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Abstract

This thesis is a study of the symmetry of graphs and digraphs by considering certain

homogeneous embedding requirements.

' .Cha.pter 1 is an introduction to the chapters that follow. In Chapter 2 we present
a brief survey of the main results and some new results in framing number theory.
In Chapter 3, the notions of frames and framing numbers is adapted to digraphs. A
digraph D is homogeneously embedded in a digraph H if for each vertex z of D and
each vertex y of H, there e);ists an embedding of D in H as an induced subdigraph
with = at y. A digraph F of minimum order in which D can be homogeneously
embedded is called a frame of D and the order of F' is called the framing number of
D. We show that that every digraph has at least one frame and, consequently, that
the framing number of a digraph is a well defined concept. Several results involving
the framing number of graphs and digraphs then follow. Analogous problems to those

considered for graphs are considered for digraphs.

In Chapter 4, the notions of edge frames and edge framing numbers are studied.
A nonempty graph G is said to be edge homogeneously embedded in a graph H if for
each edge e of G and each edge f of H, there is an edge isomorphism between G and
a vertéx induced subgraph of H which sends e to f. A graph F of minimum size
in which G can be edge homogeneously embedded is called an edge frame of G and

the size of F' is called the edge framing number efr(G) of G. We also say that G is
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edge framed by F. Several results involving edge frames and edge framing numbers

of graphs are presented.

For graphs G; and G;, the framing number fr(G;,G,) (edge framing number
efr(G1,G2)) of Gy and G, is defined as the minimum order (size, respectively) of a
graph F such that G; (¢ = 1,2) can be homogeneously embedded in F. In Chapter 5
we study edge framing numbers and framing number for pairs of cycles. We also

investigate the framing number of pairs of directed cycles.
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Chapter 1

Introduction

Essentially, this thesis is a study of the symmetry of graphs and digraphs by con-
sidering certain homogeneous embedding requirements. It was found that for certain
graphs, purely group theoretic considerations give an unsatisfactory description of
the symmetry of a graph. Furthermore, it was also found that a single embedding
requirement alone does not suffice to describe graphical symmetfy adequately. For
example, there are graphs which are highly symmetric relative to their edges and yet

lack symmetry relative to their vertices.

Chartrand, Gavlas, and Schultz [2] introduced the framing number of a graph. A
graph G is homogeneously embedded in a graph H if for every vertex z of G and every
vertex y of H, there exists an embedding of G in H as an induced subgraph with
at y. A graph F of minimum order in which G can be homogeneously embedded is

called a frame of G, and the order of F' is called the framing number fr(G) of G.



In [2] it is shown that a frame exists for every graph, although a frame need not be
unique. Results involving frames and framing numbers of graphs have been presented
by, among others Chartrand, Gavlas, and Schultz [2], Chartrand, Henning, Hevia, and
Jarrett [3], Gavlas, Henning, and Schultz [6], Goddard, Henning, Oellermann, and

Swart [7, 8].

In Chapter 2, we present a brief survey of the main results in framing number theory.
In Chapter 3, the notions of frames and framing numbers is adapted to digraphs. A
digraph D is homogeneously embedded in a digraph H if for each vertex z of D and
each vertex y of H, there exists an embedding of D in H as an induced subdigraph
with z at y. A digraph F of minimum order in which D can be homogeneously
embedded is called a frame of D and the order of F' is called the framing number of
D. Analogous problems to those considered for graphs are considered for digraphs.
Results involving frames and framing numbers of digraphs have been presented by

Henning and Maharaj [10].

In Chapter 4, the notions of edge frames and edge framing numbers are studied.
A nonempty graph G is said to be edge homogencously embedded in a graph H if for
each edge e of G and each edge f of H, there is an édge isomorphism between G and
a vertex induced subgraph of H which sends e to f. A graph F of minimum size in
which G can be edge homogeneously embedded is called an edge frame of G and the
size of F is called the edge framing number e fr(G) of G. We also say that G is edge

framed by F. Results involving edge frames and edge framing numbers of graphs



have been presented by Henning [9)].

In Chapter 5 we study edge framing numbers and framing numbers for pairs of

cycles. We also investigate the framing numbers of pairs of directed cycles.

1.1 Graph theory nomenclature

Throughout we shail use the terminology of [4]. Specifically, p(G) and ¢(G) denote
the number of vertices (order) and edges (size), respectively, of a graph with vertex
set V(@) and edge set E(G). For a vertex v in G, the neighbourhood of v is defined
by N(v) = {u € V(G)|uv € E(G)}. We let A(G) (6(G)) denote the maximum
(respectively, minimum) degree among the vertices of G. Two edges e and f of a
graph G are similar (or of the same type) if ¢(e) = f for some edge automorphism ¢
of G. If every two edges of G are similar we say that G is edge-transitive. Similarity
is an equivalence relation on the edge set of a graph, and the resulting. equivalence

classes are referred to as edge orbits.

Given a nonempty graph (, the line graph L(G) of G is defined as that graph
whose vertices can be put in a one-to-one correspondence with the edges of G in such
a way that two vertices of L(G) are adjacent if and only if the corresponding edges
of G are a.djacent. Let G; and G be two graphs with disjoint vertex sets. The join
G =Gi1+G; has V(G) = V(G1)UV(G:) and E(G) = E(G1)UE(G2)U{uv|u € V(G,)

and v € V(G,)}.



Similarly, for digraphs, p(D) and g(D) denote the number of vertices (order) and
arcs (size), respectively, of a digraph with vertex set V(D) and arc set E(D). A
digraph D is symmetric if whenever (u,v) is an arc of D, then so too is (v,u). A
digraph D is asymmetric if whenever (u,v) is an arc of D, then (v, u) is not an arc of
D. For a vertex v in D, the out-neighbourhood and in-neighbourhood of v are defined
by N*(v) = {u € V(D)|(v,u) € E(D)} and N~(v) = {u € V(D)|(u,v) € E(D)},
respectively. The outdegree of v is defined as odv = |[N*(v)| and the indegree of v
is idv = [N~ (v)|. The degree degv of v is defined by degv = odv + idv. We let
Aig(D) (8;4(D)) denote the maximum (respectively, minimum) indegree among the
vertices of D. Further, we let A,q(D) (8,4(D)) denote the maximum (respectively,
minimum) outdegree among the vertices of D. The minimum degree of D is given
by 6(D) = min{deg v : v € V(D)}, whereas the maximum degree of D is A(D) =

max{deg v:v € V(D)}.

For vertex disjoint digraphs G and H, the lezicographic product G[H] has vertex
set V(G) x V(H), and a vertex (g, h) is adjacent to a vertex (¢',~') in G[H] if and

only if either g is adjacent to ¢’ in G or g = ¢’ and h is adjacent to k' in H.

Two vertices u and v of a digraph D are called similar (or of the same type) if
#(u) = v for some automorphism ¢ of D. Every two vertices of D are similar if and
only if D is vertex-transitive. Similarity is an equivalence relation on the vertex set

of a digraph D, and the resulting equivalence classes are called the orbits of G.



Chapter 2

The framing number of a graph

2.1 Introduction

In this chapter we present a brief survey of the main results in framing number
theory. We also present some new results. Results involving frames and framing
numbers of graphs have been presented by, among others, Chartrand, Gavlas, and
Schultz [2], Chartrand, Henning, Hevia, and Jarrett (3], Gavlas, Henning, and Schultz

[6], Goddard, Henning, Oellermann, and Swart [7, 8], and Henning [9].

2.2 Basic theory

In the first book ever written in graph theory (in 1936) Konig proved that for every

graph G' with maximum degree d, there exists a d-regular graph H containing G
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as an induced subgraph. For motivational purposes, we present Konig’s technique.
Let G be a graph with A(G) = d. If G is regular, then we may take H = G.
Otherwise, let G’ be another copy of G and join corresponding vertices whose degrees
are less than d, calling the resulting graph G,. If G; is regular, then we may take
H = G,. If not, we continue this procedure until arriving at a d-regular graph G,
whefe n= A(G) — 6(G). Chartrand, Gavlas, and Schultz [2] observed that the graph
H constructed by Konig has the property that for every vertex v of H, there existsv
an induced subgraph of H containing v that is isomorphic to G. This observation
motivated Chartrand, Gavlas, and Schultz [2] to define the following concept. A
graph G is said to be uniformly embedded in a graph H if for every vertex v of H,
there is an induced subgraph of H containing v that is isomorphic to G. We will deal
with an even stronger embedding requirement introduced by Chartrand, Gavlas, and
Schultz [2]. A graph G is homogeneously embedded in a graph H if for every vertex
z of G and every vertex y of H, there exists an embedding of G in H as an induced
subgfaph with  at y. A graph F of minimum order in which G can be homogeneously
. embedded is called a frame of G, and the order of F' is called the framing number

fr(G) of G. By the following theorem, all of the above notions are applicable to any

g}aph.
Theorem 2 . 1 (Chartrand et al. [2]) Fvery graph has a frame.

However, it is also shown in [2] that a frame of a graph need not be unique.



Theorem 2 . 2 (Chartrand et al. [2]) For a given graph G, there exists a positive
integer m such that for each integer n > m, there is a graph H of order n in which G
can be homogeneously embedded, while for each positive integer n < m, no such graph

H of order n exists.

The homogeneous embedding requirement does imply quite a number of inequalities
(Chartrand et al. [2]). The first of these is an upper bound of the framing number
of a graph in terms of the number of orbits and order of a graph. It is a direct

consequence of the proof of Theorem 2.1.

Theorem 2 . 3 (Chartrand et al. [2]) Let k denote the number of distinct orbits in
a graph G. Then

fr(@) < 2k - DIV(G)|.

The remaining inequalities have proved to be extremely useful in attacking typical

framing number problems.

Lemma 2 . 1 (Chartrand et al. [2]) If a graph G can be homogeneously embedded

in a graph H, then

A(G) < 8(H) < A(H) < |V(H)| - [V(G)| + 8(G).

Two corollaries follow immediately.



=

Corollary 2 . 1 (Chartrand et al. [2]) If F is a frame for a graph G, then

A(G) < 8(F) < A(F) < [V(F)| = [V(G)] + 6(Q)-

Corollary 2 . 2 (Chartrand et al. [2]) For a graph G,

fr(G) 2 IV(G)| + A(G) - §(G).

The following result of Goddard, Henning, Oellermann, and Swart [7] shows that

the diameter of the frame of a connected graph cannot be too large.

Theorem 2 . 4 (Goddard et al. [7]) If G is a connected graph and H is a frame of

G, then diam H < diam G + 1.

We present a slight improvement of this result which is a consequence of the next

lemma.

Lemma 2 . 2 Let G be a connected graph such that B(G) > 2. Then for each

positive integer m > fr(G), there is a graph H which homogeneously embeds G with
the further property that every pair of nonadjacent vertices in H lies on an induced

copy of G.

Proof. Let m > fr(G) be a positive integer. From among all graphs of order m
which homogeneously embed G, choose one, H say, of marimum size. Let a and b

denote a pair of nonadjacent vertices in H. Let H; denote the graph obtained from



H by joining the vertices a and b. By the maximality property of the graph H, the
graph H; cannot homogeneously embed G. Thus there is a vertex ¢ of G and a
vertex y of Hy such that there is no embedding of G in H; with z at y. Consider an
embedding Gy of G in H with z at y. Clearly we must have a,b € V(G;) otherwise
G, would be an embedding of G in H; with = at y which is impossible. Thus H is a

graph with the desired property. O

Corollary 2 . 3 Let G be a connected graph. Then for each positive integer m >
fr(G), there is a graph H which homogeneously embeds G such that diam H <

diam G.

Corollary 2 . 4 Let G be a connected graph. Then G has a frame F with diam F <

diam G.

2.3 Framing ratios of graphs

The framing ratio frr(G) of a graph G is defined to be the ratio fr(G)/p(G) in [2).
Clearly, frr(G) > 1 for every graph G, and frr(G) = 1 if and only if G is vertex
transitive. This graphical parameter .is a certain measure of the ’symmetry’ of a

graph, where the closer frr(G) is to 1, the more symmetric G is.

Of course, the framing ratio of every graph is a rational number. The following

result shows that many rational numbers are framing ratios.



Theorem 2 . 5 (Chartrand et al. [2]) For each rational number r € [1,2), there

exists a graph G with frr(G) = r.

While it unknown whether the framing ratio of a graph can be arbitrarily large,
Goddard, Henning, Oellerman and Swart [7] produced a class of graphs whose framing
ratio is at least 2. By a broom B,, n > 5, we mean a star K;,_, with one edge

subdivided once.
Theorem 2 . 6 (Goddard et al. [7]) For n > 7 an integer, fr(B,) > 2n.

Corollary 2 . 5 (Goddard et al. [7]) For n > 7 an integer, frr(B,) > 2.

2.4 The framing number of a graph and its com-

plement

The following result was established by Chartrand et al. [2].

Theorem 2 . 7 ([2]) Let G be a graph with frame F. Then fr(G) = fr(G) and F

is a frame for G.
The next result is a consequence of the proof of Theorem 2.7.

Corollary 2 . 6 If a graph G can be homogeneously embedded in a graph H, then

G can be homogeneously embedded in the graph H.
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2.5 The framing number of a single graph

The framing number for various classes of graphs have been established by, among
others Chartrand, Gavlas, and Schultz [2], Chartrand, Henning, Hevia, and Jarrett
[3], Gavlas, Henning, and Schultz [6], Goddard, Henning, Oellermann, and Swart

[7, 8]. In this section we present a brief summary of these results.

The lollipop graph L., is the unicyclic graph of order n conta,ining-exactly one bridge.
Gavlas et al. [6] established the framing number fr(L,) for small n. The following

table summarizes their results.

n |4 5 6 7 8

fr(l.) |6 8 8 10 12

Table 2.1:

Gavlas et al. [6] also showed that fr(L,) < 2n —4 for n > 6.

Goddard et al. [7] determined the framing number of the wheel W, = C, + K;

for all integers n > 3. They showed that fr(W,) =4, fr(Ws) = 6. More generally,
Theorem 2 . 8 (Goddard et al. [7]) For n > 5 an integer, fr(Wni1) = 2n.
- The next result we present is a generalisation of this theorem.

Theorem 2 . 9 Let G be a vertex transitive graph of order n. If G is k-regular

11



where k < f%] — 1, then fr(G + K;) = 2n.

Proof. Since G+ K, can be homogeneously embedded in the graph G+G of order 2n,
it follows tilat fr(G+ K1) < 2n. The desired result would follow once we have shown
that there is no graph of order 2n — 1 which homogeneously embeds G + K. Suppose,
to the contrary, that such a graph H exists. Let F = G; + {w} be an embedding of
G+ K, in H where G; = G and let v be a vertex in (G;. Consider a further embedding -
Fiy of G+ K; in H with v as the central vertex. Now F; — v must have at least one
vertex, z say, in common with G; otherwise |V(F;) U V(F)| = 2n > p(H). Now
V(F1) — {v} contains at most k vertices in common with G,, possibly the vertex w,
and a set S of at least n — (k 4+ 1) other vertices. Thus the graph shown in Figure 2.1

is a subgraph of H.

Figure 2.1:

Thus far we have accounted for at least (n — k — 1) 4+ (n + 1) vertices of H. This
leaves a set T' of at most 2n — 1 —(n—k—1) = (n+1) = k—1 vertices. Now consider

an embedding F, of G + K, with z as the central vertex. Then F, contains at most k

12



vertices from Gy, at most k vertices from .S, possibly w and at least n — (2k +1) other
vertices which must come from T'. Thus |T| > n—(2k+1) whence k—1 > n—(2k+1).

Hence k > [%], which is a contradiction.U

Corollary 2 . 7 Let G be a vertez transitive graph of order n which is k-regular

where k > n — [2]. Then fr(GU Ki) = 2n.

Proof. Since GUK, = G + K, and G is a (n — k — 1)-regular vertex transitive
graph (with n — k — 1 < [2] — 1), it follows from Theorem 2.9 that fr(GU K;) =
fr(G + K;) = 2n. By Theorem 2.7 we know that fr(G'U K;) = fr(G U K;) so that

fT'(G U Kl) = 2n.0

Corollary 2 . 8 For all integers n > 1, fr(K, U K;) = 2n.

2.6 The framing number of more than one graph

Chartrand, Gavlas, and Schultz [2] extended the concept of framing numbers to more
than one graph. For graphs G; and G, the framing number fr(G:,G2) of Gi and
G, is dgﬁned as the minimum order of a graph F such that G; (+ = 1,2) can be
homogeneously embedded in F'. The graph F' is called a frame of G; and G;. Then

fr(G1, G2) exists and, in fact, fr(G1,G,) < fr(Gi U G2).

Theorem 2 . 10 (Chartrand et al. [2]) For graphs G1 and G2, there exists a positive
integer m such that for each integer n > m, there is a graph H of order n in which

13



G, and Gy can be homogeneously embedded, while for each positive integer n < m, no

such graph H of order n exists.

Much work has been done in determining the framing number fr(S) where S is a

set of more than one graph. For S = {K, 3, P,} the following table summarizes the

results of Gavlas et al. [6].

n 3 45 6 T 8

fr(Kis,P,) |6 8 8 10 10 12

Table 2.2:

Gavlas et al. [6] also investigated the framing number of a claw and cycles. Ta-

bles 2.3 and 2.4 summarize these results.

n 3 4 5 6 7

fr(K.13,C.) |8 6 8 8 10

Table 2.3:

(m, n) (34) (45) (46) (37) (47)

frKi5,Cm,Ca)| 8 8 8 10 10

Table 2.4:

Gavlas et al. [6]. also showed that fr(K, s, Cy,Cs, C7) = 10.

14



The next result is due to Entringer et al. [3].

Theorem 2 . 11 (Entringer et al. [5]) For integers m,n > 2,

fr(Km,Kp)=n+m-—2+ [2\/(m —1)(n - 1)-| .

Chartrand et al. [2] investigated fr(Cy,C,) for small values of m and n. Their

results are summarized in Table 2.5

(m,n) (3,4) (3,5 (3,6) (45 (4,6) (506)

fr(CmiCa)| 6 7 8 T 8 8

Table 2.5:
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Chapter 3

The framing number of a digraph

3.1 Introduction

In this chapter we adapt the concepts of frames and framing numbers to digraphs. A
digraph D is homogeneously embedded in a digraph H if for each vertex z of D and
each vertex y of H, there exists an embedding of D in H as an induced subdigraph
with z at y. A digraph F' | of minimum order in which D can be homogeneously

embedded is called a frame of D and the order of F is called the framing number of

D.

Results involving frames and framing numbers of graphs are easily applicable to
symmetric digraphs. If D is a symmetric digraph, then let F be a frame of the un-

derlying graph of D. Then the (symmetric) digraph F** obtained from F by replacing

16



each edge uv of F by the arcs (u,v) and (v, u) is a frame of D. In all that follows, we

restrict our attention to asymmetric digraphs.

In Section 3.2 it is shown that that every digraph has at least one frame and,
consequently, that the framing number of a digraph is a well defined concept. Sev-
eral results involving the framing number of graphs and digraphs then follow. In

Section 3.3 bounds are established for the framing number of a digraph.

The framing ratio frr(D) of a digraph D is defined by frr(D) = fr(D)/|V (D).
This graphical parameter, studied in Section 3.4, may be considered as a certain
measure of the vertex symmetry of a digraph. It is shown that every rational in the

interval [1,3) is a framing ratio.

In Sections 3.5, 3.6 and 3.7, the framing number is determined for a number of
classes of digraphs, including a class of digraphs whose underlying graph is a éomplete
bipartite graph, a class of digraphs whose underlying graph is C, + K, and the

lexicographic product of a transitive tournament and a vertex transitive digraph.

Finally, in Section 3.8, a relationship between the diameters of the underlying graph
of a digraph and its frame is determined. It is shown that every tournament has a

frame which is also a tournament.

17



3.2 Existence of frames for digraphs

In [2] it is shown that every graph has a frame or, equivalently, that fr(G) is defined
for every graph G. We state an analogous result for digraphs, the proof of which is

along similar lines as that presented in [2].
Theorem 3 . 1 Every digraph has a frame.

Proof. Let D be a digraph of order p. It suffices to show that there exists a digraph

F in which D can be homogeneously embedded.

To construct such a digraph F', we do the following. Let S;,S5,,...,S5: be the
orbits of D, where S; = {vi1,vi2,...,0in;} for 1 < i < k. Thus p = X%, n;. Let
D1, Dy, ..., Doy be 2k — 1 copies of D. For each i = 1,2,...,k, we label the vertex
vi; in D by vf in Dy (1 < m < 2k —1). Take the (disjoint) union of the digraphs
Dy, Dy,...,Dog-1. Then for each 7,7 and m, where 1 < i < k, 1 < j < n; and
1 <m <2k —1, do the following: Add the arc (vf%, v) for each v € N*(vj%t*~) and

add the arc (v, v];) for each v € N‘(v;"‘l‘"l_") if 7 < ¢, or add the arc (v]%,v) for each
v € N*(vpi*+~%) and add the arc (v,v7%) for each v € N~ (vP** ") if 4 > ¢, for

every { (1 <€ <k),wherem+{—itand m+k+£—1 are expressed modulo 2k — 1.

This completeé the construction of F'.

