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Summary 

 

The human immunodeficiency virus (HIV) and tuberculosis (TB) epidemics are major 

global public health challenges. Worldwide, approximately 42% of TB patients are also 

co-infected with HIV, and sub-Saharan Africa (SSA) is home to the majority of the world’s 

infections of both HIV and TB. Dual infection has been shown to be associated with a 

higher risk of death. Integrating drug treatment for both diseases is therefore essential to 

improve survival. However, drug interactions between antiretroviral therapy (ART) and 

anti-TB medication remain a challenge to effective treatment integration. Although 

several drug interactions have been identified, only some are clinically relevant. The 

impact of significant interactions on public health outcomes is expected to be greatest 

when large numbers of patients are prescribed interacting drugs.  

Efavirenz (EFV) is the most commonly prescribed nucleoside reverse transcriptase 

inhibitor (NNRTI) component of first line ART in sub-Saharan Africa, particularly when 

rifampicin (RIF) based TB treatment is co-administered. RIF is known to up-regulate 

cytochrome P450 (CYP450) drug metabolizing enzymes resulting in decreased exposure 

to concomitantly administered drugs that utilize similar metabolic pathways. Therefore, 

the concomitant use of EFV with RIF would be expected to increase EFV clearance while 

absorption of TB drugs may also be compromised by advanced HIV disease. The 

efficacy of both TB and HIV treatment may thus be compromised by pharmacokinetic 

interactions, while more recent evidence also implicates genetic variation in drug 

metabolism as a predictor of drug exposure. 

To understand the significance of the EFV-RIF interaction better in a South African 

population, the pharmacokinetics of EFV during and after RIF-based TB treatment were 

investigated as an ancillary study of the ‘Starting Tuberculosis and Antiretroviral Therapy’ 

(START) trial (CAPRISA 001: NCT00091936). Participants were randomized to receive 

both ART and TB treatment simultaneously (integrated arm) or to initiate ART only on 



xiv 

completion of TB treatment (sequential arm). In both arms, the ART regimen included 

once daily enteric-coated didanosine (400 mg for participants >60 kg; 250 mg for 

participants <60 kg), lamivudine 300mg and efavirenz. Based on the expected drug 

interactions, when EFV was administered in the presence of TB treatment, participants 

weighing less than 50kg received 600mg and those weighing 50kg or more received 

800mg daily. After TB treatment was successfully completed, all patients received EFV 

600mg. 

Blood samples for trough EFV plasma concentrations were obtained at the end of months 

1, 2 and 3 during TB treatment and at the same time points after TB treatment was 

successfully completed. Additionally, approximated peak RIF concentrations were 

measured 2.5 hours post-dose at the end of months 1, 2 and 3 of TB treatment. The 

influence of single nucleotide polymorphisms, in CYP2B6, CYP2A6, and UGT2B7 on 

EFV concentrations, and in drug transporter genes (SLCO1B1) on RIF concentrations, 

was assessed post-trial from stored peripheral blood mononuclear cell (PBMC) samples.  

EFV concentration-time data were analyzed using a population pharmacokinetic non-

linear mixed effects model (NONMEM) to quantify the impact of RIF-based TB treatment 

on EFV clearance. Unexpectedly, there was an overall 29.5% reduction in EFV clearance 

during TB treatment. A bimodal distribution of EFV apparent clearance (CL/F) was 

evident and indicated that slow EFV metabolisers accounted for 21.9% of the population. 

EFV clearance after oral administration in fast metabolisers was 11.5 L/h/70kg off TB 

treatment and 7.6 L/h/70kg when on TB treatment. In slow metabolisers, however, the 

clearance estimates were 2.9 and 4.3 L/h/70kg in the presence and absence of TB 

treatment respectively.  

Building on the findings of the NONMEM analysis and in response to the US FDA 

prescribing change in 2012, that approved an EFV dose increase from 600mg to 800mg 

in patients weighing 50kg and more when on concomitant RIF, the presence and 
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influence of pharmacogenetic polymorphisms of the CYP450 enzyme system on NNRTI 

plasma exposure during and after TB co-treatment and the effect of increasing the EFV 

dose was investigated. During TB treatment, median (IQR) EFV Cmin was 3.2 (2.6-6.3) 

µg/mL and 3.3 (2.4-9.5) µg/mL in the EFV 800mg and 600mg groups respectively, while 

off TB treatment Cmin was 2.0 (1.4 - 3.5) µg/mL. The frequency of the CYP2B6 *1, *6 

and *18 haplotypes was 18.5%, 38.9% and 25.9% respectively. Polymorphisms in all 

three CYP2B6 genes studied (516T-785G-983C) were present in 11.1% of patients. 

Median (IQR) EFV concentrations in patients with the three mutations were 19.2 (9.5-20) 

µg/mL and 4.7 (3.5-5.6) µg/mL when on and off TB treatment. TB treatment, composite 

genotypes CYP2B6 516 GT/TT, CYP2B6 983 TC/CC or being a CYP2A6*9B carrier 

predicted median EFV Cmin > 4 µg/mL. Therefore, increasing the EFV dose to 800mg 

during TB treatment is unnecessary in African patients with these polymorphisms.  

As a critical component of first line TB treatment concerns about sub-optimal TB drug 

bioavailability were examined for RIF. The influence of drug transporter gene 

polymorphisms on RIF concentrations was also assessed. Median RIF (IQR) C2.5hr was 

found to be 3.6 (2.8-5.0) µg/mL while polymorphism frequency of the SLCO1B1 

(rs4149032) drug transporter gene was high (0.76) and was associated with low RIF 

concentrations as was male gender and having a low haemoglobin. Increased RIF 

dosage warrants urgent consideration in African TB-HIV co-infected patients.  

In conclusion, concomitant RIF-containing TB treatment unexpectedly reduced EFV CL/F 

with a corresponding increase in EFV exposure. Polymorphisms of EFV metabolizing 

enzymes were frequent in this population and contribute to this outcome. While in South 

Africa where TB-HIV co-treatment is associated with elevated EFV concentrations, peak 

RIF concentrations were alarmingly low and well below the recommended target range of 

8 to 24 µg/mL. Increased RIF dosage may be warranted in African TB-HIV co-infected 

patients whilst the need for EFV dose increase is not supported by these data.  
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Recommendations for public health benefit, in this generalized epidemic in South Africa, 

include the consideration of an EFV dose reduction as a cost saving to improve life-long 

treatment sustainability, and a RIF dose increase to curb TB treatment failure and future 

development of multiple-drug resistant (MDR) TB. 
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Structure of the PhD thesis 

The PhD thesis is structured in accordance with guidance provided by the College of 

Health Sciences, University of KwaZulu-Natal for the thesis by publication format. 

There is a single reference list in the Vancouver format for references cited in chapters 1 

and 3. The chapters are divided as follows: 

Chapter 1: Introduction  

This chapter provides an overview and appraisal of the TB and HIV epidemics, the need 

for co-treatment integration and barriers associated with co-treatment. It also provides a 

review of the literature assessing the EFV-RIF drug-drug interaction and the influence of 

pharmacogenetics on EFV pharmacokinetics. Chapter 1 ends with the outline of the 

rationale for the work undertaken and the study objectives. 

Chapter 2: Publications 

This chapter contains the four, first authored publications arising from the findings of the 

PhD work and includes one commentary to Journal Watch. The PhD candidate’s 

contribution to each publication is summarised and a brief discussion of each publication 

is presented. Each article stands alone and details its own methodology, statistical 

considerations and references. There may be unavoidable duplication of aspects of the 

discussion in Chapters 2 and 3. 

Chapter 3: Conclusion 

This chapter provides an overarching discussion of the major findings from the PhD and 

compares and contrasts these with current knowledge, detailing the novel contribution of 

the work. Future recommendations for research and practice along with study limitations 

are also described in this chapter. 

Appendices: 

The appendices contain summaries of the five co-authored publications that have 

contributed to advancing TB and HIV treatment integration, some of which, have had a 

direct impact on policy and practice. A summary of the START trial, regulatory approvals 

for the START trial and the PhD study analysis, informed consent forms, assay 

information and NONMEM code can also be verified in this section.
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CHAPTER 1: INTRODUCTION 
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1.1 Background and literature review 
 

1.1.1 The HIV and TB epidemics in Southern Africa 

Between 2001 and 2013, there was a 38% reduction in annual incident HIV infections [1]. 

Despite this remarkable success, in 2013, the HIV epidemic remains a major public health 

burden with 35 million people living with HIV, 2.1 million new infections and 1.5 million AIDS 

related deaths globally [2]. Notably, the majority of all infections are found in sub-Saharan 

Africa, which is reported to be home to 24.7 million HIV infected individuals [2].   

Developing countries, in particular, face a higher burden of HIV disease and increased 

susceptibility to other infectious opportunistic diseases like TB [3]. The proportion of TB 

cases co-infected with HIV is highest in African countries (Figure 1) [4] . In South Africa, 73% 

of patients diagnosed with active TB are estimated to also be HIV-positive [3], whereas this 

proportion is estimated to be at around 42% globally. Further, HIV-positive patients show a 

20-37 fold increased risk of developing active TB than those who are HIV-negative [5]. 

Mortality rates are also high among TB-HIV co-infected individuals. In 2013, 360 000 people 

died of HIV-associated TB, making TB the leading cause of death in HIV-infected individuals, 

with African women bearing a disproportionate burden of the mortality risk when co-infected 

[4]. 

Since 2004, there have been tremendous gains in treatment coverage for HIV and it is 

estimated that by 2015, approximately 15 million people will be on ART. Despite this 

achievement, many TB-HIV co-infected individuals are not yet receiving ART. In sub 

Saharan-Africa, which houses 75% of the world’s TB infections, only two countries, Kenya 

and Malawi, are delivering ART to more than 50% of those TB co-infected [1]. One of the 

main factors impacting on the suboptimal treatment coverage for dually infected patients is 

the complexity associated with integrating the treatment for both diseases. 
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Figure 1: Estimated HIV prevalence in new and relapse TB cases from the 2014 Global TB report [4]. 

1.1.2 The traditional barriers to HIV and TB treatment integration  

Strategies, policies and treatment guidelines to effectively integrate the management of both 

diseases are critical, but have been impeded by the lack of rigorous and consistent evidence 

for treatment integration early on in the HIV epidemic [6].  

Barriers to integrated HIV and TB treatment have traditionally included a lack of rigorous 

empiric evidence on how to safely manage co-infected patients [7], including the lack of clear 

clinical guidance on immune reconstitution inflammatory syndrome (IRIS) detection and 

management; fear of potential drug-drug interactions; fear of additive drug toxicities and 

tolerability issues and the assumed adherence challenges associated with high pill burdens 

[8, 9]. Facilities to treat HIV and TB have also traditionally been separate, thus further 

complicating the integration of HIV and TB treatment.  
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Balancing the need for treatment (Figure 2) meant outweighing the risks associated with co-

treatment versus the risks associated with delaying HIV treatment to after TB cure is 

achieved. 

 

Figure 2: Balancing the scales in early vs delayed HIV-TB treatment integration 

 

1.1.3 The need for HIV and TB treatment integration  

Prior to 2010, due to lack of rigorous clinical trial evidence, it was not known whether TB and 

HIV treatment could be concurrent, how co-administration should be timed and whether it 

was safe to administer the treatments together. The indecision on how to treat TB and HIV 

co-infected individuals at a provider level was influenced by the barriers described above as 

well as the lack of firm guidance from global policies.  

     

HIV-TB TREATMENT INTEGRATION 

 

                                 

 

 

 

 

EARLY TREATMENT 
INTEGRATION     DELAYED HIV TREATMENT OR  
                                                                                      SEQUENTIAL TREATMENT HIV 

TB 
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In 2010, results from the CAPRISA 003, ‘Starting antiretrovirals at three time points in 

tuberculosis treatment’ (SAPiT) trial provided the first clinical trial evidence on how best to 

treat TB-HIV co-infected individuals [10]. This study of 642 South African patients showed a 

56% relative reduction in risk of death in patients who received integrated treatment 

compared to those who initiated their HIV treatment after completing TB treatment. The trial 

was halted early so that all patients could benefit from integrated treatment. These survival 

benefits rapidly contributed to informing TB-HIV co-treatment policy and practice [11].  

Further data published from the SAPiT study in 2011 indicated that when deciding on the 

timing of integrated TB and HIV treatment, early initiation of ART (four weeks after the start 

of TB therapy) in patients with CD4 counts less than 50 mm3 was associated with increased 

AIDS-free survival. While deferral of ART to the first four weeks of the continuation phase of 

TB treatment, in patients with higher CD4 counts, reduced the risk for IRIS and other 

adverse events without increasing the risk for HIV disease progression or death [12].  

Other studies have also confirmed these findings. In the Cambodian early versus late 

introduction of antiretrovirals (CAMELIA) trial published in 2011, 661 Cambodian patients 

were randomized to either early treatment (2 weeks after beginning TB treatment) or later 

treatment (eight weeks after TB treatment start) with concomitant ART [13]. Mortality was 

significantly reduced in the earlier treatment group compared to the later treatment group but 

the risk of IRIS was reported to be higher. The authors concluded: “… initiating ART 2 weeks 

after the start of TB treatment significantly improved survival among HIV-infected adults with 

CD4+ T-cell counts of 200 mm3 or lower” [13].  

The multi-center, ‘A strategy of immediate versus deferred initiation of antiretroviral therapy 

for AIDS disease-free survival (STRIDE) trial’, conducted in 809 patients from various 

countries whose CD4 counts were less than 250 cells/mm3, compared earlier ART (within 
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two weeks after TB treatment start) with later ART (between eight and 12 weeks after the 

initiation of TB treatment [14]. This study found that overall earlier ART did not decrease the 

risk of new AIDS defining illness, but in patients with very low CD4 counts of less that 

50cells/mm3 earlier ART was associated with lower rates of new AIDS defining illness and 

death [14].  

With regards to non-IRIS related reports of grade 3 or 4 adverse events, two of these three 

major clinical trials showed similar rates between early and late treatment arms and the 

majority of patients tolerated co-treatment fairly well [14, 15]. In the CAMELIA trial, although 

serious adverse events were similar between treatment arms, hepatotoxicity accounted for 

43% of all serious drug related toxic events and drug toxicity was found to be the second 

most common cause of death in this trial, after TB itself [13].  

The latest UNAIDS report [2] shows that after 2010 (Figure 3), there was a concerted effort 

by the top 10 countries most affected by dual epidemics, to prioritize TB-HIV treatment 

integration with South Africa leading the way. Undoubtedly, the results of the three major 

clinical trials discussed have played a central role in informing policy and practice.    

In summary, from these large clinical trials, we have learnt that the goals for combined 

treatment of HIV and TB are as follows: 

 1) To reduce morbidity and mortality associated with both diseases 

2) Ensure safe timing of ART initiation after TB treatment is commenced. This is best guided 

by the immune status of the patient, using the CD4 cell count as a guide in order to reduce 

the risk of IRIS.  
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Figure 3:TB patients receiving antiretrovirals in the 10 countries representing more than 80% of TB-HIV 
co-infected patients [2] 

 

1.1.4 Drug interactions between TB and HIV drugs 

 

In South Africa, standard first line TB drugs used for treatment of uncomplicated pulmonary 

TB are dosed daily and are dependent on body weight [16]. Prior to 2008, TB treatment was 

dosed for five days of the week with drug breaks allowed on weekends [17]. The weekday 

only dosing strategy was standard of care when the data for the PhD study was collected.  

