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Abstract

Despite the numerous modelling efforts to advise public health physicians to understand

the dynamics of the Ebola virus disease (EVD) and control its spread, the disease

continued to spread in Africa. In the current thesis, we systematically review previous

EVD models. Further, we develop novel mathematical models to explore two important

problems during the 2018-2020 Kivu outbreak: the impact of geographically targeted

vaccinations (GTVs) and the interplay between the attacks on Ebola treatment centres

(ETCs) and the spread of EVD. In our systematic review, we identify many limitations in

the modelling literature and provide brief suggestions for future work. Our modelling

findings underscore the importance of considering GTVs in areas with high infections. In

particular, we find that implementing GTVs in regions with high infections so that the

total vaccinations are increased by 60% decreases the cumulative cases by 15%. On the

other hand, we need to increase the vaccinations to more than 1000% to achieve the 15%

decrease in EVD cases if we implement GTVs in areas with low infections. On the

impact of the attacks on ETCs, we find that due to the attacks on ETCs, the cumulative

cases increased by more than 17% during the 2018-2020 Kivu outbreak. We also find that

when 10% of the hospitalised individuals flee the attacks on ETCs after spending only

three days under treatment, the cumulative cases increased by more than 30% even if

these individuals all returned to the ETCs three days later. On the other hand, if only half

of these individuals returned to ETCs for treatment, the cumulative cases increase by

approximately 50%. Further, when these patients spend one more day in the community,

after which they all return to ETCs, the cumulative cases rise by an additional 10%.

Global sensitivity analysis also confirmed these findings. To conclude, our literature

systematic review is used to identify many critical factors which were overlooked in

previous EVD models. Our modelling findings show that the attacks on ETCs can be

destructive to the efforts of EVD response teams. Hence, it is important for

decision-makers to tackle the reasons for community distrust and address the roots of the

hostility towards ETCs. We also find that GTVs can be used to contain the spread of
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EVD when ring vaccinations, contact tracing and antiviral treatments cannot successfully

control the spread of EVD.
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Chapter 1

Introduction

1.1 The interplay between mathematics and epidemiology

Bernoulli proposed the first mathematical model in epidemiology in his work on smallpox

[40]. He studied the impact of immunisation against smallpox. He determined how life

expectancy would increase if smallpox were eliminated as a reason for death. Hamer

[13] explained why the spread of infection should depend on the number of susceptible

and infected individuals. He proposed the mass action law for describing a new infection

rate, the basic idea for formulating compartmental models. Sir R. A. Ross won the Nobel

Prize in medicine for his work on Malaria modelling [13]. It was previously believed that

as long as mosquitoes were present in the population, Malaria could not be eliminated.

Ross discovered that Malaria is transmitted by the Anopheles mosquito and developed a

programme for controlling it at the population level. He introduced a simple compartment

model and showed that reducing the Anopheles mosquito below a critical level would be

enough to eliminate Malaria. Field trials supported these findings.

Kermack and McKendrick introduced a threshold quantity, which was later denoted by

R0 [13]. This quantity is called the basic reproduction number [13]. It is defined as the av-

erage number of infected cases produced by a single infected person in a fully susceptible

population during his/her infectious period. In an epidemic situation, in which the period

is short enough to neglect demographic effects, and all infected individuals recover with

complete immunity against reinfection, the threshold R0 = 1 is the dividing line between

the infection dying out and the onset of an epidemic. In a situation that includes a flow of

new susceptible individuals, either through demographic effects or recovery without com-

plete immunity against reinfection, the threshold R0 = 1 is the dividing line between an

approach to a disease-free equilibrium and an approach to an endemic equilibrium, where

the disease is always present. Nevertheless, the concept of backward bifurcation presents a

complex perspective to this framework [101]. It indicates that, under certain conditions, a

stable endemic equilibrium can coexist with a disease-free equilibrium even when R0 < 1.
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This phenomenon suggests that simply achieving R0 < 1 may not guarantee the elim-

ination of the disease, challenging the conventional threshold-based approach to disease

control. Factors such as population heterogeneity, partial immunity, and complex trans-

mission dynamics contribute to backward bifurcation, necessitating more comprehensive

strategies for disease eradication [101].

1.2 The epidemiology of Ebola virus disease

Ebola virus is part of the Filoviridae family (Filovirus) [26]. The Ebola virus consists of

five strains: Zaire Ebola virus (EBOV), Sudan Ebola virus (SUDV), Taı̈ forest or Côte

d’Ivoire Ebola virus (TAFV), Bundibugyo Ebola virus (BDBV) and Reston Ebola virus

(RESTV). All these strains except RESTV can infect humans and non-human primates,

with different pathogenicity, causing Ebola virus disease (EVD) [143]. EBOV is the most

lethal. It was associated with the 2014-2016 EVD epidemic in West Africa, causing an

infection of more than 28, 000 cases and deaths of more than 11, 000 [179]. EBOV was

discovered after a new fatal viral hemorrhagic fever occurred in a village in Zaire (the

Democratic Republic of Congo) in 1976 [180] and in Nazara, South Sudan [161]. The

new virus associated with the outbreaks was named Ebola after a river near the Zaire

village [113].

EVD is a disease that can be transmitted from animals to humans [156]. It regularly

affects and kills non-human primates, such as apes, gorillas, monkeys, and chimpanzees

[10]. Additionally, fruit bats from the Pteropodidae family are often considered to be

carriers of the Ebola virus [93, 113]. Typically, the initial person infected in an EVD

outbreak, referred to as the index case, contracts the disease through the consumption

of hunted meat of an infected animal or by direct contact with infected fruit bats [29].

EVD can be transmitted from animals (live or dead) such as antelope, porcupines, non-

human primates, and fruit bats to humans through contact with infected animals’ blood,

organs, or bodily fluids [23]. The Ebola virus can remain in the body cavity and blood of

deceased non-human primates for up to seven days. It can also remain up to five days in

the dry blood of humans and non-human primates [126, 51]. In some situations, the virus

can remain in the fomites of an infected person for more than 30 days [160]. Human-

to-human infection occurs through contact with bodily fluids or contaminated fomites of

infected individuals [94, 54, 115]. Further, deceased individuals have the highest infection
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rate [94]. Social practices such as washing EVD deceased individuals before burial and

touching them contribute to the dispersal of EVD [41]. The hospitalisation context can

cause further spread of EVD if proper safety protocols are not practiced [121]. Ebola

virus can spread from humans to the environment again by inappropriate hygienic and

sanitary conditions [11, 10]. EVD is also transmitted sexually [180]. According to WHO,

EVD male survivors should practice safe sex for a year from the onset of EVD symptoms

or until their semen tested negative twice for EBOV [180].

The incubation period is the period from when an individual becomes infected to the

initial appearance of symptoms and signs of the infection [6, 79]. This period ranges

from 2 to 21 days for EVD [180], and people are not infectious when asymptomatic.

EVD symptoms start with influenza and malaria-like symptoms of headache, fever, muscle

pain and sore throat. However, they develop into diarrhoea, vomiting, rash and severe

weakness. The final stage is kidney and liver damage and internal and external bleeding

[113, 25, 127]. The average EVD case fatality rate is 0.5, but case fatality rates of up to

0.9 have also been recorded in past outbreaks [10, 180].

EVD treatment usually entailed relieving EVD symptoms, oral and intravenous rehy-

dration, and curing other diseases that a patient may have [94]. Now the following steps

are followed to interrupt the viral transmission chain [10, 127, 113]:

• Minimising the danger of animals to humans transmission by avoiding contact with

fruit bats, monkeys and other non-human primates and avoiding eating their raw

meat,

• Reducing the danger of human-to-human infection that results from close contact

with EVD-symptomatic individuals, especially with the bodily fluids of these peo-

ple. If close contact must be made with symptomatic people, for example, taking

care of EVD-ill persons at home or hospital, gloves and protective equipment must

be worn. Further, hands must be washed properly after caring for and visiting pa-

tients,

• Raising public awareness of EVD risks and protective measures,

• Contact tracing of EVD contacts,

• Placing suspected cases in quarantine for three weeks (maximum incubation period),
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• Practising prompt and safe burial for EVD deceased individuals,

• Vaccinations,

• Experimental antiviral treatments.

Despite these control efforts, the disease still spreads in many parts of Africa. We hope to

study the dynamics of this disease in order to mitigate its effects.

The objectives of this thesis are to:

1. identify crucial gaps in the modelling literature and improve prospective models by

addressing current models’ constraints;

2. quantify and study important epidemiological issues on the spread and control of

EVD using novel mathematical models.

The deadliest outbreaks in recent history were the 2014-2016 West African outbreak (2014

WA EVD) and the 2018-2020 Kivu outbreak in the Democratic Republic of Congo. We

discuss these outbreaks to motivate the problems that the current study explores.

1.3 The 2014-2016 EVD outbreak

One of history’s most devastating EVD epidemics occurred between 2014 and 2016 in

West Africa. The index case (primary incidence) was an 18-month-old boy living in

Meliandou village in Guéckédou prefecture in Guinea who died after becoming infected

by EBOV [178]. The origin of the infection is uncertain, but it is likely to have originated

from an animal, possibly a bat [162]. Although the outbreak may have started from an-

imals, secondary transmissions have occurred from humans to humans [59]. Figure 1.1

depict how the 2014 WA progressed over two years in Sierra Leone, Liberia and Guinea.

Despite the lessons learnt from the modelling efforts of the 2014-2016 WA EVD, the dis-

ease continued to spread on a large scale in Africa. Thus, it is vital to systematically

review mathematical models of EVD, identify gaps, and improve prospective models by

addressing current models’ constraints.
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Figure 1.1: The number of EVD cases reported every week (Wk) during the years 2014
and 2015. This figure was adapted from [162].

1.4 The 2018-2020 Kivu outbreak

The second-largest EVD outbreak in history was declared in North Kivu and Ituri provinces

in 2018. The outbreak infected 3481 individuals and caused 2299 deaths. It affected more

than 18 health zones in North Kivu and around eight health zones in Ituri provinces [167].

However, not all areas had the same EVD spread. Only six health zones in the North

Kivu and Ituri provinces - Beni, Butembo, Kalunguta, Katwa, Mabalako, and Mandima -

accounted for roughly 81% of infections by 25 August 2019 [68]. As a result, immunisa-

tions directed towards high infection locations may be a critical factor in controlling the

spread of EVD when other intervention techniques fail to stop the outbreak’s spread.

During the 2018-2020 Kivu outbreak, unidentified assailants stormed an Ebola treat-

ment centre (ETC) in Butembo and burned several buildings and vehicles. The centre had

57 patients including 15 confirmed cases. The incident occurred several days after another

attack in Katwa’s ETC. Ten patients were present at the Katwa centre, four of whom had

been diagnosed with EVD. In a previous outbreak, a group of community members at-

tacked an ETC near Monrovia [66]. They looted items including mattresses containing

blood and other bodily fluids of infected individuals [66]. Understanding the interplay

between the attacks on Ebola treatment centres (ETCs) and the spread of EVD is critical

to comprehend how EVD unfolds in conflict and community distrust zones.
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1.5 Outline

In Chapter Two, we systematically review previous modelling literature on EVD and de-

termine limitations in these models. A detailed review of each article is presented in an

Appendix of this thesis. In Chapter Three, we study the impact of geographically-targeted

vaccinations when the spread of EVD cannot be controlled using contact tracing, ring vac-

cinations and antiviral treatments. The proof of the theorems used in Chapter Three is

presented in an Appendix. Chapter four studies the impact of the attacks on Ebola treat-

ment centres during the 2018-2020 Kivu outbreak. In Chapter Five, we summarise the

thesis findings and determine routes for future work.



Chapter 2

A Systematic review of mathematical models of the Ebola virus

disease

2.1 Introduction

Recently, humanity has confronted an increasingly difficult re-emergence of the Ebola

virus disease (EVD) [98, 132]. According to the World Health Organization (WHO) report

in 2019, EVD was classified as one of the top ten threats to global health [182]. To date,

more than 26 EVD outbreaks are know to have occurred [23]. The most severe was the

2014 West African Ebola outbreak (2014 WA EVD) which caused more than 11000 deaths

followed by the 2018-2020 outbreak in the Democratic Republic of Congo (DR Congo)

which caused more than 2000 deaths.

EVD is a zoonotic disease [156]. It follows a periodic cycle in non-human primates

(apes, gorillas, monkeys and chimpanzees) and eradicates them [10]. Further, fruit bats

of the Pteropodidae family are believed to be a reservoir for the Ebola virus [93, 113].

In almost every EVD outbreak, the first infected case was suspected to be due to eating

hunted meat of an infected animal or by contact with fruit bats [29]. Human to human

infection occurs through contact with bodily fluids or contaminated fomites of infected

individuals [94, 54, 115]. The average EVD case fatality rate (CFR) is 0.5, but case fatality

rates of up to 0.9 were also recorded in previous outbreaks [10, 180]. As the number of

infected persons escalated during the past EVD outbreaks, many questions emerged about

the epidemiology of EVD and the efficiency of tools and methods used for controlling

the outbreaks. Mathematical models played an important role in assessing the value of

different control measures and forecasting the trajectories of the outbreaks.

A mathematical model in the context of biology is defined to be an equation or a set of

equations describing a biological phenomenon that quantitatively explain the phenomenon

and ideally predicts its dynamics. Mathematical modelling is the process of formulating

7
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and analysing model equations and comparing model prediction with observations. Math-

ematical modelling of EVD has been effectively utilised to plan strategies for probable

geographic spread, handle disease outbreaks in real-time, assess the impact of therapeutic

and non-therapeutic control measures, and assist in the formulation of policy decisions

[186].

Several studies have surveyed the literature on mathematical modelling of EVD [32,

43, 150, 37, 33, 164, 35, 155, 186, 38]. Chowell and Nishiura [32] reviewed significant

epidemiological parameter estimates from historical EVD outbreaks (outbreaks which oc-

curred before the 2014 WA EVD) and conducted a brief comparative review of different

historical models and the 2014 WA EVD. Drake et al. [43] reviewed six mathematical

modelling articles of outbreaks prior to the 2014 WA EVD. Van Kerkhove et al. [150]

created a database of EVD parameter estimates from the past and the 2014 WA EVD.

Chretien et al. [37] reviewed 66 studies of mathematical modelling of EVD. They aimed

to discuss critical uncertainties addressed by these models, the data used, the public al-

location of the data, results, and the performance of these models. Chowell et al. [33]

analysed simulation data and reviewed models that accounted for realistic population mix-

ing assumptions. Wong et al. [164] reviewed phenomenological and mechanistic models

published from January 2014 to December 2015. They aimed to assess the impact of com-

partment models and under-reporting in the disease parameter estimates as well as in the

disease trajectories. Chowell et al. [35] aimed to provide a viewpoint on some of the dif-

ficulties and conclusions learnt from the 2014 WA EVD modelling efforts. Viboud et al.

[155] presented findings of an EVD forecasting challenge using synthetic data and con-

ducted a systematic comparison for the performance of eight modelling approaches that

participated in the trial. Zitzmann and Kaderali [186] concerned themselves with review-

ing the literature on mathematical modelling of viral dynamics. In addition to reviewing

six articles of mathematical modelling of the Ebola virus, they also reviewed mathematical

models for other viruses, including HIV, Influenza, Hepatitis C, Dengue, and Zika viruses.

Dembek et al. [38] reviewed mathematical models for diseases that potentially affect large

populations. They presented key findings of some EVD models without discussing the

models and their assumptions or approaches.

Most of the articles mentioned above did not review any work published after January

2016. Furthermore, those that have considered such work only focused on either particular
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types of models [186], presented only findings for some models [38], or included just a

few articles published in 2016 [33, 35, 155]. Additionally, these reviews did not focus

on examining models by systematically identifying advantages and limitations or gaps for

further research. Thus, there is a gap in the literature for systematically reviewing models

published after January 2016.

In light of this, we carried out a systematic review of mathematical models of EVD.

The objectives of this review are to present an overview of the mathematical modelling

literature on EVD, identify gaps, and improve prospective models by addressing current

models’ constraints.

To achieve the current study objectives, we focused on reviewing each surveyed model

in terms of the proposed problem, the data used, the approach, findings, advantages, and

limitations. We chose to survey the modelling approaches because the choice of the

method is essential in modelling. For example, phenomenological modelling approaches

are generally more useful in providing a general sense of the data when there is not enough

information about the disease’s natural history parameters or enough data for quantifying

modelling that account for the underlying mechanisms by which the disease variables are

linked. Mechanistic modelling, on the other hand, is more useful in providing estimates

for model parameters and natural history when there is sufficient data.

Models sometimes account for spatial, within-household, and within-host transmis-

sions in their components. Due to its geographical distribution, the 2014 WA EVD become

the most devastating EVD outbreak in history. The outbreak is believed to have started

with an 18 month old boy living in Meliandou village in Guéckédou prefecture in Guinea

and spread regionally and internationally through the mobility of people [178]. Spatial

transmission models are used to understand, for example, how the migration of individuals

contribute to the dispersal of EVD and how long it could take for the Ebola virus infecting

someone in a region to cause subsequent infections in another region. They are also used

to understand the impact of spatially-targeted intervention measures. Within-household

transmission, on the other hand, was recorded to have created 82% of community trans-

missions in Guinea and more than 66% of the total transmissions in the country [49]. The

reason for the increased proportion of the within-household transmission has resulted from

the nature of EVD spread. The disease spreads through close contacts with patients via

their bodily fluids and contaminated fomites. Modelling can account for within-household
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transmission and be used to assess the impact of household-targeted interventions. Within-

host transmission models help in understanding the interaction measurements of the Ebola

virus with target cells. This modelling is particularly important since the virus is rated at

level four in biosafety measures and hence basic research on the virus is limited [63].

Motivated by the importance of the consideration of spatial, within-household and

within-host transmission components in modelling, we group our reviewed studies into

five ensembles: spatial, within-and-between-households, within-host, other transmission,

and other intervention models.

The rest of the chapter is organised as follows: In Section two, we create a system

of identifying the surveyed literature. In particular, we set up the characteristics to be

used to select eligible studies. Thereafter, we determine these studies. In Section three, we

present an overview of the modelling issues and approaches. To achieve this, we revisit the

grouping of the surveyed studies, motivated earlier. Thus, we group the surveyed studies

into spatial, within-and-between-households, within-host, other transmission, and other

intervention models. In Section four, we outline findings and limitations of the reported

studies. We initially start with transmission determinants and terminate with interventions.

In Section five, we conclude our work and discuss recommendations.

2.2 Methods

Many reviews were performed following the PRISMA statement for systematic reviews

[109]. We follow the same procedure in the current study. In this section, we state the

searching strategy for the literature and the eligibility criteria. Thereafter, we identify

articles to be reported.

To conduct a systematic search for the current study, we focused on the PubMed

database. PubMed provides a search engine for biomedical and life science literature. The

database includes the National Library of Medicine (NLM) and the MEDLINE resources.

It incorporates a bibliographic database composed of published literature including jour-

nals, conference proceedings and reports. It has been argued that PubMed is an optimal

search engine for biomedical electronic publications [47]. To identify articles for the cur-

rent study, we searched the PubMed database on 25 February 2019 using the following

search constraints:
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1. We used the search keys “ebola” and “model”;

2. We restricted the search to articles published between 1 January 2016 and 31 De-

cember 2018.

The following selection criteria were used to select eligible articles:

1. Studies that include mathematical models of EVD in humans;

2. Phylogenetic studies were excluded;

3. Articles not in English were excluded;

4. Review studies were excluded. It should be remarked that the excluded mathemat-

ical modelling of EVD reviews were already discussed, in addition to all similar

reviews, earlier in the introduction to motivate the current research questions;

5. Studies that did not provide any quantifications or simulation using real or synthetic

EVD data were excluded.

To identify the eligible articles, the titles and abstracts of articles obtained from the

initial systematic search were screened, and those that did not fit the selection criteria

were eliminated. The full articles were then read, and subsequently further refined using

the selection criteria. The selection process and the results are shown in Figure 2.1.

2.3 Modelling issues and approaches

Mathematical models can be classified into phenomenological and mechanistic models.

They can also be divided into deterministic and stochastic models. Models can be analysed

using mathematical theory or computer simulations. Mathematical theory is beneficial in

depicting general patterns from simple models, and computer simulations are useful in

drawing specific and precise results from complex models. Still, they generally sacrifice

drawing broad conclusions [9]. In this section, we group our reviewed models into five

sets: Spatial, within-and-between-households, within-host, other transmission, and other

intervention models. We discuss the issues addressed in these models and how they were

approached.
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Figure 2.1: Flow diagram of the selection process

A total of 375 records were
identified from PubMed.

Titles and abstracts of the 375 arti-
cles were assessed using the selec-

tion criteria and 280 were excluded.

Full articles were read and 20
additional articles were excluded

using the selection criteria.

Total number of articles in-
cluded in the study were 74.
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2.3.1 Spatial transmission models

Several studies accounted for spatial transmission [97, 163, 133, 8, 89, 45, 111, 154, 131,

36, 124, 60, 85]. These studies addressed various issues and used different approaches to

express spatial transmission.

Spatial models explored various issues including the risk of regional and international

spread [97, 163, 133, 8], estimating the distance of EVD transmission [89], determining in-

dividual heterogeneities regarding the spread of EVD [89], and assessing spatially targeted

control measures [45]. Spatial modelling was also used to identify the best international

intervention measures against EVD [111], understand the spread of EVD in hypothetical

cities [124], study the impact of a hypothetical EVD spread in India [133] and estimate the

risk of EVD occurrence [60]. One [85] investigated the impact of several spatial spread

assumptions made in modelling.

There are different approaches to express spatial transmission. These include using

travellers data and either employing phenomenological [163] or mechanistic [97] mod-

els or using a geospatial epidemiological framework [133]. Some models also modified

the transmission rate with a gravity type parameter [45, 8]. This parameter expresses the

dependence of the transmission on the sizes of two interacting populations and the dis-

tance between them. When a gravity type parameter is considered, the force of infection

decreases with increasing geographical distances and increases with the increase in popu-

lation density. One [89] employed cell phone GPS data . Some studies [154, 131, 36] used

either phenomenological models or a combination of phenomenological and mechanis-

tic models. While one [124] used a compartment framework in an agent-based software

called PISKaS, another [133] used a spatiotemporal epidemiological modeller software

called STEM. Moss et al. [111] expressed spatial spread by considering different rates of

transmission in rural and urban populations. Kramer et al. [85] used a network approach

in which the nodes were assumed to be geopolitical administrative units in West Africa,

and the edges were assumed to represent how strong were the potential infection routes

were among the nodes.

2.3.2 Within and between households transmission models

Several models accounted for transmissions within and between households [3, 82, 5].

These models discussed various concerns and used different approaches to consider within
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and between household transmission.

Several parameters have been found to be addressed by the within and between house-

hold transmission models. One [3] explored the consequence of a household structure, in

particular a household size in epidemiological parameters such as the basic reproduction

number, the intrinsic growth rate and the epidemic final size. Another [82] aimed to un-

derstand the role of community mixing in explaining the sub-exponential aggregation of

EVD dynamics at the district-level in the 2014 WA EVD.

Models approached the within and between households transmission in different ways.

Some [3, 82] considered transmission within households to be constant while one [5] con-

sidered different levels of transmission within households.

2.3.3 Within host transmission models

Some studies considered within-host transmission in their components [117, 67, 102].

Viral shedding data were used for different purposes. House et al. [67] employed

viral shedding data to estimate model parameters, including the mean of the infectious

period for high and low viraemia. Additionally, they aimed to explore the mechanism in

which vaccines reduce infection. Nguyen et al. [117] employed the data to understand the

impact of the within-host pathogen dynamics into the between-host dynamics and evaluate

the impact of EVD vaccination. Martyushev et al. [102] explored how EVD therapies such

as ZMapp, TKM-Ebola and Favipiravir mitigate Ebola virus spread. Further, they aimed

to understand the relationship between EVD severity and Ebola virus replication.

There are different approaches to express within-host transmission. House et al. [67]

used a compartment model composed of three stages, starting with an initial viraemia

followed by a second stage consisted of a high and a low viraemia and a final stage that was

either death or recovery. Nguyen et al. [117] used a logistic model that was embedded with

an age-specific contact network to express transmission between individuals. Martyushev

et al. [102] used a compartment model with two target cells: susceptible target cells

(monocytes/macrophages and dendritic cells (CD)) and potential target cells (hepatocytes,

splenocytes and endotheliocytes).
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2.3.4 Other transmission models

Several studies predicted the occurrence of EVD [10, 11, 185, 62], and associated the in-

cident of EVD outbreaks with environmental, population, socio-economic, and climatic

factors [134, 86, 148]. One studied the role of bats on the EVD occurrence [95]. Some

characterised the spread of EVD [129, 48, 158, 118, 88], estimated EVD natural history

parameters [144, 55, 125, 151], and explored social and behavioural aspects that charac-

terised the spread of EVD [183, 136]. Some studies [27, 56, 147, 7, 123, 58, 153, 99]

forecasted EVD spread trajectories. Others explored the potential impact of EVD sexual

spread from male survivors [1], studied the event of super-spreading [90], the factors that

might have driven this circumstance [90], and investigated whether the Ebola virus can

evolve to become less virulent in the human population [141].

Several models studied the relation of EVD occurrence with some environmental, be-

havioural, socio-economic, climatic and demographic factors. Others predicted reoccur-

rence of EVD. One [11] explored whether the effect of environmental transmission of

EVD, including poor hygienic practices and the consumption of contaminated bush meat,

can explain the re-occurrence of EVD in Africa. Another [10] explored the understanding

and forecast of future EVD outbreaks. Schmidt et al. [134] predicted the timing and loca-

tion of EVD spillover events. Krauer et al. [86] investigated the role of socio-demographic

factors in the spread of EVD. Zinszer et al. [185] explored some demographic and environ-

mental predictors of EVD spread. Valeri et al. [148] have systematically investigated the

demographic and socio-economic predictors of EVD at the sub-national level in Guinea,

Liberia and Sierra Leone. Guo et al. [62] forecasted future reoccurrence of EVD. These

models employed different methodologies. One [10] considered a compartment model in

which transmission was assumed to happen from humans, fruit bats, non-human primates,

and other animals. Another [11] used a compartment model, included environmental trans-

mission as one compartment in the model and assumed infectious humans to have shed the

virus in the environment. Guo et al. [62] used a simple SIR model in the absence of in-

tervention measures. Other studies [185, 134, 86, 148] used various statistical methods

including regression and Bayesian hierarchical models.

Fruit bats of the Pteropodidae family were believed to be the reservoir for the Ebola

virus [93, 113]. Li et al. [95] explored the impact of bats on the EVD spillover event. They

used a compartment modelling structure and Markov Chain Monte Carlo simulation.
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Several studies aimed to characterise the spread of EVD and analysed EVD data in

West Africa. These studies used various approaches. One [129] used an activity-driven

and time-varying network in which the set of nodes represented individuals, and the edges

represented contacts between these individuals. Another [158] used an age-structured

model in which each of the disease stages (e.g., incubation, infectiousness, hospitalisa-

tion) was considered as an age of the disease since infection. Ngwa and Teboh-Ewungkem

[118] used a deterministic model that integrated EVD data, included quarantine and non-

quarantine states and assumed EVD spread in the community to be different than health-

care settings. Lachiany and Louzoun [88] considered EVD infection rates to have different

distributions including constant, and normal distributions. Fang et al. [48] mapped EVD

cases to their geographical locations and used statistical methods to analyse the spatiotem-

poral trajectories.

Several models were used to estimate various EVD natural history parameters. Taylor

et al. [144] determined the basic reproduction number in the three most affected West

African countries by the 2014 WA EVD. Frasso and Lambert [55] estimated the effective

reproductive number. Pettey et al. [125] measured the mean incubation period of EVD

and the serial interval. Vanhems et al. [151] approximated EVD emergence probabil-

ity and secondary incidence cases when a patient with undetected EVD was hospitalised.

Various approaches were used to find these estimates. Taylor et al. [144] used a hybrid

stochastic-deterministic approach based on SEIR type model and the Gillespie stochastic

simulation. Frasso and Lambert [55] used a discrete-time Markov chain structure of EVD

and Bayesian inferential framework. Pettey et al. [125] used publicly available online

sources, conducted an online search about recorded EVD reports and built a transmis-

sion chain. Vanhems et al. [151] used a stochastic compartment model and the Gillespie

simulation. They divided the population into patients, nurses, and physicians.

Some studies proposed alternative approaches to formulate an accurate description

of epidemic dynamics [100], explored the problem of parameter identifiability [140] or

assessed some common modelling assumptions [18]. One [140] derived a linear Volterra-

type integral equation from a compartment model of the SEIR type. Another [18] fitted

cumulative EVD incidences to a logistic growth and used a simple compartment model to

explain the underlying reasons for the EVD trajectories produced in the logistic growth.
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Getz and Dougherty [100] proposed an alternative approach to the standard SEIR mod-

elling method using a discrete stochastic Erlang type modelling.

