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Abstract  
The KwaZulu-Natal Bight is an important area along the South African east coast, stretching 160 km 

north from Scottsburgh to St Lucia (Lutjeharms et al., 2000). The Bight is of interest to the region as 

the area contains some distinct physical features, which are presumed to drive the ecological 

functioning of the shelf ecosystem through their role in nutrient sources. These include the Tugela 

River, the second largest river in South Africa in terms of outflow, and the Agulhas Current that forms 

an outer border at the edge of the continental shelf. 

Phytoplankton interacts with the majority of essential ecological networks and therefore greatly 

influences marine ecosystems. To this end, it is necessary to understand their ecophysiological rate 

processes – particularly those that are influenced by the dominant nutrient inputs to the Bight. The 

overall aim of this project is therefore to provide an insight into the sources of nutrients driving 

phytoplankton productivity in the Bight. 

Synoptic surveys were conducted to provide an indication of the distribution of Total Suspended 

Solids (TSS), Particulate Organic Matter (POM) and phytoplankton in the Bight, while focussed 

experiments used stable isotopes to examine the rate processes involving C and N acquisition, as well 

as sources of N available in the surface water.  

Concentration of particulate organic phosphorus and nitrogen were found to be higher in the wet 

season when compared to the dry season. During the wet season a large variation in chlorophyll-a 

fluorescence was observed across the Bight, while natural abundance isotope data indicated a seasonal 

change in the nutrient source available. For the wet season nutrient concentration varied with site and 

depth, however uptake rates (µg N.l-1.h-1) measured using 15N tracer additions were not significantly 

different with site and depth. Alternatively, the dry season showed a significant difference between 

site in surface waters. In the wet season the mid shelf area had the highest uptake rate and 

phytoplankton biomass while the Richards Bay north site dominated, with regard to the previously 

mentioned factors, in the dry season. At the time of the experiments, neither the Durban eddy nor the 

upwelling cell were present, and hypotheses regarding the importance of these physical features in 

driving phytoplankton nutrient acquisition could not be assessed. However, a notable difference in 

uptake rate between the wet and dry seasons was observed, and this difference is likely due to the 

fluvial sources of nutrients from the Tugela and many other rivers entering the KZN coast, which are 

absent during the dry season.  

The results indicate that terrestrial nutrient sources play a major role in influencing nutrient 

concentrations on the Bight, and hence influence the nearshore ecosystem of the region.  
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CHAPTER 1 
 

INTRODUCTION



 
 

1. INTRODUCTION 

1.1. General overview 
The province of KwaZulu-Natal is situated on the east coast of South Africa. The region encloses an 

important shelf environment, the KwaZulu-Natal Bight (henceforth termed “the KZN Bight”). It 

stretches 160 km north from Scottsburgh, which is situated just south of Durban, to St. Lucia, just 

north of Richards Bay (Lutjeharms et al., 2000, Figure 1.1). The Bight has a wide continental shelf, 

which extends 40 km off the Tugela River mouth region at its widest point (Lutjeharms et al., 2000) 

and has a maximum depth of about 50 m to about 100 m in the northern and southern parts of the 

Bight, respectively (Lutjeharms. 2006). The nature of the Bight, specifically with respect to its narrow 

width and reduced depth, creates a coastal region where strong winds can greatly perturb the coastal, 

benthic and neritic portions of the ecosystem (Lutjeharms, 2006). 

KwaZulu-Natal (KZN) receives 80 % of its rain between the months of October and March, rendering 

it extremely seasonal (Nel, 2002); the resulting fluvial runoff enters the ocean via 73 rivers and 

estuaries along this stretch of coast, and is expected to play a crucial role in the ecosystem processes 

in the nearshore region (Begg, 1978; Allanson and Baird, 1999). The Tugela River, the second largest 

river in South Africa in terms of outflow (Begg, 1978), is possibly the most important river in the 

region. Besides the many fluvial drivers and the strong coupling with the wind regime of the region, 

the Agulhas Current is the defining feature of the KZN coastline, especially in terms of the 

oceanography of the region. This current forms the outer boundary at the edge of the continental shelf 

of the area, and hence also the Bight. The movement of the Agulhas Current causes cold nutrient rich 

water, generally found at 150 to 250 m deep, to be upwelled in the St. Lucia and Richards Bay area 

and eddies to be formed around Durban (Lutjeharms, 2006; Figure 1.1).  

This study forms a part of larger ACEP ІІ project. ACEP is the acronym for the African Coelacanth 

Ecosystem Project and aims to understand the processes that drive the functioning of the South West 

Indian Ocean ecosystem by integrating the physical and biological sciences. The study on the KZN 

Bight functioning is a smaller part of the ACEP ІІ project. ACEP II has five basic aims: 1) to 

investigate how the transport of nutrients and sediment across the Bight are facilitated by physical 

oceanographic and geological processes; 2) to determine the relative importance of material derived 

from fluvial processes and those originating from Agulhas Current mediated processes (i.e. the St 

Lucia upwelling and cyclonic Durban lee eddy) on the Bight; 3) to study the ecology and biodiversity 

of the shelf; 4) to establish levels of assimilation, recycling and transformation of particulate and 

dissolved materials in the Bight; 5) and to integrate the data collected into a combined bio-energetic 

ecosystem model.  
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This ACEP II programme achieved its aims through an integrated, multidisciplinary and cost- and 

time-efficient sampling program. Studies were conducted on dermersal fish, macrobenthos, 

zooplankton, phytoplankton, and bacteriofauna. Food webs were pieced together using stable 

isotopes, and a coupled biophysical model assimilating all data was produced. The scope of this 

dissertation is part of the phytoplankton studies, which together spans Aim 2 and a portion of Aim 4. 

The phytoplankton studies are compartmentalised into three sections: 1) phytoplankton productivity 

and pigment studies conducted by Dr. Ray Barlow and Tarron Lamont; 2) phytoplankton taxonomic 

composition and biomass by Dr. Johan van der Molen; and 3) this study, an investigation into the 

nitrogen acquisition ecophysiology by Aadila Omarjee, under the supervision of Dr. A.J. Smit. 

 

 

 

 
Figure 1.1. A conceptual model of the ecosystem drivers in the KZN Bight region, including its major features, as well 

as the synoptic (grey circles) and focus (pink circles) sampling station and sites. Black arrows indicate the nutrient 

sources into the system. 

 

UPWELLING 
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1.2. Physical environment 

1.2.1. Regional climate 

An area’s climate influences the biological processes that occur in the associated ecosystems 

(Allanson and Baird, 1999). Along the KZN coast, summer temperatures range between 25 – 28 ºC 

and winter temperatures around 23 ºC (Jury, 1998). Rainfall has a great influence on the riverine 

runoff, influencing coastal ecosystems though freshwater additions, which bring associated 

terrigenous nutrients and other particulate materials. Mean annual rainfall in KZN is around 1000 mm 

with approximately 70 % of this in the summer season (Day, 1981; Allanson and Baird, 1999; Nel, 

2009). In February, rainfall was found to be 125 mm, which when compared to 25 mm in winter is 

extremely high (Jury, 1998; Nel, 2009). Hunter (1988) stated that January was the peak of the wet 

season and August the peak of the dry season. Mean monthly precipitation in these months are 118 

mm and 39 mm for January and August respectively (Hunter, 1988). For the year of study 

specifically, February had the highest rainfall and August the lowest, at 157.99 and 0.51 mm 

respectively (Table 1.1). 

Table 1.1. Total precipitation (mm) and mean wind speed (km.h-1) at the Louis Botha weather station for the year 
2010 (Available online at: www.tutiempo.net/en/climate/Durban_Louis_Botha/2010/685880.htm). 

Month 

 

Total 

precipitation 

(mm) 

Mean wind 

speed (km.h-1) 
Month 

Total 

precipitation 

(mm) 

Mean wind 

speed (km.h-1) 

January 110.98 15.5 July 1.53 10.5 
February 157.99 16 August 0.51 13.2 

March 22.87 14.4 September 7.87 16.2 

April 8.89 14.1 October 18.35 14.5 

May 32.25 11.5 November 21.06 16.8 

June 9.39 11.2 December 49.77 13.2 

 

Wind plays an important role in coastal systems, especially shallow waters, as it reduces stratification 

by causing waters to mix, inducing wave action, and in some geographical locations may cause 

upwelling (Pearce et al., 1978; Allanson and Baird, 1999). The east coast is dominated by westerly 

winds throughout the year, although easterly winds comprise a high percentage of the wind in the 

summer season (Allanson and Baird, 1999). However, a coastal low pressure system causes a change 

in the dominant wind direction to north-northeasterlies at Durban (Schumann, 1988; Allanson and 

Baird, 1999). KZN experiences a cyclone season from November to May, during which time four to 

five tropical cyclones generate high waves in the north of the coastline (Allanson and Baird, 1999). 
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These waves influence the fluvial sources of nutrients in the Bight. Waters in the upper layer of the 

KZN Bight are directly related to synoptic winds in the area, rendering the area being described as 

well mixed (Pearce et al., 1978). 

1.2.2. The coastline  

Some of the most important fluvial drivers of the KZN region in terms of annual contributions to 

freshwater, sediment and nutrient fluxes to the Bight area are the St. Lucia Estuary, the Mfolozi River, 

Richards Bay Harbour, Durban Bay and the Tugela River (Hutchings et al., 2010). However, the other 

68 rivers that discharge into the Bight should be noted, as they may have a cumulative influence on 

the Bight dynamics. 

The St. Lucia Estuary is the largest estuarine system in Africa as it covers approximately 80 % of the 

total estuarine area in KZN (Begg, 1978). Net mean annual run-off is 567 – 633 × 106 m3 (Begg, 

1978). The Mfolozi River used to form a tributary to the St. Lucia estuary, it was once artificially 

diverted (Begg, 1978) but has since been reconnected (N. Carrasco pers. comm.). The Mfolozi estuary 

is the second largest draining basin in KZN with a catchment size of between 9,918 – 11,318 km2 and 

a mean annual run-off of 729 × 106 m3 (Begg, 1978). Hutchings et al. (2010) determined the mean 

annual run-off to be 887.3 × 106 m3 with a median inorganic nitrogen concentration of 7.1 µmol.l-1, 

several years later. Both of these outlets may form a source of nutrients into the KZN Bight. However, 

the St. Lucia estuary is currently undergoing a severe drought, a situation that started in 2002, and the 

estuary has since been closed (N. Carrasco pers. comm.). The Mhlatuze River, with a catchment size 

of 4,268 – 4,489 km2, drains into the Richards Bay Harbour (Begg, 1978). The Harbour forms a 

nutrient trap with the mangroves contributing to the nutrient level (Begg, 1978). Mean annual run-off 

from Richards Bay Harbour is approximately 616 × 106 m3 with a median inorganic nitrogen load at       

20.5 µmol.l-1 in the Mhlatuze (Begg, 1978; Hutchings, 2010). The Umbilo and Mhlatuzana Rivers 

with a cumulative catchment size of 180 km2 drains into the Durban Harbour (Begg, 1978). In 2009, 

the Durban Bay catchment was 264 km2 (Forbes and Demetriades, 2005). It is apparent that industrial 

pollution flows into the harbour through storm water outlets and river canals and that untreated 

domestic sewage has been released at the harbour mouth affecting nutrient concentrations of the 

waters surrounding it (Begg, 1978). Nutrient concentrations in Durban harbour can range from           

7 – 15 µmol.l-1 for dissolved inorganic nitrogen, 7 – 0.5 µmol.l-1 for dissolved inorganic phosphorous 

and 75 – 10 µmol.l-1 for silicate (CSIR, unpublished). Another source of pollution entering the Bight 

is through two pipelines off Richards Bay as well as another two outside Durban. Effluent from these 

pipelines may have an influence on nutrients in the north of the Bight. The Mgeni estuary should also 

be noted as a potential driver, even though it experiences a mean annual runoff of 707 × 106 m3, it is 

subjected to a considerable amount of pollution, increasing the nutrient levels within the estuary 

(Cooper et al., 1992; Allanson and Baird, 1999). Ammonium, nitrate and orthophosphate 
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concentrations measured in the Mgeni were as high as 83, 124 and 129 µmol.l-1 respectively (Cooper 

et al., 1992). 

The Tugela River is the greatest contributor of freshwater to the nearshore region in KZN. It is the 

largest river on the KZN coastline and the second largest in South Africa. The Tugela has a catchment 

area of 28,702 km2 (Allanson and Baird, 1999). With 5,071 × 106 m3 as the mean annual run-off, the 

river can be expected to significantly influence the dynamics of the adjacent oceanic waters (Begg, 

1978; Allanson and Baird, 1999). Whitfield and Harrison (2003) noted the mean annual runoff as 

3,865 × 106 m3 25 years later. Average yearly flow rates for the Tugela were approximately              

138 m3.sec-1 in 1997 and 225 m3.sec-1 in 1999 (Whitfield, 2000). Discharge at the Tugela changes 

seasonally. There is a wet high flow season from November to March, and a dry low flow season 

lasting from April to October (Oliff, 1964). Discharge rates in winter and summer are at 

approximately 73.6 and 481 m3.sec-1 respectively (Oliff, 1964). Later studies found the mean annual 

outflow rate of the Tugela to be 3865 × 106 m3 (Hutchings et al., 2010). These outlets have the 

potential to influence nutrient characteristics in the Bight, thus influencing the phytoplankton 

ecophysiology. 

The Tugela River mouth is situated in the central Bight, and the freshwater plume resulting from the 

river influences the water column characteristics of the inshore portion of the Bight in this region 

(Meyer et al., 2002). In the estuary a survey found no nitrate in the surface water but concentration of 

0.78 and 1.29 µmol.l-1 at the bottom (Cooper et al., 1992). Orthophosphate concentrations here ranged 

between 0 – 0.29 µmol.l-1 and 0.16 – 0.32 µmol.l-1 in the surface and bottom depths respectively 

(Cooper et al., 1992). Meyer et al. (2002) also noted that the central KZN Bight is well mixed, at least 

as data from the period of his sampling seem to indicate. The mouth of the Tugela River was found to 

have higher concentrations of phosphate, at 0.77 µmol.l-1, and silicate, at 4.0 µmol.l-1, as compared to 

the rest of the central KZN Bight (Table 1.1; Meyer et al., 2002). A later study by Hutchings (2010) 

stated that the Tugela has a median inorganic nitrogen concentration of 21.4 µmol.l-1 with an 

estimated load of 1160 t.y-1. 

