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Abstract

School attendance is very crucial for the growth and development of the mindset

of a child. The development of the mindset and provision of training to learners is

an investment of a better future for the country. The government even made school

attendance compulsory because of the fruits it bears in the future. But in the past,

many studies have reflected a problem with school attendance and mostly the fi-

nancial constrains appearing as the hindrance towards school attendance. Which

is why the government has taken the initiative to make school attendance free for

those who doesn’t afford to pay for it. This has reduced a greater number of individ-

uals who had a wish to attend school but with no funds to pay for it and allowed an

opportunity for those who need it. But still the country is experiencing individuals

who are in school going age but not attending school. Some of these individuals are

enrolled for school but choose not to attend. This brings many questions now about

the factors affecting school attendance of learners. Which brings us to the aim of this

study which is to identify factors affecting school attendance of learners at the basic

education level.

In identification of these factors, the study make use of different statistical mod-

els which accommodate the binary response. The models used in the study include

Correspondence Analysis(CA), Survey Logistic Regression(SLR), Generalized Lin-

ear Mixed Model(GLMM) and Generalized Additive Mixed Model(GAMM). The

results suggest that the likelihood of school non-attendance is associated with North-

ern Cape and Western Cape which are mostly dominated by Coloured/Indian/Asian
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race groups sharing ”Other” relationship to household head and have no parents

presence. Moreover, the female learners with mothers not alive and coming from

families with salaries and pension/grant as source of income are less likely to attend

school. While learners coming from all other provinces except the two specified

above, African/Black by race, sharing child/grandchild relationship to household

head, have both parents alive, deviating from household with high wealth index

z-score and have total income above R25000 are more likely to attend school. This

is a clear indication that the initiatives which were applied by the government and

results of the past studies have assisted in improving school attendance, but still

more initiatives are needed to cover the areas which are still reflecting poor school

attendance in order to meet the aims of the Millennium Development Goals.
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Chapter 1

Introduction

School attendance is a baseline factor in determining student success and is cru-

cial for the growth and development of the mindset of a learner (Department of

Education, South Africa, 2014). The development of the mindset and provision of

training to learners is an investment of a better future for the individual, and in

turn, their country. Education is a tool to empower people, improve an individ-

ual’s earning potential, promote a healthy population, reduce poverty and crime,

and build a competitive economy (Koledade, 2008). Education investment decisions

are primarily made by parents in the hopes that their children will provide a better

life someday for their families (Koledade, 2008). It has been well documented that

strong academic attendance correlates with good academic success (Meador, 2017).

Campbell (2006) shows that education is the most valuable and efficient weapon to

combat diseases such as HIV and AIDS, Cancer, diabetes, and other chronic illnesses.

Thus, poor education attendance has possible chances of poverty and malnutrition

within communities, resulting in communities with a high number of health related

issues (Campbell, 2006). This is attributed to less educated individuals often hav-

ing a poor understanding of health related issues, where they are not sufficiently

equipped with the knowledge and ability to understand how to face such issues.

Education motivates self-assurance and improves one’s capabilities and potential.
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Every individual requires a set of skills to survive in this competitive world and

progress to a successful future. These skills develop through education and training,

and knowledge helps individuals understand the environment that live in, together

with its needs (Balfanz & Byrnes, 2012). Furthermore, education aids in equipping

individuals with skills of development and understanding of modern technology

(UKessays, 2018). In addition to school attendance being vital for a learner’s aca-

demic success and development, being in school aids in keeping the learner out

of trouble as well as danger. When a learner is at school, they are generally in a

safe environment where they are prevented from the risks of trafficking and abuse.

Moreover, attending school is more likely to prevent the learner from engaging in

criminal activities. Anderson (2014) discussed the correlation between youth drop-

outs and juvenile criminal behaviour.

There are numerous reasons shown in studies that contribute to poor school atten-

dance in educational facilities. These reasons include a lack of information about

the importance of education and a lack of employment for qualified individuals,

as the lack of jobs for individuals who are qualified increases the negative mind-

set towards school attendance. The mindset develops from the knowledge that lives

among communities that education is essential for an individual to get employment,

so when older peers do not get employment after being qualified, some learners

see no need to attend school (Department of Basic Education, 2016). The study by

Phineas Reuckert (2019) outlines the factors that affect education enrolment across

the globe, where such factors contribute to poor or no attendance in schools. Finan-

cial issues appear to be the top-ranked barrier that decreases school attendance. A

lack of trained and experienced teachers, which is a problem that many schools in

South Africa (SA) face, also affects a learner’s tendency to attend school as these

teachers are not effective in student learning (Phineas Reuckert, 2019). The lack

of classrooms, learning material, exclusion of learners with disabilities, distance to

school, and poor nutrition also harms the school attendance of learners (Phineas
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Reuckert, 2019). Although, financial constraints remain the central issue towards

non-attendance of learners in South Africa (Stats-SA, 2017). Other issues are poor

academic success, peer pressure, lack of parental control, and family commitments,

such as pregnancy and marriage.

All South Africans have the right to basic education and the Bill of Rights obliges

the government to continuously make education available and accessible through

reasonable measures.The education system in South Africa has phases that are pri-

mary, secondary, and higher education, where the primary and secondary phases

form part of a learner’s basic education. The percentage of individuals that attend

basic educational institutions has increased yearly since 1996 (National Department

of Health (NDoH), Statistics South Africa (Stats SA), South African Medical Re-

search Council (SAMRC), and ICF, 2019). The percentages of learners attending

government schools increased from 0.4% in 2002 to 65.9% in 2014, before stalling

and largely moving to 66% in 2017 (Stats-SA, 2017). This is a tremendous increase,

even though there are numerous problems faced by public or government schools

nationally. However, the country has to continue to improve and keep up with the

education of its youth. Improved access to educational facilities and services has led

to a continuous increase in educational attainment in South Africa compared with

the past.

Meador (2017) suggested that schools should be challenged to develop attendance

policies and programs together with parents, which will be used to improve educa-

tion attendance in different areas around the country. This will allow partnership in

overcoming the issue of absenteeism and school non-attendance, enabling parents

to take part in the issues facing their children (Meador, 2017). In addition to the role

of the parent and school in addressing school attendance, the government also has

a role to play. The South African government uses short-term, medium-term, and

long-term strategic goals to improve education attendance. These strategic goals
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1.1. Objectives of the Thesis

have a vision that by 2030, SA will have universal early childhood education, high-

quality schooling, further education and training (quality basic education) under

goal 4 of Sustainable Development Goals (Department of Education, South Africa,

2014). These government strategies are outlined to improve school attendance, and

provide multiple outcomes. These outcomes include funding plans to lower finan-

cial constraints towards school attendance, improving the quality of teaching by pro-

viding infrastructure, learning material, and supporting teachers’ training before the

appointment. The improved planning for the extension of early childhood develop-

ment provides credible outcomes focused on planning and accounting for system-

building. The intervention of artificial intelligence and technology is also part of the

strategies that the South African government plans to use to draw more learners to

school and to improve understanding of educational concepts to all learners (De-

partment of Education, South Africa, 2014).

However, despite these efforts, there are still learners in the country that do not

attend school for various reasons. Thus, it is important to investigate the factors

that contribute to school attendance and non-attendance. Such studies can assist

the government in understanding the issues related to poor attendance and develop

appropriate strategies to face these issues.

1.1 Objectives of the Thesis

The aim of this thesis is to make use of appropriate statistical models to investigate

school attendance rates among South Africa learners under the age of 20 years old.

The specific objectives are as follows:

• To explore the school attendance rates of learners in South Africa and across

the provinces of South Africa as well as according to various socio-economic

and demographic factors.

• To determine the factors that are significantly associated with school atten-
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1.2. Structure of the Thesis

dance of a learner, as well as determine which factors contribute to a lower

likelihood of school attendance.

• To examine the spatial variation in the likelihood of school attendance of a

learner across the provinces of South Africa.

• To determine which provinces have a higher or lower likelihood associated

with school attendance of a learner.

1.2 Structure of the Thesis

This thesis is structured in the following manner:

Chapter 1 covers the introduction to the topic and outlines the significance of the

study, as well as the aims and objectives. Chapter 2 outlines the source, descrip-

tion and exploration of data used in this thesis. It also presents the results of mul-

tiple correspondence analysis, which provides a graphical representation of cross-

tabulations between categories of the qualitative variables. Chapter 3 gives an overview

of the survey logistic regression model and its application to the data used in this

thesis. Further on, chapter 4 gives an overview of generalized linear mixed mod-

els, which extends on a generalized linear model. Chapter 5 gives an overview of

generalized additive mixed model, which accounts for possible spatial variation and

autocorrelation existing in the data. Lastly, Chapter 6 concludes and discusses the

results of the various statistical approaches, and presents the limitations of the study.
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Chapter 2

Data Description and Exploration

This chapter outlines the source, description, and exploration of the data that was

used in this thesis.

2.1 Data description

The data used in this study is drawn from the South African General Household

Survey (SAGHS) that was conducted by Statistics South Africa (STATS-SA) from

January to December in the year 2017. The survey was aimed at determining the

progress of development within the country by measuring the performance of pro-

grams and the quality of service delivery within the country. The SAGHS was na-

tionally represented where the data was collected based on a stratified two-stage

cluster sampling design. South Africa was stratified into its 9 provinces which were

then further subdivided into the different geo-type within metro/non-metro areas.

These geo-types included urban, traditional, and farm areas. The first stage of sam-

pling involved selecting the primary sampling units/cluster with a probability pro-

portional to size, and the second stage involved sampling of the dwelling units based

on systematic sampling. The final data set used in this thesis consisted of 21 033 ob-

servations from individuals of the ages 5 to 19 years old who had not yet completed

their matric (Grade 12 year).
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2.2. Study Variables

2.2 Study Variables

The response variable considered in this thesis was based on whether or not the

learner was currently attending a basic educational institution at the time of the

survey. This response, which will be referred to as ’school attendance’, is binary.

The explanatory variables considered were based on a range of individual-level,

household-level and geographical factors, as shown in Figure 2.1 on the next page.

The household wealth index Z-score was a composite measure based on the owner-

ship of durable goods in the household.

Figure 2.1: Potential factors associated with school attendance

2.3 Data exploration

Before any advanced statistical modelling is done, it is important to get an under-

standing of the data that is being used. In this section, an exploratory data analysis

is performed. Table 2.1 presents the distribution of the sample according to school

attendance. At the time of the survey, 93.4% of learners between the ages of 5 and 19

years old were attending school.
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2.3. Data exploration

Table 2.1: The summary of learner’s current school attendance within South Africa

Current school attendance Frequency Percentage (%)
Yes 19 646 93.4
No 1387 6.6

Figure 2.2 below breaks down school attendance according to the province of resi-

dence. Limpopo province had the highest percentage of learners attending school at

97.6%, followed by the Free State at 94.9%. The Northern Cape and the Western Cape

had the lowest rates of school attendance among the learners, with only 88.4% and

89.5% of the learners that reside in these provinces attending school, respectively.

