
ASSESSING CLIMATE CHANGE IMPACTS ON PRODUCTIVITY OF  

SUGARBEET AND SUGARCANE USING AQUACROP  

 

 

 

 

by 

 

 

Ofentse Mokonoto 

 

 

 

 

Submitted in fulfilment of the academic requirements 

for the degree of  

 

Master of Science in Hydrology 

 

Centre for Water Resources Research 

School of Agricultural, Earth and Environmental Science 

College of Agriculture, Engineering and Science 

University of KwaZulu-Natal 

Pietermaritzburg 

 

 

September 2018 

 

 



ii 

  

PREFACE 

 

The research contained in this dissertation/thesis was completed by the candidate while 

based at the Centre for Water Resources Research, School of Agricultural, Earth and 

Environmental Sciences, in the College of Agriculture, Engineering and Science, University 

of KwaZulu-Natal, Pietermaritzburg Campus, South Africa. The research was financially 

supported by the National Research Foundation and the Water Research Commission 

(WRC) of South Africa through WRC Project No. K5/1874//4 titled “Water use of cropping 

systems adapted to bio-climatic regions in South Africa and suitable for bio-fuel 

production”. 

 

The contents of this work have not been submitted in any form to another university and, 

except where the work of others is acknowledged in the text, the results reported are due to 

investigations by the candidate. 

 

As the candidate’s supervisor I agree to the submission of this dissertation 

 

 

_________________________ 

Signed: RP Kunz 

Date: 30 September 2018 

 

As the candidate’s co-supervisor I agree to the submission of this dissertation 

 

 

 

_________________________ 

Co-Supervisor: Dr. Tafadzwanashe Mabhaudhi 

Date: 30 September 2018 

  



iii 

  

DECLARATION: PLAGIARISM 

 

I, Ofentse Mokonoto, declare that: 

(i)  the research reported in this dissertation, except where otherwise indicated or 

acknowledged, is my original work; 

(ii)  this dissertation has not been submitted in full or in part for any degree or 

examination to any other university; 

(iii) this dissertation does not contain other persons’ data, pictures, graphs or other 

information, unless specifically acknowledged as being sourced from other persons; 

(iv) this dissertation does not contain other persons’ writing, unless specifically 

acknowledged as being sourced from other researchers. Where other written 

sources have been quoted, then: 

a) their words have been re-written but the general information attributed to them 

has been referenced; 

b) where their exact words have been used, their writing has been placed inside 

quotation marks, and referenced; 

(v) where I have used material for which publications followed, I have indicated in 

detail my role in the work; 

(vi) this dissertation is primarily a collection of material, prepared by myself, published 

as journal articles or in research reports, or presented as a poster and oral 

presentations at conferences. In some cases, additional material has been included; 

(vii) this dissertation does not contain text, graphics or tables copied and pasted from the 

Internet, unless specifically acknowledged, and the source being detailed in the 

dissertation and in the References section. 

 

_______________________ 

Signed: Ofentse Mokonoto 

Date: 30 September 2018 

  



iv 

  

ABSTRACT 

 

Globally, the use of biofuels has grown over the years and their importance in helping to 

reduce a) dependency on fossil-based fuels and b) greenhouse emissions has been widely 

recognised. Various feedstocks are used for biofuels, viz. sugar-based crops for bioethanol 

production and oil from vegetable crops for biodiesel production. The research presented in 

this study focused on sugar crops such as sugarcane and sugarbeet. The sugarcane industry 

is widely established in South Africa, whereas sugarbeet is still a new crop and hence, there 

is little information on its water use efficiency (WUE) and potential yields under South 

African growing conditions. Overall, there is a need to better understand the agricultural 

potential and water use requirements of these feedstocks, in order to grow the biofuels 

industry in South Africa in a sustainable manner. Furthermore, climate change poses a threat 

to global food security as well as to biofuel feedstock production. There are uncertainties 

regarding the potential impacts of climate change on the yield and WUE of agricultural 

crops.  

 

One of the main objectives of this study was to calibrate the AquaCrop crop model for 

sugarcane and sugarbeet using experimental datasets. This study then followed a modelling 

approach to estimate dry yields and WUEs of these two sugar feedstocks to add to the 

existing knowledge base for potential biofuel production in South Africa. Sugarbeet was 

planted at the Ukulinga research farm and field equipment was used to collect data for the 

calibration of the crop model to better estimate attainable yield and WUE. Growth and yield 

datasets were provided by the South African Sugarcane Research Institute to calibrate the 

model for sugarcane, as well as validate AquaCrop for both feedstocks. The performance of 

the crop model was tested using various statistical methods. The model’s performance was 

satisfactory after calibrating it for sugarcane. However, the calibration process was 

compromised by the lack of sufficient leaf area index data. For sugarbeet, AquaCrop 

simulated the canopy cover, yield and WUE well, but tended to over-estimate observations. 

For the validation process, simulations closely matched the observed yields for both 

feedstocks. However, the model’s ability to simulate soil water content at Ukulinga was 

considered unsatisfactory. The calibrated AquaCrop model was used for long term 

assessments of yield and WUE. Baseline simulations were undertaken using 50 and 30 years 

of climate data and the results indicated that the 30 years of data could adequately estimate 
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the long-term attainable productivity of sugarcane and sugarbeet. 

 

According to the literature, an ensemble approach to climate change modelling reduces 

uncertainty in long-term assessments. Hence, climate projections from several global climate 

models (GCMs), that were downscaled using dynamical and statistical approaches, were 

obtained and used to assess the potential impacts of climate change on yield and WUE of 

the selected feedstocks. An increase in yield and WUE of both feedstocks is projected in the 

distant future. The statistically downscaled GCMs projected higher increases compared to 

the dynamically downscaled GCMs. Increases in future WUE are much higher compared to 

yields projections. The so-called “CO2 fertilisation” effect largely benefits C3 crops 

(sugarbeet) with regards to yield improvements. However, the results also show that C4 

crops (sugarcane) also benefit from improved WUE. Both sugarcane and sugarbeet will 

benefit from the anticipated climate change when planted in February and May, respectively. 

However, it is recommended that other planting dates should be studied for sugarcane. 
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 INTRODUCTION 

 

1.1 Rationale for the Research 

 

Globally, most of the energy used for transportation purposes is derived from non-renewable 

resources such as fossil fuels (Eltrop et al., 2011). Of the 53 nations in Africa, South Africa 

uses the most energy, of which 99.6% is acquired from fossil fuels (Pradhan and Mbohwa, 

2014). This dependency on fossil fuels (i.e. petrol and diesel) has contributed to an increase 

in greenhouse gas emissions and atmospheric pollution leading to human-induced climate 

change. However, the use of fossil fuels can be supplemented with biofuels (i.e. bioethanol 

and biodiesel). The interest in biofuels is due to the renewability of the raw materials and 

the lower emission of greenhouse gases when combusted (Jewitt et al., 2009). Biodiesel is a 

renewable fuel produced from vegetable oil, animal fat or waste cooking oil. Bioethanol is 

a renewable fuel produced from the fermentation of sugar- and starch-based crops 

(Demirbas, 2009; Magana et al., 2011). Presently, bioethanol is the most used biofuel 

globally. The CO2 emissions generated by the combustion of bioethanol are compensated by 

the CO2 absorption during the crop growth phase, avoiding a net emission of this gas 

(McMillan, 1997). The offset of CO2 emissions is valid when unexploited or cattle farming 

lands are used for cultivating biofuels crops. However, if agricultural expansion results in 

clearing of natural grasslands, indigenous forests or peatlands, the opportunity of reducing 

CO2 emissions is lost though poor land use change decisions. According to the National 

Biofuels Industrial Strategy (NBIS), the plan in South Africa is to grow biofuel feedstock on 

currently underutilised arable land (DME, 2007a).  

 

Therefore, the main rationale is to reduce dependency on fossil use, which will lower 

greenhouse gas emissions that contribute to climate change. Compared to other 

anthropogenic activities, agriculture is highly climate dependent and up to 70% of the sub-

Saharan African livelihood is sustained by agriculture (Cooper et al., 2008). This highlights 

the issue of food security which is likely to worsen in the future if no climate change 

adaptation or mitigation strategies are in place. To avoid such an outcome, there has been an 

increase in studies related to climate change impacts on crop productivity and water 

resources (Kang et al., 2009). Presently, climate change has already caused substantial 

impacts on water resources, food security and human health, more so on the African 

continent, but also across the world (Magadza, 2000). Effects of climate change on crops 
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will be due to changes in CO2, temperature and rainfall patterns. According to the 

Intergovernmental Panel on Climate Change (IPCC, 2014a; 2014b), crop yields in 2050 may 

be halved, particularly in some regions of sub-Saharan Africa. Additionally, extreme events 

such as droughts, floods and biotic influences such as pests and diseases may contribute to 

crop yield losses. These factors highlight both the importance and urgency to study (and 

determine) impacts of climate change on crop production and water resources in order to 

develop possible adaptation strategies. Future climate scenarios can be simulated with the 

use of global climate models (GCMs) and regional climate models (RCMs) (downscaling 

approach). Climate data from these models is then be used as input for crop yield models at 

local scales. In this study, the AquaCrop model (Hsiao et al., 2009; Raes et al., 2009 and 

Steduto et al., 2009) developed by the Food and Agriculture Organisation (FAO) was 

selected for crop yield modelling.  

 

In South Africa, the production and use of biofuels is minimal compared to other countries. 

The growth of biofuel use will require government policy regulations and incentives (DME, 

2007a). The use of biofuels tends to raise concerns over food security and potential 

environmental impacts, i.e. increased water use (Balat and Balat, 2009). Therefore, research 

concerned with identifying potential biofuel feedstocks as well as their sustainability and 

production potential needs is necessary in addressing such concerns. It is important that 

preferred biofuel feedstocks should have high yields with minimal impact on the 

environment. This is of importance because the agricultural sector is already the biggest user 

of water in the world. Additionally, the global rise in biofuel use has led to increased 

utilisation of water resources and more competition for water amongst users (Gheewala et 

al., 2011). Given that South Africa is a water stressed country, it is preferred that biofuel 

feedstocks are grown under rainfed conditions (DWS, 2016).  

 

1.2 Problem Statement 

 

The NBIS stated that sugarcane and sugarbeet are the preferred feedstocks for the production 

of bioethanol (DME, 2007a). Furthermore, a scoping study was undertaken in South Africa 

to identify potential feedstocks, based on suitable growing conditions, for biofuel production 

and their associated water use (Jewitt et al., 2009). The study identified sugarcane and 

sugarbeet as two such feedstocks, but noted that there was a need for better understanding 

of the following:  
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1) the preferred feedstocks for biofuel production,  

2) water use efficiency of each feedstock, and 

3) the impact of climate change on feedstock production such as increased water use 

and shifting cropping patterns.  

 

In addition, the Energy Security Master Plan for Liquid Fuels (DME, 2007b) highlighted 

that, “in the case of biofuels, the climate change module will allow for modelling of likely 

climate changes on the production of a particular crop. The module should also allow for the 

development of adaptation strategies for particular areas”. Based on the above, there is a 

need for improved knowledge regarding the water use efficiency (WUE) of preferred biofuel 

feedstocks (i.e. sugarbeet and sugarcane) as well as the likely impacts of climate change on 

crop production. 

 

1.3 Research Questions and Objectives 

 

In light of the above problem statement, the following research questions were addressed: 

• What are the attainable yield and WUE of sugarbeet and sugarcane?  

• What are the potential impacts of climate change on yield and WUE of these two 

feedstocks? 

 

In order to answer the above research questions, there are several objectives that were met 

in this study, namely: 

• Calibration of AquaCrop for sugarcane and sugarbeet; 

• Validation of the crop model using independent datasets; 

• Test AquaCrop’s ability to simulate soil water content; 

• Comparison of 30 and 50 years of input climate data for long-term assessment of 

yield and WUE; 

• Comparison of dynamical and statistical downscaled projections against the baseline 

climate; 

• Use of downscaled GCMs to estimate future yield and WUE of sugarcane and 

sugarbeet under rainfed and/or irrigated conditions; and 

• Assessment of climate change impacts (i.e. CO2; temperature and rainfall) on crop 

yield and WUE. 
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1.4 Chapter Overview 

 

This dissertation has been divided into various chapters as follows:  

• Literature Review: 

o Chapter 2 discusses the biofuel feedstocks selected in this study. 

o Chapter 3 discusses the history of crop modelling, the types of models 

available and why AquaCrop was selected. 

o In Chapter 4, the potential impacts of climate change on crop productivity 

are discussed as well as the advantages of using AquaCrop in climate change 

studies. 

o Chapter 5 discusses the value of different downscaling techniques and the 

use of multiple GCMs to aid in reducing uncertainty in modelling. 

• Material and Methods: 

o Chapter 6 is broken down into three subsections; 1) field work carried out to 

obtain model parameters specific to each feedstock, 2) calibration and 

validation of the AquaCrop model and 3) assessment of climate change 

including acquisition of climate projections. 

• Results, Discussion and Final Thoughts 

o In Chapter 7, AquaCrop’s performance is assessed using soil water 

simulations. Secondly, the results that address each research question are 

presented. 

• Conclusion  

o The conclusion of the study is provided in Chapter 8. 

• References and Appendixes are presented in Chapters 9 and 10 to 15, respectively. 
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 BIOFUEL FEEDSTOCKS 

 

In this chapter, an overview of the global and local biofuel industry is presented. The 

rationale behind selecting the two biofuel feedstocks used in this study is discussed. Lastly, 

a more detailed description of the two feedstocks is given.  

 

2.1 Background 

 

The use of biofuels (i.e. bioethanol and biodiesel) is deemed to decrease the dependency on 

fossil fuels (Perkins, 2012). In 2001, 20 billion litres of biofuels were produced globally. By 

2011, production was at 110 billion litres and it has been projected to double to 221 billion 

litres in 2021 (Pradhan and Mbohwa, 2014). The move to greener energy at the global scale 

has resulted in decreases in fossil fuel usage in countries such as Brazil and the United States 

of America (USA). These two countries are the top producers of bioethanol in the world, 

followed by the European Union (EU). Brazil uses sugarcane as the primary feedstock for 

bioethanol production, whilst the USA utilises maize and the EU uses both sugarbeet and 

cereal crops (Demirbas, 2009).  

 

South Africa has adopted a more conservative approach regarding biofuel production 

compared to other countries. According to the NBIS, the country intends to achieve a 2% 

blend of biofuels (equivalent to 400 million litres of biofuel production per year) in the 

national liquid fuel supply (DME, 2007a). Furthermore, the former Department of Minerals 

and Energy (DME) proposed blending rates of 2% for biodiesel and 8% for bioethanol. By 

2012, the DME revised the rates, as stipulated in the Petroleum Products Act (PPA) of 1977. 

The PPA states a blend of 5% biodiesel and 2% to 10% ethanol with diesel and petrol 

respectively (DoE, 2012a). The South African Department of Energy (DoE) announced that 

the blending of biofuel with fossil-based fuel would commence from October 2015 (DoE, 

2013). However, to date, this has not materialised.  

 

2.2 Feedstock Selection 

 

The NBIS (DME, 2007a) proposed sugarcane and sugarbeet for bioethanol production as 

both crops are suitable for dryland agriculture. Jewitt et al. (2009) conducted a scoping study 
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which identified 20 potential biofuel feedstocks (i.e. suitable for South Africa’s climate), but 

crops such as maize and jatropha have been excluded for reasons of food security and alien 

invasiveness, respectively. Amongst the potential biofuel feedstocks considered by Jewitt et 

al. (2009), sugarcane and sugarbeet were also identified as possible feedstocks for bioethanol 

production. In addition, the draft version of the biofuels regulatory framework released by 

DoE in 2014 noted that the preferred crops for bioethanol production are grain sorghum and 

sugarcane. DoE (2014) also noted that economically, sugarbeet should be considered based 

on its sugar content and its pricing would be similar to that of sugarcane. However, the focus 

of this research is not on financial returns regarding biofuel manufacturing. 

 

Based on the above, sugarcane and sugarbeet were selected for this study. Sugarcane is 

grown extensively in South Africa. However, there remains a gap in knowledge with regards 

to the sustainability and production potential of sugarbeet within the context of biofuel 

production in South Africa. The Water Research Commission (WRC) has played a pivotal 

role in this regard by funding research on biofuels. To date, 13 (2007-2018) years of research 

has been conducted (including this work) by various higher learning institutions funded by 

the WRC. This research attempts to reduce the knowledge gap by estimating feedstock water 

use to yield using a modelling approach and thus, addressing their biofuel production 

potential. The two selected feedstocks are described next in more detail. 

 

2.3 Sugarcane 

 

 Crop description and distribution 

Sugarcane is a C4 carbon-fixing perennial crop and is grown in tropical as well as subtropical 

regions of the world. It contributes to 70% of the global sugar production and 29% of the 

total world crop production (Magana et al., 2011; Gerbens-Leenes and Hoekstra, 2012; 

Steduto et al., 2012). Unlike sugarbeet, sugarcane is grown in over 100 countries (Steduto 

et al., 2012). It is the main feedstock for bioethanol production in countries such as Brazil 

and India (Quintero et al., 2008). Within South Africa, the sugarcane industry is well 

established and there are investigations into cane varieties for energy production (Jewitt et 

al., 2009).  

 

Sugarcane is grown in 14 cane-producing areas in South Africa, which extend from the 

Eastern Cape (Northern Pondoland) through the coastal belt of KwaZulu-Natal and the 
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Midlands, up into the Mpumalanga Province (DAFF, 2012). However, the main regions for 

growing sugarcane in South Africa are KwaZulu-Natal (KZN) and Mpumalanga, 

specifically the Lowveld (Smith, 2006). Of the total sugarcane produced in South Africa, 

84.7% is by commercial farmers of which there are 1550 growers. According to DAFF 

(2011), the remaining production is split between 27580 small-scale farmers on tribal land 

(8.6%) as well as milling companies who own their own sugarcane estates (6.7%).   

 

Sugarcane planting dates vary in the KZN region. In the Midlands Misbelt of KZN, it is 

recommended to plant between mid-September to mid-October, whereas planting occurs in 

early August to end October in the coastal lowlands of KZN. Supplemented with irrigation, 

planting can take place in any month in Mpumalanga except during the winter months (i.e. 

June and July), due to low soil temperatures that hinder germination. According to Smith 

(2006), sugarcane’s season length also varies between the different regions, ranging from 12 

to 14 months in hotter regions and 14 to 24 in the cooler (i.e. higher altitude) regions.  

 

 Growth criteria 

Adequate moisture and temperature are the two main ecological requirements for efficient 

growth of the sugarcane crop (Tarimo and Takamura, 1998). Kunz et al. (2015b) produced 

a summary table (Table 2-1) of minimum and maximum limits of temperature and rainfall 

to ensure optimum sugarcane production.  

 

Table 2-1 Growth criteria for sugarcane derived from values published in the literature 

(Kunz et al., 2015b) 

Variable 
Abs Sub Opt Opt Sub Abs 

Minimum Maximum 

Seasonal rainfall (mm) 850 1100 1300 1500 1800 2000 

Monthly mean temperature (°C): Sep-Apr 15 20 22 30 32 35 

Monthly mean temperature (°C): May-Aug 8 10 12 14 20 24 

Monthly mean relative humidity (%): Sep-Apr 30 70 80 85 90 95 

Monthly mean relative humidity (%): May-Aug 20 35 45 65 75 85 

Soil depth (mm) 400 700 1000       

Note: Abs - Absolute; Sub - Sub optimum; Opt - Optimum 

 

The absolute minimum seasonal rainfall of 850 mm is required to ensure the soil is moist 

enough for sugarcane growth. For optimum growth, 1300 - 1500 mm of rainfall should fall 

over the growing season (Jewitt et al., 2009). A mean monthly temperature of 22 to 30°C 
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will result in optimum stalk growth and 10 to 20°C is essential for ripening (Tammisola, 

2010; Jewitt et al., 2009). According to Smith (1998), mean monthly temperatures below 

15°C and above 35°C result in minimum growth for sugarcane. Sugarcane prefers soils that 

are up to 1 m deep, with available soil water content greater than 150 mm (Kunz et al., 

2015b).  

 

 Yield and water use 

Sugarcane yield is directly proportional to the amount of water used under prevailing 

climatic conditions (Kunz et al., 2015b). The water productivity of sugarcane ranges 

between 3.5 kg m-3 to 5.5 kg m-3 (Steduto et al., 2012). Sugarcane fresh yields range between 

80 t ha-1 to 150 t ha-1 for irrigated conditions (Waclawovsky et al., 2010). However, yields 

of 120 t ha-1 are respectable under full irrigation. Under rainfed conditions, yields vary from 

30 to 90 fresh t ha-1 across the globe (Steduto et al., 2012). The average cane yield for South 

Africa is 66.1 t ha-1 harvested from an area of 305753 ha (DAFF, 2011). Simulated yields 

for rainfed conditions range from 15 to 40 dry t ha-1 (Kunz et al., 2015b). Therefore, actual 

yields are dependent on soil and climatic conditions. 

 

Up to 2015, sugarcane yields have been estimated across South Africa using, inter alia, using 

an empirical crop yield model developed by Barry Smith (Smith, 2006). The model predicts 

fresh yield using mean annual rainfall, mean annual temperature, accumulated heat units, 

length of growing cycle as well as other factors relating to soil (structure and depth) and land 

management. However, a disadvantage of the Smith model is that it does not consider the 

effects of carbon dioxide (CO2) on plant response. CO2 is an important variable in crop 

development and its benefits to crop growth and yield were already understood in the 1930s 

(Nederhoff, 1994). Physically-based crop models that incorporate CO2 as an input parameter 

are widely used in climate change studies (see section 4.3 for more information on CO2 

effects and crop modelling).  

 

 Biofuel production 

Brazil depends largely on sugarcane for bioethanol production and is the second largest 

producer after the USA, who produce bioethanol from maize (RFA, 2015). In 2014 for 

example, the USA accounted for 60% of the global bioethanol production while Brazil 

accounted for approximately 25% of the total bioethanol production (RFA, 2015), However, 

in 2012, Brazil produced the largest volume of bioethanol compared to the USA. This was 
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due to a 1 in 50-year drought experienced in the USA during 2012 and early 2013 which 

affected maize yields (RFA, 2015). With regards to sugarcane, Brazil is the global leader of 

sugar production and bioethanol produced from sugarcane. In the 2015/16 season, Brazil 

produced 30.23 billion litres of bioethanol, the largest in the past 10 years (SugarCane, 

2017). Brazil has shown that large-scale bioethanol production from sugarcane is achievable 

and has replaced around 42% of fossil fuel with bioethanol (SugarCane, 2017).  

 

In South Africa, bioethanol production from sugarcane has potential especially given the 

industry is well established. The crop is listed as a preferred feedstock for bioethanol 

production in the national biofuels strategy (DME, 2007a). However, only one licenced 

processing plant (50 million litres capacity per annum) to be located in Jozini (KwaZulu-

Natal) plans to use sugarcane as a feedstock for bioethanol production (DoE, 2014). It is 

likely that bioethanol production from grain sorghum will meet the 2% (E2 or 240 million 

litres of bioethanol) blend as proposed by government. The use of sugarcane is necessary to 

increase the blending ratio above 2% up to 10% (E10) as per the blending legislation (DoE, 

2012a). An E10 blend requires an additional production of about 960 million litres of 

bioethanol. As noted by Kunz et al. (2015b), “the biofuels industry can create an alternative 

market for surplus cane production which will encourage expansion of the industry”. With 

current plantations, South Africa can produce a surplus of sugarcane up to 1 million tonnes, 

which can satisfy an E5 blend (Naidoo, 2011). 

 

2.4 Sugarbeet 

 

 Crop description and distribution 

Sugarbeet is a C3 plant with relatively large roots and tubers. The crop is susceptible to 

diseases and it is generally advised that a three-year crop rotation is practised to minimise 

root diseases, Cercospora leaf spot and herbicide carryover (Steduto et al., 2012). Globally, 

sugarbeet contributes to 30% of all sugar produced and 4% to total crop production 

(Gerbens-Leenes and Hoekstra, 2012; Magana et al., 2011). World sugarbeet production is 

estimated at 227 million tonnes over 4.2 million hectares (Steduto et al., 2012). Countries 

such France, USA, Germany, Russia, Turkey, Poland, Ukraine, United Kingdom and China 

grow the crop on a large scale (Steduto et al., 2012). 

 

Sugarbeet is a new crop in South Africa where little is known about its water use or its 
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potential production (DoE, 2012b). The majority of research on sugarbeet has been carried 

out in other countries, mostly located in the temperate and cool regions of the Northern 

Hemisphere (Jewitt et al., 2009). Sugarbeet can also be grown as a winter or summer crop 

in Mediterranean regions and some arid environments (Campbell, 2002). In South Africa, 

sugarbeet has been grown across three regions, viz. at Cradock in the Eastern Cape 

(Dugmore, 2010); on a commercial farm in Lichtenburg of the North-West Province 

(Dugmore, 2011); the Ukulinga research farm at the University of KwaZulu-Natal (UKZN) 

(Kunz et al., 2015b).  

 

 Growth criteria 

The climate and type of soils are two major determinants in the production success of the 

crop (Draycott, 2006). Depending on the region in which sugarbeet is grown and the sowing 

period, it can reach maturity between 120 and 250 days after planting (Steduto et al., 2012). 

According to Steduto et al. (2012), sugarbeet requires about 500 mm to 800 mm of water 

during the growing season. Kunz et al. (2015b) also produced a summary table (see Table 

2-2) for sugarbeet showing the minimum and maximum limits of temperature and rainfall to 

ensure optimum sugarbeet production. In the table, the optimal rainfall over the growing 

season is similar to that published in the FAO’s Irrigation and Drainage Paper No. 66 

(Steduto et al., 2012). 

 

Table 2-2 Growth criteria for sugarbeet derived from values published in the literature 

(Kunz et al., 2015b) 

Variable 
Abs Sub Opt Opt Sub Abs 

Minimum Maximum 

Summer seasonal rainfall (mm) 400 500 600 800 900 1000 

Winter seasonal rainfall (mm) 350 450 550 750 850 950 

Monthly mean temperature (°C) 5 10 15 20 25 30 

Monthly maximum relative humidity (%)       60 70 80 

Soil depth (mm) 500 700 900       

Note: Abs - Absolute; Sub - Sub optimum; Opt - Optimum 

 

A minimum soil temperature of 4-5°C is required for germination (Steduto et al., 2012). For 

maximum productivity, the optimum mean monthly temperature range is approximately 

15°C to 25°C (Petkeviciene, 2009; Wahab and Salih 2012). Sugarbeet requires a minimum 

soil depth of 500 mm and 900 mm for optimum growth. In deep soils, the crop can develop 

a deep tap root system. Water extraction down to 3 m has been reported for deficit-irrigated 
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sugarbeet in very deep soils (Steduto et al., 2012). The crop should not be planted in clayey 

soils which are characterised by water logging. Such conditions aggravate root rot (Johl, 

1980). In high rainfall and humid areas, sugarbeet is highly susceptible to both above-ground 

(i.e. leaf spot) and below-ground (i.e. root rot) diseases (Kunz et al., 2015b). 

 

 Yield and water use 

A fresh yield of 40 to 60 t ha-1 of sugarbeet is considered good for commercial purposes 

(Steduto et al., 2012). The water productivity of sugarbeet is reported to range between 2.1 

and 6.8 kg m-3 (Dunham, 1993). However, these water productivity values are representative 

of sugarbeet studied in Northern Europe and America. A study in South Africa was 

undertaken over two seasons by Kunz et al. (2015a). The study indicated that sugarbeet used 

562 mm of water in the 2010/11 season and 556 mm the following season. A fresh yield of 

53.1 t ha-1 (2010/11) and 21.7 t ha-1 (2011/12) was measured, which gives a water 

productivity of 9.44 kg m-3 (2010/11) and 3.91 kg m-3 (2011/12). The vast difference in 

yields between the two seasons were due to root rot from over-irrigation and weeds, which 

affected the development of the crop in the 2011/12 season (Kunz et al., 2015a). 

