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Abstract 

Drought is a severe natural disaster which occurs across wide spatial boundaries and 

inconsistent temporal patterns. The slow onset and gradual formation of drought highlights the 

importance of early detection, allowing for appropriate time in implementing relief and 

mitigation procedures. The vague extensiveness of drought raises concern on the ability for site 

specific ground based weather stations to assess the full extent of a drought occurrence. This 

problem is further compounded in developing nations, such as South Africa, where weather 

stations suffer from missing historical records and are poorly distributed across harsh 

inaccessible rural areas. Remote sensing seeks to resolve this problem through the high 

resolution, near real-time and multitemporal spatial coverage it possesses.  

Based on that premise, this study sought to evaluate the evolution of remote sensing on drought 

monitoring and subsequently conduct a remote sensing drought assessment, to determine the 

accuracy and potential for future drought occurrences.  

The scope of this study was to firstly to evaluate the evolution and progress of remoting sensing 

approaches in drought monitoring, which was completed as a systematic literature review. 

Secondly, a drought assessment was conducted in KwaZulu-Natal, South Africa. Focusing on 

the ability of the Normalized Difference Vegetation Index (NDVI) to observe any trends of 

vegetation drought over the past 16 years, confirmed through rainfall data. 

Findings from this study concluded the following. Firstly, there has been substantial growth in 

research papers pertaining to remote sensing on drought; particularly over the past decade. 

Secondly, developing nations have limited resources available and should consider the 

advantages possessed by remote sensing. Thirdly, remote sensing results complimented climate 

conditions recorded over the past 16 years. Fourthly, future studies should look to include 

additional indices to strengthen the broadband NDVI, which was affected by the saturation of 

vegetation biomass.  
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CHAPTER 1 

General Introduction 

Drought affects more people than any other natural disaster and yet is one of the least 

understood natural disasters. Quantifying drought is problematic as it occurs across erratic 

spatial boundaries and inconsistent temporal patterns. Furthermore, there is no universal 

definition of drought. Predicting drought is the reason for drought monitoring. Prediction 

enables real time analysis and evaluation of current conditions, assisting timely solutions and 

relief programmes in affected areas, as well as providing a deeper understanding of drought 

occurrence and patterns of potential future incidence. Drought prediction is derived from 

anomalies in temperature and precipitation, which, as historical archives indicate, can be 

extremely variable (Vicente-Serrano et al., 2012). Furthermore, ground based weather stations 

are sparsely and unevenly distributed, site specific and are unable to represent the true nature 

of events across broader expanses. There is roughly one weather station per 5000km2 of land 

surface (Aghakoucak et al., 2015). Yuan et al., (2016) and Vicente-Serrano et al., (2011) 

criticised the accuracy and discrepancies of meteorological indices across different seasons and 

areas across the globe.  

As technology continues to evolve, so do the techniques used in drought monitoring, thus 

providing a limitless future of possibilities (Zargar, 2011). The innovation of remote sensing 

boasts a significant advantage over traditional approaches. High resolution and multi-temporal 

spatial coverage remote sensing has bridged the gap that traditional methods have lacked. This 

allows for real time analysis and evaluation of current conditions, assisting timely solutions 

and relief programmes in affected areas, as well as providing a deeper understanding of drought 

occurrence and patterns of potential future incidence. However, discrepancies are found in the 

quality of resolution, revisit times, sensor malfunctions and the limited historical archives.  

1.1 Defining Drought 

Drought is considered as one of the most complex, yet least understood, natural disaster that 

affects more people than all others (Carrão et al., 2016; Hao et al., 2014; Hagman et al., 1984; 

Wilhite, 2000). It has a slow onset that establishes itself and builds over time (which can be a 

considerable period), whilst maintaining a low visual impact.  Its devastation is wide-spread 

and can last for a substantial period (Prathumchai et al., 2001; Waldrow et al., 2012). Redmond 

(2002) described drought as the inability of water to meet needs. The World Meteorological 
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Organization defines drought as “a sustained, extended deficiency in precipitation” (WMO, 

1986). Palmer, (1965) describes drought as “a significant deviation from the normal 

hydrological conditions of an area”. Mckee, (1963 p. 17), described drought as “a condition of 

insufficient moisture caused by a deficit in precipitation over some period of time”. Tucker and 

Chaudhury (1987) defined drought as a period of declined plant vigour, relative to the historical 

average caused by reduced precipitation. 

Although there is no shortage in definitions of this phenomenon, one common feature across 

all definitions is that drought originates through the lack of precipitation over a relatively short 

interval, which results in a shortage of water resources (Willhite and Glantz, 1985; Panu & 

Sharma, 2003; Fadhil, 2011; Heim, 2002; Keyantash, 2002; Redmond, 2002).  

Drought can be categorised into four distinct categories (Wilhite & Glantz, 1985) 

• Meteorological drought: Is the lack in precipitation over a time period due to the 

seasonal precipitation falling below the long-term mean (Heim, 2002; Keyantash & 

Dracup, 2002; Waldrow et al., 2012).  

• Hydrological drought: Is the lack in water supplies within water bodies such as 

streams and ground flow. It therefore represents the long-term effect of meteorological 

drought (Muirhamieed, 2013).  

• Agricultural drought: occurs when there is insufficient moisture in the soil that 

directly results in insufficient growth support for crops (Waldrow et al., 2012; Belal et 

al., 2014; Carrão et al., 2015; Willhite, 1985). 

• Socio economic drought: is the inability of water resources to meet the demands of 

providing economic utility (Belal et al., 2014).  

The past few decades have seen a surge in drought occurrences (Kogan & Guo, 2016), whilst 

future predictions conclude that an increase in these events is anticipated. Solh and Van Ginkel 

(2014) surmised that all predictions on climate change show that our planet will become drier 

and hotter. Rising global temperatures will affect the hydrological cycle, leading to a decline 

in precipitation and an increase in evaporation, further compounding the occurrences of 

extreme events, specifically drought (Sheffield & Wood, 2007; Sheffield et al., 2012). Trenbath 

(2014) concluded that global warming may not be responsible for causing future droughts, 

however, it is expected that once a drought occurs, then onset will be quicker and intensity 

amplified. 
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1.2. Drought monitoring methods 

The mitigation of the effects of drought through prediction and monitoring strategies is perilous 

(Wilhite et al., 2000). The complexity of monitoring natural disasters such as drought arises as 

a result of the wide spatial boundaries the drought inhabits, its untimely manner of onset and 

departure and its severity.  

1.2.1 Traditional Approaches 

Meteorological or traditional monitoring methods make use of ground based weather data, 

measuring the difference of precipitation anomalies compared to historical norms (Belal, 2014; 

Wilhite & Glantz, 1985). Early drought studies date as far back as Munger (1916) who created 

a drought index by measuring the number of consecutive days where precipitation values 

deviated from 1.27mm (Heim, 2002). The main advantage of a weather station is that it is an 

accurate representation of conditions pertaining to that specific point/area. However, weather 

stations in turn have a major disadvantage. These include point location representations rather 

than larger areas, as well as the sparse spatial distribution of these stations (Kogan & Gue, 

2011). Wilhite et al., (2000) indicated that an important component in planning for drought is 

the availability of reliable and timely climatic information. Many weather stations suffer from 

missing historical data records, thus the interpolation of data points is affected.  

