Graph and Digraph Embedding Problems

 byHiren Maharaj

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the

Department of Mathematics and Applied Mathematics

University of Natal

Pietermaritzburg
3 April 1996

To my parents.

Preface

The research on which this thesis was based was carried out in the Department of Mathematics and Applied Mathematics, University of Natal, Pietermaritzburg, from January 1993 to December 1995, under the supervision of Dr. M.A. Henning.

This thesis represents original work by the author and has not been submitted in any other form to another university. Where use was made of the work of others it has been duly acknowledged.

Acknowledgements

I wish to express my thanks to my supervisor, Dr. M.A. Henning for his expert guidance in my difficult transition from study to research. It was his emphasis on problem solving in my Graph Theory Honours course that influenced me to pursue Graph Theory further. Thus I am especially grateful because our research efforts culminated in my doctoral.

My sincere thanks for financial support are due to the Foundation for Research and Development, the Ernst and Ethel Eriksen Trust and the University of Natal.

Finally, I am deeply indebted to Sri Paramahansa Yogananda whose writings and life story has been and will always be my sole inpiration in both my mathematical and non-mathematical endeavours in life.

Abstract

This thesis is a study of the symmetry of graphs and digraphs by considering certain homogeneous embedding requirements.

Chapter 1 is an introduction to the chapters that follow. In Chapter 2 we present a brief survey of the main results and some new results in framing number theory. In Chapter 3, the notions of frames and framing numbers is adapted to digraphs. A digraph D is homogeneously embedded in a digraph H if for each vertex x of D and each vertex y of H, there exists an embedding of D in H as an induced subdigraph with x at y. A digraph F of minimum order in which D can be homogeneously embedded is called a frame of D and the order of F is called the framing number of D. We show that that every digraph has at least one frame and, consequently, that the framing number of a digraph is a well defined concept. Several results involving the framing number of graphs and digraphs then follow. Analogous problems to those considered for graphs are considered for digraphs.

In Chapter 4, the notions of edge frames and edge framing numbers are studied. A nonempty graph G is said to be edge homogeneously embedded in a graph H if for each edge e of G and each edge f of H, there is an edge isomorphism between G and a vertex induced subgraph of H which sends e to f. A graph F of minimum size in which G can be edge homogeneously embedded is called an edge frame of G and the size of F is called the edge framing number efr (G) of G. We also say that G is
edge framed by F. Several results involving edge frames and edge framing numbers of graphs are presented.

For graphs G_{1} and G_{2}, the framing number $\operatorname{fr}\left(G_{1}, G_{2}\right)$ (edge framing number $\left.\operatorname{efr}\left(G_{1}, G_{2}\right)\right)$ of G_{1} and G_{2} is defined as the minimum order (size, respectively) of a graph F such that $G_{i}(i=1,2)$ can be homogeneously embedded in F. In Chapter 5 we study edge framing numbers and framing number for pairs of cycles. We also investigate the framing number of pairs of directed cycles.

Contents

1 Introduction 1
1.1 Graph theory nomenclature 3
2 The framing number of a graph 5
2.1 Introduction 5
2.2 Basic theory 5
2.3 Framing ratios of graphs 9
2.4 The framing number of a graph and its complement 10
2.5 The framing number of a single graph 11
2.6 The framing number of more than one graph 13
3 The framing number of a digraph 16
3.1 Introduction 16
3.2 Existence of frames for digraphs 18
3.3 Bounds on the framing number 20
3.4 Framing ratios of digraphs 28
3.5 The framing number of a class of oriented complete bipartite graphs 30
3.6 The framing number of a diwheel 31
3.7 The framing number of a transitive tournament 42
3.8 The diameter of a frame 49
4 The edge framing number of a graph 52
4.1 Introduction 52
4.2 Existence of edge frames 54
4.3 Lower bounds on the edge framing number 57
4.4 Edge framing ratios of graphs 66
4.5 The diameter of an edge frame 68
4.6 The edge framing number of two or more graphs 70
5 Homogeneous embeddings of cycles in graphs 81
5.1 Introduction 81
5.2 The framing number of pairs of cycles 83
5.3 Upper bounds on $\operatorname{fr}\left(C_{m}, C_{n}\right)$ 100
5.4 The edge framing number of pairs of cycles 104
5.5 Framing numbers of pairs of directed cycles 121
5.6 Upper bounds on $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)$ 130
Bibliography 135

Chapter 1

Introduction

Essentially, this thesis is a study of the symmetry of graphs and digraphs by considering certain homogeneous embedding requirements. It was found that for certain graphs, purely group theoretic considerations give an unsatisfactory description of the symmetry of a graph. Furthermore, it was also found that a single embedding requirement alone does not suffice to describe graphical symmetry adequately. For example, there are graphs which are highly symmetric relative to their edges and yet lack symmetry relative to their vertices.

Chartrand, Gavlas, and Schultz [2] introduced the framing number of a graph. A graph G is homogeneously embedded in a graph H if for every vertex x of G and every vertex y of H, there exists an embedding of G in H as an induced subgraph with x at y. A graph F of minimum order in which G can be homogeneously embedded is called a frame of G, and the order of F is called the framing number $f r(G)$ of G.

In [2] it is shown that a frame exists for every graph, although a frame need not be unique. Results involving frames and framing numbers of graphs have been presented by, among others Chartrand, Gavlas, and Schultz [2], Chartrand, Henning, Hevia, and Jarrett [3], Gavlas, Henning, and Schultz [6], Goddard, Henning, Oellermann, and Swart $[7,8]$.

In Chapter 2, we present a brief survey of the main results in framing number theory. In Chapter 3, the notions of frames and framing numbers is adapted to digraphs. A digraph D is homogeneously embedded in a digraph H if for each vertex x of D and each vertex y of H, there exists an embedding of D in H as an induced subdigraph with x at y. A digraph F of minimum order in which D can be homogeneously embedded is called a frame of D and the order of F is called the framing number of D. Analogous problems to those considered for graphs are considered for digraphs. Results involving frames and framing numbers of digraphs have been presented by Henning and Maharaj [10].

In Chapter 4, the notions of edge frames and edge framing numbers are studied. A nonempty graph G is said to be edge homogeneously embedded in a graph H if for each edge e of G and each edge f of H, there is an edge isomorphism between G and a vertex induced subgraph of H which sends e to f. A graph F of minimum size in which G can be edge homogeneously embedded is called an edge frame of G and the size of F is called the edge framing number efr (G) of G. We also say that G is edge framed by F. Results involving edge frames and edge framing numbers of graphs
have been presented by Henning [9].

In Chapter 5 we study edge framing numbers and framing numbers for pairs of cycles. We also investigate the framing numbers of pairs of directed cycles.

1.1 Graph theory nomenclature

Throughout we shall use the terminology of [4]. Specifically, $p(G)$ and $q(G)$ denote the number of vertices (order) and edges (size), respectively, of a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex v in G, the neighbourhood of v is defined by $N(v)=\{u \in V(G) \mid u v \in E(G)\}$. We let $\Delta(G)(\delta(G))$ denote the maximum (respectively, minimum) degree among the vertices of G. Two edges e and f of a graph G are similar (or of the same type) if $\phi(e)=f$ for some edge automorphism ϕ of G. If every two edges of G are similar we say that G is edge-transitive. Similarity is an equivalence relation on the edge set of a graph, and the resulting equivalence classes are referred to as edge orbits.

Given a nonempty graph G, the line graph $L(G)$ of G is defined as that graph whose vertices can be put in a one-to-one correspondence with the edges of G in such a way that two vertices of $L(G)$ are adjacent if and only if the corresponding edges of G are adjacent. Let G_{1} and G_{2} be two graphs with disjoint vertex sets. The join $G=G_{1}+G_{2}$ has $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$.

Similarly, for digraphs, $p(D)$ and $q(D)$ denote the number of vertices (order) and arcs (size), respectively, of a digraph with vertex set $V(D)$ and arc set $E(D)$. A digraph D is symmetric if whenever (u, v) is an arc of D, then so too is (v, u). A digraph D is asymmetric if whenever (u, v) is an arc of D, then (v, u) is not an arc of D. For a vertex v in D, the out-neighbourhood and in-neighbourhood of v are defined by $N^{+}(v)=\{u \in V(D) \mid(v, u) \in E(D)\}$ and $N^{-}(v)=\{u \in V(D) \mid(u, v) \in E(D)\}$, respectively. The outdegree of v is defined as odv $=\left|N^{+}(v)\right|$ and the indegree of v is idv $=\left|N^{-}(v)\right|$. The degree $\operatorname{deg} v$ of v is defined by $\operatorname{deg} v=o d v+i d v$. We let $\Delta_{i d}(D)\left(\delta_{i d}(D)\right)$ denote the maximum (respectively, minimum) indegree among the vertices of D. Further, we let $\Delta_{o d}(D)\left(\delta_{o d}(D)\right)$ denote the maximum (respectively, minimum) outdegree among the vertices of D. The minimum degree of D is given by $\delta(D)=\min \{$ deg $v: v \in V(D)\}$, whereas the maximum degree of D is $\Delta(D)=$ $\max \{\operatorname{deg} v: v \in V(D)\}$.

For vertex disjoint digraphs G and H, the lexicographic product $G[H]$ has vertex set $V(G) \times V(H)$, and a vertex (g, h) is adjacent to a vertex $\left(g^{\prime}, h^{\prime}\right)$ in $G[H]$ if and only if either g is adjacent to g^{\prime} in G or $g=g^{\prime}$ and h is adjacent to h^{\prime} in H.

Two vertices u and v of a digraph D are called similar (or of the same type) if $\phi(u)=v$ for some automorphism ϕ of D. Every two vertices of D are similar if and only if D is vertex-transitive. Similarity is an equivalence relation on the vertex set of a digraph D, and the resulting equivalence classes are called the orbits of G.

Chapter 2

The framing number of a graph

2.1 Introduction

In this chapter we present a brief survey of the main results in framing number theory. We also present some new results. Results involving frames and framing numbers of graphs have been presented by, among others, Chartrand, Gavlas, and Schultz [2], Chartrand, Henning, Hevia, and Jarrett [3], Gavlas, Henning, and Schultz [6], Goddard, Henning, Oellermann, and Swart [7, 8], and Henning [9].

2.2 Basic theory

In the first book ever written in graph theory (in 1936) König proved that for every graph G with maximum degree d, there exists a d-regular graph H containing G
as an induced subgraph. For motivational purposes, we present König's technique. Let G be a graph with $\Delta(G)=d$. If G is regular, then we may take $H=G$. Otherwise, let G^{\prime} be another copy of G and join corresponding vertices whose degrees are less than d, calling the resulting graph G_{1}. If G_{1} is regular, then we may take $H=G_{1}$. If not, we continue this procedure until arriving at a d-regular graph G_{n} where $n=\Delta(G)-\delta(G)$. Chartrand, Gavlas, and Schultz [2] observed that the graph H constructed by König has the property that for every vertex v of H, there exists an induced subgraph of H containing v that is isomorphic to G. This observation motivated Chartrand, Gavlas, and Schultz [2] to define the following concept. A graph G is said to be uniformly embedded in a graph H if for every vertex v of H, there is an induced subgraph of H containing v that is isomorphic to G. We will deal with an even stronger embedding requirement introduced by Chartrand, Gavlas, and Schultz [2]. A graph G is homogeneously embedded in a graph H if for every vertex x of G and every vertex y of H, there exists an embedding of G in H as an induced subgraph with x at y. A graph F of minimum order in which G can be homogeneously embedded is called a frame of G, and the order of F is called the framing number $\operatorname{fr}(G)$ of G. By the following theorem, all of the above notions are applicable to any graph.

Theorem 2.1 (Chartrand et al. [2]) Every graph has a frame.

However, it is also shown in [2] that a frame of a graph need not be unique.

Theorem 2.2 (Chartrand et al. [2]) For a given graph G, there exists a positive integer m such that for each integer $n \geq m$, there is a graph H of order n in which G can be homogeneously embedded, while for each positive integer $n<m$, no such graph H of order n exists.

The homogeneous embedding requirement does imply quite a number of inequalities (Chartrand et al. [2]). The first of these is an upper bound of the framing number of a graph in terms of the number of orbits and order of a graph. It is a direct consequence of the proof of Theorem 2.1.

Theorem 2 . 3 (Chartrand et al. [2]) Let k denote the number of distinct orbits in a graph G. Then

$$
f r(G) \leq(2 k-1)|V(G)|
$$

The remaining inequalities have proved to be extremely useful in attacking typical framing number problems.

Lemma 2.1 (Chartrand et al. [2]) If a graph G can be homogeneously embedded in a graph H, then

$$
\Delta(G) \leq \delta(H) \leq \Delta(H) \leq|V(H)|-|V(G)|+\delta(G)
$$

Two corollaries follow immediately.

Corollary 2. 1 (Chartrand et al. [2]) If F is a frame for a graph G, then

$$
\Delta(G) \leq \delta(F) \leq \Delta(F) \leq|V(F)|-|V(G)|+\delta(G)
$$

Corollary 2.2 (Chartrand et al. [2]) For a graph G,

$$
f r(G) \geq|V(G)|+\Delta(G)-\delta(G)
$$

The following result of Goddard, Henning, Oellermann, and Swart [7] shows that the diameter of the frame of a connected graph cannot be too large.

Theorem 2. 4 (Goddard et al. [7]) If G is a connected graph and H is a frame of G, then $\operatorname{diam} H \leq \operatorname{diam} G+1$.

We present a slight improvement of this result which is a consequence of the next lemma.

Lemma 2.2 Let G be a connected graph such that $\beta(G) \geq 2$. Then for each positive integer $m \geq f r(G)$, there is a graph H which homogeneously embeds G with the further property that every pair of nonadjacent vertices in H lies on an induced copy of G.

Proof. Let $m \geq f r(G)$ be a positive integer. From among all graphs of order m which homogeneously embed G, choose one, H say, of maximum size. Let a and b denote a pair of nonadjacent vertices in H. Let H_{1} denote the graph obtained from
H by joining the vertices a and b. By the maximality property of the graph H, the graph H_{1} cannot homogeneously embed G. Thus there is a vertex x of G and a vertex y of H_{1} such that there is no embedding of G in H_{1} with x at y. Consider an embedding G_{1} of G in H with x at y. Clearly we must have $a, b \in V\left(G_{1}\right)$ otherwise G_{1} would be an embedding of G in H_{1} with x at y which is impossible. Thus H is a graph with the desired property.

Corollary 2.3 Let G be a connected graph. Then for each positive integer $m \geq$ $f r(G)$, there is a graph H which homogeneously embeds G such that diam $H \leq$ $\operatorname{diam} G$.

Corollary 2.4 Let G be a connected graph. Then G has a frame F with $\operatorname{diam} F \leq$ $\operatorname{diam} G$.

2.3 Framing ratios of graphs

The framing ratio $\operatorname{frr}(G)$ of a graph G is defined to be the ratio $f r(G) / p(G)$ in [2]. Clearly, $\operatorname{frr}(G) \geq 1$ for every graph G, and $\operatorname{frr}(G)=1$ if and only if G is vertex transitive. This graphical parameter is a certain measure of the 'symmetry' of a graph, where the closer $\operatorname{frr}(G)$ is to 1 , the more symmetric G is.

Of course, the framing ratio of every graph is a rational number. The following result shows that many rational numbers are framing ratios.

Theorem 2.5 (Chartrand et al. [2]) For each rational number $r \in[1,2)$, there exists a graph G with $\operatorname{frr}(G)=r$.

While it unknown whether the framing ratio of a graph can be arbitrarily large, Goddard, Henning, Oellerman and Swart [7] produced a class of graphs whose framing ratio is at least 2. By a broom $B_{n}, n \geq 5$, we mean a star $K_{1, n-2}$ with one edge subdivided once.

Theorem 2. 6 (Goddard et al. [7]) For $n \geq 7$ an integer, $f r\left(B_{n}\right) \geq 2 n$.

Corollary 2.5 (Goddard et al. [7]) For $n \geq 7$ an integer, $\operatorname{frr}\left(B_{n}\right) \geq 2$.

2.4 The framing number of a graph and its complement

The following result was established by Chartrand et al. [2].

Theorem 2.7 ([2]) Let G be a graph with frame F. Then $f r(G)=f r(\bar{G})$ and \bar{F} is a frame for \bar{G}.

The next result is a consequence of the proof of Theorem 2.7.

Corollary 2.6 If a graph G can be homogeneously embedded in a graph H, then \bar{G} can be homogeneously embedded in the graph \bar{H}.

2.5 The framing number of a single graph

The framing number for various classes of graphs have been established by, among others Chartrand, Gavlas, and Schultz [2], Chartrand, Henning, Hevia, and Jarrett [3], Gavlas, Henning, and Schultz [6], Goddard, Henning, Oellermann, and Swart $[7,8]$. In this section we present a brief summary of these results.

The lollipop graph L_{n} is the unicyclic graph of order n containing exactly one bridge. Gavlas et al. [6] established the framing number $f r\left(L_{n}\right)$ for small n. The following table summarizes their results.

n	4	5	6	7	8
$f r\left(L_{n}\right)$	6	8	8	10	12

Table 2.1:

Gavlas et al. [6] also showed that $f r\left(L_{n}\right) \leq 2 n-4$ for $n \geq 6$.

Goddard et al. [7] determined the framing number of the wheel $W_{n+1}=C_{n}+K_{1}$ for all integers $n \geq 3$. They showed that $f r\left(W_{4}\right)=4, f r\left(W_{5}\right)=6$. More generally, Theorem 2.8 (Goddard et al. [7]) For $n \geq 5$ an integer, $f r\left(W_{n+1}\right)=2 n$.

The next result we present is a generalisation of this theorem.

Theorem 2.9 Let G be a vertex transitive graph of order n. If G is k-regular
where $k \leq\left\lceil\frac{n}{3}\right\rceil-1$, then $\operatorname{fr}\left(G+K_{1}\right)=2 n$.

Proof. Since $G+K_{1}$ can be homogeneously embedded in the graph $G+G$ of order $2 n$, it follows that $f r\left(G+K_{1}\right) \leq 2 n$. The desired result would follow once we have shown that there is no graph of order $2 n-1$ which homogeneously embeds $G+K_{1}$. Suppose, to the contrary, that such a graph H exists. Let $F=G_{1}+\{w\}$ be an embedding of $G+K_{1}$ in H where $G_{1} \cong G$ and let v be a vertex in G_{1}. Consider a further embedding F_{1} of $G+K_{1}$ in H with v as the central vertex. Now $F_{1}-v$ must have at least one vertex, x say, in common with G_{1} otherwise $\left|V\left(F_{1}\right) \cup V(F)\right|=2 n>p(H)$. Now $V\left(F_{1}\right)-\{v\}$ contains at most k vertices in common with G_{1}, possibly the vertex w, and a set S of at least $n-(k+1)$ other vertices. Thus the graph shown in Figure 2.1 is a subgraph of H.

Figure 2.1:

Thus far we have accounted for at least $(n-k-1)+(n+1)$ vertices of H. This leaves a set T of at most $2 n-1-(n-k-1)-(n+1)=k-1$ vertices. Now consider an embedding F_{2} of $G+K_{1}$ with x as the central vertex. Then F_{2} contains at most k
vertices from G_{1}, at most k vertices from S, possibly w and at least $n-(2 k+1)$ other vertices which must come from T. Thus $|T| \geq n-(2 k+1)$ whence $k-1 \geq n-(2 k+1)$. Hence $k \geq\left\lceil\frac{n}{3}\right\rceil$, which is a contradiction. \square

Corollary 2.7 Let G be a vertex transitive graph of order n which is k-regular where $k \geq n-\left\lceil\frac{n}{3}\right\rceil$. Then $f r\left(G \cup K_{1}\right)=2 n$.

Proof. Since $\overline{G \cup K_{1}} \cong \bar{G}+K_{1}$ and \bar{G} is a $(n-k-1)$-regular vertex transitive graph (with $n-k-1 \leq\left\lceil\frac{n}{3}\right\rceil-1$), it follows from Theorem 2.9 that $f r\left(\overline{G \cup K_{1}}\right)=$ $f r\left(\bar{G}+K_{1}\right)=2 n$. By Theorem 2.7 we know that $f r\left(\overline{G \cup K_{1}}\right)=f r\left(G \cup K_{1}\right)$ so that $f r\left(G \cup K_{1}\right)=2 n . \square$

Corollary 2.8 For all integers $n \geq 1, f r\left(K_{n} \cup K_{1}\right)=2 n$.

2.6 The framing number of more than one graph

Chartrand, Gavlas, and Schultz [2] extended the concept of framing numbers to more than one graph. For graphs G_{1} and G_{2}, the framing number $\operatorname{fr}\left(G_{1}, G_{2}\right)$ of G_{1} and G_{2} is defined as the minimum order of a graph F such that $G_{i}(i=1,2)$ can be homogeneously embedded in F. The graph F is called a frame of G_{1} and G_{2}. Then $\operatorname{fr}\left(G_{1}, G_{2}\right)$ exists and, in fact, $f r\left(G_{1}, G_{2}\right) \leq f r\left(G_{1} \cup G_{2}\right)$.

Theorem 2. 10 (Chartrand et al. [2]) For graphs G_{1} and G_{2}, there exists a positive integer m such that for each integer $n \geq m$, there is a graph H of order n in which
G_{1} and G_{2} can be homogeneously embedded, while for each positive integer $n<m$, no such graph H of order n exists.

Much work has been done in determining the framing number $f r(S)$ where S is a set of more than one graph. For $S=\left\{K_{1,3}, P_{n}\right\}$ the following table summarizes the results of Gavlas et al. [6].

n	3	4	5	6	7	8
$f r\left(K_{1,3}, P_{n}\right)$	6	8	8	10	10	12

Table 2.2:

Gavlas et al. [6] also investigated the framing number of a claw and cycles. Tables 2.3 and 2.4 summarize these results.

n	3	4	5	6	7
$f r\left(K_{1,3}, C_{n}\right)$	8	6	8	8	10

Table 2.3:

(m, n)	$(3,4)$	$(4,5)$	$(4,6)$	$(5,7)$	$(4,7)$
$f r\left(K_{1,3}, C_{m}, C_{n}\right)$	8	8	8	10	10

Table 2.4:

Gavlas et al. [6]. also showed that $\operatorname{fr}\left(K_{1,3}, C_{4}, C_{5}, C_{7}\right)=10$.

The next result is due to Entringer et al. [5].

Theorem 2. 11 (Entringer et al. [5]) For integers $m, n \geq 2$,

$$
f r\left(K_{m}, \overline{K_{n}}\right)=n+m-2+\lceil 2 \sqrt{(m-1)(n-1)}\rceil
$$

Chartrand et al. [2] investigated $f r\left(C_{m}, C_{n}\right)$ for small values of m and n. Their results are summarized in Table 2.5

(m, n)	$(3,4)$	$(3,5)$	$(3,6)$	$(4,5)$	$(4,6)$	$(5,6)$
$f r\left(C_{m}, C_{n}\right)$	6	7	8	7	8	8

Table 2.5:

Chapter 3

The framing number of a digraph

3.1 Introduction

In this chapter we adapt the concepts of frames and framing numbers to digraphs. A digraph D is homogeneously embedded in a digraph H if for each vertex x of D and each vertex y of H, there exists an embedding of D in H as an induced subdigraph with x at y. A digraph F of minimum order in which D can be homogeneously embedded is called a frame of D and the order of F is called the framing number of D.

Results involving frames and framing numbers of graphs are easily applicable to symmetric digraphs. If D is a symmetric digraph, then let F be a frame of the underlying graph of D. Then the (symmetric) digraph F^{*} obtained from F by replacing
each edge $u v$ of F by the arcs (u, v) and (v, u) is a frame of D. In all that follows, we restrict our attention to asymmetric digraphs.

In Section 3.2 it is shown that that every digraph has at least one frame and, consequently, that the framing number of a digraph is a well defined concept. Several results involving the framing number of graphs and digraphs then follow. In Section 3.3 bounds are established for the framing number of a digraph.

The framing ratio $\operatorname{frr}(D)$ of a digraph D is defined by $\operatorname{frr}(D)=f r(D) /|V(D)|$. This graphical parameter, studied in Section 3.4, may be considered as a certain measure of the vertex symmetry of a digraph. It is shown that every rational in the interval $[1,3)$ is a framing ratio.

In Sections 3.5, 3.6 and 3.7, the framing number is determined for a number of classes of digraphs, including a class of digraphs whose underlying graph is a complete bipartite graph, a class of digraphs whose underlying graph is $C_{n}+K_{1}$, and the lexicographic product of a transitive tournament and a vertex transitive digraph.

Finally, in Section 3.8, a relationship between the diameters of the underlying graph of a digraph and its frame is determined. It is shown that every tournament has a frame which is also a tournament.

3.2 Existence of frames for digraphs

In [2] it is shown that every graph has a frame or, equivalently, that $f r(G)$ is defined for every graph G. We state an analogous result for digraphs, the proof of which is along similar lines as that presented in [2].

Theorem 3.1 Every digraph has a frame.

Proof. Let D be a digraph of order p. It suffices to show that there exists a digraph F in which D can be homogeneously embedded.

To construct such a digraph F, we do the following. Let $S_{1}, S_{2}, \ldots, S_{k}$ be the orbits of D, where $S_{i}=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n_{i}}\right\}$ for $1 \leq i \leq k$. Thus $p=\sum_{i=1}^{k} n_{i}$. Let $D_{1}, D_{2}, \ldots, D_{2 k-1}$ be $2 k-1$ copies of D. For each $i=1,2, \ldots, k$, we label the vertex $v_{i, j}$ in D by $v_{i, j}^{m}$ in $D_{m}(1 \leq m \leq 2 k-1)$. Take the (disjoint) union of the digraphs $D_{1}, D_{2}, \ldots, D_{2 k-1}$. Then for each i, j and m, where $1 \leq i \leq k, 1 \leq j \leq n_{i}$ and $1 \leq m \leq 2 k-1$, do the following: Add the arc $\left(v_{i, j}^{m}, v\right)$ for each $v \in N^{+}\left(v_{\ell, 1}^{m+\ell-i}\right)$ and add the $\operatorname{arc}\left(v, v_{i, j}^{m}\right)$ for each $v \in N^{-}\left(v_{\ell, 1}^{m+\ell-i}\right)$ if $i<\ell$, or add the $\operatorname{arc}\left(v_{i, j}^{m}, v\right)$ for each $v \in N^{+}\left(v_{\ell, 1}^{m+k+\ell-i}\right)$ and add the arc $\left(v, v_{i, j}^{m}\right)$ for each $v \in N^{-}\left(v_{\ell, 1}^{m+k+\ell-i}\right)$ if $i>\ell$, for every $\ell(1 \leq \ell \leq k)$, where $m+\ell-i$ and $m+k+\ell-i$ are expressed modulo $2 k-1$. This completes the construction of F.

It remains to show that F has the desired properties. It suffices to verify that for each $\ell(1 \leq \ell \leq k)$ and each vertex y of F, the digraph D can be embedded as an
induced subdigraph with $v_{\ell, 1}$ at y. Now y is the vertex $v_{i, j}^{m}$ for some $i(1 \leq i \leq k)$ and $j\left(1 \leq j \leq n_{i}\right)$, and $m(1 \leq m \leq 2 k-1)$. If we define

$$
U= \begin{cases}V\left(D_{m+\ell-i}\right) \cup\left\{v_{i, j}^{m}\right\}-\left\{v_{\ell, 1}^{m+\ell-i}\right\} & \text { if } i<\ell \\ V\left(D_{m}\right) & \text { if } i=\ell \\ V\left(D_{m+k+\ell-i}\right) \cup\left\{v_{i, j}^{m}\right\}-\left\{v_{\ell, 1}^{m+k+\ell-i}\right\} & \text { if } i>\ell\end{cases}
$$

then we see that $H=\langle U\rangle \cong D$.

According to Theorem 3.1, then, for every digraph D there exists a digraph F in which D can be homogeneously embedded as an induced subdigraph. Hence, $f r(D)$ is defined for every digraph D.

Corollary 3.1 For every digraph D and for every integer $n \geq f r(D)$, there exists a digraph H of order n in which D can be homogeneously embedded.

