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ABSTRACT 

Flood estimation can be classified into two categories, i.e. flood prediction and flood 

forecasting. Flood prediction is used for the estimation of design floods, which are 

floods associated with a degree of risk of being equalled or exceeded. Predictions are 

needed for the design and construction of infrastructure that are at risk to flowing water. 

Flood forecasting is used for the estimation of flood flows from an impending and/or 

occurring rainfall event (i.e. the estimation of the magnitude of future flood flows with 

reference to a specific time in the future). These are needed by catchment and disaster 

managers for the mitigation of flood damage. The estimation of flood magnitudes for 

flood forecasting requires the specific knowledge of prevailing surface conditions which 

are associated with the processes of rainfall conversion into flood runoff. In order to 

best achieve this, a distributed model (in order to exploit remotely sensed data and 

capture the spatial scale of the phenomenon) is used to continuously update the 

surface conditions that are important in this conversion process. 

This dissertation focuses on both flood estimation categories. In the first part of the 

dissertation, attention is given to the improvement of two simple event-based design 

flood prediction methods currently in use by design practitioners, namely the regional 

maximum flood (RMF) and the rational formula (RF) by comparison with statistically 

modelled historical flood data. The second part of the dissertation lays the theoretical 

and practical foundation for the implementation of a fully distributed physically-based 

rainfall-runoff model for real-time flood forecasting in South Africa. The TOPKAPI 

model was chosen for this purpose. This aspect of the research involved assimilating 

the literature on the model, testing the model and gathering and preparing of the input 

data required by the model for its eventual application in the Liebenbergsvlei 

catchment. The practical application of the model is left for a follow-up study. 
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PREFACE 

The research presented in this dissertation is divided into two parts, i.e. design flood 

prediction in the first part and real-time flood-forecasting in the second part. Although 

both parts of this research generally fall under the banner of flood hydrology, they are 

conceptually different. The reason for choosing essentially different topics for this 

research was based primarily on the source of funding, which was provided by the 

Eastern Centre of Transport Development. 

The first part of this research focuses on flood prediction for the estimation of design 

floods. Design floods are floods associated with a degree of risk of being equalled or 

exceeded. It was the intention of this study to provide a useful guide or modification of 

established flood prediction methods that could be directly used by practitioners 

charged with the design of structures that are at risk to flowing water. Structures such 

as dams, river bridges, roads and floodplain developments are a few types of the 

structures that fall into this category. It is evident that this aspect of the research has a 

direct influence on the transport sector, where design floods are used for road and 

bridge design. The research conducted in this first part resulted in two publications of 

which Chapters 2, 3 and 4 are the focus. 

It was found that the first part of this research was not enough for a stand-alone 

masters dissertation and at the same time there was a pressing need to examine the 

efficacy of a candidate distributed rainfall-runoff model for flood-forecasting purposes. 

Flood-forecasting is the estimation of the magnitude of future flood flows with reference 

to a specific time in the future and is used for the mitigation of damage caused by 

floods. Thus it was decided in this research to also focus on this aspect of flood 

hydrology, and this forms the focal point of the second part of this dissertation 

(Chapters 5, 6 and 7). The first part is essentially "looking back", through the review of 

established flood prediction methods. The second part is essentially "looking forward" 

to hydrology in the 21st century in order to investigate the use of advanced 

computational capabilities to seamlessly integrate the various inputs from remote 

sensing techniques and spatial data towards distributed rainfall-runoff modelling. 

Although there is no direct contribution to the transport sector from the second part of 

this research, the mitigation of flood damage (social and economic) through the use of 

flood-forecasting techniques does have an indirect influence on this sector. 
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CHAPTER 1 

1. INTRODUCTION 

Flood estimation can be broadly classified into two categories, i.e. design flood 

prediction and flood-forecasting. Design flood prediction, as understood in this 

research, is concerned with the estimation of the magnitude of flood events and the 

probability of those flood events being equalled or exceeded. These estimates are 

needed for the planning and design of engineering projects that are at risk to flood 

water. Catastrophic floods have a huge economic, social and environmental impact 

and thus reliable design flood prediction is a subject of great importance. However, 

consistent estimates of design floods remain a current challenge in hydrology 

(Smithers and Schulze, 2001). 

Flood-forecasting, as opposed to prediction, means the estimation of flow conditions at 

a specific time in the future; prediction is the estimation of future conditions without a 

reference to a specific time (Lettenmaier and Wood, 1992). Flood-forecasting is thus 

the estimation of expected future flood flows and the precision or uncertainty 

associated with the forecast. Forecasts are needed for improved warnings and 

operational decisions for the mitigation of flood damage. More formally, flood-

forecasting involves the provision of reliable, intelligible forecasts of flood flows with 

long forecast lead-times (which is catchment dependent but generally greater than 12 

hours) and explicit error bounds, made available at frequent intervals to hydrological 

operators, decision makers and disaster managers (Pegram, 2003b). 

Flood forecasting is an essential tool for catchment and disaster managers for the 

provision of accurate and reliable forecasts of future flood flows for the mitigation of 

flood damage. In order to achieve this, the forecasts need to be delivered with a 

sufficient lead-time so that any mitigation operations may be implemented. To 

maximise lead-time, precipitation information is needed in real-time, or forecasted 

ahead of time, to take advantage of the delay it takes the precipitation to reach the 

point of interest on the stream or channel from where it falls on the ground. To this end, 

a rainfall-runoff model is needed to simulate the process that occurs in converting 

precipitation into flood runoff. 
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CHAPTER 1: Introduction 

1.1 Approaches to design flood prediction 

There are three primary approaches to design flood prediction: empirical, deterministic 

and probabilistic. The approach that is used depends largely on the historical data 

(namely precipitation and streamflow records) that are available at the site. To a lesser 

extent site-specific considerations, such as catchment size and the nature of the design 

project, also dictate the method that should be used. However, owing to the uncertainty 

in flood predictions, no method should be used in isolation and all three approaches 

should be used where possible (Gorgens, 2002). 

An empirical approach attempts to predict the flood peak based on catchment and 

regional characteristics only. This method is used if the catchment is ungauged and 

there exists no historic precipitation and streamflow data. Thus, this method uses 

regional characteristics and some descriptor of catchment morphometry (such as 

catchment area) to predict flood magnitudes. Based on previous calibrations at other 

sites, a probability of exceedence (or return period) can usually be associated with this 

estimate. One such approach used in South Africa is the regional maximum flood 

(RMF) method developed by Kovacs (1988). 

Deterministic methods attempt to replicate all the factors involved in flood production, 

i.e. in the conversion of rainfall into flood runoff. These methods require historic 

precipitation in order to estimate the design storm associated with a given exceedence 

probability. Through the simplification of the rainfall-runoff process, deterministic 

methods then convert the design storm into the design flood of supposedly the same 

exceedence probability (ignoring the effects of joint probability). This approach can also 

be used on ungauged catchments (where no precipitation and streamflow records 

exist) if suitable regional techniques can be used to predict the design storm for that 

location. Methods such as the rational formula (Mulvaney, 1850) and the SCS method 

(Soil Conservation Service, 1972) are examples of commonly used deterministic 

methods for small to medium sized catchments. Both these methods have since been 

updated to suit local conditions, for the rational formula by Alexander (2002) and 

Pegram (2003a), and for the SCS method by Schmidt and Schulze (1987a and 1987b) 

and Schmidt et al. (1987). 

The probabilistic (or statistical) approach bases its flood peak estimate for a given 

catchment on the fitting of the most appropriate probability distribution to flood records 

from the catchment. The reasoning behind the concept of a statistical approach is that 
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CHAPTER 1: Introduction 

floods can be viewed as a random process and as such can be described by a 

probability distribution. Distributions such as the Log-Normal (LN) Distribution, the Log-

Pearson-Ill (LPIII) Distribution and the General Extreme Value (GEV) Distribution are 

commonly used to model flood frequencies. The runhydrograph method of Hiemstra 

and Francis (1979) was one such attempt to calibrate a statistical method for design 

flood estimation in South Africa. A probabilistic approach, theoretically, is the most 

consistent approach to estimate design floods provided that the site of interest be at or 

near a flow gauge (which is seldom the case) and a long and reliable flow record exists 

from that gauge (Gorgens, 2002). 

In the estimation of design floods, both the empirical and the deterministic approaches 

endeavour to behave in a probabilistic manner, i.e. to predict a flood magnitude with an 

associated probability of exceedence. This point is not clearly obvious, since the 

traditional application of a deterministic method, such as the rational formula for 

example, attempts to reproduce a historic event, i.e. a flood flow from a given set of 

rainfall and catchment conditions (storm patterns, ground cover conditions, antecedent 

moisture conditions, etc.). In a probabilistic sense, all the variables of the rational 

formula would need to be associated with a probability of exceedence in order to derive 

a flood flow of the same exceedence probability (again ignoring the effects of joint 

probability). Thus, a probabilistic approach to the empirical and deterministic methods 

is used to estimate the magnitude of the peak discharge from a site for a given 

probability of exceedence. This peak should be equivalent to a discharge estimated 

from a frequency analysis of flood records if a long and representative record were 

available at that site. 

1.2. Approaches to flood-forecasting 

Forecasting of flood flows usually falls within the realm of short-term forecasts, where 

the forecast lead-times are less than seven days (Lettenmaier and Wood, 1992). The 

forecast lead-time is the time interval for which the forecast is made and ranges from a 

few hours to a few days, depending on the type of forecast model used and the size of 

the catchment. As the lead-time increases and the area reduces, the accuracy of the 

forecast usually decreases, where the accuracy refers to the difference between the 

amount forecast and the actual amount that occurs. Long-term forecasts are typically 

meteorologically based and are issued usually by weather services with lead-times of 
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up to several months. They are more often used for the management of water 

resources and are based on seasonal behaviour and global trends of climate change. 

There are various components of the flood-generation process, within the realm of 

short-term flood-forecasting, for which forecasts can be made. The forecasts for each 

component are associated with different levels of forecast accuracy and forecast lead-

time. In this study these components were categorized according to the discipline into 

which they fall, namely meteorologic, hydrologic and hydraulic, which coarsely describe 

the water in the atmosphere, over the land and in the channel respectively. The 

approach that is usually used depends on the intended application of the forecast 

information. 

Meteorologic forecasts are (from the hydrologic view point) concerned with the 

prediction of precipitation information ahead of its time. This is achieved through the 

use of quantitative precipitation forecasts (QPF) based on numerical weather prediction 

systems (Bartholmes and Todini, 2003). The forecast precipitation information is 

coupled with a rainfall-runoff model in order to transform the rainfall into runoff. In this 

instance, the greatest forecast lead-time is achieved and can be as much as four days 

in advance, but the accuracy of the forecast is diminished. This type of forecast is 

usually referred to as medium-range flood-forecasting on account of the lead-time 

achieved. 

Hydrologic forecasts are concerned with the simulation of the rainfall-runoff process in 

real time, i.e. as it happens. These forecasts use real-time observations of precipitation 

from rain gauges, weather radar and satellite observations (or a combination of these) 

coupled with a rainfall-runoff model. The forecast lead-time is extended to the time it 

takes the precipitation to cover the distance between the area where it falls and the 

problem site on the stream channel (Bartholmes and Todini, 2003). The forecast lead-

time is thus dependent on the size of the catchment and its response time; the latter 

variable is a function of the catchment's physical characteristics such as slope, soil, 

geology and landcover. Real-time flood-forecasting is associated with greater forecast 

accuracy than medium-range flood-forecasting. 

Hydraulic forecasts involve the inference of river level (or discharge) at a downstream 

section/station on the basis of stage (or discharge) at a point upstream (Reed, 1984). 

This is achieved through flood routing and provides the most precise forecast available 

with the lowest associated forecast uncertainty. However, forecast lead-times are 

limited to the travel times of the flood-wave in a channel (Bartholmes and Todini, 2003). 
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1.3. Objectives of dissertation 

In the first part of this dissertation (Chapters 2, 3 and 4), two simple event-based flood 

prediction methods, which are currently used by design practitioners, are investigated. 

These are the regional maximum flood (RMF) and rational formula methods. The goal 

of this aspect of the research is to assist designers in using these methods by 

investigating issues related to the application of these methods. 

The RMF (Kovacs, 1988) is an empirically derived upper limit flood peak that can 

reasonably be expected at a given site. It predicts the regional "maximum" flood that 

can be expected from a given site based only on the site's catchment area and 

location. The advantages of this empirical method is its ease of use as it deals directly 

with the variable of interest, namely the flood peak discharge, and its avoidance of the 

assumptions involved in transforming rainfall inputs into flood outputs. 

A disadvantage of the RMF is that a return period cannot reliably be associated with its 

peak estimate. Although Kovacs (1988: 19) estimated the return period to be greater 

than 200-years, others such as Gorgens (2002) suggest that the return period of the 

RMF is actually much larger than 200-years. Thus the return period of the RMF was 

assessed in this study as part of the research into flood-prediction methods. This was 

accomplished by comparing flood magnitudes determined from the RMF method with 

statistically modelled floods, of known return period, for the same catchments. 

Furthermore, the dependence of empirical methods (such as the RMF) on catchment 

area as the main independent parameter of flood computation was also investigated. 

This was accomplished by calibrating empirical formulae on other morphometric 

variables of the landscape including catchment area and comparing these models with 

formulae calibrated on catchment area only. 

The rational formula is possibly the most widely used method for predicting design 

floods from design storms for urban catchments and small (<15km2) rural catchments, 

despite its criticism regarding its over-simplification of complex hydrological processes. 

One of the main criticisms of the rational formula regards the difficulty faced by 

practitioners in the probabilistic estimation of the runoff coefficient of the formula. With 

this in mind, a calibration of this variable, on statistically derived design flood peak and 

volume pairs for catchments in South Africa, was investigated in this research. The 

runhydrograph method of Hiemstra and Francis (1979) was used to derive the design 

flood peak and volume pairs for the calibration. The significance of this calibration to 
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designers is tested by attempting to extend the calibrated variables to ungauaged 

catchments. This latter aspect is also investigated in this research in an effort to 

validate the calibrated coefficients. 

In the second part of this dissertation (Chapters 5, 6 and 7) the focus is shifted to flood 

forecasting, namely in the assessment of the efficacy of a candidate rainfall-runoff 

model for the simulation of catchment hydrology. The simulation of catchment 

hydrology can be performed at various time and spatial scales. However, in order to 

exploit the type and quality of data currently available, models for real-time flood-

forecasting need to be physically based and distributed. Thus the chosen model for this 

aspect of the research is one such model and is the TOPKAPI model of Liu and Todini 

(2002). 

Since this model is novel to South Africa, this aspect of the research firstly involved the 

assimilation of disparate sources of literature on the model and the systematic 

combination of this information into a coherent whole for presentation as a candidate 

rainfall-runoff model for flood-forecasting purposes. After dissecting and resolving 

issues that were not clearly obvious from the literature, the model was then tested in a 

generic environment and the input data required by the model for its eventual 

application in the Liebenbergsvlei catchment was gathered and prepared. The practical 

application of the model is left for a follow-up study. The goal of this part of the 

research is to lay the theoretical and practical foundation for the implementation of a 

fully distributed physically-based rainfall-runoff model for real-time flood-forecasting in 

South Africa. 

1.4. Overview of chapters 

• Chapter 2: Introduces the primary concepts of design flood prediction and the 

theory of three prediction methods, two of which are reviewed in Chapters 3 

and 4 respectively. 

• Chapter 3: Provides a review of the empirically-based regional maximum flood 

(RMF) method (Kovacs, 1988) by estimating a return period associated with its 

peak discharge and by examining the effect of the inclusion of additional 

geomorphological parameters in the area-based empirical equation. 
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• Chapter 4: Provides a review of the rational formula method of flood prediction 

by calibrating the runoff coefficient of the formula on characteristic past flood 

peak and volume pairs of the runhydrograph method (Hiemstra and Francis, 

1979). 

• Chapter 5: Introduces the theory and concepts associated with flood-forecasting 

through the use of distributed rainfall-runoff models in simulating catchment 

hydrology. 

• Chapter 6: Provides a comprehensive description of the candidate distributed 

rainfall-runoff model chosen for this study, namely the TOPKAPI model, by 

synthesizing and dissecting the literature on the model. 

• Chapter 7: Describes the preparatory work that was performed in gathering and 

manipulating the input data (for the Liebenbergsvlei catchment) required by the 

model as well as the test application of the model in generic circumstances to 

confirm the model's operations. 

• Chapter 8: Provides a review of the investigations carried out in this research, 

an appraisal of the value added by it and the points of departure for follow-up 

studies. 

1.5. Chapter summary 

It is hoped that that the research presented in this dissertation has made the following 

contributions to the engineering and hydrologic community. Firstly, with regard to the 

review of simple event-based flood prediction methods, it was discovered that the 

magnitude of the regional maximum flood (RMF) closely approximates a statistically 

derived 200-year flood. Thus in a design situation, it was felt that to ascribe a 200-year 

return period to the RMF would be reasonable. It was also found that the use of 

catchment area, as the sole landscape parameter of an empirical model, provided the 

best predictions of floods (based on the data used) when compared to empirical 

models utilising other measures of the landscape as independent variables. Thus the 

use of catchment area as the sole independent variable in calibrating empirical 

equations proved to be most practical (as it was easiest to quantify) and efficient for the 

purposes of flood estimation. Secondly, with regard to the calibration of the rational 
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formula's runoff coefficient (c), it was discovered that tabulated values of c from Chow 

et al. (1988: 498) proved reasonable for use in design checks of large catchments as 

well as small. 

In the second part of this dissertation, the contribution made by this study was firstly in 

the introduction, analysis and explanation of a chosen rainfall-runoff model for flood 

forecasting purposes, i.e. the TOPKAPI model. This involved an intensive dissection of 

disparate sources of literature on the model and the systematic combination of this 

information as a coherent whole. Secondly, the input data required for the model was 

gathered and prepared through a geographical information system (GIS) and a test 

application was performed to verify the models operations. The research carried out 

here identified and resolved certain issues with regard to the models practical 

application. Issues such as the generation of TOPKAPI specific input were explained, 

the setup of the model's operations and the running of the model were performed. 

Since this model is novel to South Africa, the contribution made by this aspect of the 

research is the essential first step in laying the foundation for the models actual 

implementation, which is to be achieved in a follow up study. 
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CHAPTER 2 

2. DESIGN FLOOD PREDICTION 

This chapter is intended to briefly introduce the theory of three design flood prediction 

methods, namely the regional maximum flood (RMF), the rational formula and the 

runhydrograph method. The shortcomings of the former two methods are also 

discussed in preparation for the review of these methods in Chapters 3 and 4 

respectively. These reviews formed the basis of two journal articles towards this 

research, namely Pegram and Parak (2004) and Parak and Pegram (2006). These 

articles are attached in Appendices A and B respectively. 

2.1. The regional maximum flood (RMF) method 

The RMF (Kovacs, 1988) is based on the use of the Francou-Rodier (Francou and 

Rodier, 1967) equation (Eq. 2-1) to define flood peak envelope curves. Kovacs (1988) 

used this equation, together with 519 observed flood peaks from catchments in 

Southern Africa, to delimit hydrologically homogeneous regions. When these peaks 

were plotted against catchment area for each of the regions, it was discovered for 

catchments larger than 100km2 that the plots defined an upper limit of expected flood 

peaks for a given region. The Francou-Rodier equation is given as: 

Q = 106 f A ^~l 

108 (2-1) 

where Q is the flood peak in m3/s, A is the catchment area in km2 and K is a regional 

factor (dimensionless) which is indicative of the flood magnitude potential of the area, 

shown in Fig. 2-1. K accounts for the influences of variations in rainfall (intensity, area 

and duration) and catchment characteristics (such as geology, land-form, vegetation 

cover, etc) in flood production. The RMF for a particular site is then computed from Eq. 

2-1 based on the knowledge of the size of the catchment (area) and its location (to 

determine its regional K-value). 



CHAPTER 2: Design flood prediction 

It should be noted at this juncture, that the "secret" to the success of the RMF is the 

careful way in which Kovacs chose the regions to group the flood data. He did this by 

examining the actual K-value (determined from Eq. 2-1) for each of the flood peaks 

used in his study. Regional boundaries of K were delimited by considerations of 

individual K-values within the region, the number and accuracy of the data in a 

particular area, existing boundaries, maximum recorded 3 day storm rainfall, 

topography, catchment orientation with respect to dominant storm generating weather 

systems, general soil permeability, main drainage network and the location of large 

dams situated upstream from the gauging sites (Kovacs, 1988: 9). Of these 

considerations, individual K-values were evidently the most important and the regions 

were traced based on this. In areas of high flood magnitude potential, a difference in K 

of 0.2 between adjacent regions was allowed for and a difference of 0.6 in areas of low 

flood magnitude potential. 

Figure 2-1. Map of Southern Africa indicating the Maximum Flood Peak regions and 
their associated K-values (Kovacs, 1988). 

A disadvantage of the RMF method is that it does not clearly embody a design flood, 

i.e. a return period cannot easily be associated with its peak estimate. Kovacs himself 
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estimates the return period to be greater than 200 years (Kovacs, 1988: 19). He 

attempted to rectify this situation by modelling all the observed flood peaks of a 

particular K-region as a statistical sample. He used the sum of all the individual 

representative periods N (length of records at the gauges) of the peaks in that region 

as being equivalent to the overall recurrence interval of the particular K-region (station-

year concept). Where the representative period of a flood was not known, Kovacs did 

not allow this to exceed 200 years and a provisional A/-value was estimated based on 

the assumption that the ratio of the 200-year peak to RMF, Q2o(/RMF, was 0.65. He 

then estimated ratios of the 50-, 100- and 200-year recurrence interval floods to the 

RMF for each region. 

However, Gorgens (2002) states that, "statistically speaking" Kovacs' (1988) method of 

determining the recurrence intervals was too simplistic. In reviewing Kovacs' method, 

Gorgens recommends that the 50-, 100- and 200-year ratios "may need to be factored 

down by 0.7, 0.8 and 0.9 respectively". This implies that the RMF peaks have return 

periods that are actually much larger than 200-years, as opposed to the original 

estimation of Kovacs. As such Gorgens suggests that the RMF method of Kovacs 

should be seen as the conservative or upper limit flood estimate in each recurrence 

interval. 

Thus, the estimation of a return period which can reliably be associated with the RMF's 

peak estimate was, inter alia, investigated in this research. In order to accomplish this, 

floods determined from the RMF method were coaxially plotted with historical floods 

modelled with a statistical distribution (the GEV Distribution in this instance) from the 

same catchment. The flood records used were annual peaks from 130 catchments 

across South Africa and were actually a subset of the data set used by Kovacs (1988) 

in his study. The lengths of record of the data set used in this study ranged from 9 to 76 

years. This investigation is explained in Chapter 3 and formed part of a journal article 

(Pegram and Parak, 2004), included in Appendix A. 

The RMF method, like many other empirical methods, relies on catchment area as the 

independent variable in its flood estimate. However, one might expect other 

parameters of the fluvial landscape to play just as important a role in flood estimates 

and hence flood response. Flood geomorphologists, such as Horton (1932; 1945) and 

Strahler (1952; 1964) and many others since have been interested in relating flood 

discharges to physical measures of the landscape (morphometry). They identified 

parameters of the fluvial landscape which intuitively would correlate well with flood 
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discharge. Linear parameters (such as stream orders and stream lengths), areal 

parameters (such as catchment area, catchment shape and drainage density) and 

relief parameters (such as catchment relief, catchment slope, channel slope and 

ruggedness number) are some of the physical measures that have been identified as 

significantly affecting flood response. Instinctively, one can expect a multi-variable 

relationship between flood discharge and catchment morphometry to exist because a 

catchment is effectively "an open system trying to achieve a state of equilibrium" 

(Strahler, 1964). Precipitation and energy are inputs to the system and soil (eroded 

material) and excess precipitation leave the system through the catchment outlet. 

Within this system an energy transformation takes place converting potential energy of 

elevation into kinetic energy where erosion and transportation processes result in the 

formation of topographic characteristics. Thus it is evident that floods, and the 

landscape through which they drain, form a mutual relationship and ultimately 

catchment morphometry should reflect the long-term effects of this energy conversion 

phenomenon. 

Thus, in addition to the estimation of a return period that could be associated with 

RMF-based estimates, research towards determining if landscape parameters, 

together with catchment area, improved the prediction of flood peaks in empirically 

based models was also conducted. This part of the investigation also formed part of the 

journal article Pegram and Parak (2004) which is included in Appendix A. This 

investigation is explained in Chapter 3. 

2.2. The rational formula method 

The rational formula was first proposed by the Irish engineer Mulvaney (1850) and has 

possibly become the best known and most widely used method for the determination of 

peak flood flows from rainfall events. It has survived numerous criticisms regarding its 

over-simplification of the complex hydrological processes of flood production but 

nonetheless is perhaps the most favoured method used by practitioners for peak flood 

estimation. The rational formula owes its popularity to the fact that it is easy to 

understand and simple to use. The peak flood flow due to a rainfall event on a 

catchment, determined from the rational formula, is expressed (in SI units) as: 

QRF = ciA/Z.6 (2-2) 
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where QRF is the flood peak in m3/s, c is the runoff coefficient, which (in the traditional 

deterministic approach) is defined as the proportion of precipitation that contributes to 

runoff, / is the storm rainfall intensity in mm/hr and A is the catchment area in km2. 

The criticisms concerning the rational formula, in the form shown above, are not 

unfounded and the use of this method carries valid cautions that are based on the 

following assumptions built into the formula (which are not always explicit in its 

presentation): 

• The maximum rate of runoff from a catchment is achieved when the duration of 

rainfall is equal to the time of concentration (Tc) of the catchment, which is 

defined as the time taken for the outflow from a catchment to reach near 

equilibrium due to rainfall uniformly spread in space and time. 

• The spatial and temporal characteristics of rainfall are consequently ignored 

and the storm rainfall, as input into the formula, is assumed to be a rectangular 

pulse of duration Tc, deposited in lumped form on the catchment (i.e. there is no 

routing component implicit in the formula). 

• The effects of joint probability are ignored and it is assumed that a 7-year 

recurrence interval storm will produce a flood of the same recurrence interval, if 

the catchment is at 'average' conditions. This assumption is shared by most 

deterministic methods. However, it was shown by Gray (1973), in comparing 

the recurrence intervals of large historical storms and their resulting flood 

peaks, that the means of the two sets of recurrence intervals were closely 

matched, thus removing the necessity for the account of joint probability in 

deterministic methods. 

The rational formula was previously limited in its application in South Africa to small 

catchments less than 15km2 in size (HRU, 1972) and it was only to be used as a check 

method, i.e. it was not to be used in isolation. It was also noted that sound engineering 

experience and judgment was required for its use. However, work that has since been 

done, locally by Alexander (2002) and Pegram (2003a), and abroad in Australia 

(Institute of Engineers Australia, 1987), has shown that these cautions were too 

conservative and its use may well be extended beyond small catchments. 

As stated in Section 1.1, a probabilistic approach to the rational formula is needed for 

the estimation of design floods. In this case, the variables c and / (the runoff coefficient 

and rainfall intensity respectively) of the formula need to be associated with a 

probability of exceedence. Pilgrim and Cordery (1992) have stated that the design 
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situation is exactly suited to the probabilistic approach of the rational formula and has 

little similarity with the deterministic rational formula, and so the criticisms associated 

with the deterministic approach are not necessarily valid for the probabilistic design 

case. Alexander (1990) stated that as the catchment size increases the value of c 

becomes more probabilistic than deterministic in its derivation. The probabilistic 

approach to the rational formula has the same form as Eq. 2-2 but is defined more 

specifically as: 

Q(r) = C(T)i(TcJ)A/Z.6 (2-3) 

where Q(T) is the flood peak in m3/s of recurrence interval (Rl) T-years, Cm is the runoff 

coefficient for a 7-year event, in-cj] is the 7-year storm rainfall intensity in mm/hr of 

duration equal to the time of concentration 7C (hours) of the catchment and A is the 

catchment area in km2. 

In this approach, the value of cm purports to transform a 7-year design storm i(TciTj, of 

duration 7C, into a 7-year flood peak Qm for a catchment of area A. The variable i(Tc,T) 

can be determined, for a particular site, from suitable Intensity-Duration-Frequency 

(IDF) relationships of design storms. However, the estimation of the runoff coefficient 

Cm remains the main source of uncertainty in the probabilistic application of the rational 

formula. It is the least precise variable of the rational formula, in spite of it being 

bounded in the interval (0; 1), and suggests that a fixed ratio of peak runoff rate to 

rainfall rate exists for the site, which in reality is not the case (Chow et al., 1988: 497). It 

is the estimation of the design runoff coefficient of the rational formula that forms the 

main focus of a review of this method (see Chapter 4). To this end, this research 

investigated the calibration of the runoff coefficient, on past flood peak and flood 

volume pairs for a number of catchments in South Africa, to assist with its 

determination. The calibration of runoff coefficients on past floods is also the practice 

that was adopted in Australia (Institute of Engineers Australia, 1987) where it was 

shown that the use of calibrated coefficients in a probabilistic approach to the rational 

formula could consistently provide flood estimates for catchments up to 250km2. In this 

dissertation, the "data set" of runhydrographs (see Section 2.3.) produced by Hiemstra 

and Francis (1979) was used to calibrate the coefficients in order to investigate the 

probabilistic approach of the rational formula for selected catchments in South Africa. 
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In South African practice, the idea of calibrating the rational formula's runoff coefficient 

is not new. Alexander (2002) proposed a new standardised regional flood estimation 

technique called the standard design flood (SDF). This method is essentially a 

probabilistic approach to the rational formula, as advocated by Alexander (1990), 

utilizing calibrated runoff coefficients. The SDF method is based on the calibration of 

the runoff coefficient against design floods determined from a frequency analysis, using 

the LOG-Pearson-lll (LPIII) distribution, of recorded events from a number of 

catchments in South Africa. According to Alexander (2002), the SDF can be applied to 

all sizes of catchments in South Africa, ranging in size from 10km2 to 40 000km2. 

Alexander has also suggested a standard design hydrograph for the SDF with a fixed 

triangular shape that has a rising limb equal to the time of concentration of the 

catchment Tc and a falling limb equal to 2TC, i.e. an effective time base-length of 3TC. 

This idealized hydrograph is the same as that proposed by Rooseboom et al., (1981) 

where it was noted that the runoff volume is greater than the proportionate part of the 

storm rainfall that runs off during the time of concentration. 

In an independent test, the average ratio of Alexander's 50-year SDF flood peak to the 

50-year LPIII flood peak was found to be approximately 210% (Gorgens, 2002). 

Alexander's method was designed to be purposefully conservative and he states that 

the over-estimates fall within the range of uncertainties associated within all design 

flood procedures. However, Gorgens (2002) states that although the cost and 

implications associated with a conscious over-design in terms of a bridge/culvert is 

relatively minor, by contrast it is not acceptable for dam spillway design, where the cost 

of the spillway is a significant component of the total dam cost. An average over­

estimate of 200% might render some projects infeasible. As such, Gorgens 

recommends that the SDF should be seen as a conservative approach similar to that of 

the regional maximum flood (RMF) method. 

Conscious of this, the approach adopted in this investigation was slightly different in 

that the calibration of the runoff coefficients was performed on past flood peak and 

volume pairs (as offered by the runhydrograph method). It was anticipated that this 

would yield coefficients that could, in a design situation, describe a complete design 

flood hydrograph (peak, volume and time base-length). The methodology and results of 

this investigation are described in Chapter 4 while the theory behind the runhydrograph 

method is explained in Section 2.3. This particular investigation formed the basis for a 

journal article (Parak and Pegram, 2006) which is included in Appendix B. 
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2.3. The runhydrograph method 

The runhydrograph method was developed by Hiemstra and Francis (1979) and was 

based on earlier work by Hiemstra (1972, 1973 and 1974), Hiemstra et al. (1976) and 

Francis (1979). It is based on the joint probability analysis of same-event flood peak 

and flood volume pairs of recorded data from 43 catchments in South Africa (see Table 

A1 in Parak and Pegram (2006) included in Appendix B). Hiemstra and Francis 

discovered that the natural logarithms of the flood peak and its corresponding volume 

were approximately normally distributed and well correlated, with a cross-correlation 

coefficient with mean 0.78 and standard deviation 0.12 (a relatively narrow range 

whose mode is 0.85). 

Fig. 2-2 (from Hiemstra and Francis, 1979: 14) shows the natural logarithms of the 

recorded flood peak and volume pairs plotted together with the contours of equal 

probability density of a standardized bivariate normal probability density function (with a 

cross-correlation coefficient of 0.85). The correlation of the peak-volume pairs can be 

seen from Fig. 2-2 in that the plotted peak-volume pairs cluster around the 45° line in 

an elliptical shape. Also shown in Fig. 2-2 (in the positive quadrant) are 10- and 100-

year return period exceedence probability contours (bold lines). The contours describe 

the joint probability of flood peak and flood volume exceedence. The dashed lines 

intersecting on the 100-year exceedence contour include an area in which the bivariate 

probability density function integrates to 0.01. Thus, on average, 1 % of the 

observations will lie within this area, and within other areas of bivariate exceedence 

similarly defined on the 100-year contour. 

It is further evident from Fig. 2-2 that the exceedence contours are able to produce 

"families" of hydrographs (peak-volume pairs) of equal probability of jointly being 

exceeded, but of varying shape. These families can range from the marginal peak 

(associated with any volume), to the "most likely" joint peak and volume pair through to 

the marginal volume, each with an equal probability of joint exceedence. However, it 

can also be seen from Fig. 2-2 that the plotted peak-volume pairs are very well 

correlated. If the cross-correlation coefficient approaches unity, the minor axis of the 

ellipse reduces to zero. Thus, although more than one combination of a peak-volume 

pair exists that has the same probability of jointly being exceeded, the most likely 

(modal) pair will be found at the intersection of the 45° line on the exceedence contour 

(the point where the probability density is highest). 
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Figure 2-2. A standard bivariate normal probability density function, with a cross 
correlation coefficient of 0.85, plotted with log-transformed observed flood peak-
volume pairs in probability space (from Hiemstra and Francis, 1979: 14). The 
bold lines in the positive quadrant are the 10- and 100-year return period joint-
exceedence contours. The dashed lines include a quadrant to the upper right, 
which on average will include 1% of the observations. 

Fig. 2-3 shows the application of the runhydrograph method as suggested by Hiemstra 

and Francis (1979) for design flood peak and volume estimation (for a cross-correlation 

coefficient of 0.85). The numbers listed on the top right of Fig. 2-3 are the standardized 

ordinates of the peak-volume exceedence contours for the selected recurrence 

intervals. They describe the joint exceedence of the most likely peak-volume pair 

(corresponding to line #1) through to the exceedence of the marginal peak 

(corresponding to the vertical axis to the left of line #6). However, it is unlikely that a 

peak-volume pair will occur on lines 4, 5 and 6 for this relatively high correlation, and 

as stated above, the most likely (modal) pair will be found at the intersection of the 45° 

line and the exceedence contour. 
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Figure 2-3. Joint flood peak and flood volume exceedence contours, in probability 
space for a peak-volume cross-correlation coefficient of 0.85 (from Hiemstra 
and Francis, 1979: 53). 
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The reason for choosing the runhydrograph as the data set against which to calibrate 

the runoff coefficients towards a probabilistic approach of the rational formula (see 

Section 2.2.), is that the runhydrograph method summarises for a given catchment the 

family of characteristic peak and volume discharges for a given recurrence interval. 

This method was based on the frequency analyses by Hiemstra and Francis (1979) of 

all rare hydrographs (which were carefully screened for reliability) in a continuous 

stream flow record. Furthermore, these hydrographs were analysed independently of 

rainfall input and catchment characteristics. Despite its apparent merit, this method is 

unfortunately seldom used in design situations. However, it was felt that this set of 

statistics would be valid to use for calibration of the rational formula's runoff coefficient 

for this research and the modal peak-volume pair was chosen for this purpose in order 

to limit the number of variables. The details of this investigation are explained in 

Chapter 4 and are sourced from Parak and Pegram (2006), which is included in 

Appendix B. 

2.4. Chapter summary 

Chapter 2 introduced the three approaches of design flood prediction, i.e. empirical, 

deterministic and probabilistic, and three methods used to this end. Common difficulties 

with two of the methods, namely the RMF and the rational formula methods, were also 

discussed. These methods are reviewed in the Chapters 3 and 4 with the intention of 

resolving these matters, namely: 

• The association of a return period with the RMF. 

• The addition of landscape parameters in improving empirically derived flood 

peak estimates. 

• The calibration of the rational formula's runoff coefficient on runhydrograph 

floods towards a probabilistic implementation of this method. 

- 19 -



CHAPTER 3 

3. A REVIEW OF THE REGIONAL MAXIMUM FLOOD (RMF) 

Chapter 2 introduced the RMF method of flood prediction. The RMF (Kovacs, 1988) is 

an empirically derived upper limit flood peak that can reasonably be expected at a 

given site. This flood is computed from an empirical equation, the Francou-Rodier 

equation (Francou and Rodier, 1967), based on the size of the catchment (area) and 

on the catchments location (a regional value that is indicative of the site's flood 

magnitude potential). It was further discussed in Chapter 2 that, in a design situation, 

one is not able to easily associate an exceedence probability with RMF-based flood 

estimates. Kovacs (1988) estimated the return period of the RMF to be in the order of, 

but greater than, 200 years (Kovacs, 1988: 19). However Gorgens (2002), in his review 

of this matter, stated that the return period of the RMF is much larger than 200 years. 

Thus, this method tends to be used by practitioners as an upper limit flood estimate. 

This chapter describes the investigation into the estimation of a return period which 

could be associated with the RMF-based flood estimate by simultaneously plotting the 

floods determined from this method with probabilistically modelled floods for the same 

catchments. Furthermore, this chapter also examines the extension of empirically 

based methods (as a function of catchment area only) through the inclusion of other 

measures of the fluvial landscape. This was assessed by calibrating an empirical 

equation for a catchment on landscape parameters. The equation was then validated 

by comparing it with probabilistically modelled floods for the same catchments. Central 

to both investigations is the use of flood records, which were statistically modelled 

using the General Extreme Value (GEV) Distribution. 

The study described here formed the core of a journal article (Pegram and Parak, 

2004). This article also details additional investigations that were carried out in this 

study concerning issues related to flood prediction, of which Chapter 3 is a summary of 

the main outcomes. The article is included in its entirety in Appendix A. 
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3.1. Methodology and results 

3.1.1. Flood record modelling 

The flood record database consisted of annual flood peaks from 130 catchments 

across South Africa. This data was a subset of the actual records used by Kovacs in 

the construction of the RMF curves (Kovacs, 1988) and had lengths of record ranging 

from 9 to 76 years. This data set, although old (final year of record was 1988), provided 

the starting point for this study. The return period associated with each annual peak 

was computed using the Weibull plotting position (Weibull, 1939). This method was 

used as it is considered as being more conservative than the Cunnane plotting position 

(Cunnane, 1978); the Weibull plotting position associates a shorter return period with 

its highest ranked flood than the Cunnane plotting position. The Weibull plotting 

position is expressed as: 

T - ^ (3-1, 

where 7 is the return period (in years), N is the length of record (in years) and r is the 

rank of the flood peak; r = 1 for the largest peak. 

Using Eq. 3-1, the return period associated with each annual peak of a catchment was 

computed. Following the work of De Michele and Salvadori (2002) and Kjeldsen et al. 

(2002), the probability distribution of these peaks was assumed to follow a Generalized 

Extreme Value (GEV) Distribution (Jenkinson, 1955). This distribution has the following 

form: 

Q r = / / + <ry7 (3-2) 

where QT is the 7-year return period flood peak estimate, ju and a-are shift and scaling 

parameters respectively and yT is the GEV reduced variate corresponding to a 7-year 

return period, i.e. 

1 
1-^-ln 1-

T 

nr 
(3-3) 
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where k is a shape parameter and T is the return period. When k = 1, the GEV 

Distribution reduces to the Extreme Value Type 1 (EV1) Distribution (Gumbel, 1941). 

The GEV Distribution was fitted to the observed peaks, by using the return period T 

computed using Eq. 3-1 to calculate the reduced variate yT, and by fitting the rest of the 

variables (shift, scaling and shape) by minimizing the sum of the squares of the 

differences between the observed and the modelled peaks. Although the probability 

distribution could have been fitted directly to the peaks, using the method of 

moments or the method of maximum likelihood (instead of using a plotting position 

to estimate the peaks' probability value), the method adopted in this investigation 

was thought to be simpler yet still valid. 

This model of the flood data formed the basis with which to carry out the investigations 

described. Some of these data and their distribution fits are presented in Table A1 (Part 

3) in Pegram and Parak (2004) included in Appendix A. 

3.1.2. Return period of the RMF 

The RMF was estimated for 57 catchments for which both annual flood peak data were 

available and modelled as explained in Section 3.1.1, and where the regional K-values 

were obtained from Kovacs (1988). These were 15 catchments for Region 4.6, 30 

catchments for Region 5 and 12 catchments for Region 5.2. The delineation of the 

regions is shown in Fig. 2-1 (Kovacs, 1988). The method employed in this investigation 

was to coaxially plot the 50-, 100- and 200-year probabilistically modelled floods with 

that from the RMF (corresponding to the same regions and catchments). These were 

plotted against catchment area as the independent variable as shown in Fig. 3-1. Since 

the return periods of the modelled floods were known, the return period of the RMF 

could then be visually estimated. The results for Regions 5.2, 5 and 4.6 are shown in 

Figs. 3-1, 3-2 and 3-3 respectively, where the 200-, 100- and 50-year probabilistically 

modelled flood magnitudes (Q2oo, Qwo and Q50) are represented by the thin solid line, 

the dashed line and the dotted line respectively. The RMF-based floods (QRMF) are 

represented by the thick solid lines. 
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Region 5.2 
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100 1000 Area A (km2) 10000 100000 

Figure 3-1. Determination of the return period associated with the RMF for Region 5.2. 
The bold line is the RMF estimate (defined by the Francou-Rodier equation) 
and the thin lines (dotted, dashed and solid) are trend-lines fitted to the 50-, 
100- and 200-year floods estimated from a probabilistic analysis of recorded 
annual peaks for catchments in Region 5.2. 
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Figure 3.2. Determination of the return period associated with the RMF for Region 5 
(description as per Fig. 3-1). 
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Figure 3-3. Determination of the return period associated with the RMF for Region 4.6 
(description as per Fig. 3-1). 

From Figures 3-1 to 3-3, it is clear that the RMF is closest to the 200-year flood when 

compared to the 50-, 100- and 200-year probabilistic flows. Table 3-1 summarizes the 

trend-line equations and regressions from Figs. 3-1, 3-2 and 3-3. It can be seen in 

Table 3-1 that the 200-, 100- and 50-year trend-line slopes are slightly flatter than the 

RMF curves for all the floods in all the regions except one (Q50 for Region 4.6). The 

coefficients of determination (Revalues) range from poor (0.34) to good (0.84), 

appearing to improve for the more frequent floods and for the regions located further 

inland (Region 4.6). However, despite some poor fits, the correspondence is generally 

fair to good and provides an indication of the approximate magnitude of the RMF, i.e. it 

is closely approximated in all three regions by the 200-year flood. 

Table 3-1. Summary of the trend-lines from Figs. 3-1, 3-2 and 3-3. The coefficients of 
determination (Revalues) appears in parentheses. 

Region 5.2 

Region 5 

Region 4.6 

QRMF 

145A048 

100A05 

4 8 A 0 . 5 4 

Q200 

269A041 (0.34) 

129A044(0.51) 

55A051(0.51) 

Q100 

191 A039 (0.38) 

77A° 46 (0.63) 

29A054 (0.70) 

Qso 

134A038(0.41) 

45A048(0.71) 

20A° 58 (0.84) 
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As an extension to this investigation, an attempt was made to examine if the k-

parameter of the GEV Distribution could be regionalised using the regional description 

of Kovacs' (1988) K-values. Despite the potential merit of this attempt, the results were 

poor and there did not appear to be any relationship between the two parameters. This 

result is shown in Fig. 3-4 where the /c-parameter of the GEV Distribution for each 

catchment is sorted using the RMF K-value for the catchments. Fig. 3-4 also shows the 

standard errors associated with the mean /(-parameter for each regional K. Although for 

Region 5 the least error is observed, it must be noted that this region has the most 

data. However the spread of the /(-parameters in each region is large and the results 

were not successful. 

Kovacs' Regional K 

4.4 4.6 4.8 5 5.2 5.4 

0 

Q. 
CD 

£ 
O -0.4 
c g *-> 
E 
•c 
« -0.8 
a 
> 
LU 
CD 

-1.2 

-1.6 

Figure 3-4. Plot of the /(-parameter of the GEV Distribution for each catchment against 
the regional K-value of the RMF (Kovacs, 1988) for Regions 4.6, 5 and 5.2. The 
mean GEV /(-parameter together with its standard errors is also shown for each 
regional K. 

3.1.3. Inclusion of landscape parameters in empirical formulas 

In this investigation an attempt was made to determine if other measures of the 

landscape besides catchment area (such as mean channel slope, mean annual 

precipitation, drainage density, catchment relief and ruggedness number) were able to 

improve empirical equations based on catchment area only. In order to examine this, 

an empirical equation based on area and some other landscape measure(s) was 

calibrated on the probabilistic flows, modelled as explained in Section 3.1.1, for certain 

catchments (calibration catchments). In order to validate the calibrated empirical 
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equation, it was used to generate design flows for catchments not used in the 

calibration exercise (validation catchments). These flows were then compared to 

probabilistically modelled flows (see Section 3.1.1) of the validation catchments. The 

extent to which the generated flows (from the empirical equations) mimicked the 

probabilistic flows was adjudged on the strength of the coefficient of determination (R2-

value). The success, or lack thereof, of a calibrated empirical equation including 

landscape parameters in addition to catchment area, was assessed on the strength of 

R2in validation when compared to this value {R2) when an empirical equation calibrated 

on catchment area only was used. Thus, through a series of step-wise regressions it 

could be determined if an empirical equation calibrated on catchment area only was 

improved through the inclusion of additional landscape data. 

To this end, landscape data were used from a study by Parak (2003) for 25 catchments 

for which the peak discharges of the catchments were probabilistically modelled as 

explained in Section 3.1.1. In his study, Parak (2003) captured morphometric data for 

catchments across the country in an investigation into the relationship between floods 

and landscape. Parak (2003) used already catalogued data, such as Petras and Du 

Plessis (1987) and Kovacs (1988) and supplemented this with further data through 

map work accessed electronically from Midgley et al. (1994). As mentioned earlier, the 

following landscape data were used in this investigation: catchment area, mean 

channel slope, mean annual precipitation (MAP), drainage density, catchment relief 

and ruggedness number. These are listed in Table A1 in Pegram and Parak (2004), 

which is attached in Appendix A. Typical catchment morphometry and its derived 

geometry are shown in Fig. 3-5 (from Parak, 2003). Other parameters (such as the 

various length measures of water courses and catchment perimeter) were not 

incorporated in the formulation of the empirical equations since they are highly 

correlated with catchment area (being indicative of size). Thus it was felt that these 

parameters would not add more information compared to using catchment area on its 

own, hence they were omitted. 
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Basin area 
Effective area 
Longest watercourse 
Total stream length 
Basin relief 
Mean river slope 
Shape factor A/Ac 
Time of cone. 
Mean annual precip. 
Mean annual runoff 
Max. obs. flood peak 
Representative period 
RMF K-value 
Strahler basin order 
Shreve magnitude 
Drainage density 
Ruggedness number 
Bifurcation ratio 

4152 km* 
4 152 km* 
181 km 
1 287 km 
820 m 
0.00132 
0.56 
47 h 
785 mm 
326x10emJ 

1 220 mJ/s 
69 years 
4.6 
4 
96 
0.310 km/km* 
0.254 
2.10 

outlet 

Mean river slope 

Strahler basin order Shreve magnitude 

Figure 3-5. The Klip River catchment (represented by gauge C1H002) and basin 
properties (derived from Petras & Du Plessis, 1987; Kovacs, 1988; Midgley et 
a/., 1990 and Parak, 2003). The definitions of the mean river slope, Strahler 
basin order and Shreve magnitude are also shown. Reference should be made 
to Pegram and Parak (2004) in Appendix A for the definitions of these and other 
parameters. 
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The flood and landscape data were randomly split into two groups, one for calibration 

and the other for validation. Group 1 and 2 consisted of 13 and 12 catchments 

respectively. The roles of these groups were also swapped, meaning that in the first 

test Group 1 was used for calibration and Group 2 for validation, while in the second 

test Group 2 was used for calibration and Group 1 for validation. The magnitude of the 

flow rate that was used for calibration and validation was the 20-year flood because all 

the flow records used here had observation periods greater than 20-years. It was also 

argued that this flood would be the least likely estimate to be affected by fitting the 

wrong probability distribution. 

It is important to note that landscape data are sensitive to map scale; i.e. different 

values of the parameters will be obtained at different scales. For example, the river 

detail shown on a larger scaled map is much less than that which is shown on fine-

scaled maps. This has a direct influence on the magnitudes of the landscape 

parameters. Measures such as total stream length, stream orders, drainage densities 

and ruggedness numbers are all dependent on the scale of the map from which these 

parameters were extracted. However, the use of finer scaled maps comes at the 

expense of greater effort and time requirements for data extraction. In order minimise 

comparative errors, Parak (2003) used uniform scaled maps (at 1:250 000) from 

Midgley et al. (1990) to extract data that are sensitive to scale. 

In Parak's study (2003), the most suitable formulation of an empirically based flood-

landscape equation was discovered to be a power-law relationship after studying 

various literature, in particular Patton (1988). This took the form of: 

Q20=aAbXcYd.... (3-4) 

where Q20 is the 20-year flood (used in this instance), A, X and Y are landscape 

quantities and a, b, c and d are parameters to be regressed from the data. The 

formulation for the regression equation was to take logarithms of Eq. (3-4) and regress 

using the linearised model: 

log(Q20) = log(a) + bJog(/l) + c.log(X) + cUog(Y) (3-5) 

Fig. 3-6 shows the calibration of an empirical equation defining the 20-year flood {Q2o) 

as a function of catchment area only. The R2 statistic implies a strong relationship 
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(0.86) and good fit. When this model (Q20 = 24.6A0517) is tested against the data 

reserved for validation (shown Fig. 3-7), the fit is poor (producing a moderate R2 

statistic of 0.54). These two statistics of R2, 0.86 in calibration and 0.54 in validation, 

then became the target set against which to compare the improvement (or lack thereof) 

of the empirical model through the inclusion of further landscape parameters. These 

statistics (of the step-wise regressions) are summarised in Table 3-2. 
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Figure 3-6. The 20-year flood {Q2o) vs. catchment area for the calibration of an 
empirical model. The number of catchments used here was 13. 
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Figure 3-7. The 20-year floods generated from the model calibrated in Fig. 3-6 vs. the 
probabilistically modelled floods for the same catchments. The number of 
catchments used in this validation was 12. 

Table 3-2: Results of the step-wise regression of the model calibration and validation. 
The numbers in parentheses flag the ranked "best fit" (based on the R2-value) 
to the validation data. 

Q20 v s . . 

Area 

Area and slope 

Area and MAP 

Area and drainage 
density 

Area and relief 

Area and ruggedness 
number 

Area, slope and MAP 

Area, ruggedness 
number and MAP 

Area, drainage density 
and MAP 

Area, relief and MAP 

Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 

R2 

Group 1: calib. 
Group 2: valid. 

0.86 
0.54 (3) 
0.87 
0.53 
0.89 
0.51 
0.87 
0.53 
0.88 
0.56(1) 
0.88 
0.55 
0.90 
0.50 
0.92 
0.52 
0.89 
0.49 
0.89 
0.55 (2) 

Group 2: calib. 
Group 1: valid. 

0.54 
0.86(1) 
0.57 
0.72 
0.55 
0.77 (3) 
0.54 
0.78 (2) 
0.64 
0.63 
0.59 
0.66 
0.64 
0.39 
0.60 
0.64 
0.57 
0.53 
0.65 
0.61 

It is evident from Table 3-2 that the addition of landscape data as independent 

variables in the prediction of floods does not appear to improve the flood prediction 
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ability of the empirical model. This is drawn from the fact that the f?2-value does not 

appear to significantly improve in validation of the empirical models (calibrated on area 

and some other landscape measure) when compared to the area-based empirical 

model (calibrated on area only). For example, when Group 1 was used as the 

calibration set and Group 2 the validation set, the f?2-values in calibration and 

validation of the area-based model were 0.86 and 0.54 respectively. Thereafter, when 

including other measures of the landscape in addition to area in the calibration and 

validation of the models, the predictive ability of the additional landscape parameters 

was witnessed to be small. This is evident in that the Revalues in calibration and 

validation of the model including additional landscape parameters did not improve 

significantly when compared to 0.84 and 0.54 respectively (for the area-based model). 

