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Genetic Algorithms (GAs) can be easily applied to many different problems since

they make few assumptions about the application domain and perform relatively well.

They can also be modified with some success for handling a particular problem. The

travelling salesperson problem (TSP) is a famous NP-hard problem in combinatorial

optimization. As a result it has no known polynomial time solution. The aim of this

dissertation will be to investigate the application of a number of GAs to the TSP.

These results will be compared with those of traditional solutions to the TSP and

with the results of other applications of the GA to the TSP.
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Chapter 1

Introduction

1.1 Background to the Problem Area

Genetic Algorithms (GAs) are an adaptive search technique that form part of the

field of evolutionary computing. The standard GA is domain-independent and so is

classified as a weak method [76] because only the objective function is used to guide

the search. It is, however, surprisingly efficient in its application to a wide range of

optimization problems. In certain cases, such as the Travelling Salesperson Problem

(TSP), domain-specific knowledge can be added to increase efficiency.

The Travelling Salesperson Problem can be simply stated as the problem of

finding the shortest route for a salesperson starting at a home city to visit each of a

list of cities exactly once and return home. It is an NP-hard problem in graph theory

so no 'good' algorithm exists for the TSP. That is, there is no known algorithm that

can solve every TSP in polynomial time. There do, however, exist heuristic algorithms

that have been shown experimentally to produce near optimal solutions in polynomial

time (although theorems exist which show that this behaviour cannot be expected in

all cases). The TSP was significant in the development of the theory of computational

complexity such as NP-completeness as well as in developments in operations research.

Many applications can be formulated as the TSP, or can be converted to a TSP, or

contain subproblems that can be solved as TSPs.

One of the benefits of using a GA on any problem is that no matter how

1



Chapter 1. Introduction 2

complicated the constraints, a GA can be implemented if an objective function is

known. This provides another good reason for studying GA solutions to the TSP ~

many problems can be phrased as extensions of the TSP which are harder to solve.

Given a heuristic procedure to solve the TSP, it is often impossible or difficult to extend

it. The GA, however, is more easily extended owing to its domain-independence. Thus

the application of a GA to the TSP provides knowledge on the application of the GA

to a large class of problems.

Genetic algorithms can be enhanced to use domain-dependent knowledge to

improve accuracy and performance. Naturally, if many domain-specific changes have

been made in the application of the GA to the TSP, it may not be possible to apply

this modified GA to other TSP-related problems.

1.2 Goal and Objectives of the Research

Since the TSP has existing good heuristic solutions (relative to the difficulty of the

problem), applying a GA to this problem can have a number of different goals. The

goal of this research is to investigate the application of genetic algorithms to the

travelling salesperson problem. This goal can be reduced to the following objectives:

• Review the current literature on GAs and the TSP, in particular that which

relates to the solution of the TSP using GAs.

• Implement a GA for the solution of the TSP.

• Investigate a number of GA parameters to determine which values produce the

best solutions to the TSP. This includes domain-specific modifications to the GA

for the TSP to improve performance.

• Compare the empirical performance of the GA developed with the results of

other researchers as well as those of the traditional TSP heuristics.
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1.3 Scope and Limitations

3

Firstly, this study is limited to the symmetric TSP where distances between cities are

the same in both directions. This is the version of the TSP most often studied. This

restriction makes comparison with other heuristic procedures easier. Secondly, the

study will compare the GA only with more conventional TSP solutions. No attempt

is made to compare results with, for example, the use of neural networks or other

specialized techniques to solve the TSP. This is necessary as the TSP must be one of the

most widely studied problems in combinatorial optimization and other contemporary

approaches to its solution may require separate research projects on their own.

Although GAs are a more recent development than the TSP the field has ex­

panded very quickly. The definition of what constitutes a GA is evolving all the time.

This dissertation applies some GA technology that is not part of the classical GA [33]

like steady-state generations [25] and hybrid functionality in terms of local search [12]

and population seeding [43]. More radical departures from the standard GA model,

like CHC [29], were not used.

1.4 Significance

The TSP is a problem of theoretical importance [52, p37] partially due to the effect

it had on the development of the field of combinatorial optimization. It is, however,

not just of theoretical interest but it or its derivatives also have practical applications

[32]. GAs are general search methods so it would be expected that the performance

of GAs on the TSP would be too slow to really challenge existing TSP solvers like the

Lin-Kernighan heuristic which are really very good given the difficulty of the problem.

The significance of this research is that it demonstrates how a domain­

independent method such as GAs can be applied to combinatorial optimization prob­

lems such as the TSP. It shows the comparative performance that can be expected and

how the GA can be used to improve the results obtained using traditional TSP heuris­

tics. It is also significant because the method can be generalized to more complex and

difficult combinatorial optimization problems.
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1.5 Research Methodology

4

A GA was implemented to solve the TSP with a number of variable parameters.

Experiments were run with different parameter values to identify the most successful

combinations. The GA included hybridization techniques, such as local search and

population seeding. Comparisons were also made with a number of results by other

researchers and with published results for the Lin-Kernighan heuristic.

There are three different approaches that can be used to compare performance

of heuristic algorithms:

• performance guarantees or worst case analysis

• probabilistic or average case analysis

• empirical analysis

In this study only empirical analysis was performed. The difficulty of analysing any

good heuristic algorithm for the TSP with methods other than empirical ones is noted

by Johnson and Papadimitriou [53, p146] because good heuristics tend to have a great

deal of interaction between the different stages that cannot be easily analysed.

1.6 Outline of the Dissertation

The rest of this dissertation is divided into four chapters:

Chapter 2: Genetic Algorithms Here a basic description of the GA is given with

some examples. This does not cover any special changes for use with the TSP.

Chapter 3: The Travelling Salesperson Problem The TSP and traditional. ,
heuristic solutions thereof, are described.

Chapter 4: Solving the Travelling Salesperson Problem using Genetic Algorithm~

This chapter surveys the use to which GAs have already been put in the solution

of the TSP. Modifications that have been made to the GAin order to achieve

efficient performance are described.
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Chapter 5: Experimental Methodology and Results This chapter explains the

experiments, including techniques used, and the results of the experiments. The

comparative results for these techniques, versus those of traditional GAs and

current TSP approaches by others, are analysed.



Chapter 2

Genetic Algorithms

2.1 Introduction

Evolutionary Computing is a wide field that has been studied independently by a

number of researchers. Evolutionary Computing originated only in the last thirty

years though it uses the ideas of natural selection as expounded by Charles Darwin in

the 19th Century. Natural selection is a very powerful method of search, capable of

finding viable organisms in a hostile world. This indicates a robust and efficient search

method given the relatively short space of time over which complex and diverse life

has flourished on this planet.

Evolutionary Computing currently includes the following fields: Genetic Algo­

rithms [33], Evolutionary Programming, Evolution Strategies [3], Classifier Systems

[33], and Genetic Programming [57]. The algorithms based on any ofthese approaches,

being motivated originally by evolution, are collectively called Evolutionary Algo­

rithms [48]. This study will look at Genetic Algorithms in particular and will touch

on other approaches only where they are relevant.

2.1.1 Evolution

Charles Darwin published The Origin of Species in 1859 to explain the theory of evolu­

tion. Evolution is often misunderstood as random chance. The truth is that evolution

is based primarily on cumulative selection which is very different from random chance

6
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[23]. In cumulative selection, small changes are made by mutation and the best indi­

viduals are selected by survival of the fittest. In this way, better solutions are built

on good solutions. Random chance is too slow to produce any sort of useful results

in the time scales available in this universe. An example that illustrates this well is

mentioned in [23, p45]. The haemoglobin molecule in the blood consists of four chains

of 146 amino acids. There are 20 different amino acids so there are 20146 ~ 8.92 X 10189

possible ways in which a chain of 146 amino acids can be assembled. The possibility

of building one of these chains by random chance is very small even given the whole

life of the universe.

Evolution can be viewed as the search through 'gene space' for good chromo­

somes. Chromosomes direct the growth of organisms and these chromosomes survive

to reproduce only if the organism carrying them survives. Chromosomes can be al­

tered from one generation to the next by the random mutation or recombination of

genetic material from parents into a child. As only fit organisms reproduce, only those

chromosomes which represent fit individuals will be copied into the next generation.

Genetic algorithms mimic the processes of evolution by abstracting out processes of

reproduction, recombination and mutation.

One method that was put forward to explain evolution before Darwinism is

Lamarckism. Lamarck suggested that physical changes to an individual during its

lifetime could be passed on to its offspring. That is, the phenotype could affect the

genotype of an individual [23]. This is now known not to happen in nature, but

this method has still been successfully applied by some researchers in evolutionary

computing [48].

2.1.2 Genetic Algorithm Background

Genetic Algorithms (GAs) are a model of machine learning, and in particular machine

search, which is based on the concept of evolution in nature. The basic principles were

first described by John Holland in 1975 in the book Adaptation in Natural and Artificial

Systems. Holland and his colleagues at the University of Michigan are considered the

founders of GAs. A good introduction to GAs can be found in the book Genetic
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Algorithms in Search, Optimization, and Machine Learning by Goldberg, formerly

one of Holland's students [33). This book covers the theory of genetic algorithms, as

well as the implementation of a simple GA. A review of GA applications and some more

advanced methods that can be applied to GAs are discussed. For Internet resources

the Hitch-Hiker's Guide to Evolutionary Computation [48] provides valuable pointers

for getting started in this field.

The dissertation by De Jong, An Analysis of the Behaviour of a Class of Ge­

netic Algorithms in 1975 (reviewed in [33)), provided experimental results on function

optimization and made use of Holland's theory. Since then, genetic algorithms have

been applied to many different areas, including scheduling [18), multimodal function

optimization [37) and building neural networks [89). They have been converted to

work on parallel computers making it possible to attack larger problems [70).

A number of conferences covering GAs have been organized in the past 10

years. In 1985 The First International Conference on Genetic Algorithms (ICGA)

was held at Carnegie-Mellon University, Pittsburgh [41]. This conference takes place

in odd-numbered years [44, 77, 9, 31]. For researchers interested in the theoretical

work in GAs, The first workshop on Foundations of Genetic Algorithms (FOGA) was

arranged in 1990 [73]. It was followed by another in 1992 [92] and another in 1994

[93]. The goals of FOGA include presenting the current state of GA research and

providing ideas for future research [92, pI). The conferences Parallel Problem Solving

from Nature (PPSN), Annual Conference on Evolutionary Programming (EP) and

IEEE Conference on Evolutionary Computation (ICEC) also include topics on GAs.

The terminology used in the GA literature tends to be a mixture of biological

and GA terms. Equivalent GA and biological terms can be found in Table 2.1.

2.2 How Genetic Algorithms Work

While GAs are motivated by biological evolution they do not try to model the process

exactly. What is important is that GAs have shown themselves to be useful for search

and optimization. This section will describe how a basic GA works. Since there may

be some debate over what constitutes a basic GA, the GA described here corresponds



Chapter 2. Genetic Algorithms

Table 2.1: Corresponding Biological and Genetic Algorithm terms

Biological Genetic Algorithm

gene feature

allele feature value

chromosome string

locus string position

genotype structure

phenotype parameter set or decoded structure

9

to Goldberg's Simple Genetic Algorithm (SGA) [33]. Suggestions have been made for

many extensions and enhancements to the basic algorithm since its inception, some

with biological motivation. Changes and potential improvements to the basic GA

described here will be explained in Section 2.7.

2.2.1 The Algorithm

Genetic algorithms work on a population of strings or chromosomes (biological term).

The strings encode the parameters of the problem to be solved. An objective function

is required to direct the search. The objective function is converted to a fitness junction

which evaluates the fitness of each string1 .

Two parent strings are selected for reproduction by using the fitness function.

Reproduction is performed by means of a crossover operator that combines the rep­

resentations and a mutation operator that makes random changes. Each of these

operators is applied with some probability, crossover usually having a much higher

probability. Since binary strings are often used, the basic i-point crossover operator

simply selects a crossover point and swaps the strings at that point to produce two

new offspring. The mutation operator is used to introduce new characteristics not

currently present in the population or to reintroduce alleles that have been lost. A

common mutation operator changes bits randomly.

lOften the fitness function can be used directly as the objective function but sometimes some
conversion is needed. For example, fitness functions should be positive.
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The application of crossover and mutation to two parent strings produces two

offspring strings which become part of the next generation. The selection and repro­

duction process continues until the new generation is full (in other words, the same

size as the previous generation). The process now repeats with the new generation.

The process is often stopped when a fixed number of generations have been processed.

Alternatively some measure of the characteristics of the population, such as no im­

provement for ten generations, can be used to terminate the GA.

The basic algorithm is listed as Algorithm 1 [7]. The algorithm goes through

a number of discrete stages. In the initialization phase the initial population is con­

structed, usually randomly. Then the algorithm enters the evolution phase. Here a

new population is produced from the old generation. This is repeated until a gener­

ation limit is reached or convergence has been obtained. The production of the new

generation happens in two steps. One is the selection of parents using the fitness

function f and the other is the reproduction of the offspring from the parents.

Algorithm 1 (The Basic Genetic Algorithm)

Set up an initial population Po. Let f be the fitness function.

Let i = O.

REPEAT

REPEAT

Let a, b be any elements of Pi with selection biased in favour of fittest

individuals as measured by f.

Apply crossover and mutation to a and b to produce two new strings c

and d. Insert these into Pi+l'

Let i = i + 1.

UNTIL Pi has converged or i > maximum iterations.

•
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The next subsection discusses the encoding of parameters into strings. After

this, the different stages of the GA algorithm just presented, namely initialization,

selection, and reproduction, will be described in some detail.

2.2.2 Parameter Encoding

The parameters for the domain to be searched must be encoded into a string which

can be manipulated by the GA. The method by which parameters are encoded into

the string can make a significant difference to the results. However, since GAs are

relatively robust, even less than optimal encodings should produce results, if somewhat

inefficiently. The encoded string is called the genotype in GAs while what it represents

is called the phenotype. For example, the encoded set of parameters for the design

of an aeroplane wing would be the genotype while the phenotype would be the wing

represented by this choice of parameters. The distinction between the genotype and the

phenotype is one of the characteristics of GAs. Certain other branches of evolutionary

computing, for example, evolution strategies, do not have the genotype/phenotype

distinction [3].

Some alphabet has to be used for the strings. Binary strings are most often

used. If parameters are encoded into a binary string then the same GA framework,

with the crossover and mutation operators described, can be used for many different

problems. Also, some GA theory supports using binary strings (see Section 2.5). For

the purposes of discussion, the rest of this section will assume that strings use a binary

coding. Other representation details will be covered in Section 2.7.

2.2.3 Parent Selection

Parents are selected for reproduction using the fitness function. The process can be

divided into two phases. In the first phase each string is assigned a real number, called

the target sampling rate (TSR) [45] or expected value [5], representing how many times

this string should ideally be selected for reproduction in the next generation. In the

second phase the TSR is converted to an integer using a sampling algorithm so that

the actual strings can be selected for reproduction. Each of these two steps is discussed
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next.

2.2.3.1 Determining the Target Sampling Rate

12

In evolution an organism is selected to reproduce on its fitness. The phenotype of the

organism is the basis for the survival of the genotype. The same principle exists in GAs

where strings are chosen for reproduction by the fitness function, which evaluates the

effectiveness of the phenotype represented by a given genotype. In order to use a GA,

a fitness function is required for the problem to be solved. No other domain-specific

information is required. This function is used to select strings for the next generation

population by calculating the target sampling rate for each string.

One of the widely used techniques is proportional selection [35]. Here, given a

string x, a fitness function f and the current generation P, the probability p(x) that

x will be selected once can be calculated as

f(x)
p(x) = ~zEP f(z)'

In a population of size n we let e(x) = np(x), where e(x) is the target sampling rate

for x [35]. Thus we have:

e(x) f(x)
n-'::'-"':'---'---,---,--

~zEP f(z)
n

f(x) ~ZEP f(z)

f(x)
J

where J is the average population fitness of the current generation. That is, the target

sampling rate is the fitness of the string divided by the average population fitness

[45, 33].

2.2.3.2 Selecting a Sample

The target sampling rate gives the number of strings that should go into the

next generation. However, it cannot be used directly since the result is a real number,

and clearly only a whole number of strings can be selected. There are a number of

ways of selecting strings using the fitness function. A common technique is roulette
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wheel selection, so-called because it uses the same technique as a roulette wheel where

each 'slot' in the wheel is a string in the population. Unlike the casino roulette wheel,

however, the slots vary in size according to the target sampling rate of the strings they

represent. For a population of size n the wheel is spun n times to select the parents

that will produce the next generation [33].

A point to note about this form of selection is that theoretically one single string

could be selected for every place in the new population2 [4] ~ although in practice

it is highly unlikely to happen. For this and other reasons there are other selection

methods which may be considered superior. These are discussed in Section 2.7.2.

2.2.4 Reproduction Operators

The reproduction operators are used to produce offspring from the parents selected

using the fitness function [7]. These operators are not applied unconditionally, but

only at some probability. If none of the operators are applied to the parents then

the parents are copied unchanged into the next generation. A number of different

operators have been proposed but most commonly GAs have two basic operators ~

crossover and mutation ~ although the actual form these take may vary. Both of

these operators will now be described in more detail.

2.2.4.1 Crossover

Crossover operates on two strings and combines them in some way to produce two

new strings. The traditional method is as follows. A point is selected at random in

the strings. One new string consists of the first part of the first parent string up to

the crossover point followed by the latter part of the second string. The other new

string consists of the first part of the second string followed by the latter part of the

first string [33]. See Figure 2.1 for an illustration.

By combining two strings in this way it is possible to forge a new string with

the best characteristics of the two parent strings. This should hopefully produce

a faster search as good building blocks from different strings are combined into a

single string. Section 2.5.5 will expand on this idea. It is a general premise in GAs

2It would need to have a non-zero target sampling rate but that would be the only requirement.
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crossover
point

parents

children 1

crossover
point

14

Figure 2.1: Single point crossover operator

that some sort of operator must exist that combines two different strings even if it

is not identical to the crossover operator just described [21]. There are other related

fields, such as evolutionary algorithms, where this is not the case [48]. Some studies

have been inconclusive on the importance of crossover but other studies have shown

that crossover does combine building blocks from strings better than mutation [80].

Crossover is normally applied at a higher probability than mutation.

The crossover described here cannot introduce new bit settings if they do not

exist in some string that was generated when the population was initialized. For

example, if all strings in the population have the first bit set to '1' it will never be

possible to produce a string with the first bit set to '0' using the crossover operator

described here. This is why a mutation operator is needed.

2.2.4.2 Mutation

The mutation operator adds randomness to the new string. Traditionally, each bit

in a selected string is examined and, based on some probability, a decision is made

whether to flip that bit. These random changes can introduce new characteristics into

the string [33]. See Figure 2.2.

Mutation is credited with a number of useful properties. If allele values are

missing from the population, then mutation can introduce new values or reintroduce

values that have been lost owing to the 'death' of strings that did not reproduce.

Mutation may produce new strings that escape from a local maximum. It also makes

small changes in strings, and these changes are useful for local optimization of the

solution. Mutation is normally applied at a low rate.



Chapter 2. Genetic Algorithms

parent

child

mutation
point

~

15

Figure 2.2: Mutation operator

2.3 Other Search and Optimization Methods

In order to understand why GAs have something to offer it is useful to consider other

existing optimization techniques to see where GAs differ. Search and optimization is

a field with a long history. Many problems have been effectively solved but there are

still many problems for which no good solution exists. The techniques given here are

general purpose methods that can be applied to a number of domains. This section is

based on [7, 33, 76].

2.3.1 Generate-and-Test

Generate-and-test is a simple search strategy. A possible solution is generated, and is

tested to see if it meets the required goals [76]. If it does, the process stops, otherwise,

another possible solution is generated. This method can be applied in a variety of

ways. One extreme is a complete enumeration of the search space. The enumerative

method exhaustively searches the whole space. Clearly, infinite spaces have to be

discretised first. The disadvantage of this approach is simply one of efficiency. This

method performs a thorough search but this may take an impractical amount of time.

Some search spaces may be so pathological, however, that this is the only possible

method.

Another extreme is a random search. Random walks can never be much better

than enumeration on average. Random walks should not be confused with techniques

like GAs and simulated annealing that use randomization as part of the search strategy.

This technique is not very useful on its own because it does not limit the size of the

search space.
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Between these extremes is a systematic method that leaves out some parts of

the search space because they are not expected to contain good solutions. The parts

of the search space to ignore are decided by a heuristic function. Methods like GAs

and simulated annealing could be placed in this category.

2.3.2 Hill Climbing

In generate-and-test there is no interaction between the function that generates solu­

tions and the heuristic function. Hill climbing is similar to generate-and-test but the

heuristic function provides direction for the search [76]. Often the same function that

tests if a solution is an acceptable one can be used to direct the next move.

2.3.2.1 Calculus-Based Search

Calculus-based methods make use of the gradient of the objective function. They can

be divided into two types. If the gradient can be found analytically it may be possible

to solve the set of equations resulting from setting the gradient to zero [72]. This

will normally result in a nonlinear set of equations. The problem with this method is

that often there is no analytical solution for the gradient of the objective function and

the resulting nonlinear equations are themselves difficult to solve. It also has all the

disadvantages of the direct calculus-based method below.

The gradient can also be used as a heuristic function to direct a hill climbing

algorithm. This is done by beginning the search at some point in the search space

and then searching in the direction of steepest ascent. The gradient can be calculated

numerically in this case, sometimes making it applicable to a wider range of problems.

The disadvantage is that the topology of the space may be nasty so that the search

may become misled. Calculus-based methods are also prone to getting stuck in local

maxima. Other methods then have to be used to restart the search in other areas of

the space.
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Hill climbing methods can be combined with random restarts to explore the whole

space better. Once one peak has been located using hill climbing, the algorithm is

restarted at a random location [33]. This can help to deal with multimodal search

spaces where more than one answer is required. It has the disadvantage that no

knowledge from a particular hill climbing phase is carried over into the next climb so

progress is fairly linear.