 

 Biofuel production 

Although sugarbeet has a high bioethanol yield per hectare (Gerbens-Leenes and Hoekstra, 

2012), its use for bioethanol is limited compared to sugarcane (Brandling, 2010). However, 

sugarbeet requires 35% to 40% less water and fertilisers compared to sugarcane (Kumar et 

al., 2006). In addition, sugarbeet can accumulate a large quantity of sugar in its storage root, 

as much as 16-20% of fresh weight (Kunz et al., 2015b). According to Draycott (2006), 

sugar content decreases in the upper parts of the crop (7-9% sugar). After harvest, the sugar 

concentration in the sugarbeet deteriorates quickly, which is common in sugar crops (Kunz 

et al., 2015b). Therefore, sugarbeet must be grown and harvested within a 70 to 100 km 

radius of the bioethanol plant (Maclachlan, 2012). 

 

2.5 Dryland vs irrigation production 

The initial conservative approach to biofuel production in South Africa is due to various 

factors including government policies, food security issues and environmental concerns such 

as limited water resources. Regarding biofuel production, feedstocks that produce a high 

yield using minimal water are more preferred, especially in water-stressed regions such as 

South Africa. South Africa has catchments that are already water stressed, with irrigated 
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agriculture utilising 60% of the available water resources (DME, 2007a). Hence, allocating 

additional irrigation water for biofuel production could add to the water scarcity experienced 

in South Africa. However, biofuel feedstocks should preferably not be irrigated, according 

to a recent policy position paper published by the Department of Water and Sanitation 

(DWS, 2016). 

 

2.6 Summary 

Biofuels can both compliment and serve as an alternative source of liquid transport fuel. 

Globally, the use of biofuels is growing rapidly and the South African government has 

followed suit by planning to introduce it into the country’s fuel supply. Studies on crops 

which have the potential for utilisation as biofuel feedstocks in South Africa have been 

undertaken and in this study, two crops were investigated.  

 

Globally, sugarcane and sugarbeet are major crops for both bioethanol and sugar production. 

Sugarbeet is still a relatively new crop in South Africa compared to sugarcane. Nonetheless, 

sugarbeet is the preferred feedstock together with sugarcane for bioethanol production in 

South Africa. Additionally, the sugarbeet pricing will be similar to sugarcane. Lastly, both 

crops are viable for dryland agriculture especially given the unlikelihood of the application 

of irrigation. 

 

One of the aims of this study was to determine the biofuel yield potential of two feedstocks 

under rainfed and/or irrigated conditions using a deterministic model. As noted in section 

2.3, previous studies have used empirical models for sugarcane yield simulations and given 

that sugarbeet is a new crop in South Africa, there is limited knowledge regarding the water 

use and yield of this crop. Therefore, the results in this study will contribute to this 

knowledge gap. The following chapter discusses the types of deterministic models available 

to estimate crop yield and introduces the crop yield model employed in this study. 
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 CROP MODELLING 

 

This chapter gives a background on the history of crop modelling. It further discusses the 

different type of models available and presents the benefits of selecting the AquaCrop model 

for this study. 

 

3.1 Background 

 

Crop modelling began as early as the 1960s. Various physiological processes related to plant 

growth were expressed as mathematical equations and these were then integrated into 

simulation models (Bouman et al., 1996). The first crop models were mostly explanatory in 

their approach, but with time, models with an application approach (e.g. could make 

predictions) were developed. The successful implementation of crop growth modelling is 

attributed to C.T de Wit and these models are often referred to as the “School of de Wit or 

Wageningen models” (Bouman et al., 1996). Today, there are a variety of crop models that 

have been developed and crop modelling has now become an integral part of agricultural 

research.  

 

3.2 Functional vs Mechanistic models 

 

A model is a simple representation of a system and the system is a smaller part of reality that 

contains interrelated elements (Bouman et al., 1996). An example of such a system is the 

soil-plant-atmosphere continuum (or SPAC) which is evident in most crop models. There 

are functional (or empirical models) and mechanistic (or process-based models) approaches 

to modelling, but some crop models tend to use both approaches (Singels et al., 2010). 

However, this review focuses on the process-based modelling approach. 

 

A functional model simplifies complex processes with its core focus being on macro-growth 

processes (Vanuytrecht et al., 2012). Benbi and Nieder (2003) stated that functional models 

are preferable when information about yield production is required at field and macro-scales. 

A mechanistic approach to modelling is more scientific and aims to improve understanding 

of a system and hence involves complex physiological processes (Singels et al., 2010; 

Vanuytrecht et al., 2012). Examples of crop growth models that are mechanistic in nature 
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are those that are based on the physiological aspects of a plant (Geerts et al., 2009).  

 

Mechanistic crop growth models are computer programs (i.e. software-based) that attempt 

to mimic real plant processes in response to environmental conditions (Jones, 2013). Such 

models can forecast expected yields from crops by simulating plant physiological processes, 

plant growth and development. Acquiring such knowledge and information helps in decision 

making regarding management and planning in agriculture as well as crop science, both in 

the short and long term (Singels et al., 2010). There are many different types of crop growth 

models that exist and each is unique, due to its complexity and the way in which its addresses 

the SPAC. Therefore, the main similarity that crop models share is they all have soil, plant 

and atmospheric components. The difference is often in the level of detail within the 

individual elements of the SPAC representation. 

 

3.3 Types of Growth Engines 

 

At the centre of crop growth models, a plant growth engine dictates the processes involved 

in the production of biomass from the capture of carbon dioxide, absorption of solar radiation 

and uptake of water. There are three main crop growth engines that can be distinguished, viz. 

carbon-, radiation- and water-driven engines (Steduto, 2006). They share a common 

disadvantage with regard to the effort required to obtain sufficient data to build a model 

(Hofstee, 2013). Moreover, the reality that models attempt to represent can be complex and 

thus, the use of assumptions to simplify the real world can lead to uncertainties and errors. 

In the following subsections, the three growth engines are discussed in more detail. 

 

 Carbon-driven  

For the carbon-driven growth engine, crop growth is based on the assimilation of carbon by 

leaves through photosynthesis (Todorovic et al., 2009). The simulation of crop growth and 

phenological development are controlled by solar radiation, air temperature, atmospheric 

carbon dioxide and the availability of water limits those processes. The carbon-driven 

growth engine follows pathway (a) as presented in Figure 3-1.  
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Figure 3-1 Processes involved in the production of biomass in carbon-driven crop 

models is via pathway (a) (Steduto, 2006) 

 

According to Steduto (2006), the advantages of carbon-driven growth engines is their ability 

to describe the system in a hierarchical way. Therefore, higher level responses (biomass 

production) are a result of the underlying integration of lower level processes (i.e. 

interception of radiation). Carbon-driven crop models are thus suitable for investigating the 

following effects on crop growth, viz.  leaf area, location (i.e. latitude), crop row orientation, 

diffuse and direct light, elevated carbon dioxide and other low-level processes (Steduto, 

2006). Such models often have a complex structure and therefore, require many input 

parameters (Todorovic et al., 2009). Models that belong to this type of growth engine include 

the WOrld FOod Studies (WOFOST) (Diepen et al., 1989; Boogaard et al., 1998) and the 

American CROP GROwth (CROPGRO) models (Boote et al., 1998; 2002). 

 

 Radiation-driven 

Radiation-driven models, initially developed in the 1970s (e.g. Sinclair et al., 1976), 

simulate biomass production as a function of intercepted solar radiation. Unlike carbon-

driven models, there are no lower underlying processes that represent intermediary steps 

deemed essential to producing biomass. Rather, these intermediary steps are incorporated 

into a single coefficient called the radiation use efficiency, i.e. RUE or Ɛ (Steduto, 2006). 

The radiation-driven growth engine also follows path (a), but bypasses the intermediary 

steps associated with carbon-driven models (Figure 3-2). 
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Figure 3-2 Processes involved in the production of biomass in radiation-driven crop 

models is via pathway (a), but bypasses the intermediary steps (Steduto, 

2006) 

 

Radiation-driven crop models have an advantage over carbon-driven models in that they are 

less complex and require fewer input variables (Todorovic et al., 2009). This reduction in 

parameters is mainly due to the introduction of the RUE term, which is derived from the 

slope of the relationship between above-ground biomass production and interception of 

photosynthetically active radiation (PAR). RUE values have been determined for different 

crops and locations, allowing the models to be applicable across a broad range of climates 

(Gallagher and Biscoe, 1978; Gosse et al., 1986; Kiniry et al., 1989). However, when the 

modelled crop is under water stress and nutrient deficient conditions, the slope of the above-

mentioned relationship loses its linearity, which results in errors in the estimation of total 

above-ground biomass production. 

 

Another disadvantage of this growth engine is inconsistency in the variability (i.e. non-

stationarity) of RUE values that have been observed for different crops, locations and years 

(Steduto, 2006). Steduto (2006) stated that this is mainly caused by various factors which 

affect RUE, viz: 

• variability in carboxylation capacity of leaves (e.g. nitrogen changes, stomatal 

response to vapour pressure deficit and leaf water potential), 

• ratio differences between diffuse and direct light, and 

• diversity in biomass sampling. 
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Models that belong to this group include the following: the CERES (Crop Environment 

REsources Synthesis) models for various crops such as rice (Alocilja and Ritchie, 1991) and 

wheat (Ritchie et al., 1998); the EPIC (Erosion Productivity Impact Calculator; Williams et 

al., 1984; Jones et al., 1991), STICS (Simulator mulTIdisciplinary for Crop Standard; 

Brisson et al., 1998; 2003) and CROPSYST (CROPping SYSTem; Stockle et al., 1994; 

2003) models. 

 

 Water-driven 

The water-driven engine is depicted by pathway (c) as indicated in Figure 3-3. Their 

approach avoids explaining the underlying hierarchical processes and thus, results in a 

structure that is much less complex and thus, requires fewer input parameters (Steduto et al., 

2009). This approach to crop modelling was initially noted by de Wit (1958) who reported 

that a linear relationship exists between seasonal transpiration and biomass production. This 

relationship is linear in nature and its slope is represented by the biomass water productivity 

(WP or wp) parameter. This parameter is conservative (unlike RUE), which accounts for the 

robustness of water-driven crop models compared to carbon- and radiation-driven crop 

models (Steduto, 2006).  

 

 

Figure 3-3 Processes involved in the production of biomass in water-driven crop models 

is via pathway (c) (Steduto, 2006) 

 

The main advantage of such models is the ability to normalise the WP parameter for climate 

(both evaporative demand and atmospheric carbon dioxide). Thus, the model can have a 
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wider applicability, both spatially and temporally, allowing for the modelling of future 

climate scenarios (Steduto et al., 2007; Steduto et al., 2009; Mabhaudhi, 2012). According 

to Steduto (2006), one disadvantage of this model type is the difficulty of deriving actual 

transpiration. 

 

CROPSYST consists of both a solar- and water-driven growth engine, making it a more 

complex than models that comprise of a single growth-engine, whereas AquaCrop (Raes et 

al., 2009; Steduto et al., 2009) is only water-driven. CROPSYST requires more crop input 

parameters (i.e. 40) compared to AquaCrop (33). Some of AquaCrop’s parameters can easily 

be observed in the field such as the percentage of canopy cover, soil texture, nutrient input 

and other biomass-related physiological inputs (Todorovic et al., 2009). Fewer parameters 

equate to less complexity, especially when parameterising or calibrating a model for various 

crops under different climatic conditions. The additional parameters required by 

CROPSYST are a disadvantage because they may not always be readily available 

(Vanuytrecht et al., 2014). For example, scientific research is limited in less developed 

countries, which makes it difficult to derive values for location-specific crop parameters. 

Regardless of AquaCrop’s fewer input parameters, studies by Todorovic et al. (2009) and 

Saab et al. (2015) have shown that its performance has not been affected. In addition, they 

indicated that AquaCrop could simulate final yield, biomass and WUE competitively well 

when compared to CROPSYST and WOFOST. Other studies such as those by Heng et al. 

(2009) and Mainuddin et al. (2010) have shown the robustness AquaCrop’s performance 

when calibrated properly. 

 

3.4 Model Selection 

 

Based on the main objective of this study and on the above discussion of different crop 

growth engines, a water-driven model was deemed appropriate for this study. Of the two 

water-driven models presented, AquaCrop was the preferred model due to its robustness and 

simplicity as well as its effectiveness in regions where water is a limiting factor (Raes et al., 

2009). Mabhaudhi (2012) also used the AquaCrop model for determining drought tolerance 

and water use for specific crops. In addition, AquaCrop (version 4) is equipped with a 

variable WP parameter that not only considers crop response to CO2 via a multiplier (fCO2), 

but also to crop sink strength (see section 4.3). Furthermore, AquaCrop was tested against 

Free Air Carbon Enrichment (FACE) experiments, which measure crop responses to 
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elevated CO2 conditions (Vanuytrecht et al., 2011; 2012).  

 

AquaCrop has previously been parameterised and tested for the selected biofuel feedstocks 

(e.g. sugarcane and sugarbeet). More specifically, AquaCrop was parameterised for 

sugarcane using crop and climate data collected in South Africa. However, for the purposes 

of this study, AquaCrop was not parameterised but rather calibrated and fine-tuned for local 

conditions. The difference between parameterisation, calibration and validation is described 

in subsection 3.4.3. 

 

 Description of AquaCrop  

Simulating a crop’s response to water stress has long remained one of the most difficult 

phenomena in crop modelling. The difficulty has mainly been due to the variability of water 

deficits in terms of intensity, duration and time of occurrence (Hsiao, 1973; Bradford and 

Hsiao 1982). Thus, empirical production functions became the most practical way of 

assessing crop yield in relation to water use. FAO’s Irrigation and Drainage Paper No. 33 

titled “Yield Response to Water” (Doorenbos and Kassam, 1979) reported the following 

approach that has been used for decades: 

 

(
𝑌𝑥 − 𝑌𝑎

𝑌𝑥
) = 𝐾𝑦 (

𝐸𝑇𝑥 − 𝐸𝑇𝑎

𝐸𝑇𝑥
) 

Equation 3-1  

 

where Yx and Ya = maximum and actual yield respectively, 

 ETx and ETa  = maximum and actual evapotranspiration, respectively and 

 Ky  = factor relating relative yield loss to reduction in evapotranspiration.  

 

For example, FAO’s irrigation scheduling model called CROPWAT uses a similar approach 

as shown in Equation 3-1. However, the understanding of soil–water–plant relations has 

improved over time. Coupled with this, the need for improved water productivity in 

agriculture has led to the development of a simulation model for field and vegetable crops. 

This model is the AquaCrop model, which is a canopy level, deterministic type of model 

that evolved from the CROPWAT model (Steduto et al., 2012).  

The following reasons given by Steduto et al. (2009) detail AquaCrop’s evolution from the 

previous CROPWAT approach: 

• Evapotranspiration (ET) has been separated into soil water evaporation (E) and crop 
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transpiration (Tr); 

• AquaCrop uses a simple canopy growth and senescence model as a basis for the 

estimation of Tr and its separation from E; 

• The model calculates final yield (Y) from the product of final biomass (B) and 

harvest index (HI); and 

• The model segregates the effects of water stress into four components, viz. canopy 

growth, canopy senescence, Tr and HI.  

 

AquaCrop segregates ET into E and Tr, which is especially useful for incomplete ground 

covers since E (which does not contribute to crop growth) can have a confounding effect. 

AquaCrop simulates biomass (B) by using Equation 3-2, the core of its growth engine:  

 

𝐵 = 𝑊𝑃 ·  𝛴𝑇𝑟 Equation 3-2 

 

WP is the water productivity parameter (i.e. biomass production B per unit of cumulative 

transpiration 𝛴𝑇𝑟) that can be normalised (see subsection 3.3.3). In AquaCrop, the 

evaporative demand is normalised by dividing the daily Tr with reference crop evaporation 

(ETo). Atmospheric CO2 is normalised by applying a multiplier (fCO2), which is dependent 

on ambient CO2 levels in the year 2000 (reference year) as well as the year in which the crop 

is grown (Vanuytrecht et al., 2014). Other improvements from Equation 3-1 (in 

CROPWAT) to Equation 3-2 (in AquaCrop) include the time step used. The relationship in 

Equation 3-1 operates on a seasonal time step, whereas Equation 3-2 operates on a daily 

time step. According to Acevedo et al. (1971), a daily time step is closer to approaching the 

actual time scale of crop responses to water deficits. 

 

 Model structure and processes 

Figure 3-4 represents the structure of AquaCrop and its associated processes. The solid lines 

represent the direct links between variables and processes and the dotted lines indicate the 

feedbacks. The climate component of AquaCrop requires four weather inputs that are 

necessary to run the model, viz. rainfall, maximum temperature, minimum temperature and 

reference crop evaporation (ETo). Values of historical carbon dioxide (from the Mauna Loa 

Observatory in Hawaii) are included within the model structure (Steduto et al., 2009).  
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Figure 3-4 Diagram of the AquaCrop model showing main components of the SPAC and 

the parameters driving the phenology, canopy cover, transpiration, biomass 

production and final yield (Steduto et al., 2012) 

 

The AquaCrop model can also accept rainfall, temperature and ETo in monthly or mean 

decade records, which are then approximated into daily value when the model is run (Raes 

et al., 2009). This option gives flexibility to users especially in regions where daily data are 

limited or not freely available. AquaCrop derives the water that infiltrates into the soil by 

subtracting the runoff generated from the rainfall. Rainfall and ETo are required to determine 

the soil water balance of the root zone. The carbon dioxide level influences the WP 

parameter and thus, the crop’s growth rate. Temperature values drive or influence the 

phenology (crop development) component in the model. AquaCrop uses thermal time to 

calculate the growth stages of the crop as described by McMaster and Wilhelm (1997), with 

the exception that no adjustment is made of the minimum temperature when it drops below 

the base temperature. This is believed to better represent the damaging or inhibitory effects 

of cold on plant processes. 

 

The crop system has five main components related to the phenology, canopy, root system, 

biomass production and harvestable yield. The crop grows over its specified cycle through 
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leaf expansion and by deepening its rooting system. When water is limited, the crop responds 

to water stress through any of the following feedbacks: 

• a reduction in leaf expansion;  

• closure of stomata, or  

• increased senescence.  

 

Water stress may also affect the WP and harvest index (HI) parameters, thus resulting in a 

lower attainable yield. Both E and Tr are affected by the extent of canopy cover. The Tr and 

WP are then used to calculate the biomass B (Equation 3-2). The harvestable portion of the 

biomass (i.e. yield Y) is calculated using the HI (Equation 3-3).  

 

𝑌 = 𝐵 ·  𝐻𝐼 Equation 3-3 

 

The soil component of the model allows the user to input a soil texture class for up to five 

different soil horizons (Raes et al., 2009). Soil texture is based on the particle size 

distribution as per the USDA triangle (Soil Conservation Service, 1991). The model can then 

estimate the hydraulic characteristics associated with each textural class. Estimated values 

are useful when such data are unavailable, but user-specified values for the location are 

preferable, especially for model calibration. The hydraulic characteristics include the 

drainage coefficient, hydraulic conductivity at saturation, as well as volumetric water 

contents at saturation, field capacity and permanent wilting point. The model also performs 

a daily water balance within the soil component. The water balance includes processes of 

runoff, infiltration, redistribution, deep percolation, capillary rise, water uptake by roots, 

evaporation and transpiration (Steduto et al., 2009).  

 

 Calibration and validation 

Parameterisation is a higher-level adjustment of model parameters than calibration (Farahani 

et al., 2009). It involves defining the necessary parameters (e.g. by data collection) within a 

model before being used for a particular purpose. Farahani et al. (2009) notes that these 

terms are at times used interchangeably in some literature. In the context of this document 

and similar to the approach by Kunz et al. (2015b), parameterisation refers to the original 

development of new crop parameter files, which was undertaken by the model developers 

for sugarcane and sugarbeet. In this study, certain parameters were calibrated (i.e. fine-
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tuned) to better represent local growing conditions. 

 

Calibration and validating of the AquaCrop model requires the information presented in 

Table 3-1. Calibration is the refinement or adjustment of parameters that are already in the 

model so that simulated yields agree with observations at a given location (Merriam-

Webster, 1998; Farahani et al., 2009). Model validation often refers to the comparison of 

model output against an independent dataset that was not used to calibrate the model 

(Augusiak et al., 2014). Model verification determines whether the model implements the 

assumptions correctly and that the model is error-free (Sargent, 2011).  

 

Table 3-1 Information and data required by AquaCrop to simulate crop growth, yield 

and water productivity (after Steduto et al., 2012) 

Crop Climate and Et Soil Irrigation and soil water 

• Plant density 

• Planting and harvesting 

dates 

• Date of emergence 

• Date of crop senescence 

• Maturity date 

• Crop life cycle length 

• Seeding rate and 

germination % 

• Periodic measurements 

of leaf area index and 

above-ground biomass 

over the season 

• Signs and dates of water 

stress 

• Rooting depth 

• Grain/tuber/stem yield 

• Reference harvest Index 

• Daily minimum and 

maximum temperature  

• Daily minimum and 

maximum relative 

humidity  

• Daily average wind 

speed 

• Daily solar radiation  

• Daily rainfall data 

• Measured ET (optional) 

 

• Soil textural class and 

depth of each soil 

horizon 

• Layer restrictive to root 

growth and depth 

• Indication of slope (via 

the curve number) 

• Indication of soil 

fertility 

• General fertilisation 

practice 

• Kind, rate and timing of 

fertiliser application 

• Field capacity and 

permanent wilting point 

of each soil horizon 

• Soil water holding 

capacity 

• Saturated hydraulic 

conductivity 

• Water application 

method and approximate 

irrigation schedule 

• Estimate of soil water 

content at planting based 

on measurements 

• Amount of water 

applied at each irrigation 

• Measured or estimated 

soil moisture content for 

different soil depths at 

planting 

• Periodic measurements 

of soil water content at 

various depths of the 

root zone 

 

The model parameters in Table 3-1 can be collected via different techniques and methods 

(see Chapter 6). These methods can be classed as primary data, secondary data and 

simulation modelling. Primary data are data gathered directly from the material/s being 

investigated. Such data have not been analysed or interpreted by another person. The main 

advantage of using primary data sources is that they are considered to be stronger than 

secondary sources (Hofstee, 2013). The disadvantages of primary data collection are related 

to associated cost and time. Secondary data pertains to primary data that another party has 

collected, interpreted or analysed. Consequently, utilising such data can provide significant 

savings in cost and time (Hofstee, 2013). However, errors incurred during the primary 

collection and data analysis can be carried over by the secondary user. Furthermore, 
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secondary sources may not always be detailed enough (i.e. the quantity of data may be 

insufficient), as was the case in this study. 

 

3.5 Gaps in Literature 

As noted in subsection 2.4.1, sugarbeet is a new crop in South Africa and hence, it is not a 

commonly grown in the country. This implies that AquaCrop model parameters for 

sugarbeet have not been calibrated for local growing conditions. This presents an opportunity 

to develop such parameters for this crop. In addition, the potential impacts of climate change 

of sugarbeet production in South Africa are unknown, which needs to be addressed as 

climate change can negatively impact the production of bioethanol from sugarbeet.  

 

3.6 Summary 

 

Crop yield models are applied widely in agriculture for the purposes of estimating yields. 

The literature review has shown that there are three classes of such models, viz. carbon-

driven, solar-driven and water-driven models. The latter was selected in this study because 

such models simulate yield in response to water availability. Hence, the AquaCrop model 

was chosen based on its robustness and simplicity. The next chapter discusses AquaCrop’s 

suitability for climate change studies. 
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 CROP RESPONSE TO CLIMATE CHANGE 

 

This chapter discusses the potential impacts of climate change on crop productivity. The 

benefits of using AquaCrop in climate change studies is also presented. 

 

4.1 Background 

 

Agricultural crops are directly dependent on suitable climatic conditions for optimum yield 

production. Therefore, any changes in atmospheric carbon dioxide concentrations ([CO2]), 

air temperature and precipitations patterns are bound to affect future water resources and 

crop production (Easterling and Apps, 2005; Vanuytrecht et al., 2011). In addition, the ratio 

of blue (i.e. runoff) and green water (i.e. ET) will be altered, resulting in changes in soil 

water availability, which will also affect crop yields.  

 

The simulation of crop yield can predict both the sign and magnitude of the overall impact 

that may result from climate change (Tubiello et al., 2002). For example, studies have 

indicated that mean seasonal temperature increases of 2-4°C may result in optimal 

temperature ranges of crops being exceeded and thus, future crop yields may decrease 

(Adams et al., 1998; Wheeler et al., 2000; Battisti and Naylor, 2009; IPCC, 2014a). 

However, such negative impacts can be counteracted by the effects of increased [CO2]. This 

is particularly true for C3 crops, which is discussed next in more detail. 

 

4.2 C3 vs C4 Crops 

 

It is a well-known that [CO2] coupled with management factors interact in complex ways to 

determine the overall impact of climate change on crop production (Zhao and Li, 2015). 

Changes in temperature and precipitation patterns could either have a positive or negative 

impact on agriculture. In general, increases in [CO2] will enhance the growth and yield of 

most agricultural plants (Allen et al., 1997; Kimball et al., 2002; Vanuytrecht et al., 2014; 

Zhao and Li, 2015). This phenomenon is known as CO2 fertilisation (Vanuytrecht et al., 

2011). This effect is manifested differently in C3 and C4 crops. Rising [CO2] generally 

stimulates C3 photosynthesis more than C4 (Lara and Andreo, 2011). Studies such as those 

by Ainsworth and Ort (2010) as well as Sultan et al. (2013) have indicated that C3 (e.g. 
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sugarbeet) crops are more responsive to elevated [CO2] compared to C4 crops (e.g. 

sugarcane). For C4 crops, increased [CO2] will not affect biomass production much at all. 

However, elevated [CO2] increases WUE by decreasing stomatal conductance and 

transpiration (Ainsworth et al., 2002; Vanuytrecht et al., 2012).  

 

The process of carbon fixation is different for C3 and C4 crops and thus, changes in [CO2] 

affects them differently. Lara and Andreo (2011) stated that C4 species have evolved in a 

high CO2 environment enabling them to have a higher nitrogen and WUE compared to C3 

species. Therefore, photosynthetic carbon assimilation in C4 species is somewhat saturated. 

Photosynthesis in C3 species is known to operate at less than optimal CO2 levels and thus, 

can show dramatic increase in carbon assimilation, growth and yields (Lara and Andreo, 

2011). 

 

C3 and C4 crops are also suited to different climatic conditions. C4 plants are more adapted 

to hot and dry climates and thus, lose less water via evapotranspiration relative to C3 species 

(Sage and Monson, 1999; Gillies, 2008). Even when stomata are closed (i.e. due to heat 

stress), photosynthesis can still continue. The opposite takes place in C3 plants, where higher 

temperature results in a process called photorespiration (oxygen is used instead of carbon 

dioxide for photosynthesis), resulting in reduced photosynthetic activity (Gillies, 2008). 

Therefore, under higher temperatures and lower [CO2] levels, C4 crops have an advantage. 

However, they can benefit from increased [CO2] levels under drought conditions as shown 

by Gillies (2008). C3 crops benefit largely from elevated [CO2] under most conditions, and 

thus have an advantage over C4 crops. Additionally, increased [CO2] decreases 

photorespiration in C3 crops, even under heat stress (Raines, 2011). 

 

Based on the available literature related to impacts of elevated [CO2], there are fewer studies 

for C4 crops compared to C3 crops. This is due to the lack of response of C4 crops to rising 

[CO2], which has translated in a lack of interest (Lara and Andreo, 2011). Nevertheless, 

based on the reviewed literature in this study, differences in yields and WUE between 

sugarcane (i.e. C4) and sugarbeet (i.e. C3) due to changes in [CO2] and climate (i.e. 

temperature and rainfall) are anticipated.  
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4.3 Modelling CO2 Effects 

 

With the inception of crop modelling some four decades ago, several earlier crop models 

could simulate plant responses to [CO2], but most were originally developed to simulate 

present climate conditions. The introduction of crop models with CO2 as an input variable 

appeared in the early 1970s and 1980s (Acock et al., 1971; Thornley, 1976; Charles-

Edwards, 1981; Goudriaan et al., 1985). These models could describe the dependency of 

photosynthesis on light and CO2 at canopy and leaf level. Tubiello and Ewert (2002) 

reviewed the evolution and different types of crop models used in climate change studies 

involving crop response to [CO2]. AquaCrop has been used in impact studies for various 

crops such as maize (Masanganise et al., 2012), durum wheat (Soddu et al., 2013) and cotton 

(Voloudakis et al., 2015).  

 

 Normalisation of WP 

As described in subsection 3.4.1, the WP parameter in AquaCrop is normalised by ambient 

CO2 levels. This allows the model to account for the effects of increasing CO2 on crops. The 

normalised WP parameter values are thus different for C3 and C4 crops. They range between 

15-20 g m-2 for the C3 crops and 30-35 g m-2 for C4 crops (Raes et al., 2011).  