The best overall improvement (although slight) in R2 for calibration and validation of an 

empirical model was when relief was included with area (0.88 and 0.56 respectively). In 

spite of a relatively high value of R2 experienced in calibration of a model including 

ruggedness number and MAP with area (0.92), the Revalue in validation was poorer 

(0.49) than when area was used alone. When the roles of the groups were reversed, 

i.e. Group 2 was used for calibration of the models and Group 1 for validation, the R2-

values for calibration of the empirical models were poorer than this statistic in 

validation. Despite this, it was still evident that models calibrated with area and some 

other landscape measure faired poorer in validation than with models calibrated with 

area only. Thus for both tests, i.e. for the first test where Group 1 was the calibration 

set and Group 2 the validation set, and for the second test where Group 2 was the 

calibration set and Group 1 the validation set, it seems that the best model of floods 

and landscape is simply area-based. The probable reason for the fact that Group 1 

seems stronger in calibration and validation than Group 2 is possibly due to the small 

sizes of the groups (respectively 13 and 12 catchments) bearing in mind that the 

groupings were a random choice process. 

3.2. Discussion of results 

3.2.1. Return period of the RMF 

Probabilistically modelled and RMF flood estimates were plotted in Figs. 3-1, 3-2 and 

3-3 against catchment area for three K-regions in order to estimate a return period that 

could be associated with the RMF. It is evident in all three figures that the RMF curve 

and the trend-line fitted to the 200-year return period flows closely approximate each 
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other. However, mindful of the contents of Table 3-1, the lines are not parallel and, for 

some of the regions, the trendlines have a poor fit with scatter observed, especially for 

catchments with areas in the order of 1000km2. On further investigation, it turns out 

that the outlying 200-, 100-, and 50-year probabilistic floods were skewed by large 

flood peaks that were observed in a relatively short return period (between 20 and 30 

years) for those catchments. Although this problem is not addressed here, it is 

expected that with more data, the effect of the outliers will be diminished. 

The result is that the plot for Region 5 (Fig. 3-2) is likely to be more representative of 

the relationships than Figs. 3-1 and 3-3 as it contains more data. Referring to Fig. 3-2 

and Table 3-1, the Revalues for the trend-line fits of the Q2oo, Qwo and Q50 flows range 

from fair (0.51) to good (0.71) respectively. Although for the largest catchment, the 

RMF-based flood estimates appear in Fig. 3-2 to be greater than the Q2oo trend-line by 

a factor of about 1.5, the estimates are all within the same order of magnitude. Based 

on the results of this comparison for all three regions, it would be reasonable for design 

purposes to assume the RMF to have a return period of the order of 200 years. To 

ascribe longer return periods might cause "under-design" to become prevalent. 

3.2.2. Inclusion of landscape parameters in empirical formulas 

The improvement of area-based empirical equations, through the inclusion of other 

measures of the landscape, was examined by a series of step-wise regressions. Firstly 

an empirical equation based on area was calibrated. This model was then validated 

against probabilistically modelled flows. Further models were then calibrated and 

validated, this time with the inclusion of landscape parameters. The improvement of the 

area-based model was then examined based on the improvement of the Revalue when 

in calibration and validation of the new model. Table 3-2 summarises the f?2-values for 

these tests. 

However, it must be noted that the effect of regionalization was ignored in this exercise 

and all data used (25 stations) were pooled before random selection of the two groups. 

The attempt to differentiate them by using their geomorphological characteristics via 

step-wise regressions of the log of a power-law equation (Eq. 3.5) did not appear to 

have any apparent skill (see Table 3.2). 
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The conclusion that can be drawn from these tests is that the inclusion of landscape 

parameters in addition to catchment area does not appear to improve the predictive 

ability of empirical models when compared to the use of catchment area as the sole 

independent variable of such models. This result is based on the negligible 

improvement of the R2-value in calibration and validation when additional landscape 

data are added to catchment area, as evidenced in Table 3-2. The results of this 

exercise, based on the data available here, imply that the role of landscape in flood 

production is minor and that the inclusion of landscape measures does not materially 

improve flood prediction. It would seem that the use of catchment area is the simplest 

and best of all measures in estimating flood magnitudes from empirical methods. 

3.3. Chapter Summary 

Chapter 3 investigated two issues with regard to empirically-based methods, namely 

the exceedence probability of the RMF estimate and whether the inclusion of other 

measures of the landscape (in addition to area) assist in improving the flood prediction 

capabilities of area-based empirical models. In the first part of the investigation, it was 

discovered that the 200-year probabilistically modelled flood closely approximates the 

RMF-based flood for three K-regions tested. Thus it is concluded that in a design 

situation, it would not be unreasonable to take the return period of the RMF as 200 

years. In the second part of the investigation, it was discovered that the use of an area-

based model in estimating empirically-derived flood magnitudes provides sufficiently 

good results and that the inclusion of other measures of the landscape do not improve 

this model. 
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CHAPTER 4 

4. THE RATIONAL FORMULA FROM THE RUNHYDROGRAPH 

In Chapter 2 attention was drawn to the fact that the runoff coefficient (c) of the rational 

formula is the least precisely defined parameter of this method. In almost all design 

situations, the estimation of the coefficient is subjective and left up to the experience 

and judgement of the designer. As a consequence, this part of the dissertation focuses 

on the calibration of the runoff coefficient on past flood records, following the 

approaches used by the Institute of Engineers Australia (1987) and Alexander (2002). 

However in this instance, the initiative was taken to calibrate the coefficients on a 

catchment's characteristic design flood peak and volume discharge (which is 

independent of rainfall) for catchments in South Africa. This latter resource is offered by 

the runhydrograph method of Hiemstra and Francis (1979), which was also introduced 

in Chapter 2. It was expected that, in following this route, conclusions in respect of c 

could be drawn from comparing the rational formula with a method that is independent 

of rainfall. 

Chapter 4 presents the methodology and results of this research. This investigation 

resulted in the publication of a journal article (Parak and Pegram, 2006) and is included 

in Appendix B. 

4.1. Methodology and results 

The methods employed in this investigation were typical of those used in the derivation 

of a probabilistic rational formula utilizing calibrated coefficients. The explanation that 

follows is adapted from Pilgrim and Cordery (1992): 

• Where a set of long and reliable record of flood data from a particular 

catchment exists, a frequency analysis should be carried out on the observed 

data to determine design values of flood peaks for a range of recurrence 

intervals. In this study, 7-year flood peak and volume pairs [QT in m3/s and VT in 

m3 respectively) for the modal runhydrograph flood was computed for each of 

the selected catchments for return periods of 10-, 20-, 50-, 100- and 200-years. 

These appear in Tables A2 to A6 in Parak and Pegram (2006) in Appendix B. 
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As a result of this, values of 6, the time base-length of the triangular 

approximated hydrographs, were also computed. 

A design formula for the calculation of time of concentration Tc must be selected 

and used consistently throughout the derivation and use of this method. In this 

study the Kirpich (1940) formula was used, following the lead of Petras and du 

Plessis(1987): 

Tc =0.0633[L2 /S]0385 (4-1) 

where Tc is the catchments time of concentration (in hours), L is the length (in 

km) of the longest water course and S is the slope of the longest water course. 

Design rainfall intensities, i(Tc,T), for the corresponding time of concentration of 

the catchment and recurrence interval, should be determined from a suitable 

Intensity-Duration-Frequency (IDF) database. These were determined from 

Smithers and Schulze's (2003)1 design rainfall data-base for South Africa. 

These data also appear in Tables A2 to A6 in Parak and Pegram (2006) 

included in Appendix B. 

From the design flood peak and design rainfall data, values of Cm (calibrated 

runoff coefficients) can be back calculated by the following equation (adapted 

from Eq. 2-3 in Chapter 2): 

3.6 Q r 

irc,T-A 
OlT) = ~i- - f (4-2) 

where c(T) is the calibrated runoff coefficient, QT is the 7-year design flood peak 

in m3/s (determined from the runhydrograph), iTcj is the 7-year design storm 

rainfall intensity (in mm/h) corresponding to the catchments time of 

concentration 7C and A is the area of the catchment (in km2). Values of cm 

determined in this way appear in Tables A2 to A6 in Parak and Pegram (2006) 

in Appendix B. 

1 A computer programme with a graphical user interface has been developed with this database 
by Smithers and Schuize (2003) to obtain design rainfall depths for any location in South Africa. 
The software may be downloaded from the following website: 
http://www.beeh.unD.ac.za/hvdrorisk/and follow the "Design Rainfall" option. 
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• The calibrated values of cm can then be regressed on any physical 

characteristic of the catchment. In order to validate the calibrated coefficients at 

ungauged sites, regional parameters with which to relate cm with return period 

were sought. However, it is noted in Pilgrim and Cordery (1992) that the 

probabilistic runoff coefficients determined for Australia did not show much 

sensitivity to physical characteristics of a catchment. Mindful of this caution, 

South African data were used in an attempt to find a relationship. 

It is important to note that the values of Cm obtained in this manner are conditioned on 

the use of a consistent formula for the calculation of Tc and a consistent database for 

the derivation of the IDF rainfall relationships. A detailed explanation of each of the 

steps listed above is given in the following sub-sections as well as the results of each 

exercise. 

4.1.1. Streamflow database 

The streamflow database was sourced from Hiemstra and Francis (1979). The 

statistics of the 43 catchments that were used by Hiemstra and Francis in their study 

are listed in Table A1 in Parak and Pegram (2006) in Appendix B. As a point of 

departure, runhydrograph data from this resource were combined with catchment 

parameters from Petras and du Plessis (1987), namely area (A) and time of 

concentration Tc (based on the Kirpich (1940) formula). The number of catchments 

from the Hiemstra and Francis database, for which Tc values were available from the 

Petras and du Plessis catalogue, reduced the number of available catchments for 

calibration of the runoff coefficients to 29. These are listed in Table A2 in Appendix B 

and formed the core data set on which the rational formula calculations were 

performed. 

4.1.2. Rainfall database 

For each of the 29 catchments, a number of locations (depending on the size of the 

catchment) were chosen along the main watercourse for which design rainfall depths 

were obtained from Smithers and Schulze (2003). The output from this rainfall 

database provides point rainfall depths (in mm) for durations ranging from 5 minutes to 

7 days and for return periods ranging from 2 to 200 years at a spatial resolution of 1 arc 

minute in South Africa. The mean depth for each catchment was computed and 

thereafter the intensity, duration and frequency (IDF) relationships were computed by 
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fitting a simple power-law function of storm duration to the mean rainfall depths, 

following Pegram (2003a). For the selected recurrence intervals, these took the form 

of: 

• P (rainfall depth in mm) = adb 

• / (rainfall intensity in mm/hr) = a&c 

where d is the storm duration in hours and a, b and c (which equals b-1) are the fitted 

power-law parameters. The mean intensity, corresponding to the time of concentration 

Tc for each catchment, was calculated from the power-law IDF relationships for the 10-, 

20-, 50-, 100- and 200-year recurrence intervals - an example appears in Fig. 1 in 

Appendix A. The parameters fitted to the rainfall duration, for the selected recurrence 

intervals, are listed in Tables A2 to A8 in Appendix B. It was found that rainfall depth 

scaled, on average, to the power of 0.238 of rainfall duration and thus rainfall intensity 

to the power of -0.762 of rainfall duration with a standard deviation of 0.0419. 

Area reduction factors (ARFs) were not used in this study to scale the point rainfall 

depths into average depths over the catchment. Instead simple averages of rainfall 

depths along a few points on the main watercourse within the catchment were used to 

account for the variation in precipitation with position and altitude for large catchments. 

ARFs were deemed not necessary based on the findings of Pegram (2003a), who 

investigated the scaling properties of rainfall in South Africa and found that they could 

be expressed as a function of three factors: the median one-day rainfall (which is a 

function of location), a function of return period (the reduced variate of the general 

extreme value (GEV) distribution) and a function of duration. He used this finding to 

modify the intensity expression of the rational formula. The storm duration used by 

Pegram was the catchment's time of concentration Tc determined (as in this study) 

from the Kirpich (1940) formula. When this duration 7cwas plotted against catchment 

area, it was found that the points clustered about a curve to which a power-law 

relationship could be fitted. This was superimposed on the area reduction factor (ARF) 

diagram, published in the Flood Studies Report (FSR, 1975). Pegram (2003a) found 

that the Area vs. Tc curve yielded an almost constant ARF value of 87% across the 

FSR curve - see Fig. 2 in Appendix A. The implication of this is that, as long as the 

precipitation intensity used in the rational formula corresponds to the time of 

concentration of the catchment, the point rainfall is automatically scaled by a constant 

ARF. It is likely that the FSR's ARF curves over-estimate the relationship in South 

Africa, but the degree is likely to be due to climate (Pegram and Parak, 2004). Thus it 
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is possible that the scaling behaviour will be maintained. However, in this case the 

reduction factor would also automatically be absorbed into the fitted cm-values. 

Therefore, because c is explicitly a function of Tc, it is therefore implicitly independent 

of the ARF. 

4.1.3. Calibration of the runoff coefficients 

Based on Eq. 4-2, calibrated runoff coefficients were calculated for the 10-, 20-, 50-, 

100- and 200-year return periods for each of the 29 catchments. The rainfall and flow 

data used were determined as explained in Sections 4.1.1 and 4.1.2. Table 4-1 

contains a summary of the results. The complete set of results are given in Tables A2 

to A6 in Appendix B. 

The results showed that coefficients from 6 of the 29 catchments (marked with an 

asterisk in column 1 of Table 4-1) produced results that did not increase in magnitude 

with recurrence interval. As mentioned in Alexander (1990), an increase in c with return 

period is necessary to accommodate the known effects which also increase with return 

period but are not accounted for in the formula's calculation process. The main effect, 

requiring this increase of c with return period, is that the catchment is likely to be more 

saturated at the start of a storm with a longer recurrence interval (Rooseboom et al., 

1981). This initial saturation, caused by pre-event rainfall, is the main reason why one 

can expect to obtain a higher percentage runoff with an increase in the recurrence 

interval of an event. Alexander (2002) states that in many of the destructive events 

observed, severe rainfall events were often preceded by above-normal seasonal 

rainfall. 
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Table 4-1. The results of the calibration of the c-coefficient of the rational formula on 
flood peaks from Hiemstra and Francis (1979). Catchments marked with an 
asterisk produced coefficients which decreased with an increase in return 
period. 

No. 

1 
2 
3 
4 
5 
6* 
7 
8 
9* 
10 
11 
12 
13 
14 
15 
16* 
17* 
18 
19 
20* 
21 
22 
23 
24 
25 
26 
27* 
28 
29 

Station 

A2M03 
A2M12 
A3M01 
B2M01 
B4M03 
B7M04 
C1M01 
C4M01 
C4M02 
C5M03 
C5M04 
C5M12 
C5M15 
C7M01 
D1M05 
D5M01 
D5M04 
E2M02 
H1M06 
H1M07 
H7M04 
J2M03 
J3M04 
Q1M01 
Q9M10 
Q9M12 
T3M02 
W4A03 
W5M05 

River 

Hex 
Krokodil 
Klien Marico 
Bronkhorst. 
Steel poort 
Klaserie 
Vaal 
Groot Vet 
Vet 
Modder 
Modder 
Riet 
Modder 
Renoster 
Oranje 
Renoster 
Sak 
Doring 
Bree 
Wit 
Huis 
Gamka 
Olifants 
Groot Vis 
Groot Vis 
Groot Vis 
Kinira 
Pongola 
Hlelo 

Lat. 
(deg. 
dec.) 

25.77 
25.82 
25.53 
25.80 
25.02 
24.55 
26.95 
28.48 
27.85 
29.17 
28.85 
29.65 
28.80 
27.27 
30.03 
31.65 
31.65 
32.50 
33.42 
33.57 
33.92 
33.53 
33.48 
31.90 
33.22 
33.10 
30.48 
27.42 
26.83 

m
 

27.28 
27.92 
26.10 
28.77 
29.53 
31.03 
29.27 
26.67 
25.90 
26.58 
26.18 
25.98 
26.10 
27.18 
28.50 
20.62 
21.77 
19.53 
19.27 
19.15 
20.72 
21.65 
23.03 
25.48 
26.87 
26.45 
28.62 
31.52 
30.73 

Catch. 
Area 
(km2) 

494 
2 586 
1 002 
1 585 
2 271 

130 
8 254 
5 504 

17 550 
1 650 
5012 
2 383 
6 545 
5 255 

10 891 
2 129 
5 799 
5 778 

754 
83 
26 

17 941 
4 330 
9 150 

29 376 
23 041 
2 100 
5 843 

751 

Time 
of 

Cone. 
Tc(h) 

6.4 
18 

8.7 
18.1 
19.6 
3.7 
74 
34 

111 
18.3 

38 
23 
43 
57 
60 
27 
28 
30 
7.6 
2.4 
2.3 
42 
23 
18 

108 
85 
26 
31 

17.8 

Calibrated c-coefficients 

10-
year 

0.301 
0.089 
0.084 
0.210 
0.091 
0.234 
0.396 
0.368 
0.179 
0.419 
0.528 
0.218 
0.280 
0.236 
0.261 
0.263 
0.130 
0.389 
0.454 
0.814 
0.278 
0.076 
0.163 
0.089 
0.176 
0.113 
0.186 
0.267 
0.177 

20-
year 

0.303 
0.093 
0.092 
0.228 
0.102 
0.233 
0.419 
0.386 
0.175 
0.440 
0.592 
0.235 
0.302 
0.300 
0.266 
0.264 
0.128 
0.420 
0.457 
0.800 
0.307 
0.082 
0.180 
0.097 
0.227 
0.133 
0.172 
0.278 
0.193 

50-
year 

0.304 
0.095 
0.104 
0.244 
0.112 
0.214 
0.444 
0.409 
0.170 
0.458 
0.660 
0.252 
0.325 
0.379 
0.270 
0.264 
0.125 
0.459 
0.461 
0.790 
0.336 
0.090 
0.194 
0.108 
0.282 
0.158 
0.156 
0.284 
0.212 

100-
year 

0.305 
0.097 
0.113 
0.254 
0.125 
0.227 
0.460 
0.425 
0.167 
0.469 
0.706 
0.264 
0.341 
0.438 
0.272 
0.264 
0.123 
0.487 
0.464 
0.787 
0.353 
0.095 
0.200 
0.116 
0.318 
0.178 
0.145 
0.285 
0.225 

200-
year 

0.306 
0.098 
0.123 
0.262 
0.135 
0.224 
0.476 
0.442 
0.164 
0.479 
0.749 
0.274 
0.355 
0.498 
0.274 
0.264 
0.121 
0.516 
0.468 
0.786 
0.368 
0.099 
0.205 
0.124 
0.349 
0.198 
0.135 
0.284 
0.237 

Values of Cn), for all 29 catchments, were then coaxially plotted with c-values from 

Chow et al. (1988: 498) against return period in order to compare the coefficients 

achieved in this study. This relationship is shown in Fig. 4-1, where the coefficients 

from Chow et al. correspond to the "flat" slopes type (i.e. for ground slopes between 0 

and 2%, since all the test catchments in this calibration exercise had slopes of less 

than 2%). The values from Chow et al. (1988) are also for the three "undeveloped" 

(rural) coverage types (i.e. cultivated land, pasture/range and forest/woodland). The 

coefficients from Chow et al. (1988) are shown in Table 4-2 and were determined for 

small rural catchments (i.e. less than 100km2) of Austin, Texas (USA). 

- 39 -



CHAPTER 4: The rational formula from the runhydrograph 

Figure 4-1. A comparison of the runoff coefficients c from Chow et al. (1988: 498) with 
those calibrated in this study c(Ty The c-values plotted from Chow et al. are 
shown in thick bold lines and extend from the 2- to 500-year recurrence 
intervals. 

Table 4-2. Runoff coefficients for use in the rational method for undeveloped (rural) 
regions in Austin, Texas in the USA (from Chow et al., 1988: 498). 

Character 
of 

Surface 

Undeveloped 

Cultivated Land 
Flat, 0 - 2% 
Average, 2 - 7% 
Steep, >7% 

Pasture/Range 
Flat, 0 - 2% 
Average, 2 - 7% 
Steep, >7% 

Forrest/Woodlands 

Flat, 0 - 2% 
Average, 2 - 7% 
Steep, >7% 

Runoff coefficients c 

2-
year 

0.31 
0.35 
0.39 

0.25 
0.33 
0.37 

0.22 
0.31 
0.35 

5-
year 

0.34 
0.38 
0.42 

0.28 
0.36 
0.4 

0.25 
0.34 
0.39 

10-
year 

0.36 
0.41 
0.44 

0.3 
0.38 
0.42 

0.28 
0.36 
0.41 

25-
year 

0.40 
0.44 
0.48 

0.34 
0.42 
0.46 

0.31 
0.4 

0.45 

50-
year 

0.43 
0.48 
0.51 

0.37 
0.45 
0.49 

0.35 
0.43 
0.48 

100-
year 

0.47 
0.51 
0.54 

0.41 
0.49 
0.53 

0.39 
0.47 
0.52 

200-
year 

(inter­
polated) 

0.51 
0.55 
0.57 

0.46 
0.52 
0.56 

0.42 
0.50 
0.54 

500-
year 

0.57 
0.60 
0.61 

0.53 
0.58 
0.60 

0.48 
0.56 
0.58 
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It is evident from Fig. 4-1 that the c^-values obtained from this study are spread 

around those of Chow et al. (1988), but are generally lower in magnitude. The c(T)-

values obtained from this study range from 0.084 to 0.786, while the values from Chow 

et al. are between 0.28 and 0.57 (for the recurrence interval range of 10- to 200-years). 

However, the scatter associated with the latter data set is not known and hence not 

shown, so it is conjectured that they are curves fitted to the high side of the original 

data. 

Although the plot shown in Fig. 4-1 was initially performed purely for comparative 

purposes, its result was eventually used in the validation exercise performed in Section 

4.1.5. It turned out that the extension of the calibrated coefficients to ungauged 

catchments proved very difficult (see Section 4.1.5), and hence it was decided to use 

the runoff coefficients of Chow et al. (1988: 498) as an approximation of the calibrated 

coefficients achieved in this study. 

4.1.4. Hydrograph time base-length 

The use of flood peak and volume pairs for calibration in this investigation, from the 

runhydrograph method of Hiemstra and Francis (1979), was thought to have the added 

advantage in that complete design flood hydrographs could be calculated from runoff 

coefficients calibrated on this dataset. From the flood database computed for the 

calibration exercise, hydrograph time base-lengths B for each of the return periods 

were determined from the peak-volume pairs for each catchment. These base-length 

values were then expressed as ratios to the catchment's time of concentration Tc for 

each of the respective recurrence intervals (which, in terms of the rational formula, is 

effectively a ratio to the hydrograph's time to peak). The average ratio of B/Tc, for each 

recurrence interval, was then determined and the results are presented in Table 4-3 

together with their standard deviations. These results exclude three catchments whose 

area is 130 km2 or less, as they gave B/Tc ratios in excess of 7. It is noted here that 

there is an increase of base-length with recurrence interval, which means that the 

volumes of the floods relative to the peaks, as modelled by the runhydrograph, also 

increase with T. The values in the third row of Table 4-3 show the proportion of floods 

whose base-length fi exceeds 37"c, which is the value suggested by Rooseboom et al. 

(1981) and Alexander (2002), so that when T is 100, the proportion is approximately 

one third. 
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Table 4-3. The mean and standard deviations of the ratio of the hydrograph time base-
length B to the catchments' time of concentration Tc as a function of recurrence 
interval T. The proportion of B/Tc values above 3 in each interval is given in the 
third row. 

Recurrence Interval 

T(years) 
Mean of B/Tc ratios 
Standard deviation 

Proportion > 3 

10 

1.92 
0.981 

0.14 

20 

2.06 
1.09 
0.19 

50 

2.25 
1.29 
0.28 

100 

2.40 
1.48 
0.34 

200 

2.56 
1.71 
0.40 

4.1.5. Validation of the calibrated runoff coefficients 

The purpose of validation is to test whether the model operates in the manner for which 

it was designed in "ways that were not explicitly built into the model" (Basson et al., 

1994: 168). Validation tests are necessary to convey confidence that the model works 

as expected. In order to validate the c^-values achieved in calibration, it was 

necessary to find some physical or regional descriptors) on which to regress the 

coefficients. This was required so that the calibrated coefficients may be extended to 

ungauged catchments. 

Several regional descriptors were tested in combination with the c^-values to examine 

if a relationship existed on which to regress the coefficients. Descriptors such as 

catchment slope, mean annual precipitation (MAP), percentages of land coverage and 

Kovacs' regional K-values (Kovacs, 1988) were tested. From these analyses, no 

meaningful relationships between any of the descriptors tested and the ^-coefficients 

were found. There were also no relationships found between parameters (multiplier 

and exponent) of a power-law function fitted to the c^-values, as a function of 

recurrence interval, and the regional descriptors. This result is in line with the 

comments of Pilgrim and Cordery (1992) for conditions in Australia, where the 

calibrated runoff coefficients did not show much sensitivity to catchment characteristics. 

However, this does indicate that the c^-values are essentially functions of T and Tc as 

conjectured. In light of the lack of dependency of the calibrated coefficients with 

catchment properties, an alternative solution was sought in order to extend the 

calibrated coefficients to ungauged catchments in validation. 

Thus for the purposes of validation, it was decided to use the curves from Chow et al. 

(1988: 498), given in Table 4-2 and shown in Fig. 4-1. It can be seen from Fig. 4-1 that 
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the calibrated coefficients are generally lower than those of Chow et al. and, knowing 

that a practitioner will usually make a conservative choice, the latter coefficients were 

then viewed as an appropriate set of curves. 

Twenty one catchments which were not used in calibration (and for which flood records 

were available) were selected for the validation exercise. These catchments ranged in 

size from 126 km2 to 24 044km2. From a previous study (see Pegram and Parak (2004) 

in Appendix A and Chapter 3), flood records were available and modelled (using a 

General Extreme Value (GEV) Distribution) for these catchments. The times of 

concentration (Tc) values were obtained from Petras and du Plessis (1987) and 

representative design rainfall intensities from Smithers and Schulze (2003) as before. 

These data are summarised in Table A7 (parts 1, 2 and 3) in Appendix B. 

In order to obtain appropriate c-values from Chow et al. (1988: 498) for each 

catchment, it was necessary to relate the land coverage type and slope of each 

catchment with the descriptions of Chow et al. (see Table 4-2 above). These catchment 

characteristics (land coverage and slope) are given in Petras and du Plessis (1987) for 

each catchment. The land coverage types from this latter resource were catalogued as 

forest, dense bush wood, thin bush wood, cultivated land, grass and bare. At this stage 

it then became necessary to relate each catchment's coverage type to the generalized 

coverage descriptions of Chow et al. In order to easily accomplish this, two 

assumptions were made. They were: 1) that the greatest percentage of land coverage 

(the modal type) was representative of the entire catchment, and 2) the following 

coverage types (from the descriptions of Petras and du Plessis and Chow et al. 

respectively) were equivalent (shown in Table 4-4 below). It must be conceded that 

these assumptions had the tendency to be crude. 

Table 4-4. Equivalent land coverage types from the descriptions of Petras and du 
Plessis (1987) and Chow et al. (1988: 498) for the catchments used in 
validation. 

Equivalent land coverage types 
Actual catchment land coverage, as 

described in Petras and du Plessis (1987) 
Forest 
Dense Bush Wood 
Thin Bush Wood 
Cultivated Land 
Grass 
Bare 

c-coefficient land coverages, as 
listed in Chow et al. (1988: 498) 
Forest/Woodland 
Forest/Woodland 
Forest/Woodland 
Cultivated Land 
Pasture/Range 
Cultivated Land 
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From the procedure described above, design flood peaks were obtained using the 

rational formula method {QRF) probabilistically, i.e. a function of catchment area, 7-year 

design rainfall (of duration equal to the catchment time of concentration) and the 

corresponding 7-year runoff coefficients from Table 4-2. These design flood peaks 

were then compared with the statistically modelled flood peaks (QGEV), from the same 

catchments, for the corresponding recurrence intervals. The results of this exercise, for 

the 10-, 50- and 200-year recurrence intervals are shown in Figs. 4-2, 4-3 and 4-4 

respectively and are summarised for all recurrence intervals in Table 4-5. 

Table 4-5. A summary of the power-law curves, of the form QRF - aQGEvb, fitted to the 
graphs of QRF vs. QQEV of Figs. 4-2 to 4-4 and others (not shown). QRF are the 
flood peaks obtained from the probabilistically applied rational formula and QGEV 

are statistically modelled flood peaks. The coefficient of determination (R2-
value) and the average ratio of QRFIQGEV for each recurrence interval are given 
in the last two rows respectively. 

Recurrence Interval 
T(years) 
Factor: a 

Exponent: b 
R2 

Mean QRFIQGEV 

10 

5.44 
0.795 
0.751 

1.84 

20 

5.10 
0.798 
0.746 

1.64 

50 

5.17 
0.785 
0.726 

1.42 

100 

5.75 
0.766 
0.699 

1.31 

200 

7.03 
0.735 
0.657 

1.21 
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Figure 4-2. Plot in log space of the 10-year probabilistic rational formula flood peaks 
QRF versus the 10-year GEV modelled flood peaks QGEV-
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Figure 4-4. Plot in log space of the 200-year probabilistic rational formula flood peaks 
QRF versus the 200-year GEV modelled flood peaks QGEV-

Although there is a fairly large scatter around the trend-lines in log-space in Figs. 4-2, 

4-3 and 4-4, some conclusions can be drawn from this validation exercise. It is evident 
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from these graphs that the estimated rational formula flood peaks QRF tend to be larger 

than the GEV modelled flood peaks QGEV, especially for the lower magnitude floods. 

However, at the larger flows, (approximately 7000 m3/s) the trend-lines cross the 1:1 

line. This tendency is also exhibited for the 20- and 100-year validation tests (the 

results of which are not shown here) and is confirmed in Table 4-5 where the average 

ratio of QRFIQGEV across all recurrence intervals is approximately 1.5 (reducing from 

1.84 for T = 10 to 1.21 for T = 200). This observation is to be expected since the c-

values used to compute QRF in this exercise (from Chow et al. (1988: 498)), were 

generally larger than the calibrated runoff coefficients obtained in this study (see Table 

4-2 and Fig. 4-1). Although the coefficients of determination (^-values) are 

reasonable, the correlation is calculated in log-space and may disguise the fact that 

some flow peak ratios are occasionally different by up to a factor of 5 (see Table A7, 

Part 3 in Appendix B). As a consequence, the c-values adopted for this validation 

exercise, from Chow et al., were treated as upper bound estimates, conceding that 

although consistent, the method is prone to error. 

4.2. Discussion of results 

4.2.1. Calibration 

Calibration of the rational formula's runoff coefficients, using runhydrograph flood peak 

and volume pairs of given recurrence intervals, was performed with the intention of 

removing some of the subjectivity involved in this parameter's estimation in the design 

environment. Use was made of T-year flood peak and volume pairs together with T-

year design rainfall intensities, as a function of the catchments time of concentration, in 

order to obtain the coefficients. The results of this exercise produced calibrated runoff 

coefficients, as a function of recurrence interval, which were scattered (see Fig. 4-1) 

around published values from Chow et al. (1988: 498). The calibrated values, although 

spread around the latter set of coefficients, were in general lower in magnitude (with 

the exception of two catchments) and had gentler growths as a function of recurrence 

interval. Although this result did not produce a good match, the calibrated coefficients 

were sensible in magnitude. However, it was worrying to note that calibrated 

coefficients from six catchments (of the original 29 used in this exercise) had a 

tendency to decrease in magnitude with increasing recurrence interval. This deviation 

from the norm is attributed to the fact that the flood runoff data (calculated using the 

-46 -



CHAPTER 4: The rational formula from the runhydrograph 

runhydrograph method) had a gentler growth curve, as a function of recurrence 

interval, than the design rainfall data. 

Although some effort at regionalisation was made, it was also found that the fitted c-

values could not be regionalised and directly extended to ungauged catchments. This 

result was in agreement with the conclusions of Pilgrim and Cordery (1993). Since the 

fitted c-values (Fig. 4-1) were generally lower than those suggested by Chow et al. 

(1988: 498), it was therefore decided to accept the latter values as upper bound 

estimates for the purpose of validation, conscious of this discrepancy. 

4.2.2. Hydrograph time base-length 

It was initially thought that this investigation would be able to produce entire design 

hydrographs (albeit in an idealized triangular form) from the rational formula since the 

flood data used (from the runhydrograph method) described characteristic peak and 

volume pairs for each catchment. It was hoped that the ratio of B to Tc (effectively a 

ratio of B to the time to peak of a rational formula hydrograph) would be consistent and 

that a particular outflow hydrograph could be prescribed with the use of this method. 

However, the results (see Table 4-3) indicate that, firstly the average ratios are not 

constant across all recurrence intervals and, secondly that the coefficients of variation 

are quite high (they range from 0.51 to 0.66). Also, the results shown in Table 4-3 

exclude three catchments of area less than 130km2 as they gave ratios in excess of 

seven. 

However, several points are worth noting from this exercise. Firstly the base-lengths 

are, on average, 2.25 times the catchments' time of concentration across all recurrence 

intervals. This result is somewhat less than the length of the hydrograph suggested by 

Rooseboom et al. (1981) and Alexander (2002), which was 3TC. However, Table 4-3 

also indicates that a fair proportion of the calculated base lengths exceeded 37"c. As 

explained earlier, the hydrograph shape suggested by Rooseboom et al. (1981) was 

not meant to maintain continuity, but was instead designed to be conservative. The 

hydrographs derived in this study are thus expected to have a smaller base-length as 

continuity is implicitly maintained; so the result is in line with expectation. 

Secondly, the tendency of the base-length to increase with T is possibly due to the 

method employed by Hiemstra and Francis (1979) in extracting their hydrographs and 

the non-linearity of the rainfall runoff process (rainfall losses reduce with increasing 
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recurrence interval). As depicted in Fig. 4-5, Hiemstra and Francis (1979) employed a 

truncation level for each catchment in order to extract independent hydrographs from 

their continuous records of stream flows. Flood volumes were obtained by extrapolating 

the rising limb and the recession limb of the discharge curves downwards towards zero 

flow from the first point below the truncation level which showed a reversal in slope. 

Depending on this level, a higher truncation level is likely to result in a reduction in the 

modelled volume when compared to the actual volume of the flood event. Thus it is 

likely that the base-lengths achieved in this study are smaller (as a function of Tc) for 

the smaller floods (more frequent events) than the base-lengths for the larger events, 

thus exhibiting the trend in Table 4-3. 

Discharge 

/ \ Truncation Level 

/ JExtrapolatioq'--. ^ " ^ v ^ ^ 

- • 
Time 

Figure 4-5. The method employed by Hiemstra and Francis (1979) to extract 
independent hydrographs from a continuous flow record, showing that a lower 
truncation level is likely to provide a bigger volume. 

Finally, it is interesting to examine the relationship between 6 and Tc using a linear 

rainfall-runoff model as a comment on the values appearing in Table 4-3. If a constant 

(pulsed) input of rainfall of intensity / (in mm/h) on a catchment of area A (in km) lasts 

for the time of concentration Tc (hours), the total volume of rain that falls is 

V = 1000iTcA (in m3). The average rate of flow onto the catchment is 1000-M (in 

m3/h) and the peak outflow Q must be a fraction of this, say a-1000-iA (m3/h), where 

0 < a < 1. a is a factor related to the closeness of the peak to its asymptotic value as 

defined by its nearness to equilibrium. The base-length of the equivalent triangular 

hydrograph is thus B = 2V/Q = 2Tc/a (in hours). If there are no losses, the maximum 

peak that occurs at 7"c can only be approaching equilibrium asymptotically, so a has to 

be chosen close to 1. If a = 0.9, then it turns out that 6 « 2.27~c, which is close to the 

average ratio (determined from Table 4-3 above), giving some support to the 

consistency of these results. 
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4.2.3. Validation 

The validation exercise was necessary to test whether the calibrated coefficients 

behaved in the probabilistic manner for which they were designed, i.e. to predict design 

floods of magnitudes equivalent to those derived from a statistical analysis of flood 

records from that site. However, since it was shown that cm was not dependent on any 

physical properties nor region, c-values from Chow et al. (1988: 498), which are a 

function of return period, catchment slope and land-use characteristics, were 

substituted for the calibrated coefficients as approximate upper bound values. Based 

on this substitution, the validation exercise was ultimately reduced to a test of whether 

the c-values from Chow et al. (or possibly some other summary values) could provide 

reasonable design flood estimates such as those obtained from a statistical distribution 

(such as the GEV) fit to historical flood data. 

The result of this exercise showed that the use of the substitute c-values from Chow et 

al. produced flood peaks from the rational formula that were, on average, 

approximately 1.5 times larger than floods estimated from a frequency analysis of 

historical data (see Table 4-5 and Fig. 4-2, 4-3 and 4-4), a result which is consistent 

with the c-values displayed in Fig. 4-1. The figures also show that the floods 

determined in this manner had a tendency to overestimate the statistically derived 

floods for lower flows and return period. This result is in line with expectation as the 

substitute c-values from Chow et al. were adopted as upper bound estimates. Given 

that, in order to make use of the coefficients of Chow et al., a crude matching of land 

coverage types was performed (see Table 4-4), this result is relatively pleasing 

especially since the catchments used in validation ranged in size from small to large 

(170 to 24000 km2 - see Table A7 in Appendix B). However, the precision of the 

method is of course still low (as indicated by the spread of results in Figs. 4-2, 4-3 and 

4-4) and still relies heavily on the judgement of the practitioner. 

4.3. Chapter summary 

Chapter 4 presented a review of the rational formula, by attempting to calibrate the 

most uncertain variable of the formula i.e. the runoff coefficient c. The results of the 

calibration were reasonably encouraging, producing c-coefficients that were scattered 

around, but generally lower than, those offered by Chow et al. (1988: 498), whose 

precision is not known. It was discovered that the fitted ^-coefficients of this 
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investigation did not show any variation with catchment characteristics, in line with 

Australian experience (Pilgrim and Cordery, 1993). Hence validation of these values at 

other sites was only possible through the substitution of c-values from Chow et al. as 

approximate upper bound estimates of the fitted c^-coefficients. In order to use the 

values from Chow et al., a match of land coverage types was required. The results of 

the validation were as expected, producing floods from the rational formula that were 

on average 1.5 times larger than design floods estimated from a statistical analysis of 

historical streamflow records. However, it is noted that the results displayed wide 

scatter. Of lesser importance, it was discovered that the time base-lengths of the 

derived triangular hydrographs of this investigation were approximately between 1.9 

and 2.6 times the catchment's time of concentration, depending on the recurrence 

interval of the flood. This result is lower than ratios suggested by Rooseboom et al. 

(1981) and Alexander (2002). It can be concluded from the results of this investigation 

that the probabilistic approach to the rational formula can be useful as a quick check 

method for calculating flood hydrographs for large catchments as it is for small. 
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5. REAL-TIME FLOOD-FORECASTING USING RAINFALL-RUNOFF MODELS 

This chapter is intended to briefly introduce the concepts associated with flood-

forecasting, namely in the use of rainfall-runoff models in simulating catchment 

hydrology. The content presented in this chapter is not intended to be a comprehensive 

review on the subject matter, but as a basis for the introduction of a physically-based 

fully distributed rainfall-runoff model for real-time flood forecasting in Chapter 6. 

As mentioned in the title of this chapter, this part of the research focuses on the 

application of a rainfall-runoff model for real-time flood-forecasting. The simulation of 

the rainfall-runoff process can be achieved through a variety of models which attempt 

to mimic catchment hydrology at various time and spatial scales. The scope of this 

research, with regard to these scales, is limited to catchments of area greater than 

10km2 and time's of concentration of 10 minutes and greater. The following sections 

introduce the concepts dealing with hydrologic modelling of catchments, its 

development and its application for this purpose. 

5.1. Hydrologic modelling of catchments 

A model is designed to be a tangible representation of a portion of the natural and/or 

anthropogenic world. In an engineering context, "a model is a set of physical laws 

written in mathematical terms and combined in such a way as to produce a set of 

outputs from a set of known inputs" (Haan, 1985). A hydrologic model is an approach 

which represents, mathematically, both the individual processes and all the interrelated 

processes involved in the hydrologic cycle (Martina, 2004). Hydrologic models of 

catchments are thus an assemblage of mathematical descriptions of components of the 

land-phase portion of the hydrologic cycle. 

The components are generally modelled based on the conservation of mass, 

momentum and energy (physically based) or from a priori relationships (conceptual) of 

the phenomena. Some of the processes modelled in this manner are inter alia 

infiltration, evapotranspiration, groundwater percolation, unsaturated subsurface flow, 

saturated groundwater flow, overland surface runoff and channel flow. Fig. 5-1 depicts 
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typical processes of the hydrologic cycle. Some of the land-phase processes of the 

hydrologic cycle simulated in catchment models, such as infiltration, percolation, 

surface runoff and evapotranspiration, are also evident. 

Figure 5-1. Typical processes of the hydrologic cycle (http://www.cet.nau.edu/ 
Projects/SWRA/research.htmD. 

5.1.1. Development of hydrologic models 

The development of fully integrated catchment models only gained impetus during the 

middle of the 1960's, as explained by Singh and Woolhiser (2002). The 1960's saw the 

onset of the digital revolution, which made possible the integration of different 

components of the hydrologic cycle for the simulation of the entire catchment. Prior to 

this, hydrologic modelling involved the development of concepts, theories and models 

of the individual components of the hydrologic cycle. The first attempt to "model 
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virtually the entire hydrologic cycle" (Singh and Woolhiser, 2002) was made by 

Crawford and Linsley (1966) with the Stanford Watershed Model (SWM), which was a 

conceptual and lumped (semi-distributed) catchment model. The "blueprint" for a fully 

integrated, physically based three-dimensional model was proposed by Freeze and 

Harlan (1969) which included precipitation, surface runoff, porous media flow, open 

channel flow, the interaction of groundwater flow with channel flow and 

evapotranspiration. The 1970's and 1980's saw the introduction of remote sensing and 

geographical information systems (GIS) for data acquisition and management in 

catchment modelling. Singh and Woolhiser (2002) explain that little advancement was 

made through theoretical insights since the "blueprint" of Freeze and Harlan (1969). 

This model could not be implemented at the time because of computational and data 

limitations. Instead, many of the advancements made in this field since the 1970's are 

due to the introduction of new measuring techniques and through the phenomenal 

development of computational facilities. 

5.1.2. Concepts of hydrologic models 

(a) Conceptual vs. physically-based models 

Catchment models can be either classified in one of two ways, i.e. conceptual models 

or physically-based models. A model is said to be conceptual if it conceives of a 

system in which important hydrological processes are idealized (Schulze, 1995). Given 

reasonable a priori relationships, such as empirical representations, conceptual models 

simulate the physical reality in a simplified manner. By contrast, a model is deemed to 

be physically-based if the simulated phenomena of the hydrologic cycle are 

represented by governing equations which are deeply rooted in an understanding of 

the physics of the hydrologic cycle (Martina, 2004), for example through the 

conservation of mass, momentum and energy equations. The input variables of 

physically-based models should be physical quantities obtainable from direct 

observation or field measurement. 

(b) Lumped vs. distributed modelling 

Models can further be classified according to the spatial scale at which the processes 

are simulated, i.e. lumped or distributed models. A distributed model attempts to create 

a more faithful representation of reality by including the spatial distribution of the 

phenomena modelled. If the spatial detail is ignored, a model is said to be lumped. 
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Distributed models have the ability to predict the spatial trend of the hydrological 

conditions within a basin (Martina, 2004). By contrast lumped models are only able to 

produce outputs from inputs and no detailed insights into the internal distribution of the 

modelled processes are gained. 

The idea of physically-based fully distributed models being a better approximation of 

reality than conceptual models was proposed by Freeze and Harlan (1969). However, 

Martina (2004) points out that there has been much debate on whether physically-

based distributed models are feasible. These models require huge volumes of data and 

furthermore, as argued by Morel-Seytoux (1998), the nature of the phenomena 

modelled embodies both the elements of chance and the descriptive laws of physics. 

Therefore, excessive description at one scale is lost through the process of integration 

and averaging. However, a fully distributed physically-based model is necessary to 

gain a better understanding of the internal structure of the phenomena modelled. The 

challenge of physically-based distributed modelling is that the spatial and temporal 

considerations of modelling these processes need to be balanced with the 

computational burden of simulating the fully three-dimensional dynamics of catchment 

hydrology. Inevitably a few approximations of the governing laws, without affecting the 

physical meaning of the model, are necessary for mathematical tractability (Martina, 

2004). 

(c) Data requirements 

The type of model to be built depends on the intended use of the model and the data 

available. Data requirements can be grouped into six categories and the data required 

in each category are listed in Table 5-1; the data are not specific to any particular 

model or model type. They are intended to show the general requirements associated 

with catchment modelling and any particular model may not require all of the data 

listed. 
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Table 5-1. General data requirements for catchment models (from Singh and 
Woolhiser, 2002). 

| Hydrometeorologic 

j Rainfall 

I Snowfall 

Temperature 

Radiation 

I Humidity 

| Vapor pressure 

| Sunshine hours 

Wind velocity 

j Pan evaporation 

I 

Agricultural 

Vegetative 

cover 

Land use 

Land 
treatment 

Fertilizer 

application 

Pedologic 

Soil type 

Soil texture 

Soil 
structure 

Soil 
condition 

Soil particle 
size 

Soil 
porosity 

Soil 

moisture 

content 

Capillary 

pressure 

Steady 
state 
infiltration 

Saturated 
hydraulic 
conductivity 

Antecedent 

moisture 

content 

Geologic 

Stratigraphy 

Lithology 

Structural 
controls 

Extent of 
aquifers 

Geomorphologic 

Topographic 

maps 

River networks 

Drainage areas 

Slopes 

Slope lengths 

Catchment area 

Hydrologic 

Flow depth 

Streamflow 

discharge 

Base flow 

Interflow 

Stream-

aquifer 

interaction 

Potential 

water table 

Drawdowns 

(d) Data acquisition and manipulation 

Distributed models require large quantities of data that need to be stored, retrieved 

managed and manipulated (Singh and Woolhiser, 2002). Through the use of remote 

sensing technology (radar and satellite) and geographical information systems (GIS), 

the ability to observe and map data over large spatial and temporal ranges is vastly 

improved. Together with the computing capability currently available, the development 

of fully distributed physically-based models is practically feasible. 
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(i) Remote sensing 

Remote sensing uses measurements of the electromagnetic spectrum to characterize, 

infer properties and in some cases actually measure inter alia the magnitude and 

spatial distribution of meteorological inputs, soil and land-use parameters and the 

mapping of spatially varying landscape attributes. This technology goes a long way to 

alleviate the scarcity of data and provides the data in sufficient spatial detail, which was 

one of the greatest problems in the distributed hydrologic modelling of catchments 

(Singh and Woolhiser, 2002). 

The use of remote sensing technology for real-time flood forecasting is important since 

meteorological inputs such as precipitation, or pedologic inputs such as soil moisture, 

vary temporally and spatially. Real-time applications of satellite and radar give an 

almost instantaneously available picture of where the precipitation is occurring in fine 

detail over a large area (Pegram and Sinclair, 2002). Examples of radar and satellite 

precipitation estimates are shown in Figs. 5-2 and 5-3. Fig. 5-2 shows a radar image of 

rain depth (mm) accumulated for the 24-hour period from 08:00 21/06/2005 to 08:00 

22/06/2005. This image was taken from the South African Weather Services (SAWS) 

Website (http://metsys.weathersa.co.za/simar-archive.html) and superimposed on a 

digital elevation model (DEM) of Southern Africa (HYDROIk, 1996). Fig. 5-3 shows a 

satellite image (from Pegram et al., 2005) of rain depth (mm) accumulated for the same 

24-hour period of Fig. 5-2 taken from the Meteosat-8 Satellite. This image is also 

superimposed on the DEM as before. The rainfall resolutions shown in Figs. 5-2 and 

5-3 are 1km and 1.6 km square (which is approximately 1 arc-minute at this latitude) for 

the radar and satellite images respectively while the resolution of the DEM is 1km 

square. 
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Merged Radar Field 22/06/2005 
23.0 

0.01 
Rain Depth 

(mm) 

Figure 5-2. A radar image of rain depth (mm) accumulated for the 24-hour period from 
08:00 21/06/2005 to 08:00 22/06/2005 (http://metsvs.weathersa.co.za/simar-
archive.html) superimposed on a digital elevation model (DEM) of Southern 
Africa (HYDROIk, 1996). 
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Figure 5-3. A satellite image of rain depth (mm) accumulated for the 24-hour period 
from 08:00 21/06/2005 to 08:00 22/06/2005 taken from the Meteosat-8 Satellite 
(Pegram et al., 2005) superimposed on a digital elevation model (DEM) of 
Southern Africa (HYDROIk, 1996). 
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The spatial extent of the precipitation captured by the satellite and radar depicted in 

these Figs. 5-2 and 5-3 can be seen to be different. This difference highlights some of 

the errors associated with such measurement techniques, and no one technique can 

be taken to be the truth. In the example of Fig. 5-2, the altitude of the rainfall, especially 

at the coast, was too low to be captured by the radar's beam and secondly there is 

evidence of ground clutter (dark pixels) in the image. Thus it becomes necessary to 

combine the different precipitation estimates from remote sensing with block-Kriged 

telemetering raingauge data, which is taken as being the most representative of the 

truth, in order to obtain the "best" estimate of precipitation. This can be achieved using 

Bayesian combination (Mazzetti and Todini, 2002) or conditional merging (Pegram et 

al., 2005) and the product of this then becomes the input for real-time catchment 

models. 

A further application of this technology is in the spatial mapping of landscape attributes. 

Different sensors of the electromagnetic spectrum are able to detect and/or measure 

(directly or indirectly), with a range of precision and scales, different properties of the 

landscape such as inter alia clouds, land-use, soil and vegetation characteristics, 

geology, temperature, soil moisture and water vapour. With reference to Table 5-1, 

many of the properties measured through remote sensing are essential, depending on 

the application, in the distributed modelling of catchments. 

(ii) Geographical Information System (GIS) 

A GIS is a computer-based system designed for retrieving, analyzing, manipulating, 

modelling, presenting and disseminating geographically-based data. It is an electronic 

system of maps connected to tables of data that describe features on maps (Dodson, 

1992). A GIS enhances one's capability to incorporate spatial details in hydrologic 

models of catchments and has become an indispensible tool in the representation of 

the three-dimensional nature of landscape features in two-dimensions. 

There are a number of ways of describing landscape features in a GIS. Features can 

be described discretely, using points, lines and polygons (vector-based GIS), where the 

coordinates, spatial relationships and characteristics of the features are recorded in 

relational tables. Vector data are well suited to recording geographic data that have 

precise locations (Chilufya, 2005). Alternatively, it is very useful for modelling 

applications to store information about geographic features that vary continuously over 

a surface, such as elevation data. Raster-based GIS is used for this and records spatial 
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information in a regular grid or matrix as a set of rows and columns (Chilufya, 2005). 

The size and shape of the grid cells are uniform, to which numerous landscape 

attributes can be attached, and the geographical location of each cell is known 

(Dodson, 1992). Since the attributes within each cell are assumed homogeneous, the 

accuracy of raster data is highly dependent on the resolution of the grid cell. The pixel 

(grid cell) format of digital remote sensing data makes raster-based GIS an ideal 

platform from which to manage and analyse this source of data (Dodson, 1992 and 

Engman, 1992). 

Geomorphological information is an important ingredient in the accurate modelling of 

catchment hydrology (refer to Table 5-1). Prior to 1980, the main source of this 

information was contour mapping. Today, digital elevation models (DEMs) are used 

which are able to automatically extract the topographic variables required, such as 

basin geometry, stream networks, slope, aspect, flow direction, etc. (Singh and 

Woolhiser, 2002). A DEM is a raster-based representation of elevation data, i.e. it is a 

two-dimensional array of heights sampled above some datum that describe a surface. 

In many catchment models, as well as being a main source of topographic information, 

the pixel or grid cell of a DEM forms the primary processing unit for hydrological 

computations. Figs. 5-2 and 5-3 show, as the green background, a DEM of Southern 

Africa produced by the United States Geological Survey (USGS) at a resolution of 1km 

square (HYDROIk, 1996), over which the radar and satellite precipitation images were 

superimposed using ARCGIS™ (a GIS software platform). 