It was emphasised in a report from the CSIR, studying the influence of the terrestrial freshwater 

outflow on the nearby coast, that the KZN Bight functions as an integrated ecosystem (van 

Ballegooyen, 2007). The model produced in the report illustrated that no specific river had a major 

influence on the ecosystem except for the Tugela. Furthermore it explained that a combination of 

fluvial nutrient sources, including the rivers and estuaries on the KZN coast, had an influence on 

productivity in the KZN Bight. The report concluded that there needs to be further study in the region 

to determine the true extent of the influence of these terrestrial sources on the marine environment in 

the KZN region. 
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Table 1.2. A summary of nutrient concentrations determined in Meyer et al. (2002). 

Bight 

region 

Depth 

(m) 

Nitrate 

(µmol.l-1) 

Phosphate 

(µmol.l-1) 

Silicate 

(µmol.l-1) 

Southern 10 0.15 – 1.65 0.35 – 0.65 2.66 – 4.05 

 30 0.18 – 1.89 0.37 – 0.59 2.83 – 4.05 

 75 0.18 – 13.45 0.46 – 5.43 3.03 – 10.73 

 125 18.33 1.59 13.60 

Central 10 1.01 – 1.86 0.48 – 0.72 3.50 – 4.69 

 25 - 0.5 3.0 

Tugela 25 - 0.77 4.0 

Northern 10 0.15 – 15.30 0.35 – 1.64 2.52 – 9.41 

 50 0.18 – 18.27 0.37 – 1.39 2.40 – 12.22 

 

1.2.3. Hydrography 

The Agulhas Current is fed largely by the South West Indian Ocean sub-gyre, along with the 

Mozambique Channel, Mozambique Current and East Madagascar Current. The Agulhas Current is 

fully formed at around 30 ºS, from where it borders the KZN continental shelf, continuing to flow 

southwards and eventually forming a retroflection with most of the current returning east. Flowing at 

a rate of 1.5 m.s-1 along the KZN Bight, this large-scale oceanographic feature introduces different 

waters into the KZN Bight area (Lutjeharms, 2006; Figure 1.2). 

The KZN Bight water consists of South Indian Subtropical Surface Waters and Indian Tropical 

Surface Water (Lutjeharms et al., 2000). The Tropical Surface Water is characterised by salinities and 

temperatures from 35.0 to 35.5 and 20 to 28º C, respectively (Lutjeharms, 2006).  

The movement of this current, as well as the bathymetry of the continental shelf, results in upwelling 

and gyres forming in the northern and southern areas of the KZN Bight, respectively (Schumann, 

1988). The water generated to the surface significantly influences the ecophysiology of the biota in 

the Bight, as it is colder and nutrient rich which can then be used by phytoplankton in the presence of 

light in the euphotic zone. This topographically-induced upwelling occurs where the sharp bend in the 

coastline causes water to be pulled to the surface; this type of upwelling differs from coastal 

upwelling found in on the West Coast of South Africa, which is caused by the Ekman transport 

interacting with the Benguela Current, resulting in very high levels of primary production, with values 

of 500 g C.m-2.year -1 and some more than double that (Behrenfeld and Falkowski, 1997; Carr and 

Kearns, 2003; Trujillo and Thurman, 2005; Figure 1.3; Figure 1.4). Lutjeharms et al. (2000) noted 

these features: upwelling was found in the north of the KZN Bight with water of higher salinity, 
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nutrients and chlorophyll-a values, as well as lower temperatures (Figure 1.2). On comparison of 

temperature and nitrate concentrations, the beginning of a cyclonic pulse in the southern regions of 

the KZN Bight was found (Lutjeharms et al., 2000). Both these features have a marked effect on the 

nutrients being introduced to these areas (Schumann, 1988). 

ADCP data from the cruises completed in 2010, Voyage 175 and 177 using the FRV Algoa, indicated 

another possible source of nutrients into the KZN Bight (Roberts pers. comm.). A “swirl” (sensu 

Roberts) of water bringing up cold nutrient rich water was observed in the middle shelf area (Roberts 

pers. comm.; Figure 1.1). This resulted in high chlorophyll-a concentrations at 2.65 mg.m3 in the mid 

shelf area with productivity values ranging between 7 – 10 g C.m2.d-1 (Lamont and Barlow, 

unpublished). 

 

Figure 1.2. A map indicating the movement of the Agulhas Current along the east coast of Africa (Lutjeharms, 2007). 

The major feature affecting nutrient concentration in the Durban region is a recurrent eddy. When the 

eddy is not present, the surface layer is well mixed with higher concentrations of nitrogen below      

60 m. When present, the eddy results in cold nutrient rich water being drawn upward, increasing 

nitrate concentrations in the surface regions to between 2.22 and 2.32 µmol.l-1 (Burchall, 1968; Carter 

and d’Aubrey, 1988). Later literature shows, the water of the southern KZN Bight to be well mixed 
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for the first 30 m (Table 1; Meyer et al., 2002). Meyer et al. (2002) noted warm water with low 

nutrient concentrations closer inshore with a positive horizontal nutrient gradient, with the highest 

concentrations at the continental shelf edge. A coastal plume inshore moving northward was further 

noted (Meyer et al., 2002). Meyer et al. (2002) added that there was a cyclonic eddy present in the 

offshore region of the northern KZN Bight, which is further proven by the distribution of nutrients 

with a core of higher nutrients found in the centre of the eddy (Table 1.2). 

 

Figure 1.3. Aqua-MODIS graph showing the sea surface temperature along the South African Coast with the red 

colour on the east coast being the Agulhas current (available online: 

http://oceandata.sci.gsfc.nasa.gov/MODISA/L2/2007/364/) . 

We are unsure how frequently the Durban eddy occurs, but it has been suggested by Harris (1964) 

that the eddy is present approximately 50 % of the time; according to a recent study, the eddy was 

present 55 % of the time (Guastello pers. comm.). The eddy was found to be present for an average of 

eight days but the duration ranged from 3 – 19 days. When the eddy was present, there was a notable 

increase on nutrient concentrations (~ 15 mmol.l-1) and a decrease in the nutricline depth (Carter and 
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d’Aubrey, 1988; Lutjeharms, 2006). Although the change in nutrient concentrations was noted during 

the eddy’s presence, Lutjeharms (2006) states that “it has not been shown to affect primary 

productivity or the biogeography of other organisms” in the KZN Bight.  

 

Figure 1.4. Aqua-MODIS graph showing the chlorophyll-a concentration along the South African Coast (available 

onlinehttp://oceandata.sci.gsfc.nasa.gov/MODISA/L2/2007/364/). 

The Agulhas Current, with its low nutrient concentration, is responsible for a negative horizontal 

gradient in nutrient concentration, moving from Richards Bay offshore (Carter and d’Aubrey, 1988; 

Meyer et al., 2002; Oliff, 1973; Pearce, 1977). A large vertical gradient in nutrient concentration was 

also present due to periodic upwelling found in the area (Carter and d’Aubrey, 1988; Meyer et al., 

2002). Older literature indicates that the topographically driven upwelling causes surface nitrate 

concentration to increase between 1.0 - 7.0 µmol.l-1 (Lutjeharms, 1989; Oliff, 1973). According to 

Oliff (1973), Richards Bay estuary has a small influence on the near shore with an average 

concentration of 20 µmol.l-1 (Begg, 1973); once the dilution factor was taken into account a maximum 



  Omarjee, A. 
  Phytoplankton Studies in the KwaZulu-Natal Bight 

 
 

11 
 

increase of 1 µmol.l-1 was expected (Carter and d’Aubrey, 1988). Meyer et al. (2002) later also found 

distinct vertical and horizontal gradients (Table 1.1).  

1.3. Phytoplankton ecology  
Phytoplankton interacts with the majority of essential ecological networks and therefore significantly 

influences marine ecosystems. Accordingly, it is necessary to understand the ecophysiological 

processes, such as primary productivity and nutrient uptake, that occur within them. Morris (1980) 

states that there is a link between the physical environment and the physiology of phytoplankton, 

where the photosynthetic characteristics of a microalgal population reflects a change in the 

environment with a small time lag. 

Carbon, nitrogen and phosphorus are essential elements that are needed for algal growth (Naldi and 

Wheeler, 2002). Carbon is generally taken up in the bicarbonate (HCO3
-) form while nitrogen can be 

taken up by phytoplankton either actively or passively, in several forms, namely: ammonium (NH4
+), 

nitrite (NO2
-) and nitrate (NO3

-) (Taylor et al., 1998). Urea and amino acids are also forms of nitrogen 

available for uptake by phytoplanton. These nutrients are assimilated into cells where they are used to 

aid in growth. Because these nutrients are essential in growth, an understanding of the process of 

nutrient uptake is therefore imperative. 

The relationship between uptake rate and productivity needs to be explained, as both terms can be 

used to describe the ecophysiological processes that were measured, in this study. In order for 

phytoplankton to increase in biomass, nitrogen needs to be taken up, because it forms a part of the 

amino acids (Dugdale and Goering; 1967; Chenl and Durbin, 1994). Carbon and nitrogen 

concentrations are taken up by phytoplankton, according to the Redfield Ratio (C:N = 106:16), and it 

can thus be deduced that nitrogen and carbon uptake are coupled (Dugdale and Goering, 1967; 

Feliatra and Bianchi, 1993). Because carbon uptake is equivalent to productivity, nitrogen uptake can 

be referred to as productivity due to their parallel relationship. Although under certain conditions the 

stoichiometry may not follow this relationship, it is generally considered an acceptable comparison. 

Morris (1980) initially observed that phytoplankton utilise nitrate over other nitrogenous compounds 

but later found that nitrate is only used when the combination of ammonium and urea is unable to 

saturate uptake. Replenishing of the euphotic zone by upwelling and terrestrial nutrient input may 

result in the nitrogenous nutrient pool being dominated by nitrate (Morris, 1980). Nitrite is found in 

concentrations much lower than nitrate, but at low oxygen concentrations, increases to more 

substantial levels (Morris, 1980). Consumption and reduction of nitrite, from nitrite to ammonium, 

was found to be completed by phytoplankton over bacteria in the near surface oceanic waters (Wada 

and Hattori, 1971). Furthermore, it was found that phytoplankton was capable of using nitrite as 

equivalent to nitrate in a growth medium (Eppley and Rogers, 1970). Harrison and Davis (1977), 
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studying a natural population of marine phytoplankton, found that at low concentrations of nitrate, 1 – 

2 µmol.l-1, both nitrate and nitrite ions were removed at similar rates. In oceanic waters, with no 

pollution, ammonium concentrations are relatively low when compared to other nutrients (Morris, 

1980). Eppley et al. (1969) found that ammonium was preferentially taken up over nitrate until the 

concentration of ammonium in the water drops below 0.5 µmol.l-1 in the diatom Ditylum brightwellii 

and the dinoflagellate Gonyaulax polyedra. Nitrate and more so ammonium, are assimilated at a faster 

rate than nitrite and these nutrients are thus taken up preferentially over nitrite. Urea and amino acids 

are also taken up preferentially over nitrite. Inorganic nutrient concentrations provide information on 

the potential for phytoplankton growth, to identify water masses, as well as to provide a biological 

account of the water (Carter and d’Aubrey, 1988). This was indicated in several studies in the KZN 

Bight (Carter and d’Aubrey, 1988; Carter and Schleyer, 1988; Lutjeharms, 2000; Meyer et al., 2002. 

Carter and d’Aubrey (1988) found that the nutrients showed a spatial and temporal variability, which 

was also concluded by Meyer et al. (2002). It has been established that upwelling of nutrient rich 

water can shape phytoplankton productivity, spatially and temporally (Carter and d’Aubrey, 1988; 

Carter and Schleyer, 1988; Lutjeharms, 2000; Meyer et al., 2002). 

 

Uptake rate is a function of the nutrient concentration, light, and temperature in the surrounding 

medium. Waters rich in dissolved inorganic carbon (DIC), nitrogen (DIN) and phosphorous (DIP) will 

affect the rate of nutrient uptake in phytoplankton (Naldi and Wheeler, 2002). Enhancing 

environmental nutrient concentrations often alleviates the limitation of DIN, resulting in accelerated 

DIC acquisition or primary productivity (Borum and Sand-Jensen, 1996). The response in 

phytoplankton can be measured as sustained uptake over the course of hours (Dy and Yap, 2001), and 

should be correlated with environmental nutrient status, as these nutrients may explain the underlying 

patterns observed (Borum and Sand-Jensen, 1996). 

The stable isotope method allows for a more direct measurement of nutrient uptake, through 

accumulation, as the amount of the stable isotope collected in the sample is measured (McCarthy and 

Eppley, 1972). Additionally, this method allows an estimate of primary production, as the ratio of 

nitrogen to carbon uptake is related (Dugdale and Wilkerson, 1986). The isotope method has the 

advantage of a high sensitivity and shorter incubation times (Naldi and Wheeler, 2002), although as 

concentrations of nutrients are very low in oceanic samples large periods of time will be needed in 

order to note a significant difference. 

1.3.1 Phytoplankton ecology of the KZN Bight 

Productivity 

The Oceanographic Research Institute (ORI) produced a series of reports discussing primary 

productivity on the continental shelf off Durban. The first report sampled in 50 fathoms (91.44 m) off 
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the harbour entrance. In situ primary production was only measured between May and November but 

showed great variability (Burchall, 1968 b). Primary production, in the surface waters, ranged from 

1.05 mg C.m-3.day-1 in May to 14.14  mg C.m-3.day-1, at the bottom, in July. The month of October 

showed high primary production in the surface, at 52.25 mg C.m-3.day-1, but showed lower production 

at the bottom with a value of 0.25 mg C.m-3.day-1. No set conclusions regarding the factors controlling 

primary production were drawn from this study. Further studies of primary production found mean 

carbon uptake rates to be 17 – 942 mg C.m-3.day-1 in the euphotic zone throughout the KZN Bight and 

surrounding coastal waters (Burchall, 1968 a). Another study measured extremely high primary 

production values, at 3000 mg C.m-3.day-1 were found at 49 m south-east of the Tugela mouth (Ryther 

et al., 1966). The high values found by Ryther et al. (1966) were attributed to the high rate of 

terrestrial inputs from the Tugela River introducing nutrients into the KZN Bight. Burchall (1968 a) 

found highest primary production south-east of the Tugela mouth at 119 mg C.m-3.day-1. The study 

hypothesised that it was due to terrestrial inputs from along the coast. 

A later study on phytoplankton productivity was conducted along the entire Agulhas Current 

stretching from Delagoa Bay to Mauritius around the coast to Cape Agulhas and down to Marion 

Island (Mitchell-Innes, 1967). Primary production near the KZN Bight was found to be                     

84 mg C.m-3.day-1 at the surface (Mitchell-Innes, 1967), decreasing to 4.32 and 0.24 mg C.m-3.day-1 at  

28 and 66 m respectively (Mitchell-Innes, 1967). Although only one sampling site in this study 

pertains to the KZN Bight, it is important to note that this study found photosynthetically available 

radiation (PAR) as the major factor influencing primary productivity (Mitchell-Innes, 1967). 