In addition, Figure 2.2 demonstrates possible spatial variation in school attendance

rates across the difference provinces of South Africa.

Figure 2.2: School attendance rate according to province of residence
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2.3. Data exploration

During the survey, the type of area of residence was categorised as a metro area or

non-metro area. Figure 2.3 presents the rate of school attendance and non-attendance

according to these areas of residence. This figure reflects that the school attendance

rate was slightly higher among learners residing in non-metro regions (93.7%).

Figure 2.3: School attendance rate according to type of regional area

Figure 2.4 displays the rates of school attendance according to the age of the learner.

School attendance was above 90% for learners aged 6 to 16 years, after which the

attendance rate dropped down to below 60% among the older learners. This is pos-

sibly due to the stigma that is often associated with a learner being older than their

peers, resulting in the learners in the older age groups simply not returning to school

after dropping out for various reasons.
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2.3. Data exploration

Figure 2.4: School attendance according to different age groups

Figure 2.5 below shows the attendance rate according to the learner’s race group.

The rates of attendance for learners within the different population groups were

similar, except for those from the Coloured population group which had a substan-

tially lower attendance rate of 86.9%.

Figure 2.5: School attendance rate according to population group
10



2.3. Data exploration

The rates of school attendance according to a learner’s marital status and gender are

presented in Figure 2.6. While attendance was substantially lower for learners who

were not single, which included those who were married, living with a partner or

divorced, these learners only comprised of less than 2% of the sample. Not much

difference is observed in the rate of attendance between male and female learners.

Figure 2.6: School attendance rate according marital status and gender

Figure 2.7 displays the school attendance rate according to the relationship that

a learner had with the household head. Attendance was higher among learner’s

whose grandparent was the head of the household (95.5%). The rate of attendance

was lowest among learner’s whose parents or grandparents were not the head of the

household. This ’other’ category may also include learners who were the household

head themselves. The added responsibility of heading a household may restrict a

learner’s ability to attend school.
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2.3. Data exploration

Figure 2.7: School attendance rate according to the relationship a learner shares with the
household head

Figure 2.8 gives the rates of school attendance according to the survival status of each

parent of the learner. The figure clearly depicts higher rates of attendance among

learners whose mother or father was still alive. While the data does not give an indi-

cation of whether the surviving parent was actually present in the learner’s life, we

know the opposite to be true where a deceased parent was unable to be present. This

has may contribute to the decline in the rate of school attendance, where the learner

may be unable to attend school due to emotional reasons associated with losing a

parent or due to the added responsibility required of them in the household.
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Figure 2.8: School attendance rate according to the survival status of each parent

Figure 2.9 presents the school attendance rates according to the main source of in-

come in the learner’s household as well as the household’s total monthly income,

which was categorized as over or under R25,000. The rates of attendance did not

differ by much across any of the categories of these two factors.

Figure 2.9: School attendance rate according to source of household income and total
monthly income
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Box plots for the size of the household and the household wealth index Z-score are

presented in Figure 2.10 according to learners who were attending school as well as

not attending school. The distribution of the household size was fairly similar for

both groups of learners, however there were a few outliers in the upper end of the

scale for those learners who were not attending school. Similarly, the distribution of

the household wealth index Z-score was almost the same for both groups of learners,

with a few outliers on the lower end of the scale for learners who were not attending

school. This figure suggests that learners who do not attend school come from much

poorer socio-economic backgrounds compared to those who do attend school.

Figure 2.10: Box plots of household size and household wealth index Z-score according to
school attendance
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2.4. Correspondence Analysis

2.4 Correspondence Analysis

Correspondence analysis (CA) is a statistical technique to provide a graphical repre-

sentation of cross-tabular data in the form of numerical frequencies. CA is used to

gain insight into the relative relationships between and within two groups of vari-

ables, based on data given in a contingency table. The distance between category

points in a plot reflects the relationships between categories, with similar categories

plotted closer to each other for each variable (Greenacre, 2017).

There are existing forms of CA which includes Dual Scaling and Multiple Corre-

spondence Analysis. Multiple correspondence analysis (MCA) allows the explo-

ration of the patterns of relationships between categories of several categorical vari-

ables. MCA consists of joint graphical displays that produce two dual displays

with row and column geometries that have similar interpretations (Greenacre, 2017).

It also incorporates the diagrammatic view of the association between categories

through bi-plots. The bi-plots help to visualize associations present between cate-

gories (Khangar, 2017). MCA can be considered as a type of principal component

analysis for categorical variables. As the data used in this thesis consists of multiple

categorical variables, MCA will be used to explore the associations between such

variables.

2.4.1 Multiple Correspondence Analysis Theory

MCA is obtained by using a standard correspondence analysis on an indicator ma-

trix (Valentin, 2007). Assume we have n respondents with k categorical variables and

lj distinct values for variable j. Then, we define an n× lj indicator matrix P j . Con-

catenating theP j ’s forms the n×lmatrixP , which is a respondents-by-categories ta-

ble that has as many rows as respondents, and l is the sum of lj (Valentin, 2007). The

elements of P are ones in the positions to indicate the categories of response of each

respondent and zero elsewhere. P can be divided up by its grand total nk to obtain

the correspondence matrix F = 1
nkP , which contains the relative frequencies. This
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gives 1′nF1l = 1, where 1i is an i× 1 vector of ones. Performing CA on the indicator

matrix provides two sets of factor scores: one for the rows and one for the columns

(Valentin, 2007). The vectors/factor scores obtained in the rows and columns are

given by r = F1l and c = F ′1n, respectively, which are called marginals. These

marginals are collectively called masses. Furthermore, these vectors are scaled so

that their variance is equal to their corresponding eigenvalues (Valentin, 2007). We

assume for the diagonal matrices of the masses are defined by Dr = diag(r) for the

rows andDc = diag(c) for the columns.

In the application of MCA, we first compute the probability matrix using the total

N = nk, given by Q = N−1P . The factor scores are obtained from the following

singular value decomposition

D
− 1

2
r (Q− rc′)D−

1
2

c = V∆W ′, (2.1)

where ∆ represents the diagonal matrix of singular values, V and W are the diagonal

matrices of masses for rows and columns with an exponent of negative half respec-

tively. Moreover, the Υ =∆2 is the matrix of eigenvalues and the row and column

factor scores are obtained respectively as follows:

R = D
− 1

2
r V∆,

and

S = D
− 1

2
c W∆. (2.2)

The above equations will then lead to the calculation of the squared distance (χ2) of

the rows and columns to their respective barycentre, which is given in the following

form

dr = diag{RR′},
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and

dc = diag{SS′}, (2.3)

respectively. In CA, the total variance, referred to as inertia, of the factor scores is

proportional to the independence Chi-square statistic of a cross-tabulation.

Squared cosines can be used to locate the factors that are important for a given ob-

servation or variable. The squared cosine between the ith row and factor m and the

jth column and factor m are respectively given by

Ci,m =
f2i,m
d2r,i

,

and

Cj,m =
g2j,m
d2c,j

, (2.4)

where f and g are functions and d2r,i and d2c,j represent element i of dr and element

j of dc, respectively. The contributions of the ith row and the jth column to factor m

are obtained in the following manner, respectively

bi,m =
f2i,m
λm

,

and

bj,m =
g2j.m
λm

. (2.5)

These contributions of the rows and columns help locate the observations or vari-

ables that are of importance to a given factor. Supplementary elements can be pro-

jected onto the factors using the transition formula (Valentin, 2007). Suppose we let

i′sup be the supplementary row and jsup be the supplementary column to be pro-

jected, then the coordinates of supplementary functions f sup and gsup are given as

f sup = (i′sup1)i′subS∆−1,
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and

gsup = (j′sup1)j′subR∆−1, (2.6)

respectively. CA produces the element scores for rows and columns, however MCA

requires these scores to be re-scaled. The Burt matrix is the l × l table, which is ob-

tained by B = P ′P . This matrix serves to give CA the same factors as the analysis

of P , however in a computationally easier way. The Burt matrix also plays an im-

portant role in providing eigenvalues which provide a better approximation of the

of inertia described by the factors than the ones of P .

2.4.2 Eigenvalue correction for MCA

MCA codes data by creating several binary columns for each variable with the con-

straint that one and only one of the columns gets the value of 1 (Valentin, 2007). This

method of coding creates additional dimensions as one nominal variable is coded

with multiple columns. The additional dimensions cause the solution space vari-

ance to be expanded, which causes the inertia described by the first dimension to

be under-scaled. That leads to the variation produced by the first dimension to be

under-estimated. However, this under-scaling can be corrected using correction for-

mulas Valentin (2007). These formulas take into account that all the eigenvalues that

are smaller than 1
k are accounting for the extra dimensions and that MCA is equiv-

alent to the analysis of the Burt matrix, which has eigenvalues that are equal to the

square of the eigenvalues from the analysis of P (Valentin, 2007). That is, if we de-

note λm as the eigenvalues found from the analysis P , then the rectified eigenvalues

are given by

cλm =


[(

k

k − 1

)(
λm −

1

k

)]2
if λm >

1

k
,

0 if λm 6
1

k
,

(2.7)

where cλm represents the rectified eigenvalues for factor m. The above rectification

allows for better estimations of the inertia. The percentages of inertia can be com-

puted by dividing an eigenvalue by the sum of all of the eigenvalues. However, a
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suggestion for a better estimate of inertia is provided in Greenacre (1993), which al-

lows for evaluation of the percentage of inertia respective to the average inertia of

the off-diagonal blocks of Burt matrix (Valentin, 2007). This average inertia (γ) can

be calculated as follows

γ =
k

k − 1
×

(∑
m

λ2m −
l − k
k

)2

(2.8)

Based on this approach, the percentage of inertia would be obtained by

τc =
cλ

γ
instead of cλ∑

m
cλm

(2.9)

2.4.3 Application of MCA to school attendance data

In this section, MCA is applied to the SAGHS data. All the categorical variables

were incorporated into the analysis, namely school attendance, province, type of

place of residence, race, gender, marital status, relationship to the household head,

the survival status of each parent, the main source of household income and the total

monthly household income. MCA locates all of the categories of the variables in a

Euclidean space.

Figure 2.11 displays the results of the inertia and chi-squared decomposition for

MCA applied to the data. A total of 22 dimensions explain the full variation of

the data. The result suggests that dimension 1 accounts for 10.6% of the variation,

while dimension 2 accounts for 7.05% of the variation, which is 17.66% of the entire

variation. These inertiae are relatively low and thus indicate possible instability in

the individual axes. The first column of results in Figure 2.11 presents the singular

value for each dimension, which indicates the relative importance of each dimen-

sion in explaining the inertia, or proportion of variation. The singular values can

be considered as the correlation between the rows and columns of the contingency

table.
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Figure 2.12 displays the scree plot of singular values for each of the dimensions.

The variation decreases faster for dimensions 1 to 2, then decreases less rapidly for

dimensions beyond dimension 2. The first two dimensions of the space are plotted

to examine the associations among the categories. This plot is presented in Figure

2.13.