It remains to show that F has the desired properties. It suffices to verify that for

each £ (1 < £ < k) and each vertex y of F, the digraph D can be embedded as an

18



induced subdigraph with v,; at y. Now y is the vertex v[”; for some i (1 <i<k)and

j(1<j<n),and m (1 <m <2k —1). If we define

4

V(Dye—i) U (o5} — {07} if 7 < £

U=14 V(Dn) ife=1¢

V(Dopkpe—i) U {05} = {opit¥H) ifi> ¢

then we see that H = (U) 2 D. O

According to Theorem 3.1, then, for every digraph D there exists a digraph F in
which D can be homogeneously embedded as an induced subdigraph. Hence, fr(D)

is defined for every digraph D.

Corollary 3 . 1 For every digraph D and for every integer n > fr(D), there exists

a digraph H of order n in which D can be homogeneously embedded.

Proof. By Theorem 3.1, there exists a frame F (of order fr(D)) of D. Let v be
a vertex of F. Define Fy to be the digraph of order fr(D) + 1 obtained from F by
adding a new vertex v; to F' and inserting the arcs (vy,w) for each w € N*(v) and
the arcs (w, vy) for each w € N~ (v). Then v and v, are similar vertices, and D can be
homogeneously embedded in F;. Proceeding inductively, we see that for every integer

n > fr(D), there exists a digraph H of order n in which D can be homogeneously

embedded. O

Corollary 3.1 actually yields the following result.
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Corollary 8 . 2 For every digraph D, there exists a positive integer m such that for
each integer n > m, there is a digraph H of order n in which D can be homogeneously

embedded, while for each positive integer n < m, no such digraph H of order n exists.

Proposition 3 . 1 Let D be a digraph and let F be a frame for D. Let D' and F' be
the digraphs obtained by reversing the directions of the arcs in D and F, respectively.

Then fr(D) = fr(D’), and F' is a frame for D'.

Proof. It is evident that F' homogeneously embeds D', so fr(D') < fr(F). It
remains to show that F” is a frame for D'. Suppose, to the contrary, that H' is a
frame for D, where H' has order less than that of F'. Let H be the digraph obtained
by reversing the direction of the arcs in H’. Then D can be homogeneously embedded
in H, so fr(D) < |V(H)| < |[V(F)|, which contradicts the fact that F' is a frame for

D. O

3.3 Bounds on the framing number

The construction of the digraph F in the proof of Theorem 3.1 gives an upper bound

on the framing number of a digraph.

Corollary 3 . 3 Let k denote the number of orbits in a digraph D. Then

fr(D) < 2k =1)[V(D)|.
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Note that Corollary 3.3 implies that a digraph D is vertex transitive if and only if
fr(D) = |V(D)|. Let D be a digraph and let F' be a frame of D. Then it is evident
that the underlying graph of D can be homogeneously embedded in the underlying

graph of F. This yields the following result.

Proposition 3 . 2 If D is a digraph and if D' is the underlying graph of D, then

fr(D) 2 fr(D).

AN

o>

Y

Figure 3.1: A digraph D and its frame F'.

For example, consider the digraph D of Figure 3.1 which is the uﬁion of two directed
cycles. Let D' denote the underlying graph of D so D' = C3 U (4. It is shown in -
[2] that fr(Cs U Cy) = 11. According to Proposition 3.2, we know therefore that
fr(D) > 11. However, the digraph F' (of order 11) shown in Figure 3.1 has the
property that D can be homogeneousiy embedded in F'. .Therefore, fr(D) < 11.

Thus fr(D) = 11.

Let D be a digraph and let H be a digraph that homogeneously embeds D. Further,
let D' and H' be the underlying graphs of D and H, respectively. Then, since D’ can
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be homogeneously embedded in H’, Theorem 3.1 yields the following result.

Lemma 3 . 1 If a digraph D can be homogeneously embedded in a digraph H, then

A(D) < §(H) < A(H) < |[V(H)| - [V(D)| + §(D).

The following lemma will be useful in order to present a lower bound on the framing

number of a digraph.

Lemma 3 . 2 If a digraph D can be homogeneously embedded in a digraph H, then
Au(D) < 6u(H) < Aw(H) < |V(H)| = V(D) + 6:(D) (3.1)

and

Aod(D) < 6oa(H) < Doa(H) < [V(H)| = |V(D)] + boa(D). (3:2)

Proof. Necessarily, 6;a( H) > A;ju(D) and 6,0(H) > Asa(D). Let v be a vertex of D
with ¢dv = §;4(D). Then v is not adjacent from |V(D)|—1—86;4(D) other vertices of D.
Because D can be homogeneously embedded in H, every vertex of H is not adjacent
from at least |V(D)| — 1 — éia(D) vertices of H. Consequently, every vertex of H is
adjacent from at most |[V(H)|—1—(|V(D)|—1-64(D)) = |V(H)|—|V(D)|+ 6:a(D)
vertices of H. This establishes (3.1). The proof of (3.2) can be obtained directly from

(3.1) by reversing the directions of all arcs. O

An immediate consequence of this is the following.
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Corollary 3 . 4 If a digraph D can be homogeneously embedded in a digraph H,

then
[V(H)| > max{|V(D)| + A(D) = (D), |V(D)| + Aia(D) — 8ia(D),

[V(D)| + 80d(D) — b0a( D) }-

Corollary 3 . 5 For a digraph D,

fr(D) > max{|V(D)| + A(D) - §(D), |V(D)| + Aiu(D) — 6:a(D),

[V(D)| + Aod(D) — 8oa( D)}
Theorem 3 . 2 If a digraph D can be homogeneously embedded in a digraph H, then
Min(Aod(H),A.'d(H)) Z Ma:v(Aod(D),A,-d(D)) (33)

and

Min(&od(H), 5,d(H)) 2 Maz(&od(D), 5,d(D)) (34—)

Proof. Since A (D) < _6,-,1(H) and Ayy(D) < 6,4(H), the following inequalities

follow.
Au(DYp(H) < Toevinyiduv < Ma(H)p(H),  ...(a)
Aot(DVP(H) < Tuvian odir v < Aa(H)p(H),  ...(8)
5(D)p(D) < Toevp) idp v < Sia( H)p(D), (o)

and
80d(D)p(D) < Toev(py 0dp v < 60a(H)p(D). BC)
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Necessarily, Aog(H) > Ayy(D) and Aw(H) > Ay(D). Because ¥,y myiduv =
Yovev (i) 0dH v, both (a) and (b) imply that Aiy(H) > Ayy(D) and Ag(H) > Aig(D).

This establishes (3.3).

Necessarily, 8oa(H) > 6oa(D) and 6;4(H) > 6i4(D). Because Y ,vpytdpv =
Y vev(p) 04D v, (¢) and (d) imply that 8;4(H) > 804(D) and éoa(H) > é;a(D). This

establishes (3.4). O

The proof of Theorem 3.2 yields the following results. -

Corollary 3 . 6 If a digraph D can be homogeneously embedded in a digraph H,

then
q(H) :
[M J > maa(Aod(D), Aia(D))
and .
q(D) : .
L(—DJ < min(boa(H), 8:a( H)).

Corollary 3 . 7 If F is a frame for digraph D, then

qo(F) :
[MJ > maz(A.4(D), Aia(D))

and

@ min ;
[p(D)“ S i (6od(F)’6td(F))'

The above result has the following interpretation. The average indegree (or outde-
gree) of a frame of a digraph D is at least maz(A4(D), Aw(D)). Also, the average
indegree (or outdegree) of the digraph D is at most min(8,4(F), 6:4( F)).
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Theorem 3 . 3 If a digraph D can be homogeneously embedded in a digraph H, then

A(H) > 2Maz(Ay(D), Au(D)) (3.5)

and

(5(H) Z 2Ma.’lt(5od(D),5,'d(D)). (36)

Proof. Since 5,'d(H) Z A,’d(D), we have

A(H)p(H) > Tyevmydega v
= Yvev(m)(tda v + ody v)
=2 vev(mytda v

> 20ia(D)p(H),

whence A(H) > 2A;4(D). Similarly, since 8,4(H) > Asu(D), it can be shown that

A(H) > 2A,4(H). This establishes (3.5).

Since §(H) > A(D), we have

§(H)p(D) 2 Yiev(pydegpv
= EvGV(D)(idD v+ OdD ’U)
=2Yvev(p)tdD v

> 26;4(D)p(D),

whence §(H) > 26;4(D). Similarly, it can be shown that O0(H) > 2604(D). This

establishes (3.6). O
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If a digraph D can be homogeneously embedded in a digraph H, then fr(D) >

A(H) + 1. Hence an immediate corollary of Theorem 3.2 now follows.

Corollary 3 . 8 For a digraph D,

Fr(D) > 2maa(Boa(D), Asa( D)) + 1.

For example, the digraph D of Figure 3.2 can be homogeneously embedded in
the digraph F of order 5 (also shown in Figure 3.2) so that fr(D) < 5. However,

Aia(D) = Apg(D) = 2. Thus, by Corollary 3.8, fr(D) > 5. Consequently, fr(D) = 5.

£y

Figure 3.2: A digraph D and its frame F'.

The next result includes Corollary 3.5 as a special case.
Lemma 3 . 3 If a digraph D can be homogeneously embedded in a digraph H, then
[V(H)| 2 [V(D)]+maz{A(D)~§(D), maz(Aw(D), Aia( D)) —min(8,a(D), 6a(D))}.

Proof. By Corollary 3.5, we know that \V(H)| > |V(D)|+A(D)=§(D) - (x). From
Lemma 3.2, we deduce that min(Au(H), Awa(H)) < min{|V(H)| — |V(D)| + 6;4(D),
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|V(H)|=|V(D)|4+80a(D)} = |V(H)|-|V(D)|+min(6ia(D), 6,4(D))- 1t follows then by
Theorem 3.2 that maz(A;4(D), Au(D)) < [V(H)|—|V(D)|+min(8ia(D), boa(D)) or,
equivalently, |V(H)| > |V(D)| + maz(Aig( D), Aoa(D)) — min(big(D), b.a(D)). This,

together with inequality (), yields the desired result. O

Corollary 3 . 9 For a digraph D,

fr(D) > [V(D)|+maz{A(D) - §(D), maz(Aig(D), Aoa(D)) — min(8ia( D), boa( D))}

In fact the lower bound given in Lemma 3.3 can be further improved. Suppose
that a digraph D can be homogeneously embedded in a digraph H. As an immediate

consequence of Lemma 3.1, Lemma 3.2 and Theorem 3.2, we have the following result.

Corollary 3 . 10 If a digraph D can be homogeneously embedded in a digraph H,
then

[V(H)| > |V(D)| + 2maz(Aia(D), Aoa(D)) — §(D).

Corollary 3 . 11 For a digraph D,

fr(D) > |V(D)| + 2maz(Ai4(D), Awa(D)) — 6(D).

We claim that 6(D) > 2min(é;4(D), 6od(D)) and A(D) < 2maz(Aiy(D), Asa(D)).
Choose a vertex v € V(D) such that degpv = §(D). We have §(D) = degpv =
tdpv + 0dpv > 6;4(D) + 8oa(D) > 2min(6;4(D), 6,4(D)). Similarly, it can be shown
that A(D) < 2maz(Aiu(D), Aoa(D)). With these inequalities at hand it is easily
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checked that the lower bound presented in Corollary 3.10 is an improvement of that

in Lemma 3.3.

3.4 Framing ratios of digraphs

For a digraph D, we define the framing ratio frr(D) of D by

_ fr(D)

frr(D) = VD)

Certainly, frr(D) Z 1 for every digraph D, and frr(D) = 1 if and only if D is
vertex-transitive. The framing ratio of a digraph D produces a certain measure of
the symmetry of D, where the closer frr(D) is to 1, the more "symmetric” D is. For
the digraph D of Figure 3.1, frr(D) = 11/7 while for the digraph D of Figure 3.2,

frr(D) =5/3.

Of course, the framing ratio of every digraph is a rational number. We show that
many rational numbers are framing ratios. For the purpose of doing this, we define

a digraph I?po,pl,pz as follows. Consider a complete 3-partite graph K, ,, 5, having
partite sets Vo, Vi, Va, where |V;| = p; for ¢« = 0,1,2. For ¢ = 0,1,2, replace each
edge uv of D where u € V; and v € V3 with the arc (u,v), where addition is taken

modulo 3. We denote the resulting digraph by I?m_p, P2+

Theorem 3 . 4 For positive integers £ > m > n,

fr(Boma) = 3¢.
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Proof. Let D = I-(‘g,m,,,. Since D can be homogeneously embedded in I?g,g,g, it
follows that fr(D) < 3f. We show that fr(D) > 3{. Let F be a frame for D. By
Theorem 3.3, we know that §(F) > 2maz(Aia(D), Aes(D)) = 2¢. Let v be a vertex
of D that belongs to the partite set of cardinality £. Then v is adjacent to or from
at least §(F) > 2£ other vertices in F. These vertices, tégether with the £ vertices
that belong to the partite set of D that contains v, account for at least 3¢ (distinct)v

vertices. Hence fr(D) = |V(F)| > 3¢, producing the desired result. O

Theorem 3 . 5 For each rational number r € [1,3), there exists a digraph D with

frr(D) =r.

Proof. Let r € [1,3) be a rational number. Then we may write r = 2+, where a and
b are integers with b > 0 and —b < a < b. Consider the digraph D = R4b+2a,b—a,b—a.-

By Theorem 3.2, fr(D) = 3(4b + 2a). Since the order of D is 6b,

_ 3(4b+ 2a) _og

frr(D) 6b %

=r.0

By Corollary 3.3, if D is a digraph with k orbits, then frr(D) < 2k —1. Although
this may suggest that frr(D) can be arbitrarily large, we do not know whether this
is the case. In fact, we do not know whether there even exists a digraph D with
frr(D) > 3. On the other hand, a digraph D having a large number of orbits may
have a framing ratio that is arbitrarily close to 1. For example, if D is a directed path

on n vertices, then D has n orbits and is framed by a directed cycle on n+1 vertices.

29



So frr(D) =1+ % Thus it is an open question as to whether framing ratios can be

arbitrarily large.

3.5 The framing number of a class of oriented com-

plete bipartite graphs

In [2] it is shown that the framing number of the complete bipartite graph K, is
fr(Kmn) = 2max(m,n). Suppose that K,,, has partite sets V;, V2 where |V1| = m
and |V,| = n. Replace each edge uv of K,,, where u € V] and v € V, with the
arc (u,v). The resulting digraph is denoted by I_('m,n. We show that fr(I?m,n) =
3 max(m,n). For the purpose of doing this, let I?,,o,,,l,m be the digraph defined in the

paragraph immediately preceeding Theorem 3.4.

First, we establish the framing number of the digraph K 1n-
Proposition 3 . 3 For any positive integer n, fr([?l,n) = 3n.

Proof. Since K 1,» can be homogeneously embedded in the vertex transitive digraph
K nn, it follows that fr(I?l,n) < 3n. However, since Aod(f(‘ 1,n) = n, by Corollary 3.11

it follows that fr(K;,) > 3n. Consequently, fr(Ky,) =3n. O

Proposition 3 . 4 For positive integers m and n,

fr(]?m,n) = 3maz{m,n}.
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Proof. By Proposition 3.1 we may assume, without loss in generality that m < n.
Since I_('m,n can be homogeneously embedded in I_('n,n,n it follows that fr(I?m,n) < 3n.
However, because Izl,n =< f('m_n it follows from Proposition 3.1 that 3n < fr(I?m,n).

Consequently, fr(I?m,n) = 3n as required. O

3.6 The framing number of a diwheel

A directed cycle of order n in which every vertex has indegree and oﬁtdegree equal
to 1, will be denoted by C,. I C, is given by vy, (v1, v2), V2, (V2,v3), V3, - . .y Uny (Vny V1),
v1, then we will simply write vy, vq,v3,...,v,,v1. By a .diwheel we mean the digraph
Wn+1 obtained from the disjoint union of C_"n and K; by joining each vertex of C_"n
to the vertex of K; (which we shall call the centre or central vertez of én) By a
rim vertez of W,4; we mean a vertex distinct from the centre of Wis1. In [7] the
framing number of the wheel W,,;,, the underlying graph of Wn+1, is established. In

this section we determine the framing number of the diwheel.

The diwheel W, can be homogeneously embedded in the digraph D of order 7 in
Figure 3.3 so that fr(ﬁ&) < 7. However, by Corollary 3.11, fr(W}) >44+2x3-3=1.
Thus f r(W}) = 7. The following result establishes the framing number of the diwheel

I/T/n_,.l for all integers n > 4.
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Figure 3.3: A frame for W,

Theorem 3 . 6 Forn > 4 an integer, fr(WnH) = 3n.

Proof. Since Wn+1 can be homogeneously embedded in the vertex transitive di-
graph C3[C,] it follows that fr(Wyy1) < 3n. Employing Theorem 3.2, we show that
fr(WnH) = 3n by verifying that there exists no digraph of order 3n — 1 in which

W11 can be homogeneously embedded. Suppose, to the contrary, that such digraphs

do exist. From among all such digraphs, choose a digraph H of minimum size.

Before proceeding further, we introduce some notation. For each vertex z of H, let
W, denote an induced subdigraph of H that is isomorphic to Wn+1 and that contains
T as the central vertex. The set of rim vertices of W, is denoted by R(W,). We will

require a number of preliminary results.
Claim3 .1 A(H)<2n+1landn < Ay(H)<n+1.

Proof. By Lemma 3.1, A(H) < |V(H)| — |V(Wost)| + §(Wpp1) = (3n — 1) —(n+

32



1) +3 = 2n + 1 and, by Theorem 3.2, Aoa(H) > Aid(WnH) = n. To show that
A (H) <n+1, let v be a vertex in H with odg v = A,4(H). Then, by Lemma 3.2,
dgv > 5,d(H) > A,’d(Wn+1) =n. Thus 2n+1 > A(H) > degHv =idgv+odgv>

n + Aoq( H) whence Agy(H) <n+1. 0
Claim 3 . 2 5,d(H) =n.

Proof. Let v € V(H) such that odgv = Ay(H). Then, by Claim 3.1, 2n +
1 > A(H) 2 deggv = tdgv + odgv > tdgv + n so that idgv < n + 1 whence
8.4(H) < n+ 1. By Lemma 3.2, é;0(H) > A;d(WnH) = n. Suppose 6;4(H) =n + 1.
Then (n + 1)p(H) < T,ev(myidav = Loev)oduv < (n + 1)p(H). Since all of
these inequalities must be equalities, we conclude that tdyv = odgv = n + 1 for all

v € V(H). But this implies that A(H) = 2n + 2, which contradicts Claim 3.1. Thus

8:4(H) = n as required. O
Claim 3 . 3 6,4(H) <4.

Proof. By Claim 3.2, we may choose b, € V(H) such that idb, = n. Consider an
embedding H; of Wn+1 in H with b, as a central vertex. Since idb, = n, a further
embedding H; of Wn+1 in H with b; as a rim vertex yields the subdigraph of H shown

in Figure 3.4 where Wy, & H, = (b1, ¢y, ¢3,...,¢,) and W, = Hy = (b, by, by, .. 3 bn).

Now the vertex c; is adjacent from c;, b3 and at least n — 2 other vertices which
are not in Hy nor Hy. These n — 2 vertices, together with the vertices of H; and H,

33



Figure 3.4: A subdigraph of H

account for 3n —2 = p(H) — 1 vertices of H. Thus ¢, is adjacent to by,¢,,b and at

most one other vertex so that odc; < 4. Thus §,4(H) < 4. O

Before proceeding to the next claim, we introduce the following notation. For k
a nonnegative integer,.we let sy = |[{v € V(H) : odv = k}| and t;x = |[{v € V(H) :

idv = k}|. Note that

S6oq(H) T S6oa(H)+1 + * + 8np1 =tn +lagr +--- + ta(H) = 3n — 1. (3.7)
Claim 3 . 4 A4(H)=n+1.

Proof. First we prove the claim for n > 5. Using the above notation we have

> idv=ntn+ (n+ Dtngs + - + Aia(H)ta )
veV(H)
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and

Y~ odv = 8oa(H)ss,a) + -+ 0Sn + (n+1)$pt1-
veV(H)

Thus
nt, + (n+ Dtpgr+--- +Aid(H)tA;d(H) = 5od(H)35,,d(H) +---4+ns,+ (n+ 1)Sn+1. (3.8)
Now
[Left hand side of (3.8)] > nt,+ (n+ D)t + -+ tam)

=nt,+(n+1)Bn—-1—-1,)

=—t, +(n+1)(3n —1).

Since 6,4(H) < 4 < n,

[Right hand side of (3.8)] < (n+ 1)sn41 + n(boa(H)8s,um) + -+ + n8n)
=(n+1)spy1 +2(8n — 1 — sp41)

= Sn+41 + n(3n — ].)

Combining the above inequalities we have s,.1 +t, > 3n — 1. Since ¢, < 3n —1,

it follows that s,4; # 0, that is, there is a vertex with outdegree n + 1. Thus

Api(H)=n+1forn > 5.