The KZN Bight was again studied by Oliff (1973) and Schleyer (1981) who focussed attention to the 

upper regions of the KZN Bight due to the upwelling in the region. Primary production rates 

measured were 43.2 and 307.2 mg C.m-3.day-1 at 10 m and 1 m, respectively, in the southern end of 

the KZN Bight (Oliff, 1973; Schleyer, 1981). These higher values over short periods of time are 

indicative of upwelling in the region. A recent study by Barlow et al. (2010) found a primary 

productivity to range between 0.3 – 3.7 mg C.m-3.day-1 in the KZN Bight and areas south of the KZN 

Bight. Although these values are high they do differ from the Benguela upwelling systems with 

primary production values of 500 g C.m-3.year-1, which averages to 1.37  mg C.m-3.day-1, n and some 

values are more than double that (Carr and Kearns, 2003; Behrenfeld and Falkowski, 1997). This is 

because these two currents experience different levels of nutrient availability.  

Chlorophyll-a biomass 

Carter and Schleyer (1988) found chlorophyll-a concentrations to range between 0.3 – 3.9 mg.m-3 in 

the Durban eddy region of the KZN Bight. Later studies found chlorophyll-a concentrations to be 

below 0.5 mg.m-3 in the Durban eddy area (Lutjeharms, 2000). The Richards Bay upwelling area was 

found to have chlorophyll-a concentrations ranging between 1.0 – 1.5 mg.m-3 (Lutjeharms, 2000). The 
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higher chlorophyll-a concentrations are likely due to nutrient inputs. Other similar systems, such as 

the Delogoa Bight, experience chlorophyll-a concentration ranging between 0.6 – 1.3 mg.m-3.  The 

biomass found along our east coast is much lower than that of the west coast. Chlorophyll-a 

concentrations in the Benguela upwelling region on the west coast of South Africa were found to be 

as high as 9 mg.m-3 (Verheye-Dua and Lucas, 1988) with later studies indicating values from              

5 –  <15 mg.m-3 depending on the season (Carr and Kearns, 2003). A maximum chlorophyll-a 

concentration of 117 mg.m-3 has recently been noted in the Benguela ecosystem (Barlow and Lamont, 

2012). The reason for the difference between the regions, is that the west coast experiences much 

higher nutrient concentrations than the KZN Bight which has been described as being oligotrophic 

(Vreheye-Dua and Lucas, 1988; Bustamante et al., 1995; Carr and Kearns, 2003). 

Species composition 

A study was conducted on phytoplankton species diversity along the Agulhas current region in 1969 

(Thorrington-Smith, 1969). The study established that all sites were diatom dominated with 

dinoflagellates not reaching more than 2.3 % of the cells counted. Another study by Carter and 

Schleyer (1988) reiterated this finding when it determined that the Durban eddy region was dominated 

by diatoms. The site situated off the Tugela River mouth had the largest variety of species while the 

one furthest from the coast had the fewest, although all the areas were dominated by diatoms 

(Thorrington-Smith, 1969). The study stated that the type of upwelling in a system not only affects the 

amount of phytoplankton in a system, but also the presence or absence of a species (Thorrington-

Smith, 1969). 

Barlow et al. (2008) conducted a study on phytoplankton in both the KZN and Delagoa Bight. The 

study focussed on determining the functional groups of plankton found in this area using pigments. It 

was determined from this study that flagellates were located throughout both Bight systems and 

further they had the highest biomass of all the phytoplankton functional groups detected (Barlow et 

al., 2008). Flagellates were found in temperatures of between 18 – 24 ºC, whereas diatoms dominated 

in colder upwelled waters with temperatures less than 22 ºC and high phytoplankton biomass (Barlow 

et al., 2008). Prokaryote biomass was found to increase in warmer waters greater than 22 ºC (Barlow 

et al., 2008). Knowledge of the broad  phytoplankton communities present related to their habitat 

temperature may enable us to determine the nutrient sources  influencing productivity in the KZN 

Bight.  
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1.4. The current study 

1.4.1. ACEP aims 
To recap, the aims of the KZN Bight project were:  

1) To determine the relative importance of material derived from fluvial processes and those 

originating from the Agulhas Current – the St Lucia upwelling and cyclonic Durban lee eddy 

on the Bight. This aim can be further broken down: 

 To quantify the contribution of the Agulhas Current to the nutrient fluxes in the Bight.  

 To quantify the nutrient fluxes through the biota and environment. 

 

2) To establish levels of assimilation, recycling and transformation of materials in the Bight. 

This major aim can be unravelled into smaller components:  

 To determine the stoichiometry (C:N:P) of the biota in the KZN Bight.  

 To make use of stable isotope analysis to provide input for food web studies, as well as 

ecosystem models.  

 

1.4.2. Aims of this study 
Using the ACEP aims as a guideline, the aims of this project were drawn up. The overall aim of this 

thesis is to provide an insight into which nutrient source is driving phytoplankton productivity in the 

KZN Bight. It can be broken down into the following three aims: 

1) To determine the distribution of particulate organic matter (POM) along the KZN Bight.  

 POM content of water forms a good indicator of productivity in the euphotic zone 

(Charpy, 1985) thus an understanding of distribution of these nutrients will allow us to 

determine the relative importance of nutrient sources in the KZN Bight region. 

 It can be hypothesised that there will be higher concentrations of POM along areas of 

higher phytoplankton biomass, as well as at terrestrial output regions.  

 Data from here will be introduced into flux models being completed by a member of the 

KZN Bight Project.  

 Data will also used to explain patterns seen in other studies as part of the project, as well 

as aid in an understanding of the results used to explain the second aim of this project. 

2) To examine the influence of fluvial and oceanic nutrient sources on phytoplankton 

ecophysiology.  

 These findings in combination with other ACEP data allowed us to determine the relative 

importance of nutrient sources in the KZN Bight region.  
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 It can be hypothesised that an input of nutrients would result in an increase in nitrate 

concentration which, in turn, would result in an increase in productivity (Brylinsky and 

Mann, 1973; Dortch, 1990; Borum and Sand-Jensen, 1996; Cochlan and Bronk, 2001; 

Kockum et al., 2002). 

3) To use daily results of both uptake and chlorophyll-a concentration to provide an 

understanding of the oceanographic processes that drive productivity in the KZN Bight. 

 A daily perspective will provide an insight into biomass and production changes, which 

might not be observed when comparing results statistically.  

 

1.4.3. Structure of this thesis 
This thesis is structured in order to help accomplish this overall aim, while not being redundant in the 

different chapters. This study is broken down into three aims as seen in the introduction. The first two 

chapters, being the introduction and methods and materials respectively, are combined for all three 

aims. This prevents the repetition of information because the information provided in these sections 

are needed for all the aims. Chapter three is the results and discussion, is divided three sections, one 

for each aim. The results and discussion presented is kept to one chapter, due to the large volume of 

data presented which could prove difficult to follow if discussed separately from the results. The 

overall aim is addressed specifically in the conclusion. 
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2. METHODS 
Two cruises were conducted in the wet and dry season along the KZN Bight (29°36.826 S; 31°24.777 

E). The first cruise, sampling the wet season, occurred from the 22/01/2010 – 22/02/2010 on Voyage 

175 aboard the FRV Algoa, while the second cruise, aboard the same vessel Voyage 177, occurred 

during the dry season from 16/07/2010 – 27/02/2010. For both cruises the ADCP data showed that 

neither of the oceanographic features, i.e. the upwelling at Richards Bay and the eddy at Durban, was 

present (Roberts pers. comm.). There was a distinct difference in rainfall between February, which 

experienced heavy rain, and August, which had low rain (Table 1.2). 

Each cruise was comprised of two components, i.e. a synoptic and a focussed part of the cruise. The 

synoptic study provided an overall picture of the KZN Bight and lasted for approximately two weeks 

for both the wet and dry season. The focussed studies were conducted at sites chosen in proximity of 

the major oceanic or fluvial drivers anticipated to exist there, thus allowing the determination of the 

influence of each of the nutrient sources on phytoplankton ecophysiological characteristics. Spatial 

coordinates for the synoptic and focus cruise components can be found in Appendix A and B 

respectively. 

At each station water samples were collected using twelve PVC Niskin bottles attached to a rosette 

housing with a Sea-Bird 911 plus CTD (Sea-Bird Electronics, Inc., Bellevue, Washington, USA). The 

CTD provided the depth and active fluorescence, to determine the fluorescence maximum (Fmax), in 

order to electronically fire the Niskin bottles, collecting water at respective depths. A summary 

linking the methods used to the aims of the study can be found below (Table 2.1.)  

Table 2.1. Summary of the aims and objectives of this thesis with the related methods section. 

Aim Objective Section 

To determine the distribution of 
POM along the KZN Bight. 

A synoptic study of the KZN Bight was 
conducted, concentrating on POM, to 
provide an overall understanding of the area. 

2.1. 
2.3.1.1. 
2.4.1. 

To examine the influence of 
fluvial and oceanic nutrient 
sources on phytoplankton 
ecophysiology. 

A study of five focus areas of the KZN Bight 
was conducted at which 15N uptake 
experiments were performed over several 
days. Data from each site was grouped and 
statistical analysis completed. 

2.2. 
2.3.1.1. 
2.3.1.2. 
2.3.2. 
2.4.2. 

To use daily results of both 
uptake and chlorophyll-a 

concentration to provide an 
understanding of the 
oceanographic processes that 
drive productivity in the KZN 
Bight. 

A study of five focus areas of the KZN Bight 
was conducted at which 15N uptake 
experiments were performed. Data from each 
sampling day were visually compared. 

2.2. 
2.3.1.1. 
2.3.1.2. 
2.3.2. 
2.4.3. 
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2.1. Synoptic study field work 

2.1.1.  Site selection 
The synoptic survey covered the area across the entire KZN Bight region, from Scottsburgh to St. 

Lucia (Figure 2.1.). Shore-normal transect lines from the shore to the outer edge of the continental 

shelf ensured a broad and comprehensive spatial coverage of the study region (Figure 2.1.). There 

were 117 stations sampled in both synoptic cruises.   

 

Figure 2.1. Synoptic cruise sampling sites in the KZN Bight. 

2.1.2 Quantitative analysis for the synoptic cruise 

It is vital when working with isotopes that all nitrogen and carbon are removed from the filtering 

equipment, filters and storage containers. Thus, all sample bottles and containers were washed with  

10 % HCl acid wash and rinsed three times in distilled water. All filters were precombusted at 450 ºC 

for six hours removing all organics and then weighed to three decimal places. 

At each of the 117 stations CTD casts were conducted using a SBE 911 Plus under water unit was 

used to measure depth (m), temperature (ºC), salinity (PSU), dissolved oxygen levels (mg.l-1) and 

pressure (db). Fluorescence (mg.m-3) and backscatter was also determined. Chlorophyll-a biomass 

was later determined using a WET Labs ECO-Fluorometer (Philomath, USA) which measures the 

direct chl-a concentration extracted, using acetone (90 %), from phytoplankton cells. 

The cost of analysis of certain parameter forced us to select a subset of 45 out of the 117 stations. 

Three stations on each line were chosen to provide a broad picture of the study area (Appendix A). 

Water was collected from each of these 45 discrete stations at three depths (surface, fluorescence Fmax 

and bottom). Water volumes of 300 or 500 ml were filtered onto precombusted and pre-weighed 25 
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mm diameter Whatman GF/F (nominal 0.72 µm) at a pressure of less than < 100 mm Hg. The filters 

were frozen wrapped in foil sleeves at – 20 º C and stored in Ziploc packets for later particulate 

organic matter (POM) analysis (yielding TSS, % CaCO3, particulate organic nitrogen (PON) and 

phosphorous (POP)). All samples were analysed within six months after completion of the cruise. 

 

2.2. Focussed study field work 

2.2.1. Site 
Four sites viz. the Durban eddy, the Tugela mouth, Richards Bay north and Richards Bay south, were 

chosen in the KZN Bight, due to them being influenced by the proposed nutrient input mechanisms in 

the area (Figure 1.1). These include the upwelling cell at Richards Bay, the eddy just below Durban 

and the outflow from the Tugela River. The mid-shelf region of the KZN Bight was found to have 

high chlorophyll-a biomass (as per in situ fluorescence measurements) during the synoptic cruise of 

the wet season, and was included as an additional site for sampling. 

 

Figure 2.2. The four focus sites sampled along the KZN Bight (Richards Bay north – grey, Richards Bay south – 

green, Tugela mouth – purple and Durban eddy – red). An indication of the mid shelf sampling site is also included 

(brown). 

2.2.2. Quantitative analysis for the focussed cruise 

Once again, the same pre-trip preparation was conducted with all the bottles being washed in 10 % 

HCl and filter precombusted at 450 ºC for six hours. Seawater was collected from the surface and Fmax 

at each focus site (see Appendix D for Fmax depths). Volumes of 1000 to 2000 ml were filtered onto 

precombusted and pre-weighed 25 mm diameter Whatman GF/F (nominal 0.72 µm) at a pressure of  

< 10 mm Hg. The filtrate was stored in 2000 ml Schott bottles and acidified to a pH of 2-3, using 200 

Durban eddy 

Mid shelf 

Tugela mouth 
Richard Bay south 

Richards Bay 

north 
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µl concentrated HCl (32 %), for later determination of the δ15N natural abundance values of the DIN 

contained within the seawater samples. The filters were frozen at - 20 º C in foil folders, and stored in 

Ziploc packets to determine the isotopic natural abundance values of the POM. Furthermore, another 

500 ml was filtered for samples taken at both depths, and the filters kept frozen as above for later 

POM analysis, in the laboratory at the University of KwaZulu-Natal. All samples were analysed 

within six months after completion of the cruise. 

CTD casts were conducted at each sampling event. Samples were collected at approximately       

10:00 SAST, using a SBE 911 Plus underwater unit was used to measure depth (m), temperature (º C), 

salinity (PSU), dissolved oxygen levels (mg.l-1) and pressure (db). Fluorescence (mg.m-3) and 

backscatter was also determined. Chlorophyll-a biomass was later determined using a WET Labs 

ECO-Fluorometer (Philomath, USA) again using acetone (90 %) for extraction of chlorophyll-a 

pigments providing a more accurate estimation of the biomass. 