2.3.4 Simulated Annealing

Simulated annealing is modeled on the cooling of material such as metal to a solid state.

Kirkpatrick et al demonstrated the application of these techniques to combinatorial

optimization problems in 1983 [22]. If cooled quickly from a liquid to a solid state, a

metal will solidify at a high energy state. If cooled more slowly a lower state of energy

will be achieved, but cooling too slowly will waste time. When physical substances

are cooled they naturally move toward a lower energy configuration but there is a

probability p = exp-!'!.E/kT that a transition to a higher energy state will occur where

t1E is the change in energy level, T is temperature and k is Boltzmann's constant [76].

The physical process of annealing can be adapted into a form of hill climbing

where there is a probability of accepting bad moves while the temperature is high

which drops as the temperature is lowered. Assume we have an objective function f

and a random initial point x is selected. The algorithm now consists of a move made

in any random direction 6. x is then set equal to x + 6 if f (x + 6) represents an

improvement over f(x). If it does not, it may still be accepted with probability p(t)

where t is time and p is a monotonically decreasing function. This process repeats

until a time limit is reached or convergence is obtained. Thus the algorithm starts

off as a fairly random walk but becomes progressively more like hill climbing as time

progresses [7]. Unlike hill climbing, however, the result is achieved without using a

heuristic function based on the objective function to generate the next move.

For annealing to work well, a good annealing schedule must be designed that

gives the rate at which the system will cool. Cooling too quickly gives less than optimal
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results while cooling too slowly is time consuming. The design of a good annealing

schedule must in general be done empirically since it is problem-dependent [22].

2.3.5 How Genetic Algorithms Differ from Other Search

Methods

One can see that GAs are a form of generate-and-test but not of hill-climbing because

an objective function (or heuristic based on the objective function) is not used directly

to generate a solution. They are also similar to simulated annealing because of the

use of mutation and randomness to select parents. A major difference is that GAs

use a population of points when searching a space, giving a more overall view of the

search space. A population of points enables GAs to find and concentrate on areas of

high fitness while still retaining some points of lower fitness, making it easier to avoid

local maxima traps. Another major difference is how the parameters are encoded into

a string, making it possible, if the string encoding is effective, for genetic operators

to recombine the best features of two individuals into a new offspring and so fulfill

the building block hypothesis [33, p41]. This process will be described more fully in

Section 2.5.5.

Genetic algorithms provide a balance between exploration and exploitation [33,

p36]. While the selection of strings for the next generation is biased by fitness, it is

still possible for less fit strings to make it into the new population. The presence of

sub-optimal strings in the population results in exploration which can lead to new high­

performance areas of the search space being located. The disadvantage of continued

exploration is that GAs are slower than, for example, hill-climbing on easy problem

domains.

Other techniques like simulated annealing also provide a balance between ex­

ploration and exploitation but, unlike GAs, simulated annealing does not deal with

more than one point. In contrast, a well-designed GA can infer the shape of the search

space to make better use of the exploration information.
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Genetic algorithms can be applied to a very wide range· of problems because they

don't rely on a particular problem structure or domain-specific knowledge. Only an

objective function and a method of encoding the problem into a string is required. To

improve performance it may be required that more work is done but as a first attempt

this is all that is required. Applications include many combinatorial optimization

problems in graph theory, engineering control, engineering design, pattern recognition,

and economics. A short description of some applications to which the GA has been

put will be given in this section to illustrate the possibilities without claiming to be

complete.

Function optimization Genetic algorithms were applied to function optimization

very early in their development by De Jong. A variety of different functions

were tested including those which are difficult for traditional methods, including

discontinuous, multimodal and stochastic functions [33].

Optimization of pipeline systems Goldberg's Ph.D. studies were on the optimiza­

tion problems in gas pipeline control. This problem can be modelled as a set

of nonlinear state transition equations where the objective is to minimize the

power required to pump the fuel through a pipeline with a number of compres­

sors while meeting given pressure constraints. There is no analytical solution to

the problem even for simple cases [33].

Medical image registration Fitzpatrick, Grefenstette and Van Gucht used GAs to

align two x-ray images of an artery before and after injection with dye. Once

this has been done it is possible to subtract one image from the other, leaving

the dye-coated artery wall visible [33].

Job shop scheduling The job shop problem (JSP) is an NP-hard problem which is

in practice actually harder than the TSP. N jobs have to be scheduled, using M

machines, such that the elapsed time is minimized. Results obtained have been

comparable to those using branch and bound [18, 68].
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Database query optimization Genetic algorithms have been used to optimize

database queries in relational databases. Given an input query the query op­

timizer must select a search strategy that has minimum cost in terms of CPU

and I/O time required to service the query. Results have shown that GA-based

systems can out-perform conventional query optimizers on queries with many

relations [10].

Face identification A system that evolves faces based on human interaction has

been developed to produce identikits of criminal suspects. Face characteristics

are encoded in a string so that normal GA techniques of crossover and mutation

can be used. An eye-witness is asked to rate 20 randomly generated faces. This

rating is used as a fitness function in the evolution of the next generation of 20

faces. The process continues until an acceptable picture of the suspect is evolved

[13].

Partitioning problems N objects have to be partitioned into K groups such that

some objective function is optimized. There are K N ways in which this can be

done. For some objective functions the partitioning problem is NP-hard. For

example, if the N objects are vertices in a planar graph, K = 4, and the objective

is to minimize the number of adjacent vertices in the same partition, then this

is an NP-hard graph colouring problem [54].

Timetabling The problem of scheduling classes, teachers and rooms into fixed times

so that there are no resource clashes has been solved using a GA. As with most

GA problems it is possible to tackle this problem using parallel computing [1].

This selection of applications demonstrates the success which GAs have had

with a variety of applications in practice. A lot of work has been done to explain

some reasons for their success. This not only makes one feel confident to apply a

GA to a particular problem but can be used to guide the choices that must be made

when working on an application. Choice of encoding and the definition of the fitness

function can be partially based on GA theory. The following section will provide a

look at some of this GA theory.
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Genetic algorithms search efficiently because they effectively search a number of hy­

perplanes in parallel owing to the interaction of selection and recombination. This

process has been described as implicit parallelism by Holland [33]. Goldberg mentions

a number of theories that explain some of the performance advantages that implicit

parallelism gives GAs over other search methods. These include the fundamental the­

orem of genetic algorithms, the k-armed bandit problem, effective schema processing

and the building block hypothesis [33]. Each will now be described in some detail.

2.5.1 Schemata Theory

A schema (plural schemata) or similarity template is a way of describing a set of

strings with certain symbols at given string positions. It was developed by Holland. It

is useful in describing some of the theory behind the success of GAs. This description

is based on [33, p19][45].

If we assume we are dealing with binary strings then a schema consists

of strings from the alphabet {O, 1, *} where the '*' symbol is a wild card mean­

ing either '1' or '0 '3. So the schema 01 h hO represents the set of strings

{0110100, 0110110, 0111100, 0111110}. Conversely one can say that the string 0110

contains the schemata *lh, 0*10 and 0**0, alpong others. We now define a number

of terms relating to schemata. The defining length of the schema is the distance be­

tween the first fixed symbol and the last fixed symbol. For a schema H the defining

length of H is denoted 6(H). The defining length of **hO* is two. The order of

the schema is the number of fixed positions in the schema, i.e. the number of non-'*'

symbols. For a schema H the order of H is denoted o(H).

It is interesting to note that for strings of length l the number of schemata is

3l since for each digit in the string we have three choices. This is in contrast to the

number of strings of length l which is 2l
. This assumes, as stated earlier, that we are

dealing with binary alphabets. In general, if the encoding alphabet has k symbols

then for strings of length l we have (k + l)l schemata.

3It is also common in the literature to use a 'I' symbol as a don't care symbol[7, 45].
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Now consider the schemata contained in a given string. If we have a string s

of length l then the string contains 21 schemata since each position in the string can

take on its value or the '*' symbol. So for a population of size n we have between

21 and 2l n different schemata contained in the population depending on the diversity

of the strings. Now consider the GA operating on the schemata rather than on the

binary strings. How many schemata survive into the next generation? Clearly if a

string contains schemata that are fit (i.e. their presence in the string makes the string

fit) it has a high chance of reproducing. Also, if a schema is of a short defining length

it will have a lower chance of being disrupted by the crossover operation. Mutation at

low levels also has a small chance of disrupting short defining length schemata. This

suggests that fit, short defining length schemata have a good chance of being in the

next generation. A more theoretical explanation follows to back up these ideas.

2.5.1.1 Hyperplanes

Schemata can also usefully be thought of as hyperplanes. That is, for a schema of

length l we may consider a space of dimension l where the schemata represent planes

in the space. For example if we consider l = 3 (three-dimensional space) then schemata

of order three are points, schemata of order two are lines, schemata of order one are

planes and the schema of order zero represents the whole space. When considered in

this way, a very good graphical picture can be gained of the manner in which GAs

search a given space. In the literature the term hyperplane is sometimes used in

preference to schema [45, 64].

2.5.2 Exponential Trials to Fit Schemata

Schemata are a useful tool for analysing the performance of GAs. One interesting as­

pect to examine is how fit schemata reproduce during a GA run. Let m(H, t) represent

the number of schemata H in the population at time t. Assuming reproduction in a

population of size n with no mutation or crossover we have:

n

m(H, t + 1) = m(H, t)nf(H)j L!J
j=l
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where f(H) is defined as the average fitness of all the strings containing H at time t

[33, p28]. Since J= 2:,";=1 fjjn is the average fitness we may rewrite this equation as:

m(H, t + 1) = m(H, t)f(H)j j. (2.1)

Equation 2.1 shows that the number of occurrences of a particular schema, H, in the

population grows at a rate proportional to the ratio of the average fitness of occurrences

of H in the population to the average fitness of the entire population. If it is assumed

that f(H) is always above average, say f(H) = (1 + c)J where c is a constant, then

for t = 0 we have m(H, 1) = m(H, 0)(1 +c), so m(H, 2) = m(H, 0)(1 + C)2. Thus

m(H, t) = m(H, 0)(1 + c)t. (2.2)

Equation 2.2 demonstrates that consistently superior schemata will be selected at an

exponentially increasing rate. What must still be considered are the effects of crossover

and mutation.

Under I-point crossover a schema always survives when the crossover point does

not divide any of the fixed positions in the schema from each other. There is still a

possibility that the schema will survive but the lower bound will be considered here.

Assuming I-point crossover the probability Pd that a particular schema H is destroyed

is Pd :::; 5(H)j(l - 1) because the schema may be destroyed whenever any of the 5(H)

sites in (l - 1) is selected for crossover. Thus the probability of survival Ps is given by

Ps ~ 1 - 5(H) j (l - 1). Let Pc be the probability of the crossover being performed. We

then have that
5(H)

Ps :::; 1 - Pc (l _ 1)"

Combining Equation 2.1 and Equation 2.3 gives

(2.3)

(2.4)

Equation 2.4 demonstrates that for schemata with short defining lengths the observa­

tions from Equation 2.2 will still hold. The only further effect to take into account is

that of mutation.

Let Pm be the probability of random mutation of each allele value. Then each

allele value has a 1 - Pm chance of survival. Since H has o(H) fixed positions, the
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probability of survival of the whole of His (1- Pm)o(H). For small Pm the products of

Pm can be ignored so the probability of survival of H is 1 - Pmo(H). Introducing the

effect of mutation into Equation 2.4 gives

- [b(H) ]m(H, t + 1) ~ m(H, t)f(H)j f 1 - Pc (l- 1) - Pmo(H) (2.5)

if small products are ignored. Equation 2.5 demonstrates that for low mutation, and

short defining length schemata with above average fitness, exponentially increased se­

lection will be allocated to these schemata. This result is known as the Fundamental

Theorem of Genetic Algorithms or the Schema Theorem and is significant because

when dealing with an uncertain situation, the GA allocation of trials, as described

by the Fundamental Theorem, is the correct strategy to balance exploration and ex­

ploitation. In the next section, the k-armed bandit problem is examined to explain

why the GA strategy is a good one.

2.5.3 The k-Armed Bandit Problem

The 2-armed bandit problem is a problem in decision theory. A 2-armed bandit has

one arm that produces award jLl with variance (11 and a second arm that produces

award jL2 with variance (12. The problem is to design a strategy that will produce

the best payoff. This problem requires a balance between finding which arm has the

best payoff and exploiting that knowledge. It has been shown that the GA strategy is

similar to the optimal solution. The difference is that the GA operates on a number

of k-armed bandit problems at the same time [33, p36].

2.5.4 Effective Schema Processing

Holland has calculated the effective schema processing as O(n3 ) [33]. That is, when a

GA processes n strings, effectively n3 schemata are processed. This result, however,

should be considered in the context of the assumptions made to derive it. The following

explanation is based on [33, p40].

Let P be a population of n strings of length l. We would like to consider

schemata of length ls that will survive crossover and mutation with probability Ps, a
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constant. Now the probability of destruction by I-point crossover is Pd = (ls+ 1) / (l-I).

So we want Pd :S 1 - Ps· Select E such that E < 1 - ps. Then Pd < E will meet the

requirements that schemata will survive crossover with probability Ps. We assume

that the effect of mutation can be ignored owing to low mutation rates. Thus we have

1;~11 < E that is, ls < E(l- 1) + 1.

Now a schema of length ls can occupy l - ls + 1 different positions in a single

string in P. Each ls size section in a single string can match 21s different schemata

because each position can either be the '*' or match the fixed symbol in that position.

At least one position must be the fixed symbol so that the trivial schema of all '*' is

ignored. Thus there are 21s -
1 options. Multiplying we get

This is the number of schemata in a single string of length ls. Multiplying by n gives

which is an upper bound on the number of schemata in the population because there

will be duplicates in different strings. To calculate a lower bound let n = 2Is / 2 . Con­

sider the number of schemata of order ls/2. There are 218 / 2 different schemata of order

ls/2 so the population should contain at most one schema of order ls/2 or higher. Since

the number of schemata of each size is binomially distributed, half of the schemata

are larger than order ls/2 and half are smaller [33, p40]. If only the higher order are

considered then

where n s is the number of schemata processed. Since n = 21s / 2 we have that

But
n3(l-ls+l)

ns < --'--------'-- 2

thus ns = Cn3
, that is the number of schemata processed is O(n3 ).

The above result is interesting and impressive but as the proof relies on the

population being evenly distributed it accurately applies only to the first generation
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[45]. However, it does give some idea of the performance that a GA can deliver,

especially in the first few generations. It should also be noted that this proof uses a

relationship between string length and population size.

2.5.5 Building Block Hypothesis

Effective processing of schemata is interesting but unless their recombination by

crossover produces even better strings the performance achieved by GAs will only

be slow and linear. The building block hypothesis suggests otherwise [33]. This sug­

gests that GAs work by forming highly fit schemata with a short defining length.

These building blocks are then combined by crossover to form even better building

blocks which in turn can be used in the next generation. The building blocks must

have a short defining length or they will have a high probability of being disrupted by

crossover as has been discussed.

In well-designed GAs, where the hypothesis holds true, very good performance

can be achieved. By designing encodings and crossover schemes intelligently the

chances of the hypothesis being true in a given GA are increased.

2.6 Problems With Genetic Algorithms

Genetic algorithms as described in this chapter suffer from a number of problems when

applied to some problem areas. In this section a number of the commonly recognized

problems will be discussed. Some of the methods in Section 2.7 can be used to remove

or reduce the effect of these problems.

2.6.1 Epistasis

In some chromosomes the fitness of one gene will be dependent on the fitness of another

gene elsewhere in the chromosome. Geneticists call this epistasis in particular when it

refers to some sort of masking effect. In evolutionary computing epistasis is used more

generally to indicate strong gene interaction [8]. If a problem has high epistasis then

the building block hypothesis fails because the recombination of two fit chromosomes
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often produces a chromosome that is unfit. Epistasis can be reduced by careful design

of chromosome representations. It has been shown that any problem can be coded so

as to remove epistasis in many cases but finding this coding may be so difficult that

it is not practical [88].

2.6.2 Genetic Drift

Genetic drift is the term used to describe the process in which populations converge to

a single allele value. This happens even if there is no difference in the selection pressure

of the alternative allele values. Genetic drift occurs because of errors in selection that

accumulate when dealing with finite populations. The same effects have been seen by

geneticists [38]. When a GA is applied to a multimodal function, genetic drift will

result in the population converging to a single point [37]. This means that without

modifications, GAs cannot solve multimodal problem spaces where more than one

result is required. With the help of other techniques it is possible to overcome this in

some problem areas [50].

2.6.3 Premature Convergence and Slow Convergence

In premature convergence the whole population becomes very uniform, that is it con­

verges, but this resulting population does not contain optimal or near-optimal struc­

tures. This can be caused by a number of factors, including too small a population

and genetic drift [37]. The opposite problem can also occur where the population does

not exploit good individuals and so wastes time exploring the search space when it

should make use of available resources. This is known as slow convergence. It may be

possible to avoid premature convergence or slow convergence using scaling and ranking

(see Section 2.7.7).

2.7 Improvements to the Basic Genetic Algorithm

This section looks at changes that can be made to the basic GA described so far. We

would like these changes to improve the GA. There are at least three measures to be
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considered:

• How good are the results produced?

• How fast were the results produced?

• How much variance is there between GA runs?
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If a change improves all these measures on a particular problem, then it is definitely a

good change for that problem. However, depending on our goals, some changes which

adjust the balance between these measures may also be worth including in a GA. The

problem domain is also an issue. Some of the changes may make the GA less robust.

Other changes may work well in one problem domain but badly in another.

It is useful to realise that the basic GA is not designed originally as an optimizer

[24]. Holland characterised the behaviour as assigning a finite number of trials in an

optimal manner so as to balance the requirements for exploration and exploitation in

an uncertain environment. The requirements for a function optimizer are different and

so some changes are necessary to make a GA-based optimizer really efficient. However,

once some of these changes have been made, the theoretical results in Section 2.5 may

no longer apply. Some of the changes in this section fall into that category.

Areas in which improvements can be considered:

Operator Probabilities How should crossover and mutation probabilities be calcu­

lated? Fixed default values would not seem ideal for all problems. Adjusting the

probabilities during a run is also possible.

String Encoding Only binary coding has been discussed. What other methods could

be used for coding parameters?

Sampling Algorithms The conversion of the target sampling rate into an actual

sample from the population has been mentioned as an area where errors can

happen. How can these be reduced?

Scaling and Ranking Often the objective function is used directly as a fitness func­

tion but the problems this can lead to include super individuals dominating the
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population and slow convergence at the end of the GA run. Scaling and ranking

can be used to reduce some of these problems.

Crossover Operators Only a simple 1-point crossover has been described. How else

can crossover be implemented?

Hybrid Genetic Algorithms Often GAs are applied to problems which already

have a number of known good techniques. How can these be incorporated into

a GA?

2.7.1 String Encoding Methods

When performing function optimization one of the problems is that standard binary

codings have a performance problem because some consecutive numbers have very

different representations. For example, considering numbers represented in four bits,

the number 7 is represented by 0111 while 8 is represented by 1000. So the transition

from 7 to 8 requires all four bits to change. This is known as a Hamming cliff [65,

p1]. The mutation operator performs local optimization but has a very small chance

of crossing a Hamming cliff.

2.7.1.1 Gray Codes

One method that can be used to solve the Hamming cliff problem is Gray codes.

Gray code is a function G that forms a one-to-one mapping between the integers

o :::; i :::; 2N
- 1 for some N 2: 0 [72]. The interesting fact about this coding is

that the binary representations of adjacent integers, when converted to Gray code,

differ in only one bit. That is, G(i) and G(i + 1) differ in only one bit for all

integers i 2: O. Gray code is not unique but a commonly used code gives the

sequence (000,001,011,010,110,111,101,100) for 0-7. For this particular coding

G(i) = i XOR li/2J, where XOR is the bitwise exclusive-or operator [72]. It has

been shown that Gray coding can improve the performance of GAs in some cases [65].
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One argument for the use of binary for codings rather than some other alphabet is be­

cause binary strings contain more schemata than strings coded using larger alphabets.

Recall that, for a string of length l on an alphabet of cardinality k there are k1 different

strings and (k +1) I different schemata. So the binary coding maximizes the number of

schemata [33, 80]. However, other interpretations of schemata have contradicted this

view, suggesting that there are more schemata in non-binary alphabets [94].

Using natural alphabets can have other advantages over using binary represen­

tations because more natural operators can be used. For example, crossover can be

defined to be the average of two parents and mutation some random creep obtained by

adding or subtracting a small random amount [8]. It is these advantages - being able

to use problem dependent operators - that some authors argue gives real parameter

GAs an advantage. This has been backed up by some experimental results [51].

2.7.2 Sampling Algorithms for Parent Selection

As has been explained before, the fitness function is used to calculate the target

sampling rate for each string, which is the theoretical number that should go forward

for reproduction. Since this number is a real number a method is needed to convert it

to an integer value. A sampling technique is used to select the actual parents that will

produce new offspring. The success of a given sampling technique can be characterised

by the following measures [5]:

bias The bias of a particular method is the difference between a string's expected

sampling probability and the actual sampling probability. This value should be

as low as possible. It is possible to achieve zero bias.

spread The spread represents the variation possible in each sampling cycle from the

optimal. Since integral values must be used in the actual sample, there will

always be some spread but it should be kept small. The minimum spread possible

for a string s in one generation is le(s)J, re(s)1where e(s) is the expected number

of strings s to be selected.
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efficiency Any algorithm should be efficient. Since GAs have a high efficiency (O(nl)

where n is population size and l string length) the sampling algorithm should

not be so expensive as to increase the GA's time complexity.

