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ABSTRACT

This thesis deals with an investigation of the integrity of domination in a graph, i.e., the extent to
which domination properties of a graph are preserved if the graph is altered by the deletion of

vertices or edges or by the insertion of new edges.

A brief historical introduction and motivation are provided in Chapter 1. Chapter 2 deals with k-
edge-(domination-)critical graphs, i.e., graphs G such that y(G) = k and y(G+e) < kforalle €
E(Ei). We explore fundamental properties of such graphs and their characterization for small

values of k. Particular attention is devoted to 3-edge-critical graphs.

In Chapter 3, the changes in domination number brought about by vertex removal are investigated.
Parameters y*'(G) (and y7(G)), denoting the smalles\t number of vertices of G in a set S such that
v(G-8) > v(G) (v(G-S) < ¥(G), respectively), are investigated, as are k-vertex-critical graphs G
(with ¥(G) = k and y(G-v) < k forall v € V(G)). The existence of smallest domination-forcing

sets of vertices of graphs is considered.

The bondage number y*'(G), i.e., the smallest number of edges of a graph G in a set F such that
v(G-F) > 4(G), is investigated in Chapter 4, as are associated extremal graphs. Graphs with
dominating sets or domination numbers that are insensitive to the removal of an arbitrary edge are

considered, with particular reference to such graphs of minimum size.

Finally, in Chapter 5, we.discuss n-dominating sets D of a graph G (such that each vertex in G-D
is adjacent to at least n vertices in D) and associated parameters. All chapters but the first and

fourth contain a listing of unsolved problems and conjectures.



4.1

iv

CONTENTS

1 Introduction and Definitions | 1
1.1 Deflnitions . . .t i e e e 1
1.2 Introduction . . . . .o ot e 3

2 Decreasing Domination Number by the Addition of any Edge 5
2.1 Introduction and Basic Properties of Edge-Domination-Critical Graphs . ... .. S
2.2 Towards a Characterization of Edge-Domination-Critical Graphs .. ... ... .. 11
2.3 Matchings in 3-Edge-Critical Graphs . . ............. .. .. ... ..... 26
2.4 Degree Sequences/Sets of 3-Edge-Critical Graphs ... ................ 28
2.5 End-Vertices of 3-Edge-Critical Graphs . . . . ... ... ... .. ... . ..... 38
2.6 Dominating Cycles in 3-Edge-Critical Graphs . . . ... ... ... S 40
2.7 Hamiltonian Paths in 3-Edge-Critical Graphs . .. ................... 42
2.8 Independent Sets in 3-Edge-Critical Graphs ... ... ................. 50
2.9 Conjectures and Unsolved Problems . .. .- ....................... 52

3 Domination Number Alteration by Removal of Vertices 55
3.1 Introduction . ............... e e 55
3.2 Stability of v« o o 57
3.3 Introduction to Vertex-Domination-Critical Graphs .. ... ... ........ .. 80
3.4 Basic Properties of Vertex-Domination-Critical Graphs . .. ............. 86
3.5 Results Involving Other Parameters of Vertex-Domination-Critical Graphs . . . . 89
3.6 Constructing Vertex-Domination-Critical Graphs . . .. ................ 97
3.7 Vertex-Domination-Critical Graphs, y* and vy~ . .-........... ... ..... 107
3.8 Bounds on the Domination Numbers of a Gra;;h and its Complement D 108
3.9 Characterization ot: Vertex-Domination-Critical Graphs . ... ............ 117
3.10 Domination-Forcing Sets of Graphs . . . .. ...... ... ... ... ... ..... 122
3.11 Conjectures and Unsolved Problems . .. ........................ 128

4 Domination Number Alteration by Removal of Edges 129

Introduction . . . . . . . 129



4.2 Introduction to y-Edge-Stablity Number (Bondage Number) of a Graph . . . . .. 130
4.3 Examples of Bondage Numbers of Graphs . . . . ................. ... 133
4.4 Upper Bounds on the Bondage Numbers of Graphs . ................. 139
4.5 Characterization of k-y*'-Critical Graphs . ... ..... ... ... ... ... ... 146
4.6 Introduction to Edge-Domination-Insensitive Graphs . . . ... ............ 147
4,7 Edge-Domination-Insensitive Graphs of Minimum Size .. .............. 153

4.8 G‘raphs whose Domination Number and Number of Components are

preserved upon the Removal of a Single Edge . . . . ............... 171

5 n-Domination 179
5.1 Introduction . .. . ... ..., P 179

5.2 Properties 0f 4, . oo i e 180

5.3 n-Domination and n-Dependence of Graphs . . ... .................. 185

5.4 Claw-Free Graphs and Generalized Independent Domination Numbers ... ... 191

5.5 Conjectures and Unsolved Problems ... ... ... . ... ... ... ......... 197

Bibliography 199



Chapter 1

INTRODUCTION AND DEFINITIONS

1.1 DEFINITIONS

Unless otherwise specified, the quantities dealt with in this thesis are positive integers. Where

convenient, a rectangle in the figures will denote a complete graph.

In this thesis, all our graphs will be finite, undirected and without loops or multiple edges. A set
S of vertices is said to dominate a graph G (or to be a dominating set of G) if, for each v €
V(G) - S, there is a vertex u € S with u adjacent to v. The smallest cardinality of any such
dominating set is called the domination number of G and is denoted by y(G). Let G be a graph,
and let A and B be subsets of V(G), and H a subgraph of G. If A dominates B (or H), i.e., every
- vertex in B (or H) either belongs to A or is adjacent to a ;/ertex of A, then we write A -~ B (or
A ~ H, respectively). We denote the neighbourhood of a vertex v in a graph G by Ng(v), or by
N(v) if no ambiguity is possible. If G is a graph, then G denotes the complement of G. Let G be
graph. Then, for D € V(G), the neighourhood N(D) of D is defined to be the set {v € V(G); v
is adjacent to at least one vertex of D}. If G is a graph and S, T € V(G), then by /S, T],; we
mean the set {uv € E(G); u € Sand v € T}; if no ambiguity is possible, [S, T]; may be denoted
by [S, T]. For any graph G with vertex set {v,, v,, ..., v}, we define G* to be the graph obtained
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from G by adding p new vertices u;, u,, ..., u, and the edges uyv;, i =1, 2, ..., p, to G. Let
P:x,,X,,...,X, be a path in a graph G. We will write P~ if the order of the vertices in P is to be
considered from x, to x,, or P* if the order is in the opposite direction. For x, x; € V(P), 1 < |,
we write x,P7x; to indicate the segment on P originating at x; and terminating at x;, and we write
xP7x; to denote the same segment in the opposite direction. For a vertex x on P, we denote by
Px* the vertex on P~ that immediately follows x, and denote by Fx the vertex on P~ that
immediately precedes x on P”. If no ambiguity is possible, we denote *x* by x* and "x~ by x".
If the vertices of a cycle (path, respectively) form a dominating set, then we will call this cycle
(path, respectively) a dominating cycle (dominating path, respectively). The wheel W, of order
p = 4 is the graph obtained from the join of a graph isomorphic to C,_; and a graph isomorphic
to K,. For a graph G, we define ¢(G) to be the maximum possible number of end-edges in a
spanning forest of G, where an end-edge is an edge incident with an end-vertex. For a graph G,
a vy (G)-set (respectively, a y™(G)-ser) denotes any smallest subset S of V(G) whose removal from
G creates a graph with greater (respectively, lower) domination number than y(G). Given any set
A, an n-subset B of A is any subset of A of cardinality n. A clique W of a gréph G is a complete
subgraph of G; W may or may not be maximal with respect to the property of being complete.
The double star S{m,n) is the graph obtained from the (disjoint) union of two stars K, _ and K, ,
(m, n = 2) by joining the two central vertices by an edge. For a graph G, we define i(G), the
independent dominating number of G, to be the cardinality of a smallest independent dominating
set (or, alternatively, a smallest maximally independent set) of G. For any graph G, and k € {0,
1, ..., p(G) - 1}, let S,(G) be defined to be the set of vertices of G of degree at most k, and let
5(G) denote [S(G)|. Let G be a graph, and suppose E(G) = {e,, e,, ...,e,}. Then, the
subdivision graph S(G) of G is defined to be graph H satisfying V(H) = V(G) U {x,, x,, ...,
Xqo)> and EH) =] 449 {ux,, x;v; & = uv}. Let G be a graph, and let n € N. The interséction
graph I(%) of afamily & of sets A}, A,, ..., A, is a graph with VI(%)) = & and EQ(¥)) = {AA;
A; N A; # J}. Given disjoint graphs G and H, and vertices x € V(G) and y € V(H), the (x,y)-
coalescence of G and H, denoted by (G,x)*(H,y), is the graph obtained from G and H by
identifying the vertices x and y. We denote by u e, the"i}értex of (G,x)*(H,y) that is the result
of the identification of x and y. If the identified vertices x and y of G and H, respectively, are
understood, we write GeH instead of (G,x)*(H,y). We refer to the graph K. (m € N)as a star
graph, or, more simply, a star. For a graph G, a set F € E(G) is said to be an edge-cover of G
if (F); is a spanning subgraph of G, i.e., if every vertex of G is incident with at least one element
of F. In the set theoretical sense, we shall use the symbol € to indicate inclusion and the symbol

C to indicate strict inclusion. B



For concepts and notation not defined above, but occurring in the thesis, we refer to [CL1].
1.2 INTRODUCTION

The roots of domination theory may be traced back to the nineteenth century, when the notion of
dominating sets of queens on a chessboard was first considered [D1]. Domination theory was
formally initiatéd by Ore in 1962 [O1] and Berge in 1973 [B2], and soon thereafter, many related
concepts were introduced, such as total domination [CDHI1], independent domination [ALI],
connected domination [SW1], k-domination ({[CGS1], [CR1], [F2]), and others. (See the survey

[C1] and the comprehensive collection of papers in [HL1].)

Domination theory is applicable to diverse fields, such as communication theory, political science,
social network theory, experimental sciences, coding theory and computer science. As a simple
example, let the vertices of G represent entities that may or may not be in direct communication
with each other, where two vertices of G are adjacent if a direct communication link exists between
the corresponding entities. For instance, the vertices may represent intersections in a street grid
of a city, where adjacent vertices represent intersections that are exactly one city block apart; or
centres in a transmission network where adjacent vertices represent centres that are within receiving
range of each other. Computers in a microprocessor network may be represented by vertices
which are adjacent if transferral of information between the corresponding computers can be
accomplished in a single unit of time. Members of a human, animal or bacteriological population
may be represented by vertices that are adjacent if, for example, the corresponding members can
communicate directly or are adjacent in a food network or differ from each other within some
prescribed limits. A minimum dominating set then represents a smallest set D of entities such that
each entity not contained in D is able to communicate directly with a member of D. For instance,
the vertices in D may represent intersections in a street grid where facilities (fire hydrants,
telephones, police posts, etc.) may be placed such that every inhabitant of the city is within a city
-block of such a facility. The vertices in D may denote a smallest subset of centres from which
radio signals can be transmitted to reach all centres in the relevant network, or smallest sets of
computers from which stored data can be communicated within unit time to all computers in a
network. A minimum dominating set may represent a smallest subgroup of a human population
that can inform or influence all members of the population directly or, in a biological population,

a minimum dominating set may correspond to a smallest representative subset of the population.
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We shall investigate the extent to which domination properties of a graph, especially its domination
number, are retained or altered if vertices or edges are removed from the graph or if additional

edges are inserted.

It is interesting to speculate on applications for y-insensitive graphs, i.e., graphs such that
v(G-¢) = y(G) for all e € E(G). For a graph G with domination number vy, one can, for
example, imagine that G represents a communication network having p stations and the property
that y of them can transmit a message to the remaining p - vy stations with no message traversing
more than one communication link in succession. For networks'corresponding to y-insensitive
graphs, this property is preserved whenever a single communication link fails; furthermore, we
shall deal with the corresponding problem in which vy transmitters suffice if a prescribed number

of stations or links fail.

A graph is vertex-domination-critical if y(G-v) < (G) for all v € V(G). If the graph G on
which a microprocessor network is modelled is vertex-domination-critical, then the network has
the characteristics that (1) the failure of any processor leaves a network which requires one fewer
"dominating” processor and (as a consequence of (1)) that (2) any processor can be included in a
minimum set of these dominating processors (to see why -(2) is true, consider the fact that, for any
v € V(G), G-v has a dominating set D of cardinality y(G) - 1 and D U {v} is a dominating set
of G with |[D U {v}| = y(G)).

A graph G is edge-domination-critical if y(G+e) < y(G) for all e € E(C—}). If, for instance, the
facilities location problem is modelled on an edge-domination-critical graph G, it may perhaps be
advisable to introduce a new thoroughfare if that can be accomplished for less than the installation
and maintenance cost of a facility. Such edge-domination-critical graphs may also be used to
model political or social populations which allow for maximum communication while guarding
against the existence of a small power block (i.e., a set of influential individuals of cardinality

smaller than an acceptable value of v).

In an experiment in which a representative set of the population under consideration is to be kept
as small as possible, the basis on which "closeness" of members of the population is decided may
well be adjusted to yield a graph G with y(G) accepta?ly small, but such that y(G-¢e) > y(G) for
every e € E(G) (i.e., G is what we shall call 7(G)-'y.*'-critical). In this case, the impositior; bf )
more stringent "closeness" requirements would yield a representative set which is too large for the

purposes of the experiment.



Chapter 2

DECREASING DOMINATION NUMBER BY
ADDITION OF ANY EDGE |

2.1 INTRODUCTION AND BASIC PROPERTIES OF EDGE-
DOMINATION-CRITICAL GRAPHS

In this chapter, we will investigate those graphs G that have the property that the domination
number of the graph obtained from G by the addition of any edge from G is less than 1(G). We
obtain characterizations of certain classes, and investigate the -hamiltonian properties, of these

--graphs.

Unless stated to the contrary below, all results in sections 2.1 to 2.4 appear in [SB1] and [S1],
except for Theorems 2.1.10 and 2.1.11, which are from [BCD2], those in sections 2.8 and 2.9 are
from [S1] alone, and, finally, those in sections 2.5 t0-2.7 are from [W1]. We have supplied the
statement of Theorem 2.2.6, the statement and proof of Proposition 2.1.2, 2.2.8, 2.2.9, 2.2.18,
2.2.19, 2.2.26, 2.2.27, Lemma 2.2.20, Theorem 2.2.5, as well as the proof and most of the
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statement of Theorem 2.8.1, and Remark 2.2.10. We have slightly extended the statement of
Theorem 2.2.24; we have slightly extended the statement of, and supplied a proof for, Theorem
2.2.25 and 2.8.1. We have expanded the proof of Theorem 2.4.5, 2.4.6, 2.4.11, 2.6.2, and 2.7.1
(considerably) and of Lemma 2.2.15, 2.4.3 (considerably), and that of Lemma 2.2.16 (slightly)
and 2.6.1. A large portion of the proof of Theorem 2.2.24 has been newly supplied. We have
slightly generalized Definition 2.2.7, introduced Definition 2.2.12, and slightly altered Definition
2.2.14. We have supplied the proof of Proposition 2.2.1, 2.2.3, 2.2.9, 2.2.11, 2.2.17, 2.4.8,
2.5.2,2.5.4 and of Theorem 2.1.6, 2.2.17,2.3.3, 2.8.1, 2.8.2 and Lemma 2.1.5, 2.2.21, 2.2.22,
2.2.23, 2.4.10, as well as the proof of Case ! in the proof of Prbposition 2.2.28 (of which the
statement has been extended to include disconnected graphs). The statement and proof of
Proposition 2.1.5 have been generalized. We have slightly modified the proof of Theorem 2.1.7.
We have modified the statement of Theorem 2.4.6 and 2.4.11 by supplying a lower bound on the
order of the graphs for which the theorems are valid. We have supplied the example in Remark
2.2.4, and we have clarified Remark 2.4.9.

2.1.1 Definition: A graph G is defined to be edge-domination-critical if y(G+e¢) < y(G) for each
e € E(C_}). For k € N, an edge-domination-critical graph G will be called k:edge-critical if
v(G) = k.

We note that every complete graph is 1-edge-critical, and that every empty graph of order p is

p-edge-critical.

2.1.2 Proposition: If G is a non-complete edge-domination-critical graph, then y(G+e) =
v(G) - 1 for each e € E‘(a).

Proof: Suppose, to the contrary, that there exists an edge-domination-critical graph G, an edge
e =uv € E(C_}), and a minimum dominéting set S of G+e with [S| < 4(G) - 1. Now, if
u, v} n S| € {0, 2}, then S » G and ¥(G) < [S| < ¥(G), which is not possible; if
[fu, v} N'S| =1, thenS U {u, v} »Gand y(G) < [{u,v} US| = [S| + 1 < 4(G), which,
again, is not possible. These contradictions show that no such edge-domination-critical graph G
exists, and the proposition follows. g

The following result is one that we shall use often in the first part of this chapter.

2.1.3 Proposition: For any graph G, A(G) < p(G) - ¥(G).
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Proof: Let G be any graph, and let w € V(G) with degew = A(G). Clearly, V(G) - Ng(w) = G,
and so
¥(G) < [V(G) - NW)| = p(G) - |[Ne(w)| = p(G) - AG). U

A sufficient condition for a graph to be edge-domination-critical is given next.

2.1.4 Proposition: If G is a regular graph that is not complete, and p(G) = A(G) + ¥(G), then

G is edge-domination-critical.

Proof: Let G be a graph satisfying the hypothésis of the proposition. Note that, since G is not
complete, E(Ei) Z . Lete € E((—}). Then, by Proposition 2.1.3,

p(G) = p(G+e) = A(G+e) + y(G+e) = AG) + 1 + y(G+e),
v(G+e) < p(G) - AG) -1 < ¥(G).
Thus, G is edge-domination-critical. ' Ol

The next result, a basic property of edge-domination-critical graphs G with y(G) = 3, is one that

we shall use often.

2.1.5 Lemma: If G is a k-edge-critical graph for k = 3, then no two end-vertices of G have a

common neighbour.

Proof: Suppose, to the contrary, that there exists a k-edge-critical graph G, k > 3, with end-
vertices a, b of G having a common neighbour, v say, in G. Then, since ab & E(G), there exists
S < V(G) - {a, b} with |S| = k - 2 such that S U {a} » G-borS U {b} = G-a. Clearly,
v & S since S » {b}. However, then S U {v} » G, whence y(G) < [S| + 1 < k = v(G),

which is impossible. So, no such k-edge-critical graph G exists. Il

In general, the diameter of a connected graph having domination number k can be as large as
3k - 1 (for example, y(P,) = k, diam P, = 3k - 1, gor k € N). For k-edge-critical graphs, the
situation is more restrictive.

2.1.6 Theorem: For k > 2, the diameter of a (connected) k-edge-critical graph is at most 3k - 4.
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Proof: Suppose, to the contrary, that there exist k = 2 and a k-edge-critical G such that
diam G = 3k - 3. Let a, b be two vertices on a diametrical path of G such that d(a,b) = 3k - 3.
Let P:(a=)vy,Vy,...,Vs-3 be a shortest a-b path in G. Since Vovy; € E(a), there exists S &
V(G) - {V,, Vas} such that |S| = k-2 and S U {vo} » G+vovy, or S U {vy}
G +VyVss; Suppose the former holds. Now, each vertex in S dominates at most three vertices of

P, and v, dominates at most three vertices of P (in G+vyvy_3); 80,

p(P) = ISLEJS(N[s] N V@) U (N[vy] N VE@))|
S ILEJS(N[s] NVE)| + [N[v,] N V(P)|
< XE;IN[S]HV(P)I + [NIvp] N V(@)
< 3S| +3
= 3k -3 < p(P),
which is absurd. So, no such k-edge-critical graph exists, and the theorem follows. [l

We mention in passing that the claim in [S1] that the proof of 2.1.6 appears in [SB1] is erroneous.

That Theorem 2.1.6 is not best possible for k = 3 is demonstrated by the following theorem.
2.1.7 Theorem: The diameter of a connected 3-edge-critical graph is at most three.

Proof:  Suppose, to the contrary, that there exists a connected 3-edge-critical graph with
diam G > 4. Leta, b € V(G) with d(a,b) = diam G. Let A = N(a), B = N(b), and C =
V(G) - (N[a] U N[b]). Since d(a,b) = 4,C # .

We show first that (A); and (B)g cannot both be non-complete. Suppose, to the contrary, that there
exist x, X" € A and y, y' € B such that xx’, yy’ € E(G). Clearly, xy € E(G) (else,
d(a,b) < 3), so we assume, without loss of generality, that there exists w € V(G) such that
{x, w} » G-y. However, then x'w, wb € E(G), implying d(a,b) < 3, a contradiction. So, at

least one of (A)g and (B) is complete; suppose (A) is complete.

Now, let r € A and consider any t € B. Since rt & E(G), there exists y € V(G) with
{t, y} »G-ror {r, y} » G-t. If {t, y} » G-r, then, since (N[a]); is complete, y & N[a]; but
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then a is not dominated by {t, y}. Thus, it must be the case that, for each t € B, there exists a
vertex t* with {r, t'} » G-t. Also, since tt" & E(G), t" # b; butt” € N[b] (since {t'} » {b}), and
hence t* € B. Thus, t* dominates all of B - {t}. Furthermore, for any t € B, t" is unique and
()" = t, as we now show. Lett € B. By what we have just proved, there exists t' € B such
that {t'} =» B - {t}. In particular, there exists t™ = (t")" such that {t"} » B - {t'}. But, tis the
only vertex in B non-adjacent to t'; so, t™ = t, and the desired u)niqueness follows. Furthermore,
t is adjacent to every vertex in B - {t'}. So, since t is adjacent to every vertex of B - {t}, we

see that B can be partitioned into non-adjacent pairs {t, t'}.

Since G is connected, there exist r € A and ¢ € C with rc € E(G). If C € N(r), then
{r, b} » G, contrary to y(G) = 3; so, there exists ¢’ € C with r¢’ € E(G). Now, since
ac’ & E(G), there exists x € V(G) with {a, x}=»G-c' or {c¢’, x} »G-a. Suppose
{a, x} » G-¢’. Then, in order for {a, x} to dominate b, we must have x € N[b]. But, x must
dominate ¢; so, x € B. However, then {a, x} » {x"}. On the other hand, if {c’, x} = G-a, then
x must dominate both r and b, whence d(a,b) < 3, a contradiction. So, ourvoriginal assumption

is false, and every connected 3-edge-critical graph has diameter at most three. O

This result is best possible, since diam H(K3) = 3. Next, we give an example of a class of edge-

domination-critical graphs.

2.1.8 Proposition: For k = 3, define the graph Q, as follows: V(Q) = {u, v, w;
0 <i<k-1}and E(Q) = {uuyy, Wli,, Vi, WV, 4w, viw,, viw; 0 < i < k - 1}, where
the subscript arithmetic is interpreted modulo k. Then, Q, is k-edge-critical. (See Figs 2.1.1 and

2.1.2 for Q, and Q,, respéctively.)

Proof: Let k = 3, and let the graph Q, be defined as above. That y(Q,) < k follows from the
observation that, for instance, Q, is dominated by {u;; 0 < i < k-1}. By inspection, one may
~conclude that no set of cardinality less than k dominates Q.. So, ¥(Q) = k. Showing that
v(Qc+e) = k - 1 for every e € E((_)k) involves a lengthy case-study which we omit. O

The following result appears in [V1].

2.1.9 Lemma: For any graph G,
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Y(G) < p(G) + 1 - y2q(G)+1.

2.1.10 Theorem: If G is a graph such that

Y(G) >p@G) + 1 -y2q(G)+3,

then G is edge-domination-critical.

Proof: Suppose, to the contrary, that there exists a graph G satisfying the hypothesis of the
theorem, but for which there exists e € E(E}) with y(G+e) = y(G). By Lemma 2.1.9,

Y(G+e) < p(G+e) +1 - y2q(G+e)+1,

ie.,

Y(G) s p(G) + 1 -y2q(G)+3,

so that, by our assumption,

p(G) + 1 -y2q(G) +3 <v(G) <p(G) +1 -y2q(G)+3. -

This is not possible, and the desired result follows. O

2.1.11 Theorem: If G is a graph such that

¥(©) = p(G) + 1 - y2qO)+1,

then G is edge-domination-critical.

Proof: Let G be a graph satisfying the hypothesis of the theorem. Suppose E((_S) #z J;lete €
E(G). Then, by Lemma 2.1.9,

1(G+e) s p(G+e) + 1 - y2q(G+e)+1 =p(G) + 1 - y2q(G) ~ 3,

and thus, by our assumption,

¥(G+e) < p(G+e) + 1 - y2q(G)+3 < p(G) + 1 -y2q(G) + 1 = y(G).

So, G is edge-domination-critical. O
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2.2 TOWARDS A CHARACTERIZATION OF EDGE-DOMINATION-
CRITICAL GRAPHS

2.2.1 Proposition: A graph G is 1-edge-critical if and only if G = K, (n € N).

Proof: If G is a complete graph, then G is 1-edge-critical. If G is a graph with y(G) = 1 and
v(G+e) = Oforalle € E((_}), then, since every graph has positive domination number, we must
have E(C_}) = (J, i.e., G is complete. O

2.2.2 Theorem: A graph G is 2-edge-critical if and only if

n,n € Nfori =1,2,...,n.

Proof: Let G be a 2-edge-critical graph. Then, for any edge e € E(C—}), say e = uv, we have
v(G+e) = 1. Thus, without loss of generality, we may assume that {v} » G+e, and so v is an
isolated vertex of G-e, which implies that v has degree 1 in G. Hence, every edge of G is

incident with an end-vertex of G; so G is a disjoint union of stars.

Conversely, suppose that G is a graph whose complement is a disjoint union of stars. Since no
vertex in G is isolated, no vertex of G has degree p(G) - 1, and so y(G) = 2. On the other hand,
the central vertex and any non-central vertex of any star of G form a dominating set for G. So,
¥(G) = 2. Finally, since G-e has an isolated vertex for any e € E(é), G+e has a vertex of

degree p(G) - 1. So, G is edge-domination-critical, and the result follows. O

The characterization of k-edge-critical graphs with k = 3 is more complicated. Our chief interest

will be 3-edge-critical graphs. We begin by characterizing disconnected 3-edge-critical graphs.

2.2.3 Proposition: It G is a disconnected 3-edge-critical graph, then
(1) G =K,g. U 2K, or
(2) G = H U K, (n € N), where H is a connected 2:edge-critical graph.
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Proof: Let G be a disconnected 3-edge-critical graph. If k(G) > 3, then y(G) = 4, so
k(G) € {2, 3}. Let H, H,, ..., H,g be the components of G. Suppose first that k(G) = 3. If
there exists H € {H,, H,, H;} with p(H) = 3 and H not complete, then, for all e € E(I—{),
k(G+e) = 3, so that y(G+e) = 3, which contradicts the 3-edge-criticality of G. So, each of H,,
H,, H,is complete. Furthermore, if more than one component is non-trivial, then, for any edge
f in G with one end in one non-trivial component and the other end in another non-trivial
component, we clearly have y(G+f) = 3, a contradiction. So, at least two of H,, H,, H, are
trivial, and G = K5, U 2K|.

Suppose now that k(G) = 2. Since v(G) = y(H,) + yH,, yH,) = 1 and y(H,) = 2, or
vy(H,) = 2 and y(H,) = 1; suppose the former is-true. Now, if H, is not complete, then
E(I_{) # J and, for e € E(}—{l), v(G+e) = 3, a contradiction. So, H, is complete. For all
e € E(Iflz) c E((_}), v(G+e) = yH) + yH,+e) = 1 + y(H,+e), and so, since G is
3-edge-critical, y(H,+e) = 1; i.e., H, is 2-edge-critical. Hence, G is the disjoint union of a

connected 2-edge-critical graph and a complete graph. 0

2.2.4 Remark: Note that the converse of Proposition 2.2.3 is false. For example,A foranyn > 2,
the graph H = (F, + F;) U F,, where F, = K,, = K,, F, = K,, = P, and F, = K,, is not 3-
edge-critical since, for instance, y(H+uv) = y(H) = 3 for u € V(F,) and v € V(F,) with
degyv = 2. However, H = K,, , U K, (n € N)is a 3-edge-critical graph that is the union of

a 2-edge-critical graph and a complete graph. In fact, we have

2.2.5 Theorem: Let G be a graph of the form G = H U K| (n € N), where H is 2-edge-critical,
and p = p(G) = 4. Then, G is 3-edge-critical if and only if n = 1 orH = mK,, for m > 2.

n

Proof: Let G be a graph of the form H U F, where H is a 2-edge-critical graph and F = K_

(n € N). Suppose thatp = p(G) = 4, and that G is 3-edge-critical. We shall assume thatn >

[\ )

‘and show that H = mK, for m > 2. We consider two cases.

\

Case 1: Suppose that H is connected. Then, by Theorem 2.2.2,
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form > 2, m € Nfori =1, ..., m. We consider two subcases.
Subcase 1.1: Suppose m; = 1 for each i = 1, ..., m. Then, H = mK, (m = 2).

Subcase 1.2: Suppose m; > 2 for at least one i € {1, ..., m}. Let S be a star
component of H with order at least 3, with central vertex X, say, and let u be any
non-central vertex of S. Furthermore, let v be any vertex of F. Since G is 3-
edge-critical, there is a minimum dominating set D of G+uv of cardinality 2. If
v & D, then v/ € D for some v’ € V(F) - {v} and u must dominate H, which
is not possible, since y(H) = 2. Thus, v belongs to every minimum dominating

set of G+uv. So, if D = {v, d}, then {d} » V(H) - {u}.

Now, since [Nj(x)| = p(S) -1 = 2, {x} » H-u; so, d # x. Certainly, d &
V(S) - {x} since, otherwise, {d} » {x} S V(H) - {u}. So, d must belong to a
star component S* in H distinct from S. Suppose y is a central vertex of S” (note,
possibly, $* = K,). Then, ifd =y, {d} # V(S - {d} (# @) € V(H) - {u),
and if d is a non-central vertex of S*, {d} » {y} € V(H) - {u}, both situations
being contrary to the fact that {d} » V(H) - {u}. So, Subcase 1.2 does not occur.

Case 2: Suppose that H is disconnected, so that H = K, . forsomem € N. We claim
that m = 1. Suppose, to the contrary, that m‘ > 2. Then, G = K, U G, U G,, where
G, = K, and G, = K, (where, we recall, n > 2).- Then, clearly, for any vertex
v € V(G,) and any vertex u € V(G,), y(G+uv) = 3, which is a contradiction. So, m =

1, whence H = K..

Conversely, suppose G is a graph of the form H U F, where F = K, (n € N)and His a 2-edge-
critical graph. Now, ifn = 1 or H = mK, for some m € Nthen clearly v(G) = 3.



Fie. 2.2.1
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Case 3: Suppose}_l = mK, for somem € N. If m = 1, then G = 2K, U K_,, which
is clearly 3-edge-critical; so, suppose m > 2. If uu’ € EH), then {u, v} » G + uu’,
where v € V(F). Ifuv € E(é) where u € V(H) and v € V(F), then {u’, v} » G+uv,
where u’ is the (unique) vertex in H satisfying uu’ € E(I—{). Thus, y(G+e) < 2 < 3 for

each e € E(G), and G is 3-edge-critical in this case, also.

Case 4 Suppose thatn = 1. IfH is a (single) star, then, again, G = 2K, U K_,; so,

suppose

1,m;?

an]

n
=

~

n
—

form > 2 mEN,fori=12 .., m Lete€EG. Ife€ EH), then
v(G+e) = 2, so suppose that e = uv € E((_E) - E(ITI); assume that ({v}) is the trivial
component of G. If u is the central vertex of a star in H, then it is easily seen that
{u, w} =» G+uv, where w is any vertex in V(H) - {u}. If, on the other hand, u is a non-
central vertex of a star in H, with y, say, as central vertex, then {u, y} » G+uv. So, in

this case, too, G is 3-edge-critical. O
Combining these last results, we obtain our characterization of disconnected 3-edge-critical graphs.

2.2.6 Theorem: A graph G is a disconnected 3-edge-critical graph if and only if either
G=K U2K (nh€ NorG = H UK, (n € N) where H is a connected 2-edge-critical graph

and, furthermore, n = 1 or H = mK, form > 2.
As we shall see, the following definition provides a general class of 3-edge-critical graphs.

2.2.7 Definition: For any p E N, p > 5, let non—négative integers a, b, and c satisfy
a+b+c=p-3 LetGbeacomplete graph onp - 3 vertices and let A, B, C & V(G) satisfy
AUBUC=VGwithANB=ANC=BNC=y,and |A|] =a, |B|] =b, and
|C| = c. Form the graph H(a,b,c) by adding to G the new vertices u, v, and w with

Nu@po) = A, Nyuyo(v) = B,and Ny, ,(w) = C. The graph H(a,b,c) is depicted in Fig. 2.2.1.

2.2.8 Proposition: Let a, b, ¢ be non-negative integers. Then, the size of H(a,b,c) is
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p(H(a,b,c)) -2 - a+b+c+ 1
( 2 ) ( 2 )

Proof: Let a, b, ¢ be non-negative integers, and let p = p(H(a,b,c)) = a + b + ¢ + 3. Then,

- - - 2_ + -
qH@b,e) = (77) + (p-3) = CED +p -3 < B < (P, O

2.2.9 Proposition: The graph H(a,b,c) in Definition 2.2.7 has domination number 3.

Proof: Let a, b, ¢ be non-negative integers, and let H = H(a,b,c). Certainly, y(H) < 3 since
{u, v, w} » H. Let D be a minimum dominating set of H. Since Ny[u] = A U {u}, Ny[v] =
B U {v}, and Ny[w] = C U {w}, we note that the three sets Ny[u], Ny[v], and Ny[w] are
pairwise disjoint. Furthermore, as D =~ {u, v, w}, D contains at least one vertex from each of

these three closed neighbourhoods, and so |D| = 3. Hence, |D| = 3 and y(H) = 3. O
2.2.10 Remark: It is easy to see that the graph H(a,b,c) defined in 2.2.7 is not 3-edge-critical if
exactly one of a, b, ¢ is zero: if, for example, ¢ = 0, a, b € N and H = H(a,b,c), then

y(H+uv) = y(H) = 3. Hence, we have the following.

2.2.11 Proposition: For non-negative integers a, b, and ¢, the graph H(a,b,c) defined in 2.2.7 is

3-edge-critical if all of a, b, ¢ are non-zero, or exactly two of a, b, ¢ are zero.

Proof: Let a, b, and ¢ be non-negative integers, and let H = H(a,b,c). Lete € E(I_{). We

consider two cases.

Case 1: Suppose a, b, and ¢ are all non-zero. Without loss -of generality, assume that
e =uy,wherey € BU C U {v,w}. Ify € C, then {v, y} » H+uy; if y € B, then
{w,y} »G+uy. If y = v, then {u, ¢} »H+uy, for any ¢ € C; if y = w, then
{u, b} » H+uy, for any b € B. So, y(H+uy) = 2.

Case 2: Supposea > Oandb,c = 0. Ife =rv (ore = rw) for somer € A U {u},
then {r, v} » G+e (or {r, w} » G+e, respectively). If e = vw, then {u, v} » G+e. So,
v(G+e) = 2.



O

Fig. 2.2.2
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Hence, G is 3-edge-critical. O

2.2.12 Definition: For positive integers x and y, we define a graph H(x,y) of order p > 5 to be
a graph that consists of an isolated vertex together with a complete graph of order p - 3 whose
vertex set is partitioned into two sets X and Y, with two additional vertices r and s satisfying
Nuuyp@® = X U {s} and Ny, ,(s) = Y U {r}, where |X| = x, |Y| =y. The graph H(x,y) is
depicted in Fig. 2.2.2.

2.2.13 Remark: Suppose that G is a 3-edge-critical graph. Then, if u, v are any two distinct non-
adjacent vertices of G, then y(G+uv) = 2 and so (as the proof of Proposition 2.1.2 shows) there
exists a vertex x with {u, x} =» G-v or {v, x} » G-u.- Thus, there is a natural orientation induced

on the edges of (_3 as we indicate in the following definition:

2.2.14 Definition: Let G be a 3-edge-critical graph. The digraph obtained (from G) by domination
ordering on G is the digraph D with V(D) = V(G) such that, foru, v € V(D), (u, v) € E(D) if
and only if uv € E(G) and there exists x € V(G) with {u, x} » G-v. We note that D is not

necessarily asymmetric, as the example in Fig. 2.2.3 shows.
The next two lemmas, particularly the first, will be used often in this chapter.

2.2.15 Lemma: Let G be a 3-edge-critical graph and S an independent set of vertices of G. If
n = |S| = 4, then the vertices of S may be ordered as a,, a,, ..., a, in such a way that there

exists a path x,, X,, ..., X,., in G-S with {a,, x;} » G-a,,, fori=1,2,...,n- 1.

Proof: Let G be a 3-edge-critical graph, and let S be an independent set of vertices of G with
n = |S| = 4. Since S is independent in G, (S) is complete and hence the domination ordering
on G induces on S a complete digraph consisting of a tournament with possibly a few extra arcs.
~ Thus, since every tournament has a hamiltonian path, we ‘may label the vertices of S as a,, a,,
..., &, 5o that (a, a;,,) is an arc of D for each i = 1,2, ..., n - 1. Hence, for each i = 1, 2,

..., n - 1, there exists x; € V(G) such that {a, x;} » G-a_,,.

Now, since |S| = 4, x, € S, foreachi =1, 2, ..., n - 1. To see this, suppose that x; € S for
some i € {l, 2, ..., n-1}. Since {a, x}»=G-a,,, it follows that every vertex in
V(G) - {a;, x;, a.,} is dominated by a or x,. Therefore, since a is not adjacent to any other

vertex in S (since S is independent), it follows that x; must be adjacent to every vertex in
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S - {a, x;, a,,}, where |S - {a, x, a.,}| = |S| -3 = 4-3 = 1. However, this is

impossible since x; € S and § is independent.

Leti,j € {l,2, ..., n~-1} withi # j; assume, without loss of generality, that j < i. Then,
{a, x;} = G-a;,, (with a;,, # a.,), so {a, x} = {a.,}. Hence, {a} » {a,.,} or {x;} ~ {a.}.
If {a}~ {a.,}, then (as aa,, ¢ E(G), since S is independent), it follows that a = a,,,
contradicting the assumption that j < i. So, {x} - {a;,,}; but x; # a,, (as x; &€ S). Hence,
X, € E(G). This, combined with the fact that x;a;,, ¢ E(G), yields that x; # x;.

Finally, since for i = 2, 3, ..., n - 1, we have {a, x;} = G-a,, and a; non-adjacent to x;_;, we

have that x; is adjacent to x,.,. Thus, X, X, ..., X,-;°is the required path. O

2.2.16 Lemma: If S is an independent set of vertices of a connected 3-edge-critical graph with

|S| = n for some n € N, then there exists x € S with degx = n - 2.

Proof: Let G be a connected 3-edge-critical graph, let S be an independent set of vertices of G,
and suppose |S| = n for somen € N. Forn = 1or n = 2, certainly deg x > n -2 for any
x € V(G); if n = 3, then, since G is connected, deg x _2 1 = n -2 for every x € V(G). So,
we assume thatn = 4 and let S = {a, a,, ..., a,} be ordered as in Lemma 2.2.15. Now, in the
course of the proof of Lemma 2.2.15, it was shown that for i, j € {1, 2, ..., n - 1} withj < i,
x; is adjacent to a;.,, S0, in particular, x; is adjacent to a,, and thus {x,, x,, ..., X,,} € N(a,

givingdega, = n - 2. [

Note that the connectedness of G was used in the case n = 3 only, in order to guarantee that some
vertex in S is not isolated. In fact, this lemma holds if we require that G have at least four vertices

and we dispense with the demand that G is connected.

2.2.17 Proposition: It S is an independent set of vertices of a 3-edge-critical graph, of order at

least 4, with |S| = n for some'n € N, then there exists x € S with deg x = n - 2.

Proof: Let G be a 3-edge-critical graph of order at least 4, and let S € V(G) be independent in G.
Letn = [S|. Ifn < 2, the result is trivial. Suppose n = 3 and that every vertex in S has degree
0in G. Then, clearly, G has at least four components, which implies y(G) = 4, a contradiction.
So, there is indeed a vertex in S with degree at least n - 2. The case for n > 4 is proved as in

Lemma 2.2.16. O
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2.2.18 Proposition: A 3-edge-critical graph G has order 3 if and only if G = K.
2.2.19 Proposition: A 3-edge-critical graph G has order 4 if and only if G = 2K; U K,.

Proof: Let G be a 3-edge-critical graph of order 4. Then (by Proposition 2.1.3), A(G) <
p(G) - y(G) = 1; however, G # I—(4, so A(G) = 1, and G is isomorphic to an element of {2K,,
K, U 2K}. Clearly, K, U 2K, is 3-edge-critical and y(2K,) = 2; hence, G = K, U 2K,. O

2.2.20 Lemma: No connected 3-edge-critical graph of order S exists.

Proof: Suppose that there exists a connected 3-edge-critical graph G of order 5 that contains no
triangle. If C; C G, then y(G) < 2; s0, Cs € G, and G is bipartite, with partite sets V and W,
say. One of these partite sets, say V, has cardinality 1 or 2; hence, since G is connected, V » G,
and y(G) < 2, contrary to y(G) = 3. So, if a connected 3-edge-critical graph G of order 5 exists,
then G contains a triangle, H (say), but, since A(G) < 5-3 =2, Hisa corﬁponent of Gand G

is disconnected. Hence, no 3-edge-critical graph of order 5 exists. ]
2.2.21 Lemma: Every connected 3-edge-critical graph of order 6 contains a triangle.

Proof: Suppose that there exists a connected 3-edge-critical graph G of order 6 that does not
contain a triangle. Suppose Cs C G, say ({Vvo, Vi, V3, V3, Va})g = Cs. Since G is connected, the
vertex u € V(G) - {v,, vy, Vo, V5, v} is adjacent to v, for some i € {0, 1, 2, 3, 4}; however,
then {v,, v;,,} = G (where the subscripts are taken modulo 5). So, neither C, nor Cs is a subgraph
of G, and G is bipartite, with partite sets V and W, say. If either of V and W has fewer than 3
vertices, then (as before) y(G) < 2. So, |V|, |W| = 3, and (since |V| + |W| = 6) we have
V] = |W]| =3. Let V= {v, v;, vs}, W = {w,, w,, wy}. Since y(G) > 2, at most one of V
and W contains a vertex of degree 3. Note that A(G) < 3. If A(G) < 2, then since G is
_.connected, G = C4 or G = P, which is not possible, sirice y(P;) = y(C) = 2 < ¥(G). So,
A(G) = 3 and there exists x € V(G) with deg x = 3; say, x = v,. By Lemma 2.1.5, at most one

of w,, w,, wy has degree 1.

Case_1: Suppose w, is an end-vertex of G._‘ Then, w,v,, w,v; € E(G). Since G is
connected and A(G-v;) < 2, w, and w, must be adjacent to distinct elements of {vy, v3};

suppose w,v,, wivy € E(G). Then, w,vs, wyv, € E(G). (Thus, G is isomorphic to the
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graph obtained from K, ; by sub-dividing two edges.) However, y(G+w,w;) = v(G),

contrary to the edge-domination-criticality of G. So, this case does not occur.

Case 2: Suppose that none of w,, w,, w, are end-vertices of G. Since A(G-v,) < 2,
exactly two of w,, w,, w, are adjacent to one of v,, v,; assume w,v,, W,v,, Wyv; € E(G)
(it follows that v, is an end-vertex of G). However, we now have that {v,, w,} » G,

contrary to the fact that v(G) = 3. So, this case, too, does not occur.
So, if a connected 3-edge-critical graph G of order 6 exists,then G contains a triangle. ([l
2.2.22 Lemma: Every connected 3-edge-critical graph of order 7 contains a triangle.

Proof: Suppose that there exists a connected 3-edge-critical graph G of order 7 that contains no
triangle. We shall show that neither C nor C; is a subgraph of G, whence it will follow, as above,
that G is bipartite; finally, we shall show that v(G) = 2, which contradiction will establish the

desired result.

Suppose, to the contrary, that G contains a 5-cycle H:vl,;zz,v3,v4,v5,v1. Note that, since C; Z G,
H has no diagonals in G. Let {a,, a,} = V(G) - V(H). As y(G) = 3, no vertex v; (i € {1, 2,
3, 4, 5}) is adjacent to both a, and a,. Since v,v; &€ E(G), there exists a vertex x € V(G) such
that {v,, x} » G-v; or {v;, x} » G-v,. We shall assume, without loss of generality, that

{vi, x} » G-v;. Since {x} +» {v;}, we have x € {v,, a,, a,}.

Case 1: Suppose x = vs. Then, say, av,, a,vs € E(G). Now, a,v,, alvs,'aQVI,
a,v, & E(G) (otherwise, K; C G). Also, ayv,, a,v; € E(G) (otherwise, v(G) = 2).
Furthermore, not both a,v, and a,v, belong to E(G) (otherwise, ¥(G) = 2). So, suppose,
without loss of generality, that a,v, & E(G). Then, the graph I with V(I) = V(G) and
E() = E(H) U {av,, a,vs, a,2,, a,v,} is a supergr'abh of G. However, y(I+v,v,) = 3,

whence y(G+v,v,) = yI+v,v,) = 3, a contradiction. So, this case does not occur.

Case 2: Suppose x € {a,, a,}. Without loss of generality, we assume x = a,. Since
viv, & E(G), we have a,v, € E(G). (Then, a,v, &€ E(G).) Further, av,, a,v, € E(G)
(otherwise, y(G) = 2). Since a,v, & E(G) and {a,, v,} » G-v,, we have a,a, € E(G).
Since K; & G, we have a,v;, a,v; € E(G). Then, the graph J with V({J) = V(G) and
E(J) = E(H) U {av,, a,a,, a,v5, a,v} is a supergraph of G; however, YA +vyvs) = 3.
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Thus, y(G+vsvs) = y(J+vsvs) = 3, contrary to the 3-edge-criticality of G. So, this case

does not occur, either.

Hence, C; ¢ G. We show now that C; ¢ G. Assume, to the contrary, that G contains a 7-cycle
H:vo,Vy,Va,Vs, Ve, Vs, Ve, Vo. Wenote first that G # H, since, otherwise, y(G+v,v,) = v(G), contrary
to the assumption that G is 3-edge-critical. So, since K; ¢ G, E(G) contains at least one element
Vi, Of {viv,5; 0 < j < 6}, where the subscripts are taken modulo 7. However, then

CiVi, Vit VieasVins,Vies,V; (Where the subscripts are taken modulo 7) is a 5-cycle in G, contrary to

the result established above. Thus, G contains no 7-cycle.

We have established that G contains no odd cycles, so G is bipartite, with partite sets V and W,
say. Suppose |V| < |W]|; thus, |V| < 3. Note that, since G is connected, V » G. Hence,
V| 23, andso |V| =3. Let V= {v, vy, v}, W = {w, Wy, W;, W,}.

Since w,w, & E(G), there exists a vertex x € V(G) such that {w,, x} = G-w, or
{w,, x} » G-w,. Assume,without loss of generality, that {w,, x} » G-w,. If x € W, then, in
G+w,w,, |[N[{w,, x}] N W| <3 < |W], so that at least one element of W is undominated;
thus, x € V. Without loss of generality, suppose x = v,. Since [{w,}, {w;, w}] = & in
G+w,w,, we have v,w,, v,w, € E(G), and since [{v,}, {v,, v5}] = & in G+w,w,, we have w,v,,

w,v; € E(G). Further, vyw, & E(G) (otherwise, {v,, w,;} = G).

Since w,w, € E(G), there exists a vertex y € V(G) such that {w,, y}-G-w, or
{wj, y} » G-w,. By the same reasoning used above, y € V; also, yw,, yw, € E(G) since
{w,, Wa}, {W, w}] = @ in G+w,w,. Since yw, EE@G), vy # v, y = vy say. Now,
{ws, v,} =» G-w, is not possible, since v,w, € E(G); so, {w,, v,} = G-w;. Of course, then,
v,w, € E(G), and v,w, € E(G).

Since w,w, & E(G), there exists a vertex z € V(G) such that {w,, z} =» G-w, or {w,, z} » G-w,.
Since {z} = {w,, w3}, z & {v,, v,}. Hence, z = v,. Since v;w, € E(G), {w,,v;} =» G-w, is not
possible; so, we have {w,,v;} » G-w,. Thus, v,w,, v,w; € E(G) and v,w, & E(G). However,
now, {v,, w,} = G, a contradiction.

Thus, every connected 3-edge-critical graph of order 7 contains a triangle. u

2.2.23 Lemma: Every connected 3-edge-critical graph of order 8 contains a triangle.
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Proof: Suppose that there exists a connected 3-edge-critical graph of order 8 that does not contain
a triangle. We begin by noting that 8(G) < 3 (otherwise, if there exist four independent vertices
a,, &, a,, a, in G, then (by Proposition 2.2.15), there exist x,, x,, x; € V(G) - {a,, a,, a;, a,}
such that x,x; € E(G) and {a,} = {x,, x,}, whence ({a,, x,, X,}) = K, a contradiction). Then,
G is not bipartite, since, otherwise, at least one partite set of G would contain at least four
(independent) vertices, contradicting 8(G) < 3. So, G contains an odd cycle. However, G does
not contain an induced subgraph isomorphic to C,, as we now show. Suppose that V(G) = {v,, v,
Vs, Vi, Vs, Ve Vo, a) and that ({v,, v, Vi, Vi, Vs, Ve, V;}) is an induced 7-cycle
C:V,,Va,V3, Ve, Vs, Ve, V5.V, in G; since G is connected, [{a}, V(G)] # & - say av, € E(G). Hence,
av,, av; € E(G) and there exists x € V(G) such that {x, a} » G-v, or {x, v,} » G-a. If
{x, a} » G-v,, then {x} = {v,} and since {x} » {v,}, x € {v, v;}. Thus, {x}  {vs}, {v.}, and
SO av,, av,, v,vy € E(G), contradicting the assumption that G contains no 3-cycle. Hence,

{x, vo} » G-a = C,, which is impossible as y(C;) = 3.

Thus, either G contains no subgraph isomorphic to C;, and hence (since G is not bipartite) contains
a 5-cycle, or G contains a subgraph which is isomorphic to C; but which has a diagonal, which
diagonal forms one edge of a S-cycle (since K; ¢ G). In either case, G contains an induced
S-cycle, Civy,v,,v3,V,,Vs,V,, say, and three other verticeé, a,, a,, a,;, which do not induce a K;;
suppose, without loss of generality, that a,a, € E(G). Then, there exists x such that (without loss
of generality) {a,, x} = G-a,, where x € V(G) - {a,, a,}. We observe that, since K, ¢ G, a; is
adjacent to at most two vertices in {v,, v,, V3, v,, v}, foreach i € {1, 2, 3}. So, if x = a,, then
IN[{a;, x}]| < 6 < |V(G) - {a,}], a contradiction. Consequently, x € {v,, v,, Vs, Vi, Vs};
assume, without loss of generality, that x = v,. From {v,, a,} » G-a,, it follows (since v,v;,
v,v, & E(G)) that alv3,w a,v, and (of course) vyv, are edges of G, whence K, C G, a

contradiction. O

2.2.24 Theorem: Every connected 3-edge-critical graph has order at least 6 and contains a triangle

(i.e, w(G) = 3 for every 3-edge-critical graph G).

Proof: By Propositions 2.2.18, 2.2.19 and 2.2.20, any connected 3-edge-critical graph has order
at least 6. By Lemmas 2.2.21, 2.2.22, and 2.2.23 any connected 3-edge-critical graph of order

6, 7, or 8 contains a triangle.

Now, let G be a connected 3-edge-critical graph of order at least 9, and assume, to the contrary,

that K; ¢ G. Then, since the Ramsey number 1(3,4) = 9, G must contain an independent set S
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of cardinality at least 4. Let S = {a;, a,, ..., a,} be ordered as in Lemma 2.2.15 and let
X,,Xa,...,X,.; be the associated path in G -S. Then, ({x), x,, a,}) is a triangle in G, a

contradiction. O

That w(G) < p - 2 for every 3-edge-critical graph is obvious, G = K,, U 2K, being the only
3-edge-critical graph of order p with w(G) = p - 2. We next identity all 3-edge-critical graphs
G of order p with w(G) = p - 3.

2.2.25 Theorem: Let G be a 3-edge-critical graph on p (= 5) vertices having maximum clique
size w(G) = p-3. If p =275, then G = H(1,1). If p = 6, then G = H(a,b,c) for positive
integers a, b, ¢ satisfyinga + b + ¢ = p - 3, or G = H(x,y) for some positive integers x and

y satisfyingx + y = p - 3.

Proof: Let G be a 3-edge-critical graph on p (= 5) vertices having maximum clique size
wG) =p-3. Let W S V(G) satisfy (W), = K;. Let VG) = W U {u, v, w}. Let
A = Ng(u), B = Ng(v), C = Ng(w). Note that at most one of A, B, and C is empty, as the only

3-edge-critical graph with 2 isolated vertices is K, U 2K, with clique number p - 2.

Case 1: Suppose that A U B U C & W. (This implies, of course, that
{u,v, w} N (AUBUC)=.) If A, B, and C are not pairwise disjoint, then assume,
without loss of generality, that A N B # &. Then, foranyy € A N B, {y, w} »G.

This contradicts the fact that y(G) = 3. So, A, B, and C are pairwise disjoint.

Next, we show that A U B U C = W. Suppose, to the contrary, that there exists
x € W-(A UBU C). Now, since u is non-adjacent to x, there exists y € V(G) such
that {u, y}‘ ~ G-x, or {x, y} » G-u. Suppose {u, y} » G-x. Since y is non-adjacent to
X,y € W. So, y € {v, w}; however, then neither u nor y dominates {v, w} - {y},
which is not possible. So, we assume {x, y} = G-u. Thus, y &€ A. However, then one

of v and w is not dominated by {x, y}. So, our assumption is false and
AUBUC=W.

Finally, we observe that, since A, B, C are subsets of W, where {u, v, w} N W = &,
we have that ({u, v, w}) = I—(3. So, G = H(a,b,c), with either all ofa = |A|, b = |B],
¢ = [C| non-zero, or (by our earlier remark) exactly one of a, b, ¢ equal to zero. By

Remark 2.2.10, we must have a, b, ¢ > 0, as required.
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Case 2: Suppose that A U B U C¢W. Let A=W n A B =W N B,
B’ = W N B. The argument we used in Case 1 to show that A, B, and C are mutually

disjoint shows that A’, B’, and C’ are also mutually disjoint.