Social and behavioural aspects can characterise the trajectories of EVD outbreaks and

explain the underlying reasons for the disease trajectories [183, 136]. One study [183]

assessed the impact of individual behavioural changes on EVD trajectories. This study

utilised four different EVD forces of infection to implement behavioural change and de-

cided which of them had the best model fitting and disease prediction. Another [136] used

a system dynamics approach to understand the impact of social and behavioural factors in

the spread of EVD. This study incorporated twitter data about outbreak news as a measure

of the psychological and behavioural changes.

To predict the spread of EVD, various methodologies were used with real or synthetic

data. Several studies [27, 56, 147, 7, 123, 58, 153] used synthetic EVD data that were pro-

duced for the RAPIDD (Program of Research and Policy for Infectious Disease Dynamics

of the United States) Ebola forecasting challenge. They aimed to forecast EVD trajecto-

ries using the different datasets provided in the challenge and employed different types of

approaches (phenomenological, mechanistic, and mixed). Others [139, 99] adapted real

data for the three major affected countries by the 2014 WA EVD and used global and phe-

nomenological modelling approaches to forecast EVD incidence and to characterise EVD

dynamics.

To study the potential impact of EVD sexual spread from male survivors, Abbate et

al. [1] used a compartment model of the SEIR type in which a further compartment C

representing the convalescent population was added.

To investigate super-spreading and the factors that might have driven this circumstance,

Lau et al. [90] used network-based and Bayesian frameworks. The approach focused on

creating transmission trees among EVD cases. A Bayesian model then integrated the data

and inferred the distribution of new cases.

To understand whether the Ebola virus can evolve to become less virulent in the human

population, Sofonea et al. [141] used a compartment model. They assumed the case

fatality rate to be proportional to the transmission rate. An evolution in the population was

considered to occur by a rare mutation that creates a different case fatality rate.
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To assess the impact of relapse and reinfection in the spread of EVD, Agusto [4] pro-

posed a deterministic compartment model. Recovered individuals in the model were as-

sumed to have a disease relapse or to become reinfected by being exposed to infectious

individuals.

2.3.5 Other intervention models

Some models [119, 76, 57, 44, 110] assessed the impact of intervention measures includ-

ing contact tracing, isolation, safe burials and vaccinations. Others [20, 39, 64] explored

how to improve the performance of randomised intervention trials. Two studies [184, 75]

determined the optimal procedure of eradicating EVD. Another [94] studied the impact of

public health education on the spread of EVD. Various other studies evaluated the impact

of EVD therapies and vaccines [107, 87, 12, 65, 15, 71].

Intervention trials aim to benefit participants and whole communities. Some models

either intended to evaluate the performance of randomised intervention trials or to design

intervention trials that have high attainments [20, 39, 64]. One [20] evaluated the feasibil-

ity of a prime-boost vaccination trial, while others [39, 64] increased the performance of

randomised trials. These studies used various approaches. One [20] used a compartment

model in which they assumed susceptible individuals to either be recruited to vaccinated

or control groups. Another [39] utilised a metapopulation framework to project areas of

the first order of incidence occurrence and those with the highest weekly cases. Harling

et al. [64] proposed a class of connectivity-informed designs and utilised connectivity

information between clusters in intervention scenarios.

The impact of intervention measures was characterised in many ways. Nieddu et al.

[119] introduced a stochastic model that accounted for EVD spillover from its zoonotic

reservoir. Interventions were considered by limiting the contact rate with infectious in-

dividual, safe burials or reducing the reservoir transmission. Jones-Konneh et al. [76]

used an agent-based model. They considered both the initial status of individuals regard-

ing their knowledge about EVD and the status when individuals are well-informed about

EVD. Funk et al. [57] structured the population into the general community and the people

within healthcare centres. The importance of community engagement was represented in

the model as the healthcare-seeking behaviour parameter. Muhammad et al. [44] used a
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compartment model of the SEIR type with further hospitalisation, quarantine, and vacci-

nation components.

Models are sometimes used to find the optimal strategy of eradicating EVD. One [184]

was used to calculate the fastest road for drug and vaccine distribution, and to find the stor-

age solution that results in the minimum total cost. Another [75] was used to find critical

measures to eradicate EVD optimally. These models incorporated different methodolo-

gies. Zhu et al. [184] used a compartment structure and optimisation methods. Jiang et

al. [75] proposed a compartment model that accounted for early and advanced stages of

infectiousness, hospital isolation, EVD therapy, and vaccination.

To assess the impact of public health education on the dynamics of EVD in Sudan,

Levy et al. [94] used a deterministic compartment model that divided the susceptible pop-

ulation into individuals who were knowledgeable about EVD and individuals who were

not. They studied the effect of becoming knowledgeable about EVD on the spread of the

disease.

To assess the effectiveness of contact tracing in the early phase of an outbreak, Shahtori

et al. [110] used an activity driven network method. The contacts of an infectious person

were observed for 21 days. Further, this observation was implemented after some delay,

and the effects of this delay were evaluated.

EVD therapies and experimental vaccines were extensively used during the 2018-2020

DR Congo outbreak and the late period of the 2014 WA EVD. Several studies evaluated

the impact of ring vaccination [107], explored the circumstance under which ring vacci-

nation could control the spread of EVD [87], evaluated the impact of the rVSV-ZEBOV

EVD vaccine [12], assessed ring vaccination trial design [65] and evaluated the voluntary

vaccination strategy [15]. One [71] evaluated the convalescent blood transfusion therapy

and explored vital factors that strengthen this treatment. Motivated by these concerns, the

studies above applied various methodologies. One [107] applied a novel methodology that

integrated transmission within households and extended families. Another [87] used a sta-

tistical method that explored the circumstance under which ring vaccination could control

the spread of EVD. Bodine et al. [12] utilised a compartment model that accounted for

various risks of infection. Hitchings et al. [65] used a compartment modelling structure

and assumed individuals to either be infected by rings of contacts and contacts of con-

tacts or by the general population. Further, they assumed vaccination to be implemented
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immediately or after some delay.

Brettin et al. [15] considered a compartment of vaccination in a compartment model.

They assumed a population to be well informed about the risk of the disease and the direct

and indirect cost of vaccinations. Huo et al. [71] presented a treatment-donation-stockpiles

compartment model and assumed that infected individuals to be efficiently hospitalised

and safely buried when deceased.

2.4 Model conclusions and constraints

There are several questions asked by public health physicians when facing the possibility

of an epidemic. These include:

• How severe will an outbreak be?

• How many individuals will be affected by a disease?

• What is the maximum number of individuals that should be treated to stop the spread

of an outbreak?

• How long will the epidemic continue?

• How effective is the quarantine of victims in decreasing the seriousness of a plague?

Mathematical models are tools used to answer these questions, among others [9]. They

are used to achieve this goal by describing the relationship between variables in a dataset

where they seek only to describe the data or, they further explain how these variables are

related to each other biologically. However, models are often constrained by simplifying

assumptions (e.g., homogeneous mixing) or problems in the datasets (e.g., in-accurateness

or incompleteness) [46]. In this section, we discuss model findings and limitations in ad-

dition to gaps for further work. We first start with transmission factors and issues followed

by intervention factors.

2.4.1 Enviro-climatic, socio-geographic and socio-economical factors

In some studies, it was suspected that climatic changes and the expansion of population

in addition to some population and socio-economic factors played a crucial role in the

spread of EVD [148, 185, 134, 62]. Consequently, these issues were explored and found
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to be important variables in associations of EVD occurrence. It has also been found that

household and community sizes play an essential role in the spread of EVD [3, 82].

In order to forecast the spread of EVD, some studies [148, 185, 134, 62] used envi-

ronmental and ecological predictors. Some of these studies made simplified modelling

assumptions or did not explore important consequences of their findings. Others, on the

other hand, could be applied to new contexts. Many statistical models [148, 185, 134] were

used to associate rainfall, urbanicity and the number of households not owning a radio with

a high risk of EVD occurrence. However, the causative relations between these risks and

the human-to-human spread of EVD with a particular focus on how human mobility and

healthcare accessibility are affected by these risks are not studied in any of our reviewed

articles. One statistical association model [134] was used to show that the risk of EVD

peaks in the transition period between wet and dry seasons and suggested that Central

Africa, East Africa and Madagascar to have a high risk of EVD occurrence. However, the

model did not incorporate local factors such as the level of hygiene and diet practices (e.g.,

eating of contaminated bush meat) that are often associated with EVD spillover [10, 11].

Guo et al. [62] forecasted the EVD epidemic to reoccur in 2035. Then it will continue to

reoccur after eight to nine years. However, it is not generally simple to predict the reoc-

currence of EVD without accounting for many factors that contribute to the probability of

EVD spillover. These include environmental changes, urbanicity, and the consumption of

bush meat [134].

Household and community sizes played an essential role in the spread of EVD. Adams

[3] found that the increase in household sizes to have increased the risk of EVD spread.

Further, communities with small household sizes required a modest level of case identifica-

tion and quarantine. In contrast, those with large sizes required effective quarantine com-

bined with case detection and isolation of the whole household. Kiskowski and Chowell

[82] found that the community size and the basic reproduction number for the household

and that of community to have characterised the spread of EVD. These studies [3, 82],

however, either assumed that the transmission within and between households to be con-

stant or did not account for heterogeneity of transmission within households. In reality,

people who look after patients have a higher chance of EVD transmission as compared

to other household members [120]. Further, transmission within relatives and friends is

higher than transmission among the general community [120].
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2.4.2 Transmission within healthcare units

Nosocomial transmission has historically played a crucial factor in the spread of EVD

[21]. This transmission usually results from poor cleaning or ineffective decontamination

at healthcare centres. Several models were used to specify factors that reduced the spread

of EVD in healthcare settings and to identify people at high transmission risks [5, 76, 151].

Vanhems et al. [151] estimated EVD emergence probability at hospitals when EVD

patients were misdiagnosed and found nurses to have a higher risk of EVD infection com-

pared to other groups (physicians and other non-EVD patients). Their study, however,

only assumed direct infection through contact with EVD patients and did not account for

indirect transmission that could occur from bad cleaning or inefficient decontamination of

the bodily fluids of EVD patients. Further, it was assumed that the isolation efficacy to be

100% as soon a patient was diagnosed with EVD which might also be an overly optimistic

assumption given the high contagiousness of EVD.

Several factors were found to have caused a reduction in the spread of EVD within

the healthcare system. Ajelli et al. [5] found that the relatively high preparedness of the

healthcare system, the early availability of Ebola treatment centers and the application of

case isolation and safe burials to have limited the spread in the early stage of the outbreak

in Guinea during the 2014 WA EVD. Jones-Konneh et al. [76] found that the increase in

the probability of seeking intensive training about EVD and practising appropriate care

procedures to have caused a greater decline in EVD infection compared to the increase in

the percent of healthcare workers (HCWs) who initially had some knowledge about EVD

or those who attended little training about the disease. Jones-Konneh et al., however, did

not account for any actual delay in establishing EVD training academies for HCWs.

2.4.3 Transmission from bats, animals and virus shed in the environment

Some models [119, 95] were used to determine the effects of the bat’s spillover in the

spread of EVD. Others [11, 10] were used to identify the impact of environmental trans-

mission resulting from poor cleaning, inadequate decontamination, or unhygienic diet

practices such as the provision of raw bush meat.

Some studies characterised the spread of EVD as a function of EVD spillover from the

bats [119] and specified the effects of increasing the size of the spillover [95]. Nieddu et

al. [119] simulated the vulnerability to EVD as a function of the bats infection rate and
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determined a range of values for these rates that trigger isolated and endemic outbreaks.

Li et al. [95] found that infected bats might have likely been the source of the EVD

spillover. Further, they found increasing the number of daily captured infectious fruit

bats to have only reduced the peak timing of an outbreak and not the peak value. Li et

al., however, assumed bat’s spillover rate to be zero during wet seasons while numerous

studies [148, 185, 134] associated wet seasons with enhanced risk of EVD spillover.

Some studies [11, 10] investigated the transmission from a contaminated environment

in a simple modelling framework and in the context of a complex life ecology composed

of bats, humans and animals. Berge et al. [11] found that in the case of a virus-free en-

vironment (that is, no recruitment or provision of the Ebola virus in the environment),

the number of infected individuals either became extinct or constant in the long run de-

pending on the value of the basic reproduction number. In the case of a non virus-free

environment, a constant number of infected individuals in the long run was found. This

number was invariant to any changes in the initial number of infections when there was no

virus shed by infectious individuals in the environment. In another model, Berge et al. [10]

determined the basic reproduction number R0 and the stability analysis of a disease-free

equilibrium in a complex model that illustrated the interplay of EVD transmission within

and among fruit bats, non-human primates and other animals, and the human population.

The models [119, 11, 10] assumed the population to be homogeneously mixed regarding

spatial spread. However, this assumption is not realistic with the most severe outbreaks

that occurred during the last decade.

2.4.4 Spatial transmission

Several studies characterised EVD growth at the sub-national level in Guinea, Liberia and

Sierra Leone [131, 154, 36, 86]. Some [48, 124] indicated factors that were associated

with a spatial spread. Other studies [97, 8] estimated the risk of EVD from travellers.

One [85] investigated the impact of a gravity type parameter in the spread of EVD as

compared to other spatial modelling techniques. Another [60] associated the road density

index (RDI) with a spatial transmission. D’Silva and Eisenberg [45] estimated the impact

of spatially-targeted intervention measures.

Several investigations characterised the different growth profiles among the sub-national
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levels in the three most affected West African countries by the 2014 WA EVD and deter-

mined some factors that were associated with a spatial spread. Some [131, 154, 36] found

high variations in EVD growth in the various regions in Guinea, Liberia, and Sierra Leone.

Krauer et al. [86] found that the spatial distribution of the disease in prefectures, districts

and counties with the highest transmission rates in Guinea, Liberia and Sierra Leone to

have clustered regionally whether there is a national border or not. Fang et al. [48] found

that EVD invasion at chiefdom level in Sierra Leone to be remarkably correlated with

the density of the population, the closeness of treatment centres and the transportation

networks. Perez-Acle et al. [124] found that a higher degree of connectivity (through

transportation and mobility) and higher proximity to EVD infected areas to have caused

higher EVD risks. There are some limitations, however, for these investigations. The stud-

ies [131, 154, 36] did not reveal the causes of the high variations in EVD growth. Krauer

et al. [86] used early stage data which were generally unreliable and contained case uncer-

tainty due to resource limitations in West Africa and the resemblance of EVD symptoms

with other diseases such as Malaria [32]. Further, they assumed the population at the

district-level to be homogeneously mixed. Perez-Acle et al. [124] assumed that infected

individuals could travel while in reality some might be too sick to travel, hospitalised or

quarantined.

Some models were used to assess the impact of a gravity type parameter and the RDI in

the spatial spread of EVD [85, 60]. Kramer et al. [85] found that models with a transmis-

sion parameter of a gravity type to have created the best characterisation to spatial spread

as compared to those models that used diffusion spread or estimated the mobility using

cellphone records. Gómez-Barroso et al. [60] found a strong association between the RDI

and the risk of EVD occurrence. However, the latter study used data that might contain

some unconsidered neighbourhood paths that connect villages. On the other hand, Kramer

et al. [85] assumed a gravity-type parameter that does not account for the risk of air travel.

Further, it does not consider natural barriers such as rivers or borders between countries.

Some studies estimated the risk of EVD from travellers [97, 8]. Lopez et al. [97] found

that in the 15th week of 2014, three individuals among 10,000 travellers from Liberia had

EVD. Wiratsudakul et al. [163] found that in early November 2014, the probability of

EVD importation into each of the top 20 final destinations for commercial flight passengers

travelling from Guinea, Liberia and Sierra Leone reached its peak. Backer et al. [8] found
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that between four and ten percent of newly infected people travelled to other districts

within the same countries (Guinea, Liberia or Sierra Leone). Further, between zero and

23% of the newly infected persons travelled to other countries. The models [97, 163]

did not account for socioeconomic differences of the inhabitants as some could afford

international travel while others could not, and did not consider whether frequent travellers

were from the most infected areas. Furthermore, Backer et al. [8] did not assume any

intervention scenarios such as border closure, check points or hygienity practices such as

washing of hands to reduce the chance of disease transmission.

D’Silva and Eisenberg [45] found that when applying local interventions for a district

with a high infection rate (0.1% of the total cases) in Guinea, Liberia or Sierra Leone, a

reduction of 20% of the total EVD cases in these countries occurred. This study incorpo-

rated district and national scale dynamics. However, it did not account for transmission in

small scales such as communities (neighborhoods) and villages which have been modeled

by Kiskowski and Chowell [82].

To conclude, it was illustrated that just feeding high-speed computers with large amounts

of data may not necessarily explain the fundamental processes and properties underlying

a specific dynamic phenomenon [16]. Alternatively, it was suggested that the notion of the

traditional geographic distance used in spatial models might be replaced with an effective

distance [16]. In the notion of effective distance, it was assumed that two locations in the

air-transportation network with many passengers should be effectively close compared to

locations coupled only by a small number of travelling passengers, irrespective of these

locations’ geographical distance.

2.4.5 Behavioural changes

Some studies assessed the impact of the earlier implementation of behavioural changes

and determined how the change in behaviour could be modelled [94, 183]. Levy et al.

[94] revealed that the timing of the behavioural changes in addition to the initial pro-

portion of informed and ill-informed susceptible individuals to have played an important

rule in determining the magnitude of an outbreak. Yan et al. [183] found that the force

of infection that includes an exponentially declining trajectory as a result of behavioural

changes to have created the best model fitting and disease prediction. The force of infec-

tion found in the latter study can be adapted and used with data that include behavioural
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changes to extract other information from the data such as understanding if the difference

in age can explain the super-spreading event. On the other hand, the former model [94]

can be applied to another context. For example, instead of considering educated and un-

educated population groups, two population groups (vaccinated and unvaccinated) can be

considered. Consequently, the impact of vaccination can be studied.

2.4.6 Other transmission issues

Many studies have explored the trajectory of EVD [27, 56, 147, 7, 123, 58, 99]. Some

focused on estimating EVD natural history parameters [67, 139, 125, 137, 144]. Others

measured the impact of super-spreaders and characterised population groups that might

have contributed to the super-spreading event [90, 89], described the impact of sexual

transmission from survivors [1], addressed the effect of disease relapse and reinfection

of recovered individuals [4], or pointed out whether EVD could evolve to become less

virulent [141]. One [18] provided important insights about common EVD modelling as-

sumptions. Some studies either suggested an alternative structure to the SEIR model

[100] or determined a different approach to the nonlinear optimisation methods used in

modelling [140].

Several studies [27, 56, 147, 7, 123, 58, 99] were used to predict the spread of EVD.

However, some [56, 147, 58] either made a short time forecast of incidences or did not

predict epidemic peaks. Champredon et al. [27] found that fitting a compartment model

to synthetic data resulted in double bumps in the disease incidence trajectories. This result

was explained to emerge from the effect of spatial spread. However, the authors did not

include spatial transmission in their modelling. Mangiarotti et al. [99] created a model

that only used EVD time series to simulate EVD trajectories and predicted the epidemic

for a short period. This study assumed the population of Guinea, Liberia, and Sierra

Leone to be homogeneously mixed. However, the spread of EVD in these countries was

not similar due to the different healthcare system preparedness and the different contact

structure [57, 82, 35].

Many studies estimated vital EVD natural history parameters [67, 139, 125, 137, 144].

House et al. [67] found the mean of the infectious period to be 5.3 days for a low viraemia

and 6.8 days for a high viraemia. Smirnova and Chowell [139] predicted EVD final size

for the 2014 WA EVD to be 1.7 ⇥ 104, 1.1 ⇥ 104 and 3.5 ⇥ 103 in Sierra Leone, Guinea
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and Liberia, respectively. Pettey et al. [125] estimated the mean incubation period and the

serial interval to be 12.5 days and 19.4 days, respectively. Siettos et al. [137] estimated

the effective reproductive number Rt to be 0.7 from 21 December 2014 to 18 February

2015. However, this figure had increased to 1.98 in the following two months. Taylor et

al. [144] found the basic reproduction number R0 for Guinea, Liberia, and Sierra Leone

to be 1.24, 2.06, and 1.71, respectively. The studies [67, 139, 125, 137, 144] had some

limitations. Smirnova and Chowell [139] assumed the population of each country (Sierra

Leone, Guinea and Liberia) to be homogeneously mixed. Pettey et al. [125] used an online

news media report data that might have included misinformation or disclosed personal

details of individuals. Further, these online resources might have been altered without

prior notice. The strength of the methodology presented by Siettos et al. [137] depends

on the accuracy of the data. It is believed that there were issues such as under-reporting

in the 2014 WA EVD data [35]. The structure of the Taylor et al. model [144] was

relatively simple. It did not include some realistic differences in EVD transmission among

the population. Some of these variations were recorded to be among the different districts

[154, 131, 36], age groups [5], and community structure [82].

Lau et al. [90, 89] estimated the impact of super-spreaders and characterised the pop-

ulation groups that might have contributed to super-spreading. They found that super-

spreaders of about 3% of the total EVD cases to be responsible for more than 60% of all

generated cases in a dataset from Sierra Leone. Further, they concluded that instantaneous

super-spreading to have occurred, mostly, from age groups of less than 15 years old and

larger than 45 years old. The studies [90, 89] incorporated only EVD death data. There-

fore, the study can only conclude age-specific infectiousness heterogeneity for fatal cases.

A different dataset composed of fatal and non-fatal cases can be considered, and age-

specific infectiousness heterogeneity in the new context could be explored and contrasted

against those of the fatal cases data.

Abbate et al. [1] found that there was generally an insignificant increase in the number

of EVD cases resulting from survivor’s sexual transmission, but this transmission extended

the duration of the disease. The effect of sexual transmission from EVD survivors in

metapopulation systems is a potential research project for extending this study.

Agusto [4] found that in the presence of disease reinfection of a recovered person by
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an infectious individual, a backward bifurcation was found in which a disease-free equilib-

rium and an endemic equilibrium coexisted. Disease relapse of a recovered individual was

found to lead to more infections compared to disease reinfection. While extending previ-

ous studies by including the relapse and reinfection of recovered individuals and studying

their impact, Agusto [4] assumed transmission rates in the general population, healthcare

settings, urban and rural areas to be equal.

Sofonea et al. [141] found that it was unlikely for the Ebola virus to evolve and become

less virulent unless two conditions were satisfied. First, the proportion of unsafe burials

should be reduced to less than 4%. Second, the case fatality rate and the EVD transmission

rate must have very little or no genetic connection. While assuming transmission rates to

be proportional to the case fatality rate (CFR), the model did not consider any heterogene-

ity in the CFR. However, it was believed EVD deceased to have the highest infection rate

compared to living infectious individuals [94].

Burghardt et al. [18] found that EVD models with population-density dependent trans-

mission rates might accurately predict the initial spread in an area. Further, initial growth

was found to decrease as the population density increased. While suggesting metapopula-

tion modelling could predict the initial spread of EVD through the flow of travellers, the

model did not account for any control measures that might reduce or block the chance of

the disease spread in the initial stage of an outbreak. For example, the behaviour of the

population might show early positive change of avoiding infection if the population had

learnt about the disease from a previous outbreak [94].

Two studies [100, 140] proposed an alternative framework to the SEIR model and

determined a different approach to the nonlinear optimisation methods used in modelling.

Getz and Dougherty [100] found that an alternative discrete stochastic Erlang type model

for the standard SEIR method to have offered a more accurate description of epidemic

dynamics. Smirnova et al. [140] found that a methodology based on a linear Volterra-type

integral equation and regularization algorithms to have produced a moderate prediction of

the impact of the epidemic in Sierra Leone. While the latter modelling framework was

based on a compartment model of the SEIR type, it could be extended to include more

realistic transmission stages (e.g., infection from the environment and different levels of

transmission among contacts). The Getz and Dougherty [100] modelling, on the other

hand, considered the population under study to be homogeneously mixed and regarded
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transmission only from living infectious persons.

2.4.7 Vaccinations and therapies

The Merck rVSV-ZEBOV and the Johnson & Johnson Ad26.ZEBOV/MVA-BN EVD vac-

cines, in addition to other EVD therapies, were the major treatments used during the

2018-2020 DR Congo EVD outbreak [105]. Several studies have evaluated the impact

of vaccines and therapies [15, 117, 107, 102] and presented important conclusions. Others

[65, 39] investigated the feasibility of vaccination randomised trials. One [184] provided

an optimal way of storing and delivering EVD vaccines.

The impact of ring, mass, and voluntary vaccination strategies were explored, and

valuable insights were provided. Brettin et al. [15] concluded that a voluntary vaccina-

tion might be able to eradicate EVD, particularly when added to other control measures.

Nguyen et al. [117] found that mass vaccination of 85% coverage can eradicate the disease

if it was launched between five months before and one week after the outbreak. Merler et

al. [107] concluded that a ring vaccination to be effective in containing an epidemic up to

the value of R0 = 1.6. This figure was increased when other control measures were added.

Kucharski et al. [87] found that when an epidemic is less severe, a ring vaccination could

eradicate the outbreak. Camacho et al. [20] suggested that when a vaccination trial was

started at an earlier time, the probability of eliminating the disease in vaccinated groups

increased. The studies [15, 87, 20], however, contained some limitations. Brettin et al.

[15] assumed the population to be rational enough to decide to be vaccinated voluntarily

and assumed the population to be well informed about the risk of the disease and the direct

and indirect cost of vaccinations. Kucharski et al. [87] did not account for different possi-

ble immunity periods that the Merck rVSV-ZEBOV vaccine might have [52]. Camacho et

al. [20] did not account for any logistical constraints that may affect the feasibility of the

vaccination trial in the studied areas.

Diakite et al. [39] found that if vaccination trials were started ten weeks after the onset

of the disease, utilising metapopulation modelling to choose the districts with the highest

modelling projection was effective. The proposed metapopulation modelling framework,

however, did not account for natural barriers such as rivers that may affect the movement

of individuals and create natural protection from the spread of the disease, particularly in

the context of Central and West Africa where EVD had the highest level of spread.
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EVD therapies and blood transfusions from survivors have increased the chance of re-

covery for EVD patients. Martyushev et al. [102] found the basic reproduction number

to be six for EVD fatal cases and 2.8 for survivors. Further, combining siRNA-based and

nucleoside analog-based therapies with an 80% inhibition rate was found to be more likely

efficient for otherwise fatal cases even if it was started four days after the onset of symp-

toms. For non-fatal cases, mono-therapies were found to be sufficient. Huo et al. [71]

found the plasma transfusion treatment to have a substantial advantage in increasing the

blood bank stockpile and in reducing the CFR. Further, when more blood donors were re-

cruited, and the right track of their contact was kept for re-donation, a more significant re-

duction in the CFR occurred. The latter study, however, assumed a homogeneously mixed

population in a perfect context of hospitalisation and safe burial measures. On the other

hand, Martyushev et al. [102] only considered within-host transmission. Their study could

be extended to include between-host EVD spread and consequently used to explore EVD

transmission and intervention related questions at the individual and population scales.

Martyushev et al. [102] assumed a single homogeneous compartment representing multi-

ple organs that are infected at the same time. Chertow et al. [28] criticised this modelling

approach. They showed that a one-compartment assumption modelling for the Ebola virus

infection and replication counter significant evidence that the Ebola virus infects cells and

tissues throughout the body in a nonhomogeneous fashion. Further, they suggested that

the multiple body compartment modelling approach will aid the development of more

accurate predictive models for EVD.

Zhu et al. [184] found that the speeding up of drug production, and the systematical

distribution of drugs and vaccines to be a powerful method for controlling the disease.

They further calculated the fastest route for the drug and vaccine distribution and found

the storage solution that results in the minimum total cost. This study, however, did not

account for heterogeneity regarding the cost depending on the type of the vaccine stored.

For example, the two widely used vaccines, the Merck rVSV-ZEBOV, and the Johnson

& Johnson Ad26.ZEBOV/MVA-BN have different storage temperatures and consequently

different logistical costs [77, 22].
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2.4.8 Other intervention issues

Collective control efforts were combined to stop the spread of EVD. These include quar-

antine, symptom monitoring, contact tracing, and vaccination. Several modelling studies

explored the consequence of these measures and obtained essential insights [136, 118, 44,

129, 111, 158, 110, 122].

Several models were used to study the impact of quarantine. Sharareh [136] found

that the temporal increase in the rate of quarantine to have resulted from a rise in situation

awareness. Ngwa and Teboh-Ewungkem [118] derived a threshold parameter R0 as a

function of the fraction of suspected cases to be quarantined. They found infection to

have occurred in treatment centres when all cases were quarantined. Muhammad et al.