Now suppose that n = 4. By Claim 3.1, we know that 4 < A,4(H) < 5. Sup-
pose that A;(H) = 4. By Claim 3.2, 64(H) = 4, so 4p(H) < T.evmyidv =
Yvev(yodv < 4p(H). Since all these inequalities must be equalities, we conclude
that ¢dv = odv = 4 for all vertices v of H. Thus H is a 4-regular digraph of order
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11. We remark that every vertex of H is not adjacent with exactly two other vertices;

and because every vertex v of H has indegree 4, we have R(W,) = N~ (v).

Let d be a vertex of H and let F; be an induced subdigraph of H which is isomorphic
to W5 and that contains d as a rim vertex. Let e be the vertex other than d which
is common to Wy and Fj. Since H is 4-regular, e must be adjacent from two vertices

not in W,y U F} and to another vertex not in Wy U Fj. Suppose, then, the vertices of

H are labelled as in Figure 3.5, where Wy = (a,b,¢,d,e) and W; = F| = (d, ¢, f,1, 7).

Figure 3.5: A subdigraph of H

Note that W, = (e, ¢, f, g, h). Next we consider W,. Clearly d,b,c ¢ R(W,). Thus
W, must consist of the vertices e, exactly one of h,g and f, exactly one of j and
k and some fourth vertex, say z, not adjacent to e. Since b ¢ R(W,), z = i. Since

i,e € R(W,), it follows that j & V(W,). Thus R(W,) consists of 7, e, k and one vertex

from h,g and f.
Suppose that h € R(W,). Note that A must be adjacent from i and h is not
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adjacent with k. Since (c, f, g, k) = (R(W.)) = C4, h is not adjacent with one of ¢, g
and f. Hence the two vertices of H not adjacent with h belong to the set {c, g, f, k}.
Thus A must bé adjacent with each of d and j. Since idd = 1dj = 4, it follows that
d and j are both adjacent to h. Thus 7,d,j € R(W}). But this is clearly impossible.
A similar contradiction arises if we assume that g € R(W,). Thus f € R(W,) and
R(W,) = {i,e, f,k}. Clearly in R(W,), and hence in H, f is not adjacent with k.
Since f is also not adjacent with d, it follows that f is adjacent with every vertex
of H other than d and k. In particular, f is adjacent with ¢, h and ¢. But this is

impossible as (¢, f,g,h) = (R(W,.)) = Cs.

Thus we cannot embed Ws in H with a as the central vertex. This contradicts the
fact that H homogeneously embeds Ws. Hence we must conclude that Ay(H) = 5.

This completes the proof of Claim 3.4. O

Choose z € V(H) such that odg = = n+1 (then idy = n). Consider an embedding
Fy (F3) of Wat1 in H with « as a central vertex (rim vertex, respectively). Then the
digraph D of Figure 3.6 is a subdigraph of H where W, = F| = (z,z1,22,...,2,)

and Wf = F2 = (faflaf%-"’fn)-

Since |V(Fy) U V(F3)| = 2n, there is a set S of n — 1 vertices of H not in Fy nor
F;. Since odg z =n + 1, z is adjacent to every vertex in S. Consider W,, where ¢ is
the vertex shown in Figure 3.6. Clearly R(W.) C SU {z,, f3}. Since |[R(W,)| =n, at

least one of z; and f5 belongs to R(W,,).
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Figure 3.6: A subdigraph of H

Claim 3 . 5 The vertez f3 is non-adjacent to at least one vertez in S N R(W,).

Proof. If f3 € R(W,), then, since R(W,) contains at least n — 2 (> 2) vertices of
S and f3 is adjacent to only one vertex of R(W,), the result is immediate. Assume,
then, that f3 ¢ R(W.), for otherwise there is nothing left to prove. Then R(W,) =
S U {z,}. Let s be the vertex of S adjacent to z2. Since z3 (s) is the only vertex
of Fy (S, respectively) adjacent to 2, it follows that for n > 5 we have R(W,) C
{s,z3, f, fa, fa,- .-, fa}. If f € R(W,,), then at most one vertex from f3, fy,..., fn
belongs to R(W,.,), implying that |[R(W,,)| < 4 < 5 which is impossible. Thus
f ¢ R(W,,); consequently, R(W,,) = {s,zs, f3, f4,.--, f»}. In particular, we note
that (fs,z2) € E(H), so f3 is adjacent to at least three vertices not in S, namely to
3, ¢, and f. Hence, since A,q(H) =n+1 and |S| = n—1, the result now follows for

n>95.
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If n = 4, then H has order 11 and R(Wz,) C {s,z3, f, f3, fa}. U f3 € R(Wy,),
then the result follows as above. Assume, then, that f; ¢ R(W,,). Then R(W,,) =
{s,z3, f, fa}. In particular, we observe that (f4,z2) € E(H). If f3 is noﬁ-adjacent to
some vertex of S, then the result follows since S C R(W,). On the other hand, if f;
is adjacent to all three vertices of S, then ody f3 = 5 (= n+1). However, since z and
f5 are not adjacent and idy f3 > 4, it follows that R(Wy,) = {2, 23,24, fa}. But this
would imply that (z2, f4) € E(H), which produces a contradiction. This completes

the proof of Claim 3.5. O

By Claim 3.5, there exists a vertex b in S N R(W,) that is not adjacent from fs.

Since z is adjacent to every vertex of S, (z,b) € E(H).

Claim 3 . 6 There exists no embedding of Wnﬂ in H with b as a central vertex and

T as a rim vertez.

Proof. Assume, to the contrary, that we can embed Wn-}»l in H with b as a central
vertex and z as a rim vertex. We determine R(W;). Since b € R(W,), we know
that (b,c) € E(H), so ¢ ¢ R(W,). Further, (f3,b) ¢ E(H), so fs ¢ R(W;). Since
z € R(W), it follows that exactly one vertex from {a:g, T3,...,Tn} belongs to R(W}).
Moreover, exactly one vertex from N*(x) = S U {f, fo} belongs to R(W;). If f €
R(Wy), then no vertex from {f4,..., fn} belongs to R(W;), implying that R(W;)
consists of only three vertices, which is impossible (since n > 4). Hence f ¢ R(W).

Thus R(W,) consists of , exactly one vertex from {z3,z3,...,,}, exactly one vertex
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from S U {f.}, and n — 3 vertices from {f,..., fu-1}. However, this is impossible as

|{fs,.--, fam1}| = n —4 < n — 3. This completes the proof of Claim 3.6. O

Claim 3 . 7 The only possible embeddings of Wn+1 in H with both b and = as rim
vertices have f as the central vertex, and as rim vertices b, =, ezactly one vertezx from

{x2,23,...,%n}, and the n — 3 vertices in {fs,..., fa1}.

Proof. Consider an embedding of Wn+1 in H,; with both b and = as rim vertices.
Let W, be such an embedding with central vertex y. Since «, b € R(W,), the vertex
c cannot belong to W,. Since z € R(W,), exactly one vertex from {z,,z3,...,z,}

belongs to R(W,), and y must be one of the vertices in S U {f, f.}.

If y = f, then, since z is adjacent to the vertex b on R(W,), no vertexin SU {f,}
belongs to R(W,). It follows that R(W,) consists of b, z, exactly one vertex from
{24, 23,...,2,}, and the n — 3 vertices in {fs,..., fa_1}. Hence, we may assume in

what follows that y # f, for otherwise there is nothing left to prove.

If y = f,, then no vertex from SU{f, fs,..., fo-1} other than b belongs to R(W,),
implying that R(W,) consists of only three vertices, which is impossible. Hence

Y # fn. This in turn implies that f, f, ¢ R(W,), since z is adjacent to the vertex b

on R(W,).
If y € S, then R(W,) consists of b, z, exactly one vertex z, (say) from {z2, z3,
+++»Tn}, and the n —3 vertices in {f3,..., fa1}. Since (fs,b) ¢ E(H), it follows that

no vertex of {fs,..., fa_1} is adjacent to b. Furthermore, we note that y is adjacent
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from each of b and f3. Since b € R(W.), it follows that one of y and f3 does not

belong to R(W.).

If y ¢ R(W.), then R(W.) = (S — {y}) U {z2, fa}. Since (y,b) ¢ E(H), it follows
that there is therefore exactly one vertex in S U {z2, f3} that is adjacent to b. This
vertex, together with the vertices in {z, z3,z4,...,2,}, are therefofe the only possible
vertices adjacent to b. Since idy b > n, it follows that R(W;) consists of one vertex
from S U {2} and the n — 1 vertices from {z,z3,%4,...,2,}. But then z € R(W,),

which contradicts the result of Claim 3.6.

If f ¢ R(W,), then R(W,) = SU {x2}. Hence b is the only vertex in S U {z,}
that is adjacent to y, so x, # z;. That is to say, z, € {z3,...,z,}. Furthermore,
since (fa, b) ¢ E(H), there is exactly one vertex z in S U {z3, f3} that is adjacent to
b. By Claim 3.6, = ¢ R(W;). Hence, R(W;) C {2} U {f} U ({z3,...,2x} — {z4}),
so |R(Wy)| < n — 1, which is impossible. Hence y ¢ S. This completes the proof of

Claim 3.7. D

Claim 3 . 8 For each vertex of H, there is an embedding of Wn+1 in H with that

verter as a central or rim vertex that does not contain the arc (z,b).

Proof. In view of Claims 3.6 and 3.7, the only vertices in doubt are f as a central
vertex in some embedding of W41 in H, and the vertices bz, z;(2<i<n)and
fi (3 £j <n—1) as rim vertices in some embedding of Wn+1 in H. Since W; = F,
and b ¢ V(F,), there is an embedding of W,,, in H with f as a central vertex and
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fi (1 £ j < n) as a rim vertex that does not contain the arc (z,5). (Recall that
z = f;.) Futhermore, since W, 2 F}, and b ¢ V(F}), there is an embedding of Wt
in H with z; (2 <7 <n) as arim vertex that does not contain the arc (z,b). Finally,
since b GIR(WC), and z ¢ V(W,), there is an embedding of Wnﬂ in H with b as a

rim vertex that does not contain the arc (z,b). O

As an immediate consequence of Claim 3.8, we have that the digraph H — (z,b)
obtained from H by removing the arc (z,b) homogeneously embeds Wn+1. Tbis,
however, contradicts the minimality property of H. We deduce, therefore, that there
is no digraph of order 3n — 1 in which Wn+1 can be homogeneously embedded. This

completes the proof of Theorem 3.6. O

3.7 The framing number of a transitive tourna-

ment

In this section we determine the framing number of transitive tournaments. The

following result will be useful (see [4]).

Theorem 3 . 7 (Chartrand, Lesniak [{]) For every positive integer n, there is ex-

actly one transitive tournament of order n.

In fact, we will show that transitive tournaments have unique frames. For the
purpose of doing this, we define two digraphs. Let n be a positive integer. Let
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T, be the transitive tournment defined by V(T,) = {u1,usz,...,u.} and E(T}) =
{(uiyu;)|1 € ¢ < j < n}. By Theorem 3.7, T, is, up to isomorphism, the only |
transitive tournament of order n. Note that odu; = n — 2 and 1du; = 1 — 1 for
i =1,...,n. Next, we define a digraph D, with V(D,) = {vo,v1,...,V2n—2}, Where
each vertex v; (0 < ¢ < 2n—2) is adjacent to each of the vertices vi11,viz2,- - -, Ungic1,
where all subscripts are expressed modulo 2n — 1. Then D, is an (n — 1)-regular
digraph of order 2n — 1. Furthermore, D, is easily seen to be vertex transitive.

Notice that T, = ({vo,v2,...,vn-1}) < Dy, so that D, homogeneously embeds T),.

Theorem 3 . 8 Let T be a transitive tournament of order n and let K be a vertez
transitive digraph. Then fr(T[K]) = (2n — 1)p(K) and the digraph D,[K] of order

(2n — 1)p(K) is the unique frame of the digraph T|K].

Proof. By Theorem 3.7, we know that T' = T,. Thus we show that fr(T,[K]) =
(2n — 1)p(K) and that T,[K] is uniquely framed by D,[K]. Let D = T,[K]. Since
K is vertex transitive, it is k-regular for some integer k¥ > 0. Let H be a frame for
D. Since D can be homogeneously embedded in the digraph D, [K], it follows that

|V(H)| < (2n — 1)p(K). Before proceeding further, we prove three claims.

Claim 3 . 8 Anu(D) = Aw(D) = k+ (n — 1)p(K), and A(D) = §(D) = 2k +

(n - 1)p(K).

43



Proof. A copy of D is illustrated in Figure 3.7 where W; & K. For: = 1,...,n,
each vertex w; of W; is adjacent to every vertex of W; for all j such that n > 5 > ¢,
so odw; = k+ (n —14)p(K) and idw; = k+ ( — 1)p(K). Thus each vertex of W, has
outdegree k + (n — 1)p(K), and this is clearly. the maximum outdegree among the
vertices of D. Furthermore, each vertex of W, has indegree k+ (n — 1)p(K), and this

1s the maximum indegree among the vertices of D. Moreover, deg w; = id w; +od w; =

% + (n — 1)p(K). O

Figure 3.7: The digraph D = T,,[K].

Claim 3 . 10 fr(D) = [V(H)| = (2n — 1)p(K) and A(H) = 2k 4+ 2(n — 1)p(K).

Proof. By Theorem 3.3, we know that A(H) > 2maz(A.q4(D),Awu(D)) = 2k +
2(n — 1)p(K). Hence, by Lemma 3.1 and Claim 3.9, it follows that (2n — 1)p(K) >
[V(H)| > [V(D)|+A(H) - §(D) > (2n — 1)p(K) . Consequently, fr(D)=|V(H)| =

V(D) + A(H) - 6(D) = (2n — 1)p(K) and A(H) = 2k + 2(n — 1)p(K). O
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Claim 8 . 11 H is (k+ (n — 1)p(K))-regular.

Proof. By Lemma 3.2 and Claim 3.9, we know that 6;4(H) > Au(D) = k+ (n —
Dp(K) and 8,4(H) > Aoa(D) = k+ (n — 1)p(K). Let v be an arbitrary vertex of
H. Then, by Claim 3.10, 2k 4+ 2(n — 1)p(K) = A(H) > degyv = idgv + odgv 2>
8ia(HY + 6,4(H) > 2k + 2(n — 1)p(K). Since these inequalities must be equalities, we

deduce that idgv =odgv=k+ (n—1)p(K). O

Now let w (z) be a vertex in D with odp w = Ay4(D) (respectively, idp z = Ay(D)).
For any vertex z of H, let D} (D;) denote an embedding of D in H as an induced
subdigraph with the vertex w (z, respectively) at z. By Claims 8 and 10, it follows
that in H |

N*[e] C V(D}) and N-[e] S V(D;). --(x)

Let v € V(H) and consider an embedding D} = (Uy,Uy,...,U,—1) of D in H,
where each (U;) is isomorphic to K, each vertex of U; (0 < ¢ < n — 1) is adjacent to
to every vertex U; for all j such that n — 1 > j > 7. Now let v be a vertex in U,_;
and consider an embedding D} = (Vo_1, Vo, ..., Vaa2) of D in H, where each (V;) is
isomorphic to K, each vertex of V; (n — 1 <1 < 2n — 2) is adjacent to every vertex

V; for all j such that 2n —2 > j > 1. Since N*[v] C V(D}), it follows that v € V,_,.
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Claim 3 .12 U;NV; =0 for0<:<n—-2 andn—1§j§2n—2.‘

Proof. Since v is adjacent from all of the (n — 1)p(K) vertices of U7 U, it follows
that Uian =fQfor0<i<n—-2andn <j<2n—2 Itremains for us to show
that U; N V,,_; = 0 for 0 < ¢ < n — 2. Suppose, to the contrary, that there is a vertex
T E U;iNV,_; for some i (0 <1 < n—2). Then in H, z is adjacent to k vertices of

U; and to each vertex of (U}Z4,U;) U (UZ,?V;). Hence,

IN*(2)| 2 k+ | (Ui U;) U (UZ2V;) |
> b | (UZAaU;) U (U3
=k+(n-2-1)p(K)+ (n—1)p(K)

2 k+(n — 1)p(K).

Howefler, by Claim 3.11, k+(n—1)p(K) = odg £ = |[N*(z)|, so the above inequalities
must be equalities. In particular, this implies that U,_ 1 C U2" -2V, which produces

a contradiction since v € Uy N V1. Thus U;N Vi =0 for0<:<n~2. 0
Claim 3 . 13 Vn—l = Un—l-

Proof. We have

VIH)| = [(UiSU;) U (V22 V)]

> | (UiZ3U;) U (U2, ;)|

= (2n - 1)p(K). (by Claim 3.12)
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However, (2n — 1)p(K) = |V(H)|, so that the above inequalities must be equalities.
Consequently, V(H) = (U}Z3U; ) U (U?Z;Ele ). Hence, U,,_; C U?Z;EIVJ'. Suppose
that there is a vertex £ € U,_; N'V; for some j with n <¢ < 2n —2. Thenin H, z
is adjacent from k vertices of V; and from each vertex of (U}:g U;) U V3. Hence
it follows from Claim 3.12 that z is adjacent from at least k + np(K) vertices, which

contradicts the result of Claim 3.11. Thus U,,-;NV; = 0 for n < j < 2n—2, implying

that U,_1 C Vu_1. Since |V,_1| = n = |Un—1|, we must have V,_y = U,—y. O

By Claims 3.12 and 3.13, we observe that U;NV; =0 for0 <i<n—landn <j <
2n—2. For notational convenience, weset V; = U; for j = n,n+1,...,2n—2. It follows

then from the proof of Claim 3.13 that the digraph H has vertex set V(H) = U25%U;.
Claim 3 . 14 H = D, [W].

Proof. We know that each vertex of U; (0 < 7 < n—1) is adjacent to every vertex U;
for all j such that n—1 > j > ¢, and each vertex of U; (n —1 < ¢ < 2n—2) is adjacent
to every vertex U; for éllj such that 2n ~2 > j > 4. Since H is (k+ (n — 1)p(K))-
regular, it suffices for us to show that each vertex of U; (0 < i < 2n —2) is adjacent to

every vertex of U; for j =<+ 1,2 +2,...,74+ n — 1, where all subscripts are reduced

modulo 2n — 1.

Let € Usn—2. Then z is adjacent from each vertex of UZ;2,U;, so N*[z] C
(U?;:"U,-) U Usn—2. Since z is adjacent to exactly k vertices of U,,_,, it follows that
odg z = |N*(z)| < (n—1)p(K)+k. However, by Claim 3.11, odyr = (n—1)p(K)+k.
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n

Consequently, ¢ must be adjacent to all of the (n — 1)p(K) vertices of Ur2U;.

Consider now a vertex y in U,_;. Then y is adjacent from each vertex of ( urS ;) u
Uzn_2, 50 N*[y] C (UF2,U;). Sincey is adjacent to k vertices of U, it follows that

1=n-2"1

odyy = |N*[y]| < (n—1)p(K)+k. However, by Claim 3.11, odgy u = (n—1)p(K)+k.

i=n-1

Consequently, y must be adjacent to all of the (n — 1)p(K) vertices of U3 U,

Continuing in this way (we consider next a vertex in Uzn-3, and then a vertex in
U,-3, and so on), we may show that each vertex of U; (0 <4 < 2n — 2) is adjacent to
every vertex of U; for j =1+ 1,i+2,...,4+n — 1, where all subscripts are reduced

médulo 2n — 1. This completes the proof of the claim and of Theorem 3.8. O

Corollary 3 . 12 The transitive tournament T of order n is uniquely framed by the

digraph D,, of order 2n — 1 so that fr(T) =2n — 1.

It was noted in [10] that the framing ratio is a certain measure of symmetry. From
the score sequence of the transitive tournament 7' of order n, we deduce that T has
exactly n orbits, each consisting of a single vertex. In view of this, one would think
of transitive tournaments as highly unsymmetric and hence expect them to have high
framing ratios for large n. However, by Theorem 3.8, we have fr(T) =2 — % This
is surprising since the digraph I?m,n, for example, has just two orbits (irrespective of
the values of m and n) and yet has framing ratios arbitrarily close to 3. In [10] it is
shown that the digraph I-(‘p,q,,, which has just three orbits, can have framing ratios
arbitrarily close to 3 for suitable values of p, ¢ and r. Again, this is surprising as
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one would tend to think that I?p,q,, is a more symmelric digraph than a transitive
tournament. Perhaps this can be explained by the transitivity of T which induces a
certain symmetry to T and so causes the unexpected low framing ratio.- Although a
digraph with exactly one orbit, being vertex transitive, is highly symmetric, we must
deduce that the symmetry of a digraph does not depend solely on the number of
orbits. Other properties, such as the general orientation also seem to have an effect

on the symmetry.

3.8 The diameter of a frame

By Theorem 2.5, the diameter of a frame of a connected graph cannot be too large. In
this section we present a corresponding result for digraphs We show that the diameter

of the underlying graph of a frame of a digraph G cannot be too large.

Theorem 3 . 9 Let G be a connected digraph with frame H. Let G' and H' be the

underlying graphs of G and H, respectively. Then diam H' < diam G’ + 1.