We observe first that P, is not a subgraph of F = ({u, v, w}), since otherwise y(G) = 2
(if, for example, degzu = 2, then {u, y} » G forany y € W). So, F = K, U K; or
F = }_<3. But, AUB U Ce¢W,soF = K, UK, Assume, without loss of generality,

that degew = 0.

Next, we show that A’ U B’ U C' = W. Suppose, to the contrary, that there exists
x €EW-(A" U B U C'). Since ux € E(G), there exists y € V(G) such that
{u,y} »G-x, or {x, y}=»G-u. Suppose {x, y}=G-u. Since {y} » {u},
y € V(G) - Ng[u]. However, then at least one of v and w is not dominated. So,
{u, y} » G-x. Since yx € E(G), y € W. If y = v, then {u, y} # {w}. So,y = w.
Further, B’ = O, since, otherwise, {u, y} » B’, contrary to {u, y} » G-x. However,
for z € Ng(w) = C’, {u, z} » G, which is not possible, since y(G) = 3. So, our
assumption is false, and A’ U B’ U C' = W. Finally, we notice that C' =
(otherwise, {z, u} = G, for any z € C'). So, G = H(|A’|,|B’]). If p = 5, then, by
the definition of H(x,y) (see 2.2.12), we must have |A'| = |B’| = I, and G = H(l,1),

as required. O
We now characterize the 3-edge-critical graphs of order 5 and 6.

2.2.26 Proposition: A 3-edge-critical graph G has order 5 if and only if G is isomorphic to an
element of {2K, U K,, C, U K }.

Proof: Let F be the set of all 3-edge-critical graphs of order 5. It is a simple matter to verify that
2K, U K,;, C, U K, € F. Now, let G be a 3-edge-critical on 5 vertices, and observe that (by
Proposition 2.1.3) A(G) < 2, and, by Proposition 2.2.20, G is disconnected. Now, since
v(G) = 3, it follows that w(G) € {2, 3}. If w(G) = 2 = 5 -3, then, by Theorem 2.2.25,
G = H(l,1), i.e. G = C, U K,. Suppose now w(G) = 3; assume V(G) = {v,, v,, Vs, Vi, Vs},
where G, = ({v,, v,, v3}) = K. If G, is not a component of G, or G = K, U K,, then
¥(G) < 2, a contradiction. So, G = K, U 2K,, as réquired. O
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2.2.27 Proposition: A 3-edge-critical graph G has order 6 if and only if G is isomorphic to an
element of {K;* (= H(1,1,1)), K, U 2K, H(1,2), C, U K,}.

Proof: Suppose that G is disconnected. Then, by Proposition 2.2.3, G = K, U 2K, or

G = H U K, (n € N), where H is a connected, 2-edge-critical graph. Suppose G is the latter
graph. Clearly, n € {1,2,3,4}. Ifn =4, then H = 2K, (since v(G) = 3), which is impossible
since H is connected. If n = 3, then, since H contains no isolated vertices, H = K, ,, whence
H = K, U K,; however, then H is not connected. If n = 2, then, since y(H) = 2, we have
H
By Theorem 2.2.2,

n

C,or H = P,; since P, U K, is not 3-edge-critical, G = C, U K;. Suppose now n = 1.

K

1,my?

‘s

"
—

H =

]
form, m € N,i=1,2,..,m;so,since Z"_,(m; + 1) = 5, it follows that H = K, U K, , or
H= K,,. However, ifH = K, ., then H is disconnected. So, G = (I—(2 + I—(u) U K, = H(1,2).

Suppose now that G is connected. Since K; C G (by Theorem 2.2.24) and AG) <
p(G) - ¥(G) = 3 (by Proposition 2.1.3), obviously, w(G) € {3, 4}. However, if w(G) =
p(G) - 2, then G = K, U 2K,, which is not connected. So, »(G) = 3 and, by Theorem 2.2.25,
G = K3.

Conversely, H(1,1,1) is 3-edge-critical by Proposition 2.2.11, K, U 2K, and C, U K, are 3-edge-
critical by Theorem 2.2.6, and H(1,2) is seen to be 3-edge-critical by inspection. O

2.2.28 Proposition: G is a 3-edge-critical graph with exactly two end-vertices if and only if G is

isomorphic to an element of {K, U 2K, K, U K, ,, H(1,1,p-5), where p = 6}.

Proof: Let G be a 3-edge-critical graph with exactly two end-vertices. Then (by Proposition

2.1.5), p(G) = 4. We consider two cases.

Case 1: Suppose G is disconnected. Then, by Proposition 2.2.3, G = K, U 2K, or
G = H U K, (n € N) where H is a connected 2-edge-critical graph. If G is the former,
then (since G has 2 end-vertices) K, must be isomorphic to K, and G = K, U 2K;; if G
is the latter graph, then, by Theorem 2.2.5, n = | or H= mK,, m € N.

Subcase 1.1: Supposeﬁ = mK,, m € N,
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Subcase 1.1.1: Suppose n = 3 (then the end-vertices of G belong to H).
If m = 1, then G has no end-vertices, so m = 2. However, then every
vertex of H has degree 2m - 2 > 1, so, again, G has no end-vertices.

This contradiction shows that this subcase does not occur.

Subcase 1.1.2: Suppose n = 1. Then, the end-vertices of G must belong
to H. This implies, since H is a union of stars, that H must be isomorphic
to K,,. This, however, is contrary to our assumption about H. So, this

subcase also does not occur.

Subcase 1.1.3: Suppose n = 2. Then, the two vertices in the complete
component of G are the two end-vertices of G, and we must have
6(H) = 2. So, H cannot be a single star (as 6(H) # 0), which implies
m=2and G =K, UK, ,.

Subcase 1.2: Suppose n = 1 and

H=|JK

l,m;?

Cs=

—
—

form € N, where m; > 1 for at least one i € {I, 2, ..., m}. Sincen =1, H
must have exactly two end-vertices. As in Subcase 1.1.2, this implies that

H =K, So,G =K, U 2K,

Case 2: Suppose that G is connected. By Propositions 2.2.18, 2.2.19, and 2.2.26, no
edge-critical graph on fewer than 6 vertices has two end-vertices, so p(G) = 6. Let a and
b be end-vertices of G, and let N(a) = {a;}, N(b) = {b,}. We show first that G-{a, b,
a;, b,} is complete. Suppose, to the contrary, that there existu, v € V(G) - {a, b, a,, b,}
such that uv & E(G). Then, there exists a vertexr'x € V(G) which we assume, without
loss of generality, satisﬁes {u, x} » G-v. However (since u & {a, b, a,, b,}), x must
dominate a and b, which is not possible, by Lemma 2.1.5. Hence, G-{a, b, a,, b,} is

complete.

Since y(G) = 3, there exists a vertex w € V(G) - Ng[{a,, b,}]; in particular, w & {a, b,

a;, b}. We now show that G-{a, b, w} is complete. Suppose, to the contrary, that there
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exist vertices u, v € V(G) - {a, b, w} satisfyinguv € E(G). We may assume, without
loss of generality, that there exists a vertex x € V(G) such that {u, x} » G-v. Since (by
Lemma 2.1.5) x does not dominate both a and b, we may suppose that {u} » {a}. Since
u € V(G) - {a, b, w}, we have u = a,. Thus, {x} = {b}, so that x € {b, b}.
However, this produces a contradiction, since {u, x} = G-v implies that {u} » {w} (i.e.,
{a,} = {w}), or {x} = {w} (i.e., {b} = {w} or {b;} = {w}), which is not possible because
w & Ngl{a,, b;}] = Ng[{a,, b, b,}]. Hence, G-{a, b, w} is complete.

It now follows from the definition of w and the fact that G-{a, b, a,, b,} and G-{a, b, w}
are complete that G = H(1,1,p-5).

Conversely, we show that if G is isomorphic to an element of {K, U 2K,, K, U K,
H(1,1,p-5), where p = 6}, then G is 3-edge-critical with two end-vertices. That each of these
graphs has two end-vertices is obvious. By Proposition 2.2.3, K, U 2K, is 3-edge-critical; by

critical. Ol
2.3 MATCHINGS IN 3-EDGE-CRITICAL’ GRAPHS

Any graph with a 1-factor (or perfect matching) must, of necessity, have even order. We show
next that, for 3-edge-critical graphs, this obvious condition is also sufficient. We need the

following lemma.

2.3.1 Lemma: Let G be a connected 3-edge-critical graph. For any T C V(G), G-T has at most

|T| + 1 components.

Proof: Suppose, to the contrary, that there exists a connected, 3-edge-critical graph with a non-
- empty proper subset T of V(G) such that k(G-T) = |T| +" 2. Assume first that T = {v} and let
A, B, and C be three distinct cémponents of G-T. By Lemma 2.1.5, at most one of A, B, and
C is trivial; we shall assume that |A|, |B| = 2. Now,leta,b € Ny(v) witha € Aandb € B.
Since ab & E(G), we may assume, without loss of generality, that {a, x} » G-b for some
x € V(G). Since xb & E(G), we have x # v.._ Furthermore, x must belong to C since
{a, x}»C , N@ N C = &, and x # v. However, then {a, x} » B - {b}(# @), a

contradiction. Thus, we must have n = |T| > 2; let A, A, ..., A,,,, A,,, be n + 2 distinct
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components of G-T. Foreachi € {1,2,...,n + 2},leta € A;. Then, S = {a, a4, ..., &0}
is independent in G with |S| = n + 2 = 4. We assume then that S is ordered as in
Lemma 2.2.15, and let X,,X,,...,X,,, be a path in G-S with {a,, x;} » G-a;,,, for each i = 1, 2,
..., n+ 1. Then, for each i € {I, 2, ..., n + 1}, x is adjacent to vertices in at least
n+2-|{i,i+ 1}] = n = 2 of the components A, and hence each x; i = 1,2, ..., n + 1)
must belong to T. However, then |T| = n + 1 > n = |T|, which is absurd. Thus, no such
3-edge-critical graph G exists, and the lemma follows. il
The well-known theorem of Tutte concerning the existence of a 1-factor in a (general) graph states

that a graph G has a 1-factor if and only if it does not contain a set S of vertices such that G-S

has more than |S| odd components. We may also phrase Tutte’s theorem as follows.

2.3.2 Theorem: A connected graph G of even order has a 1-factor if and only if G does not

contain a set S of vertices such that G-S has at least |S| + 2 odd components.

Proof: Let G be a connected graph of even order. By Tutte’s theorem, G has a I-factor if and
only if G does not contain a set S of vertices such that G-S has at least |S| + 1 odd components.
Suppose that G contains a set S of vertices such that G-S has at least [S| + | odd components.
Let A = J{V(C); Cis anrodd component of G-S}, and B = |J{V(C); C is an even component
of G-S}. Néw, if |S| is even (odd), then (since p(G) = |A| + |B| + |S] is even), G-S must
have an even (odd) number of odd components. So, the statement, concerning a graph G of even
order, that G has a set § of vertices such that G-S has at least |S| + 1 odd components is
equivalent to the statement that G has a set S of vertices such that G-S has at least |S| + 2 odd

components. U
The main result of this section now follows from Lemma 2.3.1 and the above theorem.

2.3.3 Theorem: If G is a connected 3-edge-critical graph of even order, then G contains a

1-factor.

Proof: Let G be a connected, 3-edge-critical graph of even order. By Lemma 2.3.1, G has no
set T of vertices such that G-T has at least |T| + 2 components; in particular, there is no set
T C V(G) such that G-T has at least |T| + 2 odd components. So, by Theorem 2.3.2 (since G

has even order), G has a 1-factor. O
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2.4 DEGREE SEQUENCES/SETS OF 3-EDGE-CRITICAL GRAPHS

A graph G has a vertex of degree p(G) - 1 if and only if v(G) = 1. If a and b are non-adjacent
vertices in a 2-edge-critical graph H, then, in H+ab, either a or b must have degree p(H) - 1,
implying that degya = p(H) - 2, or degyb = p(H) - 2. With these kinds of considerations in
mind, one would expect there to be restrictions on the degrees of the vertices of 3-edge-critical

graphs. In fact, the following theorems demonstrate that such restrictions do hold.

Fig. 2.4.1 shows degree sequences which are known to be degree sequences of 3-edge-critical
graphs of order at most 9, as listed in [S1]. As itis a very simple matter to list the degrees of the
vertices of any graph, whereas the characterization of k-edge-critical graphs has thus far proved
to be difficult, it would be desirable to characterize degree sequences of k-edge-critical graphs
completely. Even establishing properties of such sequences would be of use in exploring the
structure of the graphs concerned. A reasonable conjecture relating to degree sequences of 3-edge-

critical graphs is given in [S1]:

2.4.1 Conjecture: If d;, d,, ..., d,, withd, < d, < ... < d,, is the degree sequénce of a 3-edge-
critical graph G, then, for each i = 0, 2, ..., |"/,], we have d,, +d;=>p-3.

Recall the following defintion.

2.4.2 Definition: For any graph G, and k € {0, 1, ..., p(G) - 1}, S(G) is defined to be the set
of vertices of G of degree at most k, and s,(G) denotes |S,(G)]|.

2.4.3 Lemma: Let G be a connected 3-edge-critical graph with s,(G) = 3k + 1 for some k > 2.
Then, there do not exist vertices x, y, z € S(G) with {x, y} =» G-z.

-Proof: Let G be a connected, 3-edge-critical graph of order p. Fork € {0, 1, ‘..., p - 1}, let
S¢ = S«(G) and s, = s(G). Suppose that some k € {3, 4, ..., p(G) - 1} satisfies S, = 3k + 1
and assume that there exist x, y, z € S(G) with {x, y} » G-z. Then,
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k+1s |,
< p= N UN[y] Uz}
- N® UN@) Ulx y, 2]
< degx + degy + 3

< 2k + 3,

and so k < 2, a contradiction. So, there are no x, y, z € S, with {x, y} » G-z, ifk = 3.

Suppose now that s, = 3.2 + 1 = 7. Suppose that there exist vertices x, y, z € S, with
{x, y} » G-z. Clearly, V(G) = N(x) U N(y) U {x, y, z}, so p = |[V(G)| < INx)| +
S.| =s, =7. So, |S,| =7and V(G) = S, and every vertex

IN(y)| + 3 < 7. However,p =

of G has degree | or 2.

Now, |N[x] U N[y]| = 6, so we must have deg x = degy = 2 and N[x] N N[y] = &. Let
N(x) = {x,, X}, N(y) = {y,, yo}. Then, since A(G) < 2, we have xy,, Xy, Xy, Xz,
yX,, YXo, ¥z & E(G). We consider two cases.

Case 1: Suppose degz = 1. Then, z is adjacent to (at least) one of {x,, X, y;, Y2} - say,
zx, € E(G). Then, zx,, zy,, zy, & E(G) (since deg z = 1) and x,y,, X,Y», XX, & E(G)
(since deg x, = 2). Now, since G is connected, (exactly) one of x,y, and x,y, must belong
to E(G). Say, xy, € E(G). We have now shown that the 3-edge-critical graph G is
isomorphic to P,. However, by Theorem 2.2.23, this produces a contradiction, since P,

contains no triangle. So, Case 1 does not occur.

Case 2: Suppose deg z = 2. If N(z) = N(x) or N(z) = N(y), then C, is a subgraph of
G which must, in fact, be a component of G (since A(G) < 2), which is impossible since
G is connected. So, suppose, without loss of geriérality, that N(z) = {ﬁl, y.}. Then,
ZX3, Z¥2, ¥1Y2r ViXzs xlxz‘, XY X, &€ E(G). If x,y, € E(G), then G = P,, which is not
possible, so x,y, € E(G), and G = C,. However, then, again by Theorem 2.2.23, G is

not 3-edge-critical. So, Case 2 also does not occur.

Hence, no such vertices x, y, z € §, with {x, y} = G-z exist. d
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2.4.4 Lemma: Let G be a connected 3-edge-critical graph with s(G) = 3k + 1 for some k = 2.

Then, B((S.) < k + 1.

Proof: Suppose, to the contrary, that there exists a connected, 3-edge-critical graph G of order p
andk € {0, 1, ..., p - 1} such that s,(G) = 3k + 1but S((SY) = k + 2. Let S, = §,(G), and
let A = {a, a, ..., a.,} be an independent set of vertices in (S,) ordered as in Lemma 2.2.15.
There is an associated path X,,X,,...,X.,; in G-A satisfying {x;, a} » G-a,,, fori =1, 2, ...,
k + 1. Also, by Lemma 2.4.3, x, € S  foreach i € {1,2, ..., k + 1}. Letb &€ § -A
Bk + 1 > k + 2 implies S, - A # ). Then, foreachi = 1, 2, ..., k + 1, b is adjacent to
one of x; or &, which implies (since x; € S, and hence b # x;, foreachi € {1,2, ...,k + 1})

that [N(b)| = k + 1. However, this is impossible since b € S implies deg b < k. U

For a 3-edge-critical graph G, and for all k € {1, 2, ..., p(G) - 1}, we now derive an upper
bound on s (G).

2.4.5 Theorem: Let G be a connected 3-edge-critical graph. Then, for each k € {0, 1, ...,
p(G) - 1}, s,(G) < 3k. -

Proof: Let G be a connected 3-edge-critical graph of order p. Foreach k € {1,2, ..., p - 1},
let S, denote S, (G) and s, denote s (G). We claim that S, is independent. Suppose, to the
contrary, that there exist u, v € S, such that uv € E(G). Then, ({u, v}) = K, is a component
of G (by the definition of S,), which implies, since G is connected, that G = K,; however, this
is impossible, since y(Ky) = 1 # 3 = y(G). So, §, is indeed independent. Thus, by Lemma

2.2.16, there exists x € ‘Sl with 1 = degx = |S,| -2 =5, - 2, whence s, < 3, as required.

Now, suppose there is a k € {2, 3, ..., p(G) - 1} withs, = 3k + 1. Let H = (S.)s. Now,
deggv < deggv < k for any v € V(H), and so each vertex v € V(H) satisfies
~degyv = p(H) -1 -degzgv = 3k + 1 -1 -k = 2k. We show now that, if we consider the
subdigraph D* = (V(H)), of the digraph D obtained from G by domination ordering on G, there
must be a vertex v € V(H) with odp.(v) = ki We observe first that, since deg,u > 2k for each
u € V(H), we have 2q(H) = I ey, degau = 2k.p(H), i.e., q(H) > k.p(H). Now, if every
vertex u of H satisfies odp.(u) < k - 1, then q(H) < "q(D‘) = Licvay 0dps(u) < (k - 1).p(H) <
k.p(H), a contradiction. Hence, there exists v € V(H) with odp.(v) = k.
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Next, let A = {a,, a,, ..., & be a k-subset of the out-neighbourhood of v in D", Thus, for each
i € {1,2, ..., k}, there exists x; € V(G) such that {v, x;} = G-a. That the vertices x, X,, ..., Xg
are distinct may be seen as follows: Suppose there exist i, j € {1, 2, ..., k}, i # j, such that
x = X. Now, {v, x;} » G-a implies va;, x;a; ¢ E(G), and {v, x;} = aj; on the other hand,
{v, x;} = G-a; implies {v, x;} = {v, x;} » {a;}. This contradiction establishes our claim. Note
that, by Lemma 2.4.3, x; & S,, for each i = 1, 2, ..., k. Now, let B be any set of k vertices in
Ss-(AU {v}) which are non-adjacent to v in G. (We know degyv > 2k (where H C E}), SO
at least 2k vertices of S, - {v} are non-adjacent to v in G; the set A accounts for k of these at least
2k vertices, so such a set B exists.) Letb € Band i € {l, 2, ..., k}. Now, {v, x} » G-a,
b # a (sinceb & A), vb € E(G), and b # x; (since B € S, and x; & S,), so we must have
xb € E(G); i.e., each element of B is adjacent in G to each of the k distinct vertices x
(e 7{1, 2, ..., k}). So, since each element b of B lies in S, and hence has degree at most k, we
must have N(b) N S, = @, and thus, in particular, [B, {v, a}] = &, forevery i € {1, 2, ...,
k}. Thus, for any i € {1, 2, ..., k}, B U {v,a} is an independent set of k + 2 vertices in
(SWg (=I_{). However, this contradicts Lemma 2.4.4. Hence, no k = 2 with s, = 3k + 1

exists. O

We note that, for k = 1, K3 is a 3-edge-critical graph for which s, = 3k and so the above bound
is best possible for k = 1. For larger values of k, no example has been found for which s = 3k

and, for large values of p (relative to k), the bound can certainly be improved.

2.4.6 Theorem: If G is a connected 3-edge-critical graph of order p and k € {1, 2, ..., p - 1}
is such that p > 6k? + 3k, then s(G) < k + 1.

Proof: Let G be a connected, 3-edge-critical graph of order p, and let k € {1, 2, ..., p - 1} be
such that p > 6k?* + 3k. Denote S(G) and s(G) by S, and s, respectively. Let
W ={v € V(@G); Nv)n S =}, and M = V(G) - (S, U W). So, M consists of all vertices

- of degree at least k + 1 which are adjacent to at least one vertex of §,.

By Theorem 2.4.5, S < 3k. We will now show that W # . Suppose, to the contrary, that W
is empty. This means that every vertex x € V(G) has at least one neighbour x’ belonging to S,.

S0, S V(G) - SJ| = |V(G) - S| = p - 3k. Since
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[[S,,V(G)-S. 1| s [[S,V(@G)]| = Y degou < k.3k = 3K%
uES,
we have p - 3k < 3k?% s0, p < 3k? + 3k < 6k? + 3k, contrary to assumption. So, W is indeed

non-empty.

Since G is connected, there must exist a € S, such that a is adjacent to some vertex not in S,.
Now, if [N(a) N S| = s, - 2, then, since (by definition) a is adjacent to at least one vertex not
in S, we see thatk > dega = |[N@ N S| + 1 = (s, -2) + 1 = s, - 1, whence we have
s, < k + 1, as required. So, we assume now that [N(a) N S| < s, - 3. Therefore, a is non-
adjacent to at least two vertices of S, other than itself. Letr = IN(@@) N S|, let T =S, - N[a]

?

andt = |T|. Then,r +t =g ~landt > 2.

Now, for each b € T and x € W, xb & E(G) and so, for some y € V(G), {b, y} » G-x or
{x,y}»G-b. Let C = {x € V(G); x €W and for some b, y € V(G) with b € T,
{b,y} » G-x}. Weclaimthat W - C # O, i.e., we claim that there exists x € W such that, for
everyb € Tandy € V(G), {b, y} » G-x (and so {x, y} » G-b). Let x € C. -Then, for some
b,y € V(G) withb € T, we have {b, y} » G-x. Now, by definition of T, b is not adjacent to
a, so it follows that {y} = {a}. Thus, y & W. Also, because p(G) is assumed to be large, we
have W # {x}: Suppose, to the contrary, that |[W| = 1. Then (by the definition of W), every
vertex w of V(G) - {x} has at least one neighbour w’ belonging to §,. So

S, V(G) - (S U {xDI| 2 |V(G) - (S, U {x})| = p -3k - 1. Since

>

[[S,, V(G) - (S, U{x}]| < |[S,,V(@G)]] = ¥ deg,u < 3K2,
ues,
we have p -3k -1 < 3k? sop < 3k? + 3k + 1 < 6k? + 3k, contrary to assumption. So,
W # {x}; say, (x#)z € W. Since {b, y} » G-x, we have, in particular, that {b, y} » {z}.
Sincez € Wandb € S, bz & E(G), so yz € E(G), which implies y & S,. Hence, y € M,
and {y} » W - {x}. Thus, for a fixed b € T and anry x € C, there exists y, € M with
Niyo N W = W - {x}. Fufthermore, if x # x', then y, # y,.. (For our fixed b, if
{b, y,} »G-x, then we must have yx' € E(G), while we have y,x’ & E(G) from
{b, yu} = G-x") So, |C| < [M]|. Now, by the definition of W, every vertex in M is adjacent
to a vertex of S,. So, since [N(S9| < |S¢| .k = s.k < 3k?, wehave |C| < |M]| < 3k2. We
claim that [W| > 3k2 Suppose, to the contrary, that |W| < 3k2. Every vertex s of V(G) - W
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(# @, since p - |[W| = 3k? + 3k > 0) has at least one neighbour s’ belonging to S;. So,
IS, V(G) - (S U W)]| = |V(@G) - S U W)| =p - Bk + 3k?). Since

1S, VG) - (S, UW)]| < [[S, V@G| = Y degqu < 3Kk
u €Sy .
we have p -3k -3k? < 3k% so p < 6k? + 3k, contrary to assumption. Hence,

|[W| > 3k? = |C|, and we have C # W.

Now, letz € W - C. For each b € T, there exists y, with {z, y,} =» G-b (since z ¢ C). Thus
(since [{z}, Sl = D), {yu} = Sk - {b}.’ Recall that a is non-adjacent to at least two other elements
of S,. Hence, y, # a for every b € T. So, since {z, y,} = {a}, it must be that y, €
N@ NS, SS-T,ory, € N@ N M. LetR = {y;; 5y, €M}, and U = {y,; y, € S;}. (So,
it Y = {y,; {z, y»} - G-bforsomeb € T}, then Y = R U U.)

We first observe that if b, b’ € T with b # b’, theny, # vy, (sincey, is adjacent to b’ while y,.
is not adjacent to b’). Now, letb € T such thaty, € U; then z is not adjacent to y, and so there

exists w, € V(G) such that {z, w,} = G-y, or {y,, Wy} = G-z.

Suppose {y,, Wy} = G-z. Using the fact that p > 6k* + 3k, we showed that |W| > 2; say,
z#)x € W. Since {y,, w,} » G-z, {y,, wp} = {x}. Since x € W and y, € U < §,,
vox & E(G); so, w,x € E(G), which implies w, & S,. But now, since {z, y,} » G-b, while w,
is not adjacent to z, and since b # w, (w, & S), we must have w, adjacent to y,. Further, if
IN(y,) N S¢| = s, -2, then, since y,w, € E(G) and w, & S,, we have (as before) that
s < k + 1, as required; so we assume now that |[N(y,) N Sy| < s, -3. However,
N(y,) NS, = S, - {b, y,} (see above), which is a contradiction since |S, - {b, y,}| = s, - 2.

So, the case {y,, w,} = G-z does not occur.

Therefore, for each y, € U, there exists w, € V(G) with {z, w,} = G-y,. However, ifw, € S,,
then, since w,y, & E(G) and {z, y,} = G-b, it follows that w, = b (if w, # b, then yvowy & E(G)
implies (by {z, y,} = G-b) that zw, € E(G); however, this is impossible since z € W and
wy € 5. However, w, = b is not possible, since {z, b} # {a} (while {z, w,} » G-y,). Thus,
it follows that w, & S,. Let L = {w,; y, € U}. Notice that if b and b’ are distinct elements of
T with y,, y» € U (and so y, # y,), then w, # w, since w, is not adjacent to vy ({z,
wy} = G-y, after all), while w,, is adjacent to y,. (So, |[L| = |UJ.) Also, if w, € L, then,

since w, is adjacent to every element of T (this is so because [{z}, S,] = @ and {z, W} = G-yy),



Fig. 2.4.2
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we have w, € R. (If w, € R, then by definition of R), w, satisfies {z, w,} = G-b, so that, in
particular, w,b & E(G), which is a contradiction sinceb € T.) So,L N R = . Also, R N
S, = @ sinceR € M = V(G) - (S, U W). Finally, L N S, = @ sinceL = {w,; y, € U} and
every w, with y, € U satisfies w, & S, (see earlier in this paragraph). So, L, R, and §, are

pairwise disjoint.

Now, let B, be the set of vertices b in T that give rise to a vertex y, € M, i.e., y, € R. Recall
that b # b’ implies y, # ¥y s0 |B,| = |R|. Also, the vertices b in B, = T - B, give rise to
(distinct) vertices y, in U, so |U| = |B,|, and, of course, |B,| + |B,| = [T, so that
IR| + |L| = [R] + |U[] = |T].

Next, we recall that, for every y, € R, {z, y,} = G-b, whence ay, € E(G), and for every

w, € L, {z, w;} » G-y,, whence aw, € E(G). So, a is adjacent to every element of L U R.

Hence,
k =2 dega
> |(N@NS,)URUL]|
= [N@NSJ| + [R|+ L]
= |N@ NS, |+ |T|
= ‘Sk| - |{a}|
= s -1
whence we obtain s, < k + 1, as desired. O

We consider now whether the result of Theorem 2.4.6 is best possible or not. It is easy to see that
s, can be two for arbitrarily large graphs (see, for example,; Proposition 2.2.28). We begin by

considering the following class of 3-edge-critical graphs.

2.4.7 Definition: Letk, t, a, b, ¢ € N be given, wherea + b + ¢ = t, and let G, = K,,,
G, = K, Fa l-factorof G, and § = I_(,, with V(S) = {r,, r,, r3}. Let G(k,t,a,b,c) be the graph
obtained from ((G,-F) + S) U G, by partitioning V(G,) into subsets A, B, and C with |A| = a,
|IB| = b, and |C| = ¢, and joining r, r,, and r; to all vertices in A, B, and C, respectively (see
Fig. 2.4.2).
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2.4.8 Proposition: The graph G(k,t,a,b,c) defined in 2.4.7 is 3-edge-critical.

Proof: Letk, t, a, b, ¢c € N be given, where a + b + ¢ = t, and let G;, G,, F, §, and
G(k,t,a,b,c) be as defined above. Denote G(k,t,a,b,c) by G. Certainly, y(G) < 3 since
{r,, 1,, ;} » G. No vertex of G has degree p(G) - 1, so y(G) = 2. Let D be a minimum
dominating set of G, and suppose |D| = 2. Since N[r,] N V(Gy), N[r,] N V(Gy), and
N[ry] N V(sz are pairwise disjoint, we must have D N V(G,) # O (since D»S§). If
ID N V(G)| =1 -say D N V(G,) = {y} - then some r € V(S) belongs to D, so that the
vertex of G, not dominated by y is dominated by D. However, then D » V(G,) - N(r). If
|ID N V(G))| = 2, then D » V(G,). So, we must have y(G) = 3. Hence, |D| = 3 and
v(G) = 3.

Let uv € E((_}). If uy, v € V(G), then {u, y} » G for any y € V(G,). If u € V(G,) and
v € V(G,), then {u’, v} » G, where u’ is the unique vertex of G, distinct from u that is non-
adjacent tou. Ifuv € E(§), then {u, y} » G foranyy € N(S - {u, v}) N V(Gz). Ifu € V()
and v € V(G,) - N(u), say v € N(w), where w € V(S) - {u}, then {v, y} » G where
y € V(S) - {u, w}. So, G(k,t,a,b,c) is indeed 3-edge-critical. | : O

2.4.9 Remark: Consider the 3-edge-critical graphs G

n

G(m,t,1,1,t-2), where m € N and
t = 2m + 2. Then, the 2m + 2 vertices in V(G,) U V(S) - {r;} have degree 2m + 1,
deg r, = degr, = 2m + 1 and the t vertices in V(G,) have degree t = 2m + 2. Consequently,
fork =2m + 1, s, = k + 1. So, for every odd value of k = 3, the bound in Theorem 2.4.6
is attained by an infinite class of 3-edge-critical graphs. That the bound in Theorem 2.4.6 is not
best possible for k = 2 is shown in Theorem 2.4.11. First, however, we need the following

lemma.
(Note that it is stated erroneously in [W1] that a proof of the following lemma appears in [S1].)

2.4.10 Lemma: If v is a cut-vertex of a connected 3-edge-critical graph, then v is adjacent to an

end-vertex of G.

Proof: Assume, to the contrary, that there exists a 3—egge-critical graph G with a cut-vertex v such
that v is not adjacent to an end-vertex of G. Then, k('G -v) = 2 (by Lemma 2.3.1); say, G-v =
G, U G, with p(G)), p(G,) = 2. Notice that, if there exist x € V(G,), y € V(G,) with vx,
vy € E((_E), then (by Theorem 2.1.7) d(x,y) = 4 > 3 = diam G, which is impossible. So, v is
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adjacent to every vertex in G, or every vertex in G,; say, V(G & N(v). Since (by

Proposition 2.1.3) deg v < A(G) < p(G) - 3, we have that v is non-adjacent to at least two

vertices, a, and a,, in G,.

We show next that G, is complete. Suppose there exist vertices b,, b, € V(G,) withb;b, € E(G).
Then, without loss of generality, we may assume that t}}ere exists a vertex x € V(G) - {b,, b,}
such that {b,, x} » G-b,. Now, since v dominates b, (see previous paragraph), x # v.
Furth’ermore, we clearly ‘ha'v‘e {x} = V(G,). However, then {x, v} » G, which is impossible. So,

G, is indeed complete.

Now, letc € N(v) N V(G,), and u € V(G,). Since uc € E(G), there exists z € V(G) - {c, u}
such that {c, z} =» G-u or {u, z} » G-c. If {u, z} » G-c, then z # v (since {v} » {c}) and
{z} » V(G,) - {c}. However, then {z, v} » G, a contradiction. So, {c, z} =» G-u. Again,z # v
(since {v} ~{u}). Now, {c, z} =»G-u, V(Gy) - {u} # @ (sincep(G) = 2), and
(V(G,) - {u}) N N[c] = &; hence, {z} » V(G,) and, in particular, z € V(G,). However, this
implies (since G, is complete) that {z} ~ {u}, a contradiction. Hence, no such 3-edge-critical

graph with cut-vertex v exists, and the lemma follows. 0
2.4.11 Theorem: If G is a connected 3-edge-critical graph of order p > 30, then s, < 2.

Proof: Subpose, to the contrary, that there exists a 3-edge-critical graph G of order p = 31 with
s, = 3. Since p > 30 = 6.22 + 3.2, we have, by Theorem 2.4.6, that s, < 3. Suppose
S;=1{a, b,c}. Let M =N(S) and W = V(G) - (M U S)).

We show first that P; € (S,)s. Suppose, to the contrary, that (say) ab, cb € E(G). Since G is
connected, there exists x € M - S, such that ax € E(G) or cx € E(G); assume, without loss of
generality, that ax € E(G). Suppose cx € E(G); then dega = degb = degc =2, and x is a
cut-vertex of G. Then, by Lemma 2.4.10, there exists a vertex, w say, of degree 1 with
xw € E(G). By the definitionof S,, w € {a, b, c¢}. However, this is not possible (since deg a =
deg b = deg ¢ = 2). So, cx & E(G). Thus, there exists y € V(G) such that {c, y} = G-x or
{x, y} » G-c. Suppose {c, y} » G-x. Then, since a &€ Nlc], we have y € N[a] = {a, b, x}.
Since {y} + {x}, we have y = b. However, |[N[{c, b}]| < 4 < p -1, contrary to
{c, b} » G-x. So, {x,y} ~G-c. Sinceb & N[x], we have y = a. However, then {b, x} » G,
contrary to y(G) = 3. Hence, our assumption that P, C (S,); is false. We shall show next that
S, is independent.
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Suppose, to the contrary, that ab € E(G) (and, hence ac, ¢b & E(G)). Since G is connected, we
assume, without loss of generality, that deg a = 2; let N(a) = {x, b}. Suppose xb € E(G).
Then, x is a cut-vertex of G and (by Lemma 2.4.10) ¢ is an end-vertex of G adjacent to x.
Hence, there is r € V(G) - {b, ¢} with {b, r} » G-c or {c, r} = G-b; in either case, r # x.
However, N[b] U N[c] C N[x] and {x} = {b, c}; so, {r, x} = G, which is not possible. So,
xb & E(G).

We show next that deg b = 2. Suppose, to the contrary, that b is an end-vertex of G. Then, x
is a cut-vertex of G and, by Lemma 2.3.1, G-x has exactly two components, one of which is
trivial. Howéver, the components of G-x in this case are ({a, b}) and G-{a, b, x}, neither of
which is trivial. So, deg b = 2; say N(b) = {a, y}. If y = x, then (as above) a contradiction

arises; so, y # x and ay & E(G).

Let W = V(G) - N[{a, b, c}]; then W # &. Letw € V(G) - W. Since cw & E(G), there
exists s € V(G) - {c, w} with {c, s} » G-w or {w, s} » G-¢c. In either case, {s} = {a, b},
which implies s € {a, b}. However, then {c, s} » G-w (because |N[{a, b, c}]| <7 <p - 1)
50, {w, s} »G-c. (Hence (since w is an arbitrary vertex in W), (W) is complete.) Furthermore,
if s = a(s = b), then {w, s} » G-c implies {a} » {y} "({b} # {x}), whence {w} = {y} C N(b)
({w} = {x} C N(@)); so, every vertex in W is adjacent to a neighbour of a or a neighbour of b.
Suppose, without loss of generality, that s = a, i.e., {w, a} » G-¢c. Then, yw € E(G). Also,
aw & E(G), so there exists t € V(G) - {a, w} such that {a, t} » G-w or {w, t} » G-a. If
{a, t} » G-w, then {t} = {c} and t & W U {y} (since {t} » {w}); however, {t} » W - {w}. If
t = x, then {x} » G-{b, w} and so {x, y} = G, which is not possible. So, t # x. Furthermore,
t € {b, c}, since [N[{a, b, c}]| <7 < p - 1. But(by {a, w} »G-c), {w} =»G-(N[a] U {c});
s0, in particular, {w} = {t}, which is a contradiction. Hence, {a, t} »» G-w and we must have
{w, t} » G-a. Clearly, {t} » {b, c}, whence t = y, and thus yc € E(G). So (by the properties
of the elements of W proved above), {x, y} =» V(G) - (N(c) - {y}) (where, we recall, |[N(c)| <
2). Since y(G) = 3, V(G) - (N(c) - {y}) # V(G), i.e., ¢ has (exactly) one neighbour z ({z} =
N(c) - {y})which is not dominated by {x, y}. In particular, xc & E(G) (otherwise, {x, y} = G),
so there exists f € V(G) - {x, c} such that {x, f} =» G-c or {c, f} » G-x. If {x, f} » G-c, then
{f} » {b, z}, which is not possible since za, zy € E(G); so, {c, f} » G-x. Then, since
N[c] = {c, y, z}, we have {f} = {a, b}; but, {f} »» {x}. Thus, f = b, and {b, ¢} » G-x.
However, this is not possible since |N[{b, c}]| = 5 < p - 1. So, S, is indeed independent, as

claimed.
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=

Let C, = {x € W; for some y € V(G), {a, y} » G-x}. Note that [W| =p - [M| - [S;
31 -6 -3 = 22. Weclaimthat W - C, # . Let x € W; then, there exists y € V(G) such

that {a, y} »G-x or {x, y}~G-a. Suppose {a, y} »G-x. Since [{a}, S;] = O, yb,
yc € E(G) and so y € M. Also, we note that y is adjacent to all vertices in W - {x}. Thus, for
any x € C,, there exists y, € M with N(y) N W = W - {x}. So, for x, x" € W, x # X'
implies y, # yy. Thus, |G| < [M| <6 < |[W|, and W - C, # . Hence, there exists
x € W - C, € W such that, for some y € M, {x, y} » G-a. Similarly, we may assume that
there is some r € W and s € M such that {r, s} » G-b, and some u € W and v € M such that
{v,u} » G-c. But, then, we have {s, v} < N(a), {v, y} € N(b), {y, s} € N(c). However, s, v,
and y are all distinct. (To see this, note that, for example, by {r, s} » G-b, we have sa,
sc € E(G) and sb € E(G), and by {v, u} » G-c, we have va, vb € E(G)and v¢ & E(G), so that
v and s cannot be the same vertex.) Hence, N(a) = {s, v}, N(b) = {v, y}, and N(c) = {y, s}.

But now, since ab & E(G), we may assume that there exists w € V(G) such that (without loss of
generality) {a, w} » G-b. So, w € N(¢); by the previous paragraph, this implies w = y or
w =s. If w =y, then yb € E(G), contrary to {a, w} >—»G‘—b; so, w = s. However, then
{s, v} = G, which is impossible. Hence, no such 3-edge-critical graph G exists, and the theorem

follows. O

So, although the bound s, < k + 1 has been shown to be best possible for odd values of k (see

2.4.9), the question remains as to whether the bound is best possible for even values of k = 4.
2.5 END-VERTICES OF 3-EDGE-CRITICAL GRAPHS

2.5.1 Remark: We begin by recalling from Theorem 2.4.5 that, for a 3-edge-critical graph G,
s,(G) (the number of end-vertices of G) satisfies s,(G) < 3. By Remark 2.4.9, we know that this
result is best possible, while Proposition 2.5.2 will show that. this upper bound is attained for
.- exactly one 3-edge-critical graph, namely, one of order 6, »\;hence it follows that all‘3-edge—critical

graphs of order more than 6 have at most two vertices of degree one.

The following result is quoted in [W1] where the reader is referred to [S1] for a proof; however,

no such proof is provided in [S1]. -

2.5.2 Proposition: If a 3-edge-critical graph G has three end-vertices, then G = H(l,1,1).
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Proof: Let G be a 3-edge-critical graph with three end-vertices, a, b, and c. Let {a,} = N(a),
{b,} = N(b), and {c¢,} = N(c). By Lemma 2.1.5, the vertices a,, b,, and ¢, are distinct. So,
p(G) = 6. We claim that ({a,, by, ¢,})¢ = K;. Suppose, to the contrary, that (say) a,b, € E(G).
Then, we may assume, without loss of generality, that there exists x € V(G) - {a,, b} such that
{a,, x} » G-b,. As{a} {b}, {c}, we have {x} ~ {b, c}; however, this is impossible by Lemma
2.1.5. So, {{a,, b,, ¢,})s is complete.

We show now that p(G) = 6, whence the desired result will follow. Suppose there exists
y € V(G) - {a, b, ¢, a,b,c}. Then,ya € E((—B), and there exists z € V(G) - {a, y} such that
{a, z} » G-y or {y, z} »G-a. Suppose {a, z} »G-y. Since N[a] = {a, a}, we have
{z} » V(G) - {a, a, y}; in particular, {z} ~{b,-c}. However, this is not possible (by
Lemma 2.1.5, again). So, {y, z} = G-a. Since {y, z} =~ {b, ¢} and b, ¢ are end-vertices of G,
it follows that (say) y € {b, b;} and z € {c, c,}. However, this is contrary to our choice of y.
So, p(G) = 6, and G = H(1,1,1), as desired. O

We shall use the following result in Theorem 2.6.2.

2.5.3 Theorem: Let G be a connected 3-edge-critical grai)h and let A be the set of all end-vertices
of G. Then, G-A is 2-connected.

Proof: Assume, to the contrary, that there exists a 3-edge-critical graph G such that x(G-A) = 1,
where A = {v € V(G); deg v = 1}. Let x be a cut-vertex of G-A. We show first that x is a
cut-vertex of G. Suppose, to the contrary, that G-x is connected. Let Y and W be distinct
components of G-A-x, and let y € Y and w € W. Since, by assumption, G-x is connected,
there is a y-w path P in G-x. However, since [Y, W];_.., = O, it follows that there exists
z € A such that z is an (internal) vertex of P. However, then degsz = 2, which contradicts the

definition of A. So, x is indeed a cut-vertex of G.

By Lemma 2.3.1, G-x has (exactly) two components, say G, and G,. By Lemma 2.4.10, one of
these components, say G,, consists of a single vertex, z say, which is thus an end-vertex of G.
However, then (G-A)-x is connected (no set of end-vertices of a graph is a vertex cutset of the
graph), which contradicts the fact that x is a cut-vertex of G-A. Hence, no such connected 3-

edge-critical graph G exists, and the theorem follows. g
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2.5.4 Proposition: Every connected 3-edge-critical graph with exactly two end-vertices has a

hamiltonian path and, furthermore, has a cycle that contains all vertices of degree at least 2.

Proof: Let G be a connected 3-edge-critical graph of order p with exactly two end-vertices. By
Proposition 2.2.28, G = H(1,1,p-5), where (by Remark 2.5.1), p = 7. Letu and v be the end-
vertices of G, and let w be the vertex of G of degree p - 5. Let V(G) = {u, v, w, u;, Uy, ..., U,
W, Upa)s and let N(w) = {uy us, ..., uL}, Nw = {u}, and N(v) = {u,,}. Then,
Piu,uy, g, Wous U, .U, 0,5,V is @ hamiltonian path of G. Moreover, C:u,,u;,W,Us,Us,..., Uy, Uyl

is a cycle of G that contains all non-end-vertices of G. O
2.6 DOMINATING CYCLES IN 3-EDGE-CRITICAL GRAPHS

We next show that every connected 3-edge-critical graph has a dominating cycle. We shall need

the following lemma.

2.6.1 Lemma: Every 3-edge-critical graph of order at least 7 contains three vertices u, v, x of

degree at least two such that {u, x} » G-v.

Proof: Let G be a connected 3-edge-critical graph of order p = 7. Since p(G) = 7, it follows
(by Remark 2.5.1) that G has fewer than three end-vertices. Suppose 6(G) = 2. Since G is 3-
edge-critical, G is not complete; so, there exist vertices u and v in G with uv & E(G). Therefore,
there exists x € V(G) such that {u, x} » G-v or {v, x} » G-u. Since G has no end-vertices, we

have deg u, deg v, deg x = 2, and the lemma follows.

Suppose now that G has two end-vertices. Then, by Proposition 2.2.28, G = H(1,1,p-5). Let
a, b, ¢ € V(G) with dega = degb = 1, deg c = p -5, and let {a,} = N(a), {b;} = N(b).
Clearly, {a,, b;} » G-c, and deg a, = degb, =p-3 2 4,degc=p-52=2. So,u=a,

.-X = by, and v = c satisfy the statement of the lemma.

We assume now that G has exactly one end-vertex, say w. Let u be the neighbour of w.
Obviously, degu = 2. Since y(G) = 3, there exists a vertex v € V(G) such that uv & E(G);
clearly, then, v # w, so deg v = 2. Then, there .exists a vertex x € V(G) such that either

{u, x} » G-vor {v, x} » G-u. Suppose x = w. Since u is adjacent to w(=x), {v, w} » G-u
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does not hold, so we must have {u, w} » G-v. However, then it follows that {u, v} » G,

contrary to ¥(G) = 3. So, x # w, whence deg x > 2, and the lemma follows. O
2.6.2 Theorem: If G is a connected 3-edge-critical graph, then G has a dominating cycle.

Proof: Let G be a connected 3-edge-critical graph of order p. If p = 6, then, by Proposition
2.2.28,G = K;; the vertices of the 3-cycle of G clearly form a dominating set of G. Suppose,
now, that p = 7, and let u, v, x be three distinct vertices of G whose existence is guaranteed by
Lemma 2.6.1, i.e., each of u, v, x is of degree at least two and {u, x} » G-v. So, if A is the set
of all end-vertices of G, then u, v, x € V(G) - A, where (by Theorem 2.5.3), G-A is 2-
connected. We recall that Whitney’s Theorem states that a non-trivial graph F is n-connected
(n € N) if and only if, for each pair r, s of distinct vertices of F, there are at least n internally
disjoint r-s paths in F. Hence, since x(G-A) = 2, it follows that G-A has as subgraph a cycle
C containing u and x. If v is adjacent to a vertex, w say, on this cycle, then the theorem follows,
since u, x, w € V(C) and {u, x} » V(G) - {v}; hence, {u, x, w} S V(C) -G, and C is a

dominating cycle of G. So, suppose now that v is not adjacent to any vertex on C.

Now, let a’, b’ be distinct vertices on C. Recall that if F'is an n-connected graph (n € N) and y,
Yi» Ya» .- Yo are n + 1 distinct vertices of F, then for i = 1, 2, ..., n, there exist internally
disjoint y-y; paths (cf. Theorem 5.7 in [CL1]). Consequently, G-A has two internally disjoint
v-a’, v-b’ paths P| and Pj, respectively. Let a be the first vertex of P that belongs to C; b the
first vertex of P; that belongs to C; and let P, and P, be the v-a, v-b subpaths of P, and P,’,

respectively.

Suppose C:vy,V,Va,...,V,,V,, for some n = 3; assume u = v,, and let i, j, k € {0, 1, ...,

n - 1, n} such that x = v;, a = v, and b = v, where i # 0 and where, possibly, |{0, i,

i, k}| € {2, 3}. Note, though, that j # k (since P} and P} are internally disjoint).

Now, u and x divide C into two segments, namely, paths Q,:v,,v,,v,,...,v; and Q,:v,,v;

1 1+13vi+1)"'y

Viu15Va, Yo-

Case 1: Suppose that a(=v,) and b(=v,) both lie on Q,, or both lie on Q,. Assume,
without loss of generality, that a, b € V(Q) and that k > j. Then,

C":vP7a(=v))C(v,=)bP3v is a dominating cycle of G-A (and hence of G) since u, x,
v € V(C’) and {u, x} » G-v.
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Case 2: Suppose that a € V(Q,), b € V(Q,) where r, s € {1, 2}, r # s. Assume,
without loss of generality, thata € V(Q), b € V(Qy) andthat 0 < j < iandi < k <
n (since instances where j, k € {0, i} have been dealt with in Case 1). Let t be the vertex
on P, that follows v (by our assumption, t # b). Since {u, x} = G-v, either {u} » {t}
or {x} =~ {t}. Suppose {x} = {t} (then xt € E(G)). In this instance, C":(x=)v;,vi_y,...,V;,
Vietsee VoS W),V Voot o, Vi (Ve =)bP3t,vi(=x) Is a dominating cycle of G. If {u} = {t},

then ut € E(G), and C 0=V Viets e Vi(ZX),Vicg, oo, Vi, (Vi=)aP TV, L V(= 0), VoV sy

Vii1,Vi(=b) is a dominating cycle of G. U
2.6.3 Corollary: If G is a connected 3-edge-critical graph, then G has a dominating path.

2.7 HAMILTONIAN PATHS IN 3-EDGE-CRITICAL GRAPHS

In [S1], Sumner conjectured that every 3-edge-critical graph of order exceeding 6 has a hamiltonian
path. The conjecture was valid for a large collection of computer generated graphs studied by
Sumner and was proved by Wojcicka in [W1]. The proof of the conjecture given below is an
elaboration on that given in [W1], and is presented gs a series of lemmata. Notation and

definitions introduced will be retained without repetition throughout the proof.

2.7.1 Theorem: Every connected 3-edge-critical graph on more than 6 vertices has a hamiltonian

path.

Proof: Suppose, to the contrary, that there exists a connected 3-edge-critical graph G of order at
least 7 that contains no hamiltonian path. By Corollary 2.6.3, G contains a dominating path; let
P:(a=)x,X5,...,x,(=b) (n = 3) be a longest such dominating path. By our assumption,
V(P) C V(G). We shall establish the theorem by deriving a contradiction. We recall that, for any
vertex x €> V(P) - {a, b}, x and x” will denote the successor-and predecessor (respectively) of
- xonP;ie., if x = x, then x™ = x,, and x* = x,,,. The;e exists y € V(G) - V(P). LetY =
N(@y) N VP) = {y, Vs, ..., yk}‘ (k € N), ordered so that, if i, j € {1,2, ..., k}, 1 < j, theny,
precedes y;on aP™b (Y # O, as P is a dominating path). Now, suppose that k > 1 and that there
exists i € {1, ..., k - 1} withy,” = y,,,; suppose y; = x;. Then, XpXas e X (Z Y0, Y, (Viwr=)Xja0,
Xj425--+,X, would be a path Q with V(P) a proper subset of V(Q), i.e., Q is a dominating path of
G, where the length of Q is strictly greater than the length of P. This contradicts the fact that P
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is a longest dominating path in G. Hence, if k > 1, then, for alli € {1, ..., k - 1}, we have

YT # yi+l-

In order to complete the proof of the theorem, we next prove a few lemmas, using the terminology

introduced above.

2.7.2 Lemma: If there exists a vertex in G of degree at least 2 that does not lie on P, then there

exists a vertex z € V(G) - V(P) such that [N(z) N V(P)| = 2.

Proof: Suppose there exists z € V(G) - V(P) with deg z = 2, and assume, to the contrary, that
every vertex in V(G) - V(P) is adjacent to only one-vertex in P. In particular, z is adjacent to
only one vertex of P, say N(z) N V(P) = {x} for some i € {1, 2, ..., n}. By the maximality
of P, we have x; & {a, b}.

Suppose that x; separates z from P, i.e., that G-x; is a disconnected graph in which z lies in a
component distinct from every component containing vertices of P. Now, |{x}| = 1, so (by
Lemma 2.3.1), G-x; has exactly two components (one containing z and the other containing the
vertices of P-x;); by Lemma 2.4.10, one of these compon-ents, say F, must contain a single vertex.
If V(P-x)) € V(F), then P-x; = F and x; € {a, b}.; however, this contradicts our earlier
remarks. So, F = ({z}), which implies N5(z) = {x;}, contradicting the fact that degz = 2. So,
x; does not separate z from P. Thus, there exists a path P,:z,x,w,,w,,...,w_(=x,) from z to a
vertex x,, for some k € {1, 2, ..., n}, k # i. We will assume further that the vertex z and its
associated path P, have been chosen so that P, is as short as possible. Since we have assumed
[N(@) N V(P)| =1, P, E K,. So, x does not lie on P; but, since P is a dominating path, X must
be adjacent to some vertex in P. If x is adjacent to x; and x; is the only vertex on P to which x is
adjacent, then x together with the path x,w,,...,w,, is a path Q from a vertex x not on P that has
degree at least two in G and which satisfies [N(x) N V(P)| = 1, where Q is a path that is shorter
than P,; this contradicts our optimal choice of z and P,. ThLis, we may assume that x is adjacent
to some vertex X; in P, where j € {1,2,...,n},j # i. It follows, then, that P, can be chosen to

be the path z,x,x;.

Note that the following hold: x; is distinct frgm both x? and x; (since, otherwise,

+

aP™x;,z,x,x 1 (=x)P"b or aP"x;(=x;),x,z,x,P"b, respectively, is a longer dominating path in G than
P); x is not adjacent to either of x} or x; (since, otherwise, aP~x;,z,x,x TP"b or aP~x},x z,x,P"b

1% 127%

is a longer dominating path in G); x is not adjacent to either of a or b (since otherwise x,aP~b or
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~

aP~b,x is a longer dominating path in G). Also, X & {a, b} since x &€ V(P). We will assume,

without loss of generality, that x; precedes x; on P; we note that this ensures x} # b.

