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Abstract

Stochastic simulation of the generalized Lindblad equation for a specific model is performed.

A two-state system that is coupled to a structured environment is studied as the model

of interest. The environment consists of two energy bands with finite number of energy

levels (N1 and N2) and level spacings δε. Depending on the coupling strength between the

two-level system and the environment, the model can either be classified as Markovian or

non-Markovian. In performing the time-convolutionless expansion, two master equations

for the model are obtained which are of the generalized Lindblad form. These equations are

stochastically unraveled revealing that the system can be described by two wave functions,

|ψ1〉 and |ψ2〉 which evolve simultaneously. Monte Carlo wave-function simulations are

performed to investigate the dynamics of the model, both in the weak and strong coupling

regimes. These simulations are used to calculate both the ground and excited state popula-

tions and coherences of the system. Parameters δε, N1, and N2 are varied interchangeably

in the Monte Carlo code (written in Python language) to observe the relationship with the

relaxation rates (γ). The populations and coherences of this model are then plotted for

different values of δε, N1, and N2 against time. Error bars are also plotted to show the

statistics of the data for different values of δε, N1 and N2. We consider as initial states,

both pure and correlated states. For the pure state, the initial conditions were |ψ1(0)〉 = |e〉

and |ψ2(0)〉 = |0〉. In the correlated state, the initial conditions are dictated by population

ratios (β) as |ψ(0)〉 = β|g〉+
√

1− βeiφ|e〉. The significance of this condition is that both

the upper and lower levels are populated at the same time.
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Chapter 1

Introduction

A two level system is regarded as a core of all quantum technology devices which transfer

information [1, 2]. However it is almost impossible to isolate the two level system with its

surroundings which makes it to be an open quantum system [3, 4, 5]. An open quantum

system is taken as a quantum mechanical system that interacts with the environment [4, 5].

This interaction results freely exchange information which affects the measurements of the

observables that describe the dynamics of the system. An open quantum system provides a

better approximation of reality and so therefore influence of the environment should always

be taken into consideration [4, 6]. Figure 1.1 below shows subsystem S (in Hilbert space,

HS) coupled in the environment E (in Hilbert space, HE).

To fully describe the dynamical evolution of an open quantum system, one defines an open

system S and an environment E coupled to give a larger combined system S + E (in

Hilbert space, HS ⊗HE). The state of the system S evolves due to the interactions with

environment E. The state of the system is described by the density operator ρS ∈ HS

which is defined as the operator that provides information about the quantum system.

Similarly, ρE ∈ HE describes the state of the environment. The full density matrix for

the combined system and environment is described by ρ ∈ HS ⊗HE . The reduced density

matrix of the system is obtained by taking the partial trace over the environmental degrees

of freedom:

ρS(t) = trEρ(t). (1.1)

1
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Figure 1.1: Open Quantum system S interacting with the environment E.

The starting point to derive the master equation for the system is by considering the

Hamiltonian of the system, environment, and system-environment interaction

H = HS +HE +HI . (1.2)

Here HS represents the Hamiltonian for the system, HE is the Hamiltonian for the environ-

ment, and HI is the interaction Hamiltonian. Introducing an operator that is transformed

into the interaction picture gives

H̃I(t) = eı(HS+HE)tHIe
−ı(HS+HE)t. (1.3)

If the coupling of the system and environment is taken as a closed quantum system, then

the density operator in the interaction picture is

ρ̃(t) = |ψ̃(t)〉〈ψ̃(t)|. (1.4)

This equation encompasses ensembles of system states ψ̃(t). Differentiating this density

operator gives
∂

∂t
ρ̃(t) = −ı[H̃I(t), ρ̃(t)] = L(t)ρ̃(t), (1.5)
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which is classified as the form of the Liouville-von Neumann equation [7, 8]. The square

brackets in this equation indicates the commutator between the Hamiltonian and the den-

sity operators transformed in the interaction picture and L(t) is the Liouville superoperator.

The solution to Eq. (1.5) is

ρ̃(t) = ρ(0)− ı
∫ t

0
ds[H̃I(s), ρ̃(s)]. (1.6)

By substituting this solution into Eq. (1.5) produces

∂

∂t
ρ̃(t) = −ı[H̃I(t), ρ(0)]−

∫ t

0
ds[H̃I(t), [H̃I(s), ρ̃(s)]]. (1.7)

By tracing over the environment degrees of freedom,

∂

∂t
trE ρ̃(t) = −ıtrE [H̃I(t), ρ(0)]−

∫ t

0
dstrE [H̃I(t), [H̃I(s), ρ̃(s)]]. (1.8)

Substituting ρ̃S(t) in trE ρ̃(t) given in Eq. (1.1) gives

∂

∂t
ρ̃S(t) = −ıtrE [H̃I(t), ρ(0)]−

∫ t

0
dstrE [H̃I(t), [H̃I(s), ρ̃(s)]]. (1.9)

Assuming that there is no correlations between S and E at the initial time t = 0, then the

density operator is taken as

ρ(0) = ρS(0)⊗ ρE(0). (1.10)

This assumption makes trE [H̃I(t), ρ(0)] = 0, and therefore reduces Eq. (1.9) to

∂

∂t
ρ̃S(t) = −

∫ t

0
dstrE [H̃I(t), [H̃I(s), ρ̃(s)]]. (1.11)

We make use of the Born approximation, which suggests that: the interaction is weak and

the environment is sufficiently large so that the state of the environment is not affected by

this coupling [9]. The results of such an approximation indicates that the density operator of

the environment remains unchanged throughout the evolution and the full density operator

is

ρ̃(t) ≈ ρ̃S(t)ρE . (1.12)

Substituting Eq. (1.12) in Eq. (1.11) gives

∂

∂t
ρ̃S(t) = −

∫ t

0
dstrE [H̃I(t), [H̃I(s), ρ̃S(s)ρE ]]. (1.13)
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This shows that the future evolution of ρ̃S(t) depends on its past history through ρ̃S(s).

The Markovian approximation elaborates that the environment memory time is extremely

short compared to the system evolution [9]. Replacing ρ̃S(s)→ ρ̃S(t) in Eq. (1.13) gives

∂

∂t
ρ̃S(t) = −

∫ t

0
dstrE [H̃I(t), [H̃I(s), ρ̃S(t)ρE ]]. (1.14)

This equation describes how the system ρS(t) evolves under the system-environment inter-

action. For a specific system, we let the Hamiltonian in the interaction picture be defined

as

H̃I(t) =
∑
α

Aα(t)⊗Bα(t). (1.15)

Here Aα and Bα are system operators and environment operators respectively. The com-

mutators in Eq. (1.14) can be expanded as follows,

∂

∂t
ρ̃S(t) = −

∫ t

0
dstrE [H̃I(t), H̃I(s)ρ̃S(t)ρE − ρ̃S(t)ρEH̃I(s)]

= −
∫ t

0
dstrE{H̃I(t)H̃I(s)ρ̃S(t)ρE − H̃I(t)ρ̃S(t)ρEH̃I(s)

−H̃I(s)ρ̃S(t)ρEH̃I(t) + ρ̃S(t)ρEH̃I(s)H̃I(t)}.

(1.16)

The environment correlation function is taken as

Cαβ(t, s) = trE(Bα(t)Bβ(s)ρE). (1.17)

Substituting Eq. (1.15) in Eq. (1.16) gives

∂

∂t
ρ̃S(t) = −

∫ t

0
dstrE{

(∑
α

Aα(t)⊗Bα(t)

)∑
β

Aβ(s)⊗Bβ(s)

 ρ̃S(t)ρE

−

(∑
α

Aα(t)⊗Bα(t)

)
ρ̃S(t)ρE

∑
β

Aβ(s)⊗Bβ(s)


−

∑
β

Aβ(s)⊗Bβ(s)

 ρ̃S(t)ρE

(∑
α

Aα(t)⊗Bα(t)

)

+ρ̃S(t)ρE

∑
β

Aβ(s)⊗Bβ(s)

(∑
α

Aα(t)⊗Bα(t)

)
}.

(1.18)
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This equation can be simplified as

∂

∂t
ρ̃S(t) = −

∑
αβ

∫ t

0
dt([Aα(t), Aβ(s)ρ̃S(t)]Cαβ(t− s)

+[ρ̃S(t)Aβ(s), Aα(t)]Cβα(s− t)).

(1.19)

Transforming back to the Schrödinger picture gives

∂

∂t
ρS(t) = −ı[HS , ρS(t)]−

∑
αβ

∫ t

0
dt([Aα, Aβ(s)ρS(t)]Cαβ(t− s)

+[ρS(t)Aβ(s), Aα]Cβα(s− t)).

(1.20)

The first term on the right hand side of Eq. (1.20) describes the system evolution, and the

remaining two terms describe the environmental influence on the system state. Eq. (1.20)

derived above is said to be the Markovian master equation in Lindblad form.

The dynamics of a two level system coupled to the environment has been studied and

is presented in this dissertation. However, this model is classified as non-Markovian due

to strong system-environment coupling or initial states being correlated [10, 11, 12, 13].

This of-course disqualifies the Born and Markov approximations used to derive Eq. (1.20).

Generalized or non-Markovian master equations [14, 15] are used instead to describe the

dynamics of this model. In chapter 2 of the dissertation, the Generalized master equa-

tions are derived with the use of the Nakajima-Zwanzig technique [16, 17] and the time-

convolutionless projection operator method. Stochastic wave-function methods are also

used to treat the non-Markovian quantum master equations [18] numerically. The gen-

eralized Lindblad master equation is then unravelled for both strong and weak coupling

regimes. In chapter 3 of the dissertation, the model is presented where both populations

and coherences are derived. The Monte Carlo simulation is shown in chapter 4 where

the jumps, realisations, and waiting times are found for both weak and strong coupling

regimes. In chapter 5 is where the results are shown for both regimes. The MC simulations

are compared with the time-convolutionless projection operator technique (TCL2).



Chapter 2

Generalized master equation and

its Stochastic unravelling

2.1 Projection Operator Technique

In this part of the dissertation, a projection operator technique is presented to derive a

non-Markovian master equations. This technique is based on the introduction of P which

acts on the total state of the system. The benefit of this technique is that its produces

the mathematical expression that eliminate the degrees of freedom from the description

of the states of the total system. The methodology followed in deriving these dynamical

equations is adopted from reference [16, 17]. The starting point is to consider the projection

superoperator P acting on the states of the total system having the full density matrix ρ.

The properties for the projection superoperator are,

ρ→ Pρ (2.1)

and

P2 = P. (2.2)

The projection Pρ represents an approximation of ρ which leads to a simplified effective

description of the dynamics through a reduced set of variables. A reduced density matrix

given in Eq. (1.1) is therefore written as

ρS(t) = trEPρ(t). (2.3)

6



2.2. The Nakajima-Zwanzig projection operator technique 7

This is an equation of motion for Pρ which can either be the Nakajima-Zwanzig equation

[16, 17], an intergrodifferential equation with a retarded memory kernel, or the time-local

differential equation of first order involving a time-dependent generator [18].