2.2.3. 15N uptake experiments 

Nutrients modulate phytoplankton ecophysiological rate processes, influencing spatial patterns in 

chlorophyll-a distribution (Naldi and Wheeler, 2002) and interacting with many biotic and abiotic 

components – forming a crucial link between the environment and higher tropic positions. The stable 

isotope method measures nutrient uptake by the amount of the limiting nutrient accumulated into the 

phytoplankton. Developed approximately 25 years ago, this method uses a chemically labelled 

nutrient, either 15N for nitrogen, 13C (stable) for carbon or 32S for sulphur (Dugdale and Wilkerson, 

1986; Harrison et al., 1989; Naldi and Wheeler, 2002). The rate of uptake is followed by adding the 

tracer nutrient to the culture medium and subsequently determining the amount of labelled nutrient 

accumulated in the phytoplankton after uptake at a set incubation time period using isotope ratio mass 

spectrometry (IRMS) (Cornelisen and Thomas, 2002; Harrison et al., 1989). This method was used to 

determine uptake rate in my sampling in order to determine if there are oceanic processes influencing 

the physiology of phytoplankton in the area.  

There are factors affecting the accuracy of nutrient uptake experiments that need to be controlled. 

These are important to consider as they may result in an over or under estimation of the measured 

uptake rate (Dugdale and Wilkerson, 1986). The upper limit of nutrient uptake is variable and 

therefore incubation time can affect results as the variability needs to be noted and not assumed or 

extrapolated (Magnusson et al., 1993). In vitro experiments allow for environmental factors to be 

controlled but prevent the accuracy which the in situ experiment provides. For in vitro experiments 

conducted in bottles and beakers, Runcie et al. (2003) and Dugdale and Wilkerson (1986) state that 

the amount of nutrients absorbed by the bottle or beaker itself is negligible and does not need to be 

considered. The initial concentration of the nutrients is important to note when performing an 

experiment. When nutrient concentrations are low, around the limit of analytical detection, an 
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enrichment experiment that disturbs the current nutrient regime will not be able to provide accurate 

information on the sufficiency of the nutrients in the environment (Morris, 1980). 

In order to complete aim two, to examine the influence of fluvial and oceanic nutrient sources on 

phytoplankton ecophysiology, 15N uptake experiments were performed. These experiments were 

conducted at each of the focus sites because they had either an oceanic or fluvial feature that 

introduces nutrients into the KZN Bight, allowing us to determine the influence of each of the nutrient 

sources on productivity. Oceanographical studies moves away from statistical analysis and discusses 

generalised patterns seen in data. Statistical analysis requires replicates which are often not available 

when studying large scale marine ecosystems. It is for that reason that I have decided to look at both a 

combined statistical comparison of nitrate uptake, to determine if there are differences at each site, as 

well as a daily perspective of both the nitrate and ammonium uptake rates of phytoplankton at the 

focus sites, to provide an  idea of potential nutrients sources in the KZN Bight. 

Water from the surface and Fmax was filled directly into 1000 ml polycarbonate bottles directly from 

the Niskin bottles for the wet season. Alternatively, in the dry season, water was collected in a 25 litre 

drum, to homogenise the sample, before filling the polycarbonate bottles. Five bottles were enriched 

with 99 atom-% 15N-NO3
- from NaNO3, to a concentration of 1.0 μmol.l-1 (Dugdale and Wilkerson, 

1986; Harrison et al., 1989; Naldi and Wheeler, 2002). It is important to note that the higher nitrate 

concentration in the experiment as compared to the natural environment may form a possible source 

of bias in the uptake results. A further two bottles were wrapped in foil and served as dark controls for 

each depth. The enriched nitrogen served as a tracer as it is taken up and assimilated into the 

phytoplankton cells. A further three bottles were enriched with 15N-NH4
+ from NH4Cl to a 

concentration of 1.0 μmol.l-1 (Brylinsky and Mann, 1973; Dortch, 1990; Borum and Sand-Jensen, 

1996; Cochlan and Bronk, 2001; Kockum et al., 2002). The enriched nitrogen will serve as an 

indicator of ammonium uptake by the phytoplankton but again the higher ammonium concentration in 

the experiment may affect the uptake results. The bottles were randomly placed in an incubator with 

circulating surface seawater for approximately six hours (Dugdale and Wilkerson, 1986; Harrison et 

al., 1989; Naldi and Wheeler, 2002). Oceanic sampling is subject to good weather and thus the 

number of days sampled fluctuated between sites and seasons (Appendix C). Each day of incubations 

served as a replicate for the experiment, which allowed us to determine which nutrient was taken up, 

at the focus sites, in order to determine if there aree major influencing factors on the physiology of 

phytoplankton in the area. 

After the incubation period, the water was filtered onto precombusted 25 mm diameter Whatman 

GF/Fs and frozen, in foil sleeves, at – 20 º C for isotopic analysis. Another 500 ml was stored in 

Schott glass bottles for ammonium diffusion analysis and acidified to a pH of 2-3 using 200 µl 32 % 

HCl. 
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2.3. Laboratory analysis 
At the laboratory in the University of KwaZulu-Natal, the GF/Fs were dried at 60 ºC for 24 hours, and 

TSS was measured by mass difference before and after filtration. CaCO3 was removed by 

acidification with a 2 % HCl solution to prevent it having an effect on δ13C-values. 

2.3.1. POM  
POM is formed from a combination of detritus, dissolved organic matter flocculation, phytoplankton 

biomass and sloppy feeding (Lee and Cronin, 1984; Golladay, 1997). The distribution of POM can 

thus be described as a function of in situ production and heterotrophic decomposition in the euphotic 

zone and heterotrophic decomposition alone in the deeper waters (Lee and Cronin, 1984). Suspended 

particles play a major role in nutrient cycling since they serve as a transport agent through which 

nutrients are able to move (Tanimoto and Hoshika, 1997). It allows for the vertical transport of 

nutrients from the euphotic zone to the deep ocean (Lathja and Michener, 1994). POM forms a link 

between up- and downstream communities trophically forming one ecosystem (Golladay, 1997).The 

first aim, determining POM distribution along the KZN Bight, will allow us to determine the relative 

importance of nutrient sources in the area. 

2.3.1.1. PON and POP  

PON and POP were then determined from the GF/F by digestion, using a wet oxidation method 

according to Raimbault et al. (1999). In order to complete a digestion, filters containing the POM 

were placed in Teflon digestion flasks (Nalgene) with 30 ml Milli-Q water. After 3.75 ml of an 

oxidising reagent was added, which consisted of 30 g disodium tetraborate dissolved in 250 ml    

Milli-Q water (at 50 ºC), after which 15 g of potassium peroxodisulfate was added and dissolved by 

stirring. Oxidation reagent of desired volume was made every day to prevent crystallisation. Digestion 

was completed in an autoclave at 120 ºC for 30 minutes. The resultant solutions of the digestion, 

which contain inorganic nutrients, were analysed using a Skalar San ++ continuous flow analyser. One 

set of initial controls was conducted which included a precombusted filter, Milli-Q water and 

oxidising reagent.  

2.3.1.2. Isotopic POM 

The filters were packaged into 12 x 6 mm tin capsules (OEA laboratories, Cornwell, UK) and placed 

into multiwall trays for transportation. POM for isotopic analysis of both the natural abundance levels 

and after incubations (i.e. enriched samples) were conducted using isotope ratio mass spectrometry 

(IRMS). Both levels were determined in order to i) use the natural abundance values to determine the 

major nutrient source to phytoplankton; ii) to use the values along with nitrogen regeneration rates, in 

the calculation, to work out uptake rate. For the natural abundance POM, δ15N and δ13C values were 

determined. For the enriched POM filters from the incubations, the atom-% of 15N and 13C was 

determined in the IRMS. 
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2.3.2. 15N filtrate 
Nitrogen in the form of NO3

- was extracted from the filtrate of both the natural abundance (before 

incubation) and enriched incubation samples (after incubation). The extraction was conducted 

according to the ammonium diffusion method by Sigman et al. (1997). These values were later used 

in the calculations for uptake rate. 

The method begins with an addition of 1500 mg precombusted MgO (600 ºC for 6 hours) to 500 ml of 

the filtrate, which was then heated in an oven for five days, at 65 ºC, to convert DON to NH4
+. The 

samples were then evaporated to dryness, at 95 ºC, to allow the NH4
+ in the sample to evaporate. The 

salts were then re-dissolved to a volume of 100 ml using Milli-Q water. Devarda’s alloy (375 mg) was 

then added to the re-dissolved solution to convert NO3
- to NH4

+ which would dissolve into an acidified 

diffusion packet (1 cm ø GF/D sandwiched between two Mitex Teflon membranes). The diffusion 

process was allowed to occur for four days at 65 ºC and on a shaker table for nine days. Packets were 

then acid washed, dried and packaged into tin capsules (12 X 6 mm, from OEA laboratories, 

Cornwell, UK) before Isotope Ratio Mass Spectrometry (IRMS) analysis. Three replicate controls 

were conducted with each batch of samples analysed, which only replaced the sample water with 

Milli-Q water, providing a comprehensive blank value. 

 

2.4. Data analysis 

2.4.1. Aim 1 
Graphs of the synoptic sampling were created using Ocean Data View 4©. TSS, PON were compared 

between treatment and site as well as site and depth using two-way ANOVAs in Prism GraphPad 5®. 

POP was not compared, as there was not enough data for statistical comparison. 

2.4.2. Aim 2 
Data from the enriched samples were calculated as atom percent (At %) using the following equation 

(Fry, 2006): 

At %   
(100 Rstd [

δsam
1000 1])

(1 [Rstd {
δsam

1000 1 }])
 

Where Rstd refers to the world standards, for which for nitrogen is atmospheric N2. δsam refers to the 

value measured by the IRMS, and is reported in parts per thousand (‰). It is calculated using the 

following equation (Fry, 2006): 

δsam ([
Rsam

Rstd
]  1)  1000  



  Omarjee, A. 
  Phytoplankton Studies in the KwaZulu-Natal Bight 

 
 

25 
 

Uptake rates were then calculated using the isotope dilution model of Gilbert et al. (1982). This model 

was selected as it accounts for the change in enrichment concentration and uptake rate throughout the 

experiment. It uses an exponential decay curve to account for the change in 15N, within the sample, 

with time (R). R is calculated using the following equation: 

    
  

  
(1 exp[   ]) 

Here Ro refers to the 15N atom percent of the aqueous fraction at time zero and t the time incubated of 

(Gilbert et al., 1982). δ values of Ro were provided from the IRMS and then converted into atom 

percent using the first equation provided in this section. k is used to account for the change in uptake 

rate related to the change in the concentration of nutrients in the sample and can be calculated using 

the following equation: 

     
ln (

Rt
R0

)

t
 

Uptake rate (ρ) was calculated using the following equation: 

   (
N atom % excess15

  t ime of incubation
)     

Where atom percent excess refers to the atom percent of the sample, subtracted by the atom percent of 

the substrate, and PN refers to the particulate nitrogen in the sample. Details of the equations used can 

be found in Appendix E. 

Visual representation and statistical analysis of the data was then completed. Ocean Data View 4© was 

used to plot distribution graphs of the nutrient concentrations in the focus cruise, providing a view of 

the nutrients with site and depth. Prism GraphPad 5® was then used to statistically compare the 

difference in POM and TSS measured at the focus site. The two-way ANOVA has allowed a 

preliminary assessment of the influence of processes on the focus site. Nitrate uptake was compared 

between treatment and site, as well as site and depth using two-way ANOVA’s in Prism GraphPad 5. 

Statistics for the dry season do not include the Richard Bay south and Tugela mouth sites, as there 

was not enough data present. Assumptions of the ANOVA comparing uptake rates were met except 

for the wet season surface data, which was log transformed and the data reanalysed. These results 

comparing uptake rate, along with two-way ANOVAs comparing the environmental conditions with 

depth and site, provides a further understanding of underlying processes driving production in the 

KZN Bight. The assumptions were met for most of the samples. For nitrite, concentrations for the wet 

season and PAR for both seasons were square root transformed and reanalysed. Transformation was 

unsuccessful for nitrite concentration in the dry season and it was therefore not statistically compared. 
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Statistical comparisons were not made between the seasons, as a lack of funding did not allow for 

replication. However, visual comparisons of the data were made to assess the influence of terrestrial 

nutrient sources on production. It can be inferred from a difference between seasons, that runoff due 

to rainfall affects phytoplankton production in the KZN Bight. 

Multivariate analyses were used to provide a good visual representation of the data as well as a better 

understanding of the environmental influence on the physiological processes. Principal component 

analyses (PCA) were completed, using Primer version 6©, in order to compare environmental 

conditions for both the wet and dry seasons. The data were first normalised and the analysis 

completed. The factors compared where inorganic nitrogen (nitrate and nitrite) phosphorous and 

silicate concentration, temperature, salinity, dissolved oxygen and PAR. Non-metric multi-

dimensional scaling (nMDS) plots were created using the biological data. This included chlorophyll-a 

concentration, nitrate uptake rate for both seasons. The nMDS plot overlaid with the results of a 

cluster diagram provides a visual image of the separation of sites according to the biological 

components. The BIOENV analysis was then completed in PRIMER to determine which 

environmental variables significantly influence biological data. The data were first normalised and a 

Bray-Curtis and Euclidian distance resemblance matrix was created for the biological data and 

environmental data respectively. The BIOENV analysis uses combinations of the environmental 

variables to find the highest Spearman rank correlation between the two matrices.  

2.4.3. Aim 3 

Nitrate uptake rates were calculated using the equations in Section 1.4.2. of the methods and materials 

sections while ammonium uptake rates were calculated using the Dugdale and Goering (1967) model . 

Prism GraphPad 5® was then used to create the graphs in order to visually compare the data. 
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3. RESULTS AND DISCUSSION 

3.1. Particulate organic matter (POM) distribution 
The first aim of my study is to discuss the POM distribution along the KwaZulu-Natal Bight (KZN 

Bight). The results in this section are reported and discussed according to site, depth and season. A 

comparison of these three variables will allow us to determine nutrient input points. Furthermore, with 

season in particular, a comparison will allow us to determine the influence of river outflow into the 

KZN Bight system and thus determine terrestrial influence in the area. 

3.1.1. A synoptic view 
A synoptic view of total suspended solids (TSS) surface waters , during the wet season, reveals 

amounts of ca. 25 mg.l-1 just off the Tugela River mouth near the coast, with a smaller amount of 

approximately 20 mg.l-1 at the Richards Bay south/north region (Figure 3.1a). The dry season showed 

the opposite pattern with less TSS at the surface waters off the Tugela River mouth region at ca.       

20 mg.l-1 but more at the Richards Bay area, with 25 mg.l-1 TSS at the southern area of the KZN Bight 

(Figure 3.1b). The Fmax depth showed a different pattern between the seasons, with TSS of between 30 

– 35 mg.l-1 just off Richards Bay, and the dry season with 15 – 25 mg.l-1 spread all along the KZN 

Bight (Figure 3.1c and 3.1d). The bottom depth, of around 40 m, at the Richards Bay area had 

approximately the same amounts of TSS for both seasons at 30 mg.l-1 (Figure 3.1e and 3.1f). Fluvial 

runoff from rivers introduce suspended solids into the coastal areas of the KZN Bight (Day, 1981). 