Note that ax? & E(G) (since, otherwise, bP"x{,aP~x;,z is a longer dominating path than P), so
there exists a vertex w € V(G) - {a, x7} such that {w, a} » G-x! or {w, x{} » G-a. Suppose
{w, a} » G-x}. Since, by our previous comments, x & N[a], we have {w} = {x}. Furthermore,
a # z and za & E(G) (since, otherwise, z,aP”b is a longer dominating path in G than P), so,
{w} = {z}. Suppose-{w, x!} = G-a. Again, by our previous comments, x € N[x!], so
{w} » {x}, and x}z & E(G) (since |[N(z) N V(P)| = 1), so ‘{'Tw} = {z}. So, in either case,
{w} = {z, x}. Furthermore, ab & E(G) (othgr\;vise, xtP~b,aP~x;,z would be a longer dominating
path than P) and x{b & E(G) (otherwise, aP*xi,z,x;x]P*b,x}‘P*xj‘ would be-a longer dominating
path than P). Hence (by {w, a} HG—).(-? or {w, x!} » G-a), {w} » {b}. So, w dominates
{z, x, b}. However, if w = x, then xb € E(G), which (we showed) is impossible, and if w = z
orw = b, thenzb € vE(G), which is also contrary to what we have proved before. So, w &
{z, x, b}. In particular, wz € E(G), whence w € V(P) (otherwise, aI;“b,w,y is a longer
dominating path in G than P). But, N(@z) N V(P) ={x}; so, w = x;. However, then, since w is
adjacent to x, we have that x is a vertex in G not lying on P which satisfies |N(x) nve)| =

|{x;, x(=w)}| = 2, which contradicts our original assumption. O

2.7.3 Lemma: Suppose that |Y| = k = 2. Then,
(1) Foralli € {1, ..., k}, @ay € EG), () by; & EG).
(2) Fori,j € {I, .., k}, i #] (@) yiy; € E(G) ®) yiy; € E(G) (for k > 2).
(3) (@) Foralli €2, ...,%}, ay; € E(G) (fork = 2).
®) Foralli € {1,..., k - 1}, byt & E@G) (fork = 2).
(@) If {5} = {a} or {y} = {b}, then ¥}y & E(G).

Proof: The lemma follows from the maximality of P:

- (la)y Ifi€ {1, ..., k} satisfies ay} € E(G), then y,yiP*'a,y$P”b is a longer dominating path
than P. '

(b) Ifi € {1, ..., k} satisfies by; € E(G), then y,y,P"b,y;P"a is a longer dominating path
than P. -

(2a)  Ifthereexisti,j € {1, ..., k}, i <j, suchthatyiy; € E(G), then aP‘;yi,y,yJ-P"yf,’,y}P"b
is a longer dominating path than P. Similarly, (2b) holds.

(3a) If there is an i € {2, ..., k}, such that ay; € E(G), thg_n yiP7yi,aP7y,,y,yiP7b is a

longer dominating path than P.
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() If there is an i € {1, ..., k - 1} such that by} € E(G), then aP7y,y,yP7b,yiP yg is a
longer dominating path in G than P.

4) Suppose that there exists i € {1, ..., k} such that by, € E(G), but for which
y1yi € E(G). Then, aP"y;y;P"b,y,y is a longer dominating path than P. A similar
argument holds if there exists i € {1, ..., k} such that ay; € E(G), but for which
yiyi € EG). O

For the next few lemmas, we need the following definitions. Let A = {w € Y; w'w™ & E(G)}.
We define a directed graph G” as follows: V(G) = A, and (v, w) is an arc in G™ if and only if

{v*, w} » G-v or {v, w} » G-v",
2.7.4 Lemma: If |Y| = 2,then A # O.

Proof: Let i € {I, ..., k-1}. By Lemma 2.7.3(1), ay; & E(G), so there exists
w € V(G) - {a, y} such that {y*, w} =» G-aor {a, w} » G-y{. '

Suppose {y7, w} = G-a. We recall from our introductory remarks that if k > 1, then, for all
j € {l, ..., k -1}, wehavey; # y;,,. So, certainly, -yfy ¢ E(G) and y7 # y (since y is not
on P), so {w} = {y}. Also, by Lemma 2.7.3(3b), by} € E(G), and y] # b (sincei < k), so we
have that {w} ~ {b}.

Suppose {a, w} = G-y?. By the maximality of P, ay & E(G), so w must dominate y. Also,
ab & E(G) (otherwise, ytP~b,aP™y;,y would be a longer dominating path than P), so w must

dominate b.

Hence, in either case, w dominates y and b. Now, w € {y, b} (since y is non-adjacent to b); so,
yw, yb € E(G). If w € Y, then aP"b,w is a longer dominating path than P; so, we must have
w € Y. Furthermore, by Lemma 2.7.3(4), w*w™ & E(G). Thus, w € A, and the lemma is
proved. ) O

2.7.5 Lemma: Suppose |Y| = 2. By Lemma 2.7.4, A # O, letr € A. Then, there exists
w € A - {r} such that
(1) (r, w) € E(G"), and

(2) w is adjacent to one of the end-vertices of P.
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Proof: Suppose |Y| = 2. Letr € A. Since r'r” & E(G), there exists w € V(G) such that
{r*, w} » G-r~or {r,, w} »G-r*. Thus, w is non-adjacent to at least one of r* and r~, and
sow # r. By Lemma 2.7.3(1a), r*a € E(G), and by Lemma 2.7.3(1b), r'b & E(G); so, neither
r* nor r~ can dominate both of the end-vertices of P. Also, w # y since w dominates a and b.
Hence,since r'y, 1’y € E(G) and |N@*) N {a, b}|, IN@) N {a, b}| < 1, we have that
{r*, w} » G-r or {r, w} » G-r* implies that w dominates both y and at least one of the end-
vertices of P. lThus, w must lie on P (otherwise, w,aP”b or aP”b,w is a longer dominating path
than P), and, since w dominates y, w € Y. Therefore, by Lemma 2.7.3(4), w*w™~ € E(G). So,

w € A, and the lemma follows. O

2.7.6 Lemma: Suppose that |Y| = 2. Letr € A-and suppose that r is adjacent to one of the

end-vertices of P. Then, if (s, w) and (r, w) are arcs in G, thenr = s.

Proof: Suppose, to the contrary, that there exist r, s, w € A such that (s, w), (r, w) € E(G"),

and r # s. There are four possibilities to consider.

Case 1: Suppose that {r*, w} » G-r~ and {s*, w} » G-s~. Without los.'é of generality,
assume that r follows s on P. Then, since ws~ $ E(G) and {r*, w} » G-r7, it follows
that r's”™ € E(G). Now, if rb € E(G), then rP*s,y,r,bPr*,s"P-a will be a longer
dominating path than P. If ra € E(G), then r'P*s,y,r,aPs",r*P"b will be a longer

dominating path than P. So, r does not dominate an end-vertex of P, a contradiction.

Case 2: Suppose that {r", w} » G-r* and {s°, w} » G-s*. This case is analogous to

Case 1.

Case 3: Suppose {r", w} = G-r* and {s*, w} » G-s". Without loss of generality,
assume that r precedes s on P. Since wr* & E(G) and {s*, w} » G-s7, it follows that
s* must dominate r*. However, this contradicts thé cohclusion of Lemma 2.7.3(2) (since

5

we assume r # ).

Case 4: Suppose {r*, w} »G-r~ and {s", w} » G-s*. This case is analogous to
Case 3.

Hence, our assumption is false, and the lemma follows. O
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2.7.7 Lemma: Suppose that |Y| = 2. Then, for each w € A, there exists v € A - {w} such

that (v, w) is an arc in G* (consequently, |A| = 2).

Proof: Suppose |Y| = 2, and let w € A. Let v, = w. Then, by Lemma 2.7.5, there exists
v, € A - {w} such that (w, v,) is an arc in G*, and v, dominates one of the end-vertices of P.
Again, using Lemma 2.7.5, we can find v, € A - {v;} such that (v;,v,) is an arc of G", and
v,a € E(G) or v,b € E(G). Now, if v, = w, then we are done (v = v, satisfies the lemma). So,
suppose v, is distinct from w. Using Lemma 2.7.5 again, we can find v; € A - {v,} such that
V,v, is an arc in G, and v;a € E(G) or v;b € E(G). Notice thét v, is distinct from v, since,
otherwise, we would have (w, v,) and (v,, v,) as distinct arcs in G*, which would contradict

Lemma 2.7.6 (given that v, is adjacent to an end-vertex of P and our assumption that v, # w).

Let Q:(w=v,),V,,V,...,V, be a longest path in G” such that for all i € {1, ..., t}, the v; are distinct
(and each of them dominates one of the end-vertices of P). Note that, by the previous paragraph,
we need only consider the case where (w=)v, is distinct from each of v, v,, .'.., v,; otherwise, as
shown earlier, the proof is complete. Since v, € A, there exists v,,;, € A - {v} such that
(Vy, Vs ) Is an arc of G°, and v,,,a € E(G) or v,,;,b € E(G). Since Q is a lon.gest path in G
starting at w, with the described properties, it must be the; case that v, € V(Q). Ifv,, = v, for
some i € {I, ..., t -1}, then (v, v,,,) and (viy, v,,;) would be distinct arcs in G. By
Lemma 2.7.6, this implies v, = v;_,, which is contrary to assumption. Consequently, v,,, = w.

Thus, v = v, is the required vertex. 0

2.7.8 Lemma: Suppose that |Y| = 2, and let w € A. Then, (y, w) is an arc of G* for some
i€ {1, ..k}, and we have the following: '
(1) Suppose {yf, w} = G-y;. Then,
(@ If1 <1 < k-1, then w is adjacent to a and b.
() If i = k, then w is adjacent to a.
(2) Suppose {yi, w} =» G-yi.
(@) If 2 < i < k, then w is adjacent to a and b.

(b) If i = 1, then w is adjacent to b.

Proof: Letw € A. By Lemma 2.7.7, there exists IS {1, ..., k} such that (y;,, w) € E(G.

(la)  Suppose {y;, w} »G-y;and 1 <i < k - 1. By Lemma 2.7.3(1a), ay! & E(G), and
hence w is adjacent to a. By Lemma 2.7.3(3b), by? € E(G), and thus w is adjacent to b.
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(b) Suppose {y*, w} = G-y; and i = k. From Lemma 2.7.3(1a), ayg & E(G), so wis

adjacent to a.

(2a)  Suppose {y;, w} » G-y} and 2 < i < k. By Lemma 2.7.3(32), ay; & E(G), and hence
w is adjacent to a. By Lemma 2.7.3(1b), by; ¢ E(G), and thus w is adjacent to b.

()  Suppose {yi, w} = G-y7 and i = 1. From Lemma 2.7.3(1b), by; & E(G), so w is

adjacent to b. U

2.7.9 Lemma: Suppose that |Y| = 2, and let w € A. Then,
(1) w is adjacent to one of the end-vertices of P; and
2) if wb & E(G), then {y;, w} » G-y;; and
() if wa & E(G), then {y;, w} » G-y7.

Proof: (1) follows directly from Lemma 2.7.8.

(2) Let w € A, and suppose wb € E(G). By Lemma 2.7.7, (y-,, w) € E(G") for some
i € {1, ..., k}. If the conditions of (1a), (2a), or (2b) of Lemma 2.7.8 hold, then wb € E(G),
a contradiction. So, the conditions of Lemma 2.7.3(1b) hold, and {y;, w} » G-y;.

(3) is proved in a similar manner to (2). O
We are now ready to complete the proof of Theorem 2.7.1.

Case 1: Suppose that there exists a vertex in V(G) - V(P), that has degree at least 2.
Then, by Lemma 2.7.2, we may choosey € V(G) - V(P) such that [N(y) N V(P)| > 1.
Let Y = N(y) N V(®) = {y, Y2 ---» Yo} (50, £ = |Y| = 2). Since ab & E(G), there
exists r € V(G) such that (without loss of generality) {a, r} =» G-b. Now, a does not
dominate y, a # yi, and (by Lemma 2.7.3(1a)) ay] & E(G). Thus, r must dominate y
and yi. Since yy; € E(G), r is distinct from both y and y}. If r is not on P, then
aP?y,,y,r,yP”b would be a longer dominating path in G than P. So, r € V(P), and, since
ry € E(G), r €Y.

Now, ifr € Y - A, thenr'r” € E(G). Supposethaty; =b. Then, Y = {y, y,} (i.e.,

= 2), and y, dominates an end-vertex of P (namely, b). Hence, by Lemma 2.7.3(4),
y5ys € E(G), and s0 A = {y,} or A = {Y, y2}. But, 1t € Y - A, so we must have
A = {y,}. However, this contradicts Lemma 5.7.7. So,y; Zb(and ¢ 2 3). Ifr =y,
theny,y; € E(G) (since {a, r} » G-b and ay; & E(G) (Lemma 2.7.3(1a)) and y3 # b);

however, then aP~y1,yP7y,,y,y,,y:P"b would be a longer dominating path in G than P.
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So, r # y,; but then, since ry; € E(G), we have aP~y,,y,r,y7P7r",r"P~b being a longer
dominating path than P. Therefore, it must be true that r € A. Since b & E(G) (by
{a, r} » G-b), it follows from Lemma 2.7.9 (since r € A) that {yy, r} = G-y, which
implies that ry; & E(G). But, since {a, r} » G-b, a must dominate y;; however, this

contradicts Lemma 2.7.3(3a). Hence, Case 1 does not occur.

Case 2: Suppose that no vertex in V(G) - V(P) has degree at least two, i.e., (since G is
connected) every vertex in V(G) - V(P) is adjacent to a vertex of P and has degree 1.
Since G has order more than 6, it follows from Remark 2.5.1 that G has at most two end-
vertices. If G has exactly two end-vertices, then (by Proposition 2.2.8) G = H(1,1,p-5);
however, then (by Proposition 2.5.4), G contains a hamiltonian path, which is contrary to
our original assumption. So, we may assume that G has exactly one end-vertex, say y.
Then, V(G) - V(P) = {y}, and deggsa, degsb > 1. Let {y,} = N(y) N V(P). Since
ab & E(G), there exists w € V(G) such that, without loss of generality, {a, w} » G-b.
Now, ay € E(Ei), a # yi, and (by Lemma 2.7.3(1a)), ay{ € E(a), whence w must
dominate y; and y. Since w # y (w = y implies N(y) 2 {y}, yi}, e, degy > 1),
wy € E(G)andso w = y,.

We show next that yiy; € E(G). If yiy; € E(G), then there exists v € V(G) such that
{yi, v} » G-yyor {y;, v} » G-yi. Clearly, in either case, {v} = {y}. If yi = b, then
aP7y,,y is a path in G that contains all vertices of G except b = y; (which is adjacent to
y), i.e., Q:aP7y,,y is a longest dominating path in G, where the vertex b € V(G) - V(Q)
has degree at least 2. However, as we showed in Case 1, this situation is impossible. So,
yi # b. Similarly, y;i # a. Suppose {y}, v} = G-y{. Since y; # a and y*a & E(G)
(by Lemma 2.7.3(1a)), we have va € E(G) (v # asince {v} = {y}). If {y7, v} » G-y,
then, since y; # b and yib & E(G) (by Lemma 2.7.3(1b)), we have vb € E(G). Thus,
in either case, we may conclude that v dominates y and one of the end-vertices of P.
Therefore, (since ya, yb € E(G)), it follows that v must be y,- However, this is
impossible, since vy; & E(G) or vy} € E(G). Hence, yly; € E(G).

Since deg b > 1, there exists v € V(P) distinct from b- such that vb € E(G). We will
show that v € V(G) - {b} is not dominated by {a, y,}, which will provide us with our
desired contradiction, since {a, w(=y,)} = G-b. Obviously, v* # a. Further, note that
v # y, since, otherwise, {a, v(=y,)} = G-b implies vb & E(G) while, by definition,

vb € E(G). So, we consider the following two subcases.
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Subcase 2.1: Suppose that v follows y, on P. Then, certainly, v* # y,. If
y,v© € E(G), then y,y,,v'P"b,v,P7y7,yiP7a is a longer dominating path in G
than P, which is impossible. If av* € E(G), then y,y,Pa,v*P"b,vP7y," is a

longer dominating path than P. So, this subcase does not occur.

Subcase 2.2: Suppose that v precedes y, on P. If v* = y,, then aP”v,bP*v™,y
would be a longer dominating path than P. If yv* € E(G), then aP~v,bP7y7,
yiPvty,y (f y; # v*) or aP?v,bPTyi,yry,y (f y; = v*) is a longer
dominating path in G than P. If av* € E(G), then y,y,P"b,vP7a,v'P7y,” is a

longer dominating path than P.

The above two subcases show that v € V(G) - {b} is not dominated by {a, y,}. This
contradicts {a, w(=y,)} » G-b. Hence, Case 2 does not occur either, and the theorem

is proved. U
2.8 INDEPENDENT SETS IN 3-EDGE-CRITICAL GRAPHS

The following theorem gives exact values for 8 and A for disconnected 3-edge-critical graphs and
shows that the independence number of a connected 3-edge-critical graph G is bounded above by
A(G).

2.8.1 Theorem: Let G be a 3-edge-critical graph of order p.
(1) If G is connected, then B(G) < A(G).
(2) If G is disconnected, then §(G) = 3 and
@ ifG =K,, U 2K, thenAG) = {§.;y 23 3;
() if G
then A(G) = p -n - 1ifn < Yp and A(G) = n - 1, otherwise.

I

H U K., where H is a connected 2-edge-critical graph and n € N,

(¢ f G = H U K, where H is a 2-edge-critical graph, then
A(G) — {p-l, if H is connected

p-3. if H is disconnecled"

Proof: (1) Suppose, to the contrary, that there exists a connected 3-edge-critical graph G such that

B(G) =2 A(G) + 1. Let § = B(G) and A = A(G). We consider two cases.
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Case 1: Suppose A = 3. Then, 8 = 4; let S be a maximum independent set in G. Then,
by Lemma 2.2.15, there exists a path x,, X,, ..., Xg_; in G and an ordering a,, a,, ..., &
of the vertices in S in such a way that {a, x;} » G-a;,, fori =1,2,..., § - 1. From
the proof of Lemma 2.2.15, we see that N(x;) 2 {x,, X} U (S - {a,, a;}), whence
deg x, = |S| = B > A, which is absurd.

Case 2: Suppose A < 2. Then, G is a path or a cycle of order at least 7 (p(G) = 7 since
v(G) = 3) that contains no triangle. This contradicts Theorem 2.2.24.
(2a) That B(G) = 3 and AG) = {.; 233 forG = K, U 2K, is obvious.
(2b) Let G be a graph of the form H U K, where H is a connected 2-edge-critical graph. By
Theorem 2.2.2, H is the union of one or more star graphs. So, S(H) = w(I_{) = 2, whence

B(G) = 3 follows, and A(G) = max {n - 1, p(H) - 6(1?1)} =max {n - 1,p - n - 1}; 50, A(G) =
n - 1if2n = p and A(G) = p - n - 1, otherwise.

(2¢) Let G be a graph of the form H U K, where H is a 2-edge-critical graph. As in (2b),
...... 2, Or to any other connected 2-edge-critical graph, then, by

(2b), A(G) = p -1 -1 = p - 2. If H is disconnected, then H is a single star, so that A(G) =
AMH) = p(H) - 1 -8(H) = (p-1)-1-1=p-3. 0

That there is no upper bound on the cardinality of independent sets in edge-domination-critical

graphs is shown by Theorem 2.8.2.
2.8.2 Theorem: For every integer n > 3, there exists a 3-edge-critical graph G with 8(G) = n.

Proof: Letn = 3, and define a graph G, as follows. Let V(G,) = {a, b} U S U T, where the
unions are disjoint, T = {x;, x5 1,j] € {1,2, ..., n},i # 'j}; (T) is complete, and S = {1, 2,
..., n} is independent. Let N(a) = N(b) = S, and for each i, j € {1, 2, ..., n}, i # j,
N(x;;) = S - {i, j}. (See Fig. 2.8.1.) Clearly, 8(G) = n. We show now that G, is 3-edge-
critical. |

First, we establish y(G,) = 3. Let D be a rr;inimum dominating set of G,. Since
A(G, < p(G) -1, wehave [D| = 2. Suppose |[D| = 2. If a € D, then (since ab & E(G));
either b € D (in which case, D T), or i € D for some i € {1, 2, ..., n} (in which case,
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D {x,, X; | <k <n, k#i}). So,a & D;similarly, b ¢ D. But, D = {a, b}; so, there
isi € {1,2,...,n} withi € D. If D € §, then (since S is independent) D > D - S(# &). So,
there exist k, £ € {1, 2, ..., n}, k # ¢, with x,, € D. However, then D »# {k, £} - {i}.
Hence, it follows that our assumption is false, and |[D| = 3. Since {a, b, x} » G, forany x € T,

it follows that y(G,) = 3, as required.

We show now that G, is edge-domination-critical. Let u, v € V(G,) be distinct, non-adjacent

vertices. We consider four cases.

Case 2.1: Supposeu = a(oru =b)and v = x; forsomei, j € {1,2,...,n},i # j.

Then, {b, x;;} = G+ux; (or {a, x;;} » G+ux).

Case 2.2: Supposeu = i for somei € {1, 2, ..., n}, and v = v;; (or v = x,;) for some

k € {1,2, ..., n} withk # i. Then, {v;, k} =» G+ix;, (or {x;, k} =» G+ix,).
Case 2.3: Suppose {u, v} = {a, b}. Then, {a, x} » G+ab for any x €T,

Case 2.4: Suppose u = i, v = j for some i, j € {1, 2, ..., n} with i # j. Then,
{i, x;;} =» G+ij.

So, G, is 3-edge-critical. ]

2.9 CONJECTURES AND UNSOLVED PROBLEMS

In [V1], Vizing provided an upper bound on the number q of edges in a graph G of order p and
having domination number vy, namely,

(P-v)(p-v+2)

q s >

If G has domination number 3, then this bound becomes

(p-D(p-3)

q s >

Clearly, then, the following result, established by Blitch [B1] for connected 3-edge-critical graphs,

is an improvement on Vizing’s bound.



p ; minimum number of edges in a connected
3-edge-critical graph of order p

6 6
7 10
8 12
9 16
10 21
11 26
12 31
13 37
14 44

Table 1

The minimum number of edges in a connected 3-edge-critical graph
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2.9.1 Theorem: If G is a connected 3-edge-critical graph on p vertices, then

q(G) < (Pj).

By Proposition 2.2.8, Theorem 2.9.1 is best possible.

A far more difficult problem is the computation of the minimum number of edges in a connected
k-edge-critical graph. For 3-edge-critical graphs, Sumner has conjectured in [S1] that the graphs
G(m,t,1,1,t-2) (m € N, t = 2m + 2, see 2.4.7 and 2.4.9) have as few edges as possible, namely,
qQ(G(m,t,1,1,t-2) = (*3) + m + t + (3).

2.9.2 Conjecture: If G is a connected 3-edge-critical graph of order p, then

o@ < mia 73)+ () )

where the minimum is taken over all evenk, 2 < k < p. Forp = 10, this minimum is achieved

at essentially k = 'ap ([S1]).

Table 1 shows the conjectured minimum number of edges for 3-edge-critical graphs of order at
most 14. This table has been verified by Sumner ([S1]) using computer search for p < 9. For
values of p > 9, 3-edge-critical graphs of order p may be generated using an algorithm given in

[S1]. A good deal of heuristic evidence lead D. P. Sumner to the following conjecture.

2.9.3 Conjecture: If G is a connected 3-edge-critical graph with diam G = 2 and 6(G) > 3, then
Y(G) = i(G).

The following conjecture appeared in [SB1].
2.9.4 Conjecture: For every k-edge-critical graph G, y(G) = i(G).

Suppose that a graph G models, for example, a street network and that a smallest dominating set
represents a set of intersections at which facilities are to be located. Then (assuming that the cost
of building a street is less than the cost of the installation of a facility), it is economically

advantageous to construct a new street if, as a result, the number of facilities can be reduced by
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one . The cost of the new thoroughfare is likely to be relatively small if it links two intersections
which are not far apart in the original street network. Hence, it is of interest to study a modified
version of k-edge-critical graphs, namely, (k,d)-edge-critical graphs, introduced and defined in
[HOS1] as follows: For k,d € N, d = 2, a graph G is (k,d)-edge-critical if v(G) = k and
v(G+uv) < k for every uv € E(G) such that dg(u,v) < d. In[HOS1], (k,d)-edge-critical graphs
are investigated. It is shown that a graph G is (2,2)-edge-critical if and only if G is a double star
or a union of disjoint stars. It is shown that the diameter of a (3,2)-edge-critical is at most 4 and
that the only (3,2)-edge-critical graphs of diameter 4 are contained in the set H consisting of the
graphs G defined as follows.: LetH, = K, (r =2 2), H, = K, (s > 1) and let H; be obtained from
a complete graph K, (m = 2) by removing the edges in a 1-factor. Letu € V(H,) and let v €
V(H,). Let G be obtained from the disjoint union of H,, H,, and H; by joining every vertex of H,
to every vertex of H; U Hj distinct from u and v. Whereas each 3-edge-critical graph of diameter
3 is also (3,2)-edge-critical, it is shown that the graph G defined below is (3,2)-edge-critical but
not 3-edge-critical. Let H, = K, (m = 2), H, = H, = K, and H, = K,. Let v be a vertex of
H, and suppose V(H,) = {u}. Let G be obtained from H, U H, U H, U H, b'y first joining every
vertex of H,-v to every vertex of H,. Next, join u to every vertex of H,. Finally, if V(H,) =
{vi, va, ..., v} and V(H;) = {u,, uy, ..., u,}, then join the vertex v; to the vertex u; for each pair

i,je{l,2,..,n},i# j. The following problem remains open:

Problem: Characterize the (3,2)-edge-critical graphs of diameter 3 that are not 3-edge-critical, or,
failing this, obtain properties of such graphs. For instance, does such a graph necessarily contain

a dominating path?

It is also shown in [HOS1] that the diameter of a (4,2)-edge-critical graph is at most 6 and that,
for k = 2, each (k,2)-edge-critical graph G satisfies y(G-v) < k for each v € V(G), though G
is not necessarily k-vertex-critical. The investigation of further properties of (k,2)-edge-critical
graphs merits attention; for instance, the following question posed by the authors is as yet

unanswered: If G is a (k,2)-edge-critical graph (k = 3), is it true that 1(G) = v(G)?

The characterization of 3-edge-critical graphs that are minimal with respect to the property of being
edge-domination-critical has not yet been investigated. It is known, however (see [S1]), that a 3-

edge-critical graph G that has the smallest possible order satisfies 26(G) < p(G) < 36(G).
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Chapter 3

DOMINATION NUMBER ALTERATION BY
REMOVAL OF VERTICES

3.1 INTRODUCTION

Whereas, in Chapter 2, we considered the situation where a graph H is produced from a graph G
by the insertion of edges so that y(H) < (G), we shall consider in this chapter the changes in
domination numbers of graphs brought about by the removal of vertices.

All results in sections 3.1 and 3.2 are from [BHNS1], with the ex¢eption of Proposition 3.2.13 and
3.2.16, which come from [BCD2], and Theorem 3.2.36, which comes from [SB1], and all those
in sections 3.3 to 3.9 are from [BCD1] and [BCD2]. All examples have been generalized, apart
from that in Fig. 3.2.1. In addition, the examples in Figs 3.2.2, 3.2.5, 3.2.8 and 3.8.1 are new.
We have generalized Lemmas 3.2.15 and 3.2.17 and Theorem 3.4.5. We have supplied Corollary
3.4.8 and 3.6.4, and the statement and proof of Proposition 3.2.10 and 3.2.11, and Theorem 3.4.5.
We have made the statement of Proposition 3.2.38 more precise (than in [SB1]) and supplied a
proof; we have made the statement of Theorem 3.2.6 slightly more informative. We have supplied

Remark 3.2.5, as well as a proof for Proposition 3.2.6, 3.2.22, 3.2.28, 3.2.31, 3.4.4, 3.3.2.6.1,



u; u, u Ui u

Fig. 3.1.1

Fig. 3.1.2

Fig. 3.1.3
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33.2.7,33.2.8.1,3.3.2.9.2,3.5.8,3.5.10,3.6.9,3.8.8,3.8.9,3.8.11, Theorem 3.2.18, 3.2.20,
3.2.24, (most of) 3.6.7, 3.6.8, 3.8.6, 3.9.6, Corollary 3.2.14, 3.3.2.4, 3.4.6, 3.5.4, 3.8.12,
3.8.16, Lemma 3.6.5, 3.8.15, and most of 3.6.3, as well as of Remark 3.2.30 and Example
3.3.2.3. We have expanded Remark 3.2.27, 3.5.2, and 3.8.7, as well as the proof of Theorem
3.2.23, 3.2.26 (substantially), 3.2.32, 3.2.33 and 3.2.34 (considerably), 3.4.7, 3.5.12, 3.6.6,
3.8.13, 3.9.4, Lemma 3.4.9, 3.8.3, 3.8.4, 3.8.5 and Corollary 3.8.14 (slightly). Also, we have
considerably clarified and expanded Theorem 3.9.2. Finally, we remark that section 3.10

constitutes original work done jointly with P. J. Slater and H. C. Swart.

3.1.1 Definition [BHNS1]: Let G be a graph and p = u(G) be an arbitrary parameter of G. The
u -stability of G is the minimum number of vertices in a set S C V(G) such that u(G-S) # u(G),

if such a set S exists.

3.1.2 Remark: Some parameters, such as the clique number, w(G), the chromatic number, x(G),
the independence number, 8(G), and the vertex arboricity, a(G), of a graph G, have the property
that removal of any subset S of V(G) does not result in a graph for which the parameter is greater
than the value of the parameter for G. For other graphical parameters, there exist graphs G and
subsets S, and S, of V(G) such that u(G-S,) > u(G) and ;u(G -S,) < u(G). One example of such
a parameter is the connectivity k. Consider the graph G shown in Fig. 3.1.1 with V(G) = {u,, u,,
vevy Upy oy Uy, V) osuch that ({u,,u,,...,u,,...,u.}) is complete and v is adjacent to u,, u,, ..., u,,
where n, r € Nand n 21 + 2. Here, ¥(G-u)) =r1r-1<«(G) =1 < ¥«(G-v) =n - 1.
Another example is the diameter of a graph. The graph G obtained from the path u,u,,
U, Uy, u where 3 < a + 2 < b < n, by the addition of a vertex v, adjacent to u, and
u, (see Fig. 3.1.2), is such that diam G-u, < diam G < diam G-v. Such parameters  are

known as exceptional.

3.1.3 Definition: For an exceptional parameter u and a graph G, we define u*(G) to be the
' minimum number of vertices of G whose removal from G produces a graph H such that
pH) > p(G); the minimum nurmber of vertices whose removal from G results in a graph H with
p(H) < p(G) is defined to be u (G).

3.1.4 Remark: In the graph G of Fig. 3.1.3, obtained from a wheel on r + 1 vertices, with centre
u, by the addition of a vertex v, made adjacent to one peripheral vertex of the wheel, where r > 7

we see that y(G) = 2, y(G-v) = 1, and
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y(G-u) =1+ y(P;) =1+ [73] = H > 3.

Thus, v*(G) = y(G) = 1. We shall now concentrate on the domination number and domination
alteration sets, i.e., sets of vertices of a graph G whose removal results in a graph with domination

number different from y(G).
3.2 STABILITY OF v

We note first that, for some graphs, namely, graphs G containing one or more vertices of degree
p(G) - 1, y(G) is not defined, as y(G) = 1 < y(G-S) for all S C V(G).

3.2.1 Definition: If, for a graph G, there exists no proper subset S of V(G) such that
v(G-S) < v(G), then we will define y°(G) to be p(G).

3.2.2 Remark: In [BHNSI1], the concept of the discrete, or null, graph (a graph with order 0) is

used in order to avoid the above definition, where the domination number of the null graph is 0.

We shall, however, not deal with null graphs.
It is also true that, for some graphs G, y*(G) is not defined, for example, P, and K, (n € N).

3.2.3 Definition: If G is a graph for which there exists no subset S of V(G) such that
¥(G-S) > v(G), then we define y*(G) to be p(G).

The following definitions will be useful.
3.2.4 Definition: Let G be a graph, A a minimum dominating set of G, and v € A. We define
A'(v) by

A'(v) = {u € V(G) - A; Ng(u) N A = {v}}.

In addition, let

m(G) = min { |A*(v)

; vV € Aand A is a minimum dominating set of graph G}.
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3.2.5 Remark: Note that, for a graph G, m(G) = 0 if and only if there exists v € V(G) and a
minimum dominating set A for G such that A*(v) = &, i.e., if and only if there exists v € V(G)
and a minimum dominating set A of G such that A - {v} = G-v and (since A is a minimum
dominating set) [A, {v}] = @ (.e., the only vertex of G nor dominated by A - {v} is v).
Observe also that p(G) - y(G) is an upper bound for m(G), and is, in fact, attained by, for
example, the graphs K, , (n € N).

We now present an upper bound for y7(G).
3.2.6 Proposition: For any graph G, y°(G) < m(G) + 1 < p(G) -~¥(G) + 1.

Proof: Let G be a graph, and let A be a minimum dominating set of G with v a vertex in A such

that m(G) = |A*(v)|. Then, A - {v} » G-A'(v)-v, i.e.,,
Y(G-A'(v)-v) £ |A - {v}| = v(G) -1 <~(G).

So, 7(G) < |A'(v) U {v}| = m(G) + 1, which, with the observation that m(G) <
p(G) - y(G), completes the proof of the proposition. a

3.2.7 mﬁ: We show now that equality does not hold in general. Let m = 2, and let
G, = G, = K, withV(G,) = {u,, u,, ..., u,}, and V(G,) = {v,, v, ..., v} and let G be obtained
from G, U G, by the addition of three vertices, u, v, and w, as well as the edges uy,, vv,, wu,,
wyv, (=1, ..., m) (see Fig.3.2.1). Then, G has a (unique) minimum dominating set
A = {u, v} with A"u) = {u, uy, us, ..., u}, A'(v) = {v,v,, v, ..., v,}. So, we have
v(G) =2, m(G) = m = 2, implying m(G) + 1 =3, while v(G-{u, v}) = 1, implying
vy (G) < 2.

To see that the bound given in Proposition 3.2.6 is sharp, consider the graph G shown in
Fig. 3.2.2, where G is obtained from a wheel on r + 1 vertices, with central vertex v, by the
addition of m new vertices, all adjacent only to a single peripheral vertex, w say, of the wheel,
where m = 2 and r = m + 4, and, finally, by removing the edge vw. We see that G has a
unique minimum dominating set, namely {v, w}, m(G) = min {r -3, m} =m, and

y(@G) =m+1=m@G) + 1.

3.2.8 Corollary: For any graph G, ¥y (G) = 1 if and only if m(G) = 0.






59

Proof: Let G be a graph. If m(G) = 0, then y(G) < 1 by Proposition 3.2.6. However,
v(G) = 1; so, y(G) = 1. Conversely, suppose that y(G) = 1; let v & V(G) with
v(G-v) < ¥(G), and let B be a minimum dominating set for G-v. Then, A = B U {v} is clearly
a dominating set for G, and it is a minimum dominating set (since, otherwise,
v(G) < |A| -1 = |B| = y(G-v), contrary to the fact that y(G-v) < +v(G)). Thus,
A - {v} » G; in particular, A -{v} »» {v}; also, A - {v} = B~ G-v. So, by Remark 3.2.5,
A'(v) = &, whence m(G) = 0. O

3.2.9 Remark: Now, for any given k € N, there exists a graph G and a yv*(G)-set S of G such
that v(G-S) - v(G) = k, namely the graph k, ., (where S is the singleton containing the central

vertex of K, ;). We also have

3.2.10 Proposition: Given m, k, n € Nwithm < k and n > 2, there exists a graph G with
v(G) = k, and ¥*(G) = m and ¥y (G) = n.

Proof: Let m, k, and n satisfy the hypothesis of the proposition. Letn, = n, and, fori = 1, ...,
k - 1, let n, = n be any integer, and define
G, = Kni;

foreachi =0, 1, ... k-1, lety € V(G). Also, let G = K, and suppose that V(G) = {v,,

Vi, ..., Vi}. Define a new graph H by

k-1
V(H) = V(G) U |J VG,
i=0

and

k-1 k-1
EM)=JEG)UVEG U [Jlvyli<j<irm-1),
i=0 i=0

where addition is taken modulo k. (See Fig. 3.2.3 for the case where k = 6, m = 3.) Then,
y(H) =k, y"(H) = [{u, uy, ..., up}| = m, and y"(H) = n, O

However, we may generalize further:



Fig. 3.2.4
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3.2.11 Proposition: Given m, k € N, there exists a graph G with y*(G) = m such that, for some
S C V(G) with |S| = ¥"(G) = m, we have y(G-§) - y(G) = k.

Proof: Let G' = K., and suppose V(G") = {v, vy, V5, ..., Vi, o}, Where v is the central vertex
of G*. If m = 1, then G has the desired property. Now, suppose m > 2 and define a graph G
by V(G) = V(G), and

m-1

EG) = EG)HU |J tvyvljell,2, ., kem }izj);
i=1 ‘

so, G =K, + K, + I—(k”). (See Fig. 3.2.4 for the case where k = 2 and m = 3.) Then,
v(G) = 1 (since {v} = G). Also, for A, = {v, v,, ..., v}, A(G-A) = p(G-A) - 1, fort =0, 1,

2,...,m -2, sothaty(G-A) = 1l foreacht =0, 1, ..., m - 2. However, A(G-S) = 0, where
S = {v, vy, Vs, ..., Vo), SO that

v(G-8) =p(G-S) =p(G) -m=k+m+1-m=k+ L
Hence,

Y(G-8) -vy(G) =k + 1).-1=k U

That the difterence y(G-D) - y(G), where D is a y*(G)-set, cannot be made arbitrarily large is
shown by the next theorem, which shows that if v(G-T) < y(G) for a graph G and T C V(G),

then, in fact, y(G-T) = y(G) - 1. First, however, we introduce the following definition.

3.2.12 Definition: Let G be a graph and v a vertex of G. Then, v is a critical vertex of G, or a
G -critical vertex, if and only if y(G-v) < 4(G). If no ambiguity is possible, we simply write that

v is critical.
3.2.13 Lemma: If G is a graph with a critical vertex v, then y(G-v) = y(G) - 1.
Proof: Let G be a graph with a critical vertex v, and let D" be a minimum dominating set of G-v.

Clearly, D" U {v} = G, whence |D*| + 1 = y(G), i.e., |D’
ID'| < v(G) - 1. Thus, v(G-v) = |D’

= v(G) - 1. Since v is critical,
=7(G) - L. O

The following corollary is a result that we shall use often.
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3.2.14 Corollary: For any graph G, y(G-v) = y(G) - 1 for all v € V(G) (i.e., the removal of

a single vertex from a graph can decrease the domination number by at most one).

Proof: Let G be any graph, and v any vertex of G. If v is not critical, then y(G-v) = y(G); if
v is critical, then, by Lemma 3.2.13, y(G-v) = v(G) - L. O

A result with a proof similar to that of Lemma 3.2.13 is the following.
3.2.15 Proposition: For any graph G and any v € V(G),

¥(G-S) 2 v(G) - 1
for any subset S of Ng[v],v € S.
Proof: Suppose, to the contrary, that there exists a graph G with v € V(G) such that
y(G—S) < y(G) - 1 for some S € Ng[v], v € S. Clearly, if D" is a minimum dominating set
of G-S, then D" U {v} =» G, whence y(G) < |D" U {v}| < y(G), which is not bbssible. Thus,
no such graph G and vertex v exist. O

The following lemma is another result that we will use repeatedly.

3.2.16 Lemma: If G is a vertex-domination-critical graph, then, for every v € V(G), no vertex

in a minimum dominating set of G-v is adjacent to v in G.
Proof: If G is a vertex -domination-critical graph with a vertex v and a minimum dominating set
D of G-v satisfying Ng(v) N D # &, then D = G, whence v(G) < |[D| = y(G) - 1, which is

impossible. O

3.2.17 Proposition: If G is any’graph and v is a G-critical vertex, then

¥(G-S) = v(G) - 1,
for any S © Ng[v], v € S.

Proof: Let G be any graph with a critical vertex v, and let D* be a minimum dominating set of

G-v.  Then, by Lemma 3.2.13, |D°

= v(G) - 1. Furthermore, N[v] N D" = @ (by



62

Lemma 3.2.16). Thus, D" is a subset of V(G) - N[v] and hence of V(G) - S. So, since
D* = G-v, we certainly have D* » G-S. Hence, y(G-S) < |D"| < 4(G) - 1. By Proposition
3.2.15, the desired result follows. O

3.2.18 Theorem: Let W = {u,, u,, ..., u,} be a minimal set of vertices of a graph G such that
v(G-W) < y(G). Then,
¥(G-W) = v(G) - 1
and
¥(G-Y) = ¥(G),

for any subset Y of W with cardinality n - 1.

Proof: Let G be a graph and let W = {u,, u,, ..., u,} be a minimal set of vertices of G such that
v(G-W) < y(G). Let Y be any (n - 1)-subset of W; suppose, without loss of generality, that
Y = {u, u,, ..., u,_;}. Since Y is a proper subset of W, we have, by the minimality of W, that
v(G-Y) = y(G). By definitionof W =Y U {u}, we have

y(G-Y) -u) < v(G) - L. 0]

By Corollary 3.2.14, v((G-Y) -u,) = v(G-Y) - 1, whence we obtain y(G-Y) - 1 <
¥(G) - 1, ie.,
v(G-Y) < y(G).

Hence (by the reverse inequality established earlier),

Y(G-Y) = v(Q),
and so
Y(G-Y) - u) = y(G) - 1.
Combined with (i), this gives
v(G-W) = v((G-Y) -u,) =v(G) -1,

as required. O

3.2.19 Remark: We note that if Y is a minimal set of vertices of a graph G such that

v(G-Y) < y(G) and Y' is a proper subset of Y, it is possible for v(G-Y’) to exceed ¥(G). In
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Fig. 3.2.5, where3 < n < kandm € N, wehave ¥(G) =m + 2, and § = {u;, uy, ..., u,} is
a minimal set whose removal decreases v(G) ('y(G-S)--: m + 1). Then, §' = {u,} C § satisfies
-y(G-S')=m+1+n-l=m+n>m+2='yG).

It is also possible that a minimal set S of vertices of a graph G that satisfies y(G-S) > ¥(G) may
properly contain a subset S’ of vertices such that y(G-S') < ¥(G): The graph G shown in
Fig. 3.2.6 is obtained from the union of K; , (with partite sets {v,, V4, ..., vn}_ and {u,, u,, ..., U,})
and X, .., (with end-vertices w;, Wa, ..., w,,,) by the insertion of the edges uw; (i = 1, 2,
..,m), m > 2,n > 2,and has {u, v,, u} as a minimum dominaitihg set. Clearly, S = {v,, v,,
..., v,} is a minimal set for which y(G-S) = m + 1 > y(G) = 3, while v(G-{vy, Vay oy Vo)) =

lA 2 < ¥(G).

Next, we prove a result which characterizes single vertices whose removal from a graph G

produces a graph with domination number greater than y(G).

3.2.20 Theorem: A vertex v of a graph G is such that y(G-v) > ¥(G) if and only if
(i) v is not isolated and is in every minimum dominating set for G, and

(i1) there is no dominating set for G-N[v] having y(G) vertices which also dominates N(v).-

Proof: Let G be a graph. Suppose, first, that there exists v € V(G) such that y(G-v) > y(G).
If v is isolated, then, for any dominating set D of G, v € D and D - {v} dominates G-v, i.e.,
v(G-v) < %(G), a contradiction. So, v is not isolated. If D is a minimum dominating set of G
that does not contain v, then, clearly, D is a dominating set of G-v and y(G-v) < ¥(G), again
a contradiction. So, v belongs to every minimum dominating set of G, i.e., v satisfies condition
(). If there exists S € V(G) - N[v] such that S » V(G) - N[v], S has y(G) vertices, and
S = N(v), then S = G-;/, whence y(G-v) < |S| = v(G), which, again, produces a contradiction.

So, v satisfies condition (ii), also.

Conversely, suppose that v is a vertex of G for which conditions (i) and (ii) hold. We shall prox)e
that y(G-v) > ¥(G). Suppose, to the contrary, that y(G-v) < y(G). Let Sbea dOminatiné set
of G-v with |S| = 4(G). From (i), it follows that N(v) # &. Now, S clearily dominates N(v),
so, by condition (ii), S cannot be a subset of V(G) - N[v]. Hence,-_S must contain at least one
vertex from N(v), so that, in fact, S G. Thus, S is a minimum dominating set of G which does
not contain v, which is contrary to condition (i). Hence, it follows that y(G-v) > y(G), as

required. O



Fig. 3.2.7
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3.2.21 Remark: The graphs G and H in Fig. 3.2.7 with m, n = 2 show that neither of the above

conditions is sufficient.  Clearly, v is in every minimum dominating set for G, yet
v(G-v) = y(G) = 2 (i.e., condition (i) is not sufficient). It is also easy to see that there is no
two-vertex dominating set for H-Ny[v] which dominates Ny(v); however, y(H-v) = y(H) = 3
(so condition (ii) is not sufficient). However, condition (i) is sufficient if G is a tree, as we shall

show in Theorem 3.2.23. We note first the following.

3.2.22 Proposition: If a vertex v is in every minimum dominating set of a tree T, then v is not

an end-vertex of T.

Proof: The result obviously holds for a trivial tree, so suppose that there exist a non-trivial tree
T and v € V(T) such that v belongs to every minimum dominating set of T but such that v is an
end-vertex of T; suppose that w is the neighbour of v in T. Let D be a minimum dominating set
of T. Since v € D, w does not belong to D (otherwise, D - {v} would be a smaller dominating
set of T). Now, v dominates the vertices v and w, and no others. Since w dominates v and w,
(D -v) U {w} is a minimum dominating set of T that does not contain v, which is a

contradiction. So, no such non-trivial tree T and vertex v exist, and the propositibn follows. [

3.2.23 Theorem: For any tree T of order at least 3, and any v € V(T), y(T-v) > ~(T) if and

only if v is in every minimum dominating set of T.

Proof: Let T be any tree of order at least three. If v € V(T) such that y(T-v) > (T), then, by
Theorem 3.2.20, v is in every minimum dominating set of T. Conversely, suppose that v € V(T)
such that v is in every minimum dominating set of T. Suppose y(T-v) < y(T). Let D be a
minimum dominating set for T-v. If N(v) N D # O, then D » T, which is impossible, since
|ID| = y(T-v) < ¥(T). So, D contains no neighbour of v. Since T is connected and p(T) > 1,
N(v) # <. Then, for any w € N(v), D U {w} is a dominating set for T that does not contain
v, where |D U {w}| < y(T). However, this contradicts the aésumption that v belongs to every

minimum dominating set for T. So, y(T-v) = y(T).

Let N(v) = {v), vy, ..., Vo} and, for each i € {1, 2, ..., m}, let T, be the component of T-v
containing v;. (Note that, since T is acyclic, i, j € {1, 2, ..., m} with i # j implies T, # T,.)
Suppose that y(T-v) = y(T), and suppose that there exists i € {1, 2, ...,m} such that v, belongs
to some minimum dominating set D; for T,. For each j € {1, 2, ..., m}, j # i, let D be a

minimum dominating set for T;. Since y(T-v) is the sum of the domination numbers of the
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components of T-v, we have that D = Ur., Dy is a minimum dominating set for T-v, with
|ID| = y(T-v) = y(T). Since D contains a neighbour (namely, v) of v, we see that D is a
dominating set for T that does not contain v and which has cardinality y(T). However, this again
contradicts the fact that v belongs to every minimum dominating set for T. So, for each i € {1,

2, ..., m}, v; is in no minimum dominating set of T;.

s

Now, for each i € {1, 2, ..., m}, the graph

T/ =T jLEJSV(Tj)
where S = {1, 2, ..., m} - {i}, consists of the component T;, together with the vertex v joined
tov,. Leti € {l,2,..., m}. Sincev is an end-vertex of T}, it follows from Proposition 3.2.22
that there exists a minimum dominating set D for T! such that v ¢ D;. So, in order that v might
be dominated by D; in T}, we must have v; € D{. So, D is a dominating set for T; that is not
a minimum dominating set (by the result established at the end of the previous paragraph). Thus,
¥(T) < |Di| = y(T}). Hence, y(T}) = ¥(T) + 1, foreachi € {1, 2, ..., m}.

Now, suppose that there exists a dominating set D of T and i € {1, 2, ..., m} such that
|ID N V(T)| < y(T). Then, since D N V(T) = T;-v;, we have (D N V(T)) U {v} » T}, so
that

YT < [0 N V(T U v < (T + 1,

which contradicts the result established in the previous paragraph. So, for any dominating set D
of T, |D N V(T)| = y(Ty, foreachi € {1, 2, ..., m}.

Finally, let D be a minimum dominating set for T. Then, v € D (by assumption). Since, for each
i€ {1,2,..,m}, [IDN V()| = y(T), we have

V(T) =1+ IDOVT)[ 21+ Y v(T) =1+ y(T-v) = 1+ y(T),
i1 i-1

which is impossible. Hence, our assumption that y(T-v) = v(T) is false, and we have

¥(T-v) > y(T), as desired. -0

We now investigate the situation for graphs in general.



Fig. 3.2.8
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3.2.24 Theorem: If a cut-vertex v of a graph G is in every minimum dominating set for G, then

v(G-v) = y(G) (i.e., v is a non-critical vertex of G).

Proof: Suppose, to the contrary, that there exists a graph G with a cut-vertex v that belongs to
every minimum dominating set for G, but for which y(G-v) < y(G). Then, v is a critical vertex
of G. Let D be a minimum dominating set for G-v. By Lemma 3.2.16, N(v) N D = &. Since
v is a cut-vertex of G, i.e. k(G-v) > k(G), we have N(v) # . Clearly, for any w € N(v),
D U {w} is a dominating set for G that does not contain v, where, by Lemma 3.2.13,
|ID U {w}| = v(G). This contradicts the fact that v belongs to every minimum dominating set
for G. So, y(G-v) = ¥(G). O

3.2.25 Remark: That equality can hold in the above result is illustrated by the graph G shown in
Fig. 3.2.8. It can be easily verified that v belongs to every minimum dominating set of G, and
that y(G) = 3. However, y(G-v) = 2 + 1 = 3. We note that the statement that strict inequality
in Theorem 3.2.24 holds for all graphs G with a cut-vertex v, which is made in [BHNS1], is false.

In the next theorem, we provide an extension of Theorem 3.2.23 by describing the properties of

those trees T for which y*(T) = 2 (for instance, the tree'Ps).

3.2.26 Theorem: Let T be a tree. Then, y*(T) = 2 if and only if there are vertices u and v in
T such that
(i) every minimum dominating set of T contains u or v,
(i) v is in every minimum dominating set of T-u, and u is in every minimum dominating
set of T-v, and

(iif) no vertex is in every minimum dominating set for T.

Proof: Let T be a tree. Suppose first that y*(T) = 2. (Then, p(T) = 3.) Then, there exist
distinct vertices u and v of T such that y(T-{u, v}) > y(T), and, for each w € V(T),
' v(T-w) < y(T). If there exists"a minimum dominating set D for T that contains neither u nor v,
then D is a dominating set for T-{u, v}, i.e., y(T-{u, v}) < (T), which contradicts our choice
of uand v. So, condition (i) is satisfied by u and v. Suppose that condition (ii) is not satisfied;
assume, without loss of generality, that there exists 2 minimum dominating set D for T-u that does

not contain v. Then, D is a dominating set for (T-u)-v, whence y(T-{u, v}) < |D| =
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v(T-u) < y(T), again a contradiction. So, condition (ii) holds. Finally, condition (iii) holds, by
Theorem 3.2.23 and the fact that y*(G) = 2.

Conversely, let u and v be distinct vertices of T that satisfy conditions (i) to (iii). We observe first

that, by condition (iii) and Theorem 3.2.23, y*(T) > 2. So, p(T) = 4

We show first that y(T-v) = y(T). Since ¥*(T) = 2, y(T-v) < 4(T). Suppose that
v(T-v) < 4(T). By conditions (i) and (ii1), there exists a minimum dominating set S for T which
contains v but not u. Let v,, v, ..., v, be the vertices adjacent to v, and, for each i € {1, 2, ...,
m}, let T; be the component of T-v that contains v;. Then, for §; = V(T) NS, S = |Jr_, S; U
{v}, where §; is the smallest subset of V(T)) (not necessarily of V(T) - {v;}) that dominates T;-v,
(i€ {l,2,..., m}). Then, certainly, y(T) = |S;| = y(T) - 1 foralli= 1,2, ..., m. We now

consider two cases.
Case 1: Suppose that at least one i € {1, 2; ..., m} satisfies y(T) = |S;| + 1. Then,

YT = 3 (T > [zlsiv ] c1= 8] - v,
Py im1

which is contrary to our assumption that y(T-v) < y(T). So, this case does not occur.

Case 2: Suppose y(T) = [S;| forall i € {1, ..., m}. Assumeu € V(T)), let S| = S,,
leti € {2, ..., m}. IfS,~T, let S, = S; if S, » T, (i.e., if S, » {v.}), then we let S! be
any minimum dominating set of T,. Clearly, UT.; Si = U?., T; and, since y(T) = |S;],
[UT- St =[S = {v}], so Uty i+ {v} (otherwise, y(T). < |UT., Si| = v(T) - 1).
Since S{ = T; for each i € {l, 2, ..., m} and S, U {v,} »(V(T) U {v}), while
u€& S, CS,itfollows that S’ = S, U {v,} U S; U ... U S_ is a dominating set of T

of cardinality |S’| = [S| = (T) which contains neither u nor v (notice that u 5 v;:
Suppose, to the contrary,that u = v,; then uv € E(G); if D is a minimum dominating set
of T-v, then (by condition (ii)), u € D, and so D = T, Hence, y(T) < y(T-v)

However, this contradicts our assumption that Y(T-v) < ’y(T)) These propertles of S’

provide a contradiction to condition (ii).

