

# Mathematical Modelling of the Ebola Virus Disease

Suliman Jamiel M. Abdalla

School of Mathematics, Statistics and Computer Science at the University of KwaZulu-Natal, Durban

## Mathematical Modelling of the Ebola Virus Disease

by

## Suliman Jamiel M. Abdalla

Submitted in fulfillment of the academic requirements for the Degree of Doctor of Philosophy in the School of Mathematics, Statistics and Computer Science at the University of KwaZulu-Natal, Durban

As the candidate's supervisors, we have approved this dissertation for submission

| Professor Keshlan S. Govinder  | Signature | Date: |
|--------------------------------|-----------|-------|
|                                |           |       |
| Professor Faraimunashe Chirove | Signature | Date: |

### Abstract

Despite the numerous modelling efforts to advise public health physicians to understand the dynamics of the Ebola virus disease (EVD) and control its spread, the disease continued to spread in Africa. In the current thesis, we systematically review previous EVD models. Further, we develop novel mathematical models to explore two important problems during the 2018-2020 Kivu outbreak: the impact of geographically targeted vaccinations (GTVs) and the interplay between the attacks on Ebola treatment centres (ETCs) and the spread of EVD. In our systematic review, we identify many limitations in the modelling literature and provide brief suggestions for future work. Our modelling findings underscore the importance of considering GTVs in areas with high infections. In particular, we find that implementing GTVs in regions with high infections so that the total vaccinations are increased by 60% decreases the cumulative cases by 15%. On the other hand, we need to increase the vaccinations to more than 1000% to achieve the 15%decrease in EVD cases if we implement GTVs in areas with low infections. On the impact of the attacks on ETCs, we find that due to the attacks on ETCs, the cumulative cases increased by more than 17% during the 2018-2020 Kivu outbreak. We also find that when 10% of the hospitalised individuals flee the attacks on ETCs after spending only three days under treatment, the cumulative cases increased by more than 30% even if these individuals all returned to the ETCs three days later. On the other hand, if only half of these individuals returned to ETCs for treatment, the cumulative cases increase by approximately 50%. Further, when these patients spend one more day in the community, after which they all return to ETCs, the cumulative cases rise by an additional 10%. Global sensitivity analysis also confirmed these findings. To conclude, our literature systematic review is used to identify many critical factors which were overlooked in previous EVD models. Our modelling findings show that the attacks on ETCs can be destructive to the efforts of EVD response teams. Hence, it is important for decision-makers to tackle the reasons for community distrust and address the roots of the hostility towards ETCs. We also find that GTVs can be used to contain the spread of

EVD when ring vaccinations, contact tracing and antiviral treatments cannot successfully control the spread of EVD.

### Declaration I - Plagiarism

- I, Suliman Jamiel M. Abdalla, declare that
  - 1. The research reported in this dissertation, except where otherwise indicated, is my original research.
  - 2. This dissertation has not been submitted for any degree or examination at any other university.
  - 3. This dissertation does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.
  - 4. This dissertation does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:
    - (a) Their words have been re-written but the general information attributed to them has been referenced.
    - (b) Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced.
  - 5. This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the references sections.

Signed:

Suliman Jamiel M. Abdalla

**Declaration II - Publications** 

The following publication and submissions have been produced from this work.

- 1. Suliman Jamiel M. Abdalla, Faraimunashe Chirove, and Keshlan S. Govinder. A systematic review of mathematical models of the Ebola virus disease. *International Journal of Modelling and Simulation*, 42(5), 2022.
- 2. Suliman Jamiel M. Abdalla, Keshlan S. Govinder, and Faraimunashe Chirove. The impact of geographically-targeted vaccinations during the 2018-2020 Kivu Ebola outbreak. *Applied Mathematical Modelling*, Submitted.
- Suliman Jamiel M. Abdalla