[44] found the disease to be controlled if the transmission rate of isolated individuals was

less than one-fourth of those non-isolated. Further, they found that time-varying optimal

quarantine was more effective as compared to a high but fixed level of quarantine. The

studies [136, 118, 44] contained some limitations. Sharareh [136] assumed that the three

most affected countries by the 2014 WA EVD to be one entity and to have the same rate

of transmission. However, the spread of EVD in these countries was not similar due to

the different healthcare system preparedness and the different contact structure [57, 82,

35]. Ngwa and Teboh-Ewungkem [118] did not construct a complete treatment based on

the most crucial model parameters in the disease spread, and the stochastic effects in the

disease growth. Muhammad et al. [44] assumed the transmission to occur only from living

infectious individuals (within the community or at hospitals). Thus, they did not consider

transmission from deceased individuals or an unclean environment.

Several studies found that early application of control measures and safe burials to im-

prove intervention efforts [129, 111, 158]. Rizzo et al. [129] concluded that the earlier use

of intervention strategies to provide a vital decrease in the infected cases and the period of

the outbreak. Moss et al. [111] found the early case detection of infected individuals to

provide a high decrease in the probability of having a large outbreak. Further, the reduc-

tion in transmission resulting from the deceased was found to substantially increase the

probability of controlling the outbreak. Webb and Browne [158] found the disease reduc-

tion in Guinea and Sierra Leone during the 2014 WA EVD was caused by increased and

earlier hospitalisation or isolation of cases. While Rizzo et al. [129] considered individual

heterogeneity, they did not account for spatial locations of contacts. Webb and Browne,
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on the other hand, considered the entire population to be homogeneously mixed. How-

ever, EVD is highly heterogeneous depending on the contact structure and the density of

a population [3, 82].

Contact tracing, symptom monitoring, and vaccination represented an essential part

of combatting the spread of EVD. Shahtori et al. [110] found that contact tracing to be

more effective if the identification of the traced persons was not delayed for more than

ten days. Peak et al. [122] found symptom monitoring to be more effective measure

in containing EVD compared to quarantine. The increased use of vaccinations [72, 81]

motivates extending the latter model to account for vaccinations. One issue that could

be investigated is the impact of vaccination measures in controlling EVD compared to

non-pharmaceutical intervention measures.

2.5 Discussion

Previous reviews provided a brief comparative survey for natural history estimates [32,

150], reviewed only some EVD models [43, 186, 38], systematically reviewed models

that were published at some period [164, 37] or discussed difficulties and conclusions of

modelling efforts [35]. However, none of these studies had systematically reviewed any

work published after January 2016. Further, none of them focused on reviewing each

surveyed study with regards to identifying advantages and limitations in the modelling

assumptions. In this study, we created a system of reviewing EVD models that resulted in

74 studies (Figure 2.1).

We classified articles broadly in terms of the modelling approaches as well as the model

conclusions and constraints. The study has identified many limitations in the reviewed

models and sometimes made brief suggestions for future work. We give two detailed

examples of these recommendations.

Approximately 84% of EVD patients in Guinea were adults of age greater than 15

years old, but this group was only 54% of the total population [5]. Consequently, age

could be an important factor in the spread of EVD. Few studies [5, 90, 89] used age to

characterise the spread of EVD. Ajelli et al. [5] used a simple compartment model of the

SEIR type with two age groups: individuals with age younger or equal to 14 years; and

individuals older than 14 years. Lau et al. [90, 89] studied whether age can explain super-

spreading and proposed that individuals with age less than 15 and greater than 45 years to
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be key predictors of super-spreading. However, the dataset used by Lau et al. [90, 89] only

included fatal EVD cases and concluded the results to all cases (fatal and non-fatal). On

the other hand, the findings concluded by Lau et al. [90, 89] suggest extending the Ajelli

et al. [5] model to consider three age groups (individuals with age younger or equal to 14

years, individuals with age of 15 to 45 years, and individuals older than 45 years). The

new model can then be used with data that include fatal and non-fatal cases to understand

if age can explain super-spreading. In this regard, we propose using the Sierra Leone data

presented in Fang et al. [48]. The data were stratified according to age.

The Merck rVSV-ZEBOV and the Johnson and Johnson Ad26.ZEBOV/MVA-BN EVD

vaccines were extensively used during the 2018-2020 EVD DR Congo outbreak. The

Merck vaccine is given in one dose and its immunity period is unknown. However, it in-

duces high levels of immune responses that can be maintained through 12 months [81, 72].

The Johnson and Johnson vaccine, on the other hand, is believed to have a long-lived im-

munity [114]. However, the Johnson and Johnson vaccine is given in two doses. The

question is, given the high mobility of a population that could affect the effectiveness of

the two doses vaccine and an outbreak that lasts longer than one year that might results

in an imperfect vaccination strategy for the Merck vaccine as some individuals lose the

immunity acquired by the vaccine, what is the best vaccination strategy to be used. One

way this problem could be approached is as follows: A compartment model composed of

susceptible, exposed, infectious, hospitalised, deceased and recovered compartments can

be considered. In this case, EVD transmission could occur by contact with infectious,

hospitalised or deceased individuals, or via sexual contact with survivors. If we consider

vaccination as one compartment, the sub-model will be the model without vaccination and

the full model will be the model with vaccination. If two vaccination compartments were

considered for the two types of vaccines, we have more sub-models. In the sub-models

and full-model, the basic reproduction number can be derived and stability analysis of the

equilibria can be established. Regarding the efficacy problem of the two vaccines, optimal

control methods can be used to identify the optimal vaccination strategy in mitigating the

spread of EVD.

While surveying models in this chapter and determining their strengths and limitations,

we note to clarify that we accept that often research do not give enough data to quantify
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detailed disease underlying mechanisms and therefore, they gloss over some details. How-

ever, that does not mean these details are not important and when more data are available,

models can be improved to have better quantifications by considering these details.

To conclude, this study is the first EVD modelling review that has systematically iden-

tified limitations in the assumptions of each reviewed model and made collective pre-

sentations for these constraints. We hope that this work will help future researchers in

developing more realistic models that could help mitigating the spread of EVD.



Chapter 3

The impact of geographically-targeted vaccinations during the

2018-2020 Kivu Ebola outbreak

3.1 Introduction

On 1 August 2018, the World Health Organisation (WHO) was notified about the emer-

gence of a new outbreak of the Ebola virus disease (EVD) in North Kivu province in the

eastern part of the Democratic Republic of Congo (DR Congo) [181]. The WHO recom-

mended implementing proven strategies for controlling EVD outbreaks, including contact

tracing, ring vaccination, and antiviral treatments. Despite these efforts, the outbreak con-

tinued for about two years and became the second-largest Ebola outbreak in history [166].

In the current study, we explore the impact of geographically-targeted vaccinations to ar-

eas in North Kivu and Ituri provinces when contact tracing, ring vaccinations and antiviral

treatments were unsuccessful in containing the outbreak.

The 2018-2020 Kivu outbreak occurred in more than 18 health zones in North Kivu,

and about eight health zones in Ituri provinces [69]. However, the spread of EVD was

not similar in all regions. As of 25 August 2019, about 81% of infections occurred in

only six health zones (Beni, Butembo, Kalunguta, Katwa, Mabalako and Mandima) in

North Kivu and Ituri provinces [68]. Consequently, vaccinations targeted to high infection

areas could be feasible when other intervention strategies could not successfully contain

the outbreak spread. Indeed while some individuals who qualified to be vaccinated with

the ring strategy might reject the vaccination, others who are at high risk because they live

in areas with high infections but who do not qualify for the ring strategy might still agree

to be vaccinated. The Strategic Advisory Group of Experts on Immunization (SAGE)

approved geographically-targeted vaccinations to be used to contain the spread of EVD

when ring vaccinations could not be adequately implemented [174]. This strategy assisted

in successfully containing the EVD outbreak in Chowe in DR Congo [175].

A number of studies modelled the impact of EVD vaccinations in the past [87, 44, 12,

35
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34, 135, 19] . Kucharski et al. [87] studied the impact of ring vaccinations and concluded

that this strategy would control outbreaks when the spread is not very severe. Kucharski

et al. [87] did not consider any other intervention measures that are implemented during

outbreaks beside the ring strategy.

Muhammad et al. [44] studied the impact of vaccination, hospitalisation and quar-

antine and derived an optimal vaccination strategy. However, they did not consider EVD

transmission from the deceased. Transmission from the deceased is an important transmis-

sion route. A single traditional funeral of a famous pharmacist was linked to a dramatic

spike in the number of reported EVD cases during the 2014-2016 Ebola outbreak in West

Africa [24].

Brettin et al. [15] modelled voluntary vaccination and concluded that a selfishly opti-

mal vaccination drops under the herd immunity level. In contrast, voluntary vaccination

can better eradicate the spread of EVD, particularly when added to other control measures.

They assumed that the population was adequately rational to choose the vaccinations and

that they were fully informed about EVD risks and the direct and indirect costs of vaccina-

tions [2]. However, people do not always choose to be vaccinated or fully understand the

risk of the disease. Brettin et al. [15] also did not account for the role of contact tracing or

antiviral treatments that are used during outbreaks besides the vaccinations.

Bodine et al. [12] assessed the impact of the rVSV-ZEBOV EVD vaccine in Sierra

Leone. They concluded that to eradicate an outbreak, 40% of the general population and

90% of healthcare should be vaccinated. The study did not account for the high variation

in EVD trajectories among the different regions [2].

Chowell et al. [34] evaluated the impact of vaccination in the context of different

levels of community accessibility. They concluded that ring vaccination would not suc-

cessfully end EVD outbreaks due to household being inaccessible and significant delays

in vaccinations are available. Similar to Muhammad et al. [44], Chowell et al. [34] did

not consider the transmission from the deceased. Further, they also did not account for

antiviral treatments used during outbreaks.

Seidu et al. [135] studied the long-term behaviour of a model with two susceptible

population groups: a high-risk population composed of care-takers of infected persons

and individuals who handle EVD deceased; and a low-risk population consisting of other

individuals in the population. The authors determined factors that are of most importance
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in the disease dynamics. Lin et al. [96] considered a model with two susceptible groups:

Low-risk individuals who are vaccinated with the rVSV-ZEBOV vaccine or living in an

EVD low-risk areas; and high-risk individuals who are not vaccinated with the rVSV-

ZEBOV vaccine or living at an EVD high-risk areas. Seidu et al. [135], and Lin et al. [96]

did not study EVD dynamics in imperfect ring vaccination, contact tracing and antiviral

treatments contexts.

Most recently, Burton et al. [19] modelled contact tracing by explicitly considering two

compartments, one for traced susceptible persons and one for the traced exposed. They put

a limitation on the number of tracers. Burton et al. [19] did not assume any vaccination

efforts applied besides contact tracing.

In the current study, we address the limitations of [87, 44, 15, 12, 34, 135, 96, 19]. In

particular, unlike Kucharski et al., Seidu et al. and Lin et al. [87, 135, 96], we account for

contact tracing and antiviral treatments, simultaneously. In contrast to Muhammad et al.,

Chowell et al. and Brettin et al. [44, 34, 15], we consider transmission from the deceased.

Further, we account for the high variation in EVD trajectories among the different regions,

unlike Bodine et al. [12].

This Chapter is organised as follows: In the second section, we discuss model assump-

tions and formulate the model. In Section Three, we discuss the theoretical analysis of

the model. In particular, we consider the non-negativity and boundedness of the model

solutions. Then, we derive the basic reproduction number. We also study the existence

of the model equilibria and establish local stability around these equilibria. In Section

Four, we consider model fitting. We introduce data to be used in the fitting, discuss the

model fitting, explore the sensitivity of model parameters to the reproduction number and

study the impact of ring and geographically-targeted vaccinations during the outbreak. In

Section Five, we conclude the study and discuss recommendations.

3.2 Model formulation

Let N be the number of individuals in a population. We assumed this population to be

located in areas with high and low levels of infections. Let SH and SL represent the num-

ber of susceptible individuals located in areas with high and low infections, respectively.

Let V1 and V2 be the number of vaccinations among healthcare and frontline workers re-

siding in areas with high and low infections, respectively. Let V3 and V4 be the number of
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vaccinated contacts and contacts of contacts of infected individuals in the community who

were located in areas with a high and a low level of infections, respectively. Let V5 and V6

be other vaccinated persons residing in areas with high and low infections. Let E, I,H,D

and R be the number of exposed, infected, hospitalised, infectious deceased and recovered

individuals in the population, respectively. Thus, we assume

N = SH + SL + V1 + V2 + V3 + V4 + V5 + V6 + E + I +H +D +R. (3.1)

The 2018-2020 Kivu outbreak continued for nearly two years [167]. During such

an extended period, natural births and deaths could play a role in the dynamics of the

disease. We assume individuals were born at a rate ⇧ and died naturally (reasons other

than EVD) at a rate µ. Human-to-human spread of EVD occurs through bodily fluids

or blood of infected individuals [2]. We assume that the effective contact rate among

susceptible individuals living in high infection areas with live infectious individuals before

any intervention to be �0 and with the infectious deceased to be ��0 where � 2 (0, 1). We

assume the number of contacts for the infectious deceased to be less than those of living

infectious persons since only living persons can voluntarily contact others. Let ⌧1 be a

modification parameter that accounts for transmission in low infection areas so that ⌧1�0
and ⌧1��0 are the effective contact rates for the living infectious persons and the infectious

deceased with the susceptible individuals residing in low infection areas, respectively. We

assume the rates of vaccination in areas with high and low infections to be m1 and m2,

respectively.

Ring vaccinations and contact tracing are considered along each other. When contacts

and contacts of contacts are identified, they are being vaccinated using the ring strategy.

At the same time, contacts are followed up and taken for treatments if they show any

symptoms. In the current study, we assume that as contact tracing was considered during

the outbreak, the effective contact rate declined. Note that V1 + V2 is the number of

identified and vaccinated healthcare and frontline workers in the population. Thus, there

exists s1 � 0 such that s1(V1+V2) is the number of contacts for infected individuals among

healthcare and frontline workers. Also, note that V3+V4 is the number of of identified and

vaccinated contacts and contacts of contacts for the infected persons in the community.

Thus, there exists a real number s2 � 0 such that s2(V3 + V4) is the number of contacts

for infected individuals in the community. Let s3 � 0 and s4 � 0 be parameters used
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to account for the effectiveness of contact tracing per each contact so that the effective

contact rate becomes

�1 + (�0 � �1)e
�s3s1(V1+V2)�s4s2(V3+V4)

during the contact tracing and that �1 (�1 < �0) is the effective contact rate post contact

tracing. Let q1 = s3s1 and q2 = s4s2. It follows that there exists no contact tracing when

q1 = q2 = 0 and that the higher the values of q1 and q2 are, the higher the level of contact

tracing. Let m1 and m2 be the rates of vaccinating healthcare and frontline workers living

in areas with high and low infections, respectively.

Let the average number of contacts and contacts of contacts of an infectious living

person be nl and of an infectious deceased be nd, with nd < nl. Let a be the fraction

of healthcare and frontline workers in the population. Let c = 1 � a. The probability of

individuals who are non-healthcare workers (non-HCWs) and non-frontline workers (non-

FLWs) to be susceptible in the population (depending on where these individuals live) is

c
S

N
(S denotes SL or SH). It follows that the average number of contacts and contacts of

contacts for an infectious living person and an infectious deceased with susceptible indi-

viduals who are non-HCWs and non-FLWs is c S

N
nl and c

S

N
nd, respectively. Let 1

�
and 1

b

be the infectious periods in days for an infectious living person and infectious deceased,

respectively. Thus, the daily rates for the average contacts and contacts of contacts of an

infectious living person and an infectious deceased with the susceptible individuals who

are non-HCWs and non-FLWs are c� S

N
nl and cb

S

N
nd, respectively. Let p be the probability

of the ring vaccination campaign coverage. Thus, daily, c�p S

N
nl and cbp

S

N
nd, the average

number of contacts and contacts of contacts of an infectious living person and an infec-

tious deceased, respectively, were being vaccinated with the ring strategy. Let h be the

fraction of hospitalised persons. There were hI and (1�h)I infected persons in the popu-

lation who were hospitalised and non-hospitalised, respectively. EVD exposure during the

outbreak has only happened outside Ebola treatment centres (ETCs) [169]. Hospitalised

individuals at ETCs were perfectly isolated during treatments and safely buried when they

died [169]. Hence only non-hospitalised infectious individuals had EVD contacts. Thus,

the recruitment rate for vaccinating the contacts and contacts of contacts of the living

infectious individuals and the infectious deceased were c�(1 � h)p S

N
nlI and cbp

S

N
ndD,

respectively.
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We assume the rate of vaccination targeted to all other individuals living in areas with

high and low infections to be g1 and g2, respectively. A fraction ✏ of vaccinated individuals

were unprotected despite the vaccination [174]. Exposed individuals were assumed to

become infectious at a rate of ↵.

EVD hospitalisation was traditionally undertaken by treating symptoms, rehydrating

patients orally and intravenously and curing other infections that patients might have [94].

Several antiviral treatments (mAb114, Remdesivir, Zmapp and Regeneron) were investi-

gated during the 2018-2020 Kivu outbreak [104]. Crucially, people who received the Re-

generon (REGN-EB3) and mAb114 antiviral treatments soon after their infection showed

up to a 90% survival rate [104]. Consequently, Zmapp and Remdesivir were interrupted

by the end of August 2019, and only Regeneron (REGN-EB3) and mAb114 were being

used instead. Since the interruptions of Zmapp and Remdesivir were expected to change

the epidemic curve and since we are only interested in understanding the impact of vac-

cinations, in the current study, we considered the outbreak before the interruptions of the

two vaccines. On the other hand, it was reported that the 2018-2020 Kivu outbreak spread

to South Kivu on the 16th of August 2019 [175]. Since we are interested in understanding

EVD dynamics in North Kivu and Ituri provinces only, we chose the data timeline before

the 16th of August. Thus, to account for EVD spread in North Kivu and Ituri provinces

before the interruption of Zmapp and Remdesivir, we considered the outbreak data from

the beginning of the outbreak to the 11th of August 2019. We assumed ⇢ to be the rate of

hospitalisation and treatment with mAb114, Remdesivir, Zmapp or Regeneron.

The rate of geographically-targeted vaccinations g1 and g2 can have different values.

When g1 = g2 = 0 only ring vaccinations were applied in the population, similar to the

actual data considered in the current study [168]. The complete process for the model is

depicted in Figure 3.1 and a complete description for the model parameters is provided in

Table 3.1 and Table 3.2. The model equations are given below:
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dSH

dt
= �⇧� (�1 + �2 + g1 +m1 + µ)SH

dSL

dt
= (1� �)⇧� (�1⌧1 + ⌧2�2 + g2 +m2 + µ)SL

dV1

dt
= m1SH � (✏�1 + µ)V1

dV2

dt
= m2SL � (✏�⌧1 + µ)V2

dV3

dt
= �2SH � (✏�1 + µ)V3

dV4

dt
= ⌧2�2SL � (✏�1⌧1 + µ)V4

dV5

dt
= g1SH � (✏�1 + µ)V5

dV6

dt
= g2SL � (✏�1⌧1 + µ)V6

dE

dt
= �1 (SH + ⌧1SL + ✏V1 + ✏⌧1V2 + ✏V3 + ✏⌧1V4 + ✏V5 + ✏⌧1V6)� (↵ + µ)E

dI

dt
= ↵E � (h⇢+ (1� h) � + µ) I

dH

dt
= h⇢I � (⌘ + µ)H

dD

dt
= f1 (1� h) �I � bD

dR

dt
= (1� h) (1� f1) �I + ⌘ (1� f2)H � µR

(3.2)

where

�1 =
1

N

⇣
�1 + (�0 � �1)e

�q1
(V1+V2)

N
�q2

(V3+V4)
N

⌘
(I + �D) ,

�2 = c
p

N
(�(1� h)nlI + bndD) .

System (3.2) is naturally appended with the initial conditions:

SH(0) = SH,0 , SL(0) = SL,0 , V1(0) = V1,0 , V2(0) = V2,0 , V3(0) = V3,0 , V4(0) = V4,0

, V5(0) = V5,0 , V6(0) = V6,0 , E(0) = E0 , I(0) = I0 , H(0) = H0 , D(0) = D0 , and

R(0) = R0.
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V1

SH

SL

V2

V3

V4

V5

V6

E I R

H

D

m1
g1

g2

✏�1

✏⌧1�1

�2

m2

⌧2�2

⌧1�1

✏⌧1�1

✏⌧1�1

�1

✏�1

✏�1

↵ (1� f1)(1� h)�

f1(1� h)�

h⇢
⌘(1� f2)

µ

µ

µ µ

b

µ

µ

µ µ

µµ

�⇧

(1� �)⇧

µ

µ

Figure 3.1: Transfer diagram for the model

3.3 Theoretical analysis

In this section, we first ascertain that all the model’s state variables are non-negative for

all time t and that the model’s solution is bounded.

The basic reproduction number R0 is an important figure in characterising the spread

of EVD. We used a well-documented method for finding R0 [149].

For the EVD model (3.2) to be biologically significant, it is essential to note that all

state variables are non-negative at all times.

Proposition 3.3.1. Let SH(0), SL(0), V1(0), V2(0), V3(0), V4(0), V5(0), V6(0), E(0), I(0), H(0), D(0)

and R(0) be non-negatives. Then the solution of (3.2) is non-negative for all time t.

We can now declare the statement below, which guarantees the boundedness of the

solution for Model (3.2).

Proposition 3.3.2. The non-negative solution of system (3.2), characterised in Proposition

3.3.1 is bounded for all time t > 0.

The proof for Propositions 3.3.1 and 3.3.2 are found in Appendix B.

From Propositions, 3.3.1 and 3.3.2 and the trivial existence and uniqueness of a local
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solution, system (3.2) is a dynamical system in the biologically feasible compact set

n
(SH(t), SL(t), V1(t), V2(t), V3(t), V4(t), V5(t), V6(t), E(t), I(t), H(t), D(t), R(t)) ⇢ R13

+ : N(t)   

o

where

 = max
n⇧
µ
,N(0)

o
.

3.3.1 Model Equilibria

The disease-free equilibrium (DFE) occurs when I = D = 0 and is given by

P0 = (S⇤
H
, S

⇤
L
, V

⇤
1 , V

⇤
2 , 0, 0, V

⇤
5 , V

⇤
6 , 0, 0, 0, 0, 0)

where S
⇤
H
= �⇧

g1+m1+µ
, S

⇤
L
= (1��)⇧

g2+m2+µ
, V

⇤
1 =

m1S
⇤
H

µ
, V

⇤
2 =

m2S
⇤
L

µ
, V

⇤
5 =

g1S
⇤
H

µ
, V

⇤
6 =

g2S
⇤
L

µ
.

To calculate the controlled reproduction number (Rc) of the model, we apply the stan-

dard method of the next generation matrix [149]. We distinguish between infected states

(E, I,H,D) and uninfected states (SH , SL, V1, V2, V3, V4, V5, V6, R) . Let F and W be the

vectors defining new and transported cases, respectively, into infected states.

As in [149], Rc is obtained as the dominant eigenvalue of the matrix FW
�1 where F

and W are the Jacobian matrices of F and W at the DFE, respectively.

We find

Rc = A2

✓
�

m1 + g1 + µ

✓
1 +

✏(m1 + g1)

µ

◆
+

⌧1(1� �)

m2 + g2 + µ

✓
1 +

✏(m2 + g2)

µ

◆◆

(3.3)

where

A2 = K1
µ↵

(↵ + µ)(�(1� h) + µ+ h⇢)

✓
1 +

�f1�(1� h)

b

◆
,

and

K1 =

✓
�1 + (�0 � �1)e

�q1

⇣
m2⇧(1� �)
µ(m2+g2+µ)+

m1⇧�

µ(m1+g1+µ)

⌘◆
.

When there is no intervention, we have q1 = h = g1 = g2 = m1 = m2 = 0. Thus Rc

becomes

R0 = �0
↵

(↵ + µ)(� + µ)

✓
1 +

�f1�

b

◆
(� + ⌧1(1� �)) .



44

R0 can be rewritten as R0h +R0l where

R0h =�0�

✓
↵

(↵ + µ)(� + µ)
+

�↵f1�

b(↵ + µ)(� + µ)

◆
(3.4)

and

R0l =�0⌧1(1� �)

✓
↵

(↵ + µ)(� + µ)
+

�↵f1�

b(↵ + µ)(� + µ)

◆
(3.5)

represent the contribution to infections for individuals living in areas with high and low

levels of infections, respectively.

Next, we show the existence of an endemic equilibrium

(S⇤
H
, S

⇤
L
, V

⇤
1 , V

⇤
2 , V

⇤
3 , V

⇤
4 , V

⇤
5 , V

⇤
6 , E

⇤
, I

⇤
, H

⇤
, D

⇤
, R

⇤)

where

S
⇤
H

=
�⇧

�1 + �2 + g1 +m1 + µ

S
⇤
L

=
(1� �)⇧

�1⌧1 + �2⌧2 + g2 +m2 + µ
,

V
⇤
1 =

m1S
⇤
H

✏�1 + µ
,

V
⇤
2 =

m2S
⇤
L

✏�1⌧1 + µ
,

V
⇤
3 =

�2S
⇤
H

✏�1 + µ
,

V
⇤
4 =

�2⌧2S
⇤
L

✏�1⌧1 + µ
,

V
⇤
5 =

g1S
⇤
H

✏�1 + µ
,

V
⇤
6 =

g2S
⇤
L

✏�1⌧1 + µ
,

E
⇤ =

�1

(↵ + µ)
(S⇤

H
+ ⌧1S

⇤
L
+ ✏V

⇤
1 + ⌧1✏V

⇤
2 + ✏V

⇤
3 + ⌧1✏V

⇤
4 + ✏V

⇤
5 + ⌧1✏V

⇤
6 ) ,

I
⇤ =

↵

h⇢+ (1� h)� + µ
E

⇤
,
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with

H
⇤ =

h⇢

⌘ + µ
I
⇤
,

D
⇤ =

f1(1� h)�

b
I
⇤
,

R
⇤ =

1

µ
((1� f1)�I

⇤ + ⌘(1� f2)H
⇤) ,

N
⇤ =

⇧

µ
� (b� µ)D⇤

,

�1 =

✓
�1 + (�0 � �1)e

�q1
(V ⇤

1 +V
⇤
2 )

N⇤ �q2
(V ⇤

3 +V
⇤
4 )

N⇤

◆✓
I
⇤ + �D

⇤

N⇤

◆
,

�2 = c
p

N⇤ (�(1� h)nlI
⇤ + bndD

⇤) .

As in [108, 152], the equilibria of system (3.2) correspond the fixed points of the

following system  
�1

�2

!
=

 
�1(�1,�2)

�2(�1,�2)

!
, (3.6)

where

�1(�1,�2) =

✓
�1 + (�0 � �1)e

�q1
(V ⇤

1 +V
⇤
2 )

N⇤ �q2
(V ⇤

3 +V
⇤
4 )

N⇤

◆✓
I
⇤ + �D

⇤

N⇤

◆
,

�2(�1,�2) = c
p

N⇤ (�(1� h)nlI
⇤ + bndD

⇤) .

Note that �1(�1,�2) is continuous in �1 2 [0,1). Further �1(0,�2) = 0 and

lim
�1!1

�1(�1,�2) = B1

where

B1 =
↵�0 (b+ �f1�(1� h))µ

↵f1�(1� h)µ+ ↵b ((1� f1)�(1� h) + µ+ h⇢) + bµ (�(1� h) + µ+ h⇢)
.

We have that B1 is positive. Thus �1(�1,�2) is bounded for �1 2 [0,1).

We also have that
d�1

d�1
(0, 0) = Rc.

Let Rc > 1. We argue that there exists r in a neighbourhood of zero, say (0, �1) such
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that �1(r,�2) > r, otherwise, for all neighbourhoods near zero, �1(r,�2)  r which would

imply that

d�1

d�1
(0,�2) = lim

�1!0+

�1(�1,�2)� �1(0,�2)

�1
= lim

�1!0+

�1(�1,�2)

�1
 0

which is a contradiction. It follows that there exists an r 2 (0,1) such that �1(r,�2) > r.

Since �1(�1,�2) is bounded as �1 ! 1, there exists an M > 0 such that �1(M,�2) < M.

Let Z(�1) = �1 � �1(�1,�2). We have Z(r,�2) < 0 and Z(M,�2) > 0. Using the

Intermediate Value Theorem, there exists a �⇤1 2 (r,M) such that �1(�⇤1,�2) = �
⇤
1.