Thus, neither Case 1 nor Case 2 occurs, and our assumption that y(T-v) < ~(T) is false. Hence
Y(T-v) = y(T). Letu € V(T) for some j € {1, ..., m}. Now, by condition (ii), u is in every
minimum dominating set of T-v, hence of Tj; so, T; # P,. If T, = P,, then T-u is a tree and (as

above) y(T-u) = y(T); since v is in every minimum dominating set of T-u (by condition (ii)) and
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p(T-u) > 3, it follows from Theorem 3.2.23, applied to T-u, that y(T-{u, v}) = y(T-u)-v) >
v(T-u) = y(T). Otherwise, p(T}) = 3 and application of Theorem 3.2.23 to T; yields

y(T-{u,v}) = y((T-v)-u) = ) y(T) + y(T;-u) > Y v(T) = v (T-v) = y(T).
i=1 i=1
i%j
Hence, y*(T) < 2. Combined with the reverse inequality which we derived earlier, we have

v*(T) = 2, as required. [l

3.2.27 Remark: For graphs in general, v, ¥*, and ¢~ can be made as large as we wish. For
example, let G be the graph constructed by joining a vertex v to one vertex in each of m > 2
distinct copies Gy, G,, ..., G, of K; let N(v) N V(G) = {v;}, foreachi € {1,2, ..., m}. Then,
S = {v, vy, ..., Vi} iS a‘ dominating set for G, with no smaller set dominating G; so y(G) = m.
Further, S satisfies y(G-S) = m + 1 > y(G); since the removal of no smaller set of vertices from
G produces a graph with domination number greater than y(G), we have y*(G) = |S| = m.
Finally, y(G-V(G))) = m - 1 < %(G), so ¥y (G) = |V(G,)| = m. However, graphs with large

values for y* and y~ have a large minimum degree 6.

3.2.28 Proposition: For all graphs G,
min {y*(G), y(G)} < &(G) + 1.

Proof: Let G be a graph, and let v be a vertex of minimum degree in G. If G = K., then (by
32.1,323)v(G) = y"(G) =p(G) = 6(G) + 1. IfG # K, then N[v] # V(G). Then, if
Y(G-N[v]) > ¥(G), we have y*(G) < 1 + §(G), and if y(G-N[v]) < v(G), we have ¥ (G) <
1 + 6(G). In either case, ‘we have

min {y*(G), y(G)} < &) + 1.
If, on the other hand, y(G-N[v]) = ¥(G), then

Y(G-NW) = v({{v}) U (G-N[v])
s0, Yy*(G) < 6(G) and

L+ y(G-N[v]) > ¥(G);

min {y*(G), y(G)} < §G) + 1
certainly holds. O

Notice that the bound in the previous proposition is best possible, since, for the graph G described
in3.2.27, ¥*(G)=v(G) =m = §G) + 1.

3.2.29 Proposition: If G is a graph with an end -vertex, then
Y7 (G) = 2 implies y7(G) < 2.
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Proof: Let G be a graph with an end-vertex u; let v be the neighbour of u in G. If

v(G-v) < y(G) (and, hence y°(G) = 1), then the proof is complete, since y*(G) = 2 implies
v (G) < 2 is true, regardless of the value of y*(G).

Suppose now that y(G-v) = v(G), and assume that y*(G) = 2. Then, y(G-v) = v(G). Now,

v(G-v) = y((G-{u, v}) U {{u})) = 1 + v(G-{u, v}),
so that
Y(G-{u, v}) < v(G-v) = ¥(G).

Thus, y°(G) < 2; as required. U

Note that, since every non-trivial tree has at least two end-vertices, y*(T) = 2 implies y(T) < 2
for each non-trivial tree T. .

3.2.30 Remark: The examples in Fig. 3.2.9 serve to show that the only restriction on y* and vy~
for trees is given in the above proposition.

(1) For the graph T depicted in Fig. 3.2.9(a), withn = 2, m = 3,

YV(T) = ¥Ry +2 = [“‘ﬂ +2 = n+2.

Furthermore,

Y(T-u) = (m-1) +1 +Y(P3n.2_2-1) = m+n > y(T)
(since m > 2); so, y*(T) = 1. Finally,
Y(T-{u,u,uy, . uy 1) = y(Py,,) +1 = n+1 < y(T);

since the removal of no smaller set of vertices from T produces’a graph with domination number
less than y(T), it follows that y*(T) = m. So, this example shows that, if y*(T) is very small,
i.e., y°(T) = 1, then y(T) can be arbitrarily large.

(2) For the tree T depicted in Fig. 3.2.9(b), withn, m > 2, ¥(T) = nm, and
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y(T-fu, oy u ) = 1+ my®y ) +m = 1 +(@-Dm+m = mn+1 > y(T);

since the removal of no smaller set of vertices of T produces a graph with domination number
greater than y(T), we have y*(T) = m (= 2). Further, if §" is a minimum dominating set for

T-{v;l <i<3n-1}andS = {v, vy, ..., V3uo} U §’, then
y(T-fv,v,)) = S| = m-Do+(a-1 = mn-1 < y(T)

The removal of no subset of T smaller than S results in a graph with domination number less than
v(T), so y°(T) = 2. So, Fig. 3.2.9(b) illustrates the fact that y* can be made arbitrarily large
(with vy~ remaining in the set {1, 2}, as allowed by Proposition 3.2.29).

(3) For the tree T depicted in Fig. 3.2.9(c), we have y(T) = y(P;) + 2 =k + 2. Since
y(T-u) = k + 1, we have y°(T) = 1, and y*(T) = 1 since y(T-w) = y(Ps.,) + 2 = k + 3.
This shows that both y~ and y* can be very small.

We show now that every tree contains a vertex the removal of which creates a forest with

domination number equal to that of the original tree. First, we prove

3.2.31 Lemma: If T is a tree of order at least three such that every vertex of T is adjacent to at
most one end-vertex of T, then T contains a vertex of degree 2 which is adjacent to an end-vertex

of T.

Proof: Let T be a tree of order p > 3 with the property that every vertex of T is adjacent to at
most one end-vertex of’i". Let a and b be two end-vertices of T such that d;(a,b) is as great as
possible. Let P be the a-b path in T, and let w be the neighbour of a in T. We claim that
degrw = 2. Suppose, to the contrary, that deg w > 2. Then, w must have a neighbour, z say,
that does not lie on P. By our assumption, z is not an end -vertex of T; however, there is an
end-vertex y of T that is joined to w by a (unique) path of length at least two which contains z.
Hence, d(y,b) > di(a,b). This is contrary to our choice of a and b. Thus, w is indeed a vertex

with the desired propefties. t

3.2.32 Theorem: For every non-trivial tree T, there exists a vertex v € V(T) such that

Y(T-v) = y(T).
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Proof: Let T be a non-trivial tree. If T = K,, then either vertex of T has the desired property,
so we may assume p(T) = 3. Suppose that there exists a vertex v € V(T) which is adjacent to
two or more end-vertices of T; let Y be the set of neighboufs of v that are end -vertices. Suppose
that there exists @ minimum dominating set S for T that does not contain v. Then, we must have
Y € S, where |Y| = 2. However, then (S -Y) U {v} is a dominating set of T with
[S-Y) U {v}| < |S] -1 =~(T) -1, which is impossible. So, v belongs to every minimum
dominating set for T, whence y(T-y) = y(T) foranyy € Y.

So, suppose now that every vertex of T is adjacent to at most one end-vertex of T. Then, by
Lemma 3.2.31, T contains a vertex w of degree two which is adjacent to an end-vertex u of T.
Obviously, if v is an end-vertex of a graph G, then y(G-v) < v(G). Hence, since deg,_w = 1,
we have

Y(T-u-w) < ¢(T-u) < (T). (M)

Now, since, for any minimum dominating set S for T-u-w, the set S U {w} dominates T, we
have

Y(T-u-w) + 1 = [S U {w}| = +(T).
Thus, y(T-u-w) = y(T) - 1, and, by (i), we have
¥(T-u-w) € {x(T), v(T) - 1}.

If y(T-u-w) = y(T), then (by (i)) y(T-u-w) = y(T-u) = y(T), so that u is the vertex whose
existence we wish to prove. Suppose y(T-u-w) = 4(T) - 1. Then, if S is a minimum
dominating set for T-u-w, we have that S = S U {u} is a dominating set for
(T-w-u) U ({u}) = T-w, and (by the definition of S), no smaller set dominates T-w. Hence,
Y(T-w) = |S U {u}| = y(T), and w is the vertex we seek. U

We shall show next that, for sufficiently large n, the quantity y* + 4~ is a constant for paths P,
(n € N) and cycles C, (n = 3). First note that

v(P,) = y(C,) = [ﬂ, if n 2 3.
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~

3.2.33 Theorem: Forn = 7, y*(P) + vy (Py) = 4, where

forn = 0 (mod 3), v*(P) = 1 and y°(P) = 3,
forn = 1 (mod3), y*(Py) = 3 and v (P) = 1,
forn = 2 (mod 3), y*(P) = 2 and y°(P) = 2.

Proof: Let n € N, with n = 7. Consider the path P,: v,, v,, ..., v,. We shall show that
v*(P) + v (P) = 4 by proving this result separately forn = 0, 1, and 2 (mod 3).

Case 1: Suppose that n = 0 (mod 3). Clearly, v, belongs to every minimum dominating
set (since D = {v,, vy, V5, ..., Vao, V,} is the smallest dominating set of P, not containing

vy, and [{vy, Vo, Vo, ooy Voo, V3| =5 + 1 > y(P)). Hence, by Theorem 3.2.23,
v'(P) = L

To see that y°(P) =3, first note that y(P,,) = y(P) - 1, whence we obtain
v (P,) < 3. Since y(P,,) = y(P,-») = y(P,), the only way to loWer the domination
number of P_by removing one or two vertices is to remove a vertex cutset S of P,, with
S| =1 or 2. If P,-S has two components, A and B, containing a and b vertices,

respectively, then,

@@ -F g baen - -

and 50 y(A) + v(B) = y(P). So, if y(P,-S) < y(P,) for some S € V(P,) with S| < 3,

then P, -S must have three components, A, B, C, and |S| = 2. Letp(A) = a, p(B) = b,
p(C) = c. Then,

YA +¥® +v© =[] <[5+ [5] 25+ 5 ¢

3

7 (@-2) = @) - 3

whence y(A) + y(B) + v(C) = y(P,). Hence, y(P,) = 3 must hold, and the proposition

follows in this case.

Case 2: Suppose thatn = 1 (mod 3). Now,

Y®,.,) = [T‘] = 2= 22 "*2-1=[3]—1=y(Pn)—1,
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and hence y°(P,) = 1. Note that P,-{v,, v,, v¢} = 3K, U P, Since

and

i.e., y(P,.) = v(P) - 2, and hence y(P,~{v,, vi, v¢}) =3 + vy(P) -2 > v(P), we
conclude that y*(P,) < 3. Now note that no vertex of P, is in every minimum dominating
set for P,, which implies, by Theorem 3.2.23, that y*(P,) = 2, and that condition (iii) of
Theorem 3.2.26 is satisfied. However, no pair of vertices of P, satisfy conditions (i) and
(ii) of Theorem 3.2.26: the only pairs of vertices satisfying condition (i) are {v,, v,} and
{v.-1;, vo}. However, neither pair satisfies condition (ii). Hence, by Theorem 3.2.26,

v*(P,) = 3, and the proposition follows in this case, also.

Case 3: Suppose that n = 2 (mod 3). It is easily verified thafv2 and v,_, satisfy
conditions (i) and (ii) of Theorem 3.2.26 and that no vertex belongs to every minimum
dominating set for P,; thus, ¥*(P,) = 2. Now, by Proposition 3.2.29, y°(P,) < 2. We
show now that y°(P,) # 1. Since y(P,.,) = y(P,), the only way to lower the domination
number of P, by the removal of a single vertex is to disconnect P,. Suppose there exists
v € V(P such that P -v has two components, A and B, containing a and b vertices,

respectively, then

YA) v® =[]+ [3] 2

and so y(A) + y(B) = y(P). Hence, y(P) =2 and y*(P,) + vy (P) = 4, as
desired. O

3.2.34 Theorem: Forn = 8, y*(C,) + v (C,) = 6, where

forn = 0 (mod 3), y*(C,) =3 = y7(C,),
forn = 1 (mod 3), y*(C) = Sand y°(C,) = 1,
forn = 2 (mod 3), y*(C,) = 4 and y(C,) = 2.



Proof:

cases.

74

Let n € Nsuch that n > 8, and suppose that C:v,, vy, ..., v,=v,. We consider three

Case 1: Suppose that n = 0 (mod 3). Since C, is regular of degree 2, m(C,) < 2, so

that, by Proposition 3.2.6, y7(C,) < 3. Since

Y®) =[5 -5 =[5 - 5] 7 1) = ¥,
it follows that, if there exists a set S C V(C)) such that y(C,-S) < y(C) and |S| = 2,
then C,-S is disconnected with components (say) A and B, containing a and b vertices,

respectively. Then,

YA ¥y ®) =[5« 3] 253 - -2 = v(C) -],

so that y(A) + y(B) = ¥(C,). Hence, y(C,) = 3.

We note that C,-{v,, v,, v¢} = 2K, U P . Since

-3 2 -
y(P, JU2K) =2 + y(P, ) = 2 *{T ——]=2 R TR

3
we have y*(C,) < 3. Now, note that y(P,.,) = [ - 1)] = ["/,] = y(C)). So, at
least two vertices must be removed from C, to produce a graph with domination number
greater than y(C)); so, ¥*(C,) = 2. Since y(P,.,) = v(C,) (see above), if y(C,-S) >
v(C,) for some S C V(G) with |S| = 2, then C,-S must be disconnected, with two path-
compoments, A and B, say, containing a and b vertices, respectively. Clearly,n -2 = 1

(mod 3).

Subcase 1.1: Suppose a = 1 (mod 3) and b = 0 (mod 3). Then,

‘Va—_lﬁ-l +£=a*b—l+1
3 3

Y(A) + y(B) ; ;

1]
—_—
Ia
J—
+
—_—
w |
J—
1

arbe2 _ N _
5 T3 Y(C)

Subcase 1.2: Suppose a = b = 2 (mod 3). Then,

0w - ][
u:-4 +2 = .»:.2 - v(C,)
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Hence, y*(C,) > 2, so that y*(C) = 3.

Case 2: Suppose that n = 1 (mod 3). (Then, n = 10.) Note that C,-{v,, Vv,

Vs, Ve, Vsp = 4K, U P . However,

Y(Pg) = [FP] = 5 =5 -3 =G-8

and thus
y(C,= Vg, vy, v, v, vg 1) = 4 + ¥(C) - 3> y(C)).
So, y*(C) < 5. Since

YR ) =7 =[5 -1 =€) - L,

it is clear that y°(C,) = 1 and y*(C,) = 2.

Since y(P,.,) = Va(n - 1) = y(C,) - 1, it follows that removing two adjacent vertices of
C, does not produce a graph with domination number greater than v(C,). So, if
v(C,-S) > y(C,) for S C V(C) with |S| = 2, then C,-S must be disconnected.
Suppose C,-S has two components A and B with p(A) = a, p(B) = b. Clearly,n -2 =
2 (mod 3). However:

Subcase 2.1: Supposea = b

i

1 (mod 3). Then,

Y(A) + y(B)

AREREEEREE

_ a+b+4 _ n+2 -
= ; 7 = Y (C).

Subcase 2.2: Suppose a = 0 (mod 3), b = 2 (mod 3). Then,

Y(A) + y(B)

"
_—
win
—_—
+
_
w | o
—_—
0]
wia
+
_
w|¥
—
——

]

w
[}
“ |
i
=
@)

_
-

1
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Hence, it follows that y*(C,) = 3.

Since
_[a-1 _ 27 _ n-1 _ _
Y, =[5 - 3] =5 = v G - L

it follows that, in order for the y(C,~S) to exceed 7(Cn); where S € V(G) and |S| = 3,
C,-S must, as before, be disconnected. We suppose first that C,-S has two components

A and B, with p(A) = a, p(B) =b. Then,n -3 =1 (mod 3).

Subcase 2.3: Suppose a = 1 (mod 3) and b = 0 (mod 3). Then,

v(A) + y(B) = [BF - 5]+ 3= 2 = A = (G - L

Subcase 2.4: Supposea = b = 2 (mod 3). Then,

a-2 b-2 a+b+2

Y(A) + v(B) = +1+—3—+1=

=y(C) - 1.
So, suppose now that |S| = 3 and C,-S has three components A;, | < i < 3, containing

a, vertices, respectively. Suppose that Zi_, y(A) = y(C,) + 1. Leti € {1,2,3}. Ifa
is of the form 3m, then y(A) = '3 a; if a is of the form 3m+1 or 3m+2, then

v(A) = Va(a; + 2) or y(A) = Va(a, + 1). In any case, a, > 3y(A) - 2. So,
Tooa =230 yA)-6=23(yC) +1)-6=3v(C) -3.
However,
Haa=n-3=0~C)-2)-3=3vC) -5,
which is a contradiction. So, ¥y*(C,) = 4.

Since y(P,_) = Y2 (n-4) = y(C,) - 2, it follows that, if v(C,-S) > y(C)) for S C V(G)
with |S| = 4, then C,-S must be disconnected. Suppose that C,-S has two components

A and B with p(A) = a, p(B) = b, respectively. Clearly, n -4 = 0 (mod 3).

Subcase 2.5: Supposea = b = 0 (mod 3). Then,
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Subcase 2.6: Supposea = 1 (mod 3) and b = 2 (mod 3), or a = 2 (mod 3) and
b = 1 (mod 3). Then,

Suppose then that C,-S has three components A;, 1 < i < 3, containing a vertices,
respectively. Suppose that Z3_, y(A;) = y(C,)) + 1. As above, i a = 34(C) -3,

which contradicts
Ti,a=n-4=03~vC)-2)-4=3~(C) -6.

Suppose now that C -S has four components A;, 1 < i < 4, containing a vertices,

respectively. Suppose that Zi_, y(A;) = y(C,) + 1. As above,

Zia 23[EyA) -8=3(v(C) +1)-8>3+(C) -5.
However, Z¢., a,=n-4=3 () -2) -4 =3 ~(C,) -6, which produces a
contradiction. Thus, y*(C)) > 4. Hence, by the inequality y*(C,) < 5, we have

7+'(Cn) =5, as desired.

Case 3: Suppose that n = 2 (mod 3). Since y(P,.;) = ¥4 (n+1) = y(C,), we have
v(C,) = 2, and y*(C,) = 2. Since C,~{v,, v} = P; U P, and

n-5 n+l
v(P,UP ) =1+ 5 T3 1 =y(C)-1,

we have y7(C)) < 2. So, y(C) = 2. We now show that y*(G) = 4. As C,-{v,, V,,
vy, Vo} = 3K, U P, and

3+y@n_7)=3+{$]=3+$=“;‘+1=y(cn)+1,

we have y*(C,) < 4.

Since y(P,..) = v(C,) - 1, it follows that we cannot produce from C, a graph with
domination number greater than y(C,) by the removal of two adjacent vertices. So, if the

domination number of y(C,-S) > (C,) for some S S V(G) with |S| = 2, then C,-S
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must be disconnected. Suppose that C,-S has two components A and B, with p(A) = a,

p(B) = b. Clearly, n - 2 = 0 (mod 3).

Subcase 3.1: Supposea = b = 0 (mod 3). Then,

Subcase 3.2: Supposea = 1 (mod 3) and b = 2 (mod 3), or a = 2 (mod 3) and
b = 1 (mod 3). Then,

Y(A)+y(B) = 232 = 20 = y(C,).

Hence, it follows that y*(C,) = 3. Since y(P,.5) = Vs (n - 2) = v(C,) - 1, it follows
that, if y(C,-S) > y(C) for some S C V(G) with |S| =3, then C,-S must be
disconnected. Suppose C,-S has two components A and B with p(A) = a, p(B) = b.
Then, n - 3 = 2 (mod 3).

Subcase 3.3: Supposea = b = 1 (mod 3). Then,

YA) + ¥(B) = U+ E v 2 = 21 = y(C,).

Subcase 3.4: Suppose a = 0 (mod 3), b = 2 (mod 3). Then,

Y(A) +¥B) =3+ 22+ 1 =22 = y(C) - L.

Suppose now that C,-S has three components A;, 1 < i < 3, containing a, vertices,
respectively. If I3, y(A) = y(C,) + 1, then, as above, £}_, a, > 3 v(C,) - 3, which

is contrary to
Daa=n-3=03yC)-1)-3=3~(C) -4.
Thus, y*(C,) > 3, whence, y*(C,) = 4, as desired. 0
3.2.35 Remark: It is obvious that, in general, the removal of a single vertex from a graph G can
result in a graph with domination number much greater than that of v(G). The next theorem,

however, shows that this is not the case for the edge-domination-critical graphs of Chapter 2.

3.2.36 Theorem: If G is a non-trivial k-edge-critical graph (k € N), then, for every vertex
v € V(G), v(G-v) € {k -1, k}.
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Proof: Let G be a non-trivial k-edge-critical graph, and let v. € V(G). That y(G-v) = k -1
follows from Corollary 3.2.14. We show now that y(G-v) < k. Ifk = 1, then G is complete
(by Proposition 2.2.1), so that, trivially, v(G-v) = k for each v € V(G). So, we assume
henceforth that k > 2. Let v € V(G), A = N(v), and B = V(G) - N[v]. We consider two

cases.

Case 1: Suppose that (A) is not complete. Then, there exist a, b € A with ab & E(G),
and we may assume, without loss of generality, that there exists a set S C V(G) with
|S| = k - 2 such that S U {a} » G-b. Since no element of S is adjacent to b, v & S.
Thus, S U {a, b} » G-v, whence y(G-v) < k.

Case 2: Suppose that (A) is complete, and let w € B. Then, since vw & E(G), there
exists a set S C V(G) - {v, w} with |S| =k -2 such that S U {v} »G-w or
S U {w}~»G-v. If SU {w} = G-v, then y(G-v) < k - 1. On the other hand, if
S U {v} » G-w, then S » B ~ {w}, so that, for any a € A, wehave S U {a, w} » G-v
(since (A) is complete), whence y(G-v) < k. O

3.2.37 Remark: The 3-edge-critical graph G = C, U K| (see Proposition 2.2.26) is an example
that illustrates the fact that it may not always be possible to find a vertex v of a k-edge-critical
graph H such that y(H-v) = k: For each v € V(G), y(G-v) = 2. However, we do have the

following result.

3.2.38 Proposition: For every vertex v of a k-edge-critical graph G with k > 2, at least one

vertex in Ng[v] is G-critical.

Proof: Let G be a k-edge-critical graph with k > 2, and let v be a vertex of G of degree at most
p(G) - 2. Letuv € E(G). By the edge-domination-criticality of G, there is a set S C V(G) such
that S » G+uv and |S| = y(G) - 1. Now, |S N {u, v}| = 1 since, otherwise, S =» G and
v(G) < |S| < y(G), which is impossible. If u € S, then S ~ (G4+uv)-v = G-v so that

v(G-v) < |S] < ¥(G), and u is the vertex we seek; otherwise, v is a critical vertex of G. [
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3.3 INTRODUCTION TO VERTEX-DOMINATION-CRITICAL
GRAPHS

We begin with the following definition.

3.3.1 Definition [BCD1]: A graph G is called vertex-domination-critical if the domination number
of the graph produced by the removal of any single vertex of G is less than y(G), i.e., if every
vertex of G is G-critical. For k = 2, a graph G is said to be k-vertex-critical if v(G) = k and (by
Lemma 3.2.13) y(G-v) = k - 1 for every v € V(G). (We define k-vertex-criticality fork = 2
only, since, obviously, if H is a graph with y(H) = 1, then H has no proper (vertex-)induced

subgraphs with domination number less than y(H).)

3.3.2 Examples: Illustrative examples of families of vertex-domination-critical graphs are

considered next.

3.3.2.1 Example: For p = 2, G = 12], is vertex-domination-critical since y(G) = p while
v(G-v) = p - 1 for any vertex v € V(G).

3.3.2.2 Example: For n € N, the graph G = C,,,, is vertex-domination-critical since
y@G) = [BBn + 1)] =n + 1, and, for any v € V(G), G-v = P,,, where y(P,) = n.
However, neither C;, ., nor C,, is vertex-domination-critical since y(Cy,,,) = n + 1 = y(P,,,,)

and y(Cy) = n = y(Py,_y).

3.3.2.3 Example: A graph G is 2-vertex-critical if and only if G = K, -F, wheren € Nand F

is the edge set of a 1-factor of G.

Proof: Let G be a 2-vertex-critical graph of order p. Let v € V(G). Since y(G-v) = 1, there
exists a vertex u, say, in G-v that has degree p ~ 2 in G-v. Clearly, u must have degree p - 2
in G also, since, otherwise, v(G) = 1. So, v is the unique vertex distinct from u that is non-
adjacent to u in G. Similarly, in the graph G-u, there is a vertex, w, say, with
degs-,w = degew = p - 2. So, u is the unique vertex distinct from w that is non-adjacent to

w in G. So, w=v, and V(G) can be partitioned into pairs {u, v} where



Fig. 331
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N(@u) = N(v) = V(G) - {u, v}, i.e., G = K,,-F, where n is some positive integer and F is the

edge set of a 1-factor of G.

Conversely, let G = K,,-F for some n € N and F the edge set of some 1 -factor of G. Since G
is (p - 2)regular, y(G) > 1. If x € V(G) and x’ is the unique vertex of G satistying
xx' & E(G), then {x, x'} = G, so that y(G) < 2; hence, y(G) = 2. Since {x'} » G-x (where

x was chosen arbitrarily), it follows that G is 2-vertex-critical. [l
3.3.2.4 Corollary: Every 2-vertex-critical graph is 2-edge-critical.

Proof: Let G be a 2-vertex-critical graph; then (by Example 3.3.2.3), G is isomorphic to the graph
obtained from a complete graph of even order by the removal of a perfect matching. Thus, if
uv € E((_B), thendeg;, u = degg.,,v = p(G) - 1, and, consequently, y(G+uv) = 1, whence the

edge-domination-criticality of G follows. O

3.3.2.5 Example: For integers m, n > 2, where m is even, the circulant graph [C,, ,_jm.1]"™

is n-vertex-critical, as we see below.

3.3.2.6.1 Proposition: ~ For integers m, n = 2, define the graph G, as follows:
V(G = {Vor Vi, vt Vampamen) aMd E(GL) = {viv; 1 < i-j(mod[(n - D(m + 1) + 1)) <

1)

"/,}. Then, if m is even, G, , is n-vertex-critical. (See Fig. 3.3.1 for Ggs.)

Proof: Letm, n > 2 be integers with m even. Let G, , be as described above. Clearly, G iS

m-regular. Hence, since every vertex in G,,, dominates exactly m + 1 vertices,

Gy [e] < b (o gy gy

m+1 m=+1

Let

D; = v Vi ety Viezqmory Viv@-2(m+1y vp(n-z)(mq)*ﬂq}’
2

where the subscripts are taken modulo (n - 1)(m + 1) + 1, for i € {0, 1, 2,

(n - 1)(m + 1)}. Then, D, » G, and |D;,| = n; hence, D, is a minimum dominating set of G,

and y(G,,) = n. Furthermore, ifj € {0, 1,2, ..., (n - 1)(m + 1)}, then,



d

O
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wherei + (m-2)(m + 1)+ “m + 1 =j ie,
i=j—n(m+1)+§m+1,

whence ¥(G,,-v) <n-L By Corollary 3.2.14, ~(G,,-v) 2n-1, and so
¥(G,,-vy) = 0 - 1. Thus, G,,, is indeed n-vertex-critical. g

3.3.2.6.2 Remark: We observe that, while y(G,,) = n if m is odd, we have y(G_,-v) = n for
any v € V(G,,) for such an m,

3.3.2.6.3 Remark: For n € N, C,,,, = G,,,,, and a 2-vertex-critical graph H of order 2n

satisfies H = Gy, ,,.

3.3.2.7 Proposition: The graph G in Fig. 3.3.2, obtained by joining two diametrical vertices in

a graph isomorphic to C,, is 3-vertex-critical.

Proof: Let G be the graph in Fig. 3.3.2. By inspection, it may be seen that no 2-subset of V(G)
dominates G; so ¥(G) = 3. However, {a, d, f} » G, whence y(G) = 3. Now, let v € V(G).
If v =h, then {a, ¢} » G-v. If v = f, then G-v = P, and so y(G-v) = 2. If v = g, then
{b, h} » G-v. Ifv = a, then {c, f} » G-v. By symmetry, y(G-v) = 2 foreachv € {b, ¢, d}.
So, y(G-v) = 2 for each v € V(G), and G is indeed 3-vertex-critical. O

3.3.2.8.1 Proposition: The graph of Fig. 3.3.3, obtained by connecting vertices r and s by three
internally disjoint paths, of lengths 3m + 1, 3, and 3n + 1, respectively (m, n € N), is vertex-

domination-critical.

Proof: Let G be the graph in Fig. 3.3.3, and let U, = {v,, v,, ..., v3.}, U, = {1, s, 1p, 8},
and Uy = {u, u,, ..., u;}. We show first that y(G) = m + n + 2. Let D be a mmmimum

dominating set of G. We consider four cases.

Case 1: Suppose thatr, s € D. Now, {r,s}=» A = {r,s; 1 <i <3} U {1, s}, so
D - {r, s} must dominate G-A. Since G-A = P,, _, U P,  _,, it follows, by the

minimality of D, that ID -{r, s} = y(Pyy, UP, ,) = [% + [3“3‘2] =m+n,

whence |D| = m + n + 2.
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Case 2: Supposer € D, s & D. Then, as D - {r} = s,, there exists t € {r,, s,} such
thatt € D. So, D’ = (D - {t}) U {s} is a minimum dominating set of G for which r,
s € D', and, asin Case 1, ¥(G) = |D’| = m + n + 2.

Case 3: Suppose r € D, s € D. This case is similar to Case 2, and we obtain

ID| = m + n + 2 as above.

Case 4: Suppose r, s € D. Assume, without loss of generality, that r, € D; then
D - {r,} » G-{r, 15, 3} = Pyninyyandso |D - {r,}| = m + n + 1. However, by the
minimality of D, D - {r,} is a minimum dominating set of G-{r, r,, s,}, and so

‘Y(G) = |D| = 1 + ‘Y(p3m+3n+l) =m+n+ 2

Next, we show that y(G-v) = m + n + [ for any vertex v of G. Let v € V(G); then (by
Corollary 3.2.14), y(G-v) 2 m + n + 1. We consider five cases.

Case 5: Supposethatv = r. If L is a minimum dominating set of G-(U, U U,) (= P,,),
and R is a minimum dominating set of G-(U, U U,) (= P,,), thenL U R U {s,} » G-,
whence y(G-v) = |[L| + |[R| + 1 =m + n + L.

Case 6: Suppose that v = s. This case is similar to Case 5, and y(G-v) = m + n + 1.

Case 7: Suppoée v =r1,. Then, G-visa (3m + 3n + 2)-cycle with a pendant edge

incident with s. Thus, if D is a minimum dominating set of G-{r,, s,} that contains s, we

have D »G-vand |[D| = m + n + 1.

Case 8: Suppose v = s,. This case is similar to Case 7.

Case 9: Suppése v & {1, s, 8, 1,}. Without loss of generality, suppose v € U,.
Subcase 9.1: Suppose (U, - {v}) is connected; then, v = r, or v = 5, - say

=s,. Clearly, then, H = ((U, U {r}) - {s,}) = P,.. If D, is a minimum

dominating set of H and D, is a minimum dominating set of (U,) = P, , then
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D,UD,~»U, UU, U{r} so tha D'=D UD,U {s;} »G-v, with

ID| =m +n + 1.

Subcase 9.2: Suppose (U, - {v}) is disconnected. Let H = (U, U {r}) - {v});
thenH = F, U F, withF, = P, F, = P,,a+ b =3m, r € V(F).

Subcase 9.2.1: Suppose a = 0 (mod 3). If D, is a minimum dominating
set of (U,), D, is a minimum dominating set of F,, where F, = Py for
some k € N, and D; is a minimum dominating set of F, (2P, ), then
D,UD,UD,»U, UU,;U {r}, so that D'=D, U D, U D; U
{s.} » G-v with

o[ ] PR mmenen

Subcase 9.2.2: Suppose a = 2 (mod 3). If D, is a minimum dominating
set of (U, - {r5, s;}) = Py,,, D, is a minimum dominating set of
(V(F) - {r, 1,}) = Py, where 3k = a -2 for some k € N, and D5 is a
minimum dominating set of (V(F) - {s;}) = Psyn, then
D, UD, UD,»G-(N[r] UN[s]). Thus, D’=D, U D, U D, U
{r,s} »G-v,where [ID’| =n+k+m-1-k+2=n+m+ 1

Subcase 9.2.3: Suppose a = 1 (mod 3). Let D, be a minimum
deminating set of (U;) (=P,), D, a minimum dominating set of
(V(F) - {r}) = P,, where 3k = a - 1, and D, a minimum dominating
set of (V(F,) U {s}) (=Psni). Then, D, U D, U Dy » G-N[r,]. So,
D" =D, U D, U D; U {r,} »G-v, where |

O[] PR e

So, G is indeed vertex-domination-critical. O
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3.3.2.8.2 Remark: The examples of vertex-domination-critical graphs given in Examples 3.3.2.2,
3.3.2.3 (forn = 2), 3.3.2.5, and 3.3.2.7 are hamiltonian. That a vertex-domination-critical graph

need not be hamiltonian is illustrated by Example 3.3.2.1 and the above proposition.

3.3.2.9.1 Remark: The family of graphs that we describe in the next proposition is one that we
encountered in Chapter 2; in 2.1.8, we indicated that the graphs belonging to this family are edge-
domination-critical. By Proposition 3.3.2.9.2, we know that these graphs are also vertex-

domination-critical.

3.3.2.9.2 Proposition: For an integer n > 3, define the graph Q, as follows: V(Q) = {u, v,, w;;
0 <i<n-1}and EQQ) = {uu,, W,y Wiy, Wy, Uw;, viwi,, vw; i=1,2, .. n},

1 1R

where the subscript arithmetic is interpreted modulo n. Then, Q, is n-vertex-critical.

Proof: Let n be an integer with n = 3, and let the graph Q, be defined as above. By Proposition
2.1.8, y(Q) = n. Lety € V(Q); then there exists j € {0, 1, ..., n - 1} such thaty = u, Vi,
or w;. We consider each case separately.

Case 1: Suppose y = u. Since N(w) = {u;, v, vi,,}, we have that {w,, w,, ..., w;_,

Wi oo Waod > Q-uy, and y(Q,-u) = n - 1.

Case 2: Suppose y = v;. Observe that N(vj) = {u;, u,,, w;.;, w;}, and so {v,, v,, ..

*y

\%

-1 Vv

RS ERRREE) Vn-l} L Qn—'Vj, and ‘Y(Qn_vj) =n- 1
Case 3: Supposé-y = w;. Since N(u) = {u_, Uy, Vi, Vi, Wy}, it follows that {u,, u,,

ceos Uiy Ujaps ooy Uy} = Qu-wy, whence y(Q,-w) = n - 1.

Cases 1, 2, and 3 thus show that y(Q,-y) = n - 1 for each y € V(Q,), and the desired result
follows. O

3.3.2.9.3 Remark: Observe that, for n > 4 and any i € {0, 1, ..., n -1}, Q,_, can be formed
from Q, by deleting the vertices u;, v;, w; and adding edges w,_,v,,,, VioUi,g, and u,_u,,,, where

the subscripts are taken modulo n.

3.3.3 Remark: The concepts of edge- and vertex-domination-criticality are independent. As we

mentioned in Remark 3.3.2.9.1, the family Q, of graphs (defined in 3.3.2.9.2) are both edge- and
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;/ertex-domination-critical, as is the cycle C, (by Theorem 2.2.2 and Example 3.3.2.2), while the
cycle C, is vertex-domination-critical (again, see Example 3.3.2.2), but not edge-domination-critical
(since y(G+e) = 3 = y(G) for any edge e € E(@) that joins two diametrical vertices in C;). On
the other hand, any graph G that is obtained from a complete graph of order at least four by the
subdivision of one edge is 2-edge-critical but not 2-vertex-critical (y(G-v) = 2 for any vertex v
of G not incident with the subdivided edge). However, any vertex-domination-critical graph can
be extended to a graph that is both vertex- and edge-domination-critical, as the next theorem

shows.

3.3.4 Theorem: For every k-vertex-critical graph G (k = 2), there exists a graph H such that
(1) G is a spanning subgraph of H, and

(2) H is k-vertex-critical and k-edge-critical.

Proof: Let G be a vertex-domination-critical graph with y(G) = 2. There exists a finite sequence
(G=)G,, Gy, ..., G, of graphs where, for each i € {1, ..., n}, G, = G,,; + uyv, where uyv, is an
element of E(Ei-,_,) with ¥(G) = ¥(G;.) = k, and where v(G,+¢) < v(G,) for each e € E((_Sn).
Then, H = G, is a k-edge-critical graph and has G as a spanning subgraph. So, for any v €
VH) = V(G), a subset D of V(G) of cardinality k - 1 that dominates G-v by the vertex-
domination-criticality of G also dominates H-v, whence y(H-v) = y(H) - 1 for each v € V(H).
So, (1) and (2) hold, and the theorem follows. ]

3.4 BASIC PROPERTIES OF VERTEX-DOMINATION-CRITICAL
GRAPHS

3.4.1 Proposition: If G is a vertex-domination-critical graph, then, for every vertex v € V(G),
there exists a minimum dominating set D of G such that |
(1) v€ D, and
2)D N N(v) = @.

Proof: Let G be a vertex-domination-critical graph, and let v € V(G). Then, for any minimum
dominating D" of G-v, D = D" U {v} » G with [D| = 4(G), v € D, and, by Lemma 3.2.16,
D N Ny) = @. O
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3.4.2 Proposition: Let G be any vertex-domination-critical graph, and u, v any two distinct

vertices of G. If D, is any minimum dominating set of G-u and D, is any minimum dominating

set of G-v, then D, # D..

Proof: Suppose, to the contrary, that there exists a vertex-domination-critical graph G with distinct

vertices u and v such that G contains a minimum dominating set D, of G-u and a minimum
dominating set D, of G-v satisfying D, = D,. Since u € D, = D,, some vertex w € D, must
be adjacent to u (in G-v). But, D, = D,; so, w € D,, which implies Ng(u) N D, # &. This

contradicts Lemma 3.2.16. Thus, no such vertex-domination-critical graph exists. O

3.4.3 Corollary: If G is a vertex-domination-critical graph and u, v are distinct vertices of G, then
Nolu] & Ng[v].

Proof: Let G be a vertex-domination-critical graph. Let u, v € V(G) withu # v, and let D" be
a minimum dominating set of G-v. Clearly, in G-v, u is dominated by some w € D’, so
w € Nglu]. By Lemma 3.2.16, w is not adjacent to v; so, w 625 Ng[v].  Hence,
Nglu] & Ng[v]. O

3.4.4 Proposition: If G is a vertex-domination-critical graph and Ng(u) & Ng(v) for some vertices

u and v of G, then uv € E(G) and u belongs to every minimum dominating set of G-v.

Proof: Let G be a vertex-domination-critical graph, and suppose that Ny(u) € Ng(v) for some
distinctu, v € V(G). Then, u and v must be non-adjacent in G; otherwise, v € Ny(u), whence
v € Ng(v), which is imﬁ)ossible. Let D be a minimum dominating set of G-v. In G-v, u is
dominated by some vertex w € D*. If w # u, then w € Ng(u). However, N(u) S Ng(v); so
w € Ng(v), which contradicts Lemma 3.2.16. So, w = u, and u € D*. Since D" is an arbitrary
minimum dominating set of G-v, it follows that u belongs to every minimum dominating set of

G-v. O
3.4.5 Theorem: If G is any graph with a critical vertex v and a non-critical vertex w, then
Y(G-S-w) = y(G-S)

forany S € Ng[v], v € S.



88

Proof: Let G be any graph with a critical vertex v and a non-critical vertex w, and let
S C Nglv], v € S. If w € S, the result holds trivially, so suppose that w € S, and assume, to
the contrary, that y(G-S-w) < y(G-S). Then, by Lemma 3.2.13 and Proposition 3.2.17, we

obtain
y(G-S-w) = y(G-S) -1 = [y(G) - 1] -1 =v(G) - 2.

If w& Ng(v), then Ng.(v) = Ng(v) and S & Ng . (v). If w € Ng(v), then Ng_w(V) =
Ng(v) - {w}; however, w & S, so we have S & Ng_,(v) in this case, too. Thus, we can apply

Proposition 3.2.15 to the graph G-w, and obtain

¥(G-w-S) = y(G-w) - 1.
Thus,
v(G-w) € y(G-w-S) + 1 = y(G) -2 + 1 = 4(G) - I < (G).

This contradicts our assumption that w is a non-critical vertex of G. ]

3.4.6 Corollary: If G is any graph with s < p(G) non-critical vertices and v is G-critical, then

G-v has at least s non-critical vertices.

Proof: The result follows from Theorem 3.4.5 if we observe that setting S = {v} shows that every

non-critical vertex of G is also a non-critical vertex of G-v. |

3.4.7 Theorem: If G is a vertex-domination-critical graph, then each non-isolated vertex of G is

contained in at least two cliques of G.

Proof: Suppose, to the contrary, that there exists a vertex-domination-critical graph G with a
vertex u such that degou = 1 and u belongs to exactly one clique, H say. Since degsu > 1,
p(H) = 2; let v € V(H) - {u}. Now, if u is adjacent to a vertex x ¢ V(H), then u belongs to
the complete subgraph ({ux}), where ux & E(H). This implies that u belongs to at least two
cliques of G, namely H and some clique that contains the edge ux, which is contrary to
assumption. So, Ng[u] = V(H). Since V(H) € Ng[v], it follows that Ng[u] € Ng[v]. This

contradicts Corollary 3.4.3. Thus, no such vertex-domination-critical graph exists. U

3.4.8 Corollary: No vertex-domination-critical graph has an end-vertex.
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Another result concerning complete subgraphs is the following.

3.4.9 Lemma: If a graph G has a non-isolated vertex v such that (Ng(v)) is complete, then G is

not vertex-domination-critical.

Proof: Suppose, to the contrary, that there exists a vertex-domination-critical graph G with a
non-isolated vertex v such that (Ng(v)) = K, .. Let u € Ng(v). Clearly, any minimum
dominating set D for G-u must contain at least one vertex x from Ng[v] - {u}. Since G is vertex-
domination-critical, |D| = y(G) - 1. Now, since Ng[v] is complete, we have xu € E(G), i.e.,

D~uinG. So, D~ G and y(G) € |D| < 4(G). This absurdity establishes the lemma. [J

3.4.10 Remark: Notice that Corollary 3.4.8 is also a corollary of Lemma 3.4.9.

3.5 RESULTS INVOLVING OTHER PARAMETERS OF VERTEX-
DOMINATION-CRITICAL GRAPHS

3.5.1 Proposition: The minimum number of vertices which must be removed from a non-complete

graph G to produce a vertex-domination-critical graph is at most p(G) - G(G).

Proof: Let G be any non-complete graph, and let S be a maximum independent set in G. Then,
the graph H = G-(V(G) - S) = (S) has q(H) = 0 and p(H) = 2; so, since a non-trivial, empty

graph is vertex-domination-critical (by Example 3.3.2.1), the result follows. U
3.5.2 Remark: The bound in Proposition 3.5.1 is sharp.

Proof: Let ¢,(G) denote the minimum number of vertices that must be removed from G to produce
a graph that is vertex-domination-critical. Let p = 2. Then; any one of the following three

observations provides a proof of the remark.
1.0 < c,(K) <p-BK)=p-p=0,s0that c,(K,) = p - BK,).

2. Recall from Corollary 3.4.8 that a vertex-domination-critical graph has no end-vertices. Thus,
P, is itself not vertex-domination-critical, and the only induced subgraph of the path P, that is

vertex-domination-critical is an induced subgraph that is empty. Thus, a largest, induced, vertex-
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domination-critical subgraph of G (i.e., an induced vertex-domination-critical subgraph of G that

is obtained by the removal of the smallest number of vertices) has order B(G) and so

cn(P,) = p - BG).

3. We have seen before (Example 3.3.2.2) that the cycles C, are not vertex-domination-critical for
p = 0, 2 (mod 3). Suppose that p = 0 or 2 (mod 3). Then, as above, any induced subgraph of
C, that is a vertex-domination-critical graph must be empty; the largest such graph has order

B(Cy) and c,(C,) = p - B(C)). O
3.5.3 Remark: From Theorem 2.2.5 of [LW1], we know that the order p and maximum degree
A of any graph are related to its domination number y by p < (A + 1)y (see also Corollary
5.2.4). Since (a + 1)(b - 1) + 1 < (a + 1)b for a, b € N, the bound presented in the theorem
below for graphs having critical vertices is an improvement on the bound p < (A + 1)y, provided
G is non-empty.

3.5.4 Theorem: If G is a graph with at least one critical vertex, then
p(G) = [AG) + 1][¥(G) - 1] + 1.
Proof: Let G be a graph of order p, domination number y and maximum degree A, for which

there exists v. € V(G) with y(G-v) < y(G). By Lemma 3.2.13, y(G-v) = y - 1. Applying the

result from [LW 1] mentioned in Remark 3.5.3, we thus have
p(G-v) < [A(G-v) + 1] ¥(G-v),
p-1=<I[AG-v) + 1] [y - 1]
since A(G-v) < A(G), we have finally thatp < (A + 1) (y - i) + 1. O
3.5.5 Corollary: For e{zery vertex-domination-critical graph G,
p(G) < [AG) + 1] [v(G) - 1] + L.

3.5.6 Remark: Both the bounds p(G) < (A(G) +1)y(G) and p(G) < [A(G) + G - 11+ 1

for a graph G are sharp, since they are attained for empty graphs. Another class of graphs that
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shows that the bound of Theorem 3.5.4 is best possible is the infinite class of n-vertex-critical
graphs G, defined in Proposition 3.3.2.6.1, since p(G,) =@ -1)(m + 1) + 1=
[A(Ga) + 1] [¥(Gpo) - 11 + 1.

The following theorem extends the result of Corollary 3.5.5.
3.5.7 Theorem: If G is a vertex-domination-critical graph, then
p(G) = [A(G) + 1] [¥(G) - k(G)] + k(G).
Proof: Let G be a vertex-domination-critical graph, with p = p(G), v = y(G), A = A(G) and
k = k(G). Let the components of G be G|, G,, ..., G, and let p, = p(G), A, = A(G,) and

v, = (G for i € {1, 2, ..., k}. Clearly, each component G; (i < i < k) of G is vertex-
domination-critical. By Corollary 3.5.5,p, < (A, + I)(v; - 1) + 1 fori =1, 2, ..., k. Thus,

™M~

k
s Y[, + 1]
i=1

W
-

s Y[@+DE-D] +k

k
s (DY (-1 +k
i=1

—

= (A+D)(y-k) + k. d

3.5.8 Proposition: If G is a regular graph that is not complete, and p(G) = A(G) + v(G), then

G is vertex-domination-critical.

Proof: Let G be a graph satisfying the hypothesis of the proposition. By Proposition 2.1.3, for
any v € V(G),

p(G-v) = A(G-v) + y(G-v),
p(G) -1 = AG) + y(G-v),
ie.,

¥(G-v) < p(G) - AG) - 1 = 4(G) - 1 < ¥(G).

So, G is vertex-domination-critical. O
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5.5.9 Remark: Notice that the above proposition, combined with Proposition 2.1.4, shows that,
for a graph G, the property of being regular and non-complete and having p(G) = A(G) + (G)

is sufficient to ensure both vertex - and edge-domination-criticality.

3.5.10 Proposition: Let G be a non-empty graph of order p > 2. Then, G is regular, non-
complete and satisfies p = A(G) + y(G) if and only if p is even and G is isomorphic to the graph

obtained from K, by the removal of the edges in a I -factor.

Proof: Letn € N, and let G = H-F, where H = K, and F is the edge set of a 1-factor of H.
That G is non-complete and (p - 2)-regular follows immediately. By Example 3.3.2.3, G is 2-
vertex-critical, so y(G) = 2 and A(G) + y(G) =p -2 + 2 = p.

For the converse, suppose that G is a non-empty, A-regular, non-complete graph such that
p = A(G) + ¥(G) = A + ¥(G). By Proposition 3.5.8, G is k-vertex-critical for some k > 2.
We shall show thatk = 2, whence the proposition will follow. Letv € V(G) and suppose, to the
contrary, thatk > 2. Then, A = p -k < p - 3, so that | V(G) - N[v]| > 2. Since G is non-

empty, [N(v)| = A = 1. We consider two cases.

Case 1: Suppose that G-N[v] is empty. Then (since G is A-regular), it must follow that
every vertex in V(G) - N[v] is adjacent to every vertex in N(v). So, for any v, € N(v),

{v,v;} » G, and k = y(G) < 2, a contradiction.

Case 2: Suppose that G-N[v] is non-empty; let ab € E(V(G) - N[v])). Then,
V(G) - (N(v) U {a}) » G, so that y(G) < p - A - 1. Thus, A(G) + ¥G) €p-1K<

p, a contradiction. O

3.5.11 Remark: In the following theorem, we establish another upper bound on the order of a

vertex-domination-critical graph.

3.5.12 Theorem: If G is a vertex-domination-critical graph with p = p(G), q = q(G), v = v(G),
and A = A(G), thenp < %5 (2q + 3y - A).

Proof: Let G be a y-vertex-critical graph, y > 2, and let A = A(G), p = p(G), and q = q(G).
Suppose first that G has no isolated vertices. By Corollary 3.4.8, every vertex of G has at least

two neighbours. Let v be a vertex of G of maximum degree A and let D = D’ U {v}, where D’
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is a minimum dominating set of G-v. Since G is vertex-domination-critical, D is a minimum

dominating set of G.

By Lemma 3.2.16, no vertex of N(v) belongs to D', so each vertex x of N(v) has (at least) 2
neighbours in D, namely v and some vertex in D’.  Furthermore, each vertex y of
V(G) - (D U N(v)) is adjacent to at least one vertex y’ of D’ (by the definition of D), and so a
further p ~ y - A edges of G are thus accounted for. Also, each of these p -y - A vertices y
in V(G) - (D U N(v)) has a neighbour y” distinct from y’, and thus the vertices of
V(G) - (D U N(v)) contribute at least another ['4(p - v - A)| more edges to G. Therefore,

Q22N - oy o) d[EE] e oy e ]

We consider two cases, dependent on the parity of p - v - A.

Case 1. If p -+ - Aiseven, then

2p -2y +2A +p-y - A 3p-3y+4
q » 2% va - pzv )

whence p < Y3 (2q + 3y - A).

Case 2: Supposep -+ - Aisodd. Then

2p -2y +2A 4 p-y+4A-+1l _ 3p-3y+A -]

2 2 2

whencep < % 2q + 3y -4 - 1) < Y5 (2q + 3y - A).
Thus, Cases 1 and 2 show that the result holds for vertex-domination-critical graphs without
isolated vertices. Suppose now that G = I_{l U G" where p = p(G) = p(G") + t and G* has no
isolated vertices. Clearly, p(G) = p - t, A(G") = 4, ¢(G") = q, and y(G") = ~. Applying our
result to the graph G”, we obtain
p-t=<%2q+3(y-t)-A]l =% Qq+ 3y -A) -t

and the desired result follows for graphs with isolated vertices also. m

3.5.13 Remark: The bound in the above theorem is best possible since, for example, for k € N,

Cik.1 Is a vertex-domination-critical graph (see Example 3.3.2.2) and
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12a(Cy.)) * 3¥(Cop)) -A(Cy. )] = 5203k + D +3(k + 1) -2] = 3k+1 = p(Cyy. ).

3.5.14 Remark: We recall the following result of Vizing [V1] (also given in [C1]). Extensions

of, and results based on, Lemma 2.1.9 are given in the three succeeding theorems.

2.1.9 Lemma: For any graph G,

Y(G) < p(G) + 1 - 2q(G)+1.

3.5.15 Theorem: If G is a graph such that

Y(G) > p(G) + 1 - y2q(G)+2,

then G is vertex-domination-critical.

Proof: Suppose, to the contrary, that there exists a graph G, with order p, size ¢, and domination
number v, that satisfies the hypothesis of the theorem, but for which there exists v € V(G) with
Y(G-v) = ¥(G). By Lemma 2.1.9, we know that

p(G-v) + 1 - y2q(G-v)+1
p-1+1-2(q-deggv) +1
p—,/2q-2degGv + 1.

Y(G-v)

72

Thus, we have

P - J29-2deggv+1 2 y(G-v) 2y >p + 1 - 2q+2,

ie.,

V2@ +2 - 1> ,/2q-2deggv+1,

and squaring gives

29 +2-2y2q +2 +1>2q - 2deggv + L

whence
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2deggv + 2 > 2y2q + 2.

So, since, by our assumption,

V2q+2 >p -y + 1,

we have
2deggv+2>20(p-vy+ 1),

ie.,

degev > p - 7.

Hence, A(G) = deggsv > p - v = A(G), which is impossible. So, the desired result follows.[]

3.5.16 Theorem: If G is a graph such that
Y(G) = p(G) + 1 -y/2q(G)+1,

then G is vertex-domination-critical.

Proof: The result follows from Theorem 3.5.15 but can also be proved independently, as follows.

Suppose, to the contrary, that there exists a graph G that satisfies the hypothesis of the theorem,
but which contains a non-trivial vertex v. Let p = p(G), ¢ = q(G), and ¥y = ¥(G). By
Lemma 2.1.9,

Y(G-v) <.p(G-v) +1 -/2q(G-v) +1 =p - \/2q—2deg0v +1,

and so, since v is non-G-critical,

P - 2q-2deggv+1 > y(G-v) 2y =p + 1 - V2q+1. '

Then

b

V2 + 1 21 + J2q - 2deggv + 1,

and squaring gives

2g +121+2/2q - 2deggv + 1 +2q - 2deggv + 1,

ie.,
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2deggv - 1 2 2)/2q - 2deggv + 1.

By squaring again, we obtain

4(degov)® - 4degev + 1 = 4(2q - 2deggv + 1),

i.e.,
4(deggv)® + 4degev + 1 = 4(2q + 1),
i.e.,
(Qdegev + 1) =2 4(2q + 1),
i.e.,
2deggv + 122y2q + 1,
whence

2deggv 2 2y2q + 1 - 1. L. ¢))

Furthermore, we have

p+1-y2q+1 =y <p-A,

ie.,
vy2g+12A +1. .. 2)
Hence,
2A 2 2deggv 22y2q +1 -1 (from (1))
> 24+1) -1 (from (2))
= 2A +1,
which is absurd. Thus, no such graph G exists, and the result follows. O

3.5.17 Remark: By Theorem 2.1.11 and the preceding theorem, it follows that, for any graph G,

the condition

¥(G) = p(G) + 1 - /2q(G)+1,

is sufficient to ensure that G is both vertex- and edge-domination-critical.
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3.5.18 Theorem: If G is a graph such that

Y(G) 2 p(G) - V2qG) - 2A(G),
then G is vertex-domination-critical.
Proof: Suppose, to the contrary, that there exists a (p,q) graph G, having maximum degree A and

domination number v, that satisfies the hypothesis of the theorem but that contains a non-critical

vertex v. By Lemma 2.1.9,

¥(G-v) < p(G-v) + 1 - J2q(G-Vv) +1 =p - J2q - 2deggv + 1.