The typical first-line TB treatment course comprises of a minimum of a two month intensive 

treatment phase containing a four drug regimen (RIF, isoniazid, ethambutol and 

pyrazinamide) followed by a minimum four month continuation treatment phase consisting of 

two drugs only, RIF and isoniazid [16].  

RIF is a critical and potent component of first-line, multi-drug TB therapy because of its early 

sterilizing activity against Mycobacterium TB in the intensive phase of treatment and 

because of its sustained activity against persistent bacilli throughout the continuation phase 

of TB treatment [18, 19]. 
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First line ART consists of a combination treatment of at least three drugs consisting usually 

of an appropriate non-nucleoside reverse transcriptase inhibitor (NNRTI) with two nucleoside 

reverse transcriptase inhibitors (NRTI). Second line treatment consists of a protease inhibitor 

backbone with appropriate NRTIs (Table 1), again comprising a minimum three drug 

combination [20].  

Table 1: Approved antiretroviral agents registered for use in South Africa (2014) 

Class Drug 

Nucleoside reverse transcriptase inhibitors 

(NRTI) 

Lamivudine, stavudine, didanosine, 

emtricitabine, zidovudine, abacavir, 

Nucleotide reverse transcriptase inhibitors 

(NtRTI) 

Tenofovir 

Non-nucleoside reverse transcriptase 

inhibitors (NNRTI) 

Efavirenz, nevirapine, etravirine 

Protease inhibitors (PI) Lopinavir/ritonavir, ritonavir, indinavir, 

nelfinavir, saquinavir, fosamprenavir, 

atazanavir, darunavir 

Integrase inhibitors  Raltegravir 

Adapted from: South African Medicines Formulary, 2014 [21] 

 

Typically, a drug interaction occurs when a substance (usually another drug) affects the 

activity of one drug when both drugs are administered together. The effect of co-

administration could be synergistic (enhanced) or antagonistic (diminished), or a new effect 

could be produced that neither drug exhibits on its own. Drug interactions can also exist 

between drugs and certain foods or between drugs and plants or ‘herbal medication’ [22]. 

Following oral administration (Figure 4), drug interactions may be mediated at four stages of 

drug disposition. The most significant factors affecting the co-administration of antiretroviral 

(ARV) and TB drugs include: malabsorption due to disease, drug-drug interactions including 
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competition between two drugs for protein binding site and changes in hepatic elimination 

that are drug-induced [23, 24].  

 

Figure 4: Drug interactions following oral administration may be mediated at four stages of drug 

disposition (from Gengiah et al. [24] Paper I)  

Malabsorption of TB drugs has been shown to occur in patients with advanced HIV disease 

when the gut integrity is compromised [25-28]. This may have a potentially detrimental 

impact on TB treatment outcomes due to lower drug exposure and is an important factor to 

consider when co-treating patients. However, drug-drug interactions that influence 

gastrointestinal and hepatic metabolism of TB and HIV drugs are most likely to result in 

clinically significant interactions [29-31].  

The rifamycin class of TB antimicrobials consist of rifampicin (RIF), rifabutin (RFB) and 

rifapentine (RFP).The main drug-drug interactions expected between TB treatment and 

ARVs are most frequently related to alterations in hepatic elimination involving the rifamycin 

class of anti-TB drugs with the NNRTI and the PI classes of ARV drugs [30, 32].  

TB-HIV drug interactions occur due to substrate activity and either inhibition or induction of the 

hepatic cytochrome (CYP450) monooxygenase enzyme system, by either class of drug, 

resulting in changes in metabolism of one or both interacting drugs [30]. The CYP450 isoforms 
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that appear most frequently associated with TB-HIV drug interactions are CYP-3A4, 2B6, 

2C19, 1A2 and 2D6 [23, 30, 33], (Figure 5). Polymorphisms of these enzymes affect the 

functional ability of these enzymes to metabolize drugs optimally [31]. Additionally, modulation 

of the P-glycoprotein cellular transport system in the intestinal mucosa can also increase the 

efflux of drugs from cells and reduce optimal absorption and plasma exposure of affected 

drugs [30].  

The resultant effect following hepatic- or transporter-mediated pharmacokinetic interactions 

may impact the treatment outcome in two ways, depending on the potency of the effect: sub 

therapeutic concentrations may result in treatment failure and higher concentrations may be 

associated with treatment-limiting toxicity [30, 34]. 

 

Figure 5: Possible metabolic drug interaction and the CYP450 system (from Gengiah et al [24] Paper I) 

RIF is an inducer of both CYP 450 enzymes and P-glycoprotein [30, 35-37], and is known to 

potently induce CYP3A while it is a strong inducer of CYP2B6 [38]. The relative extent of 

CYP3A induction is: RIF > rifapentine >rifabutin [38] but RIF’s concentration is not influenced 

by CYP3A induction. RIF is also the most commonly available rifamycin and is used 
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throughout the course of first-line TB treatment. Therefore, the ‘RIF effect’ on concomitant 

ARV drugs needs to be anticipated and managed for the entire six to nine months of the TB 

treatment course.  

Both efavirenz (EFV) and nevirapine (NVP) are metabolized by the CYP450 enzyme system. 

The CYP2B6 isoform is primarily responsible for EFV metabolism and the CY3A4 isoform is 

primarily responsible for NVP metabolism and to a less significant extent for EFV metabolism 

[33]. Both EFV and NVP also have the ability to induce the enzymes that are responsible for 

their own metabolism and may increase the clearance of co-administered drugs that share 

these metabolic pathways [33].  

The other first–line TB drugs, ethambutol and pyrazinamide, although metabolized in the 

liver, do not significantly influence the CYP450 monooxygenase enzyme system in humans 

[39], although conversely, isoniazid is known to competitively inhibit CYP2C19 and CYP3A 

[40].  

Protease inhibitors (PIs) are also associated with many clinically relevant drug interactions 

[30]. PIs are mostly substrates of CYP3A4 and P-glycoprotein, with the exception of 

nelfinavir which is metabolized by CYP2C19 [29]. Ritonavir (RTV) has the ability to potently 

inhibit CP3A4 and P-glycoprotein efflux pumps and this property has been used to 

therapeutic advantage in combination with other PIs. These combinations of low-dose RTV 

and PIs, commonly referred to as boosted PIs, show enhanced activity by virtue of increased 

plasma concentrations and increased likelihood of viral suppression [41].  

Co-administering un-boosted PIs with RIF have been shown to result in a greater than 90% 

reduction in PI trough concentrations [42, 43]. Boosting with low-dose ritonavir (RTV) may 

not be sufficient to overcome the RIF effect [44-46] and higher doses of RTV (super-boosted 

PIs) may need to be considered [45].  
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In the South African TB-HIV context, the majority of patients requiring co-treatment would 

receive a RIF-based first line TB treatment regimen and an NNRTI containing first line ART 

regimen, with EFV being the preferred NNRTI to use during TB co-treatment [47-49]. Drug 

interactions between these drugs would therefore have the highest public health impact and 

are thus the focus of further study. 

1.1.5 Focusing on the RIF-EFV drug-drug interaction  

 

EFV was first registered by the FDA in 1998 for use in the treatment of HIV [50] and there 

has subsequently been extensive clinical experience with this popular NNRTI. Study of 

population PK based on modelling 16 phase I studies in 2002 predicted a lower clearance in 

Asian and Black patients relative to Caucasians and identified interactions with several drugs 

including fluconazole, ritonavir, azithromycin, indinavir and RIF [51].  

EFV has been shown to have high inter-patient and low intra-patient variability in PK 

parameters, with a suspected inverse correlation of concentrations with viral load and a 

direct correlation with concentration and toxicity, making it a drug with required 

characteristics for therapeutic drug monitoring (TDM) [52].  

In subsequent clinical studies, hepatic clearance of EFV appears to be 28% higher in white 

non-Hispanics than in African Americans. Being Hispanic and having higher adherence was 

associated with increased EFV exposure, however, if previously NNRTI exposed, then 

increases in EFV clearance were associated with virological failure [53]. Another trial has 

shown that Asian patients exhibit lower EFV clearance compared to South African, South 

American and other Western country patients [54]. 

As reported previously, RIF up-regulates cytochrome P450 (CYP450) drug metabolizing 

enzymes resulting in decreased exposure to concomitantly administered drugs that utilize 
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similar metabolic pathways [23, 37, 55]. The often cited study by Marzolini et al [56] 

demonstrated that steady state/trough EFV concentrations below 1.0 µg/ml are associated 

with virological failure and those above 4.0 µg/ml are associated with central nervous system 

(CNS) toxicity. The goal therefore during EFV co-treatment with RIF is to maintain 

concentrations within therapeutic range of 1.0-4.0 µg/ml to reduce the risk of virological 

failure with possible emergence of drug resistance and to monitor for treatment limiting 

toxicity when the therapeutic range is exceeded. 

The first available data demonstrating a deleterious effect of RIF on EFV was published in 

2002 by Lopez-Cortez et al. in a small group of Spanish patients (Table 2) [57]. 

Pharmacokinetic (PK) interactions and adverse event reports for studies from a variety of 

populations, that have monitored combined EFV and RIF treatment since 2002, are 

summarised in Table 2. Body weight and racial differences are demonstrated as important 

determinants of EFV disposition [57-59]. In addition, there is high inter-patient variability in 

EFV PK parameters, especially in the presence of TB treatment [49, 58, 60]. The variability 

in patients’ EFV exposure is also unusual. Several studies have demonstrated that patients 

of similar weight and ethnicity to their cohort present with extremely high EFV 

concentrations, which could be up to five times the upper limit of the therapeutic range [60-

63].  

Only one other South African study assessed the EFV 800mg dose in Black, African patients 

[64]. This study found that EFV concentrations were significantly increased in the higher 

dose and no significant deleterious effect of RIF on EFV 600mg concentrations were 

observed when regimens were co-administered.
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Table 2: Pharmacokinetic interactions between EFV and RIF in TB-HIV co- infected adult patients 

Study Race 

(N) 

EFV dose 

On TB Rx 

Median 

EFV conc 

on RIF 

Median EFV 

conc off 

RIF 

Key Pharmacokinetic effect Adverse event reports 

Lopez-Cortes et al, 

2002 [57] (Spain) 

W (24) 600mg (n=8) 

800mg (n=8) 

800mg (n=8) 

NA NA 18%↓ Mean trough concs 
24%↓ Mean peak concs 
10%↓ AUC 

CNS toxicity (n=6), rash (n=2), 
transient raised ALT/AST 
(n=3) 

Pedral-Sampaio, 

2004 et al [65] 

(Brazil) 

W(49) 600mg (49) NA NA NA CNS toxicity (n=7), rash (n=1), 
transient raised ALT/AST 
(n=4), IRIS (n=7) 

Brennan-Benson et 

al, 2005 [61] 

(England) 

W (1) 

AF(8) 

800mg (n=8) 

600mg (n=1) 

11.68 µg/ml NA ↑ Trough median concs 
11.68 µg/ml (IQR: 5.37 -19.6 
µg/ml) 

CNS toxicity (n=6), transient 
raised ALT/AST (n=1) 

Manosuthi et al, 

2005, 2006 [66, 67] 

(Thailand) 

As (84) 600mg (n=42) 

800mg (n=42) 

3.02 µg/ml 

3.39 µg/ml 

NA EFV>4 µg/ml: 
40%: 600mg grp 
45%: 800mgg grp 

CNS toxicity (n=1), rash (n=1), 
transient raised ALT/AST 
(n=1) 

Lopez-Cortes et al, 

2006 [68] ( Spain) 

W (80) 800mg (n=80) 1.39 µg/ml EFV 600mg: 

1.28 µg/ml 

EFV 800mg +RIF concs similar 
to EFV 600mg –RIF 

CNS toxicity (n=16), 
rash(n=6), 
transient raised ALT/AST 
(n=5) 

Friedland et al, 2006 

[60] (South Africa) 

AF(20) 600mg (n=20) 1.73 µg/ml 1.38 µg/ml EFV concs inter-subject 
variability: 
On RIF: CV 157%, Off RIF: CV 
58% 

CNS toxicity (n=7), 
hepatotoxicity: (n=1) 

Matteelli et al, 2007 

[58] (Italy) 

W (n=29) 800mg (n=16) 

Controls 

(n=13): EFV 

600mg no RIF 

1.5 µg/ml 1.6 µg/ml Mean EFV CL/F/Kg: 
EFV 800mg: 0.269 L/h/kg 
Controls: 0.167 L/h/kg 
EFV conc inter-subject variability: 
On RIF: CV 93%, Off RIF: CV 
62% 

CNS toxicity (n=2) 
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Study Race 

(N) 

EFV dose 

On TB Rx 

Median 

EFV conc 

on RIF 

Median EFV 

conc off 

RIF 

Key Pharmacokinetic effect Adverse event reports 

Sathia et al, 2008 

[63] 

(India) 

As (n=20) 600mg( n=3), 

if <50kg 

800mg (n=7), 

if >50 kg 

1.77 µg/ml 2.19 µg/ml 50%: had therapeutic EFV conc 
when on RIF 

30%: were over therapeutic 
range on RIF 

NA 

Stohr et al, 2008 [59] 

(England) 

W (n=225) 

AF (n=114) 

On RIF (n=56) 

800mg (n=48) 

600mg (n=8) 

No TB RX 

(n=272) 

NA NA 
 

On RIF: 
↓ EFV conc by 35% 

NA 

Manosuthi et al 2009 

[49]  

(Thailand) 

As (n=121) 600mg 

(n=121) 

3.54 µg/ml NA EFV conc inter-subject variability: 
On RIF: CV 107% 
4.3%: had below -therapeutic 
EFV conc when on RIF 

Rash: (n=3), hepatotoxicity: 
(n=1) 

Orrell et al, 2009 [64] 

(South Africa) 

AF (n=72) 600mg (n=34) 

800mg (n=38) 

2.4 µg/ml 

2.9 µg/ml 

2.2 µg/ml EFV 800mg: 3% had below -
therapeutic EFV concs when on 
RIF 
EFV 600mg: 12% had below -
therapeutic EFV concs when on 
RIF 

Hepatotoxicity: (n=2) 

Leutkemeyer et al, 

2013 [69] 

(Multi-country) 

W (n=26) 

AF (n=403) 

His 

(n=108) 

As (n=5) 

600mg 

(n=780) 

1.96 µg/ml 

Blacks: 

2.08 µg/ml 

1.80 µg/ml 

Blacks: 

1.75 µg/ml 

Weights <60Kg associated with 
higher EFV Cmin: 2.02 µg/ml 
> 60kg: 1.68 µg/ml 

CNS toxicity (n=46) 

Borand, et al 2014 

[62]  

(Cambodia) 

As (n=540) 600mg 

(n=540) 

2.79 µg/ml 2.77 µg/ml 45% had EFV concs in 
therapeutic range 
3.3% had below -therapeutic EFV 
concs when on RIF 

CNS toxicity (n=23), 
hepatotoxicity: (n=47) 

Key: As: Asian, AfM: African American, AF=Black African, His: Hispanic, W: White, NA: not available, Conc: concentration, CL: Clearance, CL/F: Apparent 

clearance, CV: coefficient of variation, AUC: Area under the concentration-time curve over the administration interval, grp: group 
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Black, African patients in particular appear to have higher EFV exposure when on TB 

treatment and patients with a higher weight are more likely to have lower EFV concentrations 

when on EFV 600mg [69]. In the analysis, by Stohr et al [59], Black patients, many receiving 

EFV 800mg with RIF, had 48% higher EFV concentrations. In this study, EFV concentrations 

were found to be 59% higher in Blacks than in Whites and 52% higher with EFV 800mg.The 

probability of having an EFV trough concentration less than 1 µg/ml whilst on RIF-based TB 

treatment was doubled in White patients compared with Black patients (50% vs 23% 

respectively). In White patients, increasing the dose to 800mg resulted in an improved 

probability, from 48% to 64%, of attaining therapeutic concentrations, but in Blacks this only 

increased the probability of being in the toxic range [59]. 