1.2.2 Remote Sensing 

“Early drought detection is fundamental to proactive decision making and disaster 

preparedness” (Aghakouchak et al., 2015 pg. 466). The past few decades have seen an 

explosion in remote sensing; offering a vast array of tools and effective opportunities in 

collecting and manipulating data in a timely cost-effective manner (Aghakouchak et al, 2015; 

Chopra, 2006; Kogan, 1997). The multi-temporal and high resolution spatial coverage of 

remote sensing allows for continuous monitoring of a drought occurrence, whilst using 

significantly few instruments (Unganai & Kogan, 1998; Wang, 2014; Wang et al., 2001). 

Remote sensing boasts a few advantages over meteorological methods in drought monitoring. 

These include, the improved spatial-temporal acquisition of near real-time data compared to 

the sparse spatially bound positions of weather stations (Chopra, 2006). The main advantage 

in satellite technologies is that satellite sensors and algorithms are continually evolving and 

have enabled improvements in remote sensing on the characterisation of drought (Zargar, 

2011). The assumption in developing technologies regarding remote sensing is that developing 
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indices will produce greater accuracy in combining spectral bands. This will subsequently 

produce vital information on ground based conditions, vegetation structure, water content, 

photosynthetic capacity, and mineral deficiencies (Dutta, 2016).  

The growing volume of remote sensing observations and data products has provided 

opportunities to develop innovative drought monitoring techniques using multiple data sources 

(Aghakouchak et al., 2015). However, these opportunities are not without challenges. A 

constant challenge within this field of science includes uncertainty assessments, working with 

large data sets, incorporating multiple data sources, and ensuring accuracy as well as 

consistency between data sets and observations. Furthermore, historical data dates as far back 

as the inception of remote sensing (1980’s), which is a relatively short period when compared 

to the meteorological data captured by weather stations. 

Remote sensing can assist drought monitoring in rural areas and developing nations such as 

South Africa, through timely analysis of wide spatial and inconsistent temporal patterns of 

drought incidences. Traditional methods are further worsened in these areas due to poorly 

distributed weather stations, accompanied by missing data in the historical archives, making it 

difficult to conduct comprehensive site-specific studies. Kogan and Gue (2016) pointed out 

that within Africa, the total count of satellite 4km2 observation pixels are 1800 times larger than 

the total weather stations, thus remote sensing has effectively filled the gaps between weather 

stations (Kogan & Guo, 2016).  The validity of remote sensing against in situ data in drought 

monitoring has been established across various countries, thus confirming its validity and 

accuracy in drought monitoring (Kogan et al., 2012). Developing nations are often extremely 

susceptible to the effects of drought due to the lack of comprehensive drought relief 

programmes. As noted by de Ville de Goyet et al. (2006) roughly 90 percent of natural disaster 

related deaths take place in developing nations. Borrowed money is often spent fruitlessly, 

rather than being used for effective and constructive measures to end drought devastation. 

Implementing an appropriate infrastructure to aid in drought prediction, including monitoring 

and severity analysis, can notably improve the response to a drought episode before it becomes 

a crisis.  
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1.3 Research Questions 

1. Is remote sensing growing as an approach to drought monitoring assessments? 

2. Can remote sensing be used effectively to identify trends in drought events? 

1.4 Objectives 

1. Provide a systematic literature review on the evolution of drought monitoring 

approaches. 

2. Identify Normalized Difference Vegetation Index (NDVI) and rainfall trends within 

KwaZulu-Natal and evaluate the effectiveness of NDVI to identify dry and wet spells 

over the past 16 years. 

1.5 Summary of chapters 

This thesis is composed into 4 chapters.  

1. The first chapter provides an introduction of the study, defines drought and drought 

monitoring methods and presents the research questions and objectives.  

2. Chapter 2 investigates the progress in remote sensing of drought, through a systematic 

literature review.  

3. Chapter 3 focuses on the application of remote sensing towards drought monitoring.  

4. Chapter 4 comprises of the synthesis, exploring the important findings in connection to 

the objectives of the study. Limitations and recommendations for future research are 

presented. 
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CHAPTER 2 

Progress in the remote sensing of drought: A systematic literature 

review 

Abstract 

Early detection of drought is imperative to assist in appropriate decision making, disaster 

monitoring and mitigation procedures. The evolution of monitoring techniques and inception 

of remote sensing technologies provides a new approach to drought monitoring. It supplies a 

unique toolset for the timely monitoring and assessment of the various impacts of drought 

episodes. This systematic literature review aims to identify, categorise, and synthesise the 

results obtained from academic and other publications focusing explicitly on the remote 

sensing of drought. The literature studied consists of 1204 scientific papers published from 

1955 to 2015, categorised into the various indices. Results showed an increase in scientific 

papers; with a notable surge in the past ten years. There has also been a notable rise in the 

combination of traditional and remote sensing approaches. Remote sensing continues to 

evolve, with technological improvements leading to enhanced resolutions and advanced 

indices, particularly in developed nations. Linking remote sensing archived data such as 

AVHRR-MODIS-NPP-NPOESS will create the largest data source of global spatial data. The 

implementation of a comprehensive index such as Vegetation Drought Response Index 

(VegDRI) in African countries may be pivotal in improving near real-time monitoring and 

drought predictions.  

 

Key words: Drought; Systematic literature review; Traditional approaches; Remote sensing 
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2.1 Introduction 

The increasing presence and severity of drought occurrences accompanied by pressing 

concerns about climate change has led to a greater desire to understand the drought 

phenomenon, as it continues to wreak havoc across human, environmental and economic facets 

of life (McCarthy et al., 2001).  

Of the plethora of research papers pertaining to drought, the majority focus on monitoring and 

assessing a specific drought event (Prathumchai, 2001; Jeong et al., 2014). The area of interest 

for this thesis is those few research papers that review and compare the effectiveness of the 

diversified indices used in longitudinal drought monitoring (Mishra, 2010; Zargar, 2011) and 

those that have monitored the evolution of indices. Understanding the developmental phases 

of remote sensing and its progress as a tool to monitor droughts can provide an improved 

understanding of the analysis and monitoring of natural hazards. This review aims to explore 

the evolution of remote sensing as a tool for drought monitoring, and develops an 

understanding of what strategies to utilise in future drought monitoring. 

Consequently, the research paper aims to provide a systematic review of scientific literature 

covering the evolution of remote sensing as a tool for drought monitoring. It objectively 

compared meteorological and remote sensing techniques as well as reviewing integrated 

approaches. This was done by ascertaining the various indices and methods used in research 

papers relating to drought; subsequently providing a methodical chronological review of the 

evolution and progress in drought monitoring techniques, highlighting implications for future 

work. 

