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Abstract

This thesis is a study of the symmetry of graphs and digraphs by considering certain

homogeneous embedding requirements.

Chapter 1 is an introduction to the chapters that follow. In Chapter 2 we present

a brief survey of the main results and some new results in framing number theory.

In Chapter 3, the notions of frames and framing numbers is adapted to digraphs. A

digraph D is homogeneously embedded in a digraph H if for each vertex x of D and

each vertex y of H, there exists an embedding of D in H as an induced subdigraph

with x at y. A digraph F of minimum order in which D can be homogeneously

embedded is called a frame of D and the order of F is called the framing number of

D. We show that that every digraph has at least one frame and, consequently, that

the framing number of a digraph is a well defined concept. Several results involving

the framing number of graphs and digraphs then follow. Analogous problems to those

considered for graphs are considered for digraphs.

In Chapter 4, the notions of edge frames and edge framing numbers are studied.

A nonempty graph G is said to be edge homogeneously embedded in a graph H if for

each edge e of G and each edge f of H, there is an edge isomorphism between G and

a vertex induced subgraph of H which sends e to f. A graph F of minimum size

in which G can be edge homogeneously embedded is called an edge frame of G and

the size of F is called the edge framing number efr(G) of G. We also say that G is
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edge framed by F. Several results involving edge frames and edge framing numbers

of graphs are presented.

For graphs G1 and G2 , the framing number fr(G1 , G2 ) (edge framing number

ef r(GI, G2 )) of G1 and G2 is defined as the minimum order (size, respectively) of a

graph F such that G j (i = 1,2) can be homogeneously embedded in F. In Chapter 5

we study edge framing numbers and framing number for pairs of cycles. We also

investigate the framing number of pairs of directed cycles.
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Chapter 1

Introduction

Essentially, this thesis is a study of the symmetry of graphs and digraphs by con

sidering certain homogeneous embedding requirements. It was found that for certain

graphs, purely group theoretic considerations give an unsatisfactory description of

the symmetry of a graph. Furthermore, it was also found that a single embedding

requirement alone does not suffice to describe graphical symmetry adequately. For

example, there are graphs which are highly symmetric relative to their edges and yet

lack symmetry relative to their vertices.

Chartrand, Gavlas, and Schultz [2] introduced the framing number of a graph. A

graph G is homogeneously embedded in a graph H if for every vertex x of G and every

vertex y of H, there exists an embedding of G in H as an induced subgraph with x

at y. A graph F of minimum order in which G can be homogeneously embedded is

called a frame of G, and the order of F is called the framing number fr(G) of G.

1
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In [2] it is shown that a frame exists for every graph, although a frame need not be

unique. Results involving frames and framing numbers of graphs have been presented

by,among others Chartrand, Gavlas, and Schultz [2], Chartrand, Henning, Hevia, and

Jarrett [3], Gavlas, Henning, and Schultz [6], Goddard, Henning, Oellermann, and

Swart [7, 8].

In Chapter 2, we present a brief survey of the main results in framing number theory.

In Chapter 3, the notions of frames and framing numbers is adapted to digraphs. A

digraph D is homogeneously embedded in a digraph H if for each vertex x of D and

each vertex y of H, there exists an embedding of D in H as an induced subdigraph

with x at y. A digraph F of minimum order in which D can be homogeneously

embedded is called a frame of D and the order of F is called the framing number of

D. Analogous problems to those considered for graphs are considered for digraphs.

Results involving frames and framing numbers of digraphs have been presented by

Henning and Maharaj [10].

In Chapter 4, the notions of edge frames and edge framing numbers are studied.·

A nonempty graph G is said to be edge homogeneously embedded in a graph H if for

each edge e of G and each edge f of H, there is an edge isomorphism between G and

a vertex induced subgraph of H which sends e to f. A graph F of minimum size in

which G can be edge homogeneously embedded is called an edge frame of G and the

size of F is called the edge framing number efr(G) of G. We also say that G is edge

framed by F. Results involving edge frames and edge framing numbers of graphs
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have been presented by Henning [9].

In Chapter 5 we study edge framing numbers and framing numbers for pairs of

cycles. We also investigate the framing numbers of pairs of directed cycles.

1.1 Graph theory nomenclature

Throughout we shall use the terminology of [4]. Specifically, p(G) and q(G) denote

the number of vertices (order) and edges (size), respectively, of a graph with vertex

set V(G) andedge set E(G). For a vertex v in G, the neighbourhood of v is defined

by N(v) = {u E V(G) Iuv E E(G)}. We let ~(G) (8(G)) denote the maximum

(respectively, minimum) degree among the vertices of G. Two edges e and f of a

graph G are similar (or of the same type) if </>( e) = f for some edge automorphism </>

of G. If every two edges of G are similar we say that G is edge-transitive. Similarity

is an equivalence relation on the edge set of a graph, and the resulting equivalence

classes are referred to as edge orbits.

Given a nonempty graph G, the line graph L(G) of G is defined as that graph

whose vertices can be put in a one-to-one correspondence with the edges of G in such

a way that two vertices of L(G) are adjacent if and only if the corresponding edges

of G are adjacent. Let G1 and G2 be two graphs with disjoint vertex sets. The join

G = G1 +G2 has V(G) = V(GI)UV(G2 ) and E(G) = E(G1 )UE(G2 )U{uvlu E V(G1 )

and v E V(G2 )}.
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Similarly, for digraphs, p(D) and q(D) denote the number of vertices (order) and

arcs (size), respectively, of a digraph with vertex set V(D) and arc set E(D). A

digraph D is symmetric if whenever (u, v) is an arc of D, then so too is (v, u). A

digraph D is asymmetric if whenever (u, v) is an arc of D, then (v, u) is not an arc of

D. For a vertex v in D, the out-neighbourhood and in-neighbourhood of v are defined

by N+(v) = {u E V(D)I(v,u) E E(D)} and N-(v) = {u E V(D)I(u,v) E E(D)},

respectively. The outdegree of v is defined as od v = \N+ (v) I and the indegree of v

is idv = IN-(v)l. The degree degv of v is defined by degv = odv + idv. We let

tlid(D) (hid(D)) denote the maximum (respectively, minimum) indegree among the

vertices of D. Further, we let tlod(D) (hod(D)) denote the maximum (respectively,

minimum) outdegree among the vertices of D. The minimum degree of D is given

by h(D) = min{deg v : v E V(D)}, whereas the maximum degree of D is tl(D) =

max{deg v: v E V(D)}.

For vertex disjoint digraphs G and H, the lexicographic product G[H] has vertex

set V(G) x V(H), and a vertex (g, h) is adjacent to a vertex (g', h') in G[H] if and

only if either 9 is adjacent to g' in G or 9 = g' and h is adjacent to h' in H.

Two vertices u and v of a digraph D are called similar (or of the same type) if

4>(u) = v for some automorphism 4> of D. Every two vertices of D are similar if and

only if D is vertex-transitive. Similarity is an equivalence relation on the vertex set

of a digraph D, and the resulting equivalence classes are called the orbits of G.
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Chapter 2

The framing number of a graph

2.1 Introduction

In this chapter we present a brief survey of the main results in framing number

theory. We also present some new results. Results involving frames and framing

numbers of graphs have been presented by, among others, Chartrand, Gavlas, and

Schultz [2], Chartrand, Henning, Hevia, and Jarrett [3], Gavlas, Henning, and Schultz

[6], Goddard, Henning, Oellermann, and Swart [7, 8], and Henning [9].

2.2 Basic theory

In the first book ever written in graph theory (in 1936) Konig proved that for every

graph G with maximum degree d, there exists a d-regular graph H containing G
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as an induced subgraph. For motivational purposes, we present Konig's technique.

Let G be a graph with ~(G) = d. If G is regular, then we may take H = G.

Otherwise, let G' be another copy of G and join corresponding vertices whose degrees

are less than d, calling the resulting graph G1 . If G1 is regular, then we may take

H = G1 . If not, we >continue this procedure until arriving at a d-regular graph Gn

where n = ~(G) - h(G). Chartrand, Gavlas, and Schultz [2] observed that the graph

H constructed by Konig has the property that for every vertex v of H, there exists

an induced subgraph of H containing v that is isomorphic to G. This observation

motivated Chartrand, Gavlas, and Schultz [2] to define the following concept. A

graph G is said to be uniformly embedded in a graph H if for every vertex v of H,

there is an induced subgraph of H containing v that is isomorphic to G. We will deal

with an even stronger embedding requirement introduced by Chartrand, Gavlas, and

Schultz [2]. A graph G is homogeneously embedded in a graph H if for every vertex

x of G and every vertex y of H, there exists an embedding of G in H as an induced

subgraph with x at y. A graph F of minimum order in which G can be homogeneously

embedded is called a frame of G, and the order of F is called the framing number

fr( G) of G. By the following theorem, all of the above notions are applicable to any

graph.

Theorem 2 . 1 (Chartrand et al. [2J) Every graph has a frame.

However, it is also shown in [2] that a frame of a graph need not be unique.
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Theorem 2 . 2 (Chartrand et al. [2}) For a given graph G, there exists a positive

integer m such that for each integer n ;::: m, there is a graph H of order n in which G

can be homogeneously embedded, while for each positive integer n < m, no such graph

H of order n exists.

The homogeneous embedding requirement does imply quite a number of inequalities

(Chartrand et al. [2]). The first of these is an upper bound of the framing number

of a graph in terms of the number of orbits and order of a graph. It is a direct

consequence of the proof of Theorem 2.1.

Theorem 2 . 3 (Chartrand et al. [2}) Let k denote the number of distinct orbits in

a graph G. Then

fr(G) ~ (2k - l)IV(G)I.

The remaining inequalities have proved to be extremely useful in attacking typical

framing number problems.

Lemma 2 . 1 (Chartrand et al. [2}) If a graph G can be homogeneously embedded

in a graph H, then

Ll(G) ~ 8(H) ~ Ll(H) ~ IV(H)I-IV(G)/ + 8(G).

Two corollaries follow immediately.
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Corollary 2 . 1 (Chartrand et al. [2j) If F is a frame for a graph G, then

~(G) ~ S(F) ~ ~(F) ~ IV(F)I-IV(G)I +S(G).

Corollary 2 . 2 (Chartrand et al. [2j) For a graph G,

fr(G) ~ IV(G)I + ~(G) - S(G).

The following result of Goddard, Renning, Oellermann, and Swart [7] shows that

the diameter of the frame of a connected graph cannot be too large.

Theorem 2 . 4 (Goddard et al. [7j) If G is a connected graph and H is a frame of

G, then diam H ~ diam G + 1.

We present a slight improvement of this result which is a consequence of the next

lemma.

Lemma 2 . 2 Let G be a connected graph such that f3( G) ~ 2. Then for each

positive integer m ~ fr(G), there is a graph H which homogeneously embeds G with

the further property that every pair of nonadjacent vertices in H lies on an induced

copy ofG.

Proof. Let m ~ fr( G) be a positive integer. From among all graphs of order m

which homogeneously embed G, choose one, H say, of maximum size. Let a and b

denote a pair of nonadjacent vertices in H. Let HI denote the graph obtained from
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H by joining the vertices a and b. By the maximality property of the graph H, the

graph HI cannot homogeneously embed G. Thus there is a vertex x of G and a

vertex y of HI such that there is no embedding of G in HI with x at y. Consider an

embedding GI of G in H with x at y. Clearly we must have a, bE V(Gd otherwise

GI would be an embedding of G in HI with x at y which is impossible. Thus H is a

graph with the desired property. 0

Corollary 2 . 3 Let G be a connected graph. Then for each positive integer m ~

fr(G), there is a graph H which homogeneously embeds G such that diam H ~

diamG.

Corollary 2 . 4 Let G be a connected graph. Then G has a frame F with diam F ~

diamG.

2.3 Framing ratios of graphs

The framing ratio frr(G) of a graph G is defined to be the ratio fr(G)jp(G) in [2].

Clearly, frr(G) ~ 1 for every graph G, and frr(G) = 1 if and only if G is vertex

transitive. This graphical parameter is a certain measure of the 'symmetry' of a

graph, where the closer frr( G) is to 1, the more symmetric G is.

Of course, the framing ratio of every graph is a rational number. The following

result shows that many rational numbers are framing ratios.
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Theorem 2 . 5 (Chartrand et al. [2J) For each rational number r E [1,2), there

exists a graph G with frr(G) = r.

While it unknown whether the framing ratio of a graph can be arbitrarily large,

Goddard, Renning, Oellerman and Swart [7] produced a class of graphs whose framing

ratio is at least 2. By a broom B n , n ~ 5, we mean a star K 1,n-2 with one edge

subdivided once.

Theorem 2 . 6 (Goddard et al. [7J) For n ~ 7 an integer, fr(Bn ) ~ 2n.

Corollary 2 . 5 (Goddard et al. [7J) For n ~ 7 an integer, frr(Bn ) ~ 2.

2.4 The framing number of a graph and its com-

plement

The following result was established by Chartrand et al. [2].

Theorem 2 . 7 ([2J) Let G be a graph with frame F. Then fr( G) = fr( G) and F

is a frame for G.

The next result is a consequence of the proof of Theorem 2.7.
r

Corollary 2 . 6 If a graph G can be homogeneously embedded in a graph H, then

G can be homogeneously embedded in the graph H.

10



2.5 The framing number of a single graph

The framing number for various classes of graphs have been established by, among

others Chartrand, Gavlas, and Schultz [2], Chartrand, Renning, Revia, and Jarrett

[3], Gavlas, Renning, and Schultz [6], Goddard, Renning, Oellermann, and Swart

[7, 8]. In this section we present a brief summary of these results.

The lollipop graph Ln is the unicyclic graph of order n containing exactly one bridge.

Gavlas et al. [6] established the framing number fr(Ln) for small n. The following

table summarizes their results.

n 4 5 6 7 8

fr(Ln) 6 8 8 10 12

Table 2.1:

Gavlas et al. [6] also showed that fr(L n ) ~ 2n - 4 for n ~ 6.

Goddard et al. [7] determined the framing number of the wheel Wn+I = en + K l

for all integers n ~ 3. They showed that fr(W4 ) = 4, fr(Ws) = 6. More generally,

Theorem 2 . 8 (Goddard et al. [7J) For n ~ 5 an integer, fr(Wn+d = 2n.

The next result we present is a generalisation of this theorem.

Theorem 2 . 9 Let G be a vertex transitive graph of order n. If G is k-regular

11



where k ~ r~1- 1, then fr( G + Kd = 2n.

Proof. Since G+KI can be homogeneously embedded in the graph G+G of order 2n,

it follows that fr( G +K I ) ~ 2n. The desired result would follow once we have shown

that there is no graph of order 2n -1 which homogeneously embeds G +K I . Suppose,

to the contrary, that such a graph H exists. Let F = GI + {w} be an embedding of

G+KI in H where GI ~ G and let v be a vertex in GI . Consider a further embedding-

FI of G + K I in H with v as the central vertex. Now FI - v must have at least one

vertex, x say, in common with GI otherwise IV(FI ) U V(F)I = 2n > p(H). Now

V(Fd - {v} contains at most k vertices in common with G I , possibly the vertex w,

and a set S of at least n - (k +1) other vertices. Thus the graph shown in Figure 2.1

is a subgraph of H.

s
w

Figure 2.1:

Thus far we have accounted for at least (n - k - 1) + (n + 1) vertices of H. This

leaves a set T of at most 2n -1- (n - k -1) - (n +1) = k -1 vertices. Now consider

an embedding F2 of G +K I with x as the central vertex. Then F2 contains at most k

12



vertices from G1 , at most k vertices from S, possibly wand at least n - (2k +1) other

verticeswhichmustcomefromT. Thus ITI ~ n-(2k+l) whencek-l ~ n-(2k+l).

Hence k ~ r~l, which is a contradiction. D

Corollary 2 . 7 Let G be a vertex transitive graph of order n which is k-regular

where k 2: n - r~l. Then fr(G U I<l) = 2n.

Proof. Since G U I<l ~ G + I<l and G is a (n - k - I)-regular vertex transitive

graph (with n - k - 1 ::; r~l - 1), it follows from Theorem 2.9 that fr(G U I<d =

fr(G + I<l) = 2n. By Theorem 2.7 we know that fr(G U I<l) = fr(G U Kd so that

fr(G U Kd = 2n.D

Corollary 2 . 8 For all integers n ~ 1, fr(I<n U I<d = 2n.

2.6 The framing number of more than one graph

Chartrand, Gavlas, and Schultz [2] extended the concept of framing numbers to more

than one graph. For graphs G1 and G2 , the framing number fr(GI, G2 ) of G1 and

G2 is defined as the minimum order of a graph F such that Gi (i = 1,2) can be

homogeneously embedded in F. The graph F is called a frame of G1 and G2 • Then

fr( G1 , G2 ) exists and, in fact, fr( G1 , G2 ) ::; fr( G1 U G2 ).

Theorem 2 . 10 (Chartrand et al. [2]) For graphs G1 and G2 , there exists a positive

integer m such that for each integer n ~ m, there is a graph H of order n in which

13



G1 and G2 can be homogeneously embedded, while for each positive integer n < rn, no

such graph H of order n exists.

Much work has been done in determining the framing number fr(S) where S is a

set of more than one graph. For S = {K1,3, Pn } the following table summarizes the

results of Gavlas et al. [6].

n 3 4 5 6 7 8

fr(K1,3, Pn ) 6 8 8 10 10 12

Table 2.2:

Gavlas et al. [6] also investigated the framing number of a claw and cycles. Ta

bles 2.3 and 2.4 summarize these results.

n 3 4 5 6 7

fr(K1,3, Cn) 8 6 8 8 10

Table 2.3:

(rn, n) (3,4) (4,5) (4,6) (5,7) (4,7)

fr(K1,3, Cm, Cn) 8 8 8 10 10

Table 2.4:

Gavlas et al. [6]. also showed that fr(K1,3, C4 , Cs, C7 ) = 10.

14



The next result is due to Entringer et al. [5].

Theorem 2 . 11 (Entringer et al. [5]) For integers m, n ~ 2,

Chartrand et al. [2] investigated j r(Cm, Cn) for small values of m and n. Their

results are summarized in Table 2.5

(m,n) (3,4) (3,5) (3,6) (4,5) (4,6) (5,6)

jr(Cm, Cn) 6 7 8 7 8 8

Table 2.5:
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Chapter 3

The framing number of a digraph

3.1 Introduction

In this chapter we adapt the concepts of frames and framing numbers to digraphs. A

digraph D is homogeneously embedded in a digraph H if for each vertex x of D and

each vertex y of H, there exists an embedding of D in H as an induced subdigraph

with x at y. A digraph F of minimum order in which D can be homogeneously

embedded is called a frame of D and the order of F is called the framing number of

D.

Results involving frames and framing numbers of graphs are easily applicable to

symmetric digraphs. If D is a symmetric digraph, then let F be a frame of the un

derlying graph of D. Then the (symmetric) digraph F* obtained from F by replacing

16



each edge uv of F by the arcs (u, v) and (v, u) is a frame of D. In all that follows, we

restrict our attention to asymmetric digraphs.

In Section 3.2 it is shown that that every digraph has at least one frame and,

consequently, that the framing number of a digraph is a well defined concept. Sev

eral results involving the framing number of graphs and digraphs then follow. In

Section 3.3 bounds are established for the framing number of a digraph.

The framing ratio frr(D) of a digraph D is defined by frr(D) = fr(D)/IV(D)I.

This graphical parameter, studied in Section 3.4, may be considered as a certain

measure of the vertex symmetry of a digraph. It is shown that every rational in the

interval [1,3) is a framing ratio.

In Sections 3.5, 3.6 and 3.7, the framing number is determined for a number of

classes of digraphs, including a class of digraphs whose underlying graph is a complete

bipartite graph, a class of digraphs whose underlying graph is en + K1 , and the

lexicographic product of a transitive tournament and a vertex transitive digraph.

Finally, in Section 3.8, a relationship between the diameters of the underlying graph

of a digraph and its frame is determined. It IS shown that every tournament has a

frame which is also a tournament.

17



3.2 Existence of frames for digraphs

In [2] it is shown that every graph has a frame or, equivalently, that fr( G) is defined

for every graph G. We state an analogous result for digraphs, the proof of which is

along similar lines as that presented in [2].

Theorem 3 . 1 Every digraph has a frame.

Proof. Let D be a digraph of order p. It suffices to show that there exists a digraph

F in which D can be homogeneously embedded.

To construct such a digraph F, we do the following. Let SI, S2, . •. , Sk be the

DI, D2, •. . ,D2k- 1 be 2k - 1 copies of D. For each i = 1,2, ... , k, we label the vertex

Vi,j in D by vi,j in Dm (1 ~ m ~ 2k - 1). Take the (disjoint) union of the digraphs

DI, D2 , ••. , D2k-l' Then for each i,j and m, where 1 ~ i ~ k, 1 .~ j ~ ni and

1 ~ m ~ 2k -1, do the following: Add the arc (vi,j, v) for each v E N+(v'l:!H-i) and

add the arc (v, vi
J
·) for each v E N- (v;'iH-i) if i < f, or add the arc (v!71., v) for each, , t,J

every f (1 ~ f ~ k), where m +f - i and m +k +f - i are expressed modulo 2k - 1.

This completes the construction of F.

It remains to show that F has the desired properties. It suffices to verify that for

each f (1 ~ f ~ k) and each vertex y of F, the digraph D can be embedded as an

18



induced subdigraph with Vi,l at y. Now y is the vertex viJ for some i (1 $ i $ k) and

j (1 $j $ ni), and m (1 $ m $ 2k -1). If we define

if i < £

if i = £U = V(Dm)

V(Dm+k+l-i) U {viJ} - {vl.'t+k+ i
-
i} if i > £

then we see that H = (U) ~ D. 0

According to Theorem 3.1, then, for every digraph D there exists a digraph F in

which D can be homogeneously embedded as an induced subdigraph. Hence, fr(D)

is defined for every digraph D.