The most notable side effects associated with EFV administration are CNS symptoms, rash 

and transient elevations of liver transaminases. CNS symptoms included: dizziness, 

impaired concentration, somnolence, abnormal dreams, and insomnia [70].  

Symptoms usually begin during the first or second day of therapy and generally resolve after 

the first 2 to 4 weeks of therapy [70]. Potential for additive symptoms may occur if used 

concomitantly with alcohol or psychoactive drugs. In clinical trials, 2.1% of EFV-treated 

patients discontinued therapy because of nervous system symptoms [71]. In summary, even 

if high concentrations are achieved during dose modification, EFV is well tolerated by the 

majority of patients. 

From the data presented in Table 2, it remains uncertain whether the EFV dose should be 

increased to 800mg when RIF is present. Regardless, in 2012 the US FDA recommended 

EFV dose increase to 800mg in all patients weighing over 50Kg when on concomitant RIF-

based TB treatment [72]. The evidence for associating lower EFV concentrations with 

virological failure has been inconsistent [56, 68, 73], making blanket dose modification at 
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higher weights during TB co-treatment, as recommended by the US FDA, highly 

questionable. When the standard EFV 600mg dose was used and compared to the EFV 

800mg dose, no appreciable decrease in EFV concentrations was reported with the standard 

dose in South African patients [64] or with Asian patients [66]. Further indirect support for the 

standard 600mg dose in the presence of RIF arises from successful virological and 

microbiological outcomes during co-treatment which have been reported consistently in 

several studies [60, 62, 67, 69].  

To better understand the EFV-RIF interaction it is clear that differences in metabolism by 

race and the inter-patient variability induced in the presence of TB treatment needs to be 

explored further. For both EFV and RIF, pharmacogenetic variation in metabolism and 

uptake potentially accounts for the variability in concentrations and racial differences in drug 

disposition. Understanding pharmacogenetic variation is therefore critical to predicting drug 

concentrations. 

1.1.6 Pharmacogenetic considerations for RIF and EFV  

 

RIF hepatocellular uptake is mediated by an organic anion-transporter polypeptide 1B1 

(OAT1B1) coded for by the gene SLCO1B1 [74]. RIF metabolism is mainly hepatic, with up 

to 24% and 50% of drug excreted in the urine and bile unchanged respectively [38]. 

Polymorphisms in the SLCO1B1 gene can influence RIF PK and has been implicated in low 

RIF exposure in some studies [75, 76]. Anti-TB activity and development of resistance can 

be correlated with RIF concentrations [77, 78]. Peak RIF concentrations of 8 to 24 µg /mL, 

attained approximately 2-3 hours after ingestion, are associated with optimal bactericidal 

killing and the desired post antibiotic effect [79]. 

EFV is metabolized to 8-hydroxyefavirenz predominately by CYP2B6 and, to a lesser extent, 

by CYP3A4 [33, 80]. Subsequent to hydroxylation, UGT2B7 is directly involved with 



18 

glucuronidation of EFV and its hydroxylated metabolite [81]. In addition, in vivo evidence has 

emerged that CYP2A6 also plays a role in EFV metabolism, particularly in Black patients [82, 

83] and this is supported by in vitro data which suggest the CYP2A6 accounts for 22.5% of 

EFV metabolism [84]. Therefore, when CYP2B6 metabolism is impaired, it could be 

expected that genetic variations affecting secondary metabolic pathways would become 

significant for EFV metabolism.  

Table 3 summarizes 33 studies conducted in HIV infected adult patients worldwide, where 

single nucleotide polymorphisms (SNPs) CYP2B6 516 G→T or 785A→G or 983T→C were 

genotyped, and are associated with EFV PK parameters. In studies where the 

pharmacogenetic variation could be assessed, only 11 were in TB co-infected patients on 

RIF (shaded grey in Table 3) and none were on the higher EFV 800mg dose. There is a 

paucity of data in Black, South African adult patients. South African patients are investigated 

in two of the 33 studies and if the two Zimbabwean studies are included to comprise the 

Southern African region, then four of the 33 studies would have patients similar to those in 

the PhD study.  

The CYP2B6 516G→T and 785 A→G polymorphisms comprising the CYP2B6*6 haplotype 

is associated with reduced function and expression of CYP2B6 [85]. These polymorphisms 

can be expressed at a frequency of up to 50% [86-89] in African patients, and has been 

associated with higher plasma EFV exposure [90-93]. Exposure to high EFV concentrations 

is most likely in homozygous mutant carriers (516 TT), followed by the heterozygous 516 GT 

carriers [91, 93-103]. In a South African study, the 516 G→T polymorphisms are predictive of 

EFV concentrations >4µg/mL [104]. The 785 A→G SNP is in linkage disequilibrium with 

516G→T and is associated with similar EFV concentrations to those demonstrated with 

516G→T mutation [87, 105]
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Table 3: Single nucleotide polymorphisms of CYP2B6 516G→T, 783A→G, 983T→C and their influence on EFV 

concentrations/Pharmacokinetic parameters in HIV infected adult patients* 

Study (N) Race (n) 

 

MINOR ALLELE FREQUENCY (MAF) TB RX Effect of SNP on EFV concentrations/pharmacokinetic 

parameter 516G→T 783A→G 983T→C 

Haas et al, 
2004 [96] 
(United states, 
Puerto Rico) 

Multi-race 
(N=154) 
AfAm (n=50) 
W (n=89) 
His (n=15) 

AfAm MAF 
38%:  
GG 44% 
GT 36%  
TT 20% 

NA NA NA EFV AUC overall: 516GG 44 ug.h/ml, 516GT 60 ug.h/ml, 516TT 
130 ug.h/ml. 
516 TT higher EFV exposure and more common in AfAm (20%) 
than in W (3.4%) 

Tsuchiya et al, 
2004 [106] 
(Japan) 

As (n=60) 
On EFV 
(n=35) 

MAF17.5% 
GG 46.7% 
GT 21.7% 
TT 3.3% 

 8.3 % 
AA 8.3% 
AG 3.3% 
GG 1.7% 

NA NA Mean EFV conc: 516GG 8.0 ug/mL, 516GT 9.9 ug/mL, 516 TT 
25.4 ug/mL. 
EFV concs ↑ in CYP2B6*6 genotype (homozygous mutants) 

Rodriguez-
Novoa et al, 
2004 [107] 
(Spain) 

W (n=100) MAF 26.5% 
GG 52% 
GT 43%  
TT 5% 

NA NA NA Median EFV conc: 516GG 1.7 ug/mL, 516GT 2.6 ug/mL, 516TT 
3.57 ug/mL. 
↑ EFV concs in hom (40%) and het (19%) carriers but WT (20%) 
had sub-therapeutic concs 

Haas et al, 
2005 [108] 
(Unites States, 
Italy) 

Multi-race 
N=367 
AfAm (n=113) 
His (n=70) 
W (n=184) 

AfAm MAF 
31.3% 
GG 46.3% 
GT 41.5% 
TT 12.2% 
His: 34.9%: 
W: 24.4% 

NA NA NA EFV AUC overall: 516GG 49.4 ug.h/ml, 516GT 57.9 ug.h/ml, 
516TT 101.4 ug.h/ml. Similar trends for EFV exposure across 
race groups. 
Plasma exposure significantly associated with 516GT genotype. 

Rotger et al, 
2005 [109] 
(Switzerland) 

N= 167 
Race not 
defined 

TT 26% 
Others not 
specified 

NA NA NA Mean EFV AUC for TT was 3 fold higher than GG. 516TT 
associated ↑ plasma and ↑ intracellular EFV exposure. CYP2B6 
genotype predictive of neuropsychiatric toxicity. 

Wang et al, 
2006 [92] 
(Sweden) 

N=51  
Multi- race  
W and AF 

Frequency not 
specified 

Frequency 
not 
specified 

Frequency 
not  
specified  

NA 983TC linked with 785AG as novel haplotype CYP2B6*16. 
Common amongst Africans, steady state EFV concs ↑ in 
CYP2B6*16 carriers and in 516GT. 

Ribaudo et al , 
2006 [110] 
(Unites States, 
Puerto Rico) 

152 
Mixed race 
32% AfAm 
57% W 
10% His 

MAF: 29% 
GG 51% 
GT 39% 
TT 9% 
AfAm, TT 
10%, 3% in W 
and 1% in His 

NA NA NA EFV t1/2: 23, 27 and 48h for GG, GT, TT and would exceed 
predicted IC95% for 5.8, 7 and 14 days respectively.  
In 29% of TT patients this could be >21 days. 
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Study (N) Race (n) 

 

MINOR ALLELE FREQUENCY (MAF) TB RX Effect of SNP on EFV concentrations/pharmacokinetic 

parameter 516G→T 783A→G 983T→C 

Gatanaga et al, 
2007 [111] 
(Japan) 

N=456 
As (n= 450) 
Hs (n=2) 
W (n=2) 

MAF 17.9% 
GG 46.3 % 
GT 22.8% 
TT 4.2% 

MAF 7.8% 
AA 46.3% 
AG 22.8% 
GG 4.2% 

MAF 0% 
 

NA CYP2B6*6/*6 carriers had extremely high EFV concs > 6000 
ng/mL 
Genotype based dose reduction was feasible, dose dropped to 
400mg in 11 patients and to 200mg in 7 patients. CNS symptoms 
improved in 11/14 patients. 

Rotger et al, 
2007[99] 
(Switzerland) 

N=169 
Multi- race 
W (n=141) 
AfAm (n=16) 
His (n= 7) 
As (n=5) 
 

AfAm MAF 
37.5% 
GG 31.2 % 
GT 62.5% 
TT 6.2 % 
As MAF 60%: 
GG 20% 
GT 40% 
TT 40% 
His MAF 
21.4% 
GG 57.1% 
GT 42.9% 

AfAm MAF 
37.5% 
AA 31.25 
% 
AG 62.5% 
GG 6.25% 
As MAF 
60% 
AA 20% 
AG 40% 
GG 40% 
His 64.5 % 
AA 28.6% 
AG 71.4% 

AfAm MAF 
9% 
TT 81.25 % 
TC 18.75% 
CC 0% 
 
As 0% 
 
His 0 % 
 

NA EFV AUC :516 GG 44.5ugh/ml, 516GT 58.9 ugh/ml, 516TT 186.4 
ugh/ml 
 
Poor metabolizer genotypes like CYP2B6*6,*18 explain ↑EFV 
exposure and identify individuals at risk for extremely elevated 
concs. 

Mehlotra et al, 
2007 [112] 
(Papua New 
Guinea, West 
Africa, United 
States) 

N=705 
PNG (n= 174 
AF (n=170 
NAm: (AfAm, 
W, His, 
n=361) 

NA NA MAF: 
PNG=0 
A=4.7% 
AfAm =7.5% 
His=1.1% 
W=0 

NA Africans carry the highest frequency of *16 or *18 alleles and are 
potentially at highest risk for adverse events from EFV but no 
EFV concs available. 

Nyakutira et al, 
2008 [93] 
(Zimbabwe) 

AF (n=74) MAF: 49% 
GG 30 % 
GT 44% 
TT 27 % 

 

NA NA NA EFV CL/F: 516GG =9.4L/h, 516GT =7.2L/h. 516TT =4.0L/h 
Women had higher EFV concs. EFV was >4mg/L in over 50% of 
patients. Simulations indicate that 35% EFV dose ↓ would 
maintain sufficient drug exposure. The 516TT grp could 
effectively receive EFV 400mg. 

Kwara et al, 
2008 [101] 
(Ghana) 
 

AF (n=26) MAF: 48% 
GG 27 % 
GT 50% 
TT 23% 

 

AA + TT=17% (*1) 
AA + TC=7% (*1/*18) 
AG+TT=3% (*1/*4) 
AG+TT=43% (*1/*6) 
AA+TT=3% (*1/*9) 
AG+TC=3% (*1/*16 
OR*1/*18)  
GG+TT=23% (*6/*6) 

Yes 
(n=26) 

EFV CL/F: 516GG =9.9L/h, 516GT =8.4L/h, 516TT =2.1L/h 
Median EFV Cmin ug/mL: 516GG 0.6 ug/mL, 516GT 0.5 ug/mL, 
516TT 2.8 ug/mL. 
Variability in total EFV exposure was 110% and assoc with 
516GT genotype. Inclusion of 785AG and 983TC did not improve 
the prediction of the EFV slow metaboliser genotype. 
Effect of RIF: does not reverse poor metaboliser genotype effect 
but effect may differ dependent on CYP2B6 genotype. 
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Study (N) Race (n) 

 

MINOR ALLELE FREQUENCY (MAF) TB RX Effect of SNP on EFV concentrations/pharmacokinetic 

parameter 516G→T 783A→G 983T→C 

Wyen et al, 
2008 [113] 
(Germany) 

W (n=225) 
AF(n=146) 

W MAF 29% 
GG 51.3% 
GT 38.9% 
TT 9.7% 
AF MAF 34% 
GG 47.4% 
GT 40.4% 
TT 12.3% 

NA W MAF 0% 
 
AF MAF 9% 
TT 86% 
TC 10.5% 
CC 3.5% 

NA Overall EFV concs: 
516GG 1.78 ug/mL, 516GT 2.3 ug/mL, 516TT 6.2 ug/mL 
983TT 2.1 ug/mL, 983TC 2.1 ug/mL, 983CC 2.3 ug/mL 
2 Black patients with 983CC withdrawn from EFV due to toxicity 
EFV concs sig associated with 516GT and 983TC 

Ramachandra 
et al, 2009 [94] 
(India) 

As (n=72) (n= 25) 
MAF 44% 
GG 40% 
GT 32% 
TT 28% 

NA NA Yes 
(n=57) 

EFV CL/F: EFV only 7.35 L/h, EFV + RIF 9.27 l/h 
EFV Cmin: EFV only 5.8 ug/mL, EFV+RIF 4.65 ug/mL 
516GT SNP and not RIF influences EFV steady state PK 
TT had very high EFV concs. 