2.2. Methodology 

2.2.1 Search and Selection 

The methodology adapted for this systematic literature review made use of research papers 

extracted from various scientific libraries and search engines such as Scopus, Ebscohost and 

Google scholar. Key words used in the query were adapted to avoid unnecessary and irrelevant 

results, namely “drought monitoring indices”, “meteorological drought indices” and “remote 

sensing drought indices”. The input of these phrases into the various libraries produced a vast 

array of journals and research papers, some of which did not pertain explicitly to drought, but 

may have mentioned it. In cases where the paper mentions “drought” or “indices” but did not 

make its fundamental focus on the occurrence of drought, it was excluded from further analysis. 
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Therefore, a set of criteria was established when selecting papers. Firstly, the results were 

required to be from a published scientific paper; pertaining to a specific drought event or 

mentioning indices used in examples of drought occurrences. Secondly the paper must have 

been English or translated into English. Thirdly, the defined key words must exist in the title, 

abstract or key words. In cases where the abstract mentioned “remotely sensed indices” but did 

not define the specific “indices” used, the journal was briefly reviewed to find which index was 

being used and recorded. Furthermore; in the case where the drought specific paper was not 

accessible but mentioned of “remotely sensed indices” or “meteorological indices “in the title 

or abstract, the paper was categorised as such.  

The scientific libraries and journal sources were limited to; Scopus, Google Scholar, Science 

Direct, Wiley, Taylor and Francis and Springer. Grey literature was obtained through a paper 

by Zargar (2011) which mentions various journal sources and their respective remotely sensed 

indices. 

Upon accepting a scientific paper for inclusion, the results of that paper were entered into a 

table categorising the method used e.g. traditional, remote sensing or both, (journals 

categorised as “both” would not be accounted for in meteorological and remote sensing 

categories). Furthermore, the indices were tallied based on regularity. Indices of higher 

popularity such as the Palmer Drought Severity Index (PDSI), Standardized Precipitation Index 

(SPI) or NDVI were given their own column, whilst scarcely used indices were categorised 

into "meteorological" or "remote sensing" indices, respectively. The date of the respective 

papers was recorded to create a schematic timeline displaying the various approaches adopted 

for drought monitoring over the years. The author and source (e.g. Scopus, Taylor and Francis) 

and where necessary the definition of index, were also recorded so as to avoid repetition 

2.3 Drought monitoring indices  

This section reviews the meteorological, remotely sensed, and combined indices used in 

research papers collected from various scientific libraries. The literature studied consists of 

1204 scientific papers published from 1955 to 2015, categorised into the various indices. 

Drought monitoring methods vary across different hemispheres, countries, regions, and 

climates. Some indices are capable of being used across a variety of climates whilst others have 

been adapted to only suit a certain climatic region (Heim, 2002). The results captured in this 

research ranged from 1955 to 2015. Over this period, there was consistency in research papers 



9 
 

up until the early 2000’s. Post this period, there is a notable expansion in research papers as 

seen in figure 2.1. 

 

Figure 2.1. Total number of published papers on drought monitoring (1204) between years 

1955 and 2015. 

This result indicates the growth in development of the research into drought monitoring. Other 

reasons pertaining to this expansion may be due to the advancement made in technology, 

notably the internet, which has allowed for research papers to be easily obtained, reviewed and 

published. Another probable contributing factor is the growing presence of drought worldwide 

and the increasing threat it poses to the economic, environmental and societal wellbeing of 

human life. Increasing population growth and industrial development leads to an increased 

demand for natural resources (in this case water), prompting research gaps in how to better 

manage the increasing demand for vulnerable water resources (Chopra, 2006; Woodhouse, 

2009). Further compounding effects can be seen from a global warming perspective, where 

increasing surface temperatures, unstable weather systems and rising sea levels are all 

contributing in different ways towards the increase in droughts and their severity. This has 

prompted an increase in scientific research, bridging the gap to understanding one of the most 

complex yet least understood natural disasters (drought) (Carrão et al., 2016). 

2.3.2 Meteorological Indices 

Over the decades, many indices have been developed and used including RSM (Thornthwaite 

and Mather, 1955), RAI (Van Rooy, 1965), PDSI (Palmer, 1965), Deciles (Gibbs and Maher, 

1967), BMDI (Bhalme and Mooley, 1980), SWSI (Shafer and Dezman, 1982), DSI (Bryant et 

al., 1992), SPI (Mckee, 1993), NRI (Gommes and Petrassi, 1994), DFI (Gonzalez and Valdes, 

2006), RDI (Tsakiris and Vangelis, 2005), GRI (Mendicino et al., 2008) and DTx (Matera et 
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al., 2007). The most common indices were that of the PDSI and the SPI which continues to 

make regular occurrences in the contribution to meteorological indices in drought monitoring 

studies today and contributed significantly to the rise in research papers over the past few years 

as seen in figure 2.2. 

 

Figure 2.2. Number of publications that used, meteorological, remotely sensed and both 

approaches for drought monitoring 

2.3.3 Remotely Sensed Indices 

Monitoring drought using remotely sensed indices is a relatively new method compared to the 

extensive presence of meteorological indices. Initial satellites launched in the 1980’s were 

designed to aid in weather forecasts, however, they were soon found to be useful in monitoring 

vegetation (Kogan, 2000). In 1979 the Advanced Very High-Resolution Radiometer (AVHRR) 

was launched, providing impressive temporal resolution data for monitoring vegetation 

conditions (Aghakouchak et al., 2015). The contribution of remote sensing to assess drought 

impacts is through an assessment of the photosynthetic value of plants (Aghakouchak et al., 

2015; Tucker and Choudhury, 1987). The respective decline in vegetative health is related to 

the deficits of precipitation being experienced. Combinations of various wavelengths, namely 

the visible red (R) and near-infrared (NIR) regions are used extensively to monitor changes in 

plant and water stress (Waldrow et al., 2012; Aghakouchak et al., 2015; Tucker and Choudhury, 

1987). Introduced by Tucker (1979), the Normalized Difference Vegetation Index (NDVI) was 

the first remote sensing based index used to monitor agricultural drought and has since become 

the most popular remotely sensed drought index (Dutta, 2016; Thenkabali, 2004; Tucker, 

1979). Other indices include the Perpendicular Vegetation Index (PVI) (Wiegand et al., 1991), 
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Vegetation Condition Index (VCI) (Kogan, 1997); Normalized Difference Water Index 

(NDWI) (Gao, 1996), Transformed Vegetation Index (TVI) (Tucker, 1979), and the Soil 

Adjusted Vegetation Index (SAVI) (Huete, 1988) to name a few.  

Remote sensing of drought is not limited to one variable such as monitoring vegetation vigour. 