 

 Crop sink strength 

Compared to other crop yield models, AquaCrop takes into consideration the sink strength 

(fsink) of crops which can be adjusted due to crop characteristics and field management. This 

is important since crops that have strong sinks respond better to increased [CO2] and vice-

versa, thus giving a better presentation of expected future yields. The study by Vanuytrecht 

et al. (2011) showed that “variation in future yield potential associated with sink strength 

could be as high as 27% of the total production”. Vanuytrecht et al. (2011) presented the 

fsink ranges of various crops in the AquaCrop database based on Free Air Carbon Enrichment 

(FACE) experiments. Since multiple environmental factors affect the sink strengths of crops, 

the current values are not definite (Ainsworth and Rogers, 2007; Leakey et al., 2009). 

Nonetheless, the developers of AquaCrop have taken a step in the right direction by 

including the fsink of crops in the model. 

 

Adjustments of fsink for current climate conditions should be carried out with caution because 

the literature (e.g. Vanuytrecht et al., 2014) indicates that such adjustments may not be 
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necessary. There are no FACE experiments that have been undertaken for sugarcane and 

hence, its fsink range is yet to be determined. However, research institutions such as the South 

African Sugarcane Research Institute (SASRI) can possibly undertake such experiments for 

sugarcane.  

 

 Summary 

Climate change is a widely studied topic and its predicted impacts on agricultural crops, 

based on simulation modelling, is an accepted plausible reality. The importance of crop 

response to increasing [CO2] is evident in the literature. Since the process of carbon fixation 

in C3 and C4 crops is different, they will respond in dissimilar ways to climate change. 

Therefore, based on the literature, it is expected that sugarbeet (C3 crop) will have a bigger 

response to CO2 changes compared to sugarcane (C4 crop). Modelling the impacts of 

increased CO2 can help improve the understanding of likely impacts on crop yield and WUE 

of sugarcane and sugarbeet. 
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 CLIMATE CHANGE PROJECTIONS 

 

In this chapter, the importance of different downscaling techniques is discussed as well as 

the use of multiple GCMs in reducing uncertainty in model output. Such approaches allow 

crop modellers to use future climate scenarios at a regional or local scale. 

 

5.1 Background 

 

It is widely accepted that climate change may threaten global food security (Donatelli et al., 

2012). However, climate change is linked with uncertainty and its potential impacts are 

estimated using climate projections developed from a plethora of global climate models or 

GCMs. Regardless of the uncertainties involved, studies have indicated that [CO2] has been 

increasing since the industrial revolution and continue to do so on an annual basis. 

According to Tubiello and Ewert (2002), [CO2] is approximately 30% higher today (at 399 

ppm) compared to pre-industrial times. By the year 2100, it is estimated to reach at least 750 

to 1300 ppm if no effective mitigations are employed (IPCC, 2014a). Increased [CO2] is 

linked to the high probability of climate change (Tubiello and Ewert, 2002). Extreme events 

(i.e. droughts, variability in rainfall patterns) are tied to the dynamics of the changing 

climate.  

 

5.2 Global Climate Models 

 

Most impact studies rely on GCMs to provide future climate scenarios (Hewitson and Crane, 

2006). GCMs are complex tools that consist of a set of mathematical equations operating at 

a spatial resolution of 100-300 km (Vanuytrecht et al., 2014, Wibig et al., 2015). They 

describe climate at a set of “grid points” which are distributed spatially at the same density 

over land and ocean (Wibig et al., 2015). These models are only able to capture climate 

features at an atmospheric level, at scales ranging between 1000 to 2500 km, i.e. about eight 

grid point distances (Grotch and MacCracken, 1991; von Storch et al., 1993). However, the 

more relevant climatic processes (e.g. cloud formation and rainfall) occur at a much smaller 

scale in reality and hence, such process are not adequately modelled by GCMs. Therefore, 

outputs from GCMs cannot be applied directly at a field scale (Baron et al., 2005). 

Downscaling techniques have been developed to provide climate change impacts at a 
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regional and catchment level (see section 5.3). 

 

 Ensemble approach 

All techniques developed to derive regional-scale climate information are associated with 

uncertainties (Wibig et al., 2015). The spread in model output is an indicator of the level of 

uncertainty, which can be related to differences in model structure, model parameterisation 

and initial conditions. According to Weigel et al. (2008), uncertainties can be grouped into 

two classes:  

• “Uncertainties in model initialisation, for example due to incomplete data coverage, 

measurement errors, or inappropriate data-assimilation procedures; and 

• Uncertainties and errors in the model itself, for example due to the parametrization 

of physical processes, the effect of unresolved scales, or imperfect boundary 

conditions (Buizza et al., 2005; Schwierz et al., 2006; Weigel et al., 2007).” 

 

Uncertainty in modelling can be reduced by using climate change information from multiple 

GCMs (Maraun et al., 2010; Benestad, 2011). For climate change studies, an ensemble 

approach to modelling has become widely popular (Kharin and Zwiers, 2002; Yun et al., 

2003; 2005). There are two types of ensemble techniques found in literature, viz. 1) an 

ensemble of predictions obtained from one model, and 2) an ensemble of predictions 

obtained from multiple models (Kharin and Zwiers, 2002). The first approach is usually 

applied in numerical weather forecasting, whereas the latter approach involves the use of 

different GCMs for future climate forecasting (Sachindra et al., 2013). In this study, the 

terms ensemble GCM approach and multi-model ensemble are used interchangeably.  

 

The multi-model ensemble approach often outperforms single model simulations and their 

predictions tend to be more accurate (Knutti et al., 2010; Warner 2011; Sachindra et al., 

2013). Of importance is knowing that every model performs well for different applications 

and no model is best suited for all applications (Christensen et al., 2010). Therefore, the 

careful selection of each GCM model in an ensemble approach is important.  

 

 SRES CO2 scenarios 

Before undertaking future climate simulations, a scenario of possible carbon emissions must 

be selected. Due to many influencing factors, different CO2 scenarios have been developed, 

which are referred to as the Special Report on Emissions Scenarios (or SRES scenarios). 
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These scenarios were developed by the Intergovernmental Panel on Climate Change (IPCC) 

(Nakićenović et al., 2000). The SRES scenarios relate to six possible outcomes with regards 

to future development of the world population and economy. Each SRES scenario predicts 

an increase in greenhouse gases in the atmosphere resulting in higher global temperatures, 

leading to changes in the climate. These scenarios are within the four “families”, namely the 

Al (with three scenarios, e.g. A1B) as well as A2, B1, and B2 (each with one scenario). The 

AquaCrop model is bundled with four of the six possible future CO2 trajectories, i.e. A1B, 

A2, B1 and B2 (Figure 5-1). 

 

 

Figure 5-1 Possible SRES CO2 trajectories with reference to observed values measured 

at Mauna Loa (data source: AquaCrop version 4, 2012) 

 

For this study, the A2 scenario was selected. This is known as the “business-as-usual” 

pessimistic outlook of the future in which greenhouse gas emissions will continue to rise. 

By 2100, this is expected to result in mean global temperatures being up to 2.4°C to 5.4°C 

higher than the present time (IPCC, 2007). Such temperature increases, coupled with CO2 

increases, could impact the climate and hence, would affect agricultural crop production. 

The IPCC (2014a) notes that stabilising temperature increases in the future would require 

moving away from the “business-as-usual” scenario. Such a move may result in limiting 
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annual temperatures to below 2°C (as per the Paris Agreement) relative to pre-industrial 

times (Han-Chen et al., 2017). That equates to atmospheric concentrations reaching 450 ppm 

in the year 2100. Therefore, based on the A2 scenario, the simulations in this study are likely 

to show annual temperature increases well above the desired 2°C.  

 

5.3 Downscaling Techniques 

 

In essence, downscaling involves a process where large-scale climate variables are linked 

with small-scale variables (Wibig et al., 2015). There are two types of downscaling 

techniques that exist, namely dynamical and statistical downscaling. The former technique 

nests a high-resolution regional climate model (RCM) into the GCM and the latter technique 

statistically represents desired fields from the lower resolution GCM data (Haylock et al., 

2006). 

 

Regardless of the level of resolution that GCMs can be downscaled to, a level of uncertainty 

will always exist. Changes in the environment such as the vegetation, atmospheric gases, 

ocean and air temperatures all lead to variations in the climate. Some of these can be 

predicted with a high level of accuracy while others cannot, such as land-use change and 

atmospheric composition, specifically greenhouse gases (Wibig et al., 2015). The following 

subsections briefly discuss each downscaling technique and its associated advantages and 

limitations.  

 

 Dynamical downscaling 

The use of RCMs in climate change studies dates back to 1989, when Dickinson et al. (1989) 

used a dynamical approach for modelling the climate over a western region of the United 

States. To date, RCM climate change simulations have been used across all continents 

(Wibig et al., 2015). For example, RCM output to drive crop yield models has been used in 

studies by Oettli et al. (2011) and Zacharias et al. (2015). 

 

Using dynamical downscaling, long term climate simulations can be carried out at spatial 

resolutions of 50 to 10 km for a specific region with lateral boundary conditions coming 

from observation-based datasets (Nemeth, 2010; Kienzle et al., 2012; Wibig et al., 2015). 

Since the spatial resolution of RCMs is much better than GCMs, RCMs are more suited for 

representing local conditions. Lateral boundary conditions differentiate GCMs and RCMs 
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as the latter model cannot operate on a global scale. RCMs are thus driven by winds, 

temperature, and humidity imposed at the boundaries of the domain and sea surface 

temperatures, supplied by a GCM (Maraun et al., 2010). One of the major drawbacks to 

dynamical downscaling is the high computational costs (IPCC, 2007). 

 

Since RCMs receive boundary conditions from GCMs, the quality of output from these 

models is highly dependent on the GCMs. The aim of the RCM is to correct local climate 

misinterpretations (e.g. topographic influences) and not large-scale atmospheric flow. 

Therefore, poor atmospheric flow representation (which affects local climate conditions) 

from a GCM will manifest in the data produced by RCMs. This can ultimately lead to RCMs 

being biased towards a hotter/cooler and a wetter/drier climate. This obviously has a knock-

on effect in climate change impact studies. According to Maraun et al. (2010), systematic 

biases are a big disadvantage of dynamical downscaling. Systematic biases are a 

combination of systematic errors from the driving GCMs as well as the RCM. It is therefore 

important to understand model bias in GCMs and RCMs before undertaking impact 

assessments (Zacharias et al., 2015). Various methods to correct model biases have been 

discussed by Maraun et al. (2010) but are beyond the scope of this study. 

 

A major advantage of dynamical downscaling is their usability in any region of the world 

(Wibig et al., 2015). This is however not the case with statistical downscaling which requires 

good quality data for calibration purposes (discussed further in subsection 5.3.2). However, 

each RCM is different in its representation of various atmospheric processes. Hence, it is 

important to use outputs from different RCMs. In addition, developing methodologies that 

exploit each model’s strengths is important in an ensemble approach (Leith and Chandler, 

2010).  

 

 Statistical downscaling 

The statistical downscaling approach is a technique that bridges the gap between the large-

scale output from GCMs and local-scale input requirements of simulation models (Wibig et 

al., 2015). There are two statistical approaches as suggested by Rummukainen (1997), 

namely model output statistics (MOS) and perfect prognosis (PP). Only the latter technique 

is discussed in this document. 

 

PP methods identify a statistical relationship between an independent atmospheric variable 
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and various dependent variables related to the local or regional climate. The reference (i.e. 

historical) climate is used to determine this relationship (Maraun et al., 2010). This approach 

is computationally cheap in comparison to dynamical downscaling (Shin et al., 2009, Wibig 

et al., 2015). The main rationale behind the method is the use of empirical knowledge via 

the inclusion of observational data. The performance of this approach is largely dependent 

on the selected predictor, in that it must be able to capture changes in the climate. A 

drawback of PP methods is their under-representation of temporal variability. According to 

Wibig et al. (2015), another disadvantage of PP approaches is their lack of spatial coherence, 

especially when numerous climate models are used at a particular location. 

 

5.4 Summary 

 

GCMs are important tools and the majority of climate change studies rely on them for 

simulations of future climate scenarios. However, there is uncertainty associated with 

climate change simulations and now most studies use climate change information from 

multiple GCMs to reduce that uncertainty. GCMs do not capture the climatic processes that 

occur at finer scales which are important in the context of climate change. This limits their 

applications at such scales. Therefore, downscaling techniques have been developed to 

improve impact study simulations at a regional and catchment levels. Overall, the literature 

review has shown the benefits of using outputs from multiple GCMs and using different 

downscaling techniques.  

 

Chapter 6 discusses various methods and tools that were used to collect data for input into 

the selected crop yield model. The type of methods used was dependent on the availability 

of equipment and on the advantages they offered. Chapter 6 also presents the GCMs that 

were selected and the two downscaling techniques employed for the different GCMs. The 

various sources that provided future climate scenarios are also acknowledged.  
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 MATERIALS AND METHODS 

 

The research designs used in this study were carefully selected for their ability to give 

reliable results, regardless of their limitations. The following three research designs were 

used: 

1) field experiment and laboratory analyses (i.e. primary data collection), 

2) secondary data (for model calibration and validation), and 

3) model simulations (to assess the impacts of climate change on crop yield). 

 

The methodology is therefore split into three broad categories. The first category (sections 

6.1 to 6.5) describes the field work and laboratory analysis that was undertaken to generate 

a primary dataset that was used to calibrate the AquaCrop model for sugarbeet. During 2013, 

a field experiment was conducted at UKZN’s research farm (Ukulinga) and soil samples 

were analysed in a laboratory at UKZN to determine soil water retention parameters. The 

second category (section 6.6) describes the calibration and validation of the crop model for 

sugarcane using secondary datasets. In addition, secondary datasets were also used to test 

the calibration for sugarbeet. This approach helped answer the first research question (i.e. 

what the attainable yield of sugarbeet and sugarcane is?). The third category (sections 6.7 

and 6.8) describes the data and simulations used to assess the impacts of climate change on 

yield and WUE of the two selected feedstocks. The methodology begins with a description 

of each experimental site where primary and secondary datasets were sourced as well as a 

description of the experiments designs used to generate the datasets. Table 6-1 below 

presents the data sources for the work undertaken in this study.   
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Table 6-1 Sources of data used in this study 

Data  Undertaken by  Source Reference 

Climate data 
for sugarbeet 

Dr. M Mengistu ARC weather station n/a 

Climate data 
for sugarcane 

SASRI SASRI n/a 

Soil water 
content 

Dr. M Mengistu 
and Mr. O 
Mokonoto   

 Kunz et al. (2015) 

Total 
evaporation 

Dr. M Mengistu 
and Mr. O 
Mokonoto   

 Kunz et al. (2015) 

Crop 
establishment 

Mr. I Dodge ACCI Kunz et al. (2015) 

Leaf area 
measurements 

Mr. O 
Mokonoto 

  

Root 
measurements 

Mr. O 
Mokonoto 

  

Final yields  
Mr. I Dodge 

from the ACCI  
ACCI Kunz et al. (2015) 

Soils analysis 

Soil survey pit 
dug by Mr. 

Mokonoto and 
analyzed by the 

ICFR 

ICFR n/a 

Soils retention 
parameters 

Mr. O 
Mokonoto 

UKZN Soils Laboratory n/a 

Calibration 
set-up and 

runs 

Sugarbeet data 
compiled by 

Mr. O 
Mokonoto and 
Dr M Mengistu 

Sugarcane data 
provided by SASRI 

AgMIP 

Validation 
runs 

Mr. O 
Mokonoto 

Sugarcane data 
provided by SASRI 

n/a 

Climate 
change runs  

Mr. O 
Mokonoto 

Historical and future 
climate data obtained 
from various sources 

Schulze et al. (2011a; 2011b), 
CSAG, CSIR (Engelbrecht et al., 

2011) 

 

6.1 Site Description 

 

A primary dataset was collected for sugarbeet grown at Ukulinga during the 2013 season 

and used to calibrate the AquaCrop model. No field experiments were undertaken in this 

study to validate the model for sugarbeet, nor calibrate or validate the model for sugarcane. 

Rather, secondary datasets pertaining to each crop were obtained from the Agricultural 

Model Intercomparison and Improvement Project (AgMIP) initiative. AgMIP is made up of 

different international communities from climate, crop and economic modelling 
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backgrounds. Their aim is to produce improved crop and economic models and new climate 

impact projections for the agricultural sector (Rosenzweig et al., 2013). In total, three 

AgMIP datasets were utilised in this study as follows (Singels, pers. comm., 2013): 

• The La Mercy dataset (1989-1990) was used to calibrate AquaCrop for sugarcane. 

• The Pongola (1968-1971) and the Komatipoort datasets (2011-2012) were then used 

to validate the model for both sugarbeet and sugarcane.  

 

The secondary datasets were provided by SASRI, based at Mt. Edgecombe in KwaZulu-

Natal. A description of each experimental site where the primary and secondary datasets 

were measured is given in the subsections that follow. 

 

 Ukulinga 

Ukulinga is the University of KwaZulu-Natal’s research farm in Pietermaritzburg and is 

approximately 7 km from the University campus (30°24'22"E; -29°40'04"S, altitude 800 m 

a.s.l). The mean annual precipitation (MAP) at Ukulinga is 750 mm, with most of the rainfall 

occurring in the summer months, particularly in January and February (Kunz et al., 2015a). 

Ukulinga generally experiences warm to hot summers and mild winters. February (26.5°C) 

and July (8.0°C) are the warmest and coldest months, respectively (Kunz et al., 2015a). The 

soils at the experimental site are classified as Westleigh soil form (Soil Classification 

Working Group, 1991). A soil survey undertaken in August 2010 revealed a mostly clay 

loam texture with depths varying between 0.6 to 1.0 m across the trial site (Kunz et al., 

2015a). 

 

 La Mercy 

The La Mercy sugarcane site (31°07'48"E, -29°34'12"S, altitude 72 m a.s.l) is approximately 

6.7 km west of Tongaat in KwaZulu-Natal and experiences a subtropical climate. Based on 

AgMIP climate data from 1980 to 2009, the MAP is 1004 mm, the mean annual maximum 

temperature is 25.6°C and the mean annual minimum temperature is 15.4°C. Rainfall occurs 

throughout the year, with most occurring between October to February. As per the FAO soil 

classification, the soils are classified as Brunic luvisol (FAO, 2015). They have a depth of 

1.65 m and a Curve Number (CN) of 65, indicating a medium probability for runoff. The 

AgMIP dataset, provided by Singels (pers. comm., 2013), did not specify the texture of the 

soils. 
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 Pongola 

The Pongola site (31°35'31"E, -27°24'50"S, elevation of 308 m a.s.l) is 6.5 km south west 

of Pongola town. The site is also classified as subtropical and hence, temperatures are similar 

to La Mercy. The mean annual maximum temperature for the site is 26.7°C and the mean 

annual minimum temperature is 14.9°C. However, the MAP is lower at 585 mm. The soils 

at the study site are deep, measuring up to 2.72 m. They are classified as Shorrock soils and 

have a higher CN of 73 (thus a higher potential for runoff). The AgMIP dataset was again 

provided by Singels (pers. comm., 2013). 

 

 Komatipoort 

The Komatipoort site (31° 52’E, -25° 37’S, altitude 187 m a.s.l) is about 24 km south west 

of Komatipoort town in the Mpumalanga Province. Based on the AgMIP dataset, the annual 

maximum and minimum temperature averages are 30.5°C and 14.2°C respectively. The 

MAP of the study site is 769 mm and the soils are fairly shallow, measuring a depth of 0.6 

m. The clay content decreases with depth from 36% (0.25 m) to 28% (0.60 m). The soils are 

classified as Shortlands soils. The AgMIP dataset was also provided by Singels (pers. comm., 

2013). 

 

6.2 Trial Description 

A description of each experimental site is given in the subsections below for the two selected 

biofuel feedstocks. The experimental sites had different layouts and designs, cultivars, 

planting and harvesting dates as well as different agronomic practices. 

 

 Sugarcane 

One rainfed sugarcane cultivar (cultivar NCo376), ratooned over eight treatment dates across 

the year, was used at La Mercy and Pongola. Cultivar NCo376 was released in 1955 in South 

Africa and it has been reported to produce high yields across different climatic conditions 

(Zhou, 2013). NCo376 is a high population cultivar and has a low sucrose content. It has a 

thermal time of 203°C days (ratoon crop) from start to emergence and a base temperature of 

10°C (Zhou et al., 2003; Jones, 2013). The Komatipoort trial consisted of three sugarcane 

cultivars spread over six irrigated treatments. The three sugarcane sites used a row spacing 

ranging from 1.2 to 1.5 m. 
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6.2.1.1 La Mercy 

The La Mercy experimental dataset (1989 to 1990) from AgMIP consisted of eight rainfed 

ratoon treatments. A row spacing of 1.2 m was applied across all treatments. Treatments one 

to four were ratooned in 1989, followed by treatments four to eight which were ratooned in 

1990 (Table 6-2). Harvesting took place 18 months later in each of the eight treatments. 

  

Table 6-2 Ratooning and harvesting dates for the La Mercy sugarcane treatments 

Treatment 

Number 
1 2 3 4 5 6 7 8 

Ratooning 

Date 
01-06-89 01-08-89 01-10-89 01-12-89 01-02-90 01-04-90 01-06-90 01-08-90 

Harvest 

Date 
02-10-90 05-12-90 05-02-91 03-04-91 04-06-91 31-07-91 01-10-91 03-12-91 

 

Dates of fertiliser application were not recorded in the AgMIP dataset. However, the AgMIP 

dataset indicates that 140 kg per hectare of nitrogen, 30 kg per hectare of phosphorus and 

140 kg per hectare of potassium were applied at start of tillering.  

 

6.2.1.2 Pongola 

The ratooning of sugarcane in Pongola (1968 to 1970) was also divided into eight treatments 

with a row spacing of 1.4 m. The Pongola treatment dates are shown in Table 6-3. The 

sugarcane from each treatment was harvested 16-17 months after ratooning. The AgMIP 

Pongola dataset showed the crop was irrigated to avoid water stress using an overhead 

sprinkler system. However, no mention of fertiliser application was made in the AgMIP 

dataset. 

 

Table 6-3 Ratooning and harvesting dates for the Pongola sugarcane treatments 

Treatment 

Number 
1 2 3 4 5 6 7 8 

Ratooning 

 Date 
17-12-68 11-02-69 08-04-69 30-06-69 29-07-69 23-09-69 18-11-69 13-01-70 

Harvest 

Date 
05-05-70 30-06-70 25-08-70 20-10-70 15-12-70 09-02-71 06-04-71 29-05-71 

 

6.2.1.3 Komatipoort 

The AgMIP Komatipoort dataset consisted of three irrigated sugarcane cultivars (N31, N19 

and 04G0073) which were planted on the 12 of October 2011 with a row spacing of 1.5 m. 
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N31 is a high yield sugarcane cultivar (compared to NCo376) with a low sucrose content 

and became available in South Africa in 1997 (SASRI, 2006). Sugarcane cultivar N19 was 

released in South Africa in 1986 and grows well in the North Coast and Zululand regions. 

N19 is a high sucrose cultivar and has good yields across a range of soils, particularly under 

rainfed conditions (SASRI, 2006). Cultivar 04G0073 is a high-fibre cane, characterised by 

thin stalks and long narrow leaves (Ngxaliwe, 2014). The six Komatipoort treatments were 

all planted and harvested on the same date (12/10/2011 to 26/10/2012). The AgMIP dataset 

made no mention of the planting density of each of the sugarcane cultivars. 

 

At Komatipoort, each treatment involving three cultivars received both 50% and 100% of 

total irrigation demand using a drip irrigation system (i.e. six treatments). Nitrogen (120 kg 

per hectare) and phosphorus (100 kg per hectare) were applied to each treatment one month 

after planting. 

 

 Sugarbeet 

 

6.2.2.1 Ukulinga 

The trial was conducted in an 80 by 80 m plot, which provided the minimum fetch required 

to measure crop water use using a micrometeorological technique (Figure 6-1). Land 

preparation at Ukulinga included ploughing and disking. The sugarbeet trial was established 

and maintained by Mr Ian Doidge and other support staff from African Centre for Crop 

Improvement (ACCI), based at UKZN. Although sugarbeet EB0809 (planted at Ukulinga) 

is a sub-tropical variety, it is not well suited to hot conditions, especially when daily 

maximum temperatures reach 26°C (Kunz et al., 2015b).  
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Figure 6-1 Sugarbeet trial at Ukulinga research farm (Google Earth, 2013) 

 

Prior to planting, the seed was initially treated with Trichoderma (a type of fungi) to make 

the plants more resilient to fungal infections (Ha, 2010). Sunshine Seedlings produced the 

sugarbeet seedlings for the trial, which were not transplanted the day they were delivered to 

the research farm. This allowed the seedlings to slowly adjust or harden to the outside 

weather conditions. Transplanting began on the 21st of May 2013 and harvesting took place 

between the 6th and 12th of December 2013 (i.e. ~7 month growing season). 

 

A non-automated drip irrigation system operating at 120 kPa (non-compensated) was 

installed to maintain optimum soil water conditions and thus, maximise yield. The delivery 

rate of each dripper, spaced at 300 mm apart, was 1 litre per hour. The seedlings were 

transplanted between the dripper holes in order to minimise below-ground disease incidence. 

The dripper lines were spaced 0.5 m apart and thus; plant spacing was 0.3 m x 0.5 m (i.e. 

66667 plants per hectare).  

 

From previous trials, the land on which the sugarbeet was grown was known to be 

susceptible to weeds. Therefore, regular weeding was done using hand hoes to ensure the 

field remained weed-free, minimising competition for resources. Goltix was also used as a 

herbicide to combat weed growth. It was applied twice during the season at a dilution rate 

of 2.5 litres per hectare. In addition, two preventative fungicides, viz. Moncozeb and 

Difenaconozole (Difence) were applied to minimise possible leaf spot (i.e. Cercospora) 
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outbreaks. Mocozeb was applied at 2 kilograms per hectare and Difence at 300 ml per 

hectare.  

 

6.2.2.2 Komatipoort 

Sugarbeet (variety EB0809) was grown at Komatipoort with a row spacing of 0.75 m and 

0.20 m between plants in order to achieve a planting density of 66 667 plants per hectare 

(Francois et al., 2015). The crop was planted on the 12th of October 2011 and harvested on 

the 26th October 2012. Similar to the three sugarcane cultivars at Komatipoort, the sugarbeet 

had two irrigation treatments (i.e. 50% and 100% of total irrigation demand), with water 

applied using a drip irrigation system. Agronomic practices included the application of 

nitrogen (120 kg per hectare), phosphorus (75 kg per hectare) and potassium (75 kg per 

hectare) on the 23rd of May 2012.  

 

6.3 Instrumentation  

 

Different instruments were used to collect data related to the climate, soil water status as 

well as crop growth and water use, which were then analysed in order to prepare the 

necessary input files required by the AquaCrop model. Climate data were collected using 

automatic weather stations (AWSs) situated near the field experiments. Reference crop 

evaporation (ETo) calculations were undertaken using the Penman-Monteith equation 

following procedures in the FAO Paper No. 56 as described in Allen et al. (1998). This 

technique estimates ETo for a hypothetical, short grass surface using climatic inputs of solar 

radiation, air temperature, relative humidity and wind speed.  

 

 Sugarcane 

AWSs were used to collect climate data at the sugarcane field experiments. The following 

daily climate variables were recorded, viz. solar radiation, minimum and maximum air 

temperature, minimum and maximum relative humidity, rainfall, wind speed and dew point 

temperature. The location of each AWS is given in Table 6-4 below. 
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Table 6-4 Location of the AWS used for the sugarcane field experiments 

Site Station Name Co-ordinates Distance from Site 

La Mercy SASRI Tongaat 31°08'46"E, -29°34'30"S 5km W 

Pongola Pongola 31°35'31"E, -27°24'50"S 0 km 

Komatipoort SASRI Research Station 31°07'48"E, -29°34'12"S 0 km 

 

 Sugarbeet 

The following subsections describe the instrumentation used at the Ukulinga sugarbeet trial.  