Proof. Set d = diam G'. Suppose diam H' > d + 2. Let v be a vertex of H' whose
eccentricity (in H') is D = diam H'. Let V; be the set of vertices at distance i from v
in H'for1 <4< D. Let u € Vp. Delete the vertex v from H and for each w € V1 such
that (v,w) € E(H) (respectively, (w,v) € E(H) ), add a new arc (u,w) (respectively,

(w,u)) to H. Denote the resulting digraph by H;. Let z € V(G) and y € V(H,).
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Consider an embedding G; of G in H with z at y. If G; contains v, then replace v
with u and observe that this new subdigraph of H is still induced since G’ contains
no vertices of Vy1. If Gy does not contain v, then Gy is still an induced subdigraph of
H, since G; cannot contain vertices from both Vj and Vp. Thus H, homogeneously

embeds G. Since p(H,) < p(H), this contradicts the fact that H frames G. O

Although it is not known whether the bounds in the above theorems can be at-
tained, we do have a partial improvement of the above result. As pointed out in

Section 3.1, all digraphs referred to are asymmetric digraphs.

Theorem 3 . 10 For every connected digraph G, and for each integer n > fr(G),
there is a digraph H of order n in which G can be homogeneously embedded satis-
fying diam H' < diam G’ where G' and H' are the underlying graphs of G and H,

respectively.

Proof. By Theorem 2.2, we know that there exists a digraph of order n in which G
can be homogeneously embedded. Among all such digraphs, let H be one of mazimal
size. If H is a tournament, then the result is immediate. Assume, then, that H is not
a tournament, for otherwise there is nothing left to prove. Let u and v be nonadjacent
vertices in H, and consider the digraph H; obtained from H by joining u to v. By
the maximality property of H, the digraph G cannot be homogeneously embedded in
H;. Thus for some vertex z of G and some vertex y of Hj, there is no homogeneous

embedding of G in H; with z at y. However, since G can be homogeneously embedded
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in H, there is an homogeneous embedding G of G in H with z at y. Let G} and H’
denotel the underlying graphs of G; and H, respectively. If at most one of v and v
belongs to Gy, then G; would be a homogeneous embedding of G in H; with z at y
which would produce a contradiction. Hence u,v € V(G,). It follows that in H' we
have d(u,v) < diam G| = diam G’. Since u and v are arbitrary nonadjacent vertices

in H, we conclude that diam H' < diam G’'. O

Corollary 3 . 13 FEwvery connected digraph G has a frame whose underlying graph

has diameter at most that of the underlying graph of G.
An immediate consequence of Corollary 3.13 now follows.
Corollary 3 . 14 Every tournament has a frame whick is also a tournament.

While it is always possible to find a frame F for a connected digraph @ such
that diam F' < diam G’ where G’ and F” are the underlying graphs of G and F ,
respectively, diam F’ can be an arbitrarily amount less than diam G'. For exam-

ple, the directed cycle é-n,+1 is a frame for the directed path B, of length n and

diam Cpyy = 21| while diam P, = n — 1.
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Chapter 4

The edge framing number of a

graph

4.1 Introduction

A nonempty graph G is said to be edge homogeneously embedded in a graph H if for
each edge e of G and each edge f of H, there is an edge isomorphism between G and
a vertex induced subgraph of H which sends e to f. A graph F' of minimum size in
which G can be edge homogeneously embedded is called an edge frame of G and the
size of F is called the edge framing number e fr(G) of G. We also say that G is edge
framed by F'. ‘It is shown in Section 4.2 that every graph has at least one edge frame
and, consequently, that the edge framing number of a graph is a well-defined concept.

In this chapter we restrict ourselves to graphs with no isolated vertices. This will not
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affect the generality of any of the results presented.

It is natural to ask whether the notions of edge homogeneous embedding and the
usual homogeneous embedding requirement are related. In fact, as the following

examples illustrate, neither of the embedding requirements directly implies the other.

G: H:

Figure 4.1:

While the graph G of Figure 4.1 can be homogeneously embedded in the graph H,
G cannot be edge homogeneously embedded in H; for example, there is no embedding

of G in H with the edge e at f.

The next example illustrates strikingly that edge homogeneous embedding does
not directly imply homogeneous embedding in general. The complete bipartite graph
K, can be edge homogeneously embedded in itself while it is obvious that K, , does

not homogeneously embed itself.

Although the two embedding requirements do not directly imply each other, it will

be shown in Section 4.3 that they are related in a natural way through line graphs.
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The edge framing ratio frr(D) of a nonempty graph G is defined by efrr(D) =
efr(G)/|E(G)|. This graphical parameter may be considered as a certain measure
of the edge symmetry of a graph. In Section 4.4 this parameter is intrdduced. It is
shown that every rational in the interval [1, 3) is an edge framing ratio. In Section 4.5,
it is shown that every nonempty connected graph G hé,s an edge frame with diameter
at most diam G + 1. Finally, in Section 4.6 the edge framing number is defined
for more than one graph and the framing number is determined for pairs of cycles.

Furthermore, we determine e fr(K; n,,C,) for all integers m > 3 and n > 4.

4.2 Existence of edge frames

Any automorphism ¢ of a nonempty graph G gives rise to an edge automorphism of
G in a natural way: we define ¢(ab) = ¢(a)é(b) for all edges ab of G. It is precisely
this property of an automorphism which we use to prove that every nonempty graph

has an edge frame.
Theorem 4 . 1 Every nonempty graph has an edge frame.

Proof. Let G be a nonempty graph. It suffices to show that there exists a graph F

in which G’ can be edge homogeneously embedded.
Let 5'1,52,. .., 9% be the edge-orbits of G, where §; = {€i1,€i2,---,€in} for 1 <

i < k. Thus ¢(G) = &5 n;. Setr = mazi<i<k|Si|. To construct F' we begin with
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2k(k — 1)r + 1 copies of G, denoted G1, G2, -, Gak(k-1)r41. For each ¢ (1 < i < k)
and for each j (1 < j < n;), the edge €;; in G is labelled €] in G (1 < m <
2k(k — ljr +1). Furthérmore, we denote the end-vertices of the edge e[ by a7 and
m pm

m mo_— T
b,-'j so that el = al; b

The vertex set of F is Uf,fikl_l)rﬂ V(Gn). Additional edges are now added as
follows. Consider each edge ef; = a[3b™ in G,. Consider, then, also the edge ey, for
(1 € £ < k) where

m4+r@E—Dk-D+rk+f—t-1)+5 iff<:
T = ‘

m+r@G—1D)k-1D)+r(l—t-1)+7 if€>1

(where « is expressed modulo 2k(k — 1)r 4 1).

Join a7 (b7, respectively) to each neighbour of ay; (b;,, respectively) ezcept to by,

(ag,, respectively). Also, join aj, (b;,, respectively) to each neighbour of a7} (87,

respectively) ezcept to b (a7, respectively). Observe that the edges a7, and a7 are

similar in H. Furthermore, each of the newly adjoined edges is similar to an edge in

G or G,. This completes the construction.

It remains to show that F' has the desired properties. It suffices to verify that for
each £ (1 £ £ < k) and each edge e of F, the graph G can be edge-embedded as a
vertex induced subgraph of F' with e;; at e. Now, by the construction of F, each
edge of F not in U1 G is similar to an edge in UED G Thus we

m=1

may assume that e is al"; b, for some ¢,j and m where 1 < i < k,1 < j < n; and
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1 < m < 2k(k—1)r + 1. We define
V(Gp) U {ar, b} — {ab,, 80} ifi#¢
V(Gn) if 5> ¢

where

m+r@i-1)(k—-1)+r(k+L—i-1)4+7 ife>{
8=
m+rii-D(k-1)+r(f—t—=1)+] ifi </
( B is expressed modulo 2k(k — 1)r 4+ 1). Then (U) & G. This completes the proof.

O

The next two results are interesting consequences of the proof of Theorem 4.1.

Corollary 4 . 1 Let G be a nonempty graph. Then there is a graph H such that for
each edge ab of G and each edge cd of H, there is a (vertex) embedding ¢ of G as an

induced subgraph of H such that ¢(a)é(b) = cd.

Corollary 4 . 2 Let G be a nontrivial graph which is not complete. Then there
exists a graph H such that for every pair of nonadjacent vertices a,b in G and for

every pair of nonadjacent vertices c¢,d in H, there is an isomorphism ¢ from G onto

H as an induced subgraph of H such that {¢(a), #(b)} = {c,d}.

~ Proof. Since G is not a complete graph, the complement G of G is not empty. By
Corollary 4.1, there is a graph F such that that for each edge ab of G' and each edge
cd of F, there is a (vertex) embedding ¢ of G as an induced subgraph of F' such that
¢(a)$(b) = cd. Then the graph H = F' is a graph with the desired property. O
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Corollary 4 . 3 Let G be a nonempty graph and let v be a vertez of G. Then for
each integer m > 0 there is a graph of size e fr(G)+m deg v which edge homogeneously

embeds G.

Proof. Let F be an edge frame for G. Form a new graph F' from F by adding a
set S of m new vertices to F' and joining each vertex of S with each neighbour of v.

Then F' is a graph of size efr(G) + m deg v which edge homogeneously embeds G. O

4.3 Lower bounds on the edge framing number

In this section we establish some lower bounds on the edge framing number.

We first show that if a nonempty graph G can be edge homogeneously embedded
in a graph H, then the line graph L(G) can be homogeneously embedded in the line

graph L(H). The following result due to Whitney [12] will be useful.

Theorem 4 . 2 (Whitney [12]) Let ¢ be an edge isomorphism from a connected
graph G to a connected graph H where G is different from the graphs G; (i =
1,2,3,4,5) shown in Figure 4.2. Then ¢ is induced by an isomorphism from G to H

sothat G= H.

We present a slight improvement of the above result which will be useful for our

purposes.
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Theorem 4 . 3 Let G and H be connected edge isomorphic graphs where G is dif-

ferent from Cs and K;3. Then G and H are isomorphic.

Proof. By Theorem 4.2, we know the result to be true if G is different from the
graphs G3 ,G4 and G5 shown in Figure 4.2. Assurﬁe then that G is isomorphic to G;
for some 1 = 3,4,5. Since q(G;) =i+ 1 for ¢ = 3,4, 5, it follows that G; is not edge
isomorphic to G; for 3 <1 < j < 5. Thus H is different from the graphs G; (j # 1).
Let ¢ : E(G) — E(H) be an edge isomorphism between G and H. Suppose that G
and H are not isomorphic. Then ¢! is an edge isomorphism from a graph different
from the graphs G; (i = 1,2,3,4,5) shown in Figure 4.2 onto G. By Theorem 4.2
it follows that G and H are isomorphic. As this is contrary to hypothesis we must

conclude that G and H are isomorphic. This completes the proof. O

Corollary 4 . 4 Let G and H be edge isomorphic graphs where the components of

G are different from C3 and K, 3. Then G and H are isomorphic.
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We will also require the following result due to Whitney [12].

Theorem 4 . 4 (Whitney [12]) Let G and H be non-trivial connected graphs. Then
L(G) & L(H) if and only if G = H or one of G and H is the graph C; and the other

1S K113.

Theorem 4 . 5 Let G be a nonempty graph which is different from C3 and Ky 5. If
G can be edge homogeneously embedded in a graph H then the line graph L(G) of G

can be homogeneously embedded in the line graph L(H) of H. Consequently

efr(G) 2 fr(L(G)).

Proof. Let z € V(L(G)) and y € V(L(H)) and suppose that  and y correspond
to edges e, and e, of G and H respectively. Since G can be edge homogeneously
embedded in H , there is an edge-embedding G’ of G as an induced subgraph of H withl
e; at ey. By Corollary 4.4, G and G’ are isomorphic. Consequently, by Theorem 4.4,
the line graphs L(G) and L(G") are isomorphic. Since L(G') is an induced subgraph of
L(H), it follows that L(G") is an embedding of L(G) in L(H) with = at y. Thus L(G)
can be homogeneously embedded in L(H). Let F' be an edge frame for G. Then, since
L(F) homogeneously embeds L(G), we have efr(G) = ¢(F) = p(L(F)) > fr(L(G))

and the desired inequality follows.O

Since an edge symmetric graph gives rise to a vertex symmetric line graph, it
follows that efr(G) = fr(L(G)) whenever G is edge symmetric. For the graph G
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of Figure 4.4, it will be shown that efr(G) = 12 while in [8] it was established that

fr(L(G)) = 6. Thus there exist graphs for which efr(G) > fr(L(G)).

Corollary 4 . 5 Let G be a nonempty graph which is different from C3 and Ki 3.
Then there exists a graph H such that the line graph L(G) of G can be homogeneously

embedded in the line graph L(H).

Before proceeding, we digress slightly to show that for a large class of graphs,
the edge homogeneous embedding requirement is stronger than the homogeneous
embedding requirement in a sense which will become clear in what follows. We
consider the following problem : given a pair of graphs G and H, when can G be
homogeneously embedded in H? We show that this problem can be reduced to a
problem of edge homogeneous embedding for a large class of graphs. The following

result due to Beineke [1] will be useful.

Theorem 4 . 6 (Beineke [1]) A graph H is a line graph if and only if none of the

graphs G; (1 <1 <9) of Figure 4.3 is an induced subgraph of H.

Let P denote the class of graphs G different from C5 and with the property that
none of the graphs of Figure 4.3 is an induced subgraph of G. By Theorem 4.6, each
graph in P is a line graph so that for each G € P; there gxists a graph G’ such that
G = L(G"). We denote such a graph G’ by L=(G). Theorem 4.5 yields the following

result.
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Theorem 4 . 7 For a given pair of graphs G and H in P, if L~(G) can be edge

homogeneously embedded in L=(H), then G can be homogeneously embedded in H.

Thus, for a large class of graphs, homogeneous embedding reduces to edge homo-
geneous embedding. In this sense, the edge homogeneous embedding requirement is

a stronger embedding requirement than the usual homogeneous embedding require-

ment.

Let e = ab be an edge of a nonempty graph G. We define the edge degree of e
in G to be edgs(e) = degga + degeb — 2. If v is the vertex of the line graph L(G)
. corresponding to e, then edgg(e) = degrgyv . Since the sum of the edge degrees
in G is just the sum of the degrees of the vertices of the line graph L(G), which is

an even number, it follows that there are always an even number of edges in G of

61



odd edge degree. We denote the maximum (minimum) edge degree of G by A4y (G)
(6.4q(G), respectively). Note that A.sy(G) = A(L(G)) and beqg(G) = 6(L(G)). Next

we present the edge analogue to Lemma 2.1.

Theorem 4 . 8 If a nonempty graph G can be edge homogeneously embedded in a

graph H, then

Aedy(G) < beag(H) < Deag(H) < |E(H)| = |E(G)] + beag (G)-

Proof. Necessarily Acgg(G) < beqg( H). The result is easily seen to be true if G is
C; or K;3. Assume, then, that G is different from C3 and Ky3. By Theorem 4.5 we
know that L(G) can be homogeneously embedded in L(H). Thus, by Lemma 2.1, it
follows that A(L(Q)) < 6(L(H)) < A(L(H)) < |V(L(G))| = |[V(L(G))| + 6(L(G))

By the remarks preceding the theorem, the desired inequality follows. O

Corollary 4 . 8 If a nonempty graph G can be edge homogeneo.usly embedded in a

graph H, then

|E(H)| 2 [E(G)] + Dedg(G) — beay (G).
Corollary 4 . 7 For any nonempty graph G
efr(G) 2 |E(G)| + Aedg(G) — 6eay(G).

Let G be a graph which is different from C; and K, 3. If G can be homogeneotiély
embedded in a graph H, then by Lemma 2.1 we know that A(G) < §(H). This result
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is not necessarily true if H edge homogeneously embeds G. However, we do have the -

following result.

Theorem 4 . 9 Let G be a nonempty graph which is different from C3 and K, 3. If

G can be edge homogeneously embedded in a graph H, then

§(H) > max{ min{degg a,degc b} : ab € E(G)}

Corollary 4 . 8 Let G be a nonempty graph which is different from Cs and K 3.
Suppose also that G has two vertices of marimum degree which are adjacent. If G

can be edge homogeneously embedded in a graph H, then §(H) > A(G).

Corollary 4 . 9 Let G be a nonempty graph which is different from C3 and K, 3.
Suppose also that G has two vertices of mazimum degree which are adjacent. If F is

an edge frame of G, then §(F) > A(QG).

Theorem 4 . 10 If a graph G can be edge homogeneously embedded in a graph H,

then

A(G) < A(H) S [V(H)| - V(@) + A(G).

Proof. Necessarily, A(G) < A(H). Let v be a vertex of G. Then v is not adjacent to
at least |V (G)|-A(G)~1 verticesin H. Since H edge homogeneously embeds @, every
vertex of H is not adjacent to at least |V(G)|~ A(G)—1 vertices in H. Consequently,
every vertex of H is adjacent with at most |V(H)| — 1 — (|V(G)| -1-A(Q)) =

[V(H)| — [V(G)| + A(G) vertices. That is, A(H) < |V(H)| - |[V(G)| + A(G). O

63



Corollary 4 . 10 If F is an edge frame of a graph G, then

A(G) < A(F) S V(F)| = V(G + A(G).

Theorem 4 . 11 Let G be a nonempty graph which is different from Cs and K 3.
Suppose also that G has two vertices of minimum degree which are adjacent. If G can

be edge homogeneously embedded in a graph H, then

§(G) < 8(H) < [V(H)| - [V(G)] + é(G).

Proof. Necessarily 6(G) < 6(H). The last inequality follows from an argument

similar to that used in Theorem 4.10. O

Corollary 4 . 11 Let G be a nonempty graph which is different from C3 and K 3.
Suppose also that G has two vertices of minimum degree which are adjacent. If F is

an edge frame of a graph G, then

8§(G) < 8(F) < |V(F)| - [V(G)| + 6(G).

In order to illustrate the concepts described above, we determine the edge framing

numbers of the graph P; x K3 and the graph G shown in Figure 4.4.

First we consider the graph R = P; x K,. Since R can be edge homogeneoﬁsly
embedded in the graph Cy x K, of size 12, efr(R) < 12. Let F be an edge frame
for R. By Corollary 4.9 and Corollary 4.11 we have 3 = A(R) < §(F) < |V(F)| -
\V(R)| + 6(R) = [V(F)| — 4--- (%) whence |V(F)| > 7. If |V(F)| = 7 then all
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the inequalities in (x) are equalities and F' is a 3-regular graph of order 7 which is
impossible. Thus |V(F)| > 8 and 2¢(F) > §(F)|V(F)| > 3 x 8 whence efr(R) =

q(F) > 12. Consequently efr(R) = 12.

G H

Figure 4.4: A graph G and its edge frame.

Next we consider the graph G shown in Figure 4.4. Since G can be edge homo-
geneously embedded in the graph H of size 12 shown in Figure 4.4, it follows that
efr(G) < 12. We next show that efr(G) > 12. Let F be an edge frame for G. Let a
be a vertex of minimum degree §(F') in F' and let b € N(a). Consider an embedding

G of G in F with edge zy at ab, say G' = (a, b, ¢, d) as shown in Figure 4.5.

An embedding of G in F' with edge zy at ad implies the existence of a vertex,
not in {a,b,c,d}, which is adjacent with a and d. Thus §(F) = dega > 4. Hence
p(F) > 6(F)+1=25. If p(F) = 5 then F = K5 which contradicts the fact that F
edge homogeneously embeds G. Thus p(F') > 6. Consequently, 2¢(F) > 4p(F) > 24,

so efr(G) = q(F) > 12. Hence efr(G) = 12.
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Figure 4.5:

4.4 Edge framing ratios of graphs

For a nonempty graph G, we define the edge framing ratio e frr(G) of G by ef fr(G) =
efr(G)/q(G). Certainly, ef fr(G) > 1 for every nonempty graph G, and effr(G) =1
if and only if G is edge transitive. The edge framing ratio of a graph G produces a
certain measure of the ’edge symmetry’ of GG, where the closer ef fr(G) is to 1, the

more "edge symmetric” G is.

For the graph G of Figure 4.4, efrr(G) = 12/5 while the path P, of length n —1
is edge framed by the cycle C, so efrr(P,) = 2y =1+ ;l—l which can be arbitrarily
close to 1.

While a graph G may be very symmetric relative to its edges, it may be unsymmet-
_ric relative to its vertices. For example, the star K ,, always has edge framing ratio 1,

while it is shown in [2] that K, ,, can have framing ratios arbitrarily close to 2. The

following result establishes a relationship between these two graphical parameters.
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Theorem 4 . 12 For a graph G,

efrr(G) > frr(L(G)).

Proof. The result is easily seen to be true if G is C3 or K 3. Assume, then, that G is

different from C3 and K, 3. By Theorem 4.5 we know that efr(G) 2 fr(L(G)). Thus,

since ¢(G) = p(L(G)), it follows that efrr(G) = e_g(%g);) > %&L-(ig%l = frr(L(G)). O

Of course, the edge framing ratio of every nonempty graph is a rational number.
We show that many rational numbers are edge framing ratios. We will require the

following result.

Theorem 4 . 13 For positive integers m 2 n,

efr(Kmmpn) = 3m?2.

Proof. Since Ky, mn can be edge homogeneously embedded in the graph K., » m of
size 3m?, it follows that efr(K my.) < 3m?. Let F be an edge frame for Ko mn-
Let e be an edge of Ky, m,» which joins the two partite sets of orders m and n and let
f = ab be an arbitrary edge of F'. Then an edge embedding of Ky, » in F' with e at
f implies the existence of an independent set S of m vertices such that each vertex of

S i1s adjacent to each of a and b. We denote the set of 2m edges joining the vertices

of S with @ and b by Sgs.