Figure 2.11: The table of inertia and singular value decomposition
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Figure 2.12: Scree plot of singular values

From Figure 2.13 of the first two dimensions, it is observed that the categories in the

lower hemisphere, given by the Northern Cape, Western Cape and the Coloured race

group, are grouped close together and thus are associated. In addition, these cate-

gories are closer to non-attendance in school compared to attendance. Similarly, the

categories in the right side of the upper hemisphere, namely the Indian and White

race groups, Gauteng, and above R2500 for total household income, can be consid-

ered as associated, and closer to school attendance compared to non-attendance. The

categories of father not alive and mother not alive appear to be close to and thus as-

sociated with other relationship to the head of the household (other than being the

child or grandchild of the head of the household).
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Figure 2.13: Multiple correspondence analysis plot for the first two dimensions

2.4.4 Summary

This chapter introduced the data used in this thesis as well as the variables of in-

terest. These variables were explored in relation to the response, namely school

attendance. The school attendance rate among the surveyed learners was fairly

high at 93.4%. However, the fact that there are still a number of learners without

a matric who are not attending school is alarming considering all the efforts that

the South African government has made in making basic education accessible to ev-

eryone. The rates of school attendance also differed substantially across the differ-

ent provinces, where the western part of South Africa experienced the lowest rates

of school attendance. The rate of school attendance declined dramatically among

learners of the older age groups (16 to 19 years of age), and was lowest among the
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Coloured race group. Very little difference in the rate of school attendance was seen

between male and female learners, and the rate of school attendance was lowest

among learners who had a deceased parent. Learners of a low socio-economic back-

ground tended not to attend school.

The SAGHS data was collected based on a complex survey design. This means that

statistical models that assume the data was collected based on simple random sam-

pling are not appropriate for the analysis of the SAGHS data. The next chapters

consider different statistical approaches to deal with such data.
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Chapter 3

Survey Logistic Regression Models

As the response variable of interest in this study is binary, indicating whether or not

the learner was attending school at the time of the survey, we need to make use of

an appropriate statistical model for this type of response. A general linear model

assumes that the response variable is continuous and follows a normal distribution.

Thus, it is not suitable in our case. A possible method for modelling a non-normal

binary response is via a generalized linear model (GLM). This chapter presents an

overview of the GLM. In addition, an extension of the GLM to model data from

complex survey designs is presented, namely the survey logistic regression (SLR)

model. The results of the SLR model applied to the SAGHS data are also presented

in this chapter.

3.1 GLM model

The GLM consists of three components:

• A Random Component: This consists of the independent response variable Yi.

• A Systematic component: This component involves the linear predictor, ηi,
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3.1. GLM model

which is related to a set of explanatory variables

ηi = β0 + β1x1i + β2x2i + ...+ βpxpi

= x′iβ,

where xi = (1, x1i, ..., xpi)
′ is a (p + 1)-dimensional vector of covariates and

β = (β0, β1, ..., βp)
′ is a vector of the unknown regression coefficients. The

distribution of Yi depends on xi through this linear predictor.

• A link function: This component is a monotonic and differentiable function, g,

that links the mean of the response response, µi = E(yi), to the linear predictor,

ηi, as follows

ηi = g(µi) = x′iβ.

If Yi for i = 1, . . . , n is a response variable from a distribution that is a member of the

exponential family, then the probability density function for Yi is given by

f(yi, θi, φ) = exp

{
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

}
, (3.1)

where θi is the canonical parameter and b(θi), ai(φ) and c(yi, φ) are known functions.

If φ is known, this is an exponential family model with a canonical link θ. It may or

may not be a two-parameter exponential family if φ is unknown. It can also be easily

shown that if the distribution belongs to an exponential distribution, it has a mean

and variance of the form

E(Yi) = b′(θi) = µi,

V ar(Yi) = ai(φ)b′′(θi) = ai(φ)v(µi),

where the b′(θi) and b′′(θi) = v(µi) are the 1st derivative and 2nd derivatives of the

function b(θi) with respect to θi, respectively. The GLM has a property of a variance

that can vary across the responses (non-constant variance). This is controlled by

the function ai(φ). When it is greater than 1, the model is over-dispersed, when it
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3.1. GLM model

is less than 1, then model is under-dispersed (Nelder & Wedderburn, 1972). The

Poisson, Binomial, Chi-Square and Gamma distributions are examples that belong

to the exponential family.

3.1.1 Parameter Estimation

The method of maximum likelihood (ML) is used for the parameter estimation of

GLMs, where the log-likelihood function for a single observation is given by

`i = ln f(yi, θi, φ) =
yiθi − b(θi)
ai(φ)

+ c(yi, φ). (3.2)

As Yi, i = 1, ..., n, are independent, the joint log-likelihood function is

`(β,y) =
n∑
i=1

`i. (3.3)

The ML estimation of parameters βj , j = 0, ..., p is the solution to the equation

∂`i
∂βj

= 0. (3.4)

In order to obtain a solution for the above equation, the chain rule is applied as

follows

∂`i
∂βj

=
∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

. (3.5)

Using Equation 3.2, the following is obtained

∂`i
∂θi

=
yi − b′(θi)
ai(φ)

=
yi − µi
ai(φ)

. (3.6)

As µi = b′(θi), V ar(Yi) = ai(φ)v(µi), and ηi =
∑

j βjxij , we get

∂µi
∂θi

= b′′(θi) = v(µi),

and
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3.1. GLM model

∂ηi
∂βj

= xij .

This leads to

∂`(β,y)

∂βj
=

n∑
i=1

yi − µi
ai(φ)

1

v(µi)

∂µi
∂ηi

xij

=

n∑
i=1

(yi − µi)Wi
∂ηi
∂µi

xij ,

where Wi is the iterative weight given by

Wi =
1

ai(φ)

(
∂µi
∂ηi

)2

v−1i

=
1

V ar(Yi)

(
∂µi
∂ηi

)2

,

(3.7)

where vi = v(µi) is the variance function. As ηi = g(µi),
∂µi
∂ηi

depends on the link

function of the model.

Therefore, the ML estimate for β are obtained by solving the following equation

n∑
i=1

(yi − µi)Wi
∂ηi
∂µi

xij = 0. (3.8)

Equation 3.8 is a non-linear function of β, therefore iterative procedures such as

Newton Raphson and Fisher Score are required to solve this equation. A basic

overview of these procedures is given below.

Newton Raphson

The Newton Raphson iterative equation is given by

θ̂
(t+1)

= θ̂
(t) − (H(t))−1U (t), (3.9)
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where θ̂
(t)

is the approximation of θ at the tth iteration. U (t) =
∂`p
∂θ

evaluated at

θ̂
(t)

, where U is called the score. H(t) is the Hessian matrix, H , with the following

elements evaluated at θ̂
(t)

:

Hjk =
∂2`p
∂θj∂θk

. (3.10)

Fisher Score

The Fisher score iterative equation is given by

θ̂
(t+1)

= θ̂
(t)

+ (I(t))−1U (t), (3.11)

where I = −E(H) is known as the information matrix. Both iterative procedures

require an appropriate starting value, θ̂
(0)

, after which the process will continue un-

til the difference between the successive approximations is very small. Thus, when

the algorithm converges.

Applying Newton Raphson to Equation 3.8 to obtain the parameter estimates for the

GLM, it follows that the iterative equation is given by

β̂
(t+1)

= β̂
(t) − (H(t))−1U (t), (3.12)

and the iterative Fisher Score equation given by

β̂
(t+1)

= β̂
(t)

+ (I(t))−1U (t), (3.13)

with information matrix
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3.1. GLM model

I = −E(H)

= −E
(

∂2`

∂β∂β′

)
= X ′WX,

(3.14)

whereW is a weight matrix with diagonal elements equal to that given in Equation

3.7. Equation 3.13 can be written as

I(t)β̂
(t+1)

= I(t)β̂
(t)

+U (t)

= X ′W (t)z(t),

(3.15)

where W (t) is the weight matrix evaluated at β̂
(t)

, and z(t) has the following ele-

ments evaluated at β̂
(t)

zi = ηi + (yi − µi)
(
∂ηi
∂µi

)
. (3.16)

zi is known as the adjusted dependent variable or the working variable. Thus, the

following is obtained

β̂
(t+1)

= (X ′W (t)X)−1X ′W (t)z(t). (3.17)

Each iteration step is as a result of a weighted least squares regression of zi on the

independent variables xi, with weight Wi. It follows that the asymptotic variance of

the estimate of β is the inverse of the information matrix from Equation 3.14 and can

be estimated by

V̂ ar(β̂) = (X ′ŴX)−1, (3.18)

where Ŵ is W evaluated at β̂ and depends on the link function of the model. The

dispersion parameter, φ, in function ai(φ) that is used in the calculation of Wi re-
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solves to 0. The estimate of β is therefore the same under any value of φ. However,

the value of φ is necessary for the calculation of V̂ ar(β̂). Thus, when φ is unknown,

it can be estimated using a moment estimator (Nelder & Wedderburn, 1972), given

by

φ̂ =
1

n− p− 1

n∑
i=1

ωi(yi − µ̂i)2

v(µ̂i)
, (3.19)

where ωi is the weight defined in Equation 3.1.

3.1.2 Goodness-of-fit

The goodness-of-fit measures how discrepant the estimated values are to the ob-

servations. The discrepancy is regarded as the random error occurring during the

estimation of parameter values in the model. The estimated values are never equal

to those observed, thus, the question arises of how discrepant they are, as the smaller

discrepancy is negligible, however, the larger discrepancy is not. The measures of

discrepancy may be formed in various ways, although our concern will be primarily

based on the ones formed from the logarithm of a ratio of likelihoods, which is called

the deviance (McCulloch et al., 2001).

Assume for a fitted model, there are p + 1 parameters and `(µ̂, φ,y) is the log-

likelihood function maximized based on β̂ for a fixed value of the dispersion pa-

rameter φ, and `(y, φ,y) is the maximum log-likelihood obtained under the satu-

rated model where the number of parameters equals the number of observations.

Then, the scaled deviance is

Ds =
−2 [`(µ̂, φ,y)− `(y, φ,y)]

φ
. (3.20)

If φ = 1, the deviance reduces to

Ds = −2 [`(µ̂, φ,y)− `(y, φ,y)] . (3.21)
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The scaled deviance converges asymptotically to a χ2 distribution with n − p − 1

degrees of freedom. Thus, the fitted model is rejected if the calculated deviance is

greater that or equal to χ2
n−p−1;α, using an α level of significance. The Generalized

Pearson’s Chi-Square is another commonly used measure of goodness-of-fit. This is

given by

χ2 =

n∑
i=1

(yi − µ̂i)2

v(µ̂i)
, (3.22)

which asymptotically follows a χ2 distribution with n − p − 1 degrees of freedom,

where v(µ̂i) is the estimated variance function for the distribution. As with the

deviance, the smaller the value of the χ2 statistic, the better the fitting the model

(Nelder & Wedderburn, 1972).