 

6.3.2.1 Climate 

An AWS situated near the sugarbeet trial was used to measure daily climatic variables. This 

included rainfall, minimum and maximum air temperature, minimum and maximum relative 

humidity, solar radiation, wind speed, wind direction and reference crop evaporation. Due 

to extreme weather events (e.g. hail) damaging the field equipment, some of the 

climatological variables were patched (by Dr Michael Mengistu) using data from an on-site 

weather station maintained by the Agricultural Research Council. Less than 10 percent of 

the original dataset was patched, thus making the data reliable for use in the crop model.  

 

6.3.2.2 Soil water content 

Dobriyal et al. (2012) reviewed different methods of estimating the soil water content. 

Instruments such as neutron probes, time domain reflectometry (TDR) probes, tensiometers, 

frequency domain reflectometry, gypsum block measurements, pressure plates and the 

gravimetric method can be used to estimate soil water content (Dobriyal et al. 2012). For 

example, Farahani et al. (2009), García-Vila et al. (2009) and Karunaratne et al. (2011) used 

neutron probes to measure the soil water content. However, TDR and the gravimetric method 

have also been utilised in other studies where AquaCrop was applied (Geerts et al. 2009; 

Todorovic et al., 2009). TDR results are usually accurate within an error limit of 

approximately 1% (Anisko et al., 1994; Chandler et al., 2004). Dobriyal et al. (2012) 

concluded that TDR is more economical and provides accurate results when compared to the 

other methods. Calibrations are not required for specific soil types, thus allowing it to be 

used in different environments (Ferrara and Flore, 2003). However, the TDR technique is 

very sensitive if there is poor contact between the probes and the soil, which then results in 

erroneous measurements (Dobriyal et al., 2012). Thus, it was necessary to install the probes 

correctly and to ensure there was full contact with the soil medium.  
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Soil water retention characteristics can be measured using pressure plate cells. According to 

Mavroulidou et al. (2009), this technique is the most common method utilised in the fields 

of soil science and hydrology. 

 

A Campbell Scientific TDR100 system (Campbell Scientific, Logan UT, USA) was used to 

measure the volumetric soil water content at Ukulinga. The TDR system consisted of a 

TDR100 Time Domain Reflectometer, eight CS605 TDR probes, a Campbell Scientific 

CR1000 data logger and SDMX50 coaxial multiplexers. A pit was dug to insert the eight 

probes. The probes were inserted at depths of 10, 20, 40 and 60 cm on opposite walls of the 

pit. This allowed for a comparison of the readings and infilling of data, should a probe fail. 

See Figure 10-1 and Figure 10-2 in APPENDIX A which shows the pit that was dug and 

the location of the TDR instrumentation. 

 

6.3.2.3 Total evaporation 

Total evaporation can be measured using a soil water budget method (Farahani et al., 2009; 

Abedinpour et al., 2012). However, techniques such as the eddy covariance and surface 

renewal can also be used to estimate crop water use (Mengistu and Savage, 2010; Mengistu 

et al., 2012). The surface renewal system was used for crop water measurements (i.e. sum 

of soil water evaporation, transpiration and intercepted water by the canopy) at the Ukulinga 

sugarbeet trial. The surface renewal method determines total evaporation by calculating the 

latent heat flux density (LE) as a residual of the shortened energy balance equation as shown 

in Equation 6-1 (Mengistu et al., 2012; McElrone et al., 2013): 

 

𝐿𝐸 = 𝑅𝑛 − 𝐺 − 𝐻 Equation 6-1 

 

where 

LE = latent heat flux density (W m-2), related to the phase change of water to vapour from 

the crop surface; 

Rn = net irradiance (W m-2), which is the radiant flux received per unit area from the sun, 

G = soil heat flux density (W m-2), which is the energy conducted in and out of the ground; 

and 

H = sensible heat flux (W m-2), i.e. the energy flux density from the surface to the air and 

vice-versa. 
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The latent heat flux density is divided by the latent heat of evaporation (L=2.45 MJ kg-1) to 

obtain the mass flux density of water vapour from the surface (i.e. total evaporation) 

(McElrone et al., 2013). The surface renewal method used fine wire thermocouples to 

measure high frequency air temperatures at the surface-atmosphere interface (McElrone et 

al., 2013). One unshielded type-E fine-wire thermocouple (75-µm diameter), placed at a 

height of 0.5 m above the crop, was used to measure air temperature at Ukulinga, from which 

estimates of sensible heat flux were obtained. The surface renewal technique was calibrated 

using the more complex eddy covariance system (McElrone et al., 2013), as described by 

Kunz et al. (2015b).  

 

Net irradiance was measured using a Rebs Q*7 net radiometer (REBS, Seattle, Washington, 

USA) situated at a height of 1.5 m. Two Hukse flux plates (HFP01-15, Delft, The 

Netherlands) were used to measure soil heat flux density at a depth of 80 mm and a system 

of parallel-thermocouples at depths of 20 and 60 mm were used to calculate the heat stored 

above the plates (Kunz et al., 2015b). 

 

6.4 Data Collection at Ukulinga 

 

At the Ukulinga sugarbeet trial site, Mr Ian Dodge from the ACCI helped to establish and 

maintain the sugarbeet crop. In addition, Dr Michael Mengistu assisted with data collection 

to determine crop water use (see subsection 6.3.2.3). During crop establishment, the 

frequency of collection of crop growth data was weekly. From the vegetative growth stage 

onwards, measurements were carried out fortnightly. However, soil water status and weather 

data were recorded every 30 minutes and downloaded from the data loggers on a weekly 

basis. Crop and soil data were collected using various techniques depending on the 

availability of field equipment and other resources (e.g. access to a soils laboratory).  

 

 Leaf area measurements  

In AquaCrop, canopy development (an important feature in the model) is expressed through 

canopy cover (CC) and not via the leaf area index (LAI). A LAI-2200 plant canopy analyser 

(LI-COR, USA) can be used to measure the LAI (Hyer and Goetz, 2004). The LAI-2200 

does not require calibration, as does other instrumentation (e.g. AccuPAR LP-80 

ceptometer). Limitations of the LAI-2200 include the effect of non-uniform cloud cover and 

direct sunlight on LAI measurements. However, such limitations can be overcome by 
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following procedures described in the manual (LI-COR, 2010), as was done in this study. 

 

Before transplanting, a random sample of ten sugarbeet seedlings was taken for 

determination of seedling leaf area using an LI-3100C Portable Leaf Area Meter (LI-COR, 

USA). Once the meter has been calibrated properly, it has a combined accuracy and precision 

of 99% (LI-COR, 2010). Following successful crop establishment, an LAI-2200 plant 

canopy analyser (LI-COR, USA) was used to measure LAI, with the first reading taken 42 

days after transplanting. Measurements were taken weekly until maximum LAI was reached. 

After that, measurements were taken fortnightly due to slower canopy cover development.  

Canopy cover simulation is an important feature of AquaCrop because its expansion, ageing, 

senescence and conductance influence plant transpiration, which then determines biomass 

production. The latter is then used to calculate yield in the model via the harvest index 

(Steduto et al., 2012). Therefore, estimates of CC need to be accurate for good simulations 

of crop development. The LAI measurements collected on a weekly to bi-weekly basis were 

used to estimate CC using a regression equation (see subsection 6.6.2.1). This procedure 

has been followed by García-Vila et al. (2009), Hsiao et al. (2009) and Karunaratne et al. 

(2011). 

 

 Chlorophyll content 

A Minolta SPAD 502 chlorophyll meter (Konica Minolta, Osaka, Japan) was used to 

measure sugarbeet’s chlorophyll content index. Measurements were taken from the upper 

surface (i.e. adaxial) of the mature leaves and are based on comparing leaf transmittance at 

two wavelengths, viz. 650 nm and 940 nm. The obtained values are proportional to the 

chlorophyll content of the leaves (Manetas et al., 1998). The chlorophyll meter’s design is 

based on the assumption that changes in the ratio of transmittance between the two 

wavelengths are purely based on chlorophyll levels. However, this is not always the case, 

since certain plants change leaf colour at different development stages (Manetas et al., 1998).  

 

 Rooting depth 

The root system in AquaCrop is simulated through its effective rooting depth and water 

extraction pattern (Steduto et al., 2009). The effective rooting depth is the soil depth where 

the majority of plant roots reside. The depth of roots can either be estimated or measured. 

Mini-rhizotrons have been used in many areas to study root development, root turnover, root 

parasitism and proliferation of fungal hyphae (Faget et al., 2010). Majdi (1996) reviewed 
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the application and limitations of this technique and concluded that it is a simple, non-

destructive method to use. If this device is unavailable, destructive sampling can be used to 

measure root growth (e.g. Abedinpour et al., 2012).  

 

The root length of seedlings was measured at transplanting to determine the minimum 

rooting depth. Transparent access tubes (made of clear perspex) were inserted into the soil 

profile and then a scanner was inserted into the tubes to record images at various depths in 

order to ascertain the maximum rooting depth. However, the use of a mini-rhizotron camera 

was not successful in this study because the images that were obtained were blurred and 

thus, could not be used to measure root development. Therefore, the maximum rooting depth 

was obtained via destructive sampling (See Figure 10-3 in APPENDIX A). 

 

 Soil water content  

The TDR technique was used because (a) it is not labour intensive, and (b) it allows for 

continuous volumetric measurements of soil water content (see subsection 6.3.2.2). Soil 

water conditions were monitored on a weekly basis using this system to help guide when to 

irrigate the sugarbeet crops (see APPENDIX B).  

 

 Phenological growth stages 

Phenological growth stages such as time to flowering and senescence and maturity as well 

as planting and harvest dates were observed (i.e. not measured). Hence, these stages were 

noted separately on a spreadsheet for input into the AquaCrop model.  

 

 Biomass and yield 

Periodically, wild animals trampled and ate some of the sugarbeet plants, while hail damaged 

the sensors used to collect climatological data. By implication, damaged plots were not used 

for measuring final crop yield. Fresh and dry biomass can be determined by weighing 

samples with an accurate scale. The literature indicates that the drying of samples should be 

done over 48 hours at temperatures of between 65 to 75°C (Farahani et al., 2009; Todorovic 

et al., 2009; Karunaratne et al., 2011; Abedinpour et al., 2012).  

 

Destructive sampling was used for taking periodic measurements of leaf, stem and tuber 

mass (dry and fresh) to measure biomass growth. Fresh and dry biomass of sugarbeet 

samples were determined by weighing samples on a scale (accurate to 3 decimals of a gram). 



48 

  

A sample was deemed dry after reaching constant mass with oven drying for over 48 hours 

at temperatures that approximated 70°C. Final biomass, yield and the harvest index (HI) 

were all determined at harvest. 

 

6.5 Soil Laboratory Analysis 

 

For soil texture, samples were obtained from three different depths (20, 40 and 60 cm) using 

a soil auger (by Mr Mokonoto), then carefully placed into labelled plastic bags and sent to 

the Institute for Commercial Forestry Research (ICFR) at UKZN for textual analysis. A 

second batch of soil samples was also collected, albeit at different depths of 0 to 30 cm and 

30 to 60 cm for comparison purposes.  

 

Undisturbed soil samples were collected from a 1 by 1 m pit within the study site for 

measurements of the soil water retention parameters and saturated hydraulic conductivity at 

the UKZN soil physics laboratory (Kunz et al., 2015b). The soils samples taken at the pit 

were deemed representative of the sugarbeet plot. Six soil cores (steel cylinders) in total 

were inserted at appropriate depths (20, 40 and 60 cm) in the soil profile, then carefully 

removed using minimal force so that the soil structure was not disturbed. 

 

 Soil water retention parameters 

Soil water parameters (i.e. total porosity/saturation, field capacity/drained upper limit and 

permanent wilting point/lower limit) for three soil samples were estimated using the outflow 

pressure method as explained in APPENDIX C. This method is designed to measure soil 

water parameters between 0 and 100 kPa, from which estimates of total porosity (0 kPa) and 

field capacity (33 kPa) were obtained from three soil samples. A high-pressure pot operated 

at 1500 kPa of pressure was also used to determine the permanent wilting point of each soil 

sample. 

 

 Saturated hydraulic conductivity 

The saturated hydraulic conductivity of the other three soil samples was determined using 

the constant head method (Figure 6-2). This method works by applying Darcy’s law 

(Equation 6-2) across the permeameter pressure ports. This law describes the basic flow of 

liquids in permeable materials (Gliński et al., 2011). 
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𝐾𝑠𝑖𝑗 =  (
∆𝑙𝑖𝑗

𝐻𝑖 − 𝐻𝑗
) × (

𝑄

𝐴
) 

Equation 6-2 

 

where,  

KSij = saturated hydraulic conductivity of the soil between port i and j (cm s-1), 

Iij  = length of the soil material between ports i and j (cm), 

Hi and j = total hydraulic head at port i and j (cm), 

Q = volumetric outflow rate (cm3 s-1) and 

A = total cross-sectional area of the column (cm2).  

 

This technique was selected due to the following advantages: 1) it is simple and easy to set 

up and 2) is a direct application of Darcy’s law, thus giving reliable results that mimic field 

conditions (Lorentz et al., 2001). However, it has some pitfalls, viz. 1) the soil material can 

sometimes be disturbed, thus giving a false reflection of field conditions; 2) the manometer 

tubes can periodically block due to air bubbles, which will affect the accuracy of results; and 

3) the soil must have a uniform structure to get a consistent hydraulic conductivity across 

the ports. The reader is referred to Lorentz et al. (2001) for the steps that were taken to 

calculate the saturated hydraulic conductivity using this method. 

 

 

Figure 6-2 A diagram of the constant head method for measuring the soil hydraulic 

conductivity of undisturbed soil samples (after Lorentz et al., 2001) 
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6.6 Model Calibration and Validation  

 

The AquaCrop model was selected for this study based on its advantages over other crop 

yield models (see section 3.4). AquaCrop is already parameterised for sugarbeet, sugarcane 

and other herbaceous crops. The model developers at FAO obtained experimental data from 

South Africa to parameterise the model for sugarcane. The sugarbeet parameters were 

derived using data from Foggia (Italy). However, the model was calibrated for these two 

crops by fine-tuning certain parameters for local conditions, as explained in the subsections 

that follow. A table indicating the parameters that were adjusted is presented in APPENDIX 

D. However, conservative parameters (i.e. type 1) were not adjusted directly, but indirectly 

when a type 3 parameter was adjusted in the model. For example, adjusting the maximum 

canopy cover parameter (i.e. type 3) led to a subsequent change in the canopy growth 

coefficient (i.e. type 1). 

 

 Sugarcane 

The AgMIP La Mercy dataset (see subsection 6.2.1.1), obtained from SASRI, was used to 

calibrate the AquaCrop model (Singels, pers. comm., 2013). A total of eight simulations (for 

each planting date) were produced using the model’s default crop parameter file (i.e. the 

parameterised version) and then repeated using the calibrated (i.e. adjusted) parameters. It is 

important to note that these sugarcane simulations were for rainfed growing conditions. 

 

Crop parameters that are changed in the calibration process were not adjusted when the 

model was validated. This process facilitated the testing of how well the model was 

calibrated. Model validation was carried out using other AgMIP datasets for sugarcane 

obtained from trials conducted at Pongola (1968 to 1971) and Komatipoort (2011 to 2012), 

both of which were irrigated trials. By using secondary data, more time was spent on 

sugarcane calibration and validation. An added advantage is saving of financial resources 

related to costs associated with field experiments. 

 

 Sugarbeet 

The calibration for sugarbeet was undertaken using observed soil, crop and climate data 

obtained in this study at Ukulinga, as described in the subsections that follow. Two sugarbeet 

simulations were also produced using 1) AquaCrop’s default crop parameter file, and 2) the 
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calibrated crop file developed in this study. It is important to note that the sugarbeet 

simulations were for irrigated conditions. Furthermore, model validation was also carried 

out using an AgMIP dataset obtained from SASRI for the Komatipoort trial (2011 to 2012). 

 

6.6.2.1 Canopy cover 

Measured leaf area just after emergence was input into AquaCrop (see subsection 6.4.1) as 

seedling leaf area. The model used this value, together with the planting population to 

compute initial canopy cover (CCo). Unlike most other crop models, AquaCrop expresses 

canopy size as canopy cover and not LAI. Equation 6-3 from Hsiao et al. (2009) was used 

to convert LAI to canopy cover. The equation was formulated using an empirical 

relationship, via regression, between canopy cover and LAI of maize (Hsiao et al., 2009). 

Other regression equations exist in the literature, such as Equation 6-4 given by García-Vila 

et al. (2009). A general relationship between intercepted solar radiation at midday and LAI 

was used to derive Equation 6-4 using a canopy extinction coefficient of 0.77 for cotton 

(Charles-Edwards et al., 1986; Orgaz et al., 1992). A comparison of the two equations is 

given in the results (see subsection 7.1.1.2). The canopy cover values were then used to 

develop parameters for maximum canopy cover (CCx) and the time taken to reach CCx. 

 

𝐶𝐶 = 1.005 × [1 − 𝑒𝑥𝑝(−0.6 · 𝐿𝐴𝐼)]1.2 Equation 6-3 

 

 

𝐶𝐶 =  
1 − 𝑒−𝐿𝐴𝐼

1.3

1 + 𝑒−𝐿𝐴𝐼
1.3

 
Equation 6-4 

 

 

6.6.2.2 Time to senescence  

The time taken for the crop to begin senescing is another important physiological indicator 

and thus, is required as an input by AquaCrop. Measurements of leaf chlorophyll content 

(see subsection 6.4.2) were related to the time taken for the plant to begin senescing (i.e. 

decrease in chlorophyll content). 

 

6.6.2.3 Rooting depth 

AquaCrop also requires data describing root growth (i.e. minimum and maximum rooting 

depths) to adequately simulate the extension of the root system and water extraction 

throughout the simulation phase. The minimum (Zn) and maximum (Zx) effective rooting 
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depth parameters were obtained from measurements described in subsection 6.4.3. 

 

6.6.2.4 Estimation of fresh yields 

The mass of fresh and dry tubers was used to convert simulated dry yields to fresh weight 

(see subsection 6.4.6). In addition, a general conversion factor of 0.20 to 0.25 was provided 

by Raes et al. (2011), which represents the ratio of kg of dry matter to fresh weight. Hence, 

dry yields are multiplied by a conversion factor ranging from 4-5 to obtain fresh tuber yields. 

 

6.6.2.5 Soil water balance 

AquaCrop outputs the soil moisture content at different depths in the soil profile. In this 

study, the volumetric soil water content measured using TDR (see subsection 6.4.4) was 

compared to model outputs. This was undertaken to determine the accuracy of the model’s 

soil water balance calculations.  

 

6.6.2.6 Input climate file 

From daily measurements of climate variables made using the AWS (see subsection 

6.3.2.1), only rainfall, minimum and maximum temperature and ETo were used to create an 

input climate file for AquaCrop. The mean annual atmospheric CO2 concentrations from 

1902 to present, which were measured at the Mauna Loa Observatory in Hawaii, are stored 

within the model. 

 

 Model performance 

Model performance was evaluated using statistical indicators such as difference or measures 

of error (Willmott et al., 1985). The performance of the model in relation to it simulating 

observed values was assessed using statistical methods. The statistics consisted of the 

coefficient of determination (R2), the root mean square error (RMSE) as well as its 

components, i.e. the unsystematic RMSE (RMSEu) and the systematic RMSE (RMSEs). 

Willmott’s Index of Agreement (IoA) was also used to evaluate model performance.  

 

The IoA was used to further indicate the degree to which the model accurately simulated the 

observed values (see Equation 6-5). The closer IoA is to 1, the greater the agreement 

between the observed and predicted values. 
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IoA =  1 −
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1

∑[|𝑃𝑖
′| + |𝑂𝑖

′|]
2 

 

where  

𝑃𝑖
′     = 𝑃𝑖 − 𝑂𝑖, 

𝑂𝑖
′  = 𝑂𝑖– Ō whereby Ō is the observed mean. 

Equation 6-5 

 

The R2 was used to indicate the goodness of fit between simulated and observed values, 

although its applicability and usefulness is dependent on the sample size (i.e. number of 

observations). Therefore, when the sample size is small, it can be a poor indicator of model 

performance. Willmott (1982) suggested the use of RMSE, which is deemed to be amongst 

the best statistical indicators for evaluating model performance. The RMSE is particularly 

useful as it summarises the mean difference in the same units of observed and predicted 

values. 

 

Willmott (1982) also suggested the use of its components, viz.  RMSEs and RMSEu. The 

performance of the model was deemed adequate when RMSEu was similar to RMSE and 

when RMSEs approached zero. Equation 6-6, Equation 6-7 and Equation 6-8 indicate how 

RMSE and its components were derived. 

  

𝑅𝑀𝑆𝐸𝑈 =  𝑛−1 [∑(𝑃𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

]

1/2

 

Equation 6-6 

 

𝑅𝑀𝑆𝐸𝑠 =  𝑛−1 [∑(�̂�𝑖 − 𝑂𝑖)
2

𝑛

𝑖=1

]

1/2

 

Equation 6-7 

𝑅𝑀𝑆𝐸 = (𝑅𝑀𝑆𝐸𝑈 + 𝑅𝑀𝑆𝐸𝑆) Equation 6-8 

 

�̂�𝑖 = (𝑎 + 𝑏 · 𝑂𝑖) Equation 6-9 

 

where 

n = number of observations,  

i = number of specific observations,  

P = predicted variable,  
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O = observed variable and 

�̂�𝑖   = derived from Equation 6-9, where a is the intercept and b is the slope of the least 

squares regression.  

 

6.7 Assessment of Climate Change Impacts 

 

Following the model simulations and validation at a field scale, AquaCrop was applied at a 

quinary level (a fifth level division of a primary catchment) to assess the impact of climate 

change on crop response. Additionally, this allowed for the results to be compared with other 

studies where crop simulations were undertaken at the same scale such as those by 

Mabhaudhi et al. (2018). The following subsections describe the data and simulations 

undertaken for this assessment. 

 

 Quaternary and quinary catchments 

A quaternary catchment represents is a fourth-level division of a primary drainage basin. 

There are 1946 quaternary catchments in southern Africa, which were originally delineated 

by the former Department of Water Affairs and Forestry (DWAF). Each quaternary 

catchment has then been subdivided into three quinary sub-catchments according to altitude 

criteria (Schulze and Horan, 2007; 2011), which produced a total of 5838 quinaries (see 

subsection 6.7.2). Hence, each quaternary was sub-delineated into an upper, middle and 

lower quinary of unequal area (but of similar topography) using “natural breaks” in altitude 

by applying the Jenks’ optimisation procedure (Schulze and Horan, 2007; 2011). 

 

Determining the quaternary catchments encompassing the two study sites was important 

because each quaternary has different climate and soils data (see subsection 6.7.2). Using a 

Geographic Information System (GIS), it was determined that La Mercy and Ukulinga are 

located in quaternary catchments U30D and U20J respectively. At a quinary level, La Mercy 

is located in sub-catchment 4719 and Ukulinga in sub-catchment 4697 (Figure 6-3). 

However, climate change simulations were undertaken for all three sub-catchments per 

quaternary (see subsection 6.7.3.2). The altitude range of each quinary is provided in Table 

6-5 below. As expected, the standard deviations are low, indicating that the altitudes across 

the quinaries are relatively homogenous.  
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Figure 6-3 Location of the study sites in relation to the quinary sub-catchments 
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Table 6-5 Altitudinal range for the quinaries used in this study (Schulze and Horan, 

2007; 2011) 

Quinary Min (m) Max (m) Mean (m) Median (m) Std. dev 

4696 858 1431 1024 1006 102 

4697 603 931 761 752 65 

4698 314 745 566 593 84 

4717 127 332 206 200 40 

4718 10 160 100 95 25 

4719 1 103 50 52 20 

 

 Historical climate 

The quinary sub-catchment database consists of 50 years (1950-1999) of daily rainfall, 

maximum and minimum temperature and reference crop evaporation for each of the 5838 

quinaries. A summary of how this database was developed is provided next. However, the 

reader is referred to Schulze et al. (2011b) for a more detailed description. 

 

6.7.2.1 Rainfall 

A representative rainfall driver station with a continuous (i.e. no missing values) record of 

daily data from 1950 to 1999 was assigned to each quaternary catchment as described by 

Schulze et al. (2005). The rainfall driver station previously selected to represent the parent 

quaternary catchment was initially chosen to represent the three quinary sub-catchments. 

However, errors in rainfall station data affecting 33 quinaries were discovered and corrected 

(Schulze et al., 2011b), which reduced the total number of unique driver stations to 1061.  

 

Multiplicative rainfall adjustment factors were applied to the driver station to render the 

daily rainfall more representative of that quinary. In this way, a unique 50-year daily rainfall 

record is available for each of the 5838 quinaries. The adjustment factors were derived by 

spatially averaging all one arc minute (~1.7 x 1.7 km) gridded estimates of median monthly 

rainfall (determined by Lynch, 2004) located within each quinary boundary. The ratio of the 

sub-catchment averaged median monthly rainfalls to the driver station’s median monthly 

rainfalls was then calculated to arrive at 12 monthly adjustment factors (Table 6-6).  
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Table 6-6 Monthly rainfall adjustment factors for quinaries representative of La Mercy 

and Ukulinga (Schulze et al., 2011b) 

Sub-catchment Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

4717 0.97 1.06 1.03 0.91 1.18 0.68 0.84 0.64 0.82 0.93 1.03 0.99 

4718 0.93 1.06 1.01 0.92 1.12 0.65 0.90 0.64 0.84 0.90 0.97 0.93 

4719 0.92 1.05 1.00 0.93 1.24 0.72 0.89 0.64 0.84 0.86 0.95 0.92 

4696 1.57 1.53 1.59 1.55 1.25 1.09 1.14 0.92 1.21 1.53 1.37 1.64 

4697 1.26 1.26 1.31 1.22 1.12 0.93 1.02 0.77 1.03 1.23 1.08 1.31 

4698 1.17 1.13 1.19 1.12 1.07 0.84 1.01 0.74 0.99 1.08 0.98 1.18 

Note: Driver station 0240073 W used for Ukulinga (sub-catchment 4697), Driver station 0241302 W used for La Mercy (sub-catchment 
4719). 

 

Generally, the driver station used for sub-catchment 4717 to 4719 tends to over-estimate the 

respective sub-catchments monthly rainfall and hence, the rainfall has been adjusted down 

by an average factor of 0.92. On a month to month basis, the May and August months have 

the largest and lowest adjustment factors, respectively. For sub-catchments 4696 to 4698, 

the selected driver station tends to under-estimate the monthly rainfall across the sub-

catchments. Hence, an averaged adjustment factor of 1.2 was applied by Schulze et al. 

(2011b). The reader is referred to Schulze et al. (2011b) for more information regarding the 

derivation of the rainfall adjustment factors. 

 

6.7.2.2 Temperature 

Schulze and Maharaj (2004) developed an extensive database of 50 years of estimated daily 

maximum and minimum temperature for each one arc minute grid point in southern Africa 

(i.e. 429 700 grid points in total). Representative grid points from this database were then 

selected to represent each of the 5 838 quinary sub-catchments. This selection was 

determined by first calculating the average altitude of each quinary by spatially averaging 

all gridded altitudes from the 200 m Digital Elevation Model located within each sub-

catchment boundary. The grid point with a similar altitude to that of the sub-catchment mean 

and located closest to the sub-catchment centroid, was then selected to represent that quinary 

(Schulze et al., 2011b). 

 

6.7.2.3 Reference crop evaporation 

The 50-year record of estimated daily maximum and minimum temperature assigned to each 

quinary was then used to derive ETo using the Penman-Monteith technique as described by 

Schulze et al. (2011b). Daily estimates of solar radiation and vapour pressure deficit were 

derived by Schulze and Chapman (2007) and Chapman (2004), respectively. Owing to the 
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lack of observed wind speed data for southern Africa, a constant value of 1.6 m s-1 is assumed 

for all quinaries (Schulze et al., 2011b). 

 

 Future climate 

Future climate projections for this study were obtained from the Council for Scientific and 

Industrial Research (CSIR) in Pretoria and from the Climate Systems Analysis Group 

(CSAG) in Cape Town. These climate projections are all based on atmosphere-ocean Global 

Climate Models (GCMs). A GCM ensemble approach was used in this study as it promotes 

a reduction in uncertainty. In this study, a total of six GCMs were considered which were 

forced using the A2 CO2 emission scenario (Table 6-7). Two commonly used downscaling 

approaches were applied to the GCMs as described next. 