Corollary 3 . 1 For every digraph D and for every integer n 2: fr(D), there exists

a digraph H of order n in which D can be homogeneously embedded.

Proof. By Theorem 3.1, there exists a frame F (of order fr(D)) of D. Let v be

a vertex of F. Define F I to be the digraph of order fr(D) +1 obtained from F by

adding a new vertex VI to F and inserting the arcs (VI, w) for each w E N+ (v) and

the arcs (w, VI) for each w E N- (v). Then V and VI are similar vertices, and D can be

homogeneously embedded in F I . Proceeding inductively, we see that for every integer

n 2: fr(D), there exists a digraph H of order n in which D can be homogeneously

embedded. 0

Corollary 3.1 actually yields the following result.
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Corollary 3 . 2 For every digraph D, there exists a positive integer rn such that for

each integer n 2:: rn, there is a digraph H of order n in which D can be homogeneously

embedded, while for each positive integer n < rn, no such digraph H of order n exists.

Proposition 3 . 1 Let D be a digraph and let F be a frame for D. Let D' and F' be

the digraphs obtained by reversing the directions of the arcs in D and F, respectively.

Then fr(D) = fr(D'), and F' is a frame for D'.

Proof. It is evident that F' homogeneously embeds D', so fr(D') ::; fr(F). It

remains to show that F' is a frame for D'. Suppose, to the contrary, that H' is a

frame for D, where H' has order less than that of F'. Let H be the digraph obtained

by reversing the direction of the arcs in H'. Then D can be homogeneously embedded

in H, so fr(D) ::; IV(H)I < IV(F)I, which contradicts the fact that F is a frame for

D. 0

3.3 Bounds on the framing number

The construction of the digraph F in the proof of Theorem 3.1 gives an upper bound

on the framing number of a digraph.

Corollary 3 . 3 Let k denote the number of orbits in a digraph D. Then

fr(D) ::; (2k - l)IV(D)I.
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Note that Corollary 3.3 implies that a digraph D is vertex transitive if and only if

fr(D) = IV(D)I. Let D be a digraph and let F be a frame of D. Then it is evident

that the underlying graph of D can be homogeneously embedded in the underlying

graph of F. This yields the following result.

Proposition 3 . 2 If D is a digraph and if D' is the underlying graph of DJ then

fr(D) ~ fr(D').

D: F:

Figure 3.1: A digraph D and its frame F.

For example, consider the digraph D of Figure 3.1 which is the union of two directed

cycles. Let D' denote the underlying graph of D so D' ~ C3 U C4 • It is shown in

[2] that fr(C3 U C4 ) = 11. According to Proposition 3.2, we know therefore that

fr(D) ~ 11. However, the digraph F (of order 11) shown in Figure 3.1 has the

property that D can be homogeneously embedded in F. Therefore, fr(D) ~ 11.

Thus fr(D) = 11.

Let D be a digraph and let H be a digraph that homogeneously embeds D. Further,

let D' and H' be the underlying graphs of D and H, respectively. Then, since D' can
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be homogeneously embedded in H', Theorem 3.1 yields the following result.

Lemma 3 . 1 If a digraph D can be homogeneously embedded in a digraph H, then

~(D) ~ 8(H) ~ ~(H) ~ IV(H)I-IV(D)I +8(D).

The following lemma will be useful in order to present a lower bound on the framing

number of a digraph.

Lemma 3 . 2 If a digraph D can be homogeneously embedded in a digraph H, then

and

Proof. Necessarily, 8id(H) ~ ~id(D) and 8od(H) ~ ~od(D). Let v be a vertex of D

with idv = 8id(D). Then v is not adjacent from IV(D)I-1-8id (D) other vertices of D.

Because D can be homogeneously embedded in H, every vertex of H is not adjacent

from at least IV(D)I - 1 - 8id(D) vertices of H. Consequently, every vertex of H is

adjacent from at most IV(H)I-1-:- (IV(D)I-1- 8id (D)) = IV(H)I-IV(D)I +8id (D)

vertices of H. This establishes (3.1). The proof of (3.2) can be obtained directly from

(3.1) by reversing the directions of all arcs. 0

An immediate consequence of this is the following.
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Corollary 3 . 4 If a digraph D can be homogeneously embedded in a digraph H,

then

IV(H)I ~ max{IV(D)1 + D.(D) - b(D), IV(D)I + D.id(D) - bid(D),

IV(D)I + D.od(D) - bod(D)}.

Corollary 3 . 5 For a digraph D I

fr(D) ~ max{IV(D)1 +D.(D) - b(D), IV(D)I +D.id(D) - bid(D),

IV(D)I +D.od(D) - bod(D)}.

Theorem 3 . 2 If a digraph D can be homogeneously embedded in a digraph H, then

and

(3.3)

(304)

Proof. Since D.id(D) ~ bid(H) and D.od(D) ~ bOd(H), the following inequalities

follow.

D.id(D)p(H) ~ LVfV(H) idHv ~ D.id(H)p(H), (a)

D.od(D)p(H) ~ LVfV(H) odH v ~ D.od(H)p(H), (b)

bid(D)p(D) ~ LVfV(D) idD v ~ bid(H)p(D), (c)

and
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Necessarily, ~od(H) ~ ~od(D) and ~id(H) ~ ~id(D). Because LVfV(H) idHv =

LVfV(H) odHv, both (a) and (b) imply that ~id(H) ~ ~od(D) and ~od(H) ~ ~id(D).

This establishes (3.3).

LVfV(D) OdD v, (c) and (d) imply that bid(H) ~ bod(D) and bod(H) ~ bid(D). This

establishes (3.4). 0

The proof of Theorem 3.2 yields the following results.

Corollary 3 . 6 If a digraph D can be homogeneously embedded in a digraph H,

then

and

Corollary 3 . 7 If F is a frame for digraph D, then

and

The above result has the following interpretation. The average indegree (or outde-

gree) of a frame of a digraph D is at least max(~od(D), ~id(D)). Also, the average

indegree (or outdegree) of the digraph D is at most min(bod(F), bid(F)).
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Theorem 3 . 3 If a digraph D can be homogeneously embedded in a digraph H, then

and

Proof. Since Oid(H) ~ ~id(D), we have

~(H)p(H) ~ EVEV(H) degH v

= EVEv(H)(idHv +odHv)

= 2EVEV(H) idH v

~ 2~id(D)p(H),

(3.5)

(3.6)

whence ~(H) ~ 2~id(D). Similarly, since ood(H) ~ ~od(D), it can be shown that

~(H) ~ 2~od(H). This establishes (3.5).

Since o(H) ~ ~(D), we have

o(H)p(D) ~ EVEV(D) degD v

= EVEV(D) (idD v + OdD v)

= 2 EVEV(D) idD v

~ 20id(D)p(D),

whence o(H) ~ 20id(D). Similarly, it can be shown that o(H) ~ 2ood(D). This

establishes (3.6). 0
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If a digraph D can be homogeneously embedded in a digraph H, then fr(D) ~

I:1(H) + 1. Hence an immediate corollary of Theorem 3.2 now follows.

Corollary 3 . 8 For a digraph D,

For example, the digraph D of Figure 3.2 can be homogeneously embedded in

the digraph F of order 5 (also shown in Figure 3.2) so that fr(D) ::; 5. However,

l:1 id (D) = l:1od(D) = 2. Thus, by Corollary 3.8, fr(D) ~ 5. Consequently, fr(D) = 5.

D:~ F:

Figure 3.2: A digraph D and its frame F.

The next result includes Corollary 3.5 as a special case.

Lemma 3 . 3 If a digraph D can be homogeneously embedded in a digraph H, then

IV(H) I ~ IV(D)I +max{ I:1(D) - 8(D), max(l:1od(D), l:1id(D)) -min(8od(D), 8id (D))}.

Proof. By Corollary 3.5, we know that IV(H)I ~ IV(D)I+I:1(D)-8(D)· .. (*). From

Lemma 3.2, we deduce that min(l:1 id(H), l:1od(H)) ::; min{IV(H)I-IV(D)1 +8id (D),
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IV(H)I-IV(D)I+8od(D)} = IV(H)I-IV(D)I+min(8id (D), 8od(D)). It follows then by

Theorem 3.2 that max(D.id(D), D.od(D)) :::; IV(H)I-IV(D)I +min(8id(D), 8od(D)) or,

equivalently, IV(H)I ~ IV(D)I +max(D.iiD), D.od(D)) - min(8id(D), 8od(D)). This,

together with inequality (*), yields the desired result. 0

Corollary 3 . 9 For a digraph DJ

fr(D) ~ IV(D)I +max{D.(D) - 8(D), max(D.id(D), D.od(D)) - min(8iiD), 8od(D))}.

In fact the lower bound given in Lemma 3.3 can be further improved. Suppose

that a digraph D can be homogeneously embedded in a digraph H. As an immediate

consequence of Lemma 3.1, Lemma 3.2 and Theorem 3.2, we have the following result.

Corollary 3 . 10 If a digraph D can be homogeneously embedded in a digraph HJ

then

IV(H)I ~ IV(D)I +2 max(D.id(D), D.od(D)) - 8(D).

Corollary 3 . 11 For a digraph DJ

fr(D) ~ IV(D)I +2max(D.id(D),D.od(D)) - 8(D).

We claim that 8(D) ~ 2 min(8id(D), 8od(D)) and D.(D) :::; 2max(D.id(D), D.od(D)).

Choose a vertex v E V(D) such that degDv = 8(D). We have 8(D) = degDv =

idDv +odDv ~ 8id(D) +8od(D) ~ 2min(8id(D), 8od(D)). Similarly, it can be shown

that D.(D) :::; 2max(D.id(D), D.o~(D)). With these inequalities at hand it is easily
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checked that the lower bound presented in Corollary 3.10 is an improvement of that

in Lemma 3.3.

3.4 Framing ratios of digraphs

For a digraph D, we define the framing ratio frr(D) of D by

fr(D)
frr(D) = IV(D)I'

Certainly, frr(D) 2: 1 for every digraph D, and frr(D) = 1 if and only if D is

vertex-transitive. The framing ratio of a digraph D produces a certain measure of

the symmetry of D, where the closer frr(D) is to 1, the more "symmetric" D is. For

the digraph D of Figure 3.1, frr(D) = 11/7 while for the digraph D of Figure 3.2,

frr(D) = 5/3.

Of course, the framing ratio of every digraph is a rational number. We show that

many rational numbers are framing ratios. For the purpose of doing this, we define

a digraph KPo ,PltP2 as follows. Consider a complete 3-partite graph KpO ,Pt,P2 having

partite sets VO, VI, Vi,where IViI = Pi for i = 0,1,2. For i = 0,1,2, replace each

edge uv of D where u E Vi and v E Vi+! with the arc (u, v), where addition is taken

modulo 3. We denote the resulting digraph by KPo ,PltP2'

Theorem 3 . 4 For positive integers f 2: m 2: n,
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Proof. Let D ~ Ki,m,n. Since.D can be homogeneously embedded in Ki,i,!., it

follows that fr(D) ~ 3f. We show that fr(D) ~ 3£. Let F be a frame for D. By

Theorem 3.3, we know that 8(F) ~ 2max(~id(D), ~od(D)) = 2£. Let v be a vertex

of D that belongs to the partite set of cardinality f. Then v is adjacent to or from

at least 8(F) ~ 2£ other vertices in F. These vertices, together with the £ vertices

that belong to the partite set of D that contains v, account for at least 3£ (distinct)

vertices. Hence fr(D) = IV(F)I ~ 3£, producing the desired result. 0

Theorem 3 . 5 For each rational number r E [1,3), there exists a digraph D with

frr(D) = r.

Proof. L~t r E [1,3) be a rational number. Then we may write r = 2+t, where a and

b are integers with b> 0 and -b ~ a < b. Consider the digraph D ~ K4b+2a ,b-a,b-a.

By Theorem 3.2, fr(D) = 3(4b +2a). Since the order of D is 6b,

frr(D) = 3(4b
6
: 2a) = 2 + ~ = r. 0

By Corollary 3.3, if D is a digraph with k orbits, then frr(D) ~ 2k ~ 1. Although

this may suggest that frr(D) can be arbitrarily large, we do not know whether this

is the case. In fact, we do not know whether there even exists a digraph D with

frr(D) ~ 3. On the other hand, a digraph D having a large number of orbits may

have a framing ratio that is arbitrarily close to 1. For example, if D is a directed path

on n vertices, then D has n orbits and is framed by a directed cycle on n +1 vertices.
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So jrr(D) = 1 + ~. Thus it is an open question as to whether framing ratios can be

arbitrarily large.

3.5 The framing number of a class of oriented com

plete bipartite graphs

In [2] it is shown that the framing number of the complete bipartite graph Km,n is

jr(Km,n) = 2max(m, n). Suppose that Km,n has partite sets Vi, Vi where IViI = m

and IViI = n. Replace each edge uv of Km,n where u E Vi and v E Vi with the

arc (u, v). The resulting digraph is denoted by ]{m,n' We show that jr(]{m,n) =

3 max(m, n). For the purpose of doing this, let ]{PO,Pl,P2 be the digraph defined in the

paragraph immediately preceeding Theorem 3.4.

First, we establish the framing number of the digraph ]{t,n.

Proposition 3 . 3 For any positive integer n J jr(i<l,n) = 3n.

Proof. Since ]{t,n can be homogeneously embedded in the vertex transitive digraph

]{n,n,n, it follows that jr(I{l,n) ~ 3n. However, since ~od(]{l,n) = n, by Corollary 3.11

it follows that jr(I{t,n) :::: 3n. Consequently, jr(]{t,n) = 3n. 0

Proposition 3 . 4 For positive integers m and n
J

jr(]{m,n) = 3max{m,n}.
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Proof. By Proposition 3.1 we may assume, without loss in generality that m ~ n.

Since Km,n can be homogeneously embedded in Kn,n,n it follows that jr(Km,n) ~ 3n.

However, because KI,n -< Km,n it follows from Proposition 3.1 that 3n ~ jr(Km,n).

Consequently, jr(Km,n) = 3n as required. 0

3.6 The framing number of a diwheel

A directed cycle of order n in which every vertex has indegree and outdegree equal

to 1, will be denoted by en' If en is given by VI, (VI, V2), V2, (V2' V3), V3, ... ,Vn, (Vn, VI),

VI, then we will simply write VI, V2, V3, . .. , V n , VI' By a diwheel we mean the digraph

Wn+I obtained from the disjoint union of en and KI by joining each vertex of en

to the vertex of K I (which we shall call the centre or central vertex of en). By a

rim vertex of Wn+I we mean a vertex distinct from the centre of Wn+I. In [7] the

framing number of the wheel Wn+I, the underlying graph of Wn+I, is established. In

this section we determine the framing number of the diwheel.

The diwheel W4 can be homogeneously embedded in the digraph D of order 7 in

Figure 3.3 so that jr(W4 ) ~ 7. However, by Corollary 3.11, jr(W4 ) ~ 4+2x3-3 = 7.

Thus jr(W4 ) = 7. The following result establishes the framing number of the diwheel

Wn+I for all integers n ~ 4.

31



Figure 3.3: A frame for W4

Theorem 3 . 6 For n ~ 4 an integer, jr(Wn+d = 3n.

Proof. Since Wn+l can be homogeneously embedded in the vertex transitive di

graph C3 [Cn] it follows that jr(Wn+d ::; 3n. Employing Theorem 3.2, we show that

jr(Wn+d = 3n by verifying that there exists no digraph of order 3n - 1 in which

Wn+l can be homogeneously embedded. Suppose, to the contrary, that such digraphs

do exist. From among all such digraphs, choose a digraph H of minimum size.

Before proceeding further, we introduce some notation. For each vertex x of H, let

Wx denote an induced subdigraph of H that is isomorphic to Wn+l and that contains

x as the central vertex. The set of rim vertices of Wx is denoted by R(Wx ). We will

require a number of preliminary results.

Claim 3 . 1 D.(H) ::; 2n + 1 and n ::; D.od(H) ::; n + 1.

Proof. By Lemma 3.1, D.(H) ::; IV(H)I IV(Wn+dl + 8(Wn+d = (3n - 1) - (n +
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1) + 3 = 2n + 1 and, by Theorem 3.2, b.od(H) ~ b.id(Wn+l) = n. To show that

b.od(H) ::; n + 1, let v be a vertex in H with odH v = b.od(H). Then, by Lemma 3.2,

idH v ~ Did(H) ~ b.id(Wn+l) = n. Thus 2n +1 ~ b.(H) ~ degH v = idH V +odH v ~

Claim 3 . 2 Did(H) = n.

Proof. Let v E V(H) such that odH v = b.od(H). Then, by Claim 3.1, 2n +
,

1 ~ b.(H) ~ degHv = idHv + odHv ~ idHv + n so that idHv ::; n + 1 whence

Then (n + 1)p(H) ::; LVEV(H) idH v = LVEV(H) odH V ::; (n + 1)p(H). Since all of

these inequalities must be equalities, we conclude that idH v = odH v = n + 1 for all

v E V(H). But this implies that b.(H) = 2n +2, which contradicts Claim 3.1. Thus

Did(H) = n as required. 0

Claim 3 .·3 DOd(H) ::; 4.

Proof. By Claim 3.2, we may choose bl E V(H) such that id bl = n. Consider an

embedding HI of Wn+1 in H with bl as a central vertex. Since id bl = n, a further

embedding H2 of Wn+l in H with bl as a rim vertex yields the subdigraph of H shown

Now the vertex Cl is adjacent from C2, ~ and at least n - 2 other vertices which

are not in HI nor H2• These n - 2 vertices, together with the vertices of HI and H2
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Figure 3.4: A subdigraph of H

" . ....
.......

account for 3n - 2 = p(H) - 1 vertices of H. Thus Cl is adjacent to bt, Cn , b and at

most one other vertex so that od Cl ~ 4. Thus 8od(H) ~ 4. 0

Before proceeding to the next claim, we introduce the following notation. For k

a nonnegative integer, we let Sk; = I{v E V(H) : odv = k}1 and tk; = I{v E V(H) :

idv = k}l. Note that

Claim 3 . 4 ~od(H) = n + 1.

Proof. First we prove the claim for n ~ 5. Using the above notation we have

L idv = ntn + (n + l)tn+I +... +~id(H)taid(H)
vEV(H)
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and

l: od v = 8od( H)SOod(H) +... +nSn + (n +1)sn+l'
vEV(H)

Thus

Now

[Left hand side of (3.8)] ~ ntn + (n + l)(tn+l +... + t~id(H»)

=ntn + (n +1)(3n - 1 - tn)

= -tn + (n +1)(3n - 1).

Since 8od( H) ~ 4 < n,

[Right hand side of (3.8)] < (n + l)sn+l +n(8od(H)sOod(H) +.,. +nSn)

= (n + l)sn+l +n(3n - 1 - sn+d

=Sn+l +n(3n - 1).

Combining the above inequalities we have Sn+l +tn > 3n - 1. Since tn ~ 3n -1,

it follows that Sn+l # 0, that is, there is a vertex with outdegree n + 1. Thus

~od(H) = n + 1 for n ~ 5.

Now suppose that n = 4. By Claim 3.1, we know that 4 ~ ~od(H) ~ 5. Sup-

pose that ~id(H) = 4. By Claim 3.2, 8id ( H) = 4, so 4 p(H) ~ L,vEV(H) id v =

L,VEV(H) odv ~ 4p(H). Since all these inequalities must be equalities, we conclude

that id v = od v = 4 for all vertices v of H. Thus H is a 4-regular digraph of order
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11. We remark that every vertex of H is not adjacent with exactly two other vertices;

and because every vertex v of H has indegree 4, we have R(Wv) = N-(v).

Let d be a vertex of H and let F1 be an induced subdigraph of H which is isomorphic

to Ws and that containsd as a rim vertex. Let e be the vertex other than d which

is common to Wd and F1• Since H is 4-regular, e must be adjacent from two vertices

not in Wd U F1 and to another vertex not in Wd U F1 • Suppose, then, the vertices of

H are labelled as in Figure 3.5, where Wd = (a,b,c,d,e) and W j ~ F1 = (d,e,!,i,j).

8 ~_-=-t-=-

b

Figure 3.5: A subdigraph of H

Note that We = (e, c, !, g, h). Next we consider Wa . Clearly d, b, c f/. R(Wa ). Thus

Wa must consist of the vertices e, exactly one of h, 9 and !, exactly one of j and

k and some fourth vertex, say z, not adjacent to e. Since b rt R(Wa ), Z = i. Since

i, e E R(Wa ), it follows that j f/. V(Wa ). Thus R(Wa ) consists of i, e, k and one vertex

from h, 9 and !.

Suppose that h E R(Wa). Note that h must be adjacent from i and h IS not
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adjacent with k. Since (c, 1,9, h) = (R(We )) ~ 04 , h is not adjacent with one of C,9

and 1. Hence the two vertices of H not adjacent with h belong to the set {c, 9,1, k}.

Thus h must be adjacent with each of d and j. Since id d = id j = 4, it follows that

d and j are both adjacent to h. Thus i, d,j E R(Wh ). But this is clearly impossible.

A similar contradiction arises if we assume that 9 E R(Wa). Thus 1 E R(Wa) and

R(Wa ) = {i,e,1,k}. Clearly in R(Wa ), and hence in H, 1 is not adjacent with k.