Thus,
p - \/2q - 2deggv + 1 2 y(G-Vv) 2 v(G) 2 p - y2q - 24,
ie.,
V29 - 24 > |/2q - 2deggv + 1,
ie., ,
2q - 2A = 2q - 2deggv + 1,
so that

2deggv = 2A + 1.

However, this is impossible since A = deggv. Hence, no such graph G exists and the theorem

follows. : U

3.6 CONSTRUCTING VERTEX-DOMINATION-CRITICAL GRAPHS

In this section, we show how new vertex-domination-critical graphs can be generated from smaller

vertex-domination-critical graphs. Recall first the following definition.

3.6.1 Definition: Given disjoint graphs G and H, and vertices x € V(G) and y € V(H), the
(u,v)-coalescence of G and H, denoted by (G,x)®*(H,y), is the graph obtained from G and H by
identifying the vertices x and y. We denote by u;,.q,, the vertex of (G,x)¢(H,y) that is the result
of the identification of x and y. If the identified vertices x and y of G and H, respectively, are

understood, we write GeH instead of (G,x)*(H,y). B
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3.6.2 Remark: It is immediately obvious that a graph G is vertex-domination-critical if and only

if every component of G is vertex-domination-critical.

3.6.3 Lemma: Let G and H be any non-trivial graphs, and consider any coalescence GeH of G
and H. Then,
(1) y(G) + y(H) -1 < y(GeH) < %(G) + y(H), and

(2) if both G and H are vertex-domination-critical, or if G*H is vertex-domination-critical,

then y(G*H) = v(G) + y(H) - 1.

Proof: Let G and H be any two non-trivial graphs and let (G,ug) ® (H,uy) be any coalescence of

G and H. Let

U= UG ug) (Houy)

Then, V(GeH) = VH U Vg, where Vg = (V(G) - {ug}) U {u},andV, = (VE) - {u}) U {u}.

The upper bound is easy to establish. If D, and D, are minimum dominating sets of (V) and (V,),
respectively, then |D,| = v(G), |D,| = y(H), and D, U D, » GeH; so

y(G*H) < [D, U D,| < [D,] + |D,| = v(G) + y(H).

Now suppose there exists a subset D of V(GeH) with |D| = Y(G) + y(H) - 2 such that D -
GeH. LetD, =D N Vyand Dg = D N V,. We consider two cases.

Case 1: Supposeu & D. Then, since D = {u}, at least one of Ng.u() N Dg, Ng.u(u) N
Dy # ©&; suppose Nguy(u) N Dg # &. So, Dy = (V) = G, whence |Dg] = v(G), and
Dy =~ (V4 - {u}) = H-u,, whence |IDy| = y(H-u,). Thus, we have

IDal = D] - |Dg| < [4(G) + y(H) - 2] -v(G) = yH) - 2.

However, then y(H-u,) < |D,| < y(H) - 2, which contradicts Corollary 3.2.14. This
contradiction shows that Case 1 does not occur.

M

Case 2: Suppose u € D. Then, D, ~ (Vo)
v(G), and |Dg N Dy| = 1. Thus,

G and D, ~ (V) = H, so that |Dg| =

IDul = ID| = [Dg] + 1 < [v(G) + y(H) - 2] - 4(G) + 1 = yH) -1,
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which implies that D, that does not dominate (Vy) = H. So, Case 2 does not occur,

either.
Thus, we must have y(GeH) = y(G) + y(H) - 1, and statement (1) of the lemma follows.
Suppose now that both G and H are vertex-domination-critical. Let D; and D, be minimum
dominating sets for G-ug and H-uy, respectively. Since G and H are vertex-domination-critical,
we know that |D,| = y(G) - 1, |D,| = y(H) - 1. Clearly, D, U D, U {u} = G*H, whence
y(GeH) < [Dy| + D] + 1 =[G - 1] + [yH) - 1] + 1 = 4(G) + vH) - 1.

Since y(G*H) € {v(G) + y(H) - 1, ¥(G) + y(H)}, the desired result follows.

Finally, suppose that GeH is vertex-domination-critical. =~ Suppose, to the contrary, that

v(GeH) = v(G) + y(H). Since G*H is vertex-domination-critical,
Y({(GeH)-u) = y(G*H) - 1 = 4(G) + y(H) - L.
Now, (G*H)-u consists of two components, namely H-u, and G-u;. We have proved above that

if ug and u, are critical vertices of G and H, respectively, then y(G*H) = v(G) + y(H) - 1. So,

suppose now, without loss of generality, that y(H-u) = y(H). Then, from
v(G) + y(H) - 1 = y((GeH)-u) = y(G-u) + y(H-u) = v(G-u) + y(H),
we have y(G-u) < ¥(G) - 1. So, by Corollary 3.2.14, ¥(G-u) = 4(G) - 1. However, then,

if D, and D, are minimum dominating set of G-u and H, respectively, we have that

D" = D, U D, is a dominating set of GeH, whence

= |D,| + |D,| = ¥(G) + y(H) - 1.

v(G*H) < |D’
This contradicts our aséumption. So, v(GeH) is indeed v(G) + y(H) - 1. [l
In the course of the above proof, the following corollary has been shown to hold:

3.6.4 Corollary: If G and H are graphs with critical vertices x and y, respectively, then
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Y(G,x)*H,y) = v(G) + y(H) - 1.

3.6.5 Lemma: For any graphs G and H, any coalescence GeH is vertex-domination-critical if and

only if both G and H are vertex-domination-critical.

Proof: Let G and H be any two graphs; consider any coalescence (G,ug)®*(H,u,) of G and H. Let

U= UGug) M)

Vo = (V(G) - {ush) U {u}, and Vy; = (VH) - {u}) U {u}.

We suppose first that both G and H are vertex-domination-critical. By Lemma 3.6.3(2), this
implies that y(G*H) = vy(G) + y(H) - 1. Letv € V(G*H). We consider three cases.

Case 1: Suppose v = u. Then, if D; and Dy are minimum dominating sets of G-ug and
H-uy, respectively, |Dg| = v(G) - 1 and |Dy| = y(H) - 1 (by the vertex-domination-
criticality of G and H), and, furthermore, D = Dy U D, H(GOHj—u, where |D| =
v(G) + y(H) - 2. Thus, by Corollary 3.2.14, y(GeH-u) = y(G*H) - 1.

Case 2: Suppose v € V(G) - {ug}. Let Dg be a minimum dominating set of G-v.
Then, |Dg| = y(G) - 1; clearly, Dg = {u}. Let D, be a minimum dominating set of

H-uy; then |Dy| =+y(H)-1. Since D=Dg UDy» (Vg - {v}) U Vy=
V(GeH) - {v}, we have

¥((G*H)-v) < |D| = v(G) + y(H) - 2,

and it follows that
v((GeH)-v) = v(G*H) - 1.

Case 3. Suppose v € V(H) - {u,}. This case proceeds analogously to Case 2.
Cases 1 to 3 show that GeH is vertex-domination-critical.
To prove the converse, suppose that GeH is vertex-domination-critical. As before, this implies,

by Lemma 3.6.3(2), that y(GeH) = y(G) + v(H) - 1. We shall show that G is vertex-

domination-critical; that H_is vertex-domination-critical also is shown in a similar way.
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Let v € V(G), and let D be a minimum dominating set of (GeH)-v. Then, ID| = y(G) +

v(H) - 2. We consider two cases.

Case 1: Supposev = ug. LetDg = D N Vg, Dy = D N V. Clearly, Dg = G-ug and
Dy » H-u,. If |[Dg| = y(G), then

[Dul = ID] - [Dg| < (¥(G) + y(H) - 2) - ¥(G) = y(H) - 2.
However, this contradicts the fact that Dy = H-uy, since y(H-uy) = yH) - 1. So,
|IDg| < v(G) - 1. But, Dg~ G-ug implies |IDg| = v(G-ug) = y(G) - 1. Thus,
¥(G-v) = ¥(G-ug) = [Dg| = ¥(G) - L.

Case 2: SupposeVv € V(G) - {ug} and assume that y(G-v) = y(G); so, y(G-{ug, v} =2
¥(G) - 1. Let Dy =D N Vyand Dg = D N V.

Subcase 2.1: Supposeu € D. Then, Dy~ (V,) = H, whence |D,| = y(H) and
D; = (Vs - {v}) G-v, whence |Dg| = v(G) - 1. Now, y(G) + y(H) -2
= |Dg| + |Dul - 1; so, we must have |Dy| = y(H) and.[Dg| = v(G) - L.
Thus, v(G) - 1 < 4(G-v) < |Dy| gives ¥(G-v) = (G) - 1, contradicting

In

our assumption that y(G-v) = v(G).

Subcase 2.2: Suppose u & D. Then, Dy =» H-uy and Dg = (V5 - {v}) = G-v,
whence |Dy| = y(H) -1 and |Dg| = %(G) -1, or Dy » H and Dg ~
(Vo - {u, v}) = G-{ug, v}, whence [Dy| = y(H) and [Dg| = (G) - 1.
However, the latter possibility does not hold, since, otherwise, |D| = |Dg| +
|IDy| = v(G) + y(H) -1 > |DJ. So, the first possiblity holds; and, in fact,
ID| = y(G) + y(H) -2 = |Dg| + |Dg| implies that |D,| = y(H) - 1 and
|Dg| = v(G) - 1. Thus, as in the previous case, y(G-v) = y(G) - 1, and a

contradiction to our assumption that y(G-v) = ¥(G) is produced.

Thus, Case 2 shows that y(G-v) < y(G) for all v € V(G) - {us}. Combined with Case 1, this

proves that G is vertex-domination-critical. As mentioned above, the vertex-domination-criticality

of H follows similarly. U

The following theorem provides a method of constructing large classes of vertex-domination-critical

graphs.

3.6.6 Theorem: (1) A graph G is vertex-domination-critical if and“only if every block of G is
vertex-domination-critical. ~

(N T1f a seanh M o oo 1
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¥G) = Y ¥(@G) - (n-1).
i=1

Proof: We will proceed by induction on n, the number of blocks in G. If n = 1, then result (1)
is immediate. Also, Z°_, v(G) - (n - 1) = ¥(G,) = y(G), so (2) holds in this case also. Assume
that both results hold for n = k, where k > 1. Suppose, now, that G is a graph with k + 1 blocks
Gy, Gy, ..., Geoy Since k + 1 = 2, G has a cut-vertex, and we assume that these k + 1 blocks
have been labelled so that G, ,, is an end-block of G, i.e., G,,, contains only one cut-vertex, v say,
of G. Then, if H =([V(G) - VGy.)] U {¥})o, i-e., if H = (U, V(G))s, then G = HeG,,,,

where it is the vertex v of G,,, and the vertex v of H that have been identified in the coalescence.

Suppose first that every block of G is vertex-domination-critical. This means, by the inductive
hypothesis, that H, comprising the k blocks G,, G,, ..., Gy, is vertex-domination-critical. Since
Gy, Is, by assumption, also vertex-domination-critical, it follows, by Lemma 3.6.5, that
G = HeG,,, is vertex-domination-critical. Conversely, if we assume that G = HeG,,, is vertex-
domination-critical, then, again by Lemma 3.6.5, H and G,,, are both vertex-domination-critical.
By the inductive hypothesis, H being vertex-domination-critical impiies that each of its blocks G,,

G,, ..., G, is vertex-domination-critical. Thus, result (1) follows.

We now consider the second result of the theorem. By the inductive hypothesis, if H is vertex-

domination-critical, then

k
Y = Y v(G) - (k- 1).

i=1

Suppose now that G is vertex-domination-critical. Then, by Lemma 3.6.3(2), we have

Y(G) Y(H'Gk,l) = y(H) + Y(Gk+1) -1

k
gy(Gi)’ - (k- 1|+ y(G,) -1

k+l

= Yv@G) -k
i1
k+1

= Y v(G) - [(k+1)-1].
i=1

The theorem now follows, by the Principle of Mathematical Induction. g
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The following theorem illustrates another method of constructing infinite classes of vertex-

domination-critical graphs.

3.6.7 Theorem: Let G be any graph of order p and size q. Let E(G) = {e,, &,, ..., g}. For
i € {1,2, ..., q}, let H be a vertex-domination-critical graph having two vertices y and v; with
the following properties:

(i) u; and v, are both in some minimum dominating set of H,

(i) u, belongs to some minimum dominating set of H-v;, and

(iii) v, belongs to some minimum dominating set of H-u;.
Construct G™ from G by replacing, for each i € {1, 2, ..., q}, the edge e by H; where the end-
vertices of ¢ in G are identified in G* with vertices u; and v, of H;. Then,

(D) y(G) = p + 3, [v(H) - 2], and

(2) G" is a vertex-domination-critical graph.

Proof: Let G be any graph. Let E(G) = {e,, e, ..., ¢}, and let H;, u;, and v; be as defined in
the theorem hypothesis for each i € {1, 2, ..., q}. Also, let S = {u, v;; 1 <is< q}. Denote
by V, the set of isolates of G. Clearly, |S| = |V(G) - V,|= |V(G)| - |V,|. We shall refer
to vertices of G* as G-vertices or non-G-vertices according to whether they correspond to

vertices which were originally in G or not.

Now, for each i € {1, 2, ..., q}, let D; denote a minimum dominating set of H; that contains the
vertices u; and v; (by (i), such a minimum dominating set of H; exists). Then, clearly,
D" =i, D, =i, V(H)and D* U V, » G". ThatD® U V| is, in fact, a minimum dominating
set for G” follows from the observation that every dominating set D’ of G must contain V,, as well
as a dominating set D! of H; for every i € {1, 2, ..., q} and that |D’| is minimized if D! is a
minimum dominating set of H; fori =1, 2, ..., q and if D; N Dj # & for as many pairs i, j

(with 1 # j) as possible, i.e., if D{ contains y; and v; for every i € {1, 2, ..., q}. Thus,

Y(G) = DUV, = [D*] + |V

q
(o, vis 1< i< qh +|U(Di—{upvi}) [+ [V,]
i=1
q
S| + E(Y(Hi)ﬂ) A
q

p+ Y (v(H)-2).

i=1

1]

We show next that G™ is vertex-domination-critical. Let x* € V(G"); we consider two cases.
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Case 1: Suppose that x™ is a G-vertex, i.e., X" = y, or v, for some i € {1, 2, ..., q};
suppose, without loss of generality, that x = u;. Let U be the family of vertices u, = x',
indexed by the set I, = {k; 1 < k < qand u, = x’}; and let W be the family of vertices
v, = x", indexed by the set I, = { k; | < k < q and v, = x7}; then, if x is the vertex
of G to which x* corresponds, we have deggx = |Iy| + |Iy|. LetJ = I, U I; then,
|J| = deggx. For each j € J, let D] be a minimum dominating set of H;-u; (if u; € U)
that contains v; (by (iii), such a set D; exists), or of H;-v; (if v; € W) that contains u; (by
(ii), such a set D; exists). Since, by assumption, H, is vertex-domination-critical for each
k€ {l,2, .., q}, we have |Dj| = y(H) -1 for each j € J. For each j € {1, 2,
..., q} =7, let D;" be a minimum dominating set of H; containing both u; and v; (such a set

Dj exists by (i)). Then,

q
D=UD,UyD, UV, »G*x*
ke] k=1
ket

whence

q . 9
y(G*-x") ¢ Z(Y(Hk) - 1)+ >, IDg - lug v i+ UMD Ny, v D]+ |V
k=1

kel k=1
k¢l kel
q
= S (@Y - 2) + I+ Y (yEY - 2) + IS - {u, vi;ied}| + |V,
kel k=1

kel

i a1 (1) = 2) (m + V@) - V] - (deggx + D)+ [V,

=

=Y WE) - 2) + [T+ V@) - [V,] - 1] - 1+ |V,]

=1

-~

u
=
|
b
+
Ng
-y
s
~—
1
(8]
e

n
<
=
Q
.
N
|
—

Thus, every G-vertex of G™ is a G*-critical vertex.

Case 2: Suppose that x" is a non-G-vertex, say x" € VH) - {u, v;} for some
i € {1,2, ..., q}. Let] denote the set of all indices j for which g is adjacent to e, in G
and let w; be the vertex common to ¢ and & ( € J). A dominating set D of G* may be

constructed as the union of the following sets:
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(i) a minimum dominating set D; of H;-x" with |D;| = y(H) - 1 (where D; may
contain both, one, or neither of u; and v;, but D; obviously dominates both u;
and v,),

(i) for each j € J, a minimum dominating set D; of H;-wj, containing
{u, vj} - {w;}, with [Dj| = y(H) - 1, where w; € {u, vi} (and so w; is
dominated by Dy);

(iii) for each k € {1, 2, ..., q} - § U {i}), a minimum dominating set D, of H,,
containing u, and v,, of cardinality y(H,); and

@(iv) V,.

Let Vi = V(G) - {u,, v;}; then, Vi € D. We note that, for j € J and k € {1, 2,
..., q} - (0 U i), the numbers of vertices which are contained in D; - V{ and in D, - Vi
are, respectively, |D;| -1 = y(H) -2 and |D,| -2 = y(H) - 2. Hence,

1@ < Pl = Vs D BB ) F Ry -2)
jel kell,2,..,q-gUtYy -~ -
q
=P'2+‘Y(Hi) -1 +Z(Y(H1) _2)
1-1
jei
q
=p+ ) (v#) -2)-1
1-1
=y(G") - L
Therefore, y(G*-x") < HG"), as required. 0

3.6.8 Remark: Examples of graphs from which the graphs H; of Theorem 3.6.7 may be chosen
include any 2-vertex-critical graph, as the following proposition shows.
3.6.9 Proposition: If G is a 2-vertex-critical graph, then there exist u, v € V(G) such that

(1) there exists a minimum dominating set of G containing both u and v;

(2) there exists a minimum dominating set of G-u containing v; and

(3) there exists a minimum dominating set of G~v containing u.

Proof: Suppose that G = H-F where H = K, for some n € N, and F is the edge set of a
1-factor of H. Let u be any vertex of G, and let v be the unique vertex of G such that uv € E(C_}).
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Clearly, {u,v} is a minimum dominating set of G; so (1) holds. Since the only vertex of G-u of

degree p(G-u) - 1 is v, (2) holds; similarly, (3) holds. O

Later on (in Theorem 3.9.6), we shall show that every graph is an induced subgraph of some

vertex-domination-critical graph. At present, we can derive the following result.

3.6.10 Theorem: Given any graph G, there exists a vertex-domination-critical graph G’ that has

an induced subgraph isomorphic to the subdivision graph S(G) of G.

Proof: Let G be a graph of size q with E(G) = {uyv; i = 1, 2, ..., q}. Now, foreachi € {1,
2,...,q}, letH; = C,, where VH) = {u;, v;, w, y;} and EH) = {uy,, yvi;, viw,, wu;}, and form
the vertex-domination-critical graph G” from {H;; 1 < i < q(G)} as described in Theorem 3.6.7.

Clearly,
(u, vi, y3 1 < < gl

is an induced subgraph of G* isomorphic to S(G). ‘ o O
3.7 VERTEX-DOMINATION-CRITICAL GRAPHS, y* AND v~

Recall from Definition 3.1.3 that, in general, the y*(y”)-stability of a graph G is the minimum
number of vertices whose removal from G results in a graph H with y(H) > v(G) (y(H) < v(G)).
Now, the definition of vertex-domination-criticality prompts another question: Do there exist
graphs G for which

v(G-v) > ¥(G) for every v € V(G) ?

Any such graph, of course, would be a special case of a graph H with y*(H) = 1. The following

proposition answers this question in the negative.

3.7.1 Proposition: There does not exist any graph G such that ¥(G-v) > ¥(G) for each
v € V(G).

Proof: Let G be a graph of order p. If y(G) = p, then G = I_(p and y(G-v) = y(G) - 1 for each
v € V(G). So, suppose now that y(G) < p(G). Let D be a minimum dominating set of G.
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:I'hen, v(G) < p(G) implies that V(G) - D # . Clearly, for any v € V(G) - D, D » G-v,
whence y(G-v) < ¥(G). Thus, no graph G satisfies y(G-v) > y(G) for every v € V(G). [

3.7.2 Remark: There do exist graphs G such that y(G-v) = y(G) for all v € V(G), i.e.,
v*(G) # | and v (G) # 1; for instance, for n = 3 and n = 0, 2 (mod 3), if G = C,, then

v(G-v) = v(P,.) = [‘/e(n - 1)1 = v(G) for any vertex v € V(G). In fact, there exist graphs
with y*(G) = m and y°(G) = n for any prescribed m, n € N (see Proposition 3.2.10).

3.8 BOUNDS ON THE DOMINATION NUMBERS OF A GRAPH AND
ITS COMPLEMENT

In this section, we investigate relationships between the domination number of a graph and the
domination number of its complement. Not all results in this section relate to vertex-domination-

critical graphs.

From the observation that, for every vertex v in a graph G of order p, degev + deggv =p - |,

the following lemma is immediately apparent.
3.8.1 m For any graph G, p(G) - AG) = &(G) + 1.
3.8.2 Theorem: For any graph G, v(G) + ¥(G) < 6(G) + 8(G) + 2.
Proof: Let G be any gfaph. By Proposition 2.1.3 and Lemma 3.8.1, we have
v(G) < p(G) - AG) = 3(G) + 1.
Similarly, y(G) < 8(G) + 1, and the result follows. - ]
3.8.3 Lemma: For any graph G, y(G) < x((_}) + 2.
Proof: Let G be any graph of order p. IfGis complete, then 7(G) = p, x((i) + 2=
p-1+2=p+ I, and the result holds. Suppose now that G is not complete, and let V* be a

minimum vertex cutset of G. Let G,, Gy, ...,G, be the components of (_E—V‘; letu € V(G,) and
v € V(Gy. Since  [V(G),V(G,) U V(Gy)) U ... UV(G)lg = &, it follows that
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V(G,) U V(G;) U ... U V(G,) is contained in Ng(u) (so, uv € E(G)). Similarly, V(G,) is
contained in Ng(v). So, {u, v} » V(G,) U ... U V(G) = V(G) - V*. Thus, V' U {u, v} »G,
and 7(G) < «G) + 2. O

3.8.4 Lemma: For any non-empty, non-complete graph G, the number of isolated vertices of G

cannot exceed K(E}).

Proof: Suppose, to the contrary, that there exists a graph G that is neither empty nor complete,
but such that the set J of isolated vertices of G satisfies |J| > K(é). Then, in (_3, the vertices of
J are mutually adjacent, and, furthermore, every vertex of J is adjacent to every vertex of
V(G) -J. Let S be any subset of V(G) with |S| = «(G). Clearly, by our assumption,
J]-S # O, so, for any v €] -8, G-S is dominated by v and is connected; hence,
x(G) > |S| = x(G), a contradiction. O

3.8.5 Lemma: For a graph G, y(G) = x((_}) + 2 if and only if
(i) G has K(E}) isolated vertices, and
(i) A(G) < p - x(@G) - 2.

Proof: Let G be any graph. Suppose first that y(G) = K((_}) + 2. If G is complete, then
x(é) +2=2and y(G) =1 # 2, and if G is complete, then (as we saw in the proof of Lemma
3.8.3) K(é)‘f‘ 2 # v(G); so, neither G nor G is complete. Let] = {v € V(G); degev = 0}. By
Lemma 3.8.4, |T| < «(G). If x(G) = 0, then |J| = 0, and (i) holds. Suppose now that «(G) >
0. Let V* be a minimum vertex cutset of (_3, and let u and v be vertices of G-V* that lie in distinct
components of G-V*. Then, as in the proof of Lemma 3.8.3, {u, v} » G- V" and V" U {u,
v} =~ G, and so

kG) + 2= |V U {u,v}| = ().

Since we have assumed y(G) = x(C_}) + 2, it follows that V* U {u, v} is a minimum dominating
set of G. Notice, first, that (V*); must be empty, since if xy € E((V")s), then (V' - {x}) U
{u, v} is a dominating set of G of cardinality y(G) - 1, which is not possible. Furthermore, every
vertex of V' must be non-adjacent in G to u, since if x € V" with xu € E(G), then, again,
(V" - {x}) U {u, v} » G. However, u is an arbitrary element of V(G) - V*; so, every vertex of
V" is non-adjacent in G to every vertex of G-V*. Thus, V* consists of isolated vertices of G and

we have |J| = |V°

= x(G). Combining this with the reverse inequality above, we have

| = x((_S), and (i) follows. Finaily, letw € V(G). Ifw € V*, degow = 0. Suppose now that
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w € V(G) - V". If every vertex of V(G) - V" is adjacent to w, then {w} - V(G) - V*, whence
v(G) < |V" U {w}| < ¥(G). So, there exists at least one vertex y, say, of V(G) - V7 such that
yw & E(G). Then, Ng(w) € V(G) - (V' U {w, y}), and so degew < p(G) - K(C_i) - 2. Since
w is arbitrary, A(G) < p(G) - «(G) - 2, and (ii) holds.

For the converse, suppose now that (i) and (ii) hold. If G is complete, then G contains
p(G) # p(G) -1 = K(E}) isolated vertices (which contradicts (i)), and if G is complete, then
AG) = p(G) -1 > p(G) - K((—}) -2 = p(G) - 2 (which contradicts (ii)); so, again, neither G
nor G is complete. Now, let D be any minimum dominating set of G. Clearly, the set J of the
K(E}) isolated vertices of G is contained in D, and at least one vertex x from V(G) - J must belong
to D, in order that V(G) - J is dominated. However, by (ii), degsx < p(G) - K(a) -2 =
|V(G) = J| -2; so x is adjacent to at most |V(G) - J| - 2 vertices of V(G) - J. Thus, at least
2 distinct vertices of V(G) - J belong to D; 50, v(G) = |D| = |I| + 2 = «(G) + 2. Since, by
Lemma 3.8.3, v(G) < K(é) + 2, the desired result follows. O

3.8.6 Theorem: For any graph G, y(G) + 7(6) < k(G) + «(G) + 3.
Proof: Let G be any graph. By Lemma 3.8.3, v(G) < K(C_}) + 2 and 7(C_}) < «x(G) + 2.

Case 1: Suppose v(G) # x(G) + 2 or y(G) # «(G) + 2; then, v(G) + v(G) < x(G) +
k(G) + 3 follows immediately.

Case 2: Suppose that both v(G) = «(G) + 2 and y(G) = «(G) + 2 hold. Since, for any
graph F, at least one of F and F is connected, we have that at least one of x(G), K(G) is
positive; suppose, without loss of generality, that K(C_}) > 0. Now, since G is connected,
G has no isolated vertices. Since 7(6) = «(G) + 2, it follows by Lemma 3.8.5 that G has
k(G) isolated vertices. So, k(G) = 0 and G is disconnectgd. Furthermore, since K(C—i) >0
and y(G) = x(a) + 2, we have, again by Lemma 3.8.5, that G has at least one isolated
vertex, X say. Then, degzx = p(C_i) -1, i.e., 7(6) = 1. However, then
7(6) =1 # «(G) + 2 = 2, which contradicts our assumption. So, Case 2 cannot occur,

and the theorem follows. |

3.8.7 Remark: In some instances, the bound given in Theorem 3.8.2 is better than that provided
by Theorem 3.8.6; for example, if G is a complete graph, then the bound in Theorem 3.8.2 is

p(G) + 1, whereas that in, Theorem 3.8.6 has the value p(G) + 2 (this example also shows, in



(a)

I

(b)

Fig. 3.8.1
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fact, that the bound of Theorem 3.8.2 is sharp). On the other hand, if G is a complete bipartite
graph K, ,, with | < n < m, then the bound provided by Theorem 3.8.6 is almost twice as good

as that given in Theorem 3.8.2, since

8C) +8G) +2=n+@m@-1)+2=2n+1
and

kKG) +kG) +3=n+0+3=n+3 <2042

(where, of course, G = K, U K)). Consider the graph G (shown in Fig. 3.8.1(a)) which is
obtained from a complete graph G, = K,,, (n € N) and two 3-cycles G, and G;, where
u € V(G), v € V(Gy), and w € V(G,), by identifying the vertices u, v and w. (The graph G
is shown in Fig. 3.8.1(b).) This graph shows that the bound in Theorem 3.8.6 is sharp, since
¥(G) + v(G) = 4 = «(G) + «(G) + 3.

We consider next some sufficient conditions on G under which ¥(G) € {1, 2, 3}, for a graph G.

3.8.8 Proposition: If G is a graph. Then,

0

1, if 8(G)

vG) = {2 if 3(G) = 1 and either x(G) = 0 or k(G) = 1

3, if 8(G) 2 2, x(G) =1, and AG) = p(G) - 1
Proof: Let G be a graph._

Case 1: Suppose 5(@) = 0. Then, G contains a vertex of degree p(G) - 1, and hence
v(@G) = 1.
Case 2: Suppose (5((_}) > 1. Then, no vertex of G is isolated, and so no vertex of G is

adjacent to every other vertex of G. Thus, y(G) = 2.

Subcase 2.1: Suppose K(é) = 0. Then, G is disconnected, with components G,,
Gy, ooy Gy, K(G) 2 2. Letu € V(G)), v € V(G,). Then, as in the proof of
Lemma 3.8.3,
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k(@)
u}, U VEG) <
i=2

which implies that, in G, {u} =9 V(G); similarly, {v} = V(G). So,
{u, v} » G and y(G) < 2. Combined with our earlier observation, this gives

v(G) = 2.

k(@G)
V@), UV = e
i=2 G

Subcase 2.2: Suppose x<6) = 1. Let v be a cut-vertex of (_}, and let G,, Gy, ...,

G, be the components of G-v (n = 2).

Subcase 2.2.1: Suppose N5(v) # V(G) - {v}. Letx € V(G) - Ng[v],
and leti € {1, 2, ..., n} be such that x € V(G)). Then, in G,

{x}» U | VG,
k-1

k=i

and, for any j € {1, 2, ..., n}, j # i, and any y € V(G), we have
{y} » V(G) in G. So, {x, y} » G, and y(G) = 2.

Subcase 2.2.2: Suppose N5[v] = V(G). Then, v is an isolated vertex in
G so that «(G) = 0, and v(G) = 1. Then, since v(G) = 1 # (G) +
2 = 2, we have, by Lemma 3.8.5 and Lemma 3.8.4, that G has fewer
than «(G) = 0 isolated vertices, which is impossible, or A(G) >
p(G) - k(G) -2 = p(G) - 2. So, A(G) = p(G) -1 (and, hence,
A(G) = p(G) - 1), which implies 6((_3) = 0, which is contrary to

assumption.

Case 3: Suppose 8(G) = 2, «(G) = 1, and AG) = p(G) - 1. By Lemma 3.8.3,
¥(G) < x((_}) +2 = 3. Since A(C—E) = p(G) - 1, G contains an isolated vertex, and, since
5G) = 2, p(G) = 3. Thus, y(G) = 2. So, ¥(G) € {2, 3}. Suppose that v(G) = 2.
Then, clearly, the set J of isolated vertices of G satisfies |J| < 2. If |J| = v(G) = 2,
then p(G) = 2 < 3, a contradiction. So, G has at most one isolated vertex. Since
A(é) = p(G) - 1, we have 6(G) = 0, i.e., G has at least one isolated vertex, say v, and

v must belong to every minimum dominating set of G. This implies, since y(G) = 2, that



Fig. 3.8.2
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there exists a vertex w € V(G) - {v} with degow = p(G) - 2. However, no such vertex
exists, since 6(6) > 2 implies A(G) = [p(G) - 1] - 6(G) < p(G) - 3. This contradiction
establishes the fact that y(G) = 3. O

We consider next graphs G for which both G and G are vertex-domination-critical. Such graphs

do exist, as the following proposition proves.

3.8.9 Proposition: There is at least one graph G such that both G and its complement are vertex-

domination-critical.

Proof: Consider the graph G depicted in Fig. 3.8.2; G is obtained from the coalescence
(G,,2)*(G,,2) of two 3-cycles G, and G,, where V(G,) = {1, 2, 3} and V(G,) = {2, 4, 5}, by
the addition of four new vertices 6, 7, §, and 9, and the insertion of the edges 61, 65, 71, 74, 93,
94, 83, 85, 67, 79, 98 and 86. The mapping ©:V(G) = {l, 2, ..., 9} » V(G) defined by
O(l) =7,6(2) =2,6(3) =8,64) =9,0(5) =6,006) =3,06(7) =5,6(8) =4,609) =1
is an isomorphism between G and G;s0 G is self-complementary. The desired result will follow

once we have shown that G is 3-vertex-critical.

By inspection, it is easy to see that {2, 6, 9} = G, and that no smaller subset of V(G) dominates G.
So, y(G) = 7(6) = 3. Now, leti € {1, 2, ..., 9}. We consider three cases.

Case 1: Suppose i € {6, 7, 8, 9}; without loss of genérality, assume 1 = 6. Then,
{2,9} » G-i. -

Case 2: Suppose.i € {1, 3, 4, 5}; without loss of generality, assume i = 1. Then
{4, 8} » G-i.

Case 3: Suppose i = 2. Then, {6, 9} » G-i.

So, G is 3-vertex-critical. O

3.8.10 Remark: We make the observation, as an aside, that it is not only the domination number
of the graph G in Fig. 3.8.2 that has value 3; the independent domination number, i(G), and the
total domination number, 4'(G), also have value 3 (consider the vertex subsets {2, 6, 9} and
{1, 2, 3}). '
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3.8.11 Proposition: The complement of any 2-vertex-critical graph is not vertex-domination-
critical.

K’y

i

Proof: Let G be a 2-vertex-critical graph. Then, by Example 3.3.2.3, G = H-F, where H

n

(n € N) and F is the edge set of a 1-factor of H. Clearly, then, G = nkK,, so 7(6) =n and
'y(é -v) = nfor any v € V(G), i.e., G is not k-vertex-critical for any k € N. O

3.8.12 Corollary: If G is a graph for which both G and G are vertex-domination-critical, then
v(G) = 3 and v(G) = 3.

Proof: Let G be a graph satisfying the hypothesis of the proposition; then, y(G) = 2. If
¥(G) = 2, then (by Proposition 3.8.11), G is not vertex-domination-critical, a contradiction.
Similarly, y(G) = 3. : O

3.8.13 Theorem: If G is a graph for which both G and G are vertex-domination-critical, then both
G and G are blocks. |

Proof: Let G be a graph such that both G and G are vertex-domination-critical. Then,
p(G) = y(G) = 3 (by Corollary 3.8.12). Suppose, to the contrary, that G is not a block. Then,

either G is disconnected or x((_i) = 1.

Case 1: Suppose K(C—;) = 1. Then, G is connected with p(G) > 1, so G has no isolated

vertices, whence 6(@) = 1. Our assumption that x((—}) = 1 implies further, by Proposition
3.8.8, that v(G) = 2, contradicting Corollary 3.8.12.

Case 2: Suppose G is disconnected. Then, K((—}) = 0. Furthermore, 6(6) > 1
(otherwise, if B(C—i) = 0, then G contains a vertex of degree p(G) - 1, and y(G) = 1,
whence G is not a vertex-domination-critical graph). So, again by Proposition 3.8.8,

¥(G) = 2, and a contradiction results as above.
That G is a block follows from the observation that G is the complement of G. O

3.8.14 Corollary: If G is a graph such that both G and G are vertex-domination-critical, then
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v(G) + (G) < «(G) + x(@G) + 2.

Proof: Let G be a graph satisfying the hypothesis of the corollary. By Theorem 3.8.13, both G
and G are blocks and are therefore both connected, i.e., k(G) > 0 and x(a) > 0. By
Lemma 3.8.3, we know that v(G) < «(G) + 2 and v(G) < «(G) + 2. If, say, 7(G) = «(G) + 2,
then, by Lemma 3.8.5, it follows that G has at least one isolated vertex; however, this contradicts
the fact that G is connected. We similarly obtain a contradiction if we assume y(é) = «(G) + 2.

So, v(G) < K(é) + 1 and y(é) < k(G) + 1, whence the desired result follows immediately. [
For the remainder of this section, we return to graphs in general.

3.8.15 Lemma: For any graph G and any subset X of V(G), where |X| < y(G) - 1, there exists
an independent set W S V(G) - X such that

() [W| = 4(G) - |X], and

(2) W U {x} is independent for all x € X.

Proof: Let G be any graph and let X be any subset of V(G) with |X| < y(G) - 1. Certainly,
then, X is not a dominating set of G. Let W' be the set of vertices of V(G) - X not dominated
by X. If W' is independent, then we let W = W', If W' is not independent, then we consider
any maximal independent set W of (W')q; of course, then W — (W'),. In either case, W is an
independent subset of V(G) - X and is such that X U W ~ G, whence y(G) < |[X U W| =
|X| + |W][, ie, |W| 2 v(G) - |X]|. Finally, that W U {x} is independent for all x € X

follows immediately from the definition of W', U

3.8.16 Corollary: For any graph G,
(1) every pair of distinct vertices has a set S of at least y(C_}) - 2 common neighbours in G,
with (S)g complete, and, )
(2) if ¥(G) = 3, then diam (G) < 2 and v(G) < (G).

Proof: Let G be a graph, and let u and v be distinct vertices of G. If 7(6) = 1 or 2, then
(trivially) [Ng() N No(v)| = 0 = 4(G) - 2. So, we assume now that v(G) = 3. If we let
X = {u, v}, then |X]| < 7(G) - 1 so that, by Lemma 3.8.15, there exists a subset W of
V(G) - X such that [W| = ¥(G) - |X] and (W U {u}) and (W U {v})s are cliques. Clearly,
then, W is contained in both Ng(u) and Ng(v), where |W| > (G) - |X] = (G) - 2. So, the

first result follows.
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I<\Iow suppose that 7(6}) > 3. Then, by (1), for every two vertices u, v € V(G),
INg(w) N Ng(v)| = y(é) -2 > 1, i.e., there is a path of length two joining u and v in G. So,
diam (G) < 2. If G = K,, for some n € N, then n = y(G) = 3 and diam(G) = 1 < 2 and
¥(G) = 1 < «(G). Suppose now that G is not complete, and let D be a minimum vertex cut-set
of G; say, G,, G, ..., G,, where n = k(G-D) = 2, are the components of G-D. We will show
that D = G, whence it will follow that v(G) < «(G). Suppose, to the contrary, that there is some
i€ {l,2,...,n}and u € V(G such that D »» {u}. Letv € V(G) for any j € {1, 2, ..., n},
j # i. While u and v are not connected in G-D, there is, by what we proved above, at least one
vertex, w say, such that uv, vw € E(G), and w must belong to D. However, then D =~ {u}. This

contradiction establishes the desired result. O

3.8.17 Remark: We note that it follows directly from the proof above that if G is a graph and
diam (G) < 2, then y(G) < «(G). In Theorem 3.8.18, we obtain a Nordhaus-Gaddum-type upper
bound on the sum y(G) + y((_B) for arbitrary graphs G satisfying 7(6) > 3. This result may be
compared with the well-known Nordhaus-Gaddum-type results obtained by Jaegar and Payan [JP1],
namely, (a) y(G) 7((_3) < p(G) and (b) y(G) + 7(6) < p(G) + 1, for any 'gfaph G. For graphs
G with x(G) < p(G) - 3, Theorem 3.8.18 is an improvement on (b).

3.8.18 Theorem: For any graph G with v(G) = 3, ¥(G) + y(G) < «(G) + 3.

Proof: Let G be a graph of order p. If G = K, then x(G) + 3 =(p-1) +3 =p+2>
p+1=vG) + 7((_}). We suppose now that G is not complete. Let Z be a minimum vertex
cutset of G, and let u and v be vertices in distinct components of G-Z. By Corollary 3.8.16(1),
we know that there exists a set S of 7(6) - 2 vertices such that S is contained in Ng(u) and in
No(v) and (S)¢ is complete. Since u and v are not connected in G-Z, it is clear that S € Z. Let
D=7Z-(@ -{x}) =(Z-5) U {x}, where x is any vertex of S. Clearly, all vertices of Z are
dominated by this set D, since Z - S = Z - S and {x} = S.

We now show that D = V(G) - Z. Let w and z be vertices in distinct components of G-Z. Then,
by Corollary 3.8.16, there exists a subset T of V(G) with | T| = y(G) - 2 such that w is adjacént
to every vertex of T, and z is adjacent to every vertex of T. Since w and z belong to distinct
components of G-Z, T must be contained in Z. Since |T| > |S - {x}| = v(G) - 3, T must
have a non-empty intersection with D. Since each vertex of T = {w}, it follows that D = {w}.

Since w € V(G) - Z is arbitrary, it follows that D » V(G) - Z. Hence, D = G, and
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ID| = [Z-S) U {x}| =|Z-S| +1=x«G) -[G) -2] +1
k(G) - v(@G) + 3. O

A

v(G)

By Proposition 3.8.12, the following corollary applies to vertex-domination-critical graphs G for

which G is also vertex-domination-critical.
3.8.19 Corollary: For any graph with y(G) > 3 and 7(6) > 3,
v(G) + v(G) < min {x(G), «(G)} + 3.

3.9 CHARACTERIZATION OF VERTEX-DOMINATION-CRITICAL
GRAPHS

Finding a characterization of vertex-domination-critical graphs appears to be a difficult problem.
However, it is possible to characterize those vertex-domination-critical graphs G that have the
smallest order among graphs with maximum degree A(G) and domination number y(G), i.e.,
p(G) = A(G) + (G) (recall that p(H) = A(H) + y(H) for evéry graph H). Before we prove this
result, we state the following definitions.

3.9.1 Definition: Let G be a graph and U a subset of V(G), and consider a partitionU,, U,, ..., U
(n € N) of U. Then,

> o

(a) a system of distinct representatives of U,, Uy, ..., U, is a set {u;, u,, ..., u,} of n
(distinct) vertices where y, € U, for I < i < n;

(b) a sub-U domination is a non-empty subcollection

s=U,U,.,U)

1 1 Y

of the elements of the partition of U such that S possesses a system of distinct

representatives which forms a dominating set of the subgraph of G induced by

U Uu U.UU,.
1 2 k

3.9.2 Theorem: Lety, A € Nbe given, and let G be a graph. Then, G is a vertex-domination-
critical graph having y(G) = v, A(G) = A, and p(G) = A + v if and only if V(G) = {v} UU U
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W, where v is a vertex of G of degree A, U = N(v) = {u,, u,, ..., us}, W = V(G) - N[v] =
{w,, Wy, ..., w,,} and
(i) the set W is independent in G,
(i) every vertex of U is adjacent to exactly one vertex of W (this property of G results in
a partition U,, U,, ..., U, _, of U being induced, where the vertices of U; are all adjacent
to w),
(iii) the partition of (ii) has no sub-U domination,
(iv) foranyi € {1,2, ...,y - 1} and any u € U,, define a partition P, of U - {u} which
has all the members of the partition of (ii) except that U; is replaced by U,-u; then, there
is a sub-(U - {u}) domination which includes U; - {u} such that the representative of

U; - {u} is not adjacent to u.
Proof: Let y, A € Nbe given, and let G be a graph.

Suppose, first, that V(G) = {v} U U U W, where v, U and W are as described above, and
satisfy conditions (i) - (iv). We show that G is a vertex-domination-critical gre{ph with y(G) = ¥,
A(G) = A and, hence, p(G) = AG) + 4(G).

Obviously, {v} U W » G; hence, ¥(G) < y. Let D be a minimum dominating set of G. It
follows from conditions (i) and (ii) that, for each i € {1, ..., ¥ - 1}, in order that w; is dominated
by D, D must contain w; or some element of U;. Hence, D contains at least y - 1 elements of

U U W and certainly y(G) = |[D| = y - 1.

If [ID|] = y-1,then v & D and D must be W, as may be seen as follows: Suppose that
ID| = v -1 and that D # W; say (without loss of generality) that D = {u,, ..., u,, w,,,,
oy Wy}, whereu; € Uy for 1 <1 < m. Since no vertex in U1 U ... U U, is dominated by
{Wai1s ..., W}, it follows that {u,, ..., u,} » U, U ... U U, and therefore the partition of U
into subsets U, ..., U, has a sub-U domination (namely, U,, U,, ..., U.), contrary to
condition (iii). So, if [D| =y - 1, then D = W; however, then D » {v}, contrary to the fact
that D is a dominating set of G. Consequently, it follows that y(G) = |D| = 7.

Clearly, .A(G) = deg v = A; if A(G) > A, then (by conditions (i) and (ii)) there exists u € U
(say u = u; € U)) such that N[u,] = {v} U U U {w,} and so {ul} UW -{w})~gG,i.e.,
v(G) < y - I, contradicting the result that y(G) = vy (established earlier). Hence, A(G) = A and
PG =1+4+ (y-1) =40 + ¥G).
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'i"o show that v(G-x) < vy - 1 for every x € V(G), we consider three cases: If x = v, then
W - G-x; ifx =w, €W, then {v} U (W - {w;}) » G-x; so y(G-x) < v - 1 in both cases.
If x € U, there exists a sub-(U - {x}) domination of the partition P of U - {x} guaranteed by
(iv) consisting of (without loss of generality) the sets U, - {x}, U,, ..., U, possessing distinct
representatives x,, X, ..., X, (respectively) such that xx, & E(G) and {x,, ..., x,} = (U, - {x}) U
U, U ..U U, U {w, ..., w} U {v} So, {X, oy Xy Wiars ooy Wt} G-x and
v(G-x) < vy - 1. It follows similarly that, for all x € U - U}, y(G-x) < y - 1 and the vertex-

domination-criticality of G follows.

Conversely, suppose that G is a vertex-domination-critical graph with V(G) = v, A(G) = A,
and p(G) = vy + A. Let v € V(G) with deg v = A and define U = N(v) = {u,, ..., u,},
W = V(G) - N[v] = {w,, W, ..., W}, where t = p-A -1 = y-1. Then, (i) W is
independent, since, if ww; € E(G) for some w;, w; € W, then {v} U (W - {w;}) » G and so
v(G) < y - 1, contrary to assumption. So, (i) holds. We now prove (ii). Suppose that some
u € U is adjacent to at least two vertices, w; and w;, of W; then {v, u} U (W - {w;, w}}) » G
and so y(G) < v - 1, again a contradiction. So, each vertex in U is adjaéent to at most one
vertex of W. If a vertex u of U is adjacent to no vertex of W, let D’ be a minimum dominating
set of G-v; then |D'| = y -1 (as G is 7y-vertex-critical) and D’ contains a vertex y that
dominates u; so, y € V(G) - W = N[v] and hence D’ » G, contrary to our assumption that
¥(G) = 7. Thus, (ii) is true and U may be partitioned into subsets U,, ..., U. _,, as given above.

> y-1>

That condition (iii) holds follows from the observation that, if the partition U;, ..., U,_, has a

sub-U domination S, with (say) S = {U,, ..., U_.}, with distinct representatives x,, X

e m?>

respectively (m > 1), then {x,, ..., X, Wq,,, ...,w,;} = G and, again, y(G) < vy -1, a

contradiction.

Finally, to prove that condition (iv) is satisfied, we selectu € U, for somei € {1, ...,y - 1} and
let D” be a minimum dominating set of G-u (so, |D"| = y - 1). Since D" » {u}, neither v nor
w; is an element of D”. Now, D” has the following properties‘: (a) D”r contains an element of
U; U {w;} for each j € {1, ..., y - 1}, j # i (because D" = {w;}), and (b) D" contains an
element x of U; - {u}. (Note that U; - {u} # & since x € (U; - {u}) N D” is required to
dominate w; as w; & D"). Furthermore, xu € E(G), otherwise y(G) < y. Let P = {U;, U,,
..., Ua} be the partition of U - {x} obtained from the partition {U,, U,, ..., U,} as described in
(iv) (where U, is the member of P obtained from U,, 1 < n < A). Now, by (a) and (b),



y-1

y-1= IDnl > E[Dnn (UJU{WJ})] + |{X}| > (y-2)+1 = vy -1,
i1
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and so, in fact, D" contains exactly one element, t (say), of U U {w;} for each j € {1, 2, ...,

vy -1}, j # i clearly, ift; € U; G € {1,2, ...,y - 1}, ] # 1), then {t} » U;. Let

U5 U e U

g

be the elements of P for which

tir GUir

(1 <r<k. Then, {t;t; € U, 1 <j <y -1,j## i} is a system of representatives of
Uil , Ui2 s e U.lk
such that
k

{ty 4, vt} UUi,"

r=1
Since x € D” N (U, - {u}) = D" N U, it follows that {x} = U; - {u} and if we let t.,

and

then

I

S = {Ul ’ U") ooy UI }
iy L

is a sub-(U - {x}) domination satisfying (iv).

=X

1

3.9.3 Remark: In the above theorem, it was not required that G should be connected. It is indeed

possible that some of the vertices in W may be isolated, althbugh each vertex in U must be

adjacent to a vertex in W; for instance, the graph G to which we refer in Theorem 3.9.2 may be

C, U }—g_]. However, the theorem is easily refined to apply to connected graphs.

3.9.4 Theorem: Let+y, A € Nbe given, and let G be a graph. Then, G is a connected, vertex-

domination-critical graph with v(G) = v, A(G) = A and p(G) = A + ¥, if and only if V(G) =

{v} U U U W, where v is a vertex of G of degree A, U = N(v) = {u,, ...,u,}, W = V(G) -
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N[v] = {w,, ..., w,,} and the conditions (i) to (iv) of Theorem 3.9.2 are satisfied, as well as (v)

every vertex in W is adjacent to at least one vertex in U.

Proof: The statement follows from the proof of Theorem 3.9.2 together with the following
observations: In part (a) of the proof, condition (v) immediately implies connectedness of G,
whereas, in part (b) of the proof, once condition (i) has been established, the requirement that G

be connected, together with the independence of W, implies validity of (v). O

In the rest of this section, we shall show that it is not possible to characterize vertex-domination-

critical graphs in terms of forbidden subgraphs. We consider first

3.9.5 Theorem: For any graph G, there exists a vertex-domination-critical graph H such that G

is an induced subgraph of H.

Proof: Let G* be a graph of order p. If ¥(G") < 2, let G be the graph G" together with two
isolated vertices; otherwise, let G = G". In either case, y(G) = 3 and p(G) =p =3 Let
V(G) = {v,, Vo, ..., v,}. Define a graph H by V(H) = V(G) U W U X, where the unions are
disjoint and W = {w,, w,, ..., w,}, X = {x,, x,, ..., x,} and E(H) = E(G) U {wx;, wyv,, x;;;

1<i,j<p,i#ij}.

Since E({vy, V4, ..., v,})u) = E(G), G is an induced subgraph of H (if G # G, then, since G
is an induced subgraph of G, G" is an induced subgraph of H). Clearly, {v, x;, w;} = H for any
i€ {l,2, .., p},andso y(H) < 3. To show that y(H) = 3, we show that no two-element
subset of V(H) dominates H. Suppose S € V(G) with |S| = 2 and S~ H. Firstly, S is not
contained in V(G), since, otherwise, y(G) < 2. If S is a subset of W, then S »» W - S.
Similarly, S is not contained in X. If S = {w, x;} for some i, j € {1,2,...,p}, then S % {w}, if
i j,or Sk {v}ifi=j;similarly, if S = {w, v;}, orif § =_{vi, x}, S»H. So, y(H) = 3.
Now, let u € V(H). Then, u=v, x, or w;, for some i € {1, 2, ..., p}. Since
{x,, vi;, w;} - {u} » H-u, we have y(H-u) < 2; since y(H-u) = y(H) - 1 = 2, it follows that
y(H-u) = 2 for every u € V(H). Thus, H is vertex-domination-critical, and contains G" as an

induced subgraph. U

3.9.6 Theorem: It is not possible to characterize vertex-domination-critical graphs in terms of

forbidden subgraphs. -
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Proof: Suppose, to the contrary, that there exists a non-empty family & of graphs such that G is
vertex-domination-critical if and only if G contains no member of % as an induced subgraph. Let
H" be any member of &. Then, by Theorem 3.9.5, there exists a vertex-domination-critical graph
H such that H" is an induced subgraph of H. Now, by our assumption, the vertex-domination-
criticality of H implies that no member of .# is an induced subgraph of H; in particular, H" is not

an induced subgraph of H. This contradiction establishes the theorem. U

3.9.7 Theorem: Any graph G with y(G) = 3 can be embedded as an induced subgraph in a
vertex-domination-critical graph G* where y(G") = ¥(G).

Proof: Let G be any graph with y(G) = 3, and let H be the vertex-domination-critical graph,
containing G as an induced subgraph, that is constructed in the proof of Theorem 3.9.5. Recall
that y(H) = 3. If y(G) = 3, then H is a graph G with the required properties. Suppose now that
v(G) = 4. Clearly, any coalescence HeC_, where n = 3[y(G) - 3] + 1, contains G as an induced
subgraph. Since n = 1 (mod 3), we have (by Example 3.3.2.2) that C, is vertex-domination-

critical graph, and so, by Lemma 3.6.3,

Y(H-C) = y(H) +y(C) -1 =3+ [w] 1
3+ (v(G) - 2) - 1 = ¥(G).
In this case, then, G* = HeC, is a graph with the desired properties. | O

3.10 DOMINATION-FORCING SETS OF GRAPHS

P. J. Slater recently proposed, in a private communication, the investigation of smallest subsets S
of vertices of a graph G which cannot be dominated by subsets of V(G) containing fewer than y(G)

vertices.

3.10.1 Definitions: Let G be a graph and T a non-empty set of vertices of G. A T-dominating
set in Gis a set D & V(G) such that D » T. (Note that it is not required that D € T; hence, a
T-dominating set in G is not necessarily a dominating set of (T);.) A T-dominating set in G of
minimum cardinality is called a minimum T-dominating set in G and its cardinality, denoted by

Y(T,G), is called the T-domination number in G.
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3.10.2 Examples: (a) If G = K, and T < V(G), T # &, then y(T,G) = 1 = 4(G), any

singleton subset of V(G) being a T-dominating set in G.

() IfG = K,,, 2 < m < n, with partite sets V, and V,, then, for T € V(G) such that [T N
V,| = 2fori € {1,2}, we have y(T,G) = 2 = ¥(G), whereas v(T,G) =1if [T N V| < 1 for
some i € {1, 2}.

© IfG = 1_(P and T € V(G), T # &, then y(T,G) = |T|, T being the only T-dominating set
in G.

Hence, we note that there exist graphs G having proper subsets T of V(G) for which y(T,G) =
¥(G).

(d) Let G be any graph that contains an induced subgraph isomorphic to P, (for example, if G is

connected and non-complete), and let x,y,z be an induced path in G. Then, T = {x, z} is such
that y(T)o) = 2 # 1 = 4(T,G).