We have I⇤ = ↵

h⇢+(1�h)�+µ
E

⇤ = A3E
⇤ where A3 =

↵

h⇢+(1�h)�+µ
. Also D

⇤ = f1(1�h)�
b

I
⇤ =

f1(1�h)�
b

A3E
⇤ = A4E

⇤ where A4 =
f1(1�h)�

b
A3. We have

�2(�1,�2) = c
p

N⇤ (�(1� h)nlA3 + bndA4)E
⇤
.

Note that �2(�⇤1,�2) is continuous for �2 2 [0,1). We have

lim
�2!0

�2(�
⇤
1,�2) = cp (�(1� h)nlA3 + bndA4)

A6
⇧
µ
� A5A6

> 0,

where A5 = (b� µ)f1(1�h)�
b

A3, and A6 is given by

�1

(↵ + µ)

✓✓
1 +

✏(m1 + g1)

✏�1 + µ

◆
�⇧

�1 + g1 +m1 + µ
+ ⌧1

✓
1 +

✏(m2 + g2)

✏�1⌧1 + µ

◆
(1� �)⇧

�1⌧1 + g2 +m2 + µ

◆
.

Further

lim
�2!1

�2(�
⇤
1,�2) = cpA3�(1� h) (nl + f1nd)

�
⇤
1✏⇧

(↵+µ)

⇣
�

✏�
⇤
1+µ

+ (1��)⌧1
(✏�⇤

1⌧1+µ)

⌘

⇧
µ
� A5

⇣
�
⇤
1✏⇧

(↵+µ)

⇣
�

✏�
⇤
1+µ

+ (1��)⌧1
(✏�⇤

1⌧1+µ)

⌘⌘ .

Thus, �2(�⇤1,�2) is bounded in �2 2 (r1,1).

Let lim�2!0 �2(�⇤1,�2) = k. We have k > 0. Then there exists an r1 2 (0,1) such

that �2(�⇤1, r1) > r1. Otherwise for all r1 2 (0,1), �2(�⇤1, r1)  r1, which contradictorily

would imply that

lim
r1!0

�2(�
⇤
1, r1)  lim

r1!0
r1 = 0.

We conclude that there exists an r1 2 (0,1) such that �2(�1, r1) > r1.
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From the boundedness of �2(�⇤1,�2) in �2 2 (r1,1), we deduce that there exists an

M1 2 (r1,1) where �2(�⇤1,M1) < M1. Let Z1(�2) = �2 � �2(�⇤1,�2). Then Z1(r1) < 0

and Z1(M1) > 0. From the intermediate value theorem, there exists a �⇤2 2 (r1,M1) such

that Z(�⇤2) = 0. That is, �2(�⇤1,�
⇤
2) = �

⇤
2.

We now first concern ourselves with the stability of the model solution near the DFE.

We first obtained the characteristic equation of the Jacobian matrix of Model (3.2), evalu-

ated at the DFE (P0):

0 = (��� µ)7(�(⌘ + µ)� �)(�(g1 +m1 + µ)� �))(�(g2 +m2 + µ)� �)

[(�b� �)(�(↵ + µ)� �) (�(�(1� h) + µ+ h⇢)� �) + �A11 + b(↵ + µ)(�(1� h) + µ+ h⇢)Rc]

where

A11 = A12

✓
�

m1 + g1 + µ

✓
1 +

✏(m1 + g1)

µ

◆
+

⌧1(1� �)

m2 + g2 + µ

✓
1 +

✏(m2 + g2)

µ

◆◆

and

A12 = ↵µ

✓
�1 + (�0 � �1)e

�q1

⇣
m2(1� �)
m2+g2+µ

+
m1�

m1+g1+µ

⌘◆
.

Let c1 = (↵ + µ) and c2 = �(1� h) + µ+ h⇢. Then the characteristic equation becomes

0 = (��� µ)7(�(⌘ + µ)� �)(�(g1 +m1 + µ)� �))(�(g2 +m2 + µ)� �)

= (�(b+ �)((c1 + �) (c2 + �) + �A11 + bc1c2Rc)

= (��� µ)7(�(⌘ + µ)� �)(�(g1 +m1 + µ)� �))(�(g2 +m2 + µ)� �)
�
��3 � a1�

2 � a2�+ bc1c2 (Rc � 1)
�
.

(3.7)

where a1 = (c1 + c2 + b) and a2 = (c1c2 + b(c1 + c2)� A11).

Note that Rc < 1 implies that

c1c2 > A11 + A13 > 0

where A13 = A11
�f1�(1�h)

b
. Thus, a2 > 0 and Equation (3.7) becomes
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0 = (��� µ)7(�(⌘ + µ)� �)(�(g1 +m1 + µ)� �))(�(g2 +m2 + µ)� �)

=
�
�
3 + a1�

2 + a2�+ bc1c2 (1�Rc)
�
.

(3.8)

Using the Routh-Hurwitz criterion for stability, all eigenvalues have negative real parts

when Rc < 1. Hence the DFE is locally asymptotically stable when Rc < 1. On the other

hand, when Rc > 1, using Descartes’s rule of sign, Equation (3.8) has at least one positive

root. Thus, the DFE is unstable when Rc > 1.

The condition for the local stability of the endemic equilibrium is found as in [108].

The Jacobian matrix around the positive fixed point (�⇤1,�⇤2) is given by

 
d�1(�⇤

1,�
⇤
2)
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The spectral radius ⇢⇤ of this Jacobian matrix is used to determine the condition for the

local stability at the endemic equilibrium. When ⇢
⇤
< 1, the endemic equilibrium is

locally asymptotically stable and unstable when ⇢⇤ > 1.

3.4 Numerical simulations

In this section, we introduce data to quantify the model, discuss the model fitting and sen-

sitivity analysis and explore the impact of ring and geographically-targeted vaccinations.

3.4.1 Data

North Kivu and Ituri provinces are among the most densely inhabited provinces with a

population of about 11 million persons [142]. As the 2018-2020 Ebola outbreak contin-

ued to spread in North Kivu and Ituri provinces for over one year, it became essential to

integrate all available data to assess the impact of additional intervention measures to con-

trol the disease spread. To quantify system (3.2), we integrate the cumulative EVD cases

and ring vaccination data. The cumulative EVD cases were adapted from the Humanitar-

ian Data Exchange website [68] while the ring vaccinations data were manually collected

from the WHO situation reports [168] and are made available in Table 3.3.
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3.4.2 Model fitting

To solve the initial value problem (3.2), we applied the odeint function of Scipy [145].

This function is used to solve a system of ordinary differential equations using the ISODA

algorithm from the FORTRAN library odepack. System (3.2) was fitted to the EVD data

using the optimize.curve�fit function of Scipy [146]. This function uses non-linear least

squares for the fitting. It also allows us to compute the 67% confidence interval of the

parameter estimates. We fitted the cumulative cases function

Z
t

0

(↵E(s)) ds

of system (3.2) to the cumulative cases data. The cumulative ring vaccinations function

Z
t

0

(m1SH(s) +m2SL(s) + �2SH(s) + �2⌧2SL(s))dt

of system (3.2) was fitted to the cumulative ring vaccinations data. The model fitting is

shown in Figure 3.2 and the estimated parameters are reported in Table 3.1 and Table

3.2. The 67% confidence interval of the parameter estimates was used to calculate 95%

confidence interval for the parameter estimates using the algorithm introduced by Kahil

[78].

The basic reproduction number is a crucial figure in characterising the spread of EVD

[2]. A number of studies have estimated R0 in the range of 1.36 and 4.71 [31, 50, 91, 92,

116, 53, 21]. From the parameters obtained from the model fitting, we estimated R0 to be

1.79 (R0h = 1.46 and R0l = 0.33).

3.4.3 Sensitivity analysis

To minimize EVD-related morbidity and mortality, it is essential to comprehend the rela-

tive significance of the various factors contributing to EVD transmission and prevalence.

Sensitivity analysis is used to identify parameters that significantly impact EVD transmis-

sion and prevalence. In this subsection, we followed Chitnis et al. [30] to identify the

impact of the different parameters on Rc. They used the normalised forward sensitivity

index method. The normalised forward sensitivity index of Rc to any parameter is the

ratio of the relative change in Rc to the relative change in that parameter [30]. It can be
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Figure 3.2: Model fitting with the cumulative EVD cases and cumulative ring vaccinations
data.

defined using partial derivatives as follows:

⌥Rc

p
=
@Rc

@p
⇥ p

Rc

where p is any of the parameters that comprise Rc. We obtain the sensitivity indices of

Rc with respect to each parameter of Rc and present the results in Table. 3.2. The most

sensitive parameter is the transmission rate of living infectious individuals who are located

in areas with high infections (�0). Other important parameters include the fraction of

susceptible patients living in areas with high infections (�) and the rate at which non-

hospitalised persons recover or die (�). For example, since ⌥Rc

�
= +0.76, decreasing

(or increasing) � by 10% decreases (or increases) Rc by 7.6%. On the other hand, as

⌥Rc

�
= �0.643, decreasing (or increasing) � by 10% increases (or decreases ) Rc by

6.43%.

3.4.4 The impact of ring vaccinations during the outbreak

Ring vaccinations were extensively applied during the 2018-2020 Kivu outbreak. There

were over 185000 vaccinations on the 373rd day of the outbreak (the end date of the

considered time window for the data). We estimated the cumulative ring vaccinations for

susceptible persons who live in areas with a low level of infections on the 373rd day of the

outbreak to be about 150000 (Figure. 3.3). On the other hand, only about 36300 persons

were estimated to be vaccinated in areas with a high level of infections (Figure. 3.3).
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Figure 3.3: Ring vaccinations during the outbreak.

These findings show that the ring vaccination coverage was mainly focused on areas with

low levels of infections. However, the contributions of infected persons living in areas with

a low level of infections to R0 was only about 18%. The low level of ring vaccinations in

areas with high infections might explain the continuation of the outbreak in these areas.

They were several reasons for the low vaccinations level in areas with high infections.

Some people in high infection areas were inaccessible because they resided in unsafe ar-

eas that rebel groups controlled; some resisted the vaccinations or attacked the vaccination

campaigns [34, 176]. For example, following community unrest in Butembo, the vacci-

nation facilities were unreachable [171]. In Beni, it was estimated that about one-third of

health care workers were not offered the vaccine [165].

3.4.5 The impact of geographically-targeted vaccinations

During the 2018-2020 Kivu outbreak, it was estimated that about 0.0158% of the total

population were vaccinated on the 373rd day. If GTVs in areas with high infections were

implemented so that total vaccinations in the population were increased by 60% by the

373rd day of the outbreak, the cumulative cases would have decreased by 15% (Figure.

3.4). Further, the need for ring vaccinations in the population was decreased by more

than 15%. On the other hand, to achieve the 15% decrease in EVD cases, we found that it

required increasing EVD vaccinations to more than 1000% by the 373rd day using GTVs
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Figure 3.4: The impact of GTVs in areas with high infections in the spread of EVD

Figure 3.5: The impact of GTVs in areas with low infections

in areas with low infections (Figure. 3.5).

3.5 Discussion

Insecurity and community reluctance make combatting disease spread difficult. It is also

challenging to apply public health interventions in locations where the government has

little control. In particular, contact tracing, ring vaccinations, and antiviral treatments
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might be unsuccessful. One prominent illustration of such issues is the 2018-2020 Kivu

outbreak. Ring vaccinations were one of the essential measures applied during the 2018-

2020 Kivu outbreak. Despite the ring vaccination efforts, the outbreak spread and became

the second-largest outbreak in history.

The most helpful vaccination strategies to contain the spread of EVD should maximise

the impact of vaccination while minimising global expenditures, actions, and human dis-

tress resulting from an outbreak. Mass vaccination is not readily achievable because the

endemic region comprises much of West and Central Africa [172], placing over half a

billion people at risk. It was found that vaccination coverage of 80% would be required

to establish the herd immunity against EVD for a vaccine with a 90% efficacy and R0

of 4 [103]. Financial/logistical burdens and poor vaccine acceptance in the affected re-

gions make mass vaccination challenging. Vaccinations with the ring strategy, similarly,

confront different obstacles. Many EVD contacts and contacts of contacts might be inac-

cessible, or they refuse to be vaccinated [34].

The best vaccination strategy is tailor based on epidemiological characteristics and

modelling of each situation. While early contact tracing and ring vaccination may be suf-

ficient for small outbreaks in isolated populations, additional strategies may be required to

contain large-scale outbreaks [103, 34, 138]. The current study found the geographically-

targeted vaccination in areas with high infections to be an excellent intervention in the

2018-2020 Kivu outbreak when the disease spread could not be contained using contact

tracing, ring vaccinations, and antiviral treatments. This strategy could also help foster

vaccine trust as people start realising the benefits of vaccinations in containing the out-

break at an early stage of an outbreak.

We found that ring vaccination coverage was mainly focused in areas with low levels

of infections as opposed to areas with high infections (Figure. 3.3). We explored the im-

pact of geographically-targeted vaccinations (GTV) in areas with high levels of infections.

We found that geographically targeted vaccinations (GTVs) in areas with high infections

to be a much more feasible strategy compared to GTVs in regions with low infections.

For example, if the GTVs in areas with high infections strategy was implemented so that

vaccinations were increased by 60% by the 373rd day of the outbreak, the total EVD cases

in the population would be decreased by 15% (Figure. 3.4). Further, the need for ring

vaccinations in the population would be decreased by more than 15% (Figure. 3.4). On
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the other hand, to achieve the 15% decrease in EVD cases, we found that it required in-

creasing EVD vaccinations to more than 1000% by the 373rd day using GTVs in areas

with low infections (Figure. 3.5).

During an outbreak, the most critical priority is maintaining and enhancing the effec-

tiveness and efficiency of all elements of EVD responses, particularly determinating all

possible contacts, closely following them up, isolating those who display EVD symptoms

as soon as possible and strengthening other interventions pillars including ring vaccina-

tions and antiviral treatments. These measures must be maintained and bolstered to in-

terrupt transmission and control the outbreak. When EVD outbreaks are not contained

with these measures, such as the 2018-2020 Kivu outbreak, then geographically-targeted

vaccinations in areas with high levels of infections can successfully mitigate the spread of

EVD.
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Table 3.1: Model parameters and their interpretations.

Parameter Interpretation

⇧ Birth rate.

nl The number of contacts and contacts of contacts of a living infectious person.

nd The number of contacts and contacts of contacts of an infectious deceased.

p The probability of coverage for the ring vaccination campaign.
1
↵

The incubation period.
1
�

The average time from symptoms onset to either recovery or to EVD death for

infectious individuals who were not hospitalised.

✏ The fraction of vaccinated individuals that are not immunised by the vaccination.
1
b

The average time from EVD death to burial.

�0 The transmission rate before any intervention takes place for the living infectious

individuals who are located in areas with high infections.

�1 The transmission rate post contact tracing for living infectious individuals who

are located in areas with high infections.

µ Natural mortality rate.
1
⇢

The average time from symptoms onset to hospitalisation.

f1 The probability of EVD deaths for non-hospitalised individuals.

f2 The probability of EVD deaths for hospitalised cases.
1
⌘

The average time from hospitalisation to either recovery or to EVD death.

⌧1 A modification parameter. It accounts for the transmission from susceptible indi-

viduals living in areas with low levels of infections.

⌧2 A modification parameter that accounts for the ring vaccination in susceptible

populations living in areas with low levels of infections.

m1 Vaccination rate for healthcare and frontline workers located at areas with high

level of infections.

m2 Vaccination rate for healthcare and frontline workers located at areas with low

level of infections.

� The fraction of susceptible individuals living in areas with high infections.

� A modification parameter that accounts for the transmission from the deceased.
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Continued Table 3.1.

q1 A parameter that accounts for the level of contact tracing among healthcare and

frontline workers.

q2 A parameter that accounts for the level of contact tracing in the community.

h A fraction of the infected individuals that were hospitalised at Ebola treatment

centres and treated with mAb114, Remdesivir, Zmapp or Regeneron antiviral

treatments.

a The fraction of healthcare or frontline workers in the population.

g1 The rate of geographically-targeted vaccinations for areas with high infections.

g2 The rate of geographically-targeted vaccinations for areas with low infections.
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Table 3.2: Model parameter values and their Sensitivity In-

dices (S.I) and Confidence Intervals (C.I).

Parameter Unit Estimate 67% C.I S.I Estimates

source

⇧ people
day 534.33 — — Calculated

nl none 70 [40.00, 100.0] — Fitted

nd none 60 [49.0, 71.0] — Fitted

p none 0.7 — — [174]

↵ day�1 0.1 — +0.000459788 [150]

� day�1 0.178 — �0.642585 [150]

✏ none 0.025 — +0.0084987 [173]

b day�1 0.580 — �0.12427 [150]

�0 day�1 1.43 [1.32, 1.54] +0.99 Fitted

�1 day�1 0.88 [0.773, 0.990] +0.00000867 Fitted

µ day�1 1
60⇥365 — +0.242062 [83]

⇢ day�1 0.182 — �0.232887 [112]

f1 none 0.74 — +0.12427 [112,

170]

f2 none 0.424 — — [112]

⌘ day�1 0.073 [0.00, 0.234] — Fitted

⌧1 none 0.0410 [0.0230, 0.0571] +0.208498 Fitted

⌧2 none 0.910 [0.847, 0.973] — Fitted

m1 day�1 0.0000180 [0.00, 0.000609] �0.215163 Fitted

m2 day�1 0.00000726 [0.00, 0.000113] �0.0276156 Fitted

� none 0.1536 — +0.753664 [70]

� none 0.811 [0.691, 0.932] +0.12427 Fitted

q1 people�1 0.000089 [0.000079, 0.000098] �0.0000054 Fitted

q2 people�1 0.0001 [0.00007, 0.00013] — Fitted

h none 0.229 — �0.0420288 [112]

a none 0.00311 — — [170]
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Table 3.3: Cumulative cases and cumulative ring vaccina-

tions data.

Date Cumulative cases Cumulative ring

vaccinations

05-08-2018 43 0

12-08-2019 57 0

20-08-2018 102 0

26-08-2018 111 4130

02-09-2018 122 6134

09-09-2018 132 8229

16-09-2018 142 9572

23-09-2018 150 11417

02-10-2018 162 13550

07-10-2018 181 15285

15-10-2018 216 17976

21-10-2018 238 20789

28-10-2018 268 24142

04-11-2018 300 26687

11-11-2018 333 28727

19-11-2018 373 32625

26-11-2018 421 35958

03-12-2018 453 39845

10-12-2018 500 44447

16-12-2018 539 48119

25-12-2018 585 53610

01-01-2019 608 54153

06-01-2019 625 56509

14-01-2019 658 60460

21-01-2019 699 64403

28-01-2019 734 69231

03-02-2019 785 73309
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Continued Table 3.3.

10-02-2019 816 77680

17-02-2019 840 80989

24-02-2019 872 83755

03-03-2019 897 853411

10-03-2019 923 86917

17-03-2019 960 86917

24-03-2019 1016 91283

31-03-2019 1089 93686

07-04-2019 1154 96133

14-04-2019 1264 101195

22-04-2019 1353 104342

28-04-2019 1466 106872

05-05-2019 1572 111494

12-05-2019 1705 114498

19-05-2019 1826 121147

26-05-2019 1920 124825

02-06-2019 2008 129001

10-06-2019 2071 131471

16-06-2019 2168 135887

23-06-2019 2239 140794

30-06-2019 2338 146319

07-07-2019 2418 154037

14-07-2019 2501 161400

21-07-2019 2592 171052

28-07-2019 2671 178121

04-08-2019 2763 186350

11-08-2019 2831 192257

18-08-2019 2887 197172

25-08-2019 2976 204730



Chapter 4

The impact of violent attacks on Ebola treatment centres during the

2018-2020 Kivu outbreak

4.1 Introduction

The Democratic Republic of the Congo (DR Congo) reported an Ebola virus disease

(EVD) outbreak in North Kivu and Ituri provinces on 1 August 2018. The World Health

Organization (WHO) announced the outbreak in DR Congo to be a Public Health Emer-

gency of International Concern (PHEIC) [61].

Conflicts and community mistrust marked by kidnappings and murders of healthcare

and frontline workers prevented intervention campaigns from being deployed in many ar-

eas in North Kivu, and Ituri provinces [159]. Furthermore, attacks on healthcare personnel

and Ebola treatment centres (ETCs) have caused the closure of some ETCs, resulting in

the inaccessibility of ETCs for EVD patients. Most seriously, attacks on ETCs put the

attackers and the general community at risk of acquiring the disease from contaminated

items or patients who fled the attacks to the community [73, 66].

Several major attacks on ETCs occurred in DR Congo and Liberia in the recent past.

Two occurred during the 2018-2020 Kivu outbreak in Katwa, and Butembo [73]. In

Butembo, some unknown assailants attacked an ETC, setting some facilities and cars on

fire [73]. The centre included 57 patients, among which 15 were confirmed cases [73]. The

incident happened a few days after another attack at an Ebola treatment centre (ETC) in

Katwa. The Katwa centre included ten patients, among whom four were confirmed cases

[73]. Some patients in Butembo’s treatment centre fled to nearby forests, putting the com-

munity at risk of acquiring the disease [73]. Another attack occurred during the 2014-2016

West African (WA) EVD outbreak. A group of individuals from the community attacked

an ETC near Monrovia [66]. They looted items, including mattresses containing blood

and other bodily fluids of infected individuals [66].

Understanding the interplay between the effect of attacks on ETCs and the spread of

60
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EVD can inform how the disease unfolds in conflict and community distrust zones. Sev-

eral previous studies explored the impact of conflicts and community mistrusts on EVD

spread. Kelly et al. [80] investigated the impacts of targeted and non-targeted violence

on EVD spread. They found that the time-dependent reproduction number increased by

0.1 when a 2.92 increase occurred in violent events. Furthermore, the most substantial

influence on EVD transmission arrived from Ebola-targeted violence, mainly caused by

civilian-induced incidents. Kraemer et al. [84] explored the relationship between EVD

transmission and the occurrence of conflicts and violence. They found that conflicts were

associated with the magnitude of EVD outbreaks in health zones in North Kivu and Ituri.

Wells et al. [159] investigated the relationship between conflicts and EVD spread. They

found that preceding unrest and conflict events significantly affected the speed of case iso-

lation and vaccination efficiency. Wannier et al. [157] compared transmission rates among

different health zones during the 2018-2020 Kivu outbreak. They found that violence

during the 2018-2020 Kivu outbreak significantly increased the spread of EVD.

Kelly et al. [80] and Kraemer et al. [84] are observational studies. While these studies

provide insights into the associations between conflicts and EVD spread, they can not

be used to simulate the number of EVD cases, deaths, hospitalisations, and vaccinations

given different levels of community distrust. Wells et al. [159] also did not explicitly

account for hospitalisations or whether some hospitalised individuals could escape the

attacks on ETCs to the community. In addition, Wannier et al. [157] did not make use

of the vaccination data to quantify their model. In the current study, we address these

limitations while quantifying our model with actual data to assess the impact of the attacks

on ETCs.

Our current EVD model also differs from other previous EVD modelling studies. Un-

like Seidu et al. [135], Bodine et al. [12] and Lin et al. [96], we consider susceptible

persons to have different risks of infections depending on their geographical locations.

Further, unlike Brettin et al. [15], and Chowell et al. [34], we account for transmission

from the deceased.

Finally, in the current study, we model the transmission dynamics of EVD while ac-

counting for ring vaccinations, antiviral treatments and contact tracing measures that were

used in recent EVD outbreaks.

This Chapter is laid out as follows: We explore model assumptions and formulation in
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the second section. The theoretical analysis of the model is discussed in Section Three.

We first discuss the model solution’ non-negativity and boundedness. The basic reproduc-

tion number is then calculated. We obtain the model equilibria and discuss their stability

analysis. In Section Four, we discuss the model fitting and numerical findings. In Section

Five, we conclude our study and discuss recommendations.

4.2 Model formulation

During the 2018-2020 Kivu outbreak, 81% of EVD cases were located in six health zones:

Beni, Butembo, Kalunguta, Katwa, Mabalako, and Mandima [68]. As a result at the be-

ginning of the outbreak, we assume that 81% of infections are associated with these health

zones. We call these health zones areas with high infections. Other health zones in North

Kivu and Ituri are called areas with low infections. Let SH and SL be the number of sus-

ceptible individuals residing in areas with high and low infections, respectively. Let V

be the number of vaccinated individuals in the population. Let E, I,H,D and R be the

number of people exposed, infected, hospitalised, infectious deceased and recovered in the

population, respectively. Let Ia be the number of hospitalised persons who fled the ETCs

because of the attacks and joined the community. Let N be the population of the North

Kivu and Ituri provinces so that

N = SH + SL + V + E + I +H + Ia +D +R. (4.1)

The 2018-2020 EVD outbreak in North Kivu and Ituri continued for almost two years

[167]. Natural births and deaths might play a role in the dynamics of a disease when

the disease is extended for a long period. Thus, we assume ⇧ and µ are the numbers of

births and natural deaths (reasons other than EVD) in the population, respectively. The

spread of EVD from one person to another occurs through contact with the bodily fluids

of infected persons. Before any intervention was considered, we assume the effective

contact rate among susceptible individuals residing in areas with high infections and living

infectious persons is �0. We assume �2 is the effective contact rate among the susceptible

individuals living in areas with high infections and the infectious deceased. Let � be a

positive number so that �2 = ��0. Let ⌧1 be a modification parameter that accounts for

transmission in low infection areas so that ⌧1�0 and ⌧1�2 are the effective contact rates for
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the living infectious persons and the infectious deceased with the susceptible individuals

residing in low infection areas, respectively. We assume the vaccination rates in areas with

high and low infections to be m1 and m2, respectively.

Contact tracing involves identifying and isolating exposed individuals as soon as they

are symptomatic. As contact tracing is considered, the effective contact rate declines due

to the isolation of symptomatic persons. We remark the number of vaccinated persons V

involves the contacts and contacts of contacts for infected persons. Thus, we can find a

number s1 > 0 such that the number of contacts among the vaccinated persons is s1V .

Let s2 � 0 be a parameter which accounts for the effectiveness of contact tracing per each

contact person so that the effective contact rate �0 becomes

�1 + (�0 � �1)e
�s2s1V

during the contact tracing where �1 (�1 < �0) is the effective contact rate post contact

tracing. Let q = s2s1. It follows that there exists no contact tracing when q = 0. On the

other hand, the higher the value of q, the higher the effectiveness of contact tracing. It also

follows that there exists a �1 2 (0, 1) such that �1 = �1�0.

EVD hospitalisation has generally been managed by treating symptoms, rehydrating

patients orally and intravenously, and treating any additional infections that patients may

have [94]. During the 2018-2020 Kivu outbreak, four antiviral medications (mAb114,

Remdesivir, Zmapp, and Regeneron) were considered [104]. The rate of hospitalisation

and treatment with mAb114, Remdesivir, Zmapp, or Regeneron are assumed to be ⇢.

Hospitalised individuals at ETCs are properly isolated throughout treatments and safely

buried when they die at the ETCs [169]. Hospitalised persons may escape treatments due

to the attacks on ETCs and put the community at risk of acquiring the disease [73, 73].

We assume the rate at which hospitalised individuals fled treatments due to the attacks on

ETCs to be ⇣1 and the rate at which these individuals returned to ETCs to be ⇣2.

The complete process for the model is depicted in Figure 4.1, and a full description of
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the model parameters is provided in Table 4.1. The model equations are described below:

dSH

dt
= �⇧� (�1 +m1 + µ)SH

dSL

dt
= (1� �)⇧� (�1⌧1 +m2 + µ)SL

dV

dt
= m1SH +m2SL � (✏�1 + µ)V

dE

dt
= �1 (SH + ⌧1SL + ✏V )� (↵ + µ)E

dI

dt
= ↵E � (h⇢+ (1� h) � + µ) I

dH

dt
= h⇢I + l2⇣2Ia � ((1� l1)⌘ + l1⇣1 + µ)H

dIa

dt
= l1⇣1H � ((1� l2)✓ + l2⇣2 + µ) Ia

dD

dt
= f1 (1� h) �I + (1� l2)✓f3Ia � bD

dR

dt
= (1� h) (1� f1) �I + ⌘(1� l1) (1� f2)H + (1� l2)✓(1� f3)Ia � µR

(4.2)

where

�1 =
1

N

�
�1 + (�0 � �1)e

�qV
�
(I + Ia + �D)

=
1

N

�
�1�0 + (�0 � �1�0)e

�qV
�
(I + Ia + �D)

=
1

N
�0

�
�1 + (1� �1)e

�qV
�
(I + Ia + �D) .

System (4.2) is considered along with the initial conditions: SH(0) = SH0, SL(0) = SL0,

V (0) = V0, E(0) = E0, I(0) = I0, H(0) = H0, Ia(0) = Ia0, D(0) = D0 and R(0) = R0.