 

Table 6-7 Names of the GCMs used in this study and the availability of climate 

projections derived from each GCM using two different downscaling 

techniques 

Abb. Model 
Downscaling 

Statistical Dynamic 

CSI CSIRO-Mk3.5 √ √ 

GF0 GFDL-CM2.0 √ √ 

GF1 GFDL-CM2.1 √ √ 

MIR MIROC3.2-MEDRES   √ 

MPI MPI-ECHAM5 √ √ 

UKM UKMO-HADCM3   √ 

 

6.7.3.1 Downscaling to regional level 

The two downscaling approaches applied to the GCMs listed in Table 6-7 were statistical 

and dynamical. These techniques are described in detail in section 5.3.  

 

Statistical downscaling 

Four of the six GCMs were statistically downscaled to station level (Hewitson and Tadross, 

2011; Schulze et al., 2011a). This involved using a self-organising map (SOM) technique as 

described by Hewitson and Crane (2006). Unlike the climate projections from the 

dynamically downscaled technique, the statistically downscaled dataset is not continuous. 

Rather, it is split into two-time periods representing the 1) present (1961-1999) and 3) distant 

future (2081-2100) (Schulze et al., 2011a). From the 40-year present record, a 20-year period 

(1971-1990) was extracted to allow comparison with the two future 20-year periods. The 

last year in each 20-year sequence (i.e. 1990 and 2100) was not simulated due to lack of 
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weather data in the corresponding year. 

 

Dynamical downscaling 

Six GCMs were dynamically downscaled by the CSIR (Engelbrecht et al., 2011; Kunz et 

al., 2014) using the conformal-cubic atmospheric RCM model (McGregor, 2005), developed 

by the Australian Commonwealth Scientific and Industrial Research Organisation. This 

produced a total of 499 grid-based “pixels” over southern Africa, each 0.5º in size. For each 

pixel, daily rainfall as well as maximum and minimum temperature data from 1961 to 2100 

is available. Therefore, the six GCMs have a long continuous climate data record of 140 

years. As noted earlier, the end year (i.e. 2100) of the 140-year data was not simulated. 

 

6.7.3.2 Downscaling to catchment level 

The grid-based (0.5º and 0.25º grid size) output from the six GCMs was further “spatially 

downscaled” to the quinary sub-catchment level (Kunz et al., 2014). This was achieved by 

using a GIS to select a representative pixel to drive the hydrology of each sub-catchment. 

By implication, each pixel “drives” the hydrology of more than one quinary. However, 

because La Mercy and Ukulinga are located in different sub-catchments, the pixel selected 

to represent each study site was different. Hence, quinary sub-catchments 4717 to 4719 were 

used for La Mercy and quinaries 4696 to 4698 represent Ukulinga (Kunz et al., 2014). The 

downscaling to a catchment level is described in further detail by Lumsden et al. (2011). 

 

For each quinary, the dominant lapse rate region (derived by Schulze and Maharaj, 2004) 

was identified using GIS. Adiabatic lapse rates available for each of the 12 regions were then 

used to adjust for the altitudinal difference between the pixel and the quinary (i.e. spatially 

averaged altitude of the quinary was compared to that of each 0.5º x 0.5º pixel). Daily 

reference crop evaporation estimates (i.e. Penman-Monteith) were derived from the GCM 

temperature data. However, a wind speed of 2.0 m s-1 was assumed for all quinaries as 

suggested by Shuttleworth (2010) and solar radiation was derived by Schulze and Chapman 

(2007). In summary, 10 climate files containing daily rainfall, temperature and reference 

crop evaporation from 1961 to 2099 (i.e. 139 years) exist for each quinary (6 in total). 

 

6.7.3.3 Rising CO2 concentrations 

As mentioned in earlier in this section, the A2 emission scenario was used. The A2 scenario 

represents the “business as usual” scenario in which the rate of greenhouse gases is not 



60 

  

curtailed into the future (see subsection 5.2.2). A file with atmospheric carbon dioxide 

values from 1961 to 2099 for the A2 scenario exists within AquaCrop. Since the carbon 

dioxide estimates end in the year 2099, it also explains why the final year of the future 

climate record (i.e. 2100) was not simulated. 

 

6.8 Model Simulations 

 

The model simulations for both feedstocks were undertaken for rainfed conditions. However, 

calibration simulations for sugarbeet included irrigated conditions. The same irrigation 

schedule (see APPENDIX B) was applied to the crop in each season (i.e. May and 

September) for both the baseline and future simulations. The irrigation amount shown in 

APPENDIX B was held constant to better understand the effects of the changing climate on 

crop response, without introducing another variable (i.e. irrigation effect), which would have 

made the interpretation of the result more difficult. Therefore, changing the irrigation 

amount for sugarbeet would not have allowed a direct comparison of the baseline with the 

future simulations. 

 

Furthermore, there are two options to run the AquaCrop model, namely for 1) a single 

simulation for one season to obtain one yield estimate, or 2) multiple simulations for 

successive years, i.e. multiple yield estimates. The latter option was chosen, which resulted 

in a large number of yield simulations. However, AquaCrop can only do successive 

simulations for up to 128 years and therefore, split simulations (i.e. 128 years and 11 years) 

for each quinary were done when using the dynamically downscaled climate datasets. 

 

The typical planting and harvest were manually set for each yield simulation. For sugarcane, 

two planting dates (i.e. April and February) were selected, based on highest attainable yields 

at La Mercy. Higher sugarcane yields are expected in the warmer planting season (i.e. 

February). A sixteen-month growing season was assumed, which is typical for farms situated 

along the KwaZulu-Natal North Coast. A winter (i.e. June) planting of sugarbeet was 

assumed, together with a seven-month growing season. However, an autumn (e.g. May) 

planting is considered the “norm” for the Cradock region in the Eastern Cape (Maclachlan, 

2012). A spring (i.e. September) planting date was also considered. These two planting dates 

(i.e. May and September) were chosen to allow a comparison of a summer and winter 

planting of the crop. For sugarbeet, the cooler planting season (i.e. May) is anticipated to 
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have higher yields.  

 

Soils information (i.e. soil water retention characteristics, soil depth and saturated hydraulic 

conductivity) from the La Mercy AgMIP dataset was assumed to be the same across all three 

quinaries (4717-4719). The same assumption was applied in the other quinaries (4696-4698) 

using soils information collected at Ukulinga. Thus, differences in yields simulated by 

AquaCrop are mainly a result of climatic variations due mainly to altitudinal differences 

between the quinary catchments (see Table 6-5). 

 

The model was then run to assess the impact of climate change on feedstock yield and water 

use using 10 GCM climate files (i.e. six dynamically and four statistically-downscaled 

GCMs). Secondly, the effects of altitudinal differences on simulated yield were determined 

by running the model for each of the six quinaries. The seasonal yields and water use values 

were analysed to calculate the mean statistic and the coefficient of variation for each quinary. 

The model was also run to assess the sensitivity of crop growth to increasing CO2 

concentrations (see subsection 6.7.3.3). Finally, the total number of simulations undertaken 

were as follows: 

• 2 crops x 6 dynamically downscaled GCMs x 6 quinaries (3 per crop) x 2 planting 

dates for periods 1961-2099 (139 years), plus 

• 2 crops x 4 statistically downscaled GCMs x 6 quinaries (3 per crop) x 2 planting 

dates for periods 1961-1999 and 2081-2099.  

 

 Baseline simulations 

Using 30 years of historical data is a World Meteorological Organisation standard procedure. 

According to Steduto et al. (2012), a minimum of 30 years of input climate record is 

recommended for long-term assessments of productivity (e.g. yield). The disadvantages in 

using extended climatic datasets of 139 years in crop modelling is 1) the simulations take 

much longer to run (which limits the amount of simulations or scenarios that can be 

considered) and 2) the need to split the simulation into two separate runs (i.e. 128 and 11 

year runs due to a limit in AquaCrop). 

 

In this study, baseline conditions were determined using 50 years (1950-1999) of daily 

historical climate data in order to calculate the long-term attainable yield of both sugarbeet 

and sugarcane for each quinary. Following that, a 30-year (1961-1990) simulation was 
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produced to evaluate its approximation to the 50-year simulation. In other words, a 

comparison was made to see if there would be any major differences in mean yield or WUE 

using 30 years of data instead of 50 years. These results are presented in section 7.2. 

 

 Present climate 

Before undertaking any model simulations using future climate scenarios, the yields and 

WUE simulated for the present climate (1961-1990) were compared to the yields and WUE 

simulated for the baseline (i.e. historical) for the same period. This was done by running 

simulations using the same record length of climate data for the same 30-year period. From 

the four GCMs (i.e. CSI, GF0, GF1 and MPI) that were common to both downscaling 

techniques, a mean yield value was calculated for the comparison. Simulations were 

produced for all six quinaries and for two planting dates per crop. These results are presented 

in section 7.3. 

 

 Future climate 

AquaCrop was run for a 30-year period using the dynamically downscaled climate data for 

all six GCMs for each crop assumed to be grown in three quinaries. Further simulations were 

undertaken for the different time periods (present and distant future) using the statistically 

downscaled climate data available for each of the four GCMs. An analysis was done to 

evaluate the percentage change in both crop yield and WUE using both downscaling 

techniques between the present and future climate. This was done for the dynamically 

downscaled GCMs by calculating the percentage change in mean yield (and mean WUE) 

obtained for the present (1961-1990) and future (2070-2099) 30-year periods. For the 

statistically downscaled GCMs, a 20-year period was used to calculate the percentage change 

from the present (1971-1990) to the future (2081-2099) period. The averaged outputs (i.e. 

yield and WUE) from each GCM run and the calculated percentage changes were used to 

assess the impacts of climate change. These results are presented in section 7.4. This exercise 

was then repeated for the GCMs common to both downscaling techniques (i.e. four in total) 

and the results are given in section 7.5. 

 

 CO2 effects 

AquaCrop considers the sink strength (i.e. ability to hold CO2) of crops and their 

responsiveness to changing CO2 concentrations. In order to quantify how responsive the 

crops are to rising CO2 levels (i.e. the so-called “CO2 fertilisation effect”), the CO2 value 
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was initially kept constant at 369.41 ppm for the six dynamically downscaled GCMs, i.e. for 

the simulation period (1961-2099). This is the reference CO2 value used by the model that 

was measured at Mauna Loa (Hawaii) in the year 2000. The six simulations were compared 

to model output derived with changing CO2 levels as per the A2 emission scenario (see 

subsection 6.8.3). Hence, the water productivity parameter only changes for simulations 

beyond 2000, i.e. WP normalised by CO2 concentrations which are different from the 

reference value. The differences in yields and WUE between the simulations with a fixed 

CO2 and increasing CO2 levels were also expressed as percentage differences. These results 

are presented in section 7.6.  

 

 MAP and MAT effects 

Analyses of mean annual precipitation (MAP) and mean annual temperature (MAT) climate 

data were undertaken in order to better understand the influence of the changing climate on 

the yield and WUE of sugarcane and sugarbeet. This analysis was repeated for all 6 quinaries 

and completed for the simulation periods shown in Table 6-8. These results are presented in 

section 7.7. 

 

Table 6-8 Simulation periods used for the two downscaling techniques 

Simulation 

Period 

Statistically downscaled 

GCMs 

Dynamically downscaled 

GCMs 

Baseline 

(Historical) 

Climate 

Present 1971-1990 1961-1990 1961-1990* 

1950-1999 Future 2081-2100 2071-2100 

*Compared against the present period simulations 

 

6.9 Summary 

 

In summary, the following methods were applied, viz. 1) experiments and laboratory 

analyses (i.e. collection of primary data for model calibration); 2) analysis of secondary data 

(for model calibration and validation); and 3) simulation modelling (to assess the impacts of 

climate change on yield and WUE). In other words, different methods were used to collect 

data in order to adjust AquaCrop’s parameters to represent local conditions for two biofuel 

feedstocks. The datasets included soils, crop and climate parameters and variables which 

contribute towards the description of the SPAC. Field experiments and analyses of soil and 

crop samples in a laboratory were used for collecting primary data to calibrate AquaCrop for 

sugarbeet. Field experiments were not undertaken to validate the model for sugarbeet. 
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Rather, secondary data obtained from the AgMIP initiative (via SASRI) were used to 

validate the model for sugarbeet as well as calibrate and validate the crop model for 

sugarcane.  

 

A quinary sub-catchment database containing 50 years of historical data as well as future 

climate projections for up to six GCMs was used to assess the impacts of climate change on 

crop response. However, the same soils data (i.e. field-based) were used for model 

simulations pertaining to the calibration, present and future runs. However, GCM output is 

at a coarse scale that cannot be applied directly at a field scale. Hence, climate change 

scenarios applicable at the catchment level were derived from two downscaling techniques 

(i.e. statistical and dynamical). This approach facilitated a comparison of yield and WUE 

results obtained from the two downscaling techniques. The impact of rising CO2 levels on 

crop response was quantified by running the crop model both with and without the CO2 

fertilisation effect. Finally, an analysis of MAP and MAT was completed to better 

understand the influence of the changing climate on the yield and WUE of sugarcane and 

sugarbeet. The following section presents and discusses the results that were obtained using 

the approaches described in this chapter.  
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 RESULTS AND DISCUSSION 

 

This chapter discusses the results of the calibration and validation of AquaCrop for 

sugarcane and sugarbeet. The first section (section 7.1) assesses the model’s ability to 

adequately simulate the yield and WUE of both feedstocks after the calibration process (see 

subsection 7.1.1). Following that, the results of the model validation procedure are discussed 

in subsection 7.1.2. AquaCrop’s ability to simulate soil water content is presented in 

subsection 7.1.3. 

 

Thereafter, sections 7.2 to 7.5 present the long-term attainable yield and WUE of each 

feedstock that was simulated for baseline conditions, as well as those derived using the 

present and future climate projections. Section 7.6 discusses the effects of CO2 on the 

productivity of both feedstocks. Section 7.7 presents the results of projected changes in MAP 

and MAT from the present to the future and the associated impacts on crop production. 

Lastly, section 7.8 presents the final thoughts, particularly on the planting dates, altitudinal 

influence and CO2 fertilisation effect.  

 

7.1 Model Performance 

 

As noted in the previous chapter, AquaCrop has predetermined parameters (i.e. default crop 

files) for both sugarbeet and sugarcane. The AgMIP experimental dataset from La Mercy 

(1989-1990) was used to calibrate the model for sugarcane (cultivar NCo376), while the 

Ukulinga dataset (2013) was used to calibrate the model for sugarbeet (variety EB0809). 

Two independent datasets were then used for validating the model. The Pongola AgMIP 

dataset (1968-1971) used the same sugarcane cultivar, whilst the Komatipoort AgMIP 

dataset (2011-2012) had three different cultivars (N31, N19 and 04G0073) under two 

different irrigation treatments. The AgMIP dataset for sugarbeet grown at Komatipoort was 

also used to validate the model for sugarbeet. It is worth noting that a preliminary version of 

the calibrated parameter files for sugarcane and sugarbeet was used by Kunz et al. (2015c). 

The model was run at a national scale using the quinary sub-catchment climate database to 

obtain spatial estimates of long-term attainable yields for both feedstocks. 
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 Model calibration 

The parameters that were changed in the model in relation to the default values are presented 

in APPENDIX D. Certain parameters (related to phenological growth stages) were initially 

input in calendar days, then converted to growing degree days (GDD). Certain default 

parameters were not adjusted for the following reasons. Firstly, the model developers 

consider them to be conservative, i.e. not affected by changes in time, climate and geographic 

location (Steduto et al., 2012). Secondly, a lack of experimental data (especially in the 

AgMIP dataset) prevented parameter adjustments. 

 

7.1.1.1 Sugarcane 

Unlike the Ukulinga dataset that had only one season's data, the La Mercy dataset had eight 

treatments of sugarcane that were transplanted in different months between June 1989 and 

August 1990. Hence, average values were used for the harvest index (i.e. 65%) and 

maximum canopy (90%), which were deemed representative of the crop for different 

growing seasons. 

 

Canopy cover 

In this study, sugarcane cultivar NCo376 was used in the calibration. Using the default crop 

parameter file, a relatively poor goodness of fit and agreement between simulated and 

observed canopy cover was obtained for seven of the eight treatments (refer to columns 

“Def” in Table 7-1).  

 

Table 7-1 Performance of the AquaCrop model in simulating percentage canopy cover 

of sugarcane using the default (Def) and calibrated (Cal) crop parameter files, 

for eight different treatments (i.e. planting dates) 

Treatment 

Statistical indicators 

R2 RMSE (%) RMSEs (%) RMSEu (%) IoA 

Def Cal Def Cal Def Cal Def Cal Def Cal 

1 0.04 0.00 8.65 7.62 7.24 6.64 4.72 3.74 0.37 0.92 

2 0.34 0.27 14.81 13.21 13.87 12.66 5.20 3.79 0.24 0.78 

3 0.04 0.02 6.71 8.13 6.56 7.90 1.41 1.92 0.49 0.95 

4 0.13 0.02 7.60 8.96 7.27 8.76 2.22 1.92 0.34 0.95 

5 0.88 0.88 6.17 4.29 5.86 4.07 1.91 1.37 0.83 0.94 

6 0.08 0.29 9.66 9.36 8.52 8.99 4.55 2.61 0.56 0.93 

7 0.00 0.16 15.17 14.50 14.82 14.31 3.24 2.33 0.42 0.86 

8 0.53 0.51 23.44 23.91 23.40 23.84 1.47 1.80 0.52 0.81 

 

Treatment 5 was the only exception in which an R2 of 0.88 and IoA of 0.83 was obtained 
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using the default parameter file. The calibration improved the simulations, but not 

significantly as shown by the statistical indicators (refer to columns “Cal” in Table 7-1). 

Both R2 and IoA values were higher, although RMSE, RMSEu and RMSEs indicate the 

model did not perform well in simulating the percentage canopy cover. 

 

The reason for this is due to the lack of crop experimental data (e.g. LAI) in the early phase 

of the growth cycle, which would have allowed the determination of the initial canopy cover 

parameter (CCo). This parameter affects the time to maximum canopy cover (Steduto et al., 

2012). Furthermore, the frequency of data collection (i.e. LAI) was insufficient and thus, 

there were large gaps between measurements which made it difficult to determine the 

specific dates at which the crop reached maximum canopy cover. Hence, default parameter 

values had to be used which resulted in poor simulations with respect to the growth of the 

canopy cover and the final yield. In addition, AquaCrop was not able to simulate the onset 

of canopy senescence as indicated in treatments 6 to 8 in Figure 7-1. 

 

 

Figure 7-1 Comparison of the default (orange) and calibrated (blue) sugarcane canopy 

cover simulations using AquaCrop, with reference to measured values 

(green) for the eight different treatments (i.e. planting dates) 
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Final yield 

Default model simulations (i.e. uncalibrated) mostly under-estimated the final yields except 

for treatment 2 (see Figure 7-2). The overall default mean dry yield (i.e. 25.1 t ha-1) from 

the eight treatments was about 8.5 t ha-1 lower than the mean observed value of 33.6 t ha-1. 

This figure also illustrates how the calibration improved the prediction of final cane yield 

for each of the eight treatments, especially for treatments 1 to 6. However, final yields were 

over-estimated in five of the eight treatments resulting in a mean dry yield that was                 

1.2 t ha-1 higher than the observed yield. Figure 7-3 shows there is a relatively low goodness 

of fit between observed and simulated values. The low RMSE values in Table 7-2 further 

indicate that the model performed well in simulating the final yields compared to the 

simulations that used default parameters. 

 

 

Figure 7-2 Difference between calibrated and default sugarcane dry yields in relation to 

measured yields 
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Figure 7-3 Comparison of observed and simulated sugarcane yields derived using the 

calibrated crop parameter file for the eight treatments 

 

Table 7-2 Difference between observed and simulated sugarcane yields using the 

calibrated crop parameter file 

Treatment 
Dry yield (t ha-1) 

Observed Simulated RMSE 

T1 34.70 31.48 3.22 

T2 26.70 30.32 3.62 

T3 33.40 35.69 2.29 

T4 34.70 37.96 3.26 

T5 42.50 37.43 5.07 

T6 38.30 36.63 1.67 

T7 30.50 35.19 4.69 

T8 27.90 33.49 5.59 

Mean 33.59 34.77 3.68 

 

7.1.1.2 Sugarbeet 

 

Canopy cover  

The simulation of canopy cover for sugarbeet (Figure 7-4) using default crop parameters 

over-estimated the canopy cover measured at Ukulinga. This corroborates with the statement 

made by the model developers that some of the parameters are not universal (Raes et al., 

2011). Similar tendencies by AquaCrop to over-estimate values compared to observations 

in default (i.e. parameterised) setup mode has been reported by Paredes et al. (2014).  
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Figure 7-4 Differences between calibrated and parameterised sugarbeet canopy cover 

simulations in relation to measured values from Ukulinga in 2013 

 

The percentage canopy cover of sugarbeet is presented in Table 7-3. Comparisons were 

made between two equations used to convert LAI measurements to estimates of canopy 

cover (see subsection 6.6.2.1). There is a satisfactory goodness of fit of 0.99 between the 

two equations as shown in Figure 7-5. Hence, the canopy cover estimates are similar 

regardless of maize being used to formulate Equation 6-3 and cotton used to derive 

Equation 6-4. Although both equations gave similar results, Equation 6-3 was used in this 

study for sugarbeet. The model then computed the canopy growth coefficient (CGC) and 

canopy decline coefficient (CDC). 
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Table 7-3 Leaf area index (LAI) measurements of sugarbeet, converted to percentage 

canopy cover using two different methods, for day 42 to 189 after planting 

(DAP) 

DAP LAI 
Canopy cover (%) 

Equation 6-3 Equation 6-4 

42 0.19 7.0 7.3 

59 0.30 11.6 11.5 

62 0.45 17.8 17.1 

69 0.85 33.2 31.4 

70 0.81 31.8 30.0 

79 0.90 35.3 33.4 

84 1.22 45.8 43.8 

92 1.54 54.8 53.2 

100 1.75 60.0 58.8 

112 1.95 64.3 63.5 

127 2.34 71.7 71.6 

136 2.72 77.4 78.0 

142 3.30 84.1 85.4 

148 3.04 81.4 82.4 

169 3.11 82.1 83.2 

182 2.36 72.0 72.0 

189 2.24 69.9 69.7 

 

 

Figure 7-5 Comparison of percentage canopy cover derived using the two different 

methods  
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The statistical indicators also indicate improvements in the simulations between the default 

and calibrated model as shown in Table 7-4. The R2 is closer to unity for the calibrated 

model which indicates a relatively good fit. The RMSE is 9.22% compared to 35.54% for 

the default parameter simulation. The low RMSE is comparatively close to values reported 

by Alishiri et al. (2014), which ranged between 5% and 11%. The model’s improved 

performance is also illustrated by the RMSE components in which the RMSEs is closer to 0 

compared to the RMSEs for the default calibrated run. Furthermore, the IoA approaches 1 

highlighting the good performance of the calibrated model.  

 

Table 7-4 Statistics showing the improvement in simulated percentage canopy cover of 

sugarbeet using the default and calibrated crop parameter files 

Statistical indicators Default Calibrated 

R2 0.37 0.95 

RMSE (%) 35.54 9.22 

RMSEs (%) 31.05 6.09 

RMSEu (%) 17.28 6.92 

IoA 0.62 0.97 

 

Crop yield 

Since AquaCrop simulates yield as dry mass, the observed fresh sugarbeet mass from 

Ukulinga was converted to dry yield using the conversion ratio mentioned in subsection 

6.6.2.4. A mean dry matter of 20.3% was determined for the sugarbeet trial (Kunz et al., 

2015a), which was used to determine a dry yield value of 9.22 t ha-1. However, dry matter 

percentages for sugarbeet typically range from 20% to 25% (Raes et al., 2011). For 

comparative purposes, the upper wet to dry ratio of 0.25 was also used to estimate a dry yield 

of 11.35 t ha-1, which is closer to the calibrated simulation of 13.81 t ha-1 (and a lower RMSE 

of 2.46 t ha-1 as given in Table 7-5). Compared to the calibrated simulation, the default 

parameterised simulation over-estimated the measured yield by a larger value, with an 

RMSE range of 7.45 to 9.58 t ha-1 as shown in Table 7-5.  

 

Table 7-5 Difference between simulated and observed sugarbeet yield, derived using 

the calibrated and default crop parameters, as well as the corresponding 

RMSE values 

Conversion 

Ratio 

Measured yield 

(t ha-1) 

Simulated yield 

(dry t ha-1) 

% Fresh Dry Calibrated RMSE Default RMSE 

20.3 
45.4 

9.22 13.81 4.59 18.80 9.58 

25.0 11.35 13.81 2.46 18.80 7.45 
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Both the simulated (especially the calibrated run) and observed sugarbeet yields are similar 

to values reported in recent literature. For example, Stricevic et al. (2011) reported a 

measured (irrigated) and simulated sugarbeet yield of 13.78 t ha-1 and 13.45 t ha-1, 

respectively. Alishiri et al. (2014) varied irrigation and nitrogen input in their sugarbeet trials 

and obtained a measured and simulated yield of approximately 12 t ha-1. The measured WUE 

for the 2013 sugarbeet trial ranged between 2.21 to 2.76 kg m-3 (Kunz et al., 2015a). The 

model over-estimated the WUE as shown in Table 7-6. This is expected considering the 

model over-estimated the observed yield.  

 

Table 7-6 Difference between measured and simulated WUE for sugarbeet  

WUE (dry kg m-3) 
Simulated  Observed 

3.34 2.21 - 2.76  

 

 Model validation 

After calibrating AquaCrop for sugarcane and sugarbeet, it was further validated using the 

AgMIP experimental datasets for Pongola (1968-1970) and Komatipoort (2011-2012). The 

same parameters in APPENDIX D were used in the simulations, with only the soil and 

climate files changed to reflect conditions at Pongola and Komatipoort. However, the 

simulation of canopy cover development could not be validated due to insufficient 

observations of this variable in the two AgMIP datasets. 

 

7.1.2.1 Sugarcane 

 

Pongola 

Using the calibrated parameters, AquaCrop under-estimated the measured yield in 6 of the 

8 treatments at Pongola for the same cultivar (NCo376). However, the mean simulated yield 

(i.e. 44.6 t ha-1) is similar to the observed yield of 45.7 t ha-1 (Figure 7-6). The model’s 

performance is reasonable as indicated by the IoA value of 0.43 and the low RMSE values. 

The R2 shows there is generally a poor goodness of fit between the observed and simulated 

values, which may be affected by the small sample size in the dataset. Table 7-7 presents 

the statistics for each treatment. The statistical indicators show that treatments 5 to 7 were 

well simulated by the model because the RMSEu is similar to RMSE and RMSEs is close to 

zero.  
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Figure 7-6 Differences between observed and simulated sugarcane dry yields at Pongola 

for eight treatments (planting dates from 1968-1970) 

 

Table 7-7 Statistical indicators derived from the observed and simulated sugarcane dry 

yields at Pongola for eight treatments (planting dates from 1968-1970) 

Treatment RMSE (t ha-1) RMSEs (t ha-1) RMSEu (t ha-1) 

1 4.660 3.425 1.234 

2 3.046 3.043 0.003 

3 1.656 0.485 1.171 

4 3.442 0.430 3.012 

5 0.489 0.018 0.471 

6 0.049 0.038 0.011 

7 1.411 0.038 1.373 

8 4.881 3.521 1.361 

 

Komatipoort 

Three sugarcane cultivars (N31, N19 and 04G0073) were used in the Komatipoort trial and 

treatments 1, 3 and 5 received deficit irrigation (i.e. 50% of the total irrigation demand), 

whilst treatments 2, 4 and 6 received 100% of the irrigation demand. Cultivar N19 showed 

the largest yield improvement due to full irrigation (treatment T4 in Figure 7-7). When 

analysing the individual RMSE bars in Figure 7-7 the statistical indicators in Table 7-8, 

cultivar N31 (T1 and T2) and cultivar N19 (T3) produced the best validation results (i.e. 

lower margin for error). The low RMSE values again highlight the good performance of the 

model, especially since the model was calibrated for cultivar NCo376 (under rainfed 

conditions). However, AquaCrop over-estimated the dry yield for cultivar 04G0073 for both 

treatments (i.e. deficit irrigation and full irrigation) and hence, performed poorly as shown 

by the statistics in Table 7-8. Although AquaCrop performed well for treatments 1 to 3, its 
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performance was not as deemed adequate for treatments 4 to 6, which possibly contributed 

to a low IoA value of 0.136.  