Since 1 is also not adjacent with d, it follows that 1 is adjacent with every vertex

of H other than d and k. In particular, 1 is adjacent with 9, hand c. But this is

impossible as (c, 1,9, h) = (R(We )) ~ 04 •

Thus we cannot embed Ws in H with a as the central vertex. This contradicts the

fact that H homogeneously embeds Ws. Hence we must conclude that 6.od(H) = 5.

This completes the proof of Claim 3.4. 0

Choose x E V(H) such that odH x = n+l (then idH x = n). Consider an embedding

FI (F2) of Wn+I in H with x as a central vertex (rim vertex, respectively). Then the

digraph D of Figure 3.6 is a subdigraph of H where Wx '" FI = (x, xI, X2, ••• , xn )

and Wf ~ F2 = (j,!I,h, ... ,1n).

Since IV(FI ) U V(F2 )1 = 2n, there is a set S of n - 1 vertices of H not in FI nor

F2. Since odH x = n + 1, x is adjacent to every vertex in S. Consider Wc, where c is

the vertex shown in Figure 3.6. Clearly R(Wc) ~ Su {x2,h}. Since IR(Wc)1 = n, at

least one of X2 and h belongs to R(Wc ).
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x-f
1

Figure 3.6: A subdigraph of H

Claim 3 . 5 The vertex h is non-adjacent to at least one vertex in 8 n R(Wc).

Proof. If h E R(Wc ), then, since R(Wc ) contains at least n - 2 (2: 2) vertices of

8 and h is adjacent to only one vertex of R(Wc ), the result is immediate. Assume,

then, that h rt R(Wc ), for otherwise there is nothing left to prove. Then R(Wc ) =

8 U {X2}. Let s be the vertex of 8 adjacent to X2. Since X3 (s) is the only vertex

of Fl (8, respectively) adjacent to X2, it follows that for n 2: 5 we have R(WX2 ) C

belongs to R(WX2 ), implying that IR(WxJI ~ 4 < 5 which is impossible. Thus

f rt R(WxJ; consequently, R(WxJ = {s, X3, h, f4, . .. , fn}. In particular, we note

that (h, X2) E E(H), so h is adjacent to at least three vertices not in 8, namely to

X2, c, and f. Hence, since LJ.od(H) = n +1 and 181 = n -1, the result now follows for

n 2: 5.
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If n = 4, then H has order 11 and R(WxJ C {s,x3,f,h,f4}' If h E R(WX2 ),

then the result follows as above. Assume, then, that h ~ R(WxJ. Then R(WxJ =

{s,x3,f,!4}. In particular, we observe that (J4,X2) E E(H). If h is non-adjacent to

some vertex of 5, then the result follows since 5 C R(Wc ). On the other hand, if h

is adjacent to all three vertices of 5, then odH h = 5 (= n +1). However, since x and

h are not adjacent and idH h ~ 4, it follows that R(Wf3) = {X2' X3, X4, f4}' But this

would imply that (X2' f4) E E(H), which produces a contradiction. This completes

the proof of Claim 3.5. 0

By Claim 3.5, there exists a vertex b in 5 n R(Wc ) that is not adjacent from h.

Since x is adjacent to every vertex of 5, (x, b) E E(H).

Claim 3 . 6 There exists no embedding of Wn+l in H with b as a central vertex and

x as a rim vertex.

Proof. Assume, to the contrary, that we can embed Wn+l in H with b as a central

vertex and x as a rim vertex. We determine R(Wb). Since b E R(Wc ), we know

that (b, c) E E(H), so c ~ R(Wb). Further, (h, b) ~ E(H), so f3 ~ R(Wb). Since

x E R(Wb), it follows that exactly one vertex from {X2' X3, ... ,xn} belongs to R(Wb).

Moreover, exactly one vertex from N+(x) = 5 U if, fn} belongs to R(Wb). If f E

R(Wb), then no vertex from {f4"'" fn} belongs to R(Wb), implying that R(Wb)

consists of only three vertices, which is impossible (since n ~ 4). Hence f ~ R(Wb).

Thus R(Wb) consists of x, exactly one vertex from {X2' X3, . .. , xn}, exactly one vertex
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from 5 u {In}, and n - 3 vertices from {I4" .. , In-d· However, this is impossible as

I{I4"'" In-dl = n - 4 < n - 3. This completes the proof of Claim 3.6. 0

Claim 3 . 7 The only possible embeddings of Wn+l in H with both b and x as rim

vertices have I as the central vertex, and as rim vertices b, x, exactly one vertex Irom

{X2' X3, . .. ,xn}, and the n - 3 vertices in {h, ... ,fn-d·

Proof. Consider an embedding of Wn+l in HI with both b and x as rim vertices.

Let Wy be such an embedding with central vertex y. Since x, bE R(Wy ), the vertex

c cannot belong to Wy • Since x E R(Wy ), exactly one vertex from {X2' X3, . .. , xn}

belongs to R(Wy ), and y must be one of the vertices in 5 U if, In}.

If y = f, then, since x is adjacent to the vertex b on R(Wy ), no vertex in 5 U {fn}

belongs to R(Wy ). It follows that R(Wy ) consists of b, x, exactly one vertex from

{X2' X3,· .. , xn}, and the n - 3 vertices in {h, ... ,In-d. Hence, we may assume in

what follows that y =/: f, for otherwise there is nothing left to prove.

If y = fn, then no vertex from 5 U if, f3,' .. , fn-d other than b belongs to R(Wy ),

implying that R(Wy ) consists of only three vertices, which is impossible. Hence

y i- In. This in turn implies that I, In rt. R(Wy ), since x is adjacent to the vertex b

on R(Wy ).

If y E 5, then R(Wy ) consists of b, x, exactly one vertex Xi (say) from {X2,X3,

... ,xn }, and the n - 3 vertices in {h, ... , fn-d. Since (h, b) rt. E(H), it follows that

no vertex of {h, . .. ,In-I} is adjacent to b. Furthermore, we note that y is adjacent
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from each of band h. Since b E R(Wc ), it follows that one of y and h does not

belong to R(Wc),

If y ~ R(Wc ), then R(Wc ) = (S - {y}) U {X2' h}. Since (y, b) ~ E(H), it follows

that there is therefore exactly one vertex in S U {X2, h} that is adjacent to b. This

vertex, together with the vertices in {x, X3, X4, . .. ,xn }, are therefore the only possible

vertices adjacent to b. Since idH b ~ n, it follows that R(Wb) consists of one vertex

from S U {X2} and the n - 1 vertices from {x, X3, X4, . .. , xn }. But then x E R(Wb),

which contradicts the result of Claim 3.6.

If h ~ R(Wc ), then R(Wc ) = S U {X2}. Hence b is the only vertex in S U {X2}

that is adjacent to y, so Xl #- X2. That is to say, Xl E {X3"'" x n }. Furthermore,

since (h, b) ~ E(H), there is exactly one vertex z in S U {X2' h} that is adjacent to

b. By Claim 3.6, X ~ R(Wb). Hence, R(Wb) ~ {z} U {f} U ({X3""'Xn } - {Xl}),

so IR(Wb)1 :s; n - 1, which is impossible. Hence y ~ S. This completes the proof of

Claim 3.7. 0

Claim 3 . 8 For each vertex of H J there is an embedding of Wn+I in H with that

vertex as a central or rim vertex that does not contain the arc (x, b).

Proof. In view of Claims 3.6 and 3.7, the only vertices in doubt are f as a central

vertex in some embedding of Wn+1 in H, and the vertices b, X, Xi (2 :s; i :s; n) and

h (3 :s; j :s; n - 1) as rim vertices in some embedding of Wn+I in H. Since WJ ~ F2 ,

and b ~ V(F2 ), there is an embedding of Wn+I in H with f as a central vertex and
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Ji (1 :S j :S n) as a rim vertex that does not contain the arc (x, b). (Recall that

x = ft.) Futhermore, since Wx ~ FI, and b t/:. V(Fi), there is an embedding of Wn+!

in H with Xi (2 :S i :S n) as a rim vertex that does not contain the arc (x , b). Finally,

since b E R(Wc ), and x t/:. V(Wc ), there is an embedding of Wn+! in H with b as a

rim vertex that does not contain the arc (x, b). 0

As an immediate consequence of Claim 3.8, we have that the digraph H - (x, b)

obtained from H by removing the arc (x, b) homogeneously embeds Wn+!' This,

however, contradicts the minimality property of H. We deduce, therefore, that there

is no digraph of order 3n - 1 in which Wn+! can be homogeneously embedded. This

completes the proof of Theorem 3.6. 0

3.7 The framing number of a transitive tourna-

ment

In this section we determine the framing number of transitive tournaments. The

following result will be useful (see [4]).

Theorem 3 . 7 (Chartrand, Lesniak !4J) For every positive integer n, there is ex

actly one transitive tournament of order n.

In fact, we will show that transitive tournaments have unique frames. For the

purpose of doing this, we define two digraphs. Let n be a positive integer. Let
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Tnbe the transitive tournament defined by V(Tn) = {ut, U2, ... , un} and E(Tn) =

{(ui,uj)ll :::; i < j:::; n}. By Theorem 3.7, Tn is, up to isomorphism, the only

transitive tournament of order n. Note that od Ui = n - i and id Ui = i-I for

i = 1, ... ,n. Next, we define a digraph Dn with V(Dn) = {vo,Vt,,,,,V2n-2}, where

each vertex Vi (0 :::; i :::; 2n - 2) is adjacent to each of the vertices Vi+!, Vi+2, ... ,Vn+i-b

where all subscripts are expressed modulo 2n - 1. Then Dn is an (n - 1)-regular

digraph of order 2n - 1. Furthermore, Dn is easily seen to be vertex transitive.

Notice that Tn ~ ({VD, V2, ... ,Vn-l}) ~ Dn so that Dn homogeneously embeds Tn.

Theorem 3 . 8 Let T be a transitive tournament of order n and let K be a vertex

transitive digraph. Then fr(T[K]) = (2n - l)p(K) and the digraph Dn[K] of order

(2n - l)p(K) is the unique frame of the digraph T[K].

Proof. By Theorem 3.7, we know that T ~ Tn. Thus we show that fr(Tn[K]) =

(2n - l)p(K) and that Tn[K] is uniquely framed by Dn[K]. Let D ~ Tn[K]. Since

K is vertex transitive, it is k-regular for some integer k ~ O. Let H be a frame for

D. Since D can be homogeneously embedded in the digraph Dn[K], it follows that

IV(H)I :::; (2n - l)p(K). Before proceeding further, we prove three claims.

Claim 3 . 9 ~od(D) = ~id(D) = k + (n - l)p(K), and ~(D) = 8(D) = 2k +

(n - l)p(K).
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Proof. A copy of D is illustrated in Figure 3.7 where Wi ~ K. For i = 1, ... , n,

each vertex Wi of Wi is adjacent to every vertex of W j for all j such that n 2: j > i,

so odwi = k + (n - i)p(K) and idwi = k + (i -l)p(K). Thus each vertex of W1 has

outdegree k + (n - 1)p(K), and this is clearly the maximum outdegree among the

vertices of D. Furthermore, each vertex of Wn has indegree k +(n - 1)p(K), and this

is the maximum indegree among the vertices of D. Moreover, deg Wi = id Wi +od Wi =

2k + (n - 1)p(K). 0

Figure 3.7: The digraph D ~ Tn[K].

Claim 3 . 10 fr(D) = IV(H)I = (2n - 1)p(K) and b.(H) = 2k +2(n - l)p(K).

Proof. By Theorem 3.3, we know that b.(H) 2: 2max(b.od(D), b.id(D)) = 2k +

2(n - 1)p(K). Hence, by Lemma 3.1 and Claim 3.9, it follows that (2n - l)p(K) 2:

IV(H)I 2: IV(D)I +b.(H) - b(D) 2: (2n -l)p(K) . Consequently, fr(D) = IV(H)I =

IV(D)I + b.(H) - b(D) = (2n - l)p(K) and b.(H) = 2k +2(n - l)p(K). 0
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Claim 3 . 11 H is (k + (n - l)p(K))-regular.

Proof. By Lemma 3.2 and Claim 3.9, we know that 8id(H) ~ ~id(D) = k + (n 

l)p(K) and 8od(H) ~ ~od(D) = k + (n - l)p(K). Let v be an arbitrary vertex of

H. Then, by Claim 3.10, 2k + 2(n - l)p(K) = ~(H) ~ degH v = idHV + OdH v ~

8id(H) +8od(H) ~ 2k +2(n -1)p(K). Since these inequalities must be equalities, we

deduce that idHv = odHV = k + (n - l)p(K). 0

Now let w (z) be a vertex in D with OdD w = ~od(D) (respectively, idDz = ~id(D)).

For any vertex x of H, let D"% (D;) denote an embedding of D in H as an induced

subdigraph with the vertex w (z, respectively) at x. By Claims 8 and 10, it follows

that in H

Let U E V(H) and consider an embedding Dt = (Uo,Ull •.. , Un-I) of D in H,

where each (Ui ) is isomorphic to K, each vertex of Ui (0 ~ i < n - 1) is adjacent to

to every vertex Uj for all j such that n - 1 ~ j > i. Now let v be a vertex in Un - I

and consider an embedding D; = (Vn- I , Vn, .. . , V2n-2) of D in H, where each (Vi) is

isomorphic to K, each vertex of Vi (n - 1 ::; i < 2n - 2) is adj acent to every vertex

~ for all j such that 2n - 2 ~ j > i. Since N+[v] ~ V(Dj), it follows that v E Vn - I .
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Claim 3 . 12 Ui n Vj = 0 for 0 $ i $ n - 2 and n - 1 $ j $ 2n - 2.

Proof. Since v is adjacent from all of the (n - l)p(K) vertices of ui~iui, it follows

that Ui n Vj = 0 for 0 $ i $ n - 2 and n $ j $ 2n - 2. It remains for us to show

that Ui n Vn - I = 0 for 0 $ i $ n - 2. Suppose, to the contrary, that there is a vertex

x E Ui n Vn - I for some i (0 $ i $ n - 2). Then in H, x is adjacent to k vertices of

Ui and to each vertex of (Uj~l+lUj ) U(U;~;2Vj). Hence,

IN+(x)1 ~ k +I(Uj~l+lUj ) U(U;~;2Vj ) I

~ k + I(U']~i~IUj) U(U;~;2Vj) I

=k + (n - 2 - i)p(K) + (n - l)p(K)

~ k + (n - l)p(K).

However, by Claim 3.11, k+(n-1)p(K) = odH x = IN+(x)l, so the above inequalities

must be equalities. In particular, this implies that Un - I ~ U;~;2Vj, which produces

a contradiction since v E U n- I n Vn- I . Thus U i n Vn- I = 0 for 0 $ i $ n - 2. 0

Claim 3 . 13 Vn- I = Un-I.

Proof. We have

IV(H)I > I(U,,!,-IU·) U (U~n-2 V;.) I- J=O J J=n-I J

=(2n - l)p(K).
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However, (2n - l)p(I<) = IV(H)I, so that the above inequalities must be equalities.

Consequently, V(H) = (Uj:~Uj) U (U;~~:lVi)· Hence, Un - l ~ U;~~:lVi. Suppose

that there is a vertex x E Un - l n Vi for some j with n :::; i :::; 2n - 2. Then in H, x

is adjacent from k vertices of Vi and from each vertex of (Uj:~Uj) U Vn - l . Hence

it follows from Claim 3.12 that x is adjacent from at least k +np(I<) vertices, which

contradicts the result of Claim 3.11. Thus Un-l nVi = 0for n :::; j :::; 2n - 2, implying

that Un- l ~ Vn- l . Since IVn-11 = n = IUn-ll, we must have Vn- l = Un-i. 0

By Claims 3.12 and 3.13, we observe that Ui nVi = 0for 0 :::; i :::; n -1 and n :::; j :::;

2n-2. For notational convenience, we set Vi = Uj for j = n, n+1, .. . ,2n-2. It follows

then from the proof of Claim 3.13 that the digraph H has vertex set V(H) = U;~02Uj.

Claim 3 . 14 H '" Dn[W].

Proof. We know that each vertex of Ui (0 :::; i < n -1) is adjacent to every vertex Uj

for all j such that n -1 ~ j > i, and each vertex of Ui (n -1 :::; i < 2n - 2) is adjacent

to every vertex Uj for all j such that 2n - 2 ~ j > i. Since H is (k +(n - 1)p(I<))

regular, it suffices for us to show that each vertex of Ui (0 :::; i :::; 2n - 2) is adjacent to

every vertex of Uj for j = i + 1, i + 2, ... ,i +n - 1, where all subscripts are reduced

modulo 2n - 1.

Let x E U2n- 2 • Then x is adjacent from each vertex of U~~~:lUi, so N+[x] ~

(U~;o2Ui ) U U2n- 2 • Since x is adjacent to exactly k vertices of U2n- 2, it follows that

odHx = IN+(x)l:::; (n-1)p(I<)+k. However, by Claim 3.11, odHx = (n-1)p(I<)+k.
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Consequently, x must be adjacent to all of the (n - l)p(K) vertices of Ui;iui .

Consider now a vertex y in Un - 2 • Then y is adjacent from each vertex of (Ui;~Ui ) U

U2n- 2, so N+[y] ~ (U~~~~2Ui)' Since y is adjacent to k vertices of Un- 2, it follows that

odH y = IN+[y]l::; (n-1)p(K)+k. However, by Claim 3.11, odH u = (n-1)p(K)+k.

Consequently, y must be adjacent to all of the (n -l)p(K) vertices of U~~~~lUi'

Continuing in this way (we consider next a vertex in U2n- 3 , and then a vertex in

Un - 3 , and so on), we may show that each vertex of Ui (0 ::; i ::; 2n - 2) is adjacent to

every vertex of Uj for j = i +1, i +2, ... , i +n - 1, where all subscripts are reduced

modulo 2n - 1. This completes the proof of the claim and of Theorem 3.8. 0

Corollary 3 . 12 The transitive tournament T of order n is uniquely framed by the

digraph Dn of order 2n - 1 so that freT) = 2n - 1.

It was noted in [10] that the framing ratio is a certain measure of symmetry. From

the score sequence of the transitive tournament T of order n, we deduce that T has

exactly n orbits, each consisting of a single vertex. In view of this, one would think

of transitive tournaments as highly unsymmetric and hence expect them to have high

framing ratios for large n. However, by Theorem 3.8, we have freT) = 2 -~. This

is surprising since the digraph Km,n, for example, has just two orbits (irrespective of

the values of m and n) and yet has framing ratios arbitrarily close to 3. In [10] it is

shown that the digraph Kp,q,r, which has just three orbits, can have framing ratios

arbitrarily close to 3 for suitable values of p, q and r. Again, this is surprising as
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one would tend to think that Kp,q,r is a more symmetric digraph than a transitive

tournament. Perhaps this can be explained by the transitivity of T which induces a

certain symmetry to T and so causes the unexpected low framing ratio. Although a

digraph with exactly one orbit, being vertex transitive, is highly symmetric, we must

deduce that the symmetry of a digraph does not depend solely on the number of

orbits. Other properties, such as the general orientation also seem to have an effect

on the symmetry.

3.8 The diameter of a frame

By Theorem 2.5, the diameter of a frame of a connected graph cannot be too large. In

this section we present a corresponding result for digraphs We show that the diameter

of the underlying graph of a frame of a digraph G cannot be too large.

Theorem 3 . 9 Let G be a· connected digraph with frame H. Let G' and H' be the

underlying graphs of G and H, respectively. Then diam H' :::; diam G' +1.

Proof. Set d = diam G' . Suppose diam H' ~ d + 2. Let v be a vertex of H' whose

eccentricity (in H') is D = diam H'. Let lti be the set of vertices at distance i from v

in H' for 1 :::; i :::; D. Let u E VD. Delete the vertex v from H and for each w E VI such

that (v,w) E E(H) (respectively, (w,v) E E(H)), add a new arc (u,w) (respectively,

(w,u)) to H. Denote the resulting digraph by HI. Let x E V(G) and y E V(Hd.
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Consider an embedding GI of G in H with x at y. If GI contains v, then replace v

with u and observe that this new subdigraph of H is still induced since G' contains

no vertices of Vd+!. If GI does not contain v, then GI is still an induced subdigraph of

HI since GI cannot contain vertices from both Vi and VD. Thus HI homogeneously

embeds G. Since p(HI ) < p(H), this contradicts the fact that H frames G. 0

Although it is not known whether the bounds in the above theorems can be at

tained, we do have a partial improvement of the· above result. As pointed out in

Section 3.1, all digraphs referred to are asymmetric digraphs.

Theorem 3 . 10 For every connected digraph G, and for each integer n ~ fr(G),

there is a digraph H of order n in which G can be homogeneously embedded satis

fying diam H' ~ diam G' where G' and H' are the underlying graphs of G and H,

respectively.

Proof. By Theorem 2.2, we know that there exists a digraph of order n in which G

can be homogeneously embedded. Among all such digraphs, let H be one of maximal

size. If H is a tournament, then the result is immediate. Assume, then, that H is not

a tournament, for otherwise there is nothing left to prove. Let u and v be nonadjacent

vertices in H, and consider the digraph HI obtain~d from H by joining u to v. By

the maximality property of H, the digraph G cannot be homogeneously embedded in

HI' Thus for some vertex x of G and some vertex y of HI, there is no homogeneous

embedding of G in HI with x at y. However, since G can be homogeneously embedded
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in H, there is an homogeneous embedding Cl of C in H with x at y. Let C~ and H'
I

denote the underlying graphs of Cl and H, respectively. If at most one of u and v

belongs to Cl, then Cl would be a homogeneous embedding of C in HI with x at y

which would produce ~ contradiction. Hence u, v E V(CI ). It follows that in H' we

have d(u, v) :::; diam C~ = diam C'. Since u and v are arbitrary nonadjacent vertices

in H, we conclude that diam H' :::; diam C'. 0

Corollary 3 . 13 Every connected digraph C has a frame whose underlying graph

has diameter at most that of the underlying graph of C.