As technologies and sensors developed on satellites, the ability to routinely capture rainfall 

data through multiple wavebands became available (Aghakouchak et al., 2015). This can be 

achieved by converting the temperatures of cloud tops, through the visible (VIS) and IR 

images, using an empirical statistical relationship to determine the precipitation rate (Turk et 

al., 1999; Joyce et al., 1997). A more physical approach to capturing precipitation can be 

achieved through passive microwave (MW) sensors (Aghakouchak et al., 2015). However, the 

more accurate precipitation values gained through MW are limited to less overpass (roughly 

two observations per day). Joyce et al. (2004) suggest combining the strengths of IR and MW 

data sets to allow for an increased accuracy on precipitation patterns. Examples of such 

satellites are the Tropical Rainfall Measuring Mission (TRMM) (Sahoo et al., 2004); Global 

Precipitation Climatology Project (GPCP) (Adler et al., 2003) and Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) (Hsu et al., 

1997). Although remote sensing of precipitation data sets has been used in drought monitoring, 

the main limitation of these products is the lack of historical records (i.e. limited to 16 years) 

(Aghakouchak et al., 2015). Figure 2.3, indicates the growing presence of remote sensing for 

drought monitoring. The data, post the millennium, display an increase in the number of remote 

sensing on drought papers being conducted. This correlates with the increase in the amount of 

remote sensing observations and satellite sensors being launched during this period, whilst 

many more are in developmental phases (Aghakouchak et al., 2015).  

 

Figure 2.3. Yearly scientific papers making use of remote sensing approach for drought 

monitoring. 
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Further quantification of drought stress can be achieved using remote sensing that measure 

surface temperature or brightness, based on the thermal bands aboard multiple satellite sensors 

such as AVHRR, MODIS, Landsat 5 TM and Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) and Thermal Infrared Sensor (TIRS) (Aghakouchak et al., 2015). Gutman (1990) 

explained that valuable surface moisture conditions can be provided through the Land Surface 

Temperature (LST) which is computed through the Thermal Infrared (TIR) band.  The 

Temperature Condition Index (TCI) is a commonly used index in explaining the temperature 

related stress in drought analysis (Kogan, 1997). It uses the Brightness Temperature (BT) 

which represents the difference from the current month’s temperature to that of maximum 

recorded for that specific area (Belal et al., 2014). Kogan (1997) combined the VCI and the 

TCI as an index (VCI-TCI) to determine the vegetation stress, and subsequently drought, as 

the major cause. The results showed that it performed admirably and was extremely useful in 

real-time diagnosis and assessment of the weather impact on vegetation condition. 

2.3.4 Combination of Meteorological and Remotely Sensed indices 

As mentioned, both meteorological and remotely sensed indices have respective advantages 

and disadvantages over one another. Whilst the NDVI has been proved to provide valuable 

information on vegetation vigour, in some cases it may be difficult to identify the main reason 

for vegetation stress solely from the NDVI (Aghakouchak et al., 2015; Heim, 2002). This 

deviation may be due to fire, plant infestation, land cover change or flooding which can 

subsequently lead to NDVI anomalies indicating similar data to that of drought. In order to 

overcome this, many studies incorporate both meteorological and remotely sensed indices for 

drought prediction. 

Results in the combination of meteorological and remotely sensed indices favoured the use of 

the NDVI with the SPI as a comprehensive approach to drought monitoring. As seen in Figure 

2.4, combined SPI and NDVI studies account for 53% (71/135*100) of the 146 total combined 

research papers. Furthermore 40% (54/135*100) accounts for either the SPI or the NDVI as 

the respective index being combined with a separate traditional or remote sensing index. Lastly, 

a mere 7% (10/135*100) makes use of indices excluding the SPI or the NDVI in the study. 

This result firstly reiterates the popularity of the SPI as a meteorological index and the widely 

used NDVI as a remote sensing index and secondly the effectiveness of combining the two 

indices.  
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The increase in percentage of combining meteorological and remotely sensed indices can be 

seen in Figure 2.5; this result was obtained by dividing the amount of papers categorized as 

“both” by the amount of papers retrieved for that specific year. The year 2015 recorded the 

highest increase with above 25% of scientific papers utilising both approaches towards drought 

monitoring. Success in combining meteorological and remote sensing approaches towards 

drought monitoring can be seen in the following examples. Ji and Peters (2003) found that a 3-

Month SPI had the highest correlation to the NDVI due to the lag time associated with 

vegetation response to precipitation. Jain et al. (2010) concluded that the NDVI correlated 

accordingly with a 1-month, 3-month and 9-month SPI at three different sites receiving higher, 

normal and poor rainfall respectively. Wang et al. (2014) found that the VHI and the SPI shared 

valiant consistency during the drought period. Caccamo (2011) determined that the Normalized 

Difference Infrared Index-band six (NDIIb6) shared similarities with the 3 and 6-month SPI 

distribution during a drought. Anwar et al. (2013) showed that the NDVI and PDSI were 

consistent during changes in precipitation intensity over a 10-year period. Mu et al. (2012) 

found the drought severity index (DSI), which makes use of satellite based Evapotranspiration 

and NDVI products, to correspond well with the PDSI, both capturing similar wetting and 

drying patterns.  

 

Figure 2.4. Progress of combined SPI and NDVI indices in research papers for drought 

monitoring. 

0

5

10

15

20

25

30

35

40

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

N
u

m
b

er
 o

f 
Jo

u
rn

al
s

SPI and NDVI (53%)

SPI or NDVI (40%)

Other (7%)



14 
 

 

Figure 2.5. Yearly percentage growth in combining meteorological and remotely sensed 

indices in research papers for drought monitoring 

2.4 Limitations of using RS and opportunities for improvements 

The use of remote sensing within drought monitoring research is still relatively new, and until 

the mid-2000’s had limited progress. As seen in figure 2.2 the general trend is an increasing 

number of research papers integrating remote sensing in drought research. This is possibly as 

a result of continuous improvements in remote sensing technology. Further findings in this 

study include the dominance of the NDVI which continues to be an integral component in 

drought monitoring since its inception in 1979. Whilst NDVI is an important index, the 

incorporation of other indices such as the LST, TCI, SAVI, VHI etc. have assisted in improving 

the accuracy of remote sensing of drought. Furthermore, the combination of both traditional 

and remotely sensed indices has seen a rise in recent years. Combining remote sensing variables 

with ground based data increases the data from multiple different data sources for an 

assessment. Figure 2.5 illustrates the increase in combining these two approaches over recent 

years.  

One major limitation of remote sensing is that the high resolution and near real time data sets 

have a relative short history of data (10-14 years) (Aghakouchak & Nakhjiri, 2012). Thenkabail 

et al. (2004) looked to combine the historical archives of AVHRR sensor data, which spans 

from 1982-1999, to that of the more established MODIS sensor, 2000-Present. This was not 

without challenges as the two sensors use different resolutions (10km AVHRR and 0.5km for 

MODIS) as well as different pre-processing methods. It was concluded that linking these two 

data sets as an AVHRR-MODIS land cover archive will be vital for future monitoring of 

drought as MODIS data is only guaranteed until 2018.  MODIS’s successors, the National 
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Preparatory Project (NPP), are planned to take over. This will establish data sets from the 

AVHRR-MODIS-NPP-NPOESS which will provide the largest data source of global spatial 

data, greatly improving the historical archive for future drought monitoring studies 

(Hayzaymeh & Hassan, 2016; Thenkabail et al., 2004). 