Proof. By Theorem 3.1, there exists a frame F (of order $f r(D)$) of D. Let v be a vertex of F. Define F_{1} to be the digraph of order $f r(D)+1$ obtained from F by adding a new vertex v_{1} to F and inserting the arcs $\left(v_{1}, w\right)$ for each $w \in N^{+}(v)$ and the $\operatorname{arcs}\left(w, v_{1}\right)$ for each $w \in N^{-}(v)$. Then v and v_{1} are similar vertices, and D can be homogeneously embedded in F_{1}. Proceeding inductively, we see that for every integer $n \geq f r(D)$, there exists a digraph H of order n in which D can be homogeneously embedded.

Corollary 3.1 actually yields the following result.

Corollary 3.2 For every digraph D, there exists a positive integer m such that for each integer $n \geq m$, there is a digraph H of order n in which D can be homogeneously embedded, while for each positive integer $n<m$, no such digraph H of order n exists.

Proposition 3.1 Let D be a digraph and let F be a frame for D. Let D^{\prime} and F^{\prime} be the digraphs obtained by reversing the directions of the arcs in D and F, respectively. Then $\operatorname{fr}(D)=f r\left(D^{\prime}\right)$, and F^{\prime} is a frame for D^{\prime}.

Proof. It is evident that F^{\prime} homogeneously embeds D^{\prime}, so $\operatorname{fr}\left(D^{\prime}\right) \leq f r(F)$. It remains to show that F^{\prime} is a frame for D^{\prime}. Suppose, to the contrary, that H^{\prime} is a frame for D, where H^{\prime} has order less than that of F^{\prime}. Let H be the digraph obtained by reversing the direction of the arcs in H^{\prime}. Then D can be homogeneously embedded in H, so $\operatorname{fr}(D) \leq|V(H)|<|V(F)|$, which contradicts the fact that F is a frame for D.

3.3 Bounds on the framing number

The construction of the digraph F in the proof of Theorem 3.1 gives an upper bound on the framing number of a digraph.

Corollary 3.3 Let k denote the number of orbits in a digraph D. Then

$$
f r(D) \leq(2 k-1)|V(D)| .
$$

Note that Corollary 3.3 implies that a digraph D is vertex transitive if and only if $f_{r}(D)=|V(D)|$. Let D be a digraph and let F be a frame of D. Then it is evident that the underlying graph of D can be homogeneously embedded in the underlying graph of F. This yields the following result.

Proposition 3.2 If D is a digraph and if D^{\prime} is the underlying graph of D, then $f r(D) \geq f r\left(D^{\prime}\right)$.

Figure 3.1: A digraph D and its frame F.

For example, consider the digraph D of Figure 3.1 which is the union of two directed cycles. Let D^{\prime} denote the underlying graph of D so $D^{\prime} \cong C_{3} \cup C_{4}$. It is shown in [2] that $f r\left(C_{3} \cup C_{4}\right)=11$. According to Proposition 3.2, we know therefore that $f r(D) \geq 11$. However, the digraph F (of order 11) shown in Figure 3.1 has the property that D can be homogeneously embedded in F. Therefore, $f r(D) \leq 11$. Thus $\operatorname{fr}(D)=11$.

Let D be a digraph and let H be a digraph that homogeneously embeds D. Further, let D^{\prime} and H^{\prime} be the underlying graphs of D and H, respectively. Then, since D^{\prime} can
be homogeneously embedded in H^{\prime}, Theorem 3.1 yields the following result.

Lemma 3. 1 If a digraph D can be homogeneously embedded in a digraph H, then

$$
\Delta(D) \leq \delta(H) \leq \Delta(H) \leq|V(H)|-|V(D)|+\delta(D)
$$

The following lemma will be useful in order to present a lower bound on the framing number of a digraph.

Lemma 3.2 If a digraph D can be homogeneously embedded in a digraph H, then

$$
\begin{equation*}
\Delta_{i d}(D) \leq \delta_{i d}(H) \leq \Delta_{i d}(H) \leq|V(H)|-|V(D)|+\delta_{i d}(D) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{o d}(D) \leq \delta_{o d}(H) \leq \Delta_{o d}(H) \leq|V(H)|-|V(D)|+\delta_{o d}(D) \tag{3.2}
\end{equation*}
$$

Proof. Necessarily, $\delta_{i d}(H) \geq \Delta_{i d}(D)$ and $\delta_{o d}(H) \geq \Delta_{o d}(D)$. Let v be a vertex of D with $i d v=\delta_{i d}(D)$. Then v is not adjacent from $|V(D)|-1-\delta_{i d}(D)$ other vertices of D. Because D can be homogeneously embedded in H, every vertex of H is not adjacent from at least $|V(D)|-1-\delta_{i d}(D)$ vertices of H. Consequently, every vertex of H is adjacent from at most $|V(H)|-1-\left(|V(D)|-1-\delta_{i d}(D)\right)=|V(H)|-|V(D)|+\delta_{i d}(D)$ vertices of H. This establishes (3.1). The proof of (3.2) can be obtained directly from (3.1) by reversing the directions of all arcs.

An immediate consequence of this is the following.

Corollary 3.4 If a digraph D can be homogeneously embedded in a digraph H, then

$$
\begin{aligned}
|V(H)| \geq & \max \left\{|V(D)|+\Delta(D)-\delta(D),|V(D)|+\Delta_{i d}(D)-\delta_{i d}(D),\right. \\
& \left.|V(D)|+\Delta_{o d}(D)-\delta_{o d}(D)\right\} .
\end{aligned}
$$

Corollary 3.5 For a digraph D,

$$
\begin{aligned}
f r(D) \geq & \max \left\{|V(D)|+\Delta(D)-\delta(D),|V(D)|+\Delta_{i d}(D)-\delta_{i d}(D)\right. \\
& \left.|V(D)|+\Delta_{o d}(D)-\delta_{o d}(D)\right\}
\end{aligned}
$$

Theorem 3.2 If a digraph D can be homogeneously embedded in a digraph H, then

$$
\begin{equation*}
\operatorname{Min}\left(\Delta_{o d}(H), \Delta_{i d}(H)\right) \geq \operatorname{Max}\left(\Delta_{o d}(D), \Delta_{i d}(D)\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Min}\left(\delta_{o d}(H), \delta_{i d}(H)\right) \geq \operatorname{Max}\left(\delta_{o d}(D), \delta_{i d}(D)\right) \tag{3.4}
\end{equation*}
$$

Proof. Since $\Delta_{i d}(D) \leq \delta_{i d}(H)$ and $\Delta_{o d}(D) \leq \delta_{o d}(H)$, the following inequalities follow.

$$
\begin{align*}
& \Delta_{i d}(D) p(H) \leq \sum_{v \epsilon V(H)} i d_{H} v \leq \Delta_{i d}(H) p(H) \tag{a}\\
& \Delta_{o d}(D) p(H) \leq \sum_{v \epsilon V(H)} o d_{H} v \leq \Delta_{o d}(H) p(H) \tag{b}\\
& \delta_{i d}(D) p(D) \leq \sum_{v \epsilon V(D)} i d_{D} v \leq \delta_{i d}(H) p(D) \tag{c}
\end{align*}
$$

and

$$
\begin{equation*}
\delta_{o d}(D) p(D) \leq \sum_{v \epsilon V(D)} o d_{D} v \leq \delta_{o d}(H) p(D) . \tag{d}
\end{equation*}
$$

Necessarily, $\Delta_{o d}(H) \geq \Delta_{o d}(D)$ and $\Delta_{i d}(H) \geq \Delta_{i d}(D)$. Because $\sum_{v \in V(H)} i d_{H} v=$ $\sum_{v \in V(H)} o d_{H} v$, both (a) and (b) imply that $\Delta_{i d}(H) \geq \Delta_{o d}(D)$ and $\Delta_{o d}(H) \geq \Delta_{i d}(D)$. This establishes (3.3).

Necessarily, $\delta_{o d}(H) \geq \delta_{o d}(D)$ and $\delta_{i d}(H) \geq \delta_{i d}(D)$. Because $\sum_{v \epsilon V(D)} i d_{D} v=$ $\sum_{v \epsilon V(D)} o d_{D} v,(c)$ and (d) imply that $\delta_{i d}(H) \geq \delta_{o d}(D)$ and $\delta_{o d}(H) \geq \delta_{i d}(D)$. This establishes (3.4).

The proof of Theorem 3.2 yields the following results.

Corollary 3.6 If a digraph D can be homogeneously embedded in a digraph H, then

$$
\left\lfloor\frac{q(H)}{p(H)}\right\rfloor \geq \max \left(\Delta_{o d}(D), \Delta_{i d}(D)\right)
$$

and

$$
\left\lceil\frac{q(D)}{p(D)}\right\rceil \leq \min \left(\delta_{o d}(H), \delta_{i d}(H)\right)
$$

Corollary 3.7 If F is a frame for digraph D, then

$$
\left\lfloor\frac{q(F)}{p(F)}\right\rfloor \geq \max \left(\Delta_{o d}(D), \Delta_{i d}(D)\right)
$$

and

$$
\left\lceil\frac{q(D)}{p(D)}\right\rceil \leq \min \left(\delta_{o d}(F), \delta_{i d}(F)\right)
$$

The above result has the following interpretation. The average indegree (or outdegree) of a frame of a digraph D is at least $\max \left(\Delta_{o d}(D), \Delta_{i d}(D)\right)$. Also, the average indegree (or outdegree) of the digraph D is at most $\min \left(\delta_{o d}(F), \delta_{i d}(F)\right.$).

Theorem 3. 3 If a digraph D can be homogeneously embedded in a digraph H, then

$$
\begin{equation*}
\Delta(H) \geq 2 M a x\left(\Delta_{o d}(D), \Delta_{i d}(D)\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(H) \geq 2 \operatorname{Max}\left(\delta_{o d}(D), \delta_{i d}(D)\right) \tag{3.6}
\end{equation*}
$$

Proof. Since $\delta_{i d}(H) \geq \Delta_{i d}(D)$, we have

$$
\begin{aligned}
\Delta(H) p(H) & \geq \sum_{v \in V(H)} \operatorname{deg}_{H} v \\
& =\sum_{v \in V(H)}\left(i d_{H} v+o d_{H} v\right) \\
& =2 \sum_{v \in V(H)} i d_{H} v \\
& \geq 2 \Delta_{i d}(D) p(H),
\end{aligned}
$$

whence $\Delta(H) \geq 2 \Delta_{i d}(D)$. Similarly, since $\delta_{o d}(H) \geq \Delta_{o d}(D)$, it can be shown that $\Delta(H) \geq 2 \Delta_{o d}(H)$. This establishes (3.5).

Since $\delta(H) \geq \Delta(D)$, we have

$$
\begin{aligned}
\delta(H) p(D) & \geq \sum_{v \in V(D)} d e g_{D} v \\
& =\sum_{v \in V(D)}\left(i d_{D} v+o d_{D} v\right) \\
& =2 \sum_{v \in V(D)} i d_{D} v \\
& \geq 2 \delta_{i d}(D) p(D)
\end{aligned}
$$

whence $\delta(H) \geq 2 \delta_{i d}(D)$. Similarly, it can be shown that $\delta(H) \geq 2 \delta_{o d}(D)$. This establishes (3.6).

If a digraph D can be homogeneously embedded in a digraph H, then $f r(D) \geq$ $\Delta(H)+1$. Hence an immediate corollary of Theorem 3.2 now follows.

Corollary 3.8 For a digraph D,

$$
f r(D) \geq 2 \max \left(\Delta_{o d}(D), \Delta_{i d}(D)\right)+1
$$

For example, the digraph D of Figure 3.2 can be homogeneously embedded in the digraph F of order 5 (also shown in Figure 3.2) so that $f r(D) \leq 5$. However, $\Delta_{i d}(D)=\Delta_{o d}(D)=2$. Thus, by Corollary 3.8, $f r(D) \geq 5$. Consequently, $f r(D)=5$.

Figure 3.2: A digraph D and its frame F.

The next result includes Corollary 3.5 as a special case.

Lemma 3.3 If a digraph D can be homogeneously embedded in a digraph H, then $|V(H)| \geq|V(D)|+\max \left\{\Delta(D)-\delta(D), \max \left(\Delta_{o d}(D), \Delta_{i d}(D)\right)-\min \left(\delta_{o d}(D), \delta_{i d}(D)\right)\right\}$.

Proof. By Corollary 3.5, we know that $|V(H)| \geq|V(D)|+\Delta(D)-\delta(D) \cdots(*)$. From Lemma 3.2, we deduce that $\min \left(\Delta_{i d}(H), \Delta_{o d}(H)\right) \leq \min \left\{|V(H)|-|V(D)|+\delta_{i d}(D)\right.$,
$\left.|V(H)|-|V(D)|+\delta_{o d}(D)\right\}=|V(H)|-|V(D)|+\min \left(\delta_{i d}(D), \delta_{o d}(D)\right)$. It follows then by Theorem 3.2 that $\max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right) \leq|V(H)|-|V(D)|+\min \left(\delta_{i d}(D), \delta_{o d}(D)\right)$ or, equivalently, $|V(H)| \geq|V(D)|+\max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right)-\min \left(\delta_{i d}(D), \delta_{o d}(D)\right)$. This, together with inequality $(*)$, yields the desired result.

Corollary 3.9 For a digraph D,
$f r(D) \geq|V(D)|+\max \left\{\Delta(D)-\delta(D), \max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right)-\min \left(\delta_{i d}(D), \delta_{o d}(D)\right)\right\}$.

In fact the lower bound given in Lemma 3.3 can be further improved. Suppose that a digraph D can be homogeneously embedded in a digraph H. As an immediate consequence of Lemma 3.1, Lemma 3.2 and Theorem 3.2, we have the following result.

Corollary 3.10 If a digraph D can be homogeneously embedded in a digraph H, then

$$
|V(H)| \geq|V(D)|+2 \max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right)-\delta(D)
$$

Corollary 3.11 For a digraph D,

$$
f r(D) \geq|V(D)|+2 \max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right)-\delta(D)
$$

We claim that $\delta(D) \geq 2 \min \left(\delta_{i d}(D), \delta_{o d}(D)\right)$ and $\Delta(D) \leq 2 \max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right)$. Choose a vertex $v \in V(D)$ such that $\operatorname{deg}_{D} v=\delta(D)$. We have $\delta(D)=\operatorname{deg}_{D} v=$ $i d_{D} v+o d_{D} v \geq \delta_{i d}(D)+\delta_{o d}(D) \geq 2 \min \left(\delta_{i d}(D), \delta_{o d}(D)\right)$. Similarly, it can be shown that $\Delta(D) \leq 2 \max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right)$. With these inequalities at hand it is easily
checked that the lower bound presented in Corollary 3.10 is an improvement of that in Lemma 3.3.

3.4 Framing ratios of digraphs

For a digraph D, we define the framing ratio $\operatorname{frr}(D)$ of D by

$$
f r r(D)=\frac{f r(D)}{|V(D)|}
$$

Certainly, $\operatorname{frr}(D) \geq 1$ for every digraph D, and $\operatorname{frr}(D)=1$ if and only if D is vertex-transitive. The framing ratio of a digraph D produces a certain measure of the symmetry of D, where the closer $\operatorname{frr}(D)$ is to 1 , the more "symmetric" D is. For the digraph D of Figure $3.1, \operatorname{frr}(D)=11 / 7$ while for the digraph D of Figure 3.2, $\operatorname{frr}(D)=5 / 3$.

Of course, the framing ratio of every digraph is a rational number. We show that many rational numbers are framing ratios. For the purpose of doing this, we define a digraph $\vec{K}_{p_{0}, p_{1}, p_{2}}$ as follows. Consider a complete 3-partite graph $K_{p_{0}, p_{1}, p_{2}}$ having partite sets V_{0}, V_{1}, V_{2}, where $\left|V_{i}\right|=p_{i}$ for $i=0,1,2$. For $i=0,1,2$, replace each edge $u v$ of D where $u \in V_{i}$ and $v \in V_{i+1}$ with the $\operatorname{arc}(u, v)$, where addition is taken modulo 3. We denote the resulting digraph by $\vec{K}_{p_{0}, p_{1}, p_{2}}$.

Theorem 3.4 For positive integers $\ell \geq m \geq n$,

$$
f r\left(\vec{K}_{\ell, m, n}\right)=3 \ell .
$$

Proof. Let $D \cong \vec{K}_{\ell, m, n}$. Since D can be homogeneously embedded in $\vec{K}_{\ell, \ell, \ell}$, it follows that $f r(D) \leq 3 \ell$. We show that $f r(D) \geq 3 \ell$. Let F be a frame for D. By Theorem 3.3, we know that $\delta(F) \geq 2 \max \left(\Delta_{i d}(D), \Delta_{o d}(D)\right)=2 \ell$. Let v be a vertex of D that belongs to the partite set of cardinality ℓ. Then v is adjacent to or from at least $\delta(F) \geq 2 \ell$ other vertices in F. These vertices, together with the ℓ vertices that belong to the partite set of D that contains v, account for at least 3ℓ (distinct) vertices. Hence $f r(D)=|V(F)| \geq 3 \ell$, producing the desired result.

Theorem 3.5 For each rational number $r \in[1,3)$, there exists a digraph D with $\operatorname{frr}(D)=r$.

Proof. Lẹt $r \in[1,3)$ be a rational number. Then we may write $r=2+\frac{a}{b}$, where a and b are integers with $b>0$ and $-b \leq a<b$. Consider the digraph $D \cong \vec{K}_{4 b+2 a, b-a, b-a}$. By Theorem 3.2, $f r(D)=3(4 b+2 a)$. Since the order of D is $6 b$,

$$
f r r(D)=\frac{3(4 b+2 a)}{6 b}=2+\frac{a}{b}=r . \square
$$

By Corollary 3.3, if D is a digraph with k orbits, then $\operatorname{frr}(D) \leq 2 k-1$. Although this may suggest that $f r r(D)$ can be arbitrarily large, we do not know whether this is the case. In fact, we do not know whether there even exists a digraph D with $f r r(D) \geq 3$. On the other hand, a digraph D having a large number of orbits may have a framing ratio that is arbitrarily close to 1 . For example, if D is a directed path on n vertices, then D has n orbits and is framed by a directed cycle on $n+1$ vertices.

So $\operatorname{frr}(D)=1+\frac{1}{n}$. Thus it is an open question as to whether framing ratios can be arbitrarily large.

3.5 The framing number of a class of oriented complete bipartite graphs

In [2] it is shown that the framing number of the complete bipartite graph $K_{m, n}$ is $f r\left(K_{m, n}\right)=2 \max (m, n)$. Suppose that $K_{m, n}$ has partite sets V_{1}, V_{2} where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. Replace each edge $u v$ of $K_{m, n}$ where $u \in V_{1}$ and $v \in V_{2}$ with the $\operatorname{arc}(u, v)$. The resulting digraph is denoted by $\vec{K}_{m, n}$. We show that $\operatorname{fr}\left(\vec{K}_{m, n}\right)=$ $3 \max (m, n)$. For the purpose of doing this, let $\vec{K}_{p_{0}, p_{1}, p_{2}}$ be the digraph defined in the paragraph immediately preceeding Theorem 3.4.

First, we establish the framing number of the digraph $\vec{K}_{1, n}$.

Proposition 3. 3 For any positive integer n, $f r\left(\vec{K}_{1, n}\right)=3 n$.

Proof. Since $\vec{K}_{1, n}$ can be homogeneously embedded in the vertex transitive digraph $\vec{K}_{n, n, n}$, it follows that $f r\left(\vec{K}_{1, n}\right) \leq 3 n$. However, since $\Delta_{o d}\left(\vec{K}_{1, n}\right)=n$, by Corollary 3.11 it follows that $f r\left(\vec{K}_{1, n}\right) \geq 3 n$. Consequently, $\operatorname{fr}\left(\vec{K}_{1, n}\right)=3 n$.

Proposition 3.4 For positive integers m and n,

$$
f r\left(\vec{K}_{m, n}\right)=3 \max \{m, n\} .
$$

Proof. By Proposition 3.1 we may assume, without loss in generality that $m \leq n$. Since $\vec{K}_{m, n}$ can be homogeneously embedded in $\vec{K}_{n, n, n}$ it follows that $f r\left(\vec{K}_{m, n}\right) \leq 3 n$. However, because $\vec{K}_{1, n} \prec \vec{K}_{m, n}$ it follows from Proposition 3.1 that $3 n \leq f r\left(\vec{K}_{m, n}\right)$. Consequently, $f r\left(\vec{K}_{m, n}\right)=3 n$ as required.

3.6 The framing number of a diwheel

A directed cycle of order n in which every vertex has indegree and outdegree equal to 1 , will be denoted by \vec{C}_{n}. If \vec{C}_{n} is given by $v_{1},\left(v_{1}, v_{2}\right), v_{2},\left(v_{2}, v_{3}\right), v_{3}, \ldots, v_{n},\left(v_{n}, v_{1}\right)$, v_{1}, then we will simply write $v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}$. By a diwheel we mean the digraph \vec{W}_{n+1} obtained from the disjoint union of \vec{C}_{n} and K_{1} by joining each vertex of \vec{C}_{n} to the vertex of K_{1} (which we shall call the centre or central vertex of \vec{C}_{n}). By a rim vertex of \vec{W}_{n+1} we mean a vertex distinct from the centre of \vec{W}_{n+1}. In [7] the framing number of the wheel W_{n+1}, the underlying graph of \vec{W}_{n+1}, is established. In this section we determine the framing number of the diwheel.

The diwheel \vec{W}_{4} can be homogeneously embedded in the digraph D of order 7 in Figure 3.3 so that $\operatorname{fr}\left(\vec{W}_{4}\right) \leq 7$. However, by Corollary 3.11, $f r\left(\vec{W}_{4}\right) \geq 4+2 \times 3-3=7$. Thus $\operatorname{fr}\left(\vec{W}_{4}\right)=7$. The following result establishes the framing number of the diwheel \vec{W}_{n+1} for all integers $n \geq 4$.

Figure 3.3: A frame for \vec{W}_{4}
Theorem 3.6 For $n \geq 4$ an integer, $f r\left(\vec{W}_{n+1}\right)=3 n$.

Proof. Since \vec{W}_{n+1} can be homogeneously embedded in the vertex transitive digraph $\vec{C}_{3}\left[\vec{C}_{n}\right]$ it follows that $\operatorname{fr}\left(\vec{W}_{n+1}\right) \leq 3 n$. Employing Theorem 3.2, we show that $f r\left(\vec{W}_{n+1}\right)=3 n$ by verifying that there exists no digraph of order $3 n-1$ in which \vec{W}_{n+1} can be homogeneously embedded. Suppose, to the contrary, that such digraphs do exist. From among all such digraphs, choose a digraph H of minimum size.

Before proceeding further, we introduce some notation. For each vertex x of H, let W_{x} denote an induced subdigraph of H that is isomorphic to \vec{W}_{n+1} and that contains x as the central vertex. The set of rim vertices of W_{x} is denoted by $R\left(W_{x}\right)$. We will require a number of preliminary results.

Claim 3. $1 \Delta(H) \leq 2 n+1$ and $n \leq \Delta_{o d}(H) \leq n+1$.

Proof. By Lemma 3.1, $\Delta(H) \leq|V(H)|-\left|V\left(\vec{W}_{n+1}\right)\right|+\delta\left(\vec{W}_{n+1}\right)=(3 n-1)-(n+$

1) $+3=2 n+1$ and, by Theorem $3.2, \Delta_{o d}(H) \geq \Delta_{i d}\left(\vec{W}_{n+1}\right)=n$. To show that $\Delta_{o d}(H) \leq n+1$, let v be a vertex in H with $o d_{H} v=\Delta_{o d}(H)$. Then, by Lemma 3.2, $i d_{H} v \geq \delta_{i d}(H) \geq \Delta_{i d}\left(\vec{W}_{n+1}\right)=n$. Thus $2 n+1 \geq \Delta(H) \geq d e g_{H} v=i d_{H} v+o d_{H} v \geq$ $n+\Delta_{o d}(H)$ whence $\Delta_{o d}(H) \leq n+1$.

Claim 3.2 $\delta_{i d}(H)=n$.

Proof. Let $v \in V(H)$ such that $o d_{H} v=\Delta_{o d}(H)$. Then, by Claim 3.1, $2 n+$ $1 \geq \Delta(H) \geq \operatorname{deg}_{H} v=i d_{H} v+o d_{H} v \geq i d_{H} v+n$ so that $i d_{H} v \leq n+1$ whence $\delta_{i d}(H) \leq n+1$. By Lemma 3.2, $\delta_{i d}(H) \geq \Delta_{i d}\left(\vec{W}_{n+1}\right)=n$. Suppose $\delta_{i d}(H)=n+1$. Then $(n+1) p(H) \leq \sum_{v \in V(H)} i d_{H} v=\sum_{v \in V(H)} o d_{H} v \leq(n+1) p(H)$. Since all of these inequalities must be equalities, we conclude that $i d_{H} v=o d_{H} v=n+1$ for all $v \in V(H)$. But this implies that $\Delta(H)=2 n+2$, which contradicts Claim 3.1. Thus $\delta_{i d}(H)=n$ as required.

Claim 3. $3 \delta_{o d}(H) \leq 4$.

Proof. By Claim 3.2, we may choose $b_{1} \in V(H)$ such that id $b_{1}=n$. Consider an embedding H_{1} of \vec{W}_{n+1} in H with b_{1} as a central vertex. Since $i d b_{1}=n$, a further embedding H_{2} of \vec{W}_{n+1} in H with b_{1} as a rim vertex yields the subdigraph of H shown in Figure 3.4 where $W_{b_{1}} \cong H_{1}=\left\langle b_{1}, c_{1}, c_{2}, \ldots, c_{n}\right\rangle$ and $W_{b} \cong H_{2}=\left\langle b, b_{1}, b_{2}, \ldots, b_{n}\right\rangle$.

Now the vertex c_{1} is adjacent from c_{2}, b_{3} and at least $n-2$ other vertices which are not in H_{1} nor H_{2}. These $n-2$ vertices, together with the vertices of H_{1} and H_{2}

Figure 3.4: A subdigraph of H
account for $3 n-2=p(H)-1$ vertices of H. Thus c_{1} is adjacent to b_{1}, c_{n}, b and at most one other vertex so that od $c_{1} \leq 4$. Thus $\delta_{o d}(H) \leq 4$.

Before proceeding to the next claim, we introduce the following notation. For k a nonnegative integer, we let $s_{k}=|\{v \in V(H): o d v=k\}|$ and $t_{k}=\mid\{v \in V(H)$: $i d v=k\} \mid$. Note that

$$
\begin{equation*}
s_{\delta_{o d}(H)}+s_{\delta_{o d}(H)+1}+\cdots+s_{n+1}=t_{n}+t_{n+1}+\cdots+t_{\Delta_{i d}(H)}=3 n-1 \tag{3.7}
\end{equation*}
$$

Claim 3. $4 \Delta_{\text {od }}(H)=n+1$.

Proof. First we prove the claim for $n \geq 5$. Using the above notation we have

$$
\sum_{v \in V(H)} i d v=n t_{n}+(n+1) t_{n+1}+\cdots+\Delta_{i d}(H) t_{\Delta_{i d}(H)}
$$

and

$$
\sum_{v \in V(H)} o d v=\delta_{o d}(H) s_{\delta_{o d}(H)}+\cdots+n s_{n}+(n+1) s_{n+1}
$$

Thus

$$
\begin{equation*}
n t_{n}+(n+1) t_{n+1}+\cdots+\Delta_{i d}(H) t_{\Delta_{i d}(H)}=\delta_{o d}(H) s_{\delta_{o d}(H)}+\cdots+n s_{n}+(n+1) s_{n+1} \tag{3.8}
\end{equation*}
$$

Now

$$
\begin{aligned}
{[\text { Left hand side of (3.8)] }} & \geq n t_{n}+(n+1)\left(t_{n+1}+\cdots+t_{\Delta_{i d}(H)}\right) \\
& =n t_{n}+(n+1)\left(3 n-1-t_{n}\right) \\
& =-t_{n}+(n+1)(3 n-1) .
\end{aligned}
$$

Since $\delta_{o d}(H) \leq 4<n$,
[Right hand side of $(3.8)]<(n+1) s_{n+1}+n\left(\delta_{o d}(H) s_{\delta_{o d}(H)}+\cdots+n s_{n}\right)$

$$
\begin{aligned}
& =(n+1) s_{n+1}+n\left(3 n-1-s_{n+1}\right) \\
& =s_{n+1}+n(3 n-1) .
\end{aligned}
$$

Combining the above inequalities we have $s_{n+1}+t_{n}>3 n-1$. Since $t_{n} \leq 3 n-1$, it follows that $s_{n+1} \neq 0$, that is, there is a vertex with outdegree $n+1$. Thus $\Delta_{o d}(H)=n+1$ for $n \geq 5$.