3.10.3 Definition: Let G be a graph. A set S € V(G) for which vy(5,G) = y(G) is called a
domination-forcing set of G or (briefly) a y-forcing set of G. (Clearly, such a set exists for every
graph G as y(V(G),G) = 4(G).) A wy-forcing set of G of minimum cardinality is known as a
6(G)-set and its cardinality, denoted by 6(G), is called the y-forcing number of G.

3.10.4 Examples: (a) If G = K,, then any singleton subset of V(G) is a §(G)-set and 6(G) = 1.

() f G = K,, with2 < m < n, then any 4-set of vertices containing two vertices from each
of the partite sets of G is a y-forcing set of G (and hence a §(G)-set, as a set S S V(G) containing

at most one vertex from some partite set of G has y(S,G) = 1 < 2 = y(G)); so, 6(G) = 4.
) IfG = I_(p, then V(G) is the only y-forcing set of G and so 6(G) = p.

(d) G = P;and H = K, U K, are the non-complete graphs of smallest order for which the order
exceeds the y-forcing number. Any S € V(G) with S # & is a y-forcing set of G (so0 6(G) = 1)
and the subsets of V(H) containing at least one vertex from each component of H are y-forcing sets
of H (so 6(H) = 2).



Fig. 3.10.1
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() If G = S,, 2 < m < n) with central vertices u and v, adjacent to the end-vertices uj, u,,
u, and v,, V,, ...., V,, respectively, and § = {u,, v}, then v(§,G) = 2 = v(G) and S is

Y

(obviously) a 0(G)-set.

3.10.5 Remark: It is immediately obvious that, for any graph G and S € V(G), v(5,G) < min
{v(G), v((S)e)}. The examples in 3.10.4 all have the property that, for any 6(G)-set S, y({S)s) =
v(S,G) (= y(G)). That this is not true for every graph G is shown by the following example, in
which is exhibited a graph G and a 6(G)-set S for which y((S)e) > v(S,G) (= v(G)).

3.10.6 Example: The graph G shown in Fig. 3.10.1 has domination number 2 and {2, 5} is a
minimum dominating set of G. Since the vertices in every pair of distinct, non-adjacent vertices
in G have a common neighbour, v(T,G) = 1 if T € V(G)and 1 < |T| < 2; hence, §(G) = 3
As the set S = {1, 4, 7} satis{les v(5,G) = [{2, 4}| = 2 = v(G) and |S| = 3, it follows that
6(G) = 3 and that S is a 6(G)-set; furthermore, since S is independent, y((S)s) = 3 > (§,G) =
y(G) =

3.10.7 Remark: We next investigate the rc]asionship between 8(G) and y(G) for a graph G. A
dominating set D of a graph is said to be efficient if L,ep (1 + deggv) = p(G), i.e., if every vertex
of G is dominated by a unique vertex of D. Now, let G be a graph with an efficient dominating
et D; then, no two vertices of D are adjacent or have a common neighbour in G, Hence, each
vertex in any D-dominating set in G dominates at most one vertex of D, so that, if D' is a
minimum D-dominating set in G, we have y(D,G) = |D'| = |D|. Since D~ D, we have
v(D,G) < |DJ, whence it follows that y(D,G) = |D][. Consequently, since y(D,G) < (G) <

|D| (by Remark 3.10.5), D is a minimum doeminating set of D.

3.10.8 Proposition: For any graph G,
(1) v(G) = 6(G), and
(2) v(G)

A

0(G) if G has an efficient dominating set.
Proof: Let G be any graph.

()IfS € V(G) and |S| < ¥(G), then v(S,G) < v((S < |S| < v(G) and S is not a §(G)-set.
Hence, for any 6(G)-set S, 6(G) = [S| = ~(G).
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(2) If G has an efficient dominating set D, then y(D,G) = |D| = ¥(G) (by Remark 3.10.7).
Hence, D is a y-forcing set of G and 6(G) < |D| = y(G), which, with (1), yields §(G) =
¥(G). O

3.10.9 Remark: That the (sufficient) condition given in Proposition 3.10.8(2) is not necessary to
ensure that 6(G) = y(G) may be seen by consideration of the graph G in Fig. 3.10.2, obtained
from G, U G, with G,, G, = K, where G, has centre u; and end-vertices v;;, vy, ..., Vp;, Dy
identifying v, and v, (m = 3). The only minimum dominating set of Gis D = {u,, u,} and S =
2 = v(G) = |S|, whence S is a 6(G)-set and 6(G) = 2 = ¥(G).

{vi,, Vio} satisfies v(S,G)
Certainly, D is not an efficient dominating set of G (since d(u,u,) = 2), and so (by Remark

3.10.7), no dominating set of G is efficient.

We shall show next that, for any given positive integers j, t with j < t, there exists a graph G for
which y(G) = 2, 6(G) - v(G) = j and p(G) - 6(G) = 2t + 1.

3.10.10 Definition: Forj,t € Nwitht > j + 1,let m = () and define the éraph J,; as follows:
LetJ, = K, J, = K, and J; = K,, with V{J,) = {u,, u,,~.., u}, V{J)) = {v,, ..., v} and
V() = {w}, and let A, A,, ..., A, be the m distinct subsets of V(J,) that have cardinality j. Let
V() = V(Jd) U V({J,) U V() and E(J,;) = E(J) U E(J) U {wv;i=1,2,..,m} UF,
where F = [J7, {vu,; u. € A}. (See Fig. 3.10.3.)

3.10.11 Proposition: Fort, j € N, t > j + 1 and J,; defined as in 3.10.10 above,
(1) y(,) = 2, and
@ 80,) =] +2 =10, + ], and
Gpdy=t+(;)+122t+1220(0, - 1.

Proof: Let t, j satisfy the hypothesis of the proposition.
(1) Since A(,j) < pdyy) - 1, it follows that y(J,)) = 2; hence, as {u,, w} = I, v(,) = 2.

(2) Let B € V(J,)) such that [B N V(J,)| < j. Then, there exists k € {1, 2, ..., m} such that
B N V({J,) € A; consequently, V{vk} — Band y(B,J,;) = 1. Hence, it follows that, if S is a 6(G)-
set (so y(S,J,;)) = 2), then |S N Vay)| =j + 1. Furthermore; S ¢ V({J,) (since, otherwise,
{u} =» Sand ¥S,J;;) = 1), 50 S -V({J,) # & and 6G) = |S| > G+D+[S-VJd)| =
J+ 2. Toshowthat 6(G) < j + 2, let T = {u, u,, ..., Y., w}. Then, v(T,J;)) = 2 since,
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otherwise, if there exists y € V() with {y} » T, theny & V(J,) U V(J,) (as no vertex in
V({J, U V(J,) is adjacent to j + 1 vertices in V(J;)) and so y € V(J,), whence {y} » {w},
contradicting {y} =» T. So, by (1) and Remark 3.10.5, we have y(J,;) = 2 < y(T,J;;) < v(.p,
i.e, y(T,J;) = v(,) and T is a y-forcing set of G, whence 6(G) < |T| =j + 2. Hence,
6(G) =j + 2.

€)

1
-
+
—
==
+
—

P (5 N (5 L2V B
jG-1) 2.1

2t+t+1=2t+1 2 2j+3 = 26(I(J)—l.

3.10.12 Remark: Fort = 2, j = 1, we obtain a graph J,; (= J,,) of smallest possible order
(namely, p(J,,) = 5), and we have 6(J,;) = 3 and y(J,,) = 2. In this case,

00,0 _ 3

= = >

1
pd,) 5%

In general, ift = j + [, then

e(]j+1,j) j+2
p(,,,) 2w

and

0.,

1
joe P(qu,j) 2’

Ift=j+ 2, thenp(,) =j+ (i;>)+ 1and

0029 _

joo P(qu,j)

furthermore, for any fixed j € N, we see from Proposition 3.10.11 (2) and (3) that

60, ;)
t-w p(]t;J)
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In the above example, y(J,;) = 2. We shall show that, for prescribed n = 2, M and N, there
exists a graph G for which y(G) = n, 6(G) - y(G) = M and p(G) - 6(G) = N.

3.10.13 Example: Fort,j € Nwithn 22, t>(n-1j+ 1, m=(}),1letG,G,, ..., G, =
J,; (see Definition 3.10.10) and, in G, let Vy;, Vy, Vi, uy, uy, ooy Uy, Vi, Vo vy Vi and w
correspond to V({I,), V(J), VU3), uy, Uy, ..., U, vy, vy, ..., v, and w, respectively, fori =1, ...,
n - 1. Let],;, be the graph obtained from G, U G, U ... U G, by identifying the vertices v;,

Vi, -.rs Vi@-p t0 form a new vertex v; corresponding to the vertex v, € V(I,) in J;, fori = 1,

tj>

2, ..., m. Denote the resulting set {v,, v,, ..., vz} by V,, and the subset of V,; corresponding to
Acby Ay € {1,..,n-1}, k€ {l, ..., m}). (Notethat];, =1J;)

3.10.14 Proposition: For t_] € Nwitht 2 (n-1)j + 1,n = 2, and G = ], (as in Definition
3.10.13), we have

) y(G) = n,

QG =n-1)j+2=%G) +(m-1)§j-1)+1, and

GpG=0-Dt+ D+ ()=006+0-D+1-)+(;)-2.

Proof: Let t, j satisty the hypothesis of the proposition.

(1) Thaty(G) < n follows from the observation that {v,, u,, uy,, ..., uy,_,} = G. If there exists
a dominating set D of G with [D| < n -1, thenD ¢ [J}2} V,; (otherwise, D » {w,, ..., w,_,});
hence, D N V;; = & for at least one value of i € {1,2, ..., n - 1}. So, V,; is dominated by (at

most n - 1) vertices in DN V,; however,

NNV s [DAV,[j < (a-1)j < t=|V

1j|’

so that D NV, V,;, a contradiction. So, any dominating set of G has cardinality at least n. So,
v(G) = n.

(2) Let S be 6(G)-set. We note that, if U € V() € V(J,;) is the set of all vertices in v,y
corresponding to at least one vertex in S N ({J352} Vy; ), then |U| = (n - 1)j + 1 (otherwise,
U is the union of at most n - 1 subsets A, from {A,, ..., A} and at most n - 1 corresponding
vertices v, from V, & V(G) serve to form an S-dominating set in G, contradicting ¥(S,G) = n).
Furthermore, S ¢ |J 32} Vy;, since, otherwise, {u,,, up, ..., Uyq-n} 1S an S-dominating set in G.
S0, 6(G) = |[S| = (n - 1)j + 2. Now, letU, = {u,, ..., yt, Uy = {uy, oo, uy), o, Uy, =

{Uiiomj oo Uy} and U, = {Uicaeap oo Ugenj Ugonger) (50 that U = J 221 U, satisfies
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—|UI = (n - 1)j + 1) and denote by Uj the subset of V,;, corresponding to U; (i € {1, 2, ...,
n - 1}). The only (n - 1)-set of vertices that dominates U’ = |J }; U in G is contained in
Uizt Viand so S = U' U {w,} (say) satisfies |S| = (n - 1)j + 2 and ¥(5,G) = n = ¥(G),
whence 8(G) < (n - 1)j + 2. Hence, 6(G) = (n - 1)j + 2, as required, which completes the
proof of (2), from which (3) follows immediately. ]

3.11 CONJECTURES AND UNSOLVED PROBLEMS

The following are four open questions posed by Brigham, Chinn, Dutton in [BCD1] and [BCD2].
(1) For a vertex-domination-critical graph G, is
p(G) = [6(G) + 1] [v(G) - 1] + 17

This is trivially true when p(G) attains the upper bound p(G) = [A(G) + 1] [y(G) - 1] + 1, the
maximum possible value of p(G), given in Theorem 3.5.4, and also holds when p(G) = v(G) +
A(G), the minimum possible value of p(G) [BCD2]. ‘

(2) Is it true that i(G) = y(G) for every vertex-domination-critical graph G? As in (1), the
statement is true when the order of the vertex-domination-critical graph is the minimum or
maximum value it can attain [BCD2]. Recall that a similar conjecture for edge-domination-critical

graphs is made in 2.9.4 (cf. [SBI1]).
(3) Fora vertex—dominati.on-critical graph G, is
diam G < 2[y(G) - 1] ?
The relation holds when p(G) = ¥(G) + A(G) or y(G) < 5 [BCD2].
4 IfGisa venex—dorﬁination—critical graph and v € V(G), does there exist a vertex u and a
minimum dominating set D, of G-u such that v € D,? It has been shown that, if G is a vertex-

domination-critical graph and u, v € V(G) such thatu # v and y(G-{u, v}) # vy - 1, thenv €

D, for some minimum dominating set D, of G-u (cf. [BCD2)).
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Chapter 4

DOMINATION NUMBER ALTERATION BY
REMOVAL OF EDGES

4.1 INTRODUCTION

Whereas in Chapter 2 we studied graphs G that have the property that adding any single edge of
GtoG produces a graph with domination number lower than y(G), and whereas in Chapter 3 we
investigated graphs H that possess sets of vertices the removal of which results in graphs with
domination number different from y(H), in the present chapter we consider the effect of the
removal of a set of edges on the domination numbers of graphs. In particular, for a graph I, we
investigate the minimum cardinality of a set of edges the removal of which yields a graph with
domination number greater than y(I), and subsequently consider extremal graphs with dominating

sets or domination numbers that are impervious to the removal of arbitrary edges.

All results in sections 4.2 to 4.5 are from [BHNSI1], with the exception of Theorem 4.2.8 and
Corollary 4.5.5 which come from [AW1], Theorem 4.2.7 which comes from [FJ1], and Remark
4.5.6 which comes from [S1], and all results in sections 4.6 to 4.8 are from [BD1]. In addition,

we have expanded Remark 4.4.10, as well as the proof of Theorem 4.2.8 (slightly), 4.4.1, 4.4.9

-
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(slightly), 4.6.8, Theorem 4.6.10 (considerably), 4.7.3(1), 4.7.4 (considerably), 4.7.6 (very
considerably), 4.8.4, 4.8.5 (slightly), 4.8.8, and Proposition 4.5.4, 4.6.5, 4.8.6 (considerably).
We have slightly modified the proof of Theorem 4.3.6, and slightly rearranged the proof of
Theorem 4.3.2. We have clarified and expanded Theorem 4.3.4, 4.4.11, and 4.7.19. We have
supplied Remark 4.2.2, 4.2.4, 4.4.3 and 4.4.6. We have provided the statement and proof of
Proposition 4.2.3, 4.5.2, Corollary 4.2.6, and Theorem 4.7.3(2), and 4.7.5. We have modified
Definition 4.4.4, which originally appeared in [BHNS1]. We have supplied Corollary 4.5.3, as
well as the proof of Theorem 4.2.7, 4.4.5, Proposition4.2.5,4.3.1, 4.4.13, 4.6.6, 4.7.17, 4.7.18,
4.8.3,4.8.7,4.8.9, Corollary 4.3.3, and Lemma 4.7.15. Finally, we have modified the statement
of, and provided a proof for, Corollary 4.6.9.

4.2 INTRODUCTION TO y-EDGE-STABILITY NUMBER (BONDAGE
NUMBER) OF A GRAPH

4.2.1 Definition [BHNS1]: For a graphical parameter p, the ;L—edge-stabilitj number of a graph
G is defined to be the minimum number of edges in any set F S E(G) such that u(G-F) # u(G),
provided that such a set F exists. In particular, p*'(G) (or u™'(G)) denotes the minimum number

of edges in F € E(G) for which p(G-F) > u(G) (or p(G-F) < u(G)), if such a set F exists.

For instance, if G = K, (p = 3) and e € E(G), then (G-¢) = B(G) + | and x(G-¢e) =
k(G) - 1; hence, 7' (G) = 1 = «7'(Q).

4.2.2 Remark: Obviously, if G is any graph and F € E(G), then vy(G-F) = 1(G); so, the
parameter v~ is not defined for any graph G. That y*'(G) (known as the bondage number of G)
is well-defined for every non-empty graph G is shown by the following proposition, since
v(G-E(G)) = 7(121,@) > v(G) (see Proposition 4.2.3) and therofore a smallest subset F of E(G)
exists for which v(G-F) > (G).

4.2.3 Proposition: For every non-empty graph G, y(G) < p(G).

Proof: If G is a non-empty graph and uv € E(G), then {v} » {u} and V(G) - {u} » V(G) - {u},
whence V(G) - {u} » G and y(G) < p(G) - 1. O
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4.2.4 Remark: It should be stressed that, if G is a graph, F € E(G) such that ¥(G-F) > v(G)
and |F| = y*'(G), then F is a smallest set of edges for which no minimum dominating set of G
also dominates G-F. There may well exist a minimum dominating set D of G and a set F' <
E(G) with |F’| < |F| such that D »» G-F’, but, in this case, some minimum dominating set D'
(#D) of G will exist such that D’ =» G-F'. In the following results, culminating in Theorem
4.2.7, we shall prove that, for any non-trivial graph G and any minimum dominating set D of G,

there exists a set F' € E(G) with |F'| < 2 such that D » G-F', even if y*' = 3.

So, the bondage number y*' may be regarded as a measure of the integrity of the domination
number (as opposed to the dominating property of a particular minimum dominating set) of a graph

with respect to edge removal.
We shall need the following result of Ore [O1].

4.2.5 Proposition: For any non-empty graph G with no isolated vertices, there exists a minimum
dominating set D of G such that, for each v € D, there exists u € V(G) - D such that
N@u) N D = {v}. (We shall call u a private neighbour of v.)

Proof: Let G be a non-empty graph with no isolated vertices. If y(G) = 1, the result follows
immediately; so suppose ¥(G) = 2. For any minimum dominating set D of G and, for each
d € D, we know that at least one of the following is true:

(1) there exists v € V(G) - D such that {d} = N(v) N D;

QN ND=g.
We shall prove that G m-ust contain some minimum dominating set D' for which each d € D’

satisfies (1).

Suppose, to the contrary, that no minimum dominating set of G is such that each of its vertices
satisfies (1). Let D be a minimum dominating set of G such that q({D}) is a maximum, and let d
be a vertex of D that does not satisfy (1). Then, (2) holds (so that [{d}, V(G)] contributes no
edges to E((D)) and, f—urthermore, any vertex w € V(G) - D that is adjacent to d satisfies
IN(w) N D| = 2. Since d is not an isolate of G, d has a neighbour v which, by condition (2),
lies in V(G) - D. By our earlier comment, then, there exists d’ € D - {d} (# @) such that
vd" € E(G). Then, since {v} =~ {d} and N(w) N (D - {d}) # & for each w € N(d), we have
that D = (D - {d}) U {v} is a minimum dominating set of G and E((D*)) 2 E((D)) U {vd'},

-
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whence q((D") = q({D)) + 1, which contradicts our choice of D. Hence, any minimum

dominating set D of G for which g((D)) is a maximum satisfies (1) for each of its vertices. ~ [J

4.2.6 Corollary: For any non-empty graph G with no isolated vertices, there exists a minimum

dominating set D for which there is an edge e in G such that D is not a dominating set in G-e.

Proof: Let G be a non-empty graph with no trivial components, and let D’ be a dominating set
whose existence is guaranteed by the above theorem. Then, if v is any vertex of D, and u is a
vertex of V(G) - D satisfying N(u) U D = {v}, then D is clearly not a dominating set
of G-uv. , ([

4.2.7 Theorem: For any non-empty G and minimum dominating set D of G, there exists a vertex
u € V(G) - D such that [N(u) N D| < 2.

Proof: Suppose, to the contrary, that there exists a non-empty graph G and a minimum dominating
set D of G such that [N(x) N D| = 3 foreachx € V(G) -D. Letu € V(G) - D, and suppose
that v and w are two of the (at least three) vertices in D that dominate u. Then, N(x) N
(D - {v, w}) # O for every x € V(G) - D and so (D - {v, w}) U {u} is a dominating set of
G of cardinality less than y(G), which is not possible. The desired result follows. O

This concludes the discussion of Remark 4.2.4.

4.2.8 Theorem: Let G be a graph and ¢ = uv € E(G). Then, y(G-uv) > y(G) if and only if,
for every minimum domix.xating set D of G, the following two conditions hold:

(1)e € [D, V(G) -D];say,u € Dandv € V(G) - D;

(ii) Ng(v) N D = {u}.

Proof: We prove the necessity first. Assume, to the contrary, that there exists a graph G and an
edge uv € E(G) such that y(G-uv) > y(G) but for which there is a minimum dominating set D
such that (i) or (ii) is nét satisfied. If (i) is false, i.e., if u, v € Doru, v € V(G) - D, then,
clearly, D = G-uv and y(G-uv) < ¥(G), contrary to our choice of u and v. So, (i) holds and (ii)
is false, whence it follows that [Ng(v) N D| = 2, which, in turn, implies that D ~ {v}in G-uv.
So, D = G-uv and y(G-uv) < y(G), again a contradiction. So, ﬁo such graph G exists, and the

necessity follows.
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Conversely, let G be a graph and let uv € E(G) such that, for every minimum dominating set D
of G, both (i) and (ii) hold. Let D be a minimum dominating set of G. By (i), it follows that
D U {v}» G-uv, whence y(G-uv) < v(G) + 1. Weclaim y(G-uv) = y(G) + 1. Suppose this
equality does not hold. Then, since y(G-e) = y(G) for all e € E(G), we have y(G-uv) = y(G).
Let D, be a minimum dominating set of G-uv; clearly, D, is a minimum dominating set of G,
since D, dominates G-uv, a spanning subgraph of G, and v(G) = y(G-uv). Since D, dominates
a graph (namely, G-uv) in which u and v are non-adjacent, we have (a) u, v € Dy or (b) u, v €
V(G) -Dyor (¢) u € Dy, v € V(G) - Dy and |Ng_(v) N Dy| = 1, ie., [Ng(v) N Dy| =
2or(d)v € Dy, u € V(G) - Dy and |Ng_,(u) N Dy| = 1. However, by our choice of u and
v, i.e., because (i) and (ii) hold, none of the four afore-mentioned possibilities can occur. So, we

have y(G-uv) = y(G) + 1 > ¥(G), as claimed, and the theorem follows. O

4.3 EXAMPLES OF BONDAGE NUMBERS OF GRAPHS

In this section, we investigate the value of y*' for several classes of graphs, namely, complete

graphs, cycles, paths, complete t-partite graphs (t = 2) and trees. ‘

4.3.1 Proposition: Forn = 2, v*'(K,)) = [*,].

Proof: Letn = 2,let G, = K,, and let F € E(G,) such that, for G = G,-F, y(G) > y(G,) = 1.
Then, A(G) < n -2, and so F is an edge cover of G, whence |F| > [*/,]. In particular, then,
y*'(K) = ¥7'(G,) = [*,]. If nis even, G, possesses a 1-factor with edge set F’ such that
|F'| =", = [*,] and y(G,-F') = 2. Ifnisodd (and n = 3), let v € V(G,); then the set F’
consisting of the edges in a 1-factor of G,-v, together with any edge incident with v, contains
Yan - 1) + 1 = %A(n + 1) = [*,] edges and v(G,-F’) = 2. So, y*'(G,) < [*,]. Hence,
v'(K) = v*"(G) = [*,], as required. O

4.3.2 Theorem: Forn > 3,

. 3, if n =1 (mod 3)
Y7(C,) =
2, otherwise
Proof: Letn = 3. Since C,-e = P, for ¢ € E(C,) and v(C,) = y(P,), we have y*'(C,) = 2.

We consider two cases.
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Case 1: Suppose that n = 1 (mod 3). Then, the removal of two non-adjacent edges from
C, leaves a graph H which is the (disjoint) union of two paths A and B, with p(A) = a,
p(B) = b, wherea + b = n.

Subcase 1.1: Supposea = 0 (mod 3)and b = 1 (mod 3) (or, a = 1 (mod 3) and
b = 0 (mod 3)). Then,

y(H)

@ i@ [R5 -
Y(C).

Subcase 1.2: Supposea = b = 2 (mod 3). Then,

I R )

The removal of two adjacent edges from C_ yields a graph H = P,_, U K|, where
y(H) = 1 + %0 - 1)]= [*,] = y(C). Thus, it follows that y*'(C,) = 3. To show
the reverse inequality holds, we consider the graph I resulting from the deletion of three

consecutive edges of C,. Since I = 2K, U P,_,, we have

y@ = 2+[zz] = 1+[’“1} = 1+H = 1 +y(C),

3
whence y*'(C,) < 3, and so y*'(C,)) = 3.

Case 2: Suppose n = 0 orn = 2 (mod 3). Let H be a graph obtained by the removal

b

of two adjacent edges from C,; then, H = K, U P__,. So
YE) = 1«2 = 1+ [ 10 (G,

so that y*'(C,) < 2. The required result now follows by the already established reverse

inequality. t

4.3.3 Corollary: Forn = 2

?



, 2, if n = 1 (mod 3)
v(P,) =

1, otherwise

Proof: For any n > 3, since C,-e = P, for any edge e € E(C,), it follows that y*'(C,) =
v*'(P) + 1, and the desired result follows immediately from Theorem 4.3.2. That y*'(P) = 1
follows from Proposition 4.3.1. O

We next consider the bondage numbers of complete t-partite graphs (t = 2).

4.3.4 Theorem: If

G = n;,0;, .., 0.
where n;, n,, ..., n satisfy 1 <n, <n, < ... <nandt = 2, then
[ﬂ, if n, =1andn_, >2 for somem €{l, ., t-1}, orn =1
y(G) = 9 2t-1, ifn =n,=..=n =2
-1
n,, otherwise
i=1

Proof: Lett > 2 and let G be a t-partite graph with partite sets V,, where |V,| = n, fori = 1,
2,...,t,and 1 < n s n, ... < n,. We consider four cases.
Case 1: Suppose thatn, = n, = ... =n, = land n,,, = 2 forsomem € {1, 2, ...,
t - 1}. 'f'hen, v(G) = 1 and the set of vertices of degree p(G) - 1is W = |J;®, V,, where
(obviously) (W) = K. Now, y*'(G) is the smallest number of edges of G in a set F
whose removal from G reduces the degree of each vertex in W; if m = 1, then the set F
consisting of a single edge from [V,, V(G) - V,] is such a smallest set and, if m > 2,
F € E(W)) with A(W)-F) < m -2 and |F| = y*'(K,) is such a smallest set, and so,
by Proposition 4.3.1, v*'(G) = [/, ].

Case 2: Suppose n, = 1. Then, G = K, and y*'(G) = [*,] by Proposition 4.3.1.
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Case 3: Suppose that n, = n, = ... = n, = 2, and note that deg v = 2t - 2 for all
v € V(G) and y(G) = 2. We show first that y*'(G) = 2t - 1. Assume, to the contrary,
that there is a set F of edges of G such that |F| = 2t -~ 2 and y(G-F) > y(G). Observe
that 5(G-F) > 0 since any (spanning) subgraph of G that has an isolated vertex and size
q(G) - 2(t - 1) is necessarily isomorphic to K; U K,,, , (where the latter graph is
t-partite) and has domination number 2 (= y(G)), contrary to our assumption that F
satisfies y(G-F) > y(G). Also, if A(G-F) = 2t - 2, then y(G-F) = 2, contrary to

assumption. Thus, 1 < degg_pu < 2t - 3 for each vertex u € V(G).

We show now that there exists a vertex x, with degg_px, = 2t - 3. We observe first that
q(G) = 2t2 - 2t, and that g(G-F) = q(F) - |F| = 22 -2t - 2t - 2) = 212 - 4t + 2.
Now, suppose, to the contrary, that deg;_su < 2t - 4 for each u € V(G-F). Then,
412 - 8t + 4 = 2 q(G-F) = I ey dego-pu < 2t(2t - 4) = 4t2 - 8t, which is
impossible. So, at least one vertex x; of G-F has degree 2t - 3in G-F. Let x, be the
other vertex of G that belongs to the same partite set as x,, and let y, l_)e the unique vertex
distinct from x, that is not adjacent to x, in G-F. Now, if y,x, € E(G-F), then
{x,, x,} =» G-Fsince {x;} = {x;} U [V(G) - {x,, y,}] and {x,} = {x,, y,}, so that
v(G-F) < 2. This is contrary to our assumption about F. So, y;x, € F. Lety, be the
other member of the partite set in G that contains y,. If there exists a vertex u € V(G) -
{x,, X5, ¥,, y»} that is adjacent to both x, and y,, then {x,, u} » G-F, which, again,
contradicts y(G-F) > 2. So, each vertex of V(G) different from x,, x,, y,, y, must be
non-adjacent with at least one of x, and y, in G-F. Hence, since |V(G) - {x,, x,,
Vi, Y-} | = 2t - 4, it follows that F contains at least (2t - 4) + |{x,y,, x,y,}| = 2t -2
edges. But, F has- exactly 2t - 2 elements. So, we have fully described F: F consists of
the set {y,x,, y,x.} and exactly one edge from [{u}, {x,,y,}] for each u € V(G) - {x,, x,,
Y1, ¥2}- As none of these edges in F is incident with y,, we see that y, has degree 2t - 2
in G-F, contrary to the result obtained above. Hence, our assumption that y*'(G) < 2t

- 2 is false, and we have y*'(G) = 2t - 1, as required.

To obtain the reverse inequality, we consider the following. If {x,, x,} is any partite set
of G and H is the graph obtained by removing from G the 2t - 2 edges incident with x,

and one edge incident with x,, then y(H) = 3.

Case 4: Suppose that n; = 2 and n, = 3; then y(G) = 2. -Lets = Lzl n, = p(G) - n.

1=1

Assume, to the contrary, that there is a set F € E(G) such that |F| < s and v(G-F) >
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v(G). We show first that each vertex of G is incident with at least one member of F.
Suppose, to the contrary, that there exists a vertex v € V; (say) (i € {1, 2, ..., t}) that
is not incident with a member of F. Then, |V;| = n; < n, so that |V(G) - V,| =
p(G) -n, = (s + n) - n, = s. Each vertex x in V(G) - V, must be non-adjacent in G-F
to at least one member of V; (otherwise, {v, x} » G-F). However, this implies that
|F| = s, contrary to our assumption. Thus, each vertex of G is incident with at least one
edge in F. Further, if every vertex of G is incident with two or more edges of F, then
|F| = '2(2p(G)) = s + n, > s, a contradiction; so there must be a vertex x, incident with
exactly one edge, say e, in F. Lete = x,y,, and let x, € V,, Y1 € V; (say), where V, =
{xi, X5, ..., X,}, n = 2. Since x, is adjacent in G-F to every vertex in V(G) - ({y,} U
V) and since y(G-F) > 2, it follows that each vertex u in V(G) - (V; U V,) must be
non-adjacent to at least one of the vertices y,, X,, ..., X, in G-F (otherwise, {x,, u} =
G-F, a contradiction). Hence, F contains a subset F, such that F; S [V(G) - (V,; U V)),
{y,, Xs ..., X,}lg and |F,| = |V(G) - (V; U V)|. Furthermore, since each vertex in
V(G), and hence in V; - {y,}, is incident with an edge of F, F contai.ns a subset F, such
that F, N F, = &, F, € [V; - {y,}, V@G - V] and |F,|. = |V, - {y.}|. So, |F| >
[E.[ + |Fo + [{e}] =2 [V(G) - (V; U VI + |Vj| = [VG)] - [Vi] 2 +n) -

n, = s, a contradiction. So, y*'(G) = s.

Finally, consider the graph H obtained by removing the s edges incident with a vertex v
in V.. Clearly, any dominating set of H must contain v. Since |V,| = n, > 3, no single
vertex of V, - {v} can dominate G-v, and since every other partite set of G has at least
two elements, no single vertex of any other partite set of G can dominate G-v. So,
y(H) = 3. Howéver, for any vertex v/ € V, - {v} and any vertex u € V(G) - V,, we
have {v, v/, u} » H, i.e., y(H) = 3 > y(G). Hence, we conclude that YH(G) = s, as
desired. ‘ u

We consider now the value of y*’ for trees.
4.3.6 Theorem: If T is a non-trivial tree, then y*'(T) < 2.
Proof: Let T be a non-trivial tree. If T contains a vertex v that is adjacent to at least two

end-vertices, then v is in every minimum dominating set for T. However, if u is an end -vertex

of T adjacent to v, then both u and either v or another end-vertex-adjacent to v will be in every
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dominating set for T-uv. So, y(T-uv) = y(T) + L. Thus, y*'(T) < 1. Since v*'(T) = 1

always, we have y*'(T) = 1 in this case.

If no vertex of T is adjacent to two or more end-vertices, then either T = K,, in which case
v*'(T) = 1 follows immediately, or p(T) = 3 and (by Lemma 3.2.31) T has an end-vertex u that
is adjacent to a vertex w of degree 2. In the latter case, let {y} = N(w) - {u}, and let D be a
minimum dominating set for T-{wu, wy}. Then, both u and w belong to D and D - {u} is a

dominating set for T. Hence,

Y(T) < y(T-{wu, wy}) - 1 < y(T-{wu, wy})
and v*'(G) < |{wu, wy}| = 2. d
In the course of the above proof, the following result has been established.

4.3.7 Corollary: If any vertex of a tree T is adjacent with two or more end-vertices, then
yo'(T) = 1.

4.3.8 Remark: That the converse of Corollary 4.3.7 does not hold is illustrated by the fact that
y*'(P,) = 1 form = 0, 2 (mod 3) (see Corollary 4.3.3) and v*'(SK,)) = 1 (n = 1), while
neither P, (m = 0, 2 (mod 3)) nor S(K,,) (n = 1) have a vertex adjacent to more than one end-
vertex. The problem of characterizing the class of trees T with y*'(T) = 1 is as yet unsolved.
The following theorem shows that such trees cannot be characterized in terms of forbidden

subgraphs.

4.3.9 Theorem: If F is a forest, then F is isomorphic to an induced subgraph of a tree S with
v*'(S) = 1, and a tree T with y*'(T) = 2. .
Proof: Let F be any forest, and let S, = P, with u as the central vertex of S;. Let S be obtained
from Sy U F by selecting from each component of F one vertex and inserting an edge from that
vertex to u. The resulting tree S contains F as an induced subgraph and has a vertex, namely u,

adjacent to two end-vertices. By Corollary 4.3.7, y*'(S) = 1.

To prove the existence of a tree T with y*'(T) = 2 that contains an induced subgraph isomorphic

to F, we use induction on the order p of F. If p = 2, then F is isomorphic to an induced subgraph



Fig. 4.3.1
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of the tree T, obtained by sub-dividing two edges of K, 5; clearly, y*'(T,) = 2. Assume now that
the claim is true for every forest of order p (= 2), and let F be a forest of orderp + 1. If F is
empty, let T = P, withn = 1 (mod 3) and n > 2p + 1. Then, T contains an independent set
of p + 1 vertices which induces a subgraph isomorphic to F in T, and, by Corollary 4.3.3, has
~v*'(T) = 2. Suppose now that F is non-empty. Let u be an end-vertex of F, and let uv € E(F).
By the inductive hypothesis, the forest F* = F-u of order p is an induced subgraph of a tree T’
with y*'(T") = 2. Let H = 2P,, and let the components of H be the paths w;,x,,y;,z; (i = 1, 2).
Let T be the tree obtained from H U T’ by adding the vertex u together with edges uv, ux,, and
ux, (see Fig. 4.3.1). Clearly, F is an induced subgraph of T. Also, from each pair of vertices
{wi, x;}, {y1, 2.}, {Wa, X3}, {¥2 2.}, exactly one must be in every minimum dominating set for
T, and none of these vertices dominates a vertex of T'; thus, v(T) = y(T') + 4. If D' is a
dominating set for T', then D = D’ U {x,, y,, X,, ¥»} is a dominating set for T of cardinality
¥(T") + 4. Thus, v(T) = y(T") + 4. Finally, we show that y*'(T) = 2. Since y*'(T") = 2, we
have y(T-¢) = y(T) for any edge e of T'. Furthermore, if e belongs to the subgraph J = (V(T)
= (V(T) = {vi) = ({u, v, wi, X4, Y1, 2, Wa, Xp, Y2, 25}), then y(J) = 5, and it is easily verified
that y*'(J) = 2; so y(J-e) = y(J), and since a minimum dominating set of T'-v and a minimum
dominating set of J combine to give a minimum dominating set of T, we may conclude that -

¥(T-e) = v(T). So, v''(T) = 2, which, by Theorem 4.3.6, implies v*'(T) = 2. 0

4.4 UPPER BOUNDS ON THE BONDAGE NUMBERS OF GRAPHS

In this section, we shall establish upper bounds on the bondage number y*'(G) of a graph G in

terms of other parameters-of G.

4.4.1 Theorem: If G is a connected graph of order p = 2, then y*'(G) < p - 1.

Proof: Let G be a connected graph of order p > 2. Let u and v be adjacent vertices of G with
degou < deggv. If v*'(G) < deggu, then, obviously, y*'(G) < p - 1; so we suppose that
v"'(G) > degeu. Let E, = [{u}, V(G)]. Then, y(G-E) = v(G), and so, since y(G-E,) =
Y(G-u) U ({u})) = y(G-u) + 1, we have

¥(G-u) = v(G-E) - 1 = 4(G) - 1.
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Let D denote the union of all minimum dominating sets for G-u. If there is w &€ D such that
L;W € E(G), then there exists a minimum dominating set D’ of G-u containing w and D’ » G,
whence y(G) < y(G-u) = ¥(G) - 1, which is absurd. So, u is adjacent in G to no vertex of D.
Thus, |E,| = degeu < (p - 1) - |D| and v & D. Now, let F, = [{v}, D]g; we claim that
v(G-u-F,) > y(G-u). Suppose, to the contrary, that y(G-u-F,) = y(G-u); let D" be a
minimum dominating set for G-u-F,. In particular, D = {v}, which implies that there exists
d € D' € Dsuchthatd = vordv € E(G-u-F,). Now, if D" is a minimum dominating set for
G-u-F,, then it is a minimum dominating set for G-u; so, D* € D. Since v & D, we must have
dv € E(G-u-F,) and so dv € E(G-u), where d € D. However, then the latter fact implies
dv € [{v}, D] = F,, while the former implies dv & F,. This contradiction proves that

¥(G-u-F)) > y(G-u).
Equivalently,
¥(G-u-F) > ~(G) - 1.

Thus, y(G-(E, U F))) = y(G-u-F,) + y({{u})) > ¥(G), and we see that
Y@ < [ELUF|[ <(@-1-|D))+ |D|=p-1.
This completes the proof. |

4.4.2 Remark: That the bound in Theorem 4.4.1 is attainable is shown by the following: If G =
K., .o, then, by Theorem 4.3.4, y*'(G) = p(G) ~ 1. However, for many classes of graphs, the
bound of Theorem 4.4.1 is poor: For instance, y*'(P,) = 2 if n = 1 (mod 3) and y*'(P,) = 1
ifn = 0, 2 (mod 3); so, the bound of Theorem 4.4.1 is accurate for paths G = P, and is poor if

G = P, with n very large, since

(p®P) -1l -v"'(®) =n-1-4""(P) =n -3.

Similarly, v*'(C,) = 3ifn = 1 (mod 3) and y*'(C,) = 2 ifn = 0, 2 (mod 3), whence it follows
that the bound of Theorem 4.4.1 is attained by cycles C, if n = 3 or n = 4, but is a bad bound

for large n, since

[PC) - 11 -9 (C) =@ -1) -y*"(C) = n - 4.
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We note that, for trees T of order p = 4, the bound is poor, since, by Theorem 4.3.6,
v*'(T) < 2, and hence [p - 1] - ¥*'(T) = p - 3. As for complete graphs K, the bound in

Theorem 4.4.1 is exact for p = 2 and p = 3 since
YUK = ] = 1=pK) - land y"'(K) = [P,] =2 =p(Ky) - I;

however, the bound is poor for complete graphs of order much greater that 3 since

KD - 11 -y K) = (- 1) - [*,] = % -3),

4.4.3 Remark: The proof of Theorem 4.4.1 also suffices to prove that, if G is a graph with at
least one non-trivial component, then ¥*'(G) < p(G) - 1. However, if G is disconnected, with
G,, G,, ..., G, as its non-trivial components, then y*'(G) = min {y*'(G); 1 < i < m}, so that
v*'(G) < min {p(G) - 1; 1 i < m} < p(G) - 1. Hence, the bound in Theorem 4.4.1 is not

attained by any disconnected graph.

4.4.4 Definition: For a non-empty graph G, define the degree of an edge uv of G, deg';(uv), to
be [[{u, v}, V - {u, v}]|; i.e,

degeu + deggv - 2,

and set
6'(G) = 6(L(G)) = min {deg’'s(uv); uv € E(G)}.

(So, deg’quv = deg guv.)
4.4.5 Theorem: For any graph G, y*'(G) < 8'(G) + 1.
Proof: Let G be a graph and let uv be an edge of G that satisfies §’(G) = degg(uv). Let F =
[{u, v}, V(G)]. Then, |F| = §'(G) + 1. For any minimum dominating set S for G-u-v, we
have that S U {u} is a dominating set for G, and so y(G) < y(G-u-v) + 1;i.e.,

¥(G-u-v) = v(G) - 1. So,

Y(G-F) = y(G-u-v) + y(({u})) + v({({v})) = (v(G) - ) + 2 > (G,

whence v*(G) < |F| =-8'(G) + 1. O



142

4.4.6 Remark: While there are graphs for which strict inequality holds in Theorem 4.4.5 (for
example, y*'(K,) = [*,] <2n-3 =¢(K,) + 1, forn = 3, and y*'(S(m,n)) = 1 <
min {m, n} = &§'(S(m,n)) for the double star S(m,n) with m, n > 2, equality does hold for others.
For example, v*'(K,) = 1 = §'(K,) + 1, as well as y*'(C) = 3 =6(C) + 1 and y*'(P) =
2 =6'(P,) + 1lforn
C, and paths P, for n = 4 shows that the bound of Theorem 4.4.5 is better than that of Theorem
4.4.1 in these instances. For G = K,, ,, we have y*'(G) = p(G) -1 and 6'(G) + 1 =
2p(G) - 5 > v*'(G) for p(G) = 5; so, the bound in Theorem 4.4.1 is attained and is better than

l

1 (mod 3). The fact that the bound in Theorem 4.4.5 is exact for cycles

that in Theorem 4.4.5 in this instance.
As a corollary to Theorem 4.4.5, we have the following easily computed bound.
4.4.7 Corollary: If G is a graph for which 6(G) > 0, then v*'(G) < A(G) + 8§(G) + 1.

Proof: Let G be a graph with no isolated vertices, let u be a vertex of degree 6(G), and let

v € Ng(u). Then, by Theorem 4.4.5,
v'(G) < degsu + deggv - 1 = 8(G) + deggv - 1 < 6(G) + AG) - 1. [

4.4.8 Remark: The next theorem provides a further bound on y*’ that involves the maximum

degree A of a graph. Notice that Theorem 4.4.9 gives a relationship between y*" and .
4.4.9 Theorem: If G is a non-empty graph with y(G) = 2, then v*'(G) < (y(G) - DA(G) + 1.
Proof: We use induction on the domination number y(G).

Let G be a non-empty graph of order p with ¥(G) = 2, let A = A(G), and assume, to the contrary,
that y*'(G) = A + 2. Note that, as y(G) > 1, A < p -2. Letu € V(G) with degou = A;
then, since |[{u}, V(G)]| = degeu = A < y*'(G), we have y(G) = Y(G-[{u},V(Q)]) =
v(G-u) + 1, i.e., 7(G—ﬁ) = ¥(G) -1 = 1, and so, since |E(G) - E(G-u)| = A and y*'(G) >
A + 2, we have y*'(G-u) = 2. Since y(G) = 2 while y(G-u) = 1, there must exist v € V(G)
with N[v] = V(G) - {u}; so deg,v = p - 2, which implies A = p ~ 2 and hence that N[u] =
V(G) - {v}. Since y*'(G-u) = 2 and y(G-u) = 1, for any edge e = vy incident with v, we have
¥(G-u-¢) = 1. Thus, foreachy € V(G) - {u, v}, there exists w, € V(G) - {u, v, y} such that

w, is adjacent to every vertex in V(G) - {u}. But, since v is the only vertex of G that is not
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adjacent with u, any such vertex w, must be adjacent in G with u. However, then degsw, =

p(G) - 1, whence ¥(G) = 1, a contradiction. Thus, y*'(G) < A + 1ify(G) = 2.

Now, assume validity of the statement for all non-empty graphs G with y(G) = k (where k = 2),
let G be a non-empty graph with y(G) = k + 1, and assume, to the contrary, that y*'(G) >
k+A(G) + 1. Letu be any vertex of G. Since degu < A < v*'(G),

¥(G) = v(G-[{u}, VG)]) = v(G-u) + 1,

ie., y(G-u) = y(G) -1 = (k + 1) - 1 = k. Now, clearly, if S is a smallest subset of E(G-u)
such that y((G-u)-S) > y(G-u), then 8" = § U [{u}, V(G)] satisfies y(G-§') =
v(G-[{u}, V(G®)]-S) = y({({u}) + v((G-u)-S) > 1 + y(G-u) = y(G), whence we obtain
v*'(G) < |S'| = v*'(G-u) + degeu. Since y(G-u) = k, we have (by the inductive hypothesis
applied to G-u) that

y(G) £ [k - 1)+ AG-u) + 1] + degou < (k - 1)-AG) + 1 + AG),

Y'(G) £ k-AG) + 1,

contrary to our assumption that y*'(G) > k+<A(G) + 1. Thus, y*'(G) < k+A + 1, and, by the

principle of mathematical induction, the proof is complete. ‘ 0

4.4.10 Remark: If G is tf.le graph consisting of a 3-cycle with a pendant bath of length 2, then G
is a graph for which inequality holds in Theorem 4.4.9, since y(G) = 2, y*'(G) = 2 and A(G) =
3. However, by considering graphs such as the complete graph K,, the cycle C,, the path P,, and
,, we see that Theorem 4.4.9 provides a sharp bound on y*'.

This last graph can also be used to demonstrate that the bound given in Theorem 4.4.11 is sharp.

4.4.11 Theorem: If G is a connected graph of order p = 2, then y*'(G) < p - v(G) + 1.

Proof:

If G is a connected graph of order at least 2 for which v(G) < 2, then the desired
inequality follows from Theorem 4.4.1. Thus, we assume that there exists a connected graph G
of order p with y = y(G) = 3 and v*'(G) =2 p -v(G) + 2. Let x € V(G), and let E, =
[{x}, V(G)]. Since V(G)— N¢(x) is a dominating set for G, we have y(G) < p - deggx, i.e.,
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degex < p - v(G) < yv*'(G),

0, y(G-E,) = ¥(G), but y(G-E) = y(G-x) + 1, and thus y(G-x) = y(G) - 1. Furthermore,
as in the proof of Theorem 4.4.1, if D denotes the union of all minimum dominating sets for G-x,
we have that Ng(x) N D = &; thus, |E,| < p-1-|DJ|. Now,letz € V(G) - D - {x}, and
let F, = [{z}, D]s. Then, since z & D, we have that y(G-x-F,) > v(G-x). To see this,
suppose y(G-x-F,) = y(G-x), and let D’ be a minimum dominating set of G-x-F,. Then, D’
is a minimum dominating set of G-x and so D' & D, which is impossible, as no vertex of D

dominates z in G-x-F,. So, y(G-x-F,) > ¥(G-x). Since y(G-x) = ¥(G) - 1, we have

¥(G-E,-F) = v(G-x-F) + v({x})) > (G).

From this last inequality, we obtain

|Ed + [F| 2v"(G) 2 p - v(G) + 2.

Hence,

Fl2@-vG® +2)-(p-1-|D))
|F.| = |D| - v(G) + 3. ()

Now, let J be a minimum dominating set for G-x (so |[J| = y(G) - 1). Suppose that z is adjacent

[{z}, J]| = I, since J » G-x). Then, [{z}, D -J] =

to exactly one vertex w of J (of course,

F, - {zw}, so that, from ﬁi),

IDI = I+ [D-J] = J| + (K| -1) 2 4(G) -1 + |D| - 4(G) +.2 = |D| + 1,
which is absurd. So, we must have that z is adjacent to at least two vertices of J.
We shall assume now that z € V(G) - D ~ {x} is fixed and that z € N4(x) (note that this is a
valid assumption since we have shown that Ng(x) N D = &). Let J, be the set of vertices of J

that are adjacent to z, and let J, denote the set of vertices in D - J that are not adjacent to z.
Then,
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|F,| ID -1 -L| + |1
|D‘ - U| - |le + |Jx|

ID| - (v(@G) - 1) = ]| + [Ll,

Il

so that (from (i))
ID| - (v(G) - 1) - [L| + [1,[ 2 [D] -~(G) +3,
i.e.,
[1,] = |J;] + 2.

Now, let J," be the set of vertices in J, each of which is adjacent to exactly one vertex of J,. Since
|1, > |I,| = |J,"], there must be a vertex v € J, that is adjacent to no vertex of J,". We show
now that the set K = (J - {v}) U {z} is a dominating set of G-x. Certainly, J - {v} »
(G-x) = Ng[v] and {z} = {v}. Suppose there exists a € V(G) - J - {x} such that K »4 {a}; then
a¢ ], UD-J-J,)<S N4z and a & J,” (by the definition of v). Furthermore, a & I, - J,*,
since (by definition of J,7) |Ng(w) N J;| = 2 > |{v}| forallw € J, - J,*, from which it follows
thatJ - {v} =], - J,". So, we must have a € V(G) - D - {x}. Since K » {a}, certainly
J - {v} » {a}, from which it follows that |[Ng(@) N J| < 1. However, this now produces a
contradiction, since we proved above that every vertex belonging to the set V(G) - D - {x} is
adjacent to at least rwo vertices of J. So, K is indeed a minimum dominating set for G-x, and

K € D, a contradiction since z & D. Thus, y*'(G) < p - v(G) + 1. (]
The following conjecture appeared in [FJKR1].

‘4.4.12 Con]écture: If G is a non-empty graph, then y*'(G) < A(G) + L.

This conjecture is supported by the following proposition of [BHNS1].

4.4.13 Proposition: If G is a graph with at least one non-critical vertex, then y*'(G) < A(G).

-

Proof: Let G be a graph containing a vertex v such that y(G-v) = y(G). Then, if F =
[{v}, V(G)], we have

¥(G-F) = y((G V) U V1) = v(G-v) + 1 2 4(G) + 1 > ¥(G),

i.e., y'(G) € |F| = degv < A(G). O
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4.4.14 Remark: To see that the hypothesis in the above proposition is required, consider the
vertex-domination-critical cycle Cy,,, (n € N); by Theorem 4.3.2, y*'(G) = 3, while A(G) =
2 < 3.

4.5 CHARACTERIZATION OF k-y*'-CRITICAL GRAPHS

In this section, we regard a concept which is dual to k-vertex-criticality.

4.5.1 Definition [BHNS1]: We define a graph G to be k-y*'-critical if y(G) = k, and, for each
edge ¢ € E(G), y(G-¢) > k. ’

These graphs can be characterized as follows.

4.5.2 Proposition: If G is a graph and e € E(G) such that y(G-¢) > v(G), then y(G-e) =
v(G) + 1.

Proof: Let G be a graph with an edge e = uv satistying v(G-e) = y(G) + 1. Let D be a
minimum dominating set of G. Ifu, v € D, orifu, v € D, then D » G-e, whence
v(G-e) < v(G), a contradiction. So, [{u, v} N D| = I;then D U {u, v} » G-e, whence
v(G-¢) < |D U {u, v}| = v(G) + 1. Combined with our first inequality, this yields the desired

result. O

4.5.3 Corollary: If G is a k-y*'-critical graph, then y(G-e) = k + 1 for each e € E(G).

4.5.4 Proposition: A graph G is k-y*-critical if and only if k(G) = k and each non-trivial
component of G is a star.

Proof: The sufficiency is clear. Suppose now that G is a k-y*'-critical graph. Let D be a
minimum dominating set for G. Suppose that there exists a vertex v € V(G) of degree at least
two such that v ¢ D. Then, every neighbour of v is dominated by D, and some neighbour y of
v belongs to D. Hence, if x € N(v) - {y}, then D is a dominating set for G-vx, i.e.,
¥(G-vx) < y(G). However, this contradicts the k-y*'~criticality of G. So, every vertex of
degree at least 2 must belong to D. However, no two vertices in D are adjacent (otherwise, if

e € E((D)), then y(G-¢) < y(G), which, again, contradicts the k-y*' -criticality of G). Hence,
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every vertex of degree 2 or more is adjacent only to end-vertices of G. Thus, G has k

components, each of which is K, or K, or a star of order at least 3. 0
4.5.5 Corollary: If G is a connected k-y*'-critical graph for some k € N, thenk = 1.

4.5.6 Remark: By comparing Proposition 4.5.4 with Theorem 2.2.2, one may immediately
observe that the k-y*'-critical graphs are precisely the complements of the 2-edge-critical graphs.

Hence, Proposition 4.5.4 provides an alternative characterization of 2-edge-critical graphs.

4.6 INTRODUCTION TO EDGE-DOMINATION-INSENSITIVE GRAPHS

In the next three sections, we shall consider graphs G for which yv*'(G) = 2 and, in particular,

such graphs of given order p and minimum size.

4.6.1 Definition [BD1]: The graph G will be called edge-domination-insensitive if v(G) = y(G-e)
for every edge e of G, i.e., it y*'(G) = 2. For brevity, we shall say that G is domination-

insensitive, or, even more simply, y-insensitive when y(G) is known to be y.

4.6.2 Remark: Within this general framework, three sub-problems will be discussed in this and
the following two sections. Here, we shall consider the simplest of the three problems, namely,
to determine the minimum number of edges in a graph G with p vertices, domination number 0%
and having the property that some minimum dominating set of G exists which also ‘dominates every
edge-deleted subgraph G-e of G. We shall denote by qg(p,y) the minimum number of edges of
an insensitive graph G of order p with y(G) = v in this case. In section 4.7, we demand no
restrictions other than the connectedness of thg y-insensitive graph G, and we will denote the
minimum number of edges for such graphs by q(p,y). Finally, in section 4.8, we consider the case
where we make the demand that the graph remain connected after any edge is removed; here,

G is 2-edge-connected and q.(p,y) will represent the minimum numbér of edges.