 

 
Figure 7-7 Differences between observed and simulated sugarcane dry yields at 

Komatipoort for six treatments (3 cultivars; 2 irrigation treatments) during 

the 2011/12 season 

 

Table 7-8 Statistical indicators derived from the observed and simulated sugarcane dry 

yields at Komatipoort for six treatments (3 cultivars; 2 irrigation treatments) 

during the 2011/12 season 

Treatment RMSE (t ha-1) RMSEs (t ha-1) RMSEu (t ha-1) 

1 1.254 1.241 0.013 

2 1.162 1.155 0.007 

3 2.329 2.311 0.018 

4 17.265 17.261 0.004 

5 15.933 15.933 0.000 

6 8.174 8.161 0.013 

 

7.1.2.2 Sugarbeet 

One season of sugarbeet (cultivar EB0809) data from Komatipoort was used as an 

independent dataset to validate the calibrated model. The dataset had two different irrigation 

treatments (i.e. deficit irrigation and full irrigation) as indicated in Figure 7-8. As shown in 

the figure below, AquaCrop overestimated the final yields for both treatments. However, the 

IoA value of 0.79 indicates that there is a good agreement between the observed and 
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simulated values. In addition, the low RMSE values suggest the model’s performance is 

good. These results indicate that when adequately calibrated, AquaCrop can potentially be 

used as a decision-making tool to help farmers choose the best irrigation to apply for 

maximum yields.  

 

 
Figure 7-8 Difference between observed and simulated sugarbeet dry yields at 

Komatipoort in 2012 

 

 Soil water simulations 

The results of the soil analysis described in section 6.5 are shown in Table 7-9. The soil 

thickness corresponds to the samples which were taken at 0.2, 0.4 and 0.6 m. These 

parameters were entered into the AquaCrop model during the simulations.  

 

Table 7-9 Measured soil water retention parameters and saturated hydraulic 

conductivity for the Ukulinga trial site 

Depth (m) 
Thickness 

(m) 

Saturation 
Field 

capacity 

Wilting 

point 
Saturated 

hydraulic capacity 

(mm d-1) Vol. % 

0.2 0.2 36.5 29.3 15.7 184.8 

0.4 0.2 36.5 30.0 17.5 228.0 

0.6 0.2 36.1 32.0 20.8 108.0 

 

Simulations of the soil water content (SWC) were compared to measured values (Figure 

7-9). The depths at which water content were simulated and measured are different because 

the TDR probes were inserted at 10, 20, 40 and 60 cm depths. However, AquaCrop estimates 
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the SWC in increments of 10 cm, starting at a depth of 5 cm (i.e. 5, 15, 25, 35, 45 cm etc.). 

Therefore, the simulations above and below each measurement depth were averaged (i.e. 5 

and 15 cm were averaged) and then compared to the measured SWC values (see Figure 7-9). 

 

 
Figure 7-9 Simulations of the soil water content at varying depths for the sugarbeet trial 

at Ukulinga 

 

It is important to note that the measured SWC at depths of 40 cm to 60 cm drop below 18% 

and 21% (Figure 7-9), which are the PWP values measured for the soil sample taken at 40 

and 60 cm respectively (see Table 7-9). This can potentially be a human or systematic error, 

either in the measured PWP from the laboratory work or in the TDR data. For example, 

Dobriyal et al. (2012) noted that TDRs can give erroneous measurements when there is poor 

contact between the probes and the soil medium. 

 

For the first 100 DAP, AquaCrop over-estimated the soil water content except at the 40 cm 

soil layer. The model mostly simulates the soil water content (SWC) at either FC (~30%) or 

PWP (~20%) with little variation in between. Between 120 DAP and approximately 165 

DAP, simulations are lower when compared to measured values of SWC. According to 

modelled output, the crop would be water stressed, which affected canopy expansion by 

16%, resulting in lower yield prediction (subsection 7.1.1.2). 

 

The model does not reflect the daily fluctuation in SWC values as shown by measured (TDR) 

data, especially at 40 cm where the crop appears to mostly extract soil water. However, at 
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the top soil (10 cm), which is most affected by soil water evaporation, there is a variation in 

the simulated SWC. The fluctuations are due to the daily variations in ET, rainfall and 

irrigation. The performance of the model in simulating SWC is represented statistically in 

Table 7-10. The low R2 and IoA values indicate a poor goodness of fitness between 

measured and simulated values. These results concur with findings by Nyakudya and 

Stroosnijder (2014), who found that AquaCrop over-estimated SWC for maize.  

 

Table 7-10 Statistical indicators for soil water simulations of the sugarbeet trial 

 

On the other hand, Hadebe et al. (2017) showed that the model can simulate SWC well for 

a single layer soil beneath grain sorghum. However, a three-layer option was selected in this 

study, which may explain the difference in SWC results. Based on personal experience, other 

model users have noticed that AquaCrop performs best using a single soil layer option 

(Mabhaudhi, pers. comm., 2017). 

 

 Total evaporation 

Measured ET was derived by Kunz et al. (2015a) using a micrometeorological technique 

(see subsection 6.3.2.3). In this study, measured ET was compared to simulated ET (Figure 

7-10 and Figure 7-11). The crop achieved maximum canopy cover at 140 DAP (see 

subsection 7.1.1.2). This resulted in frequent days experiencing higher evapotranspiration 

(ET) rates, with maximum ET measured at 179 DAP. The start of the rainy season (22 

October 2013) also contributed to higher ET measurements towards the end of the season. 

 

AquaCrop did not accurately simulate ET, as indicated by the goodness of fit (R2 = 0.082; 

IoA = 0.584) indicators. During the development phase of the crop (i.e. when CC is low), 

the model under-estimates ET which is predominantly soil water evaporation (or Es). Soil 

water evaporation occurs from the top layer of the soil (usually the first 10-15 cm) and the 

results in Table 7-10 further indicate that simulations of soil water content at this depth are 

poor. 

Soil depth 

(cm) 

Statistical indicators 

R2 RMSE (%) RMSEs (%) RMSEu (%) IoA 

10-15 0.001 6.612 2.131 6.259 0.268 

20-25  0.009 6.396 3.708 5.212 0.233 

35-40 0.003 7.404 5.246 5.226 0.401 

55-60 0.021 9.814 8.316 5.213 0.241 
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Figure 7-10 Simulations of evapotranspiration (ET) against measured values for the 

sugarbeet trial at Ukulinga  

 

However, the total accumulated ET up to 199 DAP was simulated as 406 mm, which 

compared favourably to the estimated total of 401 mm (Figure 7-11). In addition, the 

statistical indicators, particularly the high R2 (0.975) and IoA (0.991) values, indicate that 

AquaCrop performed well. Even though the accumulated ET values are similar, the daily 

simulations are poor and this is reflected by the high RMSE values. Based on the daily 

simulations, ET is generally overestimated in the latter stages of crop development (from 

100 DAP) when transpiration (Tr) is dominant due to the higher CC.  

 

 

Figure 7-11 Simulations of accumulated evapotranspiration (ET) against measured values 

for the sugarbeet trial at Ukulinga  

 

A study by Paredes et al. (2014) presented similar findings for maize in that AquaCrop tends 
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to under-estimate Es and over-estimate Ta, which results in biased estimations of soil water 

content. This is especially true given that CC is only sensitive to water stress during the 

vegetative phase of crop development. This implies that if CC is not affected by soil water 

stress, then neither is Ta. In order to improve soil water simulations, Paredes et al. (2014) 

suggested that the proportionality curves for parameters such as CC and the crop 

transpiration coefficient should possibly be revised to account for the effects of soil water 

stress, especially early on in the growing season. Measured ET incorporates soil water 

evaporation, transpiration and evaporation of intercepted water. However, AquaCrop does 

not account for canopy interception and hence, should always under-estimate ET compared 

to observations. 

 

The following sections (7.2 to 7.7) represent an application of the calibrated crop parameter 

files, which were used to assess the impacts of climate change on the long-term attainable 

yield and WUE of both sugarcane and sugarbeet. Results for the present climate were 

compared to the baseline in order to evaluate the GCM’s ability to predict the current climate. 

Furthermore, results for the future climate were compared to the present climate to evaluate 

each crop’s response to impact of climate change. 

 

7.2 Baseline Climate 

 

The quinary database consisting of 50 years of climate data and the calibrated crop files (i.e. 

derived for sugarcane at La Mercy and sugarbeet at Ukulinga) were used in the climate 

change simulations. However, the soils information was assumed to be the same across all 

quinaries so that results largely reflected the input climate. The runs for each of the three 

quinaries (i.e. 4717-4719 for sugarcane and 4696-4698 for sugarbeet) were undertaken to 

account for altitudinal variations across each quaternary catchment (see Table 6-5). The 50-

year climate file (1950-1999) produces 49 seasonal yields because the simulation starting in 

1999 is discarded as there is no climate data in the following year (in 2000) to complete the 

full season. The 30-year model run (1961-1990) is unaffected because the simulation starting 

in 1990 is able to complete, due to the availability of climate data in 1991. 

 

As noted in subsection 6.2.1.1, the La Mercy experimental dataset (1989 to 1990) comprised 

of rainfed ratoon treatments, whereas the Ukulinga sugarbeet was irrigated (see subsection 

6.2.2.1). For comparative purposes, the runs were conducted for rainfed conditions. 
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However, for sugarbeet planted in May, an additional irrigated model run was performed to 

improve crop growth and yield. The two planting dates for sugarcane were selected because 

they produced the highest yields (see treatments T4 and T6 in Figure 7-2 in subsection 

7.1.1.1). For sugarbeet, winter and spring planting dates were selected. 

 

 Sugarcane 

Figure 7-12 shows the mean yields of sugarcane (in dry t ha-1) for the 50-year and 30-year 

simulation periods. The simulated long-term attainable yields ranged between 28.54 t ha-1 to 

31.79 t ha-1 for April and 24.57 t ha-1 to 40.01 t ha-1 for February (Figure 7-12). Based on the 

coefficient of variation, sugarcane yields for the April planting are less variable over the 49-

year simulation period, than compared to sugarcane planted in February (see APPENDIX 

E). Based on AquaCrop’s output, April is a more suitable planting date than February. 

 

 

Figure 7-12 Dry yield simulations of sugarcane across the three quinary sub-catchments 

in quaternary catchment U30D using 30 and 50 years of historical climate 

data 

 

The results indicate that the mean yield derived using only 30 years of climate data is a very 

good approximation of the long-term attainable yield (based on 50 years of climate data). 

This finding concurs with Steduto et al. (2012), who noted that for long-term assessments 

of productivity, a minimum of 30 years of input climate record is recommended. Thus, 

running the model with 30 years of data provides considerable saving in computational 

expense when compared to a 50-year simulation, with little impact on the accuracy of the 

long-term attainable yield. 
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The yields for the upper sub-catchment (i.e. lower quinary number) are expected to be higher 

due to wetter and cooler conditions generally associated with higher altitude sites. This is 

evident for the February planting, which shows higher mean yields with increasing mean 

altitude from the lower quinary (sub-catchment 4719, 50 m a.s.l) to the upper quinary (4717, 

206 m a.s.l). For the April planting, this trend is not apparent.  

 

Figure 7-13 shows the WUE of sugarcane for the 49- and 30-year simulations, with the 30-

year simulations resembles the 49-year WUE values. WUE is generally higher in the cooler 

April planting season. Therefore, although February yields are higher in quinary 4717, it has 

the lowest simulated WUE (i.e. 2.44 kg m-3). The highest long-term attainable WUE are in 

quinary 4718 (3.10 kg m-3) and 4719 (2.77 kg m-3).  

 

 

Figure 7-13 Simulated WUE of sugarcane across all three quinaries in quaternary 

catchment U30D using 30 and 50 years of historical climate data 

 

 Sugarbeet 

Based on 49 years of data, long-term attainable yields of sugarbeet planted in May under 

irrigated conditions are estimated to be 11.97 t ha-1, 11.19 t ha-1 and 10.62 t ha-1 across 

quinaries 4696, 4697 and 4698 respectively (Figure 7-14).  
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Figure 7-14 Dry yield simulations of sugarbeet across the three quinary sub-catchments 

in quaternary catchment U20J using 30 and 50 years of historical data 

 

Yields are lower for simulations under dryland conditions, especially for the May (winter) 

planting dates compared to the September (spring) planting dates. From higher to lower 

mean altitudes (i.e. 1024 m to 566 m a.s.l), the rainfed yields are 9.00 t ha-1, 5.20 t ha-1 and 

4.19 t ha-1 for May and 8.97 t ha-1, 7.26 t ha-1 and 6.13 t ha-1 for September. Lower yields in 

May are attributed to lower precipitation, drier soil conditions and limited transpiration, thus 

resulting in a lower biomass. 

 

Sugarbeet planted in September attained the lowest WUE (2.06 kg m-3) when compared to a 

May planting which gave the highest WUE (i.e. 2.47 kg m-3). However, there is higher 

variability in WUE across the quinaries for a May planting (dryland conditions) over the 49-

year period which can be related to the less favourable climatic conditions (i.e. dry) for crop 

growth over winter (see APPENDIX E). When the crop is irrigated, simulations show a 

reduction in variability and increases in both yields and WUE. Hence, supplemental 

irrigation is required for autumn or winter plantings, especially to help establish to crop. 

 

0

2

4

6

8

10

12

14

16

4696 4697 4698

Y
ie

ld
 (

d
ry

 t
 h

a
-1

)

Sub-catchment

May Irr (49 yr) May Irr (30 yr) May Dry (49 yr)

May Dry (30 yr) Sep Dry (49 yr) Sep Dry (30 yr)



84 

  

 

Figure 7-15 WUE simulations of sugarbeet across the three quinary sub-catchments in 

quaternary catchment U20J using 30 and 50 years of historical data 

 

 Summary 

The 30-year simulations closely approximate the 49-year simulations, regardless of crop 

type, planting date or quinary. Thus, running the model with 30 years of data (as opposed to 

50 years) provides considerable saving in computational expense, with little impact on the 

accuracy of the long-term attainable yield. For rainfed conditions, it is also evident that yield 

and WUE at the higher altitude (i.e. 1024 m a.s.l) are higher than those at the lower altitude 

(i.e. 566 m a.s.l). In addition, WUE is better for the cooler planting (i.e. April for sugarcane; 

May for sugarbeet) than the warmer planting. This is expected because crops generally use 

less water during the cooler season compared to summer (i.e. when conditions are hot and 

potential evapotranspiration rates are higher).  

 

7.3 Present Climate 

 

This study does not consider results of individual GCMs, but rather the mean of outputs 

derived using climate scenarios provided by the ensemble. Hence, the mean yield from four 

GCMs (i.e. CSI, GF0, GF1 and MPI) common to both downscaling techniques (i.e. statistical 

and dynamical) was calculated for the present climate and then compared to the baseline (i.e. 

historical) yields. For both downscaling techniques, yields were averaged for a 30-year 

period from 1961-1990. 
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 Sugarcane 

Compared to the baseline yields, the yields from the statistically downscaled climate 

scenarios are consistently lower, whilst the dynamically downscaled climate generally 

predicted higher yields (Figure 7-16). The exception is the February planting in the upper 

quinary (4717) where the simulated baseline yield is higher than that obtained using the 

dynamically downscaled climate scenarios.  

 

 
Figure 7-16 Comparisons of the baseline (bas) sugarcane yield to the present yields 

estimated using the statistical (sta) and dynamical (dyn) downscaled climate 

scenarios 

 

According to Fowler et al. (2007), statistical downscaling techniques are calibrated using 

historically observed climate data. This implies that statistical downscaling is more suited to 

replicating baseline (i.e. observed) conditions than dynamical downscaling. However, this 

does not imply that statistical downscaling is always the better approach. Fowler et al. (2007) 

emphasised the value of dynamical downscaling in any region with complex orography (e.g. 

KwaZulu-Natal), considering RCMs are able to better capture the effects of orographic 

forcing and rain-shadow effects than compared to GCMs.  

 

Shin et al. (2009) used both downscaling approaches to assess their performance in 

generating seasonal climate data for crop yield forecasting. The result indicated that both 

downscaling techniques produced better datasets than global circulation models. However, 

the need for improved bias correction was noted, particularly for precipitation. Shin et al. 

(2009) also highlighted that an ensemble approach helps to reduce uncertainty. Vanuytrecht 

et al. (2014) concluded that both statistically and dynamically downscaled climate scenarios 
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should be used in climate change studies. 

 

In terms of WUE estimations, results from both downscaling techniques underestimate the 

baseline WUE. This implies that the GCMs are unable to accurately predict the historical 

(i.e. observed) climate. However, the discrepancies between the two downscaling techniques 

are not significant, i.e. < 0.5 kg m-3 (Figure 7-17). Yields obtained from the statistical 

downscaled present climate are more similar to the baseline WUE than those obtained using 

the dynamically downscaled climate. As noted earlier, this is expected considering statistical 

downscaling is more suited to replicating baseline (i.e. observed) conditions than dynamical 

downscaling. 

 

 

Figure 7-17 Comparisons of the baseline (bas) sugarcane WUE to the present WUE 

estimated using the statistical (sta) and dynamical (dyn) downscaled climate 

scenarios 

 

To re-cap, the comparison of the yields and WUE of the present climate to those of the 

baseline are relatively good. Zhang and Huang (2013) stated that a climate model that 

performs well in representing the baseline period is likely to demonstrate a similar skill in 

simulating the future climate. Furthermore, the statistical downscaling approach gave a 

better comparison between the present and the baseline climate, especially for WUE 

estimates. However, it is important to remember that the mean of four GCMs was compared 

to the baseline. Various studies (e.g. Asseng et al., 2013) have shown that the mean derived 

from a GCM ensemble is a better predictor than using individual GCMs, especially if the 

ensemble is large. For example, if the simulated yields derived from all eight GCMs (4 

statistical; 4 dynamical) were averaged, this mean yield would match more closely with the 
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baseline yield (see Figure 7-16). 

 

 Sugarbeet 

In general, the sugarbeet yield simulations for the dynamic downscaling are higher than the 

baseline yields (as was the case of sugarcane), except for the September planting (dryland) 

in the upper quinary (Figure 7-18). However, the statistically downscaled GCMs over-

estimated the baseline yield, except for the May planting (irrigated) in the upper quinary.  

 

 

Figure 7-18 Comparisons of the baseline (bas) sugarbeet yield to the present yields 

derived using climate scenarios from the statistical (sta) and dynamical (dyn) 

downscaled climate scenarios 

 

Trends in WUE simulations for sugarbeet (Figure 7-19) were similar to those for sugarcane, 

with the exception being the May planting (irrigated) in the lower quinary (4698). Hence, 

both downscaling techniques underestimate the baseline WUE. Furthermore, WUEs derived 

using statistically downscaled climate scenarios better match the baseline WUEs 

(differences range from -0.03 to 0.20 kg m-3), than compared to the dynamic downscaled 

technique (differences range from -0.52 to 0.40 kg m-3). This highlights the need for climate 

change studies to consider both downscaling techniques, thus producing a wider range of 

plausible impacts. 
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Figure 7-19  Comparisons of the present baseline (bas) sugarbeet WUE to the WUE 

estimated using the statistical (sta) and dynamical (dyn) downscaled climate 

scenarios 

 

 Summary 

Based on the above results, the statistically downscaled model simulations better match the 

baseline simulations than compared to outputs derived using the dynamically downscaled 

climate scenarios. This is particularly true for WUE estimates than for yield estimates.  

 

The selection on the type of downscaling technique is generally dependent on the problem 

to be addressed. However, in most cases, the methods are complementary and should be 

used together. It can be deduced that using both downscaling techniques, instead of one, 

provides results that are more representative of baseline conditions. Given that the 

downscaled climate scenarios generally mimic the baseline, this infers confidence in 

modelling future scenarios.  

 

7.4 Future Climate - All GCMs 

 

The mean yield and WUE derived from all six GCMs (see Table 6-7) was calculated for the 

future climate and compared to values for the present climate (see section 7.3). Future 

simulations were performed using input climate data from all six GCMs that were 

dynamically downscaled as well as the four GCMs that were statistically downscaled (see 

Table 6-7). The simulated yield and WUE for the present climate correspond to a 20-year 

(1971-1990) and 30-year (1961-1990) period for the statistical and dynamical downscaled 

scenarios, respectively. Similarly, values for the future climate also correspond to a 20-year 
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(2081-2100) and 30-year (2071-2100) period for the respective statistical and dynamical 

downscaled scenarios. The mean yields and WUEs presented in the graphs in this section 

were simulated using future climate projections, together with the percentage change relative 

to the present (not baseline) yield. 

 

 Sugarcane 

 

7.4.1.1 Dynamical downscaling 

Based on the results from all dynamically downscaled GCMs, the future climate projections 

show increases in yields and WUE. For the April planting season, quinary catchments 4717 

and 4719 have a marginally higher increase in mean yields of 12.7% and 12.6%, compared 

to quinary 4718 with an increase of 12.2% (Figure 7-20). In February, mean yields increase 

by an average of 6% across the quinaries (range 18.4% to 18.9%) relative to April. This 

indicates that sugarcane planted in February may benefit more from climate change than 

compared to the April planting.  

 

 

Figure 7-20 Percentage changes in sugarcane yield from present to future for April and 

February plantings, derived using dynamically downscaled climate data 

available for six GCMs 

 

A similar trend was noted for improvements in WUE, i.e. greater for the February planting 

compared to April (Figure 7-21). However, the percentage change in WUE from present to 

future is much greater than the yield change, i.e. yields are simulated to increase by 18.4% 

to 18.9% in February, whereas WUE may increase by 56.5% to 57.8%. These results 

highlight the fact that impacts of climate change on crop response can be influenced by the 

crop’s planting date. 

0

5

10

15

20

25

30

35

40

45

4717 4718 4719

Y
ie

ld
 (

d
ry

 t
 h

a
-1

)

Sub-catchment

Present - Apr Future - Apr Present - Feb Future - Feb

1
2

.7
 %

1
8

.4
 %

1
2

.2
 %

1
8

.5
 %

1
2

.6
 %

1
8

.9
 %



90 

  

 

Figure 7-21 Percentage changes in sugarcane WUE from present to future for April and 

February plantings, derived using dynamically downscaled climate data 

available for six GCMs 

 

7.4.1.2 Statistical downscaling 

Using statistically downscaled GCM data, the same positive outcome of increased yields 

(Figure 7-22) and improved WUE (Figure 7-23) is projected for the distant future (i.e. 2081-

2100). A study by Singels et al. (2014) showed that rainfed sugarcane yields can be expected 

to improve by 20% at La Mercy (e.g. sub-catchment 4719) in the distant future. The 

projected sugarcane yields for the April planting (13.8-17.2%) compare favourably with 

those derived by Singels et al. (2014). The latter study used different GCMs that were driven 

by the same A2 emission. 

 

 

Figure 7-22 Percentage changes in sugarcane yield from present to future for April and 

February plantings, derived using statistically downscaled climate data 

available for four GCMs 
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Figure 7-23 Percentage changes in sugarcane WUE from present to future for April and 

February plantings, derived using statistically downscaled climate data 

available for four GCMs 

 

The projected increases in yield and WUE for both downscaling techniques can be attributed 

to favourable climatic changes in the future, such as increased temperature and the CO2 

fertilisation effect. Overall, improvements in yield and WUE projected for the future are 

higher when derived using statistically downscaled GCM data, than compared to the 

dynamically downscaled approach. Of the two planting dates, results from both the 

dynamical and statistical downscaled GCMs indicate that February will produce, on average, 

higher sugarcane yields per hectare which equates to improved WUE.  

 

 Sugarbeet 

 

7.4.2.1 Dynamical downscaling 

Results from the dynamically downscaled GCMs also indicate a positive outlook in future 

sugarbeet yields (Figure 7-24) and WUE (Figure 7-25) across all quinaries. For the May 

planting season, there is a 44.5% increase in mean yield at the higher altitude quinary (4696, 

1024 m a.s.l), which translates into almost a two-fold increase (94.7%) in WUE. Similar to 

quinary 4696, the percentage increase in WUE (87.5% and 81.1%) is twice the percentage 

yield increase (35.4% and 36.7%) in quinaries 4697 and 4698, respectively. Hence, the mid 

and lower altitude (i.e. 761 m and 566 m a.s.l, respectively) quinary sub-catchments display 

moderately lower increases in yield and WUE compared to quinary 4696. In the future, a 

May planting of sugarbeet in the cooler (i.e. higher altitude) areas would produce “more crop 

per drop” (i.e. potentially save more water per hectare) in comparison to September planting. 
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Figure 7-24 Percentage changes in sugarbeet yield from present to future for May and 

September plantings, derived using dynamically downscaled climate data 

available for six GCMs 

 

For September, future mean yields are simulated to be 40.2% to 42.8% greater than the 

present yields and thus, WUEs also improve by 56.7% to 59.5% across all three quinaries. 

However, when compared to September, the percentage increases in WUE are more 

pronounced in May. Again, this shows how the planting date can influence the projected 

impacts of climate change on crop response. 

 

 

Figure 7-25 Percentage changes in sugarbeet WUE from present to future for May and 

September plantings, derived using dynamically downscaled climate data 

available for six GCMs 

 

For the September planting of sugarbeet, the percentage increase in mean yield and WUE is 

greater for the higher altitude quinary, which decreases towards the lower altitude quinary. 

This may indicate that at the lower altitudes, growing conditions may become too hot in the 
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future for sugarbeet growth.  

 

7.4.2.2 Statistical downscaling 

When compared to results obtained using dynamically downscaled scenarios, the 

statistically downscaled GCMs projected similar improvements in sugarbeet yield and WUE 

for the period 2081 to 2099 (Figure 7-26 and Figure 7-27). For both planting seasons, the 

highest mean increases in yield and WUE occur in quinary catchment 4698. In May, the 

change in yield and WUE in quinary 4698 are simulated as 89.1% to 99.4% higher than for 

present conditions, respectively. Both May and September planting seasons have lower 

increases in yields and WUE in quinary catchment 4697 and 4696, respectively.  

 

 

Figure 7-26 Percentage changes in sugarbeet yield from present to future for May and 

September plantings, derived using statistically downscaled climate data 

available for four GCMs 

 

 
Figure 7-27 Percentage changes in sugarbeet WUE from present to future for May and 

September plantings, derived using statistically downscaled climate data 

available for four GCMs 
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 Summary 

Overall, the percentage increase (from present to future) in yield and WUE is higher when 

simulated using statistically downscaled GCMs, than compared to dynamically downscaled 

GCMs. In addition, projected increases in WUE are higher than changes in yield.  

 

More specifically, irrigated sugarbeet planted in May could produce higher yields per hectare 

and thus, may utilise water more efficiently than compared to a September planting of the 

crop (dryland production). Similarly, sugarcane planted in February may benefit more from 

climate change, than compared to an April planting. Of particular interest is the finding that 

increases in yield and WUE (obtained from both dynamical and statistical downscaling) are 

higher for sugarbeet than compared to sugarcane. Hence, the results also indicate that 

sugarbeet may benefit more from the changing climate than sugarcane. This will be 

discussed further in section 7.6. The following section compares the yield and WUE 

simulation outputs of GCMs common to both downscaling techniques.  

 

7.5  Future Climate - Four GCMs Common to Both Downscaling Techniques 

 

Instead of using all six dynamically downscaled GCMs, another comparison was undertaken 

using the four GCMs common to both downscaling techniques. This analysis was undertaken 

to determine if the results are affected by the inclusion of the two additional dynamically 

downscaled GCMs. 

 

 Sugarcane 

The yield increases shown in Figure 7-28 are up to 2.0% higher when compared to those 

averaged from six GCMs (as shown in subsections 7.4.1). As expected, the improvements 

in mean yields are higher for February than compared to April. The percentage increase in 

mean WUE from present to future are higher when derived from four GCMs (Figure 7-29), 

compared to six GCMs. These increases are up to 2.9% higher for an April planting, 

compared to 2.4% for a February planting. Hence, similar results were obtained for 

sugarcane yield and WUE increases when four GCMs were used to derive the mean, 

compared to six GCMs.  

 

Of more importance than the number of GCMs in an ensemble, is the influence of which 

GCMs are selected. This is evident from the wide range in relative yield increases from 2.8% 
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to 25.9% (April planting) as well as 8.8% to 27.2% for the February planting for sugarcane 

(see APPENDIX F). For the April planting, two of the six GCMs produced yield increases 

below 10%, three were in the range 10-20% and one GCM showed increases above 20%. In 

general, the GCM which produced the lowest yield increase was MIR, which was not part 

of the four common GCMs. This explains why percentage increases in yield and WUE were 

lower when all six GCMS were included in the mean calculation. This result concurs with 

the work of Maqsood et al. (2004) and Yun et al. (2005), who showed that the accuracy of 

GCMs may vary from one ensemble member to another. 