Now suppose that $n=4$. By Claim 3.1, we know that $4 \leq \Delta_{o d}(H) \leq 5$. Suppose that $\Delta_{i d}(H)=4$. By Claim 3.2, $\delta_{i d}(H)=4$, so $4 p(H) \leq \sum_{v \in V(H)} i d v=$ $\sum_{v \in V(H)} o d v \leq 4 p(H)$. Since all these inequalities must be equalities, we conclude that $i d v=o d v=4$ for all vertices v of H. Thus H is a 4-regular digraph of order
11. We remark that every vertex of H is not adjacent with exactly two other vertices; and because every vertex v of H has indegree 4, we have $R\left(W_{v}\right)=N^{-}(v)$.

Let d be a vertex of H and let F_{1} be an induced subdigraph of H which is isomorphic to \vec{W}_{5} and that contains d as a rim vertex. Let e be the vertex other than d which is common to W_{d} and F_{1}. Since H is 4 -regular, e must be adjacent from two vertices not in $W_{d} \cup F_{1}$ and to another vertex not in $W_{d} \cup F_{1}$. Suppose, then, the vertices of H are labelled as in Figure 3.5, where $W_{d}=\langle a, b, c, d, e\rangle$ and $W_{j} \cong F_{1}=\langle d, e, f, i, j\rangle$.

Figure 3.5: A subdigraph of H

Note that $W_{e}=\langle e, c, f, g, h\rangle$. Next we consider W_{a}. Clearly $d, b, c \notin R\left(W_{a}\right)$. Thus W_{a} must consist of the vertices e, exactly one of h, g and f, exactly one of j and k and some fourth vertex, say z, not adjacent to e. Since $b \notin R\left(W_{a}\right), z=i$. Since $i, e \in R\left(W_{a}\right)$, it follows that $j \notin V\left(W_{a}\right)$. Thus $R\left(W_{a}\right)$ consists of i, e, k and one vertex from h, g and f.

Suppose that $h \in R\left(W_{a}\right)$. Note that h must be adjacent from i and h is not
adjacent with k. Since $\langle c, f, g, h\rangle=\left\langle R\left(W_{e}\right)\right\rangle \cong \vec{C}_{4}, h$ is not adjacent with one of c, g and f. Hence the two vertices of H not adjacent with h belong to the set $\{c, g, f, k\}$. Thus h must be adjacent with each of d and j. Since $i d d=i d j=4$, it follows that d and j are both adjacent to h. Thus $i, d, j \in R\left(W_{h}\right)$. But this is clearly impossible. A similar contradiction arises if we assume that $g \in R\left(W_{a}\right)$. Thus $f \in R\left(W_{a}\right)$ and $R\left(W_{a}\right)=\{i, e, f, k\}$. Clearly in $R\left(W_{a}\right)$, and hence in H, f is not adjacent with k. Since f is also not adjacent with d, it follows that f is adjacent with every vertex of H other than d and k. In particular, f is adjacent with g, h and c. But this is impossible as $\langle c, f, g, h\rangle=\left\langle R\left(W_{e}\right)\right\rangle \cong \vec{C}_{4}$.

Thus we cannot embed \vec{W}_{5} in H with a as the central vertex. This contradicts the fact that H homogeneously embeds \vec{W}_{5}. Hence we must conclude that $\Delta_{o d}(H)=5$. This completes the proof of Claim 3.4. \square

Choose $x \in V(H)$ such that $o d_{H} x=n+1$ (then $i d_{H} x=n$). Consider an embedding $F_{1}\left(F_{2}\right)$ of \vec{W}_{n+1} in H with x as a central vertex (rim vertex, respectively). Then the digraph D of Figure 3.6 is a subdigraph of H where $W_{x} \cong F_{1}=\left\langle x, x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ and $W_{f} \cong F_{2}=\left\langle f, f_{1}, f_{2}, \ldots, f_{n}\right\rangle$.

Since $\left|V\left(F_{1}\right) \cup V\left(F_{2}\right)\right|=2 n$, there is a set S of $n-1$ vertices of H not in F_{1} nor F_{2}. Since $o d_{H} x=n+1, x$ is adjacent to every vertex in S. Consider W_{c}, where c is the vertex shown in Figure 3.6. Clearly $R\left(W_{c}\right) \subseteq S \cup\left\{x_{2}, f_{3}\right\}$. Since $\left|R\left(W_{c}\right)\right|=n$, at least one of x_{2} and f_{3} belongs to $R\left(W_{c}\right)$.

Figure 3.6: A subdigraph of H
Claim 3.5 The vertex f_{3} is non-adjacent to at least one vertex in $S \cap R\left(W_{c}\right)$.

Proof. If $f_{3} \in R\left(W_{c}\right)$, then, since $R\left(W_{c}\right)$ contains at least $n-2(\geq 2)$ vertices of S and f_{3} is adjacent to only one vertex of $R\left(W_{c}\right)$, the result is immediate. Assume, then, that $f_{3} \notin R\left(W_{c}\right)$, for otherwise there is nothing left to prove. Then $R\left(W_{c}\right)=$ $S \cup\left\{x_{2}\right\}$. Let s be the vertex of S adjacent to x_{2}. Since $x_{3}(s)$ is the only vertex of $F_{1}\left(S\right.$, respectively) adjacent to x_{2}, it follows that for $n \geq 5$ we have $R\left(W_{x_{2}}\right) \subset$ $\left\{s, x_{3}, f, f_{3}, f_{4}, \ldots, f_{n}\right\}$. If $f \in R\left(W_{x_{2}}\right)$, then at most one vertex from $f_{3}, f_{4}, \ldots, f_{n}$ belongs to $R\left(W_{x_{2}}\right)$, implying that $\left|R\left(W_{x_{2}}\right)\right| \leq 4<5$ which is impossible. Thus $f \notin R\left(W_{x_{2}}\right) ;$ consequently, $R\left(W_{x_{2}}\right)=\left\{s, x_{3}, f_{3}, f_{4}, \ldots, f_{n}\right\}$. In particular, we note that $\left(f_{3}, x_{2}\right) \in E(H)$, so f_{3} is adjacent to at least three vertices not in S, namely to x_{2}, c, and f. Hence, since $\Delta_{o d}(H)=n+1$ and $|S|=n-1$, the result now follows for $n \geq 5$.

If $n=4$, then H has order 11 and $R\left(W_{x_{2}}\right) \subset\left\{s, x_{3}, f, f_{3}, f_{4}\right\}$. If $f_{3} \in R\left(W_{x_{2}}\right)$, then the result follows as above. Assume, then, that $f_{3} \notin R\left(W_{x_{2}}\right)$. Then $R\left(W_{x_{2}}\right)=$ $\left\{s, x_{3}, f, f_{4}\right\}$. In particular, we observe that $\left(f_{4}, x_{2}\right) \in E(H)$. If f_{3} is non-adjacent to some vertex of S, then the result follows since $S \subset R\left(W_{c}\right)$. On the other hand, if f_{3} is adjacent to all three vertices of S, then $o d_{H} f_{3}=5(=n+1)$. However, since x and f_{3} are not adjacent and $i d_{H} f_{3} \geq 4$, it follows that $R\left(W_{f_{3}}\right)=\left\{x_{2}, x_{3}, x_{4}, f_{4}\right\}$. But this would imply that $\left(x_{2}, f_{4}\right) \in E(H)$, which produces a contradiction. This completes the proof of Claim 3.5.

By Claim 3.5, there exists a vertex b in $S \cap R\left(W_{c}\right)$ that is not adjacent from f_{3}. Since x is adjacent to every vertex of $S,(x, b) \in E(H)$.

Claim 3.6 There exists no embedding of \vec{W}_{n+1} in H with b as a central vertex and x as a rim vertex.

Proof. Assume, to the contrary, that we can embed \vec{W}_{n+1} in H with b as a central vertex and x as a rim vertex. We determine $R\left(W_{b}\right)$. Since $b \in R\left(W_{c}\right)$, we know that $(b, c) \in E(H)$, so $c \notin R\left(W_{b}\right)$. Further, $\left(f_{3}, b\right) \notin E(H)$, so $f_{3} \notin R\left(W_{b}\right)$. Since $x \in R\left(W_{b}\right)$, it follows that exactly one vertex from $\left\{x_{2}, x_{3}, \ldots, x_{n}\right\}$ belongs to $R\left(W_{b}\right)$. Moreover, exactly one vertex from $N^{+}(x)=S \cup\left\{f, f_{n}\right\}$ belongs to $R\left(W_{b}\right)$. If $f \in$ $R\left(W_{b}\right)$, then no vertex from $\left\{f_{4}, \ldots, f_{n}\right\}$ belongs to $R\left(W_{b}\right)$, implying that $R\left(W_{b}\right)$ consists of only three vertices, which is impossible (since $n \geq 4$). Hence $f \notin R\left(W_{b}\right)$. Thus $R\left(W_{b}\right)$ consists of x, exactly one vertex from $\left\{x_{2}, x_{3}, \ldots, x_{n}\right\}$, exactly one vertex
from $S \cup\left\{f_{n}\right\}$, and $n-3$ vertices from $\left\{f_{4}, \ldots, f_{n-1}\right\}$. However, this is impossible as $\left|\left\{f_{4}, \ldots, f_{n-1}\right\}\right|=n-4<n-3$. This completes the proof of Claim 3.6.

Claim 3.7 The only possible embeddings of \vec{W}_{n+1} in H with both b and x as rim vertices have f as the central vertex, and as rim vertices b, x, exactly one vertex from $\left\{x_{2}, x_{3}, \ldots, x_{n}\right\}$, and the $n-3$ vertices in $\left\{f_{3}, \ldots, f_{n-1}\right\}$.

Proof. Consider an embedding of \vec{W}_{n+1} in H_{1} with both b and x as rim vertices. Let W_{y} be such an embedding with central vertex y. Since $x, b \in R\left(W_{y}\right)$, the vertex c cannot belong to W_{y}. Since $x \in R\left(W_{y}\right)$, exactly one vertex from $\left\{x_{2}, x_{3}, \ldots, x_{n}\right\}$ belongs to $R\left(W_{y}\right)$, and y must be one of the vertices in $S \cup\left\{f, f_{n}\right\}$.

If $y=f$, then, since x is adjacent to the vertex b on $R\left(W_{y}\right)$, no vertex in $S \cup\left\{f_{n}\right\}$ belongs to $R\left(W_{y}\right)$. It follows that $R\left(W_{y}\right)$ consists of b, x, exactly one vertex from $\left\{x_{2}, x_{3}, \ldots, x_{n}\right\}$, and the $n-3$ vertices in $\left\{f_{3}, \ldots, f_{n-1}\right\}$. Hence, we may assume in what follows that $y \neq f$, for otherwise there is nothing left to prove.

If $y=f_{n}$, then no vertex from $S \cup\left\{f, f_{3}, \ldots, f_{n-1}\right\}$ other than b belongs to $R\left(W_{y}\right)$, implying that $R\left(W_{y}\right)$ consists of only three vertices, which is impossible. Hence $y \neq f_{n}$. This in turn implies that $f, f_{n} \notin R\left(W_{y}\right)$, since x is adjacent to the vertex b on $R\left(W_{y}\right)$.

If $y \in S$, then $R\left(W_{y}\right)$ consists of b, x, exactly one vertex x_{ℓ} (say) from $\left\{x_{2}, x_{3}\right.$, $\left.\ldots, x_{n}\right\}$, and the $n-3$ vertices in $\left\{f_{3}, \ldots, f_{n-1}\right\}$. Since $\left(f_{3}, b\right) \notin E(H)$, it follows that no vertex of $\left\{f_{3}, \ldots, f_{n-1}\right\}$ is adjacent to b. Furthermore, we note that y is adjacent
from each of b and f_{3}. Since $b \in R\left(W_{c}\right)$, it follows that one of y and f_{3} does not belong to $R\left(W_{c}\right)$.

If $y \notin R\left(W_{c}\right)$, then $R\left(W_{c}\right)=(S-\{y\}) \cup\left\{x_{2}, f_{3}\right\}$. Since $(y, b) \notin E(H)$, it follows that there is therefore exactly one vertex in $S \cup\left\{x_{2}, f_{3}\right\}$ that is adjacent to b. This vertex, together with the vertices in $\left\{x, x_{3}, x_{4}, \ldots, x_{n}\right\}$, are therefore the only possible vertices adjacent to b. Since $i d_{H} b \geq n$, it follows that $R\left(W_{b}\right)$ consists of one vertex from $S \cup\left\{x_{2}\right\}$ and the $n-1$ vertices from $\left\{x, x_{3}, x_{4}, \ldots, x_{n}\right\}$. But then $x \in R\left(W_{6}\right)$, which contradicts the result of Claim 3.6.

If $f_{3} \notin R\left(W_{c}\right)$, then $R\left(W_{c}\right)=S \cup\left\{x_{2}\right\}$. Hence b is the only vertex in $S \cup\left\{x_{2}\right\}$ that is adjacent to y, so $x_{\ell} \neq x_{2}$. That is to say, $x_{\ell} \in\left\{x_{3}, \ldots, x_{n}\right\}$. Furthermore, since $\left(f_{3}, b\right) \notin E(H)$, there is exactly one vertex z in $S \cup\left\{x_{2}, f_{3}\right\}$ that is adjacent to b. By Claim 3.6, $x \notin R\left(W_{b}\right)$. Hence, $R\left(W_{b}\right) \subseteq\{z\} \cup\{f\} \cup\left(\left\{x_{3}, \ldots, x_{n}\right\}-\left\{x_{\ell}\right\}\right)$, so $\left|R\left(W_{b}\right)\right| \leq n-1$, which is impossible. Hence $y \notin S$. This completes the proof of Claim 3.7.

Claim 3.8 For each vertex of H, there is an embedding of \vec{W}_{n+1} in H with that vertex as a central or rim vertex that does not contain the arc (x, b).

Proof. In view of Claims 3.6 and 3.7, the only vertices in doubt are f as a central vertex in some embedding of \vec{W}_{n+1} in H, and the vertices $b, x, x_{i}(2 \leq i \leq n)$ and $f_{j}(3 \leq j \leq n-1)$ as rim vertices in some embedding of \vec{W}_{n+1} in H. Since $W_{f} \cong F_{2}$, and $b \notin V\left(F_{2}\right)$, there is an embedding of \vec{W}_{n+1} in H with f as a central vertex and
$f_{j}(1 \leq j \leq n)$ as a rim vertex that does not contain the $\operatorname{arc}(x, b)$. (Recall that $x=f_{1}$. Futhermore, since $W_{x} \cong F_{1}$, and $b \notin V\left(F_{1}\right)$, there is an embedding of \vec{W}_{n+1} in H with $x_{i}(2 \leq i \leq n)$ as a rim vertex that does not contain the arc (x, b). Finally, since $b \in R\left(W_{c}\right)$, and $x \notin V\left(W_{c}\right)$, there is an embedding of \vec{W}_{n+1} in H with b as a rim vertex that does not contain the $\operatorname{arc}(x, b)$.

As an immediate consequence of Claim 3.8, we have that the digraph $H-(x, b)$ obtained from H by removing the $\operatorname{arc}(x, b)$ homogeneously embeds \vec{W}_{n+1}. This, however, contradicts the minimality property of H. We deduce, therefore, that there is no digraph of order $3 n-1$ in which \vec{W}_{n+1} can be homogeneously embedded. This completes the proof of Theorem 3.6.

3.7 The framing number of a transitive tourna-

ment

In this section we determine the framing number of transitive tournaments. The following result will be useful (see [4]).

Theorem 3.7 (Chartrand, Lesniak [4]) For every positive integer n, there is exactly one transitive tournament of order n.

In fact, we will show that transitive tournaments have unique frames. For the purpose of doing this, we define two digraphs. Let n be a positive integer. Let
T_{n} be the transitive tournament defined by $V\left(T_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $E\left(T_{n}\right)=$ $\left\{\left(u_{i}, u_{j}\right) \mid 1 \leq i<j \leq n\right\}$. By Theorem 3.7, T_{n} is, up to isomorphism, the only transitive tournament of order n. Note that $o d u_{i}=n-i$ and $i d u_{i}=i-1$ for $i=1, \ldots, n$. Next, we define a digraph D_{n} with $V\left(D_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{2 n-2}\right\}$, where each vertex $v_{i}(0 \leq i \leq 2 n-2)$ is adjacent to each of the vertices $v_{i+1}, v_{i+2}, \ldots, v_{n+i-1}$, where all subscripts are expressed modulo $2 n-1$. Then D_{n} is an $(n-1)$-regular digraph of order $2 n-1$. Furthermore, D_{n} is easily seen to be vertex transitive. Notice that $T_{n} \cong\left\langle\left\{v_{0}, v_{2}, \ldots, v_{n-1}\right\}\right\rangle \prec D_{n}$ so that D_{n} homogeneously embeds T_{n}.

Theorem 3.8 Let T be a transitive tournament of order n and let K be a vertex transitive digraph. Then $f r(T[K])=(2 n-1) p(K)$ and the digraph $D_{n}[K]$ of order $(2 n-1) p(K)$ is the unique frame of the digraph $T[K]$.

Proof. By Theorem 3.7, we know that $T \cong T_{n}$. Thus we show that $f r\left(T_{n}[K]\right)=$ $(2 n-1) p(K)$ and that $T_{n}[K]$ is uniquely framed by $D_{n}[K]$. Let $D \cong T_{n}[K]$. Since K is vertex transitive, it is k-regular for some integer $k \geq 0$. Let H be a frame for D. Since D can be homogeneously embedded in the digraph $D_{n}[K]$, it follows that $|V(H)| \leq(2 n-1) p(K)$. Before proceeding further, we prove three claims.

Claim 3.9 $9 \Delta_{o d}(D)=\Delta_{i d}(D)=k+(n-1) p(K)$, and $\Delta(D)=\delta(D)=2 k+$ $(n-1) p(K)$.

Proof. A copy of D is illustrated in Figure 3.7 where $W_{i} \cong K$. For $i=1, \ldots, n$, each vertex w_{i} of W_{i} is adjacent to every vertex of W_{j} for all j such that $n \geq j>i$, so od $w_{i}=k+(n-i) p(K)$ and $i d w_{i}=k+(i-1) p(K)$. Thus each vertex of W_{1} has outdegree $k+(n-1) p(K)$, and this is clearly the maximum outdegree among the vertices of D. Furthermore, each vertex of W_{n} has indegree $k+(n-1) p(K)$, and this is the maximum indegree among the vertices of D. Moreover, $\operatorname{deg} w_{i}=i d w_{i}+o d w_{i}=$ $2 k+(n-1) p(K)$.

Figure 3.7: The digraph $D \cong T_{n}[K]$.

Claim 3. $10 f r(D)=|V(H)|=(2 n-1) p(K)$ and $\Delta(H)=2 k+2(n-1) p(K)$.

Proof. By Theorem 3.3, we know that $\Delta(H) \geq 2 \max \left(\Delta_{o d}(D), \Delta_{i d}(D)\right)=2 k+$ $2(n-1) p(K)$. Hence, by Lemma 3.1 and Claim 3.9, it follows that $(2 n-1) p(K) \geq$ $|V(H)| \geq|V(D)|+\Delta(H)-\delta(D) \geq(2 n-1) p(K)$. Consequently, $f r(D)=|V(H)|=$ $|V(D)|+\Delta(H)-\delta(D)=(2 n-1) p(K)$ and $\Delta(H)=2 k+2(n-1) p(K)$.

Claim 3. $11 H$ is $(k+(n-1) p(K))$-regular.

Proof. By Lemma 3.2 and Claim 3.9, we know that $\delta_{i d}(H) \geq \Delta_{i d}(D)=k+(n-$ 1) $p(K)$ and $\delta_{o d}(H) \geq \Delta_{o d}(D)=k+(n-1) p(K)$. Let v be an arbitrary vertex of H. Then, by Claim 3.10, $2 k+2(n-1) p(K)=\Delta(H) \geq \operatorname{deg}_{H} v=i d_{H} v+o d_{H} v \geq$ $\delta_{i d}(H)+\delta_{o d}(H) \geq 2 k+2(n-1) p(K)$. Since these inequalities must be equalities, we deduce that $i d_{H} v=o d_{H} v=k+(n-1) p(K)$.

Now let $w(z)$ be a vertex in D with $\operatorname{od}_{D} w=\Delta_{o d}(D)$ (respectively, $i d_{D} z=\Delta_{i d}(D)$). For any vertex x of H, let $D_{x}^{+}\left(D_{x}^{-}\right)$denote an embedding of D in H as an induced subdigraph with the vertex $w(z$, respectively) at x. By Claims 8 and 10 , it follows that in H

$$
N^{+}[x] \subseteq V\left(D_{x}^{+}\right) \text {and } N^{-}[x] \subseteq V\left(D_{x}^{-}\right) . \cdots(*)
$$

Let $u \in V(H)$ and consider an embedding $D_{u}^{+}=\left\langle U_{0}, U_{1}, \ldots, U_{n-1}\right\rangle$ of D in H, where each $\left\langle U_{i}\right\rangle$ is isomorphic to K, each vertex of $U_{i}(0 \leq i<n-1)$ is adjacent to to every vertex U_{j} for all j such that $n-1 \geq j>i$. Now let v be a vertex in U_{n-1} and consider an embedding $D_{v}^{+}=\left\langle V_{n-1}, V_{n}, \ldots, V_{2 n-2}\right\rangle$ of D in H, where each $\left\langle V_{i}\right\rangle$ is isomorphic to K, each vertex of $V_{i}(n-1 \leq i<2 n-2)$ is adjacent to every vertex V_{j} for all j such that $2 n-2 \geq j>i$. Since $N^{+}[v] \subseteq V\left(D_{v}^{+}\right)$, it follows that $v \in V_{n-1}$.

Claim 3. 12 $U_{i} \cap V_{j}=\emptyset$ for $0 \leq i \leq n-2$ and $n-1 \leq j \leq 2 n-2$.

Proof. Since v is adjacent from all of the $(n-1) p(K)$ vertices of $\cup_{i=0}^{n-2} U_{i}$, it follows that $U_{i} \cap V_{j}=\emptyset$ for $0 \leq i \leq n-2$ and $n \leq j \leq 2 n-2$. It remains for us to show that $U_{i} \cap V_{n-1}=\emptyset$ for $0 \leq i \leq n-2$. Suppose, to the contrary, that there is a vertex $x \in U_{i} \cap V_{n-1}$ for some $i(0 \leq i \leq n-2)$. Then in H, x is adjacent to k vertices of U_{i} and to each vertex of $\left(\cup_{j=i+1}^{n-1} U_{j}\right) \cup\left(\cup_{j=n}^{2 n-2} V_{j}\right)$. Hence,

$$
\begin{aligned}
\left|N^{+}(x)\right| & \geq k+\left|\left(\cup_{j=i+1}^{n-1} U_{j}\right) \cup\left(\cup_{j=n}^{2 n-2} V_{j}\right)\right| \\
& \geq k+\left|\left(\cup_{j=i+1}^{n-2} U_{j}\right) \cup\left(\cup_{j=n}^{2 n-2} V_{j}\right)\right| \\
& =k+(n-2-i) p(K)+(n-1) p(K) \\
& \geq k+(n-1) p(K)
\end{aligned}
$$

However, by Claim 3.11, $k+(n-1) p(K)=o d_{H} x=\left|N^{+}(x)\right|$, so the above inequalities must be equalities. In particular, this implies that $U_{n-1} \subseteq \cup_{j=n}^{2 n-2} V_{j}$, which produces a contradiction since $v \in U_{n-1} \cap V_{n-1}$. Thus $U_{i} \cap V_{n-1}=\emptyset$ for $0 \leq i \leq n-2$.

Claim 3. $13 V_{n-1}=U_{n-1}$.

Proof. We have

$$
\begin{aligned}
|V(H)| & \geq\left|\left(\cup_{j=0}^{n-1} U_{j}\right) \cup\left(\cup_{j=n-1}^{2 n-2} V_{j}\right)\right| \\
& \geq\left|\left(\cup_{j=0}^{n-2} U_{j}\right) \cup\left(\cup_{j=n-1}^{2 n-2} V_{j}\right)\right| \\
& =(2 n-1) p(K) . \quad \text { (by Claim 3.12) }
\end{aligned}
$$

However, $(2 n-1) p(K)=|V(H)|$, so that the above inequalities must be equalities. Consequently, $V(H)=\left(\cup_{j=0}^{n-2} U_{j}\right) \cup\left(\cup_{j=n-1}^{2 n-2} V_{j}\right)$. Hence, $U_{n-1} \subseteq \cup_{j=n-1}^{2 n-2} V_{j}$. Suppose that there is a vertex $x \in U_{n-1} \cap V_{j}$ for some j with $n \leq i \leq 2 n-2$. Then in H, x is adjacent from k vertices of V_{j} and from each vertex of $\left(\cup_{j=0}^{n-2} U_{j}\right) \cup V_{n-1}$. Hence it follows from Claim 3.12 that x is adjacent from at least $k+n p(K)$ vertices, which contradicts the result of Claim 3.11. Thus $U_{n-1} \cap V_{j}=\emptyset$ for $n \leq j \leq 2 n-2$, implying that $U_{n-1} \subseteq V_{n-1}$. Since $\left|V_{n-1}\right|=n=\left|U_{n-1}\right|$, we must have $V_{n-1}=U_{n-1}$.

By Claims 3.12 and 3.13 , we observe that $U_{i} \cap V_{j}=\emptyset$ for $0 \leq i \leq n-1$ and $n \leq j \leq$ $2 n-2$. For notational convenience, we set $V_{j}=U_{j}$ for $j=n, n+1, \ldots, 2 n-2$. It follows then from the proof of Claim 3.13 that the digraph H has vertex set $V(H)=\cup_{j=0}^{2 n-2} U_{j}$.

Claim 3. $14 H \cong D_{n}[W]$.

Proof. We know that each vertex of $U_{i}(0 \leq i<n-1)$ is adjacent to every vertex U_{j} for all j such that $n-1 \geq j>i$, and each vertex of $U_{i}(n-1 \leq i<2 n-2)$ is adjacent to every vertex U_{j} for all j such that $2 n-2 \geq j>i$. Since H is $(k+(n-1) p(K))$ regular, it suffices for us to show that each vertex of $U_{i}(0 \leq i \leq 2 n-2)$ is adjacent to every vertex of U_{j} for $j=i+1, i+2, \ldots, i+n-1$, where all subscripts are reduced modulo $2 n-1$.

Let $x \in U_{2 n-2}$. Then x is adjacent from each vertex of $\cup_{i=n-1}^{2 n-3} U_{i}$, so $N^{+}[x] \subseteq$ $\left(\cup_{i=0}^{n-2} U_{i}\right) \cup U_{2 n-2}$. Since x is adjacent to exactly k vertices of $U_{2 n-2}$, it follows that $\operatorname{od}_{H} x=\left|N^{+}(x)\right| \leq(n-1) p(K)+k$. However, by Claim 3.11, od ${ }_{H} x=(n-1) p(K)+k$.

Consequently, x must be adjacent to all of the $(n-1) p(K)$ vertices of $\cup_{i=0}^{n-2} U_{i}$.
Consider now a vertex y in U_{n-2}. Then y is adjacent from each vertex of $\left(\cup_{i=0}^{n-3} U_{i}\right) \cup$ $U_{2 n-2}$, so $N^{+}[y] \subseteq\left(\cup_{i=n-2}^{2 n-3} U_{i}\right)$. Since y is adjacent to k vertices of U_{n-2}, it follows that $\operatorname{od}_{H} y=\left|N^{+}[y]\right| \leq(n-1) p(K)+k$. However, by Claim 3.11,od ${ }_{H} u=(n-1) p(K)+k$. Consequently, y must be adjacent to all of the $(n-1) p(K)$ vertices of $\cup_{i=n-1}^{2 n-3} U_{i}$.