3.1.3 Likelihood Ratio Test

In order to test if a particular predictor variable does not have a significant effect

on the response variable (which means their corresponding regression parameter

is equal to zero), while controlling for the other predictor variables in the model,

the deviances of the full model and the reduced model can be compared. The test

statistic is derived by considering the following

Dreduced −Dfull. (3.23)

As both deviances above involve the log-likelihood for the saturated model, the test

statistic is formed as follows

χ2 = −2 [log-likelihood(reducedmodel)− log-likelihood(full model)] , (3.24)

which has an asymptotic χ2 distribution with a degrees of freedom equal to the

difference in the number of parameters between the full model and the reduced

model. This test is known as the Likelihood Ratio Test.
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3.1.4 Wald Test

The Wald test is a hypothesis test for parameters that have been estimated by the

maximum likelihood. This test allows a hypothesis test on a single parameter βj to

be performed. The test statistic for this test is

z0 =
β̂j

se(β̂j)
, (3.25)

where the standard error of βj is the square root of the diagonal elements in the

inverse of the information matrix given in Equation 3.14. The null hypothesis for

the Wald test is H0: βj = 0, which infers the variable has no effect on the response.

Thus, the null hypothesis is rejected for large values of the test statistic, suggesting

that the corresponding variable is significant to the model and thus has a significant

effect on the response.

3.2 Quasi-Likelihood function

The main purpose of many analyses is to show how the mean response is affected

by several covariates. In estimation of parameters for a model using maximum like-

lihood, the distribution of the response is required. However, sometimes there is

insufficient information about the data for us to specify the model and in that sense,

the parameters are estimated using quasi-likelihood estimation (QL), where only the

relationship between the mean and the variance of the observations need to be spec-

ified (Elder, 1996).

The following relation is defined to determine the quasi-likelihood (specifically quasi-

log-likelihood) function Q(yi;µi) for each observation

∂Q(yi;µi)

∂µi
=
ωi(yi − µi)
φ v(µi)

, (3.26)

where ωi is the known weight associated with observation yi. Thus, from Equation
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3.26, the following is obtained

Q(yi;µi) =

∫ µi

yi

ωi(yi − t)
φ v(µi)

dt+ some function of yi. (3.27)

Therefore, using the Fisher Scoring iterative procedure, the maximum quasi-likelihood

estimates of β can be obtained. Equation 3.19 can be used to estimate φ.

The QL above requires observations to be independent. However, it can be ex-

tended for observations that are correlated. The properties of the quasi-likelihood

function are similar to that of the ordinary log-likelihood function. Therefore, the

goodness-of-fit and hypothesis tests that were previously discussed are still valid

for this method. When the distribution of the response comes from an exponential

family, the log-likelihood function and the quasi-log-likelihood function are identi-

cal (Wedderburn, 1974).

3.3 Logistic regression

The logistic regression model is a special case of a generalized linear model for a

model binary response. In this study, the response variable, given by school atten-

dance is binary, which can be coded as follows:

Yi =


1 the learner attends school (success),

0 if the learner does not attend school (failure).
(3.28)

Therefore, Yi follows a Bernoulli distribution where P (Yi = 1) = πi is the probability

of success and P (Yi = 0) = 1− πi is the probability of failure. This means that

E(Yi) = πi, (3.29)

and
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V ar(Yi) = πi(1− πi). (3.30)

Since πi is a probability, it is limited to 0 ≤ πi ≤ 1. Thus, a model for E(Yi) that

restircts its value between 0 and 1 needs to be used. The logistic regression model is

such a model, and is given by

logit(πi) = ln

(
πi

1− πi

)
= x′iβ i = 1, 2, ..., n, (3.31)

where x′i is the vector of explanatory variables corresponding to the ith observation

and β is a vector of unknown parameters (Alan Agresti, 2007). The left hand side

of Equation 3.31 is referred to as the logit link, denoted by ηi in the GLM. Thus,

Equation 3.29 will become

πi =
exp(x′iβ)

1 + exp(x′iβ)
. (3.32)

This is known as the logistic regression model which is a class of the GLM with a

logit link. The value of the link, ηi, is allowed to range freely while restricting that of

E(Yi) = πi = µi to between 0 and 1. The maximum likelihood estimates of β can be

found using the iterative equations discussed previously.

3.4 Survey logistic regression

Logistic regression is a method to analyse the relationship between a binary response

and a set of covariates. However, this method does not account for study design

(SAS Institute, 2004). In addition, logistic regression assumes that the observations

were obtained based on simple random sampling. Therefore, in the case of survey

data that was colected based on a stratified, multi-stage approach, logistic regres-

sion is no longer appropriate as failure to account for the survey design can result

in overestimation of standard errors which can lead to incorrect results (Heeringa

et al., 2010). However, the classical logistic regression model can be extended to
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incorporate th survey design in order to make valid inferences. This results in the

survey logistic regression model (SLR), which is a design-based statistical approach

(Heeringa et al., 2010).

Survey logistic regression uses unique methods in estimating parameters, and corre-

sponding variances (Heeringa et al., 2010). The most common methods of variance

estimation are the Tylor series approximation which is based on linearisation, Jack-

knife repeated replication, and balanced repeated replication. Previous studies have

shown that there is not one of these estimation procedures that is better than the

other. However, it depends on the design of the model and information provided

in the data (Heeringa et al., 2010). Lastly, linearisation and re-sampling techniques

have been proven to be asymptotically equivalent, meaning that they produce ap-

proximately the same results.

3.4.1 The model

Consider the survey logistic regression model for a binary response variable Yhij , j =

1, ..., nhi; i = 1, ..., nh;h = 1, ...,H , which equals 1 if the jth learner in the ith house-

hold, within the hth cluster, attends school and 0 otherwise. Also, let πhij = P (Yhij) =

1 be the probability that this learner attends school. Then the survey logistic regres-

sion model is given by

logit(πhij) = x′hijβ, (3.33)

with

πhij =
exp(x′hijβ)

1 + exp(x′hijβ)
, (3.34)

where xhij is the row of the design matrix corresponding to the response of the jth

learner in the ith household within the hth cluster, and β is the vector of unknown

regression coefficients to be estimated.
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Maximum likelihood estimation used to estimate parameters of an ordinary logistic

regression model is not appropriate in this case as the calculation of standard errors

of parameter estimates can be complicated for data obtained from complex survey

designs (Vittinghoff et al., 2011). The survey logistic regression model has the same

form as the ordinary logistic regression model, where the probability distribution of

the response variable is given by

f(yhij) = π
yhij
hij (1− πhij)1−yhij . (3.35)

The leads to

E(Yhij) = πhij =
ex

′
hijβ

1 + ex
′
hijβ

, (3.36)

and

V ar(Yhij) = πhij(1− πhij) =
ex

′
hijβ

(1 + ex
′
hijβ)2

. (3.37)

Therefore, the log-likelihood function is then given by

` = lnL(y) =
H∑
h=1

nh∑
i=1

nhi∑
j=1

ln f(yhij). (3.38)

This log-likelihood function does not incorporate the sampling weights, which means

that the maximum likelihood estimates of the model’s parameters based on this

function will only be valid for simple random sampling where observations are un-

weighted. Incorporating the sampling weights into the log-likelihood function leads

to a pseudo-likelihood function and the method of estimation that uses this function

is called the pseudo-maximum likelihood (PML) method.

3.4.2 Pseudo-likelihood estimation

The Pseudo-likelihood estimation method works similarly to the maximum likeli-

hood estimation approach where it requires information about the distribution of

the response variable, however, it takes into consideration the sampling weights in
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the following manner

P` =

H∑
h=1

nh∑
i=1

nhi∑
j=1

ωhij ln f(yhij), (3.39)

where P` represents the pseudo-log likelihood function and whij the weight of ob-

servation yhij . Thus, based on the probability distribution of the response for the

survey logistic logistic regression model, it follows that the Pseudo-log likelihood

function is given by

P` =
H∑
h=1

nh∑
i=1

nhi∑
j=1

ωhij [yhij ln(πhij) + (1− yhij) ln(1− πhij)].

The above equation is maximized with respect to β in order to obtain the model’s

parameter estimates. It can be shown that this process leads to the following set of

estimating equations

S(β) =

H∑
h=1

nh∑
i=1

nhi∑
j=1

whij(yhij − πhij)x′hij = 0. (3.40)

These equations are non-linear functions of β and thus iterative procedures are re-

quired. We will once again consider Newton-Raphson and Fisher Scoring iterative

procedures. Incorporating the above equation into the Newton iterative Equation

3.12, the following is obtained

β̂
(t+1)

= β̂
(t) − (H(t))−1S(β̂)(t), (3.41)

where S(β̂) is Equation 3.40 evaluated at β̂
(t)

and H(t) is the Hessian matrix, H ,

evaluated at β̂
(t)

, such that

H =
∂2P`

∂β∂β′
. (3.42)

Furthermore, incorporating Equation 3.40 into the Fisher Scoring iterative Equation

3.13, we obtain the following
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β̂
(t+1)

= β̂
(t) − (I(t))−1S(β̂)(t). (3.43)

It can be shown that parameter estimates obtained using this PML estimation method

are consistent (Heeringa et al., 2010). While there are various methods of variance

estimation for the survey logistic regression model, only the Taylor series approxi-

mation method will be considered in this thesis.

3.4.3 Tylor series approximation

The estimated variances of the Pseudo Maximum Likelihood parameter estimates

are no longer equal to the inverse of the information matrix, as is the case of the

unweighted generalized linear model discussed in Section 3.1. Thus, Equation 3.18

does not hold for V̂ ar(β̂) when weighting is involved. A Taylor series approxima-

tion to obtain the variance estimates was proposed by Binder (1983), as follows.

As the parameter estimates, β̂, are defined by S(β̂) = 0, the first order Taylor series

expansion of S(β̂) at β̂ equal to its population parameter value, β, is given by

S(β̂) ' S(β) +
∂S(β)

∂β
(β̂ + β). (3.44)

This leads to

S(β̂)− S(β) ' ∂S(β)

∂β
(β̂ + β). (3.45)

By taking the variance of both sides of the above equation, the variance approxima-

tion of S(β̂) can be expressed as

V ar

[
S(β̂)

]
=

[
∂S(β)

∂β

]
V ar(β̂)

[
∂S(β)

∂β

]′
. (3.46)

This can be written as
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V ar(β̂) =

[
∂S(β)

∂β

]−1
V ar

[
S(β̂)

][
∂S(β)

∂β

]−1
. (3.47)

This then leads to the following sandwich type variance estimator

V̂ ar(β̂) =

[
I(β̂)

]−1
V ar

[
S(β̂)

][
I(β̂)

]−1
, (3.48)

where I(β̂) =
∂S(β)

∂β
=

∂2P`

∂β∂β′
is the information matrix evaluated at β = β̂ and

V ar
[
S(β̂)

]
denotes the variance-covariance matrix for the p+1 estimating equations.