(e) Model scale 

A successful catchment model must be able to reasonable duplicate two major 

hydrological processes occurring on the catchment, namely the conversion of rainfall to 

runoff and channel routing (Pegram and Sinclair, 2002). Many of the important 

phenomena simulated in physically-based distributed models, such as the process of 

infiltration for the conversion of rainfall into runoff, are described by means of balance 

equations in terms of the conservation of mass, momentum and energy at a point and 

an instant. In order to ensure compatibility between the observed input data and the 

governing equations, these point-scale equations need to be integrated to a finite scale 

dimension, since in general distributed catchment data are only available at finite 

dimensions. This upscaling, via integration, is an important link in converting the 

differential equations defined at a point into integral equations defined over volumes. 
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An important consideration at this juncture is the size of the grid dimension within which 

the physical meaning of the governing equations are still valid. Many models use the 

pixel size of a DEM as the primary processing unit. However, there has been much 

debate over whether the integration process preserves the physical-nature required in 

such models. As the size of the cells increases, the representative cell parameters tend 

to lose their physical meaning and become stochastic in nature. Wood et al. (1988) 

investigated the existence of a Representative Elementary Area (REA) which they 

defined as the minimum area within which "implicit continuum assumptions can be 

used without knowledge of the patterns of the parameter values, although some 

knowledge of the underlying distributions may still be necessary". This means that 

within each element, the variability of the parameters (parameter distribution) can be 

ignored and the element's characteristics can be considered relatively homogeneous. 

An assumption made at this scale is that the physical processes can still be 

represented in a deterministic way, as opposed to stochastic. Wood et al. (1988) found 

the REA to be strongly influenced by topography, but its upper limit approximately 

equals 1km2. Predictions from areas greater than this size were insensitive to the 

variability of parameters and therefore an REA of 1km2 can be considered as the 

primary spatial unit. 

Martina (2004) investigated the effects of integrating over the grid cell the process 

equations defined at a point for a fully distributed physically-based catchment model, 

i.e. the TOPKAPI model, which is introduced in Chapter 6. There were two issues that 

he looked at regarding this, namely the validity of the numeric method adopted to 

perform the integration and, secondly, the question of whether average parameters at 

the grid scale (which is necessary to ensure compatibility between the input 

parameters and the governing equations) are able to maintain physical meaning. In the 

first instance, it was found that the numerical solution of the flow equations adopted by 

the TOPKAPI model for the integration was valid up to an order of 1km2 when 

compared to the "correct" solution offered by the characteristic line method. In the 

second instance, it was also found that the spatial distribution of the parameters within 

the grid cell can be averaged up to the order of 1km2. The result is in line with the 

findings of Wood et al. (1988) and suggests that, for the TOPKAPI model, "the 

approximations involved by the integration of the governing equations and by the 

consequent parameters averaging are acceptable" (Martina, 2004) at a grid resolution 

of up to 1km square. This REA size will be adopted in the sequel. 
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(f) Model computations 

Many of the important processes in catchment modelling, such as the process of 

infiltration, are non-linear in nature. The governing non-linear differential equations at 

the finite grid scale may, in many instances, require a numerical or a pseudo-analytical 

solution. In a physically-based fully distributed model, such a solution only adds to the 

computational burden inherent in many models. A fundamental requirement of an 

online real time flood forecasting model is that it must be computationally efficient. 

Such a requirement has put the "feasibility" (Martina, 2004) of many physically-based 

distributed models in doubt and accounts for the popularity of model simplification (i.e. 

conceptual models). However, with the phenomenal computing power available today, 

the acquisition of suitable solutions is deemed not an obstacle to physically-based 

distributed models which are believed to represent reality more truthfully. 

5.2. Chapter summary 

In order to exploit the type and quality of data currently available, models for real-time 

flood-forecasting need to be physically-based and distributed. The computing 

capabilities also currently available make these types of models computationally 

sensible and efficient for this purpose. This chapter has introduced the concepts 

applicable to the subject matter and is the forerunner to the next chapter, where the 

TOPKAPI model, a fully distributed physically-based model is introduced and 

explained. 

For the purposes of this research, the TOPKAPI model was chosen as the model to be 

used for the representation of the hydrologic phenomena of a catchment. The ultimate 

aim of the application of this model is for real-time flood-forecasting. However, being a 

fully distributed physically-based model, the application of such a model is able to 

represent the spatial trend and provide insight into the internal structure of the 

hydrologic phenomena of a catchment, for example for the calculation of soil moisture. 

Thus, such a model has a wide range of fields to which it is applicable. The TOPKAPI 

model was chosen for this purpose as it was considered to be superior to other models 

based on the fact that: 

• it is a feasible fully distributed model, where the differential equations describing 

the physical processes of subsurface flow, overland flow and channel flow, 
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have been carefully integrated up and shown to be valid up to a grid resolution 

of 1km square, and 

• it is also physically-based, where the input parameters, of which there are 

relatively few (seven), can (as claimed by its authors, Liu and Todini, 2002) be 

directly obtained from remote sensing and geographical information systems 

(GIS). 
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CHAPTER 6 

6. TOPKAPI MODEL 

Chapter 5 introduced the concepts associated with the real-time application of a 

rainfall-runoff model for flood forecasting. The need for truly physically-based fully 

distributed models was demonstrated in order to exploit the data and the computing 

facilities currently available. Several key concepts with regard to such models (fully 

distributed physically-based) were also discussed, namely the scale at which the 

physical nature of the phenomenon modelled is preserved, the computational burden of 

such models and the role that geographical information systems (GIS) and remote 

sensing play with regard to the supply and management of data required by the 

models. 

To this end, the TOPKAPI model, a fully distributed physically-based hydrologic 

catchment model, was chosen for local application in a well instrumented catchment, 

i.e. the Liebenbergsvlei catchment. Since this model is novel to South Africa, this 

chapter provides an in-depth description of the model, its operations and its data 

requirements. The content contained in Chapter 6 is the result of an intensive 

dissection of disparate sources of literature on the model and the systematic 

combination of this information into a coherent whole. Through this literature study, 

various issues related to the model and its application are identified. These issues, 

such as the proportioning of channel flow, the local estimation of evapotransipiration 

and the solution of the non-linear differential equations describing the three stores of 

the model (soil, overland and channel store respectively) were either not clearly 

explained in the literature, or not suited to local conditions. These issues were either 

resolved or left for a follow-up study with recommendations, where it was deemed to be 

beyond the scope of this research. The contribution of Chapter 6 towards the aim of 

this research is the laying of a clear theoretical basis from which the model can be 

easily applied. Chapter 7 deals with the test application of the model. The primary 

sources of information, which were used to gain an understanding of the TOPKAPI 

model, were: Liu and Todini (2002), Bartholmes and Todini (2003), Martina (2004) and 

MUSIC Final Report (2004). 
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6.1. Description of the TOPKAPI model 

TOPKAPI is an acronym which stands for TOPographic Kinematic Approximation and 

Integration and is a physically-based distributed rainfall-runoff model. The model 

consists of five modules; a soil module, an overland module, a channel module, an 

evapotranspiration module and a snow melt module. A groundwater module is not 

incorporated in the current set-up of the model. The reason presented for this, as 

explained in Liu and Todini (2002), is that the response time for the percolation of water 

through the thick layer of soil separating the saturated (groundwater) and unsaturated 

(soil water) zones is relatively long. Hence the flow in the saturated zone shows no 

significant response from one storm event to another and can be assumed to be almost 

constant in time. However, the developers of the model plan to add a groundwater 

module for future enhancement of the model so that it can simulate all the hydrologic 

processes of a catchment (Liu and Todini, 2002). 

The TOPKAPI model functions on the three main modules of soil, overland and 

channel in each processing cell, which is taken as the pixel of a digital elevation model 

(DEM). Each of these modules act as storages within a cell, receiving input and 

discharging output; the behaviour of the storages are described by structurally similar 

non-linear differential equations. The soil store is the regulatory storage of each cell, 

where its water balance determines the activation of the overland store. All precipitation 

input to a cell is infiltrated into the soil store. The overland store is activated upon the 

saturation of the soil store and both outflows from the soil and overland stores of a cell 

contribute a proportionate amount to the channel store of that cell. The remainder of 

the soil and overland outflows infiltrates into the soil store of the downstream cell while 

the channel outflow feeds the channel store of the downstream cell directly. 

Evapotranspiration is subtracted as a loss in each time step from the soil store of a cell. 

The non-linear differential equations describing each of the soil, overland and channel 

storages are derived by combining the momentum and continuity equations which 

describe the flow and storage of water. The non-linear storage equations are 

formulated by simplifying the momentum equations describing soil water flow (Darcy 

Law - see Section 6.1.2) and overland and channel flow (Saint-Venant Equation - see 

Section 6.1.3) through the application of the kinematic wave model. Darcy's Law 

describes flow in an unsaturated porous medium and the kinematic wave model 

assumes that the phreatic surface is equal to the topographic surface and that the 

effects of suction pressure are negligible in relation to gravity. The Saint-Venant 

Equation describes one-dimensional unsteady open channel flow and the kinematic 
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wave model assumes that all other forces acting on a control volume are negligible 

when compared to the effects of gravity and friction alone. These points are explained 

in detail in Sections 6.1.2 and 6.1.3. The two further modules, evapotranspiration and 

snow melt, are computed in the original TOPKAPI model as functions of temperature, 

the former using the radiation method of Doorenbos and Pruitt (1977), while the latter is 

also driven by a radiation estimate based upon air temperature measurements. The 

snow melt component of the TOPKAPI model is ignored in this research. 

Thus through the combination of the continuity equation and the simplified momentum 

equation describing the flow and storage of water at a point, the resulting differential 

equations are then integrated in space to the finite dimension of a cell. The result is the 

non-linear differential storage equations which have been shown to have similar 

analytical solutions (Liu and Todini, 2002). The input parameters are directly obtainable 

from DEMs, soils maps and landuse maps for each cell of the catchment, in terms of 

slope, soil permeability, roughness and topology (Liu and Todini, 2002). The main 

advantage of the TOPKAPI model over other physically-based distributed models is 

that the physical nature of the governing equations and state variables are preserved in 

the integration process, albeit as averages, up to a grid scale of 1 km square (Martina, 

2004: 76 and Martina et al., 2005). This satisfies the Representative Elementary Area 

(REA) criteria of Wood et al. (1988), referred to in Section 5.1.2 (e). 

The objective of this research is in the real-time application of a rainfall-runoff model for 

flood-forecasting. The TOPKAPI model was chosen for this purpose as it was 

considered to be an appropriate model based on the following: 

• it is fully distributed; the spatial range of the grid cell discretization within which 

the model is valid is up to 1km (Martina, 2004: 76), 

• it is physically-based where the input parameters can be directly obtained from 

remote sensing and geographical information systems (GIS), and 

• there are relatively few (seven) input parameters for a distributed model of 

which only three or four are typically used for calibration. 

However, it must be noted that although the TOPKAPI model has been described as 

physically-based, and as such the input parameters should require no calibration in 

theory, Liu and Todini (2002) suggest that a calibration of parameters is still necessary. 

They maintain that the calibration of the model, which is "more an adjustment" 

achieved through simple trial and error methods, is still required because of the 

uncertainty of the information on topography, soil characteristics and land cover and 
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also because of the approximations introduced by the scale of the parameters 

representations. This is explained further in Section 6.1.7. 

The major advantage in the application of a distributed model is its ability to represent 

the spatial behaiviour of the phenomena modelled. However, in many applications, 

such as modelling the terrestrial - atmospheric flux, with Global Circulation Models 

(GCMs), models are required to represent phenomena at larger scales where the 

discretization schemes are based on grid sizes of hundreds of kilometres. The 

TOPKAPI model, although being a comprehensive distributed rainfall-runoff model, can 

also be applied in a lumped form to represent hydrologic processes at a basin level. 

This is achieved by using the distributed model to identify the mechanisms governing 

the dominant processes in the conversion of rainfall into runoff in order to obtain a "law 

underpinning the development of the lumped model" (Liu and Todini, 2002). It is shown 

in Martina (2004: 96) that the physical nature of the model is still maintained at the 

lumped scale, although the governing equations no longer have local meaning, but 

summarise local properties in a global manner where the input parameters represent 

basin averages. The application of the TOPKAPI model in lumped form is an option 

which is not explored in this research. The following sections explain the structure and 

methodology of the distributed TOPKAPI model by giving relevant background theory, 

expanded from the parent publications, where necessary. 

6.1.1. Model assumptions 

The TOPKAPI model is based on five fundamental assumptions. The reasoning behind 

each of the assumptions will become clearer as the explanation of the model is 

expanded in the sections that follow. Each assumption (appearing in italics) is quoted 

directly from Liu and Todini (2002) which is then followed by an explanation: 

(1) Precipitation is constant over the integration domain, i.e. namely the single 

grid cell or pixel. Precipitation estimates from remote sensing 

measurements are raster-based and presented in pixel format, where the 

properties, such as rainfall, are uniform in each pixel during the temporal 

integration interval. If raingauge data are used, suitable averaging 

techniques of these point estimates have to be performed in order to 

acquire the data at the required finite pixel resolution. One such technique 

that could be used for this purpose is Block Kriging. 
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(2) All precipitation falling on the soil infiltrates into it, unless the soil is already 

saturated in which case the input precipitation will become overland flow 

directly. This is referred to as a Dunne mechanism (Dunne, 1978), or 

saturation excess mechanism, for the formation of overland flow. 

(3) The slope of the groundwater table coincides with the slope of the ground, 

unless the latter slope is very small (i.e. < 0.01%). This constitutes the 

fundamental assumption of the kinematic wave model, and justifies the use 

of the kinematic model for unsaturated horizontal subsurface flow. 

(4) Local transmissivity, like horizontal subsurface flow in a cell, depends on 

the total water content of the soil. This requires the integration of the soil 

water content profile in the vertical. 

(5) Saturated hydraulic conductivity is constant with depth in the surface soil 

layer. The conductivity in this layer is also assumed to be much larger than 

the conductivity in the deeper subsoil layers due to the macro-porosity that 

exists in this layer. 

6.1.2. Soil water flow model 

The soil water store is regarded as the most "characterising aspect of the model" (Liu 

and Todini, 2002) because of the regulating function that it plays in terms of the water 

balance. The overland flow component of a cell is activated upon the saturation of the 

soil store and together with subsurface flow, both contribute directly to the flow in the 

channel (Liu and Todini, 2002). Overland flow refers to surface runoff which flows down 

flat slopes in shallow sheets while subsurface flow, in terms of the TOPKAPI model, is 

regarded as the "flow in a horizontal direction that occurs in a soil layer of limited 

thickness and high hydraulic conductivity due to macro-porosity" (Liu and Todini, 2002). 

The TOPKAPI model assumes that flow in the vertical direction (typically over a depth 

of a few metres) of a given soil store, i.e. infiltration, is lumped and that the horizontal 

subsurface flow is a function of the total moisture stored within a soil store, which in 

turn is an explicitly derived function of the soil parameters. The following sub-sections 

deal with the kinematic wave formulation for the soil water flow model, by first 

introducing the necessary background theory, and then an explanation of the vertical 

lumping performed on this component. 
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(a) Background 

The hydraulic behaviour of soil is characterised by two important properties of the soil, 

namely the suction pressure head y/, which is the electrostatic force between the water 

molecules' polar bonds and the soil particle surface (Chow et al., 1988: 102), and the 

hydraulic conductivity K, which is the rate at which water moves through a porous 

medium per unit cross-sectional area. For unsaturated conditions, both these soil 

properties vary as a function of the moisture content 6 of the soil. The soil moisture 

content 9 is defined as the ratio of the volume of water to the total control volume 

(Chow et al., 1988: 100), with an upper bound limited by the porosity of the soil control 

volume. Porosity is defined as the ratio of the volume of voids (or pore spaces) to the 

total volume of the control volume. Therefore, at saturation, all the pore spaces within 

the control volume are occupied by moisture and hence the soil moisture content at 

saturation is equal to, or limited to, the porosity of the soil control volume. Fig. 6-1 

shows the relationships of the suction pressure head and the hydraulic conductivity 

with moisture content for an unsaturated clay soil. 
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Figure 6-1. Variation of suction pressure head y/ and hydraulic conductivity K with 
moisture content 6>for an unsaturated clay soil (Chow et al., 1988:103). 
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Flow in an unsaturated porous medium, such as subsurface flow, is described by 

Darcy's Law which gives the momentum equation for the volumetric flow per unit area 

of medium: 

q' = KSf (6-1) 

where q' is the apparent velocity of flow or volumetric flux (flow per unit area) through a 

cross section of a porous medium, K is the hydraulic conductivity of the cross section 

and Sf is the friction slope or head loss per unit length of flow in the x-direction. The 

friction slope is defined as S, = , where the negative sign indicates that the head is 

dx 

decreasing in the direction of flow due to friction. For flow in an unsaturated medium, 

the forces involved are gravity, friction and suction head and hence the total head 

driving the flow are the sum of gravity and suction, i.e. h = z + if/. (For saturated flow, 

the suction head is no longer applicable). Substituting for Sf in Eq. 6-1 for unsaturated 

flow yields: 

where (diyldx) is the pressure head loss and {dzldx) is the gravity head loss in the x 

direction respectively. 

By combining the Darcy Equation, for flow in the vertical direction (z), with the 

continuity equation, Richard's Equation (1931) is derived, which is the governing 

equation for unsteady unsaturated flow in a porous medium. Richard's Equation is the 

basic theoretical equation for vertical flow in a porous medium, and is given as: 

r°f + K 
dt 8z v 

where 0 is the soil moisture content, f represents time, z represents the vertical 

direction (positive upwards), K is the hydraulic conductivity of the medium and D is a 

term which represents soil water diffusivity and equals K(di/y/d0). No general analytical 

solution to Richard's Equation exists due to its non-linearity. Infiltration models of 

Horton (1940) and Philip (1957) are approximate solutions to the one-dimensional form 
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of Richard's Equation. Green and Ampt (1911) proposed an alternative method 

whereby approximations were made with regard to the physical theory governing 

infiltration but yielding an exact solution (Chow et al., 1988: 110). 

(b) Vertical lumping 

In the TOPKAPI model, the dominant mechanism driving subsurface flow is assumed 

to be gravity and is described as follows, paraphrasing Martina (2004). Water, after 

having infiltrated into the soil, will perch on a lower impermeable or semi-permeable 

boundary of the soil layer. This boundary forms the separation between the subsurface 

soil layer and the deeper groundwater layer. At this boundary, a horizontal propagation 

of unsaturated subsurface flow is driven under gravity due to the relatively highly 

conductive (due to macro-porosity) nature of the soil layer. Since the depth of the soil 

layer (of thickness one to two meters) is negligible with regard to the horizontal 

dimension of the overall grid cell, according to Todini (1995) "it is possible to avoid 

within the range of reasonable errors the integration of the unsaturated soil vertical 

infiltration equation, namely Richard's Equation" (shown above as Eq. 6-3). Thus the 

TOPKAPI model assumes subsurface horizontal flow to be similar to flow in an 

unconfined aquifer, where "flows in unconfined aquifers are analogous to free-surface 

flows in streams" (Dingman, 2002: 327). 

In order to lump the subsurface flow vertically, the dependence of the hydraulic 

conductivity K on the vertical soil moisture content 6{z) is neglected, which is noted 

here as the basic assumption of the Green-Ampt model (Green and Ampt, 1911). 

Rather, a direct dependency of hydraulic conductivity with the averaged soil moisture 

content over the soil depth is assumed to exist. This assumption was based on the fact 

that in practice, as explained in Martina (2004: 81), "the horizontal flux evaluated from 

the integration of the vertical profile of the soil moisture content does not differ strongly 

from the horizontal flux evaluated from assuming the saturated hydraulic conductivity 

as constant with depth", together with the average value along the vertical profile of the 

soil moisture content. 

The formulation of the relevant equations is as follows. Firstly, the TOPKAPI model 

applies the kinematic wave approximation to the subsurface flow and thus the effects of 

suction on Darcy's Law are ignored in relation to gravity. Secondly, the model assumes 

that the slope of the phreatic surface (and thus the slope of flow perched on the lower 

impermeable or semi-permeable boundary) is equal to the slope of the topographic 
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surface /?. Thus dz/dx in Eq. 6-2 equals tanfi, where /? is the local angle of slope of the 

topographic surface of a cell in the direction of flow. Eqs. 6-1 and 6-2 thus reduce to: 

q'= K tanJ3 (6-4) 

where K is the hydraulic conductivity of the soil and tanfi is the tangent of the ground 

slope angle /?. When dealing with saturated horizontal flow paths, such as in an 

unconfined aquifer, the term transmissivity is used instead of hydraulic conductivity. 

Transmissivity is defined as T = H K, where H is the saturated flow depth and K is the 

hydraulic conductivity. Thus K in Eq. 6-4 is replaced by T/H, and thus 

q = Hq' = H Ktanj3 = T tan/3. Based on assumption (4), in Section 6.1.1, local 

transmissivity of the soil profile depends on the total moisture content of the soil over 

the depth L. This is calculated as follows: 

T=\K(0(z))dz \ = JKs(e(z)Jdz 
( L 

(6-5) 
V o 

where K is the hydraulic conductivity as a function of the effective soil saturation 0 at 

depth z and L is the depth of the soil layer. The effective soil saturation at depth z is the 

ratio of the available moisture {6-6r) to the maximum possible moisture content {0s-6r), 

— Q — 0 
i.e. 6{T) = (Chow et al., 1988: 114). 6r is the residual soil moisture content after 

the soil has been thoroughly drained and 6S is the saturated soil moisture content. The 

replacement of the integrand on the left of Eq. 6-5 with the approximation shown in 

brackets on the right is based on the work of Brooks and Corey (1964) who established 

the relationship K(d) = Ks(0) , where KS is the saturated hydraulic conductivity and a 

is a pore-size distribution parameter which is dependent on the characteristics of the 

soil type. They established this formula after studying the relationships between suction 

pressure head y/and hydraulic conductivity K with the moisture content Oof many soils. 

By assuming a constant saturated hydraulic conductivity Ks with soil depth and by 

using the average soil moisture content over the depth, the expression for the 

transmissivity given by Eq. 6-5 is replaced by: 

T(®) = KsL®a (6-6) 
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where 0 is the average effective soil saturation content over the depth L, i.e. 

— 1 L -
<I> = — \o{z)dz. (At this stage it is important to introduce a system of dimensions; the 

SI system will be used). Thus from Eq. 6-4, the horizontal subsurface flow q (in m2s"1) 

is can be expressed by: 

g = tan(/?)KtL4>° [ m V ] (6-7) 

(c) Kinematic wave formulation for subsurface flow 

The momentum equation (Eq. 6-1) and the continuity equation (Eq. 6-3) are used to 

obtain the following pair of equations that describe the flow and storage of soil 

moisture, lumped vertically in a column of depth L and of elemental area dA in the 

horizontal plane: 

Q = tan(/?)/csLOa [ m V 1 ] (6-8a) 

(0s-9r)L^ = p-%l [ms-1] (6-8b) 
dt dx L J 

where x is the horizontal direction of flow in a cell, t is time, q is the subsurface flow (in 

m2s~1), p is the input precipitation intensity (in ms"1) and the rest of the variables are 

defined as before. The term on the left-hand side of the continuity equation, Eq. 6-8b, 

represents the rate of change of moisture storage (expressed as depth) in the soil store 

while the expressions on the right-hand side are the inflow and outflow balance. The 

model is written in terms of total differential operators instead of partial differential 

operators, since the flow in the TOPKAPI model is assumed to be characterised by a 

preferential direction which is defined as the direction of maximum slope. 

By combining Eq. 6-8a and Eq. 6-8b, the resulting equation states that the rate of 

change of storage (dq/dt) is equal to the difference between the inflow (p) and outflow 

(d(CTja)/dx): 

f = P -£ (CT) [ms-] (6-9) 
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where rj is the total depth (in m) of the actual moisture in the soil (defined by Eq. 6-10), 

C represents a local conductivity coefficient (defined by grouping the constant physical 

terms in Eq. 6-11) and the rest of the variables are as before. The expression for the 

soil moisture depth (Eq. 6-10) is based on the average effective soil moisture <Z>of the 

soil layer of depth L: 

n = {o,-or)L<b 

and 

M 

c = J L 1 V t a n A r , v n 
(0s-9,r-w L J 

(6-10) 

(6-11) 

Eq. 6-9 expresses continuity in 2-dimensions, i.e. for an elemental area over the 

horizontal plane of a grid cell but lumped in the vertical dimension. In order to represent 

the processes over an entire pixel or grid-cell, Eq. 6-9 needs to be integrated, firstly 

over the longitudinal dimension X and then over the width X of the grid-cell. Fig. 6-2 

depicts the dimensions of a typical soil store of a grid-cell which is defined horizontally 

by the pixels of a digital elevation model (DEM). 

- «- x 

L 

Figure 6-2. The dimensions (in m) of the soil store in a pixel as defined by a DEM and 
as required by TOPKAPI. The picture is not to scale and the dimensions have 
been exaggerated. 

For the r* pixel, assuming the pixel to contain a source-cell with no upstream cells 

contributing flow (i.e. precipitation is the only input into the cell), the integration of Eq. 

6-9 in the longitudinal direction yields the following: 
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}>ii"->^x 
(6-12) 

^^pX-Ctf [mV] 

where v, is the volume per unit width (m3m"1) stored in the fh cell, i.e. v: = rji • X in m2. 

This assumes that the variation of the vertical water content 77, is negligible along the 

horizontal dimension of the cell and thus v, can be related to the vertical water content 

TJI as shown above. After integration, the conductivity coefficient C no longer comprises 

measurable quantities at a point, but now represents average values over the cell. The 

total volume (in m3) stored in the fh cell is V,, where V; = vt, • X = 77. • X • X. Thus, by 

making the substitution for 77 in Eq. 6-12 and integrating over the width of the fh source 

cell, the non-linear reservoir equation for this store is: 

| ^ = J ( p X - C , 7 r ) d X 
0 dt » (6-13) 

=>ML = pX2_C£vr rm3s-n 
dt ' X2a ' L J 

where V, is the volume stored in the fh cell in m3. In a similar manner, a non-linear 

reservoir equation can be formulated for a generic "non-source" cell which, in addition 

to precipitation input, receives contributions from the soil and overland stores of the 

upstream cell. 

The connectivity between cells in the TOPKAPI model is such that an active cell may 

only receive upstream contributions from the three cells adjacent to the edges of the 

active cell and may only have one "preferential" outflow direction. A further explanation 

of this is given in Section 6.1.5. Referring to Fig. 6-3, the non-linear reservoir equation 

for a generic cell is: 

dV C X 
- ^ = p , . X 2

+ Q 0 " + Q s " - ^ ^ [ m V ] (6-14) 

where Vs, is the volume stored in the /* cell and Q0
U and Qs

u are the direct contributions 

from the upstream overland and soil stores feeding the th cell respectively. These 

terms were effectively added to the right-hand side of Eq. 6-13 for a non-source cell. 

The subscripts o and s have been introduced to distinguish between the overland and 
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soil stores respectively and the superscript u denotes an upstream contribution. Note 

that Eq. 6-14 is a scalar non-linear differential equation in time. 

Precipitation 
PX2 

Upstream Inflow 
Q." • Qo" Outflow 

c. x 
X2-_vr-

Figure 6-3. The water balance for the soil store of a generic non "source" cell derived 
in Eq. 6-14 for the TOPKAPI model (MUSIC Final Report, 2004: 53). 

6.1.3. Overland and channel water models 

The overland and channel components are controlled by the soil store. Overland 

storage is activated when the soil store is saturated, based on the saturation excess 

mechanism of Dunne (1978), and proportions of the outflow from the soil and overland 

stores feed the channel store. This section deals with the kinematic wave formulation 

for the overland and channel flow models by first introducing the necessary background 

open channel flow theory. 

(a) Background 

The kinematic wave assumption is based on the simplification of the momentum 

equation in the pair of Saint-Venant Equations which describe one-dimensional 

unsteady open channel flow. It assumes that the effects of local acceleration, 

convective acceleration and pressure acting on a control volume are negligible when 

compared to the affects of gravity and friction. The Saint-Venant Equation of 

momentum conservation is: 
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% + V%- + g%--g(So-Sf) = 0 (6-15) 
dt dx dx 

where V represents the velocity in the x-direction at time t where x is the horizontal 

distance along the channel, g the gravitational acceleration and S0 and Sf the bed slope 

and friction slope of the channel respectively. This equation is most applicable in 

describing gradually varied unsteady flow and is typically used for bed slopes (S0) 

flatter than 1:20 so that the horizontal component of the velocity is dominant. The 

kinematic wave approximation of the momentum equation ignores the effects of local 

acceleration (dV/dt), convective acceleration (V. dV/dx) and pressure (g. dy/dx). This 

simplification is justified by an observation of Henderson (1966: 364) where he notes 

that dV/dt, V.dV/dx and g.dy/dx are relatively small in comparison to S0 (0.2%, 1% and 

2% respectively) for natural floods in actual rivers. Thus, by ignoring these terms in Eq. 

6-15, the following approximation results: 

Sf=S0 (6-16) 

where the forces of friction and gravity balance. By combining this approximation with 

the continuity equation at a channel cross section (Eq. 6-17), the flow and storage of 

channel water is described by a non-linear reservoir differential equation for each 

channel store in a processing cell. The continuity equation for a channel cross section, 

in conservation form is: 

£.,-22 ,6-17) 
dt dx 

where (dA/dt) is the rate of change of volume per unit width in a channel element, q is 

the inflow per unit length along the side of the channel and (dQ/dx) is the rate of 

change of channel flow with distance (Chow et al., 1988: 275). The formulation of the 

non-linear differential equation for the overland storage follows from the preceding 

arguments. 

Thus, based on the kinematic approach for the conservation of mass and momentum, 

flow in the overland store (surface flow) and flow in the channel store (channel flow) are 

described by Manning's Equation. The Manning Equation is valid for one-dimensional 

steady, uniform open channel flows and is given as (in SI units): 

- 76 -



CHAPTER 6: TOPKAPI model 

Q = -.A-R%-Sfi (6-18) 

where Q is the volumetric flow rate (m3s"1), n is Manning's roughness coefficient 

(m"1/3s), A is the cross sectional area of flow (m2), Sf is the friction slope (which is equal 

to the ground slope tan/3 in the kinematic approximation) and R is the hydraulic radius 

(in m), which is defined as the ratio of the cross-sectional area of flow (A) to the length 

of the cross-sectional wetted perimeter of flow (P), i.e. R = — • Referring to Fig. 6-4, the 

cross sectional area for a rectangular channel is yB and the wetted perimeter is 2y+B. 

A common assumption made when using Manning's Equation is that the cross section 

of flow is rectangular with the width of flow 6 being much larger than the height of flow 

y, i.e. the channel is wide and rectangular. This assumption is valid when one 

considers overland flow as this flow is akin to sheet flow. However, when the flow is in 

a channel, the cross section of flow needs to be shallow and wide enough for the 

assumption to be valid. Nevertheless, Dingman (2002: 427) says that in most natural 

channels, the hydraulic radius R is "virtually identical to the average depth y", which 

arises from the wide rectangular channel assumption. This assumption reduces Eq. 6-

18 to the following approximation: 

g = - = - - ( tan£)^-y^ 
B n 

(6-19) 

2„-1> where q is the flow per width in the channel (in m s ) 

B 

/ 

\ 

Figure 6-4. The rectangular cross section of an open channel flow of flow depth y and 
flow width B. 
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(b) Kinematic wave formulation for overland flow 

The momentum equation (Eq. 6-19) and the continuity equation (Eq. 6-17) for the 

overland store are used to obtain the following pair of equations that describe the flow 

and storage of overland water at a point in the overland store: 

d0=Coh0
a° [ m V ] (6-20a) 

^ = ro-^ [ms1] (6-20b) 
dt dx L J 

where q0 is the overland flow per unit width, h0 is the depth of flow over the ground 

surface (in m), C0 =—^tan/? and a = % (an overland flow parameter), both of which 
n0 /* 

come directly from Eq. 6-19. In Eq. 6-20b, r0 is defined as saturation excess flow or 

runoff (in ms"1) which results from the saturation of the soil store; evidently r0 is zero 

when the soil store is unsaturated. The subscript o denotes the overland flow model. 

In a similar treatment to that of the soil store (the equations have the same form), Eqs. 

6-20a and Eq. 6-20b can be combined and integrated over the horizontal dimensions of 

the grid cell by assuming that the depth of flow h0 is constant over the surface of the 

cell. Referring to Fig. 6-5, the non-linear reservoir equation for the overland store of a 

generic cell is given as: 

—± = r X2 — * - V0
a° [ m V 1 (6-21) 

dVo 

where Vo, is the overland volume stored in the r cell, — - is the rate of change of 

C X 
surface water storage in the overland store, r X2 is the input term and - ^ - V ^ is the 

outflow term. 
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Precipitation 

Outflow 

X2a- °> 

Figure 6-5. The water balance for the overland store of a generic cell derived in Eq. 
6-21 for the TOPKAPI model (MUSIC Final Report, 2004: 55). 

(c) Kinematic wave formulation for channel flow 

The channel flow model is only applicable in those cells that contain a channel reach. 

This differentiation is determined from a topographic analysis of the catchment through 

the use of a digital elevation model (DEM). The distinction between cells characterised 

by overland runoff only (hillslope cells) and cells characterised by commensurate 

overland and channel runoff (channel cells) is important for the type of water balance to 

be created for each cell. This is dealt with in Section 6.1.5. 

In a similar manner to the treatment of the soil and overland stores, the momentum 

equation (Eq. 6-19) and the continuity equation (Eq. 6-17) for the channel store are 

used to obtain the following system of equations that describe the flow and storage of 

water at a point in a channel reach: 

qc=cc-yc
a< [mV] 

dt c dx 
[ms-1] 

(6-22a) 

(6-22b) 
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A 

where yc is the depth of flow in the channel reach (in m), C. = —Vtan/? and a. = % , 
nc '* 

both of which derives from Eq. 6-19 (again assuming that the cross section of flow in 

the channel reach to be wide and rectangular). In Eq. 6-22b, rc is defined as the lateral 

drainage input (in ms"1) which results from the contribution of the outflows of the soil 

and overland stores of the cell. The subscript c denotes the channel flow model. 

Eqs. 6-22a and 6-22b can be combined and integrated over the horizontal dimensions 

of the channel reach in the grid cell by assuming that the depth of flow yc is constant in 

the channel reach. The horizontal dimensions of a channel reach, as depicted in Fig. 

6-6, do not occupy the entire width of the grid cell. The width \N, of a channel reach is 

assumed to remain constant over the entire length of the cell, but is larger in 

downstream cells increasing towards the channel outlet as a function of the area 

drained (see Eq. 6-24). Referring to Fig. 6-6, the non-linear reservoir equation for a 

channel reach in a generic cell is: 

— 2 - = rc XW, + Qu
c S_L_vc

a° TmV 1 1 (6-23) 
dt c' ' c (XW,Y° L J 

where Vq is the channel volume stored in the channel reach of the P cell and Qc" is the 

channel inflow from an upstream cell. From Eq. 6-23, it is evident that the model 

requires that the proportion of soil and overland flow from the fh cell that feeds its 

channel is proportionate to the ratio of the width W, of the channel to the overall width X 

of the cell. If Qs, and Qo, are the soil and overland outflows available to feed the 

channel reach of the th cell in each time interval respectively, then Qs +Q0 =rc XX 

and rc•XWi=(rCi XX)-^ = (QS +Q0)-±r in m V . Thus the formulation of Eq. 6-23 

guarantees that the amount of soil and overland flow available to feed the soil store of 

( wA 
the downstream cell (cell i+1) is proportional to 1—'- . This proportioning can be 

seen in Fig. 6-6. This point was not made clear in the literature studied and was 

interpreted here. 
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The width W, of the channel reach of the ih cell is calculated as follows: 

W=W + 
i max 

W -W 
max mm 

VAote/ VA/Ji 
( V ^ ^ - V A ^ ) M (6-24) 

where Atota! is the total area drained in the catchment, Athreshotd is the threshold area, 

which is the minimum drainage area required to initiate a channel, Adrainedi is the area 

drained by the f cell, Wmax is the maximum width of the channel (in meters) at the 

basin outlet and Wmin is the minimum width corresponding to the threshold area. The 

parameters Atotal, Athreshoid and Adrainedi are determined from the topographic analysis of 

the DEM of the catchment while values for Wmax and Wmin are estimated based on a 

priori knowledge of the site or estimated from satellite imagery. 

Soil contribution 
to channel 

W, 

Channel 
Outflow 

Total Channel Inflow 

roXWi=(Qs+Q0)^r 

Figure 6-6. The water balance for the channel store of a "source" cell derived in 
Eq. 6-23 for the TOPKAPI model. 
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6.1.4. Evapotranspiration module 

The evapotranspiration module in the TOPKAPI model is basically a moisture loss 

function and subtracts from the soil store an accumulated amount of moisture in each 

time step. The computation of evapotranspiraton losses was not done dynamically in 

the integration of Eq. 6-14, the non-linear reservoir equation for a soil store, as its 

instantaneous impact was not considered important in the rainfall-runoff process. It was 

felt by the developers of the model, that evapotranspiration losses would have a small 

dynamic effect during a time step (of the order of less than an hour) and that it was only 

necessary to preserve the cumulative volumetric balance in order to maintain the 

correct soil moisture budget (MUSIC Final Report, 2004: 51). 

(a) Background 

Evapotranspiration is the combination of evaporation from the soil surface and 

transpiration from vegetation (Chow et al., 1988: 91). The factors that govern potential 

evapotranspiration are energy supply, vapour transport and the supply of moisture at 

the evaporative surface. The estimate of actual rate of evapotranspiration, for a given 

crop and climate, is based on the rate of evapotranspiration of a reference crop. The 

reference crop evapotranspiration (Etr) is defined as "the rate of evapotranspiration 

from an extensive surface of 8 to 15 cm tall, green grass cover of uniform height, 

actively growing, completely shading the ground and not short of water" (Doorenbos 

and Pruitt, 1977: 1). The potential evapotranspiration, which is the evapotranspiration 

that "would occur from a large area completely and uniformly covered with growing 

vegetation which has access to an unlimited supply of soil water" (Dingman, 2002: 

232), of a crop growing under the same conditions as the reference crop is calculated 

by multiplying the reference crop evapotranspiration (Etr) by a crop coefficient kc. The 

value of kc depends on the stage of growth of the crop and range from 0.2 to 1.3 

(Doorenbos and Pruitt, 1977: 35). The actual evapotranspiration (Et) is calculated by 

multiplying the potential evapotranspiration by a so/7 coefficient ks which takes into 

account the condition of the evaporative soil surface. Values of ks range from 0 to 1. 

Thus the actual evapotranspiration Et is calculated by: 

5=*AE, (6-25) 

where ks is the soil coefficient, kc is the crop coefficient and Etr is the reference crop 

evapotranspiration. 
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In practice, the method used to calculate the reference crop evapotranspiration 

depends on the data available at the site. Following Jenson et al. (1990: 80), the 

methods used to calculate Etr can be classified according to the data required. These 

are categorized as temperature-based methods, which uses air temperature and day 

length, radiation-based methods, which use net radiation and air temperature, 

combination methods, which use net radiation, air temperature, wind speed and 

relative humidity, and the pan method, which is based on the evaporation from an open 

water pan with modifications depending on wind speed, temperature and humidity. 

The combination method is based on the Penman-Monteith Equation (Monteith, 1965) 

and is a modification of the original equation developed by Penman (1948). It is 

considered as the most "complex and physically realistic" (Liu and Todini, 2002) 

method for the calculation of actual evapotranspiration. However, the data required to 

support such a model is not extensively available and almost never exists in real-time. 

According to Liu and Todini (2002), the need for an extremely accurate expression for 

the calculation of evapotranspiration losses is not necessary in the rainfall-runoff 

process provided the integral effect is preserved. Thus in the TOPKAPI model, as 

applied by Liu and Todini (2002), evapotranspiration is calculated based on a simplified 

approach of the radiation method of Doorenbos and Pruitt (1977). It is the intention to 

test this concept with the application of the TOPKAPI model in South Africa in a follow-

up study. 

(b) Radiation method 

The radiation method is suggested for areas where the measured climatic data include 

air temperature, and sunshine hours, cloud cover or radiation levels (Doorenbos and 

Pruitt, 1977: 8). A general knowledge of the levels of humidity and wind are also 

required. The relationship for the reference crop evapotranspiration Etr (in mm.day"1), 

based on the radiation method for each grid cell, is given as: 

Etr=CvWlaRs (6-26) 

where Cv is an adjustment factor which is obtainable from tables (Doorenbos and 

Pruitt, 1977: 14) as a function of the mean relative humidity and the mean daytime 

(07:00-19:00) wind speed at a 2 m height above the soil surface; Wta is a compensation 

factor which is dependent on temperature and altitude for which tabulated values also 

exist (Doorenbos and Pruitt, 1977: 13); and Rs (in mm.day"1) is the measured short 
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wave solar radiation that reaches the earth's surface. Rs can be measured directly, but 

these data are usually not easily available for the area of investigation. Rs is dependent 

on the radiation received at the top of the atmosphere (Ra in mm.day"1), and the 

transmission of this radiation through the atmosphere, which is dependent on cloud 

cover. Thus Rs =(o.25 + 0.5^,)f?a, where 7N is the ratio of actual hours of sunshine to 

the maximum possible hours of sunshine in a day. Rg is dependent on latitude and the 

time of the year, for which tabulated values are available in Doorenbos and Pruitt 

(1977: 12), and tabulated mean monthly values of N, as a function of latitude, are also 

available in Doorenbos and Pruitt (1977: 13). 

In the above expression for Rs, values of actual hours of sunshine n are not usually 

readily available over the individual cells of a catchment. Thus Todini (1996) sought an 

empirical relationship between the reference crop evapotranspiration Etr and Wta, the 

compensation factor, the mean recorded temperature of the month Tm and the 

maximum number of sunshine hours N. The result is: 

Etr=a + (3-N-Wta-Tm (6-27) 

where a and /Jare regression coefficients which are to be estimated for each grid cell. 

Eq. 6-27 is structurally similar to Eq. 6-26, the radiation-method equation, except in this 

instance air temperature is taken as an index of radiation and a constant has been 

added. According to Todini (1996), the relationship developed in Eq. 6-27 is linear in 

temperature and permits the disaggregation of the monthly results on a daily or sub-

daily (hourly) basis. Thus the reference crop evapotranspiration Etr is expressed in 

mm.At"1, and Tm, the area's mean air temperature, is averaged over At. 

The compensation factor Wta, which is dependent on the long term mean monthly air 

temperature and the altitude of each grid cell, is tabulated in Doorenbos and Pruitt 

(1977: 13). Alternatively, Wta can be approximated by a fitted parabola as shown in 

Todini (1996). 

For reasons of limited data availability, a different method for the spatial estimation of 

evapotranspiration is proposed here. This would be the use of calculated estimates of 

potential evapotranspiration, which can be made at Automatic Weather Stations (AWS) 

throughout South Africa (using for example the Penman-Monteith Equation), since the 

meteorological parameters required for such a computation are measured there. 
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Thereafter, through the use of the previous day's forecast of these variables via a 

Numerical Weather Prediction (NWP) model, these values can be spatially interpolated 

for the areas of interest. The establishment of this proposed method is planned for a 

follow up study which is currently being undertaken under a Water Research 

Commission Project (K5/1683; Soil moisture from satellites: Daily maps over RSA, for 

flash flood forecasting, drought monitoring, catchment management and agriculture). 

The use of actual evaporation measurements from Evaporation Pans located 

throughout South Africa can also be used in this instance. However, as attractive as 

such data might be in the application of the model, the data are notoriously inaccurate 

and biased and should not be used (Everson, 1999). 

6.1.5. Moisture accounting in each cell 

Moisture accounting in each cell is regulated by the soil store insofar as it experiences 

precipitation input and evapotranspiration losses directly and accepts inflows from the 

soil and overland stores of upstream cells. Furthermore, through horizontal subsurface 

flow, the soil store directly feeds the channel store of that cell (a proportionate amount) 

and, upon saturation, activates and feeds the overland store. The overland store also 

feeds the channel store of that cell a proportionate amount of flow and, together with 

the soil outflow, discharges to the soil store of a downstream cell. The outflow from the 

channel store feeds the downstream channel store directly. 

In the TOPKAPI model, the grid cells are connected together in a tree shaped network. 

The flow of water through this network is characterised by a single preferential 

downstream direction in each cell, starting from "source cells" (cells without upstream 

contributors) downward toward the catchment outlet. The preferential direction is 

evaluated according to a neighbourhood relationship from a DEM of the catchment and 

is based on the principle of minimum energy cost (Band, 1986). This method takes into 

account the maximum elevation difference between the active cell and the four 

surrounding cells connected along the edges of the active cell. The flow path from an 

active cell to an edge cell is assigned in the direction of maximum slope, in either a 

north, south, east or west direction. Thus flow paths to the four cells diagonally 

adjacent to the corners of an active cell are ignored in this method. As depicted in Fig. 

6-7, an active cell may have up to three contributing cells but may only feed a single 

downstream cell in one of the four cardinal directions. 
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The intra-cell operations, together with the inter-cell flows, can best be explained by 

examining a generic catchment consisting of three typical cells. This scenario is 

depicted in Fig. 6-8 where Cell 1 (source cell) flows into Cell 2 which in turn flows into 

Cell 3. Cell 1 is classified as a hillslope cell, where all surface flow is of the overland 

type, while the two latter cells consist of channel flow as well as overland flow. This 

distinction is important since not all cells have channelled flow. The classification is 

based on the minimum threshold area required to initiate a channel and is made from 

an analysis of the digital elevation model (DEM) of the catchment. 

Figure 6-7. The tree-shaped network form by the cells of the TOKAPI model (from 
MUSIC Final Report, 2004: 53). 

Within each cell, the storages operate in the following manner (with reference to Fig. 6-

8). The soil store of Cell 1 receives input from incident precipitation uniformly 

distributed over the time step At. Evapotranspiration losses occur from the soil store 

and are subtracted as a lumped amount from the intermediate soil moisture storage 

V's^to+At) at the end of each time step {t0+At). The intermediate soil moisture volume 

V's^to+At) is a transitional calculation step and is the solution of the non-linear 

differential reservoir equation (Eq. 6-17) at time t0+At. Thus the actual soil moisture 

volume Vsi(t0+At) stored in Cell 1 at the end of the time interval (t0+At) results from the 

subtraction of evapotranspiration losses (Ea), incurred over the interval, from the 

intermediate soil moisture volume. This computation is shown in Eq. 6-28 for two 

cases, i.e. before soil saturation and after soil saturation, where in the latter case the 

intermediate soil moisture storage is the saturated soil moisture volume Vsm .̂This 

actual soil moisture storage is computed as: 
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[ Before saturation: V' (t + At) - EX2 

Vs(t0+At) = \ S l V° / (6-28) 
Sl v ° ' After saturation: VL - EX2 

where Vsf(f0+.df) is the actual soil moisture volume (in m3) stored in Cell 1 at time t0+At, 

V's^to+At) is the intermediate soil store and results from the discrete solution of the 

non-linear differential reservoir equation (Eq. 6-14) at time t0+At, EgX2 is the volumetric 

evapotranspiration losses over the time interval At and cell area X2 and Vsmi is the 

saturated soil moisture storage of Cell 1 which is computed from the soil properties of 

saturated soil moisture content 6S and residual soil moisture content 6r, i.e. 

Vsmi=Vs-(8s-er) = (X-X-Li)(0s-0r). 

The regulating function of the soil store is shown in Eq. 6-29 and is explained as 

follows. Once the soil store becomes saturated, all precipitation received by it becomes 

precipitation excess (or saturation excess) e0 which becomes the input to and hence 

activates, overland storage. The algorithm for this computation, for the soil store of Cell 

1 in Fig. 6-8, is given by the following equation: 

[Before saturation: V' (t + At)-V' (t + At) = 0 

After saturation :V\(t0+At)- Vsmi 

where e0 is the saturation excess (in m3) exfiltrated over the time interval At, \A?(f0+zlf) 

is the intermediate soil store and results from the discrete solution of the non-linear 

differential reservoir equation (Eq. 6-14) at time t0+At and Vsm? is the saturated soil 

moisture storage of Cell 1. 
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Figure 6-8. A generic catchment consisting of three cells showing the intra- and inter-
cell operations of the TOPKAPI model. 
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The outflow from the soil store of Cell 1 (S1) will begin to flow into the soil store of Cell 

2 (S2) once S1 has any moisture stored within it. This outflow is computed from the 

following equation: 

-%-V? (t0) + ̂ ^KS (to + Af) \x2a- S, \ O J \s2a. S-, \ o / 

Qs = ̂  J (6-30) 

where QS1 is the average soil outflow (in m V ) of Cell 1 over the time interval At. 

is the outflow from Cell 1 at the beginning of the time interval t0 and 
C X 
-^Va°(t ) 

V A J 

is the outflow at the end of the time interval (fo
+^0- Hence the 

C X 
V " V°'(L+&t) 
•2as S, \ o ) 

average outflow over the time interval At from Cell 1, Qsi, becomes the uniformly 

distributed input for the soil store of Cell 2 (S2) in that time interval. Qsi will reach a 

maximum at the saturation of S1, and at this point in time, no more infiltration takes 

place and all incident precipitation becomes precipitation excess (or saturation excess 

e0). The saturation excess computed from Eq. 6-28 is calculated as an average at the 

end of the time interval t0, i.e. at time t0+At, and becomes the average input for the 

overland storage over the time interval At. Outflow from the overland store of Cell 1 

(01) will flow into the soil store of the next cell S2 and will infiltrate into S2 directly, 

unless S2 is saturated from the previous time interval. The overland outflow from 01 to 

S2 is computed in a similar manner to the soil outflow from Cell 1 (Eq. 6-30): 

Q0l = X f (6-31) 

where Qo1 is the average overland outflow (in m3s"1) of Cell 1 over the time interval At. 

Continuing with the flow processes of Cell 2, the soil and overland components of this 

cell operate as for Cell 1, except that Cell 2 has a channel component. As such, the soil 

and overland components of Cell 2 (S2 and 02 respectively) will contribute some of 

their outflow to the channel of Cell 2 (C2) as well as to the soil store of the downstream 

cell. The amount that S2 and 02 contribute to C2 is proportional to the ratio of the 

width of the channel of Cell 2 (W2) to the overall width of the cell (X-dimension of the 

cell). This is understood from the fact that rc2-XWfrom Eq. 6-23, which is the input term 

of the non-linear differential reservoir equation describing channel storage, is derived 
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from multiplying rC2XX(in m3/s) by the ratio of WJXto obtain rc2XW2 for Cell 2. The 

term rc2XX comprises the sum of the overland Qo2 and soil Qs2 outflows for Cell 2, i.e. 

r • X • X = QS2 + Q0z. Thus, a proportion equal to W2/X of the soil and overland outflow of 

Cell 2 feeds the channel of Cell 2, and therefore a proportion equal to (1-W2/X) of the 

soil and overland flow of Cell 2 contribute to Cell 3 downstream. [This partitioning was 

not obvious from the original publications of the TOPKAPI model and had to be 

interpolated here]. 

The outflow from the channel of Cell 2 (C2) flows into the downstream channel of Cell 3 

(C3) and is computed in a similar manner to the outflow from the respective soil and 

overland stores of the cell, i.e. it is computed as an average over each time step At: 

Q \ = * £ (6-32) 

where Qc2 is the average channel outflow (in m V ) leaving Cell 2 over the time interval 

At. 

In a similar manner, the moisture balance for the soil, overland and channel 

components for any generic cell in a catchment operate in the method explained. The 

subsequent outflows from the representative stores to the downstream cells also 

operate in the manner explained. All cells of a catchment operate in this manner and 

the outflows from each cell are drained downwards toward the catchment outlet to give 

the overall outflow from the catchment. 

6.1.6. Solution of the non-linear differential equations 

The solution of the non-linear differential reservoir equations, describing the rate of 

change of moisture storages in the soil store (Eq. 6-14), overland store (Eq. 6-21) and 

channel store (Eq. 6-23), require complicated computational procedures. This aspect of 

physically-based distributed catchment modelling has in the past rendered the 

feasibility of such models for real-time flood-forecasting impracticable. However, with 

current computer power, this difficulty is no longer a limitation to this type of modelling. 

There are two categories of methods that offer solutions to these equations, exact 

methods (analytical solutions) or approximate methods (numerical solutions). Ideally, 
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an analytical solution for the governing equation would be preferred, as this would 

reduce the computational cost of such models (which would be an added advantage for 

flood forecasting), however in practice most non-linear equations cannot be solved 

exactly. Eqs. 6-14, 6-21 and 6-23 can be written in a generalised non-linear differential 

form (after Liu and Todini, 2002): 

^ = a~byc (6-33) 

where y represents the volume term, a the input term, b the multiplier and c the 

exponent of the generic equations (a, b, and c are all constant during At). If the value of 

the exponent c is 1, then Eq. 6-33 reduces to a linear form for which an analytical 

solution exists. However, in the TOPKAPI application of these equations, values of c 

range from 5/3, which is the exponent derived from Manning's Formula for overland and 

channel flow, and between 2 and 4 (as suggested in Liu and Todini, 2002) for the soil 

(subsurface) flow. A numerical solution for the non-linear differential equations can be 

achieved through a variable step fifth-order Runge-Kutta algorithm due to Cash and 

Carp (1990) (MUSIC Final Report, 2004: 56). However, Liu and Todini (2002) present a 

quasi-analytical solution for Eq. 6-33 and suggest that this can reduce the computation 

time by one order of magnitude (MUSIC Final Report, 2004; 56). The following 

subsection explains the quasi-analytical solution offered by Liu and Todini (2004) which 

is followed by a discussion of their offered solution. 