Continuing in this way (we consider next a vertex in $U_{2 n-3}$, and then a vertex in U_{n-3}, and so on), we may show that each vertex of $U_{i}(0 \leq i \leq 2 n-2)$ is adjacent to every vertex of U_{j} for $j=i+1, i+2, \ldots, i+n-1$, where all subscripts are reduced modulo $2 n-1$. This completes the proof of the claim and of Theorem 3.8.

Corollary 3.12 The transitive tournament T of order n is uniquely framed by the digraph D_{n} of order $2 n-1$ so that $f r(T)=2 n-1$.

It was noted in [10] that the framing ratio is a certain measure of symmetry. From the score sequence of the transitive tournament T of order n, we deduce that T has exactly n orbits, each consisting of a single vertex. In view of this, one would think of transitive tournaments as highly unsymmetric and hence expect them to have high framing ratios for large n. However, by Theorem 3.8, we have $f r(T)=2-\frac{1}{n}$. This is surprising since the digraph $\vec{K}_{m, n}$, for example, has just two orbits (irrespective of the values of m and n) and yet has framing ratios arbitrarily close to 3 . In [10] it is shown that the digraph $\vec{K}_{p, q, r}$, which has just three orbits, can have framing ratios arbitrarily close to 3 for suitable values of p, q and r. Again, this is surprising as
one would tend to think that $\vec{K}_{p, q, r}$ is a more symmetric digraph than a transitive tournament. Perhaps this can be explained by the transitivity of T which induces a certain symmetry to T and so causes the unexpected low framing ratio. Although a digraph with exactly one orbit, being vertex transitive, is highly symmetric, we must deduce that the symmetry of a digraph does not depend solely on the number of orbits. Other properties, such as the general orientation also seem to have an effect on the symmetry.

3.8 The diameter of a frame

By Theorem 2.5, the diameter of a frame of a connected graph cannot be too large. In this section we present a corresponding result for digraphs We show that the diameter of the underlying graph of a frame of a digraph G cannot be too large.

Theorem 3.9 Let G be a connected digraph with frame H. Let G^{\prime} and H^{\prime} be the underlying graphs of G and H, respectively. Then diam $H^{\prime} \leq \operatorname{diam} G^{\prime}+1$.

Proof. Set $d=\operatorname{diam} G^{\prime}$. Suppose $\operatorname{diam} H^{\prime} \geq d+2$. Let v be a vertex of H^{\prime} whose eccentricity (in H^{\prime}) is $D=\operatorname{diam} H^{\prime}$. Let V_{i} be the set of vertices at distance i from v in H^{\prime} for $1 \leq i \leq D$. Let $u \in V_{D}$. Delete the vertex v from H and for each $w \in V_{1}$ such that $(v, w) \in E(H)$ (respectively, $(w, v) \in E(H)$), add a new $\operatorname{arc}(u, w)$ (respectively, $(w, u))$ to H. Denote the resulting digraph by H_{1}. Let $x \in V(G)$ and $y \in V\left(H_{1}\right)$.

Consider an embedding G_{1} of G in H with x at y. If G_{1} contains v, then replace v with u and observe that this new subdigraph of H is still induced since G^{\prime} contains no vertices of V_{d+1}. If G_{1} does not contain v, then G_{1} is still an induced subdigraph of H_{1} since G_{1} cannot contain vertices from both V_{1} and V_{D}. Thus H_{1} homogeneously embeds G. Since $p\left(H_{1}\right)<p(H)$, this contradicts the fact that H frames G.

Although it is not known whether the bounds in the above theorems can be attained, we do have a partial improvement of the above result. As pointed out in Section 3.1, all digraphs referred to are asymmetric digraphs.

Theorem 3. 10 For every connected digraph G, and for each integer $n \geq f r(G)$, there is a digraph H of order n in which G can be homogeneously embedded satisfying diam $H^{\prime} \leq \operatorname{diam} G^{\prime}$ where G^{\prime} and H^{\prime} are the underlying graphs of G and H, respectively.

Proof. By Theorem 2.2, we know that there exists a digraph of order n in which G can be homogeneously embedded. Among all such digraphs, let H be one of maximal size. If H is a tournament, then the result is immediate. Assume, then, that H is not a tournament, for otherwise there is nothing left to prove. Let u and v be nonadjacent vertices in H, and consider the digraph H_{1} obtained from H by joining u to v. By the maximality property of H, the digraph G cannot be homogeneously embedded in H_{1}. Thus for some vertex x of G and some vertex y of H_{1}, there is no homogeneous embedding of G in H_{1} with x at y. However, since G can be homogeneously embedded
in H, there is an homogeneous embedding G_{1} of G in H with x at y. Let G_{1}^{\prime} and H^{\prime} denote the underlying graphs of G_{1} and H, respectively. If at most one of u and v belongs to G_{1}, then G_{1} would be a homogeneous embedding of G in H_{1} with x at y which would produce a contradiction. Hence $u, v \in V\left(G_{1}\right)$. It follows that in H^{\prime} we have $d(u, v) \leq \operatorname{diam} G_{1}^{\prime}=\operatorname{diam} G^{\prime}$. Since u and v are arbitrary nonadjacent vertices in H, we conclude that $\operatorname{diam} H^{\prime} \leq \operatorname{diam} G^{\prime}$.

Corollary 3.13 Every connected digraph G has a frame whose underlying graph has diameter at most that of the underlying graph of G.

An immediate consequence of Corollary 3.13 now follows.

Corollary 3. 14 Every tournament has a frame which is also a tournament.

While it is always possible to find a frame F for a connected digraph G such that $\operatorname{diam} F^{\prime} \leq \operatorname{diam} G^{\prime}$ where G^{\prime} and F^{\prime} are the underlying graphs of G and F, respectively, $\operatorname{diam} F^{\prime}$ can be an arbitrarily amount less than $\operatorname{diam} G^{\prime}$. For example, the directed cycle \vec{C}_{n+1} is a frame for the directed path \vec{P}_{n} of length n and $\operatorname{diam} C_{n+1}=\left\lfloor\frac{n+1}{2}\right\rfloor$ while $\operatorname{diam} P_{n}=n-1$.

Chapter 4

The edge framing number of a

graph

4.1 Introduction

A nonempty graph G is said to be edge homogeneously embedded in a graph H if for each edge e of G and each edge f of H, there is an edge isomorphism between G and a vertex induced subgraph of H which sends e to f. A graph F of minimum size in which G can be edge homogeneously embedded is called an edge frame of G and the size of F is called the edge framing number $\operatorname{efr}(G)$ of G. We also say that G is edge framed by F. It is shown in Section 4.2 that every graph has at least one edge frame and, consequently, that the edge framing number of a graph is a well-defined concept. In this chapter we restrict ourselves to graphs with no isolated vertices. This will not
affect the generality of any of the results presented.

It is natural to ask whether the notions of edge homogeneous embedding and the usual homogeneous embedding requirement are related. In fact, as the following examples illustrate, neither of the embedding requirements directly implies the other.

Figure 4.1:

While the graph G of Figure 4.1 can be homogeneously embedded in the graph H, G cannot be edge homogeneously embedded in H; for example, there is no embedding of G in H with the edge e at f.

The next example illustrates strikingly that edge homogeneous embedding does not directly imply homogeneous embedding in general. The complete bipartite graph $K_{1, n}$ can be edge homogeneously embedded in itself while it is obvious that $K_{1, n}$ does not homogeneously embed itself.

Although the two embedding requirements do not directly imply each other, it will be shown in Section 4.3 that they are related in a natural way through line graphs.

The edge framing ratio $\operatorname{frr}(D)$ of a nonempty graph G is defined by $\operatorname{efrr}(D)=$ efr $(G) /|E(G)|$. This graphical parameter may be considered as a certain measure of the edge symmetry of a graph. In Section 4.4 this parameter is introduced. It is shown that every rational in the interval $[1,3)$ is an edge framing ratio. In Section 4.5, it is shown that every nonempty connected graph G has an edge frame with diameter at most $\operatorname{diam} G+1$. Finally, in Section 4.6 the edge framing number is defined for more than one graph and the framing number is determined for pairs of cycles. Furthermore, we determine $\operatorname{efr}\left(K_{1, m}, C_{n}\right)$ for all integers $m \geq 3$ and $n \geq 4$.

4.2 Existence of edge frames

Any automorphism ϕ of a nonempty graph G gives rise to an edge automorphism of G in a natural way: we define $\phi(a b)=\phi(a) \phi(b)$ for all edges $a b$ of G. It is precisely this property of an automorphism which we use to prove that every nonempty graph has an edge frame.

Theorem 4.1 Every nonempty graph has an edge frame.

Proof. Let G be a nonempty graph. It suffices to show that there exists a graph F in which G can be edge homogeneously embedded.

Let $S_{1}, S_{2}, \ldots, S_{k}$ be the edge-orbits of G, where $S_{i}=\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, n_{i}}\right\}$ for $1 \leq$ $i \leq k$. Thus $q(G)=\sum_{i=1}^{k} n_{i}$. Set $r=\max _{1 \leq i \leq k}\left|S_{i}\right|$. To construct F we begin with
$2 k(k-1) r+1$ copies of G, denoted $G_{1}, G_{2}, \ldots, G_{2 k(k-1) r+1}$. For each $i(1 \leq i \leq k)$ and for each $j\left(1 \leq j \leq n_{i}\right)$, the edge $e_{i, j}$ in G is labelled $e_{i, j}^{m}$ in $G_{m}(1 \leq m \leq$ $2 k(k-1) r+1)$. Furthermore, we denote the end-vertices of the edge $e_{i, j}^{m}$ by $a_{i, j}^{m}$ and $b_{i, j}^{m}$ so that $e_{i, j}^{m}=a_{i, j}^{m} b_{i, j}^{m}$.

The vertex set of F is $\bigcup_{m=1}^{2 k(k-1) r+1} V\left(G_{m}\right)$. Additional edges are now added as follows. Consider each edge $e_{i, j}^{m}=a_{i, j}^{m} b_{i, j}^{m}$ in G_{m}. Consider, then, also the edge $e_{\ell, 1}^{\gamma}$ for $(1 \leq \ell \leq k)$ where

$$
\gamma= \begin{cases}m+r(i-1)(k-1)+r(k+\ell-i-1)+j & \text { if } \ell<i \\ m+r(i-1)(k-1)+r(\ell-i-1)+j & \text { if } \ell>i\end{cases}
$$

(where γ is expressed modulo $2 k(k-1) r+1$).

Join $a_{i, j}^{m}\left(b_{i, j}^{m}\right.$, respectively) to each neighbour of $a_{\ell, 1}^{\gamma}\left(b_{\ell, 1}^{\gamma}\right.$, respectively) except to $b_{\ell, 1}^{\gamma}$ ($a_{\ell, 1}^{\gamma}$, respectively). Also, join $a_{\ell, 1}^{\gamma}\left(b_{\ell, 1}^{\gamma}\right.$, respectively $)$ to each neighbour of $a_{i, j}^{m}\left(b_{i, j}^{m}\right.$, respectively) except to $b_{i, j}^{m}\left(a_{i, j}^{m}\right.$, respectively). Observe that the edges $a_{\ell, 1}^{\gamma}$ and $a_{i, j}^{m}$ are similar in H. Furthermore, each of the newly adjoined edges is similar to an edge in G_{m} or G_{γ}. This completes the construction.

It remains to show that F has the desired properties. It suffices to verify that for each $\ell(1 \leq \ell \leq k)$ and each edge e of F, the graph G can be edge-embedded as a vertex induced subgraph of F with $e_{\ell, 1}$ at e. Now, by the construction of F, each edge of F not in $\bigcup_{m=1}^{2 k(k-1) r+1} G_{m}$ is similar to an edge in $\bigcup_{m=1}^{2 k(k-1) r+1} G_{m}$. Thus we may assume that e is $a_{i, j}^{m} b_{i, j}^{m}$ for some i, j and m where $1 \leq i \leq k, 1 \leq j \leq n_{i}$ and
$1 \leq m \leq 2 k(k-1) r+1$. We define

$$
U= \begin{cases}V\left(G_{\beta}\right) \cup\left\{a_{i, j}^{m}, b_{i, j}^{m}\right\}-\left\{a_{\ell, 1}^{\beta}, b_{\ell, 1}^{\beta}\right\} & \text { if } i \neq \ell \\ V\left(G_{m}\right) & \text { if } i>\ell\end{cases}
$$

where

$$
\beta= \begin{cases}m+r(i-1)(k-1)+r(k+\ell-i-1)+j & \text { if } i>\ell \\ m+r(i-1)(k-1)+r(\ell-i-1)+j & \text { if } i<\ell\end{cases}
$$

(β is expressed modulo $2 k(k-1) r+1$). Then $\langle U\rangle \cong G$. This completes the proof.

The next two results are interesting consequences of the proof of Theorem 4.1.

Corollary 4.1 Let G be a nonempty graph. Then there is a graph H such that for each edge $a b$ of G and each edge $c d$ of H, there is a (vertex) embedding ϕ of G as an induced subgraph of H such that $\phi(a) \phi(b)=c d$.

Corollary 4.2 Let G be a nontrivial graph which is not complete. Then there exists a graph H such that for every pair of nonadjacent vertices a, b in G and for every pair of nonadjacent vertices c, d in H, there is an isomorphism ϕ from G onto H as an induced subgraph of H such that $\{\phi(a), \phi(b)\}=\{c, d\}$.

Proof. Since G is not a complete graph, the complement \bar{G} of G is not empty. By Corollary 4.1, there is a graph F such that that for each edge $a b$ of \bar{G} and each edge $c d$ of F, there is a (vertex) embedding ϕ of \bar{G} as an induced subgraph of F such that $\phi(a) \phi(b)=c d$. Then the graph $H \cong \bar{F}$ is a graph with the desired property.

Corollary 4.3 Let G be a nonempty graph and let v be a vertex of G. Then for each integer $m \geq 0$ there is a graph of size efr $(G)+m$ deg v which edge homogeneously embeds G.

Proof. Let F be an edge frame for G. Form a new graph F^{\prime} from F by adding a set S of m new vertices to F and joining each vertex of S with each neighbour of v. Then F^{\prime} is a graph of size $e f r(G)+m \operatorname{deg} v$ which edge homogeneously embeds G.

4.3 Lower bounds on the edge framing number

In this section we establish some lower bounds on the edge framing number.

We first show that if a nonempty graph G can be edge homogeneously embedded in a graph H, then the line graph $L(G)$ can be homogeneously embedded in the line graph $L(H)$. The following result due to Whitney [12] will be useful.

Theorem 4.2 (Whitney [12]) Let ϕ be an edge isomorphism from a connected graph G to a connected graph H where G is different from the graphs $G_{i}(i=$ $1,2,3,4,5)$ shown in Figure 4.2. Then ϕ is induced by an isomorphism from G to H so that $G \cong H$.

We present a slight improvement of the above result which will be useful for our purposes.

Figure 4.2:
Theorem 4.3 Let G and H be connected edge isomorphic graphs where G is different from C_{3} and $K_{1,3}$. Then G and H are isomorphic.

Proof. By Theorem 4.2, we know the result to be true if G is different from the graphs G_{3}, G_{4} and G_{5} shown in Figure 4.2. Assume then that G is isomorphic to G_{i} for some $i=3,4,5$. Since $q\left(G_{i}\right)=i+1$ for $i=3,4,5$, it follows that G_{i} is not edge isomorphic to G_{j} for $3 \leq i<j \leq 5$. Thus H is different from the graphs $G_{j}(j \neq i)$. Let $\phi: E(G) \longrightarrow E(H)$ be an edge isomorphism between G and H. Suppose that G and H are not isomorphic. Then ϕ^{-1} is an edge isomorphism from a graph different from the graphs $G_{i}(i=1,2,3,4,5)$ shown in Figure 4.2 onto G. By Theorem 4.2 it follows that G and H are isomorphic. As this is contrary to hypothesis we must conclude that G and H are isomorphic. This completes the proof.

Corollary 4.4 Let G and H be edge isomorphic graphs where the components of G are different from C_{3} and $K_{1,3}$. Then G and H are isomorphic.

We will also require the following result due to Whitney [12].

Theorem 4.4 (Whitney [12]) Let G and H be non-trivial connected graphs. Then $L(G) \cong L(H)$ if and only if $G \cong H$ or one of G and H is the graph C_{3} and the other is $K_{1,3}$.

Theorem 4.5 Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. If G can be edge homogeneously embedded in a graph H then the line graph $L(G)$ of G can be homogeneously embedded in the line graph $L(H)$ of H. Consequently

$$
e f r(G) \geq f r(L(G))
$$

Proof. Let $x \in V(L(G))$ and $y \in V(L(H))$ and suppose that x and y correspond to edges e_{x} and e_{y} of G and H respectively. Since G can be edge homogeneously embedded in H, there is an edge-embedding G^{\prime} of G as an induced subgraph of H with e_{x} at e_{y}. By Corollary 4.4, G and G^{\prime} are isomorphic. Consequently, by Theorem 4.4, the line graphs $L(G)$ and $L\left(G^{\prime}\right)$ are isomorphic. Since $L\left(G^{\prime}\right)$ is an induced subgraph of $L(H)$, it follows that $L\left(G^{\prime}\right)$ is an embedding of $L(G)$ in $L(H)$ with x at y. Thus $L(G)$ can be homogeneously embedded in $L(H)$. Let F be an edge frame for G. Then, since $L(F)$ homogeneously embeds $L(G)$, we have efr $(G)=q(F)=p(L(F)) \geq f r(L(G))$ and the desired inequality follows.

Since an edge symmetric graph gives rise to a vertex symmetric line graph, it follows that $\operatorname{efr}(G)=f r(L(G))$ whenever G is edge symmetric. For the graph G
of Figure 4.4, it will be shown that $e f r(G)=12$ while in [8] it was established that $f r(L(G))=6$. Thus there exist graphs for which efr $(G)>f r(L(G))$.

Corollary 4.5 Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. Then there exists a graph H such that the line graph $L(G)$ of G can be homogeneously embedded in the line graph $L(H)$.

Before proceeding, we digress slightly to show that for a large class of graphs, the edge homogeneous embedding requirement is stronger than the homogeneous embedding requirement in a sense which will become clear in what follows. We consider the following problem : given a pair of graphs G and H, when can G be homogeneously embedded in H ? We show that this problem can be reduced to a problem of edge homogeneous embedding for a large class of graphs. The following result due to Beineke [1] will be useful.

Theorem 4.6 (Beineke [1]) A graph H is a line graph if and only if none of the graphs $G_{i}(1 \leq i \leq 9)$ of Figure 4.3 is an induced subgraph of H.

Let P denote the class of graphs G different from C_{3} and with the property that none of the graphs of Figure 4.3 is an induced subgraph of G. By Theorem 4.6, each graph in P is a line graph so that for each $G \in P$, there exists a graph G^{\prime} such that $G \cong L\left(G^{\prime}\right)$. We denote such a graph G^{\prime} by $L^{-}(G)$. Theorem 4.5 yields the following result.

Figure 4.3:

Theorem 4.7 For a given pair of graphs G and H in P, if $L^{-}(G)$ can be edge homogeneously embedded in $L^{-}(H)$, then G can be homogeneously embedded in H.

Thus, for a large class of graphs, homogeneous embedding reduces to edge homogeneous embedding. In this sense, the edge homogeneous embedding requirement is a stronger embedding requirement than the usual homogeneous embedding requirement.

Let $e=a b$ be an edge of a nonempty graph G. We define the edge degree of e in G to be $e d g_{G}(e)=\operatorname{deg}_{G} a+\operatorname{deg}_{G} b-2$. If v is the vertex of the line graph $L(G)$ corresponding to e, then $e d g_{G}(e)=\operatorname{deg}_{L(G)} v$. Since the sum of the edge degrees in G is just the sum of the degrees of the vertices of the line graph $L(G)$, which is an even number, it follows that there are always an even number of edges in G of
odd edge degree. We denote the maximum (minimum) edge degree of G by $\Delta_{\text {edg }}(G)$ $\left(\delta_{e d g}(G)\right.$, respectively $)$. Note that $\Delta_{e d g}(G)=\Delta(L(G))$ and $\delta_{e d g}(G)=\delta(L(G))$. Next we present the edge analogue to Lemma 2.1.

Theorem 4.8 If a nonempty graph G can be edge homogeneously embedded in a graph H, then

$$
\Delta_{e d g}(G) \leq \delta_{e d g}(H) \leq \Delta_{e d g}(H) \leq|E(H)|-|E(G)|+\delta_{e d g}(G) .
$$

Proof. Necessarily $\Delta_{\text {edg }}(G) \leq \delta_{e d g}(H)$. The result is easily seen to be true if G is C_{3} or $K_{1,3}$. Assume, then, that G is different from C_{3} and $K_{1,3}$. By Theorem 4.5 we know that $L(G)$ can be homogeneously embedded in $L(H)$. Thus, by Lemma 2.1, it follows that $\Delta(L(G)) \leq \delta(L(H)) \leq \Delta(L(H)) \leq|V(L(G))|-|V(L(G))|+\delta(L(G))$. By the remarks preceding the theorem, the desired inequality follows.

Corollary 4.6 If a nonempty graph G can be edge homogeneously embedded in a graph H, then

$$
|E(H)| \geq|E(G)|+\Delta_{e d g}(G)-\delta_{e d g}(G) .
$$

Corollary 4.7 For any nonempty graph G

$$
e f r(G) \geq|E(G)|+\Delta_{e d g}(G)-\delta_{e d g}(G)
$$

Let G be a graph which is different from C_{3} and $K_{1,3}$. If G can be homogeneously embedded in a graph H, then by Lemma 2.1 we know that $\Delta(G) \leq \delta(H)$. This result
is not necessarily true if H edge homogeneously embeds G. However, we do have the following result.

Theorem 4.9 Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. If G can be edge homogeneously embedded in a graph H, then

$$
\delta(H) \geq \max \left\{\min \left\{d e g_{G} a, d e g_{G} b\right\}: a b \in E(G)\right\}
$$

Corollary 4.8 Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. Suppose also that G has two vertices of maximum degree which are adjacent. If G can be edge homogeneously embedded in a graph H, then $\delta(H) \geq \Delta(G)$.

Corollary 4.9 Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. Suppose also that G has two vertices of maximum degree which are adjacent. If F is an edge frame of G, then $\delta(F) \geq \Delta(G)$.

Theorem 4. 10 If a graph G can be edge homogeneously embedded in a graph H, then

$$
\Delta(G) \leq \Delta(H) \leq|V(H)|-|V(G)|+\Delta(G)
$$

Proof. Necessarily, $\Delta(G) \leq \Delta(H)$. Let v be a vertex of G. Then v is not adjacent to at least $|V(G)|-\Delta(G)-1$ vertices in H. Since H edge homogeneously embeds G, every vertex of H is not adjacent to at least $|V(G)|-\Delta(G)-1$ vertices in H. Consequently, every vertex of H is adjacent with at most $|V(H)|-1-(|V(G)|-1-\Delta(G))=$ $|V(H)|-|V(G)|+\Delta(G)$ vertices. That is, $\Delta(H) \leq|V(H)|-|V(G)|+\Delta(G)$.

Corollary 4. 10 If F is an edge frame of a graph G, then

$$
\Delta(G) \leq \Delta(F) \leq|V(F)|-|V(G)|+\Delta(G)
$$

Theorem 4.11 Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. Suppose also that G has two vertices of minimum degree which are adjacent. If G can be edge homogeneously embedded in a graph H, then

$$
\delta(G) \leq \delta(H) \leq|V(H)|-|V(G)|+\delta(G)
$$

Proof. Necessarily $\delta(G) \leq \delta(H)$. The last inequality follows from an argument similar to that used in Theorem 4.10.

Corollary 4. 11 Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. Suppose also that G has two vertices of minimum degree which are adjacent. If F is an edge frame of a graph G, then

$$
\delta(G) \leq \delta(F) \leq|V(F)|-|V(G)|+\delta(G) .
$$

In order to illustrate the concepts described above, we determine the edge framing numbers of the graph $P_{3} \times K_{2}$ and the graph G shown in Figure 4.4.

First we consider the graph $R \cong P_{3} \times K_{2}$. Since R can be edge homogeneously embedded in the graph $C_{4} \times K_{2}$ of size 12 , efr $(R) \leq 12$. Let F be an edge frame for R. By Corollary 4.9 and Corollary 4.11 we have $3=\Delta(R) \leq \delta(F) \leq|V(F)|-$ $|V(R)|+\delta(R)=|V(F)|-4 \cdots(\star)$ whence $|V(F)| \geq 7$. If $|V(F)|=7$ then all
the inequalities in (\star) are equalities and F is a 3 -regular graph of order 7 which is impossible. Thus $|V(F)| \geq 8$ and $2 q(F) \geq \delta(F)|V(F)| \geq 3 \times 8$ whence efr $(R)=$ $q(F) \geq 12$. Consequently efr $(R)=12$.

Figure 4.4: A graph G and its edge frame.

Next we consider the graph G shown in Figure 4.4. Since G can be edge homogeneously embedded in the graph H of size 12 shown in Figure 4.4, it follows that $\operatorname{efr}(G) \leq 12$. We next show that efr $(G) \geq 12$. Let F be an edge frame for G. Let a be a vertex of minimum degree $\delta(F)$ in F and let $b \in N(a)$. Consider an embedding G^{\prime} of G in F with edge $x y$ at $a b$, say $G^{\prime} \cong\langle a, b, c, d\rangle$ as shown in Figure 4.5.

An embedding of G in F with edge $x y$ at ad implies the existence of a vertex, not in $\{a, b, c, d\}$, which is adjacent with a and d. Thus $\delta(F)=\operatorname{deg} a \geq 4$. Hence $p(F) \geq \delta(F)+1=5$. If $p(F)=5$ then $F \cong K_{5}$ which contradicts the fact that F edge homogeneously embeds G. Thus $p(F) \geq 6$. Consequently, $2 q(F) \geq 4 p(F) \geq 24$, so efr $(G)=q(F) \geq 12$. Hence efr $(G)=12$.

Figure 4.5:

4.4 Edge framing ratios of graphs

For a nonempty graph G, we define the edge framing ratio efrr (G) of G by effr $(G)=$ efr $(G) / q(G)$. Certainly, effr $(G) \geq 1$ for every nonempty graph G, and effr $(G)=1$ if and only if G is edge transitive. The edge framing ratio of a graph G produces a certain measure of the 'edge symmetry' of G, where the closer effr (G) is to 1 , the more "edge symmetric" G is.

For the graph G of Figure $4.4, \operatorname{efrr}(G)=12 / 5$ while the path P_{n} of length $n-1$ is edge framed by the cycle C_{n} so efrr $\left(P_{n}\right)=\frac{n}{n-1}=1+\frac{1}{n-1}$ which can be arbitrarily close to 1 .

While a graph G may be very symmetric relative to its edges, it may be unsymmetric relative to its vertices. For example, the star $K_{1, m}$ always has edge framing ratio 1, while it is shown in [2] that $K_{1, m}$ can have framing ratios arbitrarily close to 2 . The following result establishes a relationship between these two graphical parameters.

Theorem 4.12 For a graph G,

$$
\operatorname{efrr}(G) \geq \operatorname{frr}(L(G))
$$

Proof. The result is easily seen to be true if G is C_{3} or $K_{1,3}$. Assume, then, that G is different from C_{3} and $K_{1,3}$. By Theorem 4.5 we know that $\operatorname{efr}(G) \geq f r(L(G))$. Thus, since $q(G)=p(L(G))$, it follows that $\operatorname{efrr}(G)=\frac{e f r(G)}{q(G)} \geq \frac{f r(L(G))}{p(L(G))}=\operatorname{frr}(L(G))$. \square

Of course, the edge framing ratio of every nonempty graph is a rational number. We show that many rational numbers are edge framing ratios. We will require the following result.

Theorem 4. 13 For positive integers $m \geq n$,

$$
e f r\left(K_{m, m, n}\right)=3 m^{2}
$$

Proof. Since $K_{m, m, n}$ can be edge homogeneously embedded in the graph $K_{m, m, m}$ of size $3 m^{2}$, it follows that efr $\left(K_{m, m, n}\right) \leq 3 m^{2}$. Let F be an edge frame for $K_{m, m, n}$. Let e be an edge of $K_{m, m, n}$ which joins the two partite sets of orders m and n and let $f=a b$ be an arbitrary edge of F. Then an edge embedding of $K_{m, m, n}$ in F with e at f implies the existence of an independent set S of m vertices such that each vertex of S is adjacent to each of a and b. We denote the set of $2 m$ edges joining the vertices of S with a and b by $S_{a b}$.