2.5 Potential for future research 

Niemeyer, (2006) suggested that instead of developing new singular drought indices, it would 

be better to combine more comprehensive drought detection and monitoring tools, as this could 

lead to improved detection and monitoring. Suggestions for future drought studies include the 

use of microwave-based monitoring, offering a unique niche in monitoring drought impacts on 

vegetative presence, vigour and density. Combining optical and microwave monitoring 

methods can lead to a better understanding of the response of an ecosystem to climatic 

variability (Aghakouchak et al., 2015). This avenue of research can potentially lead to a greater 

understanding of the changes in ecosystems (phenology, carbon cycling and biomass) during 

the presence of a drought. 

The Vegetation Drought Response Index (VegDRI) is one of the most comprehensive drought 

indices currently in use (Niemeyer, 2008; Tadesse et al., 2015). Introduced by Brown et al., 

(2008) it makes use of climate data (e.g. SPI and PDSI anomalies), satellite observations (e.g. 

NDVI) as well as various biophysical data (e.g. elevation, soil type and land cover). As 

mentioned, the NDVI as a sole indicator of drought can be subjective as plant infestation or 

fire can falsely depict drought conditions. By combining climate-based data as well as satellite 

observations, the VegDRI seeks to overcome this limitation. The VegDRI data sets are easily 

accessible through the National Drought Mitigation Centre (NDMC) http://vegdri.unl.edu/. 

However, a disadvantage of the VegDRI includes the fact that it is not widely used outside of 

the United State of America. Although it has a 1km resolution; there can be limited precision 

over areas that contain sparse weather station distribution, due to the reliance on interpolated 

anomalies (Tadesse et al., 2015).  

http://vegdri.unl.edu/
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2.6 Concluding remarks 

The following conclusions can be drawn from this study 

1. There has been a significant growth in remote sensing as an approach to drought 

monitoring, as well as the combination of meteorological and remotely sensed indices 

in drought monitoring.  

2. A significant increase in research pertaining to drought monitoring was noted in the 

early 2000’s, prompting a raised concern on the phenomena as a natural hazard.  

3. Linking AVHRR-MODIS-NPP-NPOESS will in turn create the largest data source of 

global spatial data; this will prove pivotal with the NDVI clearly dominating as the 

prime index in remote sensing on drought. 

4. Given the growth in drought monitoring indices and in remote sensing; a focussed study 

of this information will explore the usability and validity of these measures in a rural 

area in a developing country. 
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CHAPTER 3 

Drought assessment and monitoring in KwaZulu-Natal, South 

Africa using Remote Sensing and Geographic Information 

Systems. 

Abstract 

In recent decades KwaZulu-Natal and greater parts of southern Africa have, been experiencing 

very severe episodes of drought. The side effects have affected almost all facets of human life, 

especially agricultural practice, which is very prevalent in KwaZulu-Natal. By analysing the 

past 16 years’ worth of NDVI and provincial mean rainfall, this study has successfully 

identified fluctuations of inter-annual climatic variations. The NDVI can identify drought 

patterns as well as severity, indicating 2015 to be the worst year across the study period. Further 

results included the strong relationship between NDVI and rainfall, especially during dry years 

as compared to the wet years. Possible solutions to the NDVI saturation level included the use 

of adjusted wavelengths in the red-edge band as well as the MNDVI and updated satellite 

platforms. Increased rainfall in 2016 did little to reprieve drought conditions as Albert falls 

dam was unable to fully recover prior to the dry season. The study is critical to understanding 

trends in southern African droughts within a spatially explicit context, setting the basis for 

future predictions and early warning.  

 

Key words: Drought; KwaZulu-Natal; Remote sensing; NDVI 
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3.1 Introduction 

Southern Africa is currently experiencing one of the worst droughts it has seen in recent 

decades (Carnie, 2016). Although records show drought occurrences dating back to 1910, there 

has recently been an increase in the frequency and intensity of drought episodes highlighted on 

a two-year scale since the 1970’s (Dube & Jury, 2000; Roualt & Richard, 2005). Within 

southern Africa most countries rely on agriculture, from small subsistence farms to advanced 

commercial farming, for food production. All are extremely susceptible to the inter-annual and 

intra-seasonal rainfall (Dube & Jury, 2000). 

Most of the droughts in southern Africa coincide with the El Nino Southern Oscillation 

(ENSO); the event has a large influence on the rainfall variability in southern Africa. Prolonged 

periods of below average rainfall greatly exacerbate the effect of current or growing drought 

episodes (Lindesay, 1988; Richard & Poccard, 1998; Mishra, 2003; Ujenza, 2014). Dube and 

Jury (2002) noted that the 1992/3 ENSO phase had no significant influence on the rainfall over 

southern Africa; however, in a study by Roualt and Richard (2005), most of the severe droughts 

occurring in southern Africa from 1901-2004 were ENSO related. Furthermore, over the course 

of the twelve recorded dry years in southern Africa, eight have been ENSO years (Roualt & 

Richard, 2005). Other causes of climate variability in this region can be related to the 

contribution of the Aghulus current along the south-eastern portion of southern Africa (Jury, 

2015). Adedoyin, (1997) stated that man-made climate change as well as poor agricultural 

practices such as overgrazing has renewed concerns on drought within Africa.  

The average temperature in the subtropics has risen exponentially over the past five years, with 

a further 3oC to 5oC increase expected over the tropics by the end of the century. Further 

warming in the tropics will lead to the southern and northern latitudes to becoming drier. As a 

result, southern Africa will become significantly warmer and subsequently experience more 

extreme weather conditions in the form of floods and droughts (Nhemachena & Hassan, 2007). 

Dube and Jury, (2000, p. 51) stated that “the cycle of droughts will cause water demand in 

South Africa to exceed total available supply around the year 2020”. 

During 2014/2015, another ENSO process has taken place affecting southern Africa, 

significantly exacerbating the weather conditions, and subsequently leading to one of the worst 

droughts in recent history.  
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The inception of remote sensing as a tool for drought monitoring in the mid 1980’s has offered 

a new technique in providing near real time, accurate, multi-temporal and high resolution 

spatial coverage of ground based conditions (Wang, 2014; Wan, 2004; Kogan, 1995; Wang et 

al., 2001). This tool set is ideal for global drought watch, and is a key approach for developing 

nations which possess lightly populated weather stations and many remote and hard to access 

areas (Wan et al., 2004). 