Consider an edge embedding G of Ky, ;m» in F. Denote the two partite sets of
G of order m by U = uy,us,...,un and V = vy,vs,...,0,. The edges e; = u;v;

67



(1 < ¢ < m) are independent. Moreover, since U and V are independent sets, the sets
Suw (1 <1 < m) are pairwise disjoint. The 2m? edges of U, Sy, together with the
m? edges joining U and V account for 3m? edges in F'. Hence e fr(Kmmn) = q(F) 2>

3m?. Thus efr(Kmmn) = 3m? as required. O

Theorem 4 . 14 For each rational number r € [1,3), there ezists a graph G with

efrr(G) =r.

Proof. Let r € [1,3) be a rational number. Then we may write r = 2+, where a and
b are integers with b > 0 and —b < @ < b. Consider the graph G = K420 4b+2a,0—a-

By Theorem 4.13, efr(G) = 3(4b+2a)? = 12(2b+a)?. Since the size of G is 126(2b+a),

2
12(2b + a) —94+% O

efrr(G) = b ra) ~ 213

4.5 The diameter of an edge frame
In this section we prove a partial edge analogue to Theorem 2.5.

Theorem 4 . 15 Let G be a nonempty connected graph, different from C3 and K, 3,
with diameter d. Let S be the set of all integers q such that there is a graph of size
q which edge homogeneously embeds G. Then for each q € S, there is a graph H of

size ¢ which edge homogeneously embeds G with the property that diam H < d 4 1.
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Proof. Let ¢ € S. From among all graphs of size ¢ which edge homogeneously embed
G, choose one, call it H, of minimum order. Let v be a vertex of H with eccentricity
D = diam H. Suppose that D > d + 2. Let V; be the set of vertices é,t distance ¢
from v (1 < i < D) and let u € Vp. Let H' be obtained from H by joining u to
every vertex of V; and deleting v. Let e € E(G) and f € E(H'). If f is not one of
the néwly adjoined edges in H’, then an edge embeddiﬁg of G in H is also an edge
embedding of G in H' with e at f because such an embedding cannot contain vertices
from both Vi and Vp. Suppose, then, that f is one of the newly adjoined edges of H'.
Then f = uv’ for some v’ € V. Let G; be an edge embedding of G in H with e at
uv’. Then the subgraph induced by [V(G1) — {v}]U {u} in H' is an edge embedding
of G in H' with e at f. Thus G can be edge homogeneously embedded in H’. Since
p(H) < p(H’), this contradicts the minimality property of H. Thus D < d + 1 and

H is a graph with the desired property. O

Corollary 4 . 12 Let G be a nonempty connected graph with diameter d. Then G

has an edge frame F' with diameter at most d + 1.

Proof. If G is C3 or K, 3 then we may take F' to be G itself. If G is different from

Cs and K, 3, then the result is an immediate consequence of Theorem 4.15. O

While it is always possible to find an edge frame F for a nonempty connected graph
G such that diam F' < diamG + 1, diam F' can be an arbitrarily large amount less

than diam G. For example, the cycle C,y is an edge frame for the path P, of length
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n and diam Crp1 = | 22| while diam P, =n — 1.

4.6 The edge framing number of two or more graphs

The concept of edge framing numbers can be extended to more than one graph. For
graphs G; and G, the edge framing number efr(Gi, G;) of Gy and G, is defined as
the minimum size of a graph F' such that G; (: = 1,2) can be edge homogeneously
embedded in F'. The graph F' is called an edge frame of G; and G;. Notice that

efr(G1, G,) exists and, in fact, efr(Gi,Gs) < efr(G1 U Gs).

In this section, we determine efr(Kj m,Cy) for all integers m > 3 and n > 4.

Theorem 4 . 16 For integers m > 3 and n > 4,

(m—-2)[3]+n ifn=0, 3(mod4)
or if m is even and

n =1(mod4) (n >9) or n = 2(mod4)

efr(Kim,Cr)

N

(m—2)[Z]+n+1 ifm is odd and

n =1(mod4) (n >9) orn =2(mod4)

4m—3 fn=>5

\

Proof. First we present upper bounds for efr(K;n,C,) by constructing graphs
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which edge homogeneously embed Kj ., and Cn. Thereafter we will proceed to show

that these constructions are optimal.
Construction 1 n =0,3 (mod4):

Let vy, vs,...,Vn,v1 be a cycle of length n and let 51, .5;,. .. ,5[45] be [%] pairwise
disjoint sets of independent vertices each of cardinality m — 2. Let Dy be the graph
obtained by joining each vertex of S; with the vertices v4—3 and vg_; (1 < 7 <
[2]) where all subscripts are reduced modulo n. Then D is a graph of size 2(m —
2)[3] +n = (m —2)[2] 4+ n which edge homogeneously embeds K, and C,. Thus

efr(Kim,Cn) < (m —2)[5] +n.

Figure 4.6: An edge frame for K; 3 and Cs.

Construction 2.1 n = 1(mod4) (n > 9) and m is even:

Let v1,vg,...,v,,v; be a cycle of length n and let 51,52,...,.9"_-21-_1 be (n +1)/2
pairwise disjoint sets of independent vertices such that |§;| = ==2 (1 <1<z,

2 2

Join each vertex of S; with the vertices Voi—z and voiqq (2 <7 < "zi — 1). Also join
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Figure 4.7: An edge frame for K, 3 and C.
each vertex of S1 (S 2;2[-_1) with the vertices vy,v3 (Vn—2,0n, respectively). Let D, denote

the resulting graph.

Choose u; € 5; (1 <: < 321'—1—) It is clear that every edge in D, lies on a,n‘ induced
K, , and that each edge of C' and each of the edges ujvy, u s, Unt1Un-2, Unt1Up lies
on an induced C, in D,. Observe that C,, = ([V(C") — {vai—2, Vai+2}] U {us, uia }) for
2 < i< ™2 It is now clear that each of the remaining edges of D, lies on an
induced C,. Thus D, is a graph of size Z* + 2 — 1 = (m — 2)[%] 4+ n which edge

homogeneously embeds K, and C, so that efr(Kj ,,Cpn) < (m —2) f%] +n.
Construction 2.2 n = 1(mod4) (n > 9) and m is odd:

Let vy, vz,...,vn,v1 be a cycle of length n and let Sy, S, ... ,Suz1 be M1 pairwise

disjoint sets of independent vertices such that [Sasi| = 7l and for 1 < < ml g,
3 <

3
]
w

if : = 1,4 (mod4)

N|

S| =

3
L

if 1 = 2,3 (mod 4)

NI
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Vi V3 V3 V4 V5 Vg V7 Vg Vg

S5 S & & S

Figure 4.8: An edge frame for K, 4 and C.

For (2<: < % — 1), join each vertex of S; with the vertices vqi_3 and vgi41. Also
join each vertex of S (Sgg_l) with the vertices vy,v3 (vn_3,vn, respectively). Let D

denote the resulting graph.

Then Dj is a graph of size %% + 7 = (m —2)[3] +n+1 which edge homogeneously

embeds K ,, and C, so that efr(Kym,Crn) < (m =2)[2] +n+ 1.

Vi YV, V3 V4 v5 v6 V7 v8 V9

Sl S2 SJ S4 Ss

Figure 4.9: An edge frame for K 5 and Cy.
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Construction 3.1 n = 2(mod4) and m is even:

Let v1,v2,...,0n,01 be a cycle of length n and let $y,5,,...,52 be 5 pairwise

disjoint sets of independent vertices such that [Si| = 22 (1 < ¢ < ). Let D4

be the graph obtained by joining each vertex of S; with the vertices vg;—y and vg;yy

(1 £ 4 < %) where all subscripts are reduced modulo n. Then Dy is a graph of

mn

size Z* = (m — 2)[3] + n which edge homogeneously embeds Ky and C,. Thus

efr(Kim,Cn) < (m —2)[%] +n.

S3 Sy

S

Figure 4.10: An edge frame for K, 4 and Cé.

Construction 3.2 n = 2(mod4) and m is odd:

Let v1,vs,...,v,,v1 be a cycle of length n and let SI,SQ,...,Sg be 7 pairwise
disjoint sets of independent vertices such that for 1 < ¢ < 518 = "‘T“q’ if 7 is even
and ;| = 21 if 1 is odd. Let Ds be the graph obtained by joining each vertex of S;

with the vertices vai—y and vgi4; (1 <0 < —}) where all subscripts are reduced modulo
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n. Then Ds is a graph of size Z% +1 = (m —2)[5] +n+1 which edge homogeneously

embeds K; ,, and C,. Thus efr(Kim,Cn) < (m —2) [%] +n+1.
cr— S > Sl
S3 W

S

Figure 4.11: An edge frame for Ky 5 and Cé.

Construction 4 n = 5:

Let vy, vq, V3, v4, vs5, v1 be a cycle of length 5 and let Sy, S, be pairwise disjoint sets of
independent vertices such that |S;| = m —2 (i = 1,2). Let Dg be the graph obtained
by joining each vertex of Sy (S;) with the vertices vq,v3 (v1,v4, respectively). Then

Ds is a graph of size 4m — 3 which edge homogeneously embeds K ,, and C5. Thus

efr(Kim,Cs) <4m — 3.

Next we show that the upper bounds given above are also lower bounds. In what
follows, we refer to a vertex v of a graph as a central vertez if v lies on an induced
K1, in which v has degree m. Before proceeding with the proof, we establish the

following preliminary results.
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Figure 4.12: An edge frame for K; 3 and Cs.

Claim 4 . 1 Suppose that H is an edgé frame for K13 and C,. Ifn # 5, then no
edge of H lies on a C3. If n = 5 and some edge of H lies on an induced Cs, then

q(H) > 4m -3 =9.

Proof Suppose that some edge, v;v; say, of H lies on an induced C3. Let C’ :
v1,V2,...,Vn,v; be an induced C, which contains the edge v;ve. Since each of the
edges €; = V3241 (1 <4 < |3]) lies on an induced K, 3 or Cs, €; is incident with
at least one other edge, say f;, not on C’. Observe that, since C’ is an induced
Cnin H, f; # f; for 1 # j. Thus efr(K3,Crn) = ¢(H) > 24 |3] +n - (%)
Since 2 + [2] + n > [2] + n, inequality (%) contradicts the upper bounds given in
Constructions 1 and 2.2. If n is even then 2 + [2| + n = 3 + 2 and inequality (x)
contradicts the upper bound given in Construction 3.2. Thus if n # 5 then no edge

of H lieson a Cs. Ifn = 5 then inequality (x) becomes ¢(H) > 9 as required. O
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Claim 4 . 2 If H is an edge frame for Kim and Cy, ((m,n) # (3,5)), then every

induced C,, in H contains at least |"2—‘] central vertices and q(H) > (m — 2) f%] + n.

Proof. Let H' be an induced C,, in H. By Claim 4.1 no edge of H' lies on a (3. Let
¢ denote the number of vertices of H’ which are central vertices. Since every edge e
of H must lie on an induced Kj ,,, it follows that at least one end-vertex of e must
be a central vertex. Each central vertex of H' lies on a K}, which contains at most
two (consecutive) edges of H'. Thus, since every edge of H' lies on a K n, it follows

that 2¢ > n, whence ¢ > [2]. Now each of the central vertices on H' is incident
with at least m — 2 edges none of which lie on H’. Thus efr(Kim,Cy) = q(H) > |

c(m—2)+n > (m—2)[5] +n as required. O

The lower bound given by Claim 4.2 coincides with the upper bounds ‘given in

Constructions 1, 2.1 and 3.1. Thus it remains for us to consider the cases n

2(mod4) (m odd), n =1(mod4) (where n > 9 and m is odd) and n = 5.
Case 1 m is odd and n = 1(mod4) (n > 9) or n = 2(mod4):

Let H be an edge frame for K, and C,. We must show that ¢(H) > (m —
2)[3] +n+1. Suppose, to the contrary, that ¢(H) < (m — 2)[2] +n. By Claim 4.2,

q(H) = (m — 2)[§] + n. Thus ¢(H) = (m — 2)[%] + n. By Claim 4.1 we know that

no edge of H lies on an induced Cs.

Claim 4 . 3 Let H' be an induced C,, in H. Then H' contains ezactly [2] central
vertices and the only edges in H are those incident with the central vertices of H on
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H'. Furthermore, the central vertices of H on H' all have degree m and the remaining

vertices of H' all have degree 2.

Proof. Suppose that H’' is the cycle vq,vs,...,v,,v;. Let ¢ denote the number of
vertices of H' which are central vertices. By Claim 4.2, ¢ > [2]. Each of the central
vertices on H' is incident with at least m — 2 edges none of which lie on H’. Thus
g(H)=(m—-2)[51+n>c(m—2)+n ---(x) whence ¢ < [%]. Consequently ¢ = [%]
and inequality () is an equality. Furthermore, it follows that the only edges in H
are those incident with the central vertices of H’. Consequently, the central vertices

of H on H' all have degree m and the remaining vertices of H' all have degree 2. O

Since H edge homogeneously embeds C,, we have the following result.

Corollary 4 . 13 Every verter in H has either degree 2 or m. Furthermore, every

verter of degree m is a central vertex.

Corollary 4 . 14 IfH' is an induced C,, in H, then at most two consecutive ﬁef'tices

on H' are central vertices.

Now let K be an induced Cy, in H. Then, by Claim 4.3, K contains exactly [2] central
vertices and the only edges in H are those incident with the central vertices of K. If
v is any vertex outside K then, since it lies on an induced C, and the only vertices
adjacent to it are central vertices, v cannot be a central vertex. By Corollary 4.13 we
deduce that every vertex outside K has degree 2. Thus the central vertices of K have
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degree m and all the remaining vertices of H have degree 2. But this implies that
there are an odd number of vertices, namely the [%] central vertices of K, of odd
degree in H which is impossible. Thus efr(K;m,Cn) = ¢(H) > (m —-2)[3] +n+1

and consequently efr(Kim,Cn) = (m —2)[3] +n+1. O
Case 2 n =25:

Let H be an edge frame for K;,, and Cs. We must show that ¢(H) > 4m — 3. If
m = 3 and some edge of H lies on a C3, then by Claim 4.1 we have efr(Ky3,Cs) =
q(H) > 4m — 3 = 9 and we are done. Thus, in what follows, we may assume that no
edge of H lieson a Cs if m = 3. Let H': ay, a2, a3, a4,4as,a; be an induced Cs in H.

By Claim 4.2 there are at least three central vertices on H'. Also, by Corollary 4.8,

§(H) > 2.

If there are at least four central vertices on H' then, since each of these central
vertices lies on an induced K, . which contains at most two (consecutive) edges of
H' efr(Kim,Cs) = ¢(H) 2 4(m —2)+5 = 4m — 3 and we are done. Assume
then that H' contains exactly three central vertices. Since each edge of H' lies on an

induced K;,, we may, without loss of generality, assume that a,,a; and a4 are the

central vertices of H on H'.

Suppose that there is one other central vertex , say v, in H (i.e. not on H'). Let K,
be an induced Ki in H containing v as a central vertex. Then, in K, v is adjacent

with at most two vertices from H' (possibly from a;,a; and a4). Consequently,
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efr(Kim,Cs) =q(H) > (m—2)+3(m —2)+5=4m —3 and we are done. Assume
then that ay,a; and a4 are the only central vertices in H otherwise there is nothing

to prove.

Since a; (a2) is a central vertex, there is an independent set Ty (T3, respectively)
of m — 2 vertices in H, none of which lie on H', such that (T; U a;) & K; 2 for
i =1,2. Let a € T} and b € T,. Since no edge of H lies on an induced Cj; it follows
that a # b. Furthermore, since a and b are not central vertices, a and b cannot be
adjacent. Then, since §( H) > 2, there are at least 2|71 UT;| = 4(m —2) edges incident
with the vertices in 77 U T,. These edges, together with the five edges of H’, account
for at least 4m — 3 edges in H. Consequently, efr(K1m,Cs) = ¢(H) > 4m — 3 as

required. O
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Chapter 5

Homogeneous embeddings of cycles

in graphs

5.1 Introduction

In this chapter we investigate the framing number and edge framing number of pairs

of cycles. We also investigate the framing number of pairs of directed cycles.

In Section 5.2 we determine the framing number fr(Gy,G,) for several pairs Gj,
G, of cycles. We extend the results of Chartfand et al. [2]. Forn > m > 3, we
show that fr(C,,,C,) > n + 2 and we characterize all those pairs of cycles C,, and
C, which have framing number n + 2. Furthermore, for each such pair (m,n), we

determine all the nonisomorphic frames of C,, and C,. Form =3 or4andn =1,8,9,
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or for 9 <m+2 < n < 2m — 5, we establish that fr(C,,C,) =n + 3. Furthermore,
in Section 5.3, for all integers n > m > 3, we establish upper bounds on fr(Cp,C,).
We show that fr(Cm,Cy) is at most n + [n/3] if m = 3 or 4, at most n +n/(m — 1)

if m —1|n and m > 4, and at most 7 + [n/(m —1)] + 1 otherwise.

In Section 5.4 we investigate the edge framing number e fr(G, G) for several pairs
G1, G, of cycles. We show that efr(Cp,Cy) = n+4if n = 2m — 4 and m > 5,
efr(Cm,Cr) =n+5ifn=2m—6and m > 7and efr(Cn,C,) =n+6if n =2m -8
(mZiO) orm=n—1(wheren>5andn ¢ {6,8})orm=n—-2(n=6orn>09).
It is also shown that efr(Cp,,Cyn) > n+6forn>m >4 withn #2m —4or2m —6
and (m,n) # (5,7). Furthermore, for the casesn =2m —4 (m > 5) and n =2m — 6

(m > 7) we show that C,, and C,, are uniquely edge framed.

Chartrand, Gavlas, and Schultz [2] extended the concept of framing numbers to
more than one graph. Framiné numbers of two or more digraphs can be defined
similarly. For digraphs D; and D, the framing number fr(D;, D;) of Dy and D,
is defined as the minimum order of a digraph F such that D; (i = 1,2) can be
homogeneously embedded in F. The digraph F is called a frame of D, and D,.
Notice that fr(Dy,D,) exists and, in fact, fr(Dy,Ds) < fr(Dy U D;). A directed
cycle of order n in which every vertex has indegree and outdegree equal to 1, will be
denoted by C.. G, is given by vy, (v1,v2), v2, (v2,v3), Vs, . .., Un, (v, v1), v, then we
will simply write vy, v, v3, ..., vn, v1. In Section 5.5 we investigate the framing number

fr(G1, Gz) for several pairs Gy, G of directed cycles. We characterize all those pairs
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of directed cycles C,. and C, which have framing number n + 2. Furthermore, for
each such pair (m,n), we determine all the nonisomorphic frames of C,, and C,.
Form =3or4andn = 7,89, or for 9 <m+2 < n < 2m — 5, we establish
that fr(ém,C—”n) = n 4 3. Furthermore, in Section 5.6, for all integers n > m > 3,
we establish upper bounds on fr(ém,én). We show that fr(C-"m,C_"n) is at most
n+ [n/2] if m =3 or 4, at most n+n/(m —1)if m —1|n and m > 4, and at most

n+ [n/(m —1)] + 1 otherwise.

5.2 The framing number of pairs of cycles

Chartrand et al. [2] investigated the framing number fr(Gi,G;) for several pairs
Gi, Gy of cycles. For small m and n, they established the values of fr(Cn,C,).
Their results are summarized in Table 2.5 in Section 2.2. In this section, we extend
the results of [2]. For n > m > 3 we characterize all those pairs of cycles C,, and
C, which have framing number n + 2. Furthermore, for each such pair (m,n), we

determine all the nonisomorphic frames of C,, and C,. The following lemma will

prove to be useful.
Lemma 5 . 1 Forintegersn >m >3, fr(Cp,Cy) > n +2.

Proof. By Theorem 2.11, it suffices to show that there is no graph of order n + 1

which homogeneously embeds C, and C,,. Assume, to the contrary, that such a
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graph H exists. Let C': all,ag,...,a,,,al be an induced C, in H, and let = be the
name of the vertex of H not in C". Let C; be an induced C, containing . Without
loss of generality, we may assume that C; is given by x,az,ag,...,dn,x. Hence
dega; = dega, = 3 and dega; = 2 forz = 3,...,n — 1. However there is then no
induced C,, containing the vertex v; (3 < i < n —1). This produces a contradiction.

a

Let $ = {(3,5),(3,6)} U{(m,n)|n = m+1and m > 3} U {(m,n)|n = 2m —
4 and m > 6}U{(m,n)|n=2m—3 and m > 5}U{(m,n)|n =2m—2and m > 4}.
For each (m,n) € S, we define a set Fn of graphs as follows. For m = 3 and
for + € {4,5,6}, or for m = 4 and ¢ = 5, let Fr; be the set of all nonisomorphic
graphs obtainable from the graph Fy,; in Figure 5.1 by adding any combination (the
presence or absence) of the dotted edges, provided that if uw is an edge of Fy 5, then
so too are uv and wz. Let Fy¢ be the set of all nonisomorphic graphs obtainable
from the graph Fyg or G4 in Figure 5.2 or the graph H,¢ in Figure 5.1 by adding
any combination (the presence or absence) of the dotted edges. Let Fg 5 be the set of
all nonisomorphic graphs obtainable from the graph Ggg or Hgg in Figure 5.1 or the
graph Fgg in Figure 5.2 by adding any combination (the presence or absence) of the
dotted edges. Form > 5andt=m+1,orform =50orm > 7and : = 2m — 3, or for
m > 7 and : = 2m—4, let F,,; be the set of all nonisomorphic graphs obtainable from
the graph Fp,; in Figure 5.2 by adding any combination (the presence or absence)

of the dotted edges, provided that if uw is an edge of F,, 2,3, then so too is vw.