The only selection technique described so far is roulette wheel selection, which

is also called stochastic with replacement [5]4. This method has zero bias since the

probability of selection of a string exactly matches the probability represented by the

fitness of the string. The spread is, however, unlimited because the actual number of

strings selected for a particular individual can vary between zero and the population

size. A further problem with this method is that it is not very efficient. It has

efficiency O(n logn) for population size n and that is if the method is implemented

using binary search trees. Simple implementations which make multiple passes through

the population have efficiency O(n2 ) [5].

A number of techniques can be used to reduce the spread. One method is to

decrease the expected value of a string each time it is selected (if it moves below zero

it is set to zero). This puts an upper bound on the number of times a string can be

selected but it increases the bias of the sample and provides no lower bound on the

spread.

The other primary technique is to sample the integral and remainder portions

of the expected value independently. These techniques are called remainder sampling

methods. The integral part of the expected value is used to deterministically select

strings. The fractional part can then be dealt with using other methods. For example

roulette wheel selection can be used to produce a method with zero bias and lower

bounded spread. To gain minimum spread the fractional expected value can be set to

zero after each spin. Unfortunately this method produces bias in favour of smaller frac­

tions. Another problem with these methods that still use the roulette wheel selection

for part of the algorithm is that they will have O(n log n) time complexity [5].

The stochastic universal sampling method is suggested by Baker as a method

which has zero bias, minimum spread and O(n) time complexity. It is a system similar

to roulette wheel selection. The difference is that a spinning wheel with n equally

4The term replacement here means that once a string has been selected it is put back into the
population so it can be selected again.
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spaced pointers is used. In a single spin all n parents are selected [5].

A good sampling algorithm like stochastic universal sampling should benefit all

GAs because reducing bias and spread matches implementations more closely to the

theory. In some cases bias is useful to speed up convergence near the end of a run or

to prevent super individuals dominating at the beginning (see Section 2.7.7), but it

should never be unknowingly introduced by a bad sampling algorithm.

2.7.3 Steady State Genetic Algorithms

The traditional GA typically replaces the whole population with new offspring each

generation. This can have the undesirable effect that depending on the sampling al­

gorithm used, the very best parents may not even reproduce. If a good sampling

algorithm is used, such as stochastic universal sampling, then this will not happen.

However, even if they do reproduce, there is a chance of crossover and mutation de­

stroying these strings [21]. One solution that has been used to solve the problem

partially is the automatic insertion of the best string into the next generation. This

is called elitism [46]. Another method, which will be described here, is to overlap

populations. This is known as a steady state genetic algorithm.

A parameter known as the generation gap (G) has been introduced, where Gn

is the number of strings replaced each generation in a population of size n. A value

of G = 1 is the standard GA where the whole population is changed each generation.

A GA with G < 1 is called a steady state GA. Typically one or two strings are

replaced per generation (i.e. G = l/n or G = 2/n respectively). As with G = 1,

parerits are selected based on their fitness. The resulting offspring are added back into

the population but they do not replace their parents. Rather some strategy is used to

remove other strings. A typical method is to remove strings from the population which

have the lowest fitness. With the steady state method it is also possible not to keep

duplicates. This ensures as diverse a population as possible within the constraints of

the population size.

The steady state methods have been shown in practice to perform well on some

classes of problems [21] and there has been some theoretical analysis of the changes
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in GA performance introduced by steady state GAs [25]. It is clear that when steady

state replacement is combined with different worst string deletion methods and scaling

methods, a very different result can be achieved compared with that of the standard

GA.

2.7.4 Different Crossover Methods

A number of different crossover methods have been proposed. Often the problem do­

main determines what works best. Some specialized operators have been developed

for problems like the TSP which will be studied in Chapter 3. In this section more

general crossover operators are considered. As a motivation for looking at other op­

erators, consider the case where we have two fit schemata in a chromosome, each

at opposite ends, and this chromosome evaluates as fit only when both schemata are

found together. The normal crossover operation can never combine these with another

chromosome that has a good schema in the middle, say.

2.7.4.1 Two Point Crossover

One way to alleviate this problem is to use a 2-point crossover. In this method two

points are selected in the strings and alleles are swapped between these two points

[81].

2.7.4.2 Uniform Crossover

Uniform crossover is an even more extreme version. Here a crossover mask is randomly

generated for each crossover operation. Each bit in the mask determines if a bit should

be swapped between parents to produce the new offspring [81]. The problem with this

approach is that it would seem that in terms of schema analysis there is absolutely

no motivation for this operator as there will be on average l/2 crossover points in a

string of length l, giving any schema of order two or more very little chance of survival.

However, there have been indications that having more than two crossover points can

be beneficial [28, 84]. One benefit that uniform crossover offers is that it is not biased

in its disruption of schemata - all schemata of order k are disrupted with equal
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probability no matter what their defining length. To reduce the disruptive effects, one

solution is pammeterized uniform crossover where the probability of swapping bits is

adjustable. This enables precise control of the disruptive effects of crossover [81].

2.7.5 Mutation and Crossover Probability

There has been much research into the different rates at which mutation and crossover

should be applied. There exist values that work rather well for a wide range of problems

that have been determined experimentally. Research has shown that GAs are stable

over a large variation in mutation and crossover probability. However, these generic

values can clearly never be optimal for all problems and it is always possible that

particular combinations of crossover operators, search space and other factors could

require different values.

One approach is to run a GA to determine these values. This meta-GA has

as its objective function the GA for which we are trying to determine the rates for

mutation, crossover or any other generic operator [42]. Encoded into the string will

be the values for mutation and crossover. This approach can be very computationally

expensive as we have to perform a whole GA run for each objective function evaluation.

In general this is only useful if the results can be reused.

Another approach [20] is to adjust the rate of application of the operator on its

success. The quality of its output then determines how often it is applied to future

strings. This technique can be applied to any number of operators making it possible

to evaluate the performance of a number of operators at once. Factors that can be

used to evaluate operator quality include comparative fitness of the strings generated

and diversity of offspring produced.

2.7.6 The Inversion Operator

The inversion operator operates on a single string. Two random points are selected and

the string between these two points is reversed. This operator is actually biologically

motivated and is part of the original GA proposed by Holland but has not found much

application in general [21]. For the inversion operator to be useful it must be applied
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to encodings in which the meaning of an allele is not determined by its position in

the string. This can be achieved by tagging alleles in the string so that when a string

goes through inversion the alleles retain the same meaning. In an encoding like this

the inversion operator does not change the value of a string, but since the genes move

around within the string it changes the way in which crossover affects the string.

Inversion can reorder the genes so that better building blocks can be constructed. It

does, however, add complications in that using simple crossover can result in strings

with duplicate or missing genes. Some extra logic has to be used to cope with this

problem [33].

Inversion is also useful in problems where the relative positions of alleles, rather

than their absolute positions, are relevant. This is the case with problems like the

TSP and will be discussed in Chapter 3.

2.7.7 Scaling and Ranking

When maximizing a function using a GA great performance changes can be brought

about by seemingly minor changes to the function [21, p31]. If for example a function

f (x) = x2 optimized over the interval [0, 2] were changed to l'(x) = x2 + 10000 the

optimum remains the same but if this modified function is used as the fitness function

in a GA there will be a marked difference in performance. This is because the relative

difference between the points is no longer very big so there will be a much smaller

difference in the sampling rates between weak and strong parents. The net result is

slow convergence.

2.7.7.1 Scaling

To solve this sort of problem a number of different approaches can be used. A simple

solution which works in the above case is to subtract the minimum overall value from

all fitness functions before selection.

Often it is also desirable to adjust the calculated difference between strings

during the GA run. A common problem with GAs is that 'super' individuals at the

start of a GA run can dominate the population. To prevent this it is possible to scale
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fitness values [21, p32]. A similar procedure can be used at the end of a GA run to

increase competition between a number of strings with similar fitness values.

2.7.7.2 Ranking

Ranking does away with raw fitness functions. Rather, fitness is used to rank the

strings. A function is then applied to the ranked value to get a ranked fitness value.

The function used can be linear, quadratic or some other monotonic function. In Linear

Normalization the string with the highest raw fitness value is assigned a constant value

K. The next best string is assigned K - D, where D is some constant value. This

process continues so that the string ranked n-th is assigned a value of K - D(n - 1)

[21, p31].

2.7.8 Hybrid Genetic Algorithms and Domain Specific

Knowledge

GAs can be combined with standard optimization and search techniques to achieve

better results [12]. For example, if a good local optimization algorithm exists for a

domain, it may be worth using this as a replacement for, or in addition to, the mutation

operator. This type of change is naturally very domain-dependent. Care must be taken

that the GA is still playing its proper role. There is no point in creating an algorithm

which will be out-performed by hill climbing with random restarts.

Specific modifications can be made to a GA to improve its performance in a

particular problem domain. This is done by taking into account domain-specific knowl­

edge that a GA cannot simply pick up from the fitness function. This extra knowledge

can be used in the initial population generation and in the design of crossover and

mutation operators. We will see this in Chapter 4 when we look at crossover operators

for the TSP.

The only method of population initialization discussed so far is that of random

generation of individuals. If done correctly, random initialization should give a good

distribution of allele values, and so provide a basis from which to explore the search

space [71]. There are, however, cases where the population can be successfully seeded
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using another (preferably) fast algorithm so that the GA performs more quickly. It is

. also useful in the case where a GA is to be used to improve on an existing solution. An

example of this is in engineering design where GAs have been used to help search for

better designs. Using a population already seeded with existing good designs enables

the GA to search better designs that are nearby in the search space [71].

2.8 Summary

Genetic Algorithms contain aspects not found in other search and optimization meth­

ods. Their ability to work on a population of points at the same time may, with

careful coding of the parameters into a string, provide building blocks that give the

GA an idea of the "shape" of the search space. The idea of implicit parallelism and

the probabilistic nature of GAs ensure that they are robust and deal with convoluted

search spaces and perform well. The theory behind GAs provides some understanding

of how they perform and what can be done with them. A number of modifications can

be made to the basic GA and it can be hybridized with more conventional techniques.

Often such changes can only be justified by the success of the resulting algorithm.

The simplicity of the GA is one of its main assets. This makes it possible to

adapt it to many different environments. For example it is easy to use GAs on parallel

hardware or in distributed environments.



Chapter 3

The Travelling Salesperson

Problem

3.1 Introduction

The Travelling Salesperson Problem (TSP) can be simply stated as the problem of

finding the shortest route for a salesperson starting at a home city to visit a list of

cities and returning home without entering any city twice. A mathematical statement

of the TSP is given later in Definition 1. This chapter includes a look at why the TSP

is a hard problem using some computational complexity theory. This will provide

motivation for the application of heuristic techniques to the solution of the TSP. A

number of these techniques will be described in the rest of the chapter.

3.1.1 History and Background

Some history of the TSP is essential to understand the importance of this problem in

computational complexity and operations research. This section is based upon [2, 49]

which contains a more complete chronology of the developments around the TSP.

It seems that the term "travelling salesman problem" was first mentioned in

a mathematical context between 1920 and 1932 but it is not clear who first brought

this term into the mathematical literature. What is known is that Merrill Flood

publicized the term in the 1940s. At the time the new subject of linear programming

38
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was generating combinatorial optimization problems such as the assignment problem.

The TSP was interesting because it was similar but seemingly harder to solve. The

TSP has also always attracted attention because of the easy statement of the problem

and simply because of the name.

While problems like the assignment problem have a simple statement and so­

lution using linear programming, problems like the TSP require a large number of

inequalities and also require that the variables take on only integer values, making the

TSP an integer programming problem. The paper Solutions of a large-scale traveling­

salesman problem by Dantzig, Fulkerson and Johnson was published in the Journal

of the Operations Research Society of America in 1954 [2]. A solution to a 49-city

problem, found using string on a model, was proved optimal using techniques that

would later be generalised to the branch and bound procedure. Branch and bound

has since proved useful in the solution of other combinatorial optimization problems

that arise from integer programming.

Despite developments in achieving a solution to the TSP, it became clear by the

end of the 1960s that the TSP and other hard combinatorial optimization problems

were more difficult than problems like the assignment problem which could be solved

by an algorithm in polynomial time. This lead to papers of Cook, Karp and Levin

[49] in the early 70s that showed the equivalence of hard problems and the definition

of NP-hard (see Section 3.3).

3.1.2 Significance

The TSP is significant for two reasons. Firstly, it is a typical combinatorial optimiza­

tion problem which means that its study is of great theoretical interest. The history

of the TSP shows how important the TSP was in the development of the theory and

solutions in combinatorial optimization. Secondly, there are a number of real world

applications which are related to the TSP. These can be stated as the TSP or varia­

tions of it. Examples are computer wiring, vehicle routing and job sequencing. These

applications and some others will be described in Section 3.4. Any improvement in

techniques to solve the TSP help the speed and accuracy of solutions for these and
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many other applications.

40

3.2 Graph Theory Representation of the Travelling

Salesperson Problem

The TSP is most often analysed in a graph theoretic context and is closely related

to a number of other problems in graph theory. In this section, some graph theory

definitions will be given, enabling the discussion of the TSP in the rest of the chapter.

For this [14] and [75] and were used.

A graph G is a finite nonempty set of objects called vertices or nodes denoted

by V(G) together with a set of objects called edges denoted by E(G). An edge e is

a pair of distinct vertices denoted by e = u, v or e = UV. Edge e is said to join the

vertices u and v. The vertex u is adjacent to v while u (or v) is incident to e. The

degree of a vertex v (deg v) is the number edges incident with v. A graph G is said

to be complete if every vertex is adjacent to every other vertex. A complete graph

on n vertices is denoted by K n . A graph H is a subgraph of G if V(H) ~ V(G) and

E(H) ~ E(G). It is a spanning subgraph if IV(H)I = IV(G)I.

A directed graph or digraph D is a finite nonempty set of objects called vertices

denoted by V(D) together with a set of ordered pairs called arcs or directed edges

denoted by E(D). A digraph D is said to be complete' if, for every two distinct

vertices u, v in V(D), both (u, v) and (v, u) are elements of E(D). A complete digraph

on n vertices is denoted by D n .

A set of edges W = {ViV2, V2V3, ... ,Vk-ivd is called a walk or a [Vi, Vk]­

walk. If a walk does not contain any repeating vertices it is called a path. If

Vi = Vk for some [Vi, vk]-walk then it is called a closed walk. A set of edges

C = {ViV2, V2 V3, ... ,Vk-iVk, VkVi} with Vi =I Vj Vi =I j is called a cYcle i . A vertex

u is connected to V in G if there exists a u - v-walk in G. A graph G is connected

if every two vertices in G are connected. A connected graph containing no cycles is

called a tree.

1Diwalks, dipaths and dicycles are defined in a similar way for digraphs with the additional re­
quirement that arcs are directed in the same direction.
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A graph (digraph) G is said to be Hamiltonian if it has a cycle (dicycle) con­

taining all the edges of G. This cycle (dicycle) is called a Hamiltonian cycle (dicycle)

or Hamiltonian tour or simply a tour.

A weight junction c : E(G) -t Q can be associated with a graph (digraph)

G. For each edge (arc) uv E E(G) the weight function, Cuv (or c(UV)) , defines the

weight of edge (arc) uv. The weight of a set of edges (arcs) S ~ E (G) is defined as

c(S) = I::uvEE(G) c(uv). The weight of a tour is called its length and a tour with the

smallest length is called the shortest tour.

The TSP can now be stated mathematically in graph theoretic terms. Defini­

tion 1 is the definition for the TSP. In the case of the TSP the weight of each edge

can be interpreted as the distance between cities.

Definition 1 (Asymmetric Travelling Salesperson Problem) Given a com­

plete weighted digraph D n with n ~ 3 and arc weights Cuv find the shortest Hamiltonian

tour in D n [75, p6j.

It is possible to restrict the distances between cities to integers without any loss

of generality. Reals are approximated as irrationals in computers and irrationals can

always be represented by integers if multiplied by a large enough scaling factor.

3.2.1 Specializations of the Travelling Salesperson Problem

A number of different specializations and generalizations of the TSP exist. The TSP

defined in Definition 1 is referred to as the asymmetric TSP because the distance from

city u to city v need not be the same as the distance from city v to city u. Three

commonly encountered versions of the TSP are given below [52]:

Symmetric TSP The distances between cities are the same in both directions. That

is, Cij = Cji for all i, j. This is what most people think of as the TSP.

Symmetric triangle inequality TSP This is the Symmetric TSP with the added

restriction that all distances obey the triangle inequality. That is, Cij +Cjk ~ Cik

for all i, j, k.
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Euclidean TSP Cities are given as points with integer coordinates in a two dimen­

sional plane. Distances are calculated using the Euc1idean metric:

It should be noted that the euc1idean TSP is a symmetric triangle inequality

TSP and the symmetric triangle inequality TSP is a symmetric TSP. Many more

variations of the TSP exist. One can refer to Johnson and Papadimitriou for a list of

other special cases [52, p59]. The rest of this research will deal with the symmetric

TSP and any further unqualified mention of the TSP refers to the symmetric TSP.

The reason for this restriction to the symmetric TSP is to reduce the scope of the

project to a reasonable size and to make comparison with other techniques easier.

Just as there are restrictions to the TSP, there are also extensions so a decision has

to be made where to restrict the study. The asymmetric TSP is not studied as much

as the symmetric TSP. Some good heuristic solutions like the Lin-Kernighan heuristic

apply only to the symmetric case [60]. Restricting this dissertation to the symmetric

TSP contains the scope of the work and allows existing techniques for the symmetric

TSP to be incorporated into the work.

3.3 Complexity Theory and the Travelling Sales­

person Problem

How difficult is the TSP and how well does a particular algorithm perform on the TSP?

A study of the theory of NP-completeness provides some understanding in both these

regards. Interestingly, the TSP was instrumental in the development of the theory

[52]. This section does not look at the space complexity of the TSP. This will be

discussed in Section 3.10.3 when data structures for the TSP are examined.

3.3.1 Worst Case and Average Case Performance

When considering how good an algorithm is, different measures of its time performance

can be used. Either the worst case performance can be considered or the average case
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performance. Worst case performance guarantees can be misleading as there may be

a relatively small number of pathological cases. An example commonly mentioned

is that of the simplex method by Dantzig for solving linear programming problems.

This method can be used to efficiently solve large linear programming problems but

requires exponential running time in some cases [75]. It does however give an idea

of the worst that can be expected and provides a good theoretical basis to analyse

both problems and algorithms. The elegant theory of NP-completeness is the result

of examining worst case performance.

Average case performance is also very interesting but can be difficult to cal­

culate. This is because most efficient algorithms for complex problems like the TSP

have different interdependent stages which are difficult to analyse. This means that

for some algorithms the average case performance is difficult or impossible to calculate

[52, p43]. Karp and Steele deal with the average case performance of some algorithms

and some cases of the TSP [56].

3.3.2 Processor Independence

When comparing the performance of different algorithms it is useful to be able to re­

move any dependence on processor speed. The O-notation in Definition 2 is commonly

used to compare performance. The O-notation removes any dependence on the speed

of the computer used to perform the procedure.

Definition 2 (O-notation) [75} Let f : N -t Nand g : N -t N be given. We say

that f is 0 (g) if there exist positive constants c and no such that

o::; f(n) ::; c.g(n) for all n 2: no

3.3.3 Definition of a Good Algorithm

The time complexity of an algorithm A is given by tA(n), where tA : N -t N. An

algorithm is said to have polynomial time complexity if there exists a polynomial p

such that tA(n) = O(p(n)). Otherwise it is said to have exponential time complexity

[75J.
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An algorithm is called a good algorithm if it has polynomial time complexity.

In practice, polynomial time algorithms may still be too inefficient for real world

problems. There are some functions which are neither exponential nor polynomial,

such as n10g n, but since these are not polynomial they will be included with exponential

time complexity algorithms [52].

Polynomial time has a number of desirable properties. There are several differ­

ent computing models, such as the Turing machine, which are capable of simulating

each other with only a polynomial change in speed. This means that if an algorithm

has polynomial time complexity on one machine, it will have polynomial time com­

plexity on all machines. Polynomials also behave well mathematically: if polynomials

are added, multiplied or composed they remain polynomials [52]. This leads to the

following useful definition.

Definition 3 (polynomial reducible) [75} Let A be an algorithm for the solution

of a problem B. We say that a problem C is polynomial reducible to problem B if C

can be solved in polynomial time by an algorithm that uses A as a subroutine where

each subroutine call of A counts as only one step.

3.3.4 Decision Problems

A decision problem is a problem that requires only a yes or no answer. The basic

theory for complexity is developed for decision problems. Problems like the TSP

can be stated as a decision problem to fit into this framework. Definition 4 gives a

decision version of the TSP. Later it will be explained how the theory can be extended

to combinatorial optimization problems like the TSP.

Definition 4 (TSP decision) [75} Given K n with edge weight Cuv and a number b

decide if there exists a Hamiltonian tour in K n with length less than or equal to b.

Clearly an algorithm that solves the TSP will also solve the TSP decision prob­

lem in the same time. Thus there is a trivial polynomial reduction from TSP to TSP

decision. Interestingly the converse is also true: there exists a polynomial reduction

from TSP decision to TSP. The following explanation is based upon [52, 75]. Algo-
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rithm 2 finds the actual length of the optimal tour. It makes use of the assumption

that the distances used are integral2
• It uses TSP decision. Since it uses a binary

search it makes O(logn) calls to TSP decision. Given the length of the optimal tour,

Algorithm 3 finds an optimal tour in the graph. It does this by setting each edge weight

in turn to c.n, where c is the largest weight of an edge in the graph, and checking if

this affects the tour length using TSP decision.

Algorithm 2 (TSP Length)

Set L = -c.n and U = c.n, where c is the largest weight of an edge in the graph.

WHILE L < U

Set b= rLtUl

If there exists a Hamiltonian tour of length at most b then set U b,

otherwise set L = b+ 1.