As each estimating equation is simply a sample total of the individual scores for

the n observations, standard formulae can be used to estimate the variances and

covariances (Heeringa et al., 2010).

3.4.4 Assessing the model

Goodness-of-Fit

The goodness-of-fit measures discussed for the GLM in Section 3.1.2 are based on

data obtained by simple random sampling. Thus, different methods are required

to assess the goodness-of-fit of a survey logistic regression model, such as an ex-

tension to the Hosmer-Lemeshow goodness-of-fit-test (Hosmer & Lemeshow, 1980).

The Hosmer-Lemeshow goodness-of-fit-test involves partitioning observations into

g (where g is preferably 10) equal sized groups based on their ordered estimated

probabilities, π̂i. The Hosmer-Lemeshow test statistic, which has a Chi-square dis-

tribution with 8 degrees of freedom, is given by

χ2
HL =

10∑
j=1

(Oj − Ej)2

Ej(1− Ej

nj
)
, (3.49)

where

nj = number of observations in the jth group,

Oj =
∑

i yi = observed number of cases in the jth group,
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Ej =
∑

i = π̂i = expected number of cases in the jth group.

An extension of this Hosmer-Lemeshow goodness-of-fit test for the SLR model was

proposed Archer & Lemeshow (2006). It is called the F-adjusted mean residual test,

also referred to as the Archer and Lemeshow goodness-of-fit test, and is estimated

as follows.

r̂ij = yij − π̂(xij). (3.50)

Then using a grouping strategy based on that proposed by Graubard et al. (1997), the

observations are grouped into deciles of risk based on their estimated probabilities

and sampling weights (Archer & Lemeshow, 2006). The mean residuals by decile of

risk is M̂ ′ = (M̂1, M̂2, ..., M̂10) where

M̂g =

∑
i

∑
j wij r̂ij∑

i

∑
j wij

g = 1, 2, ..., 10, (3.51)

where wij denotes the sampling weight associated with observation yij .

The Wald test statistic for testing g categories is given by

Ŵ = M̂ ′
[
V̂ ar(M̂)

]−1
M̂ , (3.52)

where V̂ ar(M̂) denotes the variance-covariance matrix of M̂ , which can be obtained

using the Taylor series approximation discussed in Sub-section 3.4.3 (Archer et al.,

2007). This test statistic has a Chi-square distribution with g− 1 degrees of freedom.

However, this Chi-square distribution is known to be an inappropriate appropriate

reference distribution. Rather, an F -corrected Wald statistic is used instead, which

is given by

F =
(f − g + 2)

fg
W. (3.53)
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This test statistic follows an approximate F -distribution with g − 1 and f − g + 2

numerator and denominator degrees of freedom, respectively. f is the difference

between the number of sampled clusters and the number of strata, and g denotes

the number of categories (Archer & Lemeshow, 2006). This leads to the F -adjusted

mean residual test statistic as follows

Q̂m =
(f − 8)

10f
M̂ ′
[
V̂ ar(M̂)

]−1
M̂ , (3.54)

with g = 10 deciles of risk.

In addition to the above, information criteria such as Akaike’s Information Criteria

(AIC) and Schwarz Criterion (SC) can be used to compare the goodness-of-fit of two

nested models.

Testing Model Parameters

The Survey Logistic regression model parameters are estimated using Pseudo-likelihood

method, which is an estimate of the true likelihood, thus, inferences about parame-

ters cannot be based on the likelihood ratio test (Hosmer Jr et al., 2013). The Wald

test is a more appropriate test, which consist of a null hypothesis in the form H0 :

Cβ = 0, whereC is the matrix of constants that defines the hypothesis being tested.

The statistic is given by

W = (Cβ̂)′
[
C V̂ ar(β̂)C ′

]−1
(Cβ̂), (3.55)

where V̂ ar(β̂) is the estimated variance-covariance matrix for β̂. This test statistic

follows a Chi-square distribution with q degrees of freedom, where q is the rank of

matrix C. Again, as seen in the previous sub-section, it is common to approximate

this Wald test statistic to an F-distribution.
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3.5 Application of the SLR model

The survey logistic regression model was fitted to the data using PROC SURVEY-

LOGISTIC SAS 9.4, which incorporates the complex survey design by accounting

for stratification, clustering (PSU) and unequal weighting. For this analysis, each

learner’s observation was weighted according to their household’s sampling weight,

which was equal to the inverse of the probability of the household being selected to

take part in the survey. These sampling weights were adjusted for non-response and

missing observations. A Taylor series approximation method was used for variance

estimation of the fitted SLR model.

Before the final SLR model was obtained, a univariate SLR model was fitted for each

independent variable to assess its association with the response, being school atten-

dance. Variables that were significant at a relaxed p-value of 20% were incorporated

into the final SLR model. In addition, in order to avoid possible confounding effects

between the independent variables, all two-way interactions between the variables

were explored. Three of the significant interaction effects that substantially reduced

the model’s AIC value were selected for the final SLR model.

The predictive accuracy of the SLR model is assessed using the concordance index

(c), which is the area under the receiver operating characteristic (ROC) curve ranging

from 0 to 1, where the different ranges inform us about the predictive accuracy of

the model, as follows:

• 0 - No association

• (0.5; 0.6) - Poor accuracy

• (0.6; 0.7) - Moderate accuracy

• (0.7; 0.8) - Acceptable accuracy

• >0.8 - Excellent accuracy
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The concordance statistic is calculated as c = [nt − 0.5(t − nc − nd)]t
−1, where nc

represents the number of concordant pairs (a pair is said to be concordant if the ob-

servation with low order has the lower mean score than the observation with higher

order response), while nd represents number of discordant pairs and t reflects the

number of all possible pairs (SAS Institute Inc., 2013).

Table 3.1 presents the final SLR model. Type of place of residence and marital status

were not included in the final model based on the results of the univariate analyses

of these two variables with school attendance. The two-way interaction effects in the

final model included the interaction between the learner’s age and their relationship

to household head, the learner’s age and the survival status of the father, as lastly

the household size and the province of residence. The concordance index of the

final SLR model for the SAGHS data was 80.1%, thus the model has an excellent

predictive accuracy.
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Table 3.1: Analysis of effects for the final SLR model

Effect F-value P-value

Main Effects

Age 115.86 <.001∗

Province 4.38 <.001∗

Gender 1.09 0.2497

Race 19.86 <.001∗

Relationship to the household head 8.80 0.0002∗

Survival status of the father 17.30 <.001∗

Survival status of the mother 0.35 0.5534

Wealth index Z-score for the household 47.61 <.001∗

Household source of income 4.38 0.0126∗

Household size 0.58 0.4458

Total household income (p/m) 2.22 0.1360

Interaction Effects

Age * relationship to household head 10.51 <.001∗

Age * Survival status of the father 19.96 <.001∗

Household size * province 2.56 0.0080∗

∗significant at 5% level of significance

Table 3.2 gives the estimated odds ratios with their 95% confidence intervals for the

variables that were not included in any of the interaction effects. Significance of the

factors were assessed based on the inclusion of 1 in the 95% confidence interval for

the odds ratio. No significant differences in the odds of attending school was seen for

male and female learners, for an increase in the total household income, the survival

status of the mother, and for learners of the White or Indian race group compared

to the African race group. Learners from the coloured race group had a significantly

lower likelihood of attending school compared to learners in the African race group

(OR = 0.423, 95% CI: 0.339-0.527). There was an increased likelihood of attending

school as the learner’s household wealth index Z-score increased (OR = 1.311, 95%

CI: 1.214-1.416). Learners whose household income was based on sources other than
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salaries or pensions had a significantly higher odds of attending school compared to

those whose household income was primarily through salaries (OR = 1.379, 95% CI:

1.113-1.707).

Table 3.2: Estimated odds ratios (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the SLR model

Variables Odds Ratio (95% CI)

Gender (ref = Male)

Female 1.066 (0.945; 1.203)

Race (ref = African/Black)

Coloured 0.423 (0.339; 0.527)∗

Indian 0.635 (0.347; 1.164)

White 0.739 (0.496; 1.101)

Survival status of the mother (ref = No)

Yes 0.941 (0.771; 1.150)

Wealth index Z-score for the household 1.311 (1.214; 1.416)∗

Household source of income (ref = Salaries)

Pension 1.049 (0.884; 1.245)

Other 1.379 (1.113; 1.707)∗

Total Household income (ref = Below R25000(p/m))

Above R25000 1.188 (0.947; 1.490)
∗significant at 5% level of significance

The effects of the interaction between age of the learner and relationship to the head

of household, the interaction between the age of the learner and survival status of

their father, as well as the interaction between the size of the learner’s household and

province of residence on the log-odds of school attendance are presented in Figures

3.1, 3.2 and 3.3, respectively. A positive log-odds is associated with a higher likeli-

hood of school attendance, and a negative log-odds is associated with a decreased

likelihood of school attendance. Based on Figure 3.1, there was a decline in the log-

odds of school attendance with an increase in age for all categories of relationship to

the head of household. After the age of 9 years of age, learners with other relation-
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ships to the household head had the lowest log-odds of attending school. Similarly,

from Figure 3.2, it is observed that the log-odds of school attendance declined with

an increase in age for learners whose fathers were alive as well as not alive. Learners

under the age of 16 years old whose father was still alive surprisingly had a lower

likelihood of attending school. However, learners over the age of 16 years old whose

father was not alive had the lowest likelihood of attending school. Based on Figure

3.3, there was an increase in the log-odds of school attendance as the household size

increased for learners residing in Limpopo, Gauteng and Mpumalanga, while the

log-odds declined with an increase in household size for learners residing in the

other provinces. Learners residing in Limpopo province had the highest likelihood

of attending school.

Figure 3.1: The estimated log-odds of school attendance for the interaction between the age
of the learner and relationship to the head of household
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Figure 3.2: The estimated log-odds of school attendance for the interaction between the age
of the learner and survival status of their father

Figure 3.3: The estimated log-odds of school attendance for the interaction between the size
of the learner’s household and province of residence
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3.6 Summary

This chapter presented an overview of generalized linear models, which is used in

the analysis of a non-normal response. An extension of this class of models, the

survey logistic regression model, was presented to accommodate the analysis of a

binary response based on data obtained from complex survey designs. This is a

designed-based approach which incorporates the sampling weights in the estima-

tion of the parameters and standard errors of the parameter estimates.

In this chapter, the survey logistic regression model was applied to the SAGHS

data to investigate the relationship between the likelihood of a learner attending

school and several individual-level, household-level and geographical factors. This

model assumes that the observations are independent. However, learners residing

in the same communities may be more similar than those form different communi-

ties, which may result in possible correlations in the observations. Thus, the next

chapter considers a statistical approach to deal with such correlations.
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Chapter 4

Generalized Linear Mixed Models

In the case of modelling data from complex survey designs where stratified cluster

sampling methods were used, the design of the study is such that the clusters in-

cluded in the sample represent only a random sample from a population of clusters.