(a) Quasi-analytical solution 

The quasi-analytical solutions offered by Liu and Todini (2002) are presented for three 

cases as there are different solutions for each case. Following from the general form of 

the non-linear equation given in Eq. 6-33, the three cases are based on the values of 

the exponent c and the constant a: 

(1) for 1 ^ c =£ 2; for the solution of the overland and channel reservoir 

differential equation, where c=5/3, 

(2) for c> 2; for the solution of the soil reservoir differential equation, and 

(3) for a=0; when the input term in the time step is zero, independent of c. 
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Case 1: In Eq. 6-33, the term y° can be approximated by a second order 

polynomial, i.e. yc = (3y2 +ccy = y(a + fiy), where the parameters a and /?are fitted by 

a least squares method. Thus Eq. 6-33 can be approximately written as: 

-?- = a-by(a + j3y) 

= a - bay - b/3y2 

= {-bp) a a 
'•-zy+y b(5 p-

(6-34) 

Putting A=-b(3, S=7/?and C=3/bp, after rearranging, Eq. 6-34 reduces to: 

^ = (A)(C + By + y2) 

dy 

y2 +By + C 
= (A)dt 

(6-35) 

If p1 and p2 are the two roots of the equation y2 + By + C = 0, then (y - pi)-(y - p2) = 0 

and: 

Pi 
-B + 4&-

-B-

2 

We2 

-AC 

-AC 

(6-36) 

(6-37) 

where p1 ^ 0 and p2 ^ 0. The left hand side of Eq. 6-35 can be written and solved for 

y(t+At> a s : 

y(+« 

J dy i 1 

y, y' + ey + c yJ ^ P , - P 2 

1 1 

y-P i y-p. 2 J 

dy=j(A)dt (6-38) 

Then, the exact solution to Eq. 6-38 [the derivation was not given in Liu and Todini 

(2002) and was resolved in this study] is derived, step-wise, as follows: 
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—!_ J - U d y - J M - \dy \ = A(t-t0); 
P1-P2 [y, l y - P j y, U - P 2 J J 

[ ln(y-p 1 ) - ln(y-p 2 ) ] y ; i '= / l (AO(p 1 -p 2 ) ; 

In 

In 

JW-fi In y - P i 

V v y ( + A ( - p 2 y 

^ y ( + A ( - P i ^ y ( - p 2
A 

A{At)(Pi-p2); 

X 

v y + A ( - p 2 y - P i v 

y+Af - A _ y - Pi 

Vi-Pu 

= A{At){p,-p2); 

y+A,-p2 y - p 2 

X exp{/\(Af)(p1-p2)} ; 

y + A , - P i = ( y + A ( - p 2 ) 

Finally:y,+A,-(y,+A(-p2) 

y,-P2 

y - p 2 

exp{/\(Af)(p1-p2)} 

xexp{/\(Af)(p1-p2)} Pi 

Now, let y,~p xexp{>4(Af)(p1-p2)} y, a constant from the point of view of the 
yt-Pi 

integration, then yt+At - yt+Aty + p2y - P, and the solution to this is given in Eq. 6-39. 

[The analytical solution to Eq. 6-33, presented here as Eq. 6-39, is dissimilar to the final 

equation (their Eq. A. 10) offered by Liu and Todini (2002). The final steps in the 

derivation of Eq. A. 10 were not shown and could not be comprehended from the 

literature. The use of Eq. A. 10 in testing the model (see Chapter 7) did not work and 

hence Eq. 6-39 is the analytical solution that is used in this study.] 

y+A f( i-r) = Pi-p2r ; 

y<+A< 
Pi - PiY. 

So: y (+A 

\-Y 

f 

P1-P2 
V 

y - f i 
y,-Pz 

xexp{/A(Af)(p1-p2)} 

1-
y - p 2 

xexp{/A(Af)(p1-p2)} 

(6-39) 
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Case 2: For horizontal subsurface flow in the soil store, the value of the 

exponent c ranges from 2 to 4 (Liu and Todini, 2002). By making the substitution 

u = y (c"1), then: 

du _-(c-i) 

dy= yC (6-40) 
dy _ du 

By substituting this result into Eq. 6-33, the following is obtained: 

±± = ±-b 
dt yc yc 

du 1 a 
> ~di -{c-i)~y~ (6-41) 

du .( ,* a (c -1) 
=> — = M c - 1 ) -

dt K ' yc 

1 ~ 
It can be shown that — = u c 1 from the initial substitution of u = y (c 1>, and thus Eq. 

yc 

6-41 reduces to: 

— = fo(c-1)-a(c-1)t/c"1 (6-42) 

i'. C 
Since the term falls into the range of 1 to 2 where c is in the range of 2 to 4, the 

c -1 
c 

f — 
term i/c_1 can be approximated by the second order polynomial in the method 

c 
described for Case 1, i.e. uc_1 = u(a + /?u). In this case: 

— = A(u2+Bu + C) (6-43) 
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cc b 
where now, A = -a{c~\)P, B = — and C = . The parameter a represents the 

input terms, b the multiplier, c the exponent, and a and p the fitted variables. The 

solution of Eq. 6-43 can be accomplished in the same manner as for Case 1. 

Case 3: In this case the term a is zero. This situation arises when there is no 

more inflow into a cell, either from precipitation input or from upstream cells. Therefore, 

Eq. 6-33 reduces to the following: 

6-*- = bf 

1 (6"44> 

This is easily integrated and the difference equation takes on the following non-linear 

form: 

1-c) 

(6-45) yMt=ly?-c)
 + b(c-:)(At) 

where yf+/V is the y at time t+At and yt is the initial value of y at each time step. 

(b) A comment on the analytical solution 

The key aspect to the derivation of the analytical solution offered for the non-linear 

differential equation is in the approximation of the non-linear term, y°, by a second 

order polynomial. For the overland and channel stores, this approximation is 

c 

y° =y(a + Py) and for the soil store the approximation is uc~1 =u(a + fiu), where a 

and p are fitted variables and u = y~(c~1) is an integration substitution. Since the 

exponent c for the overland and channel store equals %, then the best fit of the 
1 y% 2 / 1 

variables or and pare if a = 0 and p = —rT. Thus -— = a + py => y73 =0 + —-ry and 
y/3 y y/3 

2/ 2 / (y 2-1 

y/3 _ y/3 po r t n e s o j | store, if c = 2, then = a + pu => u = 0 +1 • u and the best fit 
u 

of the variables a and /?are or = 0 and p = 1. Similarly, if c = 3 and 4, then the best fit 
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of the variables are if a equals zero in both instances and P-^TT and fi = —nr 
i / 2 uh 

respectively. Since u = y_(c 1), then for c = 2, 3 and 4, /? = 1, y and y2 respectively. This 

corresponds exactly to the relationship (3 = y2~c and a - 0 over the full range of c from 

% to 4. 

The result of this is that the variable /? is now implicitly a function of y. This means that, 

when p is fitted at the beginning of the time step At, it is a function of yt (the volume in 

the store at the beginning of the time step). However, as the volume changes during 

the time step, the value of p is still fixed to yt and cannot match the change in volume. 

This setup will have the tendency to underestimate or overestimate yt+At (the volume at 

the end of the time step), depending on if the hydrograph is on the rising limb or falling 

limb respectively. This issue is investigated and resolved on Chapter 7 when a test 

application of the model reveals this "lack of fit" in the analytical solution setup. 

6.1.7. Calibration 

The TOPKAPI model is a physically-based model and as such all input parameters can 

be obtained directly from field measurements and related literature. In theory, it 

requires no calibration. However, Liu and Todini (2002) suggest that the calibration of 

parameters is still necessary because of the uncertainty of the information on 

topography, soil characteristics and land cover and also because of the approximations 

introduced by the scale of the parameters representations. They maintain that the 

calibration of the model is "more an adjustment" and is achieved through simple trial 

and error methods. The parameters are calibrated on a continuous sequence of a 

selected portion of historical precipitation and flow data for the catchment. The 

parameters are adjusted such that the observed outflow from the catchment mimics the 

outflow simulated using the model. 
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6.2. Chapter summary 

This chapter was intended to introduce the TOPKAPI model for its application in the 

Liebenbergsvlei catchment. As such, various items of literature on the TOPKAPI model 

and other related subjects were assimilated, dissected and explained here as a 

coherent whole with the intention that the manner in which the model operates could be 

correctly understood. Various issues related to the model's setup were also identified, 

such as that of distributed evapotranspiration estimation, flow partitioning and the 

formulation of the analytical solution. The latter two issues are resolved in Chapter 7 

where the model is implemented in a test environment. The distributed estimation of 

evapotranspiration is left for a follow up study. Chapter 7 also deals with the model's 

data requirements and the methods used to acquire and manipulate the required input 

data for the study catchment. 
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CHAPTER 7 

7. THE APPLICATION OF THE TOPKAPI MODEL 

Chapter 6 introduced the TOPKAPI model and explained the theory and methodology 

of its operations. Various issues related to the model's implementation were also 

identified. This chapter is intended to describe the application of the model as an 

operational hydrologic catchment model for real-time rainfall-runoff applications. This is 

achieved by firstly describing the types of data that are required by the model as well 

as the efforts that were put into acquiring and preparing this data to sufficiently model a 

catchment, namely the Liebenbergsvlei catchment. This is dealt with in Section 7.1, 

where the required data are sourced through geographical information systems (GIS) 

and remote sensing techniques, which were managed on ARCGIS™ (a GIS software 

platform). Section 7.2 deals with the "test" application of the model. This consisted of 

establishing a "four cell generic catchment" where the model was run to verify that the 

intricate operations of the model were correctly interpreted and implemented. The 

issues identified in Chapter 6 are also resolved. This was achieved through the use of 

a standard spreadsheet package offered by Microsoft Excel™. 

The chapter ends with a summary (Section 7.3) detailing the work still required in order 

to completely establish the TOPKAPI model as a functioning real-time rainfall-runoff 

application for flood-forecasting purposes. The intended outcome of this section of the 

research is on laying the groundwork necessary for the establishment of the TOPKAPI 

model as a fully-distributed hydrologic model in the Liebenbergsvlei catchment; the 

latter aspect was beyond the scope of this study. 

7.1. Data requirements 

The TOPKAPI model requires two kinds of input data, namely static (or very slowly 

varying) and dynamic. The static data required are terrain data (from a digital elevation 

model (DEM) of the catchment), soil data and vegetation cover or landuse data. The 

dynamic data required are estimates of measured and/or calculated evapotranspiration 

and precipitation. 
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In terms of the static parameters, there are seven classes of input parameters that are 

required by the model in each grid cell, namely: 

• L (the thickness of the surface soil layer, in m), 

• ks (the saturated hydraulic conductivity of this layer in ms"1), 

• 6r (the residual moisture content of the soil), 

• 9S (the saturated moisture content of the soil), 

• as (the pore-size distribution exponent for the transmissivity of the soil, which is 

taken as constant for all the cells in a catchment), and 

• n0 and nc (which are the surface and channel roughness coefficients 

respectively (in rrf1/3s~1) according to Manning's Equation). 

The first five classes of parameters relate to the soil and are responsible for the 

production of runoff. These parameters are obtainable from literature as a function of 

the soil type. The type of soil present in each cell is identified from a soils map of the 

catchment. The last two classes of parameters are responsible for the routing of runoff, 

over the hillslopes and in the channel respectively. These are also obtainable from 

literature as a function of the landuse or landcover properties of the cell, which is 

identified from a landuse map of the catchment. 

The DEM application in the model consists of describing the topographic and 

geomorphologic elements of the catchment, in terms of calculating the surface slopes, 

areas drained, identifying the flow pathways and detecting the drainage networks. The 

primary source of this data and the methods of manipulation and analyses are through 

GIS techniques, which are described in detail in the subsections that follow. Since each 

pixel of a DEM forms the primary unit of the processing cells in the TOPKAPI model, it 

was decided to model the hydrologic processes of the Liebenbergsvlei catchment at 

the 1km spatial scale. It was shown in Chapter 6 that the distributed operations of the 

TOPKAPI model are still physically valid up to a grid cell size of 1km square (Martina, 

2004: 76). Thus, it was decided to standardise on this modelling resolution as the 

various static input data are easily and freely available at this scale and, more 

importantly, distributed rainfall input (remotely sensed from radar) is only available at 

this accuracy in South Africa. However, it was found that a DEM resolution at this scale 

was too coarse to accurately identify the flow pathways and detect the drainage 

networks of the Liebenbergsvlei catchment and so it was necessary to resample a finer 

resolution DEM up to the desired scale (1km square). This, and other manipulation 

techniques that were necessary, are expanded on in more detail in the subsections that 
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follow. However, these explanations are preceded by a description of the test 

catchment that was the focus of this study, i.e. the Liebenbergsvlei catchment. 

7.1.1. The Liebenbergsvlei catchment 

The Liebenbergsvlei catchment is a sub-catchment of the Vaal drainage basin and is 

situated near Bethleham in the Free State Province. The area of the catchment is 

approximately 4625km2 and consists predominantly of dry cropland and grassland. The 

location of the catchment, in relation to South Africa, is shown below in Fig. 7-1 

together with its quaternary sub-catchment divisions and river network (from Midgley et 

al., 1994), which are shown at a spatial detail of 1:250 000. The locations of the 45 

telemetering raingauges and the 9 flowgauges that are found in the catchment are also 

shown as well as the location of MRL5 S-Band weather radar that covers the 

catchment. These instruments provide temporally and spatially detailed hydrologic data 

necessary to implement a distributed catchment model such as the TOPKAPI. 

Topographic data for the Liebenbergsvlei catchment, in terms of the DEM, was sourced 

from HYDROIk (1996) and DLSI (1996) for pixel resolutions of 1km and 218m square 

respectively. The 1km square DEM is shown below in Fig. 7-2, where this resource is 

derived from the geographic database of the United States Geological Survey (USGS) 

'30 arc-second digital elevation model of the world. This DEM is freely available from 

the USGS website (http://edcdaac.usqs.qov/qtopo30/hydro) for all the continents of the 

world at the 1km spatial resolution and includes other topographically derived data 

sets, such as stream networks and drainage basins which have been hydrologically 

processed for errors. 

It was the aim of this research to model the Liebenbergsvlei catchment at the 1km 

spatial resolution and as such it was initially intended to use the HYDROIk (1996) 

DEM for this purpose. However, the resolution of this DEM proved to be too coarse in 

terms of accurately tracing the catchment boundaries and the stream networks, as 

explained in Section 7.1.2. This was determined by comparing the stream network 

delineated from the 1km DEM with that digitised from topographic maps (from Midgley 

et al., 1994). The latter information was captured at a spatial detail of 1:250 000 and is 

shown in Fig. 7-1. Thus a finer resolution DEM was sought (DLSI, 1996) and the 

topographic analysis of the Liebenbergsvlei catchment that proceeded was based on 

this DEM. In order to maintain the chosen modelling scale of 1km square, the pixel 

resolution of this latter resource was "resampled" to the desired scale. This will be 
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made clearer in Section 7.1.2. The soils type and landuse information was obtained 

from GLCC (1997) and SIRI (1987) respectively. The processing of these data is 

covered in Section 7.1.3 and 7.1.4 respectively. 

Figure 7-1. The Liebenbergsvlei catchment in South Africa showing the eight 
quaternary sub-catchments and the river network, which is shown at a spatial 
detail of 1:250 000 (Midgley et al.,1994). Also shown are the locations of the 45 
telemetering raingauges, 9 flowgauges and the S-Band MRL5 weather radar. 
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Figure 7-2. A DEM of Africa, South Africa and the Liebenbergsvlei catchment at a grid 
resolution of 1km square from the geographic database of the United States 
Geological Survey (HYDROIk, 1996). 

7.1.2. Digital Elevation Model (DEM) 

(a) Background 

A DEM is a raster-based description of a continuous surface and represents a grid of 

elevation heights, in cells or pixel format, above some datum (such as sea level). The 

accuracy of the DEM is highly dependent on the resolution of the grid cells, where a 
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coarser resolution DEM is more prone to contain errors and is not able to accurately 

represent surface features and permit the detection of flow pathways. 

A common problem in DEM's is the occurrence of sinks. A sink, also referred to as a 

depression or pit, is a cell or area that is surrounded on all sides by higher elevation 

values. As such, a sink is an area of internal drainage and prevents the downslope 

routing of water and, unless it is an actual case such as a lake or swamp, it is an error. 

By contrast, a peak is a cell or area surrounded by lower elevation values and drains 

water away from it. Peaks are sometimes erroneous, but are more likely to be natural 

features. However, it is vary rare that sinks are natural features and are more likely to 

be errors in the DEM (Mark, 1988). These errors often arise due to the sampling 

techniques used in processing a DEM or due to the rounding off of elevation values to 

integers. 

In order to create an accurate representation of the flow direction, it is best to use a 

DEM that is free of sinks, or a depressionless DEM. To create such a DEM from an 

existing DEM, the sinks need to be filled. This is an iterative process, since the filling of 

a sink cell or area may create a new sink at the boundary of the filled cell, which in turn 

needs to be filled. A sink is filled to its outflow point, which is the minimum fill elevation 

required in order for water to flow out of the cell into a neighbouring cell. This can be 

achieved using the GIS software package, ARCGIS™. 

Once a depressionless DEM is created the next step in the delineation of the stream 

network is the determination of the outflow direction of each cell, i.e. the direction of the 

steepest outflow path from an active cell to the neighbouring downstream cells. A 

common algorithm used for this purpose is the D8 flow model of O'Callaghan and Mark 

(1984). This method assigns the outflow from an active cell into its neighbour along one 

of the eight possible paths to which it could flow, i.e. the four cardinal paths and the 

four diagonal paths. This outflow path is defined as the path of steepest slope. Fig. 7-3 

shows how this method works as applied in the ARCGIS™ environment. Given a DEM 

(on the top left of Fig. 7-3), a drainage direction code is assigned to each cell (shown 

on the top right of Fig. 7-3) based on the direction codes which are shown in the bottom 

panel. This code depends on the direction of maximum slope, which is calculated as 

the maximum difference in elevation divided by the horizontal distance from the centre 

of the active cell to the centres of the eight surrounding cells. If the maximum slopes to 

several cells are the same, then the neighbourhood around the active cell is enlarged 

until the direction of steepest slope is found. Fig. 7-4 shows the flow direction raster 
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computed on ARCGIS™ for the Liebenbergsvlei catchment based on the 218m square 

resolution DEM (DLSI, 1996); from here on this DEM will be referred to as the 200m 

DEM. 
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Figure 7-3. The D8 flow model of O'Callaghan and Mark (1984) as applied in 
ARCGIS™. 
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Figure 7-4. A flow direction raster showing the direction code of each cell determined 
using ARCGIS™ for a 200m square resolution DEM of the Liebenbergsvlei 
catchment. 
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The next step in the delineation of stream networks is to determine the number of 

upslope cells that contribute flow into each cell, i.e. the flow (in terms of contributing 

cells) accumulated in each cell. This is also achieved on ARCGIS™ with a standard 

tool. Fig. 7-5 shows the flow accumulation raster for the Liebenbergsvlei catchment. 

The colour palette indicates, for each cell, the number of upslope cells that feed it. The 

main trunk of the stream network is easily visible from this image. 

Flow Accumulation 

A 
N 

Legend 
(no. of cells) 

Ugh:95777 

Figure 7-5. A flow accumulation raster showing the number of upslope cells flowing 
into each cell determined using ARCGIS™ for the Liebenbergsvlei catchment. 

The final step in delineating the stream network from a DEM is to assign a threshold 

value to the flow accumulation raster, for the minimum number of upslope cells that are 

required to initiate a channel in an active cell. The determination of this threshold value 

depends on, according to Tarboton et al. (1991), climate, slope and soil characteristics. 

Tarboton et al. present procedures in order to "rationally select the scale at which to 

extract channel networks" which correspond to networks obtained through more 

traditional methods, such as from topographic maps or fieldwork. Fig. 7-6 shows a 

comparison between the stream network delineated from the 200m DEM in the manner 

described above (shown on the left of Fig. 7-6) and a stream network digitised from a 

topographic map of the catchment (shown on the right of Fig. 7-6) at a spatial scale of 

1:250 000 (from Midgley et al., 1990). The threshold value chosen was 500 pixels, 
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which corresponds to an area of approximately 20km2 for a pixel size of 200m square. 

The comparison shows good correspondence between the two sources of networks. 

Figure 7-6. A comparison between a stream network delineated for the 
Liebenbergsvlei catchment from a DEM, using a threshold value of 500 cells 
and a stream network digitised from a topographic map (at a spatial scale of 
1:250 000 from Midgley et al. (1990)) . The DEM delineated network shown on 
the left, although appearing disjointed in the image, is continuous in reality. 

Further topographic data can be computed on ARCGIS™ which are required by 

TOPKAPI as input. Data such as the stream orders of the delineated stream network 

and the surface slopes of each pixel are required. These rasters can be computed 

easily using inbuilt functions on ARCGIS™. The computation of these rasters will not 

be explained here since they are standard procedures using the GIS software. The 

stream order and surface slope rasters are shown and their use explained in the 

relevant Subsection (b) that follows. This section describes the effort that was 

undertaken in order to obtain TOPKAPI specific input from the DEM of the 

Liebenbergsvlei catchment. 
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(b) DEM application in the TOPKAPI Model 

As mentioned in Section 7.1.1, it was required to model the Liebenbergsvlei catchment 

using a 1km grid cell resolution. To accurately achieve this, the 218m square pixels of 

the 200m DEM were transformed to 1000m (1km) square pixels. This was achieved 

using an inbuilt function on ARCGIS™ called "resample". The result of this is shown in 

Fig. 7-7 (on the right). The 1000m resampled DEM shown in Fig. 7-7 (from here on 

referred to as the 1km DEM) has been processed for sinks. The "resample" function 

has the option of three interpolation techniques, i.e. nearest neighbour assignment, 

bilinear interpolation and cubic convolution. Nearest neighbour assignment uses the 

closest value from the cell on the input raster to assign to the new "resampled" cell on 

the output raster. It is appropriate for categorical data, such as landuse rasters. For 

continuous data, such as elevation rasters, the bilinear interpolation and cubic 

convolution techniques are preferred as they make use of a greater number of nearby 

cells (four and sixteen respectively) to compute the value of the new transformed cell. 

These techniques (bilinear and cubic) make use of a weighted average, based on 

distance from the centres of the input cells to the centre of the output cell, to compute 

the new "resampled" value. In this instance, the bilinear interpolation function was used 

to resample the 200m DEM into a 1km DEM as it was found that the cubic convolution 

method often gives values outside of the input range. The height range of the new 

resampled 1km DEM can be seen to be less than the height range of the original 200m 

DEM (in terms of maximum elevation). This is an output result of the resampling 

function, but, as will be seen further on, it does not affect the delineation of the 

catchment boundaries and stream networks. 
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Figure 7-7. A 218m square pixel resolution DEM of the Liebenbergsvlei catchment is 
shown on the right (from DLSI, 1996). The pixels of this DEM were "resampled", 
using an inbuilt function on ARCGIS™, to a resolution of 1000m square (shown 
on the left). 

Once the 1km DEM was obtained, the topographical processes described in 

Subsection (a) above were performed in order to obtain the desired input for the 

TOPKAPI model. These included the surface slope raster, the determination of the 

outflow direction of each cell and the computation of the stream networks and stream 

orders. These rasters are shown and explained in the following relevant subsections. 

However, the determination of the outflow direction of each cell required additional 

manipulation techniques outside the scope of the capabilities of ARCGIS™. This was 

in regard to a specific requirement of the TOPKAPI model which was that the outflow 

path from each cell was to be limited to either a north, south, east or west direction. 

Thus the D8 flow model of ARCGIS™ was not suitable for the determination of the flow 

direction raster for input into the model. Therefore, additional manipulation was 

required with regard to this aspect of the research and is detailed below in the 

Subsection (/). 
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(i) Flow direction and flow accumulation 

As defined above, a flow direction raster computes the direction of flow from each cell 

in the catchment. This is an important part of catchment modelling as it determines the 

connectivity between cells and is the first step in tracing the stream network whose 

authenticity is essential On the ARCGIS™ platform, the flow directions of each cell are 

determined based on the D8 method, i.e. flow is assigned in any one of eight directions 

from an active cell, as explained earlier. The TOPKAPI model operates on the four 

cardinal directions only, in such a manner that an active cell may receive flow from up 

to three upstream cells and may only have one outflow direction to a downstream cell. 

Since the flow direction function on ARCGIS™ operates on the D8 method, it was 

necessary to create a "D4" flow direction function which would be compatible with the 

TOPKAPI's requirements. 

It was decided that the simplest manner in which to accomplish a D4 flow direction 

raster was to resolve the four diagonal directions of a D8 flow direction raster into the 

four cardinal directions. This is shown in Fig. 7-8, where the four diagonal direction 

codes (i.e. 128, 2, 8 and 32) are resolved into direction codes 1, 4, 16 and 64 

respectively; those cells that had direction codes reflecting the four cardinal directions 

from the original D8 raster were left unchanged. The D8 flow direction raster for the 

Liebenbergsvlei catchment was produced using the GIS software ARCGIS™. In order 

to resolve a diagonal direction into either a north/south or an east/west direction, three 

methods were tested. The first was to resolve the diagonal direction code toward that 

neighbouring vertical or horizontal direction that had the lowest elevation (based on a 

DEM), and hence toward that neighbouring direction of steepest slope. The second 

option was to arbitrarily resolve the diagonal directions in a clockwise manner. 

Referring to Fig. 7-8 for example, direction code 128 would be resolved clockwise to 

direction code 1; direction code 2 would be resolved to direction code 4, and the rest of 

the codes would be resolved in this manner. The third option that was tested was to 

resolve the direction codes in an anti-clockwise manner in a similar manner to the 

second option. The resolving processes were accomplished through M-File 

Programming Functions that were written on MATLAB™. These codes are included in 

Appendix C. 
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Figure 7-8. The D8 flow direction raster codes resolved into a D4 flow direction raster. 

The results of all three tests had similar outcomes, in terms of the flow accumulation 

rasters that were produced from the flow direction rasters (determined using the three 

different methods explained). An example of the D4 flow direction raster of the 

Liebenbergsvlei catchment, output from the first test of this exercise (i.e. assigning the 

diagonal direction code toward that neighbouring vertical or horizontal direction that 

had the lowest elevation), is shown on the left of Fig. 7-9. Intuitively, the resolving of 

the direction codes based on lowest elevation makes more sense than resolving the 

codes arbitrarily in one direction. However, it is interesting to note that the different 

methods used displayed no apparent skill over the other. Thus, based on theoretical 

reasoning, it was decided to use the "steepest neighbour" method in the computation of 

the flow accumulation raster. The resultant flow accumulation raster, from the new D4 

flow direction raster, is shown on the right of Fig. 7-9. 

It is evident from Fig 7-9 that the flow accumulation raster is not continuous and hence 

does not accurately reflect the flow paths and stream networks. Secondly, the total 

number of pixels, at a resolution of 1km square, that cover the Liebenbergsvlei 

catchment are 4625. This number should be reflected in the accumulation raster's 

legend at the catchment outlet since all cells of the catchment should contribute flow at 

this point. The number of cells shown on the right of Fig. 7-9 is 1947 which indicate that 

all cells of the catchment are not contributing flow at the outlet. These points show that 

the process of resolving the D8 direction codes into the four cardinal direction codes 

had created areas of internal drainage within the catchment. These areas of internal 

drainage are sinks created artificially as a result of limiting the outflow drainage 

directions to four. This did not occur in the D8 flow direction model of this catchment 

since all sinks were previously filled based on the eight surrounding cells. This situation 

is visually explained in Fig. 7-10, where the sinks were created as a result of 
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anomalous positions of direction codes (based on the D4 method) that cause flow 

towards each other. 

Figure 7-9. On the left is shown a D4 flow direction output as a result of resolving a D8 
direction raster of the Liebenbergsvlei catchment into the four cardinal 
directions only. The legend of the direction raster show the four cardinal 
direction codes as well as an error code (-100 000) to mark those cells whose 
resolved directions flowed out of the catchment. On the right is shown the 
resulting flow accumulation raster based on the D4 method. 

4 

64 

Figure 7-10. Anomalous positions for direction codes that resulted from the resolving 
of a D8 flow direction raster into a D4 raster. These pixels created areas of 
internal drainage within the catchment. 

In order to solve this problem, further code was written on MATLAB™ to identify the 

"problem" pixels shown in Fig. 7-10 as well as those pixels along the catchment 

boundary that flowed outwards. This code is also included in Appendix C. A "catchment 

-111 -



CHAPTER 7: The application of the TOPKAPl model 

mask", which displayed the problem pixels, was then created on Microsoft Excel™ by 

importing the code's output. The direction codes of the problem pixels were then easily 

rectified (by hand) based on this masking technique. The number of instances that 

required rectification was: 12 pixels that flowed outwards, 13 cases of pixels flowing 

toward each other in a north/south direction and 14 cases of pixels flowing toward each 

other in an east/west direction. The result of this can be seen in Fig. 7-11, where the 

flow accumulation raster is shown on the left, after manual checking of the direction 

codes was performed (in the manner explained above). The accumulation raster is 

overlain on the right of Fig. 7-11 with the stream network traced from a topographic 

map (from Midgley et al., 1994) at spatial scale of 1:250 000. 

The results shown in Fig. 7-11 summarise, visually, that the processes explained 

above are able to trace the correct flow paths of the catchment based on a D4 method, 

which is a requirement of the TOPKAPl model. Secondly, the number of pixels that 

contribute flow to the catchment outlet is shown in the legend of Fig. 7-11 as 4625. This 

number is in agreement with the number of pixels contained in the Liebenbergsvlei 

catchment at a resolution of 1km square. It is envisaged that through more skilled 

programming techniques, the entire process of resolving a D8 flow direction raster to a 

D4 raster could easily be achieved in one script. This code has not been written in this 

study. 

Figure 7-11. The "corrected" flow accumulation raster is shown on the left which is 
overlain on the right with a stream network (in red) traced from a topographic 
map (from Midgley et al., 1994) at a spatial scale of 1:250 000. 
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(ii) Stream networks 

The delineation of a catchment's stream network is important in catchment modelling 

as it determines which cells contain a channel and which do not. The pixels or grid cells 

of the catchment would then be modelled accordingly. In the TOPKAPI model, the 

surface flow of a cell that does not consist of a channel will be modelled with an 

overland store only. For a cell that does contain a channel, the surface flow will be 

modelled with both an overland store and a channel store and the flow within that cell 

would be partitioned between the two stores respectively (in the manner explained in 

Chapter 6). 

The stream network delineation is made from the flow accumulation raster by assigning 

a threshold value to define the minimum number of upslope cells (or area) which are 

required to initiate a channel. Fig. 7-12 shows the difference when stream networks 

were delineated using five different threshold values, i.e. 5, 10, 25, 50 and 65 pixels. 

Since the pixel resolution of the flow accumulation raster used was 1km2 (from Fig. 7-

11), these threshold values are equivalent to areas of 5, 10, 25, 50 and 65km2 

respectively. The drainage densities of the extracted networks are shown in Table 7-1; 

drainage density (in km"1) is defined as the ratio of total stream length to total 

catchment area. Since the drainage direction of the flow accumulation raster is based 

on a D4 method, the total length of the stream network drained is equal to the number 

of channel pixels (based on the raster's resolution of 1km2). This can be understood 

from the fact that the north/south or east/west distance across a cell is 1km given a 

raster resolution of 1km2. This is shown in the third column in Table 7-1. The drainage 

density (column 4 in Table 7-1) is computed by dividing the total length of the stream 

network by the total catchment area, which is 4625 km2 (from 4625 pixels in Fig. 7-11). 

Table 7-1. The drainage densities of the extracted stream networks shown in Fig. 7-12. 

Stream net. 5 

Stream net. 10 

Stream net. 25 

Stream net. 50 

Stream net. 65 

Threshold 

Area (km2) 

5 

10 

25 

50 

65 

No. of channel Pixels 

(also total stream 

length in km) 

1369 

1061 

712 

539 

455 

Drainage 

Density (km1) 

0.296 

0.229 

0.154 

0.117 

0.0984 
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Threshold area 5km square Threshold area 10km square Threshold area 25km square 

Figure 7-12. The stream networks delineated utilizing five different threshold areas, i.e. 
5, 10, 25, 50 and 65km square, on ARCGIS™. The superimposition of the 
1:250 000 network (from Midgley et al., 1994) on the 65km square network is 
shown on the bottom right. 

Tarboton et al. (1991) state that in "extracting channel networks from digital elevation 

models, it is important that the networks extracted be close to what traditional workers 

using maps or fieldwork would regard as channel networks". In their paper, Tarboton et 

al. present a rigorous method for the extraction of stream networks. They base their 

methods on the morphometric scaling properties of stream networks as discovered by 

Horton (1932, 1945), Strahler (1952, 1964) and others since. In particular, they make 
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use of two properties, the constant drop property and the power law scaling property of 

slope with area, and suggest that the smallest threshold area that should be used be 

that area for which these scaling properties are still valid. 

From the literature on the TOPKAPI model, it is not clear on how a threshold value is 

chosen. Therefore, in order to simplify matters, the network extracted using a threshold 

area of 25km2 was arbitrarily taken as representative of the catchment's actual 

network. According to Todini (2005), stream networks in reality only form about 10% to 

15% of the catchments' area and that the level of accuracy for this detail is not critical 

in the TOPKAPI model. The use of a 25km2 threshold area gives a drainage density of 

approximately 15%. This is shown in Fig. 7-12. 

A further topographically derived input of the TOPKAPI model is the order of the stream 

network ordered according to the method of Strahler (1964). The Strahler basin order is 

defined in Fig. 3-5 in Section 3.2.3 and also in Pegram and Parak (2004) attached in 

Appendix A. This input, the Strahler basin order, is required to facilitate the estimation 

of a Manning's channel roughness coefficient nc for channel stores of the model. 

Values of nc should firstly be estimated from a priori knowledge (through fieldwork) of 

the channel reaches in the catchment, using literature such as Chow (1959) or Barnes 

(1967) for its estimation. If this is not known, the roughness coefficient of the channel 

reaches in each pixel can be estimated based on the channel order assigned to each 

reach using the ordering method of Strahler (1964). In Liu and Todini (2002), channel 

orders of 1, 2, 3 and 4 were assigned nc values of 0.045, 0.040, 0.035 and 0.035 m"1/3s 

respectively for the Upper Reno catchment in Italy. A stream order raster can be 

computed from the delineated stream network using ARCGIS™. Fig. 7-13 shows the 

stream orders of the Liebenbergsvlei catchment extracted using a threshold area of 

25km2. 
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Figure 7-13. The stream orders, ordered according to the method of Strahler (1964), 
based on a stream network extracted using a threshold area of 25km2 on 
ARCGIS™. 

(iii) Surface slopes 

A surface slope raster was computed by means of an inbuilt tool on ARCGIS™ using 

the 1km DEM as input. The output of this function gives the surface slopes of each cell, 

in degrees or as percentages. The surface slope raster for the Liebenbergsvlei 

catchment is shown below in Fig. 7-14 where the slopes are shown in degrees and the 

resolution of the raster is 1km square. 
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Surface Slopes 
(degrees) 

Legend 

B B 0 0562 
j ^ B 0 562.0 064 
• I 0 964-1.49 

K I 19 2 09 
I I 2 09 - 2 93 
• H 2 93 - 3 94 
• H 3 94 - 5 22 
• • 5 22-7.11 
• • 7 11- 10 20 

Figure 7-14. A surface slope raster (in degrees) is shown computed from the 1km 
DEM on ARCGIS™. The resolution of the raster is 1km square. 

7.1.3. Soils map 

Fig. 7-15 shows a vector-based soils map of South Africa (actually a landtype map with 

related soils properties) obtained from SIRI (1987). The different soils attributes of the 

map are represented by the different polygons, where the accuracy of the map (scale 

of detail) is 2,5km. In order for this map to be of use in this study, it was necessary to 

be able to identify the soil properties of each pixel. In order to accomplish this, the 

vector-based soils map of South Africa was converted into raster form using a feature 

on ARCGIS™, called "Feature to Raster". A cell size of 1km square was specified so 

that the raster-based soils map would be compatible with the other input rasters. It is 

important to note that although the raster now has a resolution of 1km square, its 

accuracy is still at the scale at which it was mapped, i.e. 2.5km. A mask of the 

Liebenbergsvlei catchment was then used to clip the raster-based soils map for the 

area of interest. These are shown in Fig. 7-15. 
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Figure 7-15. A vector-based soils map from SIRI (1987) was converted into a raster 
with a pixel resolution of 1km square from which the raster-based soils map of 
the Liebenbergsvlei catchment was clipped. The legend distinguishes soils 
groups of which the properties are given in Table 7-2. 

The legend of the soils map for the Liebenbergsvlei catchment identifies and displays a 

particular code which has related soil properties, rather than actually identifying the soil 

type. The related soil properties are tabulated in Table 7-2 and correspond to the codes 

shown in the legend. The soil properties given there are inter alia, for both an upper 

top soil layer and a lower sub-soil layer, depth of layer, wilting point, field capacity, 

porosity and the saturated drainage rates. 
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Table 7-2. The related soil properties of the landtype map (SIRI, 1987) of the 
Liebenbergsvlei catchment (see Fig. 7-15). 
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The inputs required by the TOPKAPI model with regard to the soil store are the depth 

of the surface soil layer, saturated hydraulic conductivity, the saturated moisture 

content and the residual moisture content. Although the soils' parameters related to the 

map do not explicitly give the latter three input parameters required by the model, these 

may be inferred from the information given. Ideally, a soil types map would be able to 

identify the particular soil that is found in each pixel. Based on this identification, 

characteristic soils properties may be found from literature. However, the map used in 

this research is a landtype map (as already mentioned) with related soil properties. It is 

included in this dissertation as it was the only map available at no cost, and for 

informative purposes. However, it is felt that a map which identifies the soil type of 

each pixel might be better suited for the application of the model. 

7.1.4. Landuse map 

Landuse parameters are required so that Manning's roughness coefficients may be 

inferred for the hillslope surfaces of a catchment. Fig. 7-16 shows a raster-based image 

of the landuse for each pixel of the continent of Africa at a resolution of 1km square 

(GLCC, 1997), from which a map of the Liebenbergsvlei catchment may be masked. 

This database is one part of a suite of global land cover characteristics (at a resolution 

of 1km) for all the continents of the world which are freely downloadable from the 

United States Geological Survey (USGS) website (http://edcdaac.usqs.gov/qlcc). The 

coverage characteristics represent averages thereby giving flexibility with regard to 

seasonal changes in land use. 

The legend of the map identifies the landuse type of each pixel, which in turn can be 

used to infer Manning's roughness coefficient for the hillslopes of a catchment using 

literature such as Chow (1959: 108). This input is required for the overland store of the 

TOPKAPI model. The landuse map for the Liebenbergsvlei catchments shows that the 

catchment's landuse consists predominantly of cropland and grassland. From Chow 

(1959: 108), typical values of n0 (the surface roughness coefficient) for this coverage 

type range from 0.020 to 0.050m"1/3s. 
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Figure 7-16. A landuse map of Africa, South Africa and the Liebenbergsvlei catchment, 
all at a pixel resolution of 1km square (GLCC, 1997). 

7.1.5. Rainfall input 

The TOPKAPI model requires distributed rainfall information in real-time for flood-

forecasting purposes. The use of remote sensing techniques, such as satellite and 

radar estimates of distributed precipitation information, is ideal for this application since 

they provide precipitation estimates in fine spatial detail over a large area and the pixel 

format of these precipitation estimates is well-matched with the processing grid cells of 

the model. However there are errors associated with remotely sensed precipitation 

information and as such raingauge estimates are used, in combination with the satellite 

and radar estimates, to condition a "best" merged estimate of real-time distributed 

precipitation. An example of such a combination technique employed locally is the 

SIMAR (Spatial Interpolation and Mapping of Rainfall) project which was jointly 
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undertaken between the South African Weather Service (SAWS) and the University of 

KwaZulu-Natal (UKZN) under a contract with the Water Research Commission (WRC) 

(Pegram, 2004). The merging process will not be covered here, but as a point of 

example, the attainment of real-time distributed radar estimates of rainfall for input into 

the model will be explained below (using rainfield data from the S-Band MRL5 weather 

radar covering the Liebenbergsvlei catchment). 

Fig. 7-17 shows an instantaneous volume scan of radar reflectivity (dBz) at 2km 

altitude above ground level (a.g.l.), from which the rainfall for the Liebenbergsvlei 

catchment has been clipped out. The resolution of the rainfall estimate is 1km2. In order 

for these images to be used as input for the TOPKAPI model, it is worth knowing the 

rainfall at ground level that occurs over a finite time step (for example an hour). In order 

to accomplish this, the radar images are kriged down to ground level from all 18 levels 

a.g.l. (at 1km vertical spacing) and accumulated over an hour (Pegram et al., 2005). 

Furthermore, the reflectivity values (in dBz) are converted into rainfall intensities (in 

mm.hr"1) using the Marshall Palmer formula (Marshall and Palmer, 1948). The format of 

these rainfall estimates make it possible to input the rainfall intensities incident on each 

grid cell in each time step when modelling each pixel. 
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Figure 7-17. An instantaneous volume scan of radar reflectivity (dBz) at 2km altitude 
above ground level (a.g.l.), from which the rainfall for the Liebenbergsvlei 
catchment has been clipped out. The resolution of the images is 1km square. 

The volume scan from the radar comprises a 200 by 200 matrix at a resolution of 1km 

square, where the image origin is located at the radar centre (in Cartesian 

coordinates). In order for the rainfall image to be correctly aligned with the 

Liebenbergsvlei catchment on ARCGIS™, which take its origins at the lower left corner, 

the radar image was given a new origin at the lower left corner by shifting it up and to 

the right by a distance equal to the radius of the image, i.e. 100km (100 000m in 

Cartesian coordinates). The rainfall estimate for the Liebenbergsvlei catchment could 

then be clipped out using a mask of the catchment. 
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7.1.6. Data alignment 

In any work that involves geographically referenced data, it is important that the 

coordinate systems used are the same, especially when one uses data from different 

sources. Furthermore, it is important that the cells of the data are correctly aligned so 

that the input data match the correct cell which is being modelled. All GIS work carried 

out in this research made use of the ARCGIS™ software. A brief explanation of how 

the data was managed and aligned follows. 

Firstly, the combination of data from different sources involved the determination of the 

geographic coordinate system on which they were based. Secondly, it was necessary 

to establish whether the data was projected or not. A geographic coordinate system 

(GCS) uses a three-dimensional spherical surface to define locations on the earth. 

Points on a GCS are referenced by their longitude (which run north - south) and 

latitude (which run east - west around the earth) and are measured in degrees from the 

earth's centre. A projected coordinate system is defined on a flat two-dimensional 

surface where locations are identified by x-y coordinates on a grid. A projected 

coordinate system is always based on a GCS which has been converted (projected) 

using some method. The GCS adopted for mapping in South Africa at present is the 

WGS84 global ellipsoid while the projection system used (to cover a limited area of 2° 

longitude) is a Transverse Mercator Map. Fig. 7-18 below shows a screen capture of 

the geographic and projected coordinate system details, from ARCGIS™, which has 

been used uniformly in this research to represent all data covering the extent of the 

Liebenbergsvlei catchment. 
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Geographic Coordinate System Properties 
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Name: 
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New.. 

Modify. 

OK Cancel Apply 

Figure 7-18. A screen capture of the geographic and projected coordinate system 
details, from ARCGIS™, which has been used uniformly in this research to 
represent all data covering the extent of the Liebenbergsvlei catchment. 

Furthermore, in order to align the data "pixel to pixel", a mask of the Liebenbergsvlei 

catchment representing a matrix of 62 columns and 121 rows at a resolution of 1km 

square was used to clip and extract all data. The mask was created from the DEM of 

the catchment and ensures that the clipped data, provided it is at the same resolution, 

has the same number of columns and rows and is originated at the same point (the 

lower left corner in ARCGIS™). Fig. 7-19 below shows a screen capture of all the 

required input data in text-format. These data can be displayed in ARCGIS™ in raster-

format, but are needed in text-format for input into a code to run the TOPKAPI model. It 

can be seen from Fig. 7-19 that all the data have the same origin, number of columns 

and rows and the same cell size, all of which would ensure "pixel to pixel" alignment. 
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D rainfalUxt - WordPad . CI X ti soite.txt WordPad . C! X 0 stream_network.brt WmdPad - CI X 

Do?y # & M B % DtfH # a ft B % 
nco l s 62 A n c o l s 62 
nrows 121 
x l l c o r n e r -239595.41161281 
y l l c o r n e r -3158065.5722693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -: 

< > 
For Help, press Fl N 

nrows 121 
x l l c o r n e r -288595.47161281 
y l l c o r n e r -3158065.5722693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -! 

< k 
For Help, press Fl N 

Qe?H I B M B % 
n c o l s 62 
nrows 121 
x l l c o r n e r -288595.47161281 
y l l c o r n e r -3158065.5722693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -! 

< > 
For Help, press Fl 

D slopes.txt - WordPad - D X D landtisa.txt • WordPad . C X D ftow_accumulation.ia • WnrdPad 

DaSH i B i M B % 
n c o l s 62 
nrows 121 
x l l c o r n e r -2BB595.47161281 
y l l c o r n e r -3158065.S722693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 - ' 

i< > 
For Help, press Fl N 

Si 

DiSH aQk M B % 
nco l s 62 
nrows 121 
x l l c o r n e r -288595.47161261 
y l l c o r n e r -3158065.5722 693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -! 

< > 
F<* 

dPad - n X 0 

DaPH S Q L M B " % 
n c o l s 62 
nrows 121 
x l l c o r n e r -288595.47161281 
y l l c o r n e r -3158065.5722693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -• 

A > 
^ W j c l l c k here to hBrin ^ ^ ^ ^ ^ ^ ^ ^ ^ " > 

Hdp, press Fl N 

stream orders.txt WordPad . D 

N 

3 X 

0 &H i a M B % 
n c o l s 62 
nro»s 121 
x l l c o r n e r -288595.47161281 
y l l c o r n e r -3158065.5722693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -! 

< > 
For HehDj press Fl 

X D ftow_direction.txt WordPad 

DafH © a H B % 
n c o l s 62 

I nrows 121 
x l l c o r n e r -288595.47161281 
y l l c o r n e r -3156065.5722 693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -! 

< k 

For Help, press Fl N 

N 

Ci X 

Q a? B # a M B % 
n c o l s 62 
nrous 121 
x l l c o r n e r -238595.47161281 
y l l c o r n e r -3158065.5722 693 
c e l l s i z e 1000 
NODATA va lue -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -! 

V finnn nni-jn n n n n nnnn nnnn rxrinn • 

< > 
For Help, press Fl N 

Figure 7-19. A screen capture of the headings of the files of all the input data, in text-
format, which describe the properties of each pixel of the Liebenbergsvlei 
catchment, which is required by the TOPKAPI model. These data can be 
displayed in ARCGIS™ in raster-format. The figure shows that all the data 
consist of 62 columns, 121 rows, are aligned at the lower left corner in a 
projected coordinate system (see Fig. 7-18) and are at a cell size resolution of 
1000m square. 

7.2. Test application 

The test application of the TOPKAPI model consisted of creating a four-cell generic 

catchment, together with establishing the intricate intra- and inter-cell operations. This 

test was simply created on a standard spreadsheet package using Microsoft Excel™. 

The purpose of this small-scale application of the TOPKAPI model was to test our 

understanding of the model and form the basis for modelling an entire catchment using 

a higher level of programming language such as C++. This latter task is not 

accomplished in this research and is left for completion in a follow up study. Instead, 

the aim of this research was to lay the groundwork in preparation for the establishment 
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of the TOPKAPI model as a fully-functioning real-time rainfall-runoff application for 

flood-forecasting purposes in the Liebenbergsvlei catchment and others. 

The four cell generic catchment was imagined as follows: Cell 1 flows into Cell 2, which 

in turn flows into Cell 3, which in turn flows into Cell 4. Channel flow was only initiated 

in Cell 2 and thus Cells 3 and 4 had channel flow as well. In order to create the intra-

and inter-cell operations of the test catchment, it was necessary to model the three 

fundamental components of the TOPKAPI model in each cell, i.e. the soil, overland and 

channel (except for Cell 1) stores respectively. The model was then run based on 

pulsed precipitation inputs (in each time step) and a simple continuity check was used 

to verify the operations of the test catchment. An explanation of how this was 

accomplished is detailed in the sub-sections that follow. 

7.2.1. Input parameters 

The initial values for the input parameters were arbitrarily chosen but were kept within 

the range of expected values for the given variables, which were suggested by Liu and 

Todini (2002). The initial chosen parameters for each cell, together with their suggested 

range (shown in parentheses in the second column) are given below in Table 7-3. The 

parameters that would remain unchanged for all the cells of a catchment are the 

horizontal dimensions of the grid cell, taken as 1000m, the time step, taken as 1 hour 

(3600s), the non-linear exponents a, which was taken as 3 for the soil stores and % 

(from Manning's formula) for the overland and channel stores respectively, and the 

parameters related to the computation of the channel width (from Eq. 6-24 in 

Chapter 6). 
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Table 7-3. Input parameters chosen for the "four cell generic catchment" for the test 
application of the TOPKAPI model on Microsoft Excel™. The suggested range 
of the parameters (in Liu and Todini, 2002) is given in parentheses in the 
second column. 

Parameters 
Cell 

1 

Cell 

2 

Cell 

3 

Cell 

4 

Soil Store 

Depth of surface soil layer (m) 

Saturated hydraulic conductivity (m.s"1) 

Surface Slope 

Residual soil moisture content 

Saturated soil moisture content 

L (0.1-2) 

ks(10"6-10~3) 

tan(3 

6r (0.01-0.1) 

6S (0.25-0.7) 

0.5 

0.001 

0.09 

0.04 

0.45 

0.75 

0.001 

0.08 

0.05 

0.50 

1.00 

0.001 

0.07 

0.06 

0.55 

1.25 

0.001 

0.05 

0.07 

0.60 

Overland Store 

Manning's surface roughness coeff. 

Surface slope 
n0 (0.05-0.4) 

tan(3 

0.1 0.2 0.3 0.4 

same as for soil store 

Channel Store 

Manning's channel roughness coeff. 

Surface slope 
nc (0.02-0.08) 

tanp 

0.03 0.04 0.05 0.06 

same as for soil store 

Constant Parameters for all cells 

Horizontal dimension of cell (m) 

Time step (s) 

Non-linear soil exponent 

Non-linear overland exponent 

Non-linear channel exponent 

Max. channel width at outlet (m) 

Min. channel width for Athreshoid (m) 

Area required to initiate channel (m2) 

Total area drained by catchment (m2) 

Area drained by fh cell (m2) 

X 

At 

as (2-4) 

a0 

ac 

w m a x 

w m i n 

"threshold 

Atotal 

A j rained 

1000 

3600 

3 
5I 
'3 

5I '3 

10 

1 

1 000 000 

4 000 000 

1x10b 2x10b 3x10b 4x10B 

7.2.2. Soil store 

In Chapter 6 it was explained that the soil store of the TOPKAPI model is the regulating 

store of each cell. The operations of the soil store for the "four cell generic catchment" 

were formulated on Microsoft Excel™ as shown in Fig. 7-20. An explanation of how 

some of the key functions of the soil store for Cell 1 operate in each column is listed 

after Fig. 7-20. 
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Cell 1: Soil Store 

L 

k. 

tan|t 

B, 
9, (porosity) 

v„, 
c. 
cx/x* 

0.5 m 

0.001 m.s"' 

0.09 

0.04 

0.45 

205000 m3 

0.005223 irf"ls 

5.223E-18 mVs 

1 

Time Step 

2 

Begin of 

Time Step 

t„ 

(s) 

3 4 

Precipitation 

input 

P 

(mm/hr) (mV1) 

5 

Upstream 

Inflow 

(1-LW/X).QU 

(mV) 

6 

Total Input 

(mV) 

7 

Moisture 

Stored @ t„ 

v,(U 
(m3) 

8 
Outf low® t, 

Q,(U = 
(C.X/X^IV" 

(rrfs1) 

9 
10 

0 
3600 
7200 

10800 
14400 
18000 
21600 
25200 
28800 
32400 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 

5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 
5.556 

5000 
15000 
28723 
44428 
61242 
78736 
96677 

114929 
133405 
152043 

0.00000 
0.00002 
0.00012 
0.00046 
0.00120 
0.00255 
0.00472 
0.00793 
0.01240 
0.01836 

Quasi-analytical solution to the non-linear differential reservoir equation for the soil store 

u y uf4c-1) 
Fitted parameters 

p • y°-rs/+uy=u A B c Pi P2 u(t*\t) y(t*\t) 

4.000E-08 
4.444E-09 
1.212E-09 
5.066E-10 
2.666E-10 
1.613E-10 
1 070E-10 
7.571E-11 
5.619E-11 
4.326E-11 

8.000E-12 
2.963E-13 
4.220E-14 
1.140E-14 
4.354E-15 
2.049E-15 
1.107E-15 
6.587E-16 
4.212E-16 
2.845E-16 

5000 0 
15000 0 
28723 0 
44428 0 
61242 0 
78736 0 
96677 0 

114929 0 
133405 -8.77449E-22 
152043 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-55556 
-166666 
-319140 
-493640 
-680468 
-874843 

-1074190 
-1276991 
-1482273 
-1689369 

0 
0 
0 
0 
0 
0 
0 
0 

657735E-27 
0 

-1.880E-22 
-6.268E-23 
-3.273E-23 
-2.116E-23 
-1.535E-23 
-1 194E-23 
-9.725E-24 
-8.181E-24 
-7 048E-24 
-6.184E-24 

1.371E-11 
7.917E-12 
5.721 E-12 
4.600E-12 
3 918E-12 
3.456E-12 
3.119E-12 
2 860E-12 
2.655E-12 
2 487 E-12 

-1.371E-11 
-7917E-12 
-5.721 E-12 
-4.600E-12 
-3.918E-12 
-3.456E-12 
-3.119E-12 
-2.860E-12 
-2.655E-12 
-2.487E-12 

4444E-09 
1212E-09 
5.066E-10 
2.666E-10 
1.613E-10 
1.070E-10 
7.571 E-11 
5.619E-11 
4.326E-11 
3.428E-11 

15000 
28723 
44428 
61242 
78736 
96677 

114929 
133405 
152043 
170801 

End of 

Time Step 

t,=t0+At 

(*> 

Intermediate 

Moisture St. 