Kwara et al, 
2009 [82] 
(Ghana) 

AF (n=65) MAF 45% 
GG 30% 
GT 51% 
TT 19% 

NA MAF 4% 
TT 91% 
TC 9% 
CC 0% 

Yes 
(46%) 

Median EFV concs: 516 GG 1.3 ug/mL, 516GT 1.6 ug/mL, 
516TT 8.3 ug/mL, 983 TT 1.6 ug/mL , 983TC 1.8 ug/mL 
CYP2B6 516TT and 516GT account for 24 and 12% total 
variance in EFV conc. 
No association between EFV concs and age, weight, gender, 
BMI, alcohol use or RIF containing TB therapy 

Cohen et al, 
2009 [95] 
(South Africa) 

AF (n=142) 
84% Black 
15% Coloured 

 ( n=122) 
MAF 32% 
GG 49% 
GT 38% 
TT 13% 

NA NA Yes 
(n=40) 

Median EFV concs: EFV + RIF 2.4 ug/mL, EFV alone 1.8 ug/mL 
Paired EFV concs in n=17, similar on and off TB treatment 
516 GT strongly associated with EFV >4ug/mL: 
OR: 4.4 GT vs GG, OR: 31.1 TT vs GG 
High EFV concs associated with severe sleep disturbances 
Low EFV concs <1 ug/mL were associated with virological failure 
(OR: 12.6) 

Leger et al, 
2009 [105] 
(Haiti) 

AF (n=45) MAF 44% MAF 42% MAF 3% NA EFV median concs: 516GG 2.1 ug/mL, 516GT 3.8 ug/mL, 516TT 
8.2 ug/mL, 785AA 2.2 ug/mL, 785AG 4.0 ug/mL, 785GG 8.2 
ug/mL, 983CT 6.4 ug/mL, 983TT 3.2 ug/mL. Composite genotype 
516/983 Slow metabolizers: conc 8228 ng/mL. 
CYP2B6 516GT associated with high EFV concs 

Uttayamakul et 
al, 2010 [100] 
(Thailand) 

As (n=124) 
(n=65 on EFV) 
 

MAF: 38% 
GG 38.46% 
GT 47.69% 
TT 13.85% 

 

NA NA Yes 
(n=124) 

Mean EFV C12Hr at weeks 6 and 12 
EFV +RIF: 516 GG 2.88 and 2.45 ug/mL, 516GT 3.43 and 3.35 
mg/L, 516TT 10.97 and 13.62 ug/mL. 
EFV alone: 516GG 2.08 mg/L, 516GT 3.21 mg/L, 516TT 8.48 
mg/L. The 516TT genotype impacts on EFV concentrations and 
RIF co-administration only has small effects  
Higher % of 516TT achieved undetectable viral load than 516GG 
or 516GT genotypes. 
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Study (N) Race (n) 

 

MINOR ALLELE FREQUENCY (MAF) TB RX Effect of SNP on EFV concentrations/pharmacokinetic 

parameter 516G→T 783A→G 983T→C 

Ribaudo et al, 
2010 [114] 
(United States) 
 

n=831 
48% W 
34% AfAm 
18% His 

MAF 
W 24.5% 
AfAm 34.2% 
His 32.2% 

MAF 
W 27.3% 
AfAm 
34.8% 
His 34.7% 

MAF 
W 0.2% 
AfAm 7.5% 
His 1.4% 

NA  CYP2B 516 and 983 genotypes best predicted EFV PK but not 
seen in W and His patients. 

Elens, et al, 
2010 [115] 
(Brussels) 

N=50 
AF(n-14) 
W (n=31) 
As (n=5) 

MAF 34% 
GG 38% 
GT 56% 
TT 6% 

NA MAF 2% 
TT=96% 
TC=4% 
CC=0 

NA EFV Cmin: 983 TT 1.9 ug/mL, 983TC 12.3 ug/mL, 516GG 1.3 
ug/mL , 516GT 2.6 ug/mL, 516 TT 5.5 ug/mL 
Always concs higher when mutations present in 983TC and 516 
GT. 

Kwara et al, 
2011 [116] 
(Ghana) 

AF(n =56) MAF 40% 
GG 20 (35%) 
GT 27 (48%) 
TT 9 (16%) 

NA NA Yes 
(n=18) 

516 TT :EFV +RIF: 14.7 ug/mL, EFV alone:  6.0 ug/mL 
516GT: EFV +RIF:  1.9 ug/mL, EFV alone: 1.8 ug/mL, 
516GG: EFV +RIF: 1.3 ug/mL, EFV alone: 1.6 ug/mL 
On TB treatment, EFV concs are higher. Postulated ↑ 
susceptibility of CYP2B6 to inhibition by one of the anti-TB drugs 
or possible inhibition of CYP 2A6 by other TB drugs. 

Ngaimisi et al, 
2011 [103] 
(Tanzania) 

AF (n=182) EFV+ RIF 
(n=54) 
GG 37.5% 
GT 45.8% 
TT 16.7% 
EFV alone 
(n=128) 
GG 37.5% 
GT 47.7% 
TT 13.6% 

NA NA Yes 
(n=54) 

Effect of RIF on long term EFV auto induction is CYP2B6*1/*1 
genotype dependent. EFV metabolizing enzymes are induced to 
maximum extent in the first 8 weeks of RIF use. 
Effect of RIF on EFV PK is only apparent during early stages, but 
has no significant long term effect. 

Yimer et al, 
2011 [117] 
(Ethiopia) 

AF (n=201) 
DILI cases 
(n=41) 
DILI controls 
(n=160) 
 

Cases 
GG 38.7% 
GT 46.8% 
TT 14.5% 
Controls 
GG 49.6% 
GT 41.0% 
TT9.4% 

NA NA Yes 
(n=201) 

Log EFV conc: DILI yes: 3.42 ug/mL, DILI no: 3.12 ug/mL 
DILI associated with higher EFV plasma concs  
 

Maimbo et al, 
2012 [87] 
(Zimbabwe) 

AF (n=49) 
 

42% 
GG (n=15) 
GT (n=27) 
TT (n=7) 

42% 
AA (n=15) 
AG (n=27) 
GG (n=7) 

9% 
TT (n= 49) 
TC (n=9) 
CC (n=0) 

NA 516 GT and 785AG are in LD and assoc with EFV concs 
983TC patients had fourfold higher EFV concs that wild type. 
CYP2B6 *6 and *18 alleles affect hepatic metabolic activity and 
increase systemic EFV concs 
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Study (N) Race (n) 

 

MINOR ALLELE FREQUENCY (MAF) TB RX Effect of SNP on EFV concentrations/pharmacokinetic 

parameter 516G→T 783A→G 983T→C 

Holzinger et al, 
2012 [118] 
(United States) 

N=856 
50% W 
33% Black 
18% His 

NA NA NA NA Median Cmin: 516TT = 3.98ug/mL (5.4 x higher than wild types 
516GG, 983TT). 516GT and 983TC 5.38 ug/mL 
(7 .1 x higher than wild types, 516GG, 983 TT). Three 
polymorphisms explained 34% of inter-individual variability in 
EFV Cmin – 516 GT, 983TC and rs4803419 

Gandhi et al, 
2012 [119] 
(Unites States) 

N=111 
8% W 
13% His 
78% AfAm 
 

NA NA NA NA Short term exposure AUC fold increase: 516 TT: 3.5, 983TC: 
1.96. Long term exposure: 516TT:3.2, 983TC:1.96 
SNPS in CYP2B6 516TT shows 3.5 fold increase on both short 
and long term EFV exposure – using concs in plasma and hair. 
Other factors that increase EFV AUC were oranges/orange juice. 
If ALT doubled then EFV AUC increased 1.26 fold 

Mukonzo et al, 
2013 [90] 
(Uganda) 

AF (n=197) 
 
 

No CNS:  
GG 42%  
GT 56% 
TT 2%. 
CNS:  
GG 44.5% 
GT 46% 
TT 9.5% 

NA NA Yes 
(n=138) 

Day 3 Median: EFV 2.48 ug/mL, EFV +RIF 1.85 ug/mL 
Week12 Median: EFV 2.41 ug/mL, EFV +RIF 2.04 ug/mL 
RIF reduced EFV concs only in week 1. CYP2B6*6 predicts EFV 
concs and CNS symptoms, not RIF based TB treatment 

Manosuthi et al, 
2013 [98] 
(Thailand) 

As (N=138) 
 
 

MAF 31.7% 
GG 45% 
GT 47% 
TT 8% 

MAF 
37.4% 
AA 36% 
AG 54% 
GG 10% 

NA Yes 
(n=101) 

Median EFV: All 2.3 ug/mL, EFV + RIF: 2.1 ug/mL, EFV only: 2.7 
ug/mL. 516TT, 785GG –mean EFV >7  ug/mL 
Low EFV conc assoc with *1/*1 haplotype and high body weight. 
*1/*6, *6/*6 assoc with high EFV concs. RIF has a small impact 
on EFV concs compared to pharmacogenetics. 

Sukasem et al. 
2013 [120] 
(Thailand) 

As (n=100) MAF 32% MAF 36% NA NA EFV concs: 516GG 1.57 ug/mL, 516GT 2.65 ug/mL, 516 TT 7.2 
ug/mL 

Ngaimisi et al, 
2013 [88] 
(Ethiopia and 
Tanzania) 

AF (n=495) 
Ethiopia: 
(n=286)  
Tanzania: 
(n=209) 
 

Ethiopia  
MAF 31.4% 
GG 45.8% 
GT 45.5% 
TT 8.7% 
Tanzania 
MAF41.8% 
GG 35% 
GT 46.4% 
TT 18.6% 

NA NA NA EFV median concs at week 16: Ethiopia: 516GG 1.1 ug/mL, 
516GT 1.4 ug/mL, 516TT 3.3 ug/mL. Tanzania: 516GG 1.2 
ug/mL, 516GT 1.6 ug/mL, 516TT 3.4 ug/mL   
Differences in EFV PK by country, inter-ethnic variations 
Higher EFV concs in Tanzania even after CYP2B6 genotype 
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Study (N) Race (n) 

 

MINOR ALLELE FREQUENCY (MAF) TB RX Effect of SNP on EFV concentrations/pharmacokinetic 

parameter 516G→T 783A→G 983T→C 

Swart et al, 
2013 [104] 
(South Africa) 

AF(n=295) MAF 41.2% MAF 
41.2% 

MAF 7%  CYP2B6 516G>T high specificity and PPV for EFV concs>4 
ug/mL 

Bertrand et al , 
2013 [121] 

(Cambodia) 

 

As (n=307) 
 

MAF 32.2% 
GG 46.3% 
GT 42.9% 
TT 10.8% 

NA NA Yes 
(n=307) 

EFV alone CL/F: 516GG L/h=12.5, 516GT=8.8, 516TT=2.5 
EFV plus TB treatment: CL/F L/h: 516GG= 11.2 NAT slow, 15.5 
NAT rapid, 516GT=6.6 NAT slow, 9.9 NAT rapid, 516TT=2.1 
NAT slow, 2.7 NAT rapid. NAT2 association: patients with the 
516TT genotype and NAT2 poly had lowest EFV CL/F. Inducing 
effect of RIF is counterbalanced by a concentration dependent 
inhibitory effect of INH on EFV CL/F. 

Sarfo et al, 
2013 [122] 
(Ghana) 

AF (n=521) MAF 48% 
GG=29.5% 
GT=45.3% 
TT=25.1% 

NA MAF 4% 
TT=91.2% 
TC=8.7% 
CC=0.1% 

NA No differences in median EFV concs between males and 
females. 46% of concs were < 1.0 ug/mL and 10% above 4.0 
ug/mL 

Key: Rx: treatment, SNP: Single nucleotide polymorphism, As: Asian, AfAm: African American, AF=Black African, His: Hispanic, W: white, PNG: Papua New Guineans, Nam: North 

Americans, NA: not available, concs: concentration, Hom: homozygous mutants, Het: heterozygous mutants, WT: wild-type, OR: Odds ratio, LD: linkage disequilibrium, DILI: drug 

induced liver injury, PPV: positive predictive value. Grey shading depicts TB co-infection. 
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CYP2B6 983T→C, is a further mutation of interest as this SNP has also been shown to be 

associated with higher EFV exposure both in the presence [123, 124] and absence of TB 

treatment [87, 92, 115, 122]. Minor allele frequencies range from 7-18.7% [82, 99, 112, 122, 

123]. Although this SNP is more common in Black Africans and rare in other race groups [99], 

variant allele homozygosity is uncommon and frequencies range between 0.1-3.5 %. Of 

interest is that patients with the homozygous mutant allele exhibit EFV concentrations in the 

toxic range [113] (Table 3). 

Genome-wide sequencing conducted in 856 White, Hispanic and Black individuals found 

983T→C and 516G→T to be two of three CYP2B6 variants independently associated with EFV 

Cmin and also accounted for 34% of the inter-individual variability of estimated EFV Cmin [118]. 

Combining these two SNPs to create composite genotypes, for example, incorporating 516GT 

and 983TC, have been previously associated with slow EFV metabolizer status and therefore 

higher EFV concentrations, in both HIV positive patients and healthy volunteers [123, 124].  

Given the role of UGT2B7 in EFV metabolism, it is possible that SNPs in this gene may 

influence EFV concentrations. However, UGT2B7-372G→A has not been shown to be 

predictive of slow metabolizer status in other African cohorts [87, 88]. Studies on the usefulness 

of CYP2A6 for prediction of EFV exposure have produced inconsistent results and requires 

further study. One study of 65 African patients showed that carriers of polymorphisms account 

for approximately 12% of variance in EFV concentration [82] whilst others show no effect of 

SNPs in CYP2A6 on EFV concentrations [87, 90, 115]. 

Emerging evidence indicates that EFV exposure is potentially influenced by both genetic 

polymorphisms and TB co-treatment but reports in this regard are inconsistent. Some found 

that genetic polymorphisms are responsible for higher EFV exposure and not TB treatment 
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[82, 94, 95], whilst others show TB treatment to be contributory [98, 100] with most 

demonstrating evidence for a combined effect [97, 101, 121, 124]. 
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1.2 Study rationale and objectives  
 

Prior to 2010, the effectiveness and safety of integrating the management of drug-sensitive 

TB and HIV co-infection was uncertain with drug-drug interactions being one of several 

barriers to co-treatment. Once the survival benefits of co-treatment were established, 

potential drug interactions and their impact on co-treatment in our population remained 

unanswered research questions. Black South African patients are particularly vulnerable to 

TB-HIV co-infection and so would commonly receive drug regimens containing both EFV and 

RIF during dual treatment. However, at the time that the PhD study was designed, there were 

few studies describing the extent, clinical relevance and impact on patient safety of drug 

interactions. This led to the development of PhD study objective 1.  

 

Prior to the PhD study, the evidence for the EFV-RIF interaction originated mainly from 

Caucasian and Asian patients (Table 2, Section 1.1). The general expectation was that RIF 

would induce CYP2B6 and lower EFV concentrations to sub-therapeutic levels during TB 

treatment and that a dose increase for EFV would be required. However, on closer 

examination, evidence of this effect was inconsistent and data from Black African patients 

was unavailable at the time. Hence, it remained uncertain whether the EFV dose should be 

increased to 800mg when RIF was present, justifying further examination of this drug 

interaction in our patient population. This led to the development of objectives 2 and 3. The 

high rates of multiple-drug resistant TB and evolving evidence for TB recurrence in HIV 

infected patients in South Africa formed the basis for investigating RIF concentrations. This 

was researched as objective 4.  