This study’s objectives were firstly to identify NDVI and rainfall trends within KwaZulu-Natal 

over the past 16 years and secondly, to determine the effectiveness of NDVI in identifying and 

assessing drought in KwaZulu-Natal, specifically the recent drought episode. Lastly, 

confirmation of the recent drought is shown with the surface area changes of the largest water 

body in KwaZulu-Natal. 

3.2 Study Site 

KwaZulu-Natal is located within the south-eastern portion of South Africa, positioned between 

270 and 310 south and 290 and 310 east. The area encompasses 94,000 km2, and contributes 7% 

of the area of South Africa (Camp, 1999). Across South Africa, KwaZulu-Natal receives above 

average annual rainfall, with precipitation ranging from 500 mm up to 2000 mm. The region 

receives most of its rainfall during the summer months; between October and March. 

Temperatures can range from a high mean of 320C in summer to a low mean of 00C in winter.  

There is a substantial change in elevation across KwaZulu-Natal, ranging from the coastal 

plains across Maputaland, to the deep incised valleys and broken terrain in the high altitudes 

of the Drakensberg (uKhahlamba) region located 3000m above sea level (Dube, 2003). The 

area offers a plethora of diversity in natural resources. However, increased agriculture 

processes in the south east accompanied by expanding urban and industrial centres have placed 

an increased demand for water resources (Dube, 2003). 
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3.3 Methodology 

3.3.1 Data 

Meteorological data for this study consisted of rainfall data obtained from the South African 

Weather Service. The data consisted of monthly averages for KwaZulu-Natal, ranging from 

2001-2016.  

The satellite data was retrieved from the Moderate-resolution Imaging Spectroradiometer 

(MODIS) sensor, which has noticeable improvements over its successor, the Advanced Very 

High-Resolution Radiometer (AVHRR), and is widely used in agricultural and drought 

monitoring applications (Gu et al., 2008; Huete, 2002; Pittman, 2010). The sensor offers an 

increased 36 spectral bands as well as narrow spectral bandwidths on the red band (R) (0.62-

0.67µm) and the NIR band (0.84-0.87 µm) offering increased sensitivity to chlorophyll as well 

as being less influenced by water vapour absorption (Waldrow et al., 2012). The sensor used 

Figure 3.1. Study Area, KwaZulu-Natal, South Africa, Overlain 

on Google Earth image 
Figure 3.1. Study Area, KwaZulu-Natal, South Africa, Overlain 

on Google Earth image 
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in this study is the MOD13A1 V6, incorporating 500m pixel resolution as well as a 16 day 

revisit time. It makes use of the gridded level 3 product in the Sinusoidal projection which is 

tiled 10 by 10 degrees from the equator (Persendt, 2009; Solano et al., 2010). Due to the spatial 

extent of the study site, two tiles were required (h20v11, h21v11).  The imagery is readily 

available from the USGS EROS website (http://earthexplorer.usgs.gov). MODIS data sets 

undergo frequent pre-processing, calibration and normalisations allowing for the data to be 

available as processed products, as opposed to raw digital numbers (Thenkabali, 2004). The 

study made use of 368 satellite images extracted from January 2001 to December 2016, the 

images were calculated as monthly means according to the respective date of capture. 

The site boundary layer was obtained through the University of KwaZulu-Natal Cartography 

Department. The satellite images were analysed and manipulated using ArcMap 10.3. 

Microsoft Excel was used for statistical analysis as well as presenting the results. Digitizing of 

the Google Earth product allowed for the boundary of the Albert Falls dam on the selected two 

dates for comparison. The dam levels for the selected dates was obtained through Umgeni 

Water in Pietermaritzburg. 

3.3.2. Pre-processing 

The satellite images were processed, mosaiced and rescaled before being analysed in ArcMap. 

The images were geometrically corrected to the WGS84 datum. 

3.3.3. NDVI 

The NDVI is one of the most widely used indices to date. It is an effective index in measuring 

vegetation presence including its density and health. It has a desirable scale of -1 (indicating 

non-vegetative surface) to 1 (indicating dense vegetation) whilst 0 depicts an approximation of 

no vegetation. Making use of the R (0.62-0.67µm) and NIR (0.84-0.87 µm) bands, the NDVI 

can reduce undesirable effects from sun angles, topographic and external noise (Fadhil, 2011).  

NDVI=(NIR-R)/(NIR+R) 

The NDVI is calculated by the above algorithm. Where NIR equals the near infrared reflected 

by vegetation, R is the red band absorbed by the chlorophyll found in vegetation (Belal et al., 

2014; Thenkabail et al., 2004). Vegetation will only depict signs of water stress after the level 

of available soil water has decreased to the level that is less than the loss through 

evapotranspiration (Liu, 2001). Subsequently, an increase in temperature of the vegetation 

http://earthexplorer.usgs.gov/
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under stress leads to closure of the leaf stomata, reducing further moisture loss through 

evapotranspiration (Nichol & Abbas, 2014). 

The NDVI is an effective indicator of vegetation vigour. However, a reduction in rainfall can 

only be detected after the vegetation shows a decrease in vigour (Persendt, 2009). Therefore, 

the NDVI correlates well with rainfall requirements for good vegetation health after a certain 

lag period, roughly 3 months depending on the area and climate. Thus, near real-time analysis 

of drought can be an issue, as it can take up to 3 months for observed rainfall to be reflected 

through the NDVI (Liu & Juarez, 2001).  

3.4 Results 

3.4.1. Relationship between NDVI and rainfall 

The relationship between rainfall and NDVI can be analysed in a variety of different ways. 

Here we compared the mean monthly NDVI and rainfall for the province over a 16 year period. 

As seen in figure 3.2, there is a positive correlation between the mean seasonal NDVI and 

rainfall, (R2=0.44).   

 

Figure 3.2. Mean seasonal NDVI/Rainfall correlation 2001-2016 

Seasonal patterns of rainfall and NDVI can be noted in figure 3.3 which displays the below 

average rainfall that the Northern interior of KwaZulu-Natal receives, which corresponds with 

the lower NDVI values associated in the area. The south eastern-coastal patterns are consistent 

with higher rainfall and NDVI values.  
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Figure 3.3. KwaZulu-Natal Average rainfall and NDVI (2001-2016) 

Figure 3.4 combines the mean NDVI and rainfall patterns spanning the 16 year period. Both 

variables correspond with an observed decrease in 2003 and 2015, whilst the year 2006 displays 

above average in both NDVI and rainfall. A slight discrepancy is noted in 2009 indicating that 

the increase in NDVI is greater than rainfall whilst 2012 indicates the reverse. Furthermore, 

figure 3.4 demonstrates a noticeable lag of a couple of months between the rainfall and NDVI 

from 2013 through to 2016. 

 

Figure 3.4. Temporal trends of NDVI and Rainfall (2001-2016). 