 

 

Figure 7-28 Percentage changes in sugarcane yield from present to future for April and 

February plantings, derived using dynamically downscaled climate data 

available for four GCMs 

 

 

Figure 7-29 Percentage changes in sugarcane WUE from present to future for April and 

February plantings, derived using dynamically downscaled climate data 

available for four GCMs 
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 Sugarbeet 

As noted for the sugarcane simulations, the percentage increase in the mean yield and WUE 

results of the four dynamically downscaled GCMs are higher than those derived using six 

GCMs (Figure 7-30 and Figure 7-31). The yields are up to 4.1% and 2.2% higher for the 

May and September plantings, respectively. Similarly, the WUEs are up to 4.1% and 2.7% 

higher for the May and September plantings, respectively. Similar to the findings in 

subsection 7.4.2, the highest mean percentage increase in yields (i.e. 47.1%) occurred in 

quinary 4696 for the May planting. As noted for sugarcane, similar results were obtained for 

sugarbeet yield and WUE increases when four GCMs were used to derive the mean, 

compared to six GCMs. 

 

 

Figure 7-30 Percentage changes in sugarbeet yield from present to future for May and 

September plantings, derived using dynamically downscaled climate data 

available for four GCMs 

 

 

Figure 7-31 Percentage changes in sugarbeet WUE from present to future for May and 

September plantings, derived using dynamically downscaled climate data 

available for four GCMs 
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 Summary 

Overall, the results indicate that the percentage increase in yields and WUE using only four 

GCMs (see subsections 7.5.1 and 7.5.2) are higher than when using all six GCMs (see 

subsections 7.4.1 and 7.4.2). This highlights that there may be a threshold number of GCMs 

to include in an ensemble, beyond which no significant benefit is gained by including 

additional GCMs. However, the number of GCMs in the ensemble has a direct influence on 

computational expense.  

 

7.6 CO2 Effects 

 

As discussed in the literature review in section 4.3, increased atmospheric carbon dioxide 

[CO2] can improve yields of some crops and hence their WUE. This quantifiable response 

of crops to [CO2], or the CO2 fertilisation effect, has been debated in numerous papers 

(Zinyengere et al., 2014). The results of feedstock sensitivity to [CO2] is presented in this 

section, which is also dependent on the crop’s ability to hold CO2 (i.e. sink strength). 

 

Therefore, simulations were undertaken for the six dynamically downscaled GCMs, with the 

CO2 value held constant at 369.41 ppm for the entire simulation period (1961-2099). This is 

the reference value used in AquaCrop (Version 4), as measured at Mauna Loa (Hawaii) in 

the year 2000. The differences in yields and WUE between the simulations with a fixed CO2 

and increasing CO2 levels (as per A2 scenario) were then expressed as percentage 

differences. 

 

 Sugarcane 

The sugarcane simulations, as shown in Figure 7-32 and Figure 7-33, indicate that a 

constant CO2 has a negative impact on the yield and WUE of the crop. Overall, there is a 

reduction in average yields of 7 to 10% when the CO2 fertilisation effect is nullified. This 

indicates that sugarcane is more stressed in the future due to the hotter and drier climate (see 

subsection 7.7.2.1). The influence of altitudinal variation across the three quinaries is not 

substantial, nor is the change in planting date. This type of analysis is useful in quantifying 

the CO2 fertilisation effect on crop yield. According to Knox et al. (2010), crop simulations 

should consider future emission scenarios both with and without CO2-fertilisation effects. 
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Figure 7-32 The effects of constant CO2 on the yield of sugarcane for April and February 

planting dates using the dynamically downscaled data for six GCMs 

 

WUE of sugarcane may be reduced by 6.9 to 8.4% when there is no CO2 fertilisation taking 

place. Similarly, the effect of altitude or planting date does not influence the results. It can 

be deduced that due to the higher temperatures expected in the future, sugarcane would be 

under increased water stress. This may trigger stomatal closure in order to reduce water loss, 

which would result in a loss in yield and WUE. 

 

 

Figure 7-33 The effects of constant CO2 on the WUE of sugarcane for April and February 

planting dates using the dynamically downscaled data for six GCMs 

 

The results presented here indicate that the CO2 fertilisation effect contributed to the increase 

in yields and WUE as presented in subsections 7.4 and 7.5. Singels et al. (2014) noted that 

the CO2 fertilisation effect contributed to half of the projected increase in the sugarcane 

yields at La Mercy. 
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 Sugarbeet 

The results of the CO2 impacts for sugarbeet are presented in Figure 7-34 and Figure 7-35. 

Impacts vary across the different planting dates and quinary sub-catchments. The average 

reduction in yield is higher in the cooler planting season (i.e. May) compared to the warmer 

planting season (i.e. September), except in quinary 4696. 

 

In general, there is a smaller reduction in WUE in the cooler season. This indicates that 

irrigation of the May planting had a greater influence in reducing the effects of constant CO2 

on the WUE and yield, particularly in the higher altitude (i.e. cooler) quinary (4696, 1024 m 

a.s.l). However, this is not the case in the mid (4697, 761 m a.s.l) and lower (4698, 566 m 

a.s.l) quinaries, which are affected by much lower rainfall and higher temperatures in the 

distant future (see subsection 7.7.2.2).  

 

 

Figure 7-34 The effects of constant CO2 on the yield of sugarbeet for May and September 

planting seasons using dynamically downscaled data for six GCMs 
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Figure 7-35 The effects of constant CO2 on the WUE of sugarbeet for May and September 

planting seasons using dynamically downscaled for six GCMs 

 

It is also worth noting that the average reductions in yield and WUE are higher for sugarbeet 

(C3 crop) than compared to sugarcane (C4 crop). The results show that sugarbeet is more 

sensitive to higher future temperatures than sugarcane. This is evident by the smallest 

reduction in yields experienced in the higher altitude (i.e. cooler) quinary. 

 

 Summary 

To summarise, the year 2000 CO2 value was held constant throughout the 139-year 

simulation for six dynamically downscaled climate scenarios. This nullified the CO2 

fertilisation effect in AquaCrop and thus, the yield reduction is purely the result of changes 

in climate as projected by the GCMs. Sugarcane (C4 crop) is less responsive to changes in 

CO2 levels as it has lower average reductions in yield and WUE than compared to sugarbeet 

(C3 crop). C4 crops are “CO2 saturated” and hence, are less affected by lower CO2 levels 

(see section 4.2). 

 

Therefore, higher temperatures may have resulted in photorespiration leading to lower 

photosynthetic activity, contributing to lower sugarbeet yields. The changes in rainfall and 

temperature projected by the downscaled GCMs are discussed in detail in the next section. 

The magnitude and direction of these changes in climate variables helps to explain the 

simulated changes in crop yield. 
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7.7 Future Changes in Climate 

 

The quinary sub-catchment climate database was used to derive the baseline conditions. The 

MAP and MAT values were averaged for a 30-year period (1961-1990). The mean MAP 

and MAT from the four GCMs common to both downscaling techniques (i.e. statistical and 

dynamical) was calculated for the present climate and then compared to the baseline climate. 

This was undertaken to assess the GCMs’ ability to predict the present-day climate. 

 

 Present climate 

 

7.7.1.1 La Mercy - sugarcane 

In quaternary catchment U30D representing the La Mercy area, the baseline MAP is highest 

in the middle quinary catchment (Figure 7-36). However, it was expected that the higher 

altitude quinary (4717, 206 m a.s.l) would receive more rainfall, with MAP decreasing 

towards the lower altitudes (i.e. quinary 4719, 50 m a.s.l). Lynch (2004) showed an increase 

in MAP from 1085 mm to 3199 mm over a distance of roughly 8.5 km in the Jonkershoek 

Mountains (Stellenbosch, Western Cape), as the altitude increased from 230 m to 1300 m. 

 

 

Figure 7-36 Comparison of the baseline MAP to the present MAP, derived from four 

statistical and dynamical downscaling climate scenarios for three quinary 

sub-catchments in quaternary catchment U30D 

 

The MAPs simulated by both downscaling techniques under-estimate the baseline MAP in 

all quinaries, especially the statistically downscaled GCMs. Overall, there is no marked 
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difference in MAP between the three quinary sub-catchments, which is expected since the 

same rainfall driver station is assigned to all three quinaries, with only slight adjustments 

made to the rainfall to make it more representative of each sub-catchment (see subsection 

6.7.2.1).  

 

The largest difference in MAP between the statistical GCMs and the baseline climate is 67 

mm in the mid-altitude quinary (mean altitude of 100 m a.s.l). For the dynamically 

downscaled GCMs, the highest difference with reference to the baseline is 41 mm in the 

mid-altitude quinary. Therefore, when comparing both downscaling techniques, the 

dynamically downscaled MAP data are higher than the MAPs simulated by the statistically 

downscaled GCMs. Hence, this explains why the yields derived from the dynamically 

downscaled GCMs were in general, higher than those predicted using statistically 

downscaled data (see subsection 7.3.1). However, the comparison of annual rainfall 

magnitudes does not provide any information about the seasonal distribution of rainfall, nor 

the amount of small and large rainfall events. 

 

The MAT is higher at the lower altitude (50 m a.s.l) quinaries and decreases towards the 

higher altitude (206 m a.s.l) quinaries as expected (Figure 7-37). This is due to lower air 

pressures at higher altitudes (i.e. lapse rate), which result in cooler temperatures. However, 

both downscaling techniques over-estimate the baseline temperature, especially the 

dynamically downscaled GCMs. At most, this difference is up to 1°C which is relatively 

high. In addition, the dynamically downscaled GCMs are both wetter and hotter than the 

statistically downscaled GCMs.  
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Figure 7-37 Comparison of the baseline MAT to the present MAT, derived from four 

statistical and dynamical downscaling climate scenarios for three quinary 

sub-catchments in quaternary catchment U30D 

 

Overall, the ability of the downscaled GCMs to re-produce the baseline climate is considered 

adequate. It was expected that the statistically downscaled GCMs would better match the 

baseline climate considering the technique is calibrated using historically observed climate 

data. 

 

7.7.1.2 Ukulinga - sugarbeet 

The baseline MAP within quaternary catchment U20J (representing the Ukulinga area) 

follows the trend with altitude as expected (Figure 7-38). This was not the case in quaternary 

catchment U30D (see subsection 7.7.1.1). This could be due to the altitudinal effect being 

less prevalent in the coastal regions were the terrain is relatively flat. The altitude range 

across the quinaries in the coastal regions is 331 m, compared to the 1117 m range across 

the quinaries further inland. As expected, MAPs simulated by the two downscaling 

techniques show more rainfall at the higher altitude (1024 m a.s.l) quinary (4696). However, 

both downscaling techniques underestimate the baseline MAP, with the dynamically 

downscaled projections somewhat wetter than the statistical GCMs (as was the case in the 

La Mercy catchment). Because the altitudinal effect is evident in quaternary U20J, the MAPs 

in each sub-catchment are less similar, due to the different monthly adjustment factors that 

were applied (see subsection 6.7.2.1).  
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Figure 7-38 Comparison of the baseline MAP to the present MAP, derived from four 

statistical and dynamical downscaling climate scenarios for three quinary 

sub-catchments in quaternary catchment U20J 

 

The trends in MAT for the Ukulinga catchment (Figure 7-39) are similar to those noted for 

the La Mercy catchment, where both downscaled techniques simulated warmer temperatures 

than the baseline. The largest difference in MAT between the baseline and the GCMs is 

1.8°C projected in quinary 4698 by the dynamic downscaling technique. With the statistical 

approach, the biggest difference in MAT between the baseline and GCMs is 1.1°C in quinary 

4697.  

 

 

Figure 7-39 Comparison of the baseline MAT to the present MAT, derived from four 

statistical and dynamical downscaling climate scenarios for three quinary 

sub-catchments in quaternary catchment U20J 
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0

100

200

300

400

500

600

700

800

900

1000

4696 4697 4698

M
A

P
 (

m
m

)

Sub-catchment

Statistical Baseline Dynamic

-69.9
-39.6

-8.9
-63.1

-60.7

7.8

0

5

10

15

20

25

4696 4697 4698

M
A

T
 (

°C
) 

Sub-catchment

Statistical Baseline Dynamic

0.7 1.5
1.61.1 0.6

1.8



105 

  

temperature stressed (too cold or hot). The sugarbeet yields shown in subsection 7.3.2 

(Figure 7-18) are highest in the wetter quinary (4696), and decrease with altitude as 

expected. In general, the results indicate that the GCMs are biased towards higher MAT 

increases compared to MAP increases. It can be deduced that similar biases will be carried 

over in the future climate simulations (Zhang and Huang, 2013). 

 

7.7.1.3 Summary 

In summary, the MAP is underestimated, and the MAT is overestimated by both 

downscaling approaches when compared to the baseline. However, the difference in MAT 

estimates is considered more important than the difference in MAP. The biggest difference 

between the baseline and present MAT estimates is 1.8°C, which is larger than expected. It 

seems that the ensemble of GCM models are biased towards higher temperatures and lower 

rainfall. This bias is more evident in the quaternary catchment U20J for the sugarbeet 

simulations.  

 

 Future climate 

This subsection presents and discusses the projected changes in MAP and MAT from the 

present to the future climate. The results help to better understand the response of sugarcane 

and sugarbeet to climate change. Changes in MAP and MAT were assessed as absolute 

differences between the present and projected future values. A 30-year present (1961-1990) 

and future (2071-2100) period was used for each dynamically downscaled GCM. Similarly, 

for the statistically downscaled GCMs, a 20-year period for the present (1971-1990) and 

future (2081-2100) periods was analysed. 

  

7.7.2.1 La Mercy - sugarcane 

 

Dynamic downscaling 

The results in Figure 7-40 and Figure 7-41 shows both the projected MAP and MAT outputs 

of the six GCMs and the four GCMs that are common to both downscaling approaches. The 

MAP projected by the six GCMs will decrease in the future by an average of 30 mm. 

However, the four GCMs project a slight increase in rainfall of up to 12 mm. The graphs 

below highlight the importance of a GCM ensemble approach adopted in this study, as 

discussed in Chapter 5.2.1. This is evident from the different MAP projections, within the 

same quinary sub-catchments, between the six and four GCMs. Two of the six GCMs predict 
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a much larger decrease in MAP in the future, which offsets the positive increase of the other 

four GCMs. However, analysing the results of each individual GCM is beyond the scope of 

this study.  

 

 

Figure 7-40 Absolute changes in MAP from present to future for three quinary sub-

catchments in quaternary catchment U30D, derived using dynamically and 

statistically downscaled climate data available for six GCMs, four of which 

are common to both downscaling methods 

 

The annual temperature in the future is similar to that projected by both ensembles (6 and 4 

GCMs). The six GCMs project a 3.4°C temperature increase across all quinaries (Figure 

7-41). This MAT increase is within the range reported by the IPCC (2014b). Temperatures 

are expected to rise by 3°C to 6°C above the baseline period (1986 – 2005) by the end of the 

21st century across the five African regions, i.e. east, north, west, central and southern Africa 

(IPCC, 2014b).  

 

The results of both the MAP and MAT changes from the present to the future give a clearer 

understanding of the yield and WUE results discussed in subsections 7.4.1 and 7.6.1. The 

yield and WUE increases projected by AquaCrop are unlikely to be due to rainfall because 

the MAP is projected to be different in the future. Although the future MAP may be similar 

to the present MAP, the seasonal distribution or the frequency of wet and dry days may be 

significantly different. 
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Figure 7-41 Absolute differences in MAT from present to future for three quinary sub-

catchments in quaternary catchment U30D, derived using dynamically and 

statistically downscaled climate data available for six GCMs, four of which 

are common to both downscaling methods 

 

GCMs also have a tendency to produce more events of low rainfall (i.e. drizzle) as opposed 

to fewer, larger events (i.e. thunderstorms), which may affect the growth of plants. 

Therefore, in order to assess the impacts of changes in rainfall only on crop yield and WUE, 

simulations using future rainfall would need be undertaken while keeping the future 

temperature the same as for the present period. 

 

The yield increase is therefore mainly in response to the combined effect of higher 

temperatures and increased [CO2] in the future. Higher temperatures improve canopy 

development which results in higher radiation interception and increased ET. The greater 

evaporative demand and a higher CC also increases ET (Singels et al., 2014). In subsection 

7.6.1, where CO2 was kept constant to nullify the CO2 fertilisation effect, sugarcane yields 

and WUE decreased. This was probably due to the warmer temperatures resulting in 

increased temperature and water stress (due to greater evaporation loss). Singels et al. (2014) 

also noted that in a warmer climate, the canopy develops at a faster rate due to more growing 

degree days. This results in a shorter crop cycle or season length, which is likely to result in 

yield loss. Overall, the CO2 fertilisation effect offsets the negative effects of the warmer 

climate which can potentially lead to water stress under low rainfall conditions. 

 

Statistical downscaling 

The statistically downscaled GCMs project a larger increase in MAP (Figure 7-42) relative 
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to the dynamically downscaled GCMs. The MAP results highlight an average increase of 57 

mm (i.e. 6.5%) across all sub-catchments. As noted previously, the projected decreases in 

yields are likely due to the impacts of a much warmer climate. The differences in MAT 

projections between the statistically and dynamically downscaled GCMs are relatively small 

(i.e. 0.2°C). Annual temperatures are predicted to be up to 3.6°C higher than the present 

(Figure 7-43). Similarly, this is within the predictions reported by the IPCC (2014b). As 

noted in subsection 5.2.2, the “business-as-usual” scenario to climate change will result in 

MAT rising above the 2°C target.  

 

 

Figure 7-42 Absolute changes in MAP from present to future for three quinary sub-

catchments in quaternary catchment U30D, derived using statistically 

downscaled climate data available for four GCMs 

 

 

Figure 7-43 Absolute differences in MAT from present to future for three quinary sub-

catchments in quaternary catchment U30D, derived using statistically 

downscaled climate data available for four GCMs 
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7.7.2.2 Ukulinga - sugarbeet 

 

Dynamic downscaling 

Similar to the results for sugarcane, the six GCMs predict a larger decrease of 33 mm (-

4.0%) compared to the four GCMs (5.2 mm; ~0.5%) as shown in Figure 7-44. In addition, 

there are no marked differences in the percentages changes in MAP between the three 

quinaries. However, there is an altitudinal effect in that the upper quinary has higher rainfall 

than the lower quinary. 

 

 

Figure 7-44 Absolute changes in MAP from present to future for three quinary sub-

catchments in quaternary catchment U20J, derived using dynamically and 

statistically downscaled climate data available for six GCMs, four of which 

are common to both downscaling methods 

 

Temperature increases incrementally more in the distant future as indicated in Figure 7-45. 

The six and four GCMs project similar increases in MAT in the distant future, i.e. annual 

temperatures are forecast to be 3.5°C higher than the present. In addition, the altitudinal 

effect is evident in that the upper quinary is cooler than the lower quinary.  
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Figure 7-45 Absolute differences in MAT from present to future for three quinary sub-

catchments in quaternary catchment U20J, derived using dynamically and 

statistically downscaled climate data available for six GCMs, four of which 

are common to both downscaling methods 

 

As for sugarcane, the effects of the larger temperature increase “outweighs” the slight 

decrease in rainfall with regard to crop production. This helps to explain the projected 

decreases in sugarbeet yield and WUE when the CO2 fertilisation effect was nullified. In the 

future, quinary 4698 (lower altitude, 566 m a.s.l) is hotter and drier than the other two 

quinaries and thus, experiences the largest yield and WUE decrease (see subsection 7.6.2). 

This further indicates that sugarbeet is sensitive to higher temperatures, which is exacerbated 

by lower rainfall conditions. 

 

Statistical downscaling 

Compared to the four dynamically downscaled GCMs, the statistical GCMs forecast a 

positive outlook for MAP, with an increase of approximately 11% (Figure 7-46). Overall, 

the MAT is projected to increase on average by 3.8°C in quaternary catchment U20J, which 

is 0.3°C higher than the dynamically downscaled simulations (Figure 7-47).  The largest 

projected increase in MAP occurs in the higher altitude quinary (4696, 1024 m a.s.l). 

However, the annual temperature in quinary 4696 is lower when compared to the other two 

quinaries due to the altitudinal effect. The combination of wetter conditions in the future at 

the higher altitude (lower evaporative demand) may result in a significantly higher yield 

(+50.3%) as simulated by the statistical GCMs in quinary 4696 (see Figure 7-26). Hence, 

sugarbeet productivity appears to thrive when lower temperatures and sufficient rainfall exist 

throughout its growing season.  
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Figure 7-46 Absolute changes in MAP from present to future for three quinary sub-

catchments in quaternary catchment U20J, derived using statistically 

downscaled climate data available for four GCMs 

 

 

Figure 7-47 Absolute differences in MAT from present to future for three quinary sub-

catchments in quaternary catchment U20J, derived using statistically 

downscaled climate data available for four GCMs 

 

7.7.2.3 Summary 

The results presented in this section help to explain the effects of climate change on yield 

and WUE of sugarcane and sugarbeet as discussed in previous chapters. The yield and WUE 

increases are more likely attributed to higher temperatures and the CO2 fertilisation effect, 

as opposed to slight changes in future rainfall. When the CO2 fertilisation effect is nullified, 

yields and WUE decreased (more so for sugarbeet than sugarcane). This was probably due 

to higher temperatures, increased water stress (due to greater evaporation loss) and the 
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shortened growing season (due to increased growing degree days). Hence, the CO2 

fertilisation effect offsets the negative effects of the future warmer climate.  

 

To conclude, the increase in annual temperature projected for the distant future ranges 

between 3.4°C to 3.8°C, with the statistically downscaled GCMs showing higher increases. 

This is evident in both quaternary catchments and the MAT increases are similar to those 

reported by the IPCC (2014a; 2014b). Of more importance is the slight decrease in rainfall 

projected by the dynamically downscaled GCMs, compared to the statistically downscaled 

scenarios which suggest a more significant increase in rainfall. As noted in subsection 7.3.3, 

studies have recommended that both statistically and dynamically downscaled climate 

scenarios should be used in climate change studies.  

 

7.8 Final Thoughts 

 

In this study, calibrated crop parameters for both sugarcane and sugarbeet were developed. 

The adjusted parameters were then validated using independent datasets and thus, are 

deemed more representative of South Africa’s growing conditions. In order to demonstrate 

a useful application of the calibrated crop parameter files, they were used to assess the 

impacts of climate change on crop response. 

 

This study produced a wide range of results that emanated from the different climate change 

simulations. The results visually illustrate how the number of GCMs, downscaling 

techniques, planting dates, altitudinal effect s and consideration of the CO2 fertilisation effect 

can influence the outcome of climate change impact assessments on agricultural response. 

The purpose of this study was not to show if one GCM is “better” than another, or one 

downscaling technique is “better” than another, nor to provide climate change mitigation or 

adaptation strategies to climate change. The following subsections provide final thoughts on 

five issues that can influence climate change studies. 

 

 Number of GCMs 

The different ensemble sizes (i.e. 4 vs. 6 GCMs) produced relatively similar percentage 

changes in yield and WUE. This may indicate that increasing the number of GCMs in the 

ensemble may not always add more value or significance to the predictions. However, 

increasing the number of ensemble size has a direct impact on the computational expense. 



113 

  

In terms of relevance, more emphasis should be placed on which GCMs are selected for the 

ensemble, than on the number of GCMs to be included. Although this study did not consider 

the influence of GCM selection, APPENDIX F illustrates the wide range in yield and WUE 

increases that were simulated by the six dynamically downscaled GCMs.  For sugarcane 

planted in April, MIR and GF1 produced the smallest and largest percentage changes in yield 

and WUE, respectively. Hence, the exclusion of these two GCMs would produce a smaller 

(i.e. more conservative) range in projected impacts. 

 

 Downscaling techniques 

In this study, the statistically downscaled simulations matched the baseline simulations fairly 

well than compared to the dynamically downscaled simulations, which generally 

overestimated crop productivity. It is important to note that no bias correction was applied 

to the dynamically downscaled scenarios. However, it is recommended that using both 

downscaling techniques is a better approach in climate change studies.  

 

 Planting date 

Based on the results for sugarcane, the February planting date produced the best yield and 

WUE projections than compared to the April planting date. However, the difference in 

projected yields for the two planting dates, as simulated by the dynamically and statistically 

downscaled GCMs are marginal. For sugarbeet, the best possible yields would be achieved 

when planted in May. However, the results showed that supplemental irrigation s required 

to improve crop establishment and growth. In addition, there are larger improvements in 

WUE for sugarbeet planted in May than compared to September.  

 

However, the planting dates that produced the highest yield and WUE for the baseline 

climate also exhibit greater inter-seasonal variability (APPENDIX E). For sugarcane, the 

February planting has a greater coefficient of variation (CV) compared to April. Similarly, 

the May planting of sugarbeet (for dryland conditions) has a higher CV compared to 

September. When the May planting of sugarbeet is irrigated, there is less variability in both 

yield and WUE. These results show that changing the crop’s planting date may be a possible 

climate change mitigation strategy. Furthermore, irrigation is beneficial for autumn plantings 

of sugarbeet. 
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 Altitudinal effects  

The difference in altitude across the six quinaries (4717-4718 and 4696-4698) in the two 

quaternary catchments largely account for the variation in temperature and rainfall. Overall, 

the altitudinal effect was more visible in the statistically downscaled projections, than 

compared to the dynamically downscaled scenarios. In addition, the inland catchment 

(Ukulinga) was more affected by altitudinal differences than the coastal catchment (La 

Mercy). This is due to the altitudinal range being less in the flatter, coastal region. Hence, 

the altitudinal effect influenced the yield and WUE results of sugarbeet more so than 

compared sugarcane. 

 

However, performing the analysis at quinary level increased computational complexity by 

increasing the number of model runs by three. The variable that was most affected by the 

altitudinal effect was yield. Overall, the results given for three sub-catchments, as opposed 

to a single catchment, provided a wider range of possible impacts. 

 

 CO2 fertilisation effect  

Sugarbeet (C3 crop) benefitted more from elevated [CO2] in the distant future, compared to 

sugarcane (C4 crop). This finding has been reflected in several studies. For example, 

Vanuytrecht et al. (2012) showed that the yield of C3 crops increased by 18%, whereas C4 

crops did not benefit as much (+7% on average) from CO2 fertilisation. Regarding biomass 

production, Vanuytrecht et al. (2012) also noted that rainfed crops responded equally well 

to elevated [CO2] and that stomatal closure diminished the adverse effect of limited water 

resources. However, the way in which crops respond to elevated [CO2] is dependent on water 

availability (Vanuytrecht et al., 2012). When there is no water stress, photosynthesis is the 

main driver for crop production. During conditions of water stress, crops decrease 

evapotranspiration and increase water productivity to drive production.  

 

In this study, it evident that the above mechanisms contributed to the differences in yields 

for rainfed sugarcane and sugarbeet and as well as for irrigated sugarbeet. Irrigation of the 

May planting alleviated water stress and hence, the increase in photosynthesis (in response 

to higher [CO2] and temperature) resulted in higher projected yields. Conversely, during 

periods of water stress experienced by the rainfed crops, an increase in WUE was simulated. 

This is evident since sugarcane (C4) showed a higher WUE compared to sugarbeet (C3). 
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Although the fsink values (which determines how crops respond to [CO2] increases) have been 

previously determined for sugarbeet (Vanuytrecht et al., 2011), they were not adjusted and 

hence, left as default in this study. No FACE experiments have been undertaken for 

sugarcane to determine its fsink range. Therefore, it is unknown how the results would differ 

if the fsink parameters for sugarbeet (or sugarcane) were adjusted. However, Vanuytrecht et 

al. (2014) indicated that such adjustments may not be necessary. Owing to the uncertainty 

around crop response to elevated [CO2], future climate change studies should perform 

simulations both with and without the CO2 effect. This approach will allow the full range of 

climate change impacts on crop response to be determined. 
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 CONCLUSION 

 

This chapter is separated into three sections, viz. 1) the approach taken in the study to answer 

the research questions and achieve the objectives, 2) a synthesis of important findings, and 

3) recommendations for future research. For more detail on a particular topic, the reader is 

referred to the summaries given at the end of each subsection (i.e. labelled “Summary”) in 

the previous chapter. 