VjtM 
(m3) 

Saturation 

Excess 
eQ 

(m3) 

E\«potrans 

Losses 
E..X3 

(m3) 

Actual 

Moisture St. 

v5(t,) 

K? 

Outflow @ t, 

QS(M = 
(C0XK!-)V" 

(mV) 

Avg Outflow 
over i t 

Q,(«) 

(rfk-1 

3600 
7200 

10800 
14400 
18000 
21600 
25200 
28800 
32400 
36000 

15000 
28723 
44428 
61242 
78736 
96677 

114929 
133405 
152043 
170801 

15000 
28723 
44428 
61242 
78736 
96677 

114929 
133405 
152043 
170801 

0.00002 
0.00012 
0.00046 
0.00120 
0.00255 
0.00472 
0.00793 
0.01240 
0.01836 
0.02603 

9.141E-06 
7.070E-05 
2.909E-04 
8.289E-04 
1.875E-03 
3.635E-03 
6.325E-03 
1.017E-02 
1.538E-02 
2.219E-02 

Figure 7-20. The operations of the soil store of Cell 1 for the first ten time steps as 
modelled using Microsoft Excel™. 

Col. 1: 75 time steps were created for this model which corresponds to a total 

storm duration of 75 hours (approximately 3 days). 

Col. 6: The total input in each time step is taken as the sum of the incident 

precipitation (lumped over the time step) and any contributions from the soil and 

overland stores of an upstream cell. This latter input is derived from the average 

outflow over the time step from the upstream cell. In this instance, Cell 1 is a 

source cell with no upstream contributors (and hence Col. 5 is blank), however 

it is worth noting the partitioning performed with regard to this input, i.e. the 
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partitioning of flow to the channel of a channel cell and to the soil store of the 

next downstream cell. This is explained in Section 7.2.4. 

• Col 7: The initial soil moisture stored was set at 5000m3, which forms 

approximately 2.4% of the saturated moisture volume Vsm (which is 205 000m3 

for Cell 1). In Liu et al. (2005), the initial soil saturation percentage was set at 

the same value (0.9%) for all the cells of the Upper Xixian catchment (in China) 

when the calibration for the catchment was performed using the TOPKAPI 

model. 

• Col 8: The sub-surface outflow at the beginning of the time interval is a function 

of the volume stored at the beginning of the time interval, which is computed 

from the outflow term of Eq. 6-14 (in Chapter 6), i.e. 

C X 
Q (t ) = -±—v°> ["mVl. 

• Col. 9-20: These columns are necessary to compute the quasi-analytical 

solution offered by Liu and Todini (2002) shown in Section 6.1.6 of Chapter 6, 

where y represents the volume term V, c the non-linear exponent a, u a 

substitution variable used for the integration and /? and a (not to be confused 

with a from the non-linear exponent) are two variables fitted so as to 

approximate the non-linear term yc with a second order polynomial fiy2 + ay. 

The variables /?and a were fitted by solving the equation yc - (3y2 +ay = 0 by 

yc + ay By2 — yc 

iterating /?and a such that ft = -——- and a = — — . The solution of this 
y y 

equation is shown in Col. 13 and the variables were fitted in each time step by 

activating the iteration function on Microsoft Excel™. However, as explained in 

Section 6.1.6 of Chapter 6, it turns out that the best fit of these variables is 

/? = yc"2 and a = 0 . Cols. 14-18 are used as intermediary steps to compute u 

(Col. 19) at the end of the time step, i.e. at ti=t0+At. This parameter (u) is then 

back substituted to obtain, in Col. 20, y{t0+At) which is the solution of the non­

linear soil reservoir equation. 

• Col. 22: The intermediate moisture storage V"s(fj) is the solution of the non­

linear reservoir equation for the soil store and is equal to Col. 20 when input is 

greater than zero. When input equals zero while there is moisture stored in the 

soil store at the beginning of the time interval, the non-linear differential 

reservoir equation for the soil store reduces to a decay function and the 

intermediate moisture storage at the end of the time is computed from Eq. 6-45 

in Chapter 6. When input and initial moisture storage, Vs(t0), equals zero at the 
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beginning of the time interval, V"s(^) = 0. These switches are achieved using 

two if statements imbedded in each cell of this column on Microsoft Excel™. 

Col. 23: Saturation excess is the input to the overland store and is activated 

upon the saturation of the soil store, i.e. when V"s(fj) > Vsm. It is taken as an 

average excess given off during the time step and becomes the input for the 

overland store of that time step. The switch for this is also achieved using an if 

statement. 

Col. 24: Evapotranspiration losses are subtracted as a lumped loss at the end 

of the time step from the intermediate soil storage. In this exercise, a suitable 

method to compute this amount has not been implemented (see Section 6.1.4 

in Chapter 6) and hence the column is blank. 

Col. 25: The actual moisture storage at the end of the time step Vs(f?) results 

from the subtraction of the saturation excess and evapotranspiration losses 

from the intermediate moisture storage V's(ti). 

Col. 26: The sub-surface outflow at the end of the time interval is a function of 

the volume stored at the end of the time interval, which is computed from the 

C X 
outflow term of Eq. 6-14 (in Chapter 6), i.e. %(tj =-*£-V£ [ m V ] . 

A s 

Col. 27: The average sub-surface outflow over the time interval At is computed 

simply from the average of the outflow at the beginning of the time interval and 

the end of the time interval, i.e. the average of Col. 8 and 26. This then 

becomes the input, for that time step, for the soil store of the downstream cell. If 

a channel exists in this cell, then the average sub-surface outflow would need to 

be partitioned between the channel component of the cell and the soil store of 

the next downstream cell (see Section 7.2.4). 

7.2.3. Overland store 

The operations of the overland store for Cell 1 are shown below in Fig. 7-21. The time 

steps shown are from time step 1 onwards. However it should be noticed that the 

overland store is only activated when the soil store becomes saturated during time step 

12. Initially, it is assumed that there is no water stored on the surface slopes and hence 

the initial volume is zero. An explanation of how some of the columns operate in 

modelling the overland store of Cell 1 is listed after Fig. 7-21. Explanations of those 
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columns that are not given were deemed to be self-explanatory or have been covered 

in Section 7.2.2. 

Cell 1: Overland Store 

n0 

tanp 

C„ 

cj*n*f° 

0 1 

0.09 

3 

0.0000003 

1 

Time Step 

2 

Begin of 

Time Step 

U 
(sees) 

3 

End of 

Time Step 

U+At 

(sees) 

4 

Saturation 

Excess 

e0 

(m3) 

5 

Overiand 

Input 

r„X2=eJAt 

(mV) 

6 

Moisture 

Stored @ t„ 

V0(t) 

<m3) 

7 

Outflow @ t„ 

cuu-
(CoXJX2 ')^ 

(mV) 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0 
3600 
7200 

10800 
14400 
18000 
21600 
25200 
28800 
32400 
36000 
39600 
43200 
46800 
50400 

3600 
7200 

10800 
14400 
18000 
21600 
25200 
28800 
32400 
36000 
39600 
43200 
46800 
50400 
54000 

3546 0.984902202 
18931 5.258498936 
18931 5.258498936 
18931 5.258498936 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1741 
12930 
18940 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0756 
2.1370 
4.0374 

8 9 10 11 12 13 14 15 16 17 

Quasi-analytical solution to the non-linear differential reservoir equation for the overiand store 

y° 

Fitted parameters 
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Figure 7-21. The operations of the overland store for Cell 1 as modelled on Microsoft 
Excel™. 
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Col. 4: This is the input into the overland store and results from the saturation 

of the soil store of Cell 1. Saturation excess from the soil store is computed at 

the end of each time step, but it is taken as having being exfiltrated during that 

time step and so becomes the input for the overland store for that time step. 

Col. 8-17: These columns compute the quasi-analytical solution to the non­

linear differential reservoir equation for the overland store. The explanations of 

these are similar to those given in Section 7.2.2 except that in this instance a 

substitution variable (for the integration) is not used. For certain time steps in 

Col. 17, results of #DIV/0! are returned by Microsoft Excel™ because for these 

time steps the initial volume stored on the surface and the overland input are 

zero. This does not effect the final result (as seen in Col. 19) since these are 

still intermediary steps. 

Col. 19: This column records the moisture storage at the end of the time step. If 

the input into the overland store at the beginning of the time step is greater than 

zero, the value that Col. 19 takes on is equivalent to Col. 17, which is computed 

using the quasi-analytical solution calculated in columns 8-17. If input and 

moisture storage at the beginning of the time interval is zero, then the moisture 

storage at f? is zero. However, if the input is zero while there is still moisture 

stored on the surface at the beginning of the time interval, then the non-linear 

differential reservoir equation for the overland store reduces to a decay function 

and the moisture storage at the end of the time interval is computed from Eq. 6-

45 in Chapter 6. 

Col. 21: The average overland outflow over the time interval At is computed 

simply from the average of the outflow at the beginning of the time interval and 

the end of the time interval, i.e. the average of Col. 7 and 20. This then 

becomes the input, for that time step, for the soil store of the downstream cell. If 

a channel exists in this cell, then the average overland outflow would need to be 

partitioned along with the sub-surface outflow between the channel component 

of the cell and the soil store of the next downstream cell (see Section 7.2.4). 

7.2.4. Flow partitioning 

Flow partitioning is necessary to split the average outflow from the soil and overland 

store of a cell between the channel of that cell and the soil store of the next cell 

downstream cell. As explained in Chapter 6 (Section 6.1.3c), this split is proportional to 

the ratio of the width of the channel of Cell / (Wi) to the overall width of the cell. This is 
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seen in Section 7.2.2, where the upstream contribution to the soil store of Cell 1 (Col. 5 

in Fig. 7-20) has been partitioned using the following proportion HO 
\-A-

X 
. The 

addition of an extra parameter A was made in order to create a switch which could 

either activate or deactivate the channel store of a cell and regulate the amount of flow 

into it (and hence the flow to the downstream cell as well). This switch is explained in 

Table 7-4 below and the text that follows it. 

Table 7-4. The range of values that A can take when regulating the flow Q to the 
channel of a cell and to the downstream cell. 

A 

0 

1 

Flow to channel 

0 

% - Q 

Q 

Flow to next cell 

(1-A-W/X)-Q 

Q 

(1-W/X)-Q 

0 

It is evident from Table 7-4 that the range of A is from 0 to x/w. If A=0, all flow from the 

soil and overland store of a source cell progress to the soil store of the downstream cell 

(and hence a channel does not exist for the source cell). If A=x/W, all flow from the soil 

and overland store of a source cell progress to the channel of that cell. This latter 

scenario is realised at the outlet of a catchment where all the outflows from all the 

stores of a catchment come together. 

It was further felt that this value (A) could be used to either increase or decrease the 

amount of flow feeding a channel, since in reality the proportion equivalent to w/x is 

very small. In Liu et al. (2005), the values of Wmm and Wmax that were chosen for the 

Upper Xixian catchment (with an area of approximately 10 000km2) was 1m and 400m 

respectively. At the 1km square modelling resolution, this forms a partitioning 

proportion of approximately 0.1% at the point of channel initiation and 40% at the 

catchment outlet respectively. However, according to Todini (2005), the proportion of 

channel cells in a catchment is approximately 10 to 15% of the total number of cells in 

a catchment. Thus the use of A as a tool to increase the proportion of flow to a channel 

does not make a big difference in the overall modelling of the catchment processes and 

resultant outflow from the catchment. Hence, for this exercise, the use of A was limited 

to a switch and would not take on other values besides 0, 1 and x/w. 

- 1 3 4 -



CHAPTER 7: The application of the TOPKAPI model 

Fig. 7-22 shows the flow partitioning performed for Cell 1 of the "four cell generic 

catchment". In this case, the width of the channel was computed to be 1m (from Eq. 6-

24 in Chapter 6, using the parameters given in Table 7-3 above) and A was set at 0 

since Cell 1 does not consist of a channel. The flow that feeds the channel (Col. 8) 

comprises the sum of the average outflows from the soil and the overland store of that 

cell (Col. 4 and 5 respectively), which is partitioned in the manner explained above. 

The remainder feeds the soil store of the downstream cell (Col. 7). 

Cell 1: Flow partitioning 

w 
" " m a x 
w 
" " m i n 

"threshold 

" to ta l 

"dra ined 

w 
X 

1 

Time Step 
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10 
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2 3 
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(sees) 
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Time Step 
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Outflow over At 

Qo(At) 
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0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

6 

Total Avg. 

Outflow 

over At 

(HIV1) 

9.141E-06 
7.070E-05 
2.909E-04 
8.289E-04 
1.875E-03 
3635E-03 
6.325E-03 
1.017E-02 
1.538E-02 
2.219E-02 

7 

Flow to 

next cell 

(1-A.W/X).(QS+Q0) 
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2.909E-04 
8.289E-04 
1.875E-03 
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1.538E-02 
2.219E-02 

8 

Flow to 

channel 

(\.W/X).(QS+Q0) 

(mV1) 

0.000E+00 
0.000E+00 
0000E+00 
0.000E+00 
0.000E+00 
0000E+00 
0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

Figure 7-22. The flow partitioning operations of Cell 1, where flow is partitioned 
between the channel store of Cell 1 and the soil store of the downstream cell, 
i.e. Cell 2. 

7.2.5. Channel store 

Fig. 7-23 below shows the channel store for Cell 2 of the "four cell generic catchment", 

since Cell 1 did not contain a channel. An explanation of how some of the columns 

operate in modelling this store of Cell 2 is listed after Fig. 7-23. Explanations of those 

columns that are not given below were deemed to be self-explanatory or have been 

covered in the previous sections. 
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Cell 2: Channel Store 
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Figure 7-23. The operations of the channel store of Cell 2 as modelled on Microsoft 
Excel™. 

• Col. 5: The total input for this store results from the partitioning exercise 

explained in Section 7.2.4, the result of which is shown in Col. 3, and from an 

upstream channel outflow (Qc
u shown in Col. 4). This latter input is the result of 

the average outflow over At from a channel in an upstream cell. Since Cell 1 
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does not consist of a channel and channel flow is only initiated in Cell 2, this 

latter input (shown in Col. 4) is zero. 

Col. 6: The depth of water in a channel reach is taken to increase linearly with 

the channel width (Liu et al., 2005). For Cell 2, the channel width (computed 

from Eq. 6-24 in Chapter 6 using the parameters given in Table 7-3 above) is 

4.728m. The depth of water was taken as 0.1% of the channel width which 

corresponds to an initial volume of 22.35m3. 

Col. 19: The moisture stored in the channel at time ti is computed using the 

quasi-analytical solution (shown in columns 8-17) if the input and the moisture 

stored at the beginning of the time interval is greater than zero. If the input goes 

to zero while there still remains storage in the channel reach at the beginning of 

the time interval, then the non-linear differential equation reduces to a decay 

function for which the solution is given in Eq. 6-45 in Chapter 6. If the input and 

the moisture stored is zero at the beginning of the time interval, then the 

moisture stored at the end of the time interval remains zero. 

Col. 21: The channel outflow to the channel of the next downstream cell is 

computed as an average flow over the time interval. This becomes the input for 

the downstream cell in that interval. This value is computed by simply taking the 

average of the outflows at time t0 and time ti (i.e. the average of Col. 7 and 20). 

7.2.5. Running the model 

The cells of the "four cell generic catchment" were run on Microsoft Excel™ using the 

spreadsheet setup explained above. The complete setup of this "catchment" is shown 

in Appendix D. The inflow and outflow hydrographs for each store of each cell is shown 

below in the subsections that follow. In each time step, equal rainfall intensities for 

each cell were input into the soil store and the outflow from each store of each cell was 

individually modelled using the rainfall-runoff conversion parameters (for the soil store) 

and routing parameters (for the overland and channel stores), which are given in Table 

7-3. In order to make certain that the correct setup of the model was implemented, a 

simple check was undertaken. This check was to ensure that continuity was maintained 

for each store and the catchment as a whole, i.e. to ensure for all the cells that the 

overall input volume minus the output volume matched the volume that remained 

behind as storage minus the initial storage volumes. Since at this stage of the model's 

implementation there are no external moisture losses in the form of groundwater 

recharge or evapotranspiration, the continuity check was easy to quantify. The 
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outcome of this test highlighted the fact that in the model's original implementation, 

continuity is not implicitly maintained. The root cause of this anomaly was identified and 

explained in Section 6.1.6 of Chapter 6 and is explained below. A revised model setup 

was then implemented to overcome this issue. These exercises are described below 

and are shown together with all the hydrographs of the test model. 

(a) Continuity check 

The precipitation input that was used in the "generic catchment's" setup was taken as 

the same for all the cells and specifically chosen to exercise the model over all 

plausible ranges of behaviour. This comprised of the following intensities over the 75 

time steps: 20mm/hr for the first 25 time steps, thereafter 10mm/hr for the next 15 time 

steps, thereafter 5mm/hr for the next 20 time steps and finally no input (Omm/hr) for the 

remaining 15 time steps. Since the input into each cell is taken as constant over the 

time interval, i.e. a pulsed input, the total volumetric input of the precipitation over all 75 

time steps is simply the arithmetic sum of the inputs in each time step. This resulted in 

a total input volume of 750 000m3 of rainfall into each cell over the whole test period 

(75 time steps). Based on this input, the intra- and inter-cell outflows were modelled on 

the spreadsheet for each time step. The outflows from each store of each cell are taken 

to accrue as averages over the time step, and thus the total volumetric outflow at the 

end of the test period for each store of each cell was also computed from the sum of 

the average outflows in each time step. Therefore, continuity was checked by simply 

verifying that over the 75 time steps, the total input volume to the store minus the total 

volumetric outflow from the store matched the volume remaining in the store at the end 

of the final time step minus the initial volume at the beginning of the first time step (see 

Eq. 7-1). Table 7-5 gives a summary of these flows. Reference should also be made to 

Appendix D where the complete operations of each store of each cell are shown for all 

75 time steps. 

The form of the equation used to check continuity in each store of each cell was: 

X Input - Z Outflow = Vol. Remaining - Initial Vol. (7-1) 

where Elnput is the input volume into the store of a cell, EOutflow is the outflow volume 

from a store of a cell, and the Vol. Remaining and Initial Vol. terms is the volume that is 

left in the store at the end of the final time step and the volume that is found in the store 
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at the beginning of the first time step respectively. For the soil store, the Zlnput term 

comprises the sum of precipitation input and any inflow from soil stores of upstream 

cells. For the overland store, the Ulnput term is the saturation excess that is given off 

from the soil store of that cell. For the channel store, the Slnput term is the sum of the 

commensurate soil and overland outflows (see Section 6.1.5 in Chapter 6) of that cell 

and any inflows from channel stores of upstream cells. SOutflow comprises direct soil 

drainage and saturation excess for the soil store, direct overland runoff for the overland 

store and direct channel flow for the channel store. A more convenient form of Eq. 7-1 

in order to check if continuity is maintained is: 

X Input - E Outflow - Vol. Remaining+lnitial Vol. - Error (7-2) 

If continuity is preserved, then the Error term will equal zero. If continuity is not 

maintained, then the Error term will not equal zero and the magnitude of this term can 

be used to gauge the degree to which continuity is not upheld. Eq. 7-2 was applied to 

each store of each cell of the generic catchment and the results are shown in the last 

column of Table 7-5, with regard to the Error observed (or lack of continuity). 

The "Error" values observed in the last column of Table 7-5 indicate that continuity in 

each store was not maintained in this test. The root cause of this lack of continuity is in 

the manner in which the analytical solution is derived and implemented. As explained in 

Section 6.1.6 of Chapter 6, the analytical solution is made possible by the 

approximation of the non-linear volume term (yc)by a second order polynomial 

(y(# + /?/))• This approximation is made possible by fitting the variables a and (5 by 

least squares. It was shown in Chapter 6 that the best fit of these variables is if 

J3 = y2~c and a = 0 for all values of the exponent c. The result of this is that /? is 

implicitly a function of y and is fitted at the beginning of the time step. Now, as y 

changes during the time step, /? is unable to match this change. Consequently, this 

setup will have the tendency to underestimate the volume at the end of the time step 

(Yt+At) on the rising limb of the store's hydrograph and overestimate this on the falling 

limb of the store's hydrograph. The results of the continuity check in Table 7-5 reflect 

that continuity is not maintained, as expected. For example, the imbalance (error) that 

existed in the soil store of Cell 1 after running the model for 75 time steps is calculated 

as follows: 
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X Input - X Outflow - Vol. Remaining+lnitial Vol. = Error 

(750000 + 0)-(489096+ 10639)-202612+ 5000 = 52653 [m3] 

Table 7-5. A summary of the "continuity check" on each store of each cell for the "four 
cell generic catchment" modelled on Microsoft Excel™. The values in the last 
column were computed from Eq. 7-2. 

Input Vol. 

(m3) 

Output Vol. 

(m3) 

Store 

Vol. (m3) 

Error 

(m3) 

CelM 

Soil Store 

Overland 
Store 

Channel 

Store 

Rainfall 

750 000 

Upstream 

0 

489 096 

Inflow 

0 

Upstream 

0 

Sat. Excess 

489 096 

Outflow 

10 639 

483 544 

0 

Remaining 

202 612 

Remaining 

675 

Remaining 

0 

Initial 

5 000 

Initial 

0 

Initial 

0 

Total 

52 653 

4 877 

0 

57 530 

Cell 2 

Soil Store 

Overland 
Store 

Channel 

Store 

Rainfall 

750 000 

Upstream 

494 183 

831 311 

Inflow 

3 938 

Upstream 

0 

Sat. Excess 

831 311 

Outflow 

13 386 

819 614 

3 939 

Remaining 

337 500 

Remaining 

2 51A 

Remaining 

8 

Initial 

8100 

Initial 

0 

Initial 

23 

Total 

70 086 

9 123 

14 

79 223 

Cell 3 

Soil Store 

Overland 
Store 

Channel 
Store 

Rainfall 

750 000 

Upstream 

829 061 

1 011 120 

Inflow 

7 635 

Upstream 

3 939 

Sat. Excess 

1 011 120 

Outflow 

14 502 

991 597 

11 586 

Remaining 

490 000 

Remaining 

6 906 

Remaining 

28 

Initial 

11 760 

Initial 

0 

Initial 

58 

Total 

75 199 

12617 

18 

87 834 

Cell 4 

Soil Store 

Overland 
Store 

Channel 

Store 

Rainfall 

750 000 

Upstream 

998 465 

1 020 654 

Inflow 

9 901 

Upstream 

11 586 

Sat. Excess 

1 020 654 

Outflow 

11 851 

978 227 

21 494 

Remaining 

662 500 

Remaining 

15 731 

Remaining 

78 

Initial 

15 900 

Initial 

0 

Initial 

100 

Total 

69 360 

26 696 

15 

96 071 
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Although the error values appear to be large (especially for the soil stores), the values 

shown in Table 7-5 accrue over 75 time steps. In order to illustrate the error in each 

time step, the imbalance is easy to quantify when the system is at equilibrium. This 

condition is found, for the example of the soil store, when this store is saturated. In this 

instance all incident precipitation to the store becomes saturation excess directly. Thus, 

for a rainfall intensity of 20mm/hr (5.556m3/s), the volume of water that should be 

exfiltrated to the overland store is 5 .556 m / x3600s = 20002m3. The corresponding 
/ o 

amount that is reflected in the soil store of Cell 1 for the 15th time step (shown in 

Appendix D) is 19 939m3. Thus it is clear to see that the analytical solution 

implemented in its original form underestimates the volume by an amount of 63m3 (in 

this instance). 

This issue was not resolvable without some form of adjustment to the analytical 

solution. In simple terms, the problem of imbalance is caused due to a "lack of fit" in the 

variable /?. An alternative solution is to "lose" the imbalances that accrue in each time 

step through evapotranspiration. This latter alternative is not unreasonable, as the 

estimation of evapotranspiration is relatively not precise and could easily absorb the 

imbalances that occur in each time step. This alternative is a viable solution in the 

actual implementation of the TOPKAPI model for a catchment where estimates of 

evapotranspiration are available. In the test application of the model presented here, an 

adjustment factor was deemed to be the simplest manner in which to get continuity to 

balance since evapotranspiration is ignored. 

An adjustment factor was implemented for each store of each cell by multiplying the 

moisture storage at the end of the time step (yt+At) by the factors shown in the last 

column of Table 7-6. These factors were determined through the solver tool on 

Microsoft Excel™, by multiplying yt+At with this factor such that the imbalance at the end 

of 75 time steps is reduced to zero or near zero. It is evident from the factors in Table 

7-6 that the adjustments are relatively slight and that the desired result is obtained, i.e. 

the errors are negligible and continuity is maintained. 
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Table 7-6. A summary of the "corrected continuity check" on each store of each cell for 
the "four cell generic catchment" modelled on Microsoft Excel™. An adjustment 
factor was calibrated for each store of each cell (last column) to get continuity to 
hold in each store. 

Input Vol. 
(m3) 

Output Vol. 
(m3) 

Store 
Vol. (m3) 

Error 
(m3) 

Adjustment 
Factor 

CelM 

Soil 
Store 

Over­
land 
Store 
Chan­
nel 
Store 

Rainfall 
750 000 

Upstream 

0 

541 721 

Inflow 

0 

Upstream 

0 

Sat. Excess 

541 721 

Outflow 
10 667 

541 032 

0 

Remaining 
202 612 

Remaining 

688 

Remaining 

0 

Initial 
5 000 

Initial 

0 

Initial 

0 

Total 

0 

1 

0 

1.0045 

1.0064 

1 

1 
Cell 2 
Soil 
Store 

Over­
land 
Store 
Chan­
nel 
Store 

Rainfall 
750 000 

Upstream 

551 699 

958 867 

Inflow 

4 565 

Upstream 

0 

Sat. Excess 
958 867 

Outflow 
13 432 

952 177 

4 574 

Remaining 
337 500 
Remaining 

6 690 

Remaining 

14 

Initial 
8100 
Initial 

0 

Initial 

23 

Total 

0 

0 

0 

1.0031 

1.0044 

1.0017 

0 
Cell 3 
Soil 
Store 

Over­
land 
Store 

Chan­
nel 
Store 

Rainfall 
750 000 

Upstream 

961 044 

1 218 201 

Inflow 

9 241 

Upstream 

4 574 

Sat. Excess 

1 218 201 

Outflow 

14 602 

1 203 146 

13 823 

Remaining 

490 000 

Remaining 

15 056 

Remaining 

49 

Initial 

11 760 

Initial 

0 

Initial 

58 

Total 

1 

-1 

1 

1.0025 

1.0093 

1.0085 

1 
Cell 4 

Soil 
Store 

Over­
land 
Store 

Chan­
nel 
Store 

Rainfall 

750 000 

Upstream 

1 208 
507 

1 299 967 

Inflow 

12 841 

Upstream 

13 823 

Sat. Excess 

1 299 967 

Outflow 

11 940 

1 272 129 

26 637 

Remaining 

662 500 

Remaining 

27 839 

Remaining 

126 

Initial 

15 900 

Initial 

0 

Initial 

100 

Total 

0 

-1 

1 

1.0019 

1.0039 

1.0005 

0 
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It is apparent from Table 7-6 that, for the soil store, these adjustment factors have the 

effect of transferring the majority of the imbalance (or error) into saturation excess and 

pushing it through the overland store. This is evidenced from the fact that, in comparing 

the values for the soil store of Cell 1 from Table 7-5 and 7-6 respectively, the input (750 

000m3), remaining (202 612m3) and initial (5 000m3) volumes remain unchanged, the 

outflow volume remains relatively unchanged (10 639m3 and 10 667m3 respectively) 

while the saturation excess value (489 096m3 and 541 721m3 respectively) increases 

by an amount (52 625m3) which is equivalent to the error shown in Table 7-5 for this 

store. The imbalance for the overland store is absorbed into the soil store of the next 

cell through overland outflow, and this imbalance is transferred in turn to saturation 

excess for the overland store of this next cell. The storages that remain at the end of 

the time steps is also increased for the overland store, in comparing Table 7-5 and 7-6, 

due to the increases in input (saturation excess) to this store. The imbalances for the 

channel stores were relatively slight and these are absorbed into the channel outflows 

through the adjustment as well as increasing the remaining storage left over at the end. 

Overall the channel input and outflow is increased due to an increase in the overland 

contribution to this store. Besides increasing the remaining storages of the overland 

and channel stores, the majority of the imbalances are transferred by the adjustment to 

the cells downstream to be eventually felt at the catchment outlet as increased flow. 

Through this test application, the operations of the model were verified to behave as 

expected. The continuity exercise allowed the opportunity to test possible solutions to 

the issue of imbalance. Although a solution was found through adjustment factors, it is 

felt that the resolution of this issue would be easier accomplished in the actual 

implementation of the model when evapotranspiration estimates could be used to 

absorb the imbalances. 

(b) Hydrographs 

Selected hydrographs are shown below to visually demonstrate how the model 

operates. The hydrograph for the soil, overland and channel stores of Cell 1 is shown 

in Fig. 7-24 (a, b and c), for the stores of Cell 2 in Fig. 7-25, for the stores of Cell 3 in 

Fig. 7-26 and for the stores of Cell 4 in Fig. 7-27. The corresponding computations of 

these hydrographs are given in Appendix D where the operations of the test model are 

shown. With due regard to the conventional representation of precipitation and 

streamflow hydrographs, the figures below show the inputs in each time step as pulsed 
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data (i.e. the input remains constant during the time step) and the outflow as break­

point data (i.e. the measured flow at that instance at the end of the time step). In 

hydrology, the two principle variables of interest, namely precipitation and streamflow, 

are traditionally measured in this manner (Chow et al., 1988: 27). However, it must be 

remembered that in computing the intra- and inter-cell flows in the model setup, input 

into a store in each time step remained constant over the interval (as shown in the 

figures below) while a particular store's outflow was taken as the average of the 

outflows at the beginning of the time step and at the end of the time step. In this 

manner, this outflow could then become the constant input (over that time step) 

required for the receiving store or cell downstream. 

In Fig. 7-24a (soil store of Cell 1), the chosen precipitation intensities over the 75 time 

steps can clearly be seen since the input for this store is purely from rainfall (since it is 

a source cell). The behaviour of the soil store as the regulating store of each cell can 

also be seen, i.e. the outflow from the store reaches a maximum upon the saturation of 

the store and the rest of the outflow forms the saturation excess. It is also evident from 

Figs. 7-24 to 7-27 that the soil store has the most retention capacity of all the stores 

(by considering the integral of the difference between inflow and outflow) and that 

overland and channel stores have little effect in the attenuation of the input. 
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Cell 1 : Soil Store 
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Figure 7-24a, b and c. The soil, overland and channel store's inflow and outflow 
hydrographs respectively for Cell 1. 
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Cell 2: Soil Store 
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Figure 7-25a, b and c. The soil, overland and channel store's inflow and outflow 
hydrographs respectively for Cell 2. 
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Cell 3: Soil Store 
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Figure 7-26a, b and c. The soil, overland and channel store's inflow and outflow 
hydrographs respectively for Cell 3. 
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Cell 4: Soil Store 
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Figure 7-27a, b and c. The soil, overland and channel store's inflow and outflow 
hydrographs respectively for Cell 4. 
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7.3. Chapter summary 

This chapter applied the TOPKAPI model, albeit in generic circumstances, to establish 

if the operations were correctly understood and if the model could be correctly 

implemented. This consisted of firstly gathering the required input data. These data 

then had to be managed and manipulated to suit the requirements of the TOPKAPI 

model. The Liebenbergsvlei catchment was chosen for this purpose since it is a highly 

instrumented catchment in South Africa. Thereafter, without actually using these data 

(but after having been satisfied that the data requirements of the TOPKAPI model were 

met), it was decided to test the operations of the model in a generic environment. With 

regard to this, a "four cell generic catchment" was created on a spreadsheet using 

Microsoft Excell™. This exercise allowed us to input rainfall into this "catchment", run 

the functions of the model and observe the outflow. This was done to verify if the model 

was operating correctly. A simple check of "continuity" was used to establish this. The 

model behaved as expected, and the issue identified in Chapter 6 and discovered in 

this chapter (namely the issue of a continuity imbalance) was rectified through simple 

adjustment factors. 

It is envisaged that the exercises performed in this chapter would lay the groundwork 

and form the basis for the actual application of the TOPKAPI model for the 

Liebenbergsvlei catchment using a high level programming language such as C++. 

This latter aspect is left for a follow-up study. Other items which would need attention 

prior to the application of the TOPKAPI model, as a fully functioning hydrologic rainfall-

runoff model, (and is not covered here) is the estimation of distributed 

evapotranspiration at the desired resolution for modelling the Libenbergsvlei catchment 

(1km square in this instance). Furthermore, the actual calibration of the static input data 

(terrain related) on the historic precipitation and streamflow records is also left for 

completion in the actual application of the model. 
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8. CONCLUSION 

Accurate, consistent and reliable flood estimates are needed by engineers responsible 

for the design of infrastructure that are at risk to flowing water and catchment / disaster 

managers that are responsible for the mitigation of flood damage. With regard to the 

former scenario, two design flood prediction methods were investigated in this 

research, namely the regional maximum flood (RMF) method in Chapter 3 and the 

rational formula method in Chapter 4. The outcome of these are summarised in Section 

8.1.1 and 8.1.2 respectively. 

This dissertation also focussed on the implementation of a fully distributed physically-

based rainfall-runoff model for real-time flood forecasting applications. The TOPKAPI 

model was chosen for this purpose. Since this model has not been applied in South 

Africa, various sources of literature on the model were dissected, understood and 

explained in Chapter 6. Chapter 7 contains the results of the application the model, 

albeit in generic circumstances, to check the model's input requirements and 

operations. 

This chapter summarises and discusses the contributions made in this research in 

Section 8.1 and concludes in Section 8.2 with recommendations for future studies. 

8.1. Summary and discussion of research 

8.1.1. A review of the regional maximum flood (RMF) 

In Chapter 3 it was shown that the approximate return period of the regional maximum 

flood (RMF) estimate is 200 years. This was determined by simply comparing the RMF-

based estimate with probabilistically modelled annual flood peak records. It was shown 

that the curves of the RMF envelope and the trend-line fitted to the 200-year modelled 

flood flows were approximately the same. The result of this investigation indicates that 

for all practical design purposes, it can be assumed that the RMF is equivalent to a 

200-year flood. 
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It was also shown in Chapter 3 that the use of catchment area, as the sole landscape 

parameter in empirical equations (such as the RMF) provided the best predictions of 

floods when compared to empirical equations that included other landscape measures. 

The inclusion of other landscape parameters in addition to area did not improve the 

predictive ability of these methods. This was confirmed by using the coefficient of 

determination (ft2) to examine if the empirical model, with the inclusion of further 

landscape parameters, improved the predictive ability of the simple area-based model. 

Thus the use of catchment area as the sole independent variable in calibrating 

empirical equations seems practical (as it is easy to quantify) and efficient for the 

purposes of flood estimation. 

8.1.2. The rational formula from the runhydrograph 

In Chapter 4 the calibration of the rational formula's runoff coefficient was reviewed in 

order to assist in this parameters estimation and improve the reliability of this design 

flood prediction method. Characteristic design flood peak and volume pairs for certain 

catchments in South Africa were used for this calibration, offered by the runhydrograph 

method of Hiemstra and Francis (1979). The results produced calibrated coefficients 

that were of the same order of magnitude, but generally lower, than catalogued design 

values of this parameter from Chow et al. (1988: 498). It was found that the calibrated 

coefficients did not display any relationship with catchment characteristics. Thus, in 

validation, the coefficient values of Chow et al. were used as an upper bound estimate 

of the calibrated coefficients. The validation exercise showed a fair correspondence 

between the rational formula flood peaks (using the substitute coefficients from Chow 

et al.) and probabilistically modelled flood peaks for the validation catchments. This 

exercise confirmed the use of values from Chow et al. as upper bound estimates, since 

the rational formula flood peaks were larger than the probabilistically modelled flood 

peaks by a factor of 1.5 (on average). It was also discovered that the time base-length 

of the derived triangular hydrograph of this study was approximately between 1.9 and 

2.6 times the catchment's time of concentration, depending on recurrence interval. 

The results of this investigation were reasonably encouraging, in that the calibrated 

coefficients were scattered around published design values of the c-coefficient from 

Chow et al. (1988: 498). Although a proper validation of the calibrated coefficients was 

not done, in a sense a validation of the values of Chow et al. confirmed that these 

values are reasonable (although slightly conservative) for use in a design check for 
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large catchments as well as small. The hydrograph time base-length result was not 

conclusive as the observed variance was high. 

8.1.3. TOPKAPI model 

In Chapter 6, the TOPKAPI model was introduced and explained in great detail. This 

involved assimilating the literature on the model and related topics, dissecting it and 

disseminating it. The reasoning behind this was to prepare the ground for the eventual 

application of the model in a South African catchment such as the Liebenbergsvlei. In 

order to achieve this, the model's operations were tested, issues with regard to its 

application were identified and resolved, and the input data required by the model were 

gathered and prepared. The test application and resolution of issues was covered in 

Chapter 7 as well as the data preparation. 

In Chapter 7, the data requirements of the TOPKAPI model were firstly identified. 

Thereafter the chapter proceeded with an explanation of how these data were gathered 

and processed for input into the model at the desired modelling scale, i.e. 1km2. This 

involved predominantly work on a geographic information system (GIS) in order to 

gather and produce the information required. A digital elevation model (DEM) was used 

to calculate the surface slopes, areas drained, identify the flow pathways and detect 

the drainage networks of each cell/pixel. Other input requirements such as the soil 

data, landuse data and precipitation data was also gathered for each cell through a GIS 

and all the rasters were aligned with respect to the DEM. Furthermore, a special code 

was written to automatically trace the flow pathways as required by the TOPKAPI 

model, i.e. in only one of four possible directions from a cell. This was done because 

the GIS platform (ARCGIS™) used to perform the other operations described above 

did not operate in this manner and assigned flow from a cell in one of eight possible 

directions (a D8 model). The problems encountered with limiting a D8 flow direction 

raster to only four possible pathways (such as the formation of artificial sinks) were 

identified, explained and resolved with further code. It was also identified in Chapter 6 

that readily available distributed evapotranspiration estimates for South Africa were 

lacking in terms of the input required for the model. A method was proposed on 

acquiring this information for the model, which is left for a follow up study. However, 

these estimates would also need to be included in the data sets gathered here for input 

into the TOPKAPI model. 
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Chapter 7 also described the test application of the TOPKAPI model. This entailed 

establishing a generic "four cell catchment" on a Microsoft Excel™ spreadsheet and 

running the model for 75 hourly time steps to verify that the operations of the model 

were correctly understood and implemented. A simple check to confirm this was to 

examine if continuity was maintained in the system. It was discovered that, due to the 

manner in which the analytical solution was derived and implemented, the solution had 

the tendency to underestimate the volume at the end of the time step on the rising limb 

of the store's hydrograph and overestimate this on the falling limb of the store's 

hydrograph. In testing the model, this problem manifested itself in the continuity 

checks, where imbalances were observed between the inflow, outflow, remaining 

volume and initial volume. In order to easily resolve this problem in this test setup, an 

adjustment factor was used to balance continuity. Although this had the desired result, 

it is felt that the resolution of this issue would be easier accomplished in the actual 

implementation of the model where evapotranspiration estimates could be used to 

absorb the imbalances. Despite this issue (of continuity), the test application confirmed 

the operations of the model to be valid. 

The final step in achieving a fully functional rainfall-runoff model for the Liebenbergsvlei 

catchment would be to code the operations of the model using a high level 

programming language such as C++ based on the test application shown here and 

using the data gathered here. This is also left for a follow up study. 

8.2. Chapter Summary 

The research presented in this dissertation aimed to add some benefit to the 

engineering and hydrologic community with regard to flood estimation practices in 

South Africa for roads, bridges and dams. In this regard, two reviews of established 

design flood prediction methods were undertaken to assist in their use. The results are 

summarised in Sections 8.1.1 and 8.1.2. In addition to this, a pilot study was 

undertaken in introducing the TOPKAPI model for flood-forecasting purposes in South 

Africa. The contents of this study involved laying the groundwork for the models 

implementation in the Liebenbergsvlei catchment and is summarised in Section 8.1.3. 

Arising from this latter study, three issues will need to be addressed in follow-up 

studies prior to the models actual implementation. These are with regard to the 

acquisition of distributed evapotranspiration estimates as input for the model, the 

coding of the model using a high level programming language such as C++ and the 
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calibration of the model on past precipitation and flood flows for the Lienbenbergsvlei 

catchment. 
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A review of the regional maximum flood and rational formula 
using geomorphological information and observed floods 

Geoff Pegram* and Mohamed Parak 
Civil Engineering Programme, University of KwaZulu-Natal, Durban 4041, South Africa 

Abstract 

Flood estimation methods in South Africa are based on three general approaches: empirical, deterministic and probabilistic. The 
"quick" methods often used as checks are the regional maximum flood (RMF) and the rational formula (RF), which form part of 
the empirical and deterministic methods respectively. A database of annual flood peaks was used in a probabilistic approach to 
review these methods and to provide preliminary insight into their estimates of flood peaks. This paper examines the following: 
the relationship between floods and landscape; the estimation of the return period of the RMF; the use of ratios in scaling RMF 
flood peak estimates to flow rates of shorter return periods; the applicability of the modified rational formula (MRF); the 
examination of the relationship between scaling parameters and regional parameters. It turns out that the RMF is the best of all 
methods examined in this preliminary study (other than statistical) in estimating the 200-year flood peak at an ungauged location. 

Keywords:flood estimation, rational formula, regional maximum flood, generalised extreme value distribution 

Introduction 

The realistic estimation of the magnitude of a design flood peak 
with a chosen probability of exceedence that can be expected at a 
given site in a given region is fundamentally important in the 
planning, design and operation of hydraulic structures and for the 
preservation of human life and property. The basic approaches 
involved in flood estimation are the empirical, deterministic and 
probabilistic approaches. These methods are calibrated from his­
torical flood records from gauged catchments and their relative 
usefulness depends on the accuracy with which they are able to 
predict flood sizes in ungauged catchments. In South Africa, 
reasonable estimates of maximum recorded flood magnitudes are 
derived from the use of the empirically-based approach of the 
regional maximum flood (Kovacs, 1988), and design floods may be 
determined using deterministic approachs such as the rational 
formula (RF), the SCS model or the unitgraph method and from the 
analyses of flood frequencies through a probabilistic approach. 

Kovacs' empirical method is probably the most robust method 
available locally and, relatively accurately, predicts the regional 
"maximum" flood that can be expected from a given site based only 
on the sites catchment area and region. The advantage of the 
empirical method is its ease of use as it deals directly with the 
parameter of interest, namely the flood peak discharge, and avoids 
the assumptions involved in transforming rainfall inputs into flood 
outputs. The disadvantages of the RMF method are that: 

The recurrence interval (RI) associated with this "maximum" 
is not clear, although Kovacs estimated it to be greater than 200 
years 

• The regions defined by individual K-values have widely vary­
ing rainfall properties and 

• It seems naive to estimate flood peaks on area and zone only. 

* To whom all correspondence should be addressed. 
S+2731 260-3057; fax:+2731 260-1411; e-mail: pegram@ukzn.ac.za 
Received 8 January 2004; accepted in revised form 14 May 2004. 

The deterministic rational formula (RF) approach involves (in a 
simple, but sound manner) the analysis of all the factors involved 
in flood prediction from converting rainfall inputs into flood 
outputs; it usually carries a caveat that it should not be used for 
"large" catchments, but recent work (Alexander, 2002 and Pegram, 
2003) has shown that this caution is too conservative. 

Flood frequency analysis involves the fitting of a probability 
model to the sample of annual flood peaks, recorded over a period 
of observation, for a catchment of a given region. The model 
parameters established can then be used to predict the extreme 
events of large recurrence interval. The advantage of this method 
is that the events of large recurrence interval, which are longer than 
the record period, can be determined through cautious extrapola­
tion of the fitted distribution based on the model parameters. The 
disadvantage of this method is that it can only be applied where data 
have been collected and it is often not clear how the analysis can be 
extended to ungauged locations. 

The question that arises is "which method is fair to use?" The 
answer depends on the availability of data. When no hydrological 
(rainfall and runoff) records exist for a catchment, the empirical 
methods provide the only means of flood prediction. This situation 
is the most common case in the design of hydrological projects. 
When estimates of design rainfall are available (Adamson, 1981; 
Smithers and Schulze, 2003) or rainfall records suitable for a 
frequency analysis are available from a nearby rain-guage, then the 
rational formula (RF) becomes applicable, in addition to the 
empirical. When flood records of sufficient length (>30 years or so) 
exist, possible future flood peaks of given frequency can be 
determined by modelling past floods with an extreme value distri­
bution. Even in this fortunate situation, it is prudent to crosscheck 
the frequency estimate with deterministic and empirical estimates. 

It is the aim of this exploratory study to provide a review of the 
above methods in order to determine the accuracy of the estimates 
of the design flood, where the design flood is the flood associated 
with a chosen return period or recurrence interval of exeedence. 
The base data are the set of annual flood peak records from 130sites 
around South Africa that were used inter alia by Kovacs (1988) in 
his empirical study. 
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To summarise: this paper attempts to provide preliminary insight 
into the following questions concerning the RMF and RF flood 
determination methods in South Africa using the recorded flood 
peaks: 

• Does the addition of landscape data (catchment morphometry) 
improve the prediction of floods by the RMF? 

• Can a return period be associated with the RMF by comparing 
its computed magnitude with those modelled from historical 
records? 

• Are simple country-wide Q/Q, ratios valid for scaling flood 
maxima (or RMF values) to floods of shorter (or even longer) 
return periods? 
Is the modified rational formula (MRF) a useful modification 
and reasonable alternative to the RF and other flood prediction 
methods? 

• Are there any inferences that can be drawn from the variation 
of the shape parameters k of the GEV Distribution, used to 
model the observed floods, and Kovacs' regional A^-values? 

The methodologies involved in assessing each of the objectives 
listed in this paper will be expanded in detail in the sequel. Before 
this can be done, an explanation of how the recorded data set was 
used in the calibration and validation of the objectives outlined is 
given. 

The use of recorded flood data in this study 

Annual flood peaks from 130 catchments across South Africa were 
obtained from Zoltan Kovacs of the Department of Water Affairs 
by Peter Adamson while working with the first author in 1988 and 
1989. This data set, although old (final year of record was 1988), 
provided the starting point for this pilot study in the review of these 
flood determination methods. The length of record of the data set 
used herein ranged from 9 years to 76 years and forms a sub-set of 
the data used by Kovacs for the construction of the RMF curves. To 
find the return period associated with each annual peak, the 
Weibull Plotting Position was used (it is more conservative than the 
Cunnane Plotting Position), which is expressed as: 

_ A/ + 1 

r = — (1) 
where: 

T is the return period (years) associated with the flood peak 
of rank r 

N is the length of record (years) 
r is the rank of the flood peak, r = 1 for the largest peak. 

This resulted in a list of annual peaks each with an associated return 
period for each catchment. Following the work of De Michele and 
Salvadori (2002) and Kjeldsen et al. (2002), the distribution of 
these peaks was assumed to follow a generalised extreme value 
(GEV) distribution. This distribution takes the following form: 

QT=/u + oyT (2) 

where: 
QT is the T-year return period flood peak estimate 
|i, a are shift and scaling parameters respectively 
y, is the GEV reduced variate corresponding to a T-year 

return period, i.e. 

where: 
k is a shape parameter. When k = 0, the GEV reduces to the 

EV1 or Gumbel distribution. 

This model of the flood data formed the basis with which to review 
the other approaches. Some of these data and their distribution fits 
are presented in Table Al (Part 3) in the Appendix. 

Empirical approach extended by including 
landscape properties 

In his empirical approach Kovacs (1988) determined envelopes of 
the maximum flood peaks from the original extended data set, of 
which, as has been noted above, the data in the Appendix are a 
subset. Kovacs' data set included some rare singleton floods (not 
used in this study) to which he cautiously ascribed a representative 
record length not exceeding 200 years. He used this extended set to 
obtain the RMF lines based on the Francou-Rodier equation. The 
technique was to plot maximum flood peaks against catchment area 
for hydrologically homogeneous regions to produce envelope 
curves which define the upper limit of expected flood peaks for a 
given region. The curves are defined by the following equation: 

O* 10e 

10E (4) 

yr 1- 1"7 (3) 

where: 
A is catchment area in km2 

K is a regional dimensionless factor which accounts for the 
influence of variations in rainfall, geology, land-form and 
vegetation cover in flood production. 

It should be noted at this juncture, that the "secret" to the success 
of the RMF is the careful way in which Kovacs chose the regions 
to group the flood data. He did this by examining the actual K- value 
(from Eq. (4)) for each catchment where the flood peaks and 
catchment areas were known. Regional boundaries of K were 
delimited by considerations of individual /f-values within the 
region, the number and accuracy of the data in a particular area, 
existing boundaries, maximum recorded 3 day storm rainfall, 
topography, catchment orientation with respect to dominant storm 
generating weather systems, general soil permeability, main drain­
age network and the location of large dams situated upstream from 
the guaging sites (Kovacs, 1988). Of these considerations, indi­
vidual ^-values were evidently the most important and the regions 
were traced based on this. In areas of high flood peak potential a 
difference of 0.2 between individual K-values was allowed for and 
a difference of 0.6 in areas of low flood peak potential. 

What is evident from Eq. (4), and all other derived empirical 
equations produced for the prediction of floods, is its dependence 
on Area as an independent variable. Because of the RMF's 
apparent naivety, one might expect other parameters of the fluvial 
landscape to play an important role in flood response and make the 
estimates more accurate. Flood geomorphologists, such as Horton 
(1932; 1945)andStrahler(1952; 1964) and many others since have 
been interested in relating flood discharges to physical measures of 
landscape (morphometry). They identified parameters of the flu­
vial landscape which intuitively would correlate well with flood 
discharge. 

Linear parameters (such as stream orders and stream lengths), 
areal parameters (such as catchment area, catchment shape and 
drainage density) and relief parameters (such as catchment relief, 
catchment slope, channel slope and ruggedness number) are some 
of the physical measures that have been identified as significantly 
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affecting flood response. One can expect such a 
relationship between flood discharge and catchment 
morphometry to exist because a catchment is effec­
tively "an open system trying to achieve a state of 
equilibrium" (Strahler, 1964). Precipitation is input 
to the system and soil (eroded material) and excess 
precipitation leave the system through the catchment 
outlet. Within this system an energy transformation 
takes place converting potential energy of elevation 
into kinetic energy where erosion and transportation processes 
result in the formation of topographic characteristics. Thus it is 
evident that floods, and the landscape through which they drain, 
form a mutual relationship and ultimately catchment morphometry 
should reflect this phenomenon. In this pilot study, an effort is 
made to determine if landscape parameters improve the prediction 
of floods in empirical equations based solely on catchment area. 

What is the recurrence interval of the RMF? 

What is also evident from the RMF method of flood determination 
is that one is not easily able to associate a return period with the 
estimated floods. The envelope floods (estimated from the RMF 
lines) have been described as the maximum flood that the site has 
experienced. This is not easy to quantify in terms of a return period. 
Kovacs himself estimates the return period to be greater than 200 
years (Kovacs, 1988), although he does not explicitly model their 
probability distribution. Where the representative period (A7) of a 
flood was not known, Kovacs did not allow this to exceed 200 years 
and a provisional N value was estimated based on the assumption 
that the ratio of the 200-year peak to RMF, Q.JRMF was 0.65. 