 

Furthermore, studies showing genetic variation in drug metabolism as a significant predictor 

of drug exposure were also emerging. These data suggested that there may be racial 
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differences and led to the research questions incorporated in objectives 3 and 4, namely 

investigating the importance of pharmacogenetics on EFV and RIF handling.  

 

All these research questions informed the PhD which was the PK study nested within the 

larger ‘Starting Tuberculosis and Antiretroviral Therapy’ (START) trial1. The PhD output 

aimed to complement and strengthen evidence-based recommendations for safe and 

effective TB-HIV treatment integration in Black, South African patients.  

 

Accordingly the PhD study objectives were as follows: 

Objective 1: Assess drug safety issues that arise when combining first line HIV treatment with 

rifamycin-based TB treatment. This objective assessed the literature as of 2011. It identified 

the drugs associated with clinically relevant drug interactions and summarized guidance on 

dose modification during co-treatment available at that time. (Paper I, 2011) 

 

Objective 2: Develop a population pharmacokinetic non-linear mixed effects model (NONMEM) 

to quantify the impact of RIF based TB treatment on EFV clearance in a Black, South African 

population. (Paper II, 2012) 

 

Objective 3: Investigate, with the aid of trough EFV drug concentrations, the influence of 

pharmacogenetic polymorphisms and explore the necessity for EFV weight-based dose 

modification in a Black, South African population. (Paper III, 2014) 

                                                           
1 More information on the START trial design can be found in Appendix B. 
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Objective 4: Assess peak RIF concentrations achieved in a Black, South African population and 

investigate the presence and influence of pharmacogenetic polymorphisms in drug transporter 

proteins on RIF plasma exposure. (Paper IV, 2014) 

 

Once achieved, each objective was submitted to an accredited journal as an individual 

publication, peer reviewed and published. These papers are presented in Chapter 2.  
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31 

 

 

 

 

 

 

 

 

PAPER I 

Initiating antiretrovirals during tuberculosis treatment: a 

drug safety review 
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2.1 Paper I: Initiating antiretrovirals during tuberculosis treatment: a drug safety 

review 
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2.1.1  Discussion of paper I 

 

Paper 1 is responsive to Objective 1 of the PhD thesis. This article, published in 2011, is a 

comprehensive review of the literature that examines expected drug interactions between the 

rifamycin class of anti-TB drugs and ARVs.  

The review assesses the pharmacological basis for HIV and TB drug interactions, discusses 

drug interactions between rifamycins and ARV drug classes, and provides evidence for drug 

safety concerns which may arise due to additive toxicities or poor tolerability during co-

administration. The article reports on the current data on expected drug toxicities 

(hepatotoxicity, peripheral neuropathy, hypersensitivity reactions) and associated adherence 

challenges when treatment is combined. Information on clinical management of IRIS during 

co-treatment is also presented.  

A total of 134 articles were cited in the review article, and practical updated guidance on dose 

modifications was provided to facilitate safe TB-HIV co-treatment. In summary, the 

individualization of ART dosing, where possible, and individualized clinical laboratory 

monitoring, at least in the first two month of combined TB and HIV treatment, is 

recommended to ensure safe treatment. Several future research priorities are also 

suggested.  

In conclusion, deferring treatment of HIV to avoid drug interactions with TB treatment is 

unwarranted because rational drug choices aimed at reducing toxicities, while maintaining 

efficacy in treating both diseases, is eminently achievable.  
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2.1.2  PhD candidates’ contribution to the journal article 

 

Student name: Tanuja Narayansamy Gengiah 

Student number: 993241124 

Title of the article: Initiating antiretrovirals during tuberculosis treatment: a drug safety review 

Authors: TN Gengiah, AL Gray, K Naidoo, Q Abdool Karim 

Journal: Expert Opinion on Drug Safety 

Doctoral student’s contribution to the journal article: 

1. Formulation of the hypothesis 

Prof Q Abdool Karim was invited to submit the review for consideration to the journal 

and the article theme was suggested by the journal editor. I conceptualized the review 

article hypothesis framework, layout and content, created the title and invited co-

authors with the relevant pharmacology and TB/HIV management expertise to 

contribute. 

 

2. Study design 

I designed the methodology for the literature search and selected the articles for 

inclusion in the review. 

 

3. Work involved in the study 

I conducted the literature search in accordance with the methodology set out, found, 

selected and reviewed all the articles that were included in the review article. I created 

the figures and tables and populated the tables after assessing various data sources. 

4. Data analysis 
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I took responsibility to review, analyze and interpret the data from the literature review 

for inclusion in the text, and to create the diagrams and tables. I also searched for the 

latest dosing updates and updated the dosing guidance provide in the article. 

 

5. Write up  

I took overall responsibility for the writing of the manuscript and after completion of the 

first full draft of the manuscript submitted the manuscript to the co-authors for review 

and comment. All co-authors read and approved the final version of the manuscript. I 

corresponded with the journal and after peer review I completed the required 

revisions. The final version for publication was approved by all co-authors. 

 

I declare this to be a true reflection of my contributions to this journal article 

 

Signature    Date  14 November 2014 
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PAPER II 

The influence of tuberculosis treatment on efavirenz 

clearance in patients co-infected with HIV and 

tuberculosis 
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2.2 Paper II: The influence of tuberculosis treatment on efavirenz clearance in 

patients co-infected with HIV and tuberculosis 
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2.2.1  Discussion of paper II 

 

Paper II is responsive to Objective 2 of the PhD thesis. The hypothesis driving this analysis 

was based on the premise that concomitant RIF based TB treatment would be expected to 

increase EFV clearance. Given that weight was an important determinant of EFV 

concentrations, the higher EFV 800mg dose was administered to all patients over 50 kg while 

on concomitant TB treatment, otherwise patients received EFV 600mg (integrated arm). After 

TB treatment completion all patients received EFV 600mg, irrespective of randomization arm. 

Trough EFV concentrations were measured on six occasions: at the end of months 1, 2 and 3 

during TB treatment and at the end of month’s 1, 2 and 3 after TB treatment completion. In 

total, 209 EFV steady state concentrations were sampled from 58 patients, 83 of which were 

collected in the presence of TB treatment. The data were then analyzed using NONMEM and 

the final model was suitably validated. 

Unexpectedly, there was an overall 29.5% reduction in EFV clearance during TB treatment. 

The data also showed a bimodal distribution in apparent EFV clearance, alluding to the 

presence of slow and fast metabolisers in this population, with distinctly different clearance 

estimates both during and after TB treatment. The model showed that the capacity of the 

slow metabolizers was 36% that of the fast metabolisers.  

To our knowledge, this was one of the first studies to model the impact of TB treatment on 

EFV apparent clearance (CL/F) in Black African patients exposed to the higher EFV 800mg 

dose. This study effectively demonstrates that the direction of the drug interaction is not as 

originally assumed in this population of patients, making the dose increase during TB 

treatment questionable.  

The next step in the investigations was to assess polymorphisms, in CYP450 and other 

enzymes involved in EFV metabolism, to better explain these findings. 
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2.2.2  PhD candidates’ contribution to the journal article 

 

Student name: Tanuja N. Gengiah 

Student number: 993241124 

Title of the article: The influence of tuberculosis treatment on efavirenz clearance in patients 

co-infected with HIV and tuberculosis 

Authors: TN Gengiah, NHG Holford, JH Botha, AL Gray, K Naidoo, SS Abdool Karim 

Journal: European Journal of Clinical Pharmacology 

Doctoral student’s contribution to the journal article: 

 

1. Formulation of the hypothesis 

I contributed to the formulation of the study hypothesis in conjunction the START study 

principal investigator. I wrote the PK study into the main study protocol as a secondary 

objective. 

2. Study design 

I designed the pharmacokinetic study with regards to the appropriate timing of the blood 

draws, and determined appropriate collection and storage of samples for assay after the 

study was completed. I wrote the PK section of the START protocol. 

3. Work involved in the study 

I was involved in the dispensing of the drug treatment and collecting patient data on case 

report forms, which were specifically designed for the PK study. This included verifying the 

recording of the timing of the EFV and RIF dose, the timing of the blood collection and 

documenting concomitant medication use for three days prior to the blood draw. 
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4. Data analysis 

I extracted the data required for the NONMEM analysis from the main study database and 

sorted the data into the appropriate time ordered format. I assessed the literature and 

provided suitable EFV PK parameters for the base model. Prof Holford set up an initial basic 

programme to build an appropriate model. I worked with Prof Holford to refine the model and 

this collaboration resulted in the discovery of the final mixture model. Using a stepwise 

model-building process, I tested covariates of interest under Prof Holford’s supervision. Once 

the model-building process was completed, Prof Holford evaluated the final model using non-

parametric bootstrapping and generated the visual predictive checks. 

5. Write up  

I took overall responsibility for the writing of the manuscript and after completion of the first 

full draft of the manuscript submitted the manuscript to the co-authors for review and 

comment. All co-authors read and approved the final version of the manuscript. I 

corresponded with the journal and after peer review I completed the required revisions. The 

final version for publication was approved by all co-authors. 

I declare this to be a true reflection of my contributions to this journal article 

 

Signature    Date 14 November 2014 
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2.3 Paper III: Efavirenz dosing: influence of drug metabolizing enzyme 

polymorphisms and concurrent TB treatment  
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2.3.1  Discussion of paper III 

 

Paper III is responsive to Objective 3 of the PhD thesis. This analysis builds on the findings 

from Paper II by studying polymorphisms in important drug metabolizing enzymes in Black 

African patients, assessing the implications of these SNPs for EFV dosing and reporting on 

the tolerability of the higher dose. Although EFV is primarily metabolised by CYP2B6, both 

CYP2A6 and UGT2B7 also play a role. Therefore, polymorphisms in all three of these genes 

were sequenced and predictors of high median EFV Cmin were assessed. The results from 

paper II indicated that the population had a bimodal distribution of clearance, with both fast 

and slow metabolisers evident, and this finding was investigated further in paper III. 

During TB treatment, median EFV Cmin was similar in the 800mg and 600mg groups. Minor 

allele frequencies (MAFs) were high for CYP2B6 516G→T, 785A→G, and 983T→C. 

Importantly, polymorphisms in all three CYP2B6 genes studied (516T-785G-983C) were 

present in 11.1% of patients and in this group, median EFV Cmin was excessively high (19.2 

(IQR: 9.5-20) µg/mL) during and high (4.7 (IQR: 3.5-5.6) µg/mL) after TB treatment. The 

predictors of high EFV concentrations were found to be: the presence of TB treatment, 

composite genotypes CYP2B6 516 GT/TT, CYP2B6 983 TC/CC and CYP2A6*9B carriers. 

High EFV concentrations appear to be well tolerated and adverse events related to the higher 

EFV concentrations were found to be rare. 

This analysis provides further evidence that EFV dose increases are unnecessary when 

concomitant rifampicin-containing TB treatment is prescribed in Black, African patients. The 

evidence implicates the influence of TB treatment itself, as well high frequency of multiple 

polymorphisms in key enzymes, as being responsible for EFV metabolism and the high 

concentrations observed. 
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2.3.2  PhD candidates’ contribution to the journal article 

 

Student name: Tanuja N. Gengiah 

Student number: 993241124 

Title of the article: Efavirenz dosing: influence of drug metabolizing enzyme polymorphisms 

and concurrent TB treatment 

Authors: TN Gengiah, JH Botha, N Yende-Zuma, K Naidoo, SS Abdool Karim 

Journal: Antiviral therapy 

 

Doctoral student’s contribution to the journal article: 

1. Formulation of the hypothesis 

I contributed to the formulation of the study hypothesis in conjunction the START study 

principal investigator and wrote the PK study into the main study protocol as a secondary 

objective. I also formulated the pharmacogenetics hypothesis for this analysis.  

2. Study design 

I designed the pharmacokinetic study with regards to the timing of the blood draws, and 

determined appropriate collection and storage of samples for assay after the study was 

completed. I wrote the PK section of the START protocol. I reviewed the literature and 

selected the appropriate drug metabolizing enzymes to sequence.  

3. Work involved in the study 

I was involved in the dispensing of the drug treatment and collecting patient data on case 

report forms, which were specifically designed for the PK study. This included verifying the 

recording of the timing of the EFV dose, the timing of the blood collection and documenting 

concomitant medication use for three days prior to the blood draw. I was involved in the DNA 

extraction from PBMCs, which was conducted with the aid of a qualified laboratory 

technician. After learning how to prepare samples and conduct endpoint genotyping on the 
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Roche Light Cycler®, I conducted all the sequencing for the pharmacogenetics work in 

duplicate and triplicate where needed. 

4. Data analysis 

I designed the data analysis plan. I extracted and coded the pharmacogenetics data and 

designated the haplotypes based on the allele frequencies. I tested the polymorphisms to 

check if they were in Hardy-Weinberg equilibrium. I chose the variables and references to be 

used in the generalized estimating equations (GEE) model and created all the tables and 

figures for this paper. The study statistician conducted all tests in SAS version 9.3 and I 

verified the SAS coding used. 

5. Write up  

I took overall responsibility for the writing of the manuscript and, after completion of the first 

full draft of the manuscript, submitted the manuscript to the co-authors for review and 

comment. All co-authors read and approved the final version of the manuscript. I 

corresponded with the journal and after peer review, I completed the required revisions, and 

the final version for publication was approved by all co-authors 

 

I declare this to be a true reflection of my contributions to this journal article 

 

Signature       Date: 14 November 2014 
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2.4 Commentary: Should efavirenz be dosed higher when co-administered with 

rifampin? 

 

  



85 

2.4.1  Discussion of commentary 

 

This commentary is critical of the FDA’s decision to advocate a package insert update to 

include a new dosing recommendation for patients over 50kg receiving RIF based TB 

treatment. This weight-based EFV dose increase from 600mg to 800mg was not restricted to 

any particular racial group despite evidence in the literature that indicated that Black Africans 

tend to have higher EFV exposure. Should prescribers follow the dosing directions strictly, for 

patients such as ours, the EFV exposure may be potentially toxic. The dose increase is 

possibly appropriate for Caucasian patients but is certainly not a “one size fits all” for African 

and Asian patients who constitute the majority of the global users of this drug.  

Notably, although the FDA advocated this dosing update, global treatment guidelines, with 

the exception of the British HIV Association, did not amend their guidance to follow suit. 

 

2.4.2 PhD candidates’ contribution to the commentary 

 

Student name: Tanuja N. Gengiah 

Student number: 993241124 

Title of the article: Should efavirenz be dosed higher when co-administered with rifampin? 

Authors: TN Gengiah, SS Abdool Karim 

Publication: Journal Watch Specialties 

Doctoral student’s contribution to the article: 

1. Formulation of the hypothesis (not applicable)  
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Journal Watch contacted Prof. SS Abdool Karim as a regular contributor to comment on the 

United States Food and Drug Administration (FDA) of 6 January 2012. He requested that I 

write the contribution as it was directly relevant to the PhD topic. 

2. Study design (not applicable) 

3. Work involved in the study 

I studied the US FDA ruling and attempted to contact the FDA for further data regarding the 

rationale for their dosing change recommendation. 

4. Data analysis (not applicable) 

5. Write up  

I conducted the first draft of the response which was reviewed and edited by Prof Abdool 

Karim. I corresponded with the publication and after review, I completed the required 

revisions, and the final version for publication was approved by the co-author. 