 

8.1 Summary of Approach 

 

One of the main aims of the study was to calibrate the AquaCrop model for two biofuel 

feedstocks, viz. sugarcane and sugarbeet. These two crops were the preferred feedstocks for 

bioethanol production in South Africa as stated by the NBIS (DME, 2007a). However, 

previous studies (i.e. Jewitt et al., 2009) have noted that a better understanding regarding the 

potential yields, water use efficiencies and potential impacts of climate change on these 

crops is required. With reference to the above, the following research questions were 

addressed: 

• What are the attainable yield and WUE of sugarbeet and sugarcane? 

• What are the potential impacts of climate change on yield and WUE of these biofuel 

feedstocks? 

 

In order to address the above research questions, the following objectives were met: 

• Calibrate and validate AquaCrop for sugarcane and sugarbeet. 

• Undertake a comparison between using 30 years and 50 years of data for long-term 

assessments of yield and WUE. 

• Assess the influence of using two downscaling techniques on the yield and WUE of 

both crops. 

• Assess the impacts of changes in CO2, temperature and rainfall on feedstock yield 

and WUE. 

 

Various methodologies were adopted to meet these objectives, which included collecting 

primary data from field and laboratory experiments involving sugarbeet for the calibration 

of AquaCrop. In addition, secondary (AgMIP) datasets were obtained from SASRI and used 
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for the calibration and validation of AquaCrop for both feedstocks. Thereafter, the crop 

parameters files were used to simulate mean dry yield and mean WUE of sugarcane and 

sugarbeet. This was done using 30 and 50 years of historical climate data, as well as present 

and future climate projections derived from multiple GCMs and downscaled using two well-

known techniques. Institutions such as the CSIR and CSAG provided the data for the present 

and future climate scenarios. 

 

The utilisation of a mechanistic crop model (AquaCrop) to estimate the attainable yield and 

WUE of two bioethanol feedstocks has proven useful. Preliminary versions of the calibrated 

parameter files for sugarcane and sugarbeet were used by Kunz et al. (2015c) to develop 

maps of crop yield and WUE at a national scale. In addition, the majority of previous climate 

change studies used empirical models that only consider climate (rainfall and temperature) 

effects on crop productivity and not the effects of rising [CO2]. 

 

The graphs produced in this study depict the simulated dry yield and WUE under the present 

climate and future climate. Values were derived for multiple GCMs, then averaged and 

presented at a quinary sub-catchment level. At a smaller (i.e. more local) scale within each 

quinary, there may be no potential for crop production due to other factors (e.g. micro climate 

or soils related). 

 

The study did not consider the impact of climate change on biomass production. Although 

above-ground plant biomass is important for bioenergy production, the utilisable portion of 

the crop (containing sugar, starch or vegetable oil) is important for biofuel production. This 

study focussed on the impacts of climate change on biofuel feedstock production (not 

bioenergy production).  

 

8.2 Summary of Findings 

 

The AquaCrop model was calibrated for two feedstocks, viz. sugarcane and sugarbeet. An 

AgMIP dataset for La Mercy, which contained LAI measurements for different planting 

dates, was used to calibrate the model for sugarcane. Even though a limited number of LAI 

measurements were available, the model performed better using the calibrated parameter file 

than compared to the default crop parameter file. With respect to sugarbeet, a much more 

detailed calibration dataset was used to calibrate the model. The dataset contained weekly 
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and bi-weekly measurements of LAI undertaken in a field trial conducted at Ukulinga during 

2013. AquaCrop closely simulated the canopy cover, yields and WUE of sugarbeet, although 

there were slight over-estimations. AquaCrop was then validated for both feedstocks using 

AgMIP datasets for two different regions (Pongola and Komatipoort). The model’s ability 

to simulate soil water content at Ukulinga was less satisfactory, with little variability 

simulated over the growing season at the lower soil depths.  

 

The calibrated model was then used for long-term assessments of yield and WUE. The 

baseline simulations were performed using the 50-year quinary sub-catchment climate 

database. When compared to the 50-year model runs, results showed that 30 years of climate 

data adequately estimated the long-term attainable productivity of sugarcane and sugarbeet. 

Thus, running the model with 30 years of data (as opposed to 50 years) provides considerable 

saving in computational expense, with little impact on the accuracy of the long-term 

attainable yield. This confirmed similar findings reported in the available literature. 

 

In order to establish confidence in projections of future climate, the baseline mean yields 

and WUE results were compared to those simulated for the present climate. Two 

downscaling techniques, which had four GCMs in common, were used to obtain climate 

scenarios representing the present period (1961-1990). For the present climate, the GCMs 

displayed a bias towards a lower MAP and a higher MAT when compared to baseline (i.e. 

observed) conditions. Consequently, this was also noticed in the future climate simulations 

(i.e. high MAT increases). It is therefore acknowledged that bias correction of GCM output 

is important in climate change studies, although it was not done in this study. 

 

Future MAT is projected to be between 3.4°C to 3.8°C higher than the present climate. A 

smaller temperature increase may only be realised when moving away from the “business-

as-usual” (i.e. A2 CO2 emission) scenario. The dynamically downscaled GCMs projected a 

decrease in MAP in both quaternary catchments, whereas the statistically downscaled GCMs 

indicate a higher increase in annual rainfall. This highlights the need to consider both 

downscaling techniques to be considered in climate change studies.  

 

A comparison of both downscaling techniques showed that statistically downscaled 

scenarios for the present climate better match the baseline climate. This implies that the 

statistical downscaling technique is better suited at replicating historical (i.e. observed) 
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conditions. This may imply greater confidence in future projections derived using 

statistically downscaled techniques. 

 

The climate change simulations projected increases in mean yield and WUE for both 

sugarcane and sugarbeet in the distant future (up to 2100). The statistically downscaled 

GCMs projected higher increases in mean yield and WUE when compared to the 

dynamically downscaled GCMs. In addition, the percentage increases in WUE were up to 

three times higher than those for yield increases. Hence, the response of WUE to climate 

change is amplified, not only by the yield increase, but also by the reduced transpiration 

caused by the CO2 fertilisation effect. It is evident that the CO2 fertilisation effect benefits 

sugarbeet (C3 crop) more so than sugarcane (C4 crop), which concurs with findings from 

the literature. Hence, climate change is expected to have a more positive impact on sugarbeet 

productivity than for sugarcane. A relatively wide range in crop response to climate change 

was noted due to the two different planting dates considered for both crops as well as the 

altitudinal effects introduced by using the three quinary sub-catchments. The results showed 

that sugarcane and sugarbeet would benefit favourably from climate change when planted 

in February and May, respectively. This infers that altering the planting date may ameliorate 

some of the negative impacts of climate change on crop response. 

 

As noted previously, climate change may lead to higher feedstock productivity compared to 

present day simulations. However, the magnitude of crop response is strongly influenced by 

the CO2 fertilisation effect. Projected changes in future MAP and MAT (with no CO2 

fertilisation effect) resulted in a reduction in yield and WUE, particularly for sugarbeet. 

Higher temperatures result in a faster accumulation of GDDs and therefore, the crop matures 

quicker that results in a shorter crop cycle and lower yields. Warmer temperatures further 

contribute to the reduction of yields due to increased soil water stress, particularly if there is 

not enough rainfall in the future to compensate for increases in crop water demands. 

Therefore, the CO2 fertilisation effect offsets the negative impacts of higher temperatures 

and greater evaporation demands, particularly under water stressed conditions. When there 

is sufficient rainfall to meet the crop’s water demand, the higher evaporative demands can 

increase yields. 

 

When undertaking climate change studies, it is important to consider impacts of future 

climate scenarios, both with and without the CO2 fertilisation effect. The results of CO2 
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effects highlighted the sensitivity of sugarbeet to higher temperatures in the future. However, 

this sensitivity may not be present at other sites which have much higher rainfall than the 

Ukulinga quinaries. 

 

The GCM ensemble approach proved useful in this study because the comparison between 

using four and six GCMs produced different results. This highlights the importance of 

carefully selecting ensemble members from the available GCMs. The ensemble of four 

GCMs (which were common to both downscaling techniques) projected higher future yield 

and WUE for both feedstocks. This occurred because one of the two remaining GCMs 

projected smaller crop responses (due to lower future rainfall), thus reducing the mean yield 

calculation.  

 

The water use efficiency of biofuel feedstocks is an important consideration in a water 

stressed country such as South Africa. With this in mind, sugarcane (C4 crop) has an 

advantage over sugarbeet (C3 crop) because of higher WUE. C4 crops can survive in hotter 

climates and lose less water than compared to C3 crops. Nevertheless, sugarbeet showed 

large improvements in WUE in the future, especially when planted in May (irrigated 

conditions) compared to September. The autumn planting is preferable since it avoids the 

higher temperatures starting in September, which the crop appears to be sensitive to. 

However, it worth noting that the May simulations were also undertaken with supplemental 

irrigation, and irrigation of biofuel feedstocks is not supported by the Department of Water 

and Sanitation. 

 

In conclusion, numerous findings emanated from this research, but it is important to note 

that AquaCrop was run at one site for each feedstock. Therefore, it is not recommended that 

results from this study are extrapolated and deemed applicable to other sites. The most 

beneficial outcome of this study was it showed how the outcome of any assessment of 

climate change on crop response can be strongly influenced by the approach taken. The study 

considered two crops (C3 vs C4), each with two planting dates, two GCM downscaling 

techniques and simulations both with and without the CO2 effect as well as an altitudinal 

effect (i.e. at each site respectively). For example, the “with and without CO2 effect” 

simulations cannot be considered when an empirical crop model is used in climate change 

studies, since such models do not account for the effects of [CO2] on plant response. Hence, 

an empirical crop model may likely simulate a yield reduction, compared to a mechanistic 
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model which may simulate a yield increase.  

 

8.3 Recommendations for Future Research 

 

From this study, the following recommendations are made regarding future research: 

• The calibration process for sugarcane lacked sufficient experimental data. Additional 

field work would need to be carried out to fine-tune AquaCrop for local growing 

conditions for sugarcane. Additionally, it is recommended that initiatives such as 

AgMIP should aim to improve the quality of data collected, especially when the 

datasets are used for model calibration.  

 

• Only one simulation model was used in this study. Hence, a different crop model 

should be calibrated and validated using the same procedures outlined in this study. 

An analysis could then be undertaken to compare the output from both models in 

order to determine if the additional results improve the confidence of projections in 

crop response to climate change.  

 

• Canopy cover (CC) values can be calculated using a simpler equation which only 

requires the diffuse non-interceptance (DIFN) value, which is an output of the LAI-

2200 plant canopy analyser used in this study. DIFN may be more indicative of CC 

than LAI. In the future, this method of determining CC would need to be compared 

against the two other methods used in this study.  

 

• Given that the majority of sugarbeet may be grown near or around Cradock in the 

Eastern Cape, it would be beneficial to test or validate AquaCrop using suitable 

growth and yield information obtained from that region. 

 

• Future work on climate change studies using AquaCrop should include adjusting the 

fsink parameters for sugarcane and sugarbeet in order to better understand the 

influence on this parameter on crop response under a changing climate (i.e. a 

sensitivity study). 
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• Future studies should consider using the CO2 values from Cape Point for southern 

African climate change studies instead of the Hawaii (i.e. Mauna Loa) values.  

 

• Sugarcane simulations were undertaken for two transplanting months, viz. February 

and April. These dates were chosen as they produced the highest observed yields at 

La Mercy. However, the milling season in South Africa is from April to December. 

Therefore, a February transplanting is not representative of the sugarcane industry 

and thus, future research should consider other transplanting dates such as October. 

 

• The soil water content simulations of AquaCrop were not satisfactory, whilst other 

studies have shown the opposite. Hence, it would be useful to undertake a study that 

compares soil water content simulations using a single (i.e. one) soil profile and 

comparing it to a two- or three-layered soil. As noted, either the PWP values were 

incorrectly determined using the pressure outflow method or the TDR probes at the 

lower soil depths were faulty. 

 

• AquaCrop does not consider canopy interception and consequently, it will under-

estimate ET when compared to measurements which include the evaporation of 

intercepted water (eddy covariance or surface renewal techniques). Therefore, future 

updates to the model should include interception loss, which should improve ET 

simulations when compared to observations. 

 

 

• As noted, the GCMs were biased towards a lower MAP and higher MAT. Therefore, 

bias correction should be considered in future studies in order to improve confidence 

in the ability of climate models to predict the future climate. 
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 APPENDIX A  

 

 
Figure 10-1 Pit dug to insert TDR probes and the transparent access tubes for the rhizotron 

camera 

 

 
Figure 10-2 A view of where the pit was dug showing the transparent access tubes and 

the Campbell Scientific instrumentation for measurements of soil water 

content 
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Figure 10-3 A spade was used to carefully dig up several sugarbeet plants to measure the 

maximum root lengths 
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 APPENDIX B 

Table 11-1 Irrigation schedule for the 2013 sugarbeet trial 

Date 
Depth 

(mm) 
Field notes 

2013/05/22 0 Transplanting of 2013 sugarbeet 

2013/05/24 8.3 Transplanting continued 

2013/05/25 6.6 Saturday 

2013/05/31 12.7 End of transplanting 

2013/06/01 3.3 Before hot day 

2013/06/07 3.0 Repaired leaking connectors 

2013/06/10 2.8 Approximately 1 hour of irrigation 

2013/06/12 6.9 Over 2 hours of irrigation 

2013/06/14 5.3 Before long weekend 

2013/06/27 19.5 14-27 June  

2013/07/15 15.8 8-15 July 

2013/07/20 2.0 Saturday 

2013/07/22 2.2 Monday 

2013/07/24 3.9 Wednesday 

2013/07/26 4.1 Friday 

2013/07/29 1.9 Monday 

2013/07/31 5.8 Wednesday 

2013/08/02 3.8 Friday 

2013/08/05 2.2 Monday 

2013/08/07 4.7 Wednesday after fertilisation 

2013/08/08 1.1 Thursday before rain (12 mm) 

2013/08/14 3.0 Wednesday 

2013/08/19 9.4 Watered twice  

2013/08/23 7.0 Friday 

2013/08/26 7.2 Monday 

2013/08/28 6.6 Wed 

2013/08/30 8.3 Friday 

2013/09/02 6.1 Monday 

2013/09/04 10.2 Wednesday after fertiliser spray 

2013/09/13 0.0 Off for the week 

2013/09/18 8.9 Wednesday after fertiliser spray 

2013/09/20 7.7 Friday 

2013/09/25 7.7 Wednesday 

2013/09/27 7.7 Friday 

2013/10/03 8.9 Thursday after fertiliser spray - Hot day 

2013/10/04 7.3 Friday - Hot day 

2013/10/11 9.7 Friday - Hot day 

*2013/10/14 8.4 Monday 

2013/10/17 0 Sufficient rainfall, no irrigation  

2013/10/20 0 Sufficient rainfall, no irrigation 

2013/10/25 0 Sufficient rainfall, no irrigation 

*The crop was not irrigated after the 2013/10/14 until harvest to decrease chances of root 

diseases, considering the rainy season had begun. 
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 APPENDIX C 

 

Conventional methods for determining soil water retention parameters are dependent on 

monitoring the equilibration of the volumetric water content. However, in this method, they 

are determined by monitoring the time to equilibration of the matric potential (Lorentz et al., 

2001). The advantage of this is it allows for the water outflow to be controlled rather than 

just letting it flow until equilibration is reached (i.e. no water outflow), thus saving time for 

the observer.  

  

The bottom of the soil cores were first sealed with permeable ceramic discs (label 15 in 

Figure 12-1) to ensure no soil fell out. After that, a glass container was half-filled with water, 

in which the soil cores were placed for at least 24 hours, making sure that the samples were 

not fully submerged in water. Following that, an electric pump was used to remove as much 

air as possible, thus creating a vacuum. This facilitated the saturation of each soil core and 

the removal of air bubbles that could potentially disrupt the flow of water during 

measurements. 

 

 

Figure 12-1 Diagram of the outflow pressure apparatus for measuring soil water 

parameters of undisturbed soil cores (Lorentz et al., 2001) 
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After the saturation process, the following procedure was used for all three samples: 

• The soils samples were weighed on a sensitive balance with an accuracy of up to 

0.001 g.  

• The pressure cell base (label 13 in Figure 12-1) was filled with water to displace all 

air bubbles. 

• The stop-cock (23) of the burette (24) was opened to allow water and air bubbles to 

flow into the outflow burette.  

• The soil sample was placed into the pressure cell housing (12). 

• The pressure cell ring was then used to retain the sample (14). 

• Finally, the soil sample was enclosed (11). 

 

Air pressure (2) was then applied to the samples so water (e.g. 5 mm) could drain into the 

burette (known as the drainage phase). When no more water drained out, the stopcock was 

closed until equilibration was reached between the applied air pressure and the liquid in the 

soil sample. This is known as the equilibration phase (or steady state) and at this point, the 

matric potential remained constant. The pressure transducer (26) measured the difference in 

pressure between the pores of the sample and the air pressure applied. This was monitored 

by observing the changes in matric potential values displayed on the computer monitor. Air 

pressure was applied at different levels throughout this experiment to vary the matric 

potential. The amount of water that is available for plant use is retained at matric potentials 

of -10 to -1500 kPa. The low matric potential (0 kPa) applied in the beginning (i.e. water 

easily drained out) and a higher matric potential (33 kPa) correspond to porosity and field 

capacity, respectively. For lower matric potentials, the water manometer (7) was used for 

observations. However, the mercury manometer (8) was used for higher matric potentials.  

 

At a matric potential of -1500 kPa, most crops wilt because the soil water is not available for 

plant uptake (Schulze et al., 1985). The three soil cores were carefully removed from the 

low-pressure cells and weighed again, then transferred to a high-pressure pot that was 

operated at 15 bars (-1500 kPa) of pressure to determine the wilting point. Before using this 

technique (similar to Figure 12-1), a ceramic disc that could withstand these pressures was 

saturated with water for over 24 hours. A similar approach of free drainage phase and 

equilibrium state was used but in this instance, the water was allowed to drain out of the 

samples until an equilibration state was reached. At equilibrium (i.e. no more water dripped 



149 

  

out into the burette), the soil cores were weighed and oven dried for 48 hours and then 

weighed again. Measurements were used to calculate the bulk density of the soil, which was 

also used to calculate the porosity of the soil (see Equation 12-1 and Equation 12-2).  

 

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑐𝑜𝑟𝑒

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑐𝑜𝑟𝑒
 

Equation 12-1 

 

 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =  1 −  
𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

2.65
 

Equation 12-2 

 

 

The units of bulk density are g cm-3, dry soil mass in g, volume of soil cores in cm3 and the 

constant 2.65 represents the particle density in g cm-3. Using a Microsoft Excel spreadsheet, 

calculations were done using porosity, bulk density and readings recorded from the burette 

in order to obtain the soil water content at the different applied pressures. These values 

corresponded to the soil moisture content at saturation (i.e. porosity), field capacity and 

permanent wilting point. 
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 APPENDIX D 

 

Table 13-1 AquaCrop input parameters that were changed in this study 

Parameters 
Type of 

Parameter 

Model Inputs 

Sugarcane Sugarbeet 

Calibrated* Parameterised+ Calibrated* Parameterised+ 

Reference Harvest Index (%)  
Cultivar 

specific 
65 50 70 70 

Max Canopy (%)  

Influenced by 

the 

environment 

and/or 

management 

90 90 84 98 

Time to maximum canopy (GDD)  

Influenced by 

the 

environment 

and/or 

management 

1643 268 1625 916 

Canopy size transplanted seedling (cm2/plant)  

Can be a 

conservative 

parameter for 

a given specie 

or may be 

cultivar 

specific 

 

10.0 10.0 5.0 15.0 

Canopy growth coefficient (%/GDD)  Conservative 0.420 2.880 0.510 0.751 

Canopy declining coefficient (%/GDD)  Conservative 0.226 0.321 0.354 0.386 

Time to canopy senescence (GDD)  
Cultivar 

specific 
3072 2910 1861 1704 

Time to maturity (GDD)  
Cultivar 

specific 
3141 3134 2381 2203 

Initial canopy cover (%) 
Can be a 

conservative 

parameter for 
1.33 1.33 0.33 1.50 
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Parameters 
Type of 

Parameter 

Model Inputs 

Sugarcane Sugarbeet 

Calibrated* Parameterised+ Calibrated* Parameterised+ 

a given specie 

or may be 

cultivar 

specific 

 

Start of yield formation (GDD)  
Cultivar 

specific 
667 540 811 867 

Length of harvest index build up (GDD) 
Cultivar 

specific 
1279 2253 1569 1472 

Time to maximum root depth (GDD) 

Influenced by 

the 

environment 

and/or 

management  

1040 1148 825 420 

Minimum effective rooting depth (m) 

Influenced by 

the 

environment 

and/or 

management  

0.3 0.3 0.2 0.3 

Maximum effective rooting depth (m) 

Influenced by 

the 

environment 

and/or 

management  

1.8 1.8 1.0 1.0 

Shape factor for root expansion  Conservative 1.3 1.3 1.5 1.5 

Root expansion rate (cm/day)  Conservative 0.8 0.9 1.1 1.1 

Base temperature (°C)  Conservative 13 13 5 5 

Upper temperature (°C)  Conservative 30 30 30 30 

Normalised water productivity (g/m2)  Conservative 30 30 17 17 

Sink Strength  
Influenced by 

the 

environment 
0.5 0.5 0.5 0.5 
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Parameters 
Type of 

Parameter 

Model Inputs 

Sugarcane Sugarbeet 

Calibrated* Parameterised+ Calibrated* Parameterised+ 

and/or 

management / 
Parameter is 

cultivar 

specific 

Soil water depletion factor canopy expansion (p-leaf) Upper 

Limit  
Conservative 0.25 0.25 0.10 0.20 

Soil water depletion factor canopy expansion (p-leaf) 

Lower Limit  
Conservative 0.55 0.60 0.45 0.60 

Shape factor for water stress coefficient leaf expansion  Conservative 3 3 3 3 

Soil water depletion for stomatal control (p-stomatal) Upper 

Limit  
Conservative 0.50 0.50 0.65 0.65 

Shape factor for water stress coefficient stomatal control    Conservative 3 3 3 3 

Soil water depletion for canopy senescence (p-senescence) 

Upper Limit  
Conservative 0.60 0.60 0.75 0.75 

Shape factor for water stress canopy senescence    Conservative 3 3 3 3 

Crop transpiration Kctr   Conservative 1.15 1.15 1.1 1.10 

Effect of canopy shelter in late season Kex (%)  Conservative 60 60 60 60 

Aeration stress  Conservative Moderate tolerance Moderate tolerance 

Salinity stress  Conservative Tolerant Moderate tolerance 
+default parameters obtained from the model’s crop files (Raes et al., 2011)  

*parameters that were changed in this study during the calibration of AquaCrop  

Type of parameter: 

 Conservative parameter - is not usually changed for the same crop. 
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 APPENDIX E 

 

 
Figure 14-1 Inter-seasonal variability of sugarcane yield over 50 years in quinary 4719 

(La Mercy) 

 

 
Figure 14-2 Inter-seasonal variability of sugarcane WUE over 50 years in quinary 4719 

(La Mercy) 
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Figure 14-3 Inter-seasonal variability of sugarbeet yield over 50 years in quinary 4697 

(Ukulinga) 

 

 
Figure 14-4 Inter-seasonal variability of sugarbeet WUE over 50 years in quinary 4697 

(Ukulinga) 
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 APPENDIX F 

 

Table 15-1 Percentage changes in yield and WUE of sugarcane for April and February (grey) plantings, derived using dynamically 

downscaled climate data available for six GCMs 

GCM 
4717 4718 4719 

Yield %DIF WUE %DIF Yield %DIF WUE %DIF Yield %DIF WUE %DIF 

CSI 33.18 14.85 2.18 47.71 33.07 13.68 2.30 45.87 32.48 15.83 2.35 45.63 

GF0 33.87 7.34 2.18 40.83 33.08 6.74 2.33 35.70 32.71 7.17 2.40 32.50 

GF1 33.07 22.85 2.22 48.53 31.85 25.90 2.32 48.71 31.93 25.10 2.35 49.25 

MIR 32.01 2.80 2.19 33.11 31.17 3.80 2.32 31.68 31.05 3.97 2.35 32.77 

MPI 34.79 12.34 2.22 44.47 35.27 10.08 2.41 36.93 35.08 10.40 2.46 36.86 

UKM 33.16 16.19 2.20 40.09 33.55 13.16 2.35 34.54 33.26 13.25 2.39 34.17 

Mean (6) 33.35 12.73 2.20 42.46 33.00 12.23 2.34 38.90 32.75 12.62 2.38 38.53 

Mean (4) 33.73 14.35 2.20 45.39 33.32 14.10 2.34 41.80 33.05 14.63 2.39 41.06 

CSI 32.82 18.88 2.15 62.24 32.64 19.98 2.22 64.86 33.10 20.35 2.28 65.93 

GF0 32.18 18.12 2.15 53.95 31.84 18.71 2.24 55.36 31.81 19.87 2.29 56.46 

GF1 31.82 25.79 2.16 57.18 31.62 26.29 2.25 59.02 31.73 27.21 2.30 59.69 

MIR 30.86 10.07 2.08 54.81 30.42 8.79 2.18 54.71 30.41 9.26 2.22 50.68 

MPI 32.61 19.03 2.17 59.12 32.30 17.70 2.26 58.54 32.34 18.08 2.32 58.53 

UKM 31.89 18.57 2.17 51.38 31.82 19.58 2.26 53.44 32.46 18.32 2.31 55.63 

Mean (6) 32.03 18.41 2.15 56.45 31.77 18.51 2.23 57.65 31.98 18.85 2.28 57.82 

Mean (4) 32.36 20.46 2.16 58.12 32.10 20.67 2.24 59.45 32.25 21.38 2.30 60.15 

 Note: Yield in dry t ha-1; WUE in kg m-3 
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Table 15-2 Percentage changes in yield and WUE of sugarbeet for May and September (grey) plantings, derived using the dynamically 

downscaled GCMs 

GCM 
4696 4697 4698 

Yield %DIF WUE %DIF Yield %DIF WUE %DIF Yield %DIF WUE %DIF 

CSI 10.22 50.46 1.59 106.62 9.19 47.43 1.71 94.13 8.33 47.30 1.86 78.44 

GF0 10.12 34.96 1.62 82.35 9.58 18.90 1.77 70.82 8.98 10.01 1.88 61.87 

GF1 9.79 58.85 1.58 106.65 7.96 75.62 1.62 108.05 6.97 85.97 1.64 108.56 

MIR 9.73 34.85 1.62 90.40 8.52 26.74 1.61 93.48 7.59 29.16 1.69 86.65 

MPI 10.44 44.03 1.66 97.89 10.39 15.93 1.81 78.45 9.23 15.77 1.90 70.00 

UKM 10.09 43.89 1.60 84.33 9.59 27.99 1.74 79.83 8.69 31.76 1.79 81.28 

Mean (6) 10.06 44.51 1.61 94.71 9.20 35.43 1.71 87.46 8.30 36.66 1.79 81.13 

Mean (4) 10.14 47.08 1.61 98.38 9.28 39.47 1.73 87.86 8.38 39.76 1.82 79.72 

CSI 7.92 43.33 1.08 59.26 8.08 42.71 1.12 61.88 7.93 37.30 1.15 55.22 

GF0 8.07 46.04 1.08 60.65 7.96 47.19 1.12 63.68 7.87 46.08 1.14 62.72 

GF1 8.05 44.52 1.08 61.86 8.18 43.81 1.14 58.15 7.92 45.34 1.17 55.98 

MIR 8.01 40.22 1.08 58.33 7.89 33.35 1.13 52.65 7.78 30.39 1.14 51.75 

MPI 8.37 41.03 1.10 58.90 8.13 44.09 1.15 57.39 8.02 39.92 1.17 58.12 

UKM 8.18 41.47 1.09 58.26 8.09 42.37 1.13 56.89 7.78 42.28 1.16 56.28 

Mean (6) 8.10 42.77 1.08 59.54 8.06 42.25 1.13 58.44 7.88 40.22 1.15 56.68 

Mean (4) 8.10 43.73 1.09 60.17 8.09 44.45 1.13 60.28 7.94 42.16 1.16 58.01 

 Note: Yield in dry t ha-1; WUE in kg m-3 

 