To study the impact of the attacks on ETCs, we simulate the full model (4.2). However,

we first created submodels in which we considered the cases when no attacks at ETCs

exist and when no interventions are available. Then we quantify these submodels using

the 2018-2020 Kivu outbreak data.

When there are no attacks on the ETCs, Model 4.2 becomes the sub-model, described

below:
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Figure 4.1: Transfer diagram for the model

dSH

dt
= �⇧� (�1 +m1 + µ)SH

dSL

dt
= (1� �)⇧� (�1⌧1 +m2 + µ)SL

dV

dt
= m1SH +m2SL � (✏�1 + µ)V

dE

dt
= �1 (SH + ⌧1SL + ✏V )� (↵ + µ)E

dI

dt
= ↵E � (h⇢+ (1� h) � + µ) I

dH

dt
= h⇢I � (⌘ + µ)H

dD

dt
= f1 (1� h) �I � bD

dR

dt
= (1� h) (1� f1) �I + ⌘ (1� f2)H � µR

(4.3)

where

�1 =
1

N

�
�1 + (�0 � �1)e

�qV
�
(I + �D) .
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Further SH(0) = SH0, SL(0) = SL0, V (0) = V0, E(0) = E0, I(0) = I0, H(0) = H0,

D(0) = D0 and R(0) = R0.

Further, when there are no attacks on the ETCs, vaccinations or antiviral treatments,

Model 4.2 becomes the sub-model, described below:

dSH

dt
= �⇧� (�1 + µ)SH

dSL

dt
= (1� �)⇧� (�1⌧1 + µ)SL

dE

dt
= �1 (SH + ⌧1SL)� (↵ + µ)E

dI

dt
= ↵E � (� + µ) I

dD

dt
= f1�I � bD

dR

dt
= (1� f1) �I � µR

(4.4)

where

�1 =
�0

N
(I + �D) .

Further SH(0) = SH0, SL(0) = SL0, E(0) = E0, I(0) = I0, D(0) = D0 and R(0) = R0.

4.3 Theoretical analysis

This section establishes that the state variables for Model (4.2) are non-negative at all

times and that the solution is bounded. The basic reproduction number (R0) is a critical

figure in describing the spread of EVD. We obtain R0 using a well-documented approach,

described in [149].

4.3.1 Non-negativity and boundedness

It is necessary to show that all state variables are non-negative for all times so that system

(4.2) is biologically significant.

Proposition 4.3.1. The solution for system (4.2) is non-negative whenever SH(0), SL(0),

V (0), E(0), I(0), H(0), Ia(0), D(0) and R(0) are non-negatives.
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We can now declare the statement below, which guarantees the boundedness of the

solution for system (4.2).

Proposition 4.3.2. The solution of system (4.2), determined in Proposition 4.3.1, is bounded

for all time t > 0.

The proofs for Propositions 4.3.1 and 4.3.2 are done similar to the proofs of Proposi-

tions 3.3.1 and 3.3.2.

From Proposition 4.3.1, Proposition 4.3.2 and the trivial existence and uniqueness of

a local solution, it follows that system (4.2) is a dynamical system in the biologically

feasible compact set

n
(SH(t), SL(t), V (t), E(t), I(t), H(t), Ia(t), D(t), R(t)) ⇢ R9

+ : N(t)   

o
,

where

 = max
n⇧
µ
,N(0)

o
.

4.3.2 Model Equilibria

The disease-free equilibrium (DFE) is found when I = Ia = D = 0 and it is given by

P0 = (S⇤
H
, S

⇤
L
, V

⇤
, 0, 0, 0, 0, 0) ,

where S
⇤
H
= �⇧

m1+µ
, S

⇤
L
= (1��)⇧

m2+µ
, V

⇤ =
m1S

⇤
H
+m2S

⇤
L

µ
.

We use the next-generation matrix method [149] to obtain the controlled reproduction

number (Rc). We differentiate between the infected states (E, I,H, Ia, D) and uninfected

states (SH , SL, V, R) . We assume F and W as vectors representing the new and trans-

ported cases into the infected states, respectively.

Let F and W be Jacobian matrices of F and W , described in [149]. Thus, Rc is

defined to be the dominant eigenvalue of FW
�1
. We find Rc to be:

A2

✓
�1 + (�0 � �1)e

�q

⇣
m2⇧(1� �)
µ(m2+µ) +

m1⇧�

µ(m1+µ)

⌘◆✓
�

m1 + µ

✓
1 +

✏(m1)

µ

◆
+
⌧1(1� �)

m2 + µ

✓
1 +

✏(m2)

µ

◆◆
,

(4.5)
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where

A2 =

✓
µ↵

(↵ + µ)(�(1� h) + µ+ h⇢)

✓
1 +

�1f1�(1� h)

b

◆
+ A21

◆
,

A21 = A22 (1 + f3(1� l2)✓) ,

and

A22 =
l1⇣1h⇢

(µ+ (1� l2)✓ + l2⇣2) (⌘(1� l1) + µ+ l1⇣1)� l1l2⇣1⇣2
.

When there are no interventions, we have q1 = h = m1 = m2 = 0. Thus, Rc becomes

R0 = �0
↵

(↵ + µ)(� + µ)

✓
1 +

�f1�

b

◆
(� + ⌧1(1� �)) .

When there are no attacks on ETCs (⇣1 = 0), we have A22 = 0. Hence Rc becomes Rc,na

Rc,na = A3

✓
�

m1 + µ

✓
1 +

✏(m1)

µ

◆
+
⌧1(1� �)

m2 + µ

✓
1 +

✏(m2)

µ

◆◆

where

A3 =

✓
�1 + (�0 � �1)e

�q

⇣
m2⇧(1� �)
µ(m2+µ) +

m1⇧�

µ(m1+µ)

⌘◆✓
µ↵

(↵ + µ)(�(1� h) + µ+ h⇢)

✓
1 +

�1f1�(1� h)

b

◆◆
.

Next, we show the existence of an endemic equilibrium

(S⇤
H
, S

⇤
L
, V

⇤
, E

⇤
, I

⇤
, H

⇤
, I

⇤
a
, D

⇤
, R

⇤) ,

where

S
⇤
H

=
�⇧

�1 +m1 + µ

S
⇤
L

=
(1� �)⇧

�1⌧1 +m2 + µ
,

V
⇤ =

m1S
⇤
H
+m2S

⇤
L

✏�1 + µ
,

E
⇤ =

�1

(↵ + µ)
(S⇤

H
+ ⌧1S

⇤
L
+ ✏V

⇤) ,

I
⇤ =

↵

h⇢+ (1� h)� + µ
E

⇤
,
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with

H
⇤ =

h⇢I
⇤

((1� l1)⌘ + l1⇣1 + µ)� l2⇣2l1⇣1

(1�l2)✓+l2⇣2+µ

,

I
⇤
a

=
l1⇣1H

⇤

((1� l2)✓ + l2⇣2 + µ)

D
⇤ =

f1(1� h)�

b
I
⇤ +

(1� l2)✓f3I⇤a
b

,

R
⇤ =

1

µ
((1� h)(1� f1)�I

⇤ + ⌘(1� l1)(1� f2)H
⇤ + (1� l2)(1� f3)✓I

⇤
a
) ,

N
⇤ =

⇧

µ
� (b� µ)D⇤

µ
,

�1 =
�
�1 + (�0 � �1)e

�qV
⇤�
✓
I
⇤ + I

⇤
a
+ �D

⇤

N⇤

◆
.

As in [108, 152], the equilibria points of system (4.2) correspond the fixed points of the

following system

�1 = �(�1) =
�
�1 + (�0 � �1)e

�qV
⇤�
✓
I
⇤ + I

⇤
a
+ �D

⇤

N⇤

◆
. (4.6)

The variables I⇤, I⇤
a

and D
⇤ can be rewritten as

I
⇤ =

↵

h⇢+ (1� h)� + µ
E

⇤
,

I
⇤
a

=
l1⇣1h⇢↵

((1� l2)✓ + l2⇣2 + µ)
⇣
((1� l1)⌘ + l1⇣1 + µ)� l2⇣2l1⇣1

(1�l2)✓+l2⇣2+µ

⌘
(h⇢+ (1� h)� + µ)

E
⇤
,

D
⇤ =

↵ (f1(1� h)�)

b (h⇢+ (1� h)� + µ)
E

⇤

+
((1� l2)✓f3) l1⇣1h⇢↵

b((1� l2)✓ + l2⇣2 + µ)
⇣
((1� l1)⌘ + l1⇣1 + µ)� l2⇣2l1⇣1

(1�l2)✓+l2⇣2+µ

⌘
(h⇢+ (1� h)� + µ)

E
⇤
.

Note from (4.6) that �(�1) is continuous in �1 2 [0,1). Further �(0) = 0. On the other

hand,

lim
�1!1

�
�1 + (�0 � �1)e

�qV
⇤�

= �0.

Thus, to find lim�1!1 �(�1), it is enough to find lim�1!1 E
⇤
. We have

lim
�1!1

E
⇤ =

⇧

↵ + µ
.
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Hence �(�1) is bounded for �1 2 [0,1).

We also have that
d�

d�1
(0) = Rc.

Let Rc > 1. We propose that we have r in a neighbourhood of zero, say (0, �1) such that

�(r) > r. Otherwise, for all neighbourhoods near zero, �(r)  r which implies that

d�

d�1
(0) = lim

�1!0+

�(�1)� �(0)

�1
= lim

�1!0+

�(�1)

�1
 0,

which is a contradiction. Hence, there exists an r 2 (0,1) such that �(r) > r. Since

�(�1) is bounded as �1 ! 1, we have an M > 0 such that �(M) < M. Let Z(�1) =

�1 � �1(�1). We have Z(r) < 0 and Z(M) > 0. Using the Intermediate Value Theorem,

we have a �⇤1 2 (r,M) such that �(�⇤1) = �
⇤
1. Hence, there exists a non-zero solution �⇤1

to Equation (4.6). Equivalently, system (4.2) has an endemic equilibrium. The condition

for the local stability is computed as in [108]. The Jacobian matrix around the zero fixed

point �1 = 0 for system (4.6) is given by

d�1(0)

d�1
= Rc.

Thus, the DFE is locally asymptotically stable if Rc < 1 and it is unstable if Rc > 1. On

the other hand, the endemic equilibrium is locally asymptotically stable if d�1(�⇤
1)

d�1
< 1 and

it is unstable if d�1(�⇤
1)

d�1
> 1.

4.4 Model fitting and numerical simulations

To study the impact of the violent attacks on ETCs, we use cumulative cases and ring

vaccination data to quantify our models. The cumulative case data are collected from

the WHO situational reports, while the cumulative ring vaccinations are adapted from the

Humanitarian Data Exchange website [68]. We consider a timeline for these data which

starts from the beginning of the outbreak (5 August 2018) to the last date after which

ETCs are attacked (23 February 2019). This timeline was divided into two periods: the

first three weeks (5 August to 25 August 2018) and the next six months (26 August 2018

to 23 February 2019). During the first period, vaccinations and antiviral treatments were

not considered. We fit systems (4.4) and (4.3) to the data reported during the first and the
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second periods, respectively.

We discuss the impact of vaccinations, contact tracing and antiviral treatment during

the outbreak. We are then concerned with the numerical insights on the impact of the

attacks on ETCs during the 2018-2020 Kivu outbreak.

4.4.1 Model fitting

To solve the initial value problems (4.3) and (4.4), we apply the odeint function of Scipy

[145]. This function is used to solve a system of ordinary differential equations using the

ISODA algorithm from the FORTRAN library odepack. Sub-models (4.3) and (4.4) are

fitted to the EVD data using optimize.curve�fit function of Scipy [146]. This function

uses non-linear least squares for the fitting. It also allows to compute the 67% confidence

interval of the parameter estimates.

To quantify Model (4.3), we use the values of known parameters as shown in Table

4.2. We fit the cumulative cases function

Z
t

0

↵E(s) ds (4.7)

of Model (4.4) to the cumulative cases data reported for the period of 5 August to 25

August 2018 and estimated R0 to be 3.28. Other parameters of Model (4.3) are estimated

by fitting the cumulative cases function Equation (4.7) and vaccination function

Z
t

0

(m1SH(s) +m2SL(s))ds

of Model (4.3) to the data reported for the period of 26 August 2018 to 23 February 2019.

We present the model fitting in Figure 4.2 and Figure 4.3. The complete list of the es-

timated parameters and 67% confidence interval is presented in Table 4.1 and Table 4.2.

4.4.2 Sensitivity analysis

To understand morbidity and mortality related to the attacks on ETCs, it is critical first

to understand the relative importance of the various factors influencing EVD transmission

and prevalence when there are no attacks on ETCs. Sensitivity analysis is used to identify
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Figure 4.2: Model fitting when there are no vaccinations or antiviral treatments.

Figure 4.3: Model fitting when there are vaccinations and antiviral treatments but there are
no attacks on ETCs.

variables that significantly impact EVD transmission and prevalence. In this subsection,

we follow Chitnis et al. [30] to identify the impact of the different parameters on Rc,na.

They used the normalised forward sensitivity index method. The normalised forward sen-

sitivity index of Rc,na to any parameter is the ratio of the relative change in Rc,na to the

relative change in that parameter [30]. It can be defined using partial derivatives as follows:

⌥Rc,na
p

=
@Rc,na

@p
⇥ p

Rc,na
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where p is any of the parameters that compose Rc,na. We obtain the sensitivity indices of

Rc,na to each parameter of Rc,na (Table. 4.2). We find that the most sensitive parameter is

the effective contact rate among susceptible individuals residing in areas with high infec-

tions and the living infectious persons �0. Other important parameters include the fraction

of susceptible patients living in areas with high infections (�) and the rate at which non-

hospitalised persons recover or die (�). For example, since ⌥Rc,na
� = +0.754, decreasing

(or increasing) � by 10% decreases (or increases) Rc,na by 7.54%. On the other hand, as

⌥Rc,na
� = �0.643, decreasing (or increasing) � by 10% increases (or decreases ) Rc,na by

6.43%.

4.4.3 The impact of the attacks on Ebola treatment centres

As previously anticipated in this study, the epidemic curve would change after August

2019, specifically after the 373rd day of the outbreak, due to the new policy on antiviral

treatments. To assess the impact of ETCs attacks during the 2018-2020 Kivu outbreak,

we consider the outbreak data from the beginning of the outbreak to the 373rd day of the

outbreak.

We compare the actual data between February 2019 (the date on which the attacks

on ETCs started) and August 2019 with the model outputs (Figure 4.4). We find that the

attacks on ETCs increased the number of cases in the population by about 17% on the

373rd day of the outbreak. Indeed, the number of cases dramatically increased in Katwa

and Butembo following the attacks on ETCs [74]. However, from Figure 4.4, it should be

remarked that the number of cases in the population did not increase immediately after the

attacks on ETCs, probably because it usually takes a few latent periods before the number

of cases in the population dramatically rises due to the attacks on ETCs.

We have no data for the parameters ⇣1, ⇣2, ✓, l1 and l2. It follows however, from the

definition of these parameters that their values lie in the interval [0, 1]. Also, we have no

data for f3. However, it is natural to assume EVD patients have the highest probability

of EVD deaths if not hospitalised. That is, f2  f1 and f3  f1. Further, hospitalised

individuals who interrupted treatments because of the attacks have a higher probability of

EVD deaths than other hospitalised individuals. That is f2  f3. It follows that f2  f3 
f1.

To explore the interplay between the different levels of attacks on ETCs and the level
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of infections in the population, we assume that f3 = f1+f2

2 . Further, we fix the value of

four other parameters (⇣1, ⇣2, ✓, l1 and l2), while we vary one of them. As a result, when

10% of the hospitalised flee the attacks after they spend three days at ETCs, the cumulative

cases on the 373rd day increase by more than 30% if these patients spend three days in

the community, after which they all return to the ETCs (Figure. 4.5). When half of these

individuals return to ETCs, the cumulative cases increase by about 50% (Figure. 4.6).

Further, when these patients spend one more day in the community, after which they all

return to treatments, the cumulative cases rise by an additional 10% (Figure. 4.7). We also

find that when the patients are treated for one more day before they flee the attacks, the

cumulative cases are reduced by 10% (Figure 4.8).

We remark that the interactions among the parameters ⇣1, ⇣2, ⌘, ✓, f3, l1 and l2 produce

non-obvious dynamics for EVD (Figures: 4.5, 4.6, 4.8 and 4.7). In particular, it is still

unclear which of these parameters is the most influential in the dynamics of EVD on the

space of all possible values for these parameters. To identify parameters that have the

highest impact on the prevalence of EVD, we conduct sensitivity analysis using the Latin

Hypercube Sampling (LHS) scheme with Partial Rank Correlation Coefficients (PRCC)

approach.

To proceed with the sensitivity analysis, let ↵1 = l1⇣1,↵2 = l2⇣2, ↵3 = (1 � l2)✓f3,

↵4 = (1 � l2)✓(1 � f3) and ↵5 = (1 � l1)⌘(1 � f2). Thus, ↵1,↵2 and ↵3 are the rates at

which hospitalised individuals flee the attacks, patients who escaped the attacks return to

the ETCs, and patients who escaped the attacks die in the community due to EVD. The

parameters ↵4 and ↵5 represent the rate at which individuals who fled the attacks recover

and the rate at which they die in the community after they fled the attacks, respectively.

We remark that the parameters ⇣1, ⇣2, ⌘, ✓, l1 and l2, lie in the interval [0, 1] while f3 lies

in the interval [f1, f2]. It follows that the parameters ↵1,↵2,↵3,↵4,↵5 lie in the interval

[0, 1].

We generate 400 samples for each parameter ↵1,↵2,↵3,↵4 and ↵5, using a uniform

distribution over the interval [0, 1]. We use PRCC to identify how sensitive the cumulative

cases with respect to changes in the different parameter values. Figure 4.9 shows that

the most influential parameters in the dynamics of EVD are, in order, the rates at which

hospitalised individuals flee the attacks, individuals who fled the attacks recover from

EVD and patients who escaped the attacks return to the ETCs. These rates must be given
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Figure 4.4: The impact of the attacks on ETCs during the 2018-2020 Kivu outbreak. By
the model output here, we mean the output of Model (4.3). It should be remarked this
represents the case in which no attacks on ETCs is considered.

priority during EVD interventions.

4.5 Discussion

Ebola virus disease is a highly contagious lethal infection. On 1 August 2018, the Min-

istry of Health of DR Congo declared the tenth EVD outbreak in DR Congo. The outbreak

occurred in areas with ongoing armed conflicts in Kivu and Ituri provinces. In addition to

armed conflicts, community distrust largely contributed to the spread of EVD during the

2018-2020 Kivu outbreak. Healthcare was particularly a victim of systematic attacks. In

the current study, we concern ourselves with studying the impact of attacks on ETCs. At-

tacks on ETCs can be very destructive because hospitalised EVD patients might flee ETCs

due to the attacks and join the community. Additionally, attackers can become exposed to

EVD by contact with the patients or by touching or stealing beddings, mattresses or other

items that patients use.

During the 2018-2020 Kivu outbreak, patients fled the attacks on ETCs in Katwa and

Butembo. A spike of cases increased in these areas following the attacks on ETCs. In

the current study, we developed a mathematical model to understand the impact of the

attacks on ETCs during the 2018-2020 Kivu outbreak. We estimate that the attacks on
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Figure 4.5: The impact of the attacks when the percentage of patients who fled the attacks
is 10%, 20%, 30%, 40% and 50%.

ETCs caused the cases to rise by 17% in August 2019. We also find that if 10% of the

hospitalised flee the attacks on ETCs, the cumulative cases on the 373rd-day increase by

more than 30% (Figure. 4.5) if these individuals spend three days in the community, after

which they all return to ETCs. If half of these individuals return to ETCs for treatments,

the cumulative cases increase by about 50% (Figure. 4.6). If these individuals’ return to

the ETCs is delayed by one day, the cumulative cases are raised by an additional 10%

(Figure. 4.7). On the other hand, when patients are treated for one more day before they

flee the attacks, the cumulative cases are reduced by about 10%.

Global sensitivity analysis shows that the most influential parameters in the dynamics

of EVD are, in order, the rates at which hospitalised individuals flee the attacks, individuals

who fled the attacks recover from EVD and patients who escaped the attacks return to the

ETCs. Thus, these rates must be prioritised during EVD interventions.

The rate at which hospitalized individuals flee the attacks can be minimized by tackling

the reasons for hostilities against EVD response teams. Three significant reasons can be
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Figure 4.6: The impact of the attacks when the percentage of patients who did not return
to treatments after they fled the attacks is 10%, 20%, 30%, 40% and 50%.

identified for the distrust and hostility towards EVD response efforts [128]. First, EVD

symptoms are similar to more familiar diseases such as malaria and Lassa Fever. EVD is

revealed distinctively only at later stages. Isolated rural people value high-quality home

care for diseases such as malaria and feel deprived when they cannot provide the same

for EVD. Secondly, EVD diagnosis is based on Phlebotomy. Many believe that ETCs are

places for mining of blood. A village chief remarked that they have heard of giving ill

persons blood transfusions but have not heard of sick people forced to give blood [128].

These suspicions are based on unethical practices of blood sample extraction and sample

theft during EVD outbreaks [128]. Thirdly, people in many parts of Africa have priorities

other than EVD. These include poverty, other endemic diseases and instability. Many

people question the reasons that foreigners care so much about EVD [128]. Some believe

that foreigners are probably scared of EVD or that there is money in patients’ body parts

or blood [128]. Also, some believe the virus could have some hidden utility (facts about

cold war germ and unknown molecular patents) [128].
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Figure 4.7: The impact of the attacks if the return of individuals to treatments was delayed
by one, two, three, four and five days.

Evidence is thus needed to support the change of attitudes. For example, families must

recognise that those most involved in care for patients at home are at the highest risk of

becoming infected. A steady flow of discharged survivors from ETCs can also change

perceptions that the ETCs are where people went only to die. Social learning about EVD

through trusted village chiefs, friends and family members can also be effective.

To conclude, while hostility towards ETCs can dramatically hinder EVD control ef-

forts, addressing the reasons for these hostilities is highly recommended.
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Figure 4.8: The impact of the attacks when patients are treated for one, two, three, four
and five days at ETCs before they flee the attacks.

Figure 4.9: PRCC for the cumulative cases at t = 373.
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Continued Table 4.1.

Table 4.1: Model parameters and their interpretations.

Parameter Interpretation

⇧ Birth rate.
1
↵

The incubation period.
1
�

The average time from symptoms onset to either recovery or to EVD death for an

infected person.

✏ The fraction of vaccinated individuals that are not immunised by the vaccination.
1
b

The average time from EVD death to burial.
1
⇣1

The average time from hospitalisation to escaping treatments due to the attacks

on ETCs.
1
⇣2

The average time in which individuals who escaped treatments returns to ETCs.

l1 The proportion of hospitalised individuals who escaped treatments due to the

attacks on ETCs.

l2 The proportion of people who returned to the ETCs after fleeing the attacks.

�0 The effective contact rate among susceptible individuals residing in areas with

high infections and the living infectious persons.

µ Natural mortality rate.
1
⇢

The average time from symptoms onset to hospitalisation.
1
✓

The average time from fleeing ETCs to recovery or to deaths.

f1 The probability of EVD deaths for non-hospitalised individuals.

f2 The probability of EVD deaths for hospitalised cases.

f3 The probability of EVD deaths for hospitalised who escaped treatments.
1
⌘

The average time from hospitalisation to either recovery or to EVD death.

⌧1 A modification parameter that accounts for the transmission to individuals living

in areas with low levels of infections.

m1 Vaccination rate for healthcare and frontline workers located in areas with high

level of infections.

m2 Vaccination rate for healthcare and frontline workers located in areas with low

level of infections.
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Continued Table 4.1.

� The fraction of susceptible individuals living in areas with high infections.

� A modification parameter that accounts for the transmission from the deceased.

�1 A modification parameter that accounts for the impact of contact tracing.

q A parameter which accounts for the effectiveness of contact tracing per each con-

tact person.

h A fraction of the infected individuals that are hospitalised at Ebola treatment

centres and treated with mAb114, Remdesivir, Zmapp or Regeneron antiviral

treatments.

Table 4.2: Model parameter values and their Sensitivity In-

dices (S.I) and Confidence Intervals (C.I).

Parameter Unit Estimates 67% C.I S.I Estimate’

source

⇧ day�1 534.33 – – Calculated

↵ day�1 0.1 – +0.000101938 [150]

� day�1 0.178 – �0.0758866 [150]

✏ none 0.025 – +0.0235735 [173]

b day�1 0.580 – �0.0955563 [150]

�0 day�1 1.860394 [1.36, 2.34] +0.223347 Fitted

µ day�1 0.0000456621 – +0.136341 [83]

⇢ day�1 0.182 – �0.0518473 [112]

f1 none 0.74 – +0.0955563 [112,

170]

f2 none 0.424 – – [112]

⌘ day�1 0.068 – – Fitted

⌧1 none 0.0244 – +0.0238758 Calculated

m1 day�1 0.00003637094 [0, 0.12] �0.0810586 Fitted

m2 day�1 0.000037468 [0, 0.02] �0.0174366 Fitted

�1 none 0.3800 [0, 0.95] +0.173929 Fitted
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Continued Table 4.2.

� none 0.1536 – +0.171541 [70]

� none 2.89195 [2.1, 3.68] +0.0955563 Fitted

q people�1 0.00012598 [0, 0.01] �0.0380043 Fitted

h none 0.229 – �0.0293077 [112]



Chapter 5

Conclusion

Mathematical modelling is used to understand the dynamics of a disease, handle disease

outbreaks in real time, assess the impact of therapeutic and non-therapeutic control mea-

sures, and assist in formulating policy decisions [14]. While many models were suggested

to advise public health physicians to understand the dynamics of EVD and control its

spread, the disease continued to spread in Africa. Thus, we first explored the limitations

of EVD modelling studies. Unlike previous models, we reviewed articles published from

2016 to 2018. We focused on surveying each article to identify its advantages and limita-

tions. We classified articles broadly according to the modelling approaches and the model

conclusions and constraints. We identified many limitations in the reviewed models and

provided brief suggestions for future work. We then explored two important problems in

EVD dynamics: the impact of vaccinations and the interplay between the attacks on ETCs

and EVD spread.

The most effective vaccination plan is a customized response based on epidemiological

traits and context-based modelling. Early contact tracing and ring vaccination may be suf-

ficient for small epidemics in isolated groups, but further measures are needed to control

widespread EVD outbreaks [103, 34, 138]. We explored the impact of GTVs in areas with

high infections when EVD cannot be contained using contact tracing, ring vaccinations,

and antiviral treatments. We quantified our model with the 2018–2020 Kivu outbreak data.

We first estimated that 81% of the basic reproduction number is associated with areas of

high infections. Further, we found that implementing GTVs in areas with high infections

so that the total vaccinations are increased by 60% decreased EVD cases by 15%. On the

other hand, we needed to increase the vaccinations to more than 1000% to achieve the 15%

decrease in EVD cases if we implement GTVs in areas with low infections. We concluded

that it is essential to maintain all intervention measures during outbreaks, including con-

tact tracing, ring vaccinations and antiviral treatments. When the spread of EVD is not

contained despite these measures, GTVs in areas with high infections can be implemented
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to mitigate the spread of EVD.

During the 2018-2020 Kivu outbreak, EVD patients fled the attacks on ETCs in Katwa

and Butembo. A spike in cases occurred following the ETCs attacks in these areas. We

explored the interplay between ETCs attacks and EVD spread. We estimated that due to

the attacks on ETCs, the cumulative cases during the 2018-2020 Kivu outbreak increased

by 17% in August 2019. We also found that when 10% of the hospitalised individuals fled

the attacks on ETCs after spending only three days under treatment, the cumulative cases

increased by more than 30% even if these individuals all returned to the ETCs three days

later. On the other hand, if only half of these individuals returned to ETCs for treatment,

the cumulative cases increased by approximately 50%. Further, when these patients spent

one more day in the community, after which they all return to ETCs, the cumulative cases

are raised by an additional 10%. Global sensitivity analysis showed that the most influen-

tial parameter in the dynamics of EVD is the rate at which hospitalised individuals escaped

the attacks, followed by the rate at which individuals who fled the attacks recovered from

EVD and the rate at which patients who escaped the attacks returned to the ETCs.

Mathematical theory is beneficial in depicting general patterns from simple models.

On the other hand, computer simulations are good at drawing specific results from complex

models but sacrifice drawing general conclusions. A trade-off exists between a model’s

complexity level and the ability to parametrise the model with the available data reliably

[130]. The complexity of a model is a function of the number of parameters needed to char-

acterise the states of the system and the range of the dynamics that can be identified from

the model (e.g. the number of equilibrium points, oscillations, bifurcation, chaos) [130].