END WHILE

•
Algorithm 3 (TSP Tour)

Let U be the optimal tour length found by algorithm TBP Length.

FOR all u = 1,2, ... ,n and all v = 1,2, ... ,n perform the following steps.

Set Suv = Cuv and Cuv = c.n + 1.

If there does not exist a Hamiltonian tour of length U in the modified graph

then restore Cuv = Suv.

END FOR

The edges of the graph which have not been altered give the edges of an optimal

tour.

•
2 As discussed in Section 3.2 this does not pose a problem.
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3.3.5 P and NP Problems
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P is defined to be the class of decision problems that have algorithms with polynomial

time complexity. Another class of decision problems is defined using the property of

non-determinism. Non-determinism is modeled on a theoretical construct - the non­

deterministic Turing machine. This can be thought of as a computer that has an extra

instruction that can split execution into two branches without any loss of performance

in each branch [52]. As a result it is possible to produce an exponential number of

branches in polynomial time. The class NP is defined to be those decision problems

that can be solved in non-deterministic polynomial time if the answer is yes3 .

Given a TSP decision problem with a bound b on n cities there are no more than

n! possible tours. By simple addition, it is possible to check in only linear time whether

a given tour meets the bound b. It is possible to use the power of non-determinism to

. split the problem into n! problems in only 10g2 n! = 10g2 1+log2 2+· . +log2 n ::; n 10g2 n

steps which means that this process also takes polynomial time. The sum of two

polynomial time procedures is still of polynomial time. Thus the TSP decision problem

is in NP.

Clearly P ~ NP but is P = NP? This is a long-standing problem in com­

putation complexity. It seems very unlikely that P = NP, particularly when one

considers how much more difficult problems like the TSP are than problems which are

in P. Researchers have been searching for good algorithms for the TSP for a long time

without success, but it cannot be shown that one does not exist unless it is proved

that P of. Np [52]. This conjecture looks like it may never be proven but it has been

shown that P of. Np {:} TSP decision tt P. This result will be examined in the next

section.

3.3.6 NP-completeness

NP-complete is the class of decision problems that are in NP and are in some way

equivalent to each other. It is defined in Definition 5.

3The amount of time required to return a no answer is not of concern in the definition of N"P.
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Definition 5 (NP-complete) [52} A problem A is NP-complete if it is a member

of NP and every problem in NP has a polynomial reduction to A.

TSP decision is a member of NP-complete. For a proof of this consider [52].

3.3.7 NP-hard Problems

The results so far have dealt only with decision problems. By definition the TSP is

not NP-complete because it is not a decision problem. The TSP is actually a member

of the class of NP-hard problems which is the class of optimization problem to which

all NP problems are reducible [52]. This is true because TSP decision can be reduced

to TSP and TSP decision is a member of NP-complete. An optimization problem

having a polynomial reduction to a problem in NP is called NP-easy. Since TSP

can be reduced to TSP decision, which is in NP-complete, TSP is also NP-easy. A

problem that is both NP-hard and NP-easy, like the TSP, is called NP-equivalent

[75]. We theri have these results:

Pi=- NP =} no NP-hard problems can be solved in polynomial time (3.1)

P = NP =} NP-easy ~ P (3.2)

Thus the final result of this reasoning is that from Implication 3.1, in worst case

analysis, no polynomial time algorithm exists for the TSP, if it is assumed that P =I­

NP. There is also a strong indication that there will never be a good algorithm for

the TSP because if one is found, then P = NP.

Even though the TSP is NP-hard, special cases need not be. Some special cases

of the TSP were mentioned in Section 3.2.1; unfortunately all are NP-hard. Many

more variations of the TSP exist but the interesting cases are all NP-hard. For a list

of other special cases, and proofs that they are NP-hard, refer to [52].
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3.4 Practical Applications of the Travelling Sales­

person Problem

The TSP as stated appears to apply to a useful real world application, but in reality

practical applications of the TSP are different. Some require transformation in order

to be formulated as TSPs. Some contain the TSP as a component. This section

discusses a few of the practical applications to which the TSP can be applied.

3.4.1 Computer Wiring

A number of modules with pins are placed on a circuit board. A subset of n pins

needs to be connected by wires with the restriction that no more than two wires can

be connected to each pin (perhaps to make manufacturing easier). The pins must be

connected using a minimum amount of wire to reduce cost and interference. Let Cij

denote the distance between pin i and pin j. Without the restriction on the number

of connections it would be possible to use a good minimum spanning tree algorithm.

Instead it is necessary to find a minimum Hamiltonian path. To transform this to a

(n + 1)-city TSP it is only necessary to add dummy pin 0 such that CiQ = COi = 0 for

all i [32].

3.4.2 Drilling of Printed Circuit Boards

Drilling holes in a printed circuit board (PCB) is one of the steps required in its

production. Moving the drill head from one position to the next takes time so it

makes sense to drill holes in an order that minimizes the total distance moved by

the drill head. Holes of different diameters often have to be drilled into the board.

Assuming that the drill bit cannot be changed without returning the drill head to an

origin, the drilling of holes can be solved as m separate TSPs if there are m different

hole sizes [75, ch11].
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3.4.3 Job Sequencing

49

A set of n jobs needs to be sequenced on a machine. In order to perform job j the

machine must be in state Sj. The state of the machine is any physical characteristic

of the machine such as position, temperature or paint colour. The time to transform

the machine from state Si to state Sj is given by Cij and the time to perform job k

is given by Pk. Thus the time to perform job j following job i is tij = Cij + Pj. The

quickest job sequence must be found, given that the machine must start and end in

state So. So given a sequence of jobs as a cyclic permutation 7f of 0, 1, ... ,n then the

total time required to do all n jobs given that Po = 0 is

n n n

I:(Ci1r( i) + P1r(i)) = I: Ci1r(i) +I: P1r(i)
i=O i=O i=O

Since L~=o P1r(i) is constant for all variations of 7f it follows that this problem can be

solved as an asymmetric TSP, or as a symmetric TSP if state transformations take

equal time in reverse [32].

3.4.4 The Order-Picking Problem in Warehouses

Given a warehouse and a subset of n items to be picked for an order, we want to find

the sequence in which items should be collected to minimize the total time required. To

solve this as a TSP the storage bins become vertices on a graph with distances between

the vertices equal to the time required to move between bins. Given a starting point

for the collection this problem can be formulated as a (n + I)-City TSP [75, p36].

3.4.5 Vehicle Routing

Given n customers and m vehicles how is qi delivered to customer i? Each vehicle

k has a capacity of Qk. For each vehicle a single route must be found, starting and

ending at one central depot, so that each customer gets their goods, the capacity of

any vehicle is not exceeded and total travel costs are minimized. The vehicle routing

problem is more complicated than the TSP but it is possible to design a solution that

has the TSP as a subproblem [16].
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3.5 Travelling Salesperson Problem Size
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With improvements in techniques and computing power it is now possible to find op­

timal solutions (and know they are optimal) to some large problems. For example,

problems as large as 4461 nodes have been reported solved to optimality [75]. Un­

fortunately existing optimal problem solvers require very large amounts of CPU time

and they are not stable - the solution of one problem of more than n nodes does not

mean all problems under size n can be solved as easily [55].

Heuristic solutions to the TSP have also improved as different techniques have

become available. When the Lin-Kernighan method was proposed the results obtained

then suggested that the run time grows at a rate of n 2
.
2 [60]. The Lin-Kernighan and

similar methods can handle problems with around 6000 cities and produce results close

to optimal results (2% above best known lowest bound) in reasonable time (under an

hour on a workstation) [75]. The trade-off with these methods is normally time versus

solution accuracy.

3.6 Heuristic Solutions of the Travelling Salesper­

son Problem

As the TSP is in the class of NP-hard problems, two different approaches to its

solution can be taken. One approach is to attempt to find the best algorithm to solve

the problem exactly, knowing that it will take a long time, at least in some cases. Being

NP-hard does not mean that every run of the algorithm will require exponential time

but it does mean that it will be required in some cases. The average case performance

of the TSP is still an open question. Some believe it to be polynomial while others

think it will be exponential [6]. Existing algorithms for the TSP that find exact

solutions are still very expensive and not practical for general use on large problems

[55]. An alternative is to solve the TSP using a heuristic that will find approximate

solutions in reasonable time. A number of algorithms have been developed, some

of which will often produce answers within a few percentage points of the optimum

solution. Some will be discussed in the sections that follow. An interesting result, to
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put the performance of these heuristics into perspective, is that of Theorem 1.

Theorem 1 (Sahni & Gonzalez, 1976 [53])

Suppose there exists a polynomial-time heuristic A for the TSP and a constant r,

1 ~ r < 00, such that for all instances I of the TSP,

A(I) ~ r OPT(I).

Where OPT(I) is the length of an optimal tour. Then P = NP.

Theorem 1 shows that, assuming NP =I=- P, either a heuristic will require ex­

ponential running time sometimes or if polynomial-time performance is required no

guarantees can be placed on the accuracy of the results. It does not, however, say

anything about average case performance or accuracy so the outlook for a particular

heuristic may be much better on average. Later it will also be shown that if only

triangle inequality TSPs are considered then some bounds can be obtained on how

bad the solution is.

Since the GA can be used only as a heuristic for TSP search we cannot expect

exact solutions. For this reason we will concentrate on the traditional heuristic al­

gorithms for the TSP. These are the algorithms against which the GA will compete.

The analytical treatment of the performance of heuristic TSP algorithms is complex

and in some cases has not been possible [53]. Some comments will be made about

time complexity and performance guarantees. In the case of a GA-based TSP solver

it is definitely very complex to carry out an analytical or even probabilistic analy­

sis because of the many interdependencies in the GA. For this reason comparison of

heuristics will proceed empirically.

The next two sections that follow look at a number of techniques that have

been tailored to the solution of the TSP. This does not cover general-purpose search

heuristics that have been used on the TSP such as simulated annealing [11] and ant

systems [26].

Heuristics for the TSP can be divided into two classes. Tour construction pro­

cedures construct a feasible tour from scratch while Tour improvement procedures

attempt to improve a given feasible tour. The next two sections will look at a number

of these techniques in some detail.
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3.7 Tour Construction Procedures
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Tour construction procedures in this section build tours using some heuristic. Once

the tour is built, no attempt is made to improve the quality - this will be looked at in

Section 3.8. Often the running time for these procedures can be analysed analytically

because vertices are added one by one to form a new tour making time complexity

calculations possible. Ideally it should be possible to provide guarantees for the solu­

tions produced by a heuristic. This is possible with some of the heuristics described

in this section.

3.7.1 Nearest Neighbour

One obvious heuristic for constructing a tour is, at each step, to move to the nearest

city not yet visited. This is an easy-to-implement algorithm. The running time is

O(n2
). This heuristic produces relatively good starts to the tour but fails near the end

when large edges need to be added to get to the remaining cities [53]. In Figure 3.1

is a tour generated by the nearest neighbour heuristic, in which this problem can be

clearly seen. One theoretical result which should limit our expectations for the nearest

neighbour algorithm is given in Theorem 2. This theorem proves that no upper bound

can be placed on the inaccuracy of the nearest neighbour tour for all TSP instances,

even in the case of the triangle inequality TSP.

Theorem 2 (Rosenkratz, Stearns and Lewis [53])

For every r > 1 and arbitrarily large n, there exists an n-city triangle inequality TSP

instance I such that

NN(I) ~ r OPT(I).

where NN(I) is the nearest neighbour tour length of I and OPT(I) is the optimal tour

length of I.

A number of improvements can be made to the nearest neighbour algorithm,

particularly to improve the running time. Some of these will be described in the

following sections.
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Figure 3.1: Nearest neighbour 42-city tour

3.7.1.1 Exploiting Subgraphs
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The basic nearest neighbour heuristic runs slowly because of the large number of edges

that need to be considered each time. Most of these edges will be much too long and

need not be considered. This can be achieved by constructing a spanning subgraph,

called a candidate set, of the complete graph by removing some edges between dis­

tant vertices. This technique can be successfully used with other heuristics too [75].

Examples of subgraphs are:

Nearest Neighbour Subgraph The k nearest neighbour subgraph is constructed by

removing all edges from a city except those connecting it to its k nearest neigh­

bours. The only problem with this technique is that it may disconnect the graph

so a check needs to be made that the graph remain connected.

Delaunay Candidate Set The delaunay candidate set is another set. Its construc­

tion is complicated and requires the introduction of a number of geometric con­

cepts. For details see [75].

3.7.1.2 Precomputed Neighbours

When using a candidate subgraph it is possible to limit the search for the nearest

neighbour to just those adjacent in the subgraph. If this fails then the nearest neigh­

bour must be computed amongst all free nodes. This improves performance in the



Chapter 3. The Travelling Salesperson Problem

average case time complexity but not in the worst [75].

3.7.1.3 Neighbours of Predecessors
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As for precomputed neighbours, the candidate subgraph is first checked. If this fails

then the neighbours of the predecessor are checked. If this again fails the next pre­

decessor is checked. After backtracking to some limit the nearest neighbour must be

computed amongst all free nodes because otherwise the current node will be rather

distant from the inserted node. Again this method improves only average case time

complexity [75].

3.7.1.4 Insertion of Forgotten Nodes

The nearest neighbour heuristic's primary failing is that it inserts very long edges at

the end when the choice has been reduced. Insertion of forgotten nodes requires a

candidate subgraph where the degree of each vertex is recorded. As a vertex is added

to the partial tour the degree of adjacent vertices is decreased. If the degree of a

vertex drops below some threshold (e.g., 2 or 3) the vertex is inserted immediately.

The insertion point is determined by examining possible insertion points before or

after neighbours in the candidate subgraph that have already been inserted into the

tour [75].

3.7.2 Insertion Heuristics for Tour Construction

Insertion heuristics work by starting with a subtour which is then extended to a com­

plete tour. The tour may begin as the trivial tour on a single vertex or may be provided

with a substantial subtour by another heuristic. An insertion heuristic must decide

what vertices are selected for insertion and where they are inserted into the subtour.

In general, once selected the vertex is inserted into the tour at a position that will

cause the smallest increase in tour length. Another technique is to insert the vertex

as a neighbour of the nearest subtour vertex. This is generally called addition rather

than insertion [11, p393]. The following subsections describe different strategies for

selecting the node to be inserted.
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3.7.2.1 Nearest Insertion

Select a vertex that is closest to the subtour vertices [11, p393].

3.7.2.2 Farthest Insertion

A number of options exist [11, p394], including:

1. Select a vertex whose minimal distance to a subtour vertex is maximal.

2. Select a vertex that is farthest from a subtour node.

3. Select a vertex whose maximal distance to a subtour vertex is minimal.

3.7.2.3 Cheapest Insertion
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Select a vertex that, when inserted into the subtour, causes the smallest increase

in subtour length. This is a computationally expensive method since the cheapest

insertion point of each vertex has to be tracked and updated whenever a new vertex

is inserted. This method can be sped up if only a partial update of cheapest insertion

point information is performed on each insertion. This results in some loss in accuracy_

For example if u has been inserted then for each non subtour vertex v reconsider only

insertion points for v in the subtour neighbourhood of u [75, p83].

3.7.2.4 Random Insertion

Select a vertex at random for insertion [75, p83].

3.7.2.5 Largest Sum Insertion

Select the vertex whose sum of distances from the subtour vertices is maximal [75,

p83].

3.7.2.6 Smallest Sum Insertion

Select the vertex whose sum of distances from the subtour vertices is minimal.
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3.7.3 Candidate Subgraph Insertion Heuristics
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As was the case with nearest neighbour heuristics it is possible to speed up insertion

heuristics using a candidate subgraph. For most insertion heuristics the only change is

to perform calculations on the candidate subgraph. If the subgraph does not provide

enough connectivity to continue with the insertion of vertices then a random vertex

is selected. A description of the operations required for nearest insertion follows, as

well as descriptions of some of the other operations that require a slightly different

approach [75, p64].

3.7.3.1 Nearest Insertion

Select a vertex that is connected to the subtour by the subgraph and is closest to the

subtour vertices. If no such vertex exists then select a random vertex.

3.7.3.2 Cheapest Insertion

Select a vertex that is connected to the subtour by a subgraph edge that, when inserted

into the subtour, causes the smallest increase in subtour length. If such an edge

cannot be found then ignore the subgraph and perform the calculation again. Insertion

information is updated only for vertices that are connected to the last inserted vertex.

3.7.3.3 Random Insertion

Select a vertex at random for insertion, giving priority to vertices connected to the

subtour by the subgraph.

3.7.4 Spanning Tree Heuristics

A graph G is said to be connected if for every pair of vertices, it contains a path

connecting them. A tree G is a connected graph containing no cycles. A spanning

tree of a graph G is a subgraph of G that is a tree. In a weighted graph G a minimal

spanning tree is a spanning tree of minimal length [53, 152].

Given a tour of a graph G one can form a spanning tree by removing anyone

edge. Thus an optimal tour Topt of G cannot be shorter than the length of a minimal
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spanning tree. It is also possible to construct a tour from a minimal spanning tree.

This process will be described below and each step is illustrated in Figure 3.2. The

square vertex represents the home city.

Start with a complete graph G (Figure 3.2(a)). Let T be a minimal spanning

tree of G (Figure 3.2(b)). If a depth-first search is performed on T it will produce a

walk W which visits each edge exactly twice (Figure 3.2(c)). The length of W will be

twice that of the minimal spanning tree T. It is now possible to convert W to a tour

T by replacing any section that backtracks over edges that have already been used by

a single edge (Figure 3.2(d)). If the triangle inequality holds then a short cut edge to

connect vertices u and v, say, can never be longer than the [u, v]-path it is replacing.

Thus we have ITI ::; IWI = 21TI· But ITI ::; IToptl so ITI ::; ITopt I [53, p152].

(a) Complete graph K lO (b) Minimum spanning tree

(c) Depth-first search walk (d) Hamiltonian tour of K lO

Figure 3.2: Spanning tree heuristic

The above method of constructing a tour using a spanning tree can be general-
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ized by observing that the depth-first walk can be viewed as an Eulerian tour on the

spanning tree where all the edges have been doubled. A graph contains an Eulerian

tour if and only if all vertices have even degree [14]. Thus given a minimal spanning

tree it is possible to produce an Eulerian tour if enough edges are added to give all

vertices even degree. Once an Eulerian tour exists it is possible to turn it into a

Hamiltonian tour as explained above [53].

The first method described ensures that each vertex has even degree by doubling

the number of edges in the minimal spanning tree. Clearly it should be possible to give

all vertices an even degree using a more carefully chosen set of vertices that doesn't

increase the length of the graph as much.

Every graph has an even number of odd vertices because the sum of the degrees

of all vertices in a graph is even4
. It is thus possible to give all vertices even degree by

adding a perfect matching in the vertices of odd degree. A perfect matching of a set

of vertices W is a set of edges F such that each vertex in W is incident with exactly

one edge in F [14]. A minimum weight perfect matching will obviously give the best

results. Algorithm 4 makes use of the above technique to find a tour. The construction

of the minimum weight perfect matching takes time O(k3 ) for a k vertex set and since

there may be n odd-degree vertices this construction dominates the algorithm giving

it O(n3
) worst case time complexity [75].

Algorithm 4 (Christofides [53])

Let G be a complete weighted graph.

Construct a minimum spanning tree H in G.

Construct a minimum weight perfect matching on the set of odd-degree vertices

of H and add this to H to get I.

Construct an Eulerian tour J in I.

Build a Hamiltonian tour K from J.

•
4Each edge is counted twice when calculating the sum of degrees of all vertices so the sum must

be even.
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For the triangle inequality TSP the following theorem holds

Theorem 3 (Christofides)

Given an instance of the TSP on which the triangle inequality is true Christofides's

algorithm will produce tours that are no more than 1.5 times the length of an optimal

tour.

3.7.5 Savings Method

The savings method is based on a method designed for vehicle routing problems [16].

As the TSP is a specialization of the vehicle routing problem it is possible to use the

savings method to solve the TSP by considering it to be a vehicle routing problem

with only one vehicle.

The savings method starts with a number of subtours of two vertices which

are then connected to form larger and larger tours until a complete tour has been

constructed. The tours that are merged are selected based on which merge will produce

the biggest savings in tour length. Algorithm 5 contains an algorithm for the savings

heuristic.

Algorithm 5 (Savings [75])

Select a vertex b called the base and construct n -1 tours S = {(b, u) : u E V \ b}.

WHILE S contains more than one tour.

For each distinct Tl , T2 E S calculate the savings that could be obtained by

merging Tl and T2 by removing from each an edge adjacent to b, ub and vb

say, and adding the edge uv.

Merge the two tours that have the largest savings, updating S by removing

the original two tours and adding the new merged tour.

END WHILE

•
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3.7.6 Comparison of Tour Construction Procedures
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The average quality of the construction heuristics described here do not get better

than 11% from optimality [75]. The best results are produced by the savings method

which is 1-2% better than any other heuristic on average [75].

3.8 Tour Improvement Procedures

Tour improvement procedures require an initial complete tour. The tour can either

be randomly constructed or can be produced using one of the tour construction pro­

cedures. Some improvement procedures like the Lin-Kernighan heuristic (see Sec­

tion 3.8.5) work well even with random tours while some of the less effective procedures

produce acceptable results only when paired with a good construction algorithm.

3.8.1 Node Insertion

The simplest tour improvement consists of removing a node and reinserting it in the

most optimal position [75, plOD]. This process can cycle through the nodes of the tour

until no further improvement can be made. If there are n cities, then since each can

be placed in n - 2 other positions it takes time O(n2 ) to check all possibilities.

3.8.2 Edge Insertion

Edge insertion consists of removing an edge and reinserting it in the most optimal

position in the tour [75, plOD].