2.2 The Nakajima-Zwanzig projection operator technique

Let Q and P be two superoperators such that

Qρ = ρ− Pρ (2.4)

with the following properties

• P +Q = I

• P2 = P

• Q2 = Q

• PQ = QP = 0,

where I represents the identity operator. Taking the partial derivative of Pρ gives

∂

∂t
Pρ(t) = P ∂

∂t
ρ(t), (2.5)

and using Eq. (1.5) results in
∂

∂t
Pρ(t) = PL(t)ρ(t). (2.6)

Doing the same for the Q superoperator gives

∂

∂t
Qρ(t) = Q ∂

∂t
ρ(t), (2.7)

and
∂

∂t
Qρ(t) = QL(t)ρ(t). (2.8)

The identity operator I is introduced in both Eqs. (2.6) and (2.8) as

∂

∂t
Pρ(t) = PL(t)[I]ρ(t) (2.9)
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and
∂

∂t
Qρ(t) = QL(t)[I]ρ(t). (2.10)

Imposing the property I = P +Q yields,

∂

∂t
Pρ(t) = PL(t)[P +Q]ρ(t) = PL(t)Pρ(t) + PL(t)Qρ(t), (2.11)

∂

∂t
Qρ(t) = QL(t)[P +Q]ρ(t) = QL(t)Pρ(t) +QL(t)Qρ(t). (2.12)

To solve for Q in Eq. (2.12) requires integrating both sides of the equation∫ t

t0

(
∂

∂t
Qρ(t))ds =

∫ t

t0

(QL(t)Pρ(t) +QL(t)Qρ(t))ds. (2.13)

This gives,

Qρ(t) = G(t, t0)Qρ(t0) +

∫ t

t0

dsG(t, s)QL(s)Pρ(s) (2.14)

where the propagator G(t, s) is defined as

G(t, s) ≡ T←exp
[∫ t

s
ds

′QL(s
′
)

]
, (2.15)

with T← describes the chronological time ordering from right to left. Substituting Qρ(t)

from Eq. (2.14) in Eq. (2.11) gives

∂

∂t
Pρ(t) = PL(t)Pρ(t) + PL(t)(G(t, t0)Qρ(t0)

+

∫ t

t0

dsPL(t)G(t, s)QL(s)Pρ(s)).
(2.16)

This equation is known as the Nakajima-Zwanzig equation. The degrees of freedom for

this exact equation belong to the reduced system.

2.3 The time-convolutionless projection operator method

This technique expands the dynamics of the system of interest in terms of coupling strength

by developing expressions for quantum master equation up to the fourth order in the

coupling. It derives the exact master equation for the open system which is local in time.

The time-convolutionless (TCL) projection operator technique eliminates the dependences



2.3. The time-convolutionless projection operator method 9

of the future time evolution on the history from the Nakajima-Zwanzig master equation

defined in Eq. (2.16). If the density matrix ρ(s) is introduced as

ρ(s) = G(t, s)(P +Q)ρ(t) (2.17)

where G(t, s) = T→[−
∫ t
s ds

′L(s
′
)]. The operator T→ represents the chronological time or-

dering that increase from left to right. Taking this equation and substituting it in Eq. (2.14)

gives

Qρ(t) = G(t, t0)Qρ(t0) +

∫ t

t0

dsG(t, s)QL(s)PG(t, s)(P +Q)ρ(t). (2.18)

Now define the super-operator Σ(t) as

Σ(t) =

∫ t

t0

dsG(t, s)QL(s)PG(t, s) (2.19)

and substitute it in Eq. (2.18) gives

Qρ(t) = G(t, t0)Qρ(t0) +Σ(t)Pρ(t) +Σ(t)Qρ(t). (2.20)

Solving for Qρ(t) gives,

Qρ(t) = [1−Σ(t)]−1Σ(t)Pρ(t) + [1−Σ(t)]−1G(t, t0Qρ(t0). (2.21)

Inserting Eq. (2.21) in Eq. (2.11) gives

∂

∂t
Pρ(t) = PL(t)Pρ(t) + PL(t)[1−Σ(t)]−1Σ(t)Pρ(t)

+PL(t)[1−Σ(t)]−1G(t, t0)Qρ(t0)).

(2.22)

If the time-local generator is defined as

K(t) = PL(t)[1−Σ(t)]−1P (2.23)

and the inhomogeneity is

I(t) = PL(t)[1−Σ(t)]−1G(t, t0)Q, (2.24)

then Eq. (2.22) gives
d

dt
Pρ(t) = K(t)Pρ(t) + I(t)Qρ(t0). (2.25)
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This equation consists of exact and inhomogeneous terms namely generators K(t) and the

I(t) which are time dependent. Expanding [1−Σ(t)]−1 into a geometric series gives

[1−Σ(t)]−1 =
∞∑
n=0

[Σ(t)]n. (2.26)

Substituting Eq. (2.26) into Eq. (2.23) gives

K(t) = PL(t)

∞∑
n=0

[Σ(t)]nP, (2.27)

and this expression can be written as

K(t) =

∞∑
n=1

Kn(t). (2.28)

Re-writing the super-operator Σ(t) as

Σ(t) =
∞∑
n=1

Σn(t), (2.29)

and introducing it in Eq. (2.28) gives

K(t) =

∞∑
n=1

Kn(t) = PL(t)

∞∑
n=0

[Σn(t)]nP. (2.30)

Eq. (2.30) represents the TCL generator (K(t)) that is time-dependent. The full system

dynamics of a non-Markovian process is governed by Eq. (2.30). The solution of Eq. (2.30)

is determined by a perturbation expansion with n representing the order of the TCL ex-

pansion.

2.4 Structure of non-Markovian master equation

The time-convolutionless projection operator technique gives the dynamical equation of

the density matrix. Following the assumption that Qρ(t0) = 0, then Eq. (2.25) is

d

dt
Pρ(t) = Kt(Pρ(t)). (2.31)

The operator Kt is a linear generator that depends on time. Applying Eq. (2.1) to Eq. (2.31)

gives the system of equations of motion for the densities as

d

dt
ρi = Kti(ρ1, ......., ρn), (2.32)
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where i = 1, 2, 3, ...., n. The linear generators in this form may be approximated by time-

independent generators as
d

dt
ρi = Ki(ρ1, ....., ρn). (2.33)

This equation is assumed to preserve the positivity of all components ρi. Dynamical trans-

formation is formulated by introducing an auxiliary Hilbert space Cn and an orthonormal

basis |i〉 for this space. The vector % density matrix on the extended space HS ⊗ Cn is

% =
∑
i

ρi ⊗ |i〉〈i|. (2.34)

Taking the partial trace of % over the auxiliary space gives the reduced density matrix ρS .

The auxiliary space represents an additional degrees of freedom which express the statistical

correlations. Employing the fact that there exists a Lindblad generator L on this space

ensures the conservation of the positivity condition. The mathematical presentation of this

condition can be expressed as

L(
∑
i

ρi ⊗ |i〉〈i|) =
∑
i

Ki(ρ1, ....., ρn)⊗ |i〉〈i|, (2.35)

with solution ∑
i

ρi(t)⊗ |i〉〈i| = eLt(
∑
i

ρi(0)⊗ |i〉〈i|). (2.36)

Using the theorem from reference [10] which states as follows.

Theorem: A Lindblad generator L on the extended state space with property mentioned

at Eq. (2.35) exists if and only if the generators Ki can be represented as

Ki(ρ1, ...., ρn) = −i[H i, ρi] +
∑
jλ

(Rijλ ρjR
ij†
λ −

1

2
{Rji†λ Rjiλ , ρi}). (2.37)

The operators H i and Rijλ represent Hermitian operators and arbitrary system operator

respectively. Substituting Eq. (2.37) into Eq. (2.33) gives the master equation as

d

dt
ρi = −ı[H i, ρi] +

∑
jλ

(Rijλ ρjR
ij†
λ −

1

2
{Rji†λ Rjiλ , ρi}). (2.38)

Eq. (2.38) is the general form for equations of motion of dynamical variables ρi. The indices

i and j are summed over 1, 2, ....., n. It should be noted that if Rijλ = δijR
i
λ, then Eq. (2.38)

reduces to a master equation for the reduced density matrix in Lindblad form.
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2.5 Unravelling the quantum master equation

An unravelling approach is when a stochastic equation of motion for the reduced state

vector involves a multiple time integration over the system history. With this method

it is possible to construct an exact stochastic Schrödinger equation which describes the

non-Markovian time evolution of an open quantum system. It is performed by taking n

random state vectors |ψi(t)〉 that satisfy the stochastic differential equation for a piecewise

deterministic process (PDP) in Hilbert space [1]. The piecewise deterministic process is

simply defined as a stochastic process that is obtained by combining a deterministic time-

evolution with a jump process [4]. The strategy followed in unravelling Eq. (2.38) is adopted

from reference [4]. The starting point is to describe the state of the open system by a pair

of stochastic wave functions as

|ψi〉 =

 |ψ1〉

|ψ2〉

 . (2.39)

The wave function |ψi〉 becomes a stochastic process in Hilbert space with probability

functional P [|ψi〉, t] defined as

P [|ψi〉, t] =

∫
D|ψj〉D〈ψj |T [|ψi〉, t||ψj〉, t0]P [|ψj〉, t0]. (2.40)

Here T [|ψi〉, t||ψj〉, t0] is the conditional transition probability of the process andD|ψj〉D〈ψj |

represents the volume element. The mathematical representation of the volume element is

taken as

D|ψj〉D〈ψj | =
∏
j

ı

2
d|ψj〉d〈ψj |. (2.41)

The density operators are then given by the expectation values as

ρi(t) = E(|ψi(t)〉〈ψi(t)|) =

∫
D|ψi〉D〈ψiP [|ψi〉, t]|ψi(t)〉〈ψi(t)|. (2.42)

The wave functions 〈ψi|ψi〉 are bounded between 0 and 1, and∑
i

〈ψi(t)|ψi(t)〉 ≡ 1, (2.43)

which implies that the reduced density matrix can then be expressed as

ρS(t) =
∑
i

ρi(t). (2.44)
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The stochastic differential equation for the process |ψi〉 is

d|ψi〉 = −ıGi|ψi〉dt+
∑
jλ

[
Rijλ |ψj〉
‖ Rijλ |ψj〉‖

− |ψi〉

]
dN j

λ(t), (2.45)

where dN j
λ(t) represents the Poisson increments [4]. The conditions for the Poisson incre-

ments are

E[dN j
λ(t)] =

∑
jλ ‖R

ij
λ (t)|ψi(t)〉‖2∑

i ‖|ψi(t)〉‖2
dt, (2.46)

dN j
λ(t)dN j

λ(t) = δjidN
j
λ(t). (2.47)

The non-linear operator Gi|ψi〉 which describe the deterministic drift is defined as

Gi|ψi〉 = H i − ı

2

∑
jλ

(Rji†λ Rjiλ − ‖R
ij
λ |ψj〉‖

2). (2.48)

The first term in Eq. (2.45) represents the generator corresponding to the deterministic

time-evolution equation
d

dt
|ψi〉 = −ıGi|ψi〉. (2.49)

The second term represents the possible jumps for the upper and lower bands of the system.

They are written as

|ψi〉 →
Rijλ |ψj〉
‖Rijλ |ψj〉‖

. (2.50)

The rate at which the jump takes is

M j
λ =

∑
i

‖Rijλ |ψj〉‖
2. (2.51)

The realisations of the jumps are defined as

|ψi〉 →
e−ıGit|ψj〉
‖e−ıGit|ψj〉‖

. (2.52)

The Eqs. (2.50), (2.51), and (2.52) are deduced from Eq. (2.45) to enlight the jump processes

between a lower and upper bands. The total waiting time distribution which is a quantity

that defines the probability for the next jump to occur is

F (τ) = 1− exp

−∑
ij,λ

‖Rijλ |ψj〉‖
2τ

 , (2.53)
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where τ represents the waiting time before the jump. It should be noted that Eq. (2.42)

obeys Eq. (2.38) which provides unravelling of Eq. (2.45). In the next chapter, we in-

troduce the model studied in terms of its Hamiltonian, and apply a a technique of TCL

expansion using the correlated projection superoperator. This technique will be able to

provide the equations of motion for the the two level system coupled with an environment.

The solutions of the equations of motions will provide us with the populations and the

coherences.