An immediate consequence of Corollary 3.13 now follows.

Corollary 3 . 14 Every tournament has a frame which is also a tournament.

While it is always possible to :find a frame F for· a connected digraph C such

that diam F' :::; diam C' where C' and F' are the underlying graphs of C and F,

respectively, diam F' can be an arbitrarily amount less than diam C'. For exam-

pIe, the directed cycle en+! is a frame for the directed path Pn of length nand

diam en+! = LnilJ while diam Pn = n - 1.
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Chapter 4

The edge framing number of a

graph

4.1 Introduction

A nonempty graph G is said to be edge homogeneously embedded in a graph H if for

each edge e of G and each edge f of H, there is an edge isomorphism between G and

a vertex induced subgraph of H which sends e to f. A graph F of minimum size in

which G can be edge homogeneously embedded is called an edge frame of G and the

size of F is called the edge framing number efr(G) of G. We also say that G is edge

framed by F. It is shown in Section 4.2 that every graph has at least one edge frame

and, consequently, that the edge framing number of a graph is a well-defined concept.

In this chapter we restrict ourselves to graphs with no isolated vertices. This will not
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affect the generality of any of the results presented.

It is natural to ask whether the notions of edge homogeneous embedding and the

usual homogeneous embedding requirement are related. In fact, as the following

examples illustrate, neither of the embedding requirements directly implies the other.

G:
e

Figure 4.1:

H:

While the graph G of Figure 4.1 can be homogeneously embedded in the graph H,

G cannot be edge homogeneously embedded in H; for example, there is no embedding

of G in H with the edge e at f.

The next example illustrates strikingly that edge homogeneous embedding does

not directly imply homogeneous embedding in general. The complete bipartite graph

f{l,n can be edge homogeneously embedded in itself while it is obvious that f{l,n does

not homogeneously embed itself.

Although the two embedding requirements do not directly imply each other, it will

be shown in Section 4.3 that they are related in a natural way through line graphs.
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The edge framing ratio frr(D) of a nonempty graph G is defined by efrr(D) =

efr(G)/IE(G)I. This graphical parameter may be considered as a certain measure

of the edge symmetry of a graph. In Section 4.4 this parameter is introduced. It is

shown that every rational in the interval [1,3) is an edge framing ratio. In Section 4.5,

it is shown that every nonempty connected graph G has an edge frame with diameter

at most diam G + 1. Finally, in Section 4.6 the edge framing number is defined

for more than one graph and the framing number is determined for pairs of cycles.

Furthermore, we determine efr(K1,m,Cn ) for all integers m 2: 3 and n 2:4.

4.2 Existence of edge frames

Any automorphism </J of a nonempty graph G gives rise to an edge automorphism of

G in a natural way: we define </J(ab) = </J(a)</J(b) for all edges ab of G. It is precisely

this property of an automorphism which we use to prove that every nonempty graph

has an edge frame.

Theorem 4 . 1 Every nonempty graph has an edge frame.

Proof; Let G be a nonempty graph. It suffices to show that there exists a graph F

in which G can be edge homogeneously embedded.

Let SI, S2," . ,Sk be the edge-orbits of G, where Si = {ei,b ei,2, .. . ,ei,nJ for 1 ::;

i ::; k. Thus q(G) = L:7=1 ni· Set r = maxl<i<kISil. To construct F we begin with

54



if £ > i

2k(k - 1)r + 1 copies of G, denoted G l , G2 , .•• , G2k(k-l)r+l' For each i (1 ::; i ::; k)

and for each j (1 ::; j ::; ni), the edge ei,j in G is labelled ei,j in Gm (1 ::; m ::;

2k(k - 1)r +1). Furthermore, we denote the end-vertices of the edge ei,j byai,j and

br:n· so that er:n· = ar:n·br:n·.l,J l,J l,J l,J

The vertex set of F is U;:~;-l)r+l V(Gm ). Additional edges are now added as

follows. Consider each edge ei,j = ai,jbi,j in Gm. Consider, then, also the edge el,l for

(1 ::; £ ::; k) where

m +r(i - 1)(k - 1) +r(k +£ - i - 1) +jiff < i

m +r(i - 1)(k - 1) +r(£ - i - 1) +j

(where / is expressed modulo 2k(k - 1)r +1).

Join ai,j (bi,j' respectively) to each neighbour of al. l (bl. l , respectively) except to bl,l

(al,ll respectively). Also, join al. l (bl. l , respectively) to each neighbour of ai,j (bi,j,

respectively) except to bi:j (ai,j, respectively). Observe that the edges al,l and ai,j are

similar in H. Furthermore, each of the newly adjoined edges is similar to an edge in

Gm or G-y. This completes the construction.

It remains to show that F has the desired properties. It suffices to verify that for

each £ (1 ~ £ ~ k) and each edge e of F, the graph G can be edge-embedded as a

vertex induced subgraph of F with et,l at e. Now, by the construction of F, each

edge of F not in U;:~;-l)r+lGm is similar to an edge in U;:~;-l)r+l Gm. Thus we

may assume that e is ai,j bi,j for some i, j and m where 1 ::; i ::; k, 1 ::; j ::; ni and
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1 ~ m ~ 2k(k - 1)r + 1. We define

{

V(Gt3) U {ari,brJ - {a~l,b~l}
u=

V(Gm )

where

if i =I- f

if i > f

{

m + r(i - 1)(k - 1) + r(k + f - i - 1) +j if i > f
13=

m + r (i - 1)(k - 1) + r (f - i - 1) +j if i < f

( 13 is expressed modulo 2k(k - 1)r +1). Then (U) ~ G. This completes the proof.

o

The next two results are interesting consequences of the proof of Theorem 4.1.

Corollary 4 . 1 Let G be a nonempty graph. Then there is a graph H such that for

each edge ab of G and each edge cd of H, there is a (vertex) embedding <j> of G as an

induced subgraph of H such that <j>(a)<j>(b) = cd.

Corollary 4 . 2 Let G be a nontrivial graph which is not complete. Then there

exists a graph H such that for every pair of nonadjacent vertices a, b in G and for

every pair of nonadjacent vertices c, d in H, there is an isomorphism <j> from G onto

H as an induced subgraph of H such that {<j>(a), <j>(b)} = {c,d}.

Proof. Since G is not a complete graph, the complement G of G is not empty. By

Corollary 4.1, there is a graph F such that that for each edge ab of G and each edge

cd of F, there is a (vertex) embedding <j> of Gas an induced subgraph of F such that

<j>(a)<j>(b) = cd. Then the graph H ~ F is a graph with the desired property. 0
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Corollary 4 . 3 Let G be a nonempty graph and let v be a vertex of G. Then for

each integer m ~ 0 there is a graph of size efr(G)+m deg v which edge homogeneously

embeds G.

Proof. Let F be an edge frame for G. Form a new graph F' from F by adding a

set S of m new vertices to F and joining each vertex of S with each neighbour of v.

Then F ' is a graph of size efr(G) +m deg v which edge homogeneously embeds G. 0

4.3 Lower bounds on the edge framing number

In this section we establish some lower bounds on the edge framing number.

We first show that if a nonempty graph G can be edge homogeneously embedded

in a· graph H, then the line graph L(G) can be homogeneously embedded in the line

graph L(H). The following result due to Whitney [12] will be useful.

Theorem 4 . 2 (Whitney [i2}) Let 4> be an edge isomorphism from a connected

graph G to a connected graph H where G is different from the graphs Gi (i =

1,2,3,4,5) shown in Figure 4.2. Then 4> is induced by an isomorphism from G to H

so that G ~ H.

We present a slight improvement of the above result which will be useful for our

purposes.
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Figure 4.2:

Theorem 4 . 3 Let G and H be connected edge isomorphic graphs where G is dif

ferent from C3 and f{1,3' Then G and H are isomorphic.

Proof. By Theorem 4.2, we know the result to be true if G is different from the

graphs G3 ,G4 and Gs shown in Figure 4.2. Assume then that G is isomorphic to G i

for some i = 3,4,5. Since q(Gi ) = i + 1 for i = 3,4,5, it follows that Gi is not edge

isomorphic to Gj for 3 ::; i < j ::; 5. Thus H is different from the graphs Gj (j =I- i).

Let </> : E(G) ----+ E(H) be an edge isomorphism between G and H. Suppose that G

and H are not isomorphic. Then </>-1 is an edge isomorphism from a graph different

from the graphs G i (i = 1,2,3,4,5) shown in Figure 4.2 onto G. By Theorem 4.2

it follows that G and H are isomorphic. As this is contrary to hypothesis we must

conclude that G and H are isomorphic. This completes the proof. 0

Corollary 4 . 4 Let G and H be edge isomorphic graphs where the components of

G are different from C3 and K 1,3. Then G and H are isomorphic.
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We will also require the following result due to Whitney [12].

Theorem 4 . 4 (Whitney [12]) Let G and H be non-trivial connected graphs. Then

L(G) rv L(H) if and only if G ~ H or one of G and H is the graph C3 and the other

Theorem 4 . 5 Let G be a nonempty graph which is different from C3 and K1,3. If

G can be edge homogeneously embedded in a graph H then the line graph L(G) of G

can be homogeneously embedded in the line graph L(H) of H. Consequently

efr(G) ~ fr(L(G)).

Proof. Let x E V(L(G)) and y E V(L(H)) and suppose that x and y correspond

to edges ex and ey of G and H respectively. Since G can be edge homogeneously

embedded in H, there is an edge-embedding G' of G as an induced subgraph of H with

ex at e y • By Corollary 4.4, G and G' are isomorphic. Consequently, by Theorem 4.4,

the line graphs L(G) and L(G') are isomorphic. Since L(G') is an induced subgraph of

L(H), it follows that L(G') is an embedding of L(G) in L(H) with x at y. Thus L(G)

can be homogeneously embedded in L(H). Let F be an edge frame for G. Then, since

L(F) homogeneously embeds L(G), we have efr(G) = q(F) = p(L(F)) ~ fr(L(G))

and the desired inequality follows.O

Since an edge symmetric graph gives rise to a vertex symmetric line graph, it

follows that efr(G) = fr(L(G)) whenever G is edge symmetric. For the graph G
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of Figure 4.4, it will be shown that efr(G) = 12 while in [8] it was established that

fr(L(G)) = 6. Thus there exist graphs for which efr(G) > fr(L(G)).

Corollary 4 . 5 Let G be a nonempty graph which is different from C3 and K1,3'

Then there exists a graph H such that the line graph L(G) of G can be homogeneously

embedded in the line graph L(H).

Before proceeding, we digress slightly to show that for a large class of graphs,

the edge homogeneous embedding requirement is stronger than the homogeneous

embedding requirement in a sense which will become clear in what follows. We

consider the following problem: given a pair of graphs G and H, when can G be

homogeneously embedded in H? We show that this problem can be reduced to a

problem of edge homogeneous embedding for a large class of graphs. The following

result due to Beineke [1] will be useful.

Theorem 4 . 6 (Beineke [IJ) A graph H is a line graph if and only if none of the

graphs Gi (1 ~ i ~ 9) of Figure 4.3 is an induced subgraph of H.

Let P denote the class of graphs G different from C3 and with the property that

none of the graphs of Figure 4.3 is an induced subgraph of G. By Theorem 4.6, each

graph in P is a line graph so that for each G E P; there exists a graph G' such that

G ~ L(G'). We denote such a graph G' by L-(G). Theorem 4.5 yields the following

result.
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Figure 4.3:

Theorem 4 . 7 For a given pair of graphs G and H in P, if L - (G) can be edge

homogeneously embedded in L- (H), then G can be homogeneously embedded in H.

Thus, for a large class of graphs, homogeneous embedding reduces to edge homo

geneous embedding. In this sense, the edge homogeneous embedding requirement is

a stronger embedding requirement than the usual homogeneous embedding require-

ment.

Let e = ab be an edge of a nonempty graph G. We define the edge degree of e

in G to be edgG(e) = degGa + degGb - 2. If v is the vertex of the line graph L(G)

. corresponding to e, then edgG(e) = degL(G)v. Since the sum of the edge degrees

in G is just the sum of the degrees of the vertices of the line graph L(G), which is

an even number, it follows that there are always an even number of edges in G of
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odd edge degree. We denote the maximum (minimum) edge degree of G by ~edg(G)

(8edg (G), respectively). Note that ~edg(G) = ~(L(G)) and 8edg (G) = 8(L(G)). Next

we present the edge analogue to Lemma 2.1.

Theorem 4 . 8 If a nonempty graph G can be edge homogeneously embedded in a

graph H, then

~edg(G) :s 8edg (H) :s ~edg(H) :s IE(H)I-IE(G)I +8edg (G).

Proof. Necessarily ~edg(G) :s 8edg (H). The result is easily seen to be true if G is

C3 or K I ,3. Assume, then, that G is different from C3 and K I ,3' By Theorem 4.5 we

know that L(G) can be homogeneously embedded in L(H). Thus, by Lemma 2.1, it

follows that ~(L(G)) :s 8(L(H)) :s ~(L(H)) :s IV(L(G))I - IV(L(G))I +8(L(G)).

By the remarks preceding the theorem, the desired inequality follows. 0

Corollary 4 . 6 If a nonempty graph G can be edge homogeneously embedded in a

graph H, then

IE(H)I ~ IE(G)I + ~edg(G) - 8edg (G).

Corollary 4 . 7 For any nonempty graph G

efr(G) ~ IE(G)I + ~edg(G) - 8edg (G).

Let G be a graph which is different from C3 and K I ,3. If G can be homogeneously

embedded in a graph H, then by Lemma 2.1 we know that ~(G) :s 8(H). This result
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is not necessarily true if H edge homogeneously embeds G. However, we do have the·

following result.

Theorem 4 . 9 Let G be a nonempty graph which is different from C3 and K 1,3. If

G can be edge homogeneously embedded in a graph H, then

S(H) ~ max{min{degaa,degab}: abE E(G)}

Corollary 4 . 8 Let G be a nonempty graph which is different from C3 and K 1,3.

Suppose also that G has two vertices of maximum degree which are adjacent. If G

can be edge homogeneously embedded in a graph H, then S(H) ~ ~(G).

Corollary 4 . 9 Let G be a nonempty graph which is different from C3 and K 1,3.

Suppose also that G has two vertices of maximum degree which are adjacent. If F is

an edge frame of G, then S(F)~ ~(G).

Theorem 4 . 10 If a graph G can be edge homogeneously embedded in a graph H,

then

~(G) ~ ~(H) ~ IV(H)I-IV(G)I + ~(G).

Proof. Necessarily, ~(G) ~ ~(H). Let v be a vertex of G. Then v is not adjacent to

at least IV(G)I-~(G)-1vertices in H. Since H edge homogeneously embeds G, every

vertex of H is not adjacent to at least IV(G)I- ~(G) -1 vertices in H. Consequently,

every vertex of H is adjacent with at most IV(H)I - 1 - (IV(G)I - 1 - ~(G)) =

IV(H)I-IV(G)I +~(G) vertices. That is, ~(H) $ IV(H)I-IV(G)I +~(G). 0
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Corollary 4 . 10 If F is an edge frame of a graph G, then

~(G) ::; ~(F) ::; IV(F)I-IV(G)I + ~(G).

Theorem 4 . 11 Let G be a nonempty graph which is different from C3 and K 1,3.

Suppose also that G has two vertices of minimum degree which are adjacent. If G can

be edge homogeneously embedded in a graph H, then

8(G) ::; 8(H) ::; IV(H)I-IV(G)I +8(G).

Proof. Necessarily 8(G) ::; 8(H). The last inequality follows from an argument

similar to that used in Theorem 4.10. 0

Corollary 4 . 11 Let G be a nonemptygraph which is different from C3 and K 1,3.

Suppose also that G has two vertices of minimum degree which are adjacent. If F is

an edge frame of a graph G, then

8(G) ::; 8(F) ::; IV(F)I-IV(G)I +8(G).

In order to illustrate the concepts described above, we determine the edge framing

numbers of the graph P3 X K 2 and the graph G shown in Figure 4.4.

First we consider the graph R ~ P3 X K 2 • Since R can be edge homogeneously

embedded in the graph C4 x K2 of size 12, efr(R) ::; 12. Let F be an edge frame

for R. By Corollary 4.9 and Corollary 4.11 we have 3 = ~(R) ::; 8(F) ::; IV(F)I 

IV(R)I + 8(R) = IV(F)I - 4··· (*) whence IV(F)I ~ 7. If IV(F)I = 7 then all
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the inequalities in (*) are equalities and F is a 3-regular graph of order 7 which is

impossible. Thus IV(F)I ~ 8 and 2q(F) ~ 8(F)IV(F)\ ~ 3 x 8 whence efr(R) =

q(F) ~ 12. Consequently efr(R) = 12.

x

G

y

Figure 4.4: A graph G and its edge frame.

Next we consider the graph G shown in Figure 4.4. Since G can be edge homo

geneously embedded in the graph H of size 12 shown in Figure 4.4, it follows that

efr(G) ::; 12. We next show that efr(G) ~ 12. Let F be an edge frame for G. Let a

be a vertex of minimum degree 8(F) in F and let bE N(a). Consider an embedding

G' of G in F with edge xy at ab, say G' ::: (a, b, c, d) as shown in Figure 4.5.

An embedding of G in F with edge xy at ad implies the existence of a vertex,

not in {a, b, c, d}, which is adjacent with a and d. Thus 8(F) = deg a ~ 4. Hence

p(F) ~ 8(F) + 1 = 5. If p(F) = 5 then F ::: Ks which contradicts the fact that F

edge homogeneously embeds G. Thus p(F) ~ 6. Consequently, 2q(F) ~ 4p(F) ~ 24,

so efr(G) = q(F) ~ 12. Hence efr(G) = 12.
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c
G':

a------~b

d

Figure 4.5:

4.4 Edge framing ratios of graphs

For a nonempty graph G, we define the edge framing ratio efrr(G) of G by ef fr( G) =

efr(G)jq(G). Certainly, effr(G) 2: 1 for every nonempty graph G, and effr(G) = 1

if and only if G is edge transitive. The edge framing ratio of a graph G produces a

certain measure of the 'edge symmetry' of G, where the closer ef fr( G) is to 1, the

more"edge symmetric" G is.

For the graph G of Figure 4.4, efrr(G) = 12/5 while the path Pn of length n - 1

is edge framed by the cycle en so e/rr(Pn ) = n~l = 1+ n:l which can be arbitrarily

close to 1.

While a graph G may be very symmetric relative to its edges, it may be unsymmet

. ric relative to its vertices. For example, the star Kl,m always has edge framing ratio 1,

while it is shown in [2] that Kl,m can have framing ratios arbitrarily close to 2. The

following result establishes a relationship between these two graphical parameters.
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Theorem 4 . 12 For a graph G,

efrr(G) 2: frr(L(G)).

Proof. The result is easily seen to be true if G is C3 or K 1,3' Assume, then, that G is

different from C3 and K1,3' By Theorem 4.5 we know that efr(G) 2: fr(L(G)). Thus,

since q(G) = p(L(G)), it follows that efrr(G) = e~(b~) 2: f;(~~\) = frr(L(G)). 0

Of course, the edge framing ratio of every nonempty graph is a rational number.

We show that many rational numbers are edge framing ratios. We will require the

following result.

Theorem 4 . 13 For positive integers m 2: n,

Proof. Since Km,m,n can be edge homogeneously embedded in the graph Km,m,m of

size 3m2
, it follows that efr(Km,m,n) ::; 3m2

• Let F be an edge frame for Km,m,n'

Let e be an edge of Km,m,n which joins the two partite sets of orders m and n and let

f = ab be an arbitrary edge of F. Then an edge embedding of Km,m,n in F with e at

f implies the existence of an independent set S of m vertices such that each vertex of

S is adjacent to each of a and b. We denote the set of 2m edges joining the vertices

of S with a and b by Sab.

Consider an edge embedding G of Km,m,n in F. Denote the two partite sets of

G of order m by U = Ub U2,"" Um and V = Vb V2, ••. , v m . The edges ei = UiVi
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(1 ~ i ~ m) are independent. Moreover, since U and V are independent sets, the sets

su;v; (1 ~ i ~ m) are pairwise disjoint. The 2m2 edges of U~l Su;v; together with the

m2 edges joining U and V account for 3m2 edges in F. Hence efr(Km,m,n) = q(F) 2:

3m2 • Thus efr(Km,m,n) = 3m2 as required. 0

Theorem 4 . 14 For each rational number r E [1,3), there exists a graph G with

efrr(G) = r.

Proof. Let r E [1,3) be a rational number. Then we may write r = 2+~, where a and

b are integers with b > 0 and -b ~ a < b. Consider the graph G rv K 4b+2a,4b+2a,b-a.

By Theorem 4.13, efr(G) = 3(4b+2a)2 = 12(2b+a)2. Since the size of G is 12b(2b+a),

12(2b +a)2 a
efrr(G) = 12b(2b +a) = 2 + z;. o

4.5 The diameter of an edge frame

In this section we prove a partial edge analogue to Theorem 2.5.

Theorem 4 . 15 Let G be a nonempty connected graph, different from C3 and K1,3,

with diameter d. Let S be the set of all integers q such that there is a graph of size

q which edge homogeneously embeds G. Then for each q E S, there is a graph H of

size q which edge homogeneously embeds G with the property that diam H ~ d +1.
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Proof. .Let q E S. From among all graphs of size q which edge homogeneously embed

G, choose one, call it H, of minimum ord'eL Let v be a vertex of H with eccentricity

D = diam H. Suppose that D 2: d + 2. Let Vi be the set of vertices at distance i

from v (1 :s i :s D) and let u E VD. Let H' be obtained from H by joining u to

every vertex of V1 and deleting v. Let e E E(G) and f E E(H'). If f is not one of

the newly adjoined edges in H', then an edge embedding of G in H is also an edge

embedding of G in H' with eat f because such an embedding cannot contain vertices

from both V1 and VD. Suppose, then, that f is one of the newly adjoined edges of H'.