When determining a design flood, the exact magnitude of the 
flood and its probability of exceedance need to be known. The 
absence of an estimate of the return period associated with the RMF 
makes the quantification of risk by this method problematic and, as 
it represents maximum discharges, it tends to be used by designers 
as a conservative method. This article aims to, inter alia, determine 
a return period associated with the RMF by simultaneously plotting 
the floods determined from the RMF method and the historical 
floods extrapolated to the 50-, 100- and 200-year recurrence 
intervals modelled with the GEV distribution. 

The first author has for many years suggested that the RMF 
envelopes have a recurrence interval of about 200 years, as esti­
mated by the Weibull Plotting Position. This estimate was based on 
the following argument: the data used by Kovacs (1988) in the 
construction of the RMF lines had, in many instances, record 
lengths (actual and estimated) of the order of 100+ years. The RMF 
lines are envelopes, drawn above the data whose maximum record 
length A' was 200 years. If we are conservative and estimate the 
recurrence interval of the RMF line using the Weibull Plotting 
Position, the RI( T) of the largest observation would be r = (N+1J 
~ 200 years. It was decided to examine this conjecture as part of this 
study. 

The use of Q/Q2 ratios for scaling flood maxima 

It is useful to know how to scale the "200-year RI" RMF or any 
other flood of recurence interval T-years to shorter return period 
floods where desired. The first author suggested such a scaling in 
Chapter 2 of TRH 25 (1994). It was thought that this study was also 
an opportune time to check that assumption which was based on the 
following argument. 

Hiemstra and Francis (1979) examined the relationship be­
tween the peak flood discharge of a catchment and its hydrograph 

TABLE 1 
Ratio between T-year flood and 2-year flood (TRH 25,1994) 

T 

<VQ2 

2 

1 

10 

3.57 

20 

5.18 

50 

7.80 

100 

10.24 

200 

13.14 

1000 

22.00 

10000 

41.24 

shape defined by the volume. What they discovered was that for 
extreme events, the peak discharges of various magnitudes were 
well modelled by the censored log-normal distribution. They 
extracted the statistics of many floods in the Department of Water 
Affairs and Forestry's break-point continuous flow rate database at 
that time and found the coefficient of variation of the peak dis­
charges averaged 1.3 with a fairly small variation. Based on this, 
the first author produced ratios which relate the T-year flood to the 
2-year flood. These ratios, Q/Q, reproduced from TRH 25 (1994) 
in Table 1, enable one to convert any flood of a given RI to a T-year 
flood. 

To check this assumption in this study, the maximum observed 
flood recorded in the observation period from each of the 130 
catchments was associated with a return period using the Weibull 
Plotting Position (7* = N+l). This flood was then scaled to 10-
and 50-year flow rates using the Q/Q, ratios and compared with 
those computed from the GEV model fitted to the full set of data in 
each record. These values were then compared and it was deter­
mined if these ratios are applicable in reducing flood maxima to 
floods of desired recurrence intervals. 

The modified rational formula (MRF) 

The ratonal formula is expressed (in 57 units) as: 

Q „ a t = c M / 3 . 6 Kpeak 

where: 
c 

(5) 

A 

is a dimensionless runoff coefficient which ranges from 0 
t o l 
is the intensity of rainfall (mm per hour) of return period T 
(years) and duration T, where Tc is the time of concentra­
tion (hours) of the catchment 
is the area of the catchment (in km2). 

This formula is usually limited to catchments with small areas 
(< 100 km2). The reason usually given for this is that the formula 
does not take into account the areal reduction factor (ARF) and 
utilises point design rainfall intensity. It should be noted that flood-
causing rainfall in smaller catchments is mainly due to concen­
trated thunderstorm activity, whereas flood-producing rainfall in 
larger catchments is mainly due to long-duration, widespread 
synoptic events (Pegram, 2003). The consequence is that the larger 
the catchment, the longer the duration of the flood-causing rainfall. 
To simplify the analysis, Pegram (2003) used the scaling properties 
of the GEV distribution fitted to rainfall depths, hence, using the 
GEV distribution defined in Eq. (3), the precipitation scaling 
relationship becomes: 

P d i r = ( / ( + (a//<)[1-{-ln(1-1/^)}'<])d ,- (6) 

where: 
is the rainfall depth of duration d and return period T. 

For each of Kovacs' regions, representative 1 -, 2- and 3-day rainfall 
depths for 2-, 5-, 10-, 20- and 50-year return periods were extracted 
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where: 
c 
P,, 

yT 

is the conventional rational formula (RF) c: 0 < c < 1 
is the median Id annual maximum rainfall available 
from maps (e.g. Adamson, 1981; SmithersandSchulze, 
2003) 
is the reduced variate of the GEV Distribution of the 
rainfall 
is the catchment area in km2. 

In this paper the 10-, 20- and 50-year floods of the MRF are 
compared with the observed flood peaks modelled with the GEV 
distribution of the same recurrence intervals. The intention is to 
determine whether the MRF in its coarse form is possibly a useful 
candidate for predicting the design floods of a catchment. 

Figure 1 
Fit based on the GEV (smooth 

curves), to an average of Adamson's 
(1981) data (dots) for Kovacs (1988) 
RMF Region 5 (from Pegram, 2003). 
The thin lines are trend-lines fitted to 

each set of the 1-, 2- and 3-day 
rainfall duration data. The thick lines 
are the combined models fitted to all 
the data with a common power law 

relationship. 

from Adamson (1981) by Westray (2001). These were averaged 
(pooled) by region and Eq. (6) was fitted to the 15 points by Least 
Squares. An example is given in Fig. 1 where the pooled data and 
the fitted function are compared for Region 5. The k and r\ values 
were fixed at -0.182 and 0.678 respectively by using the whole 
South African data set as a first approximation (Pegram, 2003). 
Values of jj and a were the parameters that were estimated for each 
region. It was found that the coefficient of variation C = cl\i was 
effectively independent of Kovacs' regions, so the major variable 
to concentrate on was the parameter p.. 

In addition to this simplification, for all the catchments whose 
data are available in the report by Petras and Du Plessis (1987), the 
time of concentration Tt computed from the Kirpich (1940) for­
mula: r = 0.0633(L/S/3"5 (where as usual, L is the length and Sis 
the average slope of the catchment's longest watercourse) was set 
to the duration of the flood-causing storm as demanded by the RF. 
When this duration Te was plotted against area, the points clustered 
around a curve to which a power law relationship could be fitted. 
This is also the practice in Australian Rainfall and Runoff (AR&R, 
2001). For interest sake, this was superimposed on the areal 
reduction factor (ARF) diagram, published in the Flood Studies 
Report (FSR, 1975), which appears as Fig. 2. It is possible that the 
FSR's ARF curves over-estimate the ARF in South Africa, but the 
degree is likely to be a matter of climate. Conscious of this, it is still 
remarkable that the Area ~ T_ curve yields an almost constant ARF 
value of 88% across the FSR curve. Thus, as long as the precipita­
tion intensity used in the rational formula corresponds to the time 
of concentration of the catchment, the point rainfall is automati­
cally scaled by a constant ARF. Combining these ideas, the MRF 
was then expressed (Pegram, 2003) in preliminary form as: 

(7) 

Does the GEV regionalise following the RMF? 

The annual observed flood data series, extracted from the observed 
records, were modelled using the GEV distribution. This was 
explained above. The records were thought to be long enough, in 
most cases, to make reasonable predictions of future events. 
Following this analysis, it was of interest to determine if the shape 
parameter k established by modelling historical floods using the 
GEV distribution, display any trends with a region descriptor such 
as Kovacs' regional X-value. That concludes the introduction. 
The full analyses are reported in the following sections. 

Floods and landscape 

Landscape data from 25 catchments were extracted in a preliminary 
study by Parak (2003) that corresponded with the peak discharges 
of the catchments modelled in this study. Parak (2003) captured 
morphometric data of 45 catchments across the country in his 
investigation into the relationship between floods and landscape. 
He used already catalogued data (Petras and Du Plessis, 1987 and 
Kovacs, 1988) and supplemented this with further data through 
map work from Midgley et al. (1994). In this paper the landscape 
data were utilised to assess whether they improved the prediction 
of floods compared with the RMF, which uses only catchment areas 
in particular regions. The flow rate that was used for comparison 
here was the 20-year event determined by modelling the historical 
floods of the catchments using the GEV distribution, the rationale 
being that: 

It would be the least likely estimate to be affected by fitting the 
wrong probability distribution 

• Many of the records were longer than 20 years. 

The flood and landscape data were split into two groups, one for 
calibration and the other for validation. The landscape data in­
cluded catchment area, mean channel slope, mean annual precipi­
tation, drainage density, catchment relief and ruggedness number. 
These are summarised in Table A1 and explained in the Appendix 
and a typical catchment and its derived geometry are shown in 
Fig. 3 (from Parak, 2003). It is aknowledged that the landscape data 
catalogued are sensitive to map scale, i.e. at different scales, 
different values of the parameters will be obtained. For example, 
the river detail shown on a larger scaled map is much less than that 
which is shown on fine-scaled maps. This has a direct influence on 
the magnitudes of the landscape parameters. Measures such as total 
stream length, stream orders, drainage densities and ruggedness 
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. 0 0 0 

Figure 2 
The FSR diagram 1 0 0 0 

for ARF (FSR, 
1975), as contours 

in percentages, 
with Te vs area 

relationships (using 
Kirpich's (1940) 

formula: 
Tc = 0.0633 
njSfMi) for 
South African 
catchments 

superimposed 
(Westray, 2001). 

The best fit is: 
T =0.148 A 0 " ' . 

DURATION. D 

Basin area 
Effective area 
Longast watarcourea 
Total stream length 
Basin relief 
Mean river slope 
Shape factor A/A. 
Time of cone. 
Mean annual preclp. 
Mean annual runoff 
Max. obs. flood peak 
Representative period 
RMF KWalue 
Strahler basin order 
Shreve magnitude 
Drainage density 
Ruggedness number 
Bifurcation ratio 

4 152 km2 

4152 km2 

181km 
1 286.7 km 
820 m 
0.00132 
0.56 
47 h 
785 mm 
325x10,nrVs 
1220rrr7s 
69 years 
4.6 
4 
96 
0.310 km/km2 

0.254 
2.10 

Figure 3 
Plan, long section and basin properties of the Klip River catchment (represented by gauge C1H002) in the eastern highveld area of 
South Africa (Petras and Du Plessis, 1987; Kovacs, 1988; Midgley et al., 1990 and Parak, 2003). Reference should be made to the 

Appendix for the definitions of these parameters and those summarised in Table A1. 
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numbers are all dependent on the scale of the map 
from which these parameters were extracted. More 
accurate measures can be made with the use of 
finer scaled maps, but this comes at the expense of 
greater effort and time requirements. Parak (2003) 
used uniform scaled maps from Midgley et al. 
(1990) showing river detail at 1:250 000 for the 
data extraction. 

The criterion for choosing an appropriate model 
was based on the determination of the R2 statistics 
through stepwise regressions. The first group of 
flow rates were plotted against catchment area to 
determine a regression equation and R2 statistic in 
the calibration set. The regression equation was 
then used to generate flow rates of the second 
(validation) group from the independent variable 
and these estimates were plotted against the re­
corded ones of the same group to see if they 
mimicked each other. The degree of validation 
was based on the strength of the R2 statistic. 
Subsequently, other landscape data were com­
bined with catchment area to examine if they 
improved the strength of the relationship (based 
on the R2 statistic) in calibration and validation. A 
conclusion was drawn based on the examination 
of the R2 statistic in calibration and validation of 
the two groups of flood and landscape data. 

In the original study Parak (2003) examined 
the relationship between the flood peaks and the 
various candidate landscape parameters. The 
model, given by Eq. (8), was selected after exam-
iningthe literature ongeomorphological estimates 
of floods and carefully plotting pairs of variables. 
A power-law relationship was selected and vari­
ous groupings of "independent" variables were 
included in the regression equation, which was the 
logarithm of Eq. (8), shown as Eq. (9). The model 
selection process was performed by fitting the 
model to a calibration set and checking the fit for 
a validation set. The most suitable formulation 
was a power relationship of the form: 

Q2n = aA"XcY' c u d (8) 

where: 
a, b, c and d are parameters to be regressed 
from the data and A, X and Y are landscape 
quantities. 
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Figure S 
Generated flow rates (based on the regression of Fig. 4) vs. observed 

flow rates for the 20-year return period - validation set 

The formulation for regression was to take logarithms of Eq. (8) 
and regress using the linearised model: 

log(Q20) = log(a)+b.log(>A)+c.log(X) + d.log(y) (9) 

Figure 4 shows the calibration of the empirical equation defining 
the 20-year flood as a function of catchment area. The R2 statistic 
from this model implies a strong relationship (0.856) and good fit. 
When this empirical model is tested against the reserved data of the 
second group in validation (Fig. 5), the fit is evidently poor, 
producing a moderate R2 statistic of 0.53 8. When further landscape 
data are added to catchment area in the hope of improving the fit of 
the empirical models, the results are no better. The addition of 
landscape data as independent variables in the prediction of floods 
did not improve flood prediction and it seemed as though the best 
model of floods and landscape is simply area based. These results 

are based on the negligible difference of the R2 statistic in calibra­
tion and validation when additional landscape data are added to the 
catchment area, implying no significant additional prediction input 
from these parameters. The results are summarised in Table 2. 

What is evident from the table is that the one group of data is 
quite different from the other; Group 1 is stronger in calibration and 
validation than Group 2. The grouping was a random choice 
process and this result is probably due to the small sizes of the 
groups (respectively 13 and 12 stations). Larger data sets are 
probably required to eliminate the effects of outliers in the samples. 
Table 2 also shows that catchment area on its own is a sufficiently 
good predictor of floods and the addition of landscape data does not 
improve this by much. This observation is based on the values of 
R2 for the validation group. Besides Area, when Relief and then 
MAP are included, the results are best for validation using Group 
2 (0.556 and 0.553 respectively compared to 0.538 for Area only). 
Conversely, when Group 1 is used for validation, Area alone has 
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TABLE 2 
Results of the step-wise regression 

%,^-

Area 

Area and slope 

Area and MAP 

Area and drainage density 

Area and relief 

Area and ruggedness number 

Area, slope and MAP 

Area, ruggedness number and MAP 

Area, drainage density and MAP 

Area, relief and MAP 

(1), (2) and (3): These numbers in parentheses 
validation data. 

Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 
Calibration: 
Validation: 

R2 

Group 1: calib. 
Group 2: valid. 

0.856 
0.538 (3) 

0.869 
0.534 
0.886 
0.507 
0.872 
0.531 
0.875 

0.556 (1) 
0.880 
0.552 
0.896 
0.502 
0.920 
0.523 
0.887 
0.488 
0.890 

0.553 (2) 

Group 2: calib. 
Group 1: valid. 

0.538 
0.856 (1) 

0.566 
0.724 
0.552 

0.770 (3) 
0.538 

0.784 (2) 
0.644 
0.628 
0.593 
0.659 
0.635 
0.393 
0.596 
0.640 
0.571 
0.534 
0.647 
0.605 

flag the "best" (based on the R2 statistic) fit to the 

the best R2 (0.856) followed 
by the inclusion of Drain­
age Density (0.784) and 
MAP (0.770). Drainage 
Density is an area surro­
gate, so the apparent 
strength in validation might 
be due to this fact, whereas 
MAP is independent of area. 

Ultimately, designers 
require an efficient flood 
formula and the acquisition 
of landscape data is not easy 
nor does it seem to provide 
much help to use a more 
complicated formula. Thus 
the use of the RMF (area-
based) empirical equations 
seems justified. However, 
since this is only a prelimi­
nary review, further inves­
tigations into the role of 
landscape in affecting a 
flood regime is required to 
help with the understand­
ing of this phenomenon. 

Return period of the 
RMF 

The RMF method of flood 
computation was applied to 
57 catchments, where both 
annual flood peak data were available and where the 
regional K-values were known from Kovacs (1988). 
The floods were estimated for Regions 4.6,5 and 5.2, 
which nearly cover the entire country (the remaining 
regions have a small number of recorded floods in 
their database). The floods were modelled from 
historical records using the GEV distribution and 
were plotted coaxially with those that were deter­
mined from the RMF, corresponding to the same 
regions and catchments, against catchment area as 
the independent variable as shown in Fig. 6. Since 
the return periods of the modelled floods were known, 
the return period of the RMF could then be esti­
mated. For this reason, the 50-, 100- and 200-year 
floods were determined from the statistically mod­
elled floods to determine the return period of the 
RMF. The results are shown in Figs. 6,7 and 8 which 
cover Regions 4.6, 5 and 5.2 respectively. 

The 200-, 100- and 50-year observed flood 
magnitudes are represented by the thin solid line, the 
thin dashed line and the thin dotted line respectively. 
These magnitudes were determined from the statisti­
cal analysis of observed flood data for the individual 
catchments using the GEV distribution; a subset of 
the full data set (used for comparison with landscape 
analyses) appears in Part 3 of Table A1 in the Appendix. The RMF 
estimates were then determined from Kovacs (1988) using the 
Francou-Rodier equation and Kovacs' regional /T-values for the 
corresponding catchments. These are represented by the thick solid 
lines in Figs. 6,7 and 8. The 200-, 100- and 50-year flood estimates 
are plotted coaxially with the RMF estimates for the corresponding 
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Figure 6 
Determination of the return period associated with the RMF for Region 5.2. The 
bold line is the RMF estimate explained by the Francou-Rodier equation and the 
thin lines (dotted, dashed and solid) are trend-lines fitted to the 50-, 100-, and 
200-year floods estimated from the recorded flows (points) in region 5.2, using 

the GEV distribution. 

catchments in regions 4.6, 5 and 5.2 to examine if a return period 
can be associated with the RMF. 

From Figs. 6,7 and 8 it is clear that the RMF, when compared 
to the 50-, 100- and 200-year floods, is closest to the 200-year 
flood. The trend-line equations, summarised in Table 3, make for 
interesting reading. The slopes of the corresponding curves and 
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trend-lines are not equal. In fact the 200-
, 100- and 50-year trend-line slopes are 
slightly flatter than the RMF curves for 
all the floods in all the regions except one 
(Qso for Region 4.6); nevertheless, the 
correspondence is good and provides a 
starting point for further research to ex­
plain the similarities, even if the R2 values 
are quite low. 

In all three cases, the RMF line and 
the 200-year trend-line estimated from 
the fitted GEV distributions almost lie on 
top of each other and are very nearly 
parallel, mindful of the contents of Table 
3. However, it must be admitted that the 
trend-lines for the 200-, 100- and 50-year 
floods have a poor fit and a fair amount of 
scatter can be observed. In all of Figs. 6, 
7 and 8, serious outliers are evident for 
catchments with areas of about 1 000km2, 
where the RMF is more likely to be asso­
ciated with an event of return period of 
100 years. On further investigation, it 
turns out that the problem 200-, 100-, and 
50-year GEV flood estimate outliers are 
skewed by excessively large flood peaks 
that were observed in a relatively short 
record (between 20 and 30 years) for 
those catchments. It is expected that with 
more data, the effect of the outliers will be 
diminished. The result is that the plot for 
Region 5 (Fig. 7) is likely to be closer to 
the truth than Figs. 6 and 8 as it contains 
more data. In Fig. 7 the difference be­
tween the 200-year food estimate and the 
RMF estimate is greater than the other 
two, but this difference is not excessive 
and the 200-year estimate and the RMF 
estimate are of the same magnitude. Based 
on these results, it is the opinion of the 
authors that it would be reasonable to 
assume the RMF to have a return period of 
the order of 200 years. 

Q./Q2 ratios in scaling floods 
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Determination of the return period associated with the RMF for Region 5 
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The Q/Q} ratios given in Table 1 are 
based on the premise that flood peaks in 
South Africa are log-normally distributed with a coefficient of 
variation equal to 1.3. To determine whether this average relation­
ship is applicable in a design context, each of the maximum flood 
peaks recorded for the 130 catchments was assigned aretum period 
based on the Weibull Plotting Position and then scaled down to 10-
and 50-year events using the Q/Q2 ratios. These flow rates were 
then plotted against the 10- and 50-year flow rates determined from 
modelling the historical records by the GEV distribution, to exam­
ine if the scaled flow rates are of the same order as the historical 
ones. 

To simplify the analysis, a simple power-law relationship was 
sought between the ratios Q/Q2 and T shown in Table 1. This 
short-cut approach was used instead of computing the percentage 
points of the lognorma! distribution and to see its validity, the 
relationship is shown in Fig. 9, where a power law curve (,Q/Q2 = 

Figured 
Determination of the return period associated with the RMF for Region 4.6 

(description as per Fig. 6) 

TABLE 3 
Summary of the trend-lines from Figs. 6, 

Region 5.2 
Region 5 
Region 4.6 

*"RMF 

145 A048 

100A05 

48A054 

Q » 

269A041 

129 A044 

55A051 

<*m 

191 A03' 
77Aa4« 
29A054 

rand 8 

Q * 

i! 5 
338 

1.287°"") was fitted in the 10- to 100-year interval. This interval 
was used firstly because it fitted better (R1 = 0.996) than a power-
law curve through all the points and secondly, because all the 
recorded maxima were observed to lie in this interval, i.e. between 
10 and 100 years. The plot of these scaled floods with the corre-
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sponding 10- and 50-year floods modelled 
from historical records using the GEV distri­
bution are shown in Figs 10 and 11. 

Figure 10 indicates a reasonably good 
correspondence for the 10-year event be­
tween the GEV modelled flow rate and the 
scaled flow rate using the fixed lognormal 
distribution assumption. Fig. 11 indicates an 
excellent correspondence between the two 
estimates of flow rates for the 50-year event. 
The rarer floods are better estimated by the 
simple ratios than the more frequent ones 
because the 50-year flood is closer to the 
average of the record lengths. Even so, there 
seems to be little bias in the estimates, which 
might be useful if there is no distributional 
information. This will have to wait until a 
regional value of the GEV shape parameter k 
is obtained - this matter will be addressed 
below. 

The modified rational formula 
(MRF) 

Pegram (2003) introduced the concept of the 
MRF to enable the rational formula (RF) to be 
more efficient in flood prediction and more 
widely used for a variety of catchment sizes. 
He did this by replacing the rainfall intensity 
term (the i term in Eq. (5)) with a function that 
incorporates the median annual maximum 
rainfall, a scaling function of an extreme 
value distribution that includes the effect of 
return period and rainfall duration d. This last 
term is, explicitly replaced by the time of 
concentration (using the Kirpich formula), 
which he showed is a function of catchment 
area, leading to the deduction that the areal 
reduction factors are nearly constant for a 
wide range of catchment sizes; the details can 
be found in Pegram (2003). The combination 
of these observations allows the MRF to be 
expressed as a simple function of the median 
annual maximum rainfall, the reduced variate 
of an extreme value distribution and catch­
ment area as Eq. (7), repeated here: 

C W = cx0.318Pw.yi[1 + 0.385yr]/»
0558 

(7) 

The formula was introduced as a means of 
relating various scaling properties of the rain­
fall-runoff relationship to prompt discussion 
and further investigation, not as a serious 
design equation at this stage. Nevertheless, it 
was intriguing to determine how well it fared 
in comparison with the other methods de­
scribed herein. 10-, 20- and 50-year floods 
based on the MRF were compared with the 
floods modelled by the GEV distribution 
from historical records. The values of c and 
Plday j (refer to Eq. (7)) used here were based 
on Pegram's (2003) suggestions which were 
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Plot of Q/Qj ratios vs. return period to determine a simple power-law 
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Figure 10 
Comparison of Q,0 flow rates using the Q/Qj ratios of Table 1 and Fig. 9, 

compared with those estimated from the GEV model fitted to the observed records 
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Figure 11 
Comparison of QM flow rates using the Q/Qj ratios of Table 1 and Fig. 9, compared 

with those estimated from the GEV model fitted to the observed records 
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10-year event, Region 5 
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Figure 12 
Comparison of the MRF, using P1dvi= 60 mm for Region 5 and c=0.45 for the 

10-year return period and the 10-year flood estimated from the GEV model 
fitted to the observed records 
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Figure 13 
Comparison of the MRF, using P1djyi2= 60 mm for Region 5 and c=0.5 for the 
20-year return period and the 20-year flood estimated from the GEV model 

fitted to the observed records 
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Figure 14 
Comparison of the MRF, using P, m 2= 60 mm for Region Sand c=0.6 for the 
50-year return period and the 50-year flood estimated from the GEV model 

fitted to the observed records 

average values determined for each of Kovacs' K-
regions. It is acknowledged that the values have as 
much as 25% variation within a region, depending 
on area, size and local conditions, however the aim 
of this preliminary study is to examine if the MRF's 
floods are of the same order as those observed and 
if this alternative is applicable. The regions used 
were Region 4.6, 5 and 5.2 and the Plday 2 values 
were estimated as 45, 60 and 85mm respectively 
while values of 0.45,0.5 and 0.6 were used for c for 
the 10-, 20 and 50-year events respectively. Values 
of .P j rainfall estimates for each Region AT were 
determined by Pegram (2003) from Adamson's 
(1981) regional map of median annual maximum 
1-day rainfall over South Africa. The value of c 
could vary from 0.45 to 0.75 (Pegram, 2003), which 
depends on soil type and land cover. With increas­
ing recurrence interval, the role of rainfall abstrac­
tions becomes less as, during larger events, the 
catchment becomes more saturated and the vegeta­
tion gets stripped resulting in an increase in speed 
and volume of overland flow (AR&R, 2001). 
Mindfull of the fact that large to rare events such as 
the RMF are likely to have T > 200 years which 
would equate to a high value of c, and that the 
dominant land type is fairly flat grassland, the 
subjective estimates of c=0.45, 0.5 and 0.6 were 
made for the 10-, 20-, and 50-year return periods 
respectively. 

The results of Region 5 (which covers the ma­
jority of the country) are shown in Figs. 12,13 and 
14. The results for the other two regions are very 
similar and the trend-line equations for all the re­
gions are summarised in Table 4. 

From Figs. 12, 13 and 14 and Table 4 it is 
evident that the MRF floods and those modelled 
with the GEV distribution are roughly of the same 
order of magnitude (although the 10-year GEV 
trend-line is over-estimated more than the 20- and 
50-year events). The MRF floods are generally 
larger than the GEV floods for the same return 
period and this is true of all the regions. What is also 
evident is that the MRF floods model the GEV 
floods better as the return period increases (larger, 
less frequent events). This is also true of all the 
regions. In all figures, a large amount of scatter is 
observable in the plots of the GEV modelled histori­
cal flows. This is especially true for catchments of 
1000 km2 area. As the recurrence intervals increase, 
the scatter becomes less and it would seem that the 
extreme value distribution is more suited to the 
50-year recurrence interval floods. 

The results indicate that the MRF computes 
floods of similar magnitude to those modelled, and 
the difference might be attributed to the choice of c 
and P 2 values whose variation can be of the order 
of 25%, which Pegram (2003) suggests is probably 
twice the typical standard error associated with 
flood peak measurement. The conclusion is that the 
MRF provides a potential alternative "as a check 
formula for estimating flood peaks on a wide range 
of catchment areas for any recurrence interval" 
(Pegram, 2003). The discrepancy at smaller recur-
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TABLE 4 
Summary of the trend-line equations from Figs. 12,13 and 14 for 

Region 5; and Regions 4.6 and 5.2 which are not shown. 

Q5„ 

Region 5.2 

MRF 

25.2A"-558 

34.0A0-558 

81.7 A " " 

GEV 

49.2A 0 5 " 
79.6A0-359 

133.6A0"4 

Region 5 

MRF 

17.8A0558 

24.0A0558 

36.5A"558 

GEV 

12.5A°-5M 

22.1A"-5" 
455A0.482 

Region 4.6 

MRF 

13.3A"-558 

18.0A0-558 

27.4A"-558 

GEV 

2.51 A0-679 

5 7 8 A 0 . 6 3 0 

15.0A0577 

TABLE 5 
Statistics of the GEV k 
and Kovacs' regional K 

Kovacs 
K 

5.2 
5 

4.6 

Mean 
GEVk 

-0.671 

-0.477 

-0.463 

Standard 
Error 

0.102 

0.0585 

0.113 

4.4 4.6 

Kovacs' Regional K 

4.8 5 5.2 5.4 
rence intervals might be attributable to sev­
eral sources - the choice of coefficients c based 
on return periods only rather than including 
more detailed considerations of land type and •* 
cover, the use of the median instead of the 10- g-
or 20-year rainfall (also available from maps to -0.4 
(Adamson, 1981)), the GEV shape param- o 
eters of the rainfall, chosen as a fixed k = - E 

•a 

0.18, which is far less skew than streamflow 
which averages k = -0.5 (see below). What is 
encouraging is that the slopes of the lines are 
not that different. For larger events, the MRF 
flood estimates are closer to the GEV mod­
elled floods. 

0 

1.2 

Regional GEV distribution values 
-1.6 

- • — Msan 

- • — + st. deviation 

-A st. deviation 

x GEV k parameter 

The parameters of the GEV distribution in­
clude a shape parameter k. The relationship 
between this value and the regional A -̂value 
introduced by Kovacs (1988) is now examined to detect if any trend 
exists. The GEV k was allowed to assume any fitted value above -
1.5. The lower limit was placed on the distribution in cases where 
extreme outliers skewed the extrapolation to unreasonable flood 
magnitudes. The GEV k, because it was determined by minimising 
the least squares in the model, was hoped to display a trend with the 
regional /w-values. The GEV k and the regional K were plotted 
against each other for Regions 4.6, 5 and 5.2. The results are 
summarised in Table 5 and are shown in Fig. 15. 

From Fig. 15, it is evident from the mean that no strong 
relationship exists. The GEV lvalue for each catchment is plotted 
against the regional K-value for the region in which it is found. The 
mean GEV k for each region, plus and minus a standard deviation, 
are also plotted and show that the least deviation is for Region 5, 
where most of the data are. However, no real conclusion can be 
attributed to only three points and the lack of catalogued regional 
/w-values for many of the catchments possibly account for this 
shortfall. The results are inconclusive; however, it would be nice to 
think that a relationship did exist (as shown by Kjeldsen et al., 
2002) and that the modelling of historical floods could be region-
alised, perhaps using some regional definition other than the RMF. 

Conclusion 

It is difficult to place exact values on flood magnitudes and their 
probabilities of occurring. No one method (empirical, determinis­
tic and probabilistic) can be accepted a priori as better than the 
other, as all methods are approximations and their accuracy is 

Figure 15 
Plot of GEV k (shape parameter) and mean plus and minus a standard deviation, vs. 

Kovacs' regional K-value for Regions 4.6, 5 and 5.2 

relative. However, if one has a sufficiently long period of record, 
then one can make reasonably accurate predictions on future floods 
based on what was observed in the past. This premise is based on 
the assumption that climatic and geological controls in flood 
production remain the same as when the floods were observed. The 
database of annual flood peaks for the 130 catchments around 
South Africa allowed us to utilise the probabilistic method in 
determining future flood magnitudes that were, in all probability, 
representative of the truth. This database was used as a reference set 
to validate the other methods in review. 

The addition of landscape data in an attempt to improve flood 
prediction was not particularly dramatic, nor did it provide much 
insight into which geomorphometric controls are involved in flood 
response. The role of landscape in flood production is not in doubt; 
however, further investigation is required in this regard. Larger sets 
of landscape data at accurate scales are required to assist in this 
endeavour. In this preliminary study it was found that landscape 
data do not make flood prediction more accurate and the area-based 
RMF empirical equation seems best. If an understanding of the role 
of landscape in flood production is required then the study should 
perhaps be based on physical and scaling, rather than statistical 
relationships. 

The RMF method of flood computation is a versatile and easy 
method to compute the upper limit of floods that a site or region has 
historically experienced within the observed period of record. In 
this paper it was found that the return period of the RMF is 
approximately 200 years and this will no doubt increase the 
popularity of this method. If the return period is known, the RMF 
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can now be used as a convenient check method to ascertain the 
validity of design flood magnitudes. Once the data set used in this 
paper is augmented by 15 or more years of observed annual floods, 
refinements are likely to appear. 

The use of the Q/Q 2 ratios, suggested in TRH 25 (1994), was 
found to scale observed flood maxima to flow rates with desired 
return periods reasonably accurately. The Weibull Plotting Posi­
tion was used to associate a return period with the flood maxima 
and was based on the flood having been observed within the 10- to 
100-year interval. The floods were reduced to 10- and 50-year flow 
rates through interpolation of the ratios; extrapolation to larger 
events is yet to be tested. 

The use of the MRF proved to be a useful modification of the 
conventional rational formula and predicted flood magnitudes of 
similar order to those observed. It has potential to provide an 
alternative to other flood computation methods and might be used 
as a check formula for design floods for a wide variety of catchment 
sizes and return periods, especially where site-specific rainfall data 
and c-values are used. 

The GE V scaling parameter k did not show any particular trend 
with the regional K-values. Other definitions of regionalisation 
may allow a stronger relationship; it is known that more arid areas 
experience floods with higher skew which in turn should give more 
negatively biased A-values. Our results were inconclusive, but 
again, more observed flood data should refine this. 

The thoughts and ideas presented in this paper are here to serve 
as preliminary insight into some interesting relationships between 
some of the flood determination methods employed in South 
Africa. Admittedly, the flood database used in this investigation is 
15 years old, and in many instances, a fair degree of scatter is 
observable in the flood distributions. Longer records of floods are 
required to possibly eliminate these anomalies. However, the flood 
database utilised did provide a consistent foundation to launch this 
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Appendix 

Hydrologic and morphometric parameter definitions 
(from Parak, 2003): 

1. Catchment area: A (km2) 
This is the gross catchment area that is represented by the relevant 
gauging station. 

2. Ineffective area: A.m (km2) 
This includes those areas from which runoff cannot reach the river, 
for example from pans or depressions. 

3. Effective area: Ae (km2) 
This is the part of the catchment area that contributes runoff to the 
rivers and ultimately the relevant gauging station. It is the differ­
ence between the gross catchment area and the ineffective area. 

4. Catchment perimeter: P (km) 
This is the distance measured along the catchment boundary, i.e. 
the distance along the watershed boundry. 

5. Longest water course: L (km) 
This is the distance from the gauging station along the longest 
watercourse to furthest point on the channel, i.e the start of the 
permenent streams (fingertip tributary) near the catchment bound­
ary. 

6. Maximum elevation above sea level: Z (m) 
This is the point of maximum height above sea level on the 
catchment divide (watershed). 
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7. Elevation of gauging station above sea level: Zo (m) 
This is the elevation of the gauging station above sea level. 

8. Catchment relief: R (m) 
This is defined as the height difference between the maximum 
elevation on the watershed and the elevation of the gauging station. 
It is thus the difference between Zm and Z. 

9. Mean river slope: S 
The mean slope of the channel or river is computed from the 
longitudinal profile of the river along the main watercourse from 
the furthest point along the channel (fingertip tributary) by equat­
ing the cut and fill areas (refer to Fig. Al). 

, fingertip tributary 

" • * * * . 

Distance along longest stream, L (km) 

10. Shape factor: AJAc 

This is the ratio of the gross catchment area (A) to the areaof a circle 
(Aj drawn from the longest possible catchment diagonal (refer to 
Fig. A2). 

11. Time of concentration: Tc(hours) 
This is the time required for a water particle to travel from the 
catchment boundary along the longest watercourse (L) to the gauge 
at the basin outlet, and was computed from Kirpich (1940): 

Figure A1 
The mean channel slope (after Petras and Du Plessis, 1987) 

T = 0.0633 (Al) 

12. Mean annual precipitation: MAP (mm) 
This was determined on 1:250000 scale isohyetal maps. 

13. Mean annual runoff: MAR (10s m3) 
This was obtained from the gauging records. 

14. Maximum observed flood peak: Qmax(m
3/s) 

These are the maximum observed flood peaks recorded at the 
relevant stations for the length of the representative period. 

15. Representative period: N (years) 
This is not the return period, but the length of record at the gauges. 

16. RMF K-value of region 
This is the K- value of the region where the gauging station is found, 
determined from the Map of Maximum Flood Peak Regions in 
Southern Africa (Kovacs, 1988). This map devides South Africa 
into hydrologically homogeneous regions. 

17. Total length of all streams in basin: LL (km) 
This is the sum of the lengths of all the streams and channels which 
feed the catchment outlet at the gauge. This was determined from 
a l:250000-scalemap. 

18. Strahler basin order 
This is the order of the channel, ordered according to the method 
of Strahler (1952), at the catchment outlet (see Fig. A3(a)). The 
smallest recognisable channels (fingertip tributaries) are desig­
nated order I. Where two channels of order /join, a channel of order 
i+l forms downstream. Where a channel of order/ and i+1 join, the 
channel downstream assumes the order of the higher channel. 
These were determined from 1:250000-scale maps. 

Figure A2 
The shape factor A/A 
(after Petras and Du 

Plessis, 1987) 

Area = Ac 

1 boundary 

Figure A3 
Two methods of stream ordering 

(a) Strahler basin order 
(b) Shreve magnitude 

junction of two streams, the resulting order of the downstream 
channel is the sum of the orders of the two streams feeding it. These 
were determined from l:250000-scale maps. 

20. Drainage density DD (km/km2) 
This is the quotient of total stream length within a catchment and 
the catchment area, determined by dividing XL by A. 

21. Ruggedness number RN 
This is defined as the product of drainage density and catchment 
relief, i.e. RN=DDxR. 

19. Shreve magnitude 
This is the order of the channel, ordered according to the method 
of Shreve (1966), at the catchment outlet (see Fig. A3(b)). The 
Shreve magnitude of a catchment stream network reflects the 
number of fingertip tributaries feeding the catchment outlet. At the 

22. Bifurcation Ratio Rb 

This was determined by plotting the number of streams in each 
order of a catchment on a logarithmic scale with the stream order 
on a linear scale. The slope of the fitted regression line is the 
bifurcation ratio. 
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ĉ  
»o 

c 

*ff 
c> 
» n 

— 1 

O
N

K
H

O
R

S
T

 

^ cc 

o 
33 
T - N ) 

< < cc a 

O 

<*-i 
f S 
r*̂ . 

»T) 
OC 

P-

q 
r-̂  
«* 

>c 
i n 

o 

C l 
r O 

O 

o 
o 

o 
C ! 

oc 

CD 

—̂  OC 

__ 

q 
CD 
r^. 

<"•"-: 

r ^ 
• o 

— • * 

O 

I N 
» o 

— ^r 

Eb 
__; 
s 
o- i 

g 

£ 
u 

p 
CO 

f S 

c c 

r s ] 

O 

<» m 

r-J 

t-; 
e 

_ 
>/", 
g 
o 
e 

u- i 

-*• N O 

p 
K r ^ 

—" 

O 

O 
' i^ i 
r ^ 

g 
O N 

t n 

' r i 

0 

o 
O N . 
• r ; 

'̂  

0
0
T

 V
E

T
 

as 
0 

o 
a -* CJ 

r~ 
oc 

' ~ i 
• r * 

M 

d 

r̂  
m 
o 

I N 
r<-i 
f O 

g 
o 
c 

• o 
O 
f l 

oc 
o' 
CO 

p 
-tT 
o>. 

OC 

•* m 

o 

oc 
• * 
r^ i 

N
O

S
TE

R
 

u 
S 

r-
g O 
^ *n 
U 

p 
o' 
r - j 

O N 

r-4 
O 

e 
•̂  N O 

O N . 

r - i 

o 

O N 

g 
p d 

o 
-* O N 

— 
o 
N O 
r - t 

O 
• * 

-9 -

t 
( N | 
vC 

^r> 

O 

•* r*-N C 

i n 

w 

< 

O 
r-' 
t̂ -

N O 
' / - i 

r^ 

p 
r j 
r - l 

N O 
N O 

o 

r^ 
^r 
p 
o 
o 
d 

g 
o-
r-~ 

— 

p 
r-' 
r-
rr, 

O 

d 
m i*^. 

m 
r-
N O 

' r , 

0 

f*^ 

r> N O 

'/-. 

3 

> ^ 

o 
[Ij 
N C 

U 

g 
o 
EC 
oc 
U 

p 
OC 
• * 

o c 
o c 
1 -

o> 
O N 

C I 
i n 

M 
NO 
f N 
O 

o 
o 

„ 
f * l 
O0 

r t 

o-' 
O N 

0 
f i 
r ^ 
f S 

r-

fn 
es 

o 

t~ 
O N 

rn 
Csl 

)N
D

E
R

 

>_-? 

o 
_̂  
Q 

p 
i—! 
r -
cv i 

O 
- t 
o 

N C 

K 

^ 
-c 
d 

o 
f l 

o 
d 

OC 
NO 

r̂  

— 

p 
d 
>*-) 

p 
<̂ i 
M 
— 

<^i 
• r ; 

r-

co 

m 
' O 

r--

X 
X 

NC 

g © 
K 
X 

o 
r-i 

O-
r^, 

o c 

OO 

m 
•5T 

O 

f". 

O 

o 

NO 
NO 

O" 

— 

o c 

o 
NO 

o 
fNJ 
( T ) 

—' 

o c 

c^ 

o 

o c 

r~ 

X 
S 
— 

m 

o 
nn 
<N 

-i-

O 
N O 
r^J 

f N 
f S 
O J 

O 

r^, 
« N 

v^, 
NO 

d 

r^ 
O N 
r o 

g 
o 
d 

i n 

t 
^ 

O 

t f 
r l 

— 

p 
d 
i > 
CN 

OC 

m 
o-
f * i 

o 

oc 
m 
!J\ 
r r i 

o v; 

o 
o 
a: 
— • 

o 
o-' 
r*^ 

o c 
N O 
f ^ i 

p 
l-i 
r-i 

r-i 
C*l 

d 

i n 
o c 
- r 
c 

p d 

r-

r^ 
— 

o 
o-' 
es 
— 

e 
in 
o-
—' 

r~ 
O N 

i n 

— 

o 

i ^ 
O N 
'r. 

~~ 

2 
c 
> 

o 
o 
X 
r^; 

z 

o 
d ' r i 
O 1 

o 
r~ r^ ; 

O 

OC 

_ • r i 

O 

< r i 
T 
' ^ i 

g 
o 
o 

O N 

r f 
" T 

— 

^ 
l > 
O 

— 

o 
T f 

r̂  -5 -

OC 

o 
O N 

o 

M 

O N 

o 
O N 

O
O

T
 V

IS
 

K 

o 

o 
o 
EC 

p 
r i 
r - j 

o 
r - i 
NO 

O N 

O O 

O N 

•* o 

r* 
N O 

O 
o 
d 

• * 

'*̂ . r t 

— 

i n 

ON' 
• r^ 

— 
o c 
r i 
— i 

1 -

o 
N O 

o 

i -
O N 

N O 

V
IA

A
N

S
 

< 03 

. 
o 
o X 
O 

o 
rn 
^r 

o 
0 0 
OC 

r -

o c 

O 
• n 

o 

' r , 

m 
« g 
o 
d 

o-
m 3* 

O 

>r^ 
^ t 

~ 
O 
O 
i—. 

*-r 

o 

_« 
^ T 

F
F

A
LL

O
 

£3 
DQ 

• y . 

g 
o 
X 
r s l 

a o'oi 

O 

—' r t 

<r< 

o < n 

J 5 

o>' 

r t 
•C 

d 

o 
-c 
N C 

g 
o 
d 

en 
oc 
CO 

_ 
r i 
« o 

O 
-J 
t 

N O 
ON 
r~ 

O 

N O 
O N 

r-

A
A

S
 S

M
IT

S
 

, ; 3 

f N 
O 
o 
f f ) 
^ j 

o o 
' ^ > s r D 

o m — <N 

«T) O 
OO O 
OO <N 

o o r s j 

o o \6 

r N ' - n 
en » o 

CD CD 

—( o 
— * * • 
" * • ' - O 

© ro 
O ^-« 

o o 

r- <N 
r N f * l 
O 0 0 

— — 

O v~i 

0 0 f N 
C>v *^ t 

© CD 

K C> 
"T l O 
— 1 . ^ - H 

<3\ V" i 
< N ^ t 
O V i 
, i 

o o 

CJ\ I O 
< N , ^ -
CD v i 

-̂< 

IM
H

L
A

V
A

 
IM

K
U

L
U

 

NJ N] 

s s 
^t ** 
o o o o 
S I m v̂  

o 
Os 
m 

' O 
•r-, 
O^ 

T 

vO 

o 
~c 
d 

' r i 
r 'N 
r r 
O 
o 
o 

- T 
O N 

i n 

CO 

rn 
r-

o 
• n 
r t 
i—i 

N O 

r-
N O 

o 

vC 

r*̂  
N O 

a 
z 

1/5 

i r i 

o 
n̂ r o 

c: 
N O 

• f l -
ON 

r t 

o 
r i 
O N 

o 
O 0 

-*• 

»r ; 
N 0 

o" 

o c 

' O 

o 
o 
d 

— t ^ 
i n 

I N 

o 
r~ 
O N 
r i 

p 
rs 
ON. 

T f 

r g 
N O 
CO 

r t 

_ 

I N 
O 
CO 

r i 

G
E

LA
 

~z> 

rs 

o 
; — i 
-O 

p p 
' o r n 
m o - t 

NO 

«y-i o 

«n ON 
O 0 0 

p p 
sri —! f o 

^- oo 
NO t 

d o 

NO T 
O N O 
O i r > 

— o o o 
d d 

O N r - t 
NO ON 
T f O 

— 

O O 
ON K 
r j O 

r q 

«r> o 
d oo 
NO r-

f T ) 

O ON, 
o c O N 
— •^r 

i n 

o o 

O ON. 
OC ON 
— • * 

» r i 

A
R

T
W

A
T

E
R

 
M

A
T

I 

& O 

^ > ^ H 

Is *S 
> > ^ X 

390 ISSN 0378-4738 = Water SA Vol. 30 No. 3 July 2004 Available on website http://www.wrc.org.za 

- 1 7 6 -

http://www.wrc.org.za


Appendix A 

CM 

r re 
0 . 

•o 

• 

rs
ec

t 

4 - * 

e 

d/
ii 

pp
e 

_re 

ta
 o

ve
r 

re 
•o 

os
e 

JZ 
5 
re 
o 

A
fr

i 

s. 
<** 
3 

T - O 

< (0 
UJ .£ 
_ i .. 

TA
B

! 
m

en
ts

 

- C 

o 
•s 
3 
S 
1 *-

fo
r 

at
a 

•o 

ri
c 

m
et

 

o 
-= 

m
o

rp
 

T3 

lo
gi

ca
l 

a
n

 

>. X 

• * 

en 
• • * 

ta
l.

 
M

id
gl

ey
 e

 

| 
s t 

ct
ed

 

£ 
* j 
£ 

0 0 

19
8 

to 
o 
re 

> o 

fu
r-

tio
n 

in S 

•6 

O l « 

f! a: 

•a 

ra
in

s 
en

si
 

Q 

0) . i 
> E 
P o> 

Ii 
fc_ 

11 
i ; o OT 

ii 
! | 

to 

i J? 

J | 
• .2 _ 

f l 

R
ep

re
­

se
nt

. 

* ? x o 
re e 
S 

1 
> 
s 

fa 

II re = 
C3 C 

o 

ra
ti 

lu
m

be
r 

*-
^ 
*£ 

| 
-" 

• • D 

s 

en
gt

h 
(k

m
) 

mm 

2 
= 
? 
* 

pe
ri

od
 

(y
ea

rs
) 

•£ J? 
? S" 
&£ 

Vl 

'/-, 1 ' 

C l 
o c 

0.
1 

MB 
O -

0.
2 

CM 

rn 

O N 

- i -

' O 

CM 
O l 

C l 

1/1 

i n 
C M 

O -

o 
r> 

X 
UJ 

x 

r r 
O 

o 
a r v i 

< 

r -1 

•w 
<e 

0.
1 

CM 
•w 

0.
3 

C N | 

r l 

6.
8 

- f 

<N 
oc 
-£• 

t— 
C l 

^c 
r i 

— 

< 
D. 

•» c 
o 
rr~ 
r N 

<; 

CM 

'ON 

^r 
o 

O N 

o 

0.
1 

r N 

CM 

4.
1 

e g 

CM 
O N 

— 

'/-, 

O N 

l> 

- T 
' O 

1 -

UJ 
c_ 

r N 
O 

— 

C l 
c* 
5£ 

o 

i n 

0.
2 

c i 
<n 

<n 

3.
2 

© 
o 

— 

r - l 

— (S 
^r 

4.
6 

r*. 
T t 

—. 
C l 
C l 

— 

IF
A

N
T

S
 

— < c 

t - -

p 
© 
X 
r - i 

< 

© 
© 
JC 
C2 

r N 
sC 

' ' 

cc 
so 

0.
0 

_ 
CM 

0.
2 

—. CA 

c i 

2.
0 

U~: 

c i 

r-~ 
MS 
W") 

<N 

4.
6 

f * 
t 

© 
C l 
O 

i 

r -

O
N

K
H

O
R

S
 

a 
cc 

, e 
O 
S 
CM 

ca 

CM 

«* 
fcn 

0.
2 

__ 
r ^ i 

O 

O 

* 

rt 

6.
7 

oo 
M 

"* 

"-r 
o 
m 
- r 

4.
6 

o-
o 

o 
M 
<-J 
^ _ i 

Hj 

2 
C N I 

p 
O 
s 
u 

CM 
oc 

*"" 

-c 
cc 

0.
1 

cc 
cc 

0.
2 

O N 

( N 

•*• 

O 

Q N C 

I — 

• * 
• n 

e 
«o 

4.
5 

»n 
N C 

^̂  
C C 
d 

t 

O
O

T 
V

E
T

 

" O 

o 

"̂  • T 

u 

O N 

CM 

*~" 

oc 
•JD 
c c 

O 

" T 
C C 

0.
2 

» 

CM 

O 

O N 

OC' 
<N 

— 

4.
6 

<r. 
N O 

c 
o 
C C 

N
O

S
TE

R
 

UJ 

Is-
' O 

oc 
r ' i 
CM 

<•*•> 

*n 

0.
2 

~ O N 

T f 

2.
4 

o ) 

"* pw 

- f 
O N 

o 
' y > 

4.
6 

i r , 

r~ 

o 
^ 0 

•n 
CM 

-J 

< 

N O 
OC 

' 

O N 
O N 

0.
5 

' O 
cn 
r'-. 

O 

<r i 

T t 

'.n 

3.
0 

^ f s 
' V ) 

D C 

— =c 
oc 

4.
6 

* - f 

t*. 

, 
f N 

— m 

• — 

2 > 
r-
O 
c 
s 'y-i 

U 

„ 

O 
^T" 

N O 

U 

o 
o 
X 
oc 
U 

( " s i 

„ 
O ) 

0.
1 

o 
t r 

0.
1 

r i 

r j 

9.
1 

•<t 
m 

N C 
• O N 

oc 
^r 

»n 

-c 
l> 

o 
'ON. 

MS 

r i 

W
O

N
D

E
R

 

— 
o 
a 
a 

C I 

o 
r i 

'*-, 
V 

0.
7 

._ 
CM 

0.
4 

< " • ) 

r-n 

m 

7.
1 

M 

-3 -

^r 
r--
r - i 

i n 

^c 
o 

ffl 
^r — i 

_ 

UJ 

s CC 

^ © 
» ™ 

™ 

C I 

r-i 

i > 
« • 

0.
9 

C I 
2 C 
- r t 

— -Tf 

- 1 -

6.
5 

^r 
C l 

o 
oc 
sC 

< N 

«r , 

o c 
C l 

r* 
C l 
r-

X 
UJ 

!z! 

C l 

o 

K O N ! 

X 

o 
r-

*~~ 

IN 
r^ 

0.
2 

oc 
oc 

0.
2 

-3 -

r-

>r: 

3.
7 

C l 

— 
'— 

'/̂ , t*-
r - j 

kfi 

«r̂  

i n 
i n 

o 
- T 

es 
r i 

b 
O 

— o 
© 
X 
—1 

o c 
- t 

_— 

r~-
m 
© 

(N 
C l 

0.
3 

r^ 
C l 

^ i -

0.
5 

C l 
l y . 

o 
o~ 
a-
C l 

'̂ ^ 

o 

o 
oc 
c> 

. , 

U J 

o > 

_ o 
© 
~ C l 

2: 

o 
i n 
r^i 

„ 

C l 

© 

-rr 

0.
2 

i > 

< ^ i 

0.
4 

T f 

3s 

— 

* / • ; 

C l 

•r; 
0 s 

i n 

© 
p-

© 
- r f 
sC 

(N 

O
O

T 
V

IS
 

-x 

c 

o 
C ' 

~ 

•» 
_; 

cc 

® 

- r 
- i -

0.
1 

r~-

rNi 

9.
8 

o-

«t 
en 
f l 

5.
2 

O N 

I**, 
C N 
O C 

V
IA

A
N

S
 

< £0 

— 
o 
|T* 

c a 

• r i 

~ 

<t 
O N 

0.
1 

' O 

C 

0.
2 

C l 

r j 

4.
7 

OC 

O" 
C l 
C ! 