 

I declare this to be a true reflection of my contributions to this journal article 

Signature      Date: 14 November 2014 
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2.5 Paper IV: Low rifampicin concentrations in tuberculosis patients with HIV 

infection. 
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2.5.1  Discussion of paper IV 

 

Paper IV is responsive to Objective 4 of the PhD thesis. TB and HIV drug interactions usually 

implicate RIF as having an impact on ARV concentrations without a pharmacologic basis for 

any effect on TB drug concentrations. However, in co-infected patients HIV disease or other 

host factors may influence TB drug absorption and affect TB treatment outcomes. In this 

analysis, we measured approximated peak RIF concentrations in the START study and 

investigated the presence and influence of polymorphisms in drug transporter proteins on RIF 

plasma exposure. 

We were able to assess 156 peak RIF concentrations, sampled at 2.5 hours post dose 

administration. The recommended peak concentration should range between 8-24µg/mL, 

however, the median C2.5h in this study was 3.6 µg/mL. A polymorphism in the SLCO1B1 

gene was common, with a MAF of 76%.  In addition to this SNP, male gender and presence 

of anaemia were associated with low RIF concentrations. Incidence rates for TB recurrence 

in 43 of the 58 patients who could be followed long-term was 7.1 per 100 person years. 

Although this is a small study, the findings are a cause for concern and are of importance for 

the TB control programme. Extremely low RIF peak concentrations diminish optimal 

treatment outcomes and a revision of the current dose of RIF for this population is therefore 

strongly recommended. The majority of our patients had the drug transport polymorphism 

under study and, in conjunction with HIV infection, may be receiving sub-therapeutic RIF 

doses. These sub-therapeutic RIF doses could impact on TB recurrence, or worse, could be 

fueling the MDR TB epidemic. 
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2.5.2  PhD candidates’ contribution to the journal article 

 

Student name: Tanuja N. Gengiah 

Student number: 993241124 

Title of the article: Low rifampicin concentrations in tuberculosis patients with HIV infection. 

Authors: TN Gengiah, JH Botha, D Soowamber, K Naidoo, SS Abdool Karim 

Journal: Journal of Infection in Developing Countries 

Doctoral student’s contribution to the journal article: 

1. Formulation of the hypothesis 

I contributed to the formulation of the study hypothesis in conjunction with the START study 

principal investigator and wrote the PK study into the main study protocol as a secondary 

objective. I formulated the pharmacogenetic hypothesis for the influence of polymorphisms in 

drug transporter proteins on RIF exposure. 

2. Study design 

I designed the pharmacokinetic study with regards to the timing of the blood draws, and 

determined appropriate collection and storage of samples for assay after the study was 

completed. I wrote the PK section of the START protocol. I selected the drug transporter 

polymorphism for further study in this analysis. 

3. Work involved in the study 

I was involved in the dispensing of the drug treatment and collecting patient data on case 

report forms, which were specifically designed for the PK study. This included verifying the 

recording of the timing of the RIF dose, the timing of the blood collection and documenting 

concomitant medication use for three days prior to the blood draw. I was involved in the DNA 
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extraction from PBMCs, which was conducted with the aid of a qualified laboratory 

technician. After learning how to prepare samples and conduct endpoint genotyping on the 

Roche Light Cycler®, I conducted all the sequencing for the pharmacogenetics work in 

duplicate and triplicate where needed. 

4. Data analysis 

I designed the data analysis plan. I extracted and coded the pharmacogenetics data. I tested 

the polymorphisms to check if they were in Hardy-Weinberg equilibrium. I chose the variables 

and references to be used in the mixed effects model and created all the tables and figures 

for this paper. The statistician conducted all tests in SAS version 9.3 and I verified the coding 

used. 

5. Write up  

I took overall responsibility for the writing of the manuscript and after completion of the first 

full draft of the manuscript submitted the manuscript to the co-authors for review and 

comment. All co-authors read and approved the final version of the manuscript. I 

corresponded with the journal and after peer review, I completed the required revisions, and 

the final version for publication was approved by all co-authors 

I declare this to be a true reflection of my contributions to this journal article 

Signature             Date 14 November 2014 
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3.1 Discussion of major findings 
 

The purpose of the PhD study (START PK sub-study) was to assess the EFV-RIF drug 

interaction with the aim of determining the need for the higher EFV 800mg dose when TB and 

HIV treatment are combined. Subsequently, the work was expanded to study the influence of 

pharmacogenetic variation on EFV trough and RIF peak concentrations, along with 

determinants influencing RIF concentrations and long-term TB recurrence in TB-HIV co- 

infected Black, South African patients. The novel contribution of this work was two-fold; firstly, 

the EFV dose was weight adjusted to 800mg for integrated arm participants above 50kg and 

secondly, this was the first clinical trial to evaluate EFV PK and RIF PK in Black, South 

African patients from KwaZulu-Natal, South Africa, an area regarded as the epicenter of the 

HIV epidemic in sub-Saharan Africa.  

 

Using a NONMEM population PK approach, the impact of RIF-based TB treatment on EFV 

clearance was assessed by modelling the EFV concentration-time data from the START trial. 

We anticipated that CYP450 enzyme induction by RIF would have resulted in lowered EFV 

concentrations. Therefore, the overall 29.5% reduction in EFV clearance during TB treatment 

that was observed was unexpected. Further, a bimodal distribution of EFV apparent 

clearance was evident from the model and indicated that slow EFV metabolisers accounted 

for 21.9% of the population. EFV clearance in fast metabolisers was found to be 11.5 

L/h/70kg off TB treatment and 7.6 L/h/70kg when on TB treatment, while in slow metabolisers 

the clearance estimates were 2.9 and 4.3 L/h/70kg in the presence and absence of TB 

treatment, respectively. These results indicated that apart from metabolic differences 

amongst patients, TB treatment collectively, appears to play a role in the higher EFV 

exposure observed in our patients [125].  
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These finding are in contrast to those reported by others where either mean EFV CL/F was 

shown to be raised [58, 94] or EFV concentration was reduced [57] in the presence of RIF 

based TB treatment. These studies in Caucasian and Asian patients laid the basis for the 

traditional understanding of the direction of this interaction. However, other studies in African 

patients have found similar results to those observed in our study [61, 64, 93], indicating that 

racial differences affect drug disposition. Specifically, Nyakutira et al. 2008, showed that 

approximately 50% of TB uninfected Zimbabwean patients (n=74) had EFV concentrations 

greater than 4µg/mL after taking a 600mg dose of EFV [93]. In South African patients 

undergoing TB treatment, EFV concentrations were significantly raised when RIF was 

present compared to EFV alone [64].  

 

The TB treatment effect on EFV clearance has also been previously described, with reports 

of high inter-subject variability whilst on TB treatment in different populations. In South 

African patients it was shown that the coefficient of variation (CV) =157% while on TB 

treatment and CV=58% off TB treatment [60]. In Italian patients, the CV was 93% on TB 

treatment and 62% off TB treatment, whilst in Thai patients, the CV on TB treatment was 

107% [49]. At the time that these studies were conducted it was not clear why RIF-based TB 

treatment would increase variability in EFV concentrations. However, possible explanations 

arose later when the pharmacogenetics aspects of the study were assessed. Most recently, 

in the large multi-centre STRIDE trial of 780 patients, EFV 600mg was dosed during 

concomitant TB treatment and median EFV concentrations on TB treatment were higher than 

off TB treatment concentrations, with this effect being more pronounced in Black patients 

[69]. 

 

Despite these contradictions in EFV exposure when on TB treatment, in the same year that 

our NONMEM results were published (2012), the United States Food and Drug 
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Administration (FDA) announced that due to concerns about the EFV-RIF drug-drug 

interaction they had approved an increase in EFV dose from 600mg to 800mg in patients 

weighing more than 50kg on RIF-based TB treatment [72]. No consideration was taken of 

race or the influence of pharmacogenetic polymorphisms on EFV concentrations. Our 

objection to this recommendation was raised in a commentary in Journal Watch (Chapter 2, 

section 2.4) and confirmed our impression that it was necessary to further explore this 

interaction in our patients. 

After the completion of the NONMEM analysis, it was clear that there was a reduction in EFV 

clearance attributed to TB treatment and there were also population differences in metabolic 

capacity. We then decided to sequence polymorphisms of interest in CYP2B6, CYP2A and 

UGT2B7 genes, all known to contribute to EFV metabolism, to assess their association with 

EFV concentrations both during and after TB treatment [126]. After careful consideration of 

the literature we selected the CYP2B6 516G→T, CYP2B6 785A→G, CYP 2B6 983T→C, 

CYP2A6*9B, CYP2A6*17 and UGT2B7 -372G→A polymorphisms for assessment. 

The minor allele frequencies in our population for CYP2B6 516G→T and 785A→G were 

comparable with those reported in other African cohorts [89, 95]. CYP2B6 516G→T has been 

studied extensively and polymorphisms have been shown to be associated with higher EFV 

exposure in different races [82, 86, 98, 101, 116]. Our results are supportive of this.  

Where our results differed from literature reports was with the CYP2B6 983T→C mutation. 

This SNP is thought to be rare in Caucasian populations and more likely to be detected in 

African patients. However, lower frequencies ranging from 7-18.7% [82, 99, 112, 113, 123, 

127] have been reported previously. We demonstrated a MAF of 23%. Nevertheless, variant 

allele homozygosity, even in African patients, has been reported to be even more uncommon, 
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with frequencies ranging between 0.1- 3.5% [113, 122], while our study showed a 5.6% 

prevalence.  

The CYP2B6 983T→C SNP has also been associated with higher EFV exposure in the 

presence of TB treatment in Black Africans [123, 124] and in the absence of TB treatment in 

both Africans and Caucasians [87, 92, 113, 115, 127]. This SNP has been shown to be an 

important determinant of EFV concentrations by other researchers [113, 118, 124] and 

possibly explains the high EFV concentrations in our study. 

Several CYP2B6 haplotypes were also identified and over two thirds of our population were 

either CYP2B6 *6 (38.9%) or *18 (25.9%) [126]. These haplotypes have also been shown to 

be associated higher EFV concentrations in other studies [87, 98, 99, 101, 104], thus 

supporting our findings. Unexpectedly, polymorphisms in all three CYP2B6 genes studied 

(516T-785G-983C) were present in 11.1% of our patients. Median (IQR) EFV concentrations 

in this group were 19.2 (9.5-20) µg/mL and 4.7 (3.5-5.6) µg/mL when on and off TB 

treatment. This group’s concentrations were exceptionally different from the results in the 

overall study population. During TB treatment, median EFV Cmin was 3.2 (IQR: 2.6-6.3) 

µg/mL in the EFV 800mg group and 3.3 (IQR: 2.4-9.5) µg/mL for the EFV 600mg group. After 

TB treatment, all patients received EFV 600mg and the Cmin was 2.0 (1.4 - 3.5) µg/mL[126]. 

 

Using a generalized estimating equation (GEE) model we were able to show that TB 

treatment, composite genotypes CYP2B6 516 GT/TT, CYP2B6 983 TC/CC or being a 

CYP2A6*9B carrier were predictors of a median EFV Cmin> 4 µg/mL [126]. These 

polymorphisms are also supported by others as specifically predictive for higher EFV 

exposure [82, 104, 124]. As seen in other studies of African patients, UGBT2B7 was not 

associated with EFV exposure [87, 88], while being a carrier for CYP2A6*17 was predictive of 

the higher EFV concentrations in some [82] but not in others [90, 115].  
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Although we were not able to assess in our study how TB  drugs other than RIF influence 

EFV concentrations, the ‘CAMELIA’ trial in Thai patients possibly provides a clue as to why 

TB treatment is associated with higher EFV exposure and higher inter-patient variability [121]. 

In this important study, the possible role of N-acetyltransferase (NAT) 2 genetic 

polymorphisms and change in EFV clearance in 307 Asian patients on concomitant TB 

treatment is investigated. The change in EFV CL/F was highly dependent on the NAT2 

polymorphism; patients who were both CYP2B6 516 TT and NAT2 slow acetylators had the 

lowest EFV CL/F of 2.1L/h compared to the wild type 516 GG where EFV CL/F was 11.2 L/h 

in slow acetylators and 15.5L/h in rapid acetylators [121]. It has been well documented that 

isoniazid is metabolized by NAT2 and that acetylator status predicts individual isoniazid 

exposure which can be predicted by NAT2 genotype [128]. When TB treatment stopped in 

‘CAMELIA’, EFV clearance increased, suggesting an isoniazid concentration dependent 

inhibitory effect, which possibly counterbalances any RIF induction effect during TB treatment 

[121]. Furthermore, in vitro evidence shows that INH mediates the CYP2B6*6 genotype 

dependent interaction with EFV and TB medication by potent time-inhibition of EFV 7-

hydroxylation in human liver microsomes and mechanism based inactivation of CYP2A6. 

[129]. Collectively, these data may explain some of our results, implicating an isoniazid effect, 

but it would need to be tested in other racial groups.  

Although few adverse effects were reported with the higher EFV 800mg dose, we do not 

advocate the dose increase during TB treatment. This is due to the presence of multiple 

pharmacogenetic polymorphisms and the unique influence of TB treatment in our patients, 

pre-disposing them to higher exposures. There is also evidence that high EFV exposure with 

certain poor metaboliser genotypes (like 516TT) or a prolonged elimination half-life may 

predict an increased risk for EFV resistance in patients who discontinue EFV regimens [110]. 

Further, in one Ethiopian study, drug induced liver injury (DILI) risk was shown to be 
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associated with higher EFV concentrations and 516TT genotype [117]. Conversely, despite 

some early evidence demonstrating that low EFV concentrations are associated with 

virological failure [56], more recent studies fail to show the correlation with viral suppression 

and sub-therapeutic concentrations [68, 73]. 

Regarding RIF PK, the median RIF (IQR) C2.5hr was found to be extremely low at 3.6 (2.8-5.0) 

µg/mL. Having studied reports in the literature on the role of human drug transporter genes 

on RIF concentrations [75, 76] we sequenced our patients for SLCO1B1 (rs4149032). We 

showed an extremely high MAF of 76% for this polymorphism, similar to that seen in 

Zimbabwean patients [75]. Using a mixed effects model, SLCO1B1 (rs4149032) drug 

transporter gene polymorphism was associated with low RIF concentrations as was male 

gender and having a low baseline haemoglobin. We also showed, from longitudinal data, that 

TB recurrence incidence was 7.1 per 100 person years [130]. 

 

These results are of concern for several reasons. Firstly, ratios of both Cmax and AUC/MIC 

are crucial for the optimal bactericidal effect of RIF [19, 131]. Our results were, however, far 

below the accepted Cmax of 8-24µg/mL [79]. Secondly, although we could not distinguish 

between TB reinfection and reactivation, it is plausible that the extremely low treatment 

concentrations observed in this study may have played a role in TB reactivation. Lastly, 

because the SLCO1B1 polymorphism frequency was high in our patients, who were also HIV 

co-infected and prone to suboptimal absorption, they are theoretically at higher risk for TB 

treatment failure and development of MDR TB. Studies have shown that HIV infected patients 

are also at higher risk for recurrent TB disease [132-134]. The potential for the contribution of 

lower RIF concentrations to further increasing the risk TB relapse or reinfection in HIV 

infected patients will have negative consequences at the patient, TB control program and 

population levels.  
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In conclusion, this PhD study has shown that in a population with a high frequency of 

polymorphisms in drug metabolizing enzymes, concomitant TB treatment reduces EFV CL/F 

with corresponding elevations in EFV concentrations. Increasing the dose of EFV during RIF 

co-treatment is therefore not supported in these patients. The low peak RIF concentrations 

demonstrated may put these patients at high risk for TB recurrence, possibly warranting an 

increase in dose.  