84



Let Feg be the set of all nonisomorphic graphs obtainable from the graph Fgg in
Figure 5.2 by adding any combination (the presence or absence) of the dotted edges.
For m = 5 or m > 7, let F,, 2m—2 be the set of all nonisomorphic graphs obtainable
from the graph F, am-2 or Gpom—2 in Figure 5.2 by adding any combination (the
presence or absence) of the dotted edges. Let Fg 10 be the set of all nonisomorphic
graphs obtainable from the graph Hg 10 in Figure 5.1 or the graph Fg 10 or Ge0 in
Figure 5.2 by adding any combination (the presence or absence) of the dotted edges.

We are now in a position to present our next result.

Figure 5.1:
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m — 5 vertices
pr———

Fm,m+1 .
— -
m — 5 vertices m — 5 vertices
m — 4 vertices
m — 5 vertices
m — 4 vertices m — 4 vertices
e N, Y N
Fm,2m—2 . Gm,2m—2 :

e — N———
m — 4 vertices m — 4 vertices

Figure 5.2:

Theorem 5 . 1 For integers n > m > 3, fr(Cpn,C,) =n+2 if and only if (m,n) €
S. Furthermore, if (m,n) € S, then the set of all nonisomorphic frames of Cy, and

Cr is given by F, p.

86




Proof. If (m,n) € S, then C,, and C, can be homogeneously embedded in each graph
(of order n + 2) from the set Fp s, 80 fr(Cm,Cr) < n 4 2. However, by Lemma 5.1,

fr(Cm,Cr) > n+2. Hence fr(Cn,Cn) = n + 2. This establishes the sufficiency.

Nexf we consider the necessity. Let m and n be integers satisfying n > m > 3 and
assume that fr(Cp,C,) = n+2. Let H be a frame for C,, and C,,. Then p(H) = n+2

and Lemma 2.1 implies that 2 < §(H) K A(H)<(n+2)—n+2=4.

First we assume that for any induced n-cycle C' in H, the two vertices of H not
in C' do not belong to a common C,,. Let v,vy,..., v,, v; be an induced C, in H.
Let a and b be the names of the two remaining vertices of H. Further, let C, (C})
be an induced C, that contains the vertex a (b, respectively). By hypothesis, a and b
do not belong to a common induced C,. Without loss of geﬁera.lity, we may assume
that C, is v1,v9,...,Y5-1,a,v1. Since the vertices v, and b do not belong to C,, our
assumption implies that v, and b do not belong to a common induced C,. Hence C,
must contain the vertices vy, vs,...,v,—1. Hence Cy is given by vy, vs,...,v,_y, b, vy.
Thus degv; = degvn,—y = 3 and degv; = 2 for i = 2,3,...,n — 2. Hence H has the
subgraph shown in Figure 5.3. However, there is then no induced C,, containing the

vertex v; (2<i<n-—2).

Thus there exists an induced C, in H, say C': v;,v,,...,v,, v, such that the two
vertices of H outside C”, call them g and &, belong to a common induced C,, say C,.
Then C, contains the vertices g and h and n—2 vertices of C". If g and h are adjacent

vertices on Cj, then, without loss of generality, we may assume that C, is given by
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Un-2 V2

Figure 5.3: A subgraph of H.

V3, V4, ..., Vn, g, h,v3. Hence degvs = degv, =3 and degv; =2 fori =4,...,n — L.
Thus the graph shown in Figure 5.4 i; a subgraph of H. If n > 4, then there is no
induced C,, containing the vertex v; (4 <: < n—1), which produces a contradiction.
Hence n = 4, so m = 3. Furthermore, if v;g or v,k is not an edge of H, then H does
not homogeneously embed Cs. Hence v;¢ and v,h are both edges of H. Thus there
are three possibilities for H, depending on the presence or absence of the edges vag
and vyh. This yields the set F3 4 of three nonisomorphic frames for C3 and C,. Next

we assume that ¢ and h are nonadjacent vertices.

Un-1 V4

Figure 5.4: A subgraph of H.

If g and h are joined by a path of length 2 in C,, then, without loss of generality, we

may assume that C, is given by vs, b, vy, vs,...,v,,9,v;. Hence H has the subgraph
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shown in Figure 5.5. Then n > 5, degvs = 4, degvy = degv, = 3 and degv; = 2
(5 < i < n—1). Hence any cycle contains either all or no vertex from the set
{vs,...,0n-1}. Suppose n > 6. Then any induced C), containing the vertex v;
(5 < ¢+ < n—1) would contain the n — 3 vertices from the set {v4,vs,...,0s},
exactly one vertex from each of {v;,¢} and {vs,h} and therefore would have length
at least n — 1. Thus m = n — 1 > 5. However there is then no induced C,, containing
the vertex v,. Hence n = 5, so m = 3 or 4. If m = 3, then since each of vy and
vs belongs to a C3, both v,g and vzh must be edges of H. Hence there afe four
possibilities for H, depending on the presence or absence of the edges v,k and vaig.
This yields the set F3 5 of three nonisomorphic frames for C5 and Cs. If m = 4, then
for v, to belong to a (4, at most one of vyg and vsh is edges of H. If exactly one of
v19 and vgh is an edge, then both v;h and vsg must be edges of H. If neither v;g
nor v3h is an edge, then there are four possibilities for H, depending on the presence
or absence of the edges v;h and vsg. This yields the set F, 5 of four nonisomorphic

frames for C; and Cs.

VUn—1 Vs

Figure 5.5: A subgraph of H.
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Next we assume that g and h are at distance at least 3 apart on Cy. Then
n > 6 and, without loss of generality, we may assume that C, is given by ei-
ther vy, g, Vi, Vic1y- -+, U3, Ry Viga, Vig3y -+ Vny U1 (4 <¢ < n—2),in which case H
has the subgraph shown in Figure 5.6(2), or v1,v2,. .., Vk, fy Vk42,Vk43, - - -, Un-1, 9,01

(2 < k < n—4), in which case H has the subgraph shown in Figure 5.6(31).

n Uk

Un g h Uk+1

Figure 5.6:

Suppose that H has the subgraph shown in Figure 5.6(¢). Then each of the vertices
v1, V3, v; and v;4o has degree 3 while the remaining vertices of C’ have degree 2, éxcept
possibly for v, and v;y;. For notational convenience, we write u L v if u and v are

adjacent vertices, and v £ v if u and v are not adjacent. We consider two possibilities.

Case 1. 1 > 4.

Then the vertex vy belongs to induced cycles of only three possible lengths, namely,
¢, 1+ 1 and n depending on the presence or absence of the edges v,g, vah, v;419 and
vit+1h. Since vy belongs to an induced Cy,, we must have i = m — 1 or m. We consider

the two possibilities in turn.
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Casel.l.z=m—1.

Then m = ¢+ 1 > 6 and v; £ g or vy, £ h for otherwise vy belongs to no induced Ci,.
Without loss of generality, we may assume that v, £ h. Suppose n = m+1(=1i+2).
If v, L g, then the vertex v; belongs to induced cycles of only four possible lengths,
namely, 3, 4, 5, and n. Since v; belongs to an induced C,,, and m > 6, this produc_es
a contradiction. Hence v, £+ g. Then there are four possibilities for H, depending on
the presence or absence of the edges vah and v,,g. This yields the set fm,m.i.l of three
nonisomorphic frames for C,, and Cy41 (m > 6). Hence in what follows in Case 1.1,
we may assume that n > m 4 2 for otherwise there is nothing left to prove. Then the
vertex v, belongs to induced cycles of only three possible lengths, namely, n — m 4+ 3,

n —m + 4, and n. Since v, belongs to an induced C,,, it follows that n = 2m — 4 or

2m — 3. We now consider four cases.
Case 1.1.1. v+ g and n = 2m — 4.

Then v; £ h or vy, £ g. Without loss of generality, we may assume that v,, = ¢g. Then
there are two possibilities for H, depending on the presence or absence of the edge

vzh. This yields the set F, 2m—-4 of two nonisomorphic frames for C,, and Cap_y4

(m > 6).
Case 1.1.2. v+ g and n = 2m — 3.

Then vz L k or v, L g. Without loss of generality, we may assume that vy L h.

Then there are two possibilities for H, depending on the presence or absence of the
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edge vmg. This yields two nonisomorphic frames for C,, and Cam-3 (m > 6), namely
the graph Fi, 2m—3 in Figure 5.2 and the graph obtained from £ 2m-3 by adding the

edge vw.
Case 1.1.3. v, L g and n = 2m — 4.

Then v £ h or v, +g. If v, £ h and v, £ g, then this yields the graph obtained from
Frn2m-4 (m > 6) in Figure 5.2 by adding the dotted edge. If v, L A and v, £ g, then
m = 6 for otherwise v, belongs to no induced C,,, while if v, &+ A and v,, L g, then
m = 6 for otherwise g belongs to no induced C,,. Both cases yield the graph Ggg of

Figure 5.1.
Case 1.1.4. v L g and n = 2m — 3.

Then v L horv, Lg. Ifvy LA aﬁd vm L g, then this yields the graph obtained
from F; om—3 (m > 6) iﬁ Figure 5.2 by adding the two dotted edges. If v, J_ h and
vm £ g, then m = 6 for otherwise g belongs to no induced C,,, whilé if v + h and
Um L g, then m = 6 for otherwise v; belongs to no induced C,,. Both cases yield the

graph obtained from the graph Fs in Figure 5.2 by adding the edge uw.

Case 1.2. 1 = m.

Then m > 5 and v; L g or vy L A for otherwise v, belongs to no induced C,,.
Without loss of generality, we may assume that v, L g. Then the vertex v; belongs
to induced cycles of only four possible lengths, namely, 3, n — m + 2,n—m+3,and

n. Since v, belongs to an induced C,,, and m > 5, it follows that n = 2m — 3 or
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2%m — 2. We now consider four cases.
Case 1.2.1. vppyq £ h and n =2m — 3.

Then vy £ h or V41 £ g’. If v, + h and vmy1 £ g, then then this yields the graph
Fam-3 (m > 5) in Figure 5.2. If v; L h and vt £ g, then m = 6 for otherwise h
belongs to no induced Cy,, while if v+ h and vmg1 L g, then m = 6 for otherwise
Um+1 belongs to no induced Cr,. Both cases yieldv the graph obtained from the graph

Fs 9 in Figure 5.2 by adding the edge uw.
Case 1.2.2. vy £ hand n =2m — 2.

Then vy L h or vmy1 L g. If vy L h and vy L g, then then this yields the graph
Fr2m—2 (m > 5) in Figure 5.2 by adding any combination (the presence or absence)
of the dotted edges. If v; L h and vy,41 £ g, then m = 6 for otherwise vp41 belongs
to no induced C,,, while if v, + & and v;,41 L g, then m = 6 for otherwise h belongs

to no induced C,,. Both cases yield the graph Hg o in Figure 5.1.
Case 1.2.3. vyy1 L hand n =2m — 3.

Then vy + h or vy = g. Without loss of generality, we may assume that v,41 £ g.
Then there are two possibilities for H, depending on the presence or absence of the
edge v2h. This yields two nonisomorphic frames for C,, and Cym—3 (m > 5), namely
the graph obtained from Fy, 2,,—3 in Figure 5.2 by adding the edge vw and the graph

obtained from F;, 2,—3 by adding the edges uw and vw.
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Case 1.2.4. Um+1 LA and n =2m — 2.

Then vy L h or vy L g. Without loss of generality, we may assume that v, L h.
Then there are two possibilities for H, depending on the presence or absence of the
edge v 419. This yields two nonisomorphic frames for Cy, and Czp—3 (m > 5), namely

the graph obtained from G, 2pm—2 in Figure 5.2 by adding or omitting the dotted edge.
Case 2. 1 = 4.

Then the vertex v, belongs to induced cycles of only three possible lengths, namely,
n —2, n—1 and n depending on the presence or absence of the edges vag, v2h, vsg
and vsh. Since v, belongs to an induced C,,, we must have m =n—-2orm =n —1.

We consider the two possibilities in turn.
Case 2.1. m =n — 2.

Then vy L hor vs L g. Without loss of generality, we may assume that vs L g. Then
the vertex vq belongs to induced cycles of only four possible lengths, namely, 3, 4, 5,
and n. Since v4 belongs to an induced Cp,, and m = n —2 > 4, it follows that m = 4

or m = 5. We consider two cases in turn.

Case 2.1.1. m = 4.

Then n = 6 and v, L g or vs L h, for otherwise v, belongs to no induced C4. If
v2 L g and vs L h, then there are two possibilities for H, depending on the presence

or absence of the edge v,h. This yields two nonisomorphic frames for Cy and Cg,
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namely the graph G4¢ in Figure 5.2 or the graph obtained from G4 by adding the
dotted edge. If v, L g and vs & h, then v, L h for otherwise h belongs to no induced
C,, while if v, + g and vs L h, then vy L h for otherwise v, belongs to no induced

C4. Both cases yield the graph G,¢ in Figure 5.2.
Case 2.1.2. m = 5.

Then n = 7 and v, £ ¢ or vs = h, for otherwise vq belongs to no induced Cs. If
v2 £ ¢ and vs % h, then there are two possibilities for H, depending on the presence
or absence of the edge vzh. If v, L g and vs £ h, then v, L h for otherwise v, belongs
to no induced Cs. If v, £ g and vs L h, then vy L h for otherwise h belongs to no

induced Cs. This yields the set F5 7 of three nonisomorphic frames for Cs and C..
Case2.2. m=n—1.

Then m > 5 and vy + h 6r vs = g. Without loss of generality, we may assume that
vzt h. If vs £ g, then there are four possibilities for H, depending on the presence or
absence of the edges v2g and vsh. This yields the set Fp m41 of three nonisomorphic
frames for C, and Crmy1 (m > 5). Suppose that vs L g. Then the vertex vy belongs to
induced cycles of only four possible lengths, namely, 3, 4, 5, and n. Since v belbngs
to an induced C,,, and m = n — 1 > 5, it follows that m = 9, so n = 6. Thus
vs £ h, for otherwise vs belongs to no induced Cs. Furthermore, v, % g, for otherwise
g belongs to no induced Cs. This yields the graph obtained from F5¢ in Figure 5.2

by adding exactly one of the dotted edges.
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Suppose next that H has the subgraph shown in Figure 5.6(iz). Then each of
1, Uk, Vks2 and vy—q has degree 3 while the remaining vertices of C’ have degree 2,

except possibly for vkyq and vy,

Suppose, firstly, that n = 6, i.e., C, is given by g, vy, vy, b, v4,vs, 9. Then no vertex
of H belongs to an induced Cj irrespective of the presence or absence of the edges
vag, vsh,veg and veh. Hence m = 3 or 4. If m = 3, then we must have vz L A
and vg L g. Thus H homogeneously embeds C3 and Cs and this does not depend
on the presence or absence of the edges vsg or veh. This yields the set F3¢ of three
nonisomorphic frames for C3 and Cg. Suppose m = 4. If v3 = h and vg £ g, then
H homogeneously embeds Cy and Cg and this does not depend on the presence or
absence of the edges vsg or vgh. This yields three nonisomorphic frames for Cy and
Ce, namely the nonisomorphic graphs obtained from Hyg in Figure 5.1 by adding any
combination (the presence or absence) of the dotted edges. If v3 L h or vg L g, then
wifhout loss of generality, we may assume that ve L .g. Since vs (g) belongs to an
induced C4, v¢ L h (vs L g, respectively). Thus H homogeneously embeds C4 and
Ce and this does not depend on the presence or absence of the edge vsh. This yields
two nonisomorphic frames for Cy and Cs, both of which are obtainable from Fy¢ in

Figure 5.2 by adding either one or both of the dotted edges.

Suppose, next, that n > 7. Then k > 3 or k¥ < n — 5; that is, there must exist an
internal vertex on the v;-v; path or the viy2-v,_; path on C' that does not contain

vn. Such a vertex belongs to no Cs or Cy. Hence m > 5. Let C!. be an induced C,,
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containing the vertex v;.

If v, and g belong to C! , then, since m > 5, it follows that v, £ g and C], must
contain the vertices vgy1 and h (so v,h and vi419 are edges on C),). If vgy1 £ A, then
C! is of length 6, so m = 6. It is readily seen that if n # 8, then there exists an
internal vertex on the vi-v; path or the vgy2-v,—1 path on C’ that does not contain
v, that belongs to no 6-cycle. Hence n = 8. Then there exists an internal vertex on

the v1-v; path or the vgs-v,—; path on €' that does not contain v, that belongs to
no induced 6-cycle unless one of these paths have length 3 and the other has length 1.
Withoqt loss of generality, we may assume that k& = 4. This yields the gfaph Hgg
in Figure 5.1 which frames Cs and Cs. On the other hand, if viy1 L A, then C/, is
of length 5, so m = 5. If n = 7, then either k¥ = 2, in which case v; belongs to no
induced Cs, or k = 3, in which case vs belongs to no induced Cs. If n > 9, then there
exists an internal vertex on the v;-vy path or the vgyo-v,_ path on C’ that does not
contain v, that belongs to no 5-cycle. Hence n = 8. Then there exists an internal
vertex on the v-vx path or the viy2-v,-1 path on C’ that does not contain v, that
belongs to no induced 5-cycle unless both of these paths have length 2. i.e., unless
k = 2. Hence H is the graph shown in Figure 5.7. However, this graph is isomorphic

to the graph obtained from Fjg in Figure 5.2 by adding exactly one of the dotted

edges.

Next we assume that v, and g do not both belong to C’,. Then C”, contains the

k vertices from the set {vy,vs,...,v:}, exactly one vertex from each of {vn,9} and
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Figure 5.7: A frame for C5 and Cs.

{vkg1, h}, and either all or no vertex from the set {vp42, Vi3, ..., vn-1}. Since C] has
length m, it follows that C!, contains no vertex from the set {vit2,Vk43,...,0n-1}.
Therefore C!, has length k+2 = m. Consequently, k = m—2. However, if we consider
an induced C,, containing the vertex vi4,, then we may show that this cycle contains
the n — k— 2 vertices from the set {vg42, k43, - .., Un1}, €xactly one vertex from each
of {vn, ¢} and {vky1,h}, and no vertex from the set {vy,vs,...,v}. This shows that
n — k = m, or, equivalently, ¥ = n — m. Consequently, n = 2m — 2 and & = m — 2.
Without loss of generality, we may assume that v, L h. If vy,—; +g, then v,,_; belongs
to no indu.ced Cm (5 <m < n). Hénce Um-1 L ¢g. Thus H homogeneously embeds
Cm and Com_2 and this does not depend on the presence or absence of the edges
Um-1h OF Vam—_29. This yields three nonisomorphic frames for C,, and Com—z (m > 5),
namely the nonisomorphic graphs obtained from Fp, 2,,—2 in Figure 5.2 by adding any

combination (the presence or absence) of the dotted edges. This completes the proof

of the theorem. O
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As a corollary of Theorem 5.1, we may determine exactly how many nonisomorphic
frames of Cp, and C, exist. Let S2 = {(m,n)|n = 2m —4andm > T}, S5 =
((3,4),(3,5),(3,6)}U{(m,n) |n = m+1 and m > 5}U{(m,n) |n = 2m~3 and m =
5orm > 17}, Sy ={(4,5),(6,8),(6,9)}, Ss = {(m,n)|[n=2m—-2and m =5 0r m >
7}, Se = {(6,10)}, and S7 = {(4,6)}. Then S = UL_;S;. The following result follows

immediately from Theorem 5.1.

Corollary 5 . 1 If(m,n) € S, then C,, and C,, have ezactly i nonisomorphic frames

of order n + 2 if and only if (m,n) € S; for some i with 3 <1< 7.
The next result is an immediate consequence of Lemma 5.1 and Theorem 5.1.

Corollary 5 . 2 For positive integers n > m > 3, if (m,n) € S, then fr(Cpn,C,) >

n+ 3.
Proposition 5 .1 Form > 7, fr(Cp,Cm42) = m + 5.

Proof. Since Uy, and Crny2 (m > T) can be homogeneously embedded in the graph of
order m + 5 shown in Figure 5.8, it follows that fr(C,,Cny2) < m+ 5. However, by
Corollary 5.2, for m > 7, fr(Cm,Cpy2) > m + 5. Hence for m > 7, fr(Cm,Cry2) =

m+5. 0
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——
m — 5 vertices

Figure 5.8: A frame for Cr, and Cpy2 (m 2 7.

5.3 Upper bounds on fr(Cy,,C,)

In this section, we establish upper bounds on fr(Cm,Cy) for all integers n > m > 3.