C l 
5.

4 

i -

o 
i r i 

O 

F
F

A
LL

O
 

* j 

cc 

•o 
p 
© 

1 

<N] 

C C 

cc 
o 
o 

MS 
r - i 

© 
N ^ 

CM 

f N 

3.
7 

r-

i 

r N 
c c 

CM 

• V ) 

•n 
C4 

o 
c 
'ON 

A
A

S
 S

M
IT

S
 

- j 

2 

r - i 

o 
3! 
C l 
a: 

o 
r\i 

^r 
f - i 

0.
4 

m 
r N 

0.
4 

t -
- t 

T t 

5.
0 

en 
"̂  

oc 
© 
CM 
m 

»r, 

"* 

O N 
< ^ 1 

r-~ 

"* 
N C 

^ 

f * N 
f N 

0.
9 

-» 
e 

0.
5 

• / N 

f l 

f l 

4.
6 

r*< 
cs 

• o 
C l 
r ^ j 

(N 

*r; 

9 
C l 

i n 
^C' 

IM
H

L
A

V
A

 
IM

K
U

L
U

 

fNj 

s 
^ t 

o 
™ 

~-

v 
2 

- i -
O ' 
© 
X 
tr^, 

H 

•^r 

© 
c i 

r-! 

0.
2 

r i 

r--
C l 

i n 
CN 

C l 

1.
4 

<r: 
r - i 

o 

o 
r v j 

»o 

C l 
C l 

© 
^ T 

z 
< 
c^ 

T . 

o 

5G 
^; > 

CM 
O N 

C C 
< N 

© 

- i -

vC 
CC 
•0 -

* 

c i 
-̂ r 

«̂, 

_ - t -
C l 

-

• * 

- T 

~o 
"f 

G
E

LA
 

— • ; 

H 

<N 
C : 
O 

X 
N O 

> 

r s | C N 

*o 
1 — " 

\c r^ 
CC C l 
— m 
© o 

r^ a^ 
a .̂ o 
C l C l 

© o 

oo oo 

r n •'-t 

T—1 r-J 
r- ov 

' O 

— 

OO \0 
•vf — 

r- *1-
r— r-

r- o^ 
r ^ ' ^ • 

o o 
o CN 
O T 

r^-j 

Di 

A
R

T
W

A
T

E
 

M
A

T
I 

> 2 

W
5H

00
6 

X
1H

00
1 

Available on website http://www.wrc.org.za ISSN 0378-4738 = Water SA Vol. 30 No. 3 July 2004 391 

- 1 7 7 -

http://www.wrc.org.za


Appendix A 

M 

t 
ra 
a. 
^** •a 

• 

ec
t 

( 0 
B 
0) 
c 

•3 s 
Q. 

la
p 

in 

1 
8 
M 
T3 

ho
se

 

5 
t s u 

fr
i 

< 
£ 
3 

t - O 

< <n 
w £ 
—i .« 
m 2 

.c 
o *-* 
re 
o 

« (A 

o 
k 

re 
re 

• a 

o 

m
et

ri 

o 
^ a. 
c 0 
E 

an
d 

ic
a 

H
yd

ro
lo

g 

T J 
0) 

ra 

1 « £ 
2 
5 
o 
iZ 

(IS 
• K 

5 
"5 

1 
1 
3 

I 
£ 
1 
| 

1 O 

E 
jjj 
o 

T -

<D 

1 
£ 
<A 

.9 
IS 
k. 

_̂  o 
s o 
>. X ! 

-

3 
O 

, . (0 

lg E 
3 
a 

o 
a. 
re 

5 

1" 
s. 
1 

o" 

iir 
_§_ 

3 

of 

«• 
% 

s 
o 

J5 
£ 

1 
g-fcl •X 
£ 

s 
a 

"5T 
s E 
a" 

*-o 
£ 
o> 

s _ 1 

& 
> os 

4) 

i ra 
CD 

o 

5 2 E -* 

§ a. 

II 

fe 

« c 
E 
3 

c 

sO 
r~ 
o> 

SO 
• » 
Tt-

r - j 

s o 
! • •« 

O 

e n 
t -~ 
( N 

— 

© 
sO 

© 

— 

O 
s o 
o o 

0 0 
• " 3 -
s© 

gv 
as 
•<r 

»/n 
oo 
•— 

• * • 
<N 

X 
w x 

t n 

o 
o 
a <~̂  

<D 
• * 
— • 

r^ 
sC 

— © 
en 
</n 
9 

f j> 

o 
m 

o t N 

- i -

— 

o 
t -

c~ 
^r 

C -

r s | 

<» 

< 
O H 

- f 

Q 
© 
™ 

ts 
< < 

T 
r -

tn 

— r-
— 

sO 

o c 
r s i 

O 

o OC 

r> 

t n 

sO 

o 
r-
•>t 

a 
m 
r n 

_ • * 
f S 

o o 
l *» 

sO 

# 

- A 
UJ 
CL, 

< 

t ^ 

a 

a f S 

- T 
OC 
C , 

~ 

r n 
r n 
sO 

1 ^ 
' / n 
O 
c o 

© 

o 
0 > 
f 

t S 

o c 

o 

— 

r* m 
- t 

— 

i n 
T t 

'̂  -C 

t ^ 
( N 

— 

<r, 
• * 

< 

;̂ o 

Q 

5J 
< ra 

r ^ 

r* 
o 

— 

a 
d> 
- t 

o 
- i -

a 
o 

r̂ -
(S 
«̂-— 

o rs) 

m 

— 

>-" — 

ON 
<~Nl 

OC 

c c 

o 
2 

a (S | 

t * -
• * 

.-
o 
~ 
2-. 
C as 
ra 

o o X 
r ] 

ra 

o 
sO 

a 

— 

o 
CC 

<t 

c c 
r ^ 

~ 
i 

sO 
OC 
• r . 

— 

en 

— 

r^; 

« O 

— 

- t 
c*-
r-

CC 

r^ 
• ^ i 

gr 
— 

t -~ 

j 

ŝ 
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The rational formula from the runhydrograph 

Mohamed Parak and Geoffrey GS Pegram* 
Civil Engineering Programme, University of KwaZulu-Natal, Durban, 4041, South Africa 

Abstract 

The rational formula is possibly the simplest flood estimation technique available using rainfall-runoff relationships. In 
spite of the many criticisms regarding its over-simplification of the processes of rainfall conversion into runoff, it remains 
possibly the most widely used method for estimating peakflood flows for urban drainagesystemsand small (<100 km2) rural 
catchments. However, as a result of the criticisms, the formula carries with it many cautions. One such caution regards 
the determination of the formula's runoff coefficient c, which is seen as the main difficulty in the design application of the 
formula. Mindful of this, it was decided to investigate the calibration of this coefficient, on past flood peak and flood vol­
ume pairs for a number of catchments in South Africa. To this end the "data set" of runhydrographs, which describe the 
characteristic peak and volume discharges of a catchment for a given recurrence interval, was used to calibrate the coef­
ficients for selected catchments and to explore the assumptions underpinning this simple model. This article describes 
the methods employed in achieving this as well as a discussion of the results. 

Keywords: design flood estimation, probabilistic rational formula, runhydrograph, calibration of runoff 
coefficients 

Introduction 

The rational formula is perhaps the best known and most widely 
used method for the determination of peak flood flows from 
rainfall events. It has survived numerous criticisms regarding 
its over-simplification of the complex hydrological processes of 
flood production but nonetheless is possibly the most favoured 
method used by practitioners for peak flood estimation. The 
rational formula owes its popularity to the fact that it is easy to 
understand and simple to use. The peak flood flow due to a rain­
fall event on a catchment, determined from the rational formula, 
is expressed (in SI units) as: 

(1) 
QRF = raA/3.6 

where: 
QRl.is the flood peak in m'/s 
c is the runoff coefficient, which is (in the traditional deter­
ministic approach) defined as the proportion of precipitation 
that contributes to runoff 
/ is the storm rainfall intensity in mm/h 
A is the catchment area in km2. 

The criticisms concerning the rational formula in the above form 
are not unfounded and the use of this method carries valid cau­
tions that are based on the following assumptions built into the 
formula (which are not always explicit in its presentation): 
" The maximum rate of runoff from a catchment is achieved 

when the duration of rainfall is equal to the time of concen­
tration (Tc) of the catchment, which is defined as the time 
taken for the outflow from a catchment to reach near equi­
librium due to a storm uniformly spread in space and time, 

* To whom all correspondence should be addressed. 
8 +2731 260-3057; fax: +2731 260-1411; 
e-mail: pegram@ukzn.ac.za 
Received 18 March 2005; accepted in revised form 30 January 2006. 

• The spatial and temporal characteristics of rainfall are con­
sequently ignored and the storm rainfall, as input into the 
formula, is assumed to be a rectangular pulse of duration T. 
deposited in lumped form on the catchment (i.e. there is no 
routing component implicit in the formula). 

As a consequence, the rational formula was previously limited 
in its application to small catchments (<15 km2 in South Africa 
(HRU, 1972)) and was only to be used as a check method (it 
was not to be used in isolation). It was further noted that sound 
engineering experience and judgment was required for its use. 
However, work that has since been done, locally by Alexander 
(2002) and Pegram (2003), and abroad in Australia (Institute of 
Engineers Australia, 1987), has shown that these cautions were 
too timid and its use may well be extended beyond small catch­
ments. 

For the estimation of design floods, a probabilistic approach 
to the rational formula is needed, where the variables c and / (the 
runoff coefficient and rainfall intensity respectively) of the for­
mula are associated with a probability of exceedance. A probabi­
listic approach is different to a deterministic approach (which is 
the form shown in Eq. (1)), as it does not involve the representa­
tion of a historic event. As opposed to the latter case, no unique 
combination of rainfall and catchment conditions (such as storm 
patterns, ground cover conditions, antecedent moisture condi­
tions, etc) exist to reproduce the design flood. In a probabilistic 
approach, the rational formula is used to estimate, for a given 
probability of exceedance, the magnitude of the peak discharge 
from a site; this peak would be equivalent to a discharge esti­
mated from a frequency analysis of flood records if a long and 
representative record were available at that site. 

Pilgrim and Cordery (1993) stated that the design situation is 
exactly suited to the probabilistic approach of the rational formula 
and has little similarity with the deterministic rational formula, 
so that the criticisms associated with the deterministic approach 
are not necessarily valid for the probabilistic design case. Alex­
ander (1990) stated that as the catchment size increases the value 
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of c becomes more probabilistic than deterministic in its deriva­
tion. The probabilistic approach to the rational formula has the 
same form as Eq. (1) but is defined more specifically as: 

where: 
Q,Tlis the flood peak in m'/s of recurrence interval (RI) 
T-years 
c_ is the runoff coefficient for a T-year event 
i/TcTI is the T-year storm rainfall intensity in mm/h of 
duration equal to the time of concentration T (ft) of the 
catchment 
A is the catchment area in km2. 

In this approach, the value of cfT) purports to transform a T-year 
design storm i Tcrr of duration T, into a T-year flood peak QiT> 

for a catchment of area A. The variable i. . can be determined, 
(Ic.Ti 

for a particular site, from suitable intensity-duration-frequency 
(IDF) relationships of design storms. However, the estimation of 
the runoff coefficient c _ remains the main source of uncertainty 
in the probabilistic application of the rational formula. It is the 
least precise variable of the rational formula, in spite of it being 
bounded in the interval (0; 1), and suggests that a fixed ratio 
of peak runoff rate to rainfall rate exists for the site, which in 
reality is not the case (Chow et al., 1988: 497). It is this charac­
teristic (the estimation of the design runoff coefficient) of the 
rational formula that forms the main focus of this article. To this 
end, this article investigates the calibration of the runoff coef­
ficient, on past flood peak and flood volume pairs for a number 
of catchments in South Africa, to assist with its determination. 
The calibration of runoff coefficients on past floods is also the 
practice that was adopted in Australia (Institute of Engineers 
Australia, 1987). It was shown in Australia that the use of cali­
brated coefficients in a probabilistic approach to the rational for­
mula could consistently provide flood estimates for catchments 
up to 250km-. In this research, the "data set" of runhydrographs 
produced by Hiemstra and Francis (1979) was used to calibrate 
the coefficients in order to investigate this for the selected catch­
ments. 

In South African practice, the idea of calibrating the rational 
formula's runoff coefficient is not new. Alexander (2002) pro­
posed a new standardised regional flood estimation technique 
called the standard design flood (SDF). This method is essen­
tially a probabilistic approach to the rational formula, as advo­
cated by Alexander (1990), utilising calibrated runoff coeffi­
cients. The SDF method is based on the calibration of the runoff 
coefficient against design floods determined from a frequency 
analysis, using the LOG-Pearson-III (LPIII) distribution, of 
recorded events from a number of catchments in South Africa. 
According to Alexander (2002), the SDF can be applied to all 
sizes of catchments in South Africa, ranging in size from 10 km2 

to 40 000 km2. Alexander has also suggested a standard design 
hydrograph for the SDF with a fixed triangular shape that has a 
rising limb equal to the time of concentration of the catchment Tr 

and a falling limb equal to 2TC, i.e. an effective time base-length 
of 3TC. This idealised hydrograph is the same as that proposed 
by Rooseboom et al. (1981) where, in this instance, it is noted 
that the runoff volume is greater than the proportionate part of 
the storm rainfall that runs off during the time of concentration. 
In an independent test, the average ratio of Alexander's 50-year 
SDF flood peak to the 50-year LPIII flood peak was found to be 
approximately 210% (Gorgens, 2002). Alexander's method was 
designed to be purposefully conservative and he states that the 
over-estimates fall within the range of uncertainties associated 

164 

Figure 1 
A standard bivariate normal probability density function, with a 

cross correlation coefficient of 0.85, plotted with log-transformed 
observed flood peak-volume pairs in probability space (from 

Hiemstra and Francis, 1979: 14). The bold lines in the positive 
quadrant are the 10- and 100-year return period joint-exceed-

ance contours. The dashed lines include a quadrant to the 
upper right which, on average, will include 1% of the observations. 

within all design flood procedures. However, Gorgens (2002) 
states that although the cost and implications associated with a 
conscious over-design in terms of a bridge/culvert is relatively 
minor, by contrast it is not acceptable for dam spillway design, 
where the cost of the spillway is a significant component of the 
total dam cost. An average over-estimate of 200% might render 
some projects infeasible. As such, Gorgens recommends that the 
SDF should be seen as a conservative approach similar to that of 
the regional maximum flood (RMF) method. 

Conscious of this, it was thought that where this investiga­
tion would add value would be in the calibration of the runoff 
coefficient on past flood peak and volume pairs, as offered by the 
runhydrograph method. Thus, it was hoped that this would yield 
coefficients that could, in a design situation, describe a complete 
design flood hydrograph (peak, volume and time base-length). 
The following sections describe and explain the theory behind 
the runhydrograph method, the methods employed in this inves­
tigation and the results achieved. 

The runhydrograph 

The runhydrograph method (Hiemstra and Francis, 1979) sum­
marises, for a given catchment, the family of characteristic peak 
and volume discharges for a given recurrence interval. These 
hydrographs were based on the frequency analyses of all rare 
hydrographs (which were carefully screened for reliability) in a 
continuous stream flow record and, as such, are independent of 
rainfall input and catchment characteristics. This set of statis­
tics was thus a valid data set against which to calibrate the run­
off coefficient towards a probabilistic approach of the rational 
formula. 

The runhydrograph method was developed by Hiemstra 
and Francis (1979) (in the sequel referred to as H&F) and was 
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based on earlier work by Hiemstra 
(1972; 1973; and 1974), Hiemstra et al. 
(1976) and Francis (1979). It is based 
on the joint probability analyses of 
same-event flood peak and flood vol­
ume pairs of recorded data from 43 
catchments around South Africa (see 
Table A1 in the Appendix). H&F dis­
covered that the natural logarithms of 
the flood peak and its corresponding 
volume were approximately normally 
distributed and well correlated, with 
a cross-correlation coefficient with 
mean 0.78 and standard deviation 
0.12 (a relatively narrow range) whose 
mode is 0.85. Fig. 1 shows the natural 
logarithms of the recorded flood peak 
and volume pairs plotted together with 
the contours of equal probability den­
sity ofa standardised bivariate normal 
probability density function (with a 
cross-correlation coefficient of 0.85). 
Also shown in Fig. 1 (in the positive 
quadrant) are 10- and 100-year return 
period exceedance probability con­
tours (bold lines). The dashed lines 
intersecting on the 100-year exceed­
ance contour define an area in the 
plane whose probability density inte­
grates to 0.01. Thus, on average, 1% 
of the observations will lie within this 
area, and within other areas defined 
similarly on the 100-year contour. 

The contours describe the joint 
probability of flood peak and flood 
volume exceedance and are able to 
produce "'families" of hydrographs 
(peak-volume pairs) of equal prob­
ability of jointly being exceeded, but 
of varying shape. These families 
can range from the marginal peak 
(associated with any volume), to the 
"most likely" joint peak and volume 
pair through to the marginal volume, 
each with an equal probability of joint 
exceedance. However, it can be seen 
from Fig. 1 that the plotted peak-vol­
ume pairs cluster around the 45° line 
in an elliptical shape. If the cross-cor­
relation coefficient approaches unity, the minor axis of the ellipse 
reduces to zero. Thus, although more than one combination ofa 
peak-volume pair exists that has the same probability of jointly 
being exceeded, the most likely (modal) pair will be found at the 
intersection of the 45° line on the exceedance contour, the point 
where the probability density is highest. 

Figure 2 shows the application of the runhydrograph method 
for design flood peak and volume estimation for a cross-corre­
lation coefficient of 0.85. The listed numbers on the top right 
of Fig. 3 are the standardised ordinates of the peak-volume 
exceedance contours for the selected recurrence intervals. They 
describe the joint exceedance of the most likely peak-volume 
pair (corresponding to line #1) through to the exceedance of the 
marginal peak (corresponding to the vertical axis to the left of 
line #6). It is unlikely that a peak-volume pair will occur on lines 

*csit*#«*« b* t«**i *umm*u 

STflNOHRO 
t.$3 s.oe 

SEP VOLUME IL0GJ 

Figure 2 
Joint flood peak and flood volume exceedance contours, in probability space for a peak-

volume cross-correlation coefficient of 0.85 (from Hiemstra and Francis, 1979) 

4, 5 and 6 for this relatively high correlation, and thus for the 
purposes of this investigation the modal peak-volume pair was 
chosen in order to limit the number of variables. 

In passing, it is interesting to note that this idea of describing 
hydrographs with a joint probability of exceedance of peak and 
volume, has surfaced again more recently to be exploited in the 
evaluation of dam safety (De Michele et al., 2005). 

Method and results 

The methods employed in this investigation were typical of those 
used in the derivation ofa probabilistic rational formula utilising 
calibrated coefficients, of which an explanation follows which is 
adapted from Pilgrim and Cordery (1993) (quotes appearing in 
italics): 
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Where a set of long and reliable record of flood data from a 
particular catchment exists, a frequency analysis should be 
carried out on the observed data to determine design values 
of flood peaks for a range of recurrence intervals. In this 
study, flood peak and volume pairs (QT in mVs and VT in m3 

respectively) for the 'most likely' runhydrograph was com­
puted for each of the selected catchments for RIs of 10-, 20-, 
50-, 100- and 200-years. These appear in Tables A2 to A6 in 
Appendix A. As a result of this, values of B, the time base-
length of the triangular approximated hydrographs, were 
also computed. 

A design formula for the calculation of time of concentration 
F must be selected and used consistently throughout the 
derivation and use of this method. In this study the Kirpich 
(1940) formula was used, following the lead of Petras and 
Du Plessis (1987): 

0.0633[L2/S]° 
(3) 

where: 
r is the catchment's time of concentration (in hours) 
L is the length (in km) of the longest water course 
S is the slope of the longest water course. 

• Design rainfall intensities, i lc for the corresponding time 
of concentration of the catchment and recurrence interval 
should be determined from a suitable Intensity-Duration-
Frequency (IDF) database. These were determined from 
Smithers and Schulze's (2002) design rainfall data-base 
for South Africa. These data appear in the same tables in 
the Appendix. (A computer program with a graphical 
user interface has been developed to obtain design rainfall 
depths for any location in South Africa from this database. 
The software may be downloaded from the following web­
site: http://wvv\v.beeh.unp.ac.za/hydrorisk/ and follow the 
"Design Rainfall" option). 

• From these data, values ofc/Tl can be back calculated by the 
following equation (where the variables are as defined for 
Eq. (2)): 

_ 3 . 6 Q r 
m " ^ " (4 ) 

This data also appears in the same tables in the Appendix. 

" These calibrated values of' c can then be regressed on any 
physical characteristic of the catchment. In order to validate 
th e calibrated coefficients at untested sites, regional parame­
ters with which to relate cIT) with RI were sought. However, it 
was noted by Pilgrim and Cordery (1993) that the probabilis­
tic runoff coefficients determined for Australia did not show 
much sensitivity to physical characteristics of a catchment. 

It is important to note that the values of c obtained in this man­
ner are conditioned on the use of a consistent formula for the 
calculation of Tc and a consistent database for the derivation of 
the IDF rainfall relationships. A detailed explanation of each of 
the steps listed above and the results of each exercise are given 
in the following subsections. 

The streamflow database 

The 43 catchments used by H&F in their study were based on 
the Department of Water Affairs and Forestry's drainage region 

delineations. These and their derived statistics are listed in Table 
Al in the Appendix. As a point of departure, runhydrograph 
data from H&F were combined with catchment parameters 
from Petras and Du Plessis (1987), namely area (A) and time of 
concentration (T - based on Kirpich's formula). The number of 
catchments from the H&F database, for which Tc values were 
available from the Petras and Du Plessis catalogue, reduced the 
number of available catchments for calibration to 29. These are 
listed in Table A2 in the Appendix and formed the core data set 
on which the rational formula calculations were performed. 

The rainfall database 

For each of the 29 catchments, a number of locations (depend­
ing on the size of the catchment) along the main watercourse 
within the catchment were chosen for which design rainfall esti­
mates were obtained from Smithers and Schulze (2002). The 
output from this rainfall database provides point rainfall depths 
(in mm) for durations ranging from 5 minutes to 7 days and for 
return periods ranging from 2 to 200 years at a spatial resolu­
tion of 1 arc minute in South Africa. The mean depth for each 
catchment was computed and thereafter the intensity, duration 
and frequency (IDF) relationships were computed by fitting a 
simple power-law function of storm duration to the mean rain­
fall depths. For the selected recurrence intervals, these took the 
form of: P (rainfall depth in mm) = adh and / (rainfall intensity 
in mm/hr) = adc. where dis the storm duration in hours and a, 
b and c (which equals 6-1) are the fitted power-law parameters. 
The mean intensity, corresponding to the time of concentration 
T, was calculated from the IDF relationships for the 10-, 20-, 
50-, 100- and 200-year recurrence intervals for each catchment. 
The parameters fitted to the rainfall duration, for the selected 
recurrence intervals, are listed in the Appendix (Tables A2 to 
A8). It was found that rainfall depth scaled, on average, to the 
power of 0.238 of rainfall duration and thus rainfall intensity to 
the power of -0.762 of rainfall duration with a standard deviation 
ofO.0419. 

Area reduction factors (ARFs) were not used in this study 
to scale the point rainfall depths into average depths over the 
catchment. Instead simple averages of a few representative 
points along the longest watercourse within the catchment, 
determined from the Smithers and Schulze (2002) database, 
were used to account for the variation in precipitation with posi­
tion and altitude for large catchments. ARFs were deemed not 
necessary based on the findings of Pegram (2003), of which a 
summary is presented here. He investigated the scaling prop­
erties of rainfall in South Africa and found that they could be 
expressed as a function of three factors: the median one-day 
rainfall (which is a function of location), a function of return 
period (the reduced variate of the general extreme value (GEV) 
distribution) and a function of duration. He used this finding 
to modify the intensity expression of the rational formula. The 
storm duration used by Pegram was the catchment's time of 
concentration T, as in this study, from the Kirpich (1940) for­
mula. When this duration T was plotted against catchment area, 
it was found that the points clustered about a curve to which 
a power-law relationship could be fitted. This was superim­
posed on the area reduction factor (ARF) diagram, published 
in the Flood Studies Report (FSR, 1975). He found that the 
Area ~ Tc curve yielded an almost constant ARF value of 87% 
across the FSR curve. The implication of this is that, as long 
as the precipitation intensity used in the rational formula cor­
responds to the time of concentration of the catchment, the point 
rainfall is automatically scaled by a constant ARF. It is likely 
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that the FSR"s ARF curves over-estimate the relationship in 
South Africa, but the degree is likely to be a matter of climate 
(Pegram and Parak, 2004), so it is also likely that the scaling 
behaviour will be maintained. However, the reduction factor 
would automatically be absorbed into the fitted c -values. The 
first thing to note then is that because c is explicitly a function of 
T, it is therefore implicitly independent of the ARF. 

Calibration of the runoff coefficients (cfr;) 

The next thing to explore was the dependency of c on the flood 
regime of catchments of various sizes and locations. The first 
task was to relate c to the peaks of each catchment for vary­
ing recurrence interval, T. c-values were fitted to the flood peak 
of the calculated modal runhydrograph at each site, using the 
parameters for that site as estimated by H&F. 

The summary of results from the calibration of the runoff 
coefficients is shown below in Table 1. They are the 10-, 20-, 50-, 
100- and 200-year runoff coefficients for each of the 29 catch­
ments that formed the core data set. These data and results are 
drawn from the Appendix (Tables A2 to A6). 

Coefficients from 6 of the 29 catchments (marked with an 
asterisk in Table 1) produced results that did not increase in 

magnitude with recurrence interval. As mentioned in Alexander 
(1990), an increase in c with recurrence interval is necessary to 
accommodate the known effects which also increase with rain­
fall intensity but are not accounted for in the formula's calcula­
tion process. The main effect, requiring this increase of c with 
recurrence interval, is that the catchment is likely to be more 
saturated at the start of a storm with a longer recurrence interval 
(Rooseboom et al.. 1981). This initial saturation caused by pre-
event rainfall is the main reason why one can expect to obtain 
a higher percentage runoff with an increase in the recurrence 
interval of an event. Alexander (2002) states that in many of the 
destructive events observed, severe rainfall events were often 
preceded by above-normal seasonal rainfall. 

The calibrated values of c (values of c for all 29 catchments) 
were coaxially plotted with c-values from Chow et al. (1988: 498) 
against recurrence interval. This relationship is shown in Fig. 3, 
where the coefficients from Chow et al. (1988) correspond to the 
'"flat" slopes type (i.e. for ground slopes between 0 and 2%. since 
all the test catchments in this calibration exercise had slopes of 
less than 2%) and are for the three "undeveloped" (rural) coverage 
types (i.e. cultivated land, pasture/range and forest/woodland). 
These values are shown in Table 2 and were determined for small 
rural catchments (i.e. less than 100 km2) of Austin, Texas (USA). 

TABLE 1 
The results of the calibration of the c-coefficient of the rational formula on flood peak and flood volume 

pairs from Hiemstra and Francis (1979) 
Num. 

1 

2 

3 

4 

5 

6* 

7 

8 
9* 

10 

11 

12 

13 

14 

15 

16* 
17* 
18 

19 

20* 
21 
22 

23 
24 

25 

26 

27* 

28 

29 

Station 

A2M03 
A2M12 

A3M01 

B2M01 

B4M03 

B7M04 

C1M01 

C4M01 

C4M02 

C5M03 

C5M04 
C5M12 

C5M15 

C7M01 

D1M05 
D5M01 
D5M04 
E2M02 

H1M06 
H1M07 

H7M04 
J2M03 
J3M04 

Q1M01 

Q9M10 

Q9M12 

T3M02 

W4A03 

W5M05 

River 

Hex 

Krokodil 

Klein Marico 

Bronkhorstspruit 

Steelpoort 

Klaserie 

Vaal 

Groot Vet 

Vet 

Modder 

Modder 
Riet 

Modder 

Renoster 

Oranje 
Renoster 
Sak 
Doring 

Bree 

Wit 

Huis 
Gamka 
Olifants 

Groot Vis 

Groot Vis 

Groot Vis 

Kinira 
Pongola 

Hlelo 

Latitude 
(degrees 
decimal) 

25.77 

25.82 

25.53 

25.80 

25.02 

24.55 
26.95 

28.48 

27.85 

29.17 

28.85 

29.65 
28.80 

27.27 

30.03 

31.65 
31.65 
32.50 
33.42 

33.57 

33.92 

33.53 
33.48 

31.90 

33.22 

33.10 

30.48 

27.42 

26.83 

Longi­
tude 

(degrees 
decimal) 

27.28 

27.92 

26.10 

28.77 

29.53 

31.03 

29.27 

26.67 

25.90 

26.58 

26.18 
25.98 

26.10 

27.18 

28.50 
20.62 
21.77 

19.53 
19.27 

19.15 

20.72 
21.65 

23.03 

25.48 

26.87 

26.45 

28.62 

31.52 

30.73 

Catch­
ment 
area 
(km*) 

494 

2 586 

1002 

1585 

2 271 

130 
8 254 

5 504 

17 550 

1 650 

5 012 

2 383 

6 545 

5 255 

10 891 
2 129 
5 799 

5 778 
754 

83 

26 
17 941 
4 330 

9 150 
29 376 

23 041 

2 100 

5 843 

751 

Time of 
concen­
tration 

T 
(hours) 

6.4 

18 

8.7 

18.1 

19.6 

3.7 
74 

34 

111 

18.3 

38 
23 

43 

57 

60 
27 
28 
30 

7,6 

2.4 

2.3 
42 
23 

18 

108 

85 

26 
31 

17.8 

Calibrated c-coefflcients 
10-

year 

0.301 

0.089 

0.084 

0.210 

0.091 

0.234 

0.396 

0.368 

0.179 

0.419 

0.528 

0.218 
0.280 

0.236 

0.261 

0.263 
0.130 
0.389 

0.454 
0.814 

0.278 
0.076 
0.163 

0.089 

0.176 

0.113 

0.186 

0.267 

0.177 

20-
year 

0.303 

0.093 

0.092 

0.228 

0.102 

0.233 

0.419 

0.386 

0.175 

0.440 

0.592 

0.235 
0.302 

0.300 

0.266 

0.264 
0.128 
0.420 
0.457 

0.800 

0.307 
0.082 

0.180 

0.097 

0.227 

0.133 

0.172 

0.278 

0.193 

50-
year 

0.304 

0.095 

0.104 

0.244 

0.112 

0.214 

0.444 
0.409 

0.170 

0.458 

0.660 
0.252 

0.325 

0.379 
0.270 

0.264 
0.125 

0.459 
0.461 

0.790 

0.336 

0.090 
0.194 

0.108 

0.282 

0.158 

0.156 

0.284 

0.212 

100-
year 

0.305 

0.097 

0.113 

0.254 

0.125 

0.227 

0.460 

0.425 

0.167 

0.469 

0.706 
0.264 
0.341 

0.438 

0.272 
0.264 
0.123 

0.487 
0.464 

0.787 

0.353 

0.095 
0.200 

0.116 

0.318 

0.178 

0.145 

0.285 

0.225 

200-
year 

0.306 
0.098 

0.123 

0.262 

0.135 

0.224 

0.476 
0.442 

0.164 

0.479 

0.749 

0.274 

0.355 

0.498 

0.274 

0.264 
0.121 

0.516 
0.468 

0.786 

0.368 
0.099 

0.205 
0.124 

0.349 

0.198 

0.135 

0.284 

0.237 
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Figure 3 
A comparison 
of the runoff 
coefficients c 

from Chow et ai. 
(1988: 498) with 
those calibrated 
in this study c(T). 

The c-values 
plotted from 

Chow et ai. are 
shown in thick 
bold lines and 

extend from the 
2- to 500-year 

recurrence 
intervals. 

It is evident from Fig. 3 that the 
Cm•values obtained from this exercise 
are spread around those of Chow et 
al. (1988) but are generally lower in 
magnitude. The c/n-values obtained 
from this exercise range from 0.084 
to 0.786. while the values from Chow 
et al. are between 0.28 and 0.57 (for 
the recurrence interval range of 10- to 
200-years). However, the scatter asso­
ciated with the latter data set is not 
known and hence not shown, so it is 
conjectured that they are curves fitted 
to the high side of the original data. 

Hydrograph time base-length B 

The use of flood peak and volume 
pairs for calibration in this inves­
tigation (from the runhydrograph 
method of H&F (1979)) was thought 
to have the added advantage in that 
complete design flood hydrographs 
could be calculated from these cali­
brated coefficients. From the flood database computed for the 
calibration exercise, hydrograph time base-lengths B for each RI 
were determined for each catchment. Out of interest, they were 
then expressed as ratios to the catchment's time of concentra­
tion T for the respective recurrence intervals (which, in terms 
of the rational formula, is effectively a ratio to the hydrograph's 
time to peak). The average ratio of B/Tc, for each recurrence 
interval, was then determined and the results are presented in 
Table 3 together with their standard deviations. These results 
exclude three catchments whose area is 130 km2 or less as they 
gave B/Tc ratios in excess of 7. It is noted here that there is an 
increase of base-length with recurrence interval, which means 
that the volumes of the floods relative to the peaks, as modelled 
by the runhydrograph, also increase with T. The figures in the 
third row of Table 3 show the proportion of floods whose base-

TABLE 2 
Runoff coefficients for use in the rational method for undeveloped (rural) 

regions in Austin, Texas in the USA (from Chow et al., 1988: 498) 

Character 
of surface 

Runoff coefficients c 
2-

year 
5-

year 
10-

year 
25-

year 
50-

year 
100-
year 

200-
year 

(inter­
polated) 

500-
year 

Undeveloped 
Cultivated land 

Flat, 0 - 2% 
Average, 2 - 7% 
Steep, >7% 

0.31 
0.35 
0.39 

0.34 
0.38 
0.42 

0.36 
0.41 
0.44 

0.40 
0.44 
0.48 

0.43 
0.48 
0.51 

0.47 
0.51 
0.54 

0.51 
0.55 
0.57 

0.57 
0.60 
0.61 

Pasture/range 
Flat, 0 - 2% 
Average, 2 - 7% 
Steep, >7% 

0.25 
0.33 
0.37 

0.28 
0.36 
0.4 

0.3 
0.38 
0.42 

0.34 
0.42 
0.46 

0.37 
0.45 
0.49 

0.41 
0.49 
0.53 

0.46 
0.52 
0.56 

0.53 
0.58 
0.60 

Forest/woodlands 
Flat, 0 - 2% 
Average, 2 - 7% 
Steep, >7% 

0.22 
0.31 
0.35 

0.25 
0.34 
0.39 

0.28 
0.36 
0.41 

0.31 
0.4 
0.45 

0.35 
0.43 
0.48 

0.39 
0.47 
0.52 

0.42 
0.50 
0.54 

0.48 
0.56 
0.58 

length B exceeds 3T, so that when T is 100. the proportion is 
approximately one third. 

Validation of the runoff coefficients (c(T)) 

The purpose of validation is to test whether the model operates 
in the manner for which it was designed in "ways that were not 
explicitly built into the model" (Basson et al., 1994). Validation 
tests are necessary to convey confidence that the model works as 
expected. In order to validate the c,n-values achieved in calibra­
tion, it was necessary to find some physical regional descriptor(s) 
on which to regress the coefficients. This was required so that the 
calibrated coefficients may be extended to un-gauged catchments. 

Several regional descriptors were tested in combination with 
the c^-values to examine if a relationship existed on which to 
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TABLE 3 
The mean and standard deviations of the ratio of 
the hydrograph time base-length 6 to the catch­
ments' time of concentration f. as a function of 

recurrence interval T. The proportion of B/Tc values 
above 3 in each group are given in the third row. 

Recurrence inter­
val T (years) 
Mean ofB/Tr ratios 
Standard deviation 
Proportion > 3 

10 

1.92 
0.981 
0.14 

20 

2.06 
1.09 
0.19 

50 

2.25 
1.29 
0.28 

100 

2.40 
1.48 
0.34 

200 

2.56 
1.71 
0.40 

regress the coefficients. Descriptors such as catchment slope, 
mean annual precipitation (MAP), percentages of land coverage 
and Kovacs' regional A>values (Kovacs, 1988) were tested. From 
these analyses, no meaningful relationships between any of the 
descriptors tested and the c n-coefficients were found. There 
were also no relationships found between parameters (multiplier 
and exponent) of a power-law function fitted to the c-values 
as a function of recurrence interval and regional descriptors. 
This result is in line with the comments of Pilgrim and Cordery 
(1993) for conditions in Australia, where the calibrated runoff 
coefficients did not show much sensitivity to catchment charac­
teristics and indicate that the c-values are essentially functions 
of T and T as conjectured. Because there was no dependency 
observed between c-values and catchment properties, we were 
left with a problem: what values to use for validation? 

It was decided to use the curves from Chow et al. (1988: 
498), shown in Fig. 3, where it can be seen that the calibrated 
coefficients are generally lower than those of Chow et al. and 
the latter coefficients can be viewed as an approximate upper 
bounding set of curves. This choice, although conservative, was 
based on the premise that a practitioner will make a choice of 
the value of c based on catchment slope and land usage, knowing 
that it is bounded in the interval (0.1) and usually in the range 0.3 
to 0.6. 

Twenty-one catchments, which were not used in the calibra­
tion exercise and for which flood records were available, were 
selected for validation. These catchments ranged in size from 
126 km- to 24 044 km2. The flood records were modelled using 
a general extreme value (GEV) distribution in a previous study 
(Pegram and Parak, 2004) which was shown to be the most 
appropriate distribution generally speaking for flood peaks in 
the region. For these catchments, times of concentration (T) 
values were obtained from Petras and Du Plessis (1987) and 
representative design rainfall intensities from Smithers and 
Schulze (2002) in the same manner as for the calibration set. 
These data are summarised in Table A7 (Parts 1, 2 and 3) in the 
Appendix. 

In order to obtain appropriate c-values from Chow et al. 
(1988: 498) for each catchment, it was necessary to relate the 
land coverage type and slope of each catchment with theirs (see 
Table 2 above). These catchment characteristics are given in Pet­
ras and Du Plessis (1987) where the percentages of land coverage 
for each catchment are catalogued as forest, dense bush wood, 
thin bush wood, cultivated land, grass and bare. At this stage it 
then became necessary to relate each catchment's coverage type 
(Petras and Du Plessis, 1987) to the generalised coverage types 
of Chow et al. (1988: 498). In order to easily accomplish this, 
several assumptions were made. They were: 
• That the greatest percentage of land coverage (the modal 

type) was representative of the entire catchment 
• That the following coverage types (from the descriptions of 
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Petras and Du Plessis (1987) and Chow et al. (1988) respec­
tively) were equivalent (shown in Table 4 below). 

TABLE 4 
Equivalent land coverage types from the descrip­
tions of Petras and Du Plessis (1987) and Chow et 

al. (1988: 498) 
Equivalent land coverage types 

Actual catchment land coverage 
(as described in Petras and Du 
Plessis (1987)) 
Forest 
Dense bush wood 
Thin bush wood 
Cultivated land 
Grass 
Bare 

c-coefficient land cover­
ages (as listed in Chow et al. 
(1988: 498)) 

Forest/woodland 
Forest/woodland 
Forest/woodland 
Cultivated land 
Pasture/range 
Cultivated land 

From the above procedure, design flood peaks were obtained 
using the rational formula method (QHf), i.e. a function of catch­
ment area, design rainfall (of duration equal to the catchment 
time of concentration and the desired recurrence interval) and 
the runoff coefficients from Table 2. These design flood peaks 
were compared with the statistically modelled flood peaks 
(QGa), from the same catchments, for the corresponding recur­
rence intervals. The results of this exercise, for the 10-, 50- and 
200-year recurrence intervals are shown in Figs. 4, 5 and 6 
respectively and are summarised for all recurrence intervals in 
Table 5. 

Although there is a fairly large scatter around the trend-line 
in log-space in Figs. 4, 5 and 6. some conclusions can be drawn 
from this validation exercise. 

TABLE 5 
A summary of the power-law curves, of the form 
QRF=aQGEV

b, fitted to the graphs of QRF vs. QGEV 

(where QRF are the flood peaks obtained from the 
rational formula and QGhv are the statistically 
modelled flood peaks). The average ratio of 

QRFIQGEV for each recurrence interval is also given. 

Recurrence in­
terval 7" (years) 
Factor: a 
Exponent: b 
R2 

Mean QJQ 
CFV 

10 

5.44 
0.795 
0.751 
1.84 

20 

5.10 
0.798 
0.746 
1.64 

50 

5.17 
0.785 
0.726 
1.42 

100 

5.75 
0.766 
0.699 
1.31 

200 

7.03 
0.735 
0.657 
1.21 

It is evident from the 10-, 50- and 200-year validation 
graphs (shown in Figs. 4, 5 and 6 respectively) that the estimated 
rational formula flood peaks QRF tend to be larger than the GEV 
modelled flood peaks QaFl, especially for the lower magnitude 
floods, however, their trend-lines cross the 1:1 line at the larger 
flows - peaks at about 7 000 m'/s. This trend is also exhibited for 
the 20- and 100-year validation tests (the results of which are not 
shown here) and is confirmed in Table 5 where the average ratio 
of QRIJQaE].across all recurrence intervals is approximately 1.5, 
reducing from 1.84 for T= 10 to 1.21 for T= 200. This observa­
tion is to be expected since the c-values used to compute QRP 

from Chow et al. (1988: 498), were generally larger than the 
calibrated runoff coefficients obtained in this study (see Table 
2 and Fig. 3). Although the R2-values are reasonable, the cor­
relation is calculated in log-space and may disguise the fact that 
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some flow peak ratios are occasionally different 
by up to a factor of 5 (see Table A7, Part 3 in the 
Appendix for the full list of values). As a conse­
quence, the c-values adopted for this validation 
exercise, from Chow et al., were treated as trial 
upper bound estimates, conceding that although 
consistent, the method is prone to error. 

Discussion of results 

Calibration 

Calibration of the rational formula's runoff coef­
ficients, using runhydrograph flood peak and 
volume pairs of given recurrence intervals, was 
performed with the intention of removing the 
subjectivity involved in this parameter's estima­
tion in the design environment. Use was made 
of characteristic T-year flood peak and volume 
pairs together with T-year design rainfall inten­
sities, as a function of the catchments time of 
concentration, in order to obtain the coefficients. 
The results of this exercise produced calibrated 
runoff coefficients, as a function of recurrence 
interval, which were scattered (see Fig. 3) around 
published values from Chow et al. (1988: 498). 
The calibrated values spread around the latter 
set of coefficients but were, in general, lower 
in magnitude (bar two catchments) and had 
gentler growths as a function of recurrence inter­
val. Although this result did not produce a good 
match, the calibrated coefficients were sensible 
in magnitude. However, it was worrying to note 
that calibrated coefficients from six catchments 
(of the original 29) had a tendency to decrease in 
magnitude with increasing recurrence interval. 
This deviation from the norm is attributed to the 
fact that the flood runoff data (calculated using 
the runhydrograph method) had a gentler growth 
curve, as a function of recurrence interval, than 
the design rainfall data. It was found that the fit­
ted c-values could not be regionalised in agree-

Figure 4 (top left) 
A graph, for the purposes of validation, showing 

a plot in log space of the 10-year rational 
formula flood peaks QRF (using Chow et al.'s 
(1988) c-values as substitutes for calibrated 

runoff coefficients) vs. the 10-year GEV 
modelled flood peaks QeEV 

Figure 5 (middle left) 
A graph, for the purposes of validation, showing 

a plot in log space of the 50-year rational 
formula flood peaks QRF (using Chowetal. 's 
(1988) c-values as substitutes for calibrated 

runoff coefficients) vs. the 50-year GEV 
modelled flood peaks QGE^ 

Figure 6 (bottom left) 
A graph, for the purposes of validation, showing 

a plot in log space of the 200-year rational 
formula flood peaks QRF (using Chow et al. '$ 
(1988) c-values as substitutes for calibrated 
runoff coefficients) vs. the 200-year GEV 

modelled flood peaks Qe£v 
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ment with the conclusions of Pilgrim and Cordery (1993). Thus 
it is confirmed that c is a function of land-use, slope, T (through 
the design storm) and T. The fitted c-values (Fig. 3) were gener­
ally lower than those suggested by Chow et al. (1988:498); it was 
therefore decided to accept the latter values for the purpose of 
validation, conscious of this discrepancy. 

Hydrograph time base-length B 

It was initially thought that this investigation would be able to 
produce entire design hydrographs (albeit in an idealised trian­
gular form) from the rational formula since the flood data used 
(from the runhydrograph method) described characteristic peak 
and volume pairs for each catchment. It was hoped that the ratio 
of B to T (effectively a ratio of B to the time to peak of a rational 
formula hydrograph) would be consistent and that a particular 
outflow hydrograph could be prescribed with the use of this 
method. However, the results (see Table 3) indicate that, firstly, 
the average ratios are not constant across all recurrence inter­
vals and, secondly, that the coefficients of variation are quite 
high (they range from 0.51 to 0.66). Also, the results shown in 
Table 3 exclude three catchments of area less than 130 km2 as 
they gave ratios in excess of seven, however, several points are 
worth noting. 

Firstly the base-lengths are, on average, 2.25 times the catch­
ments' time of concentration across all recurrence intervals. This 
result is somewhat less than the length of the hydrograph sug­
gested by Rooseboom et al. (1981) and Alexander (2002), which 
was 37\ but Table 3 also indicates that a fair proportion of the 
calculated base lengths exceeded this number. As explained ear­
lier, the hydrograph shape suggested by Rooseboom et al. (1981) 
was not meant to maintain continuity but was instead designed 
to be conservative. The hydrographs derived in this study are 
thus expected to have a smaller base-length as continuity is 
implicitly maintained, so the result is in line with expectation. 

Secondly, the tendency of the base-length to increase with 
T is possibly due to the method employed by H&F in extract­
ing their hydrographs and the non-linearity of the rainfall run­
off process (abstractions reduce with T). As depicted in Fig. 7, 
H&F employed a truncation level for each catchment in order to 
extract independent hydrographs from their continuous records 
of streamflows. Flood volumes were obtained by extrapolating 
the rising limb and the recession limb of the discharge curves 
downwards towards zero flow from the first point below the 
truncation level which showed a reversal in slope. Depending on 
this level, a higher truncation level is likely to result in a reduc­
tion in the modelled volume when compared to the actual vol­
ume of the flood event. Thus it is likely that the base-lengths 
achieved in this study are smaller (as a function of T) for the 
smaller floods (more frequent events) than the base-lengths for 
the larger events, thus exhibiting the trend in Table 3. 

Finally, it interesting to examine the relationship between 
B and T using a linear rainfall-runoff model as a comment on 
the values appearing in Table 3. If a constant (pulsed) input of 
rainfall of intensity / (in mm/h) on a catchment of area A (in km) 
lasts for the time of concentration T (hours), the total volume of 
rain that falls is V= 1000-iTA (in m5). The average rate of flow 
onto the catchment is 1 000-M (in m'/h) and the peak outflow 
Q must be a fraction of this, say a-I000i-A (m'/h), where 0 < a < 1 
(a is a factor related to the closeness of the peak to its asymp­
totic value as defined by its nearness to equilibrium). The base-
length of the equivalent triangular hydrograph is thus B = ''/„ = 
2-TJa (in hours). If there are no losses, the maximum peak that 
occurs at T can only be approaching equilibrium asymptotically, 
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Figure 7 
The method employed by Hiemstra and Francis (1979) to 
extract independent hydrographs from a continuous flow 
record, showing that a lower truncation level is likely to 

provide a bigger volume. 

so a has to be chosen close to 1. If a = 0.9, then it turns out that 
B ~ 2.2F, which is close to the average ratio (determined from 
Table 3 above). 

Validation 

The validation exercise was necessary to test whether the cali­
brated coefficients behaved in the probabilistic manner for which 
they were designed, i.e. to predict design floods of magnitudes 
equivalent to those derived from a statistical analysis of flood 
records from that site. However, since it was shown that c is not 
dependent on physical properties nor location of the un-gauged 
catchments, c-values from Chow et al. (1988: 498). which are 
a function of T, catchment slope and land-use characteristics, 
were substituted for the calibrated coefficients as approximate 
upper bound values. Based on this substitution, the validation 
exercise was ultimately reduced to a test of whether the c-val­
ues from Chow et al. (or possibly some other summary values) 
could provide reasonable design flood estimates such as those 
obtained from a statistical distribution (such as the GEV) fit to 
historical flood data. 

The result of this exercise showed that the floods estimated 
using the substitute c-values from Chow et al. (1988) produced 
floods from the rational formula that were, on average, approxi­
mately 1.5 times larger than the floods estimated from the statis­
tical distributions of the historical data (see Table 5 and Figs. 4, 
5 and 6), with a tendency to overestimate for lower flood peaks 
and T. This result is in line with expectation as the substitute 
c-values from Chow et al. (1988) were adopted as upper bound 
estimates. Given that, in order to make use of the coefficients of 
Chow et al., a crude matching of land coverage types was per­
formed (see Table 4), this result is relatively pleasing especially 
since the catchments used in validation ranged in size from 
small to large (170 to 24 000 km2 - see Table A7). The precision 
of the method is of course still low, as indicated by the spread of 
results in Figs. 4, 5 and 6, and relies heavily on the judgement of 
the practitioner 

Conclusion 

The rational formula, which is possibly the simplest rainfall-
runoff flood estimation technique available was reviewed by 
means of calibrating the most uncertain variable of the for­
mula, i.e. the runoff coefficient c. The "data set" used to achieve 
this was the set of runhydrographs produced by Hiemstra and 
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Appendix B 

Francis (1979). The results of the calibration were reason­
ably encouraging, producing c-coefficients that were scattered 
around, but generally lower than, those offered by Chow et al. 
(1988: 498), whose precision is not known. It was discovered that 
the fitted c^.^-coefficients of this investigation did not show any 
variation with catchment characteristics, in line with Australian 
experience (Pilgrim and Cordery, 1993), and hence validation of 
these values at other sites was only possible using land-use and 
average slope of validation catchments together with recurrence 
interval as guides for the choice of c-values. It was thus decided 
to use the c-values from Chow et al. as approximate upper bound 
estimates of the fitted cm-coefficients in validation. In order to 
use their values, a match of land coverage types was required. 
The results of the validation were as expected, producing floods 
from the rational formula that were on average 1.5 times larger 
than the floods estimated from a statistical analysis of the vali­
dation set (not used for calibration), but with a wide scatter. Of 
minor importance, it was discovered that the time base-lengths 
of the derived triangular hydrographs of this investigation were 
approximately between 1.9 and 2.6 times the catchment's time 
of concentration, depending on the recurrence interval of the 
flood, lower than suggested elsewhere. It can be concluded, 
from the results of this investigation, that the rational formula 
is a simple, consistent, approximate tool when used in its proba­
bilistic frame-work and although not suitable as a stand-alone 
design tool for flood estimation, can be useful as a quick check 
method for calculating flood hydrographs for large catchments 
as it is for small. 
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TABLE A1 
S e l e c t e d information, extracted from Hiemstra and Francis (1979), on the s treamflow s t a t i o n s u s e d by them in the d e v e l o p m e n t of the runhydrograph method 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
42 
42 
43 

Station 

A2M01 
A2M02 
A2M03 
A2M12 
A3M01 
B2M01 
B4M03 
B7M04 
C1M01 
C3M04 
C4M01 
C4M02 
C5M03 
C5M04 
C5M10 
C5M12 
C5M15 
C7M01 
C9M03 
C9M06 
D1M05 
D2M05 
D3M05 
D5M01 
D5M04 
D6M02 
E2M02 
G1M02 
H1M06 
H1M07 
H7M04 
J2M03 
J3M04 
L7M02 
Q1M01 
Q7M01 
Q7M02 
Q9M10 
Q9M12 
T3M02 
W4A03 
W5M05 
X2A02 

River 

Krokodil 
Magalies 
Hex 
Krokodil 
Klein Marico 
Bronkhorstspruit 
Steelpoort 
Klaserie 
Vaal 
Drv Hartz 
Groot Vet 
Vet 
Modder 
Modder 
Kromellenboog 
Riet 
Modder 
Renoster 
Vaal 
Vaal 
Oranie 
Caledon 
Oranie 
Renoster 
Sak 
Brak 
Doring 
Vier-en-twintig 
Bree 
Wit 
Huis 
Gamka 
Olifants 
Groot Vet 
Groot Vis 
Groot Vis 
Groot Vis 
Groot Vis 
Groot Vis 
Kinira 
Pongola 
Hlelo 
Wit 

Lat. 
(deg& 
min) 

25 44 
25 44 
25 46 
25 49 
25 32 
25 48 
25 01 
24 33 
26 57 
27 34 
28 29 
27 51 
29 10 
28 51 
29 50 
29 39 
28 48 
27 16 
28 31 
27 39 
30 02 
28 53 
29 48 
31 39 
31 39 
30 07 
32 30 
33 08 
33 25 
33 34 
33 55 
33 32 
33 29 
33 20 
31 54 
32 57 
32 43 
33 13 
33 06 
30 29 
27 25 
26 50 
25 19 

Long. 
(deg& 
min) 

27 52 
27 51 
27 17 
27 55 
26 06 
28 46 
29 32 
31 02 
29 16 
24 43 
26 40 
25 54 
26 35 
26 11 
25 38 
25 59 
26 06 
27 11 
24 42 
25 35 
28 30 
27 54 
24 26 
20 37 
21 46 
23 34 
19 32 
19 04 
19 16 
19 09 
20 43 
21 39 
23 02 
24 21 
25 29 
25 49 
25 51 
26 52 
26 27 
28 37 
31 31 
30 44 
31 03 

Area 
(km2) 

2 907 
1 206 
494 
2 586 
1 002 
1 585 
2 271 
130 
8 254 
8 039 
5 504 
17 550 
1 650 
5 012 
1 994 
2 383 
6 545 
5 255 
10 8081 
10 2384 
10 891 
3 815 
91 994 
2 129 
5 799 
6 360 
5 778 
186 
754 
83 
26 
17 941 
4 330 
25 587 
9 150 
18 954 
18 436 
29 376 
23 041 
2 100 
5 843 
751 
176 

Length 
of 
record 
(years) 

18 
18 
19 
36 
33 
47 
10 
10 
54 
24 
24 
14 
36 
28 
17 
21 
18 
25 
16 
22 
29 
14 
19 
26 
31 
16 
37 
10 
10 
10 
10 
19 
44 
19 
43 
23 
26 
26 
24 
12 
16 
19 
20 

Quality 
of 
data 

A 
A 
A 
D 
A 
A 
A 
D 
A 
A 
B 
A 
A 
A 
A 
D 
A 
A 
C 
A 
A 
A 
A 
E 
E 
A 
C 
A 
A 
A 
A 
A 
E 
A 
A 
A 
A 
A 
B 
A 
A 
A 
B 

No. 
of 
hydro-
graphs 

20 
17 
48 
37 
33 
42 
9 
24 
56 
18 
40 
41 
35 
24 
28 
20 
18 
14 
19 
23 
26 
37 
22 
31 
36 
36 
40 
9 
12 
27 
9 
25 
29 
35 
30 
72 
19 
13 
35 
15 
13 
25 
20 

Trun­
cation 
level 
(m3/s) 

323.4 
116.6 
798 
109.6 
52.4 
145.9 
76.4 
41.9 
433.8 
47.1 
325.3 
217.5 
247.4 
449.6 
43.4 
127.7 
298.9 
218.8 
382.6 
519.6 
574 
171.5 
2 302.6 
82.19 
149.56 
73.9 
210.9 
2614 
360.8 
171 5 
10.2 
81.7 
172.7 
165.6 
242.1 
243.3 
275.6 
671.4 
86.6 
207.3 
655 7 
41.6 
48.3 

Deg. 
of 
trunc. 
% 

43.51 
64.36 
12.90 
49.87 
73.44 
36.14 
45.57 
33.07 
44.73 
25.81 
4022 
13.79 
9.04 
12.44 
11.61 
11.46 
18.30 
38.02 
9.01 
3557 
59.87 
26.04 
64.51 
686 
14.05 
16.47 
46.64 
9.12 
32.31 
66.75 
24.98 
20.37 
19.70 
10.65 
60.84 
18.11 
16,35 
22.34 
22.88 
8.01 
36.17 
49 55 
10.51 

In (peaks) 
Mean 

5,964 
4.282 
5.061 
4.699 
3.338 
5.242 
4.423 
4.048 
6.162 
4 241 
5.962 
5.899 
6.189 
6.863 
4.686 
5.547 
6.252 
5.671 
6.715 
6554 
6.195 
5.538 
7.509 
5.174 
5.511 
4.925 
5.414 
6.010 
6.083 
4.918 
2.881 
5.120 
5.723 
5.703 
5.273 
6.059 
6.230 
7.192 
5.242 
5.671 
6.710 
3.739 
4.511 

St. 
Dev. 