Simple models have fewer parameters to be characterised from the data. We are working

on a project that involves developing a simple SEIR model which includes constant rates

to describe contact tracing and vaccinations. The model is much simpler compared to the

models considered in this thesis. Further, the estimated parameters have narrower confi-

dence intervals. Thus there are more reliable estimates. We will also study a stochastic

version of our simpler model in future work.

In this thesis, we reviewed previous EVD models and contributed to understanding

critical issues of EVD dynamics. We hope our review will help researchers develop more

realistic models to help mitigate the spread of EVD. We also hope that our models will

guide public health practitioners to take steps to limit EVD outbreak spread.
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Appendix A

Detailed review of individual studies

Some reviews were structured according to estimated EVD parameters [32, 43, 150]. One

[32] created a comparison between each natural history parameter for the past EVD out-

breaks and the 2014 WA EVD. Another [37] listed critical uncertainties among different

models. One [164] recorded the approaches, assumptions, and datasets of each reviewed

model. Another [35] discussed different conclusions acquired from the 2014 WA EVD

models. In this section, we survey each of our reviewed study in terms of the research

problem, type of data, approaches, results, preferences, and constraints or gaps for further

research. We describe this survey in Table A.1.
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Table A.1: Detailed review.

Ref. Research ques-

tion

Data Methodology Conclusions Advantages Limitations/gaps

[97] Addressing EVD

spread through

international

travel.

The weekly EVD

incidence data of

Liberia available

from the WHO web-

site.

A compartment model was

used for estimating the frac-

tion of the latent population.

It was assumed that only

latent individuals could

travel internationally and

the probability of exporting

EVD from Liberia to the

USA was estimated.

The probability of exporting

EVD from Liberia to the

USA in the 15th week of

2014 was estimated to be

0.3 per 1,000 persons.

The model incorporated the

volume of airline travellers

from infected countries

and calculated the risk of

disease exportation.

The study assumed the

people in Liberia to be

homogeneously mixed and

did not account for whether

areas of frequent travellers

were the most affected areas

by the disease.
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[163] Addressing the

risk of export-

ing EVD to

the top 20 fi-

nal destinations

for commercial

flight passengers

travelling from

Guinea, Liberia,

and Sierra Leone.

The cumulative

EVD cases data for

Guinea, Liberia and

Sierra Leone was

used. This data was

made available by

the WHO.

The classical SIR model

was used to estimate the

effective reproductive num-

bers for Guinea, Liberia,

and Sierra Leone. The aver-

age weekly number of trav-

ellers were adapted from

the literature and stochas-

tically simulated with a

Poisson distribution to ac-

count for uncertainty. These

in addition to the fraction

of infected individuals in

Guinea, Liberia, and Sierra

Leone were used to esti-

mate the weekly number of

EVD imported cases using

a Binomial distribution.

The daily effective repro-

ductive number was esti-

mated to be from 0.27 to

1.32, 0.62 to 1.38, and 0.81

to 1.32 for Guinea, Liberia,

and Sierra Leone, respec-

tively. In early November

2014, the probability of

EVD importation into each

of the top 20 final desti-

nation countries reached

its peak. The restriction of

air travel resulted in a re-

duction of the risk of EVD

importation to about 67%.

The model helped in iden-

tifying the critical risk of

EVD importation, and con-

sequently assisted in the

preparedness and the alloca-

tion of resources to control

EVD.

The study assumed that the

population of the three most

affected West African coun-

tries to be homogeneously

mixed regarding air travel

ignoring socio-economic

status. Further, the model

did not account for any

other EVD importation

routes, such as roads, navy

ships, or connecting flights.
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[133] Improving public

health planning

to combat a hy-

pothetical EVD

spread in India.

The model was

quantified using

parameter estimates

that were adapted

from the literature.

The proposed framework

was a geospatial epidemio-

logical modelling. It was

simulated using a spa-

tiotemporal epidemiological

modelling software. The

epidemic model considered

was an SEIR compartment

model. This model incorpo-

rated EVD natural history

estimates from the litera-

ture and simulated the worst

case scenario.

The study described the

spatiotemporal distribution

of EVD and found that

within two years almost half

of the population of India

would have been infected

by the disease.

The combination of the

epidemic model with a

geospatial modelling frame-

work gave insights about

the spatial spread of the dis-

ease. This information is

important for public health

planners to target areas at

high risks effectively.

The study had only consid-

ered the worst case scenario

and did not account for

any interventions that may

happen during outbreaks.
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[8] Monitoring the

spatial spread of

EVD in admin-

istrative units

in Sierra Leone,

Liberia, and

Guinea.

The WHO weekly

EVD incidence, lo-

cation coordinates,

and population size

for each adminis-

trative unit (county,

prefecture, and dis-

trict) for Guinea,

Liberia, and Sierra

Leone.

The new incidences in each

administrative unit in the

three countries were as-

sumed to be generated by

locals and travellers. The

observed disease incidences

were assumed to have a

Poisson distribution, and

the EVD parameters were

estimated using a Bayesian

Markov Chain Monte Carlo

(MCMC) framework.

It was found that between

four and ten percent of

newly infected people

travelled to other districts

within the same country,

and between zero and 23%

of them travelled to other

countries.

The model only requires

disease incidence data,

which is generally avail-

able at the beginning of an

epidemic.

The estimated results de-

pend mainly on the accu-

racy of the data. Issues

such as under-reporting

were common in the 2014

WA EVD data [35]. Addi-

tionally, the model did not

account for any intervention

scenarios such as border

closure among countries,

checking points among dis-

tricts or hygienity practices.
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[89] Characterising

the spatiotem-

poral spread and

estimating key

outbreak parame-

ters of EVD.

GPS locations of

where the bodies of

200 EVD deceased

were collected for

safe burials. Infor-

mation regarding

age, sex, and the

burial time were

also included in the

dataset. The data

was collected in

Sierra Leone by the

International Federa-

tion of Red Cross.

A statistical framework was

first used in which new in-

cidences were assumed to

follow a non-homogeneous

Poisson process. The prob-

ability of a new infection

being a certain distance and

direction from the source of

infection depended only on

the pattern of movement of

the infected persons and the

density of the susceptible

individuals.

The degree of super-

spreading was estimated to

be 0.47, indicating signifi-

cantly high super-spreading.

Further, age groups younger

than 15 and older than 45

were found to be more

infectious compared to

others. The median dis-

tance of EVD spread was

found to be 0.85 kilome-

tres which might indicate a

higher transmission within

a nearby community such

as households and extended

families.

The study enabled extract-

ing vital information. It

highlighted the importance

of considering age-specific

heterogeneities and commu-

nity transmission. Further,

it ascertained the role of

super-spreaders in the trans-

mission of EVD.

The study only incorporated

EVD fatal cases. However,

it concluded age specific

infectiousness to all cases

in the community (fatal and

non-fatal).
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[45] Examining spa-

tially targeted

control measures.

The 2014 WA EVD

WHO data for

Guinea, Liberia,

and Sierra Leone

were considered for

the period of May to

October 2014.

The proposed approach was

a compartment model for-

mulated for the district and

national scales. Spatially

targeted control measures

were examined, while the

mobility of individuals was

expressed using a gravity

type parameter. Further, the

role of local intervention

(e.g., quarantine of indi-

viduals at the district-level)

and long-range intervention

measures (e.g., border clo-

sure between countries) was

evaluated.

Local interventions were

found to be mostly effective

in Liberia, while long-range

control measures were dom-

inantly relevant in Sierra

Leone. Furthermore, results

at the district-level showed

that when applying local in-

terventions at a district with

a high infection rate (0.1%

of the total cases) in Sierra

Leone, Liberia or Guinea,

a reduction of 20% on the

total EVD cases occurred in

the three countries.

The model accounted for

the disease dynamics at

the district and national

levels. It was used to pre-

dict incidences and deaths

in Guinea, Liberia, and

Sierra Leone, and to assess

spatially targeted control

measures.

The model did not account

for transmission in small

scales such as communi-

ties (neighbourhoods) and

villages. Kiskowski and

Chowell [82] have consid-

ered this scale of transmis-

sion. It will be interesting to

combine the latter approach

with the current to assess

the impact of interventions

targeted to a village or a

community.



110

Table A.1 – Continued from previous page

Ref. Research ques-

tion

Data Methodology Conclusions Advantages Limitations/gaps

[111] Evaluating the

risk of a possible

spread of EVD in

the Asia-Pacific

region and as-

sessing different

control strategies.

EVD natural history

and other model pa-

rameters were either

assumed or adapted

from the literature.

Further, Papua New

Guinea was used as

a case study. Popu-

lation density data

were obtained from

the Centre for In-

ternational Earth

Science Information

Network of Colom-

bia University.

The proposed model was

a stochastic compartment

model. The transmission

was assumed to occur in

rural and urban settings,

with the latter considered

to have higher infectious-

ness for patients. Further,

the transmission from the

deceased varied according

to the dominant religion.

This model was used to

study several intervention

strategies.

Early case detection was

found to provide a higher

decrease in the probability

of having a large outbreak.

Further, the reduction in

the transmission from the

deceased individuals was

found to have substantially

increased the probability of

controlling the outbreak.

The model considered the

transmission in rural set-

tings to be different from

urban. Crucially, high pop-

ulation density was repeat-

edly associated with high

risk of transmission in the

literature [148, 185, 134].

Additionally, the transmis-

sion from deceased indi-

viduals in the model was

assumed to vary according

to the dominant religion.

The model did not account

for vaccination. However, it

can be extended to include

this situation. One issue that

could be addressed in this

case is determining the best

distribution strategy for a

vaccine.
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[124] Addressing a

spatial hetero-

geneity of EVD

among hypotheti-

cal cities.

The estimates

that were used to

parametrize the

model were adapted

from the 2014 WA

EVD literature.

A compartment model com-

posed of susceptible S,

exposed E, infected I , re-

moved R, and deceased D

compartments was used. A

population of a hypothetical

country composed of four

cities was assumed. These

cities were connected using

bidirectional roads and a

free movement of individ-

uals. The model was anal-

ysed using an agent-based

software called PISKaS.

Both a higher degree of

connectivity and higher

proximity were connected

with higher values of EVD

growth rates.

The agent-based model

combined the topology of

connectivity among the

cities and the population

density.

The assumption of free

mobility for infectious in-

dividuals is not realistic as

some of these individuals

might be too sick to travel,

hospitalised, or quarantined.
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[154] Characterising

the early phase

trajectories of

EVD.

The daily and

weekly EVD inci-

dence time series of

the 1976 DR Congo

outbreak, the 2000

Uganda outbreak

and for several re-

gions of West Africa

during the 2014

WA EVD. The data

were obtained from

the WHO and from

historical EVD liter-

ature.

A phenomenological model

called a generalised growth

model was proposed. It was

assumed the disease inci-

dences to be proportional

to the cumulative number

of cases depending on an

EVD growth rate (r) and a

declaration of growth pa-

rameter (p). The parameters

r and p were estimated by

fitting the model to EVD in-

cidence data using the least

square methods.

While the districts of

Margibi of Liberia, and

Bo and Bombali of Sierra

Leone showed a nearly ex-

ponential growth with p

close to one, Kenema of

Sierra Leone and Bomi

of Liberia had shown

slow growth with p near

0.1. Generally, a sub-

exponential growth was

the most prevalent for the

different EVD growth pro-

files at the district-level.

This modelling provided a

useful tool to characterise

the early growth profile for

a disease, especially when

there is not enough data

to quantify mechanistic

modelling.

The study did not explore

the causes of the sub-

exponential growth.
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[131] Evaluating the

district-level spa-

tial heterogeneity

of the 2014 WA

EVD.

The WHO cumula-

tive cases and deaths

for each district in

Guinea, Liberia, and

Sierra Leone.

Several quantities were es-

timated, including the spa-

tiotemporal distribution of

the EVD growth rates and

the weekly expected num-

ber of new cases at each

district, using Bayesian

inference. Furthermore, a

compartment model was

composed, and several pa-

rameters, including the

under-reporting rate, were

estimated by fitting this

model to the EVD cases and

death data.

Several district-level param-

eters were estimated, in-

cluding the district-specific

effective reproductive. Fur-

ther, a variation was found

in the growth of the dis-

ease in various regions in

Guinea, Liberia, and Sierra

Leone.

The variability in the

strength of the outbreak

at the district-level high-

lighted the importance of

spatially-targeted control

measures.

The study did not investi-

gate the underlying reasons

for the high variability of

EVD spread at the district-

level.
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[36] Expanding the

characterisa-

tion of the early

sub-exponential

growth of an

outbreak using

the generalised

growth model

and estimating

the effective

reproduction

number (Rt).

The daily and

weekly EVD inci-

dence time series of

the 1976 DR Congo

outbreak, the 2000

Uganda outbreak

and for several re-

gions of West Africa

during the 2014

WA EVD. The data

were obtained from

the WHO and from

historical EVD liter-

ature.

The generalised growth

model was first fitted to the

first three to five disease

generations of the data.

Consequently, an EVD

growth rate (r) and a dec-

laration parameter (p) were

estimated. These estimates

and the generalised growth

model were used in the sim-

ulation of EVD incidences.

The generation interval

along with the simulated

incidences were used to

estimate Rt.

A declining trajectory of Rt

was found as the generation

interval increased. Further,

Rt was found to be sensi-

tive to small changes in the

declaration parameter p.

The effective reproductive

number was also found to

have varied across the dif-

ferent geographical areas

during the 2014 WA EVD.

The highest recorded value

of Rt was 2.5 in Montser-

rado in Liberia, whereas the

lowest was 1.03 in Bomi.

This study has implications

for vaccination trials. In the

standard SIR model, it is

established that (1 � 1
R0

)%

of the population must be

vaccinated to eradicate

the disease. However, this

fraction may be lower when

the outbreak shows a sub-

exponential initial growth

that was indicated in the

current study.

The study is a data-driven

one and that the accuracy

of the estimated parameters

depends on the precision

of the data. Issues such

as under-reporting were

common in the 2014 WA

EVD data [35].
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[60] Estimating the

risk of EVD

occurrence using

the road density

index (RDI).

The spatial locations

of the districts in

the three most af-

fected countries by

the 2014 WA EVD,

and the road network

data were obtained

from the Socioe-

conomic Data and

Applications Center

(SEDAC).

The RDI was used to deter-

mine the mobility of people

in districts. It was calcu-

lated by dividing the road

lengths (measured in kilo-

metres) by the district area

(measured in square kilo-

metres). A stochastic model

was used to understand the

relation between the risk of

EVD occurrence and RDI.

A strong association was

found between RDI and the

risk of EVD occurrence.

For example, a three per-

cent increase in the risk

of EVD infection was

recorded when the RDI

increased by 0.01.

This study used the RDI

and confirmed that the num-

ber of people living and

moving in an area to have

played an important rule

in the spread of EVD. As a

result, the RDI can be used

in future models to quantify

spatial transmission models.

It is possible that the data

that were used in the study

might have missed some

paths that connect villages.



116

Table A.1 – Continued from previous page

Ref. Research ques-

tion

Data Methodology Conclusions Advantages Limitations/gaps

[85] Assessing several

assumptions

that are used to

model spatial

transmission.

Digital maps of ad-

ministrative units in

Guinea, Liberia, and

Sierra Leone was

obtained from the

GADM database.

Other population and

mobility informa-

tion were obtained

from various other

resources includ-

ing WorldPop and

Flowminder.

The model used was a net-

work approach in which

the nodes were assumed to

be the geopolitical admin-

istrative units in the three

countries, and the edges

were assumed to represent

how strong were the poten-

tial infection routes among

the nodes. Different as-

sumptions that weight the

links among the nodes were

assumed including diffusion

and gravity-type force of

infections.

The generalised gravity

model was found to have

created the best characteri-

sation to the spatial spread

compared to other models

that used diffusion spread

or estimated the mobility

using cellphone records.

On the other hand, a lower

transmission probability

was found among countries

compared to within-country

probability.

The results of this study

outlined the importance of

geographical considerations

when modelling spatial

spread. These results have

also shown the weakness

in using diffusion spread

and cellphone data records

to estimate the mobility as

compared to the gravity-

type assumption.

The gravity-type assump-

tion that was chosen in this

study does not predict the

risk of air travel.
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[17] Characterising

the spatial spread

of EVD.

The WHO EVD

incidences for the

1995 EVD in Kikwit

city in Uganda and

the 2014 WA EVD.

A discrete spatial model

was proposed. The proba-

bility that a person at some

spatial location and point of

time becomes infected was

calculated as a function of

the spatiotemporal exposure

intensity, the proportion of

the distance between spatial

locations, and the propor-

tion of infected persons.

In addition to further as-

sumptions, these enabled

deriving a newly adjusted

spatial basic reproduction

number (R0).

The model was applied to

the 2014 WA EVD, and

although with a weak confi-

dence, it was used to predict

that as of January 2015, the

epidemic would gradually

slow down until finally be-

ing contained in April or

May 2015.

A realistic estimation for

the disease trajectories

was provided using the

newly derived R0 in the

modelling as opposed to the

classical R0 that assumes

a homogeneously mixed

population.

The exposure intensity pa-

rameter in the modelling

is different among various

places depending on the

contact structure. Deter-

mining the value of this

parameter requires expert

knowledge.
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[3] Determining the

relationship of

the size of house-

holds and the

balance of trans-

missions within

and between

households and

the spread of

EVD.

EVD natural his-

tory and the demo-

graphic parameters

for Guinea, Liberia,

and Sierra Leone

were adapted from

the literature.

The dynamics of the frac-

tion of households at each

epidemiological suscep-

tible, exposed, infectious,

and recovered (SEIR)

state was described using a

compartment model. The

transitions among these

states were modelled using

a continuous-time Markov

process. These models were

modified to account for

case identification measures

followed by quarantine of

households.

The study found that com-

munities with small house-

hold sizes require a moder-

ate level of case identifica-

tion and quarantine. On the

other hand, when the size

of households was large, ef-

fective quarantine combined

with case identifications

and isolation of the whole

household were required.

Transmission within a

household and extended

family represented the ma-

jority of transmission in the

2014 WA EVD [49]. Indeed

structuring the transmission

according to households

in this study allowed for

investigating the role of

household structure in the

spread of EVD. Further,

it allowed for assessing

household-targeted control

measures.

The study assumed the

transmission within and

between households to be

constants. However, those

who look after patients have

a higher chance of EVD

transmission as compared

to other household mem-

bers. Further, transmission

within relatives and friends

is also higher than trans-

mission with the general

community.
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[82] Characterising

the sub-national

(district) level

dynamics of the

2014 WA EVD.

EVD natural history

parameters and the

average household

size were adapted

from the literature.

The approach used was an

individual-based SEIR

network model in which

individuals were exposed

to infectiousness as a re-

sult of transmissions within

their households and neigh-

bourhoods. Intervention

measures in the network

were applied locally within

a community (neighbour-

hood) and globally in the

entire network (entire popu-

lation).

In the absence of control

measures and the initial

phase of the outbreak, an

endemic state travelling

waves of new infections

existed moving through the

population network. The

community sizes and R0

for the household and com-

munity characterised these

waves. Further, a small

wave of infectious indi-

viduals was realised when

there was a 45% epidemic

control.

The model simulation in-

dicated consistent patterns

with the district-level dy-

namics in Guinea, Liberia,

and Sierra Leone. It suc-

cessfully reproduced expo-

nential growth for the sec-

ond and the third generation

of infections followed by a

sub-exponential growth for

several subsequent disease

generations.

The model did not account

for the heterogeneity of

transmission within house-

holds where active contact

occurs with persons who

closely care for patients. In

contrast, less frequent con-

tact occurs with individuals

who do not.
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[5] Understanding

the transmis-

sion dynamics

in Guinea and

assessing the im-

pact of control

interventions.

Several datasets

were obtained from

various resources in-

cluding the Guinean

Ministry of Health,

the WHO and the

Guinean national

census. The datasets

include the weekly

EVD incidences, age

group and household

size distributions.

The approach used was a

stochastic individual-based

modelling in which trans-

mission within households,

extended families, within

healthcare units, and during

burials were explicitly mod-

elled. Control measures,

including contact tracing

and safe burials, were con-

sidered.

The relatively high pre-

paredness of the healthcare

system, the early avail-

ability of Ebola treatment

centres, and the application

of case isolation and safe

burials were found to have

limited the spread from the

initial stage. Further, con-

tact tracing was found to be

a critical factor in eliminat-

ing the disease.

The study included several

datasets and considered

EVD heterogeneity among

the different age groups and

the general population. The

study has further combined

various methodologies to

estimate model parameters.

The model did not explic-

itly account or estimated

the resistance of people

that could reduce the effec-

tiveness of contact tracing

during epidemics (people

behaviour was the im-

portant factor during the

2014 WA EVD and the

2018-2020 EVD of the DR

Congo [136]).
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[102] Analysing EVD

viral data and

exploring how

anti-Ebola virus

therapies, in-

cluding ZMapp,

TKM-Ebola,

and Favipiravir

restrain Ebola

virus replication

and reduce EVD

infection.

The number of Ebola

virus RNA copies

per millilitre in a

patient serum (viral

load) of 18 EVD

survivors and 27

fatalities from the

Uganda outbreak of

the year 2000. This

data were adapted

from the literature.

Three compartments com-

posed of susceptible target

cells, infected cells, and

viral load were assumed.

The susceptible compart-

ment was partitioned into

potential target cells and

susceptible target cells,

and the infected into non-

productively infected cells

and productively infected

cells. The model was fitted

to the fatal and non-fatal

case data. The effect of

anti-Ebola virus therapies,

including anti-body based,

siRNA-based, and nucleo-

side analog-based therapies,

was assessed.

High viral loads in fatalities

were preserved by recruit-

ing a large number of po-

tential target cells. For the

fatal cases, R0 was found

to be approximately six,

while that of survivors was

approximately 2.8. Further,

it was found that combining

siRNA-based and nucleo-

side analog-based therapies

with an 80% inhibition rate

was more likely efficient for

otherwise fatal cases even

if it was started four days

after the onset of symptoms.

For non-fatal cases, mono-

therapies were found to be

sufficient.

The study employed vi-

ral data to estimate critical

immunological and virolog-

ical parameters. Further, it

assessed the effects of ex-

perimental treatments. The

findings improved knowl-

edge about Ebola virus

spread within-host and de-

termined optimal use of

therapies.

The model did not account

for between-host EVD

spread and has not been

used to explore EVD trans-

mission and intervention

related questions at the pop-

ulation scale.
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[67] Analysing Ebola

viral load dataset.

An EVD viral shed-

ding data were

adapted from the

literature. The data

were stratified into

high and low vi-

raemic disease path-

ways for a sample of

hospitalised Ebola

cases for the 1995

DR Congo outbreak.

The proposed method was

a compartment model com-

posed of three stages, start-

ing with an initial viraemia

followed by a second stage

which consists of a high and

a low viraemia and a final

stage that is death or recov-

ery. Model parameters were

estimated using a Bayesian

approach.

The mean of the infectious

period was found to be 5.3

days for a low viraemia

and 6.8 days for a high

viraemia.

The model employed a

modern a Bayesian Markov

chain Monte Carlo method,

reproduced the trends of the

data, and estimated some

natural history parameters

of EVD.

The study assumed the ba-

sic reproduction number to

be fixed while this might

generally be slightly dif-

ferent depending on the

contact structure and mix-

ing patterns.
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[117] Understanding

the effect of

the within-host

pathogen dy-

namics into the

between-host

dynamics.

Model parameter es-

timates were adapted

from the literature.

The within-host viral load

dynamics was modelled

using a logistic model. It

was embedded with an age-

specific contact network

to express transmission

between individuals. A

variation of the disease sus-

ceptibility between different

age groups and the initial

viral load exposure was

considered.

The overall estimate of

R0 was found to be 1.43.

However, this estimate was

different among different

age groups, with the highest

being 4.7 for the age group

of 10 to 14 years old. Mass

vaccination of 85% cover-

age was found to eradicate

the disease if it was started

between five months be-

fore and one week after the

outbreak.

This study considered a

multi-scale aspect of mod-

elling, connecting within-

host and between-host

scales. It allowed for as-

sessing the timing and the

effectiveness of vaccination

strategies and indicated the

importance of considering

EVD heterogeneity among

different age groups.

The study did not consider

heterogeneity regarding

spatial locations. However,

people within-households

and those located close to

EVD patients such neigh-

bours were believed to have

a higher transmission as

compared to other commu-

nity members [89].
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[11] Determining

whether the

effect of en-

vironmental

transmission of

EVD, including

poor hygienic

practices and the

consumption of

contaminated

bush meat, can

explain the re-

occurrence of

EVD in Africa.

Model parameters

were either assumed

or adapted from the

literature.

A compartment model was

considered in which envi-

ronmental transmission was

considered as one compart-

ment, and the recruitment

of such transmission was

assumed to be constant.

Further, infectious living

and deceased individu-

als were assumed to shed

infectiousness in the envi-

ronment. The existence of

non-negative solutions and

the stability analysis were

established.

In the case of a virus-free

environment, the number of

infected individuals either

became extinct or constant

(endemic) in the long run

depending on the value of

R0. In the case of a non-

virus-free environment, a

constant number of infected

individuals in the long run

was found. This number

was invariant to any change

in the initial number of

infectious individuals when

there was no virus shed by

the contagious individuals

and the deceased in the

environment.

The study focused on

environment-to-humans-

to-environment transmis-

sion routes, and the the-

oretical and numerical

analyses were carefully

conducted. The existence

of an endemic equilibrium

with environmental trans-

mission could explain the

re-occurrence of EVD in

Africa.

The model was relatively

simple. It did not account

for realistic stages of EVD

infectiousness, including

the incubation period. Fur-

ther, the population was

assumed to be homoge-

neously mixed. Also, the

model considered the trans-

mission rate to be constant;

however, in reality, this var-

ied depending on the level

of control intervention and

people’s perception of the

disease.
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[10] Understanding

the spread of

EVD and predict-

ing future EVD

outbreaks.

EVD natural his-

tory parameter val-

ues utilised in the

modelling were

contained in the

literature.

A deterministic compart-

ment model was considered.

It described the interplay of

EVD transmission within

and among three essential

populations: fruit bats, non-

human primates and other

animals, and the human

population. Furthermore,

a new compartment com-

posed of the free virus shed

in the environment by in-

fectious individuals was

considered.

Non-negativity and bound-

edness of the solutions of

the full model were estab-

lished. Further, the basic

reproduction number R0

was found for the disease-

free equilibrium of the full

model, and global stability

analysis of this equilibrium

was established.

The introduced paradigm

was a novel model that ac-

counted for the spread of

EVD in a complex life ecol-

ogy involving the reservoir,

the non-human primates

and bush animals, and the

human population.

The study did not consider

EVD spread among differ-

ent geographical locations.

This is particularly impor-

tant consideration since

EVD spillover usually oc-

curs in remote areas and

spreads to urban regions

with the mobility of people.
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[134] Predicting the

timing and lo-

cation of EVD

spillover events.

Several datasets

were integrated

including EVD

spillover origin,

timing, spatial pre-

dictors and other

triggering candi-

dates. These datasets

were obtained from

various resources

including the WHO

and the Columbia

University Center for

International Earth

Science Information

Network.

The region of interest in the

study was the part of Africa,

which receives over 500

millimetres of rainfall every

year. A statistical modelling

approach was used for asso-

ciating EVD spillovers with

spatiotemporally changing

covariates such as rainfall,

vegetations, and the size of

the human population.

Annual EVD spillover risk

peaks were found in Cen-

tral Africa, while at some

months of the year, new ar-

eas were found to be at high

risks, including East Africa

and Madagascar. Further,

the risk of EVD spillover

was found to be the lowest

in the driest months of the

year, while this risk peaks

in the transition periods be-

tween wet and dry seasons.

An increase in the human

population was also found

to increase the risk of EVD

spillover.

This study associated new

areas that had not been

viewed previously to have

a risk of EVD spillover,

including East Africa and

Madagascar.

The study did not consider

diet and hygiene factors,

and the eating of contam-

inated bush meat when

predicting the spread of

EVD.
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[86] Investigating the

role of socio-

demographic

factors in the

spread of EVD.

WHO data on the

weekly EVD inci-

dences at the subna-

tional level in Sierra

Leone, Guinea, and

Liberia.

EVD growth rates were es-

timated for the early stage

of the outbreak using a gen-

eralised linear mixed-effects

statistical model (GLMM).

Based on this estimation

and the reported serial in-

terval distribution, the basic

reproduction number R0

was derived. An association

between socio-demographic

factors and R0 was mea-

sured using a uni-variable

linear regression model.

The spatial distribution of

the disease at the districts,

préféctures or counties with

the highest transmission

rate in Liberia, Guinea,

and Sierra Leone, respec-

tively, appeared to cluster

regionally, whether there

is a national border or not.