Chapter 3

Model and Time Convolutionless

Approximation

3.1 Two level system

A two-level system S coupled to an environment E shown in Fig. (3.1) has been studied.
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Figure 3.1: Two level system coupled to the environment [2].
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The level spacing ω separates the excited |e〉 = |1〉 and ground |g〉 = |0〉 states of the

system. This system is coupled to an environment consisting of the number of energy

levels N1 and N2, and the width of the bands δε with the interaction potential V . The

Hamiltonian for this model can be separated into two parts H = H0 + V where

H0 = ωσz +
∑
n1

δε

N1
n1|n1〉〈n1|+

∑
n2

(ω +
δε

N2
n2)|n2〉〈n2|, (3.1)

and

V = λ
∑
n1,n2

c(n1, n2)σ+|n1〉〈n2|+H.c. (3.2)

The basis |n1〉 and |n2〉 denote the lower and upper bands respectively. σz is the Pauli

matrix, σ+ = σx + ıσy, and λ represents the strength of the interaction. The independent

coupling constants c(n1, n2) are complex Gaussian random variables with zero mean and

unit variance. In the following section equations of motion are derived for the two level

system coupled to an environment.

3.2 TCL expansion using the correlated projection superop-

erator

By considering a two level system coupled to an environment as the model of interest, one

uses the fact that the dynamics of the composite system are governed by the Hamiltonian

H = H0 +V . Interaction representation of the Hamiltonian defined above is used to derive

equations of motion in this approach. We have followed what reference [11] has published

in deriving equations of motion. If one denotes the projections Π1 and Π2 onto the lower

and upper bands as

Π1 =
∑
n1

|n1〉〈n1|, (3.3)

and

Π2 =
∑
n2

|n2〉〈n2|. (3.4)

These projections satisfy the following conditions

ΠiΠj = δij
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and ∑
i

Πi = I

which are the requirements for the projection operator. Here indexes i = 1 and j = 2, I

is the identity matrix, and δεij represent the trace over the environment. We use these

projections in the projection superoperator that is acting on the density operator is

Pρ = trE{Π1ρ} ⊗
1

N1
Π1 + trE{Π2ρ} ⊗

1

N2
Π2

= ρ
(1)
S ⊗

1

N1
Π1 + ρ

(2)
S ⊗

1

N2
Π2.

(3.5)

The density matrices ρ
(1)
S and ρ

(2)
S characterize the dynamical variables which are correlated

with the projections onto the lower and upper bands. The total reduced system state is

then defined as

ρS(t) = trE{Pρ(t)} = ρ
(1)
S (t) + ρ

(2)
S (t). (3.6)

The initial state of the correlated form is taken to be

ρ(0) = ρ
(1)
S (0)⊗ 1

N1
Π1 + ρ

(2)
S (0)⊗ 1

N2
Π2. (3.7)

Taking the derivative of Eq. (3.5) with respect to time lead to

d

dt
Pρ(t) = ρ̇

(1)
S (t)⊗ 1

N1
Π1 + ρ̇

(2)
S (t)⊗ 1

N2
Π2. (3.8)

From Eq. (2.30), the second-order contribution of TCL generator is

K2(t) =

∫ t

0
dt1PL(t)L(t1)P. (3.9)

Applying Eq. (3.8) in Eq. (2.25) with the absence of the second term since Qρ(t0) is

assumed to be zero, and introducing the two level system will give

K2(t)Pρ(t) =

∫ t

0
dt1h(t− t1)[2γ1σ+ρ

(2)
S σ−

−γ2{σ+σ−, ρ
(1)
S }]⊗

1

N1
Π1 +

∫ t

0
dt1h(t− t1)

×[2γ2σ−ρ
1
Sσ+ − γ1{σ−σ+, ρ

(2)
S }]⊗

1

N2
Π2.

(3.10)

The function h(t− t1) is

h(t) =
δε

2π

sin2(δεt/2)

(δεt/2)2
, (3.11)
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and it called a two-point environment correlation function. The relaxation rates γ1 and γ2

are defined as

γ1,2 =
2πλ2N1,2

δε
. (3.12)

The interaction is weak if a Markovian condition which says γ1,2 � δε and the condition

which says δεt� 1 are satisfied [10]. With that Eq. (3.10) becomes

K2(t)Pρ(t) =

∫ t

0
dt1

1

2
[2γ1σ+ρ

(2)
S σ−

−γ2{σ+σ−, ρ
(1)
S }]⊗

1

N1
Π1 +

∫ t

0
dt1h(t− t1)

×[2γ2σ−ρ
1
Sσ+ − γ1{σ−σ+, ρ

(2)
S }]⊗

1

N2
Π2.

(3.13)

Relating the terms in Eq. (3.8) with terms in Eq. (3.13) the equations of motion are:

d

dt
ρ

(1)
S (t) = γ1σ+ρ

(2)
S σ− −

γ2

2
{σ+σ−, ρ

(1)
S }, (3.14)

and
d

dt
ρ

(2)
S (t) = γ2σ−ρ

(1)
S σ+ −

γ1

2
{σ−σ+, ρ

(2)
S }. (3.15)

When both bands are initially populated, i.e. ρ
(1)
S (0) and ρ

(2)
S (0) are not equal to zero,

then the solutions for the lower and upper bands of the system [2] are:

ρ11 = ρ11(0)

[
γ1

γ1 + γ2
+

γ2

γ1 + γ2
e−(γ1+γ2)t

]
+ρ22(0)

[
γ1

γ1 + γ2
− γ1

γ1 + γ2
e−(γ1+γ2)t

]
,

(3.16)

and

ρ22 = ρ22(0)

[
γ2

γ1 + γ2
+

γ1

γ1 + γ2
e−(γ1+γ2)t

]
+ρ11(0)

[
γ2

γ1 + γ2
− γ2

γ1 + γ2
e−(γ1+γ2)t

]
.

(3.17)

The coherences which are both off-diagonal terms of the reduced density matrix are found

to be,

ρ12 = ρ12(0)

[
γ1

γ1 + γ2
+

γ2

γ1 + γ2
e−(γ1+γ2)t

]
(3.18)

and

ρ21 = ρ21(0)

[
γ2

γ1 + γ2
+

γ1

γ1 + γ2
e−(γ1+γ2)t

]
. (3.19)
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For the strong coupling, when δεt� 1 does not hold, then the equations of motion are

d

dt
ρ

(1)
S (t) =

∫ t

0
dt1h(t− t1)[2γ1σ+ρ

(2)
S (t)σ− − γ2{σ+σ−, ρ

1
S(t)}], (3.20)

and
d

dt
ρ

(2)
S (t) =

∫ t

0
dt1h(t− t1)[2γ2σ−ρ

(1)
S (t)σ+ − γ1{σ−σ+, ρ

2
S(t)}]. (3.21)

The solutions for the lower and upper bands of the system are:

ρ11 = ρ11(0)

[
γ1

γ1 + γ2
+

γ2

γ1 + γ2
e−Γ(t)

]
+ ρ22(0)

[
γ1

γ1 + γ2
− γ1

γ1 + γ2
e−Γ(t)

]
, (3.22)

and

ρ22 = ρ22(0)

[
γ1

γ1 + γ2
− γ1

γ1 + γ2
e−Γ(t)

]
+ ρ11(0)

[
γ2

γ1 + γ2
− γ2

γ1 + γ2
e−Γ(t)

]
. (3.23)

The coherences are

ρ12 = ρ12(0)

[
γ1

γ1 + γ2
+

γ2

γ1 + γ2
e−Γ(t)

]
(3.24)

and

ρ21 = ρ21(0)

[
γ1

γ1 + γ2
+

γ2

γ1 + γ2
e−Γ(t)

]
. (3.25)

Here Γ(t) is

Γ(t) = 2(γ1 + γ2)

∫ t

0
dt1

∫ t1

0
dt2h(t1 − t2). (3.26)

It is clear that the solutions of the equations of motion for both weak and strong cou-

plings highly depend on the relaxation rates. For the weak coupling, the populations and

the coherences depend on the time-independent rate (γ1,2). For the strong coupling, the

populations and the coherences depend on both the time-independent rate (γ1,2) and the

time-dependent rate (Γ(t)) where a Gaussian quadrature algorithm was used to evaluate

the integral of h(t1 − t2). The relaxation rates γ1,2 defined in Eq. (3.12) contain the envi-

ronment energy levels N1,2, coupling strength λ, and energy band width δε. For the model

studied in this dissertation, λ = 0.001 was taken to be in the weak coupling regime to

satisfy the Markovian condition. For the strong coupling regime λ = 0.01 chosen. These

were kept constant throughout the simulation of our system. The environment energy

levels N1,2 and energy band width δε were varied interchangeably.



Chapter 4

Stochastic wave-function

simulations

4.1 Monte Carlo simulations

The following analysis gives details of the Monte Carlo wave-function simulation for the

two level system coupled with an environment. The starting point is to consider our density

matrix defined in Eq. (2.38), in this equation we let i = 1 and j = 2. The operators are

then transformed into superscripts 1 and 2 namely H1, H2, R11, R12, and R22. We then

let

H1 = H2 = 0,

R11 = R22 = 0,

R12 =
√
γ1σ+,

R21 =
√
γ2σ−.

(4.1)

It should be noted that if these conditions are substituted in Eq. (2.38), then Eqs. (3.14),

(3.15), (3.20), and (3.21) can be obtained both for strong and weak couplings regimes. If

one substitutes Eq. (4.1) in Eq. (2.48), then

G1 = H1 − ı

2
(R12†R12 − ‖R21|ψ1〉I‖2 − ‖R12|ψ2〉I‖2)

= − ı
2

(γ1σ+σ− − γ2c1I − γ1c2I), (4.2)

20
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Here c1 = ‖σ−|ψ1〉‖2 and c2 = ‖σ+|ψ2〉‖2. By substituting the matrix terms σ+ = 0 1

0 0

, σ− =

 0 0

1 0

, and I =

 1 0

0 1

, we have

G1 = − ı
2

γ1

 0 1

0 0

 0 0

1 0

− γ2c1

 1 0

0 1

− γ1c2

 1 0

0 1


= − ı

2

 γ1 0

0 0

−
 γ2c1 0

0 γ2c1

−
 γ1c2 0

0 γ1c2


= − ı

2

 γ1 − γ2c1 − γ1c2 0

0 −γ1c2 − γ2c1

 . (4.3)

Similarly for G2 we have

G2 = H1 − ı

2
(R21†R21 − ‖R21|ψ1〉I‖2 − ‖R12|ψ2〉I‖2)

= − ı
2

(γ2σ−σ+ − γ2c1I − γ1c2I)

= − ı
2

γ2

 0 0

1 0

 0 1

0 0

− γ2c1

 1 0

0 1

− γ1c2

 1 0

0 1


= − ı

2

 0 0

0 γ1

−
 γ2c1 0

0 γ2c1

−
 γ1c2 0

0 γ1c2


=

ı

2

 −γ2c1 − γ1c2 0

0 γ1 − γ2c1 − γ1c2

 . (4.4)

Eqs. (4.3) and (4.4) represent the drift terms (G1 and G2) for the two state vectors |ψ1〉

and |ψ2〉. . If again Eq. (4.1) is substituted in Eq. (2.50), then one gets the two possible

jumps as:

|ψ1〉 → 0, |ψ2〉 →
σ−|ψ1〉
‖σ−|σ1〉‖

, (4.5)

with jump rate defined in Eq. (2.51) as M1 = γ2‖σ−|ψ1〉‖2 and

|ψ1〉 →
σ+|ψ2〉
‖σ+|σ2〉‖

, |ψ2〉 → 0 (4.6)
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with jump rate defined in Eq. (2.51) M2 = γ2‖σ+|ψ2〉‖2. Without loss of generality, let

the state vector |ψ1〉 =

 a1

b1

, and substituting it in Eq. (4.5) gives,

|ψ1〉 → 0, |ψ2〉 =

 0

1

 , (4.7)

the jump rate is M1 = γ2‖σ−|ψ1〉‖2 = γ2a1. Simirlaly for the state vector |ψ2〉 =

 a2

b2

,

and substituting it in Eq. (4.6) gives, M2 = γ1‖σ+|ψ2〉‖2 = γ1b1. The realisation defined

in Eq. (2.52) for the state vector |ψ1〉 is

|ψ̃1(t)〉 → e−ıG1t|ψ1〉
‖e−ıG1t|ψ1〉‖

, (4.8)

and can be represented in terms of |ψ1〉 =

 a1

b1

 and by Eq. (4.3) as follows:

The numerator of Eq. 4.8 is

e−ıG1t|ψ1〉 =

 e−
1
2

(γ1−γ2c1−γ1c1)t 0

0 e−
1
2

(−γ2c1−γ1c2)t

 a1

b1


=

 a1e
− 1

2
(γ1−γ2c1−γ1c2)t

b1e
− 1

2
(−γ2c1−γ1c2)t

 . (4.9)

The denominator of Eq. (4.8) is

‖eıG1t|ψ1〉‖2 =

∥∥∥∥∥∥ a1e
− 1

2
(γ1−γ2c1−γ1c2)t

b1e
− 1

2
(−γ2c1−γ1c2)t

∥∥∥∥∥∥
2

=

 a1e
− 1

2
(γ1−γ2c1−γ1c2)t

b1e
− 1

2
(−γ2c1−γ1c2)t

( a1e
− 1

2
(γ2−γ2c1−γ1c2)t b1e

− 1
2

(−γ2c1−γ1c2)t
)

= a2
1e

(−γ1+γ2c1+γ1c2)t + b21e
(γ2c1+γ1c2)t. (4.10)

Putting Eqs. (4.9) and (4.10) back to Eq. (4.8) gives,

|ψ̃1(t)〉 =

 1

0

 . (4.11)



4.1. Monte Carlo simulations 23

The realisation for the state vector |ψ2〉 is

|ψ̃2(t)〉 → e−ıG2t|ψ2〉
‖e−ıG2(t)|ψ2〉‖

, (4.12)

and can be represented in terms of |ψ1〉 =

 a2

b2

 and Eq. (4.4) as follows:

The numerator of Eq. (4.12) is

eıG2t|ψ2〉 =

 e−
1
2

(γ2−γ2c1−γ1c2)t 0

0 e−
1
2

(−γ2c1−γ1c2)t

 a2

b2


=

 a2e
− 1

2
(γ2−γ2c1−γ1c2)t

b2e
− 1

2
(−γ2c1−γ1c2)t

 (4.13)

The denominator of Eq. (4.12) is

‖eıG2t|ψ2〉‖ =

∥∥∥∥∥∥
 a2e

− 1
2

(γ2−γ2c1−γ1c2)t

b2e
− 1

2
(−γ2c1−γ1c2)t

∥∥∥∥∥∥
=

 a2e
− 1

2
(γ2−γ2c1−γ1c2)t

b2e
− 1

2
(−γ2c1−γ1c2)t

( a2e
− 1

2
(γ2−γ2c1−γ1c2)t b2e

− 1
2

(−γ2c1−γ1c2)t
)

= (a2
2e
−(γ2−γ2c1−γ1c1)t + b22e

−(−γ2c1−γ1c2)t)
1
2 . (4.14)

Putting Eqs. (4.13) and (4.10) back to Eq. (4.12) gives,

|ψ̃2(t)〉 =

 0

1

 . (4.15)

Eqs.(4.11) and (4.15) represent the realisations for the state vectors |ψ1〉 and |ψ2〉. The

total waiting time distribution defined in Eq. (2.53) for the weak coupling regime is

F (τ) = 1− exp[−γ1‖σ+|ψ2〉‖2τ − γ2‖σ−|ψ1〉‖2τ

= 1− exp[−γ1c2τ − γ2c1τ ] (4.16)

For the strong coupling regimes the total waiting time distribution is

F (τ) = 1− exp

[
2

∫ τ

0
dt1h(τ − t1)(−γ1c2τ − γ2c1τ)

]
. (4.17)
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The integrand of this equation is∫ τ

0
dt1h(τ − t1) =

∫ τ

0
dt1

δε

2π

sin2(δεt/2)

(δεt/2)2
. (4.18)

Use sin2(δεt/2) = 1
2(1− cos 2( δεt2 )) = 1

2(1− cos(δεt)) and put it in Eq. (4.18)∫ τ

0
dt1h(τ − t1) =

2

πδε

∫ τ

0
dt1

1

2

(1− cos δεt)

t2

=
1

πδε

∫ τ

0
dt1

(1− cos δεt)

t2

=
1

πδε

[∫ τ

0

1

t2
dt1 −

∫ τ

0

cos δεt

t2
dt1

]
.

=
1

πδε

[
−1

τ
−
∫ τ

0

cos δεt

t2
dt1

]
. (4.19)

The second term requires an integration by part technique.∫ τ

0

cos δεt

t2
dt1 = −cos δετ

τ
−
∫ τ

0

δε sin δεt

t
dt1. (4.20)

Substitutes Eq. (4.20) in Eq. (4.19) expands to∫ τ

0
dt1h(τ − t1) =

1

πδε

[
−1

τ
+

cos δετ

τ
+

∫ τ

0

δε sin δεt

t
dt1

]
. (4.21)

Substitutes Eq. (4.21) to Eq. (4.17) and obtain

F (τ) = 1− exp

[
2[−1 + cos(δετ) + δετSi(δετ)]

δετπ
× (−γ1c1τ − γ2c1τ)

]
, (4.22)

where Si(δετ) =
∫ τ

0
δε sin δεt

t dt1.

For the special cases, we first chose a1 = 1, b1 = 0, a2 = 0 and b2 = 0, then the jumps were

found to be

|ψ1〉 =

 1

0

 , | ψ2〉 =

 0

0

 . (4.23)

When c1 = 1 and c2 = 0, then the realisations are

|ψ̃1〉 →

 1

0

 |ψ̃2〉 →

 0

0

 . (4.24)

The waiting time for the first jump in a weak coupling regime is

η1 = e−γ2t ⇒ τ1 =
1

γ2
ln η1, (4.25)
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where η1 = exp[−γ1c2τ − γ2c1τ ] in Eq. (4.16).

For the second case, we chose a1 = 0, b1 = 0, a2 = 0 and b2 = 1, then the jumps were found

to be

|ψ1〉 =

 0

0

 , | ψ2〉 =

 0

1

 . (4.26)

When c1 = 0 and c2 = 1, then the realisations are

|ψ̃1〉 →

 0

0

 , |ψ̃2〉 →

 0

1

 . (4.27)

The waiting time for the next possible jump 2 in the weak coupling regime is

η2 = e−γ1t ⇒ τ2 =
1

γ1
ln η2, (4.28)

where η2 = exp[−γ1c2τ − γ2c1τ ] shown in Eq. (4.16). In a strong coupling regime η1,2 =

exp
[

2[−1+cos(δετ)+δετSi(δετ)]
δετπ × (−γ1c1τ − γ2c1τ)

]
. It should be noted that for the strong

coupling regime, the waiting times τ are extracted from the polynomial interpolation al-

gorithm [19]. The description of how the populations and the coherences are undertaken

in the Monte Carlo simulation has been shown in the results and discussion chapter.

4.2 Monte Carlo code Flow Chart

The following flow chart shows 7 steps which were followed in simulating our two level

system coupled with an environment. The first step (Python modules) calls all the required

modules that are built in functions in python. The second step (declaration of parameters)

shows different chosen values for both regimes. The third step (initial condition) is where

the initial conditions are defined. The total waiting time distribution is calculated in the

fourth step. The realizations are calculated in fifth step. Immediately after this step, a

density matrix and error bars are calculated in the sixth and seventh steps respectively.

The complete codes which is complemented by this flow chart can be found on the appendix

section.
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Monte Carlo code 

Python Modules 

Declaration of Parameters 

Define initial conditions 

Calculation of waiting time 

Calculation of the density matrix 

Calculation of the realizations 

    Calculation of error bars 

Figure 4.1: Flow chart showing the Monte Carlo code.



Chapter 5

Results and discussions

5.1 Pure state

The results presented show two regimes that were investigated namely the weak coupling

and strong coupling. In both of these regimes N1 ,N2, and δε were varied interchange-

ably and the populations of the system were plotted. The comparison of the analytical

solution of the second order time convolutionless (TCL2) solution for both time dependent

and independent approaches was made with the Monte Carlo (MC) simulation. If the

initial conditions ρ11(0) = 1 and ρ22(0) = 0 are substituted in Eqs. (3.16-3.19), and we

consider γ1 = γ2 = γ, then the MC simulations are compared to the second order time

convolutionless (TCL2) with a time-independent rate:

ρii(t) =
1

2
± 1

2
e−2γt. (5.1)

The index i = 1 corresponds to ′+′ and i = 2 corresponds to ′−′. If the ′+′ sign is used

in the TCL2 equation, then the lower level is populated denoted by ρ11 and if the ′−′

sign is used in the TCL2, then the upper level is populated denoted by ρ22. If the initial

conditions are now substituted in Eqs. (3.22-3.23), and with γ1 = γ2 = γ, then the MC

simulations are compared to second order time convolutionless (TCL2(t)) solution with a

time-dependent rate:

ρjj(t) =
1

2
± 1

2
e−2Γ(t). (5.2)

27
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The index j = 1 is for ′+′ and j = 2 is for ′−′. If the ′+′ sign is used then the lower level

is populated, and is denoted by ρ11. The ′−′ sign is used in the TCL2 equation when the

upper level is populated denoted by ρ22. Here Γ(t) is treated the same as Eq. (3.26). For

both regimes 5000 trajectories were used in the Monte Carlo simulations to recover the

quantum master equation.

5.1.1 Weak coupling results

Fig. 5.1 shows the population for the ground state where N1 = N2 = 200, δε = 0.31, and

λ = 0.001. The comparison of TCL2, TCL2(t), and MC simulations is made. It is seen

that MC, TCL2, and TCL2(t) are in good agreement with each other. Figs. 5.2 and 5.3

show the populations for the ground state and excited state respectively. In these figures,

the number of levels N1 and N2 were uniformly varied. The energy band width δε, and the

coupling strength λ were fixed at 0.31 and 0.001 respectively. These values were selected

to satisfy the required condition for the weak coupling mentioned in the earlier chapter

of this dissertation. The ground state of the system started fully populated i.e, ρ11 = 1,

while excited state is ρ22 = 0. It has been observed that as time evolves, both states

thermalize to the steady state where both ρ11 and ρ22 are equal to 0.5. It can be seen from

Figs. 5.2 and 5.3 that as the number of levels N1 and N2 are increased simultaneously, both

states thermalize to the steady state faster. Figs. 5.4 and 5.5 show the populations for the

ground state and excited state respectively, where the energy band width δε was varied.