3.8.3 2-0pt Heuristic

The 2-opt move consists of removing two edges from a tour and reconnecting the tour

so that the resulting tour is shorter [11, p399]. A tour is said to be 2-optimal if all

possible 2-opt moves have been applied. In the euclidean case a 2-optimal tour will

contain no edges that cross, but 2-opt moves can also improve a tour with non-crossing



Chapter 3. The Travelling Salesperson Problem 61

edges. Figure 3.3 illustrates a 2-opt move that shortens part of a tour. In this case

the edges do not cross. To consider all 2-opt moves takes time O(n2
).

The 2-opt heuristic was applied to the nearest neighbour tour in Figure 3.1

to give the 2-optimal tour shown in Figure 3.4. This is close to an optimal tour ­

only one node is out of place. This points to a possible improvement in the 2-opt

procedure. The combination of 2-opt and node insertion can produce even better

results [75] because most node insertion moves require two 2-opt moves and they may

only produce an improvement in combination. This gives some motivation for looking

at the r-opt improvement operator.

Figure 3.3: 2-0pt move

Figure 3.4: 2-optimal 42-city tour

3.8.4 r-Opt Heuristic

It is also possible to consider 3-opt moves where three edges are removed from a tour

and it is reconnected in the most efficient fashion. This can then be generalized to

r-opt moves where r edges are removed and reconnected to make a shorter tour. Once
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all possible r-opt moves have been applied the tour is said to be r-optimal. To consider

all r-opt moves requires O(nr
) time which quickly makes this method impractical for

large problems. Even 3-opt is very expensive so it is worth considering extending this

method with optimizations which produce good results.

One improvement that can be made is to use candidate subgraphs as were used

in some of the tour construction procedures. If only edges in the candidate subgraph

are considered then a substantial drop can be obtained in the number of edges that

need to be examined.

3.8.5 Lin and Kernighan Heuristic

A particularly well-known tour improvement procedure is that of Lin and Kernighan

[60]. This makes use of an edge exchange procedure which is used as a modification

on the r-opt moves. Using simply 2-opt moves it is possible to transform a tour to

any desired tour. It may take a large number of moves but it can be done. Once a

graph is 2-optimal it may be possible to reach a better tour using 2-opt moves but this

requires that the tour become temporarily longer. The Lin-Kernighan heuristic deals

with this case by searching tours that may be temporarily longer.

Lin and Kernighan's algorithm uses variable values for r at each iteration. This

is a more powerful algorithm that produces near optimal solutions. The basic ideas in

the Lin-Kernighan algorithm can be used in a number of different ways [61, 75].

3.8.5.1 Iterated Lin-Kernighan Heuristic

The results produced by the Lin-Kernighan heuristic can be improved by perturbing

them and then re-running the Lin-Kernighan heuristic. This process can be repeated

a fixed number of times or until no further improvement is obtained. This is known as

the iterated Lin-Kernighan heuristic. Any tour improvement heuristic can be iterated

in this way but high quality heuristics like the Lin-Kernighan algorithm give worth­

while results for this computationally expensive procedure [75, p129]. A perturbation

method suggested by Reinelt is to perform a 4-opt, that does not increase tour length

by more than 10%.
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3.9 Comparative Performance of Tour Construc­

tion and Tour Improvement Operators

When conducting experiments on the TSP one of the difficulties is designing instances

of the TSP on which to run the algorithms. Producing random instances is not com­

pletely satisfactory because these will not have distributions of real world problems.

Another factor with random problems is that no optimal solution or bounds will be

known and if the problem is large it may be impossible to find one with the resources

available. The TSP library TSPLIB solves the first problem and partially solves the

second [74]. TSPLIB contains a collection of contributed problems including city prob­

lems, PCB drilling problems and X-ray crystallography. The library contains some

solution tours and optimal tour lengths. Many of these problems have appeared in

the TSP literature. Using a problem from TSPLIB has the advantage that the results

can be compared by other researchers as TSPLIB is freely distributed for research.

In his book [75] Reinelt gives extensive results for all of the algorithms mentioned

here using twenty-four euclidean TSPs from TSPLIB. The sizes vary from 198 to 5934

cities. For the best construction techniques, results above 10% of the optimum on big

problems are the best that can be expected but these results can be produced in under

10 seconds on a workstation5 for a 5934 city problem.

If really good results are required, the tour improvement heuristics are required.

Node and edge insertion produce rather poor results. If applied to randomly generated

tours the results are very poor with tour length on average twice the optimal length.

Tours produced by the nearest neighbour heuristic can be improved by approximately

10% and savings tours by 2-3%. The Lin-Kernighan heuristic is the clear winner.

Results under 2% are possible in 37 minutes for a 6000 city problem. If a quality

compromise to 2.5% is acceptable, this time can be cut to only 5 minutes. The iterated

Lin-Kernighan heuristic gives very good results but requires extensive computing time

[75].

5Sun SPARCstation 10/20
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3.10 Data Structures for the Travelling Salesper­

son Problem

A number of data structures are needed for the representation of the TSP, for the

solution, and for the book-keeping during the search. In this section different possible

structures are described. Some comments about the resulting storage space complexity

of TSP algorithms and heuristics are then made.

3.10.1 Graph Representation

The TSP operates on a weighted complete graph Kn . To represent any graph structure

the first step is to have a one-to-one mapping from the set of vertices to the set of

integers {I, 2, ... ,n} so that each vertex can be easily represented. So we will assume

that such a mapping exists and we can easily move between the representations.

Two of the standard methods for representing graph data structures are the

adjacency matrix and the adjacency-structure [79]. In an adjacency matrix an n­

vertex graph is represented by an n x n matrix c where

o if u is not adjacent to v
cuv =

1 if u is adjacent to v

In the adjacency-structure each vertex has an adjacency list that contains all vertices

that are adjacent to it.

Either method can be converted for weighted graphs. To represent edge weights

III an adjacency matrix let Cuv be the weight of the edge uv or 0 if they are not

connected. In this case it is called a weight matrix. To the adjacency structure it is

just necessary to add the weight as an extra field in the adjacency list. The adjacency

(or weight) matrix requires n2 entries while the adjacency-structure varies depending

on the density of the graph. Thus the adjacency-structure is more storage-efficient

on a sparse graph while the adjacency matrix is better on dense graphs. The TSP

operates on a complete graph so it makes sense to use the adjacency matrix because

all entries are required. Since we are dealing with a symmetric TSP the weight matrix
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is symmetrical so it is possible to reduce storage space by storing only half the matrix.

The storage complexity for the adjacency representation remains O(n2) even if only

half the matrix is stored.

On very large graphs it can become very expensive to store a whole weight

matrix. For example a 4000-city problem requires almost 64M of memory if a complete

matrix is used and each weight is stored as a four byte integer (40002.4). If the TSP is

defined on a metric space with coordinates, such as two or three dimensional euclidean

space, then rather than calculate the whole weight matrix at once, distances can be

worked out as required. While saving space this will slow an algorithm down if many

distance calculations are required and the metric uses a function like square root which

is slow in comparison with other arithmetic operations.

3.10.2 Tour Representation

A data structure is needed to represent complete tours or partial tours under con­

struction. The simplest method is to store a permutation as an array. The problem

with this method is that it is not possible to find a particular city without a complete

scan of the array each time. To reduce these overheads a better representation is

an adjacency representation which uses an array where the i-th position in the array

contains the successor to city i. It is often also useful to store the predecessor to i as

this is useful for working with heuristics like the 2-opt heuristic where paths have to

be reversed.

3.10.3 Storage Space Complexity

None of the data structures discussed have exponential space requirements. The tour

representation structures have linear space requirements as does the storage of coor­

dinates when working with metric spaces. The weight matrix, which is O(n2), is the

only structure having better than linear space requirements. The heuristics discussed

in this chapter also do not have large requirements as they do not need much working

storage. One exception is the savings heuristic which can have its time complexity

improved from O(n3
) to O(n2 Iogn), but then requires O(n2 ) storage space [75].
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3.11 Summary

The TSP is a problem of great relevance to both computing and operations research

with many real world applications. Although it is an NP-hard problem so that the

chance that a 'good' algorithm will ever be found is very remote, there are still a

large number of very good heuristic algorithms which exist to solve the problem. The

choice of which to use can be made based on the required accuracy and time available.

Algorithms like Lin-Kernighan are particularly impressive in the accuracy and speed

with which results can be produced.

If such good heuristics already exist for the TSP one may ask why so much

research, reviewed in the next chapter, has been devoted to applying genetic algorithms

to the TSP. Firstly the TSP has been well established as a testing ground for ideas in

combinatorial optimization and it is right that new ideas should be tried on the TSP,

as doing so provides insight into both the techniques and the TSP itself. Secondly the

nature of the GA is that it can be used to complement existing techniques by using

the GA ideas of populations and crossover along with a more traditional heuristic.

GAs can be easily implemented on distributed and parallel processors. This means

that combining a traditional technique with a GA is one way in which a traditional

serial technique can be implemented on parallel hardware. Such hybrids and other

techniques will be described in the following chapter. Finally GAs have the flexibility

and simplicity to be applied to many problems. The GA may be the perfect choice

for a problem that is a TSP with additional constraints that render the traditional

techniques described in this chapter unusable.



Chapter 4

Solving the Travelling Salesperson

Problem using Genetic Algorithms

4.1 Introduction

Genetic algorithms have been applied to the TSP by a number of authors [12, 15,

36, 47, 43, 63, 69, 87, 90]. Owing to the many different parameters in a GA there is

still much scope for research in the use of GAs on the TSP and other combinatorial

optimization problems. One reason for this is that GA solutions of the TSP tend

to require a number of modifications from the GA presented in Chapter 2 to work

efficiently.

Currently, GA-based methods are not competitive with deterministic methods

like the iterated Lin-Kernighan (see Section 3.8.5) when time comparisons are made,

though very good quality results can be produced [66]. Other methods like simulated

annealing have also not yet out-performed these methods [75, ch9]. The main ad­

vantage that GA-based (or even simulated annealing) methods have over the more

traditional techniques is that they do not require much understanding of the problem

structure. This makes it very easy to extend them to problems more complicated than

the TSP. This ability to adapt easily to more complex problems is at the expense of

performance. If optimizations requiring more domain-specific knowledge are added to

the TSP they will make the GA less general-purpose and less easily adapted to other

67
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problems.

This study is to be restricted to the symmetric TSP as was mentioned in Chap­

ter 1 and Chapter 3. Many of the operators described in this chapter will work with

the asymmetric TSP. Where this restriction becomes really useful is when the GA

is hybridized with standard TSP local optimization heuristics, such as the 2-opt in

Chapter 3, which operate only on the symmetric TSP.

This chapter reviews current research on how a GA can be applied to the TSP

by reviewing current research. The application of GAs to combinatorial optimization

problems poses unique constraints and challenges. The basics needed to produce a

GA-based TSP heuristic will first be described. After this, extra steps which add

domain-specific knowledge and hybridize the GA with TSP techniques mentioned in

Chapter 3 will be described. The implementation and analysis of the results will be

covered in the following chapter.

4.2 Applying Genetic Algorithms to the Travelling

Salesperson Problem

When applying a GA to any problem the same initial questions discussed in Chapter 2

must be asked:

• What is the fitness function?

• How will the problem parameters be represented (encoded) in a string for ma­

nipulation by crossover and mutation?

But there are other choices to be made in the case of combinatorial optimization

problems like the TSP. Research has shown that the standard genetic operators of

crossover and mutation are ill-suited to this domain [47]. What is really important

when choosing a representation is how it performs with the crossover and mutation

operators, as these are the only parts of the GA that interact with the representation

(apart from the fitness function which decodes it).
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It seems then that the choice of representation must be made together with

the choice of crossover and mutation operators [83]. Thus the success or failure of

the encoding is based on the operators because these will determine how parents are

recombined. So two further decisions must be made in conjunction with the represen­

tation:

• How should the crossover operator combine parent strings?

• How should the mutation operate on strings?

All of the above questions will be answered in the two sections that follow by firstly

looking at a description of the fitness function, and then investigating various repre­

sentations in conjunction with the crossover and mutation operations that will be used

on each.

4.2.1 Fitness Function

The fitness function provides a measure of the fitness of individuals in a GA. In the

case of the TSP each individual is a tour. The tour length can be used as a fitness

function. As the TSP is a minimization problem we can take the negation of the tour

length to get a maximization problem. To obtain positive values we can add a large

enough positive scaling factor to make all fitness values positive. So to calculate the

fitness function f let f (x) = tmax - t(x) where t(x) is the length of tour x and tmax is

the maximum of all tour lengths in the population of tours.

4.2.2 String Encoding

In the case of the TSP, it is necessary to encode problem solutions into a string. One

logical choice is to encode a tour into a string which can be manipulated with crossover

and mutation. With a problem like the TSP it makes no sense to encode using a binary

alphabet as the smallest unit ever dealt with is a node on the tour. In the literature

no attempt is made to use a binary alphabet. Rather, the basic unit is a node.

The choice of how to represent the tour is important in relation to how crossover

will combine tours together. One problem that has to be overcome is the possibility of
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crossover operating on two parent tours and producing an offspring that is infeasible

- no longer a tour. This can be avoided or dealt with in a number of ways [33, 59]:

1. Simply discard any offspring of this nature.

2. Allow infeasible strings into the next generation but apply a penalty function to

the fitness function which lowers the fitness depending on how badly the string

diverges from being a tour.

3. Design the representation so that this never happens with the standard I-point

crossover operator.

4. Choose a representation with a crossover operator that always produces valid

tours.

5. Rather than representing the tour directly, use a representation that suggests

how the tour should be constructed, using rules that always produce a valid

tour.

Option 1 has not been found very useful in GAs in general [59]. In the TSP

it would be particularly inefficient as most offspring generated would be infeasible.

Option 2 is often used on GAs operating on problems with constraints [33]. The

problem with this approach is that there are so many more infeasible than feasible

solutions to the TSP using standard tour representations [59]. If seems that this

method is best avoided for the TSP if possible. The other three options will be

discussed in the following sections.

Figure 4.1 shows a tour that will be used when giving examples of tour repre­

sentations.

4.2.2.1 Ordinal Representation

Attempts have been made to design the encoding so that applying the traditional

crossover operator always produces valid solutions. If this is a design requirement

then a permutation representation cannot be used. One encoding which does work is

the Ordinal Representation [47].
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A

D

I

B

E

H

Figure 4.1: Example of a 9-city tour ACIGEHBFD.

To encode the tour into the ordinal representation one starts with a free list

containing all cities in a canonical order. The position of a city in the free list is

appended to the ordinal list and this city is deleted from the free list. This process

continues until the free list is empty. In order to make the representation unique it

is necessary to fix the starting city. Table 4.1 contains an example of the process for

Figure 4.1. To decode the result back to a tour start with a full free list and work

from the ordinal list back to a tour. It is possible to use standard I-point crossover

and still have a valid ordinal representation as offspring.

Table 4.1: Converting to the ordinal representation

Ordinal List Free List

() (A B C D E F G H I)

(1) (B C D E F G H I)

(1 2) (B D E F G H I)

(1 2 7) (B D E F G H)

(1 2 7 5) (B D E F H)

(1 2 7 5 3) (B D F H)

(1 2 7 5 3 4) (B D F)

(1 2 7 5 3 4 1) (D F)

(1 2 7 5 3 4 1 2) (D)

(1 2 7 5 3 4 1 2 1) ()

This approach has been shown to produce very poor performance that is no

better than that of random search [47] because it does not combine good subtours into
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the offspring. When two parents are combined the result bears very little resemblance

to the parents. It could be said that this representation does not adhere to the building

block hypothesis since very small changes to a string result in large alterations to the

tour.

4.2.2.2 Path Representation

A natural way to encode graphs into a string is to use a permutation to represent a

path. This is a choice used widely in the literature [36, 43, 69]. For each tour of length

n there are n different ways to represent the tour depending on the starting city. If

this is not desirable it is possible to fix the starting city. In this representation the

absolute positions of cities in the string are not significant. It is the relation of each

symbol to the next that actually encodes the phenotype. One consequence of this

approach is that the standard theoretical backing for GAs described in Chapter 2 does

not apply. This has led to the development of an alternative definition of schemata

called a-schemata [36]. In this encoding,

(A C I G E H B F D)

represents the tour in Figure 4.1.

4.2.2.3 Adjacency Representation

In the adjacency representation a gene j at locus i represents the edge in the tour

from city i to city j [47]. Using this encoding it is possible to represent a sequence of

edges that does not form a tour. For this reason it is not possible to use traditional

crossover. One feature of this representation is that it is unique for a given tour. In

this encoding,

(C F I A H D E B G)

represents the tour in Figure 4.1. The first symbol indicates an edge in the tour from

city A to city C, the second an edge from city B to city F, the third an edge from city

C to city I, and so on. As with the path representation the genes are not independent

of each other because each city can appear only once in this representation.
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4.2.2.4 Representation Comparison

All the representations given here can be used for any problem that needs to represent

permutations. These representations are not only useful in the TSP, but also in other

problems where permutations are useful, for example, in scheduling problems [85].

Of the three representations given here the ordinal representation has already

been shown to be useless for the TSP using standard crossover operators. As this

could really be the only motivation for using it, it will not be considered further.

Both the path and adjacency representations require special-purpose crossover

and mutation. The primary difference between the representations is that in using

the path representation there is a particular starting city while the adjacency repre­

sentation does not have a starting city. The choice of which to use is based on which

representation provides the easier implementation of the operators. The next section

looks at crossover operators. Some try to preserve adjacency information while others

try to preserve relative order.

4.2.3 Crossover Sequencing Operators

In this section we look at crossover operators designed for operating on permuta­

tions (whether they are represented using path or adjacency representations does not

matter). These operators take parent permutations and always produce permutation

offspring. They are commonly called sequencing operators [82]. A number of different

approaches exist for the choice of the crossover operator. In the case of the TSP,

adjacency information is what is important so it would be expected that crossover op­

erators that best preserve adjacency information will have a better chance of success.

The operator has to balance the need to preserve the adjacency information present

in the parents with the need to generate offspring that are different from the parents

[27].

In the following discussion of crossover operators we will assume two parent

strings:
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4.2.3.1 Order Crossover

Order crossover described here is a modification of Davis's ordered crossover [17].

Two crossover points are selected, and the string between the two points in the first

parent is copied whole to the offspring. Nodes are then copied from the second parent,

starting at the second crossover point. Any nodes already incorporated from the first

parent are ignored. The second offspring is derived in the same way but with the

parents swapped. The only difference from Davis's crossover is that in Davis's method

only the second crossover point is selected, the first always being the start of the string

[69]. It is possible to generalize this approach by dividing the string multiple times

[12]. See Table 4.2 for an example of the order crossover operator. The boxed sections

in the parents denote the sections selected by the crossover points. Figure 4.2 shows

order crossover applied graphically to two parent tours.

Table 4.2: Order Crossover Examples

Parent 1 Parent 2 Offspring 1 Offspring 2

ACII DBELHKGJ IF AIJI DGECBKFL ~ AICFDBELHKGJ AIHJDGECBKFL

AFI LIGK ~CJBDE A~ CDLH IIBFGJE ACDHLIGKBFJE AFIGKCDLHJBE

AGIJI HLF ~ECBD AIDBI CGH ~ELF J AIDBCGHLFKEJ AIJLFCGHKEBD

AI IBGDCLJF ~EH ~ KEFCBJLD IIHG AKEIBGDCLJFH AIGKEFCBJLDH

ALJDI FGBEICHK I ABKJ! DHECFLGI I AJDLFGBEICHK AJBKDHECFLGI

4.2.3.2 Partially Mapped Crossover

Partially mapped crossover (PMX) was developed by Goldberg and Lingle [36]. It

also makes use of two crossover points. The section of the string demarcated by the

points is called the mapping section. This is llsed to define a swapping of nodes. So

if the mapping section is ai ... aj and bi ... bj then we define a mapping from A to B

as ak swaps with bk for i :S k :S j. Other nodes map to themselves. This gives one

offspring derived from A using the mapping, and one offspring derived from B using the

mapping [69]. See Table 4.3 for an example ofthe partially mapped crossover operator.

The boxed sections in the parents denote the sections selected by the crossover points.
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Parent 1 Parent 2 Offspring

Figure 4.2: Order Crossover In Action

Figure 4.3 shows PMX applied graphically to two parent tours.

Looking at both the figure and the table it can be seen that PMX partially

preserves adjacency information and partially preserves positional information. Since

adjacency information is what is important for the TSP one cannot expect great

performance from PMX.

Table 4.3: Partially Mapped Crossover Examples

Parent 1 Parent 2 Offspring 1 Offspring 2

ACI! DBELHKGJ ~ AIJI DGECBKFL ~ AJIDGECBKFLH AICDBELHKGJF

AFI LIGK ~CJBDE AKI CDLH IIBFGJE AFCDLHKGJBIE AHLIGKDBFCJE

AGlJI HLF ~ECBD AIDBI CGH ~ELFJ ALl JCGHKEFBD AIDBHLFKEGCJ

AI IBGDCLJF ~EH AI KEFCBJLD IIHG AKEFCBJLDIGH AIBGDCLJFKHE

ALJDI FGBEICHK I ABKJI DHECFLGI I ABJKDHECFLGI ALDJFGBEICHK

4.2.3.3 Cycle Crossover

Cycle crossover [69] is defined to meet the following conditions:

• Every position must retain a value present in one of the parents.

• It should, in general, be different from both parents.
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Parent 1 Parent 2 Offspring

Figure 4.3: Partially Mapped Crossover In Action

• As usual, it must be a permutation.

The algorithm for cycle crossover, producing an offspring from parent strings A

and B, is presented in Algorithm 6 [82].

Algorithm 6 (Cycle Crossover Algorithm)

Select at random an element a = ai of A.

REPEAT

Copy ai into the offspring at position i.

Let i = j where bj = ai.

UNTIL ai = a.

For each position not yet filled in the offspring, copy the element from the cor­

responding position in parent B.