In addition, it is possible that observations within the same cluster are more alike

compared to those from different clusters. Therefore, we cannot assume that the

observations are independent, which is an important assumption of the previously

applied SLR model. In this case, the effect of clustering can be included in the model

via a random effect, which also allows a possible correlation in the observations to be

accounted for. An extension of the generalized linear model to include a random ef-

fect is the generalized linear mixed model (GLMM). The GLMM thus includes both

fixed and random effects, hence it is a mixed model. This chapter gives an overview

of the GLMM and then presents the results of the GLMM applied to the SAGHS data.

4.1 The Model

Suppose Yij is the jth response, j = 1, 2..., ni, for the ith cluster, i = 1, 2, ...,m, and yi

indicates the ni× 1 vector of responses from the ith cluster. In the GLMM, responses

Yij of yi are assumed to be conditionally independent given a vector of normally

distributed random effects, γi. Similar to the GLM, the probability density of the
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response comes from the exponential family, and is given by

f(yij |θij , φ) = exp

{
yijθij − b(θij)

φ
+ c(yij , φ)

}
. (4.1)

The above has the same form as Equation 3.1 in Chapter 3, which means the param-

eters are similarly defined as those in Equation 3.1.

The conditional mean, µij , of Yij is modelled through a linear predictor ηij , which

contains the fixed regression parameters, β, as well as the subject-specific random

effect parameters, γi. Therefore,

ηij = g(µij) = g
[
E(yij |γi)

]
= x′ijβ + z′ijγi,

(4.2)

or in matrix form

g(µ) = Xβ +Zγ. (4.3)

g(.) is the known link function that links the conditional mean of y to the linear pre-

dictors. X is the n× (p+ 1) design matrix for the fixed effects and β is a (p+ 1)× 1

vector of fixed effects regression coefficients. Z is the n × q design matrix for the

random effects and γ is a q × 1 vector of random effect coefficients. It is assumed

γ ∼N(0,G) whereG depends on unknown variance components.

Two approaches can be used to estimate the parameters in a GLMM, a Bayesian ap-

proach and a classical approach that uses maximum likelihood methods (McCulloch

& Neuhaus, 2005). In this thesis, the classical approach using a maximum likelihood

method will be discussed.
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4.2 Estimation

4.2.1 Maximum Likelihood Estimation

The maximum likelihood estimates of a GLMM are obtained by integrating over

the distribution of the p-dimensional random effects. The likelihood, based on the

contribution of the ith cluster, is given by

fi(yij |β,G, φ) =

∫ ni∏
j=1

fij(yij |γi,β, φ)f(γi|G)dγi, (4.4)

where f(γi|G) represents the distribution of the random effects. This leads to the

full likelihood function for β,G and φ, given by

L(β,G, φ) =

m∏
i=1

fi(yij |β,G, φ)

=
m∏
i=1

∫ ni∏
j=1

fij(yij |γi,β, φ)f(γi|G)dγi.

(4.5)

In the case of a normally distributed response, the method of maximum likelihood

for the estimation of fixed effects in the GLMM becomes the same as that for a linear

mixed model (SAS Institute, 2004). However, for many other cases of the GLMM

involving non-normal responses, the likelihood function does not have a closed-

form expression (Jiang, 2001). This is as a result of the likelihood involving high-

dimensional integrals which cannot be evaluated analytically. Thus, approximations

are required to evaluate the likelihood function (Jiang, 2001). The are multiple meth-

ods of approximation, three of which are

• Approximation of integrand

• Approximate the integral

• Approximate the data

For the purpose of this thesis, only a method that approximates the integrand will

be considered.

51



4.2. Estimation

4.2.2 Laplace Approximation

A common method used for an approximation of the likelihood function is the

Laplace approximation, which is based on an approximation of the integrand (Jiang,

2007). Suppose an integral has the form

∫
eQ(x)dx, (4.6)

where Q(x) is a known, unimodal function, and x is a q × 1 vector of variables. If

Q(x) is minimized when x = x̂, then the second-order Taylor series expansion of

Q(x) around x̂ is given by

Q(x) ≈ Q(x̂) +
1

2
(x− x̂)′Q′′(x̂)(x− x̂), (4.7)

where Q′′(x̂) is the Hessian of Q evaluated at x̂. This leads to an approximation of

Equation 4.6: ∫
eQ(x)dx ≈ (2π)

q
2 |Q′′(x̂)|−

1
2 e−Q

′(x̂) (4.8)

The approximation to this integral uses as many different estimates of x̂ as necessary

according to the different modes of functionQ. As γ ∼N(0,G), it can be shown that

the integral in the likelihood Equation 4.5 is proportional to the integral in Equation

4.6, where function Q is given by

Q(γ) = φ−1
ni∑
j=1

[
yij(x

′
ijβ + z′ijγ)− b(x′ijβ + z′ijγ)

]
− 1

2
γ′Gγ. (4.9)

This implies that the Laplace approximation method can be applied to the likelihood

function for a GLMM. This approximation method is better for large cluster sizes and

is improved by adding higher-order terms to the Taylor series expansion.
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4.3 Model Selection

The likelihood ratio test and Wald test (F-test) can be used for inference concerning

the fixed effect parameter estimates obtained through numerical approximations.

The likelihood ratio test can be applied to the data in comparing two nested mod-

els with different mean structures but consisting of the same variance-covariance

structure. In a similar manner, the likelihood ratio test can be used in comparing

nested models with unique covariance structures but consisting of the same mean,

and the inferences of variance-covariance components remain valid for Wald test

approximation. However, if the variance parameter that is being tested takes val-

ues on the boundary of the parameter space, the normal approximation fails. This

means that the test statistics for these tests will not have the traditional Chi-square

distribution under the null hypothesis (Zhang & Lin, 2008). However, when testing

the null hypothesis of no random effects, Zhang & Lin (2008) have show that the test

statistic will be a mixture of Chi-square distributions, rather that the classical single

Chi-square distribution.

4.4 Application of the GLMM

The GLIMMIX procedure in SAS, which is used to estimate and make inferences

for generalized linear mixed models, was used to fit a GLMM to the SAGHS data.

PROC GLIMMIX extends the GLM by incorporating normally distributed random

effects. To account for the effect of clustering, where learners residing in the same

cluster may be more alike with regards to school attendance, a random intercept

term which varies at cluster level was incorporated into the GLMM.

The Laplace approximation procedure was used to fit the final GLMM as it is likeli-

hood based, which makes it possible to compare the models using selection criteria,

such as the AIC and BIC. Another advantage of using the Laplace approximation is

that it is computationally less demanding. The same main effects and two-way inter-
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action effects that were incorporated into the SLR model were incorporated into the

final GLMM. The importance of random intercept was assessed by testing whether

the covariance parameter was equal to zero using the COVTEST in SAS. Table 4.1 be-

low shows the results of testing the effectiveness of the random effect in the model.

Clearly, the null hypothesis of the covariance parameter equal to zero was rejected

as the p-value is small, thus the cluster effect was significant in the model. This

result suggests that learners residing within the same communities may share com-

mon factors that affect their school attendance. Such a common factor may be the

school itself which may contribute to the likelihood of a learner attending school, as

learners within the same community are likely to attend the same school.

Table 4.1: The test for covariance parameters based on likelihood

Label DF -2 Log Like Chi-Sq Pr>Chi-Sq
No G-side effects 1 8348.37 12.50 0.0002

After considering the significance of the random effect in the model, we have to se-

lect/specify the covariance structure which best suits the random effect. There are

a variety of considerations when selecting the covariance structure of random effect

(Kincaid, 2019), this includes the number of parameters, the best covariance struc-

ture (which will allow for easy interpretation), diagnostic results, and effects on the

fixed effects. The covariance structure chosen must limit the number of parameters

as much as possible to make the model less complex, as the complexity of the model

sacrifices power and efficiency. This does not mean we are trying to find the simplest

model as that can increase the possibility of making type I error in the fixed effects

(Kincaid, 2019). Rather, the best covariance structure is selected based on the one that

minimizes the AIC value. There are numerous covariance structures to consider, but

it is not required to check all of them. The most used structures include Unstruc-

tured (UN), Autoregressive order 1 (AR(1)), Variance Component (VC), Compound

Symmetry (CS), Toeplitz (Toep), Heterogeneous AR(1), Heterogeneous CS, and Het-

erogeneous Toep. The GLMM was fitted based on each of these variance structures.

The Variance Component structure produced the minimum AIC value and was cho-
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sen as the best covariance structure for the model. The variance component for this

cluster effect was estimated at 0.2383 with a standard error of 0.07198 as seen in Ta-

ble 4.2. This estimate is relatively far from zero, thus confirming the importance for

this random effect in the model.

Table 4.2: Covariance parameter estimate for the final GLMM

Cov Param Subject Estimate Standard error
Intercept Cluster (PSU) 0.2383 0.07198

Table 4.3 presents the final GLMM. This model found the same significant variables

as the SLR model, except for the main source of household income which was only

significant at a 10% significance level. In addition, the total household income per

month was significant at a 10% significance level.

Table 4.3: Analysis of effects for the final GLMM

Effect F-value P-value

Main Effects

Age 568.55 <0.001∗

Province 3.49 0.0005∗

Gender 0.67 0.4117

Race 18.06 <.001∗

Relationship to the household head 25.44 <.001∗

Survival status of the father 42.09 <.001∗

Survival status of the mother 0.05 0.8186

Wealth index Z-score for the household 54.71 <.001∗

Household source of income 2.39 0.0919

Household size 0.81 0.3671

Total household income (p/m) 3.31 0.0688

Interaction Effects

Age * relationship to household head 29.59 <.001∗

Age * Survival status of the father 48.42 <.001∗

Household size * province 2.18 0.0258∗

∗significant at 5% level of significance
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Table 4.4 presents the estimated odds ratios with their 95% confidence intervals for

the variables that were not included in any of the interaction effects in the fitted

GLMM. These results were similar to that of the SLR model, where learners from

the coloured race group had a significantly lower likelihood of attending school

compared to learners in the African race group (OR = 0.423, 95% CI: 0.335-0.534).

In addition, as the household wealth index Z-score increased, there was an signif-

icant increase in the likelihood of a learner attending school (OR = 1.320, 95% CI:

1.226-1.420). However, unlike the results of the SLR model, there were no significant

differences in the likelihood of a learner attending school for the various sources of

household income.

Table 4.4: Estimated odds ratios (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the GLMM

Variables Odds Ratio (95% CI)

Gender (ref = Male)

Female 1.052 (0.933; 1.186)

Race (ref = African/Black)

Coloured 0.423 (0.335; 0.534)∗

Indian 0.573 (0.309; 1.060)

White 0.725 (0.486; 1.081)

Survival status of the mother (ref = No)

Yes 0.977 (0.804; 1.188)

Wealth index Z-score for the household 1.320 (1.226; 1.420)∗

Household source of income (ref = Salaries)

Pension 1.056 (0.908; 1.229)

Other 1.049 (0.884; 1.245)

Total Household income (ref = Below R25000(p/m))

Above R25000 1.224 (0.985; 1.522)
∗significant at 5% level of significance

The effects of the two-way interactions are presented in Figures 4.1, 4.2 and 4.3.