Then f = uv/ for some v/ E Vi. Let G1 be an edge embedding of G in H with e at

uv/. Then the subgraph induced by [V( G1 ) - {v}1u {u} in H' is an edge embedding

of G in H' with e at f. Thus G can be edge homogeneously embedded in H'. Since

p(H) < p(H'), this contradicts the minimality property of H. Thus D :s d + 1 and

H is a graph with the desired property. 0

Corollary 4 . 12 Let G be a nonempty connected graph with diameter d. Then G

has an edge frame F with diameter at most d +1.

Proof. If G is C3 or K 1,3 then we may take F to be G itself. If G is different from

C3 and K 1 ,3, then the result is an immediate consequence of Theorem 4.15. 0

While it is always possible to find an edge frame F for a nonempty connected graph

G such that diam F :s diamG + 1, diam F can be an arbitrarily large amount less

than diam G. For example, the cycle Cn+! is an edge frame for the path Pn of length
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nand diam Cn+! = lnfJ while diam Pn = n - 1.

4.6 The edge framing number of two or more graphs

The concept of edge framing numbers can be extended to more than one graph. For

graphs Gl and G2 , the edge framing number efr(Gl , G2) of Gl and G2 is defined as

the minimum size of a graph F such that Gi (i = 1,2) can be edge homogeneously

embedded in F. The graph F is called an edge frame of Gl and G2 • Notice that

efr(Gt,G2 ) exists and, in fact, efr(Gl ,G2 ) ~ efr(Gl U G2 ).

In this section, we determine efr(Kl .m, Cn) for all integers m 2: 3 and n 2: 4.

Theorem 4 . 16 For integers m 2: 3 and n 2: 4,

(m-2H~1 +n if n =0, 3 (mod 4)

or if m is even and

n =1 (mod4) (n 2: 9) or n =2 (mod4)

(m - 2H~1 +n + 1 if m is odd and

n =1 (mod4) (n 2: 9) or n =2 (mod4)

4m-3 ifn = 5

Proof. First we present upper bounds for efr(Kl,m, Cn) by constructing graphs
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which edge homogeneously embed K 1,m and Cn • Thereafter we will proceed to show

that these constructions are optimal.

Construction 1 n == 0,3 (mod4):

Let V1, V2, ... , V n , V1 be a cycle of length n and let 51,52, ... , SfTl be r~1pairwise

disjoint sets of independent vertices each of cardinality m - 2. Let D 1 be the graph

obtained by joining each vertex of 5 i with the vertices V4i-3 and V4i-1 (1 ~ i ~

r~1) where all subscripts are reduced modulo n. Then D1 is a graph of size 2(m -

2) r~1+n = (m - 2) r~1+n which edge homogeneously embeds K 1,m and Cn • Thus

V7
Vs

VI
82 SI

Vs V3
V4

Figure 4.6: An edge frame for K1,3 and Cs.

Construction 2.1 n == 1 (mod4) (n ~ 9) and m is even:

Let VI, V2,···, V n , V1 be a cycle of length n and let 51 ,52 , ... , S!!±.!. be (n + 1)/2
2

pairwise disjoint sets of independent vertices such that ISil = m;2 (1 ~ i ~ ntt).

Join each vertex of 5 i with the vertices V2i-3 and V2i+l (2 ~ i ~ nt1 - 1). Also join
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Figure 4.7: An edge frame for K I ,3 and C7 .

each vertex of SI (S!!±!) with the vertices VI,V3 (Vn-2,Vn , respectively). Let D2 denote
2

the resulting graph.

Choose Ui E Si (1 :::; i :::; nil). It is clear that every edge in D2 lies on an induced

KI n and that each edge of C' and each of the edges UIVI, UIV3, U!!±!Vn-2, U!!±!Vn lies
, 2 2

on an induced Cn in D2. Observe that Cn ~ ([V(C') - {V2i-2,V2i+2}] U {Ui,Ui+d) for

2 :::; i :::; nf - 2. It is now clear that each of the remaining edges of D2 lies on an

induced Cn' Thus D2 is a graph of size ~n + r; - 1 = (m - 2) r~l +n which edge

homogeneously embeds KI,m and Cn so that efr(KI,m, Cn) :::; (m - 2H~1 +n.·

Construction 2.2 n = 1 (mod4) (n 2': 9) and m is odd:

Let VI, V2, . .. , Vn,VI be a cycle of length n and let SI, S2, . •• , S~ be nil pairwise

disjoint sets of independent vertices such that IS!!±! I= m
2
-1 and for 1 < i < !!±!. - 1

2 - - 2 ,

IS;I = {
if i = 1, 4 (mod 4)

if i =2, 3 (mod 4)
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Figure 4.8: An edge frame for Kl ,4 and Cg •

For (2 ~ i ~ n~l - 1), join each vertex of Si with the vertices V2i-3 and V2i+l. Also

join each vertex ofSl (S!!±!.) with the vertices Vt,V3 (Vn-2,Vn , respectively). Let D3
2

denote the resulting graph.

Then D3 is a graph of size ~n +r; = (m - 2) r~1+n +1 which edge homogeneously·

embeds Kl,m and Cn so that efr(Kl,m, Cn) ~ (m - 2) r~l +n + 1.

Figure 4.9: An edge frame for Kl,s and Cg •
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Construction 3.1 n =2 (mod 4) and m is even:

Let VI, V2, . .. , Vn , VI be a cycle of length n and let SI, S2, . .. ,S¥- be I pairwise

disjoint sets of independent vertices such that ISil = m;-2 (1 ~ i ~ I)' Let D4

be the graph obtained by joining each vertex of Si with the vertices V2i-1 and V2i+l

(1 ~ i ~ ~) where all subscripts are reduced modulo n. Then D4 is a graph of

size ~n = (m - 2) fIl + n which edge homogeneously embeds K1,m and Cn' Thus

efr(K1,m, en) ~ (m - 2HIl +n.

a----~~---____eSI

Figure 4.10: An edge frame for K1,4 and C6 •

Construction 3.2 n =2 (mod 4) and m is odd:

Let VI, V2, ... , Vn , VI be a cycle of length n and let SI, S2,' .. ,S¥- be I pairwise

disjoint sets of independent vertices such that for 1 ~ i ~ I' ISi I = m;3 if i is even

and ISil = m;l if i is odd. Let Ds be the graph obtained by joining each vertex of Si

with the vertices V2i-1 and V2i+l (1 ~ i ~ ~) where all subscripts are reduced modulo
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n. Then Ds is a graph of size "';.n +1 = (m - 2) r~1+n +1 which edge homogeneously

embeds K 1,m and Cn . Thus efr(K1,m, Cn ) ~ (m - 2) r~l +n + 1.

Figure 4.11: An edge frame for K 1,s and C6 •

Construction 4 n =5:

Let V1, V2, V3, V4, Vs, V1 be a cycle of length 5 and let 51, 52 be pairwise disjoint sets of

independent vertices such that 15i l = m - 2 (i = 1,2). Let D6 be the graph obtained

by joining each vertex of 51 (52) with the vertices Vl,V3 (Vl,V4' respectively). Then

D 6 is a graph of size 4m - 3 which edge homogeneously embeds K 1 ,m and Cs. Thus

efr(K1,m, Cs) ~ 4m - 3.

Next we show that the upper bounds given above are also lower bounds. In what

follows, we refer to a vertex V of a graph as a central vertex if v lies on an .induced

K1,m in which v has degree m. Before proceeding with the proof, we establish the

following preliminary results.
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Figure 4.12: An edge frame for K I ,3 and Cs.

Claim 4 . 1 Suppose that H is an edge frame for K I ,3 and Cn' If n #- 5, then no

edge of H lies on a C3 . If n = 5 and some edge of H lies on an induced C3 , then

q(H) ~ 4m - 3 = 9.

Proof Suppose that some edge, VI V2 say, of H lies on an induced C3 • Let C' :

VI, V2, . .. ,Vn , VI be an induced Cn which contains the edge VIV2. Since each of the

edges ei = V2iV2i+l (1 ~ i ~ l~J) lies on an induced K I ,3 or C3 , ei is incident with

at least one other edge, say fi' not on C'. Observe that, since C' is an induced

Cn in H, fi #- Ii for i =I j.Thus efr(KI ,3, Cn) = q(H) ~ 2 + l~J + n ... (*).

Since 2 + l~J + n > r~l +n, inequality (*) contradicts the upper bounds given in

Constructions 1 and 2.2. If n is even then 2 + l~J + n = 3; +2 and inequality (*)

contradicts the upper bound given in Construction 3.2. Thus if n #- 5 then no edge

of H lies on a C3 . If n = 5 then inequality (*) becomes q(H) ~ 9 as required. 0
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Claim 4 .2 If H is an edge frame for [{I,m and Cn ((m,n) -=I (3,5)), then every

induced Cn in H contains at least r~l central vertices and q(H) ~ (m - 2H~1 + n.

Proof. Let H' be an induced Cn in H. By Claim 4.1 no edge of H' lies on a C3 • Let

c denote the number of vertices of H' which are central vertices. Since every edge e

of H must lie on an induced [{I,m, it follows that at least one end-vertex of e must

be a central vertex. Each central vertex of H' lies on a [{I,m which contains at most

two (consecutive) edges of H'. Thus, since every edge of H' lies on a [{I,m, it follows

that 2c ~ n, whence c ~ r~1. Now each of the central vertices on H' is incident

with at least m - 2 edges none of which lie on H'. Thus efr([{I,m, Cn) = q(H) ~

c(m - 2) +n ~ (m - 2H~1 +n as required. 0

The lower bound given by Claim 4.2 coincides with the upper bounds given in

Constructions 1, 2.1 and 3.1. Thus it remains for us to consider the cases n

2 (mod4) (m odd), n =1 (mod4) (where n ~ 9 and m is odd) and n = 5.

Case 1 m is odd and n =1 (mod4) (n ~ 9) or n =2 (mod4):

Let H be an edge frame for [{I,m and Cn. We must show that q(H) ~ (m 

2H~1 +n + 1. Suppose, to the contrary, that q(H) ::; (m - 2H~1 +n. By Claim 4.2,

q(H) ~ (m - 2H~1 +n. Thus q(H) = (m - 2H~1 +n. By Claim 4.1 we know that

no edge of H lies on an induced C3 •

.Claim 4 . 3 Let H' be an induced en in H. Then H' contains exactly r~1 central

vertices and the only edges in H are those incident with the central vertices of H on
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H'. Furthermore, the central vertices of H on H' all have degree m and the remaining

vertices of H' all have degree 2.

Proof. Suppose that H' is the cycle VI, V2, ••. ,Vn , VI. Let c denote the number of

vertices of H' which are central vertices. By Claim 4.2, c ;::: r~1. Each of the central

vertices on H' is incident with at least m - 2 edges none of which lie on H'. Thus

q(H) = (m - 2)f~1 +n ;::: c(m - 2) +n ... (*) whence c ~ r~l. Consequently c = r~l

and inequality (*) is an equality. Furthermore, it follows that the only edges in H

are those incident with the central vertices of H'. Consequently, the central vertices

of H on H' all have degree m and the remaining vertices of H' all have degree 2. 0

Since H edge homogeneously embeds Cn, we have the following result.

Corollary 4 . 13 Every vertex in H has either degree 2 or m. Furthermore, every

vertex of degree m is a central vertex.

Corollary 4 . 14 If H' is an induced Cn in H, then at most two consecutive vertices

on H' are central vertices.

Now let K be an induced Cn in H. Then, by Claim 4.3, K contains exactly r~l central

vertices and the only edges in H are those incident with the central vertices of K. If

V is any vertex outside K then, since it lies on an induced en and the only vertices

adjacent to it are central vertices, V cannot be a central vertex. By Corollary 4.13 we

deduce that every vertex outside K has degree 2. Thus the central vertices of K have
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degree m and all the remaining vertices of H have degree 2. But this implies that

there are an odd number of vertices, namely the r~1 central vertices of K, of odd

degree in H which is impossible. Thus efr(KI,m, Cn ) = q(H) ~ (m - 2)f~1 +n + 1

and consequently efr(KI,m' Cn ) = (m - 2) fil +n +1. 0

Case 2 n = 5:

Let H be an edge frame for KI,m and Cs. We must show that q(H) ~ 4m - 3. If

m = 3 and some edge of H lies on a C3, then by Claim 4.1 we have efr(KI,3' Cs) =

q(H) ~ 4m - 3 = 9 and we are done. Thus, in what follows, we may assume that no

edge of H lies on a C3 if m = 3. Let H' : aI, a2, a3, a4, as, al be an induced Cs in H.

By Claim 4.2 there are at least three central vertices on H'. Also, by Corollary 4.8,

8(H) ~ 2.

If there are at least four central vertices on H' then, since each of these central

vertices lies on an induced KI,m which contains at most two (consecutive) edges of

H', efr(KI,m, Cs) = q(H) ~ 4(m - 2) + 5 = 4m - 3 and we are done. Assume

then that H' contains exactly three central vertices. Since each edge of H' lies on an

induced KI,m we may, without loss of generality, assume that ab a2 and a4 are the

central vertices of H on H'.

Suppose that there is one other central vertex, say v, in H (i.e. not on H')~ Let K v

be an induced KI,m in H containing vasa central vertex. Then, in K v , v is adjacent

with at most two vertices from H' (possibly from ab a2 and a4)' Consequently,
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efr(K1,m' Cs) = q(H) ~ (m - 2) +3(m - 2) +5 = 4m - 3 and we are done. Assume

then that aI, a2 and a4 are the only central vertices in H otherwise there is nothing

to prove.

Since al (a2) is a central vertex, there is an independent set T1 (T2, respectively)

of m - 2 vertices in H, none of which lie on H', such that (Ti U ai) ~ K 1,m-2 for

i = 1,2. Let a E T1 and bE T2 • Since no edge of H lies on an induced C3 it follows

that a # b. Furthermore, since a and b are not central vertices, a and b cannot be

adjacent. Then, since b( H) ~ 2, there are at least 21T1 UT2 1 = 4(m - 2) edges incident

with the vertices in T1 U T2 • These edges, together with the five edges of H', account

for at least 4m - 3 edges in H. Consequently, efr(K1,m' C3 ) = q(H) ~ 4m - 3 as

required. 0
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Chapter 5

Homogeneous embeddings of cycles

in graphs

5.1 Introduction

In this chapter we investigate the framing number and edge framing number of pairs

of cycles. We also investigate the framing number of pairs of directed cycles.

In Section 5.2 we determine the framing number fr(G1 , G2 ) for several pairs Gb

G2 of cycles. We extend the results of Chartrand et al. [2]. For n > m 2: 3, we

show that f r(Cm, Cn) 2: n + 2 and we characterize all those pairs of cycles Cm and

Cn which have framing number n + 2. Furthermore, for each such pair (m, n), we

determine all the nonisomorphic frames of Cm and Cn. For m = 3 or 4 and n = 7,8,9,
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or for 9 :::; m + 2 :::; n :::; 2m - 5, we establish that fr(Cm, Cn) = n + 3. Furthermore,

in Section 5.3, for all integers n > m 2: 3, we establish upper bounds on fr(Cm,Cn).

We show that fr(Cm, Cn) is at most n + rn/31 if m = 3 or 4, at most n +n/(m -1)

if m - 11 n and m > 4, and at most n + rn/(m -1)1 +1 otherwise.

In Section 5.4 we investigate the edge framing number efr(G1 , G2 ) for several pairs

GI, G2 of cycles. We show that efr(Cm, Cn) = n +4 if n = 2m - 4 and m 2: 5,

efr(Cm,Cn) = n+5 ifn = 2m-6 and m 2: 7 and efr(Cm, Cn) = n+6 if n = 2m-8

(m 2: 10) or m = n -1 (where n 2: 5 and n rt {6,8}) or m = n - 2 (n = 6 or n 2: 9).

It is also shown that efr(Cm, Cn) 2: n +6 for n > m 2: 4 with n =I- 2m - 4 or 2m - 6

and (m, n) =I- (5,7). Furthermore, for the cases n = 2m - 4 (m 2: 5) and n = 2m - 6

(m 2: 7) we show that Cm and Cn are uniquely edge framed.

Chartrand, Gavlas, and Schultz [2] extended the concept of framing numbers to

more than one graph. Framing numbers of two or more digraphs can be defined

similarly. For digraphs D1 and D2 , the framing number fr(D 1 , D2 ) of D1 and D2

is defined as the minimum order of a digraph F such that D i (i = 1,2) can be

homogeneously embedded in F. The digraph F is called a frame of D 1 and D 2 •

Notice that fr(D 1 , D2 ) exists and, in fact, fr(D 1 , D2 ) :::; fr(D 1 U D2 ). A directed

cycle of order n in which every vertex has indegree and outdegree equal to 1, will be

denoted by Cn. If Cn is given by VI, (VI, V2), V2, (V2' V3), V3, ... ,Vn, (Vn, VI)' VI, then we

will simply write VI, V2, V3, • .. , V n , VI' In Section 5.5 we investigate the framing number

f r(G1 , G2 ) for several pairs G1 , G2 of directed cycles. We characterize all those pairs
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of directed cycles Cm and Cn which have framing number n + 2. Furthermore, for

each such pair (m, n), we determine all the nonisomorphic frafIles of Cm and Cn'

For m = 3 or 4 and n = 7,8,9, or for 9 ::; m + 2 ::; n ::; 2m - 5, we establish

that fr(Cm, Cn) = n + 3. Furthermore, in Section 5.6, for all integers n > m ~ 3,

we establish upper bounds on fr(Cm,Cn). We show that fr(Cm,Cn) is at most

n + rn/21 if m = 3 or 4, at most n +n/(m - 1) if m -11 n and m > 4, and at most

n + rn/(m -1)1 +1 otherwise.

5.2 The framing number of pairs of cycles

Chartrand et al. [2] investigated the framing number fr(Gt, G2 ) for several pairs

Gb G2 of cycles. For small m and n, they established the values of fr(Cm, Cn).

Their results are summarized in Table 2.5 in Section 2.2. In this section, we extend

the results of [2]. For n > m ~ 3 we characterize all those pairs of cycles Cm and

Cn which have framing number n + 2. Furthermore, for each such pair (m, n), we

determine all the nonisomorphic frames of Cm and Cn' The following lemma will

prove to be useful.

Lemma 5 . 1 For integers n > m ~ 3, fr(Cm,Cn) ~ n +2.

Proof. By Theorem 2.11, it suffices to show that there is no graph of order n + 1

which homogeneously embeds Cn and Cm' Assume, to the contrary, that such a
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graph H exists. Let C' : ab a2, ... , an, at be an induced Cn in H, and let x be the

name of the vertex of H not in C'. Let Cx be an induced Cn containing x. Without

loss of generality, we may assume that Cx is given by x, a2, a3, . .. , an, x. Hence

deg a2 = deg an = 3 and deg ai = 2 for i = 3, ... , n - 1. However there is then no

induced Cm containing the vertex Vi (3 :::; i :::; n - 1). This produces a contradiction.

o

Let 5 = {(3, 5), (3, 6)} U {(m, n) In = m + 1 and m ~ 3} U {(m, n) In = 2m 

4 and m ~ 6} U {(m, n) In = 2m - 3 and m ~ 5} U {(m, n) In = 2m - 2 and m ~ 4}.

For each (m, n) E 5, we define a set Fm,n of graphs as follows. For m = 3 and

for i E {4, 5, 6}, or for m = 4 and i = 5, let Fm,i be the set of all nonisomorphic

graphs obtainable from the graph Fm,i in Figure 5.1 by adding any combination (the

presence or absence) of the dotted edges, provided that if uw is an edge of F4,s, then

so too are uv and wx. Let F 4,6 be the set of all nonisomorphic graphs obtainable

from the graph F4,6 or G4,6 in Figure 5.2 or the graph H4,6 in Figure 5.1 by adding

any combination (the presence or absence) of the dotted edges. Let F6,8 be the set of

all nonisomorphic graphs obtainable from the graph G6 ,8 or H6,8 in Figure 5.1 or the

graph F6 ,8 in Figure 5.2 by adding any combination (the presence or absence) of the

dotted edges. For m ~ 5 and i = m +1, or for m = 5 or m ~ 7 and i = 2m - 3, or for

m ~ 7 and i = 2m - 4, let F m,i be the set of all nonisomorphic graphs obtainable from

the graph Fm,i in Figure 5.2 by adding any combination (the presence or absence)

of the dotted edges, provided that if uw is an edge of Fm ,2m-3, then so too is vw.
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Let F6 ,9 be the set of all nonisomorphic graphs obtainable from the graph F6,9 in

Figure 5.2 by adding any combination (the presence or absence) of the dotted edges.

For m = 5 or m 2: 7, let Fm,2m~2 be the set of all nonisomorphic graphs obtainable

from the graph Fm ,2m-2 or Gm ,2m-2 in Figure 5.2 by adding any combination (the

presence or absence) of the dotted edges. Let F6,10 be the set of all nonisomorphic

graphs obtainable from the graph H6,10 in Figure 5.1 or the graph F6 ,10 or G6,10 in

Figure 5.2 by adding any combination (the presence or absence) of the dotted edges.

We are now in a position to present our next result.

~
... ".........

~.''''''''''''