•
4.2.3.4 Edge Recombination

The original edge recombination operator was introduced by Whitley et al. (see [90]).

The primary aim of the edge recombination operator is to introduce as few edges as

possible that do not exist in the parent tours.
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The edge recombination operator builds an edge table. An edge table is func­

tionally the same as the adjacency-structure described in Section 3.10.1. For each city

it lists the cities adjacent to it in either of the parent tours. Each city is adjacent to

at least two cities and at most four. A new tour is now constructed using Algorithm 7

[91, 63]:

Algorithm 7 (Edge Recombination)

Assume the graph has n cities. Randomly select the initial city al.

Let i = 1.

REPEAT

Remove ai from every city's adjacency list.

IF there is a city adjacent to ai

THEN

let ai+l be the city with the shortest adjacency list, breaking ties ran­

domly.

ELSE

let ai+l be a random city not in aI, a2, .. " ai.

END IF

Let i = i + 1.

UNTIL i ~ n.

Permutation (aI, a2, .. " an) is the offspring tour.

•
Table 4.4 illustrates the behaviour of the edge recombination operator. The

superscript 1 marks the first city chosen randomly as a starting point. Subsequent su­

perscripts mark cities chosen at random when no other choice was available. Figure 4.4

shows a graphical view of edge recombination.
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Table 4.4: Edge Recombination Examples

Parent 1 Parent 2 Offspring

AEFDKLHJIBCG ALEDKIHJCGFB AC1GFDELKIJHB2

AFCIKBLHEDJG AHCJIKBLEFGD A2GDI1JCFEHLBK

ALKCEFGJBHDI AGBCKDELFHIJ AH2DE1CKLFGBJI

AEBFJKHICLDG ALKGHJEBIDCF AI1BEJHKGDLCF

ABILDHJGCEKF AECBKJHLGIFD A1FKECBIGJHDL

Parent 1 Parent 2 Offspring

Figure 4.4: Edge Recombination In Action

Edge recombination works on the principle that there should be as little disrup­

tion as possible to the parent tours. As any introduction of edges not currently in the

parents can extend the tour length without limit it is prudent to avoid the introduction

of such edges. Edges in an offspring tour that existed in neither parent tour are called

foreign edges. The edge recombination operator tries to avoid these foreign edges. It.,

is, however, in general unavoidable to introduce at least one foreign edge because the

final edge used to return to the home city is chosen implicitly.

Whitley has been able to demonstrate that this operator manipulates an un­

derlying binary encoding. This makes it possible to apply some of the CA theory,

much of which is developed for binary encodings (see Section 2.5), to this operator

[91]. A number of improvements to the edge recombination operator have been sug­

gested, some of which can be motivated by CA theory. A number of changes and
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improvements are described in the next few sections.

4.2.3.5 Edge-2 Recombination

Edge-2 recombination is an enhancement to the original edge recombination operator.

It aims to improve on edge recombination by favouring edges that are in both parents

[82, 63]. If a city is adjacent to the same city in both parent tours then it is specially

flagged by negating the city number in the edge table. When looking for the next edge

a flagged city is preferably selected. If there are no flagged cities in a city's adjacency

list then edge-2 recombination reverts to the selection rules used for edge recombina­

tion in Algorithm 7. Table 4.5 illustrates the behaviour of edge-2 recombination. The

superscript 1 marks the first city chosen randomly as a starting point. Other super­

scripts mark cities which were chosen at random when no other choice was available.

Figure 4.5 shows a graphical view of edge-2 recombination.

Table 4.5: Edge-2 Recombination Examples

Parent 1 Parent 2 Offspring

AGKLEIFDBCJH AHDIKGFEJCLB ABCJEFIKGL2D1H

AJDCEFLIGBHK AJFKLECHBDGI AKH1BGILFECDJ

ACJFEGBHDLKI AHJKILFDCGEB ABEGF2I1KLDHJC

AGCBFHLIJKDE AILFHGDJCEKB AE1DKJILHFBCG

ADCELHJFKGBI AHFDGICEJLKB AHJFDG1KLECIB

4.2.3.6 Edge-3 Recombination

The term terminal is used to describe a city at either end of a partial tour, where all

edges in the partial tour are inherited from the parents. A terminal is said to be live if

it still has edges in its edge list; otherwise it is said to dead. The edge-3 recombination

operator [63] improves on edge-2 recombination as follows. When the partial tour

reaches a dead terminal, instead of continuing with a random city, it reverses the

partial tour and continues it from the other terminal (if this is possible, that is, if

it still live). When the next failure occurs, both ends of the tour segment are dead
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Parent 1 Parent 2 Offspring

Figure 4.5: Edge-2 Recombination In Action

terminals so it is necessary to select a random city to start a new partial tour. This

partial tour is constructed in the same way, and the process continues until a complete

tour is obtained.

The edge-3 recombination operator introduces fewer foreign edges then edge-2

since failures which require the random selection of an edge should, on average, occur

less often.

4.2.3.7 Edge-4 Recombination

Edge-4 recombination extends the idea used in edge-3 recombination in trying to reduce

the number of foreign edges introduced [27]. Edge-4 proceeds as for edge-3 until both

ends of the partial tour are dead terminals. An attempt is then made to reverse a

segment of the partial tour to get a live terminal so that the partial tour can be

continued. Say the partial tour under consideration is (Xl, X2, ... ,Xi) and the cities

adjacent to Xi in the edge list are X = {Xall X az ' ... , xaJ. These are all part of the

partial tour since Xi is a dead terminal. Let Y be the set of cites that follow the cities

of X in the partial tour ie Y = {xa1 +l,Xaz+l'" ,xaj+l}' The city with the fewest cities

left in its edge list is selected, say Xk. The partial tour from Xk to Xi is then reversed

so that Xk is now the terminal city. If Xk still has edges in its edge list the tour is

continued from there. If not, the partial tour is reverted to its original ordering and
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another city in Y is considered. If this process fails then the other terminal city is

tried. If this still fails then a random city is selected to start a new partial tour, as is

the case in edge-3 recombination.

The edge-4 operator does perform slightly better than edge-3 [27]. It has the

disadvantage that it is slower because of all the backtracking and more complex to

implement. This could mean that it offers no real advantages over edge-3 [27].

4.2.3.8 Maximal Preservation Crossover

The Maximal Preservation Crossover (MPX) operator is somewhat similar to order

crossover (Section 4.2.3.1). It has been successfully used to solve TSPs by Eshelman

[29] and Muhlenbein [66, 67]. This description is based on Muhlenbein. MPX operates

on two parents, the donor and the receiver. A section is copied directly from the donor

into the corresponding position in the offspring. The rest of the genes are filled in by

copying consecutively from the receiver. The rules in Algorithm 8 cover the cases

where simple copying will create an illegal tour. The length k of the initial segment

is chosen between bounds blow and bup . It has been found in some empirical studies

that a fixed value for the length of the initial segment gives better performance [63].

A fixed value of one third of the tour length is suggested for the initial segment in

[87]. See Table 4.6 for examples of MPX in operation. Figure 4.6 shows a graphical

view of MPX. It is interesting to compare this figure with the illustration of PMX (see

Figure 4.3) which is clearly more disruptive.

Algorithm 8 (Maximal Preservation Crossover)

Assume the tour is of length n and we have a donor tour

and a receiver tour

Choose i and k randomly such that 0 :::; i < n and blow:::; k :::; bup .

Let Zj = Xj for j = i, i + 1, ... , (i + k) MOD n.
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Assign successive edges VZp-lV zp for p = (i + k + 1), ... until a tour is built using

the following priority scheme:

1. Let zp = Yi where V Zp _ 1 vYi is an edge in the receiver and if it will not violate

tour conditions.

2. Let zp = Xi where VZp _ 1V Xi is an edge in the donor and if it will not violate

tour conditions.

3. Let VZp-l vZp be the next available edge in the receiver that does not violate

tour conditions. This is viewed as implicit mutation.

The tour {VZ1 V Z2 , V Z2 V Z3 , ... , V Zn V Z1 } is the resulting offspring.

•
Table 4.6: Maximal Preservation Crossover Examples

Donar Receiver Offspring

A~ FDKL ~JIBCG ALEDKIHJCGFB ABFDKLEIHJCG

AEBI CIJH fDLKG AFHKEGBDJLCI AFCIJHKEGBDL

AGHICI FBJD ILEK AJKHGEFICDLB AFBJDLEKHGIC

0BIJEDKGI CL I AFDGHICLKBEJ AFDGHIJEKBCL

IAL IIFGBKCHJI DE I AFJLGHCKDBIE ALGHCKBIFJDE

4.2.3.9 Performance Comparison

Oliver, Smith and Holland [69] used a 30 city problem to compare order crossover,

PMX and cycle crossover. Their experiments showed that order crossover performed

best, followed by PMX. Cycle crossover performed the worst. A study in [82] gave the

same ordering for these operators but also compared the edge-2 operator. The results

showed that edge-2 is superior to the other three operators. Two other operators

designed for schedule optimization from [85] were also compared - another order

crossover (referred to as order crossover #2) and a position-based crossover. Results

for these operators lay between those of order crossover and PMX.
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Parent 1 Parent 2 Offspring

Figure 4.6: Maximal Preservation Crossover In Action

A further study, using certain metrics to measure the correlation between parent

and offspring fitness together with experimental results indicated that edge recombi­

nation is best (they did not test edge-2), followed by order crossover, PMX and finally

cycle crossover [62]. Making use of these and other metrics and experimental results,

[63] shows that edge-3 performs better than edge-2 which performs better than MPX.

However, if local optimization (2-opt) is used then MPX performs better than both of

the edge operators. Further studies, including edge-4 recombination and all the other

operators mentioned, found similar results - that the edge family are comparable

to MPX when no local optimization is used but that MPX moves ahead when used

with local optimization. Edge-4, while performing slightly better than edge-3, requires

greater CPU time and may not be worth the expense [27].

4.2.4 Mutation Operators

This section looks at operators that can perform the function of mutation in the

standard GA. It has already become clear that a GA for solving the TSP is rather

different from a standard GA. Just as the representation requires that the crossover

operator preserve the tour, so must the mutation operator do the same.
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4.2.4.1 Node Insertion

An easy way to implement a mutation operator is to exchange the positions of two cities

in the permutation. This is one of the tour improvement moves described in Chapter 3

Section 3.8.1. This is easy to implement and corresponds closely with mutation in the

general GA. This operator performs poorly, however [82]. This is a similar result to

that discussed in Chapter 3 where node insertion is a poor tour improvement operator

(but useful when used together with 2-opt).

4.2.4.2 Remove and Reinsert

Two nodes are selected and one is removed and reinserted after the other. This

operator performs better than node insertion [82].

4.2.4.3 r-Opt Moves

In Chapter 3 various heuristic TSP algorithms were seen to make use of what are

known as r-opt moves, where r edges in a tour are replaced by r different edges to

produce a new, shorter tour. This same technique can be used for a mutation operator,

and is a logical choice of operator for the TSP domain. In the case of the commonly

used 2-opt move we are just reversing a path within the tour. Thus the operation being

performed is really the inversion operation seen in Section 2.7.6. In the case of the

TSP, where relative position is important, it would seem that the i:~lVersion operator

makes some sense, and indeed this operator performs better than both the previous

operators [82].

4.2.5 Redundant Codings

A tour can be encoded using a redundant coding, which is self organizing. Within

a redundant coding, some information in the string may be unused. Some may be

missing from it. Some scheme has to be designed to convert the coding into a valid

tour by deciding which parts of the code to ignore and what defaults to use when

information is missing.
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A number of different redundant codings have been devised along with corre­

sponding interpretations. Two are given here. One encoding is based on the ordering

in the tour while the other tracks adjacency information.

4.2.5.1 Redundant Order Representation

An n-city tour is encoded in a string of n (city, tour order) pairs. The pair is known

as a macro-gene and the city and sequence in the tour as codons. In this encoding,

E5 F8 B7 D9 G4 13 H6 C2 Al

represents the tour in Figure 4.1. It is necessary to fix a home city as the start of the

tour [86].

In order to transform this redundant coding into a tour, three problems have to

be dealt with - cities which have duplicate ordering information, positions that are

occupied by more than one city, and cities which have no position information at all.

The following rules are used to remove ambiguity and complete missing information:

1. If a city is represented in more than one macro-gene then select one of the macro­

genes randomly.

2. If the same position is represented in more than one macro-gene then select one

of the macro-genes randomly.

3. If after all macro-genes have been interpreted there are cities that have not been

positioned then randomly place them in unused positions in the tour.

4.2.5.2 Redundant Edge Representation

An n-city tour is encoded in a string of n macro-genes which consist of two codons,

both of which represent a city. Thus the macro-gene represents an edge in the tour.

In this encoding,

EH Cl DF IG CA GE HB FB DA

represents the tour in Figure 4.1. It is necessary to fix a home city as the start of the

tour [86].
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A redundant edge representation may also have a number of problems that need

correcting. Algorithm 9 [86] can be used to produce a tour from this representation.

It removes ambiguity by selecting left-most macro-genes when there is a choice and

choosing random cities to fill in the tour when it is incomplete.

Algorithm 9 (Interpret Redundant Edge Representation)

Let S = (AIBI , A2B2 , ... ,AnBn) be the sequence of macro-genes.

Let UI be the first codon in the first macro-gene and let i = 1.

WHILE i ::; n

If city Ui is contained in a single macro-gene of S then set Ui+l equal to

the other codon of that macro-gene. Remove the macro-gene containing Ui

from S.

If city Ui is contained in more than one macro-gene of S then set Ui+l equal

to the other codon of the left-most macro-gene. Remove any macro-genes

containing Ui from S.

If city Ui is not contained in any of the macro-genes of S then set Ui+l equal

to a random city z such that z =f Uj for j = 1,2, ... ,i.

Let i = i + 1.

END WHILE

•
4.2.5.3 Comparison of Redundant Codings

Comparison of these two codings with I-point crossover by Tamaki has shown that the

redundant edge representation performs best even when compared against some vari­

ations of the redundant order representation. For problems of about 64 cities it was

necessary to enhance the implementation by including some local search when con­

structing a phenotype from the genotype. Lamarckian inheritance (see Section 2.1.1),

where the genotype is modified during reproduction to better represent the phenotype

produced from the redundant representation, was also used.
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4.3 Hybrid Genetic Algorithms for The Travelling

Salesperson Problem

The version of the TSP dealt with so far in this chapter is actually a more difficult

version of the TSP originally described in Chapter 3. It is called the blind travelling

salesperson problem, because only the length of the entire tour is used, not the lengths

of the individual edges [33, p17D]. Although GAs have been applied successfully to the

TSP, they have performed well on large problems only when the GA is enhanced with

other techniques [87]. In particular it has been shown that it is worthwhile to make

use of local search heuristics because these improve both the quality of solutions and

the speed with which they are produced [66, 87]. This section will cover a variety of

techniques which incorporate additional problem-specific knowledge into the GA.

4.3.1 Population Initialization

Population initialization has been discussed as a method to improve the speed and

results of a GA. In the case of the TSP, any of the tour construction heuristics in

Chapter 3 can be considered. An obvious requirement is that the heuristic should

be fast with respect to the results it produces. Often, initializing the population will

result in quicker performance of the GA, but this is not useful if the initialization itself

takes a long time in comparison to the time taken by the GA.

An important aspect of initializing the population is that it should contain a

good distribution of allele values to be used as building blocks [43]. In the extreme

case, it is useless to initialize the whole population with exactly the same tour. Many

of the algorithms in Chapter 3 produce the same or similar tours each time they are

run, which makes them unsuitable.

The nearest neighbour heuristic described in Section 3.7.1 produces different

tours depending on the starting city, and runs in O(n2). This can be improved on, as

described in Chapter 3, using candidate subgraphs. The question is - how different

will these tours be if the whole population is initialized using this method? A proba­

bilistic version of the nearest neighbour heuristic operates by selecting the closest city
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of a random sample of remaining cities (the sample size may be fixed). This heuristic

produces tours that are better than average tours, but when it is used to initialize

a population, the result is more varied than that of the ordinary nearest neighbour

heuristic. It also has the advantage ofrunning in O(n) [43]. Grefenstette compared the

performance of these two initialization methods, showing that while initializing with

the nearest neighbour produces very good results initially, the GA cannot produce

much improvement on these results because of the high allele loss [43]. The proba­

bilistic nearest neighbour heuristic produces better final results but takes some time to

converge. In contrast to this Chatterjee et al found that using the nearest neighbour

heuristic to initialize a population had no noticeable effect on convergence [15]. The

different results could be explained by their different structures - the Chatterjee et

al GA was entirely mutation based.

4.3.1.1 Heuristic Crossover

Heuristic crossover differs from all the other operators discussed here because it uses

the edge weight information during offspring construction to select cities [47]. In one

form of the heuristic crossover, a random city is selected and the two edges leaving that

city in the parents are considered and the shortest one selected. If a cycle would be

introduced by selecting the shortest edge then a random edge is chosen. This process

is continued until a tour is completed [47].

One criticism of this method is that it evaluates the worth of sections of the

tour before the offspring has been produced, which has no biological motivation. In­

troducing a greedy algorithm like this in a GA could limit the robustness of the GA

[30]. The real test, however, is in the results produced by methods like this.

A general class of heuristic crossover operators can be created using Algo­

rithm 10 [43].

Algorithm 10 (Heuristic Crossover)

Randomly select a starting city VI. Let i = 1.

WHILE i S n
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Consider the four cities adjacent to Vi in the parents. Define a probability

distribution over the four cities such that a visited city has probability zero.

Select a city z based on this distribution or choose z randomly from among

the unvisited cities if Vi is not adjacent to any unvisited cities in the parents.

Let Vi+! = z.

Let i = i + 1.

END WHILE

•
If el, e2, e3, e4 are the edges under consideration for selection, the probability Pi

that edge ei will be selected in the above algorithm can be calculated in a number of

ways [43]:

1. Assign probability 1 to the shortest edge. In this case we have the crossover

operator introduced at the beginning of the section.

2. Assign a uniform distribution across all edges. In this case the weights of edges

are ignored.

3. Bias the choice in favour of shortest edges:

1
Pi = 4 1

c "'- ­ei 6 J =1 ee-
J

where Cei is the weight of edge ei.

4. Combine the above two crossovers by adapting the probabilities so that proba­

bilities start off biased in favour of short edges, but as the population approaches

uniformity the distribution approaches that of a uniform distribution.

4.3.2 Local Improvement Operators

It has been observed that GAs can locate good areas of the search space quickly

but are not as good at local optimization [43]. Local search operators, like those
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studied in Chapter 3, can be applied to problems like the TSP. Results from other

researchers have shown that it is fruitful to spend much of the GA running time on

local optimization [66, 87].

Some researchers use local search operators in place of mutation [12]. Mutation

is generally credited with performing local optimization in the standard GA, among

other tasks. So it is natural that mutation can be replaced with a more efficient and

direct form oflocal optimization. Mutation is also intended to help the GA escape from

a local minimum. Replacing mutation with local optimization means that this function

is no longer performed by the mutation operator. However, crossover operators for

GAs solving the TSP generally result in some mutation (the introduction of foreign

edges) in offspring tours [91] so the loss is balanced to some extent.

Once a local optimization method has been selected it can be applied in a num­

ber of ways. Local optimization can be applied to all individuals so that the GA

effectively always operates on locally optimal strings [66]. In this case, the initial pop­

ulation and any subsequent offspring or mutated strings need to have the optimization

operator applied to them, and the local improvement will dominate the running time.

To save time, the operators can be applied only to certain generations [63]. The other

alternative is to apply the local improvement operator at a fixed or adaptive proba­

bility, as is done with mutation and crossover. In the next few sections different local

improvement operators are considered.

4.3.2.1 Node Insertion Local Improvement Operator

Node insertion is exactly as described in Section 3.8.1. The tour is improved by

checking that each node is in the best position in the tour. Since it takes time O(n2 )

to check all nodes it is an expensive operation. It is also not a very good local search

method as mentioned in Section 3.9.

4.3.2.2 r-Opt Local Improvement Operators

The r-opt improvement described in Section 3.8.4 can be applied to tours as a local

improvement operator. Generally the 2-opt is used [29, 63, 67] as it is cheapest. A
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single rather than complete 2-opt pass can be used to reduce the amount of time

required for local optimization [63, 67].

4.3.2.3 Generalized Lin-Kernighan r-opt

The adaptive r-opt procedure in the Lin-Kernighan heuristic (see Section 3.8.5) is a

powerful local search method. Some researchers have found it worthwhile to use this

rather expensive heuristic as a local search operator in a GA [87].

4.3.2.4 Repair Local Improvement Operator

The repair improvement operator is a selective form of other local improvement meth­

ods designed to reduce the running time r.equired. It is based on the observation that

the crossover operator often disrupts only some of the cities, as does mutation. If

a tour is locally optimal before crossover and mutation are applied, then it may be

possible to repair the tour by considering for local improvement only those cities that

have altered positions in the offspring [12, 63].

4.4 Summary

The travelling salesperson problem has been a popular problem on which to test new

ideas. Consequently, many researchers have applied the genetic algorithm to the TSP.

Interestingly, many different approaches have been attempted and many are successful.

This chapter has looked at the many techniques that can be applied. In the following

chapter some of these different techniques will be tested and compared against other

traditional methods to determine their effectiveness.



Chapter 5

Experimental Methodology and

Results

5.1 Introduction

The previous chapter looked at how GAs can be applied to the TSP. This chapter will

present an implementation of a TSP-solving GA and the results obtained from it. The

experiments that were run and the procedures used will also be described.

A large number of parameters are available in a GA and this is particularly

true of a GA designed to solve the TSP where there is less guidance for the choice

of some of the parameters because of the limited amount of theory in the area. By

their nature, TSP-solving GAs also require decisions about the choice of crossover and

local optimization function to use. This research attempts to investigate some of these

Issues.