We will assume throughout this section and sections 4.7 and 4.8 that the graphs G under
consideration are connected, so y(G) < P9/, for these graphs (see [OR1]). This assumption of
connectedness implies no loss of generality since, if each component of a disconnected graph is
domination-insensitive, then so is the graph. This point will be discussed in slightly more detail

in the sections concerned.
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4.6.3 Definition: Forp = 2 and y = 1, let Gy(p,y) denote the set of all connected, non-trivial
graphs G of order p with y(G) = v, having the property that G contains a minimum dominating
set V* which satisfies V™ = G-e for each edge e of G, and, furthermore, the property that G has
the minimum number qx(p,7y) of edges over all such graphs. For brevity, we shall use the notation
G € G(p,y,V,) to indicate that G € Gg(p,y) and that V, is a minimum dominating set of G such
that V, dominates each of the edge-deleted subgraphs G-e, e € E(G), of G.

That extremal graphs of the kind in Gg(p,y) do exist is illustrated by the fact that K,, €
Gg(4,2;V)), where V| is a partite set of K,,.

4.6.4 Remark: Note that, if G is a disconnected graph with components G,, G,, .., G,, and each
component G; of G belongs to Gg(p;,y;), for some positive integers p; and v, (1 < i < k), then,
forp=ZX p and y = L}, v, G is a graph of order p and minimum size such that y(G) =
v(G-e) for all e € E(G). So, no loss of generality ensues from the restriction of our investigation

to connected graphs.
4.6.5 Proposition: If p =2 2,y € N, and Gg(p,y) # &, theny = 2 and so p > 4.

Proof: If G is a connected, non-trivial graph which is dominated by a single vertex v and if e is
an edge of G incident with v, then {v} » G-e. Hence, fory = 1, Gg(p,y) = @. So,
Ge(p,y) # < implies that y = 2 and, since G € Gg(p,y) is connected, p > 2y > 4. U

We shall characterize the graphs in Gg(p,y) for p, ¥ = 2 (and hence p = 4).

4.6.6 Proposition: If y > 2, p > 4 are such that Ge(p,y) # & and if G € Gg(p,y;V,), then G
is bipartite with partite sets V, and V, = V(G) - V,. Moreover, each vertex in V, has degree 2.

Proof: Let G be a graph satisfying the hypothesis of the proposition, and define V, = V(G) - V..

We show first that V, and V, are independent. Suppose that, for some i € {1, 2}, there exist u,
v € Viwithuv € E(G), and let G" = G - uv. Then, since G € Gu(p,y,V,), it follows that V, »
G". Now, forany e € E(G"), V, » G-e, and so, since uv & [V,, V.], Vi = (G-e)-uv = G"-e.
Hence, V, » G" and V, » G"~e for every e € E(G"). This produces a contradiction, since

G € Gg(p,y) and q(G") < q(G). We conclude that V, and V, are independent sets and that G is
bipartite with V, and V, as partite sets.
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F}nally, we prove that each vertex of V, has degree 2. Certainly, since V, » G-e for all
e € E(G), each vertex of V, has degree at least two. Suppose that some vertex v € V, has at
Jeast three neighbours vy, V,, ..., Ve v (deg Vv = 3). Let G = G-vvg,,. Then, deggaun = 2 for
every u € V,and V, is a minimum dominating set for G (since G € Gg(p,v,V,)). Furthermore,
ife € E(G), then degg._.u> 1 for every u € V,, which implies that [{u}, V ]¢.. # & for each
u €V, ie., V,~ G -eforall e € E(G"). This, together with the fact that q(G") < q(G),

contradicts our choice of G from Gg(p,Y); hence, degsv = 2 for every v € V,. 0
4.6.7 Corollary: If, for some p = 4 and y = 2, Ge(p,y) # &, then q:(p,y) = 2p - 2.

4.6.8 Theorem: Letp > 2 and y = 1 be such that Gg(p,y) # . (Then,y = 2 andp = 4.)
Let G € Gg(p,y;V,) with V, = {a, a,, ..., a,} and A; = Ng(a) fori € {1, 2, ..., y}. Then,
(1) |A N A # 1, whered, j € {1,2, ..., v}, 1 #];
(2) the intersection graph I of A, A,, ..., A, is connected, whence it follows that [ has at
least y - 1 edges;
(3) G has at least 4y - 4 edges; and
4)p =3y -2

Proof: Letp = 4,y = 2 and let G be a graph satisfying the hypothesis of the theorem. Then,

G is bipartite with V, and V, = V(G) - V, as partite sets.

(1) Suppose, to the contrary, that there exist distinct i, j € {1, 2, ..., v} with Al N A = {v}.
Then, V' = {a; k € {1, 2, ..., v} - {i, j}} U {v} is a dominating set for G, as we now show.
Letx € V, - {v}. Letaadnd b be the two vertices of V, that-are adjacent to x (see Lemma 4.6.6).
If {a, b} N {a, a} = &, then clearly V" (which contains {a, b}) dominates x. On the other hand,
if, say, a € {a, a}, then, since A; N A; = {v} # {x}, wehaveb & {a, a}, i.e., b € V", s0
that, again, V' = {x}. Thus, V' = V* U (V, - {v}); since {v} » {v} U {a, a;}, it follows that

V* = G. However, then, y(G) = y < |V’| = v - 1, which is impossible. So, (1) does indeed
hold. :

(2) Leti,j € {l,2, .., vy} withi# j. We will show that I contains an A;-A; path. Since G
is connected, G contains an a;-a, path. Since G is bipartite, with partite sets V, and V,, any such
a;-2; path consists of an alternating sequence of elements of V, and V,. Suppose

P:(a;) 2, %, 8, %, . S ai‘(= a),

is one such a;-a; path in G, Clearly,
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X, € Aikn A

.y’

SO

A A € E(D)

Iy xen

fork=1,2,...,n-1. Hence,

ADALA A (A))

is an A;-A; path in I. So, I is connected.

(3) For each pair i, j for which Aj/A; is an edge of I, let §;; = [A; N A, V|]. Leti, j € {1, 2,
.., v} with AJA; € E(I). We observe first that, since each vertex in V, has degree 2 and
|A N A =2, wehave S| =2 [A N Al =4 Now,letk, £ € {I,2, .., y} 5o that
|{k, €} N {i, j}| < 1and A/A, € E(I); we claim that §;; and S, , are disjoint. Suppose, to the
contrary, that there exists e = uv € §; N §,,, whereu € V,andv € (A; N A) N (A, N A).
Then, av, ayv, a,v, a,v € E(G), where 3 < [{i, j, k, {}| < 4, i.e., degyv = 3. However, by
Lemma 4.6.6, this is impossible. So, S;; N §,, = <, as required. Hence, under the mapping
AA; = S for AA; € E(D), the q(I) edges of I are associated with g(I) disjoint subsets of edges of
E(G), each containing at least 4 edges of E(G). So, q(G) = 4 q(I) = 4(y - 1), as required.

(4) Since, by Corollary 4.6.7, q(G) = 2p - 27, it follows from (3) that 2p - 2y = 4y - 4, i.e.,
p =3y -2 U

Obviously, if Ge(p,y) # O, then y < ?/, and so p = 2y. However, the condition p > 2y does

not guarantee that Ge(p,y) # O, as the next result shows.
4.6.9 Corollary: For every y € N - {2, 3}, there exists p, = 2y such that G¢(p,,y) = &.

Proof: Lety €N, If y = 1, then (as seen in the proof of Proposition 4.6.5), Gi(p,y) = & for
every p = 2. Fory = 4, let p_ be any element of {2v, 2y + 1, ..., 3y - 3}; then, by Theorem
4.6.8(4), Ge(p,,y) = 9. T O
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4.6.10 Theorem: For any y = 2 and p = 3y - 2, Gi(p,y) # 9.

Proof: Let y be an integer with y > 2, and let p be an integer with p = 3y-2. We construct
(what we will show is) an element G of Gg(p,y) by defining V(G) = V, U V,, where V, =
{aly Ay oy ay}’ V'.! = {bI) bﬁ) o bp—-y}’ and

EG) = {ab;l =1,2,..,p -7} U {abay abyyi=2,3, ..,y -1} U
{a.,bi; 1= 27 - 3; 27 - 27 - P 7}

(Fig. 4.6.1 illustrates the case wheny = 4 and p = 11. Since p = 3y - 2, deg a, = 2 for

1 <1 < vand, obviously,degb, = 2for1 <i <p-v.

Since N(a,) = V,, V, = {a,, a,, ..., a,} is clearly a dominating set for G. Moreover, V, » G-e,
for each e € E(G), since G is bipartite with partite sets V, and V, and deg b, = 2 for each!
b, € V,.

We show next that ¥(G) = y. Suppose, to the contrary, that y(G) < . We remark that, given
any a, € V), it is possible, by the definition of E(G), to determine b, € V, with ab, € E(G), and
given any b, € V,, it is possible to determine 3, € V, with ab; € E(G). Let D be a minimum

dominating set for G. We consider two cases.

Case 1: Supposethata, € D (thenD 2 {a,} »V,). If V, € D, then |D| = v (contrary

to assumption), so let

be the set of vertices of V, not contained in D, where 1 < n <y - 1. Now, by the
definition of E(G), no vertex of V, is adjacent to more than one vertex of V, - {a,}. So,
foreach k € {1,2, ..., n},a, € Dorb € D where b is one of the two vertices in V,
adjacent to a,, i.e., a set B of at least n elements of V, U A must be contained in D in

order that A is dominated by D. However, then
Dl 2 | (Vi-A)UB|[=[V,-A[ + |[B| 2(y-n) +n =y,

a contradictior: So, this case does not occur.
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Case 2: Suppose that a, € D. Assume first that V, - {a,} € D. Then, since
V, - {a,} # {a]}, and a, &€ D, at least one element of V, must belong to D (since we
know D = {a,}). However, then |D| = |V, - {a}| + 1 = |V,| =, a contradiction.

So, if A is defined by
A={a,a,.,al}t=V -D
where 1 =1, < i, < ... <i,then2 <n < v.

Now, for each k € {2, ..., n - 1}, if we define B, = N(a,), then B, = {b,, b,}, where

r, = 2i, -3 and t, = 2i - 2, and since

N(b,) = N(b) = (a,, a,),

we must have that B, € D. If a, € D (i.e., if i, < ), then we define B, = {b,, b,},
where r, = 2i, - 3, t, = 2i, - 2. Suppose that a, & D (i.e., i, = v); define B, by B, =
{b;2y -3 < k < p - v}. Then, since NB) = {a,, a,} foreach k € {2y -3, 2y - 2,
..., D = v}, it follows that B, must be contained in'D. In either case, then, |D| >
|V1 - A’ + |Uk:1 Bk|~

Thus, if a, € D, then

ID| 2 (y-n)+2n-1)=y+n-22=4,

and if a, & D, then

D

\

-m+2n-D+[p-y-@2y-3)+1]
n+2-2y+p

v

n+2-2y+3y-2
= y+nz=2vy+ 1

In either case, a contradiction to our assumption that y(G)~< % is produced.
So, Case 2 does not occur, and it follows that y(G) = v, as requiréd.

Finally, we observe that -
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WG = @7+ (-22+ @ +4-3v)=2p -2y =qlv) O
The results of this section are summarized in the following theorem.

4.6.11 Theorem: Gg(p,y) # @ and qp(p,y) = 2p -2y ify = 2andp = 3y - 2, and
G(p,y) = I, otherwise.

4.7 EDGE-DOMINATION-INSENSITIVE GRAPHS OF MINIMUM SIZE

In this section, we shall investigate the existence and minimum size of graphs G for which

v(G-e) = y(G) for each e € E(G).

4.7.1 Definition: Forp = 2 and y € N, let G(p,y) denote the set of all connected graphs G of
order p with v(G) = v, having the property that y(G-e) = ¥(G) = v for each edge e of G, and,

furthermore, the property that G has the minimum number ¢(p,y) of edges over all such graphs.

As shown later (in Theorem 4.7.3), for any p = 3, any graph of the form K; + I_(P_3 =K1,
belongs to G(p,1). So, extremal graphs of the kind in G(p,y) do exist.

4.7.2 Remark: Observe that, if G is a dis connected graph with components G,, G,, .., G,, and
each component G; of G belongs to G(p;,y,), for some positive integers p; and y'.. (1 <i<k),
then, forp = X, p;and y = L5, v, we have that G is a graph of order p and miﬁimum size such
that y(G-e) = y(G) for each e € E(G). Thus, as in the previous section, no loss of generality
is incurred if we restrict our investigation to connected graphs. It follows, then, that

q(p,y) = p - 1. We first treat the special case of y = 1.
4.7.3 Theorem: For any p = 3, we have
(1) q(p,1) = 3p -6 forp = 3; and -

@) Gp,1) = {K, + K,;}.

Proof: Letp > 3.

() If G € G(p,1), then A(G) = p - 1 and G must have at least three vertices of degree p-1

(since a graph H having precisely two vertices u, v of degree p(H) - 1 satisfies y(H-uv) > 2 >



Xk

R

X7

Yk

k-1

Y2

Fig. 4.7.1



154

v(H), as does a graph H with exactly one vertex u of degree p(H) - 1, where v € V(H) - {u}).
Thus, qp,) = p -1+ (p-2)+(-3)=3p-6.

To prove the reverse inequality, let G be a graph of order p, with exactly three vertices u, v, and
y of degree p - 1, and every othet vertex having degree 3 (i.e., no edges are present in G other
than those incident with u, v, or y). Then, clearly, y(G-e) = 1 = (G) for each e € E(G).
Since q(G) = 3p - 6, we have q(p,1) < 3p - 6, as required.

(2) By our comments in (1), it is clear that K + I_(p_3 is a spanning subgraph of any element of
G(p,1). However, the size of the graph K; + }_{p_3 is 3p - 6, the minimum number of edges of
any such element , i.e., K; + }_(p‘3 belongs to G(p,1) and no proper supergraph of K; + }_(p_3
belongs to G(p,1). O

We now assume y = 2 and consider three cases: p < 3y -2,p =3y - l,andp = 3y.
4.7.4 Theorem: Ify = 2 and 2y < p < 3y -2, then G(p,y) # & and q(p,y) = p - 1.

Proof: Let v, p be integers withy = 2 and 2y < p < 3y - 2. We will show that a tree T of
order 2k + ¢ constructed from a path of length k + ¢, viz., z;,z,_,...,2,,¥,,X},...,X,, DY joining
anew vertex y, to x; fori = 2,3, ..., kwithk =3y -p (= 2sincep <3y -2)and ¢ =
3p - 6y (= 0since p = 2v) has order p, domination number <y, and the property that y(T-e) =
v(T) =« er each e € E(T) (see Fig. 4.7.1). This will prove that q(p,y) < q(T) =p - 1,
whence q(p,;y) = p - | will follow by our eaﬂier observation that q(p,y) = p - 1.

Let H=({x, ysi=1,2 ..., k}) = P*, and let Q;; = {{z, z.,, ..., z}) for i, j € {1, 2,
..., m}, i < j. Wenote firstthat p(T) = 2k + £ =23y - p) + Bp - 6y) = p. Sincey(P,*) =
n, y(H) = k = 3y - p.

Let D, = {y, Yo, ..., ¥i}; then D, is a minimum dominating set of H and D, also dominates z,.

Since y(P) = [";], we have, for Q,, = {{z,, z,, ..., z,}), that
vQ) = [a(¢ - )] = [%@p - 6y - ] =p - 27.

It is easy to see that, if D" is @ minimum dominating set for Q,,, then D, U D' is a minimum

dominating set for T, so x(T) = 3y - p) + (p - 2y) = ¥.
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We now show that T is y-insensitive. Let e € E(T). We consider three cases.
Case 1: Suppose e = y,z,. Then,
y(T-¢) = y(H) + y®) = Gy -p) + [BGp -6v)] =3y -p+p -2y =7.

Case 2: Suppose that e = x;y; (where j € {1, 2, ..., k}). Since y(T-e) = y(T) for any
e € E(T), it will suffice to exhibit the existence of a dominating set D for T-e with
|ID| =7y. Weknow that D" = {y,, y,, ..., ¥i} U D', where D' is a minimum dominating
set for the path Q,, of order ¢ - 1, is a minimum dominating set for T. If we now define

a new set D by
(D* —{yM))U{xN}, flsjsk-1
(D" - ly, ) Ulx.), ifj=k

then it is obvious that D » T-e and |D| = |D’

:’Y.

Case 3: Supposee = z,7,.,, where ] <m < { - I Then, Q,,-e = P, U P,, where

a+b=1{-1 Weneedsimply show that, for any a € {1, 2, ..., £ - 2}, we have
‘Y(Pl-l—a U Pa) = ‘Y(P{—l)’

where y(P,.) = [%3p - 6y - 1)] = [%@Gp - 6y)] = p - 2y (since then y(T-¢) =
By-p)+ (@ -2y) =v,asinCase 1). Since{ =3p -6y =0(mod3)anda+b =
¢ -1 =12 (mod 3), we have, by symmetry, that no loss of generality is incurred if we

consider only the cases where a = 0 (mod 3) and a = 1 (mod 3).

Subcase 3.1: Suppose a = 0 (mod 3). Since a-= 3n for some n € N, we have

v(P, U P)

Il

[va(¢ - 1 -a)] + [/;]
[VaBp - 6y - 1 -3n)] + [*/]
(0-2y-n)+n=p-2y

Subcase 3.2: Supposea = 1 (mod 3) (so b

1 (mod 3)); thena = 3n + 1, for

some n € N. We assume that £ - m = a (i.el, Qu,1t = ({Zosry Zosos- -,
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- z}) = P,). Observe that, if D, is a minimum dominating set for Q, ,, that contains
z, (D, always exists sincem = ¢ ~a=(GBp -6y) -Gn+ 1) =-1=12
(mod 3)), D, is a minimum dominating set for Q.. and Dy = {x;, X3, ..., X},

then D = D, U D, U Dy is a dominating set for T-e that has cardinality

ID| =Dy + [Dy] + [Dy] = y(Pr) + y(P) + (k - 1)
= [w@p-6y-3n-1] + [%@n+1)] + Gy-p-1)
= P-2y-m)+O@+)+CBy-p-D=r
Cases 1 to 3, then, show that T is y-insensitive. Ol

The following theorem will be used in the proof of Theorem 4.7.6, but is also interesting in its

own right.

4.7.5 Theorem: If p = 4 and v = 2 are such that G(p,y) # <, and if G € G(p,7y), then G has

at least two dominating sets of cardinality «.

Proof: Letp = 4 andy = 2 with G(p,y) # &, and let G € G(p,y). Since G is non-trivial and

connected (so that G has no isolated vertices and is non-empty), we have, by Proposition 4.2.5,
that G contains a minimum dominating set D which has the property that, for each d € D, there
exists vy € V(G) - D such that Ng(vy) N D = {d}. Clearly, then, for anyd € D, D is not a
dominating set of G-dv,. Hence, since y(G-dv,) = v(G), there exists a dominating set D’ of
G-dv, (and hence of G) with |D'| = y(G) and D # D'. ' ' U

The following theorem requires a lengthy and complicated proof which will be presented as a
sequence of lemmata. Notation and definitions introduced will be retained without repetition

throughout the proof.

4.7.6 Theorem: If p and v satisfy p = 3y = 6, then q(p,y) = 2p -3y.

Proof: Let p, y € N with p = 3y = 6 and consider a graph G in G(p,y). Let the minimum
dominating sets of G be denoted by Dy, D, ..., D, (by Theorem&.?.S, n = 1), where we shall
assume that DO has been selected so that Dy is @ minimum dominating set whose existence is
guaranteed by Proposition 4.2.5, whence it follows that the set A,, which we define to be the set

of all vertices in V(G) - D, which have a unique neighbour in Dy, is non-empty. (Notice that, in
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the notation of Definition 3.2.4, we have A, = J {D,'(v); v € Dy}.) We next define subsets of

D, and A, as follows:

Xi = (DO ﬂ Dl ﬁ ﬂ Di-l) - Di’ fOl' 1 S i S n,
X;u =Dy NDy N ... D,
A, = {a € Ay; N@) N D, € X}, forl <i<n+ 1.

It is possible that some of the above sets may be empty; that the non-empty sets partition D, and

A,, respectively, is shown next.

4.7.7 Lemma:
(1) For distinct i, j € {1, 2, ..., n + 1},

@X NX=9;, OANA=OD.
@ @ UL Xi = Dy ®) Uizt A = A,

Proof: (la) Suppose, to the contrary, that there exist distinct i, ] € {1, 2, ..., n} with
X, N X #@. Letx € X; N X; and assume, without loss of generality, thati < j. Now, X, =
D, N D, N ... N D) - D so we must have x € D; (and x & Dy); however, X; = (D, N
D, N ... N D) - D, implies x ¢ D,. This contradiction establishes that X, X, ..., X,, are

disjoint.

(1b) Again, suppose that there are i, j € {1, 2, ..., n} with i # jand A, N A} # . Let
a € A, N A, By the definition of A; and A, a satisfies a € A, and N(a) N D, € X; N X,
which, with (1a), yields N(a) N D, = &, a contradiction, since |[N(a) N Dy| = 1. So, A;, A,,

..., A, are indeed disjoint.

(2a) By the definitionof X, (1 <1 < n + 1), X; € Dy, and so | JI71 X; € D,. Letv € D, and
let k be the largest integer such that v € D, N D; N ... N D,_;; clearly, k exists, | < k <
n + 1, and v € X, (since the definition of k implies v & D). Hence, D, € [J'*! X,. So, (2a)

follows.

(2b) That |11 A, € A, follows immediately from the definition of A; (1 < i < n + 1). Let
v € A,. By the definition of A,, there exists d € Dy such that N(v) N D, = {d}. Since [ p1! X; =
D, there exists j € {1, 2, ..., n + 1} withd € X;. This implies, by the definition of A,, A,,

..., A, thaty € A, Hence, A, € [J1f] A, and the desired result follows. O
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Another collection of sets Z; (I < i < n) is defined as follows:
(N)Z €D, N {a€ A, [N@N D, "D, N ... 0D = 1};
2D, -Z,~»G - (X; U Ay;
(3) Z; is maximal with respect to properties (1) and (2).

4.7.8 Lemma: Fori € {1, 2, ..., n},
(DZ, €D, N Ayand, foranyz € Z,N@z) N D, = {z} €D, N D, N ... N D_;
(2) each vertex z in Z; is in A; or dominates at least one vertex in A; which is dominated

by no other vertex of D,.
Proof: The results listed in (1) follow immediately from the definition of Z; and A,.

To prove (2), we suppose that z € Z; - A;. Then, by the definition of Z;, D; - Z; » V(G) -
(X, U A) whereas, by the minimality of D;, D; - {z} »» V(G); consequently, there exists a vertex
z' (say) in V(G) - (D; - {z}) which is dominated by z and by no other vertex inD,. Ifz' & X; U
A, then D, - {z} 2 D, -Z, » G-X; U A) 2 2/, contrary to the propér‘éy of z'. So, z' €
X, U A,. Furthermore, since z € A, - A,, the (unique) vertex z" in D, which is adjacent to z is

not contained in X;. Hence, z' € A, as required. J
4.7.9 Remark: In view of Lemma 4.7.8, for each i € {1, 2, ..., n}, we now define an injective
function f:Z; =» A, where, forz € Z, fi(z) = zifz € A and, ifz € Z, - A, fi(z) = z', where
z' is any vertex of A; which is dominated by z and by no other vertex of D, arbitrarily selected
and then fixed as fi(z).” Denoting fi(Z,-A;) by A{, we define

B =fi(Z) = (Z; N A) U A,
forl <i <n.
4.7.10 Lemma: Fori € {1,2, ..., n}, |B]| = |Z] < |X|].
Proof: Leti € {1, 2, ..., n}. We claim first that (Z, N A) N Al = &, ify € Z - A, (S D)

and y' € Ai N (Z, N A) S D, then N[y’'] N D, 2 {y, y'}, contrary to the fact that y is the
only vertex of D; that dominates y’). This
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-and the fact that |Z; - A, = |A}[, proves |B;| = |Z;|.

To show that |Z;| < |X;|, we note that X; » X; U A;and D; - Z; » V(G) - (X, U A); so

(Di—zi)uxi

we obtain |D;]

4.7.11 Lemma:

Proof: L.et-i €

~ V(G), whence |(D; -Z) U X;| 2 ¥(G). AsX,ND; =Y and D, - Z; € D,

=y < |D| - |Z] + |X;], whence |Z]| < |X]. O

For each i € {l, 2, ..., n}, A covers at least 2|A;| - |X;| edges of G.

{1,2, .., n}. Foreacha € A, denote the unique neighbour of a in X; by a" and

let E; be the set of |A;| edges aa” obtained thus. We shall show that every vertex a in A; - B; is

incident with a specified edge av, # aa” and denote by F, the set of such edges av,. Leta € A, -

B,; we consider two cases.

Case 1:

Case 2:

Suppose thata € D, for some j < i;thenj € {1,2,...,i-1}asa & D,.

Subcase 1.1: Suppose there isk € {1, 2, ..., i - 1} witha € Z_. Then, since
a € A and A, N A, = @, it follows that a € Z, - A,. Consequently, by
Remark 4.7.9, a is adjacent to a vertex v, = f,(a) € AL € B, € A,. Since

A N X =, wehavev, # a".

Subcase 1.2: Suppose a ¢ Z, for all ¢ € {1, 2, ..., i - 1}. Let k denote the
smallest ¢ for which a € D, (clearly, k < j). We know D, - Z, » V(G) - (A,
U X)); also, by the maximality of Z,, we have D, - (Z, U {a}) » V(G) - (A, U
Xo. Henpe, there exists a vertex v, € V(G) - (A, U X)) which is dominated by

a and by no other vertex of D,. It is shown later that v, # a".
Suppose thata & D for all j < i. We again consider two subcases.

Subcase 2.1: Suppose that a € D,. Then, theré exists v, € D, such that a is
dominatﬁed by (i.e., is adjacent to) v,. (Note that, since D; and X; are disjoint,

v, # a")

Subcase 2.2: Suppose thata € D,. Sinc¢ a € A -B, wehavea & Z,. Hence
(as in Subcase 1.2), D, - Z; =» V(G) - (A; U X)) while, by the maximality of Z;,
D, - (Z; U {a}) » V(G) - (A, U X)), from which it follows that there exists
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v, € V(G) - (A, U X)) which is dominated by a and by no other vertex of D;.
(As above, v, # a".)

Thus, in each of the above cases, a unique vertex v, has been chosen in N(a) and we let F, =
{av, € E(G); a € A, - B}. In Subcases 1.1, 2.1, and 2.2, it is clear that v, & X;. In Subcase
1.2, since a € A,, a has a unique neighbour a" in X; = (D, N D, N ... N D)) - D; so, if
v, = a", it follows (since k < i) that v, € D, and so v, is dominated by at least two vertices, a

and v,, in D,, contrary to the definition of v, in this case. Consequently, F, N E; = <.

To show that F; consists of |A; - B;| distinct edges, we show that, for every pair of distinct
elements a, a’ of A, - B, if v, = a’, thenv,, # a. In Subcases 1.1 and 2.2, v, &€ A, foranya €
A - B,sov, # a' forany a’ € A, - B, - {a}. Next, we consider the vertex v, selected in
Subcase 2.1. Suppose that there is a vertex a € A, - B, such that the vertex v, selected in Subcase
2.1 belongs to A, - B;; say, v, = a’. By the choice of v, in Subcase 2.1, we have a’ = v, € D,.
So, the vertex a' € A, - B, satisfies the conditions of Subcase 2.2, and Var is chosen to be an

element of V(G) - (A, U X)); in particular, v,, € A,, from which it follows that v,. # a.

Finally, consider the vertex v, selected in Subcase 1.2. Suppose that there is a vertex a € A, - B,
such that the vertex v, selected in Subcase 1.2 belongs to A; - B;,. By the choice of v, in
Subcase 1.2, we have that v, € V(G) - (A, U X)) and v, is adjacent to a and to no other vertex
of D,. Now, by the definition of A, there is a (unique) vertex y in X; with v,y € E(G). But,
X; & D, (since k < i), and so y is a vertex of D, adjacent to v,. Finally, we observe thaty €
X; implies y # a (€ A), so that v, is adjacent to two distinct vertices of D,, contrary to our

choice of v,.

Therefore, F; contains |A; - B;| = |A;| - |B;| edges and |E; U F;| = 2|A;| - |B,|, which,

with Lemma 4.7.10, completes the proof of the lemma. . O

The following notation will be used to simplify the exposition in the remaining lemmas: For
I <i <nanda &€ A - B, the specified edge av, of F; selected in Lemma 4.7.11 will also be
denoted by gi(a) and Fi(1.1), F,(1.2), F,(2.1), and F,(2.2) will denote the set of all edges of the

form g;(a) where a satisfies the condition listed in the Subcases 1.1, 1.2,2.1, and 2.2, respectively.

4.7.12 Lemma: Forl <i<m<n (EUF)NE,UF)=0.
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Proof: Leti € {l,2, .., m~1}. That E, N (E, U F,) = O follows immediately from the
observation that, if e € E, thene € [A, X;] and so neither end of e is contained in A, whereas
each edge in E, U F_ contains a vertex of A,,. This argument also proves E, N (E; U F) = &.

We show now that F, N F, = .

If av, = g(a) € F(1.1), thenv, € A, for some k<i< m; consequently, neither end of av, is
in A, and so

F1.)NF,=@.

Ifav, = g.(a) € F (1.1), thena € A, - B, and v, € B, & A, for some J" < m. Suppose that
av, € FF UE;thenv, € A, -B,sothatj’ =1ias A, N A = O fori# j. However, this
yields v, € B; and v, € A; - B, a contradiction. So, av, & F; and

F.U)NF =0,

We show now that F,(1.2) N F, = &. Letav = g(a) € F(1.2); thena € A, - B,and a & Z,
for 1 < ¢ < i, buta € D, for some k < i, where k is chosen to be as small as possible. We

consider two cases.

Case 1: Suppose av € F, for some t > k, witht # i. Then, av = g(v) and v € A;
hence, v is dominated by some vertex vV € X, = (D, N D, N ... O D, N ... N
D_) -D,and v # a (V' € D, and a € A, implies a € D,). - So, v is dominated by
distinct vertices v*, a € D, contrary to the choice of v = v, in Subcase 1.2. Thus, av &
Foforallt € (k+ 1,k +2,...,m, .. 0 -{} ie.,

F(12) N F, = &, fort € {k+ 1,k +2,...,n} -{i.

Case 2: Suppose av € F, for somet < k (< i). Then, av = g(v) € A, - B. Now, we
proved above that F,(1.1) N (E, U F) = &, where i and m are arbitrary, distinct
elemgnts of{l,_2, ..., n} withi < m. So, since t < i, we have F(1.1) N (E; U F) =
@ in particular, this implies (since av € F,(1.2) € F) that av ¢ F(1.1). So, av € F,
implies av = g(v) € F(1.2) U F(2.1) U F(2.2).

Subcase 2.1: Suppose av = g(v) € F(1.2). Letk’ < tbe the smallest index for
which.v & D,.. Then, a is dominated by v € D, and by no other vertexof D;
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however, a is dominated by a* € X, = O, N ... N Do N ... N D, N ... N
D.) - D, and, as a° € D, and v & D, a is dominated by a~ € D, - {v}, a
contradiction. Hence, av &€ F(1.2). Thus, av & F(1.2) forallt € {1, 2, ...,
k}; so

F(1.2) N F(l1.2) = @, fort € {1, 2, ..., k}.

Subcase 2.2: Suppose av = g(v) € F(2.1). Then,a € D, - X, sothatk <t
(by the choice of k). Now (by our assumption in Case 2), t < k; sot = k. Then,
since av = g(a) € F(1.2), we have v € V(G) - (A, U X)), sov € A; but
av = g(v) € F(2.1) and k = t implies that av = g(v) € F(2.1) and v €
A, - B, contradicting v € A,. Hence, av &€ F,(2.1) and

F(1.2) N FQ2.1) = &, fort € {1,2, ..., k}.

Subcase 2.3: Suppose av = g(v) € F(2.2). Then,v € D; and (by the definition
of F(2.2)) v is the only vertex in D, which dominates a; however, asa € A, ais
dominated by some vertex a* € X; = (D, N ... N D, N ... N D)) - D; and
a’ # v (sincea” € Dyand v &€ D), so a" and v are distinct vertices in D, which
dominate a. This produces a contradiction. Thus, av & F(2.2) for allt € {I, 2,
..., k}. So,

F(1.2) N F2.2) = &, fort € {1, 2, ..., k}.

Cases 1 and 2 thus show that Fi(1.2) N F, = & ift # i, and so F;(1.2) N F, = & and
"F.(1.2) N F = d.

We show now that Fi(2.1) N F, = @. If av = g(a) € F2.1), thena ¢ D;for 1 <j < i, and

v € D, We consider two cases.

Case 3: Suppose av = g,(v) € F,(2.1). Then, v € D, for all £ € {0, 1, ..., m}

b

which provides a contradiction as av = g(a) impliesv € D;, where i < m. Hence, av &
F.(2.1) and

- F2.1) N F,Q.1) = @.
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Case 4: Suppose that F;2.1) N F(2.2) # &. Letav = g@) = g.(v) € F2.1) N
F_(2.2). Then, since av = g(a) € F(2.1), it follows that v € D, - X;; however, since
av = g.(v) € F(2.2), v & Dforall { < m and sov & D, a contradiction. Hence,

F(2.1) N F,2.2) = .
Thus, F2.1) N F, = &.
To complete the proof, we have only to show that F,(2.2) N [F,(2.1) U F.(2.2)] = <.

Case 5: Suppose that F;(2.2) N [F,(2.1) U F,(2.2)] # &. Letav = g(a) =
g.(v) € F(2.2) N [F,(2.1) U F,(2.2)]. Then, as av = g(a) € F,(2.2), v is dominated
by a and by no otheér vertex in D;; however, v € A, and so v is dominated by some
VVEX, =D, N ..NDnN..ND,,) -D, Wenotethatv' # aasv' € D, and

a & D, So,visdominated by v: € D; - {a}, a contradiction. So,
F(2.2) N [F.(2.1) UF.(2.2)] = &. O

4.7.13 Lemma: If G € G(p,y) with y = 2, then A_,, covers at least 2|A,,,| edges which are
not contained in | J;®, (E, U F).

Proof: If A,,, = &, the statement holds trivially, so now assume that A ;, # & and let

a € A,,,. Then, ais dadjacent to a vertex a” in X,,, = D, N D, N ... N D,. We consider two

Case 1: Suppose a € D, for some j € {1, 2, ..., n}. Then, as in Lemma 4.7.11, two

subcases arise.

Subcase 1.1: Suppose there isk € {1, 2, ..., n} witha € Z,. Then, since a €
A,,,and A,,, N A, = &, it follows that a € Z, - A,. Consequently, by

Remark 4.7.9, a is adjacent to a vertex v, = f(a) € B, € A,.

Subcase 1.2: Supposea & Z,forall ¢ € {1, 2, ..., n}. Choosek € {I,2, ...,
n} to be a minimum subject to a € D,. We know D, - Z, » G-(A, U Xy; by
the maximality of Z,, we have D, - (Z, U {a}) »» V(G) - (A, U X,). Hence,
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there exists a vertex v, € V(G) - (A, U X)) which is dominated by a and by no

other vertex of D,.

Case 2: Supposea & D, U D, ... U D,. Then, since G € G(p,y), y(G-aa") = v, and
there is some value of j € {1, 2, ..., n} such that D; » G-aa". Hence, a is dominated by

a vertex v,(say) of D; with v, # a".
Cases 1 and 2 thus show that every vertex a of A, is incident with an edge av # aa".

We will denote by F,,,(1.1), F,,,(1.2), and F,,,(2) the set of all edges av = g,,,(a) obtained in
Subcases 1.1 and 1.2, and Case 2, respectively, and we shall let F,,, = F,,,(1.1) U F_,,(1.2) U
F...2) and E,,, = {aa"; a € A_,,;}. We show now that F_, (1.1), F_,,(1.2), and F,,,(2) are

mutually disjoint.

Suppose av = g,,,(a) € F,,(1.1) N [F,,,(1.2) U F_,,(2)]. Then, av = g ,,(a) € F,,,(1.1)
implies thata € Z, € D forsomek € {1,2,...,n}andv € B, C A,. Noiw, sincea € Z, <
D, and sinceave F,, (1.2) U F,,,(2), we cannot haveav = g, ,(a) € F,,,(1.2) U F_,,(2). So,
av = g ., (v) € F . (1.2) UF,,,(2), and v € A_,,. However, this contradicts the fact that A, N
A,,, = &. Hence,

Fo.(L) NF.(1.2) =F. (1) NF.,Q2)= 9.

Suppose F,,,(1.2) N F,,,(2) # &. Letav € F_,,(1.2) N F,,,(2). Suppose av =
¢..1(2) € F,.,(1.2). Then, a € D, for somej € {1,2, ..., n}, so that av = g.,,(a) & F..,(2).
So, av = g..,(v) € F,,,(2). Sinceav = g,.,(a) € F,,,(1.2),a € A,,, N D, for some
k € {1, 2, ..., n} (chosen to be as small as possible) and v is dominated by a and by no other
vertex in D, However, av = g,,(v) € F_,,(2) implies that v € A_,, and so v is dominated by
some vertex v- € X,,, = [],", D; € D, and v* # a(as a & X,.,), which provides a

contradiction. So,
F..(1.2) N F.,(2) = @.
We now show that, if av = g ,,(v) € F,,,(1.1), F,,(1.2), or F,,,(2), then either v & A, ., or

g.1(v) # g,..(a); by what we have proved above, we need only show that v & A_,, or

gn+l(v) % Fn+1(1'1)> En+l(1'2)) or Fn+l(2)a reSPECtively-
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~

Certainly, if av = g,,,(a) € F,,,(1.2), where k is the smallest index for which a € D,, then
v & A,,, (otherwise, v is dominated by some v* € X,,; € D, and v* # a (since v' € D, and
a & D,), which contradicts the choice of v as a vertex dominated by a and by no other vertex of

D). Hence, ifav = g,,,(a) € F,,,(1.2), v & A,,,.

Ifav = g,,,(a) € F,,,(1.1), where j € {1, 2, ..., n} satisfies a € D,, then there is k € {1, 2,
.,n}witha € Z,andv = f(a) € B, € A,. But, A, N A,,, = J; hence, v & A_,..

Finally, if av = g,,,(a) € F,,,(2), then, for some j € {1, 2, ..., n}, v € D, and v is adjacent
to a; ifav = g,,,(v) € F,,,(2), then it follows thata € D, for some j’ € {1, 2, ..., n}, contrary
to the fact that av = g, ,(a) € F,,,(2).

Hence, for distinct vertices a, b € A,,,, the edges g.,,(a) and g,,,(b) are distinct.

We show nextthat E_,, N F.,, = &. Suppose, to the contrary, that there exists av = g_, ,(a) €
E..
of Case 2, av = g,,,(a) &€ F,,,(2). Furthermore, if av = g_,,(v) € F,,(2), then v &€ D,, D,,
..., D,, whence v & X,,,, a contradiction. So, av € F _,(1.1) U F_,,(1.2). Ifav =
g...(2) € F,,,(1.1), then v € A, for some k € {1, 2, ..., n}; however, this produces a
contradiction since A, N X, = &. Ifav =g, (v) € F,,,(1.1) U F,,(1.2), thenv € A_,,,
which contradicts v € X ., as X,,, N A,,, = . Ifav =g, @ € F,.1(1.2), then v is

N F,,,. Sinceav = g,,,(a) € E,,,, wehavev = a" € X ,, =), D. By the conditions

n»

dominated by a and by no other vertex in D,. However,v € X,,, =D, N D, N ... N D, N
... N D, implies that v € D,, so that v is dominated by at least rwo vertices, ﬁamely a and v, of

D,. Hence, E,,, and F,,, are indeed disjoint.

Thus, we have proved that E,,, U F_,, contains 2|A_,,| distinct edges. It remains only to show
that (E,., VF,.) N (E UF) = foralli € {1, 2, ..., n}. This may be accomplished by the
use of techniques developed in proving Lemma 4.7.12. The proof is lengthy and so similar to that

of Lemma 4.7.12 that we shall omit it here. O

So, the number of edges of G found so far that are distinct (see Lemmas 4.7.12 and 4.7.13) is (see

Lemmas 4.7.11 and 4.7.13) at least

(ZIAl-1X1) + 2A,,

[ ) (E e

i=1

n
i=1 ‘1|

+ ,Xn

1

21A,] - ¥(G) + X,.,[ 2 2]A,| - 1(G) *)
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(since 2! X, = Dy, where |Dy| = v(G)); i.e., any y~-insensitive graph with y = 2 must have
at least 2| Ay| - vy edges with an end in A,. By definition of A,, each vertex of G-(D, U A) is

incident with at least two edges with ends in D,. Since

{u, v;uv € E(G), u € V(G) - (D, U Ay, v € D} N Ay # I,

we have
q®@,y) = @A - v) + 2IV(G) - Dy U A)| = 2{A] -y + 20 -v - |Ag]) = 2p - 3y.

To complete the proof of Theorem 4.7.6, we shall show that, whenp = 3y, 2p - 3y is an upper
bound for q(p,y) by constructing connected vy ~-insensitive graphs of order p which have 2p - 3y
edges. If p = 3v, then (by Theorem 4.3.2) the cycle C, is such a graph. So, we assume now
that p > 3y and let t be any‘ positive integer less than y. Consider two disjoint graphs F, and F,
with F, = Cy and F, = C,,, and suppose x € V(F)), y € V(F,). Foreachi € {1,2, ...,
p - 3y}, add to the graph F; U F, a vertex w; and edges wix, wyy. Call the resulting (connected)

graph I (see Fig. 4.7.2). Then,

p(l,,) =3t +3(y-)+p-3y=p

and

q,.) = 3t + 3(y -0 + 20 - 3y) = 2p - 37.

Furthermore, I, is y-insensitive: Let D, be a minimum dominating set of F| containing x, and let
D, be a minimum dominating set of F, containing y. Then, D, U D, is a dominating set of I,

that is easily seen to be minimum. Thus,
'Y(Ip.y) = |D1’ + |D2‘ = |-3[/3—| + r1/3(3(7 "t))—] =7

Clearly, for any edge e of the form xw, or yw, (i € {1, 2, ..., p - ~?n(}), D, U D, =1, -¢; so,
v(G-e) = v. Ife € E»(F,), then, if D is a minimum dominating set of the path F,-e of order 3t,
we have |[D|=1t, D » F,-e, and D3‘>—> {({wi, Wa, .y Wy, 1) U F,, so that, again, y(I,,-€) = 7v.
It e € E(F,), then D" » F,-e and D, » ({w,, w,,...,w,,.}) U F,, where D" is a minimum
dominating set of the path F,~e of order 3(y - t); in this case, |D*| = v - t so that y(I,_-¢) =

Py
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t + (y -t) = y. Thus, I, is y-insensitive and I, € G(p,y). Hence, q(p,y) = 2p - 3y for
p = 3y = 6, as desired. O

4.7.14 Remark: At this stage, q(p,y) is completely determined except for the case when p =
3y - 1. Since the cycle C,,, is a connected y-insensitive graph (see Theorem 4.3.2), we know

that, if G is a connected vy -insensitive graph with q(3y-1,y) edges, then

p(G) - 1 < qB3y-1,v) =< p(G).

We show that, in fact, q3y-1,7) = p(Q), i.e., ¢(3y-1,y) = 3y - 1. The following lemmas will

be useful.

4.7.15 Lemma: If G is a y-insensitive graph for some y = 2, then each vertex of G is adjacent

to at most one end-vertex of G.

Proof: Suppose, to the contrary, that there exists an integer y = 2 a'nd a graph G that is
v-insensitive for which there isv € V(G) with v adjacent to at least two end-vertices u,, u, of G.
Then, clearly, any minimum dominating set D for G must contain the vertex v but neither of the
vertices u, and u,. Now, the graph G-u,v consists of the components G-u, and ({u,}). Any

minimum dominating set of G-u; must contain v or u,, and so y(G-u,) = y(G). Hence,
¥(G-u) = y(G-u) + y({u}) = v(G) + 1 > (G),

which contradicts the y;insensitivity of G. So, no such graph G and v = 2 exist, and the

proposition follows. O

The following proposition is a direct consequence of Lemma 4.7.15 and the proof of Lemma
3.2.31. -

4.7.16 Proposition: If G is a y-insensitive tree for some integer y > 2, the end -vertices of any

maximum length path are vertices of degree 1 and both are adjacent to a vertex of degree 2.

4.7.17 Proposition: If G is a graph with y(G) = k = 3 which contains distinct vertices x, y, z
that satisfy deg z = 1, deg y = deg x = 2, N(y) = {x, z}, then y(G-{x, y, z}) = k - 1.
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Mz Let G be a graph satisfying the above hypothesis. Let D be a minimum dominating set of
G, and let Nx) = {y, t}. Ifz € D, then D' = (D - {z}) U {y} » Gand |[D'| = |[D| = k;
hence, we shall assume thaty € D andz & D. Furthermore, ifx € D, thenD” = (D - {x}) U
{t} dominates G and |[D"| = |D| = k, so we shall assume that x & D.

Now, y dominates only x, y, and z, and so D - {y} » G-{x, y, z}. Hence, y(G-{x, y,
z}) < k - 1. However, if y(G-{x, y,2z}) < k - 1 and D’ is a minimum dominating set of G-{x,
y, z}, then D’ U {y} » G and |D’ U {y}| < k = v(G), a contradiction. Hence, y(G-{x, y,
z}) = k - 1. O

4.7.18 Proposition: If G is a graph with y(G) = k = 3 which contains distinct vertices x, y, z,
v, and s, where N(x) 2 {y, v}, degy = degv = 2, deg z = deg s = 1, N(y) = {x, z} and
N(v) = {x, s}. Then, v(G-{y, z}) = k - 1.

Proof: Let G be a graph satisfying the above hypothesis. Let D be a minimum dominating set
of G. Then, |D| = k and D contains either y or z and either v or s. Since D' = (D -{z,sh v
{y, v} is also a minimum dominating set of G, we shall assume that y, v € D. Then, D - {y}
is a dominating set of G-{y, z}} and so y(G-{y, z}) < |D - {y}| =k - 1. If
v(G-{y, z}) < k - 1, then, for any minimum dominating set D’ for G-{y, z}, D' U {y} » G,
and |D’ U {y}| < k = y(G), a contradiction. Hence, y(G-{y, z}) = k - 1. O

4.7.19 Theorem: For k = 2, q(3k-1,k) = 3k - 1.

Proof: Suppose, to the cdntrary, that, for some k 2‘2, there exists a graph G € G(3k-1,k) such
that q(G) # 3k - 1. By Remark 4.7.14, q(G) < p(G) = 3k - 1 and, since G is connected,
q(G) = 3k - 2. Hence, q(G) = 3k -2 and G is a tree. Let k be the smallest integer such that
k = 2 and G(3k-1,k) contains a tree G.

Let P:x,,x,,...,X, be a longest path in G. Since y(G) = 2, Gisnotastarandn > 4. Thatk > 3
may be seen as follows. Suppose that k = 2; then G € G(5,2) and p(P) = n > 4; furthermore,
by Proposition 4.7.16, deg x, = deg Xx,., = 2,s0n > 4 and s0 G = P;: x,,X,,X5,X,,Xs.
However, y(Ps-x,X;) = 3 > v(Ps), contrary to the 2-insensitivity of the elements of G(5,2). So,

~ we conclude that k = 3.

>

It follows from Proposition 4.7.16 that deg x, = 2. Suppose deg x, = 2. Then, G, k, x = x,

Y = X, and z = x, satisfy the conditions of Proposition 4.7.17 and we have, for H = G-{x,, X,,
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x;}, that H is connected and y(H) = k - 1. Now, if y(H-¢) < k - 2 for some e € E(H), then
v(G-e) < k - 1 < y(G), which contradicts the k-insensitivity of G. So, y(H-e) = k - 1 = y(H)
for each e € E(H). So, for ¢ = k - 1, H is a connected, {-insensitive graph with q(H) =
3¢ -2 = p(H) - 1. Since no connected graph of order 3¢ - 1 has fewer than 3¢ - 2 edges, no
connected £-insensitive graph of order 3¢ - 1 has fewer than 3¢ - 2 edges, and so H €
G(3¢-1,0). However, then 2 < ¢ < k contradicts our choice of k. So, deg x, = 3. By
Proposition 4.7.15, x; is adjacent to at most one end-vertex; so (by definition of P) the paths
emanating from x, in G-{x,, x,} are, with one possible exception, of length 2. For ease of

reading, we shall let x = X, Yy = X,, and z = x,.

We shall examine several cases dependent upon the degree of x. In each case, two or three
vertices will be removed from G so that the remaining subgraph F has domination number k - 1,
is a tree, and is (k - 1)-insensitive. If two vertices are removed, the remaining graph has order
3(k - 1), and Theorem 4.7.6 indicates that this graph cannot be a tree. To see this, observe that,
since p(F) = 3(k - 1),y(F) =k - 1,andk = 2, we have p(F) = 3 y(F) = 6, and we can apply
Theorem 4.7.6 to obtain q(3(k-1),k-1) = 2.3¢(k - 1) -3k - 1) = 3(k - i). Thus, since F is
(k-1)-insensitive with order 3(k - 1), we must have q(F) =2 q@k-1)k-1) =3k -1)=
p(F) > p(F) - 1.

Thus, F cannot be a tree. If three vertices are removed, the remaining gra>ph has order
3(k - 1) - 1 and cannot be a tree because G represents a smallest tree T for which p(T) =

3v(T) - 1 and ¥(T-¢e) = (T) for each e € E(G). These contradictions will prove the theorem.

Case 1: Suppose that deg x = 4. Then, in G - E(P), at least two non-trivial paths
emanate from x,-say Q:x,v,s and Rix,w,t or R:x,w. By Proposition 4.7.18,
v(G-{y, z}) = k- 1. Lete € E(G-{y, z}) and let D be a minimum dominating set of
G-e. If e # xv, then (as before) we may choose D to contain y and v (if e # vs) or y
and x (if e = vs). Thus, since |Ng.,,x] N D| = 2, D - {y} is a dominating set of
(G-{y, z})-e, whence y((G-{y, z})-e) < |D| -1 = k - 1. If e = xv, then D may be
chosen to contain y and w (if R is x,w,t) or y and x (if R is x,;v), so that, in this case also,
INg-yn[x] N D| = 2 and y(G-{y, z})-¢) < k - 1. Thus y(G-{y, z}) = k - 1 for
each e € E(G-{y, z}) and the tree G-{y, z} is the subgraph F we seek.

Case 2: Suppose that deg x = 3 with x adjacent to a vertex w of degree 1. By arguments
similar to those used above, it may easily be seen that there exists a minimum dominating
set D of G that contains x and y. Clearly, then, D - {y} » G-{w, y, z}, so that
y(G-{w, y,2z}) <k - 1. If Y(G-{w, y, z}) < k - 2, then, if D" is a minimum
dominating set of G-{w, y, z}, then D' U {w, z} = G with ID* U {w,z}| <k, a
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Suppose first that y(G-{w, y, z}) = k -l and lete € E(G-{w, y, z}). Thereis a
minimum dominating D set of G-e that contains both x and y, and clearly, D - {y} »
(G-{w, y, z})-e, so G-{w, y, z} is (k - I)-insensitive and is a subgraph F with the

desired properties.

Suppose now that v(G-{w, y, z}) = k - 2. Then, no minimum dominating set D of
G-{w, y, z} can contain x since otherwise D U {y} would be a (k - 1)-element
dominating set of G. If y(G-{y, z}) < k - 1, then y(G) < k;so0, y(G-{y, z}) = k = L.
If D is a minimum dominating set of G, then either y or z belongs to D, and D - {y, z} =
G-{y, z}, so that y(G-{y, z}) < |D - {y, z}| = |D| - 1 =k - 1. Thus, we conclude
that y(G-{y, z}) = k - 1. Now, lete € E(G-{y, z}). If e = xw, let D be a minimum
dominating set for G-{w, y, z}; then |D| =k -2and D U {w} » G-{w, y, z} U
({w}) = G-{y, z} - xw, whence y((G-{y, z}-e) < (k - 2) + | =k - 1. If
e € E(G-{w, y, z}), then, for-a smallest set D’ that dominates G~e and contains both x
and y, we have D’ - {y} = (G-{y, z})-e, so that, again, y((G-{y,z})-¢) < k - 1. The
(k - 1)-insensitivity of G-{y, z} follows, and G-{y, z} is the subgfaph F we seek.

Case 3: Suppose deg x = 3 and in G - E(P) a path Q:x,v,s emanates from x. Consider
F = G-{y, z} and note that, as in Case 1, if e # vx, then y(F-¢) = k- 1.
Furthermore, if ¢ = vx and some minimum dominating set D of G-vx contains a vertex
of Ng[x] - {y, v}, then y(F-e) = y(F) as in Case 1. So, we consider now the case that
arises if e = vx and no minimum dominating set of G-vx (which, of course, has
cardinality k) contains a vertex from Ng[x] - {y, v}. Let D be a minimum dominating set
of G-e; we may assume that v, y € D. Now, let H = G-{x, y, v, s}. Then, if D" is
a minimum doﬁqinating set of H (in particular, there is w € D' with {w} =
No(x) - {v, y} = {x}), then we have [D'| < [(D -{v, y}) U {x}| = k-1, but
|D'| = k - 1 since, otherwise, if |[D'| < k -2, then D’ U {v, y} is a dominating set
of G-e of cardinality at most k that contains an element (namely, w) of Ng[x] - {v, y},

contrary to assumption. Hence, y(H) = |D’| = k - 1.

Now, let f € E(H) and let D" be a minimum dominating set of G-f; then |D"| = k
(sinée G is k-insensitive) and we may assume that D” is chosen to contain v and y.
Furthermore, (Ng[x] - {y, v}) N D" = & (i.e., x &€ D"), otherwise D” is a minimum
dominating set of G-vx that contains a vertex from Ng[x] - {v, y}, contrary to
assumption. But (D" - {v, y}) U {x} » H-f and so y(H‘—f) < |ID"| -1 =k-1
obviously H is a tree. This shows, as before, that H is a tree in G,(3k-4,k-1), contrary

to assumption; which completes the proof. O



Flg. 4'7.2
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We summarize the results of this section in the following theorem.

4.7.20 Theorem: Forp,y € N,

3p - 6 (and |G(p,y)| = 1), iy =1andp >3

p -1, “if y 22and 2y s p <3y -2
q@»y) =

Ps ify>2andp =3y -1

{2p-3y, if y 22 and p 2 3y

G(p,y) = o, otherwise.

4.8 GRAPHS WHOSE DOMINATION NUMBER AND NUMBER OF
COMPONENTS ARE PRESERVED UPON THE REMOVAL OF A
SINGLE EDGE

In this section, we shall investigate the existence of graphs G for which the y(G-e) = y(G) and

k(G-e)= k(G) for each edge e € E(G).