 

3.2  Study limitations 
 

The eventual sample size of the START trial was small (n=58) and only trough EFV and 

approximated peak RIF concentrations post DOT where sampled. Therefore, it was not 

possible to obtain full PK profiles. However, trough concentrations were sampled at steady 

state for EFV and the NONMEM approach was applied to the analysis. With RIF, due to the 

single time point sampling, 2.5 hours post dose administration, we were unable to account for 

patients with particularly early or delayed absorption. However, sampling 2-3 hours post 

administration has previously been shown to be an acceptable time to estimate peak RIF 

concentrations. Also, each patient had plasma sampled for this peak measurement on more 

than one occasion.  

With regards to the dose of EFV, this was increased to 800mg in the integrated arm only if 

patients weighed >50 kg. However, given that the mean weight of participants was 56.3 kg in 

the integrated arm, the majority of these patients would have received the 800mg dose during 

TB treatment resulting in few matched concentration pairs for comparison with the EFV 

600mg dose off TB treatment. Although the 800mg EFV dose appeared to be well tolerated, 
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the small sample size may have accounted for the limited number of adverse events 

reported. 

Due to the premature discontinuation of the parent trial, it was not possible to assess long-

term viral suppression (12 months) in both arms and thus to relate EFV concentrations and 

genotype to long-term viral suppression. This would have been a valuable analysis to 

conduct. 

Lastly, due to the study design, it was not possible to distinguish between TB reinfection and 

reactivation when the RIF concentrations and TB recurrence was assessed. 

 

3.3  Recommendations for clinical practice 

 

Selected recommendations for clinical practice in South African patients are proposed: 

• Simultaneous co-administration of EFV and RIF containing HIV and TB treatment is 

feasible without EFV dose increase.  

• In patients with poor or delayed TB treatment response, investigate RIF peak 

concentrations if possible. 

• As RIF concentrations were shown to be low on standard doses, careful attention 

should be paid to weight gains in patient so that they get appropriate dosage 

increments to TB treatment without delay. 

• If pharmacogenetic screening is available then SNPs of value in this population in 

predicting EFV concentrations are CYP2B6 516G→T and 983T→C, while SLCO1B1 

(rs4149032) is useful when assessing RIF concentrations.  
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3.4 Recommendations for future research 
 

During the preparation of the review article (Chapter 2, Paper I), it was recognized that much 

of the available data on drug interactions were obtained from healthy volunteers or small 

clinical studies. There is a paucity of robust drug interaction studies in patients who have the 

diseases in question and the findings of healthy volunteer studies may have poor external 

validity when applied to TB-HIV co-infected patients [135].  

Additionally, there is limited data from African patients where the need for co-treatment is 

most prevalent and most of the data that is available are for adult patients. Pharmacokinetic 

studies in TB/HIV co-infected children and pregnant women are needed as drug handling in 

these groups differ from the standard 70kg adult from whom most dosing is traditionally 

derived.  

In general, all ARV drug combinations, both first and second-line should be assessed for drug 

interactions with TB treatment in co-infected patients as it is critical to provide more treatment 

options and provider flexibility in clinical management. Well-designed drug interaction studies 

with rationally sequenced drugs need to be conducted to ascertain their safe use in co-

infection.  

Specifically, related to our findings and on assessment of the literature the following future 

research is recommended: 

• The ‘CAMELIA’ trial findings of a potential INH concentration dependent inhibitory 

effect on EFV CL/F when patients have the NAT2 genetic polymorphisms and 

CYP516TT genotype have only been demonstrated in Thai patients [121]. These data 

may explain some of our results but needs to be urgently tested in other ethnic 
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groups. We are planning to assess the influence of NAT2 acetylator status in our 

patients in the near future. 

 

• Given the high EFV concentrations that we demonstrated in both the presence and 

absence of TB treatment at ‘standard’ dosing, small clinical studies are needed to 

show that in the South African population EFV dose decrease is safe and effective 

and potentially cost saving. The ‘ENCORE 1’ trial conducted in 630 patients, of which 

37% were African, suggest that a 400mg EFV dose is non-inferior to 600mg[136], and 

dose simulation by Nyakutira et al. 2008 showed that dose reduction from 600mg to 

400mg would give adequate exposure in poor metabolisers [93].  

 

• There is some evidence for drug-induced liver injury (DILI) when EFV concentrations 

are high in poor metaboliser genotypes [117]. When patients present with abnormal 

liver function, genotype may play a role but this needs to be confirmed in clinical 

studies in South Africans. 

 

• Our finding of extremely low peak RIF concentrations needs to be confirmed. RIF 

peak concentrations could be measured either during routine care in a large number 

of patients or in smaller PK studies with more frequent sampling. Concentrations 

assayed at single time points in many patients during routine care would need to be 

modelled with NONMEM to generate PK parameters. If our findings are validated 

then studies should be designed to assess the safety and efficacy of higher doses of 

RIF in South African patients to decrease the risk of TB treatment failure and mitigate 

TB transmission risk to the population at large. There are already some groups 

proposing that up to 35mg/kg may be safe and more effective than the standard 

10mg/kg that is currently used [137].  
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3.5 Concluding statements 

The following statements conclude the various analyses that were conducted, as part of, or in 

association with the PhD study: 

 

• Sufficient evidence is available to demonstrate major survival benefits of integrating HIV 

and TB treatment. 

• Deferring treatment of HIV to avoid drug interactions with TB treatment is not beneficial to 

patients and may actually be harmful. 

• RIF containing TB treatment does not lower EFV concentrations.  

• Efavirenz clearance is reduced by 29.5% in the presence of TB treatment. 

• CYP2B6 516GT, 785AG and 983TC minor allele frequencies are 31%, 33% and 23% 

respectively and are associated with impaired EFV metabolism. 

• The presence of TB treatment and composite genotypes CYP2B6 516 GT/TT, CYP2B6 

983 TC/CC and CYP2A6*9B carrier status predicts high median EFV Cmin > 4µg/mL. 

• Patients who have triple mutations (516T-785G-983C) have extremely high EFV 

concentrations. 

• Few adverse events are experienced, even when high EFV concentrations are present. 

• Increasing EFV dose to 800mg during RIF-based TB treatment is unnecessary in African 

patients with the polymorphisms identified and dose reduction needs to be explored 

further. 

• Median peak RIF concentrations are extremely low in this patient population.  

• Increased RIF dosage warrants urgent consideration in African, TB-HIV co-infected 

patients. 
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• Men and anaemic patients appear to be at higher risk for having sub-therapeutic RIF 

concentrations. 

These findings support the use of standard EFV doses during TB co-treatment and a 

possible increase in RIF dose during TB treatment to achieve safe and effective 

integration of HIV and TB treatment in adult, Black patients in South Africa. 
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A.  Co-authored publications relevant to the PhD topic  

 

This section contains five co-authored publications that are related to safe and effective 

integration of HIV and TB treatment.  

A brief discussion follows each publication and describes why the paper is regarded as 

important to the integration of TB-HIV treatment and its contribution to generating new 

knowledge to the field. 
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A1: Paper V  

Timing of initiation of antiretroviral drugs during 

tuberculosis therapy 
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A1. Paper V: Timing of initiation of antiretroviral drugs during tuberculosis therapy 
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Discussion of Paper V: Paper V is a seminal article that assesses the impact of integrated 

HIV and TB treatment on survival, adverse events and safety.  

This important study was an open label RCT that assigned 642 Black, South African patients 

to start ART during TB treatment or to complete TB treatment and then initiate ART. This 

RCT showed a 56% relative reduction in risk of death amongst those receiving integrated 

treatment, across all CD4 strata, compared to those who initiated their HIV treatment after 

completing TB treatment. 

The trial was halted prematurely by the data safety monitoring board to enable all patients to 

benefit from integrated treatment. In terms of adverse events, IRIS was diagnosed in 12% 

and 3.8% of integrated vs. sequential arm participants, however, amongst all other grade 3 or 

4 adverse events there was no statistical difference in frequency between groups. Integrated 

treatment was therefore regarded as safe and effective. 

Importance for TB/HIV treatment integration: This was the first randomized trial to 

unequivocally show that delaying ART initiation during TB co-infection results in higher 

mortality. In addition, the study identifies a critical period between TB treatment completion 

and the subsequent start of ART as a high risk period for death. The findings were rapidly 

incorporated into global and local HIV and treatment guidelines and policy and lent support to 

the recommendations of others to urgently integrate TB and HIV care.   
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A2: PAPER VI 

Ritonavir/saquinavir safety concerns curtail antiretroviral 

therapy options for tuberculosis-HIV-co-infected patients 

in resource-constrained settings  
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A2. Paper VI: Ritonavir/saquinavir safety concerns curtail antiretroviral therapy options for 

tuberculosis-HIV-co-infected patients in resource-constrained settings  
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Discussion of Paper VI: This article was published eight years ago, in response to a notice 

issued by Roche pharmaceuticals, when the US FDA was informed of results of a phase I 

open-label RCT in healthy individuals. When the volunteers were administered RIF 600mg 

with saquinavir/ritonavir 1000/100mg twice a day, 39% developed significant hepatotoxicity 

during the 28 day study period. The US FDA then disallowed the use of this combination 

during TB treatment. 

At that time, guidelines advocated use of ritonavir-boosted saquinavir as the only available 

PIs in South Africa. The consequences were therefore severe at a time when not all ARV 

drugs were available in resource-constrained settings for situations where treatment limiting 

toxicity existed, or virological failure had developed or were required for use in pregnant 

women.  

Importance for TB/HIV treatment integration: The article was timely in that it highlighted 

the need for more drug options in resource-limited settings, and the need for more PK studies 

in sick individuals, to better understand the drug interactions and to offer safer treatment 

options for HIV infected patients requiring TB treatment. It was fortunate that the 

lopinavir/ritonavir registration was filed in South Africa in that same year and became more 

widely available in subsequent years. Elevations in liver enzymes, of the lopinavir/ritonavir 

combination seen in healthy volunteers, did not preclude effective and safe treatment in the 

HIV and TB co-infected and the drug was used during TB co-treatment with appropriate 

laboratory monitoring.  
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A3: PAPER VII 

The SAPIT trial provides essential evidence on risks and 

benefits of integrated and sequential treatment of HIV and 

TB 
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A3. Paper VII: The SAPIT trial provides essential evidence on risks and benefits of integrated and 

sequential treatment of HIV and TB 
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Discussion of Paper VII: This article was written in response to another publication where 

the authors’ debate that that the SAPIT study was unnecessary and that the conclusions 

reached could have been surmised from observational research. Their major concern was 

that because of its design SAPIT, which could allow patients with CD4 counts less than 200 

cells/mm3to have ART deferred and that mortality experienced in the study could have been 

avoided[138]. The response by the authors in Paper VII was that at the time the trial was 

designed and ran there was clinical equipoise regarding the optimal timing of ART initiation in 

patients with TB. Patients were also provided with best standard of care which at the time 

was regarded to be clinician assessment for when to start treatment, and most importantly 

although it is acknowledged that HIV patients with TB and low CD4 counts had a higher 

mortality, it was not beyond doubt, at that time, that co-treatment in this group improved 

morbidity and mortality.  

Importance for TB/HIV treatment integration: Despite the evidence provided by 

observational study designs, clear guidance from local and international guidelines, and 

therefore clinical practice at a provider level, was ambivalent in 2005 when the study was 

conceptualized. The study had a DSMB in place to monitor the safety of participants and in 

addition the trial results directly informed new WHO guidelines. This was, however, a useful 

publication to have in the public domain because the controversy also raised awareness 

amongst providers about the ethical issues and may have indirectly resulted in providers 

taking more effort to integrate TB and HIV care.  
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A4: PAPER VIII 

Integration of antiretroviral therapy with tuberculosis 

treatment 
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A4: Paper VIII: Integration of antiretroviral therapy with tuberculosis treatment 
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Discussion of Paper VIII: This article was published from the SAPIT study and gives clear 

guidance on the timing of ART initiation during TB treatment, using the patients CD4 count as 

a guide to determine when during the TB treatment phases ART should be initiated. Early 

initiation of ART in this trial, was regarded as four weeks after the start of TB therapy (within 

the intensive phase of treatment), and in patients with baseline CD4 counts less than 50 mm3 

was associated with increased AIDS-free survival. While deferral of ART to the first four 

weeks of the continuation phase of TB treatment, in patients with higher CD4 counts, reduced 

the risk for IRIS and other adverse events without increasing the risk for HIV disease 

progression or death  

 

Importance for TB/HIV treatment integration: This analysis was important in that it 

provided practical guidance to providers with extremely ill patients with extremely low CD4 

counts requiring co-treatment. One of the major concerns for co-treatment was management 

of IRIS and this result gave providers more confidence in co-treating those very ill early 

during TB treatment and deferring less ill patients ART initiation to the continuation phase of 

TB treatment without being concerned about increased risk for mortality. 
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A5: PAPER IX 

Changes to antiretroviral drug regimens during integrated 

TB-HIV treatment: results of the SAPiT trial 
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A5. Paper IX: Changes to antiretroviral drug regimens during integrated TB-HIV treatment: 

results of the SAPiT trial 

 



161 

 



162 

 



163 

 



164 

 



165 

 



166 

 



167 

 



168 

  



169 

Discussion of Paper IX: Drug tolerability has always been a concern for TB-HIV co-

treatment. This sub-analysis from the SAPiT trial data assessed the data in 501 patients over 

16 months, analyzing individual drug switches for toxicity and complete regimen changes due 

to virological failure. In this study the frequency of drug switches and complete regimen 

changes was extremely low. Treatment limiting toxicities per category investigated 

(neuropsychiatric effects, elevated transaminases and lactic acid, peripheral neuropathy) 

affected less than 1% of participants in all instances. Virological failure occurred in 25 

patients and it appears that those who were severely immunocompromised at ART start 

(CD4 < 50 cells/mm3) were most likely to fail treatment. 

Importance for TB-HIV treatment integration: This article’s strength is the large number of 

patients assessed (n=500). The authors show that co-treatment was very well tolerated by 

the majority of patients, dispelling the concern for drug toxicity and showing that in practice 

this was not frequently encountered in either treatment arm. Also, the study demonstrates 

that the severely immunocompromised require careful monitoring and support to maintain 

adherence and frequent assessment of treatment success.  
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B. The START Trial 
 

The CAPRISA 001 START trial in Durban, South Africa was an open-label-randomized 

clinical trial in adult patients attending the Prince Cyril Zulu Communicable Diseases Centre, 

for directly observed TB treatment, and the adjoining CAPRISA eThekwini Clinical Research 

site, for HIV care and clinical trial procedures. Participants were randomized equally to 

receive HIV and TB treatment concurrently (integrated treatment) or HIV treatment after TB 

treatment was successfully completed (sequential treatment). The primary objective of that 

trial was to assess the effectiveness of integrated TB and HIV care provision through a 

directly observed treatment (DOT) program versus sequential treatment of TB and HIV, by 

comparing progression to AIDS-defining illnesses/mortality during the first 18 months after 

enrollment in the study.  