Another aspect in this work is the comparison with other GA-based solutions

to the TSP. A number of results were reviewed concerning the TSP to compare the

results that had been obtained. In addition to the TSP solutions, results that can

be obtained with the traditional Lin-Kernighan TSP heuristics were also reviewed to

place GA performance in some context. The Lin-Kernighan algorithm, which was

mentioned in Chapter 3 as one of the best heuristics for the TSP, was contrasted

against the GA approach.

92
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5.2 Genetic Algorithm Implementation
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The GA used for the experiments was implemented in C++ using the GNU compiler

gcc1 and the GNU C++ library2. The programs assume that all distances are integers

and that the total tour distance can be represented in a 32-bit integer (a C long int

on most 32-bit platforms). This was for compatibility with TSPLIB [74], the library of·

TSP problems compiled and maintained by Reinelt. TSPLIB problems are all based

on integer distances.

All test problems were taken from TSPLIB. Internally all TSP problems were

represented as a weight-matrix. If necessary, TSPLIB problems were converted to this

form when they were loaded. This conversion was necessary for the problems that are

defined as points in some metric space, for example points in euc1idean space. The

advantage of loading this data into a weight-matrix, rather than doing the calculation,

as the distances are needed, is that the distance calculations can be expensive and so

it is preferable not to do the calculation for each pair of cities more than once.

The programs were designed to form a working environment which could be

used to test different genetic operators, insertion methods and local search methods

by providing different parameters. It was also made easy to add new operators, so

that a number of different strategies could be tried for each individual run. The GA

designed can only be used to solve TSPs but is modular enough to be modified into a

general GA framework.

The basic design requirement was flexibility to experiment easily with different

settings. For this reason a decision was taken to allow binding of particular choices

to happen at run time rather than at compile time. In particular, C++ virtual func­

tions were used. This provided for an environment in which different choices could

be tried without recompiling but resulted in some loss of speed because of the extra

expense of late binding and the additional code required to support options which

might not be used in a particular run. For this reason, running times could be re­

duced for a particular set of parameter settings if the code were optimized fOf only

those settings. However, as indicated above, this disadvantage was outweighed by the

19cc version 2.7.2.
2GNU C++ library version 2.7.1.
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flexibility achieved in the variety of experiments that could be performed.

5.2.1 Genetic Operators
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In most genetic algorithms crossover and mutation are treated as very different opera­

tors. First crossover is performed, and then this is followed by mutation on the result

of the crossover. This is how Goldberg's simple genetic algorithm is implemented [33].

This is illustrated in Figure 5.1. In this implementation the only difference between a

Parent

~ .1 Mutation 1 OffspringCrossover ..

/Parent

Figure 5.1: Standard Crossover followed by Mutation

crossover and a mutation operator is the number of strings on which they operate. A

mutation-like operator is defined as an operator that takes a single string as input and

produces a single string as output. A crossover-like operator is defined as an operator

that takes two strIngs as input and produces a single string as output. Apart from

the number of input strings these operators are treated in the same way. For each

recombination only one of these operators is applied.

There were two reasons for defining the crossover operator to return only one

offspring. Firstly, it is quite common in GA implementations for crossover operators

to return only a single offspring, for example GENITOR [82]. In particular, TSP

crossover operators such as the edge family and MPX return only a single offspring.

Secondly, it makes the design of a GA easier if mutation and crossover both insert

only one offspring back into the population because they can be treated in a similar

manner.

Each reproductive step involved the selection not only of parents but also of a

single operator to apply. The offspring produced was always the product of a single

operator unlike some GAs where crossover is applied, followed by mutation on the
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offspring. Because of the design, a combination of genetic operators could be applied

during a run, with selection based on various criteria, including fixed probabilities,

scaled probabilities based on run time, and adaptive probabilities based on perfor­

mance. This also meant that experiments could be performed using:

• only mutation,

• only crossover,

• both mutation and crossover, or

• multiple mutation and crossover operators.

5.2.2 Stopping Conditions

Unlike some heuristics, such as Lin-Kernighan, there is no clear stopping condition for

GAs when applied to TSPs. In all these experiments the GA was run for a fixed number

of recombinations that was decided on beforehand. The number of recombinations was

decided on by looking at other research, and by experimentation.

Alternative approaches, which were not used, are to stop the run when no more

progress is being made or to use known optimal, upper bound or lower bound values

obtained elsewhere. Although this type of stopping condition sounds like a cheat it

can be used practically to solve problems where an upper bound has been found for

the particular problem via some other method and a GA is being used to attempt to

find a better upper bound.

5.2.3 Parameter Values

Apart from the crossover, mutation and local improvement operators, various other

parameters were experimented with, such as population size. The full list of parameters

is shown in Table 5.1. The variable p represents the population size. This table lists

some of the parameter values using abbreviations which are explained below.
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Table 5.1: GA Parameters

Parameter Value

Generation Gap {x : x ~ 1/p and x :s; I}

Population Initialization NN, SNN, Random

Initial Population Improvement 2-0pt, none

Insert Method Uniform, Average, Worst, Exponentially

Local Improvement none,2-0pt

No Duplicates false, true

Operators PMX, Over, Edge, Edge-2, Edge-3, MPX

Population Size

Problem

Rank Selection false, true

Max Recombinations

Sample Method Universal, Roulette, Random

5.2.3.1 Generation Gap
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The generation gap G indicates what fraction of strings are replaced in each generation.

In a population of size p, then, Gp is the number of strings replaced each generation.

If G = 1 then the whole population is replaced each generation. If G < 1 then the GA

is a steady-state GA which was described in more detail in Section 2.7.3.

5.2.3.2 Insert Method

The insert method was the method used to replace the old strings with new ones for

steady-state GAs. Methods used include:

• uniform: replacing strings randomly;

• worst: replacing worst strings;

• average: replacing randomly but only in the worst half of the population;

• exponentially: replacing randomly with a probability that decreased exponen­

tially from best to worst strings.
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For more information on insertion see Section 2.7.3.

5.2.3.3 Handling of Duplicates
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Steady-state GAs actually insert the new offspring into the population. For this reason

it is possible to decide not to insert a fit individual. One reason for this choice may

be because it is too close, according to some measure, to existing individuals in the

population. In this implementation it was made possible to exclude the insertion of

duplicates into the population.

5.2.3.4 Crossover Operators

A number of crossover operators were experimented with. They are listed in Table 5.2.

These operators were fully described in Section 4.2.3. The operators edge-4, cycle

Table 5.2: Crossover Operators Used in Experiments

Abbreviation Description

Edge Edge Recombination

Edge-2 Edge-2 Recombination

Edge-3 Edge-3 Recombination

MPX Maximal Preservation Crossover

PMX Partially Mapped Crossover

Over Order Crossover

crossover and PMX are not listed in this table as they were not used in any experiments.

In a problem like the TSP it would be expected that crossovers that preserve adjacency

information would do better than those that work on position. For this reason, PMX

and cycle crossover were not examined in these experiments because they do not

preserve this information and have been shown to perform badly [62, 63, 69]. The

edge-4 recombination operator was also not used as this is an expensive operator

to implement and even the authors of this operator felt that the small performance

improvement over edge-3 might "suggest that the point of diminishing returns has

been reached" [27].
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The exclusion of PMX and edge-4 leaves MPX, the other edge family opera­

tors and order crossover. Order crossover and MPX have been implemented slightly

differently by different people. The term order crossover is used here to describe a

version of order crossover that has two explicit crossover points, see Section 4.2.3.1

for more details. The MPX operator used took an initial segment of one third of the

tour length, as has been suggested by [87] and found to perform better than a variable

length segment [63].

5.2.3.5 Mutation Operators

The mutation operators used in the experiments are listed in Table 5.3. These opera­

tors were described more fully in Section 4.2.4.

Table 5.3: Mutation Operators Used in Experiments

Abbreviation Description

Insert Remove node and reinsert

Invert Invert the path between two cities

Swap Swap two nodes

5.2.3.6 Rank Selection

Rather than using the actual fitness values directly for selection it can be advantageous

to use the ranking of the individual as an input into a function (normally linear) to

calculate the expected value. This idea was discussed in Section 2.7.7.

5.2.3.7 Sample Method

A number of different sampling algorithms were used as was described in Section 2.7.2.

The choices included:

• random: random sampling;

• roulette: roulette wheel sampling (stochastic with replacement);

• universal: stochastic universal sampling.
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Random sampling was included for interest only and is not normally a GA feature

since it removes the evolutionary selection pressure.

5.2.3.8 Hybrid Genetic Algorithms Techniques

A number of hybrid GA techniques were tried that made use of domain-specific knowl­

edge to try to improve the results or the speed at which they were obtained. Normally

the GA never makes use of any domain knowledge until the fitness of an individual is

evaluated. With these techniques domain information is used in other places to hope­

fully improve the performance and efficiency of the algorithm. There may sometimes

be a trade-off between these two factors because the hybrid techniques may result

in problems like premature convergence [43]. Techniques used included seeding the

population and using local search operators. Both of these will be discussed next.

5.2.3.8.1 Population Initialization In standard GAs, populations are normally

initialized randomly. In order to improve the performance, experiments were per­

formed in which the population was initialized using the nearest neighbour heuristic

(NN) (see Section 4.3.1) and a stochastic version of the nearest neighbour (SNN) [43].

The ideas behind this were explained in Section 4.3.1.

5.2.3.8.2 Local Improvement Operators Local improvement operators were

used to improve the result after genetic operations had been performed. In these

experiments the only local improvement tried was a restricted version of the 2-opt

heuristic as used by Lin and Kernighan (see Section 4.3.2). The restriction used

was that only a single pass of improvements was made for each application in order to

reduce the amount of time for the operator [12, 63]. The 2-opt heuristic normally makes

repeated passes through the tour looking for 2-opt moves until a pass is unsuccessful.

This restricted 2-opt is called I-pass of 2-opt [63] by some researchers. Any future

references to 2-opt should be taken to mean the restricted version described here,

unless otherwise stated.

The 2-opt heuristic was used in two different places. The 2-opt could be used

to improve the initial population or 2-opt could be performed on each offspring as it
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was produced but before it was decided whether it would be inserted back into the

population. In essence the GA was then operating on a set of local minima, as defined

by the 2-opt function.

The advantage of using candidate subgraphs was discussed in Section 3.7.1.1. A

nearest neighbour candidate subgraph was used to speed up performance by limiting

the size of the graph to be examined during a 2-opt local improvement step. The size

of the subgraph was limited by the size of the neighbourhood that was chosen. This

neighbourhood size was one of the parameters that could be adjusted but was kept to

a value of 10 as used in [75].

5.3 Experiments and Results

To perform the experiments, a number of GA parameters had to be selected. Also,

problems had to be selected on which the GA would be run. These two choices

relate to each other because, for example, some hybrid GA techniques such as 2-opt

improvements can be performed only on symmetric TSPs and geometric techniques

may require a metric space or perform efficiently only on a metric or euclidean space.

As has been stated before, the scope of this research includes all symmetric TSPs,

which in terms of implementation means that any TSP that can be represented using

a symmetrical weight matrix can be handled.

5.3.1 Experimental Methodology

There are many different parameters that can be considered when designing a partic­

ular experiment. If an attempt is made to try every variation, the number of trials

required and the running time quickly become explosive. However, it is still interesting

to look at different combinations of parameters as there can be interaction between

them.

All the experiments were run with the implemented C++ software that was

described in Section 5.2 under Solaris-x86 and Linux Unix platforms on a Pentium­

120 with 16M ram. All the problems used were from the TSPLIB collection of problems
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[74].

The experiments were divided into the following groups:
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• The aim of the first group of experiments was to decide on the sample method

and the generation gap setting. It was assumed that the choices made here

would be independent of the selection of other parameters. Once the best values

for these parameters were chosen they were fixed and not varied throughout the

second group of experiments.

• The aim of the second group of experiments was to investigate the performance

and efficiency of the GA applied to the TSP. The parameters to be investigated

were: mutation and crossover operators, population size, rank selection, insertion

methods, handling of duplicates, population seeding and 2-opt local search

5.3.2 Group One: Generation Gap and Sample Method Ex­

periments

The aim of the first group of experiments was to select the sample method and gen­

eration gap for the second group. The choices for sample method and generation gap

have been covered by other researchers [5, 25] for other problem domains so surprising

results were not expected. Only two different problems were used, shown in Table 5.4.

These are both symmetric TSPs taken from TSPLIB. The optimum value and author

are given as provided by [75].

5.3.2.1 Parameter Settings

All the parameter settings for this experiment are shown in Table 5.5. Three different

generation gaps were tried along with three different sampling methods - stochastic

with replacement (roulette wheel) and stochastic universal sampling were both tried

along with random sampling where fitness information is not used at all for comparison.

The population size was itself parameterized using the number of cities in the problem

under investigation, represented by the variable n. Each experiment was repeated ten

times.
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It was expected that the choice of a smaller generation gap would result in a

more opportunistic GA with faster convergence [21]. Of the three different sampling

methods, stochastic universal sampling should theoretically be best, offering more

consistent results on a non-steady state GA [5]. With smaller generation gap values

it would be expected that this effect would be less marked. Note that no hybrid

techniques, such as local improvement operators, were used in order to avoid hiding

the GA-specific convergence characteristics. The crossover operator MPX was selected

because it is generally found to perform well in many other studies [27, 40, 63].

Table 5.4: Problem Set Group One

Problem Size Type Optimal Problem Author

pr76 76 Euclidean 108159 Padberg and Rinaldi

lin318 318 Euclidean 42090 Lin and Kernighan

Table 5.5: Parameters Group One

Parameter Value

Generation Gap lip, 0.5p, 1p

Population Initialization Random

Initial Population Improvement None

Insert Method Average
,

Local Improvement None

No Duplicates True

Operators MPX

Population Size n

Problem pr76, lin318

Rank Selection True

Max Recombinations 20000

Sample Method Universal, Roulette, Random
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5.3.2.2 Results For Generation Gap and Sample Method Experiments

The results for the experiments are shown in Table 5.6. Each row represents the

average of the ten samples that were run for each parameter set.

Table 5.6: Stage 1 Results

Problem Generation Gap(G) Sample Method Tour Length

pr76 lip Universal 164787.7

pr76 lip Roulette 165655.9

pr76 lip Random 159963.8

pr76 0.5p Universal 162813.9

pr76 0.5p Roulette 166623.0

pr76 0.5p Random 182056.2

pr76 p Universal 170657.2

pr76 p Roulette 169282.9

pr76 p Random 218623.6

lin318 lip Universal 372939.3

lin318 lip Roulette 369832.4

lin318 lip Random 429188.0

lin318 0.5p Universal 408308.0

lin318 0.5p Roulette 408707.1

lin318 0.5p Random 447876.2
1

lin318 p Universal 433100.9

lin318 p Roulette 434352.7

lin318 p Random 468365.3

The effect of the generation gap has resulted in quite different convergence times,

which can be seen in Table 5.6 and even more clearly in Figure 5.2 where the lin318

universal results have been plotted for different generation gaps G. The tour length

has been plotted against the number of recombinations3. The convergence curves for

3Because some of these results are for generation gaps of less than one, all graphs will be plotted
against recombinations and not against generations so that results can be compared.
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universal and roulette sampling are plotted in Figure 5.3 for lin318 with generation

gap G = lip. There is not much difference between universal and roulette methods,

though the roulette method does edge out the universal method. There is, however,

a larger difference between universal and roulette for problem pr76 as can be seen in

Table 5.6.
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Figure 5.2: Generation Gap Comparison.

5.3.2.3 Conclusion For Generation Gap and Sample Method Experimel}ts

The results of these first experiments show the difference in convergence characteris­

tics with a different generation gap. In Figure 5.2 the GA with G = lip converges

substantially more quickly. The experiments proceeded to only 20000 recombinations

so it cannot be conjectured how the generation gap might affect convergence over a

longer experiment run where problems like premature convergence could come into

effect. For this number of generations and other parameters the smaller generation

gap is an advantage.

The other parameter chosen for this experiment, sample method, has not shown

a clear preference for the use of either roulette or universal selection according to the

results in Figure 5.3. Clearly, however, the results do show that having a selective
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Figure 5.3: Sample Comparison.

pressure is important to the performance of this GA because of the marked difference

in the final result for random selection and the other two methods.

These experiments suggest that a steady state model should be used with a

generation gap of lip because of the better performance obtained from this setting.

The choice between the sampling method of universal or roulette is not clear from

the experiments performed here but since sampling methods become more similar

as G approaches lip anyway, the choice of sampling method is not as important.

The decision of sampling method can be made on other criteria like efficiency, where

universal sampling is better because it requires fewer cycles through the population

[5] .

5.3.3 Group Two Experiments

The second group of experiments consisted of a combination of a number of parameters

across a number of problems. The list of problems is given in Table 5.7. These are

all symmetric TSPs taken from TSPLIB covering a number of different problem areas.

The optimum values are those provided by [75]. They were selected to include a variety
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Table 5.7: Problem Set Group Two

Problem Size Type Optimal Problem Author

pr76 76 Euclidean 108159 Padberg and Rinaldi

rd100 100 Euclidean 7910 Reinelt

gr120 120 Matrix 6942 Groetschel

lin318 318 Euclidean 42090 Lin and Kernighan

rd400 400 Euclidean 15281 Reinelt
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of different sized problems as well as different types of problem - the problems rd100

and rd400 are randomly generated problems. The type field in the table indicates how

the weights were calculated. A type of 'matrix' indicates that the weight-matrix was

provided directly.

The total set of parameters that was experimented with is shown in Table 5.8.

The generation gap was chosen as lip as suggested by the previous experiments. The

choice of uniform sampling was based more on theory [5] then on the previous results

because there was no clear indication of the superiority of either in these experiments.

The motivation for the choice of other parameter values will be described in the next

few subsections.

5.3.3.1 Population Sizing

It seems important to select population size correctly, as too small a population will

not contain enough schemata, but too large a population will converge too slowly

[42]. A number of results for population sizing exist for non-permutation GAs, in

particular on binary alphabets [34]. Great population size variations have been used

on the same problems. For example, a size 50 population by Eshelman [29] and a size

2000 population by Mathias [63] were both applied to the Padberg 532-city4 with best

results being 27710 and 29171 respectively (the optimum is 27686 [75]). These two GAs

have significantly different structures - in particular Eshelman used a non-traditional

GA, eRe, with restarts.

4Problem att532 in TSPLIB.
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Table 5.8: Parameters Group Two

Parameter Value

Generation Gap lip

Population Initialization Random, SNN, NN

Initial Population Improvement 2-0pt, None

Insert Method Uniform, Average, Worst, Expo-
nentially

Local Improvement 2-0pt, None

No Duplicates True, False

Operators Swap, Insert, Invert, Order,
Edge, Edge-2, Edge-3, MPX

Population Size n/2, n * 2, n

Problem pr76, rd100, gr120, lin318, rd400

Rank Selection True, False

Max Recombinations 20000

Sample Method Universal
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A complete graph on n cities has (n2 - n)/2 edges. Each tour in the population

contains only n edges, so assuming each individual contains a unique set of edges, a

population of size at least r(n - 1) /21 is required for the population to contain at least

one copy of each edge [63]. The construction of such a minimal population requires

finding Hamiltonian cycles in incomplete graphs, which is itself an NP-complete prob­

lem [63], so it would not be viable to construct a minimal population containing all

edges. So it would seem that larger populations then n/2 should be used. The sug­

gestion in [63] is that population size should be at least O(n) and in some cases even

O(n2). It has, however, been shown that depending on the GA implementation, it is

possible to work with smaller populations. For example, if many restarts are used, it

is possible to get good results with a smaller population [29]. It can also be argued

that for the majority of problems many edges can be eliminated early on, as is done

when using candidate sets [75].

The population sizes n/2, nand 2n were tried in this experiment. Large popu­

lationi'; of O(n2
) were not considered as they become too large for the size of problem

under consideration here.

5.3.3.2 Running the Experiments

In order to test the interaction between these different parameters every combination

of parameter values in Table 5.8 was tried, giving 23040 experiments, each of which

was repeated five times.

5.3.3.3 Results For the Group Two Experiments

In presenting the results of the experiments, tables of percentages have been used to

indicate the success of a particular parameter value. These tables were produced by

looking at a table of results averaged over five runs for each problem and selecting

averaged results whose tour values were within 0.5% of the top-ranked result5 . Each

parameter in turn was examined and a count was made of the number of times a

5A variable number were selected in this way to cater for problems like rdlOO and gr120 where
many good solutions were obtained for many different parameter settings. For problems such as these
it would be biased to select only a fixed number of good results.
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parameter value choice performed better than all other parameter value choices with

all other parameters kept equal.

5.3.3.3.1 Population Size The performance of the various population sizes is

shown in Table 5.9. The value for the size of the population is given as a factor of

problem size. The most marked feature is the difference in performance between the

large and small city problems. For the larger problems lin318 and rd400 the smaller

populations have dominated the results.

Table 5.9: Population Size Performance

Value pr76 rd100 gr120 lin318 rd400

0.5 32.0 14.5 30.9 94.4 100.0

1.0 33.8 39.1 30.4 5.6 0.0

2.0 34.2 46.4 38.7 0.0 0.0

5.3.3.3.2 Genetic Operators Table 5.10 shows the performance of the various

operators. Here both crossover operators (edge, edge-2, edge-3, order and MPX) and

mutation operators (insert, invert and swap) as compared. As with the population

size results the importance of the operators is not very marked when dealing with easy

problems like pr76 but on the larger, more difficult problems like lin318 the importance

of a good operator shows up.

5.3.3.3.3 Population Initialization Table 5.11 shows the performance of dif­

ferent population seeding techniques. On the larger problems both the stochastic

nearest neighbour and the nearest neighbour initialization have performed well. For

the smaller problems the choice of this parameter does not seem to be that important

for the quality of the result.