To explore the correlation of NVDI and rainfall further, the mean NDVI for the two years of 

above average greenness (2001;2006) is compared with the periods of significant decline in 

greenness (2003; 2015) (figure 3.5). The difference between the non-drought and drought years 

are clearly illustrated providing further validity to the correlation of variables. The interior of 
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KwaZulu-Natal is characterised by arid and dry conditions, which are extremely exacerbated 

during periods of limited rainfall as this directly affects the vegetation found in this area. 

Similarities in high NDVI patches across all four NDVI years can be noted from central to the 

south east of the province. This is a result of the agricultural practice of consistent irrigation.  

 

Figure 3.5. Mean NDVI of non-drought years shown in (a) 2001 (b) 2003; Mean NDVI of 

Drought years shown in (c) 2006 (d) 2015. 

A further comparison between measured rainfall and the NDVI score over the past 16 years is 

illustrated in figure 3.6. The years 2015 and 2003 show the lowest NDVI and rainfall across 

the observed period, whilst 2006 shows the highest amounts across the 16 year period. 

Noticeable features include 2014 being very low; indicating possible drought in 2015. The two 

back to back years of lower scores are indicative of a period of prolonged dryness and drought.  

Year 2016 improved considerably, however it is still below average in NDVI, as the vegetation 

cover continues to recover.  
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Figure 3.6. Correlation of yearly mean NDVI and rainfall over the past 16 years. 

Figure 3.7 shows the correlation between NDVI and rainfall during the driest years (2003; 

2014; 2015) and the wettest years (2006; 2011; 2012). The higher rainfall received during the 

wet years does not necessarily equate to significantly higher NDVI values (R2=0.41). However, 

there is an improved relationship between rainfall and NDVI during drier years (R2=0.43).  

 

Figure 3.7. Correlation of NDVI and Rainfall for Wet years (2006; 2011; 2012) and dry years 

(2003; 2014; 2015). 

3.4.2. Driest December in 16 years 

December 2015 was the driest recorded month during the past 16 years.  Figure 3.8 shows the 

NDVI for December years of 2014, 2015 and 2016. Clearly the year 2015 and parts of 2016 

show significantly lower NDVI scores in comparison to December 2014 (indicating significant 

dryness). A specific area surrounding the coordinates 29O33’10.5”S 30O07’43.5”E show the 

variations in NDVI values across the three years illustrated in the graph on the side of the 

figure. The notable decline in rainfall since 2013 is evident in figure 3.8, however, signs of 

improvement are noted in 2016. These NDVI observations of drought are confirmed by the 
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decline in water levels in the Albert Falls dam (figure 3.9). The Dam experienced significant 

dryness from 2014 to 2016. In August 2014, the dam was 83.71% full and its surface area was 

20.98km2. In October 2016, the level had dropped to 47.50% as well as the surface area 

encompassing only 12.47km2. The surface area had decreased by 40.5% and the water level 

had seen a 43.25% decrease. Furthermore, in 2014 the dam was 83.71% full, whilst in 2016 

the level dropped to 47.5%. As of June 2017, the water level was only 34.29% full (Umgeni 

Water, 2017), suggesting current conditions still reflect a severe drought.   

 

Figure 3.8. Mean NDVI for the month of December for years 2014, 2015 and 2016, changes 

in NDVI of specific location across the three years. 
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Figure 3.9. The shrinkage in surface area of the Albert Falls Dam in just over two years. 

3.5 Discussion 

It is evident that across the past 16 years there has been a strong relationship between rainfall 

and NDVI. During periods of decreased rainfall, there is a notable weakening in NDVI whilst 

during years of above average rainfall, the NDVI showed an increase. The NDVI is capable of 

indicating past periods of drought as well as displaying the severity of the drought in 2015-

2016. This was noted through the prolonged period of below average rainfall and NDVI in 

comparison to the past mean across the 16 year period of data. 

The significant decrease of rainfall and NDVI in 2003 is confirmed through Rouault and 

Richard (2005) who noted that 2002 was dryer than usual during the main rainy season across 

southern Africa. Subsequently, 2003 was a significantly dry year recording the lowest NDVI 

values across the study period. The cause was found to be the ENSO event associated with that 

period. This study found similarity in results for the 2014/2015 period, which also experienced 

an ENSO event (FEWS, 2015). However, the recent prolonged period of below average rainfall 

has significantly affected the NDVI and thus the current period of drought.  

Furthermore, December 2015 was recorded as the driest December in 16 years (Mitchley, 

2016).  Traditionally KwaZulu-Natal receives over 150mm of rainfall during December 

months; however, nearly half of that was received in 2015. Noticeably the effect of lack of 

rainfall during 2014 was only observed in 2015, once all ground water supplies had been 
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exhausted and vegetation cover had begun to decline as it reacted to water loss through 

evapotranspiration, evident in the NDVI. July to December 2016 saw higher rainfall means, 

prompting a slight recovery for December 2016.  

Increased rainfall in 2016 indicates a possible recovery; however, the availability of water 

resources remains a problem as demonstrated by the lack of recovery of the Albert Falls Dam. 

As reported, the dam has experienced a significant decline in area (up to 43%) between 2014 

and 2016. The Albert Falls dam is the main source of water to Durban and the surrounding 

areas which require upwards of 400 million litres of water a day, and is therefore releasing 

more water than it is receiving (DWAF- Albert Falls Resource Unit). Indicating the dam has 

had insufficient time to recover due to the constant and increased demand for water during 

winter months in KwaZulu-Natal. 

3.5.1 Effectiveness of NDVI to analyse drought  

An interesting finding was the relationship between NDVI and rainfall during dry and wet 

years. During a dry year, the level of precipitation decreases, as does the vegetation cover, and 

if reflected by a decline in NDVI. During periods of prolonged dryness, the vegetation begins 

to wilt and decrease in size until rainfall is received. Thus, consistently low rainfall anomalies 

lead to lower NDVI scores. During wet years, the presence of precipitation prompts the growth 

in vegetation. However, once the vegetation has fully saturated it reaches a threshold. The use 

of NDVI in these areas of 100% vegetation cover offers poor estimates and is not an accurate 

index during peak seasons (Nicholson et al., 1990; Thenkabail et al., 2000). Mutanga and 

Skidmore (2004) concluded that biomass saturation estimations can be overcome by using 

narrow band vegetation indices, more specifically the shorter (700-750nm) and longer (750-

800nm) wavelengths of the Red portion of the electromagnetic spectrum. During a drought, 

the NDVI is not saturated in terms of vegetation cover and biomass; therefore, it is able to give 

a better indication of the dryness. Bearing in mind that there is a lagged response time of 

vegetation relative to that of the received rainfall (depending on region), which is normally 

three months (Thenkabail et al., 2004). Therefore, the NDVI is a better indicator of drier 

conditions as opposed to wet ones (Nicholson et al, 1990), thus suggesting the use of a Modified 

Normalized Vegetation Index (MNDVI) as well as further indices during wet years. The 

MNDVI’s makes use of a slightly adjusted spectrum which broadens the accessible vegetation, 

allowing for the selection of specific areas of interest (Skianis et al., 2009). Mutanga and 

Skidmore (2004) concluded that MNDVI calculated from shorter and longer wave lengths in 
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the red edge band, leads to a greater correlation coefficient with biomass compared to the 

average NDVI. Furthermore, recent developments in satellite systems namely WorldView-2 

and Sentinal-2 offer a reprieve in biomass estimation as the enhanced near-infrared and red-

edge bands, greatly improved the prediction accuracy when compared to the traditional NDVI 

(Dotzler et al., 2015; Mutanga et al., 2012). 