4.8.1 Definition: Forp = 2 and y = 1, define G.(p,y) = {G; G is a graph, v(G) = v, and, for
each e € E(G), G-¢e is connected and v(G-e) = v}; so G(p,y) = {G &€ G(p,y); G is 2-edge-

connected}.

4.8.2 Remark: Observe that the graphs in G.(p,y) are connected and that, if G is disconnected
with components G,, G., ..., G, and each component G, belongs to G.(p,,y,), for some p,, v, € N
(1 <1i < k), then, forp = X%l p;and v = 37} 7, G is a graph of order p and minimum size
tor which y(G-e) = y(G) = v and k(G-e) = k(G) for all e € E(G). So, no loss of generality

results from the demand that the graphs in G.(p,y) are connected.

That extremal graphs of the kind in Gg(p,y) do exist is illustrated by the fact that the graph G in
Fig. 4.7.2 (which has the property that y(G-¢) = vy(G) = v for each e € E(G)) is such that G-¢
is connected for each e € E(G) whenp - 3y = 2.

4.8.3 Proposition: If p and v are such that G,(p,y) # & and G € G.(p,y), then
(1) q(G) = p and so q.(p,y) = p;



(2) Glp,y) # @ and q.(p,y) = 4(,V).

Proof: The result in (a) is a direct consequence of the observation that no tree remains connected

upon the deletion of one of its edges, while (b) is immediately obvious. U

4.8.4 Theorem: Letp = 2. Then,
(1) Gup, D), Gp,1) # & and q.(p,1) = q(p,1) = 3p ~ 6, forp = 3;
2) G.lp,v), G(p,y) # & and q.(p,y) = q(p,y), fory = 2,p = 3y - landp # 3y + 1.

Proof: Letp = 2,y = 1.

(1) From Theorem 4.7.3, we know G(p,1) = {K; + I—\’:p_3}. We claim now that G(p,1) €
G.(p,y). LetG = K, + I_(p;3 (p = 3), and let e € E(G). Then, e is contained in a cycle of G
and is not a bridge. So, G-e is connected. Thus, since G is 1 -insensitive, we have G € G.(p,1);

s0, G.(p,1) # O and q.(p,1) < q(G) = q(p,1). So, by Proposition 4.8.3(2), q.(p,1) = q(p,1).
(2) Since the cycle C,,_, has order 3y - 1 (= 5), and size 3y - 1 = p, is connected, satisfies

k(Cs,.-e) = Land y(Cy,i-e) = v(Ps,.) = v(Cy,2), foreach e € E(C,, ), and since
q.(p,y) = p, we have C,,_; € G.(3y-1,y) and

qC(37_1>7) = Q(C}y-l) = Q(?”Y‘l")’)
Applying the argument above to the graph C,,, we may show q.(p,y) = q(p,y) forp = 3.
Forp = 3y + 2, the graphs in G(p,7y) shown in Fig. 4.7.2 (introduced in Theorem 4.7.6) contain
no bridges, and so q.(p,y) < q(I,.) = q(p,y). By Proposition 4.8.3(2), the theorem follows.
(Note that, for p = 3y + 1 (i.e., p - 3y = 1), both the edges w,x, w,y in Fig. 4.7.2 are bridges

of 1,..) 0

4.8.5 Theorem: Ify > 2 and p = 3y - 2, then

Gp,y) # D and q.(p,y) = 3y -2 = q(p,y) + L.



Fig. 4.8.1
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Proof: Lety = 2andp =3y -2 = 4. LetG = C, ,. Now, y(G) = [%By -2)] = yand
y(P;, ) = 7; so G is y-insensitive. Furthermore, G-e is connected for each e € E(G), and
q(G) = 3y -2 =p(G). So,q.3v-2,y) < q(G) = 3y - 2 =p. By Proposition4.8.3, q.(p,y) =
p; 80, q.(3y-2,7) = q(G) =3y -2and G € G.(p,y). By Theorem 4.7.20 (since y = 2 implies
2y < p), we have q(3y-2,y) = 3y -2) - 1 = 3y - 3, and the theorem follows. ]

4.8.6 Proposition: Letp, vy = 2 withp < 3y - 2. If G(p,y) # I, thenq.(p,y) = p + 1.

Proof: Suppose, to the contrary, that there exists p, ¥ = 2 with p < 3y - 2 such that G.(p,y) #
@ and qp,y) < p. Then, by Proposition 4.8.3(1), q.(p,y) = p. .Let G € G(p,y). Since G-¢
is connected for any e &€ E(G), G is not a tree, and contains at least one cycle; however, q(G) =
p. So, G is unicyclic; let Ciup,u,,...,u,u, be the cycle in G. We claim that n = p. Assume, to
the contrary, that C is not a hamiltonian cycle of G. Let w € V(G) - V(C) and let e be an edge
incident with w. Since k(G-e) = 1, e is not a bridge of G and so e is contained in a cycle of G.
However, this is impossible, as w does not lie on the unique cycle C of G. So, C is indeed a
hamiltonian cycle of G. Since q(C) = p and q(G) = p, it follows that G = (C,. However,
p < 3y - 3 implies that y(G) = y(C)) = [?/,] < v, which is a contradiction. Hence, q.(p,y) =
q(G) = p + 1, as required. O

4.8.7 Proposition: Let y = 2 and let G be the graph of order p = 3y + 1 shown in Fig. 4.8.1
obtained from the union of the cycles H = Cay iU Ua, . s oy, Ciiy,vou,y and C4ix,w,z,x
by identifying u, with y and v with z. Then,
(1) G is a y-insensitive graph of order p for which G-e is connected for each e € E(G),
and

(2) q(G) = 3y + 3.

Proof: Let G be the connected graph defined above. If D is a mjnimum dominating set for H that
contains y, then it is not difficult to see that the set D U {v} dominates G and is a smallest such
dominating set. So, v(G) = [%(@(y - 1))] + 1 = v. Further, since each edge of G lies on a

cycle, it is clear that G-e is connected for each e € E(G).

Next, we show that G is y -insensitive. Lete € E(G). Ife € {uy, uv, xw, vy}, then D U {v} »
G-e. Ife € {vx, vw}, then D U {x} » G-e. If e € E(H), then D' U {v} » G-e where D’

is a minimum dominating set of the path H-e of order 3(y - 1). Finally,
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- q(G) = q(Cyyy) + 6 =3y + 3. O
4.8.8 Theorem: Lety = 2. Then,forp =3y +1 =2
Gp.y) # @ and a.(p,v) = qp,y) + 1 =p + 2.

Proof: Lety = 2 and p = 3y + 1. By Proposition 4.8.7(1), the graph G of Fig. 4.8.1is a
connected graph of order p satisfying k(G-¢) = k(G) = 1 and v(G-e) = y(G) = « for each
e € E(G), and, by Proposition 4.8.7(2), q(G) = 3y + 3. Hence, G.(p,7) % @ and a.(p,y) <
3y + 3. Since, by Theorem 4.7.20, q3y+1,y) = 2By + 1) - 3y = 3y + 2, we have
a.(p,y) < q(p,y) + 1 =p + 2. Suppose that q.(p,y) # p + 2, i.e., since q.(p,y) = q(@,7) =
p + 1, we assume q.(p,y) = p + 1 = q(p,7).

Let G € GUp,y); fori= 1,2, ..., p -1, letk denote the number of vertices of degree i in G.
Then (by the First Theorem of Graph Theory),

2q.p,y) = 2q(G) = 2p + 2 = L1 ik,

Since G is 2-edge-connected, k, = 0. Clearly, k, = p - (k; + k, + ... + k,_;). Thus,

p-1
2p + 2 2[p - (ky + Kk, + ... kp_l)] + E ik,
i3

p-1

2p + Y. (i - 2)k,.

i=3

Therefore, 2 = 223 (i - ‘2)k-l, which implies immediately that k; = O for i = 5, and either k; =

2and k, = 0, or k, = 0 and k, = 1. We consider the following two cases.

Case 1: Supposek, = 0 and k, = 1 (then G has p - 1 vertices of degree 2 and one vertex
of degree 4). Observe that if there is a minimum dominating set D of G that does not
contain the vertex, t say, of degree 4, then such a minimum dominatfng set contains
only vertices of“degree 2 and could thus dominate at most 3y < p vertices. So, every
minimum dominating set of G must contain the vertex of degree 4. Since p = 3y, from
the proof of Theorem 4.7.6 (see (¥)) it follows that, if H € G(p,y) and if X ,, =
X,+1(H) is the set of vertices of H that appear in every minimum dominating set of H, then

alp,y) = qH) = 2p - 3y + |X,,,|. By the properties of the elements of G(p,y) and



Fig. 4.8.2
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G.(p,v), and the fact that q.(p,v) = q(p,v), it follows that G.(p,y) S G(p,y). In

particular, G € G(p,v), and (from our comments above), we have

q(G) = 2p - 3y + [X,..(G)].
So,

.0y = qG) =qp,y) =2 2p -3y + [{}| =2p-3-%p -1+ 1=p+2
which contradicts our assumption that q.(p,y) = p + .

Case 2: Suppose k; = 2 and k, = 0. Then, by the properties possessed by G, it follows
that G is as shown in Fig. 4.8.2, where G is obtained by joining vertices x and y by three
internally disjoint paths of lengths m + 1, n + 1, and s + 1, respectively, where m <

n<sandm+n+s=p-2=3y-125.

We begin by noting that, for any edge e incident with x in G, the ‘graph G-e may be
described as consisting of a cycle and a path, where the cycle and path have exactly one
vertex in common. Suppose that v is a vertex adjacent to x; without loss of generality,
suppose that v = u,. Let G' = G-vx. Since G is y-insensitive, y(G") = v(G) = vy and
G’ consistsof acycle Conn + s + 2 = 3y + 1 - m vertices, with the attached path P

having length m. We discuss three cases dependent upon the value of m.

Subcase 2.1: Suppose m = 0 (mod 3); say, m = 3k for some k € N. Then,
p(C) = 3.7 -2 -m = 1 (mod 3). Let D be a minimum dominating set of G'.
Ify € D,then D = D, U D, U {y} where D, is a minimum dominating set of
the path (V(P) - N[y])¢ = P,,_;, and D, is a minimum dominating set of the path
(V(C) - N[yl)g = P,iey; ify & D, then D = D; U D, where D, is the
minimum dominating set for (V(P) - {y}); = P, and D, is a minimum dominating
set for C (that does not contain y), or D = Dy U Dg, where Dy is a smallest
dominating set of (V(P) - {y})s that contains the neighbour u,, of y on P, and Dj
is the minimum dominating set of (V(C) - {y})s. In the first instance, |D| is

" calculated as
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D]

[0k - ] + [W@y + 1-3k-3)] + 1
k+@-k+1=+vy+1,

and, in the second, as

ID| = r3k/3—| + |-1/3(3‘y+1—m)—| =k+(y-k+1)=v+1,

or

ID| = |D| + D] = ([*4] + 1)+ [WB@By + 1 -3k -1)]

k+D+@-K=vy+1,

respectively.

So,v(G") =y + 1, i.e., the edge e = vx satisfies y(G-¢e) = y(G) + 1.

However, this contradicts the y-insensitivity of G; so Subcase 2.1 does not occur.

Subcase 2.2: Suppose m = 2 (mod 3); then, m = 3k + 2 fo‘r some k € N. Let
D be a minimum dominating set of G'. Then, it is easy to see that D = D, U D,
where D, is a minimum dominating set of P that contains u,, and D, is a minimum
dominating set of (V(C) - {y})s = P,...,, in which case

D| [k + 2)] + [va(n + s + D]
k+ 1+ [3y -3k -2)]
k+D+G-k=v+1,

or D = D, U D, where D, is a minimum dominating set of (V(P) - {y}) = P,..,

and D, is a minimum dominating set of C, in which case

[53k + )] + [BGy + 1 -3k -2)]
k+1D+(@-k=xv+L

D]

I

So, y(G-vx) = ¥(G) + 1. Since this contradicts the y-insensitivity of G, it

" follows that Subcase 2.2 does not occur either.

So, m = 1 (mod 3). Now, since we chose u, = v € N4(x) arbitrarily, Subcases 2.1 and

2.2 apply equally well to n and s, i.e., Subcases 2.1 and 2.2 showthatn = m = s = 1



Fig. 4.8.3
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(mod 3). Hence, there must exist £,, ,, {3 € Nwithm = 3¢, + 1, n =30, + 1,5 =

3¢, + 1. However, then
p=m+n+s+2=3¢+6L+0G+1)+2 %3y +1=p,

which is absurd. So, our original assumption that q.(p,y) = p + 1 is incorrect, and

p+ 1 <q(,y <p + 2implies q.(p,y) = p + 2, as required. U

We summarize the results of this section in the following theorem.

4.8.9 Theorem: Letp = 2 andy = 1. Then,

q@rY) = 313 - 6) if Y= 1 and P2 3
q(pyY) +1 = b, lf Y 2 2 and p = 3‘Y -2
q.(py) = alp,y) = p, ify >2,andp =3y - Lorp = 3y

+

qp,y) + 1 =p + 2 ify >2andp =3y + 1

a,y) = 2p - 3y, ify 22andp 23y +2

The situation when v = 2 and (4 <) p < 3y -3 is unknown. In [BD1], it is stated that the
authors have been able to show that GJ(p,y) = @ whenp € 3y -3 and y = 2, 3, or 4, but it
is pointed out that, for example, the graph in Fig. 4.8.3 is a 6-insensitive graph with p = 3y - 3
which remains connected when any edge is removed (as the following proposition shows), i.e.,

G(15,0) # <.

4.8.10 Proposition: The graph in Fig. 4.8.3, obtained from the union of three (disjoint) cycles,
U, Vi, UL, WL, W (B € {1, 3 5}) by the insertion of the edges u,u,, uyus, and ugu,,y, is a 6-

DY+

insensitive graph with p = 3y - 3 which remains connected when any edge is removed.

Proof: Let G be the graph defined above. We note first that D = {u,, us,us, wy, Wy, ws} is a
dominating set of G, and it is not difficult to see, by inspection, that no smaller subset of V(G)
dominates G. So, ¥ = y(G) = 6; since p = p(G) = 15, we do indeed have p = 3y - 3. Let

e € E(G). We consider the following four cases.
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Case 1: Ife = ww,, forsomei € {I,2,.., 5}, thenD" = (D - {w}) U {w_ }»

G-e.

Case 2: If e = u,v,, usv,, or usv;, then D" = (D - {u,, ws}) U {u,, w¢}, or D" =
D - {uy, w,}) U {u, wy}, or D" = (D - {uy, w3}) U {u,, w,}, respectively, dominates
G-e.

Case 3: Ife = uw, forsome i € {1, 2, ..., 6}, ore = vu, for some i € {1, 2,3}, or
e = uw, for some i € {2, 4, 6}, then D" = D » G-e.

Case 4: If e € {ujug, Usus, uugy, then D™ = (D = {ws}) U {we},or D" = (D - {w,}) U
{wa}, or D" = (D - {w;}) U {w,}, respectively, satisfies D" = G -e.

Since, in each case above, |D’| = |D| = 6 = ~(G), we have that G is 6-insensitive. Finally,

since every edge of G lies on a cycle, k(G-e) = 1 for each e € E(G). L]
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Chapter 5

n-DOMINATION

5.1 INTRODUCTION

In this chapter, we shall consider dominating sets of high integrity which retain the property of
domination if at most a given number of vertices or edges are removed from the graphs. We shall
generalize the classical notion of domination in graphs to include a prescribed degree of redundance
in domination. Most of the results in sections 5.1 to 5.3 appear in the seminal paper [[FJ1], except
for Theorem 5.3.5 and Corollary 5.3.6, wiiich appear in [F1], while most of the results in section
5.4 appear in [FJ2]. The following are the exceptions. We have supplied the proof of Proposition
5.2.1, Corollary 5.2.9, 5.3.6, 5.3.9, 5.4.11, and Theorem 5.4.4. We have expanded Remark
5.4.6, as well as the proof of Theorem 5.2.2 (slightly), 5.3.4, 5.3.5, 5.3.7, and 5.3.14 (slightly).
We have slightly modified the proof of Corollary 5.3.12, as well as the statement of Theorem
5.2.6. We have clarified and slightly modified the proof of Theorem 5.4.9, 5.4.12, and 5.4.13.

Finally, we have provided the second example given prior to Theorem 5.3.7.

We recall the following result of Chapter 4.
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4.2.7 Theorem: For any non-empty graph G and minimum dominating set D of G, there exists

a vertex u € V(G) - D such that [N(u) N D| < 2.

This theorem illustrates the fact that the dominating property of any minimum dominating set of
a graph can be destroyed by the removal of at most two edges or vertices from the graph; for
example, if G is a non-empty graph, D is a minimum dominating set of G, u is a vertex of
V(G) - D adjacent to at most two vertices of D and U = N(u) N D, then D is not a dominating
set of G-[{u}, U], nor a dominating set of G-U. We have already encountered many examples
of a graph H with minimum dominating set D and a vertex v, or an edge ¢, such that D »» H-v,

or D »» H-g, (see, for example, Corollary 4.2.6). This brings us to the following definitions.

5.1.1 Definition: Let G be a graph, andletn € N, If D € V(G) and u € V{(G) - D such that
u is adjacent to at least n members of D, we say that u is n-dominated by D. 1If every vertex in
V(G) - D is n-dominated by D, then D is called an n-dominating set of G. If D has a smallest
cardinality among all n-dominating sets of the graph G, then D is a minimwn n-dominating set of

G and its cardinality is the n-domination number ~,(G) of G.

We observe immediately that every n-dominating set (n € N) of a graph G is a dominating set of

G in the usual sense; thus, we have

5.1.2 Proposition: For every graph G and each n € N, 7(G) < ~v.(G).

5.1.3 Remark: In particular, a minimum 1-dominating set is a minimum dominating set and
v(G) = v,(G). More generally, for m and n satisfying m < n, every n-dominating set in G is also

an m-dominating set and thus v.(G) < +,(G). It is our purpose in this chapter to obtain both

bounds and exact values for the parameter v,, as well as an understanding of the behaviour of =y,.

5.2 PROPERTIES OF v,

We now set about establishing a more accurate relationship between y and v, than that given in

5.1.2. We begin with the following stronger version of Proposition 5.1.2.

5.2.1 Proposition: If G is a graph with A(G) = 3, then v,(G) > v(G) for all n > 3.
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Brgm“ Suppose, to the contrary, that there is a graph G for which there exists n = 3 with
v.(G) = v(G), i.e., for which there exists n > 3 and a minimum dominating set D of G such that
D is an n-dominating set of G. Then, if u € V(G) - D is a vertex whose existence is guaranteed
by Theorem 4.2.7, we have 3 < n < [Ng(u) N D| < 2, an absurdity. So, the proposition
holds. ]

We note that, for n as small as 3, the difference v,(G) - v(G) can be made arbitrarily large for

a suitable graph G: Consider G = W, (p = 3); here, 7(G) = 1 and 1,(G) = [%4(p - D)l + 1,
[
whence 75(G) - v(G) = % - D). The observation that, for p > 3, [%( - D] > 1 shows

\

that the following theorem, which gives a bound on v,(G) (for n = 2), is not best possible.
Theorem 5.2.2 yields more information than Proposition 5.2.1 and, in fact, produces

Proposition 5.2.1 as a corollary.
5.2.2 Theorem: If G is a graph with A(G) = n = 2, then v,(G) = v(G) + n - 2.

Proof: Letn > 2, let G be a graph satisfying A(G) = n, and let D be a minimum n-dominating
set of G. If V(G) - D = & and w € V(G) with deggw = A(G), then, since
INg(w) N (D - {w})| = [Ng(w) N D| = AG) = n, it follows that D - {w} is an n-dominating
set of G of cardinality less than <, (G), which is impossible. So, V(G) -D # &. Let
u € V(G) - D, and let v, v,, ..., v, be distinct members of D that dominate u. Since D is an
n-dominating set of G, euach vertex in V(G) - D is adjacent to at leust one member of

D - {va, v3, ..., v.}. Therefore, since {v,, v;, ..., v,} S Ng(u), the set
D" =D - {vy, v5, ..., v.}) U {u}
is a dominating set in G. Hence,

1(G) = D’

= %(G) - (-1 + 1,

so that

7.(6) 2 v(G) + n -2 O

While Theorem 5.2.2 yields a lower bound on the quantity v,(G) - v(G) (for n > 2), in many
cases it does not provide a lower bound on v,(G) that is easily determined, since the calculation

of v(G) is often difficult. In contrast, the next two theorems provide lower bounds on Y. that

depend on easily computed parameters.
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5.2.3 Thearem: If G is a graph of order p and maximum degree A, then
o p
7.0 2 -

Proof: Let G be a graph, and let p = p(G), A = A(G). Let D be a minimum n-dominating set
in G, letS = V(G) - D, and lett = [[D, S]|. Then,

t = Y INmNS| < Edegv < AEI = A-D] = Ay (G).

veD veD veD
Furthermore, each vertex in S is adjacent to at least n members of D, so
tzu- [S|=n-[p-nG)
The two inequalities now yield
nelp -G A ,(0),

and thus

v.(G) = 2P O

The bouad on 7, provided by Theorem 5.2.3 is best possible since the bound is attained by the

g 4
graph K.

5.2.4 Corollary: If G is a graph of order p and maximum degree A, then v(G) = p/(1 + A).

o)

Before we present the next theorem, we introduce the following definition.

5.2.5 Definition: A bipartite graph G is said to be an n-semiregular bipartite graph if V(G) can
be bipartitioned in such a way that every vertex in one of the partite sets has degree n; the partite

set each of whose vertices has degree n is called the n-regular partite set of G.

5.2.6 Theorem: If G is a (p,q) graph, then for each n € N,
(1) 7.(G) =2 p -, and
(2) v.(G)

Il

p - %, if and only if G is an n-semiregular bipartite graph.
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Proof: Let G be a (p,q) graph, let n € N, let D be a minimum n-dominating set in G, and let

S = V(G) - D. Each vertex in S is adjacent to n or more vertices of D, so

q=|E@G)| = [[S,D]] =2n - [S][=n"I[p-v.(0)] M
whence

7.(G) = p -, (i1)

If v,(G) = p - ¥, then (i) becomes q = |[[S, D]| = n.[S| = q, from which it follows that
E(G) = [S, D], i.e., each edge of G joins a vertex in D and a vertex in S. Thus, D and S are
independent sets and (since ¢ = |[S, D]| = n.[S]), the degree of each vertex in S is exactly n;

i.e., G is an n-semiregular bipartite graph.

Conversely, suppose that G is an n-semiregular bipartite graph and that the n-regular partite set,
N say, of G has cardinality a. Clearly, V(G) - N is an n-dominating set for G, so v,(G) < p - a.
By (i), v.(G) 2 p - ®/, = p - a Hence, v,(G) =p-a=p-Y. O

5.2.7 Corollary: For any tree T of order p, v.(T) = 2(p + 1).

The simple observation that a graph is a 2-semiregular bipartite graph if and only if it is the

subdivision graph of some raultigraph leads us to the following two corollaries of Theorem 5.2.6.

5.2.8 Corollary: If G is a non-empty (p,q) graph, then v.(G) = p - %, if and only if G is the

subdivision graph of some multigraph.

5.2.9 Corollary: If T is a tree of order p > 2, then v,(T) = Y2(p + 1) if and only if T is the

subdivision graph of another trez.

Proof: The sufficiency follows from Corollary 5.2.8. The necessity follows from Corollary 5.2.7

and the simple fact that, if a tree T is the subdivision graph of a (multi)graph G, then G must itself

be a tree. » ]

The following theorem provides an exact value for v,(G) for any non-empty graph G.

5.2.10 Thearem: If G is a graph with A(G) = n, then v,(G) = min {y,(H)} where this minimum

is taken over all spanning n-semiregular bipartite subgraphs H of G. )
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Proof: Letn € Nand let G be a graph with A(G) = n. If H is any spanning subgraph of G, then
v.(G) < 7, (H); 50, v.(G) = min {v.(H); H is a spanning subgraph of G} < min {y,(H); Hisa

spanning n-semiregular bipartite subgraph of G}.

To obtain the reverse inequality, let D be a minimum n-dominating set in G, and let
S = V(G) - D. Since each vertex in S is adjacent to at least n vertices in D, we may construct
a spanning subgraph H of G as follows: Let V(H) = V(G), and for each vertex v in S, select
exactly n edges of G that join v to vertices in D. Then, H is a spanning n-semiregular bipartite
subgraph of G, and D is an n-dominating set in H. Thus, v.H) < |D| = v.(G). So,
v.(G) = min {y,H); His a spanning n-semiregular bipartite subgraph of G}, and the desired

result follows. U
For the next two results, we need the following definition.
5.2.11 Definition: For a graph G and n € N, we define ,(G) to be 5,(G) = max {|S{; Sis an

n-regular partite set of H}, where the maximum is taken over all spanning n-semiregular bipartite

subgraphs H of G.

The observation that v,(G) = p(G) - |N| for any n-semiregular bipartite graph G with n-regular

partite set N leads immediately to the following corollary of Theorem 5.2.10.

5.2.12 Corollary: If G is a graph of order p = 2, then v,(G) = p - 7,(G).

Theorem 5.2.10 and Corollary 5.2.12 now yield the following theorem of Nieminen [N1]
concerning the usual domination number. (Recall that ¢(G) denotes the maximum possible number
of end-edges in a spanning forest of a graph G.)

5.2.13 Theorem: For any graph G, y(G) + ¢(G) = p(G).

Proof: Let G be a graph. We will show first that ,(G) = &(G). Let F be a spanning forest of

G having €(G) end-edges and let H be a spanning 1-semiregular bipartite subgraph of G having a

largest 1-regular partite set S, i.e.,

S| = 7,(G). Every component of H is a star or an isolated

vertex, so H is a I-semiregular bipartite spanning forest of G having 5,(G) vertices in its 1-regular

partite set and hence having 7,(G) edges, each of which is an end-edge. Thus, 7,(G) < &(G).
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_Let F' be the subgraph of F obtained by deleting from F all non-end-edges. Then, F' is the
union of stars (where the edges of the stars are precisely the (¢(G)) end-edges of F) and (possibly)
isolated vertices. Hence, F'is a spanning 1 -semiregular bipartite subgraph of G that contains &(G)

edges, so that its 1-regular partite set contains ¢(G) vertices; thus, ,(G) = &(G).

The above two paragraphs thus give us ¢(G) = 5,(G). Hence, by Corollary 5.2.11, we have
v(G) + ¢(G) = p(G). O

5.3 n-DOMINATION AND n-DEPENDENCE OF GRAPHS

The following well-known theorem of Ore [Ol1] depends on the fact that every maximal

independent set of vertices in a graph G is a dominating set of the graph:
5.3.1 Theorem: For every graph G, v(G) < S(G).

Our main efforts in this section will concern an investigation of similar relationships between n-

domination and the generalized notion of independence which we give next.

5.3.2 Definition: Let G be a graph. Then, S € V(G) is called an n-dependent ser of G if and
only if A((S)) < n. An n-dependent set of largest possible cardinality in G is a maximum n-

dependent set of G, and its cardinality, denoted §,(G), is called the n-dependence number of G.
5.3.3 Remark: Obviously, for any graph G, if k and m satisfy k < m, then any k-dependent set
of G is also an m-dependent set of G and so 8,(G) < (.(G). Also, an independent set of vertices
of G is precisely a O-dependent set of G, and so B(G) = (,(G) for every graph G. Therefore,
Theorem 5.3.1 expresses the relationship v,(G) < B,(G).

That a similar relationship holds between vy, and (8, for every graph is shown next.

5.3.4 Theorem: For every graph G, v,(G) < 8,(G).

Proof: Let G be any graph. If A(G) < 1, then V(G) is the only 2-dominating set of G, as well

as a maximum l-dependent set of vertices of G, so that y.(G) = p(G) = 5,(G). So, we assume
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“now that A(G) = 2. Let D be a maximum 1-dependent set of G such that g((D)) < q({D)) for

every maximum l-dependent set D" of G. We show now that D is a 2-dominating set of G.

Suppose, to the contrary, that there is a vertex u € V(G) - D that is not 2-dominated by D, i.e.,
[N(u) N D| < 1. Since D is a maximum I-dependent set, DU {u} cannot be a 1-dependent set,
and so there must exist two vertices v and w in D such that A(({u, v, w})) = 2, i.e., uv,
uw € E(G), or vu, vw € E(G), or wv, wu € E(G). However, since |[N(u) N D| < 2, the first
of these three situations does not arise, so we may assume, without loss of generality, that v is
adjacent to both u and w. However, since v is the only vertex in D that is adjacent to u, it follows
that degipqu = 0, where D' = (D - {v}) U {u}. So, D’ is a l-dependent set of G of cardinality
B,(G) and E(D') = (E(D)) - [{v}, D) U [{u}, D'} = E(D)) - {vw}, ie, q(D) =
q((D")) + 1. This contradicts our choice of D. So, D is indeed a 2-dominating set of G, and
.(G) < |D| = £,(G), as required. O

The following theorem of Favaron [F1] provides a corollary that settles in the affirmative a

conjecture made by Fink and Jacobson in [FJ1].

5.3.5 Theorem: For any graph G and n € N, if D is an (n - I)-dependent set of G such that

n|D| - q((D)) is a maximum, then D is an n-dominating set of G.

Proof: Let G be a graph, let n € N, and let D be an (n - 1)-dependent set of G with
n|D| - q((D)) = max { n|D'| - q((D")); D" is an (n - 1)-dependent set of G}. Suppose, to the
contrary, that D is not an n-dominating set of G. Then, there exists v € V(G) - D such that v

is not n-dominated by D; let B = Ng(v) N D (so, 0 < |B| < n), let
A={a€B;|N@ND|=n-1},
and let S be a maximal independent set of A. (So,S € A € B € D))

Now, let C = (D - S) U {v}. Then, Cis (n - 1)-dependent since
() deggv = [Ng) N C| = [Ng) N (D - $)| < |[Ne() N D| = [B] <n-1
(i) foranyx € D - B,
degiox = [No(x) N C[ = [Ng(x) N (D - 8)| < [Ngx) N D| = degpyx < n - 1
(by the definition of D);
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(i) foranyb € B - A,
degeb = INg®) N IO ~S) U (| = [{v} U N®) - S)]
< 1+ [Np®)| <1+ ®-2)=n-1
(by the definition of A); and,
(iv) foranya € A - S,
dega = [{v} U (Npy@@) = S)| =1+ [Np@)| -1 =n-1
(since S being a maximal independent set in A implies that every vertex in A - S is

adjacent to at least one vertex of S).

Now,S € A = {a € Ng(v) N D; [Ng(@) N D| = n - 1}, and S is independent, so E({(S)) = &
and [{s}, D - {s}] = [{s}, D - S], for each s € §, so that

[S, D] =[S, D - 8] = Ues [{s}, D = {s}] = (n - DIS].
Hence,
E(C) = (E(D) - (S, D) U [{v}, D - §]
so that
qC)) = q(D)) - (n = 1) [S] + [Ng(v) N (D - )]
QD) = n|S| + |S| + [B] - [S|
q((D)) - n|S[ + [B.

I

Il

Thus, since |C| = |D] - |S]| + 1, we have
n{C{ -q(C) = n|D|-n[S| +n-q(D)) + n|S| - [B|
= n|D| + n-q(D)) - [B]
> n|D| - q((D)) (since |B| < n).
However, this contradicts our choice of D. So, D is indeed an n-dominating set of G. U

5.3.6 Corollary: For any graph G and n € N, v,,,(G) < B,(G).

Proof: Let G be a graph and n € N. If D is an n-dependent set of G such that
(n + 1).|D| - q({(D)) is a maximum among all n-dependent sets D of G, then, by the above

theorem,

Y.+1(G) = |D| = 6.(6). O
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As an example of a graph G for which v,, (G) = £5,(G), let G = K, wheren < p - 1; then any
(n + 1)-subset of V(G) is both a minimum (n + 1)-dominating set and a maximum n-dependent
setof G. If G = K,,,, (n = 2) and S is the set of end-vertices of G, then S is both a minimum
n-dominating set and a minimum (n + 1)-dominating set in G; furthermore, S is a maximum

(n - 1)-dependent set of G. So, G is a graph for which v,,,(G) = 7.,(G).

5.3.7 Theorem: If G is a graph with v,(G) = v,,,(G) and D is a minimum (n + 1)-dominating

set in G, then D is a maximal (n - 1)-dependent set of G.

Proof: Letn € N, let G be a graph for which v,(G) = v,.,,(G), and let D be a minimum (n + 1)-
dominating set in G. Ifu € V(G) - D, then, since each vertex of V(G) - Dis (n + 1)-dominated
by D, the star graph K, ,,, is a subgraph of (D U {u}), whence A(D U {u})) = n + I; i.e.,
D U {u} does not possess the property of being (n - 1)-dependent for any u € V(G) - D.
Hence, it will be sufficient to show that D is an (n - 1)-dependent set of G, for then the

maximality condition on the (n - 1)-dependence of D will follow.

Suppose there exists u € D such that [N(u) N D| = n (so, u is n-dominated by D - {u}).
Furthermore, for any v € V(G) - D, since |[N(v) N D| = n + 1, it follows that
IN(v) 0 (D - {u})| = n. Hence, D - {u} n-dominates {u} U (V(G) - D) (i.e., D - {u} is an
n-dominating set of G) and so v,(G) < |D| = v,,,(G); however, this contradicts the hypothesis
that v,(G) = v,,,(G). So, D is indeed a maximal (n - 1)-dependent set of G. W

5.3.8 Corallary: If G is a graph for which 1,(G) = v,,,(G), then v..,(G) < B. (G).

Since every maximal independent set of vertices is a dominating set, Theorem 5.3.7 has a further

corollary relating to the independent dominating number i(G).

5.3.9 Corollary: 1f G is a graph for which y(G) = v,(G), then every minimum 2-dominating sat
in G is a maximal independent set and y(G) = i(G) = 7,(G).

Proof: Let G be a graph satisfying v(G) = v,(G). That every minimum 2-dominating set in G
is a maximal independent set of G follows immediately from Theorem 5.3.7. This implies at once
(by the definition of i(G)), that i(G) < 7,(G). Since a (smallest) maximal independent set is a
dominating set, we have y(G) < i(G). Then, y(G) < i(G) < 7-(G) = ¥(G) yields the desired
result. - UJ
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The next theorem provides a further relationship between the generalized domination and

independence parameters.

5.3.10 Theorem: If G is a graph of order p and maximum degree A > n, then v, (G) =

p - Ba-n(G)-

Proof: Let G be a graph of order p and maximum degree A, let D be a minimum n-dominating
set of G, and let S = V(G) - D. Then, A(S)) < A -n, ie., Sisa (A - n)-dependent set. So,
|S| < B,.(G), and since v,(G) = |D| = p - |S], the desired result follows. O

Using Theorem 5.3.10, we may now establish some results concerning n-domination and n-
dependence of regular graphs. As an aside, we mention that our first result of this kind, given in
Theorem 5.3.11, shows that the lower bound on =y, provided by Theorem 5.3.10 is, in fact, best

possible.
5.3.11 Theorem: If G is an r-regular graph of order p, and n < r, then v,(G) = p - §,..(G).

Proof: Let G be an r-regular graph of order p, and let n satisfy n < r. Let S be a maximum
(r - n)-dependent set in G, and let D = V(G) -~ S. Then, each vertex u in S is adjacent to
egou - deggu =1 - (r - n) = n vertices of D. Thus, D is an n-dominating set in G and
v.(G) < |D| = p - B,.(G). Since, by Theorem 5.3.10, v.(G) = p - B,..(G), the desired result
follows. - O

By introducing the chromatic number x, we may present, in Corollary 5.3.12, another upper bound

on 7, this time for regular graphs.

5.3.12 Corollary: If G is an r-regular graph of order p and n < r, then

oA AR I L1TIN A

y.(G) < p(l - lem)

Proof: Let G be an r-regular graph of order p with n < r. By Remark 5.1.3 and Theorem
5.3.11, we have v,(G) < v,(G) = p - G). Since B(G)

%

*l > We have
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.8 = v(G = p-BG < p —;("a,

whence the desired inequality follows. O

The chromatic number is not an easily determined quantity for many graphs, and so the (weaker)

upper bound provided by the next result is probably more useful in practice.

5.3.13 Corollary: If G is an r-regular graph of order p such that no component of G is a complete

graph or an odd cycle and n satisfies n < r, then ,(G) < p - /.

Proof: Let G be an r-regular graph of order p satisfying the hypothesis of the corollary. Since
no component of G is a complete graph or an odd cycle, Brooks™ Theorem gives x(G) <
A(G) = r, and so, by Corollary 5.3.12,

WO s pll-—o) s p(l-2) = p-2 O

Using Theorem 5.3.11 and Corollary 5.3.12, we can obtain an exact value for vy, for the large

class K, x K, ,,_, of n-regular graphs (m < '2(n+2)).
5.3.14 Thegrem: It m < '2(n + 2) and G is the Cartesian product K, X K,

7.(G) = p(G) - m.

then

+2-m>

Proof: Letm, n € Nwithm < %(n + 2), and let G = K_ X K,,,_.. Clearly, for each
u€ V@G),degu=(m-1)+ (n+ 2-m-1)=n,ie., G is nregular. From a result of

© Behzad and Mahmoodian [(BM1], we have x(G) = n + 2 - m = ?/; so, by Corollary 5.3.12,

Y.(G) =p-p(™,) =p-m ()

Since V(G) can be partitioned into m subsets S, S,, ..., S, each of which induces a subgraph

isomorphic to K, .,_, where each vertex in (S;) is non-adjacent to all but one vertex in (S;) if i # j
G, € {1,2, .., m}), and since m < 'A4(n + 2) implies m < n + 2 - m, we see that 8(G) =

min {m, n + 2 - m} = m. So, by Theorem 5.3.11,



Y(G) =p - B,(G) =p -6(G) 2 p-m (i)

The theorem now follows from (i) and (ii). O

5.3.15 Remark: We conclude this section by remarking that, since x(G) = ?/, for the graph
K. X K, ., ifm < '%2(n + 2), Theorem 5.3.14 shows that the bound on v,(G) given in
Corollary 5.3.12 is sharp. In particular, if m = 2, then K, X K ,,, = K, X K, and if G =
K, X K, and p = p(G) = 2n, then v,(G) = p -2 = p - ?/,, which shows that the bound given

in Corollary 5.3.13 is best possible.

The following is an open problem concerning the rate at which the n-domination number increases

as n increases.

Problem: Find a sharp bounding function f(n) such that, if G is a graph with 6(G) = n and
m = f(n), then v,(G) < v,(G).

5.4 CLAW-FREE GRAPHS AND GENERALIZED INDEPENDENT
DOMINATION NUMBERS

The relationship between the domination number + and other graphical parameters has been the
subject of a fair amount of investigation. The independent domination number i, in particular, has
been studied in relation to y. By the definition of i, we have y(G) < i(G) for every graph G; what
has received a lot of attention (see, for example, [AL1]) is the question of which graphs G satisfy
v(G) = i(G). Such graphs are significant since the task of finding a minimum dominating set for
such graphs is reduced to the task of finding a smallest maximally independent set in the graphs.
In [AL1], Allan and Laskar presented a "forbidden subgraph” condition on a graph G that is

sufficient to ensure v(G) = i(G):

5.4.1 Theorem: If G is a graph which does not have an induced subgraph isomorphic to X, 5, then
v(G) = i(6).

We omit the proof since the theorem is proved in a more general context in Theorem 5.4.9.
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i In the spirit of this result, we shall, in this section, investigate the relationship between v,(G) and
B.(G) for graphs which fail to contain certain induced subgraphs; such a forbidden subgraph that
will receive the most consideration is the star K, ;. In particular, we shall present a generalization

of Theorem 5.4.1 in terms of n-domination and n-dependence.
The following definition will prove useful.

5.4.2 Definition: Let G, H,, H,, ..., H, be graphs. We say that G is (H,H,,...,H,) -free

whenever G contains no induced subgraph isomorphic to any of H,, H,, ..., or H_
In [FJ3], the following conjecture is made by Fink and Jacobson.
5.4.3 Conjecture: If G is a graph with 6(G) = n, then v,(G) < ~v.,.,(G).

That the conjecture is, in fact, false was shown by Dick Schelp (personal communication), who
constructed a graph G with 6(G) = n and v,(G) = 7yy.4(G) (from which, of course, it follows
that v,(G) = ... = v2..(0) = ... = Yuwsn(0), if n = 8). However, the following theorem

shows that the conclusion of the conjecture does hold if we demand that G is K, ;-free.
5.4.4 Theorem: If G is a K, ;-free graph with A(G) = n, then v,(G) < v..(G).

Proof: Let G be a graph of order p satisfying the hypothesis of the theorem. We consider three

cases.

Case 1: Suppose that A(G) < 2n - 1. Then, obviously, no proper subset of V(G) is a
2n-dominating set of G. Furthermore, A(G) = n implies that a smallest n-dominating set
of G is a proper subset of V(G) (since, if u is any vertex of G with degqu = A(G), then

V(G) - {u} is an n-dominating set of G). Hence,

¥.(G) < p = 71,(G).

Case 2: Suppose A(G) > 2n. Let D be a 2n-dominating set. Then, D is an n-dominating
set which we show is not minimal. As above, we can show v.,(G) < p, s0
V(G) -D # &. Let x € V(G) - D and consider the graph H, = (N(x) N D), which

has order at least 2n. If H, contains a set A of three independent vertices, then
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({x} U A) = K, which contradicts our assumption about G. Hence, any independent

set of vertices of H, contains at most two vertices.

Subcase 2.1: Suppose that A(D)) < n - 1. Now, if v € V(H)), then, since H,
is a subgraph of (D),

degyv < degpv < A(CD)) < n-1,
so that
degrrv =p(H) -1 -deggv 2 2n-1-(n-1) = n,

i.e., there are at least n vertices in H, non-adjacent in H, to v. Furthermore, no
pair y, z of these at least n vertices can be non-adjacent, since, otherwise,
{v, y, z} is an independent subset of H, containing more than two vertices, which
we have shown is not possible. So,(NHx(v)) is complete and <NHl[V]> =K,C H,

where m > n + 1, whence A(D)) > A(H,) = n, a contradiction.

Subcase 2.2: Suppose A((D)) = n. Then, for any vertex u of D with degpu =
n, D - {u} is an n-dominating set of G (since any vertex of V(G) - D that is
adjacent to u is adjacent to n other vertices of D, and u had n neighbours in

D - {u}). So, as in the previous case, D is not a minimal n-dominating set.

So, since D is n-dominating set of G that is not minimal, D is not a minimum n-dominating set of

G, and 50 7,(G) < |D| = v,.(G). 0
The following result is an immediate consequence of Theorem 5.4.4 and Remark 5.1.3.
5.4.5 Corollary: If G is a K, ;-free graph with A(G) = n, then v,(G) < 7,,.,(G).

5.4.6 Remark: The result of Theorem 5.4.4 is best possible in the sense that v,(G) < v,,..(G)
is not true for all claw-free graphs G with A(G) = n. For example, let G = K, ,*K_; then, G
is K, ;-free with A(G) > n and, if u is the coalesced vertex of G, V(G) - {u} is the only n-
dominating set and the only (2n - 1)-dominating set of G, so that v,(G) = v,,_(G) = p - 1 =
2n - 1. On the other hand, we note that there are graphs which are not K, ,-free and which have
Y(G) = v2(G); for instance, let G = K, ,,, n = 2. Then, A(G) = 2n > n and, for any 2n-
subset A U B of V(G), where A and B lie in distinct partite sets of G and either |A| = |B| =
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_n, or |A| =2nand B = &, A U B is a smallest subset of V(G) that n-dominates G, and for any

partite set C (which has cardinality 2n), C is a smallest subset of V(G) that 2n-dominates G. So,

1.(G) = 2n = 7,(C).
The following result is reminiscent of a result we used in Proposition 4.1.2.

5.4.7 Proposition: For a graph G and n € N, an n-dominating set D of G is minimal if and only
if, foreachv € D

() IN(v) N D| < n, or

(i) there exists x € V(G) - D such that [N(x)N D| = nand v € N(x).

Proof: Suppose, to the contrary, that there exist a graph G, n € N, a minimal n-dominating set
D of G, and v € D such that [N(v) N D| = n and for every x € V(G) - D, either
IN(x) N D| > norv & N(x). Then, v is adjacent to at least n vertices of D - {v} and each
vertex u € V(G) - D is such that [Nw) N (D - {v})| = |[N@) N D| -1 = n (if v € N())
or [INW N (D -{vh| = INW N D| = n(fv & Nu); so, D - {v} is an n-dominating set
of G. However, this contradicts the minimality of D. Thus, (i) and (ii) follow if D is a minimal

n-dominating set of G.

Conversely, let G be a graph, let n € N, and suppose that D is an n-dominating set such that, for
each v € D, [N(v) N D| < n or there exists x € V(G) - D such that [N(x) N D| = n and
v € N(x). Letv € D. If [N(v) N D| < n, then D - {v} is not n-dominating in G; if there is
x € V(G) - D such that [N(x) N D| = n and v € N(x), then x is adjacent to exactly n - 1
vertices of D - {v}. So, in neither case is D - {v} an n-dominating set of G. Hence, since v is

an arbitrary element of D, it follows that D is a minimal n-dominating set of G. U

The rest of this section is devoted to the presentation of results relating the concepts of n-

domination and m-dependence. We introduce the following definition.

5.4.8 Definition: For a non-negative integer j, positive integer n and graph G, we define the j-
dependent-n-domination number i(j,n;G) to be the cardinality of the smallest j-dependent, n-

dominating set of G, provided that such a set exists.

5.4.9 Theorem: It a graph G is K, ;-free, then i(2n-2,n;G) = v,(G) (i.e., G has a smallest n-

dominating set that is also (2n - 2)-dependent).
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M Let G be a graph that is K, ;-free, and let n € N. We establish the desired result by
proving that G possesses a (2n - 2)-dependent, n-dominating set of G, which shows that
i(2n-2,n;G) exists and that v,(G) < i(2n-2,n;G), and, secondly, by showing that i(2n-2,n;G) <
v.(G). We achieve both these tasks by showing that G contains minimum n-dominating sets that

are (2n-2)-dependent.

Let D be a minimum n-dominating set of G such that (D) has as few edges as possible among all
minimum n-dominating sets of G. For z € V(G), let N, denote the set N(z) N D. If D is
(2n - 2)-dependent, then the proof is complete, so we will suppose that there exists v € D such
that [N(v) N D| = 2n - 1. Since D is a minimal n-dominating set, it follows, by Proposition
5.4.7 (and the fact that |[N(v) N D| > n), that there exists y € V(G) - D such that
IN(y) N D| = nandy € N(v). So, theset T € V(G) - D defined by T = {x € V(G) - D;
IN(x) N D|

I

nand x € N(v)} is non-empty. We show now that (T) is complete. If |T| = 1,
then, trivially, (T) is complete; so suppose that |T| = 2, and let x, y be distinct elements of T.
Now, [N,| = [N, =nandv € N, N Nyand [N, N N,| <2n-1. So, [N, N (N, N N,)|
< 2n - 2; however, |[N,| = 2n - 1. Consequently, there exists z € N, - (N, U N,). So, xz,
yz € E(é) which implies, since ({v, x, y, z}) # K,;, that xy € E(G). The vertices x and y are
arbitrary elements of T, so (T) is complete,

Now, let x be any vertex in T, and let D' = (D - {v}) U {x}. Then,
E(D")) = (E(D)) - [{v}, D) U [{x}, D - {v}],

so that

q(D’)) = q(D) - [N| + [N, = {v}| = g((D) -@n - 1) + (n - 1) = q(D)) - n < q((D)),

i.e., (D') contains fewer edges than (D). Thus, by our choice of D and the fact that |D’| = |D],
it follows that D’ is not an n-dominating set of G, i.e., there must exist a vertex p € V(G) - D’
that is adjacent to fewer than n vertices of D’. By the definition of D and T, either p = vorp
belongs to T - {x}. However, v is adjacent to |N,| + |{x}| = 2n vertices of D', so p # v.
Furthermore, forany w € T - {x}, |[Ng(w) N D’'| = [N, -{vD U {x}| =(-1)+1=n
(since D is n-dominating and (T) is complete), which means p € T - {x}. This is a contradiction.
Thus, our assumption that D is not (2n - 2)-dependent is false, and so D is a (2n - 2)-dependent,

n-dominating set of G, and (by our introductory comments) i(2n-2,n;G) = 7,(G). U



196

“75.4.10 Remark: Notice that Theorem 5.4.1 follows as a corollary from Theorem 5.4.9.
Furthermore, as in [AL1], related results pertaining to L(G), the line graph of G, follow as

corollaries to Theorem 5.4.9.

5.4.11 Corollary: For any graph G and n € N, v,(L(G)) = i(Zn-2,n;L(G)).

Proof: The corollary follows immediately from Theorem 5.4.9 and the result which states: A
graph H is a line graph if and only if (a) K, 5 is not an induced subgraph of H, and (b) if K, ,, is

an induced subgraph of H, then at least one of its two triangles is even (cf. [CL1]). O

5.4.12 Theorem: Letn € N, H = K, and let ¢ € E(H). Then, if G is (H,H+e)-free, then
i(n-1,m;G) = v,(G).

Proof: Let G and H be graphs satisfying the hypothesis of the theorem, and let n € N. As in the

proof of Theorem 5.4.9, we shall establish the desired result by proving that G contains an n-
dominating, (n - 1)-dependent set, from which it will follow that i(n-1,n;G) exists and that
7.(G) < i(n-1,n;G), and, finally, by showing that i(n-1,n;G) < ,(G). We achieve both these

objectives by showing that G contains a minimum n-dominating set that is (n - 1)-dependent.

Select a minimum n-dominating set D of G such that q((D)) < q(D7) for all minimum n-
dominating sets D" of G. For any z € V(G), let N, denote the set N(z) N D. If D is (n - 1)-
dependent, the theorem is proved, so we assume now that D is not (n - 1)-dependent. Letv € D
such that [N(v) N D| = n. It follows, then, by Proposition 5.4.7, that (since D is a minimal n-
dominating set) there exists x € V(G) - D such that [N(x) N D| = nand v € N(x). So (as in
the proof of Theorem 5.4.9), the set T defined by T = {x € V(G) - D; |[N(x) N D| = n and

x € N(v)} isnon-empty. If |T| = 1, then (trivially) (T) is complete; suppose now that |T| = 2

>

and let x, y be distinct elements of T. Now, [N, = nand v € N,, so [N, N N,| <
IN,| =1 =n -1, while [N,| = n. Hence, there must existz € N, - N_. Clearly, zx & E(G).
Then, since ({x, y, z, v}) is not isomorphic to H (= K,,) or to H+e, we have  xy € E(G).

Since, x, y are arbitrary elements of T, it follows that (T) is complete.

Let D' = (D - {v}) U {x}. As in the proof of Theorem 5.4.9, we have that q((D")) < q((D)),
which proves, by our choice of D, that D' is not n-dominating. So, there exists p € V(G) - D’
such that [N(p) N D’| < n. By the definition of D and T, either p = vorp € T - {x}.
However, [N(v) N D'} = [N, U {x}| =n+ 1> n,ie,p # v, and, for any w € T - {x},
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“]N(w) ND| =N, -{v}) U {x}| =n,ie,p & T- {x}. This contradiction establishes the

theorem. 0O
Another result in a similar vein is the following.

5.4.13 Theorem: Let G,, G, = K, let B, = G,*G,, and let B, = B, +v,v,, where v,v, € E(B)
with v, € V(G), i = 1, 2. Then, if G is a (K5, B,, B,)-free graph and n € N, then
i(n-1,n;G) = v,(G).

Proof: Let G, B,, and B, be graphs satisfying the hypothesis of the theorem, and let n € N.
Using the same technique employed in the proof of Theorems 5.4.9 and 5.4.12, we prove
i(n-1,n;G) = v.(G) by finding minimum n-dominating sets that are (n-1)-dependent. Let D
be a minimum n-dominating set of G such that (D) has the smallest possible size. If D is (n - 1)-
dependent, the result follows, so we suppose now that D is nor (n - 1)-dependent. Then, there
exists v € D such that [N(v) N D| = n. By Proposition 5.4.7, there must exist x € V(G) - D
such that [N(x) N D| = n and v € N(x). Again, let T be the set of all such vertices x. If
|T| = 1, then (T) is complete, so suppose |T| = 2, and consider any two distinct elements x,
y of T. We show that xy € E(G). By the same reasoning used in the proof of Theorem 5.4.12,
there exists x, € N(v) N D such that xx, & E(G). Similarly, there exists y, € N(v) N D such
that yy, & E(G). If x, = y,, then, since ({v, X, y, x;}) # K,5, we have xy € E(G). On the
other hand, suppose that x, # y,; assume, to the contrary that xy & E(G). By the definitions of
x, and y,, we have ({x,, y,, X, y, v}) = K;*K, (2B)) or {({x,, y,, X, y, v}) = B,, a contradiction.
So, xy € E(G). Since x and y are arbitrary, distinct elements of T, it follows that (T) is complete.
Now, by considering the set (D - {v}) U {x}, we may derive a contradiction exactly as we did

in the proof of Theorem 5.4.12. O
5.5 CONJECTURES AND UNSOLVED PROBLEMS

In [FJ1], a number of interesting problems related to the parameters v, and 8, as well as i(j,n;G)

for a graph G are listed. For example:

Question 1: Are there other classes of graphs G, perhaps also characterized by forbidden induced
subgraphs, for which relationships between v,(G), i(k,n;G) and 8_(G) exist?
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ﬁ Question 2: Are there other parameters which naturally relate to v,(G), i(k,n;G) or 8,.(G)?

Question 3: It was shown in [JP2] that the problems of deciding whether (for a given graph G and
integers k and n) y.(G) < nor §.(G) < nare NP-complete. In [JP2], linear-time algorithms (in
the number of vertices) are developed to determine ,(G) and §,.(G) for the cases occurring if G
is a tree or a series-parallel graph. It remains an open problem to find linear-time or polynomially

bounded algorithms to determine these parameters for other classes of graphs.

Related to this problem is the establishment of upper and lower bounds on ,(G) for classes of

graphs for which no such algorithms can be found. It is known that, for a graph G,

k p(G)
(@) < AG) + Xk

[FI1] and, if 6(G) = k, then

k p(G)
Q) 2 =7 1

[CGSI1]. The latter result was slightly extended in [CR1]. It may be worthwhile to seek to

improve these bounds for selected classes of graphs.
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