1.133 
1,297 
0.601 
0.698 
0.992 
0.731 
0.787 
0.716 
0.678 
0.600 
0.718 
0.473 
0.504 
0.652 
0.765 
0.577 
0.611 
0.931 
0.569 
0.815 
0.631 
0.613 
0.625 
0.510 
0.466 
0.638 
0,741 
0.331 
0.425 
0.524 
0.837 
0.867 
0.671 
0.523 
0.787 
0,620 
0,623 
0,898 
1,052 
0.238 
0.636 
1.003 
0.503 

In (vol) 
Mean 

7812 
5.896 
6.001 
6.432 
5.307 
7.664 
7.871 
5,848 
10158 
6,561 
9.359 
10,392 
8.806 
9.640 
7.353 
8.491 
9.278 
9.566 
11,599 
11,565 
10.593 
9.724 
12.75 
7.918 
8,421 
7.688 
9,310 
7,388 
8,962 
6.884 
5.118 
7.718 
7.802 
8.560 
7.399 
9.133 
9.221 
10.513 
8,615 
8 953 
9,328 
5.831 
6.194 

St. 
dev. 

1.727 
1461 
0.839 
1,065 
0.776 
1.062 
0.555 
1.163 
0907 
1.187 
0.663 
0645 
0778 
0,838 
1,055 
0.758 
0.894 
0.924 
1.112 
1.151 
0.599 
0.731 
0.476 
0 769 
0.712 
0.995 
0.826 
0.683 
0.384 
0.847 
1.223 
1.667 
0 731 
0.935 
1 314 
0.698 
0.880 
0942 
1.315 
0.929 
0 700 
1.541 
1.231 

Cross 
correl­
ation 
coeff. 

0.843 
0.907 
0.846 
0,750 
0.704 
0923 
0.748 
0.586 
0.847 
0.676 
0.827 
0.839 
0889 
0.879 
0.893 
0.877 
0 892 
0.892 
0.892 
0754 
0.683 
0.692 
0.439 
0.839 
0.651 
0.760 
0.935 
0.577 
0.573 
0.608 
0.707 
0.765 
0,852 
0,716 
0882 
0.808 
0.858 
0.899 
0916 
0,494 
0,877 
0666 
0.736 

CM-
square 
bi-
variate 

13.36 
18,24 
8,64 
12.97 
20.31 
21.70 
8.59 
7.98 
14.39 
21.39 
1! .69 
11.27 
6.86 
6.49 
9.96 
5.07 
6,07 
145.16 
5.62 
918 
8.04 
7 56 
1285 
9.81 
6 69 
9.77 
32.01 
4.92 
10.83 
18.19 
5,34 
10.47 
10.57 
8.10 
89 34 
18.83 
6.58 
725 
11.21 
7.01 
40.60 
14.84 
6.85 

Accep­
tance 
level 
Chi-
square 
70.1 
70.1 
88.0 
88.0 
88.0 
88.0 
54.4 
70.1 
88.0 
70.1 
88.0 
88.0 
88,0 
70.1 
70.1 
70.1 
70.1 
54.4 
70.1 
70.1 
70.1 
88.0 
70.1 
70.1 
88.0 
88.0 
88.0 
54.4 
54.4 
70.1 
544 
70.1 
70.1 
88.0 
70.1 
107.8 
70.1 
54.4 
88.0 
54.4 
54.4 
70.1 
70,1 
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^1 

TABLE A2 

Data u s e d for the calibration of the rational formula's c-coeff ic ient for the 10-year c a s e (i.e. all f l oods and rainfall e s t i m a t e s correspond to a 10-year recurrence interval) 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Station 

A 2 M 0 3 

A 2 M 1 2 

A3M01 

B2M01 

B 4 M 0 3 

B 7 M 0 4 

C1M01 

C4M01 

C 4 M 0 2 

C 5 M 0 3 

C5M04 

C5M12 

C5M15 

C7M01 

D1M05 

D5M01 

D 5 M 0 4 

E 2 M 0 2 

H 1 M 0 6 

H1M07 

H 7 M 0 4 

J2M03 

J3M04 

Q1M01 

Q9M10 

Q9M12 

T 3 M 0 2 

W4A03 

W 5 M 0 5 

Lat. 
(dec 
deg) 

25.77 

25.82 

25.53 

25.80 

25.02 

24.55 

26.95 

28.48 

27.85 

29.17 

28.85 

29.65 

28.80 

27.27 

30.03 

31.65 

31.65 

32.50 

33.42 

33.57 

33.92 

33.53 

33.48 

31.90 

33.22 

33.10 

30.48 

27.42 

26.83 

Long 
(dec 
deg) 

27.28 

27.92 

26.10 

28.77 

29.53 

31.03 

29.27 

26.67 

25.90 

26.58 

26.18 

25.98 

26.10 

27.18 

28.50 

20.62 

21.77 

19.53 

19.27 

19.15 

20.72 

21.65 

23.03 

25.48 

26.87 

26.45 

28.62 

31.52 

30.73 

Area 
(km2) 

494 

2 586 

1 002 

1 585 

2 271 

130 

8 254 

5 504 

17 550 

1 6 5 0 

5 012 

2 383 

6 545 

5 255 

10 891 

2 129 

5 799 

5 778 

754 

83 

26 

17 941 

4 330 

9 150 

29 376 

23 041 

2 100 

5 843 

751 

Time of 
cone. 

(h) 

6.4 

18 

8.7 

18.1 

19.6 

3.7 

74 

34 

111 

18.3 

38 

23 

43 

57 

60 

27 

28 

30 

7.6 

2.4 

2.3 

42 

23 

18 

108 

85 

26 

31 

17.8 

Runhydrograph design flood 
(used for calibration) 

Peak 
(m3/s) 

510.8 

331.4 

204.3 

531.2 

249.7 

215.9 

1 404.4 

1 524.0 

968.5 

843.5 

1 807.6 

479.1 

1 106.8 

666.7 

1 339.0 

331.0 

418.4 

835.1 

765.5 

475.9 

43.0 

567.6 

500.1 

683.0 

1 962.9 

1 114.7 

370.0 

1 833.4 

230.8 

Volx108 

(m'l 

7.5 

12.1 

3.4 

34.4 

20.5 

10.8 

396.7 

147.6 

444.5 

56.0 

125.4 

39.8 

116.7 

117.2 

372.4 

25.5 

36.5 

172.0 

46.5 

26.4 

2.2 

84.7 

15.0 

47.7 

199.4 

182.4 

71.7 

98.1 

16.8 

Hydro, 
base-
length 

(h) 

8.2 

20.2 

9.3 

36.0 

45.5 

27.7 

156.9 

53.8 

255.0 

36.9 

38.5 

46.2 

58.6 

97.7 

154.5 

42.8 

48.4 

114.4 

33.7 

30.8 

28.1 

82.9 

16.7 

38.8 

56.4 

90.9 

107.7 

29.7 

40.4 

Design rainfall 
(used in rational formula for calibration) 

a 

52.2 

46.8 

48.2 

53.9 

41.7 

69.1 

42.8 

45.5 

44.0 

41.5 

41.1 

38.3 

40.1 

45.1 

44.1 

32.6 

31.0 

20.7 

29.8 

42.9 

38.3 

31.6 

30.3 

29.9 

38.1 

33.5 

45.1 

54.0 

57.6 

b 

0.225 

0.237 

0.210 

0.227 

0.240 

0.240 

0.229 

0.200 

0.218 

0.227 

0.226 

0.220 

0.225 

0.221 

0.204 

0.172 

0.177 

0.194 

0.355 

0.399 

0.301 

0.186 

0.211 

0.209 

0.289 

0.307 

0.207 

0.259 

0.229 

c 

0.776 

0.763 

0.790 

0.773 

0.760 

0.760 

0.772 

0.800 

0.782 

0.773 

0.774 

0.780 

0.776 

0.779 

0.796 

0.828 

0.823 

0.806 

0.645 

0.601 

0.699 

0.814 

0.789 

0.791 

0.711 

0.693 

0.793 

0.741 

0.771 

Inten­
sity 

/ mm/h 

12.37 

5.16 

8.73 

5.74 

4.34 

25.56 

1.55 

2.71 

1.11 

4.39 

2.46 

3.31 

2.17 

1.93 

1.69 

2.13 

2.00 

1.34 

8.05 

25.37 

21.42 

1.51 

2.55 

3.04 

1.37 

1.54 

3.40 

4.23 

6.25 

Cali­
brated 

c-coeff­
icient, 

0.301 

0.089 

0.084 

0.210 

0.091 

0.234 

0.396 

0.368 

0.179 

0.419 

0.528 

0.218 

0.280 

0.236 

0.261 

0.263 

0.130 

0.389 

0.454 

0.814 

0.278 

0.076 

0.163 

0.089 

0.176 

0.113 

0.186 

0.267 

0.177 

Comment 

Anoma lous 

A n o m a l o u s 

A n o m a l o u s 

A n o m a l o u s 

A n o m a l o u s 

A n o m a l o u s 

<t> 

a 



£ > 

TABLE A3 
Data used for the calibration of the rational formula's c-coefficient for the 20-year case 

No. 

1 

2 

3 

4 

5 

6 
7 

8 
9 

10 

11 
12 

13 
14 

15 

16 
17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 
28 

29 

Station 

A2M03 
A2M12 

A3M01 

B2M01 

B4M03 
B7M04 

C1M01 

C4M01 
C4M02 

C5M03 
C5M04 

C5M12 

C5M15 

C7M01 
D1M05 

D5M01 

D5M04 

E2M02 

H1M06 

HIM07 

H7M04 

J2M03 
J3M04 

Q1M01 

Q9M10 

Q9M12 

T3M02 

W4A03 

W5M05 

Lat. 
(dec 
deg) 

25.77 
25.82 

25.53 
25.80 

25.02 

24.55 

26.95 

28.48 

27.85 

29.17 

28.85 

29.65 

28.80 

27.27 
30.03 

31.65 
31.65 

32.50 

33.42 

33.57 

33.92 

33.53 

33.48 

31.90 

33.22 

33.10 

30.48 

27.42 

26.83 

Long 
(dec 
deg) 

27.28 
27.92 

26.10 

28.77 

29.53 

31.03 

29.27 

26.67 
25.90 

26.58 

26.18 

25.98 

26.10 

27.18 
28.50 

20.62 

21.77 

19.53 

19.27 

19.15 

20.72 

21.65 

23.03 
25.48 

26.87 

26.45 

28.62 
31.52 

30.73 

Area 
(km2) 

494 

2 586 

1002 

1 585 

2 271 

130 

8 254 

5 504 

17 550 

1 650 

5 012 

2 383 

6 545 

5 255 
10 891 

2 129 
5 799 

5 778 

754 

83 

26 

17 941 

4 330 

9 150 

29 376 

23 041 

2 100 

5 843 

751 

Time of 
cone. 

(h) 

6.4 

18 

8.7 

18.1 

19.6 

3.7 

74 

34 

111 

18.3 

38 

23 

43 

57 
60 

27 
28 

30 

7.6 

2.4 

2.3 
42 

23 

18 
108 

85 

26 

31 

17.8 

Runhydrograph design flood 
(used for calibration) 

Peak 
(m3/s) 

597.9 
404.2 

258.6 

680.3 

317.7 

255.2 

1 719.7 

1 841.8 

1 090.5 

1 019.7 

2 334.5 

594.7 

1 374.5 
976.4 

1 590.5 

394.6 

486.5 

1 041.5 

864.7 

528.0 

57.4 

740.8 

667.0 

869.3 
3 080.4 

1 533.4 

398.5 

2 287.1 

299.3 

Vol x 106 

(m3) 

9.3 

16.3 

4.1 

49.3 

24.2 

14.1 

520.1 

175.8 

522.7 

75.1 

174.2 

52.9 

160.1 
171.2 

438.5 

33.2 

45.9 

220.0 

51.9 

31.2 

3.3 

141.4 

20.6 

71.4 

320.0 

271.7 

95.8 

125.1 

25.0 

Hydro, 
base-
length 

(h) 
8.7 

22.4 

8.8 

40.2 
42.4 

30.7 

168.0 

53.0 

266.3 
40.9 

41.5 

49.5 

64.7 
97.4 

153.2 

46.8 

52.5 

117.4 

33.3 

32.8 

32.1 

106.0 

17.1 

45.6 

57.7 

98.4 

133.5 
30.4 

46.4 

Design rainfall 
(used in rational formula for calibration) 

a 

60.7 
55.2 

55.6 

63.7 

47.3 

82.2 

49.6 

52.3 
50.9 

47.8 

47.3 
44.1 

46.2 
52.0 

51.4 

38.7 

36.6 

24.0 
33.4 

48.4 

46.4 

37.9 

36.6 

34.6 

46.3 

39.2 

52.6 

64.7 

68.4 

b 

0.225 

0.237 

0.210 

0.227 

0.240 

0.240 

0.229 

0.200 

0.218 
0.227 

0.226 

0.220 
0.224 

0.221 
0.204 

0.172 

0.177 

0.194 

0.355 
0.399 

0.301 

0.186 
0.211 

0.209 

0.289 

0.307 

0.207 
0.259 

0.229 

c 

0.776 

0.763 

0.790 

0.773 

0.760 

0.760 
0.772 

0.800 
0.782 

0.773 

0.774 

0.780 

0.776 
0.779 

0.796 

0.828 

0.823 

0.806 

0.645 

0.601 

0.699 
0.814 

0.789 

0.791 

0.711 

0.693 

0.793 

0.742 

0.771 

Inten­
sity 

;' mm/h 

14.39 

6.08 

10.06 

6.79 

4.93 

30.39 
1.79 

3.12 

1.28 

5.06 

2.83 

3.82 

2.50 
2.23 

1.98 
2.52 

2.36 

1.55 

9.03 

28.62 

25.92 
1.81 

3.09 

3.51 

1.66 

1.81 

3.97 

5.07 

7.43 

Cali­
brated 

c-
coeff-
icient, 

0.303 
0.093 

0.092 

0.228 

0.102 

0.233 
0.419 

0.386 
0.175 

0.440 

0.592 

0.235 

0.302 

0.300 
0.266 

0.264 

0.128 

0.420 

0.457 

0.800 

0.307 
0.082 

0.180 

0.097 

0.227 

0.133 

0.172 

0.278 

0.193 

Comment 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 
•o 

Q. 
X' 
CD 



TABLE A4 
Data used for the calibration of the rational formula's c-coefficient for the 50-year c a s e 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 

12 

13 

14 

15 

16 

17 

18 
19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Station 

A2M03 
A2M12 

A3M01 

B2M01 

B4M03 
B7M04 

C1M01 
C4M01 

C4M02 

C5M03 

C5M04 

C5M12 

C5M15 
C7M01 

D1M05 

D5M01 
D5M04 

E2M02 

H1M06 

H1M07 

H7M04 

J2M03 

J3M04 

Q1M01 

Q9M10 

Q9M12 

T3M02 

W4A03 

W5M05 

Lat. 
(dec 
deg) 

25.77 
25.82 

25.53 

25.80 

25.02 

24.55 

26.95 

28.48 
27.85 

29.17 

28.85 

29.65 

28.80 
27.27 

30.03 

31.65 
31.65 

32.50 
33.42 

33.57 

33.92 

33.53 

33.48 

31.90 

33.22 

33.10 

30.48 

27.42 

26.83 

Long 
(dec 
deg) 

27.28 
27.92 

26.10 

28.77 

29.53 

31.03 

29.27 

26.67 
25.90 

26.58 

26.18 

25.98 

26.10 

27.18 

28.50 
20.62 

21.77 

19.53 

19.27 

19.15 

20.72 

21.65 

23.03 

25.48 

26.87 

26.45 

28.62 

31.52 

30.73 

Area 
(km2) 

494 

2 586 

1002 

1 585 

2 271 

130 
8 254 

5 504 

17 550 

1 650 

5 012 

2 383 

6 545 

5 255 
10 891 

2 129 

5 799 

5 778 
754 

83 

26 
17 941 

4 330 

9 150 

29 376 

23 041 

2 100 

5 843 
751 

Time of 
cone. 

(h) 

6.4 

18 

8.7 

18.1 

19.6 

3.7 
74 
34 

111 

18.3 

38 
23 

43 

57 

60 

27 
28 

30 

7.6 

2.4 

2.3 

42 

23 

18 

108 

85 

26 

31 

17.8 

Runhydrograph design flood 
(used for calibration) 

Peak 
(m3/s) 

718.4 

507.2 

341.6 

895.0 

416.6 
310.7 

2 165.0 
2 296.0 

1 253.8 

1 252.0 

3 069.0 

751.4 

1 743.1 
1 462.1 

1 938.1 

478.8 
574.9 

1 338.5 
992.4 

598.6 

78.7 

999.6 

900.4 

1 142.1 

4 835.3 

2 201.4 

432.4 

2 917.6 

404.7 

Vol x 10s 

(m3) 

12.1 

23.1 
5.1 

73.4 

29.3 
19.4 

707.8 
215.5 

632.2 

103.1 
247.6 

72.0 

226.7 
255.6 

529.0 

44.5 

59.3 

291.0 

58.8 

38.2 

5.3 

251.6 

28.5 

112.6 

513.5 

427.0 

131.8 

163.6 

39.8 

Hydro, 
base-
length 

(h) 

9.3 

25.3 

8.3 

45.6 

39.1 

34.8 

181.6 
52.1 

280.1 

45.7 

44.8 

53.2 

72.3 
97.1 

151.6 
51.6 

57.3 

120.8 

32.9 

35.5 
37.2 

139.8 

17.6 
54.8 

59.0 

107.8 

169.3 

31.1 

54.6 

Design rainfall 
(used in rational formula for calibration) 

a 

72.6 

67.2 

65.3 

78.2 

56.4 

101.3 
58.9 

61.7 

60.2 

56.3 

55.7 

51.9 

54.5 

61.6 

61.7 

46.9 

44.2 

28.2 

38.0 

55.7 

58.1 
46.9 

45.9 
40.9 

58.6 
47.2 

63.0 

80.8 

84.3 

b 

0.224 

0.237 

0.210 

0.227 

0.240 

0.294 

0.228 
0.200 

0.218 

0.227 

0.226 

0.220 

0.224 

0.221 

0.204 

0.172 

0.177 

0.194 

0.355 

0.399 

0.301 
0.186 

0.211 

0.209 

0.289 

0.307 

0.207 

0.259 
0.229 

c 

0.776 

0.763 

0.790 

0.773 

0.760 

0.706 

0.772 

0.800 

0.782 

0.773 
0.774 

0.780 

0.776 

0.779 

0.796 

0.828 

0.823 

0.806 

0.645 

0.601 

0.699 

0.814 

0.789 

0.791 

0.711 

0.693 

0.793 

0.741 

0.771 

Inten­
sity 

;' mm/h 

17.21 

7.41 

11.82 

8.33 

5.88 

40.21 

2.13 

3.68 

1.51 

5.96 
3.34 

4.50 

2.95 
2.64 

2.37 

3.06 
2.84 

1.82 

10.27 

32.88 

32.48 

2.24 

3.87 

4.15 

2.10 

2.17 

4.76 

6.33 

9.15 

Cali­
brated 

c-
coeff-
icient, 

0.304 

0.095 
0.104 

0.244 

0.112 

0.214 

0.444 

0.409 

0.170 

0.458 
0.660 

0.252 

0.325 

0.379 
0.270 

0.264 

0.125 

0.459 

0.461 

0.790 

0.336 

0.090 

0.194 

0.108 

0.282 

0.158 

0.156 

0.284 

0.212 

Comment 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 



No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 

12 
13 
14 

15 
16 
17 
18 
19 

20 

21 
22 
23 
24 
25 

26 

27 

28 

29 

Station 

A2M03 
A2M12 

A3M01 

B2M01 

B4M03 

B7M04 

C1M01 

C4M01 
C4M02 

C5M03 
C5M04 

C5M12 

C5M15 

C7M01 

D1M05 
D5M01 

D5M04 

E2M02 

H1M06 

H1M07 
H7M04 

J2M03 

J3M04 

Q1M01 

Q9M10 

Q9M12 
T3M02 

W4A03 

W5M05 

Lat. 
(dec 
deg) 

25.77 
25.82 

25.53 

25.80 

25.02 

24.55 

26.95 

28.48 

27.85 

29.17 

28.85 

29.65 

28.80 

27.27 

30.03 
31.65 

31.65 

32.50 

33.42 

33.57 
33.92 

33.53 

33.48 

31.90 

33.22 

33.10 

30.48 

27.42 

26.83 

Data used for th 
Long 
(dec 
deg) 

27.28 
27.92 

26.10 

28.77 

29.53 

31.03 

29.27 

26.67 

25.90 

26.58 

26.18 

25.98 

26.10 
27.18 

28.50 

20.62 

21.77 

19.53 

19.27 

19.15 
20.72 

21.65 

23.03 

25.48 

26.87 

26.45 
28.62 

31.52 

30.73 

Area 
(km2) 

494 

2 586 
1 002 

1 585 

2 271 

130 
8 254 

5 504 

17 550 

1 650 

5 012 

2 383 

6 545 

5 255 
10 891 

2 129 

5 799 

5 778 

754 

83 

26 
17 941 

4 330 
9 150 

29 376 
23 041 

2 100 

5 843 

751 

TABLE Ae 
e calibration of the rational form 

Time of 
cone. 

(h) 

6.4 
18 
8.7 

18.1 

19.6 

3.7 

74 

34 

111 

18.3 

38 

23 

43 

57 
60 

27 

28 

30 

7.6 

2.4 

2.3 
42 

23 

18 

108 

85 

26 
31 
17.8 

ula's c-coefficient for the 100-
Runhydrograph design flood 

(used for calibration) 
Peak 
(m3/s) 

815.3 

591.8 
414.4 

1 074.7 

500.0 

356.2 

2 530.6 

2 672.3 

1 381.1 

1 432.5 

3 668.3 

876.1 

2 040.3 
1 899.5 

2 218.0 

544.4 
642.4 

1 586.0 

1 089.1 

654.2 

97.0 

1 223.2 

1 091.9 

1 373.6 

6 417.6 
2 811.4 

456.6 

3 429.6 

497.8 

Vol x 106 

(m3) 

14.4 

29.2 

6.0 

95.8 

33.4 

24.3 

872.1 

247.9 

721.3 

126.9 

311.4 

88.1 
285.4 

331.4 

601.2 

54.0 
70.2 

351.6 

63.9 

44.1 

7.1 
370.9 

35.2 

153.2 

691.0 

579.7 

163.0 

195.4 

54.6 

Hydro. 
base-
length 

(h) 
9.8 

27.4 

8.0 

49.5 

37.1 

37.9 

191.5 

51.5 

290.1 

49.2 

47.2 

55.8 
77.7 
96.9 

150.6 

55.1 

60.8 

123.2 

32.6 

37.5 

40.9 
168.4 

17.9 

62.0 

59.8 

114.5 

198.3 

31.7 

61.0 

(used in 
a 

82.2 

77.3 

72.8 

90.3 

60.7 

117.5 

66.4 
68.9 

67.5 

63.0 

62.3 

58.0 
60.9 
69.2 

70.0 
53.4 

50.2 

31.4 

41.4 

61.0 

68.1 
54.4 

53.8 
45.8 

69.0 

53.5 

71.5 

94.6 

97.8 

year c a s e 
Design rainfall 

rational formula for calibration) 
b 

0.224 

0.237 

0.210 

0.227 

0.240 

0.240 

0.228 

0.200 

0.218 

0.227 

0.226 

0.220 

0.224 
0.221 

0.204 

0.172 

0.177 

0.194 

0.355 

0.399 

0.301 
0.186 

0.211 
0.209 

0.289 

0.307 

0.207 

0.259 

0.229 

c 

0.776 

0.763 

0.790 

0.773 

0.760 

0.760 

0.772 

0.800 
0.782 

0.773 

0.774 

0.780 

0.776 
0.779 

0.796 

0.828 

0.823 

0.806 

0.645 

0.601 

0.699 
0.814 

0.789 
0.791 

0.711 

0.693 
0.793 

0.741 

0.771 

Inten­
sity 

/ mm/h 

19.48 

8.51 
13.19 

9.62 

6.33 

43.45 

2.40 
4.11 

1.70 

6.66 

3.73 

5.02 

3.29 
2.97 

2.69 

3.49 

3.23 

2.03 

11.20 

36.07 

38.05 
2.59 

4.53 

4.66 

2.48 

2.47 
5.40 

7.42 

10.62 

Cali­
brated 

c-
coeff-
icient, 

0.305 
0.097 

0.113 

0.254 

0.125 

0.227 

0.460 

0.425 

0.167 

0.469 

0.706 

0.264 

0.341 

0.438 

0.272 
0.264 

0.123 

0.487 

0.464 

0.787 

0.353 

0.095 

0.200 

0.116 

0.318 
0.178 

0.145 

0.285 

0.225 

Comment 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 



TABLE A6 
Data used for the calibration of the rational formula's c-coefficient for the 200-year c a s e 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 

12 

13 
14 
15 

16 

17 
18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Station 

A2M03 
A2M12 

A3M01 

B2M01 

B4M03 

B7M04 

C1M01 

C4M01 

C4M02 

C5M03 

C5M04 

C5M12 

C5M15 

C7M01 

D1M05 

D5M01 
D5M04 

E2M02 

H1M06 

H1M07 
H7M04 

J2M03 

J3M04 

Q1M01 

Q9M10 

Q9M12 

T3M02 

W4A03 

W5M05 

Lat. 
(dec 
deg) 

25.77 
25.82 

25.53 

25.80 
25.02 

24.55 

26.95 

28.48 

27.85 
29.17 

28.85 
29.65 

28.80 

27.27 

30.03 

31.65 

31.65 

32.50 

33.42 

33.57 

33.92 

33.53 

33.48 

31.90 

33.22 

33.10 

30.48 
27.42 

26.83 

Long 
(dec 
deg) 

27.28 
27.92 

26.10 

28.77 

29.53 

31.03 
29.27 

26.67 

25.90 
26.58 

26.18 
25.98 

26.10 

27.18 
28.50 

20.62 

21.77 

19.53 

19.27 

19.15 

20.72 

21.65 
23.03 

25.48 

26.87 

26.45 

28.62 

31.52 

30.73 

Area 
(km2) 

494 

2 586 

1002 

1 585 

2 271 

130 
8 254 

5 504 

17 550 

1 650 

5 012 

2 383 
6 545 

5 255 
10 891 

2 129 
5 799 

5 778 

754 

83 

26 

17 941 

4 330 

9 150 

29 376 
23 041 

2 100 

5 843 

751 

Time of 
cone. 

(h) 

6.4 

18 

8.7 

18.1 

19.6 

3.7 
74 

34 

111 

18.3 

38 

23 

43 

57 

60 
27 

28 

30 

7.6 
2.4 

2.3 
42 

23 

18 

108 
85 

26 

31 

17.8 

Runhydrograph design flood 
(used for calibration) 

Peak 
(m3/s) 

918.2 

683.2 

497.3 

1 271.5 

591.9 

405.2 

2 925.1 

3 080.9 

1 512.7 

1 619.5 

4 312.8 

1 007.6 

2 356.6 

2 406.6 

2 515.3 
612.4 

711.2 

1 856.2 

1 187.0 

712.1 

117.3 

1 474.0 

1 298.7 

1 629.7 

8 251.8 
3 526.9 

480.0 

3 977.5 

604.2 

Vol x 10" 
(m3) 

17.0 
36.4 

6.9 

122.3 

37.6 

29.9 

1 058.5 

282.7 

816.6 

153.4 

383.5 

105.8 

352.5 

419.2 

677.5 

64.5 
82.1 

418.9 

69.1 

50.6 
9.4 

530.9 

42.5 

203.8 

899.5 

769.6 

198.0 

230.1 

73.6 

Hydro, 
base-
length 

<h) 
10.3 

29.6 
7.7 

53.4 

35.3 

41.0 

201.0 

51.0 

299.9 

52.6 

49.4 

58.3 

83.1 

96.8 

149.6 

58.5 
64.1 

125.4 

32.3 

39.5 

44.7 

200.1 
18.2 

69.5 

60.6 

121.2 

229.2 

32.1 

67.7 

Design rainfall 
(used in rational formula for calibration) 

a 

92.4 
88.2 

80.5 

103.5 

66.7 

135.4 

74.3 
76.4 

75.2 

69.8 

69.0 

64.2 

67.5 

77.2 

79.0 

60.2 
56.5 

34.7 

44.8 

66.5 
79.1 

62.4 
62.4 

50.9 

80.8 

60.3 

80.7 

110.2 

112.7 

b 

0.224 

0.237 

0.210 

0.227 

0.240 

0.240 

0.228 

0.200 

0.218 

0.227 

0.226 

0.220 

0.225 

0.221 
0.204 

0.172 

0.177 
0.194 

0.355 
0.399 

0.301 

0.186 

0.211 
0.209 

0.289 

0.307 

0.207 

0.259 

0.228 

c 

0.776 

0.763 

0.790 

0.773 

0.760 

0.760 

0.772 

0.800 

0.782 

0.773 

0.774 

0.780 

0.776 

0.779 

0.796 

0.828 

0.823 

0.806 

0.645 

0.601 

0.699 

0.814 

0.789 

0.791 

0.711 

0.693 

0.793 
0.741 

0.771 

Inten­
sity 

/ mm/h 

21.89 

9.72 

14.58 

11.03 

6.95 

50.07 

2.68 

4.55 

1.89 

7.38 

4.14 

5.56 

3.65 

3.31 

3.04 

3.93 
3.64 

2.24 

12.12 

39.28 

44.17 

2.98 

5.26 

5.17 

2.90 

2.78 

6.09 

8.64 

12.23 

Cali­
brated 

c-
coeff-
icient, 

0.306 

0.098 
0.123 

0.262 

0.135 

0.224 

0.476 

0.442 

0.164 

0.479 

0.749 

0.274 

0.355 

0.498 
0.274 

0.264 

0.121 

0.516 

0.468 

0.786 

0.368 

0.099 

0.205 

0.124 

0.349 

0.198 

0.135 
0.284 

0.237 

Comment 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 

Anomalous 



TABLE A7 (Par t i ) 
Data used for validation 

Num. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 

13 
14 
15 

16 
17 

18 

19 

20 

21 

Station 

A4M02 

A6M06 

C3M03 

C5M08 
C8M01 

C8M03 

D1M01 

D1M04 

D2M01 
E2M03 

G1M08 
H3M01 

Q7M03 
Q9M04 

Q9M08 

R1M01 

T3M04 

V2M02 

V6M02 

W5M06 

X2M10 

River 

Mokolo 
Klein-nvl 

Harts 

Riet 
Wilge 

Cornells 

Stormbergspruit 

Stormbergspruit 
Caledon 

Doring 

Klein-berg 

Kingna 

Groot-vis 

Kat 

Kat 

Tyume 

Mzimhlava 

Mooi 

Tugela 
Swartwater 

Noordkaap 

Lat. 
(dec 
deg) 

24.28 
24.70 

27.58 

29.81 

27.27 
27.84 

31.00 

31.40 
29.72 

31.90 

33.31 
33.79 

32.78 

32.56 

32.71 

32.76 

30.57 

29.22 

28.75 
27.11 

25.61 

Long, 
(dec 
deg) 

28.09 
28.41 

24.75 

26.21 
28.32 

28.96 
26.34 

26.37 

26.98 
18.69 

19.08 
20.13 

25.84 

26.69 

26.59 

26.86 

29.43 
29.99 

30.44 

30.83 

30.88 

Area 
(km2) 

1 777 

168 

10990 

593 

15673 

806 

2 397 

348 

13421 
24044 

395 

611 

18534 

404 

748 

238 

1029 

937 

12862 

180 

126 

Time 
of 

Cone, 
(hours) 

18.1 
4.4 

78 

11.9 
122 

19.2 

19.9 
9.1 

106 
59 

4 
9.5 

59 

6.3 

12.7 

6.2 

18.8 
18.9 

48 
5 

3.3 

Percentage land coverage 

For­
est 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
5 
0 
0 
4 
7 
10 

5 
20 

1 
15 
45 

Bush Wood 

Dense 
25 

28 

0 
0 
6 
3 
0 
0 
4 
0 

20 

0 
0 
8 
3 
10 

5 
10 

24 

13 

15 

Thin 
39 

34 

28 

7 
S 
4 

46 

50 

7 
16 

5 
25 

30 

24 

25 

15 

14 

0 
0 
0 
0 

Cult. 
Land 

26 
29 

59 

25 
50 

42 

13 

30 

73 
16 

48 

15 

8 
16 

19 

20 

46 

25 

30 

7 
10 

Grass 

7 
6 
4 
22 

24 

34 
14 

7 
11 

0 
15 
0 
0 
32 

31 

30 
20 

43 

42 
64 

28 

Bare 

3 
3 
9 

46 
12 

17 

27 
13 
5 

68 

7 
60 

62 

16 

15 

15 

10 

2 
3 
1 
2 

Runoff coefficients c from 
Chow etal. (1988) 

10-
year 

0.28 

0.28 

0.36 

0.36 
0.36 

0.36 

0.28 

0.28 
0.36 

0.36 

0.36 
0.36 

0.36 

0.38 

0.38 

0.38 

0.36 

0.30 

0.30 

0.30 

0.28 

20-
year 

0.31 

0.31 
0.39 

0.39 

0.39 

0.39 

0.31 

0.31 
0.39 
0.39 

0.39 

0.39 

0.39 

0.41 

0.41 

0.41 

0.39 

0.33 

0.33 

0.33 

0.31 

50-
year 

0.35 

0.35 

0.43 

0.43 

0.43 

0.43 

0.35 

0.35 

0.43 

0.43 

0.43 

0.43 

0.43 

0.45 

0.45 

0.45 

0.43 
0.37 

0.37 

0.37 

0.35 

100-
year 

0.39 
0.39 
0.47 
0.47 
0.47 
0.47 
0.39 
0.39 
0.47 
0.47 
0.47 
0.47 
0.47 
0.49 
0.49 
0.49 
0.47 
0.41 
0.41 
0.41 
0.39 

200-
year 

0.42 

0.42 
0.51 
0.51 
0.51 
0.51 
0.42 
0.42 
0.51 
0.51 
0.51 
0.51 
0.51 
0.52 
0.52 
0.52 
0.51 
0.46 
0.46 
0.46 
0.42 



TABLE A7 (Part 2) 
Design rainfall data used for validation 

No. 

l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Station 

A4M02 
A6M06 
C3M03 
C5M08 
C8M01 
C8M03 
D1M01 
D1M04 
D2M01 
E2M03 
G1M08 
H3M01 
O7M03 
O9M04 
O9M08 
R1M01 
T3M04 
V2M02 
V6M02 
W5M06 
X2M10 

b 

0.218 
0217 
0188 
0.220 
0.234 
0.231 
0214 
0.240 
0.226 
0 201 
0.327 
0.278 
0.295 
0.252 
0,285 
0.258 
0.221 
0.223 
0.228 
0.227 
0.225 

c 

0.783 
0.783 
0.812 
0.780 
0.766 
0.769 
0.786 
0.760 
0.774 
0.799 
0.673 
0.722 
0.705 
0.748 
0 715 
0.742 
0.779 
0777 
0.772 
0.773 
0.776 

a 
10-

year 
50.19 
49.87 
48.66 
38.17 
42.93 
42.23 
35.20 
36.85 
41.02 
24.06 
26.19 
29.63 
32.07 
37,78 
30.99 
38.84 
51.08 
51 33 
57.56 
57.15 
62.92 

20-
year 
58.40 
58.07 
56.27 
44,28 
49,42 
48.28 
40.01 
42.07 
47.57 
27.80 
29.38 
36.07 
37.50 
44.20 
36.22 
45.44 
60 15 
59,81 
69.04 
67.96 
74 80 

50-
year 
69.88 
69.45 
66.31 
52.68 
58.35 
56.45 
46.24 
48.99 
56.61 
32.73 
33.45 
45.70 
45.10 
53,17 
43.57 
54.62 
73.32 
71.72 
86.15 
83.76 
92.18 

100-
year 
79.13 
78.64 
73.96 
59.38 
65.43 
62.94 
50.85 
54.31 
63.85 
36.52 
3649 
53.97 
51.20 
60.33 
49.48 
62.00 
84,35 
81,45 
100,91 
97.13 
106.94 

200-
year 
88.86 
88.37 
81.78 
66.52 
72.77 
69.62 
55.48 
59.66 
71.49 
40.36 
39 44 
63.29 
57.66 
67.99 
55,71 
69.88 
96.45 
91.87 
117.52 
111.94 
123.24 

Rainfall Intensity, i=adc (mm/hr) 
10-

year 
5.21 
16.37 
1.41 
5.53 
1.08 
4.35 
336 
6.88 
111 
0.93 
10.31 
5.83 
1.81 
9.53 
5.03 
10.03 
519 
5.22 
2.90 
16.48 
24.93 

20-
year 
6.06 
19.05 
1.63 
6.42 
1.25 
4.97 
3.82 
7.86 
1.29 
1.07 
11.56 
7.09 
2.12 
11.15 
5.89 
11.74 
6.12 
6.09 
3.47 
19.59 
29.63 

50-
year 
7.25 

22.79 
1.92 
7.64 
1,47 
5.81 
4.41 
9.15 
1.53 
1.26 
13.16 
898 
2.54 
13.41 
7.08 
14.11 
7.46 
7.30 
4.33 
24.15 
36.53 

100-
year 
8.21 

25.80 
2.15 
8.61 
1.65 
6.48 
4 85 
10.14 
1.73 
1.40 
14.35 
10.61 
2.89 
15.22 
8.04 
16.02 
8 58 
8,29 
5,08 
28,01 
42,37 

200-
year 
9.22 
2898 
2.37 
9.64 
1.84 
7.17 
5.29 
11.15 
1.94 
1,55 
15.52 
12.44 
3,25 
17.15 
9.05 
18,05 
9.81 
9,35 
5,91 

32.28 
48.83 

TABLE A7 (Part 3) 
Flood data used for validation 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Station 

A4M02 
A6M06 
C3M03 
C5M08 
C8M01 
C8M03 
D1M01 
D1M04 
D2M01 
E2M03 
G1M08 
H3M01 
O7M03 
O9M04 
O9M08 
R1M01 
T3M04 
V2M02 
V6M02 
W5M06 
X2M10 

Rational formula flood peaks, QRF(m3/s), using design 
rainfall and 

c-values from Chow et al. (1988) 
10-

year 
719.5 
213.9 

1 552.6 
328.2 

1 699.9 
350.4 
626.0 
186.3 

1 490.9 
2 227.1 
407.2 
356.0 

3 351.5 
406.3 
397.4 
252.0 
534.5 
408.0 

3 104.3 
247.2 
244.3 

20-
year 
913.9 
271.7 

1962.2 
416.3 

2 141.5 
438.2 
776.6 
232.2 

1 890.9 
2 813.1 
499.5 
474.0 

4 290.2 
517.2 
505.6 
320.7 
688.8 
529.3 

4 144.6 
327.3 
317.0 

50-
year 

1 252.1 
372.2 

2 524.9 
540.9 

2 759.3 
559.7 

1 027.5 
309.6 

2 457.4 
3 616.8 

620.9 
655.5 

5 630.4 
677.0 
661.8 
419.7 
916.5 
703.2 

5 728.4 
446.8 
447.4 

100-
year 

1 579.5 
469.6 

3 079.5 
666.6 

3 383.6 
682.0 

1 258.9 
382.3 

3 029.3 
4 407.9 

740.3 
846.6 

6 986.4 
836.8 
818.4 
518.8 

1 152.4 
884.6 

7 435.4 
574.2 
578.3 

200-
year 

1 930.1 
573.8 

3 678.0 
806.4 

4 067.3 
814.6 

1 493.9 
457.1 

3 663.7 
5 261.7 
864.6 

1 072.2 
8 505.1 
1 007.9 
985.3 
624.9 

1 423.8 
1 108.5 
9 618.5 
735.1 
725.0 

GEV modelled flood peaks of recorded events QeEV (m3/s) 

10-
year 
255.0 
59.0 
291.0 
325.0 
959.0 
220.0 
616.0 
101.0 

1 939.0 
1 029.0 
288.0 
304.0 

1 289.0 
245.0 
305.0 
178.0 
297.0 
548.0 

3 096.0 
192.0 
102.0 

20-
vear 
359.0 
79.0 
397.0 
432.0 
1 515.0 
321.0 

1 144.0 
156.0 

2 653.0 
1 389.0 
400.0 
436.0 

2 022.0 
340.0 
401.0 
269.0 
534.0 
716.0 

3 791.0 
292.0 
146.0 

50-
vear 
516.0 
110.0 
622.0 
585.0 

2 719.0 
514.0 

2 246.0 
279.0 

3 543.0 
1 956.0 
603.0 
661.0 

3 561.0 
493.0 
539.0 
442.0 

1 083.0 
954.0 

4 790.0 
474.0 
240.0 

100-
year 
652.0 
137.0 
893.0 
712.0 

4 197.0 
727.0 

3 557.0 
437.0 

4 185.0 
2 470.0 

813.0 
881.0 

5 399.0 
635.0 
652.0 
632.0 
1 801.0 
1 149.0 
5 620.0 

662.0 
355.0 

200-
vear 
806.0 
168.0 

1 301.0 
851.0 

6 456.0 
1 024.0 
5 505.0 

687.0 
4 804.0 
3 073.0 
1 092.0 
1 156.0 
8 141.0 
805.0 
775.0 
895.0 

2 963.0 
1 357.0 
6 523.0 
970.0 
530.0 



APPENDIX C 

C-1. Code to resolve a D8 flow direction raster into a D4 flow direction raster in 

a clockwise direction: 

% Code to resolve the flow direction into a "D4" raster (clockwise) % 

% Values of data contained in ASCII array 
ncols = 60; 
nrows = 114; 
nodata_value = -9999; 

% Loading the data file, input file 
D8_Data = load('C:/ARCGIS/Text_Files/D8.txt'); 

% Create a matrix of nodata_values which will be replaced with D4 flow 
% direction values 
for a=l:nrows 

for b=l:ncols 
D4_Flow_Dir(a,b)=nodata_value; 

end; 
end; 

% Loop through the data set 
for i=l:nrows 

for j=l:ncols 

Flow_Direc = D8_Data(i,j); 

if D8_Data(i,j)==nodata_value 
continue 

end; 

if Flow__Direc==128 
D4_Flow_Dir(i, j)-l; 

elseif Flow_Direc==2 
D4_Flow_Dir(i,j)=4; 

elseif Flow_Direc==8 
D4_Flow_Dir(i,j)=16; 

elseif Flow__Direc==32 
D4_Flow_Dir(i,j)=64; 

else 
D4_Flow_Dir(i,j)=Flow_Direc; 

end; 

end; 
end; 

% Output file directory 
dlmwrite('C:/ARCGIS/Text Files/D4 Flow Dir 1.txt', D4 Flow Dir, '\t' ) 
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C-2. Code to resolve a D8 flow direction raster into a D4 flow direction raster in 

an anti-clockwise direction: 

% Code to resolve the flow direction into a "D4" raster (anti-
% clockwise) 

% Values of data contained in ASCII array 
ncols = 60; 
nrows = 114; 
nodata_value = -9999; 

% Loading the data file, input file 
D8_Data = load('C:/ARCGIS/Text_Files/D8.txt') ; 

% Create a matrix of nodata_values which will be replaced with D4 flow 
% direction values 
for a=l:nrows 

for b=l:ncols 
D4_Flow_Dir(a,b)=nodata_value; 

end; 
end; 

% Loop through the data set 
for i=l:nrows 

for j=l:ncols 

Flow_Direc = D8_Data(i,j); 

if D8_Data(i,j)==nodata_value 
continue 

end; 

i f Flow_Direc==128 
D4_Flow_Dir(i, j)=64; 

elseif Flow_Direc==2 
D4_Flow_Dir(i, j)=l; 

elseif Flow_Direc==8 
D4_Flow_Dir(i,j)=4; 

elseif Flow_Direc==32 
D4_Flow__Dir (i, j ) =16; 

else 
D4_Flow_Dir(i,j)=Flow_Direc; 

end; 

end; 
end; 

% Output file directory 
dlmwrite('C:/ARCGIS/Text Files/D4 Flow Dir 1.txt', D4 Flow Dir, '\t') 
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C-3. Code to resolve a D8 flow direction raster into a D4 flow direction raster in 

the direction of the steepest neighbour: 

% Code to resolve the flow direction into a "D4" raster (steepest 
% neighbor) 

% Values of data contained in ASCII array 
ncols = 64; 
nrows = 123; 
nodata_value = -9999; 
problem_value = -100000; 

% Loading the data file, input file 
D8__Data = load('C:/ARCGIS/Code/Text_Files/D8_2.txt'); 
Height_Data = load('C:/ARCGIS/Code/Text_Files/fill_lkm_dem_2.txt'); 

% Create a matrix of nodata_values which will be replaced with D4 flow 
% direction values 
for a=l:nrows 

for b=l:ncols 
D4_Flow_Dir(a,b)=nodata_value; 

end; 
end; 

% Loop through the data set 
for i=2:(nrows-1) 

for j=2:(ncols-1) 

Height = Height_Data(i, j) ; 
Height_Up = Height_Data(i-1,i); 
Height_Down = Height_Data(i + 1, j) ; 
Height_Right = Height_Data(i,j+1) ; 
Height_Left = Height_Data(i,j-1); 

Flow_Direc = D8_Data(i, j); 

if D8_Data(i,j)==nodata_value 
continue 

end; 

if Flow_Direc==128 
if Height_Up<Height_Right && Height_Up~=nodata_value 

D4_Flow_Dir(i, j)=64; 
elseif Height_Right~=nodata_value 

D4__Flow_Dir (i, j )=1; 
else 

D4_Flow_Dir(i, j)=-100000; 
end; 

end; 

if Flow_Direc==2 
if Height_Right<Height_Down && Height_Right~=nodata_value 

D4_Flow_Dir(i, j)=1; 
elseif Height_Down~=nodata_value 

D4_Flow_Dir(i,j)=4; 
else 

D4_Flow_Dir(i, j)=-100000; 
end; 

end; 
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if Flow_Direc==8 
if Height_Down<Height_Left && Height_Down~=nodata_value 

D4_Flow_Dir(i, j)=4; 
elseif Height__Lef t~=nodata_value 

D4_Flow_Dir(i,j)= 16; 
else 

D4_Flow_Dir(i,j)=-100000; 
end; 

end; 

if Flow_Direc==32 
if Height_Left<Height_Up && Height_Lef t~=nodata__value 

D4_Flow_Dir(i, j)= 16; 
elseif Height_Up~=nodata_value 

D4_Flow_Dir(i, j)=64; 
else 

D4_Flow_Dir(i,j)=-100000; 
end; 

end; 

if Flow_Dir==64 || Flow_Dir==l || Flow_Dir~= 

end; 

end; 

% Output file directory 
dlmwrite('C:/ARCGIS/Code/Text_Files/D4_Flow_Dir_l.txt', 
D4 Flow Dir, ' \t' ) 
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C-4. Code to find the erroneous flow direction codes from the resolved "D4" 

raster 

% Code to find the erroneous flow direction codes from the resolved 
% "D4" raster 

% Values of data contained in ASCII array 
ncols = 64; 
nrows = 12 3; 
nodata_value = -9999; 
problem_value = -100000; 

% Loading the data file, input file 
D4_Data = load('C:/ARCGIS/Code/Text_Files/D4_Flow_Dir_2.txt'); 

% Create a matrix of nodata_values which will flag the erroneous 
% values 
for a=l:nrows 

for b=l:ncols 
Flag(a,b)=nodata_value; 

end; 
end; 

% Loop through the data set 
for i=2:(nrows-1) 

for j=2:(ncols-1) 

Dir = D4_Data(i,j); 
DirJJp = D4_Data(i-l,j); 
Dir_Down = D4_Data(i+1,j); 
Dir_Right = D4_Data(i,j+1); 
Dir_Left = D4_Data(i,j-1); 

if Dir==64 && Dir_Up==4 
Flag{i,j)=10; 
Flag(i-1,j)=10; 

end; 

if Dir==4 && Dir_Down==64 
Flag(i,j)=10; 
Flag(l+1,j)=10; 

end; 

if Dir==l && Dir_Right==16 
Flag(i,j)=20; 
Flag(i,j+l)=20; 

end; 

if Dir==16 && Dir_Left==l 
Flag(i,j)=20; 
Flag(l,j-1)=20; 

end; 

if Dir==problem_value 
Flag(i,j)=30; 

end; 

end; 
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end; 

% Output file directory 
dlmwrite('C:/ARCGIS/Code/Text_Files/Flag.txt' , Flag, '\t') 
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APPENDIX D 

Appendix D presents a printout of the test catchment of Chapter 7 as it is simulated 

with the TOPKAPI model on Microsoft Excel™. 
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