The interaction effect between the age of the learner and relationship to the head
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of household revealed that learners who were the child or grandchild of the house-

hold head had the highest log-odds of attending school from the age of 9 years old

(Figure 4.1). However, regardless of the relationship of the learner with the head

of the household, the likelihood of attending school decreased with an increase in

age. This is also observed in Figure 4.2 for the interaction effect between the age

of the learner and the survival status of their father, although, the likelihood of at-

tending school was higher for learners under the age of 16 years old whose father

was deceased. Figure 4.3 displays the effect of the interaction between the house-

hold size and province of residence. As revealed by this interaction effect in the SLR

model, there was an increase in the log-odds of school attendance as the household

size increased for learners residing in Limpopo, Gauteng and Mpumalanga, while

the log-odds declined with an increase in household size for learners residing in the

other provinces. Learners residing in Limpopo province had the highest likelihood

of attending school.

Figure 4.1: The estimated log-odds of school attendance for the interaction between the age
of the learner and relationship to the head of household
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Figure 4.2: The estimated log-odds of school attendance for the interaction between the age
of the learner and survival status of their father

Figure 4.3: The estimated log-odds of school attendance for the interaction between the size
of the learner’s household and province of residence
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4.5 Summary

The generalized linear mixed model is an extension of GLM and includes both fixed

and random effects. A random effect assists in accounting for possible correlations

in the observations, as well as the fact that the clusters included in the data only

represent a random sample selected from a population of clusters. The application of

the GLMM is known as a model-based approach where interest is also on estimating

the proportion of variation in the response variable that is attributable to each of the

multiple levels of sampling (Heeringa et al., 2010). While the SLR model was design-

based and did not account for the effect of clustering, similar results were revealed

between the two approaches. The older learners were less likely to attend school,

and learners from the Coloured race group had the lowest likelihood of attending

school. A varying likelihood of school attendance was observed for the different

provinces of residence.
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Chapter 5

Generalized Additive Mixed

Model

The models discussed in the previous chapters, namely the SLR model and the

GLMM, incorporated the effect that a province has on the likelihood of school atten-

dance as fixed. However, it is possible that spatial autocorrelation is present, where

neighbouring provinces may have similar effects compared to non-neighbouring

provinces. Thus, in this chapter, we discuss an extension of the generalized linear

mixed model, which is the generalized additive mixed model (GAMM). The GAMM

enables one to account for spatial variation and spatial autocorrelation by incorpo-

rating a spatial effect as a non-linear random effect in the model. This spatial effect

can be decomposed into two: a structured spatial effect and an unstructured spa-

tial effect. The structured spatial effect accounts for spatial autocorrelation through

a conditionally autoregressive (CAR) structure which makes use of the neighbour-

hood structure of the provinces, where two provinces are neighbours if they share

a border. However, the unstructured spatial effect accounts for spatial variation be-

tween the provinces that is due to the effects of unmeasured factors that are not

spatially related. This unstructured spatial effect assumes an independently and

identically distributed normal distribution.
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In addition to the spatial effects, the GAMM also allows one to explore the non-

linear relationship between the continuous covariates and the response. The SLR

model and the GLMM assumed a linear relationship between all of the explanatory

variables and school attendance, however, it is possible that some of the continuous

covariates have a non-linear effect on the likelihood of school attendance. These non-

linear effects in the GAMM are represented by unknown smooth functions that are

approximated using P-splines with B-splines basis functions (Eilers & Marx, 1994).

In chapter, an overview of the GAMM is presented, as well as the results of the

GAMM applied to the SAGHS data.

5.1 The Model

The generalized additive mixed model is an extension of GLMM which uses non-

parametric functions to model covariates and geospatial effects while accounting

for correlation by adding random effects as predictors (Wood, 2017). The GAMM

was considered due to the hierarchical and spatially distributed nature of the data.

Similar to the SLR model and GLMM, the GAMM can model the probability of a

the kth learner residing in household j and province i attending school, given by

P (Yijkl = 1) = πijkl, by making use of the logit link function. The model is as

follows:

logit(πijk) = x′ijkβ +

P∑
r=1

fr(zijk) + fspat(si), (5.1)

where β is the vector of linear fixed effects of the covariates that are modelled para-

metrically, fr(.), r = 1, . . . , P , are the unknown smooth functions which represents

the non-linear effects of p continuous covariates modelled non-parametrically, and

lastly, fspat(si) is the non-linear spatial effect of the ith province.
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5.2 Estimation of the smooth terms

The smooth functions fr are estimated using the penalised splines (P-splines) with

B-splines basis functions (Eilers & Marx, 1996). This approach presumes that the un-

known functions can be estimated using the polynomial spline of the 1st degree with

knots z{min}r < ξr0 < ξr1 < . . . < ξrnr < z
{max}
r that are spaced equally. The spline is

written in terms of a linear combination ofMr = nr+v B-spline basis functions,Brm,

and regression coefficients of αrm. The function of Mr is made by nr, which repre-

sents the kth order divided difference and v represents the corresponding sequence

of integers as follows:

fr(zr) =

Mr∑
m=1

αrmBrm(zr). (5.2)

The choice of the number of knots is considered an important aspect in approxima-

tion of the smooth function. This is because too many knots may result in estimated

curves that over-fit the data, leading to functions which are too rough. While, too

few results may not be flexible enough to capture variability in the data (Fahrmeir

et al., 2004). Thus, the way to overcome this problem is by estimating a moder-

ately large number of 20-40 equally spaced knots to ensure flexibility. In addition,

the roughness penalty is defined based on 1st and 2nd order differences of the ad-

jacent B-spline coefficients that guarantee sufficient smoothness of the fitted curves

(Fahrmeir et al., 2004). The above mentioned information leads to penalised likeli-

hood estimation that consists of penalty terms given as:

P (λr) =
1

2
λr

Mr∑
m=v+1

(∆vαrm)2, v = 1, 2, (5.3)

where λr is the smoothing parameter and ∆v is the differencing operator of order

v. The 1st order differences penalise abrupt jumps αrm − αr,m−1 between successive

parameters, while the 2nd order differences penalise deviations from the linear trend

2αr,m−1 − αr,m−2.
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5.3 Estimation of Spatial effects

The spatial effect fspat(si) of province si in which the learner resides, s ∈ (1, . . . , 9),

represents the effects of unobserved factors that have not been included in the model

and also accounts for spatial autocorrelation. This spatial effect may be decomposed

into a spatially correlated (structured) and an uncorrelated (unstructured) effect as

follows:

fspat(si) = fstr(si) + funstr(si), (5.4)

where the structured spatial effect fstr(si) accounts for the assumption that learn-

ers in neighbouring provinces are more likely to be correlated with regards to their

outcomes. However, the unstructured spatial effect funstr(si) accounts for the spatial

variation due to effects of unmeasured province-specific factors that are not spatially

related.

A conditional autoregressive (CAR) approach to model the structured spatial effect

is commonly used, where the specification of the structured spatial effect is based on

a Markov process approach adopted from time series analysis. The Markov process

states that the value of a variable at time t + 1 depends only on the previous value.

This idea is extended to the spatial domain by assuming fstr(si) depends only on a

set of neighbours. In other words, fstr(si) depends on fstr(sj) only if province sj is

in the neighbourhood set,Ni, of si. For this conditional autoregressive approach, the

process fstr(si) is called a Markov random field (MRF). The models are constructed

for the distributions of fstr(si)|fstr(sj), sj ∈ Ni (Schabenberger & Gotway, 2017). It

is common to assume each of these conditional distributions is Gaussian, as follows

fstr(si)|fstr(sj), i 6= j, ∼ N

 1

nsi

∑
sj∈Ni

fstr(sj),
1

nsiτ
2
str

 , (5.5)

where nsi is the number of neighbours of province si. Thus, the conditional mean of

fstr(si) is an average of the function evaluations fstr(sj) of neighbouring provinces.
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The variance component tau2str controls the smoothness of the spatial effect and

accounts for spatial variation between the provinces, it is also used to capture the

amount of variation explained by this spatial structure.

The unstructured spatial effect funstr(si) is incorporated into the GAMM as an inde-

pendently and identically distributed random effect, i.e.

funstr(si) ∼ N
(

0,
1

τ2unstr

)
, (5.6)

where the variance component tau2unstr once again controls the smoothness of this

effect. This function for the random effect can also be approximated by a linear com-

bination of B-spline basis functions given in Equation 5.2. However, the regression

coefficients αrm are i.i.d. random effects (Kneib et al., 2008).

5.4 Method of REML

The restricted maximum likelihood (REML) method is a modification of the max-

imum likelihood method first introduced by Patterson & Thompson (1971). It is

used as an alternative for finding the estimates of the variance components in G

for a mixed effect model, where it takes into consideration the loss of degrees of

freedom from the estimation of β, therefore producing unbiased estimates of the

variance components. Thus, it is a useful procedure for inferences about variance

components, particularly in GLMMs. REML optimization is also a common method

for fitting GAMMs with smoothing parameters. A thorough overview of the REML

method for GAMMs is given by Wood (2017).

5.5 Application of the GAMM

For the application of the GAMM, we made use of the R mgcv package where a

REML method of estimation was used. The shapefile of the South African provinces
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were imported into R so that the neighbourhood structure could be constructed.

This neighbourhood structure was then utilised in estimating the structured spatial

effect. In order to determine the best fitting model, the non-linear effect of all of the

continuous covariates was explored. Those that did not display a significant non-

linear effect on the log-odds of school attendance were entered into the final GAMM

as linear fixed effects, along with the categorical explanatory variables. The only two

continuous covariates that displayed a significant non-linear effect on the log-odds

of school attendance were the age of the learner and the number of members that

reside in the learner’s household (household size). Furthermore, the necessity for

the inclusion of the spatial effects were assessed by comparing the AIC and adjusted

R-square values of the models with and without the spatial effects. The spatial model

significantly improved the AIC as well as improved the adjusted R-square value by

1.2%, thus, the results discussed in this section are based on the GAMM with the

structured and unstructured spatial effects according to the province of residence.

5.5.1 Results of the fixed effects

The odds ratios (OR) and corresponding 95% confidence intervals (CI) for the fixed

effects are given in Table 5.1. Based on these results, the gender of the learner still

did not have a significant effect on the likelihood of attending school, as was seen in

the results from the SLR model and GLMM. There was a significantly lower odds of

attending school for learners from the White and Coloured race groups compared

to learners in the African/Black race group. There was no significant difference in

the likelihood of attending school for learners with either parent alive or deceased.

Learners from wealthier households had a significantly higher odds of attending

school compared to those from poorer households (OR = 1.358, 95% CI: 1.259-1.465).