The input from the Tugela River, with a mean annual runoff of 5,071 × 106 m3, in particular, would 

explain the TSS patterns noted with higher amounts of TSS at the mouth of the river (Begg, 1978; 

Allanson and Baird, 1999). This was reiterated in a paper by de Lecea et al. (Unpublished), using 

natural abundance isotope data, it was determined that the TSS found in the KZN Bight originated 

from the Tugela River. 

Particulate organic nitrogen (PON) concentration showed an interesting pattern with season. Higher 

concentrations of PON are found in the surface waters of the wet season, but with patchy distribution, 

while the dry season waters had moderate concentrations, but spread over the KZN Bight (Figure 

5).The wet season surface waters had values as high as 25 µg.l-1 while the dry seasons waters highest 

values did not exceed ca. 15 µg.l-1. The surface waters showed two “hot spots” for PON in the wet 

season just south of the Tugela River mouth and, southerly, just off the edge of the shelf, with values 

of approximately 20 µg.l-1, which shifted south and decreased slightly, by approximately 0.005 µg.l-1, 

in concentration in the dry season waters. Lower in the water column, there were higher amounts of 

PON found just north of Richards Bay, at approximately 35 µg.l-1. The same “hot spot”, found in the 

surface waters, of the southerly region, can once again be seen, in the in the Fmax waters of the wet 

season with values as high as ca. 20 µg.l-1  (Figure 3.2c). The bottom depth waters shows differences 
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in the amount of PON available between the seasons with values of up to 80 µg.l-1 for the wet season 

and a maximum of 15 µg.l-1 in the dry season (Figure 3.2e and 3.2f). For the wet season there are 

three areas with higher concentrations, at values ranging between 20 – 80 µg.l-1 (Figure 3.2e). One at 

the coast near Richards Bay, one that was seen in the surface and Fmax depths and, finally, one that 

seems to emanate of the coast at the Tugela River mouth region moving northerly in the centre of the 

KZN Bight (Figure 3.2e). The concentrations of PON seen in the KZN Bight are slightly higher but in 

a similar range to other coastal areas. The coast of the eastern North Pacific experienced a range of 

0.6 – 10. 9 µg.l-1 (Loh and Bauer, 2000) as well as the oligotrophic Hawaiian coast with a 

concentration of 5.7 µg.l-1 (Laws et al., 1984). The southern Bight of the North sea, is also shallow 

with a depth of 30 m and like the KZN and is subjected to terrestrial inflow. In the southern bight of 

the North Sea PON in the water had a wide range, from 21 to 308 µg.l-1 (Lancelot and Billen, 1984). 

This value was again higher than that seen in the KZN Bight, although the lower end of the range did 

overlap with concentrations seen in the KZN Bight. The wide range seen at the southern bight of the 

North Sea was take over several months and could be expressive of nutrient inputs in the system 

during that period (Lancelot and Billen, 1984).  

The Mfolozi River discharges nutrients just north of the KZN Bight (Day, 1981). With the Agulhas 

Current, this water could be drawn southward, introducing the PON found just north of Richards Bay, 

explaining the high values seen in the region. When sampling, there was an extreme colour change in 

the water, from blue to murky brown, just outside the Mfolozi. However, the two pipelines 

introducing pollutants to the coastline outside Richards Bay could be a potential explanation for the 

higher TSS and POM values in the area. Another potential reason for the high PON in the area, could 

be due to resuspension of the sediment through wind forcing, as it is a shallow area. The dry season 

waters showed areas with slightly raised PON concentrations just along the coast in the northern and 

southern areas of the KZN Bight, with a small area in the Durban eddy region showing concentrations 

of around 10 g.l-1 (Figure 3.2f). The elevated levels of particulate organic nitrogen found in the deeper 

waters of the KZN Bight, as compared to the surface and Fmax depth for the wet season, are likely due 

to the heavier particulates sinking to the bottom of the water column (Wakeham et al., 1984). 

Particulate organic phosphorous (POP), in the water column, again shows this pattern of extremely 

high concentrations with values up to 20 µg.l-1 in the wet season, when compared to the dry season 

with concentrations only reaching a maximum of around 5 µg.l-1 (Figure 3.3). Water in the wet season 

showed higher amounts of POP at the Tugela River mouth region, as high as ca. 20 µg.l-1, also found 

in the centre of the KZN Bight, as well as similar concentrations in the mid shelf area with a few 

localities of high concentrations in the north of the KZN Bight (Figure 3.3a). In the dry season, waters 

showed a concentration of around 1 – 2 µg.l-1 at the Tugela River mouth region and north of it along 

the coast (Figure 3.3b). This level of high organic material in the Tugela mouth region, also seen in 
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PON concentrations, would be due to the higher production and decomposition generally found in 

estuarine environments, which are then released into the coast (Lee and Cronin, 1984). POP 

concentration was generally high, at 20 µg.l-1, for water in the Fmax depth in the wet season, except 

around Durban and parts of the northern area of the KZN Bight, where concentrations dropped to as 

low as 0 µg.l-1 (Figure 3.3c). Again, concentrations were very low in Fmax waters with a maximum of 

around 3µg.l-1 for the dry season moving along the north of the coastline (Figure 3.3d). The same 

basic pattern was seen at the bottom waters as the Fmax depth for both seasons (Figure 3.3e and 3.3f), 

although the dry season showed an extension of POP, at concentrations of ca. 1.5 µg.l-1, moving 

further off the coastline and concentration of 2.5 µg.l-1 of POP in the mid shelf area (Figure 3.3f). The 

values of POP found along the KZN Bight were much lower than in other coastal and Bight systems.  

POP concentration in eastern North Pacific waters, a costal system, ranged between 28 – 324 µg.l-1 

(Loh and Bauer, 2000) while the oligotrophic Hawaiian coast had a value as high as 433 µg.l-1 (Laws 

et al., 1984). POP in KZN Bight waters was also lower than Southern Bight of the North Sea which 

had concentrations ranging between 3 – 92 µg.l-1 (van der Zee and Chou, 2005). As seen with PON 

values earlier this area is extremely variable which explains the wide range seen in the study region 

(Lancelot and Billin, 1984; van der Zee and Chou, 2005). The Bight system seems to have lower 

phosphorous concentrations than other systems as also seen in the inorganic results presented in 

Section 3.2. The pattern seen with particulate organic phosphorous showed a different pattern to 

organic nitrogen with higher concentrations throughout the water column as opposed to higher values 

in the bottom depths. This may be due to phosphorous being released swiftly from dead material, and 

assimilated in the surface waters, before the opportunity to sink deeper (Harvey, 1960; Menzel and 

Ryther, 1964).  

There is a notable difference in salinity with season in surface waters (Figure 3.4). The surface waters 

of the KZN Bight in the wet season shows lower salinities at the Tugela River mouth, running down 

to the mid shelf region (Figure 3.4a). Lower salinities are also found in waters at Richards Bay and 

along the coast, at the bottom edge of the KZN Bight. For the bottom depth, a small area showed a 

lower salinity just at Richards Bay (Figure 3.4b). On the other hand, the dry season, showed salinities 

of around 35.5 throughout  KZN Bight at the surface (Figure 3.4b). Water sampled from the bottom 

depth indicated a decrease in salinity with depth along the edge of the continental shelf off the KZN 

Bight (Figure 3.4d). These lower salinities are indicative of the Agulhas current which has a salinity 

of between 34.5 – 35.5 (Lutjeharms, 2010). 

Flow rates at the Tugela River mouth decrease from approximately 225 m3.sec-1 to 138 m3.sec-1 

between seasons, which would result in a considerable decrease in output from the wet and dry season 

(Whitfield, 2000). This difference would also be mimicked for the other rivers along the coastline, as 
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Figure 3.1. Interpolated contour maps depicting TSS (mg.l-1) at the a& b) surface, c & d) Fmax and e & f) bottom 
depths for the wet and dry season respectively. 
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Figure 3.2. Interpolated contour maps depicting particulate organic nitrogen (ug.l-1) at the a & b) surface, c & d) Fmax 
and e & f) bottom depths for the wet and dry season respectively. 
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Figure 3.3. Interpolated contour maps depicting particulate organic phosphorous (ug.l-1) at the a & b) surface, c & d) 
Fmax and e & f) bottom depths for the wet and dry season respectively. 
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Figure 3.4. Interpolated contour maps depicting salinity at the a & b) surface, c & d) bottom depths for the wet and dry 
season respectively. 

a decrease in rainfall between the wet and dry seasons would influence the flow rates in the river 

(Day, 1981). Salinity graphs, presented for the wet season, show the reach of freshwater along most of 

the KZN Bight area, which is not seen at all in the dry season (Figure 3.4). This change in outflow 

rates would explain the decrease in TSS at the surface depth between seasons (Lambert et al., 2009). 

It would also explain the difference in the amount of particulate organic nitrogen and phosphorous, 

which decrease dramatically between the wet and dry season (Lambert et al., 2009). It can be deduced 

that particulate organic nitrogen and phosphorous introduced are from fluvial sources due to the 

differences noted with season. 
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Figure 3.5. Interpolated contour maps depicting chlorophyll-a (mg.m-3) at the a & b) surface, c & d) Fmax and e & f) 
bottom depths for the wet and dry season respectively. 

 

DRY SEASON 

d) c) 

b) a) 
B

O
T

T
O

M
 

F m
a

x 
SU

R
FA

C
E

 
WET SEASON 

f) e) 



  Omarjee, A. 
  Phytoplankton Studies in the KwaZulu-Natal Bight 

 
 

36 
 

Chlorophyll-a did not show the same pattern as PON and POP. Generally, a larger biomass of 

chlorophyll-a was seen throughout the water column in the dry season, as compared to the wet season 

(Figure 3.5). This was also found in oligotrophic Northwest Mediterranean waters where POM 

concentration did not relate to chlorophyll-a (Doval et al., 1999). Concentrating on the wet season, 

values of between 0.5 – 1.0 mg.m-3 were found close to water in the coastline, which extended slightly 

south of Richards Bay (Figure 3.5a). These chlorophyll-a concentrations were similar to that found by 

Meyer et al. (2002) who noted low concentrations in the south end of the Bight. Phytoplankton at the 

Fmax depth showed a bloom in the mid shelf area, as well as south of Durban (Figure 3.5c). These 

values ranged as high as 4 mg.m-3 (Figure 3.5c). The bloom seen in the mid shelf was unusual as 

previous literature indicated the central Bight to not be highly productive with chlorophyll-a 

concentrations of  between 0.1 – 0.5 mg.m-3 (Meyer et al., 2002). Values of around 1 mg.m-3 were 

noted in the waters around the Tugela River mouth region (Figure 3.5c). Waters at the bottom depth in 

the wet season had low chlorophyll-a biomass, ranging between 0 – 0.5 mg.m-3, except in waters at 

the Tugela River mouth region at 1.5 mg.m-3 (Figure 3.5e). In the dry season, the chlorophyll-a 

biomass was highest in waters along the coastline, with concentrations up to 2 mg.m-3, from Richards 

Bay to the Tugela River for all three depths measured (Figure 3.5b, d and f). Notable blooms (1– 3 

mg.m-3) were also found in waters at the edge of the KZN Bight near and south of Durban (Figure 

3.5b, d and f). The results indicate no strong relationship and the hypothesis that chlorophyll-a 

biomass would result in an increase in POM, can neither be rejected nor accepted. Along terrestrial 

areas there is an increase in particulate organic nutrients, at the same regions with higher chlorophyll-

a biomass, but the pattern with season showed a higher biomass in the dry season compared to the wet 

season, opposite to the pattern seen in the particulate organic matter. The data was thus inconclusive 

and further studies need to be conducted in order to determine the underlying influencing factors of 

both chlorophyll-a and particulate organic nutrients.  

3.1.2. Focussed studies 
Analysis of the focus studies showed a similar pattern as the synoptic survey. Waters in the wet 

season showed significant differences between site for both TSS and PON (Figure 3.6a: psite = 0.0134; 

Figure 3.6c: psite = 0.0134), but no significant difference between depth (Figure 3.6a: pdepth = 0.0784; 

Figure 3.6c: pdepth = 0.9317). A Tukey test found TSS at the Durban eddy site to be significantly 

different from the Richards Bay north site, and PON from waters in the mid shelf site to be 

significantly different from both Richards Bay sites. A significant interaction effect was found for 

TSS in the wet season (Figure 3.6a: pinteraction = 0.0385). Although not statistically compared, POP 

concentration in the water showed a difference between the northerly and southerly sites (Figure 

3.6e). The dry season showed no significant difference in site and no significant interaction effect, but 

differed significantly with depth (Figure 3.6b: psite = 0.7091, pdepth = 0.0436, pinteraction = 0.8660). PON 

for the dry season showed no significant differences between site and depth, as well as, no significant 
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interaction effect (Figure 3.6d: psite = 0.7091, pdepth = 0.0436, pinteraction = 0.8660). Again, no statistical 

comparison was made for POP in the dry season, but it can be noted that there appears to be a 

difference between the sites and depths (Figure 3.6f). 

Natural abundance isotope values, again, showed the same pattern as the particulate organic nutrient 

concentrations (Figure 3.7). Significant differences between sites for both δ13C and δ15N in the wet 

season but no difference in the dry season (Figure 3.7a: psite = 0.0007; Figure 3.7c: psite = 0.1415). 

Furthermore, δ13C and δ15N showed no interaction effects as well as no significant differences 

between depth for the wet season (Figure 3.7a: pdepth = 0.6728, pinteraction = 0.1823; Figure 3.7c: pdepth = 

0.4340, pinteraction = 0.2365). The dry season showed no significant differences between depth and site, 

as well as no significant interaction between the two factors for both δ13C and δ15N (Figure 3.7b: psite 

= 0. 1415, pdepth = 0.1960, pinteraction = 0. 6388; Figure 3.8d: psite = 0.7789, pdepth = 0.1450, pinteraction = 

0.5049).  

The mid shelf site may be receiving particulate organic nutrients from terrestrial sources, which then 

exits the KZN Bight in horizontal strips to the edge of the sampling area. This pattern is more 

prominent in the POP concentrations. It would be expected that during upwelling or when an eddy is 

present, that higher levels of particulate organic nutrients would be present as heavier decomposing 

material from deeper depths would be driven upwards. Unfortunately, the eddy at Durban, as well, as 

the upwelling cell at Richards Bay was not present during the sampling (Roberts pers. comm.). The 

higher particulate organic phosphorous levels seen in the surface layer of the wet season could be due 

to an oceanographic feature, the “swirl”, present at the time bringing up nutrients from the deeper 

waters (Roberts pers. comm.). Although, this proposed mechanism should have been evident in the 

PON signal as well but was only evident in deeper waters. The low concentration of particulate 

organic nutrients in the Durban eddy region can also be explained by the absence of the oceanic 

process at the time of sampling. 