3.5.2 Limitations and improvements for future work 

Limitations found in this study include the relatively short timeline of MODIS NDVI data; 16 

years is very short. Accurate NDVI results from previous drought episodes in KwaZulu-Natal, 

1992/93 and 1980’s would have offered an interesting comparison to the current drought. 

Furthermore, poorly distributed weather stations, coupled with incomplete data hinder research 

opportunities in developing nations such as South Africa.  

3.6 Concluding Remarks 

In conclusion, 

1. Trends of dryness and wetness were identified over the past 16 years. Correlation 

analysis showed a close relationship between rainfall and NDVI during dry and wet 

years. 

2. The NDVI is an effective index to use in analysing the effect of extended dryness and 

drought. Implementing additional indices will further reinforce the NDVI, which is 

affected by the saturation of vegetation (as highlighted). 

3. The current drought is the most severe within the study period, although rainfall and 

NDVI anomalies indicate a slight recovery, water resources are still under immense 

pressure as highlighted by the levels of the Albert Falls Dam. 

KwaZulu-Natal has experienced one of the most severe droughts in recent decades. This study 

identifies trends across the observed period, highlighting the presence of the current drought 

episode in 2015. Future research should seek to include further appropriate indices to improve 

the remote sensing accuracy and hopefully aid in drought prediction. 
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CHAPTER 4: 

Synthesis 

4.1 Review objectives and conclusions 

Drought has proven to be a complex phenomenon to understand and study. Although general 

definitions agree that drought is caused by a deficit in water resources, it is often the extent and 

severity of a particular episode which is over looked. It is believed that extensive research and 

appropriate planning using current near real time data can greatly lessen the devastating affects 

(Persendt, 2009). The use of traditional methods, in developing nations, has various limitations. 

These regions require accurate up to date data analysis, allowing for an effective response time 

to alleviate drought side effects. Furthermore, prediction and monitoring strategies are vital in 

reducing the effects of draught (Wilhite et al., 2000). Remote sensing allows for high resolution 

analysis of rural locations incorporating a timely analysis of large data sets enabling prediction 

to assist timely solutions and relief programmes, as well as providing understating of drought 

patterns. It is therefore imperative to expand on the application of remote sensing which as a 

science is constantly evolving and improving. 

4.1.1 Research Question: Is remote sensing growing as an approach to 

drought monitoring assessments? 

Objective: Provide a systematic literature review on the evolution of drought monitoring 

approaches, highlighting remote sensing as an application to drought monitoring, as well 

as strategies towards future drought monitoring. 

Scientific reports provide little data on systematic drought monitoring. Consequently, prior 

understanding of the advancements made in remote sensing as a drought-monitoring toolset is 

fundamental to conducting any assessment in a specific area. The literature review showed 

significant growth in scientific papers pertaining to drought over the past decade. Although 

meteorological approaches still dominate the field of drought assessments, significant growth 

in remote sensing on drought monitoring was observed. Specifically noted was the NDVI and 

derivatives of this algorithm. There has been notable success in combining meteorological and 

remotely sensed indices, specifically the SPI and NDVI (Caccamo, 2011; Jain et al, 2010; Ji 

and Peters, 2003; Wang et al, 2014). Strategies toward future drought monitoring should look 

to incorporate microwave sensors as a unique niche in vegetation monitoring. The combination 
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of microwave and optical sensors allows for extensive understanding on the fluctuations in an 

ecosystem during a drought episode (Aghakouchak et al, 2015).  

4.1.2 Research Question: Can remote sensing be used effectively to identify 

trends in drought events? 

Objective: Identify NDVI and rainfall trends within KwaZulu-Natal, focusing on the 

effectiveness of NDVI to identify dry and wet spells over the past 16 years; making note 

of the recent drought episode  

The study area is located in South Africa, and is characterised by limited ground based 

observations as reported by Unganai and Kogan (1988) thus, the decision to investigate remote 

drought sensing, focusing on NDVI data. Findings across the 16 year analysis indicated years 

of above average wetness and, more importantly, years of prolonged dryness. Slight 

discrepancies were found in years where rainfall and the NDVI differed slightly, however, 

results confirmed the current drought being experienced. Furthermore, the decline in water 

levels of a major dam in KwaZulu-Natal were confirmed. December 2015 was also confirmed 

as the driest December recorded in the past 16 years. NDVI and rainfall results from this 

chapter indicate the effects of the drought episode to be improving. However, the availability 

of water remains a problem as the area progresses into winter. Although the NDVI was 

effective in analysing periods of wet and dry spells over the 16 year period, future drought 

episodes should make use of integrated approach. The implementation of a comprehensive 

drought tool applicable to conditions in southern Africa will significantly aid in drought 

monitoring and resource allocation. Combining our knowledge of climate, biosphere, oceanic 

and atmospheric precursors can better aid in drought monitoring and prediction.  

In conclusion, the literature review indicated the growing concern about droughts supported by 

the significant increase in scientific papers as well as an increase in remote sensing and 

combined techniques that are potentially more appropriate in developing areas. A detailed 

study suggested NDVI as the favoured remote sensing tool for analysis of the pre-determined 

study site. The second chapter included results which compared rainfall records for climate 

conditions during the recent drought, indicating potential for its use in future studies. Saturation 

levels proved to be a slight problem which can be overcome through incorporation of further 

indices, specifically narrowband vegetation indices.  
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4.2 Recommendations 

• Future drought monitoring in KwaZulu-Natal should seek to implement, multi-sensor 

derived spectral vegetation indices. The NDVI as a sole index is criticised, thus further 

indices (narrow band) will strengthen the accuracies of remote sensing. 

• Explore possibilities of a South African comprehensive drought index such as VegDRI, 

incorporating real-time meteorological and satellite data. 

• Explore in more detail the ability of various indices and updated satellite platforms 

(Sentinal-2 and WorldView-2) to predict and monitor drought occurrences.  

• Identify drought relief programmes/initiatives utilised in this region and assess whether 

future drought prediction could have informed the deployment of these resources.  

• Analyse the effectiveness of local approaches used to respond to drought (financial and 

other) compared to other nations. 

Drought is an extreme climatic condition which will continue to exist and inevitably worsen as 

the demand for water resources increases accompanied by concerns on climate change. It is 

evident that more effort needs to be made to implement effective relief procedures in drought 

prone areas. Importance should be allocated to prediction and resource management since it is 

significantly easier to manage a risk rather than a crisis.  
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