Learners from households with other primary sources of income, other than pension

or salaries, had a significantly higher likelihood of attending school compared to

those in salaried households (OR = 1.355, 95% CI: 1.091-1.683). Similarly, the odds

of attending school was higher among learners in households with a total income

above R25 000 per month (OR = 1.506, 95% CI: 1.198-1.893).
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5.5.2 Results of the non-linear and spatial effects

Table 5.2 provides the significance of each of the non-linear and spatial effects. The

non-linear effect of the learner’s age and household size as well as the unstructured

spatial effect were significant at a 5% level of significance. However, the structured

spatial effect was insignificant. This suggests that the unstructured spatial effect

(provincial-level random effect) was more dominant, thus suggesting that there are

unmeasured province-specific factors that are affecting the likelihood of a learner

attending school, where such factors are not spatially related or common to other

provinces.

Table 5.1: Odds ratio estimates (OR) and corresponding 95% confidence intervals (CI) for
the fixed effects of the GAMM

Variables Odds Ratio (95% CI)

Gender (ref = Male)

Female 1.063 (0.937; 1.206)

Race (ref = African/Black)

Coloured 0.359 (0.284; 0.454)∗

Indian 0.565 (0.300; 1.064)

White 0.604 (0.401; 0.910)∗

Survival status of the mother (ref = No)

Yes 0.915 (0.747; 1.120)

Survival status of the father (ref = No)

Yes 1.121 (0.962; 1.306)

Wealth index Z-score for the household 1.358 (1.259; 1.465)∗

Household source of income (ref = Salaries)

Pension 1.006 (0.861; 1.175)

Other 1.355 (1.091; 1.683)∗

Total Household income (ref = Below R25000(p/m))

Above R25000 1.506 (1.198; 1.893)∗

∗significant at 5% level of significance
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Table 5.2: The approximate significance of smooth terms for the final GAMM

Variable Chi-square P-value

Structured Spatial Effect 200.715 0.3539
Unstructured Spatial Effect 8.066 <0.0001
Age 1904.455 <0.0001
Household size 22.957 0.0002

Figure 5.1 shows the non-linear effect that a learner’s age in years and their house-

hold size has on the log-odds of attending school, along with the 95% confidence

intervals. There was an increased log-odds associated with learners of the ages of

just over 6 to 15 years old, after which the log-odds decreased and was negative.

Thus, learners older than 15 years were associated with a lower likelihood of attend-

ing school. Similarly, learners in the younger age group of 5 to 6 years old had a

lower likelihood of attending school. Based on the estimated non-linear effect of the

household size, the log-odds was negative for households with approximately 8 or

more members. Therefore, learners residing in households with 8 or more members

had a lower likelihood of attending school. The widening of the confidence interval

for the larger household sizes is as a consequence of very few learners in the sample

residing in households of such sizes.

Figure 5.2 reveals the estimated log-odds of school attendance for the structured spa-

tial effect according to the province of residence. While the overall spatial effect was

not significant, this figure showed a varying effect across the provinces. In partic-

ular, provinces in the Eastern part of the country displayed an increased log-odds

and therefore contribute to a higher likelihood of school attendance, with Limpopo

province displaying the highest estimated effect. However, provinces in the Western

part of the country revealed a much lower, negative log-odds. Thus, these provinces

contribute to a much lower likelihood of school attendance for learners residing in

them. Furthermore, this figure reveals that neighbouring provinces seem to have

similar effects on school attendance compared to provinces further away from each

other. Thus, it was necessary to account for spatial autocorrelation, even though the

effect was not strong.
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Figure 5.1: Estimated non-linear effect of the learner’s age in years (top) and the household
size (bottom) on the log-odds of school attendance, along with the 95% confi-
dence intervals.
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Figure 5.2: The estimated log-odds of school attendance for the structured spatial effect
(’Red shading = decreased likelihood’ and ’yellow shading = increased likeli-
hood’)

5.6 Summary

In this chapter, the effect that the province of residence had on the learner’s likeli-

hood of attending school was incorporated as a non-linear spatial effect, rather than

as a linear fixed effect, as was done in the SLR model and GLMM. This allowed

possible spatial autocorrelation to be accounted for in the observations. This spa-

tial effect was decomposed into a structured and unstructured spatial effect. The

structured spatial effect allowed for dependencies in the observations from learn-

ers in neighbouring provinces. This structured spatial effect represents the spatial

variation in the observations that are due to unmeasured, spatially correlated fac-

tors that transcend the boundaries of the provinces. However, the results revealed
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that the structured spatial effect was fairly weak in comparison to the unstructured

spatial effect, suggesting that the contribution that a particular province has on the

likelihood of a learner attending school is due to province-specific factors that are

not shared by neighbouring provinces. The further advantage of the GAMM over

the SLR model and GLMM was that the non-linear effect of covariates could be ex-

plored. This revealed that the learner’s age and household size had a significant

non-linear effect on the likelihood of attending school.
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Chapter 6

Discussion and Conclusion

This thesis aimed to examine the factors affecting school attendance at the basic ed-

ucation level in South Africa for learners under the age of 20 years old who have not

yet matriculated. The school attendance rates were investigated across the provinces

of South Africa as well as according to various socio-economic and demographic fac-

tors. The overall attendance rate was 93.4%, however this rate ranged from 88.4%

in the Northern Cape to 97.6% in Limpopo province. Learner’s in the Colour race

group had the lowest rate of attendance at 86.9%. Three different statistical ap-

proaches were used to determine the factors that were significantly associated with

the school attendance of a learner, as well as determine which factors contributed to a

lower likelihood of school attendance. These approaches included the survey logis-

tic regression model (a design based approach), the generalized linear mixed model

(a model based approach) and the generalized additive mixed model (a model based

approach which incorporated non-linear and spatial effects).

The results of the survey logistic regression model and generalized linear mixed

model largely concurred with each other, where gender had an insignificant effect on

the likelihood of attending school. A significant difference in the odds of attending

school was seen between learners from the Coloured and African race groups, where

Coloured learners had a lower likelihood of attending school. Learners from poorer
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households had a substantially lower odds of attending school. This result was in

agreement with that of other studies, which showed that financial issues were one of

the biggest reasons for non-attendance (Phineas Reuckert, 2019). Significant interac-

tions were found between the age of the learner and their relationship to household

head, between age and the survival status of the father, as well as between the house-

hold size and province of residence. Both interactions involved with the age of the

learner showed a decreases likelihood of school attendance with an increase in age.

The household size had a varying effect on the log-odds of school attendance for the

difference provinces of residence, however learners residing in Limpopo province

had a consistently higher likelihood of attending school compared to those in other

provinces.

Both the SLR model and GLMM assumed a linear relationship between the response

and covariates. However, upon applying the GAMM, the age of the learner and

the household size had a significant non-linear effect on the likelihood of attend-

ing school. In addition, the results of the GAMM revealed spatial variation in the

likelihood of school attendance across the difference provinces of residence. This

spatial variation may be due to unmeasured factors that vary geographically, where

such factors contribute to spatial heterogeneity in the observations. The spatial effect

was incorporated based on the province of residence. Another way to incorporate a

spatial effect is based on the geographical coordinates of the cluster or household of

residence. However, due to confidentiality reasons, these coordinates were not avail-

able for the data. While the structured provincial-level spatial effect did not have a

statistically significant effect on the log-odds of school attendance, the inclusion of

this effect reduced the model’s AIC. Furthermore, the mapping of this effect revealed

a varying log-odds of school attendance, where learners residing in provinces in the

Eastern part of the country had an increased log-odds of attending school, and those

in provinces in the Western part of the country had a decreased log-odds of attend-

ing school. This result is important for policy makers as these provinces should
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be targeted for action. The significance of the provincial-level random effect (the

unstructured spatial effect) suggests that there are province-specific factors that are

primarily responsible for the spatial variation in the likelihood of school attendance

of a learner, as compared to factors that are common among learners in neighbour-

ing provinces.

To the best of our knowledge, this is the first nationally representative study assess-

ing the factors that affect school attendance in South Africa. However, the study

is not without limitations. Some key information regarding non-attendance of a

learner at school was missing from the data. Such as the age at which they stopped

attending school, the reason why they stopped attending as well as whether they

intend on going back to school. All of this information would have been insightful

into further understanding the school attendance rates. In addition, the data was

based on a cross sectional design, thus no causal relationship between the variables

and school attendance can be established. A future direction of this study includes

making use of data from the next SAGHS, where the change in the school attendance

rates can be assessed. In particular, making use of spatial-temporal modelling to in-

vestigate how the school attendance rates vary over the provinces of residence as

well as over time.
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Appendix A

A.1 SAS and R-codes

The SAS and R codes used in the final models for analysis of GHS data:

Final Correspondence Analysis

*Perform Multiple Correspondence Analysis*

proc corresp mca observed data=library.filter5-new;

tables race prov q11relsh1 q13aFath1 q14aMoth1;

run;

Final Survey Logistic Regression

proc surveylogistic data=library.filter5-new;

*Perform Survey Logistic*

class gender prov race q11relsh1 Q12aMARST1 Q13aFATH1(ref=’No’)

Q14aMOTH1(ref=’No’) Q89bMain1(ref=’Other’) totmhinc1 / param=reference;

model q110atte(event=’Yes’) = age*q11relsh1/*(continuous and Categorical)*/

age*q13afath1/*(continuous and categorical)*/ prov*hholdsz/*(categorical and

Continuous)*/ age prov gender race q11relsh1

q13aFATH1 Q14aMOTH1 WI-Zscore Q89bMain1 hholdsz totmhinc1 / df=infinity ;

strata stratum;
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cluster PSU;

weight house.wgt;

run;

Final Generalized Linear Mixed Model

*Perform GLMM model*;

proc glimmix data=library.filter5-new method=laplace;

class UqNr PSU gender(ref=’Female’) prov race q11relsh1 Q13aFATH1(ref=’No’)

Q14aMOTH1(ref=’No’) Q89bMain1(ref=’Other’) totmhinc1;

model q110atte(event=’Yes’) =age*q11relsh1 age*q13afath1 prov*hholdsz age prov

gender race q11relsh1 q13aFATH1

Q14aMOTH1 WI-Zscore Q89bMain1

hholdsz totmhinc1 / dist=binary link=logit s;

random intercept /subject=PSU type=VC;

covtest ”No G-side effects” zeroG;

run;

Final Generalized Additive Mixed Model

*Perform GAMM model*;

spat3=gam(Q110ATTE WI-Zscore+factor(q11relsh)+factor(q13aFath)+factor(q14aMoth)+

factor(q89bMain)+factor(totmhinc)+factor(Race)+factor(Gender)+s(Prov-ID,bs=”mrf”,xt=xt)+

s(Prov-Random,bs=”re”)+s(Age)+s(hholdsz), family = binomial, data = FILTER5.NEW2,

method=”REML”)

summary(spat3)

AIC(spat3)

plot(spat3,shade=TRUE)

abline(h = 0, lty = 2)

plot(spat3, pages=1 , scale = F, shade = T)
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