Results from the focus cruise emulate results from the synoptic cruise. It was found that there was a 

significant difference between sites for TSS and PON concentration in the wet season. Runoff high in 

particulate organic nutrients would explain the TSS, as well as the PON difference in the wet season. 

The KZN Bight is a shallow area with a depth range of about 50 m to 100 m in the northern and 

southern parts of the KZN Bight (Lutjeharms. 2006). This shallow depth, along with wind, was 

expected to have an influence on the TSS in the KZN Bight, but the significant separation with site in 

the wet season indicates that this is not probable. There was no significant difference found for the dry 

season, which, when contrasted with the differences found in the wet season, may be explained by the  
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Figure 3.6. TSS (g.l-1) determined during the a) wet and b) dry seasons, particulate organic nitrogen (µg N. g-1 TSS) 
for the c) wet and d) dry season and particulate organic phosphorous (µg P. g-1 TSS) for the e) wet and f) dry seasons 
focus sites of the KZN Bight. Similar letters above the bars indicate no significant difference. 
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Figure 3.7. Natural abundance values of a) δ13C in the wet season, b) δ13C dry season, c) δ15N in wet season and         
d) δ 15N in the dry season for the focus sites of the KZN Bight (DE– Durban eddy, TM– Tugela River mouth, MS– 
Mid shelf, RN–Richards Bay north, RS– Richards Bay south. Similar letters above the bars indicate no significant 
difference. 
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the northerly sites are more influenced by oceanic sources, with the higher delta values, which can be 

clearly seen in the δ13C of the wet season (Peterson and Fry, 1987).  

The N:P ratios were extremely different in the wet and dry season (Table 3.1). In the mid shelf area 

the surface N:P ratio was 5:1 but this changed to 59:1 in the dry season (Table 3.1). Similar ratios are 

seen at the Tugela mouth and Durban eddy sites. The Richards Bay sites had a 1:1 in the wet season 

and was quite similar to the Redfield ratio, at 15:1, in the dry season (Redfield et al., 1958). These 

ratios indicate that the more southerly sites are deficient of phosphorous in the dry season while the 

northerly sites have abundant nitrogen and phosphorus for phytoplankton growth in both seasons 

(Redfield et al., 1958; Doval et al., 1999). It can be deduced that the southerly sites more likely 

receive nutrients from fluvial sources in the wet season which is not present in the dry season, hence 

the phosphorous deficiency in the system during that period. 

Table 3.1. N:P ratios for the wet and dry season for both depths sampled of the focus study site in the KZN Bight. 

 Wet season Dry season 

Site Surface Fmax Surface Fmax 

Durban eddy 8:1 25:1 18:1 36:1 

Tugela mouth 3:1 5:1 42:1 47:1 

Mid shelf 5:1 13:1 59:1 30:1 

Richards Bay north 1:1 1:1 15:1 18:1 

Richards Bay south 2:1 3:1 16:1 24:1 
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3.2. Nutrient uptake and associated environmental parameters 
The concentrations of nutrients as well as other environmental variables were visually and statistically 

compared between site and depth to determine if there is an actual difference at the focus sites, as well 

as, to provide a potential explanation for the nutrient uptake results. 

3.2.1. Environmental variables 
Nutrient concentrations were measured at the different sites and along the depth profile during 

sampling. The Durban eddy area was the deepest site and thus showed nutrient concentrations 

extending to approximately 200 m (Figure 3.8 and 3.9). In the wet season, nitrate and silicate 

concentrations are highest in waters at the 50 m and 200 m depths in the Durban eddy and mid shelf 

areas (Figure 3.8a and 3.8d). The concentrations in the water were between 4 – 6 µmol.l-1 for nitrate 

and up to 7 µmol.l-1 for silicate (Figure 3.8a and 3.8d). Water in the Tugela River mouth area had 

substantially higher nitrite concentrations, up to 2 µmol.l-1, when compared to the other sites, and also 

concentrations of up to 6 µmol.l-1 of silicate in its surface waters (Figure 3.8b and 3.8d). Richards Bay 

north waters had almost double the concentration of phosphate than the other sites at 2 µmol.l-1 

(Figure 3.8c). There was a shift in nutrient concentration, in the KZN Bight, during the dry season 

(Figure 3.9). Nitrate and silicate concentrations were highest at the Durban eddy and Richards Bay 

north waters (Figure 3.9a and 3.9d). Nitrite concentrations were again highest in water within the 

Tugela River mouth region with the mid shelf region showing the same concentrations at around 0.2 – 

0.4 µmol.l-1 (Figure 3.9c).  

No significant difference was found, as well as, no significant interaction effects for the nitrate 

(Figure 3.10a: psite= 0.3427, pdepth = 0.1613, pinteraction= 0.5466), silicate (Figure 3.10c: psite= 0.4025, 

pdepth = 0.2362, pinteraction= 0.6342) and phosphate (Figure 3.10d: psite= 0.4337, pdepth = 0.2558, pinteraction= 

0.4114) concentrations in the wet season. For the dry season, nitrate and silicate concentrations did 

not differ with site (Figure 3.10e: psite= 0.4272, pdepth = 0.1600, pinteraction= 0.2477; Figure 3.10g: psite= 

0.1569, pdepth = 0.9181, pinteraction= 0.1554; Figure 3.10h: psite= 0.0195, pdepth = 0.8268, pinteraction= 

0.1554). Nitrite concentration differed significantly with site for the wet season (Figure 3.10b: psite= 

0.0260, pdepth = 0.5180, pinteraction= 0.9842), but was not statistically compared for the dry season.  

The nutrients found in the KZN Bight system may have been added naturally or anthropogenically. 

Naturally, through bacterial decomposition of detritus releasing dissolved inorganic nutrients back 

into these systems, or anthropogenically through effluent discharge. Meyer et al., (2002) found, in the 

northern area of the KZN Bight, concentrations of nitrate ranging between 0.15 – 15.30 and 0.18 – 

18.27 µmol.l-1 at 10 and 50 m, respectively. The higher end of the range would be indicative of 

upwelling in the region which our results did not show. For the Durban eddy site, the increase in 

nutrient concentration with depth allows us to deduce that nutrients were not being driven up to the 

surface waters with an eddy. This is reiterated when compared to previous studies, which show high 
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nutrient concentrations when the eddy was present (Burchall, 1968b; Cater and d’Aubrey, 1988; 

Meyer et al., 2002). The nutrient concentrations found in the KZN Bight are not indicative of an 

oceanic feature introducing nutrients into the area (Figure 3.8 and 3.9). Although, it is important to 

note that the ADCP data for the cruise, although not presented, also indicated that the eddy was not 

present at the time of both cruises, which explains the results showing a greater terrestrial influence.  

 

 

 

 

Figure 3.8. Depth profile graphs showing a) nitrate (µmol.l-1), b) nitrite (µmol.l-1), c) phosphate (µmol.l-1) and d) 
silicate (µmol.l-1) concentrations with depth for all days sampled at the five focus sites for wet season in the Bight. 
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Figure 3.9. Depth profile graphs showing a) nitrate (µmol.l-1), b) nitrite (µmol.l-1), c) phosphate (µmol.l-1) and d) 
silicate (µmol.l-1) concentrations with depth for all days sampled at the five focus sites for the dry season in the KZN 
Bight. 
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Figure 3.10. Bar graphs showing a) nitrate (µmol.l-1), b) nitrite (µmol.l-1), c) phosphate (µmol.l-1) and d) silicate 
(µmol.l-1) concentrations with depth for the five focus sites in the KZN Bight for the wet season and showing e) nitrate 
(µmol.l-1), f) nitrite (µmol.l-1), g) silicate (µmol.l-1) and h) phosphate (µmol.l-1) for the dry season. 
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The comparison between seasons plays a role in our investigation as to whether oceanic process or 

fluvial sources affect the KZN Bight dynamics. Phosphate and nitrite concentration vary between the 

seasons, which poses the question: are these nutrients introduced into the system through fluvial 

sources due to the influence of changing rainfall pattern affecting output from rivers into coastal 

waters. The wet season showed a larger variation in the nutrient concentrations between sites, but 

these variations were not significant (Figure 3.10). The dry season showed significant differences 

between sites. For nitrite, this might be due to the lower concentrations found at the focus sites, 

allowing small differences to be significant (Figure 3.10). 

Temperature showed a significant difference with depth in the wet season and with site in the dry 

season (Figure 3.11a: psite= 0.1141, pdepth = 0.0002, pinteraction= 0.1316; Figure 3.11e: psite= 0.0001, pdepth 

= 0.0865, pinteraction= 0.4993). For the wet season, salinity showed no significant difference but differed 

with site in the dry season (Figure 3.11b: psite= 0.3599, pdepth =0. 6489, pinteraction= 0.3559; Figure 3.11f: 

psite= 0.0009, pdepth = 0.5921, pinteraction= 0.5364). There was a significant difference between the focus 

sites in dissolved oxygen concentration for both the wet and dry season (Figure 3.11c: psite= 0.0007, 

pdepth = 0.0760, pinteraction= 0.8174; Figure 3.11g: psite= 0.0081, pdepth = 0.2685, pinteraction= 0.0965). 

Alternatively, PAR showed significant difference with depth for both seasons (Figure 3.11d: psite= 

0.4152, pdepth< 0.0001, pinteraction= 0.8182; Figure 3.11h: psite= 0.8880, pdepth = 0.0155, pinteraction= 

0.1974). 

There was an extreme distinction between the seasons in terms of environmental conditions. In the 

wet season, the Tugela River had a high outflow rate releasing nutrients into the KZN Bight area 

(Begg, 1978; Whitfield, 2000). However, there was no distinct difference between the sites indicating 

well mixed waters. In the dry season, the Tugela River mouth site separated from the others, as well 

as the mid shelf site. These sites were separated due to dissolved oxygen concentration and salinity. 

The freshwater flowing out of the Tugela River would explain the separation from the other sites. This 

water moving in a southerly direction would influence the salinity of the mid shelf site and explain its 

distinction from the other focus sites. It is interesting to note that it would generally be expected for 

the wet season to have shown a greater distinction with salinity at the Tugela mouth site, as more 

freshwater would be flowing out the mouth with the greater rainfall. This could indicate that the KZN 

Bight was more homogeneous in the wet rather than the dry season. Overall, the environmental 

variables indicate the same patterns as the nutrient concentrations, showing no true distinction at the 

Durban eddy and Richards Bay north sites, which would not be expected if there were an oceanic 

processes present. 
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3.2.2. Nitrate uptake 
When comparing phytoplankton nitrate uptake rates, we found no significant difference between sites 

and the light and dark treatments for both the surface and Fmax waters of the wet season (Figure 3.12a: 

psite= 0.2695, ptreatment = 0.3754; Figure 3.12b: psite= 0.2675, ptreatment = 0.5845). When taking into 

account chlorophyll-a concentration present at the time of the incubations we found the same 

significance pattern in uptake rate (Figure 3.12c: psite= 0.2971, ptreatment = 0.7353; Figure 3.12d: psite= 

0.3927, ptreatment = 0.5848). This is indicative of homogenised waters also seen in the wet season 

environmental variables. Unusually, in the wet season, uptake rates in the dark incubations were 

higher than uptake rates in the light incubations, while the opposite pattern was see in the dry season 

following a more standard pattern. This could be attributed to luxury consumption as the enriched 

spike added to the incubations were of a higher concentration than the substrate (Morris, 1980; 

Domingues et al., 2011). Overall the maximum uptake rate determined in the KZN Bight was ca. 2.63 

µg N.l-1.h-1, at the Durban eddy, which was much lower than that seen in the Benguela current, which 

can experience uptake rates as high as 6 – 8 µg N.l-1.h-1 (Probyn, 1985; Probyn, 1987). This is 

expected, as the Benguela is an extremely productive system (Probyn, 1985; Probyn, 1987). 

Alternatively, the southern bight of the North Sea being a more comparable area experienced uptake 

rates of 0.43 µg N.l-1.h-1 in 1996 and 2.76 µg N.l-1.h-1 the following year (Tungaraza et al., 2003). 

These values fall within the same range as the KZN Bight. 

Uptake rate of phytoplankton in the dry season, showed a significant difference between sites and 

treatment in the surface waters but no difference at the Fmax depth (Figure 3.12e: psite= 0.0360, ptreatment 

= 0.0422; Figure 3.12f: psite= 0.2006, ptreatment = 0.2824). The significant difference between treatments 

for the surface waters of the dry season but not the Fmax waters was also noted when taking 

chlorophyll-a into account (Figure 3.12g: psite= 0.0009, ptreatment = 0.0030; Figure 3.12h: psite= 0.0717, 

ptreatment = 0.1602). The difference noted in the surface waters of the dry season is due to the high 

uptake rate at the Richards Bay north site in comparison to the Durban eddy and mid shelf sites. There 

was also no significant interaction effect between site and treatment for the wet season at both depths 

sampled, however, for the surface waters of the dry season there was a significant interaction effect in 

waters sampled but not at the Fmax depth (Figure 3.12a: pinteraction= 0.3993; Figure 3.12b: pinteraction= 

0.7135; Figure 3.12e: pinteraction= 0.0450; Figure 3.12f: pinteraction= 0.2222; Figure 3.12c: pinteraction= 

0.7788; Figure 3.12d: pinteraction= 0.5764; Figure 3.12g: pinteraction= 0.0012; Figure 3.12h: pinteraction= 

0.0793). When taking phytoplankton biomass into account extremely low uptake rates not increasing 

above 2 µg N.mg chl-a-1.h-1, in the wet season. The highest uptake rates were found at the Richards 

Bay north site in the dry season with an uptake rate of 28.52 µg N.mg chl-a-1.h-1 in the surface waters 

and 38.43 µg N.mg chl-a-1.h-1 at the Fmax depth. In a report by Kokkinakis and Wheeler (1987), they 

studied the coastal waters of Washington and Oregon in the USA, where they compared nitrate uptake  
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Figure 3.11. Bar graphs showing a) temperature (ºC), b) salinity (PSU), c) dissolved oxygen (ml.l-1) and d) PAR with 
depth for the five focus sites of the KZN Bight for the wet season and showing e) temperature (ºC), f) salinity (PSU), 
g) dissolved oxygen (ml.l-1) and h) PAR in the dry season. 
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Figure 3.12. Nitrate uptake rates (µg N.l-1.h-1) for the dark and light incubations at the surface in the a) wet and e) 
dry season and the Fmax depth in the b) wet and f) dry season. Graphs indicating nitrate uptake rates (µg N. g chl-a-

1.h-1) for the dark and light incubations at the surface in the c) wet and g) dry season and the Fmax depth in the d) wet 
and h) dry season. These graphs are for the focus areas (DE– Durban eddy, TM– Tugela mouth, MS– Mid shelf, RN– 
Richards Bay north, RS– Richards Bay south) of the KZN Bight. 
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rates by phytoplankton in high (> 20 µmol.l-1) and low (< 5 µmol.l-1) nitrate conditions. They 

determined an uptake range of 4 – 21 µg N.l-1.h-1 in the high nitrate waters and an uptake range of 0.3 

– 3.6 µg N.l-1.h-1 in the low nitrate waters. The uptake rate range of latter, overlap with the range in the 

KZN Bight, reiterating the oligotrophic status of the Bight system. 