Here number of levels N1 and N2, and the coupling strength λ were fixed at 150 and 0.001

respectively. The ground state of the system started fully populated i.e, ρ11 = 1, while the

while the excited state is ρ22 = 0. Again it was observed that as time evolves, both states

thermalize to steady state where both ρ11 and ρ22 are equal to 0.5. These figures show that

as the energy band width δε is increased, then both statess take longer to thermalize to

the steady state. Figs. 5.6 and 5.7 show the populations for the ground state and excited

state respectively where N1 was varied to very large values while N2 was kept fixed at

150. The energy band width δε, and the coupling strength λ were fixed at 0.31, and 0.001

respectively. The ground state started fully populated i.e, ρ11 = 1, while the excited state

ρ22 = 0. The figures show that as time evolves, both bands thermalize to different steady
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states. In Fig. 5.6, as N1 is increased to very large values, ρ11 thermalizes close to its initial

state (ρ11 = 1). In Fig. 5.7, as N1 is increased to very large values, ρ22 thermalizes close

to its initial state (ρ22 = 0). The significance of these figures indicate controllability of the

system. The controllability of the system was further investigated as shown in Figs. 5.8

and 5.9. In these figures, N2 was varied to very large values while keeping N1 fixed at

150. The energy band width δε, and the coupling strength λ were fixed at 0.31, and 0.001

respectively. The ground state started fully populated i.e, ρ11 = 1, while the excited state

is ρ22 = 0. In Fig. 5.8, as N2 is increased to very large values, ρ11 thermalizes close to the

ground state (ρ11 = 0). In Fig. 5.9, as N2 is increased to very large values, ρ22 thermalizes

close to the excited state (ρ22 = 1). This again verifies that a system is controllable from

one state to another state.
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Figure 5.1: The ground state population for N1 = N2 = 200 with λ = 0.001 and δε = 0.31.
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Figure 5.2: The ground state populations for variation of N1 and N2 with λ = 0.001 and

δε = 0.31.
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Figure 5.3: The excited state populations for variation of N1 and N2 with λ = 0.001 and

δε = 0.31.
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Figure 5.4: The ground state populations for variation of δε with N1 = N2 = 150 and

λ = 0.001.
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Figure 5.5: The excited state populations for variation of δε with N1 = N2 = 150 and

λ = 0.001.
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Figure 5.6: The ground state populations for variation of N1 with N2 = 150, λ = 0.001,
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Figure 5.7: The excited state populations for variation of N1 with N2 = 150, λ = 0.001,

and δε = 0.31.
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Figure 5.8: The ground state populations for variation of N2 with N1 = 150, λ = 0.001,
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Figure 5.9: The excited state populations for variation of N2 with N1 = 150, λ = 0.001,

and δε = 0.31.
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5.1.2 Strong coupling results

Fig. 5.10 shows the population for the ground state where N1 = N2 = 200, δε = 0.31,

and λ = 0.01. A comparison between TCL2, TCL2(t), and the MC simulations is made.

Here it is seen that MC simulation, and TCL2(t) solution are in good agreement with each

other, TCL2 solution on the other hand does not overlap the others. The reason for this is

that the TCL2 was derived for the weak coupling. Figs. 5.11 and 5.12 show the populations

for the ground state and excited state respectively. In these figures, the number of levels

N1 and N2 were uniformly varied. The energy band width δε, and the coupling strength

λ were fixed at 0.31 and 0.01 respectively. The ground state of the system started fully

populated i.e, ρ11 = 1, while the excited state is ρ22 = 0. It has been observed that as

time evolves, both states thermalize to the steady state where both ρ11 and ρ22 are equal

to 0.5. It can be seen from Figs. 5.11 and 5.12 that as the number levels N1 and N2 are

increased simultaneously, both states thermalize to the steady state faster. Figs. 5.13 and

5.14 show the populations for the ground state and excited state respectively, where the

energy band width δε was varied. Here the number of levels N1 and N2, and the coupling

strength λ were fixed at 150 and 0.01 respectively. The ground state of the system started

fully populated i.e, ρ11 = 1, while excited state is ρ22 = 0. Again it has been observed that

as time evolves, both states thermalize to steady state where both ρ11 and ρ22 are equal to

0.5. These figures show that as energy band width δε is increased, then both states take

longer to thermalize to the steady state. Figs. 5.15 and 5.16 show the populations for the

ground state and excited state respectively, where N1 was varied to very large values while

N2 was kept fixed at 150. The energy band width δε, and the coupling strength λ were fixed

at 0.31, and 0.01 respectively. The ground state started fully populated i.e, ρ11 = 1, while

excited state is ρ22 = 0. The figures show that as time evolves, both states thermalize to

different steady states. In Fig. 5.15, as N1 is increased to very large values, ρ11 thermalizes

close to its initial state (ρ11 = 1). In Fig. 5.16 as N1 is increased to very large values, then

ρ22 thermalizes close to its initial state (ρ22 = 0). The significance of these figures indicate

controllability of the system. The controllability of the system was further investigated as

shown in Figs. 5.17 and 5.18. In these figures, N2 was varied to very large values while

keeping N1 fixed at 150. The energy band width δε, and the coupling strength λ were
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fixed at 0.31, and 0.001 respectively. The ground state started fully populated i.e, ρ11 = 1,

while the excited state is ρ22 = 0. In Fig. 5.17, as N2 is increased to very large values, ρ11

thermalizes close to the ground state (ρ11 = 0). In Fig. 5.18, as N2 is increased to very

large values, then ρ22 thermalizes close to the excited state (ρ22 = 1). This again verifies

that a system is controllable from one state to another state.
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Figure 5.10: The ground state population for N1 = N2 = 200 with δε = 0.31, and λ = 0.01.
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Figure 5.11: The ground state populations for variation of N1 and N2 with δε = 0.31, and

λ = 0.01.
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Figure 5.12: The excited state populations for variation of N1 and N2 with δε = 0.31, and

λ = 0.01.
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λ = 0.01.
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Figure 5.14: The excited state populations for variation of δε with N1 = N2 = 150, and

λ = 0.01.
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Figure 5.15: The ground state populations for variation of N1 with N2 = 150, δε = 0.31,
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Figure 5.16: The excited state populations for variation of N1 with N2 = 150, δε = 0.31,

and λ = 0.01.
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Figure 5.17: The ground state populations for variation of N2 with N1 = 150, δε = 0.31,

and λ = 0.01.
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Figure 5.18: The excited state populations for variation of N2 with N1 = 150, δε = 0.31,

and λ = 0.01.
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5.2 Correlated state

The correlated state is defined such that it is a combination of the system state vectors

and the environment population [2]. Using such a state we can investigate our model with

a initial state that has both energy bands populated. The initial state is given by

|ψ(0)〉 =
√

(β)|g〉+
√

(1− β)eiφ|e〉. (5.3)

Here β is a population ratio of the lower band and 1−β is a population of the upper band.

They are defined as

β =
trE{Π1ρE(0)}

N1
, (5.4)

and

1− β =
trE{Π2ρE(0)}

N2
. (5.5)

The population ratio (β) can take any value in the interval [0, 1]. If β = 1, then Eq. (5.4)

only survives and this means that the lower band
(
trE{Π1ρE(0)}

N1
= 1
)

is only populated. If

β = 0, then Eq. (5.5) only survives and thus the upper band
(
trE{Π2ρE(0)}

N2
= 1
)

is only

populated. If β = 0.5 both lower and upper bands are equally populated. The φ represents

the azimuthal angle which is associated to a state vector on the Bloch sphere. The initial

conditions used to simulate the populations are

ρ11(0) = β (5.6)

ρ22(0) = 1− β. (5.7)

and for the coherence terms

ρ12(0) = ρ21(0) =
√
β(1− β). (5.8)

If these conditions are substituted in Eqs. (3.16-3.19), and we consider in Eq. (3.12) that

N1 = N2, then γ1 = γ2 = γ. The second order time convolutionless (TCL2) with time-

independent rate population is then going to be

ρll(t) =
1

2
±
[
β − 1

2

]
e−2γt, (5.9)
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and the coherences

ρlm(t) =
1

2

√
β(1− β)

[
1 + e−2γt

]
. (5.10)

The index l = 1 corresponds to ′+′ and l = 2 corresponds to ′−′ and for the coherences l

and m equal to 1 or 2 but l 6= m. If these conditions are now substituted in Eqs. (3.22-3.23),

and considering that γ1 = γ2, then the simulation of the second order time convolutionless

(TCL2(t)) with time-dependent rate population is

ρll(t) =
1

2
±
[
β − 1

2

]
e−2Γ(t) (5.11)

and the coherence term is

ρlm(t) =
1

2

√
β(1− β)

[
1 + e−2Γ(t)

]
. (5.12)

The index l and m have the same interpretation as mentioned above. Here Γ(t) is treated

the same as Eq. (3.26). Eqs. (5.10) and (5.12) represent off-diagonal terms of the reduced

density matrix (coherences). The MC simulation as discussed in Chapter 4 was again

used to simulate Eqs. 5.11 and 5.12. For both strong and weak coupling regimes 5000

trajectories were used in the Monte Carlo simulations.

5.2.1 Weak coupling results

Figs. 5.19 and 5.20 show the populations for the ground state and excited state where

the number levels N1 = N2 = N are varied as 100, 200, 400, and 800. The energy band

width is δε = 0.31, and the coupling strength is λ = 0.001. These figures are plotted

for the different values of the environment population ratio β. The comparison of the

TCL2 approximation mentioned in Eq. (5.9) with MC simulations is made. It can be

seen that both solutions overlap completely. If β = 1, then Fig. 5.19 shows ρ11(0) = 1,

while Fig. 5.20 shows ρ22(0) = 0. As time evolves, both states populate to 0.5. If β = 0,

Fig. 5.19 shows ρ11(0) = 0, while Fig. 5.20 shows ρ22(0) = 1. As time evolves, then both

states populate to 0.5. It can be seen from Figs. 5.19 and 5.20, as the number levels

are increased simultaneously, both states thermalize to the steady state faster. Figs. 5.21

and 5.22 show the coherences (off diagonal terms of a density matrix) of the system. In

Fig. 5.21 shows the plot for N1 = N2 = N = 100, while δε = 0.31, and λ = 0.001. In this
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figure the MC simulation was compared to TCL2 solution and the overlap of the trends

were obtained. Fig. 5.21 also shows coherences thermalizing at the same time but having

different values of population ratios. In Fig. 5.22 is when number of levels are varied, while

δε = 0.31, and λ = 0.001. We have chosen β = 0.5, and observed that as number level

increases then ρ12 reaches the steady states faster.
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Figure 5.19: The ground state population for the variation of energy levels N1 = N2 = N

with δε = 0.31, and λ = 0.001.
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Figure 5.20: The excited state population for the variation of number levels N1 = N2 = N

with δε = 0.31, and λ = 0.001.
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Figure 5.21: The coherences for N1 = N2 = 100 with δε = 0.31, and λ = 0.001.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  500  1000  1500  2000

ρ
1

2

t

β=0.5, N = 100, MC
β=0.5, N = 100 TCL2

β=0.5, N = 200 MC
β=0.5, N = 200 TCL2

β=0.5, N = 400, MC
β=0.5, N = 400 TCL2

β=0.5, N = 800, MC
β=0.5, N = 800 TCL2

steady state

Figure 5.22: The coherences for the variation of number levelsN1 = N2 = N with δε = 0.31,

and λ = 0.001.
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5.2.2 Strong coupling results

Figs. 5.23 and 5.24 show the populations for the ground state and excited state where the

number levels N1 = N2 = N are varied as 100, 200, 400, and 800. The energy band width

is δε = 0.31, and the coupling strength is λ = 0.001. These figures are plotted for the

different values of the environment population ratio β. The comparison of the TCL2(t)

approximation mentioned in Eq. (5.11) with MC simulations is made. It can be seen that

both solutions overlap completely. If β = 1, then Fig. 5.23 shows ρ11(0) = 1, while Fig. 5.24

shows ρ22(0) = 0. As time evolves, both states populate to 0.5. If β = 0, Fig. 5.23

shows ρ11(0) = 0, while Fig. 5.24 shows ρ22(0) = 1. As time evolves, then both states

populate to 0.5. It can be seen from Figs. 5.23 and 5.24, as the number levels are increased

simultaneously, both states thermalize to the steady state faster. Figs. 5.25 and 5.26 show

the coherences of the system. In Fig. 5.25 shows the plot for N1 = N2 = N = 100, while

δε = 0.31, and λ = 0.001. In this figure the MC simulation was compared to TCL2(t)

solution and the overlap of the trends were obtained. Fig. 5.25 also shows coherences

thermalizing at the same time but having different values of population ratios. In Fig5.26

is when number of levels are varied, while δε = 0.31, and λ = 0.001. We have chosen

β = 0.5, and observed that as number level increases then ρ12 reaches the steady states

faster.
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Figure 5.23: The ground state population for the variation of energy levels N1 = N2 = N

with δε = 0.31, and λ = 0.001.
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Figure 5.24: The excited state population for the variation of number levels N1 = N2 = N

with δε = 0.31, and λ = 0.001.
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Figure 5.25: The coherences for N1 = N2 = 100 with δε = 0.31, and λ = 0.001.
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Chapter 6

Conclusions

The dynamics of the two level system coupled both strongly and weakly to an environment

were studied. The comparison of the Monte Carlo wave-function simulations (MC) was

made with second order time convolutionless for both time-independent (TCL2) and time-

dependent (TCL2(t)) simulations. It has be observed that all simulations (MC, TCL2,

TCL2(t)) are in good agreement with one another in the weak coupling scenario, and only

MC and TCL2(t) were only found to be in good correlation with one another in the strong

coupling. This is due to the fact that the TCL2 was derived for the weak coupling case.