~
<r=t
't=P

H4'6:~
tj)

G6,s:~ H6 ,s:~

Figure 5.1:
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Fm,m+l:

m - 5 ~ertices

m - 5 vertices...

Fm,2m-4 :

m - 5 ~ertices

u
m - 4 vertices

... v

Fm,2m-3 :

v

m - 5 vertices

Fm ,2m-2 :

m - 4 vertices
...

v

m - 4 vertices

Figure 5.2:

Gm ,2m-2 :

m - 4 vertices
...

v

m - 4 vertices

Theorem 5 . 1 For integers n > m 2: 3, fr(Cm, Cn) = n +2 if and only if (m, n) E

S. Furthermore, if (m, n) E S, then the set of all nonisomorphic frames of Cm and

Cn is given by Fm,n'
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Proof. If (m, n) E S, then Cm and Cn can be homogeneously embedded in each graph

(of order n +2) from the set Fm,n, so jr(Cm, Cn) ~ n +2. However, by Lemma 5.1,

jr(Cm, Cn) ~ n +2. Hence jr(Cm, Cn) = n +2. This establishes the sufficiency.

Next we consider the necessity. Let m and n be integers satisfying n > m ~ 3 and

assume that jr(Cm, Cn) = n+2. Let H be a frame for Cm and Cn' Then p(H) = n+2

and Lemma 2.1 implies that 2 ~ 8(H) ~ D.(H) ~ (n +2) - n +2 = 4.

First we assume that for any induced n-cycle C' in H, the two vertices of H not

in C' do not belong to a common On' Let VI, V2, ... , Vn, VI be an induced Cn in H.

Let a and b be the names of the two remaining vertices of H. Further, let Ca (Cb)

be an induced Cn that contains the vertex a (b, respectively). By hypothesis, a and b

do not belong to a common induced Cn' Without loss of generality, we may assume

that Ca is VI, V2, .. . ,Vn-I, a, VI. Since the vertices Vn and b do not belong to Ca, our

assumption implies that Vn and b do not belong to a common induced Cn. Hence Cb

must contain the vertices VI, V2, ... ,Vn-I. Hence Cb is given by VI, V2, . .. ,Vn-I, b, VI.

Thus deg VI = deg Vn-I = 3 and deg Vi = 2 for i = 2,3, ... , n - 2. Hence H has the

subgraph shown in Figure 5.3. However, there is then no induced Cm containing the

vertex Vi (2 ~ i ~ n - 2).

Thus there exists an induced Cn in H, say C' : VI, V2, ... ,Vn, VI, such that the two

vertices of H outside C', call them 9 and h, belong to a common induced Cn, say Cg •

Then Cg contains the vertices 9 and hand n - 2 vertices of C'. If 9 and h are adjacent

vertices on Cg , then, without loss of generality, we may assume that Cg is given by
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Vn-I ~---....---~VI

Figure 5.3: A subgraph of H.

V3, V4, • •. ,Vn , g, h, V3. Hence deg V3 = deg Vn = 3 and deg Vi = 2 for i = 4, ... , n - 1.

Thus the graph shown in Figure 5.4 is a subgraph of H. If n > 4, then there is no

induced Cm containing the vertex Vi (4 :::; i :::; n - 1), which produces a contradiction.

Hence n = 4, so m = 3. Furthermore, if VIg or V2h is not an edge of H, then H does

not homogeneously embed C3 . Hence VIg and V2h are bothedges of H. Thus there

are three possibilities for H, depending on the presence or absence of the edges V2g

and vIh. This yields the set 1="3,4 of three nonisomorphic frames for C3 and C4• Next

we assume that 9 and hare nonadjacent vertices.

9 h

Figure 5.4: A subgraph of H.

If 9 and h are joined by a path of length 2 in Cg, then, without loss of generality, we

may assume that Cg is given by V2, h, V4, Vs, • .. , Vn , g, V2. Hence H has the subgraph
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shown in Figure 5.5. Then n ~ 5, deg V2 = 4, deg V4 = deg Vn = 3 and deg Vi = 2

(5 ~ i ~ n - 1). Hence any cycle contains either all or no vertex from the set

{vs, ... , Vn-l}' Suppose n ~ 6. Then any induced Cm containing the vertex Vi

(5 ~ i ~ n -1) would contain the n - 3 vertices from the set {V4'VS,""vn },

exactly one vertex from each of {VI, g} and {V3, h} and therefore would have length

at least n - 1. Thus m = n - 1 ~ 5. However there is then no induced Cm containing

the vertex V2. Hence n = 5, so m = 3 or 4. If m = 3, then since each of V4 and

Vs belongs to a C3, both VIg and V3h must be edges of H. Hence there are four

possibilities for H, depending on the presence or absence of the edges v1h and V3g.

This yields the set :F3,s of three nonisomorphic frames for C3 and Cs. If m = 4, then

for V2 to belong to a C4, at most one of VIg and V3h is edges of H. If exactly one of

VIg and V3h is an edge, then both v1h and v3g must be edges of H. If neither VIg

nor V3h is an edge, then there are four possibilities for H, depending on the presence

or absence of the edges v1h and V3g. This yields the set :F4,s of four nonisomorphic

frames for C4 and Cs.

9 h

V n .--.-...- ....- ...... V4

Vs

Figure 5.5: A subgraph of H.
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Next we assume that 9 and h are at distance at least 3 apart on Cg • Then

n ~ 6 and, without loss of generality, we may assume that Cg is given by. ei

ther Vb 9, Vi, Vi-b' •. ,V3, h, Vi+2, Vi+3, •.• , Vn , VI (4 ~ i ~ n - 2), in which case H

has the subgraph shown in Figure 5.6(i), or Vb V2, ... , Vk, h, Vk+2, Vk+3, ... ,vn-b 9, VI

(2 ~ k ~ n - 4), in which case H has the subgraph shown in Figure 5.6(ii).

9

(i)

h

Figure 5.6:

(ii)

Suppose that H has the subgraph shown in Figure 5.6(i). Then each of the vertices

VI, V3, Vi and Vi+2 has degree 3 while the remaining vertices of C' have degree 2, ~xcept

possibly for V2 and Vi+!. For notational convenience, we write u .1 V if u and V are

adjacent vertices, and u ± V if u and V are not adjacent. We consider two possibilities.

Case 1. i > 4.

Then the vertex V4 belongs to induced cycles of only three possible lengths, namely,

i, i +1 and n depending on the presence or absence of the edges V29, V2h, Vi+!9 and

vi+!h. Since V4 belongs to an induced Cm, we must have i = m -1 or m. We consider

the two possibilities in turn.

90



Case 1.1. i = m - 1.

Then m = i +1 ~ 6 and V2 ± 9 or Vm ± h for otherwise V4 belongs to no induced Cm'

Without loss of generality, we may assume that V m ± h. Suppose n = m +1 (= i +2).

If V2 .L g, then the vertex Vl belongs to induced cycles of only four possible lengths,

namely, 3, 4, 5, and n. Since Vl belongs to an induced Cm, and m ~ 6, this produces

a contradiction. Hence V2 ± g. Then there are four possibilities for H, depending on

the presence or absence of the edges V2h and vmg. This yields the set .rm,m+l of three

nonisomorphic frames for Cm and Cm+! (m ~ 6). Hence in what follows in Case 1.1,

we may assume that n ~ m +2 for otherwise there is nothing left to prove. Then the

vertex V n belongs to induced cycles of only three possible lengths, namely, n - m +3,

n - m + 4, and n. Since V n belongs to an induced Cm, it follows that n = 2m - 4 or

2m - 3. We now consider four cases.

Case 1.1.1. V2 ± 9 and n = 2m - 4.

Then V2 ± h or Vm ± g. Without loss of generality, we may assume that Vm ± g. Then

there are two possibilities for H, depending on the presence or absence of the edge

V2 h. This yields the set .rm ,2m-4 of two nonisomorphic frames for Cm and C 2m- 4

(m ~ 6).

Case 1.1.2. V2 ± 9 and n = 2m - 3.

Then V2 .L h or Vm .L g. Without loss of generality, we may assume that V2 .L h.

Then there are two possibilities for H, depending on the presence or absence of the
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edge vmg. This yields two nonisomorphic frames for Cm and C 2m-3 (m ~ 6), namely

the graph Fm ,2m-3 in Figure 5.2 and the graph obtained from Fm ,2m-3 by adding the

edge vw.

Case 1.1.3. V2 1.. 9 and n = 2m - 4.

Then V2 ± h or V m ± g. If V2 ± hand V m ± g, then this yields the graph obtained from

Fm,2m-4 (m ~ 6) in Figure 5.2 by adding the dotted edge. If V2 1.. hand V m ± g, then

m = 6 for otherwise V2 belongs to no induced Cm, while if V2 ± h and V m 1.. g, then

m = 6 for otherwise 9 belongs to no induced Cm' Both cases yield the graph G6,8 of

Figure 5.1.

Case 1.1.4. V2 1.. 9 and n = 2m - 3.

Then V2 1.. h or V m 1.. g. If V2 1.. hand Vm 1.. g, then this yields the graph obtained

from Fm ,2m-3 (m ~ 6) in Figure 5.2 by adding the two dotted edges. If V2 1.. hand

Vm ± g, then m = 6 for otherwise 9 belongs to no induced Cm, while if V2± hand

V m 1.. g, then m = 6 for otherwise V2 belongs to no induced Cm. Both cases yield the

graph obtained from the graph F6,91n Figure 5.2 by adding the edge uw.

Case 1.2.i = m.

Then m ~ 5 and V2 1.. 9 or Vm+l 1.. h for otherwise V4 belongs to no induced Cm'

Without loss of generality, we may assume that V2 1.. g. Then the vertex VI belongs

to induced cycles of only four possible lengths, namely, 3, n - m +2, n - m +3, and

n. Since Vn belongs to an induced Cm, and m ~ 5, it follows that n = 2m - 3 or
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2m - 2. We now consider four cases.

Case 1.2.1. vm+I ± hand n = 2m - 3.

Then V2 ± h or Vm+I ± g. If V2 ± hand Vm+I ± g, then then this yields the graph

Fm ,2m-3 (m 2:: 5) in Figure 5.2. If V2 .i hand Vm+I ± g, then m = 6 for otherwise h

belongs to no induced Cm, while if V2 ± hand Vm+I .i g, then m = 6 for otherwise

Vm+I belongs to no induced Cm. Both cases yield the graph obtained from the graph

F6,9 in Figure 5.2 by adding the edge uw.

Case 1.2.2. Vm+I ± hand n = 2m - 2.

Then V2 .i h or Vm+I .i g. If V2 .i hand Vm+I .i g, then then this yields the graph

Fm ,2m-2 (m 2:: 5) in Figure 5.2 by adding any combination (the presence or absence)

of the dotted edges. If V2 .i hand Vm+I ± g, then m = 6 for otherwise Vm+I belongs

to no induced Cm, while if V2± hand Vm+I .i g, then m = 6 for otherwise h belongs

to no induced Cm. Both cases yield the graph H6,lO in Figure 5.1.

Case 1.2.3. Vm+I .i hand n = 2m - 3.

Then V2 ± h or Vm+I ± g. Without loss of generality, we may assume that Vm+l ± g.

Then there are two possibilities for H, depending on the presence or absence of the

edge V2h. This yields two nonisomorphic frames for Cm and C 2m- 3 (m 2:: 5), namely

the graph obtained from Fm,2m-3 in Figure 5.2 by adding the edge vw and the graph

obtained from Fm ,2m-3 by adding the edges uw and vw.
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Case 1.2.4. Vm+I 1.. hand n = 2m - 2.

Then V2 1.. h or Vm+I 1.. g. Without loss of generality, we may assume that V2 1.. h.

Then there are two possibilities for H, depending on the presence or absence of the

edge Vm+Ig. This yields two nonisomorphic frames for Cm and C2m- 2 (m ;::: 5), namely

the graph obtained from Gm,2m-2 in Figure 5.2 by adding or omitting the dotted edge.

Case 2. i = 4.

Then the vertex Vn belongs to induced cycles of only three possible lengths, namely,

n - 2, n - 1 and n depending on the presence or absence of the edges V2g, V2h, vsg

and vsh. Since Vn belongs to an induced Cm, we must have m = n - 2 or m = n - 1.

We consider the two possibilities in turn.

Case 2.1. m = n - 2.

Then V2 1.. h or Vs 1.. g. Without loss of generality, we may assume that Vs 1.. g. Then

the vertex V4 belongs to induced cycles of only four possible lengths, namely, 3, 4, 5,

and n. Since V4 belongs to an induced Cm, and m = n - 2 ;::: 4, it follows that m = 4

or m = 5. We consider two cases in turn.

Case 2.1.1. m = 4.

Then n = 6 and V2 1.. 9 or Vs 1.. h, for otherwise V4 belongs to no induced C4• If

1)2 1.. 9 and Vs 1.. h, then there are two possibilities for H, depending on the presence

or absence of the edge V2h. This yields two nonisomorphic frames for C4 and C6 ,
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namely the graph G4,6 in Figure 5.2 or the graph obtained from G4,6 by adding the

dotted edge. If V2 1. 9 and Vs ± h, then V2 1. h for otherwise h belongs to no induced

C4 , while if V2 ± 9 and Vs 1. h, then V2 1. h for otherwise V2 belongs to no induced

C4 • Both cases yield the graph G4,6 in Figure 5.2.

Case 2.1.2. m = 5.

Then n = 7 and V2 ± 9 or Vs ± h, for otherwise V4 belongs to no induced Cs. If

V2 ± 9 and Vs ± h, then there are two possibilities for H, depending on the presence

or absence of the edge V2h. If V2 1. 9 and Vs ± h, then V2 1. h for otherwise V2 belongs

to no induced Cs. If V2 ± 9 and Vs 1. h, then V2 1. h for otherwise h belongs to no

induced Cs. This yields the set F S,7 of three nonisomorphic frames for Cs and C7 •

Case 2.2. m = n - 1.

Then m 2: 5 and V2 ± h or Vs ± g. Without loss of generality, we may assume that

V2 ± h. If Vs ± g, then there are four possibilities for H, depending on the presence or

absence of the edges V29 and vsh. This yields the set Fm,m+! of three nonisomorphic

frames for Cm and Cm+! (m 2: 5). Suppose that Vs 1. g. Then the vertex V4 belongs to

induced cycles of only four possible lengths, namely, 3, 4, 5, and n. Since V4 belongs

to· an induced Cm, and m = n - 1 2: 5, it follows that m = 5, so n = 6. Thus

Vs ± h, for otherwise Vs belongs to no induced Cs. Furthermore, V2 ± g, for otherwise

9 belongs to no induced Cs. This yields the graph obtained from FS,6 in Figure 5.2

by adding exactly one of the dotted edges.
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Suppose next that H has the subgraph shown in Figure 5.6(ii). Then each of

Vb Vk, Vk+2 and Vn-l has degree 3 while the remaining vertices of Cf have degree 2,

except possibly for Vk+l and Vn .

Suppose, firstly, that n = 6, i.e., Cg is given by g, Vb V2, h, V4, Vs, g. Then no vertex

of H belongs to an induced Cs irrespective of the presence or absence of the edges

V3g, V3h, V6g and V6h. Hence m = 3 or 4. If m = 3, then we must have V3 ..L h

and V6 ..L g. Thus H homogeneously embeds C3 and C6 and this does not depend

on the presence or absence of the edges V3g or V6h. This yields the set ;:3,6 of three

nonisomorphic frames for C3 and C6 • Suppose m = 4. If V3 ± hand V6 ± g, then

H homogeneously embeds C4 and C6 and this does not depend on the presence or

absence of the edges V3g or V6h. This yields three nonisomorphic frames for C4 and

C6 , namely the nonisomorphic graphs obtained from H4 ,6 in Figure 5.1 by adding any

combination (the presence or absence) of the dotted edges. If V3 ..L h or V6 ..L g, then

without loss of generality, we may assume that V6 ..L g. Since V6 (g) belongs to an

induced C4 , V6 ..L h (V3 ..L g, respectively). Thus H homogeneously embeds C4 and

C6 and this does not depend on the presence or absence of the edge v3 h. This yields

two nonisomorphic frames for C4 and C6 , both of which are obtainable from F4,6 in

Figure 5.2 by adding either one or both of the dotted edges.

Suppose, next, that n ~ 7. Then k ~ 3 or k :::; n - 5; that is, there must exist an

internal vertex on the VI-Vk path or the'Vk+2-Vn-l path on C f that does not contain

Vn· Such a vertex belongs to no C3 or C4 • Hence m ~ 5. Let C:n be an induced Cm
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containing the vertex VI.

If V n and 9 belong to C:n, then, since m ~ 5, it follows that Vn ± 9 and C:n must

contain the vertices Vk+l and h (so vnh and Vk+lg are edges on C:n). If Vk+1 ± h, then

C:n is of length 6, so m = 6. It is readily seen that if n =I 8, then there exists an

internal vertex on the VI-Vk path or the Vk+2-Vn-1 path on C' that does not contain

V n that belongs to no 6-cycle. Hence n = 8. Then there exists an internal vertex ~m

the VI-Vk path or the Vk+2-Vn-1 path on C' that does not contain Vn that belongs to

no induced 6-cycle unless one of these paths have length 3 and the other has length 1.

Without loss of generality, we may assume that k = 4. This yields the graph H6,s

in Figure 5.1 which frames C6 and Cs. On the other hand, if Vk+l .L h, then C:n is

of length 5, so m = 5. If n = 7, then either k = 2, in which case V2 belongs to no

induced Cs, or k =3, in which case Vs belongs to no induced Cs. If n ~ 9, then there

exists an internal vertex on the VI-Vk path or the Vk+2-Vn-1 path on C' that does not

contain V n that belongs to no 5-cycle. Hence n = 8. Then there exists an internal

vertex on the VI-Vk path or the Vk+2-Vn-1 path on C' that does not contain Vn that

belongs to no induced 5-cycle unless both of these paths have length 2. i.e., unless

k = 2. Hence H is the graph shown in Figure 5.7. However, this graph is isomorphic

to the graph obtained from Fs,s in Figure 5.2 by adding exactly one of the dotted

edges.

Next we assume that Vn and 9 do not both belong to C' . Then C' contains them m

k vertices from the set {VI,V2",.,Vk}, exactly one vertex from each of {vn,g} and
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Figure 5.7: A frame for C5 and Cs.

{Vk+l' h}, and either all or no vertex from the set {Vk+2' Vk+3,' .. , vn-d· Since C:n has

length m, it follows that C:n contains no vertex from the set {Vk+2' Vk+3,' .. ,vn-d·

Therefore C:n has length k+2 = m. Consequently, k = m-2. However, if we consider

an induced Cm containing the vertex Vk+2, then we may show that this cycle contains

the n - k- 2 vertices from the set {Vk+2, Vk+3, ... , vn-d, exactly one vertex from each

of {vn,g} and {Vk+I, h}, and no vertex from the set {VI, V2, . .. , vd. This shows that

n - k = m, or, equivalently, k = n - m. Consequently, n = 2m - 2 and k = m - 2.

Without loss of generality, we may assume that Vn .1 h. If Vm-l ±g, then Vm-l belongs

to no induced Cm (5 ::5 m < n). Hence Vm-l .1 g. Thus H homogeneously embeds

Cm and C2m- 2 and this does not depend on the presence or absence of the edges

vm-1h or V2m-2g. This yields three nonisomorphic frames for Cm and C2m- 2 (m ~ 5),

namely the nonisomorphic graphs obtained from Fm,2m-2 in Figure 5.2 by adding any

combination (the presence or absence) of the dotted edges. This completes the proof

of the theorem. 0
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As a corollary of Theorem 5.1, we may determine exactly how many nonisomorphic

frames of Cm and Cn exist. Let 82 = {(m, n) In = 2m - 4 and m ~ 7}, 8a =

((3,4),(3,5),(3,6)}U{(m,n) In = m+1 and m ~ 5}U{(m,n) In = 2m-3 and m =

5 or m ~ 7}, 84 = {(4,5),(6,8),(6,9)}, 85 = {(m,n) In = 2m-2 and m = 5 or m ~

7}, 86 = {(6, 10)}, and 87 = {(4,6)}. Then 8 = UT=a8i. The following result follows

immediately from Theorem 5.1.

Corollary 5 . 1 If (m, n) E 8, then Cm and Cn have exactly i nonisomorphic frames

of order n +2 if and only if (m, n) E 8i for some i with 3 $ i $ 7.

The next result is an immediate consequence of Lemma 5.1 and Theorem 5.1.

Corollary 5 . 2 For positive integers n > m ~ 3, if (m, n) f/. 8, then fr(Cm, Cn) ~

n +3.

Proposition 5 . 1 For m ~ 7, fr(Cm, Cm+2 ) = m +5.

Proof. Since Cm and Cm+2 (m ~ 7) can be homogeneously embedded in the graph of

order m + 5 shown in Figure 5.8, it follows that fr(Cm, Cm+2 ) $ m + 5. However, by

Corollary 5.2, for m ~ 7, fr(Cm, Cm+2) ~ m + 5. Hence for m ~ 7, fr(Cm, Cm+2 ) =

m+5.0
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m - 5 vertices

Figure 5.8: A frame for Cm and Cm+2 (m ~ 7).

5.3 Upper bounds on !r(Cm,Cn )

In this section, we establish upper bounds on fr( Cm, Cn) for all integers n > m 2:: 3.