5.3.3.3.4 Initial Population Improvement Table 5.12 shows the performance

of population improvement methods that are applied right after the population has

been initialized. Again, for the smaller problems, there is no clear trend visible. The
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Table 5.10: Operators Performance

Value pr76 rdl00 gr120 lin318 rd400

edge 2.4 0.8 0.5 0.0 0.0

edge-2 6.6 9.4 4.0 0.0 0.0

edge-3 48.3 7.1 29.1 35.7 0.0

insert 13.2 18.9 10.6 0.0 7.1

invert 14.6 28.3 13.1 0.0 7.1

mpx 5.9 7.9 18.6 35.7 78.6

order 4.2 13.4 21.1 28.6 7.1

swap 4.9 14.2 3.0 0.0 0.0

Table 5.11: Population Initialization Performance

Value pr76 rdl00 gr120 lin318 rd400

nn 27.4 30.1 19.5 50.0 58.3

random 41.2 46.8 57.8 0.0 0.0

snn 31.4 23.1 22.8 50.0 41.7
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larger problems do seem to indicate a preference, but as for the population initializa­

tion, the preferences do not match.

Table 5.12: Initial Population Improvement Performance

Value pr76 rdl00 gr120 lin318 rd400

20pt 51.3 43.9 48.4 33.3 81.8

none 48.7 56.1 51.6 66.7 18.2

5.3.3.3.5 Insertion Method The performance of different insertion methods is

shown in Table 5.13. Very clearly the uniform insertion method, which is just random

insertion, shows up badly. This method has provided the contrast for which it was

included in the experiments.

Table 5.13: Insert Method Performance

Value pr76 rdl00 gr120 lin318 rd400

average 36.1 29.3 34.9 66.7 27.3

exp 25.4 41.0 41.9 6.7 36.4

uniform 14.6 0.0 0.3 0.0 0.0

worst 23.9 29.8 22.8 26.7 36.4

5.3.3.3.6 Duplicate Handling Table 5.14 shows the performance difference when

duplicates are not inserted into the population. For once there is a clear indication

that use of duplicate elimination is beneficial for both small and large problems.

Table 5.14: No Duplicates Performance

Value pr76 rdlOO gr120 lin318 rd400

False 30.0 21.2 29.9 0.0 35.7

True 70.0 78.8 70.1 100.0 64.3



Chapter 5. Experimental Methodology and Results 112

5.3.3.3.7 Rank Selection Table 5.15 illustrates the GA performance with and

without rank based selection. The indicators are that rank based selection is beneficial

- at least on the harder problems. The difference between the performance of rd400

and lin318 again demonstrates the different structure of these problems.

Table 5.15: Rank Selection Performance

Value pr76 rdl00 gr120 lin318 rd400

False 41.4 58.7 54.5 40.0 20.0

True 58.6 41.3 45.5 60.0 80.0

5.3.3.3.8 Local Improvement The performance of the GA with the 2-0pt local

improvement operators was always better than without local improvement operators,

scoring 100% across all problems. The use of the 2-0pt improvement is clearly a

requirement for best performance.

5.3.3.4 Conclusion For Group Two Results

The GA is a sufficiently robust method to deal with some bad design decisions. The

results given show that when a problem is relatively easy, say less than 150 cities,

the selection of the parameters is not that important and even bad parameters will

produce some good results. On larger problems that are consequently more difficult

the selection of good parameters becomes more crucial. This is clearly seen for the

rd400 and lin318 problems.

The results for population size suggest that populations of even less than lip

may perform even better. They could also be viewed as suggesting that this GA is

converging prematurely and so not making enough use of the extra members of the

population. Both these options should be investigated with more experiments.
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5.4 Comparison With Results by Other Re­

searchers

5.4.1 A Framework for the Comparison and Own Results

The application of GAs to TSPs has resulted in a number of different approaches,

perhaps because of the maturity of the TSP as a problem and the very nature of the

GA which can be implemented in so many different ways. All the results reported

here, with the exception of those of Chatterjee et al [15] make use of local search

techniques to improve the results produced. Even Chatterjee et al has used other

hybrid techniques like nearest neighbour search.

For the comparison the problems in Table 5.16 were used. The type ATT refers

to the a pseudo-Euclidean described in TSPLIB.

Table 5.16: Comparison Problem Set

Problem Size Type Optimal Problem Author

pr76 76 Euclidean 108159 Padberg and Rinaldi

rd100 100 Euclidean 7910 Reinelt

gr120 120 Matrix 6942 Groetschel

gr202 202 Geospherical 40160 Groetschel

lin318 318 Euclidean 42090 Lin and Kernighan

rd400 400 Euclidean 15281 Reinelt

pcb442 442 Euclidean 50778 Groetschel, Juenger and Reinelt

att532 532 ATT 27686 Padberg and Rinaldi

The problems were selected based on what other researchers had studied. In

particular att532 has been used as a benchmark problem by many researchers.

The results which were compared were the averages of 10 runs of the GA im­

plementation described in this chapter. The parameters selected were based on the

success of the various parameters in Section 5.3.3 and are described in Table 5.17. In

addition the smaller problems (pr76, rd100, gr120, gr202) were run to 30000 recombi­

nations with a nearest neighbour subgraph of neighbourhood 10. The larger problems
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(lin3l8, rd400, pcb442, att532) were run to 50000 with a nearest neighbour subgraph

of neighbourhood 20. These changes were made due to the results in the previous

experiment which showed there is a jump in complexity between these two sizes. The

operators used were both MPX and swap with a bias of selecting MPX 100 times

more than swap. The results of the run are shown in the Table 5.18. The column

Table 5.17: Comparison Problem Parameters

Parameter Value

Generation Gap lip

Population Initialization SNN

Initial Population Improvement None

Insert Method Average

Local Improvement 2-0pt

No Duplicates True

Operators mpx(lOO) ,swap

Population Size nl3

Problem pr76, rdIOO, grI20, gr202,
lin3l8, rd400, pcb442,
att532

Rank Selection True

Sample Method Universal

Recomb contains the number of recombinations required to get the best results and

Time gives the number of seconds taken at that point. The field % Deviation is

the deviation from the optimum value. The field Total Time contains the number

of seconds to run to completion - complete all recombinations - even if the GA

converged early as was the case with pr76.

5.4.2 Review of Relevant Results by Other .Researchers

Early attempts by other researchers to solve the TSP using GAs were o~ small problem

sizes of around 10 [36] and 30 cities [47] and not all results were good. Since then it
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Table 5.18: Comparative Results
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Problem Tour Length Recomb Time % Deviation Total Time

pr76.tsp 108159 4753.9 1.75 0.00 30.71

rd100.tsp 7966.5 6295.2 22.76 0.71 50.37

grl20.tsp 6959.5 11524 22.66 0.25 52.12

gr202.tsp 40837 9247.6 35.77 1.69 86.84

lin318.tsp 42461.2 37610.2 403.16 1.03 739.68

rd400.tsp 15474.4 39937.4 820.07 1.27 1083.44

pcb442.tsp 51529.2 44556.7 964.76 1.48 1077.39

att532.tsp 28259.5 43312.7 1150.98 2.07 1167.71

has been shown by many researchers that high quality results can be achieved using

GAs and the speed even compares favourably with other methods [87].

5.4.2.1 Chatterjee et al

Chatterjee et al [15] used a GA with no crossover operation. The lack of a crossover

operator is compensated for by the use of multiple mutation operators. The start

population was initialized using a nearest neighbour search which was found not to

adversely effect convergence but to greatly reduce the running time. No local improve­

ment operators were used. All programs were implemented on a Vax 8600 running

VMS using Pascal. Some results for Chatterjee are listed in Table 5.19. Interestingly,

they claim to have improved on the result for gr666 - finding 27 and 50 improved

optimal tours for population sizes of 2000 and 666 respectively. This does not seem

possible as the results in TSPLIB must be proved optimal. This means there is an

error in their work or in TSPLIB. They also need very few generations to produce

the results for this particular problem, in contrast to the other results, suggesting a

possible coding problem.
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Table 5.19: Summary of Chatterjee et al Rresults

Problem Population Generations Time % Deviation

gr202 2000 400000 4h 2.59

pcb442 2000 320000 8h 3.5

gr666 2000 24000 12h <0

gr202 202 106 4h 3.25

pcb442 442 850000 8h 3.21

gr666 666 85000 12h <0
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5.4.2.2 Mathias and Whitley

Mathias and Whitley [63] used the GA program GENITOR using a replace worst,

linear ranking and a population of 5000. A 300000 generation run was executed with

pass of 2-opt every 16000 generations. The average result for att532 was 29294 which

is a 5.8% deviation from the optimum.

5.4.2.3 Ulder et al

Ulder et al set out to compare the performance of GA TSP with other methods

[87]. In order to obtain the efficiency they required, they used local search. Time was

fixed for each problem and different methods, including simulated annealing, threshold

accepting, multiple 2-opt runs, multiple Lin-Kernighan runs, GA with 2-opt local

improvement and GA with Lin-Kernighan local improvement, were tried. A summary

of some of their results for the GA with 2-opt local improvement is shown in Table 5.20

and the results for the GA with Lin-Kernighan improvement is shown in Table 5.21.

The labelling for the problems has been changed, in particular att532 was labelled as

gro532. The time and deviations were calculated from an average of five runs on a Vax

8650 under VMS 5.1. For the 2-opt GA the populations were between 14 and 56 while

the populations for the Lin-Kernighan GA were between 8 and 10. The populations

were kept small in order that the times taken met the requirements of the experiment.

The results for the Lin-Kernighan GA were the best of all the results demon­

strating that using the GA as a method for multiple runs would be more effective,
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Table 5.20: Summary of Ulder et al Results For 2-0pt

Problem Generations Time % Deviation

gr120 216 86 1.42

lin318 390 1600 2.02

att532 954 8600 2.99

gr666 1120 17000 3.45

Table 5.21: Summary of Ulder et al Results For Lin-Kernighan

Problem Generations Time % Deviation

gr120 48 86 0.05

lin318 100 1600 0.13

att532 120 8600 0.17

gr666 100 17000 0.36
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as information is preserved between runs. The difference between the 2-opt and Lin­

Kernighan GA performance shows that it may be better to use a more expensive but

more powerful local search operator even when time is restricted.

5.4.2.4 Miihlenbein and Gorges-Schleuter

Miihlenbein and Gorges-Schleuter have done a lot of work with multiprocessor GA

systems and obtained some good results for the TSP att532 [40, 66, 67]. Using a

64-processor T800 Transputer network an average result over 15 runs of 27748 was

obtained (a deviation of only 0.22%) [40]. The running time was three hours.

5.4.2.5 Eshelman

Eshelman has used a non-traditional GA called CRC which has the following features

[29]:

• There is no bias on selection; the whole population is paired for mating.

• Parents and offspring compete to get into the next generation.
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• Uniform crossover, or MPX in the case of a permutation problem like the TSP,

is used rather than two-point crossover.

• Incest is avoided by not mating similar individuals.

• No mutation is performed during the recombination step - rather the whole

GA is restarted after convergence using the previous population to seed the next

GA run.

Using this GA he was able with a population of 50 and four restarts to obtain an

average tour length of 27747 for TSP att532 (a deviation of 0.22%). This was obtained,

on average, in two and a half hours on a SPARCstation 1+.

5.4.3 Comparison of Genetic Algorithm Results

An extremely long running time was required for Chatterjee's experiments, but this

researcher did not make use of any local improvement operators. The GA implemented

as part of this dissertation improved on the results of some researchers such as Chat­

terjee and Mathias. The results were also very favourable in terms of time taken but no

direct comparison can be made due to the different environments and processors. The

results of Ulder et al were improved on when compared to their 2-opt results but not

when compared to their Lin-Kernighan results demonstrating again the importance of

local search. The performance of Miihlenbein and Gorges-Schleuter's multiprocessor

system was not beaten but this is hardly surprising given the number of processors

used by them. Eshelman's CRC GA also performed better.

5.5 A Note on the Comparison of Genetic Algo­

rithms and Other Methods for the Solution of

the Thavelling Salesperson Problem

This section contains a superficial comparison of the results obtained for the GA with

the results of other more traditional methods for solving the TSP. When comparing
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the TSP heuristic algorithms, the quality of the resulting solution is not the only

important attribute of the algorithm that should be considered. One of the first

reasons for selecting a heuristic approach is because perfect solutions are not possible

in the time available, thus the running time of the algorithm is important. Genetic

algorithms tend to be computationally expensive, so completely ignoring the speed

with which a result is produced will give an unfair bias towards the benefit of the GA.

For this reason both speed and accuracy have been compared.

It is recognized that some factors should also be considered when comparing

heuristic algorithms including [39]:

• ease of implementation

• flexibility

• simplicity

If an algorithm is easy to implement it will be used more often and may also

make more efficient use of CPU time. If a simpler algorithm produces results that

are almost as good as a more complex algorithm it may well be used more often. For

example, simplifications of the Lin-Kernighan have been suggested in order to produce

an algorithm that is simpler and yet produces results close to those of Lin-Kernighan

[61]. An algorithm is flexible if it can handle related problems. For example, an

algorithm that can solve only euclidean TSPs is less flexible than an algorithm which

can solve asymmetric TSPs. Simple algorithms are easier to understand and analyse

and may also be easier to modify for other problem variations.

Genetic algorithms can be implemented to solve the TSP very easily and can

definitely be implemented more simply than problems like the Lin-Kernighan, which is

rather complex [61]. A GA environment can also be easily adapted to other problems

that are similar to the TSP. The idea behind the GA is simple although a particular

implementation can become complex.

Having mentioned these other factors the rest of this comparison is based on the

speed and the accuracy of the GA implemented here compared with good traditional

TSP heuristics.
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The GA implementation described was compared against the Lin-Kernighan

heuristic using results obtained by [75]. For the purposes of this comparison the

results in Table 5.18 were used.

In Table 5.22 are some of the results obtained for the given test problems (shown

as percentage deviations). The running time has not been shown on the table as it

was not possible to obtain accurate readings for problems of this size which completed

rather quickly using the optimization techniques used by Reinelt. For problems of 800

or fewer nodes the maximum running time was approximately 166s on a SPARCstation

10/20.

Table 5.22: Summary of Reinelt's Results For Lin-Kernighan

Problem Random Nearest N. Savings Christofides

lin318 1.54 2.55 2.42 0.69

pcb442 2.12 1.39 1.30 1.11

Reinelt considers a number of variants depending on the amount of back track­

ing done. For each variant different starting populations were considered - random,

nearest neighbour, savings and Christofides. The results produced by the Christofides

start were both the best achieved and the slowest.

The results in Table 5.18 are comparable with the results produced by Reinelt

on some of the starts but Christofides always improves on the results developed here.

On speed there is no comparison for the larger problems where the Lin-Kernighan

produces results very quickly. The results by Dlder et al did improve on the best

Lin-Kernighan results for lin318 but that is hardly surprising when it is considered

that Dlder et alused Lin-Kernighan as a local improvement operator in their GA.

5.6 Summary

A GA was implemented and experiments run to determine good parameter values.

This GA was then compared against those of other researchers with favourable results

being shown but there is clearly room for improvement. In particular, a stronger local
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improvement operator would seem beneficial when the results from Dlder et al are

considered. Some of the results were also briefly compared with the Lin-Kernighan

algorithm. This showed that in terms of efficiency the Lin-Kernighan is very good and

hard to beat on this score.
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Conclusion

The aim of this research was to investigate the application of genetic algorithms to

the travelling salesperson problem. This aim was fulfilled by a review of the current

literature on genetic algorithms and the travelling salesperson problem, the implemen­

tation of a genetic algorithm for the solution of the travelling salesperson problem, and

a comparison of these results with results obtained by other authors using the genetic

algorithm and, briefly, with results obtained for the Lin-Kernighan heuristic.

The genetic algorithm was discussed in Chapter 2. Genetic algorithms have

developed as part of the fast-growing research areas involving the application of nat­

ural phenomena to solve problems. The genetic algorithm is a robust, general search

strategy that has the flexibility to be applied to almost any problem area. Genetic al­

gorithms operate on a population of solutions and require very little information about

the problem domain to be usable. This allows them to be applied to problems which

have complex constraints. Genetic algorithms attempt to balance the exploitation of

discovered information with further exploration of the search space. This makes them

good at avoiding solutions that are only locally optimal which is particularly beneficial

in multimodal search spaces like that of the travelling salesperson problem.

The travelling salesperson problem was examined in Chapter 3. The travelling

salesperson problem is a problem of great theoretical importance which was partially

responsible for the development of the field of combinatorial optimization and the

theory of NP-completeness. It can also be related to a wide range of real world appli-

122



Chapter 6. Conclusion 123

cations. The study of the travelling salesperson problem is therefore important both

theoretically and practically. The existence of closely related but far easier problems,

such as the minimum weight spanning tree problem, make the travelling salesperson

problem all the more fascinating. Although optimal solutions may be almost impossi­

ble to find for large problems, there has been considerable progress in the development

of fast heuristic algorithms in the last 25 years, in particular the Lin-Kernighan algo­

rithm.

Chapter 4 re-examined the genetic algorithm as a possible heuristic algorithm

for solving the travelling salesperson problem. The first attempts at using genetic

algorithms to solve the travelling salesperson problem, which were made in the early

80's, were rather discouraging. Subsequently there has been substantial progress in

this area. The improvement was largely due to changes made to the basic genetic

algorithm. The tours were represented using a non-binary alphabet. Rather than at­

tempting an unnatural tour encoding so that standard 1-point crossover could be used,

special crossover operators were designed that could manipulate the tour encodings

without producing invalid tours. Hybrid domain-dependent features, including local

optimization and population initialization, were added to improve the accuracy of the

results and the speed with which they were produced.

Chapter 5 described the implementation of a genetic algorithm for solving trav­

elling salesperson problems and the experimental results produced. The requirements

of the experiments were as follows:

• to implement a genetic algorithm to solve the travelling salesperson problem;

• to examine a number of genetic algorithm parameters to determine their impor­

tance to the genetic algorithm solution of the travelling salesperson problem;

• to compare the results obtained with those of other researchers;

• to briefly compare the results obtained and those of the other researchers with

the Lin-Kernighan heuristic.

A flexible genetic algorithm framework was developed in C++. This framework was

designed to allow a number of different parameters to be investigated. A combina-
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tion of genetic algorithm parameters was investigated, including population size, rank

selection, crossover operator, mutation operator, insertion method, handling of dupli­

cates and sampling methods. Hybrid techniques such as local search and non-random

population initialization were also tried. The wide range of possibilities resulted in

over 20000 experiments being performed. The use of hybrid techniques was supported

by the wide use of these techniques by other researchers. Many of these different com­

binations were tried to avoid parameters that were only successful in a single context.

Part of the reason for selecting the problems was to make it possible to compare some

results with those of other researchers. The results were encouraging as the imple­

mentation produced better results than many of the results produced by them. In

examining the importance of the genetic algorithm parameters, it was seen that while

good solutions for easier problems can be reached with a variety of parameter settings,

parameter values quickly become crucial as problem size increases. Since exponential

time explosion is the major problem with the travelling salesperson problem this is

an expected result. One result that stood out was that as problem size increased

the smaller population sizes were more successful. This suggests that this genetic al­

gorithm implementation was not making good use of the larger populations, either

because of premature convergence or because the run was stopped before the larger

population could be useful. The experiment was designed so that cases like this could

be detected. It would be a good idea to experiment with even smaller populations to

see if the trend continues.

The approaches taken by other researchers made changes to the traditional

genetic algorithm in order to produce good results. These changes included use of dis­

tributed multiple processors, population restarts, use of a multi-cut mutation operator

without any crossover, very small populations and in other cases big populations. All

the researchers found it necessary to use hybrid techniques and all but one used local

improvement operators of 2-opt or even Lin-Kernighan. These factors suggest that

the basic genetic algorithm is not on its own well-suited to solving the travelling sales­

person problem. On the other hand it demonstrates how the genetic algorithm can

be used as a driver to control multiple runs of an algorithm like Lin-Kernighan when

better results are required than can be obtained with a single run of Lin-Kernighan.
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This is time-consuming but has the advantage of being able to be run on multiple

processor systems.

The Lin-Kernighan algorithm produces very good results in a short space of

time. The Lin-Kernighan implementation by Reinelt for euclidean travelling salesper­

son problems is particularly efficient [75, p123]. None of the genetic algorithm solutions

could compete with it in terms of speed. Unfortunately there was not much overlap

between problems but the percentage deviation on similar problems shows that some

of the genetic algorithm results are better, although this is at the expense of being at

the very least an order of magnitude slower.

There is still plenty of research that can be performed into the application of

genetic algorithms to the travelling salesperson problem. This is clear from the wide

variety of approaches to the problem that have been successful. It is worth investigat­

ing if some of these techniques combine well to produce even better performance. It is

also possible to widen the scope by examining the application of genetic algorithms to

more difficult combinatorial optimization problems, in particular, generalizations or re­

strictions on the travelling salesperson problem which make it unsolvable by heuristics

like the Lin-Kernighan. This is where the advantages of genetic algorithms can best be

demonstrated - the ability to handle complicated constraints without complicating

the algorithm.

The travelling salesperson problem is an important representative of combi­

natorial optimization problems. The results of this research demonstrate that, with

suitable modifications to the genetic algorithm's traditional form and parameters, it

is possible to significantly improve its performance on such problems. However, the

comparison of our results and those of other researchers with different approaches to

the travelling salesperson problem indicate that there can be no complacency about

the performance of genetic algorithms on such problems. In conclusion, due to the

general importance of genetic algorithms for the solving of other problems the explo­

ration of the travelling salesperson problem through this approach provides insight

into these problems. The results in this dissertation and reviewed research indicate

that if sufficient running time is allowed very good results can be obtained using the

genetic algorithm on the travelling salesperson problem.
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