For the pure state when energy levels N1 = N2 were uniformly increased while coupling

strength λ and energy band width δε were fixed both lower and upper bands took longer

to thermalize (to reach a steady state ρ11 = ρ22 = 0.5). When the energy band width δε

was increased, while energy levels N1 and N2 coupling strength λ were fixed, both lower

and upper bands took longer to reach the steady state. Another interesting observation

was that ρ11 and ρ22 can be driven back to its initial state if N1 is increased to large values

while N2, λ, and δε are kept unchanged. If N2 is increased to large values while N1, λ,

and δε are kept unchanged, then ρ11 and ρ22 can be driven into the next state. In the

correlated state N1 = N2 were the only parameters that were varied, and it was observed

that as N1 = N2 increases then the system takes a shorter time to reach the steady state.

For the future investigation, one can use large values of N1 and N2 to see if the system can

remain at its initial state while interactiong with the environment.
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Appendix A

Monte Carlo codes

A.1 Weak coupling for pure state

### This part c a l l s a l l the phython modules and ope ra t i on s needed #####

from qut ip import ∗

from sc ipy import ∗

from pylab import ∗

import random

import time

### The d e c l a r a t i o n o f parameters and dimensions ###

s t a r t t i m e = time . time ( )

de f run ( ) :

n = 2 # number o f s t a t e s ( ground and e x c i t e d s t a t e s )

nnr = 5000 # Monte Carlo runs

nt = 3000 # Monte Carlo t imes

tau = ze ro s ( [ 1500+1] )

wfn1 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn2 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn1 new = ze ro s ( ( nnr+1,nt+1,n+1))
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wfn2 new = ze ro s ( ( nnr+1,nt+1,n+1))

prodt = ze ro s ( ( nnr+1,nt +1))

p r o d t t o t a l = ze ro s ( ( nt +1))

e r r t = ze ro s ( ( nt +1))

rho = ze ro s ( ( nnr+1,nt+1,n+1,n+1))

i r a = 4321

N0 = 150 ## Environment energy l e v e l s

N1 = N0

N2 = N0

dlam = 0.001 e00 # Coupling s t r ength

dN1 = N1∗1 .0 e00

dN2 = N2∗1 .0 e00

d e = 0.31 # Energy band width

gamma1 = 2.0∗ pi ∗dlam∗∗2∗dN1/ d e # r e l a x a t i o n r a t e s 1

gamma2 = 2.0∗ pi ∗dlam∗∗2∗dN2/ d e # r e l a x a t i o n r a t e s 2

f o r i in range (1 , nnr +1):

f o r j in range (0 , nt +1):

prodt [ i , j ]=0.0

f o r nr in range (1 , nnr +1):

qu i t = Fal se

sk ip = False

i r a = i r a+1

random . seed ( i r a )

rn = random . random ( )

t i n i = 0 .0

t f i n = 5000 .0

d e l t a t = 5 .0
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n s = ( t f i n−t i n i )/ d e l t a t

s n = i n t ( n s )

t sum = 0.0

ntau max = 100

n s s o l d = 0

tau [ 0 ] = 0 .0

wfn1 [ nr , n s s o l d , 1 ] = 1 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 0 .0

f o r m in range (1 , ntau max +1):

qu i t = Fal se

sk ip = False

rn = random . random ( )

i f ( wfn1 [ nr , n s s o l d ,1]==1.0 and wfn1 [ nr , n s s o l d , 2 ]==0 .0 ) :

tau [m] = (−1.0/gamma2)∗ l og ( rn )

e l i f ( wfn2 [ nr , n s s o l d ,1]==0.0 and wfn2 [ nr , n s s o l d ,2]==1.0

) :

tau [m] = (−1.0/gamma1)∗ l og ( rn ) # Calcu la te wai t ing time

i f ( tau [m]> t f i n ) :

t sum = t f i n

qu i t = True

e l s e :

t sum = t sum+tau [m]
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i f ( t sum>t f i n ) :

t sum = t f i n

qu i t = True

s n s s = t sum/ d e l t a t

n s s = i n t ( s n s s )

i f ( s n s s != 0 .0 and sn s s−n ss <0 .5) :

n s s = n ss−1

e l i f ( s n s s ==0.0):

sk ip = True

f o r ntt in range ( n s s o l d , n s s +1):

i f ( n s s o l d ==0):

wfn1 [ nr , ntt , 1 ] = 1 .0 # I n i t i a l va lue wave 1

wfn1 [ nr , ntt , 2 ] = 0 .0 # I n i t i a l va lue wave 1

wfn2 [ nr , ntt , 1 ] = 0 .0 # I n i t i a l va lue wave 2

wfn2 [ nr , ntt , 2 ] = 0 .0 # I n i t i a l va lue wave 2

e l s e :

wfn1 [ nr , ntt , 1 ] = wfn1 [ nr , n s s o l d , 1 ] # value a f t e r jump

wfn1 [ nr , ntt , 2 ] = wfn1 [ nr , n s s o l d , 2 ] # value a f t e r jump

wfn2 [ nr , ntt , 1 ] = wfn2 [ nr , n s s o l d , 1 ] # value a f t e r jump

wfn2 [ nr , ntt , 2 ] = wfn2 [ nr , n s s o l d , 2 ] # value a f t e r jump

#### Calcu la te the r e a l i z a t i o n s o f wave 1 ##############

i f ( wfn1 [ nr , ntt ,1]==0.0 and wfn1 [ nr , ntt , 2 ]==0 .0 ) :

wfn1 new [ nr , ntt , 1 ] = 0 .0

wfn1 new [ nr , ntt , 2 ] = 0 .0

e l i f ( wfn1 [ nr , ntt ,1]==1.0 and wfn1 [ nr , ntt , 2 ]==0 .0 ) :

wfn1 new [ nr , ntt , 1 ] = 1 .0

wfn1 new [ nr , ntt , 2 ] = 0 .0

#### Calcu la te the r e a l i z a t i o n s o f wave 2 ##############

i f ( wfn2 [ nr , ntt ,1]==0.0 and wfn2 [ nr , ntt , 2 ]==0 .0 ) :
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wfn2 new [ nr , ntt , 1 ] = 0 .0

wfn2 new [ nr , ntt , 2 ] = 0 .0

e l i f ( wfn2 [ nr , ntt ,1]==0.0 and wfn2 [ nr , ntt , 2 ]==1 .0 ) :

wfn2 new [ nr , ntt , 1 ] = 0 .0

wfn2 new [ nr , ntt , 2 ] = 1 .0

######## Calcu la te the dens i ty matrix ##########

rho [ nr , ntt , 1 , 1 ] = wfn1 new [ nr , ntt , 1 ]∗∗2

+ wfn2 new [ nr , ntt , 1 ]∗∗2

prodt [ nr , ntt ] = rho [ nr , ntt , 1 , 1 ]

i f ( sk ip ) :

prodt [ nr , 1 ] = 1 .0

break

i f ( qu i t ) :

break

n s s o l d = n s s+1

i f ( wfn1 [ nr , n ss ,1]==0.0 and wfn1 [ nr , n ss , 2 ]==0 .0 ) :

wfn1 [ nr , n s s o l d , 1 ] = 1 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 0 .0

e l s e :

wfn1 [ nr , n s s o l d , 1 ] = 0 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 1 .0

f o r i in range (0 , s n +1):

p r o d t t o t a l [ i ] = 0 .0

f o r j in range (1 , nnr +1):

p r o d t t o t a l [ i ] = p r o d t t o t a l [ i ]+ prodt [ j , i ]
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#### Calucu late the s t a t i s t i c s #######

f o r i in range (0 , s n +1):

e r r t [ i ] = 0 .0

t t t = i ∗ d e l t a t+t i n i

f o r j in range (1 , nnr +1):

e r r t [ i ] = e r r t [ i ]+( prodt [ j , i ]− p r o d t t o t a l [ i ] / nnr )∗∗2

p r in t i , t t t , p r o d t t o t a l [ i ] / nnr , s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))

txt = s t r ( i ) + ’\ t ’ + s t r ( t t t ) + ’\ t ’ + s t r ( p r o d t t o t a l [ i ] / nnr )

+ ’\ t ’ + s t r ( s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))) + ’\n ’

f i l e . wr i t e ( txt )

f i l e . c l o s e ( )

show ( )

c l o s e ( ’ a l l ’ )

i f name == ” main ” :

run ( )

p r i n t (”−−−% seconds−−−”%(time . time ( ) −s t a r t t i m e ) )

A.2 Strong coupling for pure state

### This part c a l l s a l l the phython modules and ope ra t i on s needed #####

from qut ip import ∗

from sc ipy import ∗

from pylab import ∗

import random

import time

### The d e c l a r a t i o n o f parameters and dimensions ###
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s t a r t t i m e = time . time ( )

de f run ( ) :

n = 2 # number o f s t a t e s ( ground and e x c i t e d s t a t e s )

nnr = 5000 # Monte Carlo runs

nt = 3000 # Monte Carlo t imes

tau = ze ro s ( [ 1500+1] )

wfn1 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn2 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn1 new = ze ro s ( ( nnr+1,nt+1,n+1))

wfn2 new = ze ro s ( ( nnr+1,nt+1,n+1))

prodt = ze ro s ( ( nnr+1,nt +1))

p r o d t t o t a l = ze ro s ( ( nt +1))

e r r t = ze ro s ( ( nt +1))

rho = ze ro s ( ( nnr+1,nt+1,n+1,n+1))

t t = ze ro s ((10001+1))

rnu = ze ro s ((10001+1))

t t = ze ro s ((5+1))

rnuu = ze ro s ((5+1))

i r a = 200

N0 = 150 ## Environment energy l e v e l s

N1 = N0

N2 = N0

dlam = 0.01 e00 # Coupling s t r ength

dN1 = N1∗1 .0 e00

dN2 = N2∗1 .0 e00

d e = 0.31 # Energy band width

gamma1 = 2.0∗ pi ∗dlam∗∗2∗dN1/ d e # Relaxat ion ra t e 1

gamma2 = 2.0∗ pi ∗dlam∗∗2∗dN2/ d e # Relaxat ion ra t e 2

####### This part c a l c u l a t e the s i n e i n t e g r a l and Gaussian quadrature

f o r i in range (0 ,10000+1) :
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t t [ i ] = 0 .5∗ i ∗ pi /180 .0

b = d e ∗ t t [ i ]

a = 0 .0∗ pi /180 .0

xm = 0 .5∗ ( b+a )

xr = 0 . 5∗ ( b−a )

ee = d e /2 .0

w = ze ro s ( ( 5 ) )

x = ze ro s ( ( 5 ) )

w = [0 ,0 . 2955242274 , 0 .2692667193 , 0 .2190863625 , 0 .1494513491

, 0 .0666713443 ]

x = [0 ,0 . 1488743389 , 0 .4333953941 , 0 .6794095682 , 0 .8650633666

, 0 .9739065285 ]

s s = 0 .0

f o r j in range (1 ,5+1) :

dx = xr∗x [ j ]

s s = s s+w[ j ] ∗ ( s i n (xm+dx )/(xm+dx)+ s i n (xm−dx )/(xm−dx ) )

s s = xr∗ s s

t t [ i ] = 0 .5∗ i ∗ pi /180 .0

h = (−1+cos ( d e ∗ t t [ i ])+ d e ∗ t t [ i ]∗ s s )/ ( d e ∗ t t [ i ]∗ pi )

rnu [ i ] = exp(−h∗ t t [ i ]∗gamma1∗2)

rnu [ 0 ] = 1 .0

f o r i in range (1 , nnr +1):

f o r j in range (0 , nt +1):

prodt [ i , j ]=0.0

f o r nr in range (1 , nnr +1):

qu i t = Fal se

sk ip = False
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i r a = i r a+1

random . seed ( i r a )

rn = random . random ( )

t i n i = 0 .0

t f i n = 100 .0

d e l t a t = 0 .1

n s = ( t f i n−t i n i )/ d e l t a t

s n = i n t ( n s )

t sum = 0.0

ntau max = 100

n s s o l d = 0

tau [ 0 ] = 0 .0

wfn1 [ nr , n s s o l d , 1 ] = 1 .0 # I n i t i a l cond i t i on f o r wave 1

wfn1 [ nr , n s s o l d , 2 ] = 0 .0 # I n i t i a l cond i t i on f o r wave 1

wfn2 [ nr , n s s o l d , 1 ] = 0 .0 # I n i t i a l cond i t i on f o r wave 2

wfn2 [ nr , n s s o l d , 2 ] = 0 .0 # I n i t i a l cond i t i on f o r wave 2

f o r m in range (1 , ntau max +1):

qu i t = Fal se

sk ip = False

rn = random . random ( )