Theorem 5 . 2 For integers n > m 2:: 3,

n + r~l

n+_n_
m-I

if m = 3 or 4

if m-I In and m > 4

n +rm~ll +1 otherwise

Proof. Suppose firstly that m = 3. Let k = rn/31. Let G be the graph ob-

tained from the induced n-cycle C' : Vo, Vb V2, . .. ,Vn-I, Vo by adding k new vertices

Wo, Wb' •• ,Wk-I and, for i = 0,1, ... ,k - 1, joining Wi to the three vertices V3i, V3iH

and V3i+2 where addition is taken modulo n. Then each vertex of G clearly be-

longs to a C3 . Furthermore, the cycle obtained from C' by replacing the vertex V3iH

with the vertex Wi (and the edges WiV3i and WiV3i+2) is an induced Cn containing Wi

(0 :::; i :::; k - 1). Hence C3 and Cn can be homogeneously embedded in the graph G

100



of order n +k = n + rn/3l Thus fr(C3 , Cn) :S n + r~l If m = 4, thenlet Gf be the

graph obtained from G by deleting the edges WiV3i+l for i = 0,1, ... , k - 1. Then C4

and Cn can be homogeneously embedded in the graph Gf of order n +k = n +rn/31·

Thus fr(C4 , Cn) :S n + r~l

Suppose next that m ~ 5. Let f = rn / (m - 1)1. Let Gm •n be the graph ob

tained from the induced n-cycle C
f

: VD, Vb V2, . .. , Vn-b Vo by adding f new vertices

Wo, Wb' .. ,Wl-I and, for i = 0,1, ... ,f - 1, joining Wi to the three vertices Vi(m-I)-b

Vi(m-I)+I and V(i+l)(m-I) where addition is take~ modulo n.

Case 1. m-I In.

Thus n = f(m - 1). (The graph GS•16 is shown in Figure 5.9.) Then Cm and Cn can

be homogeneously embedded in the graph Gm •n of order n +f = n +n/(m - 1). To

see this, observe that for i = 0,1, ... ,f - 1, each vertex Wi belongs to an induced Cm,

namely cg) : Wi, Vi(m-I)+b Vi(m-I)+2, ... , V(i+l)(m-I), Wi. Furthermore, replacing the

vertex Vi(m-I) on C
f with the vertex Wi for all i = 0,1, ... ,f - 1 produces an induced

Cn containing each Wi. Furthermore, each vertex of Cf belongs to cg) for exactly

one i (0 :S i :S f - 1). Consequently, Gm•n homogeneously embeds Cm and Cn' Thus,

fr(Cm , Cn) :S n +n/(m - 1).

Case 2. m - 1 In + 1.

Thus n = f(m - 1) - 1. Let Fm •n be the graph obtained from Gm •n by deleting the

edge Wl-I VI and adding a new vertex Wl and joining it to VD, V2 and Wl-I. (The graph
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Figure 5.9: The graph GS,I6.

FS,IS is shown in Figure 5.10.) Then Cm and Cn can be homogeneously embedded

in the graph Fm,n of order n + f + 1 = n + rnj(m - 1)1 + 1. Thus, fr(Cm, Cn) :::;

n+ rnj(m-1)1 +1.

Figure 5.10: The graph FS,IS.
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Case 3. m-I I n - 1.

Thus n = (f - l)(m - 1) + 1. Let Hm,n be the graph obtained from Gm,n as follows:

Delete the edge Wl-2Vn-1 and add the edge Wl-2V(l-3)(m-I); delete the three edges

incident with Wl-I and join Wl-I to V(l-2)(m-I)+1l Vn-l and VI; add a new vertex

Wl and join it to V(l-2)(m-l) , V(l-2)(m-I)+2 and Vo. (The graph H 6 ,16 is shown in

Figure 5.11.) Then Cm and C n can be homogeneously embedded in the graph Hm,n

of order n + f +1 = n + rnj(m -1)1 +1. Thus, fr(Cm , Cn ) ~ n + rnj(m -1)1 +1.

Figure 5.11: The graph H 6,16.

Case 4. m-I does not divide n - 1 or n or n + 1.

Thus n = (f - l)(m - 1) + r for some r satisfying 1 < r < m - 2. Let 1m ,n be the

graph obtained from Gm,n by adding a new vertex Wl and joining it to V(l-l)(m-l),

Vl(m-l)-l and Vl(m-l)+l where addition is taken modulo n; that is, Wl is joined to V n - r '

V m - r -2 and V m - r • (The graph 15,14 is shown in Figure 5.12.) Then Cm and C n can be

homogeneously embedded in the graph 1m,n of order n +f +1 = n + rn j (m - 1)1 +1.
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Thus, fr(Cm, Cn) ~ n + rn/(m - 1)1 + 1. 0

Figure 5.12: The graph 15,14.

Two immediate corollaries of Theorems 5.1 and 5.2 and Corollary 5.2 now follow.

Corollary 5 .3 Form = 3 orm = 4 and n = 7,8,9, or for 7 ~ m+2 ~ n ~ 2m-5,

Corollary 5 . 4 For m 2: 4 and n = 2(m - 1) or n = 3(m - I),

n
fr(Cm , Cn) = n + .

m-I

5.4 The edge framing number of pairs of cycles

Since K 1,3 and C3 are edge isomorphic, the following result is an immediate conse-

quence of Theorem 4.16.
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Proposition 5 . 2 For any integer n > 3,

if n =0 or 3 (mod 4)

if n =1 or 2 (mod 4)

Hence in this section we consider integers n > m 2:: 4. For such integers, every graph

that edge homogeneously embeds Cn and Cm also vertex homogeneously embeds Cn

and Cm' Hence we have the following corollary of Lemma 5.1.

Corollary 5 . 5 For integers n > m 2:: 4, if H is a graph that edge homogeneously

embeds Cn and Cm, then p(H) 2:: n +2.

The following lemmas will prove to be useful.

Lemma 5 • 2 Let G and H be graphs with no induced C4 , and let F be an edge

frame ofG and H. ffu and v are two vertices of degree 2 in F, then N(u) =j:. N(v).

Proof. Assume, to the contrary, that N(u) = N(v). We show then that F - u edge

homogeneously embeds G and H. Let e E E(G) and let f E E(F - u). Let Ge be

an edge embedding of G in F with e at f. If u rt V(Ge ), then Ge is in F - u. If

u E V( Ge ), then, since C4 -J< G, v rt V(Ge ) and therefore ((V( Ge ) - {u}) U {v}) is an

edge embedding of G in F - u with e at f. Hence F - u edge homogeneously embeds

G. Similarly, F - u edge homogeneously embeds H. This, however, contradicts the

fact that F is an edge frame of G and H. 0
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Lemma 5 . 3 For integers n > m ~ 4, if H is a graph that edge homogeneously

embeds Cn and Cm, then H contains at least three vertices of degree at least 3.

Proof. Let C' : Vo, Vb ... ,Vm-I, Vo be an induced Cm in H, and let C ff be an induced

Cn in H which contains the edge VOVI. Further, let Vi, Vi+b· .. ,Vo, Vb· .. , Vi-I, Vi

(j < i) where addition is taken modulo m, be a longest path common to C' and C ff

that contains the edge VOVI. Since Vi-l and Vi+! do not belong to C lf
, it follows that

each of Vi and Vi has degree at least 3. We deduce, therefore, that every induced Cm

and Cn contains at least two vertices of degree at least 3.

Suppose that H has exactly two vertices, a and b say, of degree at least 3. Since

every induced Cm and Cn contains at least two vertices of degree at least 3, the

vertices a and b must lie on every induced Cm and Cn in H. Consequently, the graph

H consists of the vertices a and b and a set S of internally disjoint paths joining a and

b. Observe that any induced cycle containing an edge of a path from S must contain

all the edges of this path. Hence we may denote an induced Cm or Cn containing a

path PES by Cm(P) or Cn(P), respectively. Let P' be a shortest a-b path, and let

p(l) denote the a-b path of length n - d(a, b) on Cn(P') which is disjoint from P'.

Furthermore, let p(2) denote the a-b path of length m - (n - d(a, b)) on Cm (p(1))

which is disjoint from p(l). Then p(2) is an a-b path of length less than d(a, b), which

is impossible. The desired result now follows. 0
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Proposition 5 . 3 For m ~ 5, efr(Cm, C2m- 4 ) = 2m. Furthermore, Cm and C2m- 4

are uniquely edge framed by the graph shown in Figure 5.13.

Proof. Since Cm and C2m- 4 can be edge homogeneously embedded in the graph

of size 2m shown in Figure 5.13, it follows that efr(Cm, C2m- 4 ) ~ 2m. Now let F

be an edge frame for C2m- 4 and Cm' By Corollary 5.5, p(F) ~ 2m - 2. Applying

Theorem 4.8, we have h(F) ~ 2. Let k be the number of vertices of H of degree

at least 3. By Lemma 5.3, k ~ 3. Hence 2(2m) ~ 2q(F) ~ 3k + 2(p(F) - k) =

2p(F) + k ~ 2p(F) +3 whence p(F) ~ 2m-2. Thus p(F) = 2m-2 = fr(Cm, C2m- 4 ).

By Theorem 5.1, the only graph of order 2m - 2 which both frames Cm and C2m- 4

and edge homogeneously embeds Cm and C2m- 4 is the graph shown in Figure 5.13.

Consequently, efr(Cm, C2m- 4 ) = 2m, and Cm and C2m- 4 are uniquely edge framed

by the graph shown in Figure 5.13. 0

m -' 5 vertices
"

or

m - 5 vertices

Figure 5.13: An edge frame for Cm and C2m- 4 for m ~ 5.

Lemma 5 .4 Let n > m ~ 4 where n 1: 2m - 4 and (m,n) =I (5,7). If a graph H

edge homogeneously embeds Cm and Cn, then p(H) ~ n +3.
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Proof. Let H be a graph which edge homogeneously embeds Cm and Cn' By

Corollary 5.5, p(H) ~ n + 2. Suppose that p(H) = n + 2. Then by Lemma 5.1

we deduce that H frames Cm and Cn' By Theorem 5.1 it follows that (m, n) E 5,

where 5 is the set of ordered pairs defined in section 5.2 For (m, n) E 5 the frames

for Cm and Cn have been completely determined in Theorem 5.1 and in each case

it is easily checked that H does not edge homogeneously embed Cm and Cn unless

n = 2m - 4 (in which case H is the graph shown in Figure 5.13) or n = 2m - 3

and m = 5 (in which case H is the graph shown in Figure 5.14). This produces a

contradiction and we deduce that p(H) ~ n +3. 0

Figure 5.14: An edge frame for Cs and C7•

Proposition 5 . 4 For m ~ 7, efr(Cm, C2m- 6 ) = 2m - 1.

Proof. Since Cm and C2m- 6 can be edge homogeneously embedded in the graph of

size 2m -1 shown in Figure 5.15, it follows that efr(Cm, C2m- 6 ) ~ 2m -1. We show

that efr(Cm, C2m- 6 ) = 2m - 1 by verifying that there is no graph of size 2m - 2

or less which edge homogeneously embeds Cm and C2m- 6 • Suppose, to the contrary,

that such a graph H exists. By Lemma 5.4, p(H) ~ 2m ~ 3. Applying Theorem 4.8,

we have 8(H) ~ 2. Let k be the number of vertices of H of degree at least 3. By
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Lemma 5.3, k ~ 3. Hence 4m - 4 ~ 2q(H) ~ 3k + 2(p(H) - k) = 2p(H) + k ~

2(2m - 3) +3 = 4m - 3, which is impossible. 0

m - 7 vertices
"

~ - 6 ~ertices

Figure 5.15: An edge frame for Cm and C2m- 6 for m ~ 7.

Lemma 5 . 5 For n > m ~ 4 where n =1= 2m - 4 or n ~ 2m - 6, there is no graph

of order n +3 and size at most n +5 that edge homogeneously embeds Cm and Cn.

Proof. Assume, to the contrary, that such a graph H exists. Applying Theorem 4.8,

we have h(H) ~ 2. Let k be the number of vertices of H of degree at least 3. Hence

2n + 10 ~ 2q(H) ~ 3k + 2(p(H) - k) = 2p(H) + k = 2n +6 + k, so k :::; 4. By

Lemma 5.3, k ~ 3. Thus k = 3 or 4.

Case 1. k = 3.

Since every graph contains an even number of vertices of odd degree, at least one

vertex of H has degree 4 or more. Thus 2n + 10 ~ 2q(H) ~ 10 + 2(p(H) - 3) =

2p(H) +4 = 2n + 10. Since all these inequalities must be equalities, it follows that

q(H) = n + 5 and H contains two vertices of degree 3, one of degree 4, and n of
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degree 2. Let w denote the vertex of degree 4. Since no vertex of degree 2 in H can

lie on a K3 , and since q(H) = n + 5 and 8(H) = 2, it follows that every induced

Cn in H must contain the vertex w. Let Cw : W = Wt, W2, ••• , W n , Wl be an induced

Cn containing w, and let a, b, and c be the names of the three vertices of H not in

Cw • Without loss of generality, we may assume that W is adjacent to a and b. Since

q(H) = n + 5 and 8(H) = 2, at most one of a and b is adjacent to a vertex of Cw

different from w. Without loss of generality, we may assume that b is adjacent to no

vertex of Cw other than w. Since no vertex of degree 2 in H can lie on a K 3 , and

since q(H) = n +5, the vertices a and bcannot be adjacent. Hence b is adjacent only

to c and w.

Suppose firstly that a is adjacent to c. If deg c = 2, then c belongs to no induced Cl

for £ ~ 5. Hence degc = 3. Then a and b are vertices of degree 2 with N(a) = N(b).

Thus we must have m = 4 otherwise by Lemma 5.2 we have a contradiction. Now c is

adjacent with Wj for some j (2 :s; j :s; n). Thus H is the graph shown in Figure 5.16.

a

W·3

Figure 5.16: The graph H.

Then deg Wj = deg c = 3, deg Wl = 4, and the remaining vertices of H have degree

2. Thus any induced C4 containing the edge Wl W2 must contain the vertices Wt, wj,
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c and either a or b. Consequently j = 2. Similarly, by considering the edge W1 W n

we get j = n. Thus n ~ 2, a contradiction. Thus a and c are not adjacent. Since

q(H) = n + 5, deg a = deg c = 2. Since no vertex of degree 2 belongs to a K3 ,

the vertex a is not adjacent to W2 or W n • Furthermore, the vertex c is not adjacent

to W2 or W n, for otherwise c belongs to no induced On for n 2:: 5. Without loss of

generality, we may assume that a is adjacent to W r and c is adjacent to W s where

3 ~ s < r ~ n - 1. The graph H is shown in Figure 5.17.

Figure 5.17: The graph H.

Since the vertex b belongs to no 0 4 , we must have m 2:: 5. If r = n - 1, then a

and W n are vertices of degree 2 with N(a) = N(wn ) which contradicts Lemma 5.2.

Hence r ~ n - 2. We now consider the vertex a. The vertex a belongs to three cycles,

namely, C(1) : a, W r , W r +ll' •. ,Wn , W1, a (of length n - r +3), C(2) : a, Wl, W2, ... ,Wr, a

(of length r +1) and 0(3) : a, W1, b, C, W s , W s+ll ••• ,Wr , a (of length r - s +5). At least

one of these cycles is of length n. If 0(1) has length n, then r = s = 3 contradicting

r > s. If 0(2) has length n, then r = n - 1 contradicting r ~ n - 2. Therefore 0(3)

must be of length n, implying that n - 2 2:: r = n + s - 5, so s ~ 3. Thus s = 3 and

r = n - 2. But then the vertex W n belongs to three cycles of lengths 5, nand n +1.
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Hence m = 5. However the edge W3W4 then belongs to no Cs, a contradiction. Hence

Case 1 produces a contradiction.

Case 2. k = 4.

Then 2n +10 ~ 2q(H) ~2n +6 + k = 2n + 10. Since all these inequalities must be

equalities, it follows that q(H) = n +5 and H contains four vertices of degree 3 and

n - 1 vertices of degree 2. The following claim will prove to be useful.

Claim 5 . 1 If C' is an induced Cn in Hand U the set of three vertices of H that

do not belong to C', then (U) ':: K I UK 2 or P3. Furthermore, if (U) ':: K I UK 2 , then

each vertex of U has degree 2 in H. If (U) ~ P3 , then the central vertex of this P3

has degree 3 in H and the two end-vertices have degree 2 in H.

Proof. Since q(H) = n + 5, there are exactly five edges incident with the vertices

of U. Since 8(H) = 2, and no vertex of degree 2 belongs to a K3 , a simple counting

argument shows that q( (U)) = 1 or 2. Hence (U) ~ K I UK 2 or P3 • If (U) ~ K I UK 2 ,

then, since q(H) = n + 5, each vertex of U has degree 2 in H. If (U) ~ P3 , then

three of the five edges incident with vertices of U are also incident with vertices of

C'. It follows that exactly three of the four vertices of degree 3 belong to C' and the

remaining vertex of degree 3 is in U. Hence one vertex of U has degree 3 and the

remaining two vertices have degree 2. Suppose (U) is the path a, b, c, and C' is the

(induced) cycle Vb V2, •• . ,Vn , VI. We show that deg b = 3. If this is not the case, then

we may assume that deg a = 3 and deg b = deg c = 2. Without loss of generality, we

112



may assume avI, aVi and CVj are edges of H where 2 ~ i < j ~ n. The graph H is

shown in Figure 5.18.

Figure 5.18: The graph H.

Since the vertex b belongs to no 4-cycle, we may assume here that n > m ~ 5.

Now there are only two induced cycles containing the edge VIV2, namely C' and the

cycle C": VI, V2, . .• , Vi, a, VI. Since C' has length n, C" must have length m so that

i = m - 1. We now consider the edge aVI' The edge aVI belongs to three induced

cycles, namely, C" (of length m), VI, a, Vm-I, Vm , Vm+I, ... , Vn , VI (of length n - m +4)

and C III
: vI,a,b,c,vj, ••. ,Vn,VI (of length n - j + 5). Thus n = n - m + 4 or

n = n - j + 5. If n = n - m + 4, then m = 4 contradicting m ~ 5. Thus C III has

length nand j = 5. Hence m-I = i ~ j - 1 = 4, so m ~ 5, i.e., m = 5. But then

the edge aV4 belongs to no Cn , a contradiction. We deduce, therefore, that deg b = 3

and deg a = deg c = 2. This completes the proof of the claim. 0

We now return to the proof of Case 2. Let u and V be two (distinct) vertices of

degree 3 for which d(u, v) is a minimum, and let P be a shortest u-v path. Then all

interior vertices (if any) of P have degree 2. Let Cp : VI, V2, ... , Vn , VI be an induced

Cn containing an edge of P. Necessarily, Cp contains all edges of P. Let a, b, c be the
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three vertices of H that do not belong to Cp. By Claim 5.1, ({a, b, c}) ~ KI U K2 or

P3' We consider the two possibilities in turn.

Case 2.1 ({a,b,c}) ~ P3 •

Without loss of generality, we may assume that a, b, c is a path. By Claim 5.1,

deg b = 3 and deg a = deg c = 2. Since b is adjacent to a vertex of degree 3 of Cp ,

our choice of u and v implies that d(u, v) = 1, so u and v are adjacent vertices on

Cp. Without loss of generality, we may assume that u = VI and v = V2. If b is

adjacent to either u or v, then, without loss of generality, H is then the graph shown

in Figure 5.19(i). Since the vertex a belongs to induced cycles of only two possible

lengths, namely, 4 and n, we must have m = 4. But then the edge VIvn belongs to

no Cm, a contradiction. Hence b is adjacent to neither u nor v, so bVi is an edge for

some i (3 ::; i ::; n).

(i)

V2 VI V2

"J C"· C"J
V·I

(ii)

. Figure 5.19: The graph H.

Without loss of generality, H is then the graph shown in Figure 5.19(ii). Since

the edge VI v2 belongs to no 4-cycle, we must have m ~ 5. The edge be belongs to
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three cycles, namely b, c, V2, Vb a, b (of length 5), b, C, V2, V3, •.. , Vi, b (of length i + 1)

and c, b, Vi, Vi+b ... , Vn , Vb V2, C (of length n - i +5). Since n > 5, we must have

n = i + 1or n - i + 5. Suppose n = n - i +5. Then i = 5 and the edge VI v n lies

on cycles of only two possible lengths, namely, n - 1 and n. Hence m = n - 1. Now

the edge VIV2 (V2V3) lies on cycles of length 5,7 and n (6, 7 and n, respectively). We

deduce that m = 7 and n = 8. However, then, n = 2m - 6 which is contrary to our

choice of m and n. Thus n = i + 1, i.e., i = n - 1. The edge V2V3 then lies only on

cycles of length nand n + 1 so that V2V3 does not lie on any cycle of length m. This

produces a contradiction.

Case 2.2 ({a, b, c}) ~ KI U K2 •

Without loss of generality, we may assume that a is the isolated vertex in (U), so bc

is an edge. By Claim 5.1, each of a, b and c has degree 2. Let Ca be an induced Cn

containing the vertex a. We show that the edge bc belongs to Ca. If this is not the

case, then, without loss of generality, we may assume that Ca is a, V2, V3, . .• , Vn , a.

By Claim 5.1, the three vertices Vb band c that do not belong to Ca induce either

a P3 or K I U K 2. If ({vI,b,c}) ~ P 3 , then, since 6.(H) = 3, the vertex VI must be

an end-vertex of ({Vb b, c}) ~ P3. But then VI has degree 3 in H which contradicts

Claim 5.1. Thus ({vbb,c}) ~ K I U K 2 and VI has degree 2 in H. Hence a and VI

are two nonadjacent vertices of, degree 2 in H with N(a) = N(VI). This, however,

contradicts Lemma 5.2 if m ~ 5. Hence m = 4. Without loss of generality, we may

assume that the vertex b (c) is adjacent with the vertex Vi (Vj, respectively) where
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3 S i < j S n - 1. Since the edge bc must lie on an induced C4 , it follows that

j = i + 1. However the edge be then belongs to no cycle of length 5 or more. This

produces a contradiction. We deduce, therefore, that the edge be must belong to Ca.