Theorem 5 . 2 For integers n > m 2 3,

4

n+[%] ifm=3or4

fr(Cm,Cr) <9 n+ 2o ifm—1|n and m > 4

-1

n+ [-2=]+1 otherwise

m-=1

Proof. Suppose firstly that m = 3. Let k£ = [n/3]. Let G be the graph ob-

tained from the induced n-cycle C' : v, v1,v2,...,05-1,00 by adding k new vertices

wo, W, ..., wr_1 and, for : = 0,1,...,k — 1, joining w; to the three vertices vs;, vs;41

and v3;42 where addition is taken modulo n. Then each vertex of G clearly be-

longs to a C3. Furthermore, the cycle obtained from C’ by replacing the vertex vs;;

with the vertex w; (and the edges w;vs; and w;v3;42) is an induced C,, containing w;

(0 <7< k—1). Hence C; and C, can be homogeneously embedded in the graph G
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of order n 4+ k = n + [n/3]. Thus fr(Cs,Cs) < n+[2]. If m = 4, then let G’ be the
graph obtained from G by deleting the edges w;vsiyy for ¢ = 0,1,...,k — 1. Then Cj
and C, can be homogeneously embedded in the graph G’ of order n+k = n+ [n/3].

Thus fr(Cy,Cn) <n+ [%].

Suppose next that m > 5. Let £ = [n/(m — 1)]. Let Gn . be the graph ob-
tained from the induced n-cycle C' : vg,v1,vs,...,v,-1,v9 by adding £ new vertices
Wo, W1, . - ., We—q and, for 2 =0,1,...,f —1, joining w; to the three vertices vim_1)-1,

Vi(m-1)+1 and v(i41)(m-1) Where addition is taken modulo n.
Case 1. m—1 | n.

Thus n = ¢(m — 1). (The graph Gs ;6 is shown in Figure 59) Then C,, and C, can

be homogeneously embedded in the graph G, of order n + £ =n+n/(m —1). To

see this, observe that for ¢ = 0,1,..., -1, each vertex w; belongs to an induced C,,,
namely C,(,i) P Wi,y Vitm—1)41> Vi(m=1)+25 - - - V(i+1)(m—1), Wi. Furthermore, replacing the
vertex vim-1) on C’ with the vertex w; for all i = 0,1,...,¢ — 1 produces an induced

Cn containing each w;. Furthermore, each vertex of C’ belongs to C{!) for exactly
one i (0 <¢ < £—1). Consequently, G, n homogeneously embeds C,, and C,. Thus,

Jr(Cm,Cr) <n+nf/(m—1).

Case 2. m—1|n+1.

Thus n = £(m — 1) — 1. Let F, be the graph obtained from Gy, by deleting the

edge w1 v; and adding a new vertex w, and joining it to vg, v; and we_;. (The graph
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Figure 5.9: The graph Gf 1.

Fs 15 is shown in Figure 5.10.) Then C, and C, can be homogeneously embedded
in the graph F,,, of order n + £+ 1 =n+ [n/(m — 1)] + 1. Thus, fr(Cpn,C,) <

n+[n/(m-1)] +1.

Figure 5.10: The graph Fs ;s.
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Case 3. m—1|n—1.

Thus n = (£ —1)(m — 1) + 1. Let Hn,n be the graph obtained from G, as follows:
Delete the edge wy—sv,—; and add the edge we—2v(¢-3)(m-1); delete the three edges
incident with we.; and join we—1 t0 V(E—2)(m-1)+1s Vn-1 and v; add a new vertex
we and join it t0 V(e-2)(m-1), V(e=2)(m-1)+2 and vo. (The graph Hge is shown in
Figure 5.11.) Then Cp and C, can be homogeneously embedded in the graph H,,

of order n + £+ 1=n+ [n/(m —1)] + 1. Thus, fr(Cm,Cr) <n+ [n/(m—1)] +1.

Figure 5.11: The graph He 6.

Case 4. m — 1 does not dividen —1 orn orn +1.

Thus n = (£ — 1)(m — 1) + r for some r satisfying 1 < » < m — 2. Let I, be the
graph obtained from G, by adding a new vertex w, and joining it to v(_1)m-1),
Ve(m-1)-1 and Vym—1)41 Where addition is taken modulo n; that is, w is joined to v,_,
VUmer—2 and Up_y. (Thé graph I5 4 is shown in Figure 5.12.) Then C,, and C,, can be
homogeneously embedded in the graph I, , of order n 4+ 4+ 1 =n+[n/(m-1)] +1.
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Thus, fr(Cm,Crn) <n+ [n/(m—-1)]+1. 0

Figure 5.12: The graph Is 14.

Two immediate corollaries of Theorems 5.1 and 5.2 and Corollary 5.2 now follow.

Corollary 5 .3 Form=3orm=4andn =1,8,9, or for7T<m+2 <n < 2m-35,

fr(Cn,Cn) =n+3.

Corollary 5 . 4 Form >4 and n=2(m —1) orn =3(m — 1),

Fr(Comy C) = 1+ ——.
—

5.4 The edge framing number of pairs of cycles

Since K;3 and Cj are edge isomorphic, the following result is an immediate conse-

quence of Theorem 4.16.
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Proposition 5 . 2 For any integer n > 3,

. [2] +n ifn =0 or 3(mod4)
efr(Cs, Cy) =

[21+n+1 ifn=1 or2(mod4)
Hence in this section we consider integers n > m > 4. For such integers, every graph
that edge homogeneously embeds C,, and Cy, also vertex homogeneously embeds C,

and C,,. Hence we have the following corollary of Lemma 5.1.

Corollary 5 . 5 For integersn > m > 4, if H is a graph that edge homogeneously

embeds C, and Cy,, then p(H) > n + 2.
The following lemmas will prove to be useful.

Lemma 5 . 2 Let G and H be graphs with no induced Cy4, and let F' be an edge

frame of G and H. If u and v are two vertices of degree 2 in F, then N(u) # N(v).

Proof. Assume, to the contrary, that N(u) = N(v). We show then that F' — u edge
homogeneously embeds G and H. Let e € E(G) and let f € E(F — u). Let G, be
an edge embedding of G in F with e at f. If u € V(G,), then G, is in F.—— u. If
u € V(G.), then, since Cy £ G, v € V(G.) and therefore ((V(G.) — {u}) U {v}) is an
edge embedding of G in F —u with e at f. Hence F' — u edge homogeneously embeds

G. Similarly, F' — u edge homogeneously embeds H. This, however, contradicts the

fact that F is an edge frame of G and H. O
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Lemma 5 . 3 For integers n > m > 4, if H is a graph that edge homogeneously

embeds C, and Cr,, then H contains at least three vertices of degree at least 3.

Proof. Let C’' : vy, v1,...,Vm-1,Vo be an induced Cy, in H, and let C” be an induced
C, in H which contains the edge vovy. Further, let v;,vipq,...,00,01,. .., vj-1,v;
(5 < ¢) where addition is taken modulo m, be a longest path common to C’ and C”
that contains the edge vov;. Since v;_; and vj41 do not belong to C”, it follows that
each of v; and v; has degree at least 3. We deduce, therefore, that every induced C,,

and C,, contains at least two vertices of degree at least 3.

Suppose that H has exactly two vertices, a and b say, of degree at least 3. Since
every induced C,, and C, contains at least two vertices of degree at least 3, the
vertices @ and b must lie on every induced Cy, and C,, in H. Consequently, the graph
H consists of the vertices a and b and a set S of internally disjoint paths joining a and
b. Observe that any induced cycle containing an edge of a path from S must contain
all the edges of this path. Hence we may denote an induced C,, or C, containing a
path P € S by Cp,,(P) or Co(P), respectively. Let P’ be a shortest a-b path, and let
P denote the a-b path of length n — d(a, b) on C,(P') which is disjoint from P’.
Furthermore, let P(*) denote the a-b path of length m — (n — d(a, b)) on Crm(PW)
which is disjoint from P(). Then P(® is an a-b path of length less than d(a,b), which

1s impossible. The desired result now follows. O
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Proposition 5 . 3 Form > 5, efr(Cm,Cam-4) = 2m. Furthermore, Cr, and Czm_4

are uniquely edge framed by the graph shown in Figure 5.13.

Proof. Since C,, and Cy,_4 can be edge homogeneously embedded in the graph
of size 2m shown in Figure 5.13, it follows that efr(Cm,Com-4) < 2m. Now let F
be an edge frame for Cy_4 and Cy,. By Corollary 5.5, p(F) > 2m — 2. Applying
Theorem 4.8, we have §(F) > 2. Let k be the number of vertices of H of degree
a.t least 3. By Lemma 5.3, k£ > 3. Hence 2(2m) > 2¢(F) > 3k + 2(p(F) — k) =
2p(F)+k > 2p(F)+3 whence p(F) < 2m—2. Thus p(F) = 2m—2 = fr(Cp,Com-4). .
By Theorem 5.1, the only graph of order 2m — 2 which both frames C,, and Cs,,_4 |
and edge homogeneously embeds C,, and C,,—4 is the graph shown in Figure 5.13.
Consequently, efr(Cm,Cam-4) = 2m, and C,, and sz_,;- are uniquely edge framed

by the graph shown in Figure 5.13. O

\ .
m — 5 vertices
P iy

m — 5 vertices

Figure 5.13: An edge frame for C,, and Cs,,_4 for m > 5.

Lemma 5 . 4 Letn > m > 4 where n # 2m — 4 and (m,n) # (5,7). If a graph H

edge homogeneously embeds C,, and C,, then p(H) > n + 3.
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Proof. Let H be a graph which edge homogeneously émbeds Cmn and C,. By
Corollary 5.5, p(H) > n + 2. Suppose that p(H) = n + 2. Then by Lemma 5.1
we deduce that H frames Cy, and Cn. By Theorem 5.1 it follows that (m,n) € S,
where S is the set of ordered pairs defined in section 5.2 For (m,n) € S the frames
for C,, and C, have been completely determined in Theorem 5.1 and in each case
it is éasily checked that H does not edge homogeneously embed C,, and C, unless
n = 2m — 4 (in which case H is the graph shown in Figure 5.13) or n = 2m — 3
and m = 5 (in which case H is the graph shown in Figure 5.14). This produces a

contradiction and we deduce that p(H) > n+3. O

Figure 5.14: An edge frame for Cs and C5.

Proposition 5 . 4 Form > 7, efr(Cp,Com_¢) = 2m — 1.

Proof. Since Cr, and Chm_s can be edge homogeneously embedded in the graph of
size 2m — 1 shown in Figure 5.15, it follows that e fr(Cm, Com—s) < 2m — 1. We show
that e fr(CmyCom-6) = 2m — 1 by verifying that there is no graph of size 2m — 2
or less which edge homogeneously embeds Cm.a.nd C2m-6. Suppose, to the contrary,
that such a graph H exists. By Lemma 5.4, p(H) > 2m — 3. Applying Theorem 4.8,.
we have §(H) > 2. Let k be the number of vertices of H of degree at least 3. By
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Lemma 5.3, k > 3. Hence 4m — 4 > 2¢q(H) > 3k + 2(p(H) — k) = 2p(H) + k >

2(2m — 3) + 3 = 4m — 3, which is impossible. O

m — T vertices
/-__

| S—
m — 6 vertices

Figure 5.15: An edge frame for C,, and Com_g for m > 7.

Lemma 5 .5 Forn > m > 4 where n # 2m — 4 orn = 2m — 6, there is no graph

of order n + 3 and size at most n + 5 that edge homogeneously embeds C,,, and C,.

Proof. Assume, to the contrary, that such a graph H exists. Applying Theorem 4.8,
we have §( H) > 2. Let k be the number of vertices of H of degreé at least 3. Hence
2n +10 > 2¢(H) > 3k +2(p(H) — k) = 2p(H) + k =2n+6 + k,so k < 4. By

Lemma 5.3, k > 3. Thus k = 3 or 4.
Case 1. k= 3.

Since every graph contains an even number of vertices of odd degree, at least one
vertex of H has degree 4 or more. Thus 2n + 10 .2 2q(H) > 10 + 2(p(H) — 3) =
2p(H) + 4 = 2n + 10. Since all these inequalities must be equalities, it follows that
q(H) = n+ 5 and H contains two vertices of degree 3, one of degree 4, and n of
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degree 2. Let w denote the vertex of degree 4. Since no vertex of degree 2 in H can
lie on a K3, and since ¢(H) = n + 5 and 6(H) = 2, it follows that every induced
C, in H must contain the vertex w. Let C, : w = wy, ws,...,w,, w; be an induced
C, containing w, and let a, b, and ¢ be the names of the three vertices of H not in
Cp. Without loss of generality, we may assume that w is adjacent to ¢ and b. Since
q(H) = n+5 and 6(H) = 2, at most one of a and b is adjacent to a vertex of C,
different from w. Without loss of generality, we may assume that b is adjacent to no
vertex of C, other than w. Since no vertex of degree 2 in H can lie on a K3, and
since ¢(H) = n+ 5, the vertices a and b cannot be adjacent. Hence b is adjacent only

to ¢ and w.

Suppose firstly that a is adjacent to ¢. If deg ¢ = 2, then ¢ belongs to no induced C,
for £ > 5. Hence degc = 3. Then a and b are vertices of degree 2 with N(a) = N(b).
Thus we must have m = 4 otherwise by Lemma 5.2 we have a contradiction. Now cis

adjacent with w; for some j (2 < j < n). Thus H is the graph shown in Figure 5.16.

Wy, w1 Wa
a b
_ c

Figure 5.16: The graph H.

Then degw; = degc = 3, deg w; = 4, and the remaining vertices of H have degree

2. Thus any induced Cy containing the edge wyw, must contain the vertices wy, Wy,
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¢ and either a or b. Consequently 7 = 2. Similarly, by considering the edge w;w,
we get j = n. Thus n = 2, a contradiction. Thus a and ¢ are not adjacent. Since
q(H) = n+5, dega = degc = 2. Since no vertex of degree 2 belongs to a Ka,
the vertex a is not adjacent to w,; or w,. Furthermore, the vertex c is not adjacent
to wq or wy, for otherwise ¢ belongs to no induced C, for n > 5. Without loss of
generality, we may assume that a is adjacent to w, and c is adjacent to w, where

3 <s<r<n-—1. The graph H is shown in Figure 5.17.

Wy

Figure 5.17: The graph H.

Since the vertex b belongs to no Cy, we must have m > 5. If r = n — 1, then a
and wy, are vertices of degree 2 with N(a) = N(w,) which contradicts Lemma 5.2.
Hence r < n—2. We now consider the vertex a. The vertex a belongs to three cycles,
namely, C®) : a, w,, Wy41,. .., wn,ws,a (of length n —r +3),C? :a,wy,wy,...,w,a
(of length r +1) and C® : a,wy, b, ¢, w,, wyyy,. .. , Wy, a (of length r — s +5). At least
one of these cycles is of length n. If C) has length n, then r = s = 3 contradicting
r > 5. If C® has length n, then r = n — 1 contradicting r < n — 2. Therefore C®
must be of length n, implying that n —2>r=n+35—5 50 s < 3. Thus s = 3 and

r =mn —2. But then the vertex w, belongs to three cycles of lengths 5, n and n + 1.
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Hence m = 5. However the edge w3w, then belongs to no Cf, a contradiction. Hence

Case 1 produces a contradiction.
Case 2. k =4.

Then 2n + 10 > 2¢(H) > 2n + 6 + k = 2n + 10. Since all these inequalities must be
equalities, it follows that ¢(H) = n + 5 and H contains four vertices of degree 3 and

n — 1 vertices of degree 2. The following claim will prove to be useful.

Claim 5 . 1 IfC’ is an induced C,, in H and U the set of three vertices of H that
do not belong to C', then (U) = K; U K3 or Ps. Furthermore, if (U) = Ky U K3, then
each vertex of U has degree 2 in H. If (U) = Ps, then the central vertez of this Ps

has degree 3 in H and the two end-vertices have degree 2 in H.

Proof. Since ¢(H) = n + 5, there are exactly five edges incident with the vertices
of U. Since §(H) = 2, and no vertex of degree 2 belongs to a K3, a simple counting
argument shows that ¢((U)) = 1 or 2. Hence (U) = K, UK, or Ps. If (U) = K, U K;,
then, since ¢(H) = n + 5, each vertex of U has degree 2 in H. If (U) = P, then
three of the five edges incident with vertices of U are also incident with vertices of
C'. 1t follows that exactly three of the four vertices of degree 3 belong to C’ and the
remaining vertex of degree 3 is in U. Hence one vertex of U has degree 3 and the
remaining two vertices have degree 2. Suppose (U) is the path a,b,c, and C' is the
(induced) cycle vy, vy, ..., v,,v1. We show that deg b = 3. If this is not the case, then
we may assume that dega = 3 and deg b = deg c = 2. Without loss of generality, we
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may assume avi, av; and cv; are edges of H where 2 < i < j < n. The graph H is

shown in Figure 5.18.

Un V2

V; v;

Figure 5.18: The graph H.

Since the vertex b belongs to no 4-cycle, we may assume here that n > m > 5.
Now there are only two iﬁduced cycles containing the edge v;v2, namely C’ and the
cycle C” : vy,vg,...,v;,a,v;. Since C’ has length n, C” must have length m so that
i = m — 1. We now consider the edge av;. The edge av, belongs to three induced
cycles, namely, C” (of length m), vy, @, Vm—1,Vm, Vmt1, - - - Un, v (of length n—m+4)
and C" : vy,a,b,¢,vj,...,0,,v; (of length n — 5+ 5). Thusn = n—-m+4 or
n=n-—3+5. Ifn=n-m+4, then m = 4 contradicting m > 5. Thus C” has
lengthn and j =5. Hencem —1=:1<j—1=4,som <5, ie,m=>5. But then
the edge avy belongs tono Cy, a contradiétion. We deduce, therefore, that degb = 3

and deg a = deg ¢ = 2. This completes the proof of the claim. O

We now return to the proof of Case 2. Let u and v be two (distinct) vertices of
degree 3 for which d(u,v) is a minimum, and let P be a shortest u-v path. Then all
interior vertices (if any) of P have degree 2. Let Cp : vy, v3,...,v,,v; be an induced

Cy containing an edge of P. Necessarily, Cp contains all edges of P. Let a, b, ¢ be the
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three vertices of H that do not belong to Cp. By Claim 5.1, ({a,b,c}) & K; U K; or

P5;. We consider the two possibilities in turn.
Case 2.1 ({a,b,c}) = Ps.

Without loss of generality, we may assume that a,b,c is a path. By Claim 5.1,
degb = 3 and dega = degc = 2. Since b is adjacent to a vertex of degree 3 of Cp,
our choice of u and v implies that d(u,v) = 1, so u and v are adjacent vertices on
Cp. Without loss of generality, we may assume that ¥ = v; and v = vy. If b is
adjacent to either u or v, then, without loss of generality, H is then the graph shown
in Figure 5.19(z). Since the vertex a belongs to induced cycles of only two possible
lengths, namely, 4 and n, we must have m = 4. But then the edge v v, belongs to

no Cy,, a contradiction. Hence b is adjacent to neither u nor v, so bv; is an edge for

some z (3 <1< n).

)1 V2
a
b
c
¢

(2)

Figure 5.19: The graph H.

Without loss of generality, H is then the graph shown in Figure 5.19(72). Since

the edge v;v; belongs to no 4-cycle, we must have m > 5. The edge bc belongs to
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three cycles, namely b, ¢, v, vy, a,b (of length 5), b, ¢, va,v3,...,vi, b (of length ¢ 4 1)
and ¢, b,v;, Vig1y- -+, Un, V1, V2, ¢ (of length n — 4 4+ 5). Since n > 5, we must have
n=1+1lorn—1t+5. Suppose n =n —i+5. Then i = 5 and the edge v,v, lies
on cycles of only two possible lengths, namely, n — 1 and n. Hence m =n — 1. Now
the edge v1v, (v2v3) lies on cycles of length 5,7 and n (6,7 and n, respectively). We
deduce that m = 7 and n = 8. However, then, n = 2m — 6 which is contrary to our
choice of m and n. Thus n =7+ 1, i.e.,2 = n — 1. The edge vyv3 then lies only on
cycles of length n and n + 1 so that v,v; does not lie on any cycle of length m. This

produces a contradiction.
Case 2.2 ({a,b,c}) =2 K; U K,.

Without loss of generality, we may assume that @ is the isolated vertex in (U), so bc
is an edge. By Claim 5.1, each of a,b and ¢ has degree 2. Let C, be an induced C,
containing the vertex a. We show that the edge bc belongs to C,. If this is not the
case, then, without loss of generality, we may assume that C, is a,v;,v3,...,v,,a.
By Claim 5.1, the three vertices v, and ¢ that do not belong to C, induce either
a P3or K1 UK. If ({vi,b,c}) = Ps, thep, since A(H) = 3, the vertex v; must be
an end-vertex of ({v1,b,¢}) = P;. But then v, has degree 3 in H which contradicts
Claim 5.1. Thus ({v1,b,¢}) = K, U K; and v, has degree 2 in H. Hence a and v;
are two nonadjacent vertices of degree 2 in H with N(a) = N(v;). This, however,
contradicts Lemma 5.2 if m > 5. Hence m = 4. Without loss of generality, we may

assume that the vertex b (c) is adjacent with the vertex v; (v;, respectively) where
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3 <i<j<n-1. Since the edge bc must lie on an induced Cj, it follows that
j =1+ 1. However the edge bc then belongs to no cycle of length 5 or more. This

produces a contradiction. We deduce, therefore, that the edge bc must belong to C,.