A positive association was

also found between R0 and

urbanization factors such as

high population density and

high wealth index.

The model was used for es-

timating the growth rates at

the sub-national level in the

three countries simultane-

ously, unlike some models

(e.g., [57]) that consider

each outbreak in a region

separately.

Early-stage EVD data used

in this modelling were gen-

erally unreliable, under-

reported, or reported with

delays [32]. Further, the

model has assumed the pop-

ulation of the sub-national

regions to be homoge-

neously mixed.



128

Table A.1 – Continued from previous page

Ref. Research ques-

tion

Data Methodology Conclusions Advantages Limitations/gaps

[185] Investigating

some demo-

graphic and

environmental

predictors of

EVD spread.

EVD confirmed

cases data were

obtained from the

WHO. Demographic

and environmental

data were obtained

from demographic

and health surveys

and satellites.

A Bayesian hierarchical

Poisson model was used to

determine EVD risk and to

assess the spatial variability

described by the selected

predictors.

EVD risk was associated

with increases in rain-

fall, the area that urban

land covers, the number of

households not owning a

radio, and the number of

years of education.

This study suggested envi-

ronmental and population-

level characteristics associ-

ated with EVD.

The causative relations

between the identified asso-

ciations and the human-to-

human spread of EVD with

a particular focus on how

the human’s mobility and

healthcare accessibility are

affected by these risks were

not studied.
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[148] Systematically

investigating the

demographic and

socio-economic

predictors of

EVD at the sub-

national level in

Guinea, Liberia,

and Sierra Leone.

Cumulative reported

cases data at the sub-

national level of the

three countries were

obtained from the

WHO.

The early stage of EVD

growth rates at the sub-

national level in the three

countries was estimated

using polynomial, logis-

tic, and exponential growth

models. These rates and

the epidemic size were then

associated with various

socio-economic and de-

mographic features using

regression models.

A positive association was

found between areas of a

higher level of education

and higher severity of EVD.

This was explained by also

finding a positive associa-

tion between a high severity

of the epidemic and other

factors that are strongly

associated with education,

such as urbanicity, wealth,

and population density.

Three different models

were used to determine

the best fit for the EVD

growth rates. Furthermore,

the factors which were

found to be associated with

the severity of EVD can

be used in the future by

countries to understand the

spread of EVD in real-time

and to determine areas of

high risks.

The data used contained

case uncertainty due to re-

source limitations in West

Africa and the resemblance

of EVD symptoms with

other diseases such as

Malaria [32]. Further, it

contained a delay between

the time a case was found

until it was documented

nationally first and by the

WHO afterwards.
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[62] Forecasting fu-

ture reoccurrence

of EVD.

EVD cases and death

data for Guinea,

Liberia, and Sierra

Leone were used in

the modelling. The

data were obtained

from the WHO.

A simple SIR model was

proposed in the absence of

intervention. The model

was extended with detailed

compartments, and differ-

ent types of intervention

measures and transmission

routes were considered.

In the absence of interven-

tion measures, the model

was used to predict a high

mortality rate for the out-

break and to forecast the

epidemic to reoccur in

2035. Then it will continue

after eight to nine years. As

a result, mass vaccinations

were proposed.

The SIR model in the study

accounted for vitality rates

that many models over-

looked. This consideration

is essential in modelling

a disease that lasts for an

extended period, such as

the 2014 WA EVD and

the 2018-2020 DR Congo

outbreak [11].

The study predicted reoc-

curance of EVD. However,

it is not simple to predict

EVD reoccurrence with-

out accounting for factors

that contribute to the prob-

ability of EVD spillover.

These include environmen-

tal changes, urbanicity, and

the consumption of bush

meat [134].
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[95] The impact of

media coverage

on controlling

the spread of

EVD and the

role of bats on

EVD spillover on

humans.

EVD reported cases

and deaths for

Guinea, Liberia, and

Sierra Leone were

obtained from the

Centers for Disease

Control and Preven-

tion (CDC) website.

Model parameters

were either adapted

from the literature or

estimated.

A compartment model was

used. The model was com-

posed of susceptible (S),

exposed (E), quarantined

(Q), infectious (I), hospi-

talised (H) and deceased

but not buried (F ) compart-

ments. A Markov Chain

Monte Carlo simulation

was used to fit the model

to the cumulative case and

death data and for searching

the optimal values for the

estimated parameters.

It was found that media

coverage to have signifi-

cantly reduced EVD peak-

ing time and value and that

infected bats might have

likely been the source of

the EVD spillover. Further,

increasing the number of

daily captured infectious

fruit bats only reduced the

peak timing and not the

peak value.

The model had successfully

combined exponentially

declining transmission rates

resulting from people con-

sciousness about the spread

of the disease and the likeli-

hood of EVD spillover from

infected bats. It utilised

available EVD cumula-

tive case and death data to

estimate the community,

healthcare, and the bat rate

of infection.

The bats’ spillover rate was

assumed to be zero during

wet seasons. However,

numerous studies (e.g.,

[148, 185, 134]) associated

wet seasons with enhanced

risk of EVD spillover.
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[48] Characterising

the spread of

EVD and un-

derstanding the

impact of con-

trol interventions

in the 2014 WA

EVD in Sierra

Leone.

A database of EVD

suspected and in-

fected cases in Sierra

Leone from May

2014 to September

2015 was obtained

from the Sierra

Leone Ministry of

Health and Sanita-

tion (SLMHS). The

database also con-

tained individual

information includ-

ing age, gender,

residential address,

and EVD onset date.

EVD cases were mapped

to their geographical loca-

tions, and statistical meth-

ods were used to analyse

the spatiotemporal tra-

jectories. Poisson mod-

elling was used to model

case importation and local

transmission by adjusting

socio-demographic and in-

tervention factors. Chain

binomial distribution was

used to model households’

transmissibility (i.e., the

potential infection of an

index case at a household

to another member in the

household).

The disease invasion at

chiefdoms was found to

be remarkably correlated

with the density of the pop-

ulation, the closeness of

treatment centres, and the

transportation network. At

the chiefdom level, the sec-

ondary infection caused by

an infected person per week

was found to have been re-

duced by 65% at the end

of December 2014, and the

household transmissibility

was also decreased by about

80% after December 2014.

The study integrated rich

EVD data available for

an extended period. It ac-

counted for different inter-

vention phases. Addition-

ally, this study was used to

model household transmis-

sibility and to analyse the

spatiotemporal dynamics

of EVD. Furthermore, the

study identified vital factors

contributing to the spread

of EVD and assessed the

impact of control interven-

tions.

The study has not inves-

tigated whether age have

played an important factor

in the spread of EVD. The

EVD patient dataset used in

the study can be adapted to

explore this issue.
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[158] Analysing EVD

dynamics in

Guinea and

Sierra Leone.

The WHO cumula-

tive EVD reported

cases for the 2014

WA EVD in Guinea

and Sierra Leone.

Different stages of EVD

such as incubation, in-

fectiousness, hospitali-

sation were considered

as a different age of dis-

ease since infection, and an

age-structured model was

applied. Removal rates due

to isolation or hospitali-

sation, unreported disease

mortality, and recovery

were connected with epi-

demic outcomes. Further,

the impact of these rates

was quantified.

It was found that disease

reduction in Guinea and

Sierra Leone was caused

by an increased early hos-

pitalisation or isolation of

cases. The latter was also

connected with an increase

of case identification or

contact tracing.

The study considered a

continuous variable for the

age of disease since infec-

tion which most studies

approximate using disease

compartments. Therefore,

the study accounted for all

types of infection including

sexual transmission result-

ing from EVD survivors

and post-death infection.

The study considered the

entire population to be

homogeneously mixed.

However, EVD is gener-

ally highly heterogeneous

depending on the contact

structure and the population

density [3, 82]. On the other

hand, different types of

functions can be employed

for the removal rates to

accommodate new applica-

tions, for example, studying

the impact of vaccinations.
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[118] Characterising

the spread of

EVD in an im-

perfect quaran-

tine situation.

Model parameters

were either adapted

from the literature or

assumed.

A deterministic compart-

ment model was proposed.

The model accounted

for quarantine and non-

quarantine states. It was

used to study EVD in the

community and healthcare

settings. Individuals were

assumed to be suscepti-

ble, suspected, probable,

infected with either early

dry or late wet stages, and

removed due to recovery or

EVD death.

A threshold parameter R0

was derived as a function

of the fraction of suspected

cases who will be quaran-

tined. When this fraction

was zero, the infection was

high and occurred in the

community. When all cases

were quarantined, the in-

fection only occurred in

treatment centres. An en-

demic equilibrium existed

when R0 > 1 whose size

was determined by the mag-

nitude of R0.

This study provided a

comprehensive model in

a complex-life environment

in which quarantine was

not efficient. It accounted

for those individuals who

escaped quarantine and

returned at a later stage.

The study did not provide a

complete treatment on de-

termining the most crucial

parameters in the spread of

the disease and the stochas-

tic effects in the disease

growth.



135

Table A.1 – Continued from previous page

Ref. Research ques-

tion

Data Methodology Conclusions Advantages Limitations/gaps

[88] Understanding

the effects of

infectiousness

heterogeneity

in the spread of

EVD.

The observed EVD

cases in Guinea,

Liberia and Sierra

Leone were used in

the study. These data

were collected by the

health authorities in

those countries.

The infection rates were

assumed to have differ-

ent distributions including

constant, scale-free, Gaus-

sian, uniform and normal

distributions. The rates of

infection were coupled with

the standard SIR model.

The SIR model was fitted

to the EVD data in the three

countries.

In Liberia and Sierra Leone,

the scale-free and the Gaus-

sian distributions were

found to be more favoured

in fitting the data compared

to the uniform distribution.

In Guinea, on the other

hand, all distributions fit-

ted the data better than the

constant distribution.

The study assumed people

to have different tendencies

to be infected. For exam-

ple, individuals who closely

care for patients have a

higher chance of been in-

fected compared to other

members in a community.

The study assumed the pop-

ulation in each country to

have the same distribution

for the rate of infection.

However, EVD trajectories

were different among the

different regions in each

country depending on the

contact structure and mix-

ing patterns [154, 82].
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[129] Characterising

the spread of

EVD.

The WHO EVD data

of Liberia for the

period of April to

December 2014.

The approach used was an

activity-driven model with

a time-varying network

in which the set of nodes

represented individuals,

and the edges represented

contacts between these

individuals. Individuals

were classified into differ-

ent disease compartments.

The model was fitted to

the WHO data, and used to

assess time-varying inter-

vention measures.

The model made a one-

year projection. Further,

it was deduced that the

earlier application of the

intervention policies would

produce a more significant

reduction of the infected

cases and the period of the

outbreak.

The study accounted for

social and behavioural ac-

tivities in the network of

contacts using the function

of activity potentials.

The study did not account

for or describe spatial loca-

tions of contacts explicitly.
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[144] Proposing a hy-

brid stochastic-

deterministic

approach for esti-

mating the basic

reproduction

number.

The cumulative and

incidence cases data

of the 2014 WA

EVD were obtained

from the WHO web-

site. Other model

parameters were ei-

ther assumed or also

adapted from the

literature.

A compartment model of

the susceptible-exposed-

infectious-recovered-

deceased type was used.

A stochastic version of the

model was simulated using

the Gillespie framework fo-

cusing only on realisations

that produce more than 50

cases.

The basic reproduction

number for Guinea, Liberia,

and Sierra Leone were

found to be 1.24, 2.06, and

1.71, respectively. The 95%

confidence interval to these

values were respectively

(1.04, 1.42), (1.93, 2.27)

and (1.40, 1.82). Further,

it was found that the dif-

ference between fitting to

cumulative or incidence

cases to be negligible.

The study obtained the con-

fidence interval of R0 and

suggested including process

noise to create a narrower

confidence interval.

The structure of the model

did not include realistic

EVD differences in trans-

mission among the popu-

lation. Some of these were

recorded to be variations

among the different dis-

tricts [154, 131, 36], age

groups [5], and community

structure [82].
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[55] Analysing the

2014 WA EVD

in Sierra Leone.

The EVD incidence

data that was utilised

in the modelling

were adapted from

the Ministry of

Health and San-

itation of Sierra

Leone. The data

were reported for the

period of May 2014

to January 2015.

A discrete-time Markov

chain structure of EVD

transmission was con-

structed. This structure was

associated with a set of or-

dinary differential equations

when the population was

large. A Bayesian inferen-

tial framework was used to

estimate model parameters.

The model accounted for

under-reporting in the data

using the negative binomial

distribution.

Model parameters, includ-

ing the incubation period,

EVD onset to recovery,

onset to death, and the ef-

fective reproductive number

were estimated. The latter

was found to be robust to

under-reporting.

The study presented an im-

portant stochastic tool for

understanding EVD dynam-

ics. It enabled estimating

the effective reproductive

number while accounting

for under-reporting.

The model did not account

for transmission in the

healthcare context nor the

variation of transmission

among the different regions

in Sierra Leone.
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[125] Estimating EVD

spreading param-

eters.

EVD onset of trans-

mission and out-

comes data that

were used were re-

ported in various

online news media

sources in Nigeria

and Liberia.

An online search was con-

ducted about recorded EVD

reports, and consequently,

a transmission chain was

built. Model parameters

were estimated and com-

pared with estimates from

other studies.

The mean incubation period

and serial interval were

estimated to be 12.5 days

and 19.4 days, respectively.

The study used news media

reports. The advantage of

using these data is that they

might identify vital and

detailed information related

to the transmission which

might otherwise become

undetected. Further, these

data are often published in

near the actual time.

An online news media re-

port where the study data

were obtained might in-

clude misinformation or

disclosed personal details of

individuals. Further, these

online resources might be

altered without prior notice.
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[137] Analysing EVD

in Sierra Leone

for the period

of 21 December

2014 to 17 April

2015.

The WHO 2014 WA

EVD data for Sierra

Leone.

The model used was a small

world network and agent-

based approach in which

individuals and their daily

social interactions were

simulated. The transition

between the different epi-

demic states was mod-

elled using a discrete non-

Markovian random process.

Model parameters were es-

timated by fitting the model

to the WHO reported data

using optimisation methods.

The simulation revealed

a decline in the epidemic

trajectories from 21 Decem-

ber 2014 to 18 February

2015 compared to previ-

ous months. The effective

reproductive number Rt

was estimated to be 0.7 in

this period. However, that

increased to 1.98 in the next

two months. Further, the

model projected that the

epidemic would increase

through July 2015.

The framework combined

agent-based modelling

and complex network ap-

proaches simultaneously.

Furthermore, various pa-

rameters were evaluated,

and an accurate short term

forecast was made.

The strength of these types

of methodologies usually

depends on the accuracy

of the data supplied in the

modelling. Issues such

as under-reporting were

common in the 2014 WA

EVD data [35].
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[151] Estimating EVD

emergence prob-

ability and sec-

ondary incidence

cases when a

patient with un-

detected EVD is

hospitalised.

The contact data be-

tween patients and

healthcare workers

were adapted from

the literature. This

dataset was com-

posed of 200 patients

and 46 healthcare

workers, including

27 nurses and 11

physicians.

A stochastic compartment

model was proposed. The

studied population was di-

vided into patients, nurses,

and physicians. The impact

of varying the transmission

probability per contact, the

daily number of contacts,

and the duration of EVD

non-specific symptoms

were studied. The Gille-

spie algorithm was used to

simulate the model.

The emergence probability,

defined to be the number

of simulations having a

minimum of one secondary

incidence case divided by

the whole number of sim-

ulations, was estimated.

As the transmission proba-

bility increased, the emer-

gence probability moder-

ately increased from 7%

to a plateau at about 84%.

Further, nurses were re-

marked to have a higher

EVD emergence probability

as compared to physicians

or non-EVD patients.

The model was used to

assess the risk of EVD

occurrence at hospitals in

areas that are un-associated

with EVD risk. Crucially, it

was assumed EVD patients

to be in the dry phase, and

either misdiagnosed or

under-diagnosed.

The study did not assume

any indirect transmission

that could occur, for exam-

ple, from poor cleaning or

ineffective decontamination

in hospitals. Further, it was

assumed isolation efficacy

to be 100% as soon the pa-

tient was diagnosed with

EVD. However, achieving

such an efficacy might be

an overly optimistic as-

sumption given the high

contagiousness of EVD.
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[140] Proposing an

alternative ap-

proach to the

nonlinear opti-

misation method

of solving the

problem of fitting

model parame-

ters to data.

The WHO EVD data

of Sierra Leone and

Liberia for the 2014

WA EVD.

A compartment model of

the SEIR type was pro-

posed. Consequently, a

linear Volterra-type inte-

gral equation was derived

from the model equations.

The solution to the integral

equation was projected into

a finite subspace spanned

by Legendre polynomials,

and three regularizing al-

gorithms were compared to

assess the reliability of the

forecasts.

It was found that the ap-

proach can produce a mod-

erate prediction of the im-

pact of the epidemic. For

example, using the modified

truncated singular value

decomposition algorithm

for two districts in Sierra

Leone, the transmission rate

was found to adequately

been reduced in urban set-

tings. Still, this decline

in infections was found

to be more erratic in rural

regions.

The study considered a

time-varying transmission

rate and employed a math-

ematical method to avoid

the problem of parameter

identifiability that might

result from limited data of

an emerging disease.

The compartments assumed

in the model were relatively

simplified stages for EVD

transmission. For example,

it did not account for post-

death infection of EVD nor

sexual transmission from

male survivors.
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[18] Evaluating some

common EVD

assumptions

made in mod-

elling, including

the homogeneous

mixing.

The WHO cumula-

tive EVD incidences

at the sub-national

level in the major

West African coun-

tries affected by the

2014 WA EVD. Data

on the international

migration and pop-

ulation information

were adapted from

the Flowminder and

the Geohive datasets.

The cumulative EVD cases

at the administrative level

were modelled using logis-

tic growth. A simple com-

partment model composed

of susceptible, decreasingly

infectious, and recovered

compartments was used

to explain the underlying

reasons for the EVD tra-

jectories produced by the

logistic growth. A statistical

method was also used to un-

derstand whether all EVD

strains can have a uniform

transmissibility.

It was found that EVD

models with population-

density dependent transmis-

sion rates might accurately

predict the initial spread.

Further, initial growth

was found to decrease as

the population density in-

creased which might be

caused by an improved

healthcare system in ar-

eas with high population

density. Further, it was con-

cluded that it is appropriate

to assume all EVD strains

to have the same probability

of occurrence.

This study has simultane-

ously assessed homoge-

neous mixing assumption

and studied whether all

strains have an equal chance

of occurrence.

The study did not account

for any control measures

that might reduce or block

the chance of the disease

spread in the initial stage of

an outbreak. For example,

the behaviour of the pop-

ulation might show early

positive change of avoiding

infection if the population

had learnt about the disease

from a previous outbreak

[94].
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[100] Proposing an

alternative

approach to

the standard

SEIR modelling

method using a

discrete stochas-

tic Erlang type

modelling.

The 2014 WA EVD

incidence data for

Liberia for a period

of 74 weeks starting

from the initial out-

break in March 2014

were used in the

modelling. The data

were obtained from a

previous study.

A modified SEIR model in

which each of the E and I

compartments were divided

into sub-compartments

was presented. A discrete

stochastic version of this

model was formulated with

some additional assump-

tions about the exposed and

infectious compartments.

The proposed models were

fitted to the data, and the

results were compared to

the classical SEIR mod-

elling forecast. The pro-

posed models were found

to utilise a substantially

longer computational time

as compared to the classi-

cal SEIR. However, they

offered a more accurate

description of epidemic

dynamics.

The study included real-

istic stages of residence

time at the disease compart-

ments. It also accounted for

stochasticity, which plays a

significant role in the initial

phase of epidemics since all

outbreaks begin with small

cases.

The modelling only consid-

ered the early exponential

phase of an epidemic and

did not assume any inter-

vention scenario. Further,

it was assumed the popula-

tion to be homogeneously

mixed, and only considered

transmission from living

persons.
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[183] Understanding

the effects of

the individual

behavioural

changes on EVD

trajectories.

The WHO EVD

reported data from

17 June 2014 to 3

May 2015 for the

most serious regions

during the 2014

WA EVD including

Guinea, Liberia and

Sierra Leone were

used.

A phenomenological model

was fitted to the hospital

notifications data to esti-

mate behavioural changes.

Further, the rate of be-

havioural changes was im-

plemented to four different

EVD force of infection in

a susceptible-infectious-

recovered-deceased com-

partments model. The

impact of the force of in-

fections on behavioural

changes was studied.

The force of infection that

includes an exponentially

declining trajectories of

EVD incidences as a re-

sult of behavioural changes

was found to create the

best model fitting and pre-

diction. Further, a larger

rate of behavioural change

was found to have caused a

more significant reduction

in the number of hospi-

tal notifications, including

infected cases and deaths.

This methodology com-

bined behavioural changes

and a population-based

compartment model that

enabled an understanding of

how individuals behaviour

could affect the spread of

the disease.

The force of infection that

created the best fitting and

prediction can be adapted in

future studies when data in-

clude behavioural changes.
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[136] The impact of

social and be-

havioural factors

in the spread of

EVD.

The WHO num-

ber of EVD inci-

dences and deaths

in Guinea, Liberia,

and Sierra Leone.

Another dataset used

was the Twitter news

data about EVD.

A systems dynamics ap-

proach was used in the

modelling. It created causal

loops for social and be-

havioural aspects, including

quarantine, perception of

EVD death, and situation

awareness. It included pub-

lic attention by incorporat-

ing twitter data about the

disease news as a measure

of the psychological and

behavioural changes.

The model simulation

showed that the increase

in the rate of quarantine

over time to have resulted

from the rise in the situation

awareness and practising

of safe burials. However,

public attention did not

have a significant impact

on reducing the spread of

EVD.

This modelling approach

followed the behavioural

aspect of EVD spread in

detail in causal loops, and

identified important factors

that impact the spread of the

disease.

The spread of EVD in the

three countries was not sim-

ilar due to different health-

care system preparedness

[35]. Therefore, it would

have been more practical if

the model was used to study

the dynamics of EVD in

each of the three countries

differently.
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[27] Exploring two

methods of fore-

casting EVD

trajectories.

A synthetic EVD

data were used. This

data was produced

for the purpose of

the Program of Re-

search and Policy

for Infectious Dis-

ease Dynamics of

the United States

(RAPIDD) EVD

forecasting chal-

lenge.

Two modelling approaches

were used. The first model

was a stochastic compart-

ments model with a general

community and healthcare

workers. The epidemic pa-

rameters in this model was

estimated using a Bayesian

approach. A generalised re-

newal equation (GRE) with

a latent variable was used

in the second model. The

latter used a Markov Chain

Monte Carlo method for the

fitting.

Models were fitted to the

data, and parameters were

estimated. Fitting the com-

partment model to the data

resulted in double bumps in

the disease incidence trajec-

tories. This was explained

to emerge from a spatial

spread in which one sub-

epidemic has reached its

maximum in a region while

another is still growing in

another area.

The compartment model

used a population that was

structured into a general

community and health-

care workers. This allows

for identifying EVD inci-

dences in each group and

understanding the impact of

targeted interventions. The

GRE model, on the other

hand, uses few parameters

to be identified from the

data.

The study did not account

for a spatial structure in the

modelling, while the data

indicated the existence of

spatial spread.
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[56] Analysing EVD

data in actual

time.

The RAPIDD EVD

synthetic data.

A semi-mechanistic model

was proposed. The model

was described using a com-

partment modelling frame-

work, and transmission

between individuals was

assumed to follow a random

walk. The model was fitted

to the data using a Bayesian

approach.

The model was able to

reproduce the data trajecto-

ries. Individual variability

in trajectories was found de-

pending on the transmission

rate and the stochasticity of

the observed incidence.

The study made use of EVD

natural history parameters

from previous outbreaks.

Additionally, it did not

describe detailed underlying

mechanisms by which the

disease variables are linked.

The latter is useful when

models do not get enough

data to quantify the detailed

underlying mechanisms.

The model made only a

short time forecast of inci-

dence and did not make a

long term prediction for the

final size, the peak size, or

the peak timing.
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[147] Forecasting the

spread of EVD

using a phe-

nomenological

model.

The RAPIDD EVD

synthetic data.

A simple phenomenologi-

cal model was proposed in

which new incidences were

assumed to be proportional

to the basic reproduction

number (R0) and inversely

proportional to a control

intervention measure (d).

The disease incidences were

assumed to follow a Poisson

distribution. The maximum

likelihood approach was ap-

plied for the model fitting,

and consequently, R0 and d

were determined.

It was found that model

estimates made later in

the epidemic, in three of

the four RAPIDD data

scenarios, approximated

the true peak week more

closely. Further, the model

performance was found

to be among the best 60%

participant models in the

RAPIDD EVD forecasting

challenge.

The approach used was rel-

atively simple and had few

assumptions unlike some

mechanistic approaches

which include many param-

eters and assumptions. The

latter might face identifia-

bility issues in the case of

limited data.

The study did not make ef-

fective use of the detailed

data provided in some of

the RAPIDD data scenarios.

Further, the study did not

correctly predict the epi-

demic peak in Scenario four

of the RAPIDD data.
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[7] Analysing the

EVD RAPIDD

synthetic data

and forecast-

ing the disease

trajectories.

The RAPIDD EVD

synthetic data.

The model proposed was a

discrete-time and discrete

states, stochastic compart-

ment model. The reproduc-

tive number was modelled

as a multiplicative normal

random walk, and new in-

fection was assumed to

follow a Poisson distribu-

tion.

The study predicted the

timing and sizes of the

peak incidences before one

month. Furthermore, the

model projected a reason-

ably precise final outbreak

size 30 to 40 weeks earlier.

The model was relatively

simple and required less

computational power. Fur-

ther, it had a strong overall

performance and used fewer

parameters.

The model was used to

forecast EVD spread at the

national level and did not

account for heterogeneity

in transmission among dif-

ferent districts. Further, the

model did not account for

variation among different

transmission routes, in-

cluding within-healthcare,

within-households, and

community transmissions.
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[123] Predicting the

size and trajecto-

ries of EVD.

The RAPIDD EVD

synthetic data.

A logistic model that as-

sumes an early exponential

growth was used to forecast

EVD spread. These predic-

tions were compared with

another phenomenologi-

cal model -the Generalised

Richard’s (GR) model - that

assumed a varied growth

from exponential to sub-

exponential.

The logistic model was

found to have underesti-

mated the peak size, the

timing of the peak, and the

final size. However, the GR

model performed well re-

garding disease forecast -

predicting a range of epi-

demic dynamics profiles

(sub-exponential to expo-

nential).

The proposed phenomeno-

logical models were rel-

atively simple and do not

contain many model as-

sumptions as compared to

compartment models.

Phenomenological models

used in the study do not

make effective use of natu-

ral history parameters that

are obtained from previous

outbreaks as compared to

mechanistic models.
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[58] Reviewing the

performance of

the 2014 WA

EVD EbolaRe-

sponse model

[106] forecasts

and suggesting

a further devel-

opment on the

model.

The RAPIDD EVD

synthetic data.

The EbolaResponse model

[106] was a mechanis-

tic Markov chain model.

Some modifications were

made. For example, the

transmission categories

were slightly modified

to transmission at Ebola

treatment centres (ETCs),

transmission in the com-

munity while practising

safe burials effectively, and

transmission in the com-

munity without practising

a safe burial or any other

control measure.

To control EVD, it was

found in the modified

model that more than 80%

of EVD cases were needed

to be hospitalised at ETCs

or effectively isolated at

homes and safely buried if

they are deceased. On the

contrary, the original model

was used to determine this

figure to be 70%.

The EbolaResponse tool

was modified to facilitate

the applicability to the

RAPIDD challenge data.

This modification provided

a comparison of the model

performance corresponding

to other models that were

used to model the 2014 WA

EVD.

The EbolaResponse tool

and its modified version

were not able to make a

long term prediction, nor

were they able to spatially

disaggregate EVD transmis-

sion.
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[153] Forecasting the

spread of EVD

using an agent-

based approach.

The RAPIDD EVD

synthetic data.

A data-driven agent-based

approach was used. The

framework accounted for

synthetic population, so-

cial contact network, and

an SEIR compartment

structure. Model calibra-

tion was proceeded using

optimisation and Bayesian

approaches.

The model showed an ex-

cellent performance in the

data-rich scenario of the

RAPIDD challenge. In this

case, the model findings

included epidemic timing,

the final size of infected

individuals and R0.

This modelling described a

detailed agent-based mech-

anistic framework and used

rigorous approaches for

model calibration.

The study did not account

for spatial transmission. On

the other hand, the mod-

elling structure has utilised

many parameters and quan-

tifying these parameters

might lead to identifiability

issues in the case of limited

data.
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[99] Estimating the

time evolution of

EVD incidences.