Let 8 be the set of three vertices of Cp that do not belong to Ca. By Claim 5.1,

(8) ~ Kt U K 2 or P3. Clearly, (8) f'V K l U K 2 • Without loss of generality, we may

assume that 8 = {V2' Vi, vi+d where 5 S i S n - 2. Hence n ~ 7, and VI, V3, Vi-l

and Vi+2 are the four vertices of degree 3 in H. If N (a) = N (V2), then, since the

edge be belongs to cycles only of length 6 and n, it follows that m = 6. However, the

vertex a belongs to cycles only of length 4 and n, so m = 4, a contradiction. Hence

If Ca is given by VI, b, e, V3, V4 ... ,Vi-I, a,Vi+2, .•. ,Vn , VI, then H is the graph shown

in Figure 5.20(i). Now the edge VlVn belongs to cycles of length n -1, n, n +1. Thus

m = n - 1. However, the edge be belongs to no induced Cn - l (n ~ 7). Hence

we may assume, without loss of generality, that Ca is given by either C£l}: VI, a, Vi-I,

Vi-2, . .. ,V3, b, C, Vi+2, . .. ,Vn , vI, in which case H is the graph shown in Figure 5.20(ii),

or C£l}: VI, b, C, Vi-I, Vi-2, ••• , V3, a, Vi+2, ... , Vn, VI, in which case H is the graph shown

in Figure 5.20(iii). If Ca is C£l), then the edge VlVn belongs to cycles of length n-i+4

and n. Thus m = n - i + 4. Furthermore, the edge V3V4 belongs to cycles of length

i, i + 2 and n. Thus m = i or i + 2. If m = i, then n = 2m - 4 and if m = i + 2, then

n = 2m - 6. In either case we contradict our choice of m and n. A similar argument

shows that Ca cannot be C£2}. This completes the proof of Case 2.2, and therefore of
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Lemma 5.5. 0

VI V2 V3

C'"
1 • r ... J
~

Vi+2 Vi+! Vi Vi-I

(i)
VI a b c

V3
Vi-I

V2 V3
V2

b VI ••• -.j ~Vi-I-
C ta

...- ... --V n Vi+2 Vi+! Vi Vn Vi+2 Vi+! Vi

(ii) (iii)

Figure 5.20:

Corollary 5 . 6 For n > m ~ 4 with n i= 2m - 4 or n i= 2m - 6 and (m, n) =I (5, 7),

Proof. We show that efr(Cm, Cn) ~ n +6 by verifying that there is no graph

of size n + 5 or less which edge homogeneously embeds Cm and Cn • Suppose, to

the contrary, that such a graph H exists. By Lemma 5.4, p(H) ~ n + 3, and by

Lemma 5.5, p(H) i= n + 3; consequently, p(H) ~ n + 4. Applying Theorem 4.8,

we have 8(H) ~ 2. Let k be the number of vertices of H of degree at least 3. By

Lemma 5.3, k ~ 3. Hence2n+l0 ~ 2q(H) ~ 3k+2(p(H)-k) = 2p(H)+k ~ 2n+11,

which is impossible. 0
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Corollary 5 . 7 For m ~ 7, Cm and C2m- 6 are uniquely edge framed by the the

graph of size 2m - 1 shown in Figure 5.15.

Proof. Let F be an edge frame for Cm and C2m- 6 . Then by Proposition 5.4, q(F) =

2m -1. By Corollary 5.5, p(F) ~ 2m - 4. Applying Theorem 4.8, we have 8(F) ~ 2.

Let k be the number of vertices of F of degree at least 3. By Lemma 5.3, k ~ 3. Hence

4m - 2 = 2q(F) ~ 3k+2(p(F) - k) = 2p(F) +k ~ 2p(F) +3, whence p(F) ::; 2m - 3.

Thus 2m - 4 ::; p(F) ::; 2m - 3. If p(F) = 2m - 4, then p(F) = fr(Cm, C2m- 6 )

and so F frames Cm and C2m- 6 • However, by Theorem 5.1, there is no graph of

order 2m - 4 which edge homogeneously embeds Cm and C2m- 6 for m ~ 7. Thus

p(F) = 2m - 3 = (2m - 6) +3. From the proof of Lemma 5.5 we deduce that Cm and

C2m- 6 have at most one edge frame. We conclude that Cm and' C2m- 6 are uniquely

edge framed. 0

Proposition 5 . 5 For m ~ 4 and m rt {5,7}, efr(Cm, Cm+d = m + 7.

Proof. Since Cm and Cm+! can be edge homogeneously embedded in the graph of

size m+7 shown in Figure 5.21(i) for m = 4 and in Figure 5.21(ii) for m = 6 or m ~ 8,

it follows that efr(Cm,Cm+d ::; m + 7. By Corollary 5.6, efr(Cm,Cm+d ~ m + 7.

Consequently efr(Cm, Cm+!) = m + 7 as required. 0
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(i)

Figure 5.21:

m - 5 ~ertices
(ii)

Proposition 5 . 6 For m ;::: 10, efr(Cm1 C2m- S)= 2m - 2.

Proof. Since C2m- S and Cm can be edge homogeneously embedded in the graph

of size 2m - 2 shown in Figure 5.22, it follows that efr(C2m- S1 Cm) $ 2m - 2. By

Corollary 5.6, efr(92m-S1 Cm) ;::: 2m - 2. Consequently efr(C2m- S1 Cm) = 2m - 2 as

required. 0

m - 9 vertices

...

- -- -4_ 4_ 4_

- -- -
...

..
m - 9 vertices

Figure 5.22: An edge frame for Cm and C2m- S for m ;::: 10.
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Proposition 5 .7 ejr(CS'C7 ) = 12.

Proof. Since Cs and C7 can be edge homogeneously embedded in the graph FS,7

(without the dotted edges) of size 12 shown in Figure 5.2, it follows that ejr(Cs, C7 ) ::;

12. We show that ejr(Cs,C7 ) = 12 by verifying that there is no graph of size at

most 11 which edge homogeneously embeds Cs and C7 . Suppose, to the contrary,

that such a graph H exists. By Corollary 5.5, p(H) ~ 9. Applying Theorem 5.8,

we have 8(H) ~ 2. Let k be the number of vertices of H of degree at least 3. By

Lemma 5.3, k ~ 3. Hence 22 ~ 2q(H) ~ 3k +2(p(H) - k) = 2p(H) +k ~ 2p(H) +3

whence p(H) ::; 9. Consequently, p(H) = 9 = jr(CS,C7 ) and so H frames Cs and

C7 • However, from Theorem 5.1, the frames for Cs and C7 all have sizes greater than

11. This produces a contradiction. 0

Proposition 5 . 8 For m = 4 or m ~ 7, ejr(Cm , Cm +2) = m +8.

Proof. Since Cm and Cm+2 can be edge homogeneously embedded in the graph of

size m +8 shown in Figure 5.23(i) for m = 4 and in Figure 5.23(ii) for m ~ 7, it

follows that ejr(Cm ,Cm+2 ) ::; m + 8. By Corollary 5.6, ejr(Cm ,Cm +2 ) ~ m + 8.

Consequently ejr(Cm ,Cm +2) = m + 8 as required. 0
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(i)

Figure 5.23:

rn - 5 vertices
(ii)

5.5 Framing numbers of pairs of directed cycles

In this we investigate the framing number f r(GI , G2 ) for several pairs GI , G2 of

directed cycles.

The proof of the following result is very similar to the proof of Corollary 3.2 and

is therefore omitted.

Theorem 5 . 3 For digraphs D I and D 2 , there exists a positive integer rn such that

for each integer n 2: rn, there is a digraph H of order n in which D I and D2 can be

homogeneously embedded, while for each positive integer n < rn, no such digraph H

of order n exists.

Proposition 5 . 9 fr(03' ( 4 ) = 6.

Proof. The digraph F of order 6 shown in Figure 5.24 has the property that 03 and

04 can be homogeneously embedded in F. Therefore, fr(03 , ( 4 ) ::; 6. However, it is
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Figure 5.24: A frame for C3 and C4 •

shown in [2] that fr( C3 , C4 ) = 6. Hence, according to Proposition 3.2, fr( C3 , C4 ) ~ 6.

Proposition 5 . 10 fr(C3 , Cs) = 8.

Proof. The digraph F of order 8 shown in Figure 5.25 has the property that C3

and Cs can be homogeneously embedded in F. Therefore, fr(C3 , Cs) :S 8. By

Theorem 5.3, it will follow that fr( C3 , Cs) = 8 once we show that there does not

exist a digraph H of order 7 in which C3 and Cs can be homogeneously embedded.

Figure 5.25: A frame for C3 and Cs.
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Suppose, to the contrary, that there exists such a digraph H. Each vertex of H

must belong to a C3 and an induced Cs, so 8(H) 2 3. Futher, since H homogeneously

embeds Cs, Lemma 3.2 implies that t1(H) :::; 7 - 5 +2 = 4. First we claim that H

does not contain two disjoint copies of C3 . Suppose, to the contrary, that H contains

two disjoint copies F1 and F2 of C3 • Let V(F1 ) = {a,b,c} and let V(F2 ) = {d,e,!}

and let 9 be the vertex of H not belonging to F1 and F2• Then every induced Cs

of H must contain the vertex 9 and exactly two vertices from each of F1 and F2 •

Without loss of generality, we may assume that the digraph shown in Figure 5.26 is

a subdigraph of H. Now let He be an induced subdigraph of H that is isomorphic

to Cs and that contains the vertex c. Since 9 belongs to He' the vertex a cannot

belong to He. This in turn implies that b belongs to He' and therefore that d does

not belong to He. It follows that V(He) = {b, c, e,j, g}. However, then the vertex e

has outdegree at least two in He, which produces a contradiction. Thus, as claimed,

H does not contain two disjoint copies of C3 •

c b d fe(e ) e<e
~i \

e
g

Figure 5.26: A subdigraph of H.
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Next we show that H does not contain two 03'S having exactly one vertex in

common, for suppose that it does. Then H has the subdigraph shown in Figure 5.27.

Then deg a = 4. Let Tf (Tg ) be a 03 that contains the vertex f (g, respectively).

Since the vertex a does not belong to Tj, neither can the vertex g, for otherwise this

would produce two disjoint copies of 03 , Similarly, f ri V(Tg ). For the same reason,

Tf and Tg have at least one vertex in common. Without loss of generality, we may

therefore assume that the vertex b belongs to Tf and to Tg • Then Tf consists of b, f

and exactly one of d and e. This implies, however, that deg b ~ 5, which contradicts

that fact that ~(H) = 4.

•f •
g e

Figure 5.27: A subdigraph of H.

Hence every two 03 's of H share a common arc. But this implies that some arc

(u, v) lies on every 03 of H. However, since every vertex of H belongs to a 03 , both

u and v have degree 6 in H, which is impossible. 0

The proof of the next result is similar to that of Proposition 5.10, and is therefore

omitted.
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Proposition 5 . 11 fr( C\, ( 6 ) = 9.

A frame for C3 and C6 is shown in Figure 5.28.

Figure 5.28: A frame for C3 and C6

Proposition 5 . 12 fr(C4 , Cs) = 8.

Proof. The digraph F of order 8 shown in Figure 5.29 has the property that C4

and Cs can be homogeneously embedded in F. Therefore, fr(C4, Cs) ~ 8. By

Theorem 5.3, it will follow that fr(C4, Cs) = 8 once we show that there does not

exist a digraph H of order 7 in which C4 and Cs can be homogeneously embedded.

Suppose, to the contrary, that such a digraph H exists. Then 2 ~ 8(H) ~ tl(H) ~ 4.

Before proceeding further, we prove the following claim.

Claim 5 • 2 If H' is an induced Cs in H J then the two vertices of H not in H' do

not belong to a common Cs.
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Figure 5.29: 'A frame for C4 and Cs.

Proof. Let H' be a, b, c, d, e, a and let f and 9 be the names of the two remaining

vertices of H. Assume, to the contrary, that f and 9 belong to a common induced Cs,

say Tf. If f and 9 are adjacent vertices on Tf , then, without loss of generality, we may

assume that Tf is a, b, c, f, g, a. Hence H has the subdigraph shown in Figure 5.30(a).

Then deg a = deg c = 3 and deg b = 2. However, there is then no induced C4

containing the vertex b.

On the other hand, if f and 9 are not adjacent vertices on Tf , then, without loss of

generality, we may assume that Tf is a, b, g, d, f, a. Hence H has the subdigraph shown

in Figure 5.30(b). Then deg a = deg b = 3 and deg d = 4. However, there is then no

induced C4 containing the vertex d. (This is evident since such a C4 would contain

exactly one vertex from each of {e, f} and {c, g}, and therefore a vertex x E {a, b}.

But thenthe vertex x would have degree 1 in such a C4 , which is impossible.) 0
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(a) (b)

Figure 5.30: A subdigraph of H.

The digraph H must contain Cs as an induced subdigraph, say a, b, c, d, e, a. Let

f and g be the names of the two remaining vertices of H. Further, let Tt (Tg ) be an

induced Cs that contains the vertex f (g, respectively). By Claim 5.2, f and g do not

belong to a common induced Cs. We may assume, without loss of generality, that Tt

is a, b, c, d, f, a. Since the vertices e and g do not belong to Tj, Claim 5.2 implies that

e and g do not belong to a common induced Cs. Hence Tg contains the vertices a, b, c

and d. Thus H has the subdigraph shown in Figure 5.31. Then deg a = deg d = 4

and deg b = deg c = 2. However, there is then no induced 04 containing the vertex b.

o

Proposition 5 . 13 fr(C4 , 06 ) = 8.

Proof. The digraph F of order 8 shown in Figure 5.32 has the property that C4 and

C6 can be homogeneously embedded in F. Therefore, fr(04' ( 6 ) ~ 8. However, it is
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+
~d
b~c

Figure 5.31: A subdigraph of H.

shown in [2] that fr( C4 , C6 ) = 8. Hence, according to Proposition 5.2, fr( C4 , C6 ) ~ 8.

Figure 5.32: A frame for C4 and C6 •

We are now in a position to characterize all those pairs of dicycles Cm and Cn

(n > m ~ 3) which have framing number n +2.

Theorem 5 .4 For integers n > m ~ 3) fr(Cm,Cn) = n+2 if and only n = 2m-2

where m ~ 4. Furthermore Cm and C2m- 2 have exactly five nonisomorphic frames.
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Proof. First suppose that n = 2m - 2 where m 2: 4. Then, by Theorem 5.1 and

Proposition 3.2, jr(Cm, Cn) 2: jr(Cm, Cn) = n + 2. However, since Cm and Cn can

be homogeneously embedded in the digraph of order n +2 shown in Figure 5.33, we

have jr(Cm, Cn) ~ n +2. Consequently, jr(Cm, Cn) = n +2.

m - 4 vertices

Fm ,2m-2 :

m - 4 vertices

Figure 5.33:

Next we consider the necessity. Let m and n be integers satisfying n > m 2: 3 and

assume that jr(Cm,Cn) = n +2. Let D be a frame for Cm and Cn and let D' be the

underlying graph of D. Since jr(Cm, Cn) = n +2, by Proposition 5.2 and Lemma 5.1

we conclude that jr(Cm,Cn) = n +2. By Theorem 5.1 it follows that (m,n) must

belong to the set S (defined in section 5.2) and that the graph D' must belong to

Fm,n (also defined in section 5.2). By Propositions 5.9, 5.10, 5.11, 5.12 and 5.13, with

the possible exception of the graphs H4,6 and H6 ,lO shown in Figure 5.1, the graph D'
;

cannot be any of the graphs shown in Figure 5.1. It is easily checked that D' cannot

be the graph H6 ,lO. Futhermore, it is easily checked that D' cannot be any of the

graphs Fm,m+I, Fm,2m-4, Fm,2m-3 and Gm,2m-2 of Figure 5.2. Thus the possibilities
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for D' includes the graph H4,6 in Figure 5.1 and the graph Fm ,2m-2 of Figure 5.2.

Thus n = 2m - 2 and the possible frames for Cm and Cn are obtainable from the

digraph Fm,2m-2 by adding and orienting any combination (the presence or absence)

of the dotted edges. This yields the five nonisomorphic frames for Cm and Cn' 0

Corollary 5 . 8 For integers n > m ~ 3, if n =I 2m - 2, then fr( em, en) ~ n + 3.

-+ -+

5.6 Upper bounds on !r(Cm,Cn )

In this section, we establish upper bounds on fr(Cm , en) for all integers n > m ~ 3.

Theorem 5 . 5 For integers n > m ~ 3,

n + r%l
n+_n_

m-I

if m = 3 or 4

if m - 1 In and m > 4

n +rm~ll +1 otherwise

Proof. Suppose firstly that m = 3. Let k = rn/2l Let G be the digraph ob-

tained from the induced n-cycle C' : Vo, Vb V2, .•• , Vn-b Vo by adding k new vertices

Wo, Wb" ., Wk-I and, for i = 0,1, ... ,k - 1, joining Wi to V2i, to V2i+l and from V2i+2

where addition is taken modulo n. If n is odd, then join Wo to Wk-I. Then each

vertex of G clearly belongs to a e3 . Let S {w W w} U { }= 0, b"" k-I V2, V4, ••• V2k-2 .

If n is even then add the vertex Vo to S. Then the subdigraph induced by the vertices
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of S is isomorphic to Cn. Hence C 3 and C n can be homogeneously embedded in the

digraph G of order n + k = n + rn/21. Thus jr(C3 ,Cn ) ::; n + r~l·

If m = 4, then let G' be the digraph obtained from G by deleting the arcs (Wi' V2i+I)

for i = 0, 1, ... ,k-l. Then C4 and Cn can be homogeneously embedded in the digraph

G' of order n + k = n + rn/3l Thus jr(C4 ,Cn )::; n + r~l

Suppose next that m ~ 5. Let £ = rn/(m - 1)1. Let Gm,n be the digraph ob

tained from the induced n-cycle C' : Vo, VI, V2, . .. , Vn-l, Vo by adding £ new vertices

Wo, Wll' .. ,Wl-l and, for i = 0,1, ... ,£ -1, joining Wi from Vi(m-l)-ll to Vi(m-l)+I and

from V(i+I)(m-l) where addition is taken modulo n.

Case 1. m-I In.

Thus n = £(m - 1). (The digraph G 5,16 is shown in Figure 5.34.) Then Cm and C n

can be homogeneously embedded in the digraph Gm,n of order n +£ = n +n/(rn -1).

To see this, observe that for i = 0, 1, ... ,£ - 1, each vertex Wi belongs to an induced

Cm, namely C~) : Wi, Vi(m-l)+ll Vi(m-l)+2' ... , V(i+I)(m-l), Wi. Furthermore, replacing

the vertex Vi(m-l) on C' with the vertex Wi for all i = 0,1, ... , f - 1 produces an

induced' Cn containing each Wi. Furthermore, each vertex of C' belongs to C~) for

exactly one i (0 ::; i ::; f - 1). Consequently, Gm,n homogeneously embeds Cm and

Cn. Thus, jr(Cm , Cn) ::; n + n/(m - 1).

Case 2. m-I In + 1.
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Figure 5.34: The digraph OS,16.

Thus n = R(m - 1) -1. Let Fm,n be the digraph obtained from Om,n by deleting the

arc (VI, wl-d and adding a new vertex Wl and joining it from VD, to V2 and to Wl-I'

(The graph FS•1S is shown in Figure 5.35.) Then Cm and Cn can be homogeneously

embedded in the digraph Fm,n of order n + R+ 1 = n + rnj(m - 1)1 + 1. Thus,

jr(Cm,Cn) ::; n + rnj(m - 1)1 +1.

Figure 5.35: The graph FS,IS.
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Case 3. m-I I n - 1.

Thus n = (£ - l)(m - 1) + 1. Let Hm,n be the digraph obtained from Gm,n as

follows: Delete the arc (vn _}, Wl-2) and add the arc (Wl-2, V(l_3)(m_I));delete the

three arcs incident with Wl-I and join Wl-I to V(l-2)(m-I)H, from Vn-I and to VI;

add a new vertex Wl and join it from V(l-2)(m-I), to V(l-2)(m-I)+2 and from VQ. (The.

digraph H6 ,I6 is shown in Figure 5.36.) Then Cm and Cn can be homogeneously

embedded in the digraph Hm,n of order n +£ + 1 = n + rn/(m - 1)1 + 1. Thus,

jr(Cm,Cn)~ n + rn/(m -1)1 + 1.

Figure 5.36: The graph H6,16.

Case 4. m-I does not divide n - 1 or n or n + 1.

Thus n = (£ - l)(m - 1) + r for some r satisfying 1 < r < m - 2. Let in n,

be the digraph obtained from Gm,n by adding a new vertex Wl and joining it to

V(l-I)(m-I), from Vl(m-I)-I and to Vl(m-l)+1 where addition is taken modulo n; that

is, Wl and joined to Vn - r ' from Vm - r -2 and to V m - r . (The digraph ls,14 is shown in
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Figure 5.37.) Then Cm and Cncan be homogeneously embedded in the digraph lm,n

of order n +£ + 1 = n + rn/(m-1)1 + 1. Thus, fr(Cm , Cn) ~ n + rn/(m -1)1 + 1. 0

Figure 5.37: The digraph fs,I4'

Two immediate corollaries of Theorems 5.1 and 5.5 and Corollary 5.2 now follow.

Corollary 5 . 9 For m = 3 or 4 and n = 7,8,9, or for 7 ~ m +2 ~ n ~ 2m - 5,

Corollary 5 . 10 For m ~ 4 and n = 2(m -1) or 3(m -1), fr(Cm , Cn) = n +_n_.
m-I
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