When comparing nitrate uptake rates in the light incubations, no significant difference, in site and 

depth, for the wet season was determined (Figure 3.12a and 3.12c: psite= 0.2189, pdepth = 0.5927). Once 

again, the lack of difference indicates well mixed waters in the wet season. Uptake rate by 

phytoplankton in the dry season showed a significant difference with site but not depth (Figure 3.12b 

and d: psite= 0.0175, pdepth = 0.4709). Furthermore, no significant interactions between site and depth 

were found for both seasons (Figure 3.12b: pinteraction= 0.5031; Figure 3.12c: pinteraction= 0.9550).  

3.2.3. The influence of environmental variables on nitrate uptake 
Further comparison using multivariate statistics were used to provide a visual representation of the 

data. The principal component analysis completed showed no distinct pattern between sites for the 

wet season (Figure 3.13). There is a small grouping of the Tugela and mid shelf sites according to 

dissolved oxygen concentration, but generally the KZN Bight seems to be well mixed in this season 

(Figure 3.13). Alternatively, in the dry season, definite patterns are visible with the three areas 

sampled separating (Figure 3.14). The Richards Bay sites separate from the group with temperature. 

The Tugela mouth and mid shelf sites are found to have similar dissolved oxygen levels and salinity, 

which separates them from the other focus sites. The Durban eddy site is separated from the other 

focus sites due to its distinct nutrient concentrations. Figure 3.15 contains a combination of the 

environmental data for both wet and dry seasons and clearly shows the separation of the seasons with 

dissolved oxygen levels and temperature. 

The biological components, including chlorophyll-a concentration and nitrate uptake rate, showed a 

similar pattern as the environmental parameters discussed. The wet season showed no strong 

distinction between the sites, while the dry season showed two very distinct groups (Figure 3.16 and 

3.17). One group consisting of a combination of Richards Bay sites with the Tugela River mouth Fmax 

and the mid shelf surface waters, while the other a combination of the Durban eddy sites, with the 

Tugela River mouth surface and mid shelf site Fmax waters. 

Nutrient uptake rate is influenced by several environmental factors such as temperature, light 

intensity, salinity, dissolved oxygen and nutrient concentration (Brylinsky and Mann, 1973; 

Richardson et al., 1983; Dortch, 1990; Borum and Sand-Jensen, 1996; Cochlan and Bronk, 2001; 

Kockum et al., 2002). The environmental factor, temperature, plays a role in productivity of 

phytoplankton (Paerl, 1988; Chenl and Durbin, 1994; Kockum et al., 2002). Production is positively 

influenced by temperature. The reason for this is that temperature influences enzymes that control the 
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rate of production (Paerl, 1988; Underwood and Kromkamp, 1999; Chenl and Durbin, 1994; Kockum 

et al., 2002). The effect of temperature is coupled with light and cannot be considered solely, as light 

has an influence on temperature. An increase in temperature, combined with a higher irradiance will 

normally produce a higher productivity rate (Falkowski and Stone, 1975; Chenl and Durbin, 1994; 

Kockum et al., 2002). Falkowski and Stone (1975) determined that the energy (in the form of ATP) 

that is used to take up NO3
- is generated from light. This explains the relationship between 

productivity and light intensity, where an increase in irradiance will result in higher nitrate 

productivity. Light intensity can be affected by turbidity and depth; higher turbidity and lower depth 

would decrease irradiance, therefore decreasing productivity (Falkowski and Stone, 1975; Richardson 

et al., 1983; Chenl and Durbin, 1994; Kockum et al., 2002). Nutrient concentrations, temperature, 

PAR, salinity and dissolved oxygen were compared to determine which environmental variable 

correlated best with nitrate uptake rate. The BIOENV analysis found that PAR (r = 0.080) had the 

highest correlation with the biological components for the wet season, however this correlation was 

weak. Including the option of a maximum of five variables, it was still found that a combination of 

PAR, nitrite and phosphate concentration (r = 0.114) had the best correlation. For the dry season, it 

was established that salinity has the highest correlation with the biological components (r = 0.281) 

when allowing a maximum of one or five trial variables.  

 

 

Figure 3.13. Principle component analysis representing the environmental factors for the focus sites (DE– Durban 
eddy, TM– Tugela mouth, MS– Mid shelf, RN– Richards Bay north, RS– Richards Bay south) and depths (1- surface, 
3- Fmax) in the KZN Bight for the wet season. 
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Figure 3.14. Principle component analysis representing the environmental factors for the focus sites (DE– Durban 
eddy, TM– Tugela mouth, MS– Mid shelf, RN– Richards Bay north, RS– Richards Bay south) and depths (1- surface, 
3- Fmax) in the KZN Bight for the dry season. 

 

The literature has stated that an increase in nitrate concentration results in an increase in productivity 

(Brylinsky and Mann, 1973; Dortch, 1990; Borum and Sand-Jensen, 1996; Cochlan and Bronk, 2001; 

Kockum et al., 2002), but the BIOENV analysis found PAR and salinity to have the best correlation 

with uptake rate for the wet and dry season respectively. The hypothesis made that the input of nitrate 

from the oceanic processes and fluvial sources, on the KZN Bight, would result in an increase in 

productivity, can thus be rejected. This was because uptake rate was not correlated with nitrate 

concentration, which would have been expected if nitrate was the influencing factor. It is important to 

note that although there was a lack of correlation between nitrate and uptake rate, this could be result 

of nitrate having been removed from the waters by phytoplankton (Brylinsky and Mann, 1973; 

Dortch, 1990; Borum and Sand-Jensen, 1996; Cochlan and Bronk, 2001; Kockum et al., 2002). 

Phytoplankton community structure will modulate an ecophysiological response to nutrient additions, 

although the literature does not seem to indicate that specific species compositions would influence 

nitrate uptake rate. According to Goldman and Gilbert (1982) most species increase uptake rate but 

decrease growth rate except for diatoms who are able to sustain high uptake and growth rates 

simultaneously. Silicate is not a limiting nutrient but would modulate nitrate uptake in diatoms 

(Kudela and Dugdale, 2000). A study conducted by Barlow et al. (unpublished) determined the 

species composition of the KZN Bight using pigment characteristic. They determined that the 
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Figure 3.15. Principle component analysis representing the environmental factors for the focus sites (DE– Durban 
eddy, TM– Tugela mouth, MS– Mid shelf, RN– Richards Bay north, RS– Richards Bay south) in the KZN Bight for 
both the wet (W) and dry (D) season combined. 

southerly sites, these include the Durban eddy, Tugela River mouth and mid shelf sites, were diatom 

dominated while the two northerly Richards Bay sites were dominated by small flagellates and 

prokaryotes. Diatoms and flagellates are associated with cooler lower salinity waters, which have 

usually been upwelled, while prokaryotes with warmer waters with higher salinities (Barlow et al., 

2008). The separation between the northerly and southerly sites noted here reiterates the separation 

seen in the natural abundance results (from Section 3.1) as well as the nMDS plot above. The diatoms 

present in the southerly sites could be explained by the dissipating eddy noted in the wet season 

bringing up silicate into surface waters. The presence of prokaryotes could be indicative of terrestrial 

inputs in the Richards Bay area with flagellates signifying upwelled waters in the system. 

The range of uptake rates found in the wet season corresponded with that found in the summer season 

in the Middle Atlantic Bight (Harrison et al., 1983). The mid shelf region had a higher chlorophyll-a 

biomass and uptake rate in the wet season, which would explain why it was grouped away from the 

other sites in the nMNDs analysis (Figure 3.16). For the dry season the nMDS ordination showed a 

high degree of separation between the northerly and southerly sites (Figure 3.17). This correlates to 

the statistics in the previous section which indicated a significant difference between uptake rates at 

Richards Bay north and the southerly sites. It is interesting to note that the drastic decrease in uptake 

rates in the southerly sites during the dry season, (Figure 3.16). This could indicate that the 

phytoplankton are not as productive in the dry season as their source of nutrients, in this season, is no  
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Figure 3.16. nMNDS ordination showing the difference in the biological components between sites and depth for the 
wet season at the focus sites (DE– Durban eddy, TM– Tugela mouth, MS– Mid shelf, RN– Richards Bay north, RS– 
Richards Bay south) and depths (1- surface, 3- Fmax) of the KZN Bight. 

 

Figure 3.17. nMNDS ordination showing the difference in the biological components between sites and depth for the 
dry season at the focus sites (DE– Durban eddy, TM– Tugela mouth, MS– Mid shelf, RN– Richards Bay north, RS– 
Richards Bay south) and depths (1- surface, 3- Fmax) of the KZN Bight. 
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longer available. This could be explained by the absence of fluvial sources of nutrients from the 

Tugela River and many other rivers entering the KZN coast, which decrease during the dry season. 

The lack of differences between sites was not expected as it was predicted that the different nutrient 

sources at the different focus sites would influence the phytoplankton nitrate uptake rate. At the time 

of the experiment, neither the Durban eddy nor the upwelling cell was present. The absence of these 

major oceanic features could be a potential explanation for the lack of difference in uptake rate of 

phytoplankton between sites seen in the wet season. Another potential explanation for this is the 

homogenized waters, illustrated by the environmental parameters, found in the wet season (Figure 

3.13).  

The literature available indicates the relationship of nitrate productivity and ammonium 

concentrations to be inverse, where an increase in ammonium concentration results in a decrease in 

nitrate productivity (Dortch, 1990; Cochlan and Bronk, 2001; Kockum et al., 2002; Dugdale et al., 

2007). This observation is qualified with the basis that ammonium has a lower energetic cost of 

assimilation than nitrate (Dortch, 1990; Cochlan and Bronk, 2001; Kockum et al., 2002; Dugdale et 

al., 2007). Unfortunately due to problems on the storage of the samples, no data on ammonium 

concentration was collected. However, ammonium uptake rate results are presented in Section 3.3, as 

ammonium uptake as an alternative to nitrate, still needs to be considered as a potential explanation 

for the lack of difference in uptake rate.  
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3.3. Daily comparison of ammonium and nitrate uptake at the focus sites  
The daily comparison of biological parameters in the KZN Bight indicated that the mid shelf region 

experienced the highest uptake rate in the wet season, at 0.88 μg N.l-1.h-1 (Figure 3.18a). Although, 

when comparing uptake rate per gram chlorophyll-a, at approximately 0.94 μg N.mg chl-a-1.h-1, the 

Durban eddy site experienced the highest nitrate uptake rate (Figure 3.18b). The Richards Bay south 

area also showed a high uptake rate per gram chlorophyll-a at 0.9 μg N.mg chl-a-1.h-1 (Figure 3.18b). 

Chlorophyll-a biomass determined at the mid shelf site was almost double that found at the other 

study sites in KZN Bight (Figure 3.18c). Ammonium uptake rate was highest at the Richards Bay 

south site followed closely by the mid shelf site with uptake rates of 9.27 and 8.43 ng N.l-1.h-1, 

respectively (Figure 3.18d).  The dry season, on average, showed a lower nitrate uptake rate for all 

focus sites except for both the Richards Bay sites, which experienced upta e rates of 1.17 μg N.l-1.h-1 

in the north and 0.86 μg N.l-1.h-1 in the south (Figure 3.19a). The Richards Bay area, both the north 

and south focus sites, also had the highest chlorophyll-a biomass and also the highest ammonium 

uptake rate in the dry season (Figure 3.19c and d). At the Durban eddy and mid shelf sites, it appears 

that phytoplankton in these regions were taking up ammonium up preferentially over nitrate, in the 

dry season (Figure 3.19a and d).  

The daily perspective of the data clearly indicated high chlorophyll-a biomass and uptake rates in the 

mid shelf area. This mimics the results of high primary production found by Barlow et al. 

(unpublished) in the mid shelf with at a range of 7.22 – 9.89 g C. m-2.d-1. The nutrients in this area 

could be from three potential sources. Firstly, as fluvial inputs from the Tugela River moving onto the 

shelf, secondly from upwelling in the north of the Bight driven south with the Agulhas current and 

lastly as a result of the newly proposed “swirl” oceanographic feature in the mid shelf area itself. 

Although the exact source cannot be confirmed, looking at the data presented in the first section, a 

visual representation of the outflow of the Tugela on the mid shelf area is seen, as well as the natural 

abundance data, indicated a terrestrial nutrient source. Phytoplankton at the Richards Bay sites 

indulged in ammonium, as well as nitrate as a source of nitrogen. Eppley et al. (1969) found that 

ammonium was preferentially taken up over nitrate, until the concentration of ammonium in the water 

drops below 0.5 µmol.l-1. This is because it is requires less energy to be converted to proteins 

compared to nitrate. Probyn et al. (1995) measured a maximum ammonium concentration of 25 µg.l-1 

along the Eastern Agulhas Bank. The paper indicated the higher ammonium concentration and thus 

uptake in the region is likely due an oceanic processes upwelling nutrients.  It is important to note the 

persistent presence of the “bloom” in both wet and dry season, for all days, is indicative of a constant 

nutrient source as opposed to a short term process. In oceanic waters, with no pollution, ammonium 

concentrations are relatively low compared to other nutrients (Morris, 1980). The slightly elevated 

levels could be explained by effluent discharge from pipelines that may play a role in adding nutrients 

into the system. However, in the context of the greater KZN Bight area its role is most likely minute. 
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Figure 3.18. Surface water comparison of daily a) nitrate uptake rates (µg N.l.h-1) b) uptake rates taking into account 
chlorophyll-a (µg N.g chl-a-1.h-1) c) chlorophyll-a (mg.m-3) d) ammonium uptake rate (ng N.l.h-1) in the focus areas of 
the KZN Bight for the wet season. 
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Figure 3.19. Surface water comparison of daily a) nitrate uptake rates (µg N.l.h-1) b) uptake rates taking into account 
chlorophyll-a (µg N.g chl-a-1.h-1) c) chlorophyll-a (mg.m-3) d) ammonium uptake rate (ng N.l.h-1) for the focus areas of 
the KZN Bight in the dry season. 
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4. CONCLUSION 
To recap, previous studies in the KZN Bight system described it as an area with a wide and shallow 

continental shelf subjected to the outflow of 73 rives and estuaries and bounded by the Agulhas 

system bringing nutrient rich waters on to the shelf. With this knowledge ACEP II developed five 

basic aims: 1) to investigate how the transport of nutrients and sediment across the KZN Bight are 

facilitated by physical oceanographic and geological processes; 2) to determine the relative 

importance of material derived from fluvial processes and those originating from the Agulhas Current 

– the St Lucia upwelling and cyclonic Durban lee eddy - on the KZN Bight; 3) to define the ecology 

and determine the biodiversity on the shelf; 4) to establish levels of assimilation, recycling and 

transformation of materials in the KZN Bight; 5) and to integrate the data collected into a combined 

bio-energetic ecosystem model. From these aims, the aims of my project were derived. 