Consider an edge embedding G of $K_{m, m, n}$ in F. Denote the two partite sets of G of order m by $U=u_{1}, u_{2}, \ldots, u_{m}$ and $V=v_{1}, v_{2}, \ldots, v_{m}$. The edges $e_{i}=u_{i} v_{i}$
$(1 \leq i \leq m)$ are independent. Moreover, since U and V are independent sets, the sets $S_{u_{i} v_{i}}(1 \leq i \leq m)$ are pairwise disjoint. The $2 m^{2}$ edges of $\bigcup_{i=1}^{m} S_{u_{i} v_{i}}$ together with the m^{2} edges joining U and V account for $3 m^{2}$ edges in F. Hence efr $\left(K_{m, m, n}\right)=q(F) \geq$ $3 m^{2}$. Thus efr $\left(K_{m, m, n}\right)=3 m^{2}$ as required.

Theorem 4. 14 For each rational number $r \in[1,3)$, there exists a graph G with $\operatorname{efr}(G)=r$.

Proof. Let $r \in[1,3)$ be a rational number. Then we may write $r=2+\frac{a}{b}$, where a and b are integers with $b>0$ and $-b \leq a<b$. Consider the graph $G \cong K_{4 b+2 a, 4 b+2 a, b-a}$. By Theorem 4.13, efr $(G)=3(4 b+2 a)^{2}=12(2 b+a)^{2}$. Since the size of G is $12 b(2 b+a)$,

$$
\operatorname{efrr}(G)=\frac{12(2 b+a)^{2}}{12 b(2 b+a)}=2+\frac{a}{b}
$$

4.5 The diameter of an edge frame

In this section we prove a partial edge analogue to Theorem 2.5.

Theorem 4.15 Let G be a nonempty connected graph, different from C_{3} and $K_{1,3}$, with diameter d. Let S be the set of all integers q such that there is a graph of size q which edge homogeneously embeds G. Then for each $q \in S$, there is a graph H of size q which edge homogeneously embeds G with the property that diam $H \leq d+1$.

Proof. Let $q \in S$. From among all graphs of size q which edge homogeneously embed G, choose one, call it H, of minimum order. Let v be a vertex of H with eccentricity $D=\operatorname{diam} H$. Suppose that $D \geq d+2$. Let V_{i} be the set of vertices at distance i from $v(1 \leq i \leq D)$ and let $u \in V_{D}$. Let H^{\prime} be obtained from H by joining u to every vertex of V_{1} and deleting v. Let $e \in E(G)$ and $f \in E\left(H^{\prime}\right)$. If f is not one of the newly adjoined edges in H^{\prime}, then an edge embedding of G in H is also an edge embedding of G in H^{\prime} with e at f because such an embedding cannot contain vertices from both V_{1} and V_{D}. Suppose, then, that f is one of the newly adjoined edges of H^{\prime}. Then $f=u v^{\prime}$ for some $v^{\prime} \in V_{1}$. Let G_{1} be an edge embedding of G in H with e at $u v^{\prime}$. Then the subgraph induced by $\left[V\left(G_{1}\right)-\{v\}\right] \cup\{u\}$ in H^{\prime} is an edge embedding of G in H^{\prime} with e at f. Thus G can be edge homogeneously embedded in H^{\prime}. Since $p(H)<p\left(H^{\prime}\right)$, this contradicts the minimality property of H. Thus $D \leq d+1$ and H is a graph with the desired property.

Corollary 4.12 Let G be a nonempty connected graph with diameter d. Then G has an edge frame F with diameter at most $d+1$.

Proof. If G is C_{3} or $K_{1,3}$ then we may take F to be G itself. If G is different from C_{3} and $K_{1,3}$, then the result is an immediate consequence of Theorem 4.15.

While it is always possible to find an edge frame F for a nonempty connected graph G such that $\operatorname{diam} F \leq \operatorname{diam} G+1, \operatorname{diam} F$ can be an arbitrarily large amount less than $\operatorname{diam} G$. For example, the cycle C_{n+1} is an edge frame for the path P_{n} of length
n and $\operatorname{diam} C_{n+1}=\left\lfloor\frac{n+1}{2}\right\rfloor$ while $\operatorname{diam} P_{n}=n-1$.

4.6 The edge framing number of two or more graphs

The concept of edge framing numbers can be extended to more than one graph. For graphs G_{1} and G_{2}, the edge framing number $\operatorname{efr}\left(G_{1}, G_{2}\right)$ of G_{1} and G_{2} is defined as the minimum size of a graph F such that $G_{i}(i=1,2)$ can be edge homogeneously embedded in F. The graph F is called an edge frame of G_{1} and G_{2}. Notice that $\operatorname{efr}\left(G_{1}, G_{2}\right)$ exists and, in fact, $e f r\left(G_{1}, G_{2}\right) \leq e f r\left(G_{1} \cup G_{2}\right)$.

In this section, we determine $e f r\left(K_{1, m}, C_{n}\right)$ for all integers $m \geq 3$ and $n \geq 4$.

Theorem 4. 16 For integers $m \geq 3$ and $n \geq 4$,

$$
\operatorname{efr}\left(K_{1, m}, C_{n}\right)= \begin{cases}(m-2)\left\lceil\frac{n}{2}\right\rceil+n & \text { if } n \equiv 0,3(\bmod 4) \\ & \text { or if } m \text { is even and } \\ & n \equiv 1(\bmod 4)(n \geq 9) \text { or } n \equiv 2(\bmod 4) \\ (m-2)\left\lceil\frac{n}{2}\right\rceil+n+1 & \text { if } m \text { is odd and } \\ & n \equiv 1(\bmod 4)(n \geq 9) \text { or } n \equiv 2(\bmod 4) \\ 4 m-3 & \text { if } n=5\end{cases}
$$

Proof. First we present upper bounds for efr $\left(K_{1, m}, C_{n}\right)$ by constructing graphs
which edge homogeneously embed $K_{1, m}$ and C_{n}. Thereafter we will proceed to show that these constructions are optimal.

Construction $1 n \equiv 0,3(\bmod 4)$:

Let $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be a cycle of length n and let $S_{1}, S_{2}, \ldots, S_{\left\lceil\frac{n}{4}\right\rceil}$ be $\left\lceil\frac{n}{4}\right\rceil$ pairwise disjoint sets of independent vertices each of cardinality $m-2$. Let D_{1} be the graph obtained by joining each vertex of S_{i} with the vertices $v_{4 i-3}$ and $v_{4 i-1}(1 \leq i \leq$ $\left.\left\lceil\frac{n}{4}\right\rceil\right)$ where all subscripts are reduced modulo n. Then D_{1} is a graph of size $2(m-$ 2) $\left\lceil\frac{n}{4}\right\rceil+n=(m-2)\left\lceil\frac{n}{2}\right\rceil+n$ which edge homogeneously embeds $K_{1, m}$ and C_{n}. Thus $\operatorname{efr}\left(K_{1, m}, C_{n}\right) \leq(m-2)\left\lceil\frac{n}{2}\right\rceil+n$.

Figure 4.6: An edge frame for $K_{1,3}$ and C_{8}.

Construction $2.1 n \equiv 1(\bmod 4)(n \geq 9)$ and m is even:

Let $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be a cycle of length n and let $S_{1}, S_{2}, \ldots, S_{\frac{n+1}{2}}$ be $(n+1) / 2$ pairwise disjoint sets of independent vertices such that $\left|S_{i}\right|=\frac{m-2}{2}\left(1 \leq i \leq \frac{n+1}{2}\right)$. Join each vertex of S_{i} with the vertices $v_{2 i-3}$ and $v_{2 i+1}\left(2 \leq i \leq \frac{n+1}{2}-1\right)$. Also join

Figure 4.7: An edge frame for $K_{1,3}$ and C_{7}.
each vertex of $S_{1}\left(S_{\frac{n+1}{2}}\right)$ with the vertices $v_{1}, v_{3}\left(v_{n-2}, v_{n}\right.$, respectively). Let D_{2} denote the resulting graph.

Choose $u_{i} \in S_{i}\left(1 \leq i \leq \frac{n+1}{2}\right)$. It is clear that every edge in D_{2} lies on an induced $K_{1, n}$ and that each edge of C^{\prime} and each of the edges $u_{1} v_{1}, u_{1} v_{3}, u_{\frac{n+1}{2}} v_{n-2}, u_{\frac{n+1}{2}} v_{n}$ lies on an induced C_{n} in D_{2}. Observe that $C_{n} \cong\left\langle\left[V\left(C^{\prime}\right)-\left\{v_{2 i-2}, v_{2 i+2}\right\}\right] \cup\left\{u_{i}, u_{i+1}\right\}\right\rangle$ for $2 \leq i \leq \frac{n+1}{2}-2$. It is now clear that each of the remaining edges of D_{2} lies on an induced C_{n}. Thus D_{2} is a graph of size $\frac{m n}{2}+\frac{m}{2}-1=(m-2)\left\lceil\frac{n}{2}\right\rceil+n$ which edge homogeneously embeds $K_{1, m}$ and C_{n} so that efr $\left(K_{1, m}, C_{n}\right) \leq(m-2)\left\lceil\frac{n}{2}\right\rceil+n$.

Construction $2.2 n \equiv 1(\bmod 4)(n \geq 9)$ and m is odd:

Let $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be a cycle of length n and let $S_{1}, S_{2}, \ldots, S_{\frac{n+1}{2}}$ be $\frac{n+1}{2}$ pairwise disjoint sets of independent vertices such that $\left|S_{\frac{n+1}{2}}\right|=\frac{m-1}{2}$ and for $1 \leq i \leq \frac{n+1}{2}-1$,

$$
\left|S_{i}\right|= \begin{cases}\frac{m-3}{2} & \text { if } i \equiv 1,4(\bmod 4) \\ \frac{m-1}{2} & \text { if } i \equiv 2,3(\bmod 4)\end{cases}
$$

Figure 4.8: An edge frame for $K_{1,4}$ and C_{9}.
For $\left(2 \leq i \leq \frac{n+1}{2}-1\right)$, join each vertex of S_{i} with the vertices $v_{2 i-3}$ and $v_{2 i+1}$. Also join each vertex of $S_{1}\left(S_{\frac{n+1}{2}}\right)$ with the vertices $v_{1}, v_{3}\left(v_{n-2}, v_{n}\right.$, respectively). Let D_{3} denote the resulting graph.

Then D_{3} is a graph of size $\frac{m n}{2}+\frac{m}{2}=(m-2)\left\lceil\frac{n}{2}\right\rceil+n+1$ which edge homogeneously embeds $K_{1, m}$ and C_{n} so that efr $\left(K_{1, m}, C_{n}\right) \leq(m-2)\left\lceil\frac{n}{2}\right\rceil+n+1$.

Figure 4.9: An edge frame for $K_{1,5}$ and C_{9}.

Construction $3.1 n \equiv 2(\bmod 4)$ and m is even:

Let $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be a cycle of length n and let $S_{1}, S_{2}, \ldots, S_{\frac{n}{2}}$ be $\frac{n}{2}$ pairwise disjoint sets of independent vertices such that $\left|S_{i}\right|=\frac{m-2}{2}\left(1 \leq i \leq \frac{n}{2}\right)$. Let D_{4} be the graph obtained by joining each vertex of S_{i} with the vertices $v_{2 i-1}$ and $v_{2 i+1}$ ($1 \leq i \leq \frac{n}{2}$) where all subscripts are reduced modulo n. Then D_{4} is a graph of size $\frac{m n}{2}=(m-2)\left\lceil\frac{n}{2}\right\rceil+n$ which edge homogeneously embeds $K_{1, m}$ and C_{n}. Thus $e f r\left(K_{1, m}, C_{n}\right) \leq(m-2)\left\lceil\frac{n}{2}\right\rceil+n$.

Figure 4.10: An edge frame for $K_{1,4}$ and C_{6}.

Construction $3.2 n \equiv 2(\bmod 4)$ and m is odd:

Let $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be a cycle of length n and let $S_{1}, S_{2}, \ldots, S_{\frac{n}{2}}$ be $\frac{n}{2}$ pairwise disjoint sets of independent vertices such that for $1 \leq i \leq \frac{n}{2},\left|S_{i}\right|=\frac{m-3}{2}$ if i is even and $\left|S_{i}\right|=\frac{m-1}{2}$ if i is odd. Let D_{5} be the graph obtained by joining each vertex of S_{i} with the vertices $v_{2 i-1}$ and $v_{2 i+1}\left(1 \leq i \leq \frac{n}{2}\right)$ where all subscripts are reduced modulo
n. Then D_{5} is a graph of size $\frac{m n}{2}+1=(m-2)\left\lceil\frac{n}{2}\right\rceil+n+1$ which edge homogeneously embeds $K_{1, m}$ and C_{n}. Thus efr $\left(K_{1, m}, C_{n}\right) \leq(m-2)\left\lceil\frac{n}{2}\right\rceil+n+1$.

Figure 4.11: An edge frame for $K_{1,5}$ and C_{6}.

Construction $4 n \equiv 5$:

Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}$ be a cycle of length 5 and let S_{1}, S_{2} be pairwise disjoint sets of independent vertices such that $\left|S_{i}\right|=m-2(i=1,2)$. Let D_{6} be the graph obtained by joining each vertex of $S_{1}\left(S_{2}\right)$ with the vertices $v_{1}, v_{3}\left(v_{1}, v_{4}\right.$, respectively). Then D_{6} is a graph of size $4 m-3$ which edge homogeneously embeds $K_{1, m}$ and C_{5}. Thus $e f r\left(K_{1, m}, C_{5}\right) \leq 4 m-3$.

Next we show that the upper bounds given above are also lower bounds. In what follows, we refer to a vertex v of a graph as a central vertex if v lies on an induced $K_{1, m}$ in which v has degree m. Before proceeding with the proof, we establish the following preliminary results.

Figure 4.12: An edge frame for $K_{1,3}$ and C_{5}.
Claim 4.1 Suppose that H is an edge frame for $K_{1,3}$ and C_{n}. If $n \neq 5$, then no edge of H lies on a C_{3}. If $n=5$ and some edge of H lies on an induced C_{3}, then $q(H) \geq 4 m-3=9$.

Proof Suppose that some edge, $v_{1} v_{2}$ say, of H lies on an induced C_{3}. Let C^{\prime} : $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be an induced C_{n} which contains the edge $v_{1} v_{2}$. Since each of the edges $e_{i}=v_{2 i} v_{2 i+1}\left(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ lies on an induced $K_{1,3}$ or C_{3}, e_{i} is incident with at least one other edge, say f_{i}, not on C^{\prime}. Observe that, since C^{\prime} is an induced C_{n} in $H, f_{i} \neq f_{j}$ for $i \neq j$. Thus efr $\left(K_{1,3}, C_{n}\right)=q(H) \geq 2+\left\lfloor\frac{n}{2}\right\rfloor+n \cdots(\star)$. Since $2+\left\lfloor\frac{n}{2}\right\rfloor+n>\left\lceil\frac{n}{2}\right\rceil+n$, inequality (\star) contradicts the upper bounds given in Constructions 1 and 2.2. If n is even then $2+\left\lfloor\frac{n}{2}\right\rfloor+n=\frac{3 n}{2}+2$ and inequality (\star) contradicts the upper bound given in Construction 3.2. Thus if $n \neq 5$ then no edge of H lies on a C_{3}. If $n=5$ then inequality (\star) becomes $q(H) \geq 9$ as required.

Claim 4.2 If H is an edge frame for $K_{1, m}$ and $C_{n}((m, n) \neq(3,5))$, then every induced C_{n} in H contains at least $\left\lceil\frac{n}{2}\right\rceil$ central vertices and $q(H) \geq(m-2)\left\lceil\frac{n}{2}\right\rceil+n$.

Proof. Let H^{\prime} be an induced C_{n} in H. By Claim 4.1 no edge of H^{\prime} lies on a C_{3}. Let c denote the number of vertices of H^{\prime} which are central vertices. Since every edge e of H must lie on an induced $K_{1, m}$, it follows that at least one end-vertex of e must be a central vertex. Each central vertex of H^{\prime} lies on a $K_{1, m}$ which contains at most two (consecutive) edges of H^{\prime}. Thus, since every edge of H^{\prime} lies on a $K_{1, m}$, it follows that $2 c \geq n$, whence $c \geq\left\lceil\frac{n}{2}\right\rceil$. Now each of the central vertices on H^{\prime} is incident with at least $m-2$ edges none of which lie on H^{\prime}. Thus $\operatorname{efr}\left(K_{1, m}, C_{n}\right)=q(H) \geq$ $c(m-2)+n \geq(m-2)\left\lceil\frac{n}{2}\right\rceil+n$ as required.

The lower bound given by Claim 4.2 coincides with the upper bounds given in Constructions $1,2.1$ and 3.1. Thus it remains for us to consider the cases $n \equiv$ $2(\bmod 4)(m$ odd $), n \equiv 1(\bmod 4)($ where $n \geq 9$ and m is odd $)$ and $n=5$.

Case $1 m$ is odd and $n \equiv 1(\bmod 4)(n \geq 9)$ or $n \equiv 2(\bmod 4)$:

Let H be an edge frame for $K_{1, m}$ and C_{n}. We must show that $q(H) \geq(m-$ 2) $\left\lceil\frac{n}{2}\right\rceil+n+1$. Suppose, to the contrary, that $q(H) \leq(m-2)\left\lceil\frac{n}{2}\right\rceil+n$. By Claim 4.2, $q(H) \geq(m-2)\left\lceil\frac{n}{2}\right\rceil+n$. Thus $q(H)=(m-2)\left\lceil\frac{n}{2}\right\rceil+n$. By Claim 4.1 we know that no edge of H lies on an induced C_{3}.

Claim 4.3 Let H^{\prime} be an induced C_{n} in H. Then H^{\prime} contains exactly $\left\lceil\frac{n}{2}\right\rceil$ central vertices and the only edges in H are those incident with the central vertices of H on
H^{\prime}. Furthermore, the central vertices of H on H^{\prime} all have degree m and the remaining vertices of H^{\prime} all have degree 2.

Proof. Suppose that H^{\prime} is the cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. Let c denote the number of vertices of H^{\prime} which are central vertices. By Claim $4.2, c \geq\left\lceil\frac{n}{2}\right\rceil$. Each of the central vertices on H^{\prime} is incident with at least $m-2$ edges none of which lie on H^{\prime}. Thus $q(H)=(m-2)\left\lceil\frac{n}{2}\right\rceil+n \geq c(m-2)+n \cdots(\star)$ whence $c \leq\left\lceil\frac{n}{2}\right\rceil$. Consequently $c=\left\lceil\frac{n}{2}\right\rceil$ and inequality (\star) is an equality. Furthermore, it follows that the only edges in H are those incident with the central vertices of H^{\prime}. Consequently, the central vertices of H on H^{\prime} all have degree m and the remaining vertices of H^{\prime} all have degree 2 .

Since H edge homogeneously embeds C_{n}, we have the following result.

Corollary 4.13 Every vertex in H has either degree 2 or m. Furthermore, every vertex of degree m is a central vertex.

Corollary 4.14 If H^{\prime} is an induced C_{n} in H, then at most two consecutive vertices on H^{\prime} are central vertices.

Now let K be an induced C_{n} in H. Then, by Claim 4.3, K contains exactly $\left\lceil\frac{n}{2}\right\rceil$ central vertices and the only edges in H are those incident with the central vertices of K. If v is any vertex outside K then, since it lies on an induced C_{n} and the only vertices adjacent to it are central vertices, v cannot be a central vertex. By Corollary 4.13 we deduce that every vertex outside K has degree 2 . Thus the central vertices of K have
degree m and all the remaining vertices of H have degree 2. But this implies that there are an odd number of vertices, namely the $\left\lceil\frac{n}{2}\right\rceil$ central vertices of K, of odd degree in H which is impossible. Thus efr $\left(K_{1, m}, C_{n}\right)=q(H) \geq(m-2)\left\lceil\frac{n}{2}\right\rceil+n+1$ and consequently efr $\left(K_{1, m}, C_{n}\right)=(m-2)\left\lceil\frac{n}{2}\right\rceil+n+1$.

Case $2 n=5$:

Let H be an edge frame for $K_{1, m}$ and C_{5}. We must show that $q(H) \geq 4 m-3$. If $m=3$ and some edge of H lies on a C_{3}, then by Claim 4.1 we have efr $\left(K_{1,3}, C_{5}\right)=$ $q(H) \geq 4 m-3=9$ and we are done. Thus, in what follows, we may assume that no edge of H lies on a C_{3} if $m=3$. Let $H^{\prime}: a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{1}$ be an induced C_{5} in H. By Claim 4.2 there are at least three central vertices on H^{\prime}. Also, by Corollary 4.8, $\delta(H) \geq 2$.

If there are at least four central vertices on H^{\prime} then, since each of these central vertices lies on an induced $K_{1, m}$ which contains at most two (consecutive) edges of H^{\prime}, efr $\left(K_{1, m}, C_{5}\right)=q(H) \geq 4(m-2)+5=4 m-3$ and we are done. Assume then that H^{\prime} contains exactly three central vertices. Since each edge of H^{\prime} lies on an induced $K_{1, m}$ we may, without loss of generality, assume that a_{1}, a_{2} and a_{4} are the central vertices of H on H^{\prime}.

Suppose that there is one other central vertex, say v, in H (i.e. not on H^{\prime}). Let K_{v} be an induced $K_{1, m}$ in H containing v as a central vertex. Then, in K_{v}, v is adjacent with at most two vertices from H^{\prime} (possibly from a_{1}, a_{2} and a_{4}). Consequently,
efr $\left(K_{1, m}, C_{5}\right)=q(H) \geq(m-2)+3(m-2)+5=4 m-3$ and we are done. Assume then that a_{1}, a_{2} and a_{4} are the only central vertices in H otherwise there is nothing to prove.

Since $a_{1}\left(a_{2}\right)$ is a central vertex, there is an independent set $T_{1}\left(T_{2}\right.$, respectively) of $m-2$ vertices in H, none of which lie on H^{\prime}, such that $\left\langle T_{i} \cup a_{i}\right\rangle \cong K_{1, m-2}$ for $i=1,2$. Let $a \in T_{1}$ and $b \in T_{2}$. Since no edge of H lies on an induced C_{3} it follows that $a \neq b$. Furthermore, since a and b are not central vertices, a and b cannot be adjacent. Then, since $\delta(H) \geq 2$, there are at least $2\left|T_{1} \cup T_{2}\right|=4(m-2)$ edges incident with the vertices in $T_{1} \cup T_{2}$. These edges, together with the five edges of H^{\prime}, account for at least $4 m-3$ edges in H. Consequently, efr $\left(K_{1, m}, C_{3}\right)=q(H) \geq 4 m-3$ as required.

Chapter 5

Homogeneous embeddings of cycles

in graphs

5.1 Introduction

In this chapter we investigate the framing number and edge framing number of pairs of cycles. We also investigate the framing number of pairs of directed cycles.

In Section 5.2 we determine the framing number $\operatorname{fr}\left(G_{1}, G_{2}\right)$ for several pairs G_{1}, G_{2} of cycles. We extend the results of Chartrand et al. [2]. For $n>m \geq 3$, we show that $f r\left(C_{m}, C_{n}\right) \geq n+2$ and we characterize all those pairs of cycles C_{m} and C_{n} which have framing number $n+2$. Furthermore, for each such pair (m, n), we determine all the nonisomorphic frames of C_{m} and C_{n}. For $m=3$ or 4 and $n=7,8,9$,
or for $9 \leq m+2 \leq n \leq 2 m-5$, we establish that $f r\left(C_{m}, C_{n}\right)=n+3$. Furthermore, in Section 5.3, for all integers $n>m \geq 3$, we establish upper bounds on $\operatorname{fr}\left(C_{m}, C_{n}\right)$. We show that $\operatorname{fr}\left(C_{m}, C_{n}\right)$ is at most $n+\lceil n / 3\rceil$ if $m=3$ or 4 , at most $n+n /(m-1)$ if $m-1 \mid n$ and $m>4$, and at most $n+\lceil n /(m-1)\rceil+1$ otherwise.

In Section 5.4 we investigate the edge framing number efr $\left(G_{1}, G_{2}\right)$ for several pairs G_{1}, G_{2} of cycles. We show that efr $\left(C_{m}, C_{n}\right)=n+4$ if $n=2 m-4$ and $m \geq 5$, $e f r\left(C_{m}, C_{n}\right)=n+5$ if $n=2 m-6$ and $m \geq 7$ and $e f r\left(C_{m}, C_{n}\right)=n+6$ if $n=2 m-8$ ($m \geq 10$) or $m=n-1$ (where $n \geq 5$ and $n \notin\{6,8\}$) or $m=n-2(n=6$ or $n \geq 9)$. It is also shown that $\operatorname{efr}\left(C_{m}, C_{n}\right) \geq n+6$ for $n>m \geq 4$ with $n \neq 2 m-4$ or $2 m-6$ and $(m, n) \neq(5,7)$. Furthermore, for the cases $n=2 m-4(m \geq 5)$ and $n=2 m-6$ ($m \geq 7$) we show that C_{m} and C_{n} are uniquely edge framed.

Chartrand, Gavlas, and Schultz [2] extended the concept of framing numbers to more than one graph. Framing numbers of two or more digraphs can be defined similarly. For digraphs D_{1} and D_{2}, the framing number $f r\left(D_{1}, D_{2}\right)$ of D_{1} and D_{2} is defined as the minimum order of a digraph F such that $D_{i}(i=1,2)$ can be homogeneously embedded in F. The digraph F is called a frame of D_{1} and D_{2}. Notice that $f r\left(D_{1}, D_{2}\right)$ exists and, in fact, $f r\left(D_{1}, D_{2}\right) \leq f r\left(D_{1} \cup D_{2}\right)$. A directed cycle of order n in which every vertex has indegree and outdegree equal to 1 , will be denoted by \vec{C}_{n}. If \vec{C}_{n} is given by $v_{1},\left(v_{1}, v_{2}\right), v_{2},\left(v_{2}, v_{3}\right), v_{3}, \ldots, v_{n},\left(v_{n}, v_{1}\right), v_{1}$, then we will simply write $v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}$. In Section 5.5 we investigate the framing number $\operatorname{fr}\left(G_{1}, G_{2}\right)$ for several pairs G_{1}, G_{2} of directed cycles. We characterize all those pairs
of directed cycles \vec{C}_{m} and \vec{C}_{n} which have framing number $n+2$. Furthermore, for each such pair (m, n), we determine all the nonisomorphic frames of \vec{C}_{m} and C_{n}. For $m=3$ or 4 and $n=7,8,9$, or for $9 \leq m+2 \leq n \leq 2 m-5$, we establish that $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)=n+3$. Furthermore, in Section 5.6, for all integers $n>m \geq 3$, we establish upper bounds on $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)$. We show that $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)$ is at most $n+\lceil n / 2\rceil$ if $m=3$ or 4 , at most $n+n /(m-1)$ if $m-1 \mid n$ and $m>4$, and at most $n+\lceil n /(m-1)\rceil+1$ otherwise.

5.2 The framing number of pairs of cycles

Chartrand et al. [2] investigated the framing number $\operatorname{fr}\left(G_{1}, G_{2}\right)$ for several pairs G_{1}, G_{2} of cycles. For small m and n, they established the values of $\operatorname{fr}\left(C_{m}, C_{n}\right)$. Their results are summarized in Table 2.5 in Section 2.2. In this section, we extend the results of [2]. For $n>m \geq 3$ we characterize all those pairs of cycles C_{m} and C_{n} which have framing number $n+2$. Furthermore, for each such pair (m, n), we determine all the nonisomorphic frames of C_{m} and C_{n}. The following lemma will prove to be useful.

Lemma 5. 1 For integers $n>m \geq 3, f r\left(C_{m}, C_{n}\right) \geq n+2$.