Let S be the set of three vertices of Cp that do not belong to C,. By Claim 5.1,
(S) & K; UK, or Ps. Clearly, (S) & K; U K,. Without loss of generality, we may
assume that S = {vq,v;,viy1} where 5 <1 < n —2. Hence n > 7, and vy, v3,v;—1
and v;;, are the four vertices of degree 3 in H. If N(a) = N(v,), then, since the
edge be belongs to cycles only of length 6 and n, it follows that m = 6. However, the

vertex a belongs to cycles only of length 4 and n, so m = 4, a contradiction. Hence

N(a) # N(vs).

If C, is given by v1,b,¢,v3,v4 ..., vi_1,a,Vita, ..., Un, vy, then H is the graph shown
in Figure 5.20(¢). Now the edge v,v, belongs to cycles of length n — 1,n,n + 1. Thus
m = n — 1. However, the edge bc belongs to no induced Cp,—; (n > 7). Hence
we may assume, without loss of generality, that C, is given by either C(): vy, a,v;_;,
Vi-2y. ., U3y b, Vig2, - .., Vn, V1, in which case H is the graph shown in Figure 5.20(1),
or CM: vy, b, ¢,vi_1, Vi, ..., 3,8, Visa, . .., Un, V1, in which case H is the graph s‘hown
in Figure 5.20(é41). If C, is C{V), then the edge v,v,, belongs to cycles of length n—i+4
and n. bThus m = n — i + 4. Furthermore, the edge v3v, belongs to cycles of length
t,t+2and n. Thus m=1dori+2 Ifm =1, thenn=2m —4and if m =i +2, then
n = 2m — 6. In either case we contradict our choice of m and n. A similar argument

shows that C, cannot be C{?. This completes the proof of Case 2.2, and therefore of
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Lemma 5.5. O

U Vig2 Vig1 Vi Un Vit2 Vig1 Uy

(i) (i47)

Figure 5.20:

Corollary 5 . 6 Forn > m > 4 withn # 2m—4 orn # 2m—6 and (m,n) # (5,7),

efr(Cm,Cr) =2 n +6.

Proof. We show that efr(Cy,C,) > n + 6 by verifying that there is no graph
of size n + 5 or less which edge homogeneously embeds C,, and C,. Suppose, to
the contrary, that such a graph H exists. By Lemma 5.4, p(H) > n + 3, and by
Lemma 5.5, p(H) # n + 3; consequently, p(H) > n + 4. Applying Theorem 4.8,
we have §(H) > 2. Let k be the number of vertices of H of degree at least 3. By
Lemma 5.3, k > 3. Hence2n+10 > 2¢(H) > 3k+2(p(H)—k) = 2p(H)+k > 2n+11,

which is impossible. O
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Corollary 5 . 7 For m > 7, C,, and Cym_¢ are uniquely edge framed by the the

graph of size 2m — 1 shown in Figure 5.15.

Proof. Let F be an edge frame for Cy, and Cz,—s. Then by Proposition 5.4, ¢(F') =
2m — 1. By Corollary 5.5, p(F') > 2m — 4. Applying Theorem 4.8, we have §(F) > 2.
Let k be the number of vertices of F' of deg;ee at least 3. By Lemma 5.3, k > 3. Hence
dm —2 = 2q(F) 2 3k+2(p(F)—k) = 2p(F)+ k > 2p(F)+ 3, whence p(F) < 2m —3.
Thus 2m — 4 < p(F) < 2m — 3. If p(F) = 2m — 4, then p(F) = fr(Cm,Cam—s)
and so F' frames C,, and Cj,-¢. However, by Theorem 5.1, there is no graph of
order 2m — 4 which edge homogeneously embeds C,, and Czm_e for m > 7. Thus
p(F) =2m—3 = (2m —6)+3. From the proof of Lemma 5.5 we deduce that C,, and
Cam-6 have at most one edge frame. We conclude that C,, and Cy,,_¢ are uniquely

edge framed. O
Proposition 5 .5 Form >4 and m & {5,7}, efr(Cpn,Cpny1) = m + 7.

Proof. Since Cy, and Crnyy can be edge homogeneously embedded in the graph of
size m+7 shown in Figure 5.21(¢) for m = 4 and in Figure 5.21(4%) for m = 6 or m > 8,
it follows that efr(Cpm,Cm41) < m + 7. By Corollary 5.6, efr(Cm,Cmy1) > m + 7.

Consequently e fr(Cpm,Cmy1) = m + 7 as required. O
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S —
m — D vertices

(i) | (i)

Figure 5.21:

Proposition 5 . 6 For m > 10, efr(Cm,Com—s) = 2m — 2.

Proof. Since C2pn,—s and C,, can be edge homogeneously embedded in the graph
of size 2m — 2 shown in Figure 5.22, it follows that efr(Cam-s,Cn) < 2m — 2. By

Corollary 5.6, efr(Caom-8,Cm) = 2m — 2. Consequently efr(Com—s,Cm) = 2m — 2 as

required.O0

m — 9 vertices

A

—@ { L 4
—@ 4

m — 9 vertices

Figure 5.22: An edge frame for C,, and Cam_g for m > 10.
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Proposition 5 . 7 efr(Cs,C7) = 12.

Proof. Since Cs and C; can be edge homogeneously embedded in the graph Fj;
(without t.he dotted edges) of size 12 shown in Figure 5.2, it follows that e fr(Cs,C7) <
12. We show that efr(Cs,(C7) = 12 by verifying that there is no graph of size at
most 11 which edge homogeneously embeds Cs and C7. Suppose, to the contrafy,
that such a graph H exists. By Corollary 5.5, p(H) > 9. Applying Theo;em 5.8,
we have 6(H) > 2. Let k be the number of vertices of H of degree at least 3. By
Lemma 5.3, k > 3. Hence 22 > 2¢(H) > 3k + 2(p(H) — k) = 2p(H) + k > 2p(H) + 3
whence p(H) < 9. Consequently, p(H) = 9 = fr(Cs,C7) and so H frameé Cs and
Cs. waever, from Theorem 5.1, the frames for Cs and C7 all have sizes greater than

11. This produces a contradiction. O
Proposition 5 . 8 Form =4 orm > 7, efr(Cp,, Cny2) = m + 8.

Proof. Since Cy, and Cpy; can be edge homogeneously embedded in the graph of
size m + 8 shown in Figure 5.23(z) for m = 4 and in Figure 5.23() for m > 7, it
follows that efr(Cp,Cn42) < m + 8. By Corollary 5.6, efr(Cm,Cpyz) > m + 8.

Consequently efr(Cm,Cpni2) = m + 8 as required. O

120



N —
m — D vertices

(2) (4)

Figure 5.23:

5.5 Framing numbers of pairs of directed cycles

In this we investigate the framing number fr(Gy,G2) for several pairs Gi, G2 of

directed cycles.

The proof of the following result is very similar to the proof of Corollary 3.2 and

is therefore omitted.

Theorem 5 . 3 For digraphs D, and D,, there exists a positive integer m such that
for each integer n > m, there is a digraph H of order n in which Dy and D, can be
homogeneously embedded, while for each positive integer n < m, no such digraph H

of order n exists.

Proposition 5 . 9 fr(é3,é4) = 6.

Proof. The digraph F' of order 6 shown in Figure 5.24 has the property that Cs and

Cy can be homogeneously embedded in F. Therefore, fr(é;:,, 6_"4) < 6. However, it is
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N
S

Figure 5.24: A frame for 63 and 64.

shown in [2] that fr(C3,C4) = 6. Hence, according to Proposition 3.2, fr(C"g, 6'4) >6

Thus fr(Cs,Cy) = 6. O
Proposition 5 . 10 fr(C;,Cs) = 8.

Proof. The digraph F' of order 8 shown in Figure 5.25 has the property that 53
and Cs can be homogeneously embedded in F. Therefore, fr(ég,é5) S 8. By
Theorem 5.3, it will follow that f’f‘(é;g,és) = 8 once we show that there does not

exist a digraph H of order 7 in which Cs and Cs can be homogeneously embedded.

v,
YA

Figure 5.25: A frame for C and Cs.
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Suppose, to the contrary, that there exists such a digraph H. Each vertex of H
must belong to a C3 and an inducéd Cs, so 6(H) > 3. Futher, since H homogeneously
embeds Cs, Lemma 3.2 implies that A(H) < 7—5+2 = 4. First we claim that H
does not contain two disjoint copies of Cs. Suppose, to the contrary, that H contains
two disjoint cppies F, and F, of Cs. Let V(F1) = {a,b,c} and let V(F;) = {d,e, f}
and let g be the vertex of H not belonging to Fy and F,. Then every induced Cs
of H must contain the vertex g and exactly two vertices from each of Fy and Fs.
Without loss of generality, we may assume that the digraph shown in Figure 5.26 is
a subdigraph of H. Now let H. be an induced subdigraph of H that is isomorphic
to Cs and that contains the vertex c. Since g belongs to H,, the vertex a cannot
belong to H.. This in turn implies that b belongs to H., and therefore that d does
not belong to H,. It follows that V(H.) = {b,¢c,e¢, f,g}. However, then the vertex e
has outdegree at least two in H., which produces a contradiction. Thus, as claimed,

H does not contain two disjoint copies of 63.

c b d f

5 Vs
d e

g

Figure 5.26: A subdigraph of H.
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Next we show that H does not contain two 63,8 having exactly one vertex in
common, for suppose that it does. Then H has the subdigraph shown in Figure 5.27.
Then dega = 4. Let Ty (T,) be a Cs that contains the vertex f (g, respectively).
Since the vertex a does not belong to T, neither can the vertex g, for otherwise this
would produce two disjoint copies of Cs. Similarly, f ¢ V(T,). For the same reason,
Ty and T, have at least one vertex in common. Without loss of generality, we may
therefore assume that the vertex b belongs to Ty and to T,. Then T consists of b,f
aﬁd exactly one of d and e. This implies, however, that deg b > 5, which contradicts

that fact that A(H) = 4.

o
\

/
b . @

g

ﬁ’/
\

Figure 5.27: A subdigraph of H.

Hence every two Cs’s of H share a common arc. But this implies that some arc

(u,v) lies on every Cs of H. However, since every vertex of H belongs to a Cs, both

u and v have degree 6 in H, which is impossible. O

The proof of the next result is similar to that of Proposition 5.10, and is therefore

omitted.
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Proposition 5 . 11 fr(C-"s,C_"s) =9.

A frame for C3 and Cg is shown in Figure 5.28.

AN

s

g
/ ¥ m\\
Figure 5.28: A frame for 53 and C_”s

Proposition 5 . 12 fr(@,és) = 8.

Proof. The digraph F' of order 8 shown in Figure 5.29 has the property that C_"4
and Cs can be homogeneously embedded in F. Therefore, fr(54,65) < 8. By
Theorem 5.3, it will follow that fr(é4,65) = 8 once we show that there does not
exist a digraph H of order 7 in which Cs and Cs can be homogeneously embedded.
Suppose, to the contrary, that such a digraph H exists. Then 2 < §(H) < A(H) < 4.

Before proceeding further, we prove the following claim.

Claim 5 . 2 If H' is an induced Cs in H, then the two vertices of H not in H' do

not belong to a common C_"s.
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Figure 5.29: A frame for C_",; and 65.

Proof. Let H' be a,b,c,d,e,a and let f and g be the names of the two remaining
vertices of H. Assume, to the contrary, that f and g belong to a common induced és,
say Ty. If f and g are adjacent vertices on Ty, then, without loss of generality, we may
assume that T is a, b, ¢, f, g,a. Hence H has the subdigraph shown in Figure 5.30(a).
Then dega = degc = 3 and degb = 2. However, there is then no induced Ci

containing the vertex b.

On the other hand, if f and g are not adjacent vertices on Ty, then, without loss of
generality, we may assume that Ty is a, b, ¢, d, f,a. Hence H has the subdigraph shown
in Figure 5.30(b). Then dega = deg b = 3 and degd = 4. However, there is then no
induced C_"4 containing the vertex d. (This is evident since such a 6_"4 would contain
exactly one vertex from each of {e, f} and {c,g}, and therefore a vertex z € {a, b}.

But then the vertex = would have degree 1 in such a Cy, which is impossible.) O
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g ./_&.f e

Z//’/‘.*. f( §> g
ae e d X c o

N j

Figure 5.30: A subdigraph of H.

The digraph H must contain Cs as an induced subdigraph, say a,b,c,d,e,a. Let
f and g be the names of the two remaining vertices of H. Further, let T (T},) be an
induced Cs that contains the vertex f (g, respectively). By Claim 5.2, f and g do qot
belong to a common induced Cs. We may assume, without loss of generality, that T
is a,b,¢,d, f,a. Since the vertices e and g do not belong to T, Claim 5.2 implies that
e and ¢ do not belong to a common induced 65. Hence T, contains the vertices a, b, c
and d. Thus H has the subdigraph shown in Figure 5.31. Then dega = degd = 4

and deg b = deg ¢ = 2. However, there is then no induced C_"4 containing the vertex b.

O
Proposition 5 . 13 fr(é4,56) = 8.

Proof. The digraph F of order 8 shown in Figure 5.32 has the property that C, and
Cs can be homogeneously embedded in F. Therefore, fr(C_"4, C_"e) < 8. However, it is
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A
Wocsead

A
Ny &€
b —"c¢

Figure 5.31: A subdigraph of H.

shown in [2] that fr(C4,Cs) = 8. Hence, according to Proposition 5.2, fr(dh C—"s) > 8.

Thus fT(64,66) =8. 0

Figure 5.32: A frame for 64 and 66.

We are now in a position to characterize all those pairs of dicycles Co. and C,

(n > m > 3) which have framing number n + 2.

Theorem 5 . 4 For integersn > m > 3, fr(C—"m, én) =n+2ifand onlyn =2m—2

where m > 4. Furthermore Cr, and éQm_g have ezactly five nonisomorphic frames.
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Proof. First suppose that n = 2m — 2 where m > 4. Then, by Theorem 5.1 and
Proposition 3.2, fr(ém,én) > fr(Cm,Cn) = n + 2. However, since Cp and C, can
be homogeneously embedded in the digraph of order n + 2 shown in Figure 5.33, we

have fr((_im, C,) < n+ 2. Consequently, fr(ém, C-in) =n+2.

m — 4 vertices
R —

—_—
m — 4 vertices

Figure 5.33:

Next we consider the necessity. Let m and n be integers satisfying n > m > 3 and
assume that fr(ém, C_"n) =n+ 2. Let D be a frame for ém and C_"n and let D’ be the
underlying graph of D. Since Fr(Cm, C) = n+2, by Proposition 5.2 and Lemma 5.1
we conclude that fr(Cy,,Cs) = n+ 2. By Theorem 5.1 it follows that (m,n) must
belong to the set S (defined in section 5.2) and that the graph D’ must belong to
Fmn (also defined in section 5.2). By Propositions 5.9, 5.10, 5.11, 5.12 and 5.13, with
the possible exception of the graphs Hyg and Hg 19 shown in Figure 5.1, the graph D
cannot be any of the graphs shown in Figure 5.1. It is easily checked that D’ cannot
be the graph Hgi0. Futhermore, it is easily checked that D’ cannot be any of the
graphs Fo, ni1, Frnom—4, Frnam—3 and Gmam—2 of Figure 5.2. Thus the possibilities
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for I’ includes the graph Hyg in Figure 5.1 and the graph F,, 2m-2 of Figure 5.2.
Thus n = 2m — 2 and the possible frames for C,» and C, are obtainable from the
digraph ﬁm'Qm_g by adding and orienting any combination (the presence or absence)

of the dotted edges. This yields the five nonisomorphic frames for Cyn and C,,. O

Corollary 5 . 8 For integers n > m > 3, if n # 2m — 2, then fr(ém, C-",.) >n+3.

—

5.6 Upper bounds on fr(Cp,C,)

In this section, we establish upper bounds on fr(ém, -‘n) for all integers n > m > 3.

Theorem 5 . 5 For integers n > m > 3,

{

n+ %] ifm=3 or4

ff‘(C_"m, n) < 4 n+ 2 ifm—llhandm>4

| n+ [251+1 otherwise

Proof. Suppose firstly that m = 3. Let k£ = |'n/2] Let G be the digraph ob-
tained from the induced n-cycle C’ : vg,vy1,vs,...,v,_1,v0 by adding k new vertices
Wo, Wy, ..., Wk—1 and, for ¢ =0,1,...,k — 1, joining w; to vy, to V241 and from vy,
where addition is taken modulo n. If n is odd, then join wg to wi—;. Then each
vertex of G clearly belongs to a Cs. Let § = {wo,wq, ..., wx_;1} U {v2,v4, ... vop_2}.

If n is even then add the vertex v to S. Then the subdigraph induced by the vertices
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of S is isomorphic to én Hence Cs and C, can be homogeneously embedded in the

digraph G of order n + k£ = n + [n/2]. Thus fr(53,én) <n+[2].

If m = 4, then let G’ be the digraph obtained from G by deleting the arcs (w;, v2i41)

fori =0,1,...,k—1. Then Cy and C, can be homogeneously embedded in the digraph

G' of order n + k = n+ [n/3]. Thus fr(é4,én) <n+[%].

Suppose next that m > 5. Let £ = [n/(m — 1)]. Let G be the digraph ob-
tained from the induced n-cycle C’ : v, v1,v2,...,0,-1,v0 by adding £ new vertices
Wo, W1, - - -, We-1 and, for ¢ = 0,1,...,¢—1, joining w; from vi(m—1)-1, t0 Vi(m-1)41 and

from v(i4+1)(m—1) Where addition is taken modulo n.

Case 1. m—1|n.

Thus n = ¢(m — 1). (The digraph 65,16 is shown in Figure 5.34.) Then C,, and C,

can be homogeneously embedded in the digraph ém,n ofordern+{¢=n+n/(m-1).

To see this, observe that for i = 0,1,...,£ — 1, each vertex w; belongs to an induced
C_"m, namely C,(,f) S Wi,y Vim—1)+15 Vi(m—1)+2; - - -» Y(i+1)(m-1), Wi. Furthermore, replacing
the vertex vym_1) on C' with the vertex w; for all ¢ = 0,1,...,¢ — 1 produces an

induced C-",, containing each w;. Furthermore, each vertex of C’ belongs to C,(,:') for

exactly one ¢ (0 < ¢ < £ —1). Consequently, ém,n homogeneously embeds C-"m and

C... Thus, fr(Com, C)<n+ n/(m —1).

Case 2. m—1|n+1.
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Figure 5.34: The digraph é5,16-

Thus n = ¢(m —1) — 1. Let F"m,n be the digraph obtained from ém‘n by deleting the
arc (vy,we—1) and adding a new vertex w, and joining it from v, to v, and to we_1.
(The graph f5,15 is shown in Figure 5.35.) Then 6m and C-"n can be homogeneously
embedded in the digraph Fi,, of order n + £+ 1 = n + [n/(m — 1)] + 1. Thus,

fr(CryCo) <+ [nf(m = 1)] + 1.

Figure 5.35: The graph F5,15.
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Case 3. m—1|n—1.

Thus n = ({ —1)(m — 1) + 1. Let H,,.. be the digraph obtained from ém,n as
follows: Delete the arc (vn_1,w,_z) and add the arc (we_2,v(_3)(m-1)); delete the
three arcs incident with w,_; and join we-; to v_2)(m-1)+1, from v,_; and to vy;
add a new vertex w, and join it from v(e_s)(m-1), 10 V(¢—2)(m-1)42 and from vg. (The
digraph ﬁe,m is shown in Figure 5.36.) Then ém and (:"n can be homogeneously
embedded in the digraph H,,, of order n + £+ 1 = n + [n/(m —1)] + 1. Thus,

fr(Cn,Co) <n+[nf/(m=1)] + 1.

Figure 5.36: The graph ﬁe,w-

Case 4. m — 1 does not dividen —1 orn orn+1.

Thus n = (€ — 1)(m — 1) 4+ r for some r satisfying 1 < r < m — 2. Let fm,n
be the digraph obtained from ém,n by adding a new vertex w, and joining it to
V(e-1)(m-1), from Vg(m-1)-1 and to Vgm-1)+1 Where addition is taken modulo n; that
is, w and joined to v,_,, from vp,_,_; and to v,,_,. (The digraph I_'5,14 is shown iﬁ

133 -



Figure 5.37.) Then ¢, and C.. can be homogeneously embedded in the digraph fm,n

of order n+£+1 =n+[n/(m~1)] +1. Thus, fr( _.m,én) <n+[n/(m-1)]+1. O

Figure 5.37: The digraph 1-;,14.

Two immediate corollaries of Theorems 5.1 and 5.5 and Corollary 5.2 now follow.

Corollary 5 .9 Form =3 or4 andn =7,8,9, or for T<m+2<n <2m -5,

fr(Cm,Cp) =n + 3.

Corollary 5 . 10 Form >4 andn =2(m—1) or 3(m—1), fr(Cp,Cy) = n+ -2

m—1"'
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