The infections and

the deceased individ-

uals time series for

Guinea, Liberia, and

Sierra Leone. The

WHO recorded this

data during the 2014

WA EVD for the pe-

riod of March 2014

to January 2015.

The modelling used was a

chaotic theory framework

that obtained models that

can reproduce global solu-

tions by only using EVD

time series. Model simula-

tions were compared with

the observed data to eval-

uate the accuracy of the

predictions.

The model was used to

simulate the trajectories

of the data and to predict

the epidemic for a short

period while assuming the

behaviour of the population

to have not changed in such

a period.

The modelling framework

allowed for analysing a

problem with highly in-

teractive environmental,

biological, behavioural, and

economical factors that are

combined to create chal-

lenging dynamics.

The study assumed the pop-

ulation of Guinea, Liberia,

and Sierra Leone to be

homogeneously mixed.

However, the spread of

EVD in these countries

was not similar due to the

different healthcare sys-

tem preparedness and the

different contact structure

[57, 82, 35].
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[139] Forecasting EVD

incidence and

characterising its

dynamics using a

phenomenologi-

cal model.

The WHO EVD

incidence data about

the 2014 WA EVD

in Sierra Leone,

Guinea, and Liberia

were used.

The model used was phe-

nomenological. Model

parameters, including in-

trinsic growth rate and the

final epidemic size, were

estimated using the least

square methods.

A sub-exponential growth

was found to have mostly

characterised estimates

from the early stage EVD

growth data in the three

countries. The model pre-

dicted the final size to be

1.7 ⇥ 104, 1.1 ⇥ 104 and

3.5 ⇥ 103 for Sierra Leone,

Guinea and Liberia, respec-

tively.

One advantage of this

model is that it can be used

during the early disease

epidemic, particularly in

the case of the scarcity of

reliable information about

the disease mechanisms of

spread.

The studied population in

each country was assumed

to be homogeneously

mixed.
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[1] The potential

impact of EVD

sexual spread

from male sur-

vivors.

The 2014 WA EVD

incidence data in

Sierra Leone. The

data were obtained

from the WHO pa-

tient database and

situational reports.

A compartment model of

the SEIR type was used in

which a new compartment

C that represent the con-

valescent population was

added. The SEIR model

was fitted to the EVD data

while assuming the num-

ber of the reported cases

to have followed a nega-

tive binomial distribution.

Consequently, model pa-

rameters were estimated

using the maximum likeli-

hood approach. The sensi-

tivity of the model outputs

to changes in the compo-

nents of the transmission

rate of the survivors was

studied using Monte Carlo

simulations.

It was found that in general,

there was an insignificant

increase in the number of

EVD cases resulting from

survivor’s sexual trans-

mission, but this number

extended the period of the

disease. For example, when

there was a 0.1% transmis-

sion probability per sex act

and three months of conva-

lescence, only a few EVD

additional cases occurred,

but the period of the out-

break increased by 83 days.

The study suggested a novel

method for investigating

the impact of EVD male

survivors. It described the

rate of sexual transmission

from survivors according to

the average sexual activities

and the per act probability

of transmission. The study

considered a range of val-

ues for these components

from studies in human im-

munodeficiency virus and

predicted the effect of sex-

ual transmission from EVD

survivors.

The study did not account

for any potential trans-

mission from female sur-

vivors, while this has been

recorded in the literature

(e.g., [42]). The effect of

sexual transmission from

EVD survivors in metapop-

ulation systems was also not

considered.
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[90] Determining

the effect of

super-spreaders

and character-

ising factors

that might have

driven super-

spreading.

The dataset includes

GPS locations of

where the bodies of

200 EVD deceased

were collected for

safe burials. Further,

it contained age,

sex, time of burial,

and the onset of

symptoms. The data

were collected in

Sierra Leone by

the International

Federation of Red

Cross.

The approach used was a

transmission network-based

method which concentrated

on creating transmission

trees among EVD cases.

These were established by

using a Bayesian model

that integrated the data and

inferred the distribution of

new cases.

Few super-spreaders of

about 3% of the total EVD

cases were found to be re-

sponsible for more than

60% of all generated cases.

Further, most of the EVD

spread happened within a

relatively short distance of

2.5 kilometres. Instanta-

neous EVD spread risk was

found to have mostly been

exerted by the age groups of

less than 15 years old and

larger than 45 years old.

The findings of the model

suggested the significance

of targeted-intervention. In

this case, the importance of

focusing on super-spreaders

when planning control mea-

sures.

The dataset used in the

study only included fatal

EVD cases. However, the

study concluded the results

for all cases (fatal and no-

fatal).
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[141] Understanding

whether the

Ebola virus can

evolve to become

less virulent in

the human popu-

lation.

Model parameter

estimates used were

adapted from the

literature.

A compartment model of

SEIR type with a further

transmission from deceased

individuals and survivors

was assumed. Viral load

was considered to be pos-

itively correlated with the

case fatality rate (CFR) and

transmission rate to be pro-

portional to the CFR. An

evolution in the population

was assumed to proceed by

a rare mutation that creates

a different CFR.

The study concluded that

it is unlikely for the Ebola

virus to evolve and be-

come less virulent unless

two conditions were satis-

fied. First, the proportion

of unsafe burials must be

reduced to a very low figure

and be brought to less than

4%. Second, the CFR and

the EVD transmission rate

must have very little or no

genetic connections.

The model introduced a

novel study of understand-

ing the virulence of EVD

that accounts for transmis-

sions from living infectious

(patients and survivors)

and from the deceased. The

high virulence of the Ebola

virus was explained by its

life cycle that adapt the

three aforementioned stages

of infectiousness.

The model did not account

for an age or a sex-related

heterogeneity in the fatality

rate.
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[4] Assessing the

impact of relapse

and reinfection

in the spread of

EVD.

Model parameter

estimates that were

used to quantify the

model were adapted

from the literature.

A deterministic compart-

ment model was proposed.

It incorporated the early

and late stages of infection

in addition to immune and

susceptible recovered in-

dividuals. The latter was

assumed to have a dis-

ease relapse or to become

reinfected. Model well-

posedness and stability of

equilibria analyses were

conducted.

The basic reproduction

number R0 was derived and

found to be increasing as

the relapse parameter in-

creased. In the presence of

disease reinfection, a back-

ward bifurcation was found

in which a disease-free

equilibrium and an endemic

equilibrium coexisted. Dis-

ease relapse was found to

lead to more infections as

compared to disease rein-

fection. Further, models that

do not include relapse and

reinfection underestimated

the disease trajectories.

The current study extended

previous studies by in-

cluding the relapse and

reinfection of recovered in-

dividuals and studying their

impact.

The model did not account

for transmission hetero-

geneity regarding infec-

tion in the community and

healthcare settings. It also

did not consider transmis-

sion to be different accord-

ing to spatial locations (e.g.,

urban and rural areas).
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[20] Assessing the

feasibility of

a prime-boost

vaccination trial

in three areas in

Sierra Leone.

The WHO weekly

EVD incidences

for three areas in

Sierra Leone, viz.

Kambia, Port Loko,

and Western Area.

A stochastic model was

used in which individu-

als were divided into sus-

ceptible (S), exposed (E),

infectious but not yet re-

ported (I), infectious and

reported (J), and removed

(R) compartments. Sus-

ceptible individuals were

assumed to be recruited to

either vaccinated or control

groups. A Bayesian ap-

proach, viz. Markov Chain

Monte Carlo was used for

fitting the model to the data.

When the vaccination trial

was started at an earlier

time, the probability of

eliminating the disease

in the vaccinated groups

increased. The probability

of detecting the difference

between the number of

disease incidences in the

vaccinated and control

groups increased when the

vaccination trial was started

at a later time.

The model gave a mean of

assessing the feasibility of

a vaccination trial. Further,

fitting the model to the data

of the three regions enabled

understanding the different

impacts of the vaccine trial

among these regions.

The vaccinated and control

groups were partitioned

into clusters. However, the

model was fitted to EVD in-

cidences at the district-level

and not at the cluster level.

Additionally, the model did

not account for any logis-

tical constraints that may

affect the feasibility of the

vaccination trial in the stud-

ied regions.
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[39] Improving the

stepped-wedge

cluster trial

(SWCT) method.

The WHO district

and county level

case count data of

Sierra Leone and

Liberia. Geospa-

tial data containing

chiefdom bound-

aries were obtained

from the database of

Global Administra-

tive Areas (GADM).

Population densi-

ties of each of the

chiefdoms of Sierra

Leone, as well as

the distance be-

tween them, were

estimated.

An ordered SWCT (OS-

WCT) method was pro-

posed in which clusters

were ordered to increase

the efficiency of the SWCT.

This ordering was based on

an observed EVD incidence

data (data-OSWCT), a

model projection about the

order of the first incidence

occurrence (first-OSWCT),

and the districts with the

highest model projection

of weekly cases (peak-

OSWCT). A metapopu-

lation framework with a

gravity type assumption

was adapted to describe the

movement of individuals

among the chiefdoms.

All of the OSWCT trials

showed a higher efficacy

as compared to the SWCT.

However, they all lost ef-

fectiveness when they were

delayed. Furthermore, when

the trials started ten weeks

after the onset of the dis-

ease, the peak-OSWCT was

more efficient.

This study linked the

SWCT method with a grav-

ity type metapopulation

model. Further, it accounted

for infected individuals with

early dry and with late wet

symptoms. Crucially, only

the latter was assumed to

transmit EVD.

The gravity type assump-

tion used in the modelling

does not account for fac-

tors that may affect the

movement of individuals in

Central and West African

contexts. These include

road closure resulting from

rainfall and natural barriers

such as rivers. Hence, the

gravity assumption may

overestimate the risk of the

disease spread.
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[64] Improving the

performance

of cluster ran-

domised trials.

Model parameter es-

timates were adapted

from the literature.

A community-structured

population was generated

using a stochastic simula-

tion with 20 clusters, each

consisting of 200 individ-

uals. The population was

assumed to have six dis-

ease states (susceptible,

exposed, infectious, hospi-

talised, funeral, removed).

In order to provide a rapid

epidemic control, a class

of connectivity-informed

designs was proposed for

cluster randomised trials.

It was found that the

connectivity-informed de-

sign interventions decrease

the total infections by up to

20% in comparison with the

traditional stepped wedge

cluster randomised trial.

The proposed trial designs

utilise connectivity infor-

mation between clusters

in intervention scenarios.

Consequently, they cause

a reduction in the number

of infections more rapidly

as compared to cluster ran-

domised trials.

The approach requires in-

formation on connectivity

concerning how epidemics

spread (e.g., by close con-

tact or through sexual part-

ners). This information is

usually hard to obtain accu-

rately.
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[119] Characterising

the spread of

EVD and the im-

pact of interven-

tion measures.

Natural history

parameters were

adapted from the lit-

erature or assumed.

A stochastic model that

describes the transition

between the susceptible, ex-

posed, infectious, deceased,

hospitalised, and recovered

individuals was proposed.

In addition to the infec-

tiousness from humans,

susceptible individuals were

assumed to be exposed to

EVD spillover from ani-

mals. Various intervention

measures were assessed, in-

cluding quarantine and safe

burials. Monte Carol simu-

lation was used to simulate

the model.

Outbreak vulnerability was

simulated as a function of

the reservoir transmission

rate, and a range of values

for these rates that cause

isolated and endemic out-

breaks was determined. In-

creasing the safe burial rate

and reducing the contact

rate was found to control

the outbreaks ultimately.

The model accounted for

inherited randomness of the

spillover event of EVD.

The study did not ac-

count for a metapopulation

spread. This consideration

is, in particular, important

since EVD spillover usually

happens in remote areas

and expands to urban re-

gions with the movement of

people.
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[76] Determining key

elements that

help in prevent-

ing the spread

of EVD among

health care work-

ers (HCWs)

during EVD out-

breaks.

Model parameters

were either assumed

or adapted from the

literature.

Agent-based modelling

and simulation were used.

The modelling included

the initial educational state

about the disease, followed

by training to avoid EVD.

The study had further ac-

counted for how well health

care workers performed in

avoiding infection. Addi-

tionally, the study consid-

ered conditions and param-

eters that were important in

hindering EVD infection.

Increasing the probability

of seeking intensive training

and practising appropriate

care procedures was found

to have caused a signifi-

cant decline in EVD infec-

tion. On the other hand,

increasing the percentage

of HCWs who initially had

knowledge about the dis-

ease or those who attended

some training during the

outbreak was less signifi-

cant.

The study explored how

EVD training workshops

could protect healthcare

workers and showed the

value of effective prepared-

ness and the right attitude

towards the profession to

fight EVD infection among

HCWs.

The model did not account

for any actual geographical

distributions of HCWs.

It also did not account

for delays in establishing

EVD training academies for

HCWs.
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[57] Estimating the

public health

response and

behavioural

changes that con-

tributed to ending

EVD outbreak.

Detailed epidemic

data about Lofa

county of Liberia.

The data were ex-

tracted from the

records of the min-

istry of health and

social welfare of

Liberia.

Two transmission routes

were considered: within

Ebola treatment centres

(ETCs) and in the commu-

nity. Transmission from the

deceased was assumed to

occur only in the commu-

nity. Super-spreading was

implicitly considered by

assuming the time-varying

EVD transmission rate to

have a normal distribution.

The basic reproduction

number was found to have

generally decreased from

early August with the ex-

pansion of the number of

ETCs. The healthcare-

seeking rate was doubled

during the outbreak. Iso-

lation of EVD patients at

ETCs reduced the basic re-

production number to about

two-thirds of its original

estimate.

The population was struc-

tured into a general com-

munity and individuals

within healthcare centres.

The study highlighted the

importance of community

engagement in alleviating

the disease.

The study did not account

for unreported EVD cases

in the community that were

common during the 2014

WA EVD [35].
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[44] Resource plan-

ning to control

the spread of

EVD.

Model parameter

estimates used were

either documented

in the literature or

assumed.

A compartment model of

SEIR type with further

hospitalisation, quarantine,

and vaccination components

was introduced. Optimal

control and sensitivity anal-

ysis methods were used to

assess resource utilisation

and vaccination effective-

ness. They were also used

to identify parameters that

were the most influential in

the model dynamics.

If the transmission rate of

isolated individuals was

less than one-fourth of the

non-isolated, the basic re-

production number was less

than one. Further, it was

found that the time-varying

optimal quarantine was

more effective as compared

to a high but fixed level of

quarantine.

The model accounted for

transmission from peo-

ple at high risk, including

healthcare workers, family

members, and persons who

are involved in the burial

of EVD deceased. It also

accounted for transmission

from the general popula-

tion.

The study assumed trans-

mission only from living in-

fectious individuals (in the

community or at hospitals)

and did not consider a trans-

mission from the deceased

or an unclean environment.
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[184] Eradicating the

spread of EVD

using a dynamic

programming

approach.

The WHO reported

data for Guinea,

Liberia, and Sierra

Leone from 27 May

to 28 November

2014.

A compartment model was

proposed. EVD drugs and

vaccines were assumed to

be distributed according to

the number of infected and

susceptible cases in each

district. Optimisation meth-

ods were used to calculate

the fastest road for drug and

vaccine distributions and

to find the storage solution

that results in the minimum

total cost.

The basic reproduction

number (R0) was cal-

culated. It indicated that

speeding up drug produc-

tion and distributing drugs

and vaccines systematically

to be a powerful method

of controlling EVD. Fur-

ther, the study identified the

fastest road and the mini-

mum total storage.

The study used a disease

compartment structure and

motivated the impact of

studying drugs and vac-

cines delivery. It helped in

planning the cost of storing

and distributing drugs and

vaccines.

The model did not account

for heterogeneity regarding

the cost of vaccines depend-

ing on the type of vaccine

stored. For example, the

two widely used vaccines,

the Merck rVSV-ZEBOV

and the Johnson & Johnson

Ad26.ZEBOV/MVA-BN

have different storage tem-

peratures which creates

different logistical costs

[77, 22].
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[75] Studying the

optimal strategy

for eradicating

EVD.

The WHO total EVD

cases for Liberia

during the 2014

WA EVD. This data

were recorded for

the period of 2 July

2014 to 28 August

2014.

An SEIR type model was

considered. The model in-

corporated for early and

advanced stages of infec-

tiousness, hospital isolation,

EVD therapy, and vaccina-

tion. The model was fitted

to the Liberian data, and

EVD transmission rate was

estimated. Further, the im-

pact of different types of

intervention measures, and

regional transmission were

studied.

The study predicted the

outbreak would reach its

second peak at the end of

February 2015 and termi-

nate in September 2015.

To control the spread, the

study suggested control-

ling regional transmission,

practising effective hospital-

isation, and vaccination.

The study described a de-

tailed regional EVD spread

and made a systematic eval-

uation for different inter-

vention strategies.

The study did not ex-

plore the optimal vacci-

nation strategy between

two types of vaccines

(the rVSV-ZEBOV and

Ad26.ZEBOV/MVA-BN)

in the context of the 2018-

2020 DR Congo outbreak.
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[94] Assessing the

effect of public

health education

on the dynam-

ics of EVD in

Sudan.

The 1976 and the

1979 EVD data of

the Nzara area in

Sudan. These data

were adapted from

the literature.

A deterministic compart-

ment model was used.

Some individuals were as-

sumed to be educated about

EVD and took necessary

measures to avoid infection.

Individuals who did not

take these measures were

recruited to become edu-

cated about disease trans-

mission. The impact of this

recruitment was studied.

An optimisation method

was used to estimate model

parameters.

The analysis of the full

model, with educated and

uneducated persons, re-

vealed that the initial pro-

portion of educated and

non-educated susceptible

individuals and the timing

of the behavioural changes

(seeking hospitalisation)

played an important role in

determining the magnitude

of the outbreak.

Some crucial assumptions

were made in the study.

It was considered EVD

transmission in the com-

munity to be different from

healthcare centres. Fur-

ther, the study accounted

for environmental spread.

The results obtained in the

modelling showed the im-

portance of public health

education in controlling the

disease.

The study assumed trans-

mission in the community

as one unit and did not ac-

count for having a higher

chance of transmission from

household members, rela-

tives and friends.



170

Table A.1 – Continued from previous page

Ref. Research ques-

tion

Data Methodology Conclusions Advantages Limitations/gaps

[110] Assessing the

effectiveness of

contact tracing in

the early phase of

an outbreak.

The EVD natural

history and the net-

work parameters

were adapted from

the literature.

An activity-driven network

method was employed in

which the activity poten-

tial of an individual was

assigned according to some

probability distribution.

The contacts of an infec-

tious person were observed

for 21 days, but sometimes

this observation was imple-

mented after some delay.

The effects of this delay

were assessed.

It was found that contact

tracing to be more effective

if the identification of the

traced persons was not

delayed for more than ten

days.

The study has relevantly

adapted an activity-driven

modelling or temporal so-

cial networks to record

contacts of an infected in-

dividual and conducted

extensive simulation using a

different range of delays.

The study did not account

for the frequency of con-

tact with infectious persons.

However, nurses and peo-

ple who frequently care

for patients have a higher

chance of infection com-

pared to others. Further,

the study did not account

for infectiousness from the

deceased.
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[122] Assessing the

relationship be-

tween EVD nat-

ural history and

different con-

trol intervention

strategies.

Model parameters

were adapted from

the literature or esti-

mated.

An agent-based model of

SEIR type was proposed.

The model focused on un-

derstanding the dynamics in

the early epidemic phase of

the outbreak. The impact of

quarantine, symptom mon-

itoring, and contact tracing

was evaluated. The most

crucial intervention mea-

sures on the dynamics of

the disease were identified

via the Partial Rank Corre-

lation Coefficient method.

It was found that the effects

of control interventions,

including quarantine and

symptom monitoring to be

influenced by the natural

history of EVD and the con-

tainment feasibility within

healthcare settings. Fur-

ther, symptom monitoring

was found to be the most

effective measure in con-

taining EVD compared to

quarantine.

The model findings were in

line with the WHO empha-

sis on not recommending

quarantine since it restricts

personal liberty and creates

stigmatisation [177].

The study did not assess

the impact of vaccination

in controlling the spread of

EVD as compared to the

other non-pharmaceutical

measures.
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[107] Providing a

quantitative es-

timate for the

effectiveness of

ring vaccination

trials.

The datasets used

included the distri-

bution of household

sizes in Pujehun,

Sierra Leone. Ad-

ditionally, they in-

cluded household

distribution in vil-

lages in the district

and town of Pujehun.

These datasets were

obtained from demo-

graphic and health

surveys and analysis

of aerial images.

The model used was an

individual-based compart-

ment model. It was used

to simulate the spread of

EVD within-households,

extended families, and the

general community. The

within-household and ex-

tended family transmission

represented the contacts and

contacts of contacts used in

the ring vaccination.

It was found that ring vac-

cination was efficient in

containing EVD up to the

value of 1.6 for the effective

reproductive number (Rt).

Further, if the period from

EVD onset to hospitalisa-

tion became between two

and three days, two kilo-

metres were added to the

area covered by the ring

vaccination, and improved

quarantine was practised,

the disease could have

been contained for up to

Rt = 2.6.

The study was used to in-

tegrate transmission within

households and extended

families. Further, it was

used to simultaneously

assess the effect of ring

vaccination and other non-

pharmaceutical measures.

The model did not account

for different possible immu-

nity periods that the Merck

rVSV-ZEBOV, assumed in

the study, might have [52].
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[87] Assessing the

effectiveness of

EVD vaccina-

tion.

An individual-level

EVD spread data for

Guinea. The data

were obtained during

the 2014 WA EVD

by the WHO and the

Guinean Ministry of

Health.

Individuals who could not

be associated with any

recognised transmission

chain were assumed to have

a basic reproduction num-

ber (R0) of seven. Cases

within the known transmis-

sion chain had R0 = 0.66.

A ring was defined to be all

individuals who could be

part of the identified trans-

mission chains. A branch-

ing process and binomial

distribution were used to

assess the impact of ring

vaccination.

It was found at the starting

of the 2014 WA EVD that

ring vaccination would not

have been enough to con-

tain the outbreak. However,

later when the epidemic was

less severe, this policy was

more significant.

The study accounted for

EVD transmission from

cases that were not recorded

in any transmission chain

and explored the circum-

stance under which ring

vaccination could control

the spread of EVD.

Similar to [107], this model

did not account for the vac-

cination immunity period.

This consideration is im-

portant when outbreaks

continue for a long period.
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[12] Evaluating the

impact of the

rVSV-ZEBOV

EVD ring vacci-

nation.

The data used was

the 2014 WA EVD

cumulative cases

and deaths in Sierra

Leone. Additionally,

EVD natural history

parameters were

adapted from the

literature.

A compartment model was

utilised. The model ac-

counted for various risks of

infection, and for improved

survival rate resulting from

an increase in the number of

trained healthcare workers.

Latin Hypercube Sampling

(LHS) over the uniform

distributions for the set of

model parameters and the

least square methods were

used to estimate model pa-

rameters.

The basic reproduction

number (R0) was estimated

to be 1.33. Additionally,

it was found that to stop

the outbreak, 40% of the

total population and 95% of

healthcare workers should

have been vaccinated.

The model assumed the

general population to either

have a high or low risk of

infection. Crucially, the ring

vaccination was applied to

those of high risk. Further,

the model assumed differ-

ent vaccination strategies

and predicted an array of

vaccination coverages.

The study considered EVD

trajectories in Sierra Leone

as one unit and did not ac-

count for the high variation

in EVD trajectories among

the different districts.
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[65] Using simulation

to assess a ring

vaccination trial

design.

Model parameters

were either adapted

from the literature or

assumed.

A compartment model

structure was used. Indi-

viduals in rings of infected

individuals were enrolled

in the trial and either imme-

diately vaccinated or after

some delay. The cumulative

incidences in the immedi-

ate and delayed vaccinated

groups were recorded and

used to estimate vaccina-

tion efficacy and calculate

the sample size required to

achieve the efficacy.

It was estimated that 7, 100

participants were needed

in order to reach 80% of

the power of detecting the

difference between the im-

mediately vaccinated and

the delayed groups. These

figures, however, were sen-

sitive to the settings of the

parameters and the proper-

ties of the vaccine.

The model incorporated

simulation into the process

of designing a vaccination

trial. It allowed understand-

ing how the sample size and

the expected outcome of a

trial are influenced by the

population characteristics

and the vaccine efficacy.

The population in each ring

of contacts and contact of

contacts was assumed to

have the same rate of trans-

mission. However, people

who closely care for pa-

tients have a higher chance

of transmission compared

to others. Further, contacts

have a higher transmission

rate compared to the con-

tacts of contacts.
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[15] Evaluating a

voluntary vacci-

nation strategy of

EVD.

EVD natural history

parameters, vital-

ity rates, and other

model parameters

were either adapted

from the literature or

assumed.

The study utilised a com-

partment modelling struc-

ture and accounted for vac-

cination by adding a new

compartment for this pur-

pose. The basic reproduc-

tion number and the vacci-

nation threshold of reaching

herd immunity were de-

rived. A game-theoretic

concept was introduced

to model the voluntary

vaccination, and the Nash

equilibrium was derived.

As a result of the high risk

of EVD infection, a volun-

tary vaccination was found

to be very close to the herd

immunity level. Conse-

quently, it might eradicate

EVD, particularly when

added to other control mea-

sures.

The study assessed a novel

strategy of Ebola vaccina-

tion (voluntary vaccination)

using a game-theoretic ap-

proach.

The study assumed the

population to be rational

enough to decide to be

vaccinated voluntarily and

to be well informed about

the risk of the disease and

the direct and indirect cost

of vaccination.
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[71] Understanding

the impact of

convalescent

blood transfusion

therapy.

Model parameters

were either adapted

from the literature or

estimated.

A treatment-donation-

stockpiles compartment

model was used. It was

assumed that infected in-

dividuals to be efficiently

hospitalised and safely

buried when deceased.

The convalescent plasma

treatment was found to be

significant in reducing the

case fatality rate and in-

creasing the blood bank

storage. Further, when

more blood donors were

recruited, and the right track

of their contact was kept for

re-donation, more reduc-

tion in the case fatality rate

occurred.

The study provided a novel

methodology in assessing

convalescent blood transfu-

sion therapy and found vital

factors that strengthen this

treatment.

The studied population was

assumed to be homoge-

neously mixed in a perfect

context of EVD hospital-

isation and safe burials.

However, these assump-

tions are not realistic with

most of EVD outbreaks

that occurred during the last

decade.



Appendix B

Standard proofs for theorems

Proof of Proposition 3.3.1. The first and the second equations of System (3.2) can be

rewritten as
dSH

dt
= �⇧� A1(t)SH (B.1)

and
dSL

dt
= (1� �)⇧� B1(t)SL, (B.2)

where

A1(t) = �1 + �2 + g1 +m1 + µ

and

B1(t) = �1⌧1 + ⌧2�2 + g2 +m2 + µ.

Equations (B.1) and (B.2) are linear first order equations in SH and SL, respectively, and

have the solutions:

SH(t) = SH(0)e
�

tR

0
A1(s)ds

+ e
�

tR

0
A1(s)ds

⇥
tZ

0

�⇧e
�

uR

0
A1(w)dw

du � 0;

and

SL(t) = SL(0)e
�

tR

0
B1(s)ds

+ e
�

tR

0
B1(s)ds

⇥
tZ

0

(1� �)⇧e
�

uR

0
B1(w)dw

du � 0

for all t. Remark that the non-negativity of V1(t), V2(t), V3(t), V4(t), V5(t), V6(t) E(t),

I(t), H(t), D(t), and R(t) depends on the non-negativity of SH(t) and SL(t). In fact,

similar to proving the non-negativity of SH(t) and SL(t), it is straightforward to show

that these state variables are non-negative for all time t. This completes the proof of the

proposition.

Proof of Proposition 3.3.2. From Equation (3.1), it follows that if N is bounded, all state
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variables that compose N will be bounded. Thus, it suffices to show that N is bounded.

From (3.2),
dN

dt
= ⇧� µN + (µ� b)D � ⌘f2H (B.3)

Note that the disease-induced death rate b is much larger than the natural death rate µ.

Thus, µ� b < 0. Hence
dN

dt
 ⇧� µN. (B.4)

Application of the Gronwall inequality yields

N(t)  ⇧

µ
+

✓
N(0)� ⇧

µ

◆
e
�µt

. (B.5)

We can see from (B.5) that if N(0) < ⇧
µ
,

0  N(t) <
⇧

µ
.

On the other hand, N(0) � ⇧
µ

implies that

N(t)  ⇧

µ
+

✓
N(0)� ⇧

µ

◆
e
�µt  ⇧

µ
+N(0)� ⇧

µ
= N(0).

Thus, N(t) is bounded for all t > 0.