 

Approximately 592 patients were to be studied. Due to slow accrual, only 58 patients were 

enrolled and the trial duration was tailored so that the PhD PK sub-study objectives could be 

met. Participants in the sequential arm were therefore exited from the study after successful 

completion of at least six months of TB treatment and having received at least three months 

of ARV treatment after TB cure. The integrated arm participants received at minimum 6 

months of combined TB and HIV treatment plus three months of ARVS after TB treatment 

completion.  

 

During RIF-based TB treatment, integrated arm patients weighing <50kg and > 50kg received 

directly observed ART comprising either 600mg or 800mg EFV respectively. For the PK 

study, single steady state trough EFV (Cmin) concentrations were sampled on 6 occasions at 

weeks 4, 8 and 12, both during and after TB treatment in the integrated arm patients, as well 

as after the initiation of ART in the sequential arm (3 occasions). After completion of TB 
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treatment, patients in both arms received EFV 600mg. RIF peak concentrations were 

assayed at 2.5h after the dose was administered on three occasions, at weeks 4, 8 and 12 

during TB treatment in both arms. PBMCs were stored for post-trial assessment of 

pharmacogenetics.  

  

The information contained in sections B1-B4 are transcribed directly from the START study 

protocol, version 1.0. 
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B1. Study schema 

 

START: Starting Tuberculosis and Anti-Retroviral Therapy 

Design:  This is a two-armed, randomized, open-label clinical trial evaluating whether 

the integration of HIV care into existing TB care services is feasible and practical in resource-

poor settings. The primary objective is to assess the effectiveness of integrated TB and HIV 

care provision enhanced with an adherence support program (ASP) versus sequential 

treatment of TB and HIV, by comparing the progression to AIDS-defining illnesses/mortality in 

participants with pulmonary TB co-infected with HIV during the first 18 months after 

enrollment in the study. The study is conducted in two phases. The first phase represents the 

duration of TB therapy. The second phase represents the period after completion of TB 

therapy. Study participants will be randomized to one of the following arms stratified by CD4+ 

cell count, 50-200 cells/µL vs. > 200 cells/µL. Participants randomized into the integrated arm 

will receive anti-retroviral therapy (ART) consisting of didanosine (ddI)/ didanosine enteric 

coated (ddI-EC), lamivudine (3TC), and efavirenz (EFV) in conjunction with TB therapy upon 

randomization. Participants randomized to the sequential arm will complete TB treatment and 

then start ART consisting of ddI/ddI-EC, 3TC, and EFV. In instances where ddI/ddI-EC, 3TC, 

and EFV are contraindicated, an alternative regimen will be used. 

Duration: Study duration is 24 months after randomization. 

Sample Size: 592 participants will be enrolled. 

Population: Men and women ≥ 18 years of age with documented HIV infection and smear-

positive pulmonary TB. 

Regimen: At entry, participants will be randomized (1:1) to one of the following treatment 

arms: 
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Integrated arm: (ddI/ddI-EC) + 3TC + EFV once daily concurrently with standard TB 

treatment upon randomization. 

Sequential arm: (ddI/ddI-EC) + 3TC + EFV once daily initiated after completion of TB 

therapy.  

ART substitution options will be available for participants who become pregnant, experience 

toxicities, or have treatment failure. 
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B2: START TRIAL 

Inclusion criteria 
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 B2: Inclusion criteria 

 

• Males or females age >18 years. 

• At least one positive acid-fast sputum smear for TB by microscopy with clinical 

symptoms of TB or two positive smears by microscopy. This is the diagnostic criteria 

for TB as defined by the Prince Cyril Zulu CDC and the South African TB Clinical and 

Diagnostic Treatment Guidelines. 

• Receiving standard regimen anti-TB therapy (isoniazid, rifampicin, ethambutol, 

pyrazinamide). 

• Participating in the Prince Cyril Zulu CDC DOT program and receiving supervised 

treatment daily at the Prince Cyril Zulu CDC. 

• HIV infection, as documented by two positive rapid HIV tests (e.g., OraQuick or Smart 

Check or other tests approved by the US FDA or the South African Department of 

Health) and confirmed by HIV-1 RNA polymerase chain reaction (PCR). 

• Ability and willingness of participant or legally authorized representative to provide 

written informed consent to take part in the study. 

• Karnofsky score ≥ 70 within 14 days prior to entry. 

• The following laboratory parameters from samples obtained within 14 days prior to 

study randomization: 

• AST ≤ 2.5 x the upper limit of normal (ULN). 

• ALT ≤ 2.5 x ULN. 

• Creatinine ≤ 1.5 x ULN. 

• Total bilirubin ≤ 2.5 x ULN. 

• Absolute neutrophil count (ANC) ≥1000. 
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• Hemoglobin ≥ 7.0 g/dL. 

• Not intending to relocate out of the current geographical area for the duration of study 

participation. 

• Willingness of participant to adhere to study follow-up schedule. 

• Women must agree to undergo serum or urine β-HCG pregnancy testing at Day 0 and 

during regularly scheduled monthly visits during ART therapy. Female study volunteers 

of reproductive potential must have a negative serum or urine pregnancy test performed 

within 48 hours before initiating EFV. 

• Negative serum or urine β-HCG pregnancy test obtained within 14 days prior to study 

entry for women with reproductive potential (defined below). The urine test must have 

a sensitivity of ≤ 50 mIU/mL.  

• “Female participants without reproductive potential” are defined as women who have 

reached menopause or undergone hysterectomy, bilateral oophorectomy, or tubal 

ligation or female participants whose male partner has undergone successful 

vasectomy with documented azoospermia or has documented azoospermia for any 

other reason. 

• “Female participants of reproductive potential” are defined as girls who have reached 

menarche or women who have not been post-menopausal for at least 24 consecutive 

months (i.e., who have had menses within the preceding 24 months) or have not 

undergone sterilization (e.g., hysterectomy, bilateral oophorectomy, or salpingotomy). 

• All participants must agree not to participate in a conception process (e.g., active 

attempt to become pregnant or to impregnate, donate sperm, in vitro fertilization). 

• Female participants who are participating in sexual activity that could lead to pregnancy and 

who are receiving EFV, must agree to use two reliable methods of contraception: a barrier 

method of contraception (male or female condoms or diaphragm with spermicide or cervical 
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cap with spermicide) together with either an intrauterine device (IUD) or hormonal-based 

contraception while receiving the protocol-specified drugs and for 6 weeks after stopping the 

drugs. Another ART drug will be substituted for EFV if participants are not able, or willing, to 

use two forms of contraception simultaneously.  

• Note: Female participants who are taking rifampicin, but not taking EFV, must agree to 

use a barrier method of contraception or an IUD while receiving rifampicin. 

• Female participants who are participating in sexual activity that could lead to pregnancy, but 

who are not receiving EFV, must use at least one barrier method of contraception or an IUD 

while receiving the protocol-specified drugs. 

• Female participants who are not of reproductive potential, as defined above, or whose male 

partner(s) have undergone successful vasectomy or have documented azoospermia for any 

other reason, are eligible without requiring the use of contraception. . Written or oral 

documentation communicated by clinician or clinician’s staff of one of the following is required 

for participants receiving EFV: physician report/letter, discharge summary, FSH 

measurement elevated into the menopausal range as established by the reporting laboratory. 

 

• NOTE: If the female study volunteer reports a history of infertility based on one of the 

above categories but written documentation is not obtainable, or she states that her partner 

has had a vasectomy, the female study volunteer must agree to use at least one barrier 

method of contraception with a possible second method required at the discretion of the site 

study physician. 
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B3. Exclusion criteria 

• ≥≥≥≥ 28 days of cumulative ART prior to study entry. 

o NOTE: Past Mother to Child Transmission (MTCT) and Post Exposure 

Prophylaxis (PEP) prevention treatments are allowed. 

• < 10 days or > 28 days since the initiation of TB treatment. 

• Temperature > 38.5°C, ≥ Grade 3 rash, ≥ Grade 3 nausea, or ≥ Grade 3 vomiting at 

time of screening or enrollment. 

• Hospitalized or referred for hospitalization for care and treatment of opportunistic 

infections, TB, or other causes at time of screening or enrollment. 

• CD4+ cell count < 50 cells/µL within 28 days of study entry. 

• Active TB meningitis or miliary TB. 

• History of prior TB treatment or any prior active TB episode. 

• History of current or prior AIDS-defining condition(s) as described in the modified WHO 

Stage IV clinical staging system. 

• Previous or current acute or chronic pancreatitis. 

• ≥ Grade 2 peripheral neuropathy. 
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• Currently taking allopurinol, zalcitabine, astemizole, terfenadine, ergotamine or ergot 

derivatives, midazolam, triazolam, cisapride, phenytoin, phenobarbitone, 

carbamazepine, voriconazole, ribavirin, Echinacea-containing complementary 

medicines or supplements, St. John’s Wort-containing complementary medicines or 

supplements. 

• Pregnant at the time of study entry. Breastfeeding mothers are not excluded. 

• Suspected MDR-TB, defined as “participant’s awareness of contact with someone 

diagnosed with MDR-TB at home or in the workplace.” 

• Any other condition that, based on the opinion of the participant’s study clinician, would 

preclude provision of informed consent or result in the participant being unable to fully 

participate in required study procedures. 

• Participation in any other trial or study with objectives and intervention(s) that may 

interfere with the START study. 
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Pharmacokinetic (PhD) study design 
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B4: START Pharmacokinetic study design (PhD study) 

 

Dose/plasma concentration data will be obtained over time from participants in each arm of 

the study. Pharmacokinetic testing will be conducted on frozen samples by the Division of 

Pharmacology at the University of Cape Town. 

Integrated Arm: 

Phase I: To obtain sufficient data points, EFV trough levels (samples taken immediately prior 

to dosing) and rifampicin peak levels (approximately 2.5 hours post dose) will be measured at 

the end of months 1, 2 and 3. This is designed to show the extent of the interaction over time. 

Phase II: Additional trough EFV levels will be measured at the end of the first, second, and 

third month after TB treatment is completed (Phase II) to show how this interaction resolves 

over time. 

Sequential Arm: 

Phase I: Peak rifampicin levels will be analysed at the end of months 1, 2 and 3. 

Phase II: After completion of TB treatment, when ART is initiated in Phase II, EFV trough 

levels will be assessed at the end of months 1, 2 and 3. 

The choice of sampling times is determined by the long half-life of EFV, estimated to be 

between 52-76 hours, making the measurement of trough levels feasible. Rifampicin peak 

levels were selected based on the relatively short half-life of 2-5 hours of this agent. Previous 

studies have also shown the median Tmax after dosing to be 2.5 hours [139-141]. Levels 

taken 8-12 hours post dosing are low to undetectable in the average participant.  

The exact time of blood draw and time of last efavirenz and rifampicin dose will be recorded 

on CRFs. 
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C1: Regulatory approvals 

South African Medicines Control Council 
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C. Regulatory approvals for study conduct 

C1. South African Medicines Control Council Approval 
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C2: Regulatory approvals 

University of KwaZulu-Natal Biomedical Research Ethics 

Committee 
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C2. University of KwaZulu-Natal Biomedical Research Ethics Committee Approvals 
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C3: Regulatory approvals 

Postgraduate education committee 
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C3. Postgraduate education committee approval 
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C4: Regulatory approvals 

Permission from study Principal Investigator to access 

stored samples 
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C4. Permission from study Principal Investigator to access stored samples 
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C5: Regulatory approvals 

Sample informed consent forms 
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C5. Sample Informed Consent Forms  
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D1: Assay and NONMEM information 

EFV LCMS/MS 
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D. Assay and NONMEM information 

D1. EFV LCMS/MS 

 

Blood was collected in heparinized tubes, which were stored on ice and separated at 

3000rpm within one hour. Aliquoted samples were then stored at -80 °C until analysis. 

Samples were analysed at the Division of Clinical Pharmacology, University of Cape Town. 

Plasma efavirenz concentrations were determined by liquid chromatography/tandem mass 

spectrometry using a modification of a method by Chi et al [142] using liquid 

chromatography/tandem mass spectrometry.  

Accuracy ranged from 97.2% to 105.6%. Intraday and interday precisions ranged from 1.3% 

to 4.6% and 3.6% -7.2% respectively. The lower limit of quantitation of the assay was 

0.2mg/L [142].  
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D2: Assay and NONMEM information 

RIF HPLC 
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D2. RIF HPLC 

 

Blood was collected in heparinized tubes, which were stored on ice and separated at 

3000rpm within one hour. Aliquoted samples were then stored at -80 °C until analysis. 

Samples were analysed in the Division of Clinical Pharmacology, University of Cape Town. 

Serum rifampicin concentrations were measured using tandem HPLC mass spectrometry 

[143] with a lower limit of quantitation of 0.1 µg/mL and inter- and intra-day coefficients of 

variation below 10%. 
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TAQMAN® Drug Metabolizing Enzyme Genotyping 
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D3. TAQMAN® Drug Metabolizing Enzyme Genotyping Assays 

 

DNA for genotyping was extracted from stored peripheral blood monoleukocytes using the 

MagNa Pure LC DNA isolation kit I (Version 17.0, Roche Diagnostics®, Mannheim, 

Germany).  

All participants were genotyped for CYP2B6 516G→T, CYP2B6 785A→G, CYP 2B6 

983T→C, CYP2A6*9B, CYP2A6*17, UGT2B7 -372G→A and SLCO1B1, rs4149032 genetic 

variants. Allelic discrimination reactions were performed in duplicate or triplicate (if duplicate 

results were discordant) using TaqMan (Applied Biosystems, CA, USA) commercial 

genotyping assays in accordance with manufacturer’s instructions for the following kits: CYP 

2B6 516G→T (C__7817765_60, rs3745274), CYP2B6 785A→G (custom designed 40X, 

catalogue #1151580, rs2279343), CYP2B6 983T→C (C_60732328_20, rs28399499), 

CYP2A6*9B g.1836 G→T(C_29560333_20, rs8192726), CYP2A6*17 g.5065G→A, 

c.1093G→A (C_34816076_20, rs28399454), UGT2B7 -372G→A (C_30720663_20, 

rs7662029) and (40X SLCO1B1, C_1901709_10, rs4149032)on the Roche LightCycler® 480 

platform (Roche Diagnostics, Mannheim, Germany).  

The final volume for each reaction was 25µl, consisting of TaqMan® Genotyping Master Mix 

(Applied Biosystems, Foster City, CA, USA), 20X or 40X drug metabolising genotype assay 

mix and 10ng genomic DNA. The thermal cycler conditions were as follows: initial step, 95°C 

for 10 minutes, then denature for 50 cycles at 92°C for 15 seconds and anneal/extend at 

60°C for 90 seconds.  

For the custom designed 40X genotype assay the thermal cycler condition consisted of an 

initial step 95°C for 10 minutes, denature for 40 cycles at 92°C for 15 seconds and then 

anneal/extend at 60°C for 60 seconds.  
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NONMEM coding and model building 
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