogenotrophica (T) S5a36 X95624

 S000125562 Clostridium bolteae type strain: 16351 AJ508452

 S000019320 Blautia schinkii (T) B CIP 105464 DSM 10518 X94965

 S001131070 uncultured bacterium WA_aaa01e03 EU779376

 Bacterium F (BF)

 S000010883 Treponema maltophilum (T) periodontitis patient BR X87140

 S000127892 uncultured equine intestinal eubacterium sp. DL31 AJ408118

 Bacterium C (BC)

 S000004997 Gluconacetobacter europaeus (T) DSM6160 DES11 Z21936

 S001062661 uncultured bacterium horsem_aai96b08 EU463562

 Bacterium N (BN)

 S000470977 Chryseobacterium daecheongense (T) CPW406 AJ457206

 S001866582 uncultured bacterium XJC39 GU174032

 Bacterium E (BE)

 S000996536 uncultured bacterium LH11 AB214669

 Bacterium O (BO)

 S000005894 Prevotella dentalis (T) DSM 3688 X81876
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Figure A5: Phylogenetic relationships within Bacteria for bacterial clone library 2.  

Bacteria sequences for the unrooted maximum likelihood tree were obtained from GenBank.  Bacteria 

referenced Bacterium C – X were representative of all phylotypes that were identified in the zebra faecal sample 

for bacterial clone library 2.  The tree was constructed according to specifications indicated in 2.8.2.  The scale 

bar indicates 2 nucleotide changes per 100 nucleotides. 

 

 S001328453 Bacillus sp. S7-3 FJ373039

 Bacterium G (BG)

 S001322198 uncultured bacterium LC22 FJ715985

 S001152843 Bacillus sp. FSL_h8526 EU147193

 S001603740 uncultured bacterium calf784_6wks_grp2_F08 GQ448631

 Bacterium B (BB)

 S001123829 uncultured bacterium AS2_aao36c03 EU772135

 Bacterium H (BH)

 S001610191 Bacillus odysseyi 3P01SB EU977788

 S000420543 Desulfitibacter alkalitolerans (T) sk.kt5 AY538171

 S001127575 uncultured bacterium horsej_aai92h08 EU775881

 S000131229 Succiniclasticum ruminis (T) SE10 X81137

 S000003485 Clostridium orbiscindens DSM 6740 Y18187

 Bacterium R (BR)

 S000393168 Shuttleworthia satelles (T) D143K-13 AF399956

 S001123049 uncultured bacterium AE2_aaa01f10 EU771355

 S000001961 Clostridium saccharolyticum DSM 2544 Y18185

 S000005532 Blautia hydrogenotrophica (T) S5a36 X95624

 S000125562 Clostridium bolteae type strain: 16351 AJ508452

 S001131070 uncultured bacterium WA_aaa01e03 EU779376

 S000019320 Blautia schinkii (T) B CIP 105464 DSM 10518 X94965

 S000006979 Holdemania filiformis (T) ATCC 51649 Y11466

 S001065013 uncultured bacterium AFEL3_aao14a03 EU465914

 Bacterium J (BJ)
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 S000004997 Gluconacetobacter europaeus (T) DSM6160 DES11 Z21936

 S001062661 uncultured bacterium horsem_aai96b08 EU463562
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 S000127892 uncultured equine intestinal eubacterium sp. DL31 AJ408118

 S000010883 Treponema maltophilum (T) periodontitis patient BR X87140

 S000470977 Chryseobacterium daecheongense (T) CPW406 AJ457206

 S001866582 uncultured bacterium XJC39 GU174032

 S000005894 Prevotella dentalis (T) DSM 3688 X81876

 Bacterium X (BX)

 S000996536 uncultured bacterium LH11 AB214669
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