 

There were three aims in this study: 1) to determine the distribution of POM along the KZN Bight;   

2) to examine the influence of fluvial and oceanic nutrient sources on phytoplankton ecophysiology; 

3) to see daily results of both uptake and chlorophyll-a concentration, providing an understanding of 

the oceanographic processes which drive productivity in the KZN Bight. To summarise the results 

associated with these aims, the first hypothesis was testing if chlorophyll-a biomass would result in an 

increase in POM. This hypothesis was neither rejected nor accepted due to inconclusive patterns 

noted. However, a distinct pattern with season was noted, with a higher POM biomass noted in the 

wet rather than in the dry season. The second hypothesis, that the input of nitrate from the oceanic 

processes and fluvial sources, on the KZN Bight, would result in an increase in productivity was 

rejected, because there were no strong correlations between the nutrient and uptake rate. The last 

section of the results looking at a daily perspective of uptake rate in the KZN Bight, found no distinct 

differences between days but a difference between sites and seasons was noted. Overall, the KZN 

Bight maintains a notable diatom dominated biomass of phytoplankton spread over the area that is 

able to support the system (Barlow et al., unpublished). The southerly sites seem to be driven by 

another nitrate source compared to the northerly sites as it experienced a higher uptake rate in the dry 

season whereas the southerly sites experienced higher nitrate uptake in the wet season. Furthermore, 

there seems to be a source of ammonium in the Richards Bay area present in both the wet and dry 

season allowing for ammonium uptake in the region. 

The overall aim of this project was to provide an insight into which nutrient source is driving 

phytoplankton productivity in the KZN Bight. These results, as summarised above, points in the 

direction that terrestrial sources play a major role in influencing nutrient concentrations on the KZN 

Bight in the wet season. The difference in uptake rate in the northerly sites between the wet and dry 

season reiterate that these areas productivity is fuelled by terrestrially sourced nutrients. This is not a 
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new idea, as the theory that estuaries produce more dissolved and particulate matter than can be used 

or decomposed in that surrounding and that they export this matter into the coastal marine 

environment, is  nown as the “outwelling” hypothesis (Winter and Baird, 1991). A study in the 

Swartkops Estuary concluded that it played a role in outwelling and was able to support productivity 

on the inshore regions of the coast (Baird, 1987). Later studies by Winter et al. (1996) concluded that 

4755 tons of carbon was exported from the Swartkops Estuary annually, which would then be 

available for primary production in the coast. Later literature found that inputs from nutrient rich 

estuaries are likely to promote primary production in phytoplankton (Whitfield and Bates, 2007). 

However, Whitfield and Bates (2007) went on to state that further work needs to be conducted in the 

surf-zone to determine the true influence of the estuaries. Fisheries studies in the KZN Bight area 

have also hypothesised that the Tugela River has a major influence on productivity in the system 

(Lambert et al., 2009; Hutchings et al., 2010).  

The terrestrial sources of nutrients could either be naturally, such as the Tugela and the many other 

rivers in the KZN Bight area or anthropogenically, from one of the many outlet pipes discharging in 

the KZN Bight area, as often algal blooms can be seen along the plumes at these pipes (Lutjeharms et 

al., 2000). Further work needs to be conducted in order to confirm these conclusion as the volume 

flowing from these pipes may be miniscule when taking into account the grater Bight area. Natural 

abundance of isotopes should be collected from within the estuary, the surf zone and further offshore, 

as well as from the effluent pipes and all would need to be compared. This will provide a clear 

indication of the influence of terrestrial sources and further, whether it is the outflow of rivers or of 

the effluent that is playing a major role in influencing phytoplankton biomass in the region. 

Furthermore, studies need to be conducted when the eddy at Durban and the upwelling at Richards 

Bay are present. These results could be compared with results from this study and would help clarify 

the true influence of these oceanic processes on the production within the KZN Bight. 

In summary, the phytoplankton within the KZN Bight system are adapted to a variable environment. 

The KZN Bight is an oligotrophic environment that receives spurts of nutrients throughout the year 

from oceanographic processes and a large input of nutrients from terrestrial inflow, mainly during the 

wet season (Lutjeharms et al., 2000, Lutjeharms, 2006). These inputs, influencing productivity in the 

region are most likely from natural fluvial inputs. However, to confirm this and to determine the 

magnitude of the influence further work needs to be conducted in the KZN Bight area.  
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6. APPENDIX A 
Table 6.1. Station numbers and position of the synoptic sampling sites. 

 station grid # 

latitude DMS longitude DMS Decimal degrees 

deg min sec deg min sec latitude longitude 

1-1 30 18 6.1200 30 46 51.6000 -30.3017 30.7810 

1-3 30 21 6.5454 30 51 28.8776 -30.3518 30.8580 

1-5 30 27 7.3922 31 0 43.7862 -30.4521 31.0122 

                  

2-1 30 8 34.8000 30 51 45.0000 -30.1430 30.8625 

2-3 30 11 35.2298 30 56 21.8326 -30.1931 30.9394 

2-5 30 17 36.0853 31 5 35.8484 -30.2934 31.0933 

2-6 30 20 36.5110 31 10 13.0673 -30.3435 31.1703 

                  

3-1 29 59 52.8000 30 57 42.1200 -29.9980 30.9617 

3-3 30 2 53.2338 31 2 18.5491 -30.0481 31.0385 

3-5 30 8 54.0973 31 11 31.7553 -30.1484 31.1922 

3-7 30 14 54.9553 31 20 45.5205 -30.2486 31.3460 

                  

4-1 29 53 45.6000 31 3 39.6000 -29.8960 31.0610 

4-4 29 59 46.4718 31 12 51.9978 -29.9962 31.2144 

4-8 30 11 48.1990 31 31 18.3913 -30.1967 31.5218 

                  

6-1 29 43 15.6000 31 7 19.2000 -29.7210 31.1220 

6-5 29 52 16.9200 31 21 6.5425 -29.8714 31.3518 

6-9 30 4 18.6609 31 39 31.5512 -30.0719 31.6588 
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 station grid # 

latitude DMS longitude DMS Decimal degrees 

deg min sec deg min sec latitude longitude 

7-1 29 34 30.0000 31 12 32.4000 -29.5750 31.2090 

7-5 29 43 31.3320 31 26 18.5468 -29.7254 31.4385 

7-9 29 55 33.0890 31 44 41.9474 -29.9259 31.7450 

                 

8-1 29 26 6.0000 31 18 56.1600 -29.4350 31.3156 

8-5 29 35 7.3434 31 32 41.1686 -29.5854 31.5448 

8-9 29 47 9.1157 31 51 3.0384 -29.7859 31.8508 

                  

9-1 29 18 25.5600 31 26 33.0000 -29.3071 31.4425 

9-5 29 27 26.9139 31 40 16.9757 -29.4575 31.6714 

9-9 29 39 28.7000 31 58 37.4564 -29.6580 31.9771 

                  

10-1 29 12 36.0000 31 34 22.8000 -29.2100 31.5730 

10-5 29 21 15.1344 31 47 11.0279 -29.3542 31.7864 

10-9 29 33 16.9318 32 5 30.3935 -29.5547 32.0918 

         

11-1 29 4 37.2000 31 42 10.8000 -29.0770 31.7030 

11-3 29 7 37.6589 31 46 44.7340 -29.1271 31.7791 

11-7 29 19 39.4809 32 5 1.6682 -29.3276 32.0838 

         

12-1 29 0 3.6000 31 54 3.6000 -29.0010 31.9010 

12-5 29 9 4.9786 32 7 45.1308 -29.1514 32.1292 

12-7 29 15 5.8910 32 16 53.4600 -29.2516 32.2815 
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 station grid 
# 

latitude DMS longitude DMS Decimal degrees 

deg min sec deg min sec latitude longitude 

13-1 28 54 48.0000 32 3 48.0000 -28.9133 32.0633 

13-3 28 58 24.0000 32 9 48.0000 -28.9733 32.1633 

13-6 29 5 12.4599 32 20 33.7943 -29.0868 32.3427 

                  

14-1 28 46 19.2000 32 10 30.0000 -28.7720 32.1750 

14-3 28 49 19.6671 32 15 3.1331 -28.8221 32.2509 

14-5 28 55 20.5972 32 24 9.7265 -28.9224 32.4027 

                  

15-1 28 39 25.2000 32 18 46.8000 -28.6570 32.3130 

15-3 28 42 25.6701 32 23 19.6344 -28.7071 32.3888 

15-5 28 48 26.6063 32 32 25.6283 -28.8074 32.5405 

                  

16-1 28 31 12.0000 32 25 8.4000 -28.5200 32.4190 

16-3 28 31 12.0000 32 30 48.9606 -28.5200 32.5136 

16-6 28 31 12.0000 32 39 19.8015 -28.5200 32.6555 
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7. APPENDIX B 
 

Table 7.1. The position of the focus sites sampled. 

 

station 

latitude DMS longitude DMS Decimal degrees 

deg min sec deg min sec latitude longitude 

Durban 
eddy 29 55 28.5600 31 9 18.3600 -29.9246 31.1551 

Tugela 
mouth 29 16 48.8400 31 40 38.2800 -29.2794 31.6773 

Mid shelf 29 27 26.2800 31 40 18.1200 -29.4573 31.6717 

Richards 
Bay north 28 40 30.0000 32 18 43.2000 -28.6750 32.3120 

Richards 
Bay south 29 6 25.2000 32 2 42.0000 -29.1070 32.0450 
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8. APPENDIX C 
Table 8.1. The number of days samples at the focus sites of the KZN Bight for cruises completed in the wet and dry 
seasons. 

Wet season cruise # of days sampled Dry season cruise # of days sampled 

Durban eddy 4 Durban eddy 3 

Tugela mouth 4 Tugela mouth 3 

Mid shelf 2 Mid shelf 1 

Richards Bay north 3 Richards Bay north 4 

Richards Bay south 2 Richards Bay south 1 
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9. APPENDIX D 
Table 9.1. The Fmax depths for sites sampled in the focus leg of the wet season. 

Grid # Depth [m] 

DE-001 35 

DE-002 38 

DE-003 35 

DE-004 30 

DE-005 45 

DE-006 29 

DE-007 20 

DE-008 24 

DE-009 19 

DE-010 24 

TM-001 19 

TM-002 15 

TM-003 20 

TM-004 16 

TM-005 15 

TM-006 15 

MS-001 21 

MS-002 22 

MS-003 18 

MS-004 20 

MS-005 15 

RN-001 21 

RN-002 20 

RN-003 33 

RN-004 33 

RN-005 32 

RN-007 34 
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RS-001 43 

RS-002 51 

RS-003 52 

RS-004 65 

RS-005 65 

RS-006 50 

 

Table 9.2. The Fmax depths for sites sampled in the focus leg of dry season. 

Grid # Depth [m] 

DE-004 21 

DE-006 26 

DE-010 24 

TM-002 11 

TM-004 17 

TM-006 11 

MS-001 36 

MS-002 20 

RN-002 15 

RN-004 18 

RN-006 18 

RS-003 26 
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10. APPENDIX E 
Table 10.1. The breakdown of the equations used to calculate nitrate uptake rate. 

parameter unit equation reference variables unit 
PN (Particulate 

organic nitrogen at 
T0 ) 

µg N   Given  

t (time incubated) hrs t6-t0    

Rt (15N atom % in 
the seawater at Tt) 

At% At %   
(100 Rstd [

δsam
1000 1])

(1 [Rstd {
δsam

1000 1}])
    

k       
ln (

Rt
R0

)

t
 

Gilbert et 
al., 1982 Rt At% 

    T hrs 
Spike of 15N into 
the bottle at T0 

     

F (Fractional 
abundance of the 

spike ) 
 F13  N15 ( N N151 

) Hayes, 
2004   

Molar 
concentration of 

the  spike 
µmoles 

mx  
m (F  F )

m (F  F )
 

Where k = spike 
x = sample 
m = moles 

Hayes, 
2004 

Spike of 15N into the 
bottle at T0 

 

    F  
Natural abundance 

of nitrogen in 
particulate fraction 

at T0 

δ δsam ([
Rsam

Rstd
]  1)  1000  Given – from filters  

Molar 
concentration of 

the seawater at T0 
µmol.l   Given – from 

ammonium diffusion  

R0 δ δsam ([
Rsam

Rstd
]  1)  1000  

Molecular 
concentration of the 

seawater at T0 
µmol.l-1 

    
Natural abundance of 
nitrogen in particulate 

fraction at T0 
δ 

    
Molecular 

concentration of the  
spike 

µmoles 

R0 (15N in seawater 
at T0) 

At% At %   
(100 Rstd [

δsam
1000 1])

(1 [Rstd {
δsam

1000 1}])
  R0 δ 

R  R 
R0

 t
(1 exp[  t ]) 

Gilbert et 
al., 1982 R0 At% 

15N  atom % of 
particulate at t0 

At% At %   
(100 Rstd [

δsam
1000 1])

(1 [Rstd {
δsam

1000 1}])
  From filter  

15N atom % of the 
particulate 

nitrogen  at t6 
At% At %   

(100 Rstd [
δsam

1000 1])

(1 [Rstd {
δsam

1000 1}])
  From fiter  

atom % excess At% A%E atom %sample atom %substrate 
Gilbert et 
al., 1982 

15N  atom % of 
particulate at t0 

At% 

    
15N atom % of the 

particulate nitrogen  
 at t6 

At% 

P –Nitrate uptake 
rate 

µg N.l-

1/h -1   (
N atom % excess15

R time of incubation)  PN 
Gilbert et 
al., 1982 atom % excess At% 

    R  
    T hrs 
    PN µg N 
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