#### This part i n t e r p o l a t e the wai t ing func t i on .

f o r i i in range (0 ,8500+1) :

i f ( rn<rnu [ i i −1] and rn>rnu [ i i ] ) :

break

f o r j in range (0 ,5+1) :

t t [ j ]= t t [ i i −1+j ]

rnuu [ j ]=rnu [ i i −1+j ]
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i f ( t t [0]> t f i n ) :

tau [m] = t t [ 0 ]

i f ( t t [0]> t f i n ) :

break

nmaxx = 10

n = 5

xa = rnuu

ya = t t

c = ze ro s ( ( nmaxx ) )

db = ze ro s ( ( nmaxx ) )

ns = 1

x = rn

d i f = abs (x−xa [ 1 ] )

f o r i in range (1 , n+1):

d i f t = abs (x−xa [ i ] )

i f ( d i f t<d i f ) :

ns = i

d i f = d i f t

c [ i ] = ya [ i ]

db [ i ] = ya [ i ]

y = ya [ ns ]

ns = ns − 1

f o r m in range (1 , (n−1)+1):

f o r i in range (1 , (n−m)+1):

ho = xa [ i ]−x
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hp = xa [ i+m]−x

w = c [ i +1]−db [ i ]

den = ho−hp

i f ( den ==0.0):

break

den = w/den

db [ i ] = hp∗den

c [ i ] = ho∗den

i f (2∗ns<n−m) :

dy = c [ ns +1]

e l s e :

dy = db [ ns ]

ns = ns−1

y = y+dy

tau [m] = y ## This i s where wai t ing time i s c a l c u l a t e d

t sum = t f i n

qu i t = True

e l s e :

t sum = t sum+tau [m]

i f ( t sum>t f i n ) :

t sum = t f i n

qu i t = True

s n s s = t sum/ d e l t a t

n s s = i n t ( s n s s )

i f ( s n s s != 0 .0 and sn s s−n ss <0 .5) :

n s s = n ss−1
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e l i f ( s n s s ==0.0):

sk ip = True

f o r ntt in range ( n s s o l d , n s s +1):

i f ( n s s o l d ==0):

wfn1 [ nr , ntt , 1 ] = 1 .0

wfn1 [ nr , ntt , 2 ] = 0 .0

wfn2 [ nr , ntt , 1 ] = 0 .0

wfn2 [ nr , ntt , 2 ] = 0 .0

e l s e :

wfn1 [ nr , ntt , 1 ] = wfn1 [ nr , n s s o l d , 1 ]

wfn1 [ nr , ntt , 2 ] = wfn1 [ nr , n s s o l d , 2 ]

wfn2 [ nr , ntt , 1 ] = wfn2 [ nr , n s s o l d , 1 ]

wfn2 [ nr , ntt , 2 ] = wfn2 [ nr , n s s o l d , 2 ]

## Calcu la te the r e a l i z a t i o n s o f wave 1 ######

i f ( wfn1 [ nr , ntt ,1]==0.0 and wfn1 [ nr , ntt , 2 ]==0 .0 ) :

wfn1 new [ nr , ntt , 1 ] = 0 .0

wfn1 new [ nr , ntt , 2 ] = 0 .0

e l i f ( wfn1 [ nr , ntt ,1]==1.0 and wfn1 [ nr , ntt , 2 ]==0 .0 ) :

wfn1 new [ nr , ntt , 1 ] = 1 .0

wfn1 new [ nr , ntt , 2 ] = 0 .0

## Calcu la te the r e a l i z a t i o n s o f wave 2 ######

i f ( wfn2 [ nr , ntt ,1]==0.0 and wfn2 [ nr , ntt , 2 ]==0 .0 ) :

wfn2 new [ nr , ntt , 1 ] = 0 .0

wfn2 new [ nr , ntt , 2 ] = 0 .0

e l i f ( wfn2 [ nr , ntt ,1]==0.0 and wfn2 [ nr , ntt , 2 ]==1 .0 ) :

wfn2 new [ nr , ntt , 1 ] = 0 .0

wfn2 new [ nr , ntt , 2 ] = 1 .0

### Calcu la te the dens i ty matrix #####

rho [ nr , ntt , 2 , 2 ] = wfn1 new [ nr , ntt , 2 ]∗∗2
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+ wfn2 new [ nr , ntt , 2 ]∗∗2

prodt [ nr , ntt ] = rho [ nr , ntt , 2 , 2 ]

i f ( sk ip ) :

prodt [ nr , 1 ] = 1 .0

break

i f ( qu i t ) :

break

n s s o l d = n s s+1

f o r i in range (1 ,100+1) :

y = random . random ( )

rnn = random . random ( )

probgam=gamma1/(gamma1+gamma2)

i f ( rnn<probgam ) :

wfn1 [ nr , n s s o l d , 1 ] = 1 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 0 .0

e l s e :

wfn1 [ nr , n s s o l d , 1 ] = 0 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 1 .0

f o r i in range (0 , s n ) :

p r o d t t o t a l [ i ] = 0 .0

f o r j in range (1 , nnr +1):

p r o d t t o t a l [ i ] = p r o d t t o t a l [ i ]+ prodt [ j , i ]

### Calcu la te the s t a t i s t i c s ######

f o r i in range (0 , s n ) :
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e r r t [ i ] = 0 .0

t t t = i ∗ d e l t a t+t i n i

f o r j in range (1 , nnr +1):

e r r t [ i ] = e r r t [ i ]+( prodt [ j , i ]− p r o d t t o t a l [ i ] / nnr )∗∗2

p r in t i , t t t , p r o d t t o t a l [ i ] / nnr , s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))

txt = s t r ( i ) + ’\ t ’ + s t r ( t t t ) + ’\ t ’ + s t r ( p r o d t t o t a l [ i ] / nnr )

+ ’\ t ’ + s t r ( s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))) + ’\n ’

f i l e . wr i t e ( txt )

f i l e . c l o s e ( )

show ( )

c l o s e ( ’ a l l ’ )

i f name == ” main ” :

run ( )

p r i n t (”−−−% seconds−−−”%(time . time ( ) −s t a r t t i m e ) )

A.3 Weak coupling for correlated state

The same was used for the correlated state, but the initial conditions were different.

from qut ip import ∗

from sc ipy import ∗

from pylab import ∗

import random

import time

s t a r t t i m e = time . time ( )

de f run ( ) :

n = 2
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nnr = 5000

nt = 3000

tau = ze ro s ( [ 1500+1] )

wfn1 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn2 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn1 new = ze ro s ( ( nnr+1,nt+1,n+1))

wfn2 new = ze ro s ( ( nnr+1,nt+1,n+1))

prodt = ze ro s ( ( nnr+1,nt +1))

p r o d t t o t a l = ze ro s ( ( nt +1))

e r r t = ze ro s ( ( nt +1))

rho = ze ro s ( ( nnr+1,nt+1,n+1,n+1))

i r a = 4321

N0 = 150

N1 = N0

N2 = N0

dlam = 0.001 e00

dN1 = N1∗1 .0 e00

dN2 = N2∗1 .0 e00

d e = 0.31

gamma1 = 2.0∗ pi ∗dlam∗∗2∗dN1/ d e

gamma2 = 2.0∗ pi ∗dlam∗∗2∗dN2/ d e

beta = 0.05 e00

f o r i in range (1 , nnr +1):

f o r j in range (0 , nt +1):

prodt [ i , j ]=0.0

f o r nr in range (1 , nnr +1):
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qu i t = Fal se

sk ip = False

i r a = i r a+1

random . seed ( i r a )

rn = random . random ( )

t i n i = 0 .0

t f i n = 5000 .0

d e l t a t = 5 .0

n s = ( t f i n−t i n i )/ d e l t a t

s n = i n t ( n s )

t sum = 0.0

ntau max = 100

n s s o l d = 0

tau [ 0 ] = 0 .0

wfn1 [ nr , n s s o l d , 1 ] = 1 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 1 .0

f o r m in range (1 , ntau max +1):

qu i t = Fal se

sk ip = False

rn = random . random ( )

tau [m] = (−1.0/gamma1)∗ l og ( rn )

i f ( tau [m]> t f i n ) :
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t sum = t f i n

qu i t = True

e l s e :

t sum = t sum+tau [m]

i f ( t sum>t f i n ) :

t sum = t f i n

qu i t = True

s n s s = t sum/ d e l t a t

n s s = i n t ( s n s s )

i f ( s n s s != 0 .0 and sn s s−n ss <0 .5) :

n s s = n ss−1

e l i f ( s n s s ==0.0):

sk ip = True

f o r ntt in range ( n s s o l d , n s s +1):

i f ( n s s o l d ==0):

wfn1 [ nr , ntt , 1 ] = 1 .0

wfn1 [ nr , ntt , 2 ] = 0 .0

wfn2 [ nr , ntt , 1 ] = 0 .0

wfn2 [ nr , ntt , 2 ] = 1 .0

e l s e :

wfn1 [ nr , ntt , 1 ] = wfn1 [ nr , n s s o l d , 1 ]

wfn1 [ nr , ntt , 2 ] = wfn1 [ nr , n s s o l d , 2 ]

wfn2 [ nr , ntt , 1 ] = wfn2 [ nr , n s s o l d , 1 ]

wfn2 [ nr , ntt , 2 ] = wfn2 [ nr , n s s o l d , 2 ]

i f ( wfn1 [ nr , ntt ,1]==0.0 and wfn1 [ nr , ntt , 2 ]==1 .0 ) :

wfn1 new [ nr , ntt , 1 ] = 0 .0

wfn1 new [ nr , ntt , 2 ] = 1 .0
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wfn2 new [ nr , ntt , 1 ] = 1 .0

wfn2 new [ nr , ntt , 2 ] = 0 .0

e l s e :

wfn1 new [ nr , ntt , 1 ] = 1 .0

wfn1 new [ nr , ntt , 2 ] = 0 .0

wfn2 new [ nr , ntt , 1 ] = 0 .0

wfn2 new [ nr , ntt , 2 ] = 1 .0

#rho [ nr , ntt , 2 , 2 ] = beta ∗wfn1 new [ nr , ntt , 2 ]∗∗2 + ( 1 . 0 e00

−beta )∗wfn2 new [ nr , ntt , 2 ]∗∗2

#prodt [ nr , ntt ] = rho [ nr , ntt , 2 , 2 ]