Proof. By Theorem 2.11, it suffices to show that there is no graph of order $n+1$ which homogeneously embeds C_{n} and C_{m}. Assume, to the contrary, that such a
graph H exists. Let $C^{\prime}: a_{1}, a_{2}, \ldots, a_{n}, a_{1}$ be an induced C_{n} in H, and let x be the name of the vertex of H not in C^{\prime}. Let C_{x} be an induced C_{n} containing x. Without loss of generality, we may assume that C_{x} is given by $x, a_{2}, a_{3}, \ldots, a_{n}, x$. Hence $\operatorname{deg} a_{2}=\operatorname{deg} a_{n}=3$ and $\operatorname{deg} a_{i}=2$ for $i=3, \ldots, n-1$. However there is then no induced C_{m} containing the vertex $v_{i}(3 \leq i \leq n-1)$. This produces a contradiction.

Let $S=\{(3,5),(3,6)\} \cup\{(m, n) \mid n=m+1$ and $m \geq 3\} \cup\{(m, n) \mid n=2 m-$ 4 and $m \geq 6\} \cup\{(m, n) \mid n=2 m-3$ and $m \geq 5\} \cup\{(m, n) \mid n=2 m-2$ and $m \geq 4\}$. For each $(m, n) \in S$, we define a set $\mathcal{F}_{m, n}$ of graphs as follows. For $m=3$ and for $i \in\{4,5,6\}$, or for $m=4$ and $i=5$, let $\mathcal{F}_{m, i}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{m, i}$ in Figure 5.1 by adding any combination (the presence or absence) of the dotted edges, provided that if $u w$ is an edge of $F_{4,5}$, then so too are $u v$ and $w x$. Let $\mathcal{F}_{4,6}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{4,6}$ or $G_{4,6}$ in Figure 5.2 or the graph $H_{4,6}$ in Figure 5.1 by adding any combination (the presence or absence) of the dotted edges. Let $\mathcal{F}_{6,8}$ be the set of all nonisomorphic graphs obtainable from the graph $G_{6,8}$ or $H_{6,8}$ in Figure 5.1 or the graph $F_{6,8}$ in Figure 5.2 by adding any combination (the presence or absence) of the dotted edges. For $m \geq 5$ and $i=m+1$, or for $m=5$ or $m \geq 7$ and $i=2 m-3$, or for $m \geq 7$ and $i=2 m-4$, let $\mathcal{F}_{m, i}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{m, i}$ in Figure 5.2 by adding any combination (the presence or absence) of the dotted edges, provided that if $u w$ is an edge of $F_{m, 2 m-3}$, then so too is $v w$.

Let $\mathcal{F}_{6,9}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{6,9}$ in Figure 5.2 by adding any combination (the presence or absence) of the dotted edges. For $m=5$ or $m \geq 7$, let $\mathcal{F}_{m, 2 m-2}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{m, 2 m-2}$ or $G_{m, 2 m-2}$ in Figure 5.2 by adding any combination (the presence or absence) of the dotted edges. Let $\mathcal{F}_{6,10}$ be the set of all nonisomorphic graphs obtainable from the graph $H_{6,10}$ in Figure 5.1 or the graph $F_{6,10}$ or $G_{6,10}$ in Figure 5.2 by adding any combination (the presence or absence) of the dotted edges.

We are now in a position to present our next result.

Figure 5.1:

Figure 5.2:

Theorem 5. 1 For integers $n>m \geq 3, f r\left(C_{m}, C_{n}\right)=n+2$ if and only if $(m, n) \in$ S. Furthermore, if $(m, n) \in S$, then the set of all nonisomorphic frames of C_{m} and C_{n} is given by $\mathcal{F}_{m, n}$.

Proof. If $(m, n) \in S$, then C_{m} and C_{n} can be homogeneously embedded in each graph (of order $n+2$) from the set $\mathcal{F}_{m, n}$, so $f r\left(C_{m}, C_{n}\right) \leq n+2$. However, by Lemma 5.1, $f r\left(C_{m}, C_{n}\right) \geq n+2$. Hence $f r\left(C_{m}, C_{n}\right)=n+2$. This establishes the sufficiency.

Next we consider the necessity. Let m and n be integers satisfying $n>m \geq 3$ and assume that $f r\left(C_{m}, C_{n}\right)=n+2$. Let H be a frame for C_{m} and C_{n}. Then $p(H)=n+2$ and Lemma 2.1 implies that $2 \leq \delta(H) \leq \Delta(H) \leq(n+2)-n+2=4$.

First we assume that for any induced n-cycle C^{\prime} in H, the two vertices of H not in C^{\prime} do not belong to a common C_{n}. Let $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be an induced C_{n} in H. Let a and b be the names of the two remaining vertices of H. Further, let $C_{a}\left(C_{b}\right)$ be an induced C_{n} that contains the vertex a (b, respectively). By hypothesis, a and b do not belong to a common induced C_{n}. Without loss of generality, we may assume that C_{a} is $v_{1}, v_{2}, \ldots, v_{n-1}, a, v_{1}$. Since the vertices v_{n} and b do not belong to C_{a}, our assumption implies that v_{n} and b do not belong to a common induced C_{n}. Hence C_{b} must contain the vertices $v_{1}, v_{2}, \ldots, v_{n-1}$. Hence C_{b} is given by $v_{1}, v_{2}, \ldots, v_{n-1}, b, v_{1}$. Thus $\operatorname{deg} v_{1}=\operatorname{deg} v_{n-1}=3$ and $\operatorname{deg} v_{i}=2$ for $i=2,3, \ldots, n-2$. Hence H has the subgraph shown in Figure 5.3. However, there is then no induced C_{m} containing the vertex $v_{i}(2 \leq i \leq n-2)$.

Thus there exists an induced C_{n} in H, say $C^{\prime}: v_{1}, v_{2}, \ldots, v_{n}, v_{1}$, such that the two vertices of H outside C^{\prime}, call them g and h, belong to a common induced C_{n}, say C_{g}. Then C_{g} contains the vertices g and h and $n-2$ vertices of C^{\prime}. If g and h are adjacent vertices on C_{g}, then, without loss of generality, we may assume that C_{g} is given by

Figure 5.3: A subgraph of H.
$v_{3}, v_{4}, \ldots, v_{n}, g, h, v_{3}$. Hence $\operatorname{deg} v_{3}=\operatorname{deg} v_{n}=3$ and $\operatorname{deg} v_{i}=2$ for $i=4, \ldots, n-1$. Thus the graph shown in Figure 5.4 is a subgraph of H. If $n>4$, then there is no induced C_{m} containing the vertex $v_{i}(4 \leq i \leq n-1)$, which produces a contradiction. Hence $n=4$, so $m=3$. Furthermore, if $v_{1} g$ or $v_{2} h$ is not an edge of H, then H does not homogeneously embed C_{3}. Hence $v_{1} g$ and $v_{2} h$ are both edges of H. Thus there are three possibilities for H, depending on the presence or absence of the edges $v_{2} g$ and $v_{1} h$. This yields the set $\mathcal{F}_{3,4}$ of three nonisomorphic frames for C_{3} and C_{4}. Next we assume that g and h are nonadjacent vertices.

Figure 5.4: A subgraph of H.

If g and h are joined by a path of length 2 in C_{g}, then, without loss of generality, we may assume that C_{g} is given by $v_{2}, h, v_{4}, v_{5}, \ldots, v_{n}, g, v_{2}$. Hence H has the subgraph
shown in Figure 5.5. Then $n \geq 5, \operatorname{deg} v_{2}=4, \operatorname{deg} v_{4}=\operatorname{deg} v_{n}=3$ and $\operatorname{deg} v_{i}=2$ ($5 \leq i \leq n-1$). Hence any cycle contains either all or no vertex from the set $\left\{v_{5}, \ldots, v_{n-1}\right\}$. Suppose $n \geq 6$. Then any induced C_{m} containing the vertex v_{i} ($5 \leq i \leq n-1$) would contain the $n-3$ vertices from the set $\left\{v_{4}, v_{5}, \ldots, v_{n}\right\}$, exactly one vertex from each of $\left\{v_{1}, g\right\}$ and $\left\{v_{3}, h\right\}$ and therefore would have length at least $n-1$. Thus $m=n-1 \geq 5$. However there is then no induced C_{m} containing the vertex v_{2}. Hence $n=5$, so $m=3$ or 4 . If $m=3$, then since each of v_{4} and v_{5} belongs to a C_{3}, both $v_{1} g$ and $v_{3} h$ must be edges of H. Hence there are four possibilities for H, depending on the presence or absence of the edges $v_{1} h$ and $v_{3} g$. This yields the set $\mathcal{F}_{3,5}$ of three nonisomorphic frames for C_{3} and C_{5}. If $m=4$, then for v_{2} to belong to a C_{4}, at most one of $v_{1} g$ and $v_{3} h$ is edges of H. If exactly one of $v_{1} g$ and $v_{3} h$ is an edge, then both $v_{1} h$ and $v_{3} g$ must be edges of H. If neither $v_{1} g$ nor $v_{3} h$ is an edge, then there are four possibilities for H, depending on the presence or absence of the edges $v_{1} h$ and $v_{3} g$. This yields the set $\mathcal{F}_{4,5}$ of four nonisomorphic frames for C_{4} and C_{5}.

Figure 5.5: A subgraph of H.

Next we assume that g and h are at distance at least 3 apart on C_{g}. Then $n \geq 6$ and, without loss of generality, we may assume that C_{g} is given by either $v_{1}, g, v_{i}, v_{i-1}, \ldots, v_{3}, h, v_{i+2}, v_{i+3}, \ldots, v_{n}, v_{1}(4 \leq i \leq n-2)$, in which case H has the subgraph shown in Figure $5.6(i)$, or $v_{1}, v_{2}, \ldots, v_{k}, h, v_{k+2}, v_{k+3}, \ldots, v_{n-1}, g, v_{1}$ $(2 \leq k \leq n-4)$, in which case H has the subgraph shown in Figure 5.6(ii).

Figure 5.6:

Suppose that H has the subgraph shown in Figure 5.6(i). Then each of the vertices v_{1}, v_{3}, v_{i} and v_{i+2} has degree 3 while the remaining vertices of C^{\prime} have degree 2 , except possibly for v_{2} and v_{i+1}. For notational convenience, we write $u \perp v$ if u and v are adjacent vertices, and $u \pm v$ if u and v are not adjacent. We consider two possibilities.

Case 1. $i>4$.

Then the vertex v_{4} belongs to induced cycles of only three possible lengths, namely, $i, i+1$ and n depending on the presence or absence of the edges $v_{2} g, v_{2} h, v_{i+1} g$ and $v_{i+1} h$. Since v_{4} belongs to an induced C_{m}, we must have $i=m-1$ or m. We consider the two possibilities in turn.

Case 1.1. $i=m-1$.

Then $m=i+1 \geq 6$ and $v_{2} \pm g$ or $v_{m} \pm h$ for otherwise v_{4} belongs to no induced C_{m}. Without loss of generality, we may assume that $v_{m} \pm h$. Suppose $n=m+1(=i+2)$. If $v_{2} \perp g$, then the vertex v_{1} belongs to induced cycles of only four possible lengths, namely, $3,4,5$, and n. Since v_{1} belongs to an induced C_{m}, and $m \geq 6$, this produces a contradiction. Hence $v_{2} \pm g$. Then there are four possibilities for H, depending on the presence or absence of the edges $v_{2} h$ and $v_{m} g$. This yields the set $\mathcal{F}_{m, m+1}$ of three nonisomorphic frames for C_{m} and $C_{m+1}(m \geq 6)$. Hence in what follows in Case 1.1, we may assume that $n \geq m+2$ for otherwise there is nothing left to prove. Then the vertex v_{n} belongs to induced cycles of only three possible lengths, namely, $n-m+3$, $n-m+4$, and n. Since v_{n} belongs to an induced C_{m}, it follows that $n=2 m-4$ or $2 m-3$. We now consider four cases.

Case 1.1.1. $v_{2} \pm g$ and $n=2 m-4$.

Then $v_{2} \pm h$ or $v_{m} \pm g$. Without loss of generality, we may assume that $v_{m} \pm g$. Then there are two possibilities for H, depending on the presence or absence of the edge $v_{2} h$. This yields the set $\mathcal{F}_{m, 2 m-4}$ of two nonisomorphic frames for C_{m} and $C_{2 m-4}$ ($m \geq 6$).

Case 1.1.2. $v_{2} \pm g$ and $n=2 m-3$.

Then $v_{2} \perp h$ or $v_{m} \perp g$. Without loss of generality, we may assume that $v_{2} \perp h$. Then there are two possibilities for H, depending on the presence or absence of the
edge $v_{m} g$. This yields two nonisomorphic frames for C_{m} and $C_{2 m-3}(m \geq 6)$, namely the graph $F_{m, 2 m-3}$ in Figure 5.2 and the graph obtained from $F_{m, 2 m-3}$ by adding the edge $v w$.

Case 1.1.3. $v_{2} \perp g$ and $n=2 m-4$.

Then $v_{2} \pm h$ or $v_{m} \pm g$. If $v_{2} \pm h$ and $v_{m} \pm g$, then this yields the graph obtained from $F_{m, 2 m-4}(m \geq 6)$ in Figure 5.2 by adding the dotted edge. If $v_{2} \perp h$ and $v_{m} \pm g$, then $m=6$ for otherwise v_{2} belongs to no induced C_{m}, while if $v_{2} \pm h$ and $v_{m} \perp g$, then $m=6$ for otherwise g belongs to no induced C_{m}. Both cases yield the graph $G_{6,8}$ of Figure 5.1.

Case 1.1.4. $v_{2} \perp g$ and $n=2 m-3$.

Then $v_{2} \perp h$ or $v_{m} \perp g$. If $v_{2} \perp h$ and $v_{m} \perp g$, then this yields the graph obtained from $F_{m, 2 m-3}(m \geq 6)$ in Figure 5.2 by adding the two dotted edges. If $v_{2} \perp h$ and $v_{m} \pm g$, then $m=6$ for otherwise g belongs to no induced C_{m}, while if $v_{2} \pm h$ and $v_{m} \perp g$, then $m=6$ for otherwise v_{2} belongs to no induced C_{m}. Both cases yield the graph obtained from the graph $F_{6,9}$ in Figure 5.2 by adding the edge $u w$.

Case 1.2. $i=m$.

Then $m \geq 5$ and $v_{2} \perp g$ or $v_{m+1} \perp h$ for otherwise v_{4} belongs to no induced C_{m}. Without loss of generality, we may assume that $v_{2} \perp g$. Then the vertex v_{1} belongs to induced cycles of only four possible lengths, namely, $3, n-m+2, n-m+3$, and n. Since v_{n} belongs to an induced C_{m}, and $m \geq 5$, it follows that $n=2 m-3$ or
$2 m-2$. We now consider four cases.

Case 1.2.1. $v_{m+1} \pm h$ and $n=2 m-3$.
Then $v_{2} \pm h$ or $v_{m+1} \pm g$. If $v_{2} \pm h$ and $v_{m+1} \pm g$, then then this yields the graph $F_{m, 2 m-3}(m \geq 5)$ in Figure 5.2. If $v_{2} \perp h$ and $v_{m+1} \pm g$, then $m=6$ for otherwise h belongs to no induced C_{m}, while if $v_{2} \pm h$ and $v_{m+1} \perp g$, then $m=6$ for otherwise v_{m+1} belongs to no induced C_{m}. Both cases yield the graph obtained from the graph $F_{6,9}$ in Figure 5.2 by adding the edge $u w$.

Case 1.2.2. $v_{m+1} \pm h$ and $n=2 m-2$.

Then $v_{2} \perp h$ or $v_{m+1} \perp g$. If $v_{2} \perp h$ and $v_{m+1} \perp g$, then then this yields the graph $F_{m, 2 m-2}(m \geq 5)$ in Figure 5.2 by adding any combination (the presence or absence) of the dotted edges. If $v_{2} \perp h$ and $v_{m+1} \pm g$, then $m=6$ for otherwise v_{m+1} belongs to no induced C_{m}, while if $v_{2} \pm h$ and $v_{m+1} \perp g$, then $m=6$ for otherwise h belongs to no induced C_{m}. Both cases yield the graph $H_{6,10}$ in Figure 5.1.

Case 1.2.3. $v_{m+1} \perp h$ and $n=2 m-3$.

Then $v_{2} \pm h$ or $v_{m+1} \pm g$. Without loss of generality, we may assume that $v_{m+1} \pm g$. Then there are two possibilities for H, depending on the presence or absence of the edge $v_{2} h$. This yields two nonisomorphic frames for C_{m} and $C_{2 m-3}(m \geq 5)$, namely the graph obtained from $F_{m, 2 m-3}$ in Figure 5.2 by adding the edge $v w$ and the graph obtained from $F_{m, 2 m-3}$ by adding the edges $u w$ and $v w$.

Case 1.2.4. $v_{m+1} \perp h$ and $n=2 m-2$.

Then $v_{2} \perp h$ or $v_{m+1} \perp g$. Without loss of generality, we may assume that $v_{2} \perp h$. Then there are two possibilities for H, depending on the presence or absence of the edge $v_{m+1} g$. This yields two nonisomorphic frames for C_{m} and $C_{2 m-2}(m \geq 5)$, namely the graph obtained from $G_{m, 2 m-2}$ in Figure 5.2 by adding or omitting the dotted edge. Case 2. $i=4$.

Then the vertex v_{n} belongs to induced cycles of only three possible lengths, namely, $n-2, n-1$ and n depending on the presence or absence of the edges $v_{2} g, v_{2} h, v_{5} g$ and $v_{5} h$. Since v_{n} belongs to an induced C_{m}, we must have $m=n-2$ or $m=n-1$. We consider the two possibilities in turn.

Case 2.1. $m=n-2$.

Then $v_{2} \perp h$ or $v_{5} \perp g$. Without loss of generality, we may assume that $v_{5} \perp g$. Then the vertex v_{4} belongs to induced cycles of only four possible lengths, namely, $3,4,5$, and n. Since v_{4} belongs to an induced C_{m}, and $m=n-2 \geq 4$, it follows that $m=4$ or $m=5$. We consider two cases in turn.

Case 2.1.1. $m=4$.

Then $n=6$ and $v_{2} \perp g$ or $v_{5} \perp h$, for otherwise v_{4} belongs to no induced C_{4}. If $v_{2} \perp g$ and $v_{5} \perp h$, then there are two possibilities for H, depending on the presence or absence of the edge $v_{2} h$. This yields two nonisomorphic frames for C_{4} and C_{6},
namely the graph $G_{4,6}$ in Figure 5.2 or the graph obtained from $G_{4,6}$ by adding the dotted edge. If $v_{2} \perp g$ and $v_{5} \pm h$, then $v_{2} \perp h$ for otherwise h belongs to no induced C_{4}, while if $v_{2} \pm g$ and $v_{5} \perp h$, then $v_{2} \perp h$ for otherwise v_{2} belongs to no induced C_{4}. Both cases yield the graph $G_{4,6}$ in Figure 5.2.

Case 2.1.2. $m=5$.

Then $n=7$ and $v_{2} \pm g$ or $v_{5} \pm h$, for otherwise v_{4} belongs to no induced C_{5}. If $v_{2} \pm g$ and $v_{5} \pm h$, then there are two possibilities for H, depending on the presence or absence of the edge $v_{2} h$. If $v_{2} \perp g$ and $v_{5} \pm h$, then $v_{2} \perp h$ for otherwise v_{2} belongs to no induced C_{5}. If $v_{2} \pm g$ and $v_{5} \perp h$, then $v_{2} \perp h$ for otherwise h belongs to no induced C_{5}. This yields the set $\mathcal{F}_{5,7}$ of three nonisomorphic frames for C_{5} and C_{7}.

Case 2.2. $m=n-1$.

Then $m \geq 5$ and $v_{2} \pm h$ or $v_{5} \pm g$. Without loss of generality, we may assume that $v_{2} \pm h$. If $v_{5} \pm g$, then there are four possibilities for H, depending on the presence or absence of the edges $v_{2} g$ and $v_{5} h$. This yields the set $\mathcal{F}_{m, m+1}$ of three nonisomorphic frames for C_{m} and $C_{m+1}(m \geq 5)$. Suppose that $v_{5} \perp g$. Then the vertex v_{4} belongs to induced cycles of only four possible lengths, namely, $3,4,5$, and n. Since v_{4} belongs to an induced C_{m}, and $m=n-1 \geq 5$, it follows that $m=5$, so $n=6$. Thus $v_{5} \pm h$, for otherwise v_{5} belongs to no induced C_{5}. Furthermore, $v_{2} \pm g$, for otherwise g belongs to no induced C_{5}. This yields the graph obtained from $F_{5,6}$ in Figure 5.2 by adding exactly one of the dotted edges.

Suppose next that H has the subgraph shown in Figure 5.6(ii). Then each of v_{1}, v_{k}, v_{k+2} and v_{n-1} has degree 3 while the remaining vertices of C^{\prime} have degree 2, except possibly for v_{k+1} and v_{n}.

Suppose, firstly, that $n=6$, i.e., C_{g} is given by $g, v_{1}, v_{2}, h, v_{4}, v_{5}, g$. Then no vertex of H belongs to an induced C_{5} irrespective of the presence or absence of the edges $v_{3} g, v_{3} h, v_{6} g$ and $v_{6} h$. Hence $m=3$ or 4 . If $m=3$, then we must have $v_{3} \perp h$ and $v_{6} \perp g$. Thus H homogeneously embeds C_{3} and C_{6} and this does not depend on the presence or absence of the edges $v_{3} g$ or $v_{6} h$. This yields the set $\mathcal{F}_{3,6}$ of three nonisomorphic frames for C_{3} and C_{6}. Suppose $m=4$. If $v_{3} \pm h$ and $v_{6} \pm g$, then H homogeneously embeds C_{4} and C_{6} and this does not depend on the presence or absence of the edges $v_{3} g$ or $v_{6} h$. This yields three nonisomorphic frames for C_{4} and C_{6}, namely the nonisomorphic graphs obtained from $H_{4,6}$ in Figure 5.1 by adding any combination (the presence or absence) of the dotted edges. If $v_{3} \perp h$ or $v_{6} \perp g$, then without loss of generality, we may assume that $v_{6} \perp g$. Since $v_{6}(g)$ belongs to an induced $C_{4}, v_{6} \perp h\left(v_{3} \perp g\right.$, respectively $)$. Thus H homogeneously embeds C_{4} and C_{6} and this does not depend on the presence or absence of the edge $v_{3} h$. This yields two nonisomorphic frames for C_{4} and C_{6}, both of which are obtainable from $F_{4,6}$ in Figure 5.2 by adding either one or both of the dotted edges.

Suppose, next, that $n \geq 7$. Then $k \geq 3$ or $k \leq n-5$; that is, there must exist an internal vertex on the $v_{1}-v_{k}$ path or the $v_{k+2}-v_{n-1}$ path on C^{\prime} that does not contain v_{n}. Such a vertex belongs to no C_{3} or C_{4}. Hence $m \geq 5$. Let C_{m}^{\prime} be an induced C_{m}
containing the vertex v_{1}.

If v_{n} and g belong to C_{m}^{\prime}, then, since $m \geq 5$, it follows that $v_{n} \pm g$ and C_{m}^{\prime} must contain the vertices v_{k+1} and h (so $v_{n} h$ and $v_{k+1} g$ are edges on C_{m}^{\prime}). If $v_{k+1} \pm h$, then C_{m}^{\prime} is of length 6 , so $m=6$. It is readily seen that if $n \neq 8$, then there exists an internal vertex on the $v_{1}-v_{k}$ path or the $v_{k+2}-v_{n-1}$ path on C^{\prime} that does not contain v_{n} that belongs to no 6 -cycle. Hence $n=8$. Then there exists an internal vertex on the $v_{1}-v_{k}$ path or the $v_{k+2}-v_{n-1}$ path on C^{\prime} that does not contain v_{n} that belongs to no induced 6-cycle unless one of these paths have length 3 and the other has length 1. Without loss of generality, we may assume that $k=4$. This yields the graph $H_{6,8}$ in Figure 5.1 which frames C_{6} and C_{8}. On the other hand, if $v_{k+1} \perp h$, then C_{m}^{\prime} is of length 5 , so $m=5$. If $n=7$, then either $k=2$, in which case v_{2} belongs to no induced C_{5}, or $k=3$, in which case v_{5} belongs to no induced C_{5}. If $n \geq 9$, then there exists an internal vertex on the $v_{1}-v_{k}$ path or the $v_{k+2}-v_{n-1}$ path on C^{\prime} that does not contain v_{n} that belongs to no 5 -cycle. Hence $n=8$. Then there exists an internal vertex on the $v_{1}-v_{k}$ path or the $v_{k+2}-v_{n-1}$ path on C^{\prime} that does not contain v_{n} that belongs to no induced 5 -cycle unless both of these paths have length 2. i.e., unless $k=2$. Hence H is the graph shown in Figure 5.7. However, this graph is isomorphic to the graph obtained from $F_{5,8}$ in Figure 5.2 by adding exactly one of the dotted edges.

Next we assume that v_{n} and g do not both belong to C_{m}^{\prime}. Then C_{m}^{\prime} contains the k vertices from the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, exactly one vertex from each of $\left\{v_{n}, g\right\}$ and

Figure 5.7: A frame for C_{5} and C_{8}.
$\left\{v_{k+1}, h\right\}$, and either all or no vertex from the set $\left\{v_{k+2}, v_{k+3}, \ldots, v_{n-1}\right\}$. Since C_{m}^{\prime} has length m, it follows that C_{m}^{\prime} contains no vertex from the set $\left\{v_{k+2}, v_{k+3}, \ldots, v_{n-1}\right\}$. Therefore C_{m}^{\prime} has length $k+2=m$. Consequently, $k=m-2$. However, if we consider an induced C_{m} containing the vertex v_{k+2}, then we may show that this cycle contains the $n-k-2$ vertices from the set $\left\{v_{k+2}, v_{k+3}, \ldots, v_{n-1}\right\}$, exactly one vertex from each of $\left\{v_{n}, g\right\}$ and $\left\{v_{k+1}, h\right\}$, and no vertex from the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. This shows that $n-k=m$, or, equivalently, $k=n-m$. Consequently, $n=2 m-2$ and $k=m-2$. Without loss of generality, we may assume that $v_{n} \perp h$. If $v_{m-1} \pm g$, then v_{m-1} belongs to no induced $C_{m}(5 \leq m<n)$. Hence $v_{m-1} \perp g$. Thus H homogeneously embeds C_{m} and $C_{2 m-2}$ and this does not depend on the presence or absence of the edges $v_{m-1} h$ or $v_{2 m-2} g$. This yields three nonisomorphic frames for C_{m} and $C_{2 m-2}(m \geq 5)$, namely the nonisomorphic graphs obtained from $F_{m, 2 m-2}$ in Figure 5.2 by adding any combination (the presence or absence) of the dotted edges. This completes the proof of the theorem.

As a corollary of Theorem 5.1, we may determine exactly how many nonisomorphic frames of C_{m} and C_{n} exist. Let $S_{2}=\{(m, n) \mid n=2 m-4$ and $m \geq 7\}, S_{3}=$ $\{(3,4),(3,5),(3,6)\} \cup\{(m, n) \mid n=m+1$ and $m \geq 5\} \cup\{(m, n) \mid n=2 m-3$ and $m=$ 5 or $m \geq 7\}, S_{4}=\{(4,5),(6,8),(6,9)\}, S_{5}=\{(m, n) \mid n=2 m-2$ and $m=5$ or $m \geq$ $7\}, S_{6}=\{(6,10)\}$, and $S_{7}=\{(4,6)\}$. Then $S=\cup_{i=3}^{7} S_{i}$. The following result follows immediately from Theorem 5.1.

Corollary 5.1 If $(m, n) \in S$, then C_{m} and C_{n} have exactly i nonisomorphic frames of order $n+2$ if and only if $(m, n) \in S_{i}$ for some i with $3 \leq i \leq 7$.

The next result is an immediate consequence of Lemma 5.1 and Theorem 5.1.

Corollary 5.2 For positive integers $n>m \geq 3$, if $(m, n) \notin S$, then $f r\left(C_{m}, C_{n}\right) \geq$ $n+3$.

Proposition 5. 1 For $m \geq 7, f r\left(C_{m}, C_{m+2}\right)=m+5$.

Proof. Since C_{m} and $C_{m+2}(m \geq 7)$ can be homogeneously embedded in the graph of order $m+5$ shown in Figure 5.8, it follows that $f r\left(C_{m}, C_{m+2}\right) \leq m+5$. However, by' Corollary 5.2, for $m \geq 7, f r\left(C_{m}, C_{m+2}\right) \geq m+5$. Hence for $m \geq 7, f r\left(C_{m}, C_{m+2}\right)=$ $m+5$.

Figure 5.8: A frame for C_{m} and $C_{m+2}(m \geq 7)$.

5.3 Upper bounds on $f r\left(C_{m}, C_{n}\right)$

In this section, we establish upper bounds on $f r\left(C_{m}, C_{n}\right)$ for all integers $n>m \geq 3$.

Theorem 5.2 For integers $n>m \geq 3$,

$$
f r\left(C_{m}, C_{n}\right) \leq \begin{cases}n+\left\lceil\frac{n}{3}\right\rceil & \text { if } m=3 \text { or } 4 \\ n+\frac{n}{m-1} & \text { if } m-1 \mid n \text { and } m>4 \\ n+\left\lceil\frac{n}{m-1}\right\rceil+1 & \text { otherwise }\end{cases}
$$

Proof. Suppose firstly that $m=3$. Let $k=\lceil n / 3\rceil$. Let G be the graph obtained from the induced n-cycle $C^{\prime}: v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}$ by adding k new vertices $w_{0}, w_{1}, \ldots, w_{k-1}$ and, for $i=0,1, \ldots, k-1$, joining w_{i} to the three vertices $v_{3 i}, v_{3 i+1}$ and $v_{3 i+2}$ where addition is taken modulo n. Then each vertex of G clearly belongs to a C_{3}. Furthermore, the cycle obtained from C^{\prime} by replacing the vertex $v_{3 i+1}$ with the vertex w_{i} (and the edges $w_{i} v_{3 i}$ and $w_{i} v_{3 i+2}$) is an induced C_{n} containing w_{i} $(0 \leq i \leq k-1)$. Hence C_{3} and C_{n} can be homogeneously embedded in the graph G
of order $n+k=n+\lceil n / 3\rceil$. Thus $f r\left(C_{3}, C_{n}\right) \leq n+\left\lceil\frac{n}{3}\right\rceil$. If $m=4$, then let G^{\prime} be the graph obtained from G by deleting the edges $w_{i} v_{3 i+1}$ for $i=0,1, \ldots, k-1$. Then C_{4} and C_{n} can be homogeneously embedded in the graph G^{\prime} of order $n+k=n+\lceil n / 3\rceil$. Thus $f r\left(C_{4}, C_{n}\right) \leq n+\left\lceil\frac{n}{3}\right\rceil$.

Suppose next that $m \geq 5$. Let $\ell=\lceil n /(m-1)\rceil$. Let $G_{m, n}$ be the graph obtained from the induced n-cycle $C^{\prime}: v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}$ by adding ℓ new vertices $w_{0}, w_{1}, \ldots, w_{\ell-1}$ and, for $i=0,1, \ldots, \ell-1$, joining w_{i} to the three vertices $v_{i(m-1)-1}$, $v_{i(m-1)+1}$ and $v_{(i+1)(m-1)}$ where addition is taken modulo n.

Case 1. $m-1 \mid n$.

Thus $n=\ell(m-1)$. (The graph $G_{5,16}$ is shown in Figure 5.9.) Then C_{m} and C_{n} can be homogeneously embedded in the graph $G_{m, n}$ of order $n+\ell=n+n /(m-1)$. To see this, observe that for $i=0,1, \ldots, \ell-1$, each vertex w_{i} belongs to an induced C_{m}, namely $C_{m}^{(i)}: w_{i}, v_{i(m-1)+1}, v_{i(m-1)+2}, \ldots, v_{(i+1)(m-1)}, w_{i}$. Furthermore, replacing the vertex $v_{i(m-1)}$ on C^{\prime} with the vertex w_{i} for all $i=0,1, \ldots, \ell-1$ produces an induced C_{n} containing each w_{i}. Furthermore, each vertex of C^{\prime} belongs to $C_{m}^{(i)}$ for exactly one $i(0 \leq i \leq \ell-1)$. Consequently, $G_{m, n}$ homogeneously embeds C_{m} and C_{n}. Thus, $f r\left(C_{m}, C_{n}\right) \leq n+n /(m-1)$.

Case 2. $m-1 \mid n+1$.

Thus $n=\ell(m-1)-1$. Let $F_{m, n}$ be the graph obtained from $G_{m, n}$ by deleting the edge $w_{\ell-1} v_{1}$ and adding a new vertex w_{ℓ} and joining it to v_{0}, v_{2} and $w_{\ell-1}$. (The graph

Figure 5.9: The graph $G_{5,16}$.
$F_{5,15}$ is shown in Figure 5.10.) Then C_{m} and C_{n} can be homogeneously embedded in the graph $F_{m, n}$ of order $n+\ell+1=n+\lceil n /(m-1)\rceil+1$. Thus, $\operatorname{fr}\left(C_{m}, C_{n}\right) \leq$ $n+\lceil n /(m-1)\rceil+1$.

Figure 5.10: The graph $F_{5,15}$.

Case 3. $m-1 \mid n-1$.

Thus $n=(\ell-1)(m-1)+1$. Let $H_{m, n}$ be the graph obtained from $G_{m, n}$ as follows: Delete the edge $w_{\ell-2} v_{n-1}$ and add the edge $w_{\ell-2} v_{(\ell-3)(m-1)}$; delete the three edges incident with $w_{\ell-1}$ and join $w_{\ell-1}$ to $v_{(\ell-2)(m-1)+1}, v_{n-1}$ and v_{1}; add a new vertex w_{ℓ} and join it to $v_{(\ell-2)(m-1)}, v_{(\ell-2)(m-1)+2}$ and v_{0}. (The graph $H_{6,16}$ is shown in Figure 5.11.) Then C_{m} and C_{n} can be homogeneously embedded in the graph $H_{m, n}$ of order $n+\ell+1=n+\lceil n /(m-1)\rceil+1$. Thus, $f r\left(C_{m}, C_{n}\right) \leq n+\lceil n /(m-1)\rceil+1$.

Figure 5.11: The graph $H_{6,16}$.

Case 4. $m-1$ does not divide $n-1$ or n or $n+1$.

Thus $n=(\ell-1)(m-1)+r$ for some r satisfying $1<r<m-2$. Let $I_{m, n}$ be the graph obtained from $G_{m, n}$ by adding a new vertex w_{ℓ} and joining it to $v_{(\ell-1)(m-1)}$, $v_{\ell(m-1)-1}$ and $v_{\ell(m-1)+1}$ where addition is taken modulo n; that is, w_{ℓ} is joined to v_{n-r}, v_{m-r-2} and v_{m-r}. (The graph $I_{5,14}$ is shown in Figure 5.12.) Then C_{m} and C_{n} can be homogeneously embedded in the graph $I_{m, n}$ of order $n+\ell+1=n+\lceil n /(m-1)\rceil+1$.

Thus, $f r\left(C_{m}, C_{n}\right) \leq n+\lceil n /(m-1)\rceil+1$.

Figure 5.12: The graph $I_{5,14}$.

Two immediate corollaries of Theorems 5.1 and 5.2 and Corollary 5.2 now follow.

Corollary 5. 3 For $m=3$ or $m=4$ and $n=7,8,9$, or for $7 \leq m+2 \leq n \leq 2 m-5$, $f r\left(C_{m}, C_{n}\right)=n+3$.

Corollary 5. 4 For $m \geq 4$ and $n=2(m-1)$ or $n=3(m-1)$,

$$
f r\left(C_{m}, C_{n}\right)=n+\frac{n}{m-1} .
$$

5.4 The edge framing number of pairs of cycles

Since $K_{1,3}$ and C_{3} are edge isomorphic, the following result is an immediate consequence of Theorem 4.16.

Proposition 5.2 For any integer $n>3$,

$$
\operatorname{efr}\left(C_{3}, C_{n}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil+n & \text { if } n \equiv 0 \text { or } 3(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil+n+1 & \text { if } n \equiv 1 \text { or } 2(\bmod 4)\end{cases}
$$

Hence in this section we consider integers $n>m \geq 4$. For such integers, every graph that edge homogeneously embeds C_{n} and C_{m} also vertex homogeneously embeds C_{n} and C_{m}. Hence we have the following corollary of Lemma 5.1.

Corollary 5.5 For integers $n>m \geq 4$, if H is a graph that edge homogeneously embeds C_{n} and C_{m}, then $p(H) \geq n+2$.

The following lemmas will prove to be useful.

Lemma 5.2 Let G and H be graphs with no induced C_{4}, and let F be an edge frame of G and H. If u and v are two vertices of degree 2 in F, then $N(u) \neq N(v)$.

Proof. Assume, to the contrary, that $N(u)=N(v)$. We show then that $F-u$ edge homogeneously embeds G and H. Let $e \in E(G)$ and let $f \in E(F-u)$. Let G_{e} be an edge embedding of G in F with e at f. If $u \notin V\left(G_{e}\right)$, then G_{e} is in $F-u$. If $u \in V\left(G_{e}\right)$, then, since $C_{4} \nprec G, v \notin V\left(G_{e}\right)$ and therefore $\left\langle\left(V\left(G_{e}\right)-\{u\}\right) \cup\{v\}\right\rangle$ is an edge embedding of G in $F-u$ with e at f. Hence $F-u$ edge homogeneously embeds G. Similarly, $F-u$ edge homogeneously embeds H. This, however, contradicts the fact that F is an edge frame of G and H.

Lemma 5.3 For integers $n>m \geq 4$, if H is a graph that edge homogeneously embeds C_{n} and C_{m}, then H contains at least three vertices of degree at least 3.

Proof. Let $C^{\prime}: v_{0}, v_{1}, \ldots, v_{m-1}, v_{0}$ be an induced C_{m} in H, and let $C^{\prime \prime}$ be an induced C_{n} in H which contains the edge $v_{0} v_{1}$. Further, let $v_{i}, v_{i+1}, \ldots, v_{0}, v_{1}, \ldots, v_{j-1}, v_{j}$ ($j<i$) where addition is taken modulo m, be a longest path common to C^{\prime} and $C^{\prime \prime}$ that contains the edge $v_{0} v_{1}$. Since v_{i-1} and v_{j+1} do not belong to $C^{\prime \prime}$, it follows that each of v_{i} and v_{j} has degree at least 3 . We deduce, therefore, that every induced C_{m} and C_{n} contains at least two vertices of degree at least 3 .

Suppose that H has exactly two vertices, a and b say, of degree at least 3. Since every induced C_{m} and C_{n} contains at least two vertices of degree at least 3 , the vertices a and b must lie on every induced C_{m} and C_{n} in H. Consequently, the graph H consists of the vertices a and b and a set S of internally disjoint paths joining a and b. Observe that any induced cycle containing an edge of a path from S must contain all the edges of this path. Hence we may denote an induced C_{m} or C_{n} containing a path $P \in S$ by $C_{m}(P)$ or $C_{n}(P)$, respectively. Let P^{\prime} be a shortest $a-b$ path, and let $P^{(1)}$ denote the $a-b$ path of length $n-d(a, b)$ on $C_{n}\left(P^{\prime}\right)$ which is disjoint from P^{\prime}. Furthermore, let $P^{(2)}$ denote the $a-b$ path of length $m-(n-d(a, b))$ on $C_{m}\left(P^{(1)}\right)$ which is disjoint from $P^{(1)}$. Then $P^{(2)}$ is an $a-b$ path of length less than $d(a, b)$, which is impossible. The desired result now follows.

Proposition 5. 3 For $m \geq 5$, efr $\left(C_{m}, C_{2 m-4}\right)=2 m$. Furthermore, C_{m} and $C_{2 m-4}$ are uniquely edge framed by the graph shown in Figure 5.13.

Proof. Since C_{m} and $C_{2 m-4}$ can be edge homogeneously embedded in the graph of size $2 m$ shown in Figure 5.13, it follows that $\operatorname{efr}\left(C_{m}, C_{2 m-4}\right) \leq 2 m$. Now let F be an edge frame for $C_{2 m-4}$ and C_{m}. By Corollary $5.5, p(F) \geq 2 m-2$. Applying Theorem 4.8, we have $\delta(F) \geq 2$. Let k be the number of vertices of H of degree at least 3. By Lemma $5.3, k \geq 3$. Hence $2(2 m) \geq 2 q(F) \geq 3 k+2(p(F)-k)=$ $2 p(F)+k \geq 2 p(F)+3$ whence $p(F) \leq 2 m-2$. Thus $p(F)=2 m-2=f r\left(C_{m}, C_{2 m-4}\right)$. By Theorem 5.1, the only graph of order $2 m-2$ which both frames C_{m} and $C_{2 m-4}$ and edge homogeneously embeds C_{m} and $C_{2 m-4}$ is the graph shown in Figure 5.13. Consequently, efr $\left(C_{m}, C_{2 m-4}\right)=2 m$, and C_{m} and $C_{2 m-4}$ are uniquely edge framed by the graph shown in Figure 5.13.

Figure 5.13: An edge frame for C_{m} and $C_{2 m-4}$ for $m \geq 5$.

Lemma 5. 4 Let $n>m \geq 4$ where $n \neq 2 m-4$ and $(m, n) \neq(5,7)$. If a graph H edge homogeneously embeds C_{m} and C_{n}, then $p(H) \geq n+3$.

Proof. Let H be a graph which edge homogeneously embeds C_{m} and C_{n}. By Corollary 5.5, $p(H) \geq n+2$. Suppose that $p(H)=n+2$. Then by Lemma 5.1 we deduce that H frames C_{m} and C_{n}. By Theorem 5.1 it follows that $(m, n) \in S$, where S is the set of ordered pairs defined in section 5.2 For $(m, n) \in S$ the frames for C_{m} and C_{n} have been completely determined in Theorem 5.1 and in each case it is easily checked that H does not edge homogeneously embed C_{m} and C_{n} unless $n=2 m-4$ (in which case H is the graph shown in Figure 5.13) or $n=2 m-3$ and $m=5$ (in which case H is the graph shown in Figure 5.14). This produces a contradiction and we deduce that $p(H) \geq n+3$.

Figure 5.14: An edge frame for C_{5} and C_{7}.

Proposition 5. 4 For $m \geq 7$, efr $\left(C_{m}, C_{2 m-6}\right)=2 m-1$.

Proof. Since C_{m} and $C_{2 m-6}$ can be edge homogeneously embedded in the graph of size $2 m-1$ shown in Figure 5.15 , it follows that efr $\left(C_{m}, C_{2 m-6}\right) \leq 2 m-1$. We show that $\operatorname{efr}\left(C_{m}, C_{2 m-6}\right)=2 m-1$ by verifying that there is no graph of size $2 m-2$ or less which edge homogeneously embeds C_{m} and $C_{2 m-6}$. Suppose, to the contrary, that such a graph H exists. By Lemma 5.4, $p(H) \geq 2 m-3$. Applying Theorem 4.8, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3. By

Lemma $5.3, k \geq 3$. Hence $4 m-4 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k \geq$ $2(2 m-3)+3=4 m-3$, which is impossible.

Figure 5.15: An edge frame for C_{m} and $C_{2 m-6}$ for $m \geq 7$.

Lemma 5.5 For $n>m \geq 4$ where $n \neq 2 m-4$ or $n=2 m-6$, there is no graph of order $n+3$ and size at most $n+5$ that edge homogeneously embeds C_{m} and C_{n}.

Proof. Assume, to the contrary, that such a graph H exists. Applying Theorem 4.8, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3 . Hence $2 n+10 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k=2 n+6+k$, so $k \leq 4$. By Lemma $5.3, k \geq 3$. Thus $k=3$ or 4 .

Case 1. $k=3$.

Since every graph contains an even number of vertices of odd degree, at least one vertex of H has degree 4 or more. Thus $2 n+10 \geq 2 q(H) \geq 10+2(p(H)-3)=$ $2 p(H)+4=2 n+10$. Since all these inequalities must be equalities, it follows that $q(H)=n+5$ and H contains two vertices of degree 3 , one of degree 4 , and n of
degree 2. Let w denote the vertex of degree 4 . Since no vertex of degree 2 in H can lie on a K_{3}, and since $q(H)=n+5$ and $\delta(H)=2$, it follows that every induced C_{n} in H must contain the vertex w. Let $C_{w}: w=w_{1}, w_{2}, \ldots, w_{n}, w_{1}$ be an induced C_{n} containing w, and let a, b, and c be the names of the three vertices of H not in C_{w}. Without loss of generality, we may assume that w is adjacent to a and b. Since $q(H)=n+5$ and $\delta(H)=2$, at most one of a and b is adjacent to a vertex of C_{w} different from w. Without loss of generality, we may assume that b is adjacent to no vertex of C_{w} other than w. Since no vertex of degree 2 in H can lie on a K_{3}, and since $q(H)=n+5$, the vertices a and b cannot be adjacent. Hence b is adjacent only to c and w.

Suppose firstly that a is adjacent to c. If $\operatorname{deg} c=2$, then c belongs to no induced C_{ℓ} for $\ell \geq 5$. Hence $\operatorname{deg} c=3$. Then a and b are vertices of degree 2 with $N(a)=N(b)$. Thus we must have $m=4$ otherwise by Lemma 5.2 we have a contradiction. Now c is adjacent with w_{j} for some $j(2 \leq j \leq n)$. Thus H is the graph shown in Figure 5.16.

Figure 5.16: The graph H.

Then $\operatorname{deg} w_{j}=\operatorname{deg} c=3, \operatorname{deg} w_{1}=4$, and the remaining vertices of H have degree
2. Thus any induced C_{4} containing the edge $w_{1} w_{2}$ must contain the vertices w_{1}, w_{j},
c and either a or b. Consequently $j=2$. Similarly, by considering the edge $w_{1} w_{n}$ we get $j=n$. Thus $n=2$, a contradiction. Thus a and c are not adjacent. Since $q(H)=n+5, \operatorname{deg} a=\operatorname{deg} c=2$. Since no vertex of degree 2 belongs to a K_{3}, the vertex a is not adjacent to w_{2} or w_{n}. Furthermore, the vertex c is not adjacent to w_{2} or w_{n}, for otherwise c belongs to no induced C_{n} for $n \geq 5$. Without loss of generality, we may assume that a is adjacent to w_{r} and c is adjacent to w_{s} where $3 \leq s<r \leq n-1$. The graph H is shown in Figure 5.17.

Figure 5.17: The graph H.

Since the vertex b belongs to no C_{4}, we must have $m \geq 5$. If $r=n-1$, then a and w_{n} are vertices of degree 2 with $N(a)=N\left(w_{n}\right)$ which contradicts Lemma 5.2. Hence $r \leq n-2$. We now consider the vertex a. The vertex a belongs to three cycles, namely, $C^{(1)}: a, w_{r}, w_{r+1}, \ldots, w_{n}, w_{1}, a$ (of length $n-r+3$), $C^{(2)}: a, w_{1}, w_{2}, \ldots, w_{r}, a$ (of length $r+1$) and $C^{(3)}: a, w_{1}, b, c, w_{s}, w_{s+1}, \ldots, w_{r}, a$ (of length $r-s+5$). At least one of these cycles is of length n. If $C^{(1)}$ has length n, then $r=s=3$ contradicting $r>s$. If $C^{(2)}$ has length n, then $r=n-1$ contradicting $r \leq n-2$. Therefore $C^{(3)}$ must be of length n, implying that $n-2 \geq r=n+s-5$, so $s \leq 3$. Thus $s=3$ and $r=n-2$. But then the vertex w_{n} belongs to three cycles of lengths $5, n$ and $n+1$.

Hence $m=5$. However the edge $w_{3} w_{4}$ then belongs to no C_{5}, a contradiction. Hence Case 1 produces a contradiction.

Case 2. $k=4$.

Then $2 n+10 \geq 2 q(H) \geq 2 n+6+k=2 n+10$. Since all these inequalities must be equalities, it follows that $q(H)=n+5$ and H contains four vertices of degree 3 and $n-1$ vertices of degree 2 . The following claim will prove to be useful.

Claim 5.1 If C^{\prime} is an induced C_{n} in H and U the set of three vertices of H that do not belong to C^{\prime}, then $\langle U\rangle \cong K_{1} \cup K_{2}$ or P_{3}. Furthermore, if $\langle U\rangle \cong K_{1} \cup K_{2}$, then each vertex of U has degree 2 in H. If $\langle U\rangle \cong P_{3}$, then the central vertex of this P_{3} has degree 3 in H and the two end-vertices have degree 2 in H.

Proof. Since $q(H)=n+5$, there are exactly five edges incident with the vertices of U. Since $\delta(H)=2$, and no vertex of degree 2 belongs to a K_{3}, a simple counting argument shows that $q(\langle U\rangle)=1$ or 2 . Hence $\langle U\rangle \cong K_{1} \cup K_{2}$ or P_{3}. If $\langle U\rangle \cong K_{1} \cup K_{2}$, then, since $q(H)=n+5$, each vertex of U has degree 2 in H. If $\langle U\rangle \cong P_{3}$, then three of the five edges incident with vertices of U are also incident with vertices of C^{\prime}. It follows that exactly three of the four vertices of degree 3 belong to C^{\prime} and the remaining vertex of degree 3 is in U. Hence one vertex of U has degree 3 and the remaining two vertices have degree 2 . Suppose $\langle U\rangle$ is the path a, b, c, and C^{\prime} is the (induced) cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. We show that $\operatorname{deg} b=3$. If this is not the case, then we may assume that $\operatorname{deg} a=3$ and $\operatorname{deg} b=\operatorname{deg} c=2$. Without loss of generality, we
may assume $a v_{1}, a v_{i}$ and $c v_{j}$ are edges of H where $2 \leq i<j \leq n$. The graph H is shown in Figure 5.18.

Figure 5.18: The graph H.

Since the vertex b belongs to no 4 -cycle, we may assume here that $n>m \geq 5$. Now there are only two induced cycles containing the edge $v_{1} v_{2}$, namely C^{\prime} and the cycle $C^{\prime \prime}: v_{1}, v_{2}, \ldots, v_{i}, a, v_{1}$. Since C^{\prime} has length $n, C^{\prime \prime}$ must have length m so that $i=m-1$. We now consider the edge $a v_{1}$. The edge $a v_{1}$ belongs to three induced cycles, namely, $C^{\prime \prime}$ (of length m), $v_{1}, a, v_{m-1}, v_{m}, v_{m+1}, \ldots, v_{n}, v_{1}$ (of length $n-m+4$) and $C^{\prime \prime \prime}: v_{1}, a, b, c, v_{j}, \ldots, v_{n}, v_{1}$ (of length $n-j+5$). Thus $n=n-m+4$ or $n=n-j+5$. If $n=n-m+4$, then $m=4$ contradicting $m \geq 5$. Thus $C^{\prime \prime \prime}$ has length n and $j=5$. Hence $m-1=i \leq j-1=4$, so $m \leq 5$, i.e., $m=5$. But then the edge $a v_{4}$ belongs to no C_{n}, a contradiction. We deduce, therefore, that $\operatorname{deg} b=3$ and $\operatorname{deg} a=\operatorname{deg} c=2$. This completes the proof of the claim.

We now return to the proof of Case 2. Let u and v be two (distinct) vertices of degree 3 for which $d(u, v)$ is a minimum, and let P be a shortest $u-v$ path. Then all interior vertices (if any) of P have degree 2 . Let $C_{P}: v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be an induced C_{n} containing an edge of P. Necessarily, C_{P} contains all edges of P. Let a, b, c be the
three vertices of H that do not belong to C_{P}. By Claim 5.1, $\langle\{a, b, c\}\rangle \cong K_{1} \cup K_{2}$ or P_{3}. We consider the two possibilities in turn.

Case $2.1\langle\{a, b, c\}\rangle \cong P_{3}$.

Without loss of generality, we may assume that a, b, c is a path. By Claim 5.1, $\operatorname{deg} b=3$ and $\operatorname{deg} a=\operatorname{deg} c=2$. Since b is adjacent to a vertex of degree 3 of C_{P}, our choice of u and v implies that $d(u, v)=1$, so u and v are adjacent vertices on C_{P}. Without loss of generality, we may assume that $u=v_{1}$ and $v=v_{2}$. If b is adjacent to either u or v, then, without loss of generality, H is then the graph shown in Figure $5.19(i)$. Since the vertex a belongs to induced cycles of only two possible lengths, namely, 4 and n, we must have $m=4$. But then the edge $v_{1} v_{n}$ belongs to no C_{m}, a contradiction. Hence b is adjacent to neither u nor v, so $b v_{i}$ is an edge for some $i(3 \leq i \leq n)$.

(i)

(ii)

Figure 5.19: The graph H.

Without loss of generality, H is then the graph shown in Figure 5.19(ii). Since the edge $v_{1} v_{2}$ belongs to no 4 -cycle, we must have $m \geq 5$. The edge $b c$ belongs to
three cycles, namely b, c, v_{2}, v_{1}, a, b (of length 5) $, b, c, v_{2}, v_{3}, \ldots, v_{i}, b$ (of length $i+1$) and $c, b, v_{i}, v_{i+1}, \ldots, v_{n}, v_{1}, v_{2}, c$ (of length $n-i+5$). Since $n>5$, we must have $n=i+1$ or $n-i+5$. Suppose $n=n-i+5$. Then $i=5$ and the edge $v_{1} v_{n}$ lies on cycles of only two possible lengths, namely, $n-1$ and n. Hence $m=n-1$. Now the edge $v_{1} v_{2}\left(v_{2} v_{3}\right)$ lies on cycles of length 5,7 and $n(6,7$ and n, respectively). We deduce that $m=7$ and $n=8$. However, then, $n=2 m-6$ which is contrary to our choice of m and n. Thus $n=i+1$, i.e., $i=n-1$. The edge $v_{2} v_{3}$ then lies only on cycles of length n and $n+1$ so that $v_{2} v_{3}$ does not lie on any cycle of length m. This produces a contradiction.

Case $2.2\langle\{a, b, c\}\rangle \cong K_{1} \cup K_{2}$.

Without loss of generality, we may assume that a is the isolated vertex in $\langle U\rangle$, so $b c$ is an edge. By Claim 5.1, each of a, b and c has degree 2. Let C_{a} be an induced C_{n} containing the vertex a. We show that the edge $b c$ belongs to C_{a}. If this is not the case, then, without loss of generality, we may assume that C_{a} is $a, v_{2}, v_{3}, \ldots, v_{n}, a$. By Claim 5.1, the three vertices v_{1}, b and c that do not belong to C_{a} induce either a P_{3} or $K_{1} \cup K_{2}$. If $\left\langle\left\{v_{1}, b, c\right\}\right\rangle \cong P_{3}$, then, since $\Delta(H)=3$, the vertex v_{1} must be an end-vertex of $\left\langle\left\{v_{1}, b, c\right\}\right\rangle \cong P_{3}$. But then v_{1} has degree 3 in H which contradicts Claim 5.1. Thus $\left\langle\left\{v_{1}, b, c\right\}\right\rangle \cong K_{1} \cup K_{2}$ and v_{1} has degree 2 in H. Hence a and v_{1} are two nonadjacent vertices of degree 2 in H with $N(a)=N\left(v_{1}\right)$. This, however, contradicts Lemma 5.2 if $m \geq 5$. Hence $m=4$. Without loss of generality, we may assume that the vertex $b(c)$ is adjacent with the vertex $v_{i}\left(v_{j}\right.$, respectively) where
$3 \leq i<j \leq n-1$. Since the edge bc must lie on an induced C_{4}, it follows that $j=i+1$. However the edge $b c$ then belongs to no cycle of length 5 or more. This produces a contradiction. We deduce, therefore, that the edge $b c$ must belong to C_{a}.

Let S be the set of three vertices of C_{P} that do not belong to C_{a}. By Claim 5.1, $\langle S\rangle \cong K_{1} \cup K_{2}$ or P_{3}. Clearly, $\langle S\rangle \cong K_{1} \cup K_{2}$. Without loss of generality, we may assume that $S=\left\{v_{2}, v_{i}, v_{i+1}\right\}$ where $5 \leq i \leq n-2$. Hence $n \geq 7$, and v_{1}, v_{3}, v_{i-1} and v_{i+2} are the four vertices of degree 3 in H. If $N(a)=N\left(v_{2}\right)$, then, since the edge $b c$ belongs to cycles only of length 6 and n, it follows that $m=6$. However, the vertex a belongs to cycles only of length 4 and n, so $m=4$, a contradiction. Hence $N(a) \neq N\left(v_{2}\right)$.

If C_{a} is given by $v_{1}, b, c, v_{3}, v_{4} \ldots, v_{i-1}, a, v_{i+2}, \ldots, v_{n}, v_{1}$, then H is the graph shown in Figure $5.20(i)$. Now the edge $v_{1} v_{n}$ belongs to cycles of length $n-1, n, n+1$. Thus $m=n-1$. However, the edge $b c$ belongs to no induced $C_{n-1}(n \geq 7)$. Hence we may assume, without loss of generality, that C_{a} is given by either $C_{a}^{(1)}: v_{1}, a, v_{i-1}$, $v_{i-2}, \ldots, v_{3}, b, c, v_{i+2}, \ldots, v_{n}, v_{1}$, in which case H is the graph shown in Figure $5.20(i i)$, or $C_{a}^{(1)}: v_{1}, b, c, v_{i-1}, v_{i-2}, \ldots, v_{3}, a, v_{i+2}, \ldots, v_{n}, v_{1}$, in which case H is the graph shown in Figure $5.20(i i i)$. If C_{a} is $C_{a}^{(1)}$, then the edge $v_{1} v_{n}$ belongs to cycles of length $n-i+4$ and n. Thus $m=n-i+4$. Furthermore, the edge $v_{3} v_{4}$ belongs to cycles of length $i, i+2$ and n. Thus $m=i$ or $i+2$. If $m=i$, then $n=2 m-4$ and if $m=i+2$, then $n=2 m-6$. In either case we contradict our choice of m and n. A similar argument shows that C_{a} cannot be $C_{a}^{(2)}$. This completes the proof of Case 2.2, and therefore of

Lemma 5.5.

Figure 5.20:

Corollary 5. 6 For $n>m \geq 4$ with $n \neq 2 m-4$ or $n \neq 2 m-6$ and $(m, n) \neq(5,7)$,

$$
\operatorname{efr}\left(C_{m}, C_{n}\right) \geq n+6
$$

Proof. We show that $\operatorname{efr}\left(C_{m}, C_{n}\right) \geq n+6$ by verifying that there is no graph of size $n+5$ or less which edge homogeneously embeds C_{m} and C_{n}. Suppose, to the contrary, that such a graph H exists. By Lemma $5.4, p(H) \geq n+3$, and by Lemma 5.5, $p(H) \neq n+3$; consequently, $p(H) \geq n+4$. Applying Theorem 4.8, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3. By Lemma $5.3, k \geq 3$. Hence $2 n+10 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k \geq 2 n+11$, which is impossible.

Corollary 5.7 For $m \geq 7, C_{m}$ and $C_{2 m-6}$ are uniquely edge framed by the the graph of size $2 m-1$ shown in Figure 5.15.

Proof. Let F be an edge frame for C_{m} and $C_{2 m-6}$. Then by Proposition 5.4, $q(F)=$ $2 m-1$. By Corollary $5.5, p(F) \geq 2 m-4$. Applying Theorem 4.8 , we have $\delta(F) \geq 2$. Let k be the number of vertices of F of degree at least 3 . By Lemma $5.3, k \geq 3$. Hence $4 m-2=2 q(F) \geq 3 k+2(p(F)-k)=2 p(F)+k \geq 2 p(F)+3$, whence $p(F) \leq 2 m-3$. Thus $2 m-4 \leq p(F) \leq 2 m-3$. If $p(F)=2 m-4$, then $p(F)=f r\left(C_{m}, C_{2 m-6}\right)$ and so F frames C_{m} and $C_{2 m-6}$. However, by Theorem 5.1, there is no graph of order $2 m-4$ which edge homogeneously embeds C_{m} and $C_{2 m-6}$ for $m \geq 7$. Thus $p(F)=2 m-3=(2 m-6)+3$. From the proof of Lemma 5.5 we deduce that C_{m} and $C_{2 m-6}$ have at most one edge frame. We conclude that C_{m} and $C_{2 m-6}$ are uniquely edge framed.

Proposition 5.5 For $m \geq 4$ and $m \notin\{5,7\}$, efr $\left(C_{m}, C_{m+1}\right)=m+7$.

Proof. Since C_{m} and C_{m+1} can be edge homogeneously embedded in the graph of size $m+7$ shown in Figure $5.21(i)$ for $m=4$ and in Figure $5.21(i i)$ for $m=6$ or $m \geq 8$, it follows that efr $\left(C_{m}, C_{m+1}\right) \leq m+7$. By Corollary 5.6, efr $\left(C_{m}, C_{m+1}\right) \geq m+7$. Consequently efr $\left(C_{m}, C_{m+1}\right)=m+7$ as required.

Figure 5.21:

Proposition 5.6 For $m \geq 10$, efr $\left(C_{m}, C_{2 m-8}\right)=2 m-2$.

Proof. Since $C_{2 m-8}$ and C_{m} can be edge homogeneously embedded in the graph of size $2 m-2$ shown in Figure 5.22, it follows that efr $\left(C_{2 m-8}, C_{m}\right) \leq 2 m-2$. By Corollary 5.6, efr $\left(C_{2 m-8}, C_{m}\right) \geq 2 m-2$. Consequently efr $\left(C_{2 m-8}, C_{m}\right)=2 m-2$ as required. \square

Figure 5.22: An edge frame for C_{m} and $C_{2 m-8}$ for $m \geq 10$.

Proposition 5. 7 efr $\left(C_{5}, C_{7}\right)=12$.

Proof. Since C_{5} and C_{7} can be edge homogeneously embedded in the graph $F_{5,7}$ (without the dotted edges) of size 12 shown in Figure 5.2, it follows that efr $\left(C_{5}, C_{7}\right) \leq$ 12. We show that $\operatorname{efr}\left(C_{5}, C_{7}\right)=12$ by verifying that there is no graph of size at most 11 which edge homogeneously embeds C_{5} and C_{7}. Suppose, to the contrary, that such a graph H exists. By Corollary 5.5, $p(H) \geq 9$. Applying Theorem 5.8, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3. By Lemma 5.3, $k \geq 3$. Hence $22 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k \geq 2 p(H)+3$ whence $p(H) \leq 9$. Consequently, $p(H)=9=f r\left(C_{5}, C_{7}\right)$ and so H frames C_{5} and C_{7}. However, from Theorem 5.1, the frames for C_{5} and C_{7} all have sizes greater than 11. This produces a contradiction.

Proposition 5. 8 For $m=4$ or $m \geq 7$, efr $\left(C_{m}, C_{m+2}\right)=m+8$.

Proof. Since C_{m} and C_{m+2} can be edge homogeneously embedded in the graph of size $m+8$ shown in Figure $5.23(i)$ for $m=4$ and in Figure $5.23(i i)$ for $m \geq 7$, it follows that efr $\left(C_{m}, C_{m+2}\right) \leq m+8$. By Corollary 5.6, efr $\left(C_{m}, C_{m+2}\right) \geq m+8$. Consequently efr $\left(C_{m}, C_{m+2}\right)=m+8$ as required.

Figure 5.23:

5.5 Framing numbers of pairs of directed cycles

In this we investigate the framing number $\operatorname{fr}\left(G_{1}, G_{2}\right)$ for several pairs G_{1}, G_{2} of directed cycles.

The proof of the following result is very similar to the proof of Corollary 3.2 and is therefore omitted.

Theorem 5.3 For digraphs D_{1} and D_{2}, there exists a positive integer m such that for each integer $n \geq m$, there is a digraph H of order n in which D_{1} and D_{2} can be homogeneously embedded, while for each positive integer $n<m$, no such digraph H of order n exists.

Proposition 5.9 $\mathrm{fr}\left(\vec{C}_{3}, \vec{C}_{4}\right)=6$.

Proof. The digraph F of order 6 shown in Figure 5.24 has the property that \vec{C}_{3} and \vec{C}_{4} can be homogeneously embedded in F. Therefore, $\operatorname{fr}\left(\vec{C}_{3}, \vec{C}_{4}\right) \leq 6$. However, it is

Figure 5.24: A frame for \vec{C}_{3} and \vec{C}_{4}.
shown in [2] that $f r\left(C_{3}, C_{4}\right)=6$. Hence, according to Proposition 3.2, $f r\left(\vec{C}_{3}, \vec{C}_{4}\right) \geq 6$. Thus $\operatorname{fr}\left(\vec{C}_{3}, \vec{C}_{4}\right)=6$.

Proposition 5. $10 \mathrm{fr}\left(\vec{C}_{3}, \vec{C}_{5}\right)=8$.

Proof. The digraph F of order 8 shown in Figure 5.25 has the property that \vec{C}_{3} and \vec{C}_{5} can be homogeneously embedded in F. Therefore, $f r\left(\vec{C}_{3}, \vec{C}_{5}\right) \leq 8$. By Theorem 5.3, it will follow that $\operatorname{fr}\left(\vec{C}_{3}, \vec{C}_{5}\right)=8$ once we show that there does not exist a digraph H of order 7 in which \vec{C}_{3} and \vec{C}_{5} can be homogeneously embedded.

Figure 5.25: A frame for \vec{C}_{3} and \vec{C}_{5}.

Suppose, to the contrary, that there exists such a digraph H. Each vertex of H must belong to a \vec{C}_{3} and an induced \vec{C}_{5}, so $\delta(H) \geq 3$. Futher, since H homogeneously embeds \vec{C}_{5}, Lemma 3.2 implies that $\Delta(H) \leq 7-5+2=4$. First we claim that H does not contain two disjoint copies of \vec{C}_{3}. Suppose, to the contrary, that H contains two disjoint copies F_{1} and F_{2} of \vec{C}_{3}. Let $V\left(F_{1}\right)=\{a, b, c\}$ and let $V\left(F_{2}\right)=\{d, e, f\}$ and let g be the vertex of H not belonging to F_{1} and F_{2}. Then every induced \vec{C}_{5} of H must contain the vertex g and exactly two vertices from each of F_{1} and F_{2}. Without loss of generality, we may assume that the digraph shown in Figure 5.26 is a subdigraph of H. Now let H_{c} be an induced subdigraph of H that is isomorphic to \vec{C}_{5} and that contains the vertex c. Since g belongs to H_{c}, the vertex a cannot belong to H_{c}. This in turn implies that b belongs to H_{c}, and therefore that d does not belong to H_{c}. It follows that $V\left(H_{c}\right)=\{b, c, e, f, g\}$. However, then the vertex e has outdegree at least two in H_{c}, which produces a contradiction. Thus, as claimed, H does not contain two disjoint copies of \vec{C}_{3}.

Figure 5.26: A subdigraph of H.

Next we show that H does not contain two \vec{C}_{3} 's having exactly one vertex in common, for suppose that it does. Then H has the subdigraph shown in Figure 5.27. Then deg $a=4$. Let $T_{f}\left(T_{g}\right)$ be a \vec{C}_{3} that contains the vertex f (g, respectively). Since the vertex a does not belong to T_{f}, neither can the vertex g, for otherwise this would produce two disjoint copies of \vec{C}_{3}. Similarly, $f \notin V\left(T_{g}\right)$. For the same reason, T_{f} and T_{g} have at least one vertex in common. Without loss of generality, we may therefore assume that the vertex b belongs to T_{f} and to T_{g}. Then T_{f} consists of b, f and exactly one of d and e. This implies, however, that $d e g b \geq 5$, which contradicts that fact that $\Delta(H)=4$.

Figure 5.27: A subdigraph of H.

Hence every two \vec{C}_{3} 's of H share a common arc. But this implies that some arc (u, v) lies on every \vec{C}_{3} of H. However, since every vertex of H belongs to a \vec{C}_{3}, both u and v have degree 6 in H, which is impossible.

The proof of the next result is similar to that of Proposition 5.10, and is therefore omitted.

Proposition 5. $11 f r\left(\vec{C}_{3}, \vec{C}_{6}\right)=9$.

A frame for \vec{C}_{3} and \vec{C}_{6} is shown in Figure 5.28.

Figure 5.28: A frame for \vec{C}_{3} and \vec{C}_{6}

Proposition 5 . $12 \mathrm{fr}\left(\vec{C}_{4}, \vec{C}_{5}\right)=8$.

Proof. The digraph F of order 8 shown in Figure 5.29 has the property that \vec{C}_{4} and \vec{C}_{5} can be homogeneously embedded in F. Therefore, $f r\left(\vec{C}_{4}, \vec{C}_{5}\right) \leq 8$. By Theorem 5.3, it will follow that $\operatorname{fr}\left(\vec{C}_{4}, \vec{C}_{5}\right)=8$ once we show that there does not exist a digraph H of order 7 in which \vec{C}_{4} and \vec{C}_{5} can be homogeneously embedded. Suppose, to the contrary, that such a digraph H exists. Then $2 \leq \delta(H) \leq \Delta(H) \leq 4$. Before proceeding further, we prove the following claim.

Claim 5.2 If H^{\prime} is an induced \vec{C}_{5} in H, then the two vertices of H not in H^{\prime} do not belong to a common \vec{C}_{5}.

Figure 5.29: A frame for \vec{C}_{4} and \vec{C}_{5}.
Proof. Let H^{\prime} be a, b, c, d, e, a and let f and g be the names of the two remaining vertices of H. Assume, to the contrary, that f and g belong to a common induced \vec{C}_{5}, say T_{f}. If f and g are adjacent vertices on T_{f}, then, without loss of generality, we may assume that T_{f} is a, b, c, f, g, a. Hence H has the subdigraph shown in Figure 5.30(a). Then $\operatorname{deg} a=\operatorname{deg} c=3$ and $\operatorname{deg} b=2$. However, there is then no induced \vec{C}_{4} containing the vertex b.

On the other hand, if f and g are not adjacent vertices on T_{f}, then, without loss of generality, we may assume that T_{f} is a, b, g, d, f, a. Hence H has the subdigraph shown in Figure $5.30(\mathrm{~b})$. Then $\operatorname{deg} a=\operatorname{deg} b=3$ and $\operatorname{deg} d=4$. However, there is then no induced \vec{C}_{4} containing the vertex d. (This is evident since such a \vec{C}_{4} would contain exactly one vertex from each of $\{e, f\}$ and $\{c, g\}$, and therefore a vertex $x \in\{a, b\}$. But then the vertex x would have degree 1 in such a \vec{C}_{4}, which is impossible.)

(a)

(b)

Figure 5.30: A subdigraph of H.

The digraph H must contain \vec{C}_{5} as an induced subdigraph, say a, b, c, d, e, a. Let f and g be the names of the two remaining vertices of H. Further, let $T_{f}\left(T_{g}\right)$ be an induced \vec{C}_{5} that contains the vertex f (g, respectively). By Claim $5.2, f$ and g do not belong to a common induced \vec{C}_{5}. We may assume, without loss of generality, that T_{f} is a, b, c, d, f, a. Since the vertices e and g do not belong to T_{f}, Claim 5.2 implies that e and g do not belong to a common induced \vec{C}_{5}. Hence T_{g} contains the vertices a, b, c and d. Thus H has the subdigraph shown in Figure 5.31. Then $\operatorname{deg} a=\operatorname{deg} d=4$ and $\operatorname{deg} b=\operatorname{deg} c=2$. However, there is then no induced \vec{C}_{4} containing the vertex b.

Proposition 5. $13 f r\left(\vec{C}_{4}, \vec{C}_{6}\right)=8$.

Proof. The digraph F of order 8 shown in Figure 5.32 has the property that \vec{C}_{4} and \vec{C}_{6} can be homogeneously embedded in F. Therefore, $\operatorname{fr}\left(\vec{C}_{4}, \vec{C}_{6}\right) \leq 8$. However, it is

Figure 5.31: A subdigraph of H.
shown in [2] that $f r\left(C_{4}, C_{6}\right)=8$. Hence, according to Proposition 5.2, $f r\left(\vec{C}_{4}, \vec{C}_{6}\right) \geq 8$. Thus $f r\left(\vec{C}_{4}, \vec{C}_{6}\right)=8$.

Figure 5.32: A frame for \vec{C}_{4} and \vec{C}_{6}.

We are now in a position to characterize all those pairs of dicycles \vec{C}_{m} and \vec{C}_{n} ($n>m \geq 3$) which have framing number $n+2$.

Theorem 5.4 For integers $n>m \geq 3, f r\left(\vec{C}_{m}, \vec{C}_{n}\right)=n+2$ if and only $n=2 m-2$ where $m \geq 4$. Furthermore \vec{C}_{m} and $\vec{C}_{2 m-2}$ have exactly five nonisomorphic frames.

Proof. First suppose that $n=2 m-2$ where $m \geq 4$. Then, by Theorem 5.1 and Proposition 3.2, $f r\left(\vec{C}_{m}, \vec{C}_{n}\right) \geq f r\left(C_{m}, C_{n}\right)=n+2$. However, since \vec{C}_{m} and \vec{C}_{n} can be homogeneously embedded in the digraph of order $n+2$ shown in Figure 5.33, we have $f r\left(\vec{C}_{m}, \vec{C}_{n}\right) \leq n+2$. Consequently, $f r\left(\vec{C}_{m}, \vec{C}_{n}\right)=n+2$.

Figure 5.33:

Next we consider the necessity. Let m and n be integers satisfying $n>m \geq 3$ and assume that $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)=n+2$. Let D be a frame for \vec{C}_{m} and \vec{C}_{n} and let D^{\prime} be the underlying graph of D. Since $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)=n+2$, by Proposition 5.2 and Lemma 5.1 we conclude that $\operatorname{fr}\left(C_{m}, C_{n}\right)=n+2$. By Theorem 5.1 it follows that (m, n) must belong to the set S (defined in section 5.2) and that the graph D^{\prime} must belong to $\mathcal{F}_{m, n}$ (also defined in section 5.2). By Propositions 5.9, 5.10, 5.11, 5.12 and 5.13, with the possible exception of the graphs $H_{4,6}$ and $H_{6,10}$ shown in Figure 5.1, the graph D^{\prime} cannot be any of the graphs shown in Figure 5.1. It is easily checked that D^{\prime} cannot be the graph $H_{6,10}$. Futhermore, it is easily checked that D^{\prime} cannot be any of the graphs $F_{m, m+1}, F_{m, 2 m-4}, F_{m, 2 m-3}$ and $G_{m, 2 m-2}$ of Figure 5.2. Thus the possibilities
for D^{\prime} includes the graph $H_{4,6}$ in Figure 5.1 and the graph $F_{m, 2 m-2}$ of Figure 5.2. Thus $n=2 m-2$ and the possible frames for \vec{C}_{m} and \vec{C}_{n} are obtainable from the digraph $\vec{F}_{m, 2 m-2}$ by adding and orienting any combination (the presence or absence) of the dotted edges. This yields the five nonisomorphic frames for \vec{C}_{m} and \vec{C}_{n}.

Corollary 5.8 For integers $n>m \geq 3$, if $n \neq 2 m-2$, then fr $\left(\vec{C}_{m}, \vec{C}_{n}\right) \geq n+3$.

5.6 Upper bounds on $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)$

In this section, we establish upper bounds on $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right)$ for all integers $n>m \geq 3$.

Theorem 5.5 For integers $n>m \geq 3$,

$$
\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right) \leq \begin{cases}n+\left\lceil\frac{n}{2}\right\rceil & \text { if } m=3 \text { or } 4 \\ n+\frac{n}{m-1} & \text { if } m-1 \mid n \text { and } m>4 \\ n+\left\lceil\frac{n}{m-1}\right\rceil+1 & \text { otherwise }\end{cases}
$$

Proof. Suppose firstly that $m=3$. Let $k=\lceil n / 2\rceil$. Let G be the digraph obtained from the induced n-cycle $C^{\prime}: v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}$ by adding k new vertices $w_{0}, w_{1}, \ldots, w_{k-1}$ and, for $i=0,1, \ldots, k-1$, joining w_{i} to $v_{2 i}$, to $v_{2 i+1}$ and from $v_{2 i+2}$ where addition is taken modulo n. If n is odd, then join w_{0} to w_{k-1}. Then each vertex of G clearly belongs to a \vec{C}_{3}. Let $S=\left\{w_{0}, w_{1}, \ldots, w_{k-1}\right\} \cup\left\{v_{2}, v_{4}, \ldots v_{2 k-2}\right\}$. If n is even then add the vertex v_{0} to S. Then the subdigraph induced by the vertices
of S is isomorphic to \vec{C}_{n}. Hence \vec{C}_{3} and \vec{C}_{n} can be homogeneously embedded in the digraph G of order $n+k=n+\lceil n / 2\rceil$. Thus $\operatorname{fr}\left(\vec{C}_{3}, \vec{C}_{n}\right) \leq n+\left\lceil\frac{n}{2}\right\rceil$.

If $m=4$, then let G^{\prime} be the digraph obtained from G by deleting the $\operatorname{arcs}\left(w_{i}, v_{2 i+1}\right)$ for $i=0,1, \ldots, k-1$. Then \vec{C}_{4} and \vec{C}_{n} can be homogeneously embedded in the digraph G^{\prime} of order $n+k=n+\lceil n / 3\rceil$. Thus $f r\left(\vec{C}_{4}, \vec{C}_{n}\right) \leq n+\left\lceil\frac{n}{2}\right\rceil$.

Suppose next that $m \geq 5$. Let $\ell=\lceil n /(m-1)\rceil$. Let $\vec{G}_{m, n}$ be the digraph obtained from the induced n-cycle $C^{\prime}: v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}$ by adding ℓ new vertices $w_{0}, w_{1}, \ldots, w_{\ell-1}$ and, for $i=0,1, \ldots, \ell-1$, joining w_{i} from $v_{i(m-1)-1}$, to $v_{i(m-1)+1}$ and from $v_{(i+1)(m-1)}$ where addition is taken modulo n.

Case 1. $m-1 \mid n$.

Thus $n=\ell(m-1)$. (The digraph $\vec{G}_{5,16}$ is shown in Figure 5.34.) Then \vec{C}_{m} and \vec{C}_{n} can be homogeneously embedded in the digraph $\vec{G}_{m, n}$ of order $n+\ell=n+n /(m-1)$. To see this, observe that for $i=0,1, \ldots, \ell-1$, each vertex w_{i} belongs to an induced \vec{C}_{m}, namely $C_{m}^{(i)}: w_{i}, v_{i(m-1)+1}, v_{i(m-1)+2}, \ldots, v_{(i+1)(m-1)}, w_{i}$. Furthermore, replacing the vertex $v_{i(m-1)}$ on C^{\prime} with the vertex w_{i} for all $i=0,1, \ldots, \ell-1$ produces an induced \vec{C}_{n} containing each w_{i}. Furthermore, each vertex of C^{\prime} belongs to $C_{m}^{(i)}$ for exactly one $i(0 \leq i \leq \ell-1)$. Consequently, $\vec{G}_{m, n}$ homogeneously embeds \vec{C}_{m} and \vec{C}_{n}. Thus, $f r\left(\vec{C}_{m}, \vec{C}_{n}\right) \leq n+n /(m-1)$.

Case 2. $m-1 \mid n+1$.

Figure 5.34: The digraph $\vec{G}_{5,16}$.
Thus $n=\ell(m-1)-1$. Let $\vec{F}_{m, n}$ be the digraph obtained from $\vec{G}_{m, n}$ by deleting the $\operatorname{arc}\left(v_{1}, w_{\ell-1}\right)$ and adding a new vertex w_{ℓ} and joining it from v_{0}, to v_{2} and to $w_{\ell-1}$. (The graph $\vec{F}_{5,15}$ is shown in Figure 5.35.) Then \vec{C}_{m} and \vec{C}_{n} can be homogeneously embedded in the digraph $\vec{F}_{m, n}$ of order $n+\ell+1=n+\lceil n /(m-1)\rceil+1$. Thus, $\operatorname{fr}\left(\vec{C}_{m}, \vec{C}_{n}\right) \leq n+\lceil n /(m-1)\rceil+1$.

Figure 5.35: The graph $\vec{F}_{5,15}$.

Case 3. $m-1 \mid n-1$.

Thus $n=(\ell-1)(m-1)+1$. Let $\vec{H}_{m, n}$ be the digraph obtained from $\vec{G}_{m, n}$ as follows: Delete the $\operatorname{arc}\left(v_{n-1}, w_{\ell-2}\right)$ and add the $\operatorname{arc}\left(w_{\ell-2}, v_{(\ell-3)(m-1)}\right)$; delete the three arcs incident with $w_{\ell-1}$ and join $w_{\ell-1}$ to $v_{(\ell-2)(m-1)+1}$, from v_{n-1} and to v_{1}; add a new vertex w_{ℓ} and join it from $v_{(\ell-2)(m-1)}$, to $v_{(\ell-2)(m-1)+2}$ and from v_{0}. (The digraph $\vec{H}_{6,16}$ is shown in Figure 5.36.) Then \vec{C}_{m} and \vec{C}_{n} can be homogeneously embedded in the digraph $\vec{H}_{m, n}$ of order $n+\ell+1=n+\lceil n /(m-1)\rceil+1$. Thus, $f r\left(\vec{C}_{m}, \vec{C}_{n}\right) \leq n+\lceil n /(m-1)\rceil+1$.

Figure 5.36: The graph $\vec{H}_{6,16}$.

Case 4. $m-1$ does not divide $n-1$ or n or $n+1$.

Thus $n=(\ell-1)(m-1)+r$ for some r satisfying $1<r<m-2$. Let $\vec{I}_{m, n}$ be the digraph obtained from $\vec{G}_{m, n}$ by adding a new vertex w_{ℓ} and joining it to $v_{(\ell-1)(m-1)}$, from $v_{\ell(m-1)-1}$ and to $v_{\ell(m-1)+1}$ where addition is taken modulo n; that is, w_{ℓ} and joined to v_{n-r}, from v_{m-r-2} and to v_{m-r}. (The digraph $\vec{I}_{5,14}$ is shown in

Figure 5.37.) Then \vec{C}_{m} and \vec{C}_{n} can be homogeneously embedded in the digraph $\vec{I}_{m, n}$ of order $n+\ell+1=n+\lceil n /(m-1)\rceil+1$. Thus, $f r\left(\vec{C}_{m}, \vec{C}_{n}\right) \leq n+\lceil n /(m-1)\rceil+1$.

Figure 5.37: The digraph $\vec{I}_{5,14}$.

Two immediate corollaries of Theorems 5.1 and 5.5 and Corollary 5.2 now follow.

Corollary 5.9 For $m=3$ or 4 and $n=7,8,9$, or for $7 \leq m+2 \leq n \leq 2 m-5$, $f r\left(\vec{C}_{m}, \vec{C}_{n}\right)=n+3$.

Corollary 5. 10 For $m \geq 4$ and $n=2(m-1)$ or $3(m-1)$, fr $\left(\vec{C}_{m}, \vec{C}_{n}\right)=n+\frac{n}{m-1}$.

Bibliography

[1] L.W. Beineike, Derived graphs and digraphs. Beiträge zur Graphentheorie. Teubner, Leipzig (1968), 17-33.
[2] G. Chartrand, H. Gavlas, and M. Schultz, FRAMED! A graph embedding problem. Bull. Inst. Combin. Applic. 4 (1992), 35-50.
[3] G. Chartrand, M.A. Henning, H. Hevia, and E. Jarrett, A new characterization of the Petersen graph. J. Combin. Inf. Syst. Sci. 20 (1995), 219-227.
[4] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition, Wadsworth and Brooks/Cole, Monterey, CA (1986).
[5] R.C. Entringer, W. Goddard, and M.A. Henning, A note on cliques and independent sets. Submitted for publication.
[6] H. Gavlas, M.A. Henning, and M. Schultz, On graphs and their frames. Vishwa International J. Graph Theory 1(2) (1992), 111-131.
[7] W. Goddard, M.A. Henning, O.R. Oellermann, and H.C. Swart, Some general results on the framing number of a graph. Quaestiones Math. 16(3) (1993), 289300.
[8] W. Goddard, M.A. Henning, O.R. Oellermann, and H.C. Swart, Which trees are uniquely framed by the Heawood graph. Quaestiones Math. 16(3) (1993), 237-251.
[9] M.A. Henning, On edge cliques and edge independent sets. To appear in the Bulletin of the ICA.
[10] M.A. Henning and H. Maharaj, Frames of digraphs: A digraph embedding problem. Utilitas Mathematica 47 (1995), 3-19.
[11] D. König, Theorie der endlichen und unendlichen Graphen, Leipzig, 1936. Reprinted, Chelsea, New York (1950).
[12] H. Whitney, Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 (1932), 150-168