rho [ nr , ntt , 1 , 2 ] = s q r t ( beta∗(1−beta ) )∗ ( wfn1 new [ nr , ntt

, 1 ]∗wfn2 new [ nr , ntt , 2 ] )

prodt [ nr , ntt ] = rho [ nr , ntt , 1 , 2 ]

i f ( sk ip ) :

prodt [ nr , 1 ] = 1 .0

break

i f ( qu i t ) :

break

n s s o l d = n s s+1

i f ( wfn1 [ nr , n ss ,1]==0.0 and wfn1 [ nr , n ss , 2 ]==1 .0 ) :

wfn1 [ nr , n s s o l d , 1 ] = 1 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 1 .0

e l s e :

wfn1 [ nr , n s s o l d , 1 ] = 0 .0

wfn1 [ nr , n s s o l d , 2 ] = 1 .0

wfn2 [ nr , n s s o l d , 1 ] = 1 .0



A.4. Strong coupling for correlated state 70

wfn2 [ nr , n s s o l d , 2 ] = 0 .0

f o r i in range (0 , s n +1):

p r o d t t o t a l [ i ] = 0 .0

f o r j in range (1 , nnr +1):

p r o d t t o t a l [ i ] = p r o d t t o t a l [ i ]+ prodt [ j , i ]

f o r i in range (0 , s n +1):

e r r t [ i ] = 0 .0

t t t = i ∗ d e l t a t+t i n i

f o r j in range (1 , nnr +1):

e r r t [ i ] = e r r t [ i ]+( prodt [ j , i ]− p r o d t t o t a l [ i ] / nnr )∗∗2

p r in t i , t t t , p r o d t t o t a l [ i ] / nnr , s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))

txt = s t r ( i ) + ’\ t ’ + s t r ( t t t ) + ’\ t ’ + s t r ( p r o d t t o t a l [ i ] / nnr ) + ’\ t ’ + s t r ( s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))) + ’\n ’

f i l e . wr i t e ( txt )

#pr in t gamma1 , gamma2

f i l e . c l o s e ( )

show ( )

c l o s e ( ’ a l l ’ )

i f name == ” main ” :

run ( )

p r i n t (”−−−% seconds−−−”%(time . time ( ) −s t a r t t i m e ) )

A.4 Strong coupling for correlated state

The same was used for the correlated state, but the initial conditions were different.
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from qut ip import ∗

from sc ipy import ∗

from pylab import ∗

import random

import time

s t a r t t i m e = time . time ( )

de f run ( ) :

n = 2

nnr = 5000

nt = 3000

tau = ze ro s ( [ 1500+1] )

wfn1 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn2 = ze ro s ( ( nnr+1,nt+1,n+1))

wfn1 new = ze ro s ( ( nnr+1,nt+1,n+1))

wfn2 new = ze ro s ( ( nnr+1,nt+1,n+1))

prodt = ze ro s ( ( nnr+1,nt +1))

p r o d t t o t a l = ze ro s ( ( nt +1))

e r r t = ze ro s ( ( nt +1))

rho = ze ro s ( ( nnr+1,nt+1,n+1,n+1))

t t = ze ro s ((10001+1))

rnu = ze ro s ((10001+1))

t t = ze ro s ((5+1))

rnuu = ze ro s ((5+1))

i r a = 200

N0 = 150

N1 = N0
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N2 = N0

dlam = 0.01 e00

dN1 = N1∗1 .0 e00

dN2 = N2∗1 .0 e00

d e = 0.31

gamma1 = 2.0∗ pi ∗dlam∗∗2∗dN1/ d e

gamma2 = 2.0∗ pi ∗dlam∗∗2∗dN2/ d e

beta = 0.050 e00

f o r i in range (0 ,10000+1) :

t t [ i ] = 0 .5∗ i ∗ pi /180 .0

b = d e ∗ t t [ i ]

a = 0 .0∗ pi /180 .0

xm = 0 .5∗ ( b+a )

xr = 0 . 5∗ ( b−a )

ee = d e /2 .0

w = ze ro s ( ( 5 ) )

x = ze ro s ( ( 5 ) )

w = [0 ,0 . 2955242274 , 0 .2692667193 , 0 .2190863625

, 0 .1494513491 , 0 .0666713443 ]

x = [0 ,0 . 1488743389 , 0 .4333953941 , 0 .6794095682

, 0 .8650633666 , 0 .9739065285 ]

s s = 0 .0

f o r j in range (1 ,5+1) :

dx = xr∗x [ j ]

s s = s s+w[ j ] ∗ ( s i n (xm+dx )/(xm+dx)+ s i n (xm−dx )/(xm−dx ) )

s s = xr∗ s s

t t [ i ] = 0 .5∗ i ∗ pi /180 .0

h = (−1+cos ( d e ∗ t t [ i ])+ d e ∗ t t [ i ]∗ s s )/ ( d e ∗ t t [ i ]∗ pi )

rnu [ i ] = exp(−h∗ t t [ i ]∗gamma1∗2)

rnu [ 0 ] = 1 .0



A.4. Strong coupling for correlated state 73

f o r i in range (1 , nnr +1):

f o r j in range (0 , nt +1):

prodt [ i , j ]=0.0

f o r nr in range (1 , nnr +1):

qu i t = Fal se

sk ip = False

i r a = i r a+1

random . seed ( i r a )

rn = random . random ( )

t i n i = 0 .0

t f i n = 100 .0

d e l t a t = 0 .1

n s = ( t f i n−t i n i )/ d e l t a t

s n = i n t ( n s )

t sum = 0.0

ntau max = 100

n s s o l d = 0

tau [ 0 ] = 0 .0

wfn1 [ nr , n s s o l d , 1 ] = 1 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 1 .0

f o r m in range (1 , ntau max +1):

qu i t = Fal se

sk ip = False
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rn = random . random ( )

f o r i i in range (0 ,8500+1) :

i f ( rn<rnu [ i i −1] and rn>rnu [ i i ] ) :

break

f o r j in range (0 ,5+1) :

t t [ j ]= t t [ i i −1+j ]

rnuu [ j ]=rnu [ i i −1+j ]

i f ( t t [0]> t f i n ) :

tau [m] = t t [ 0 ]

i f ( t t [0]> t f i n ) :

break

nmaxx = 10

n = 5

xa = rnuu

ya = t t

c = ze ro s ( ( nmaxx ) )

db = ze ro s ( ( nmaxx ) )

ns = 1

x = rn

d i f = abs (x−xa [ 1 ] )

f o r i in range (1 , n+1):

d i f t = abs (x−xa [ i ] )

i f ( d i f t<d i f ) :

ns = i

d i f = d i f t
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c [ i ] = ya [ i ]

db [ i ] = ya [ i ]

y = ya [ ns ]

ns = ns − 1

f o r m in range (1 , (n−1)+1):

f o r i in range (1 , (n−m)+1):

ho = xa [ i ]−x

hp = xa [ i+m]−x

w = c [ i +1]−db [ i ]

den = ho−hp

i f ( den ==0.0):

break

den = w/den

db [ i ] = hp∗den

c [ i ] = ho∗den

i f (2∗ns<n−m) :

dy = c [ ns +1]

e l s e :

dy = db [ ns ]

ns = ns−1

y = y+dy

tau [m] = y

i f ( tau [m]> t f i n ) :

t sum = t f i n

qu i t = True
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e l s e :

t sum = t sum+tau [m]

i f ( t sum>t f i n ) :

t sum = t f i n

qu i t = True

s n s s = t sum/ d e l t a t

n s s = i n t ( s n s s )

i f ( s n s s != 0 .0 and sn s s−n ss <0 .5) :

n s s = n ss−1

e l i f ( s n s s ==0.0):

sk ip = True

f o r ntt in range ( n s s o l d , n s s +1):

i f ( n s s o l d ==0):

wfn1 [ nr , ntt , 1 ] = 1 .0

wfn1 [ nr , ntt , 2 ] = 0 .0

wfn2 [ nr , ntt , 1 ] = 0 .0

wfn2 [ nr , ntt , 2 ] = 1 .0

e l s e :

wfn1 [ nr , ntt , 1 ] = wfn1 [ nr , n s s o l d , 1 ]

wfn1 [ nr , ntt , 2 ] = wfn1 [ nr , n s s o l d , 2 ]

wfn2 [ nr , ntt , 1 ] = wfn2 [ nr , n s s o l d , 1 ]

wfn2 [ nr , ntt , 2 ] = wfn2 [ nr , n s s o l d , 2 ]

i f ( wfn1 [ nr , ntt ,1]==0.0 and wfn1 [ nr , ntt , 2 ]==1 .0 ) :

wfn1 new [ nr , ntt , 1 ] = 0 .0

wfn1 new [ nr , ntt , 2 ] = 1 .0

wfn2 new [ nr , ntt , 1 ] = 1 .0

wfn2 new [ nr , ntt , 2 ] = 0 .0
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e l s e :

wfn1 new [ nr , ntt , 1 ] = 1 .0

wfn1 new [ nr , ntt , 2 ] = 0 .0

wfn2 new [ nr , ntt , 1 ] = 0 .0

wfn2 new [ nr , ntt , 2 ] = 1 .0

#rho [ nr , ntt , 2 , 2 ] = beta ∗wfn1 new [ nr , ntt , 2 ]∗∗2 + ( 1 . 0 e00

−beta )∗wfn2 new [ nr , ntt , 2 ]∗∗2

#prodt [ nr , ntt ] = rho [ nr , ntt , 2 , 2 ]

rho [ nr , ntt , 1 , 2 ] = s q r t ( beta∗(1−beta ) )∗ ( wfn1 new [ nr , ntt

, 1 ]∗wfn2 new [ nr , ntt , 2 ] )

prodt [ nr , ntt ] = rho [ nr , ntt , 1 , 2 ]

i f ( sk ip ) :

prodt [ nr , 1 ] = 1 .0

break

i f ( qu i t ) :

break

n s s o l d = n s s+1

f o r i in range (1 ,100+1) :

y = random . random ( )

rnn = random . random ( )

probgam=gamma1/(gamma1+gamma2)

i f ( rnn<probgam ) :

wfn1 [ nr , n s s o l d , 1 ] = 1 .0

wfn1 [ nr , n s s o l d , 2 ] = 0 .0

wfn2 [ nr , n s s o l d , 1 ] = 0 .0

wfn2 [ nr , n s s o l d , 2 ] = 1 .0
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e l s e :

wfn1 [ nr , n s s o l d , 1 ] = 0 .0

wfn1 [ nr , n s s o l d , 2 ] = 1 .0

wfn2 [ nr , n s s o l d , 1 ] = 1 .0

wfn2 [ nr , n s s o l d , 2 ] = 0 .0

f o r i in range (0 , s n ) :

p r o d t t o t a l [ i ] = 0 .0

f o r j in range (1 , nnr +1):

p r o d t t o t a l [ i ] = p r o d t t o t a l [ i ]+ prodt [ j , i ]

f o r i in range (0 , s n ) :

e r r t [ i ] = 0 .0

t t t = i ∗ d e l t a t+t i n i

f o r j in range (1 , nnr +1):

e r r t [ i ] = e r r t [ i ]+( prodt [ j , i ]− p r o d t t o t a l [ i ] / nnr )∗∗2

p r in t i , t t t , p r o d t t o t a l [ i ] / nnr , s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))

txt = s t r ( i ) + ’\ t ’ + s t r ( t t t ) + ’\ t ’ + s t r ( p r o d t t o t a l [ i ] / nnr ) + ’\ t ’ + s t r ( s q r t ( e r r t [ i ] / ( nnr ∗( nnr−1)))) + ’\n ’

f i l e . wr i t e ( txt )

f i l e . c l o s e ( )

show ( )

c l o s e ( ’ a l l ’ )

i f name == ” main ” :

run ( )

p r i n t (”−−−% seconds−−−”%(time . time ( ) −s t a r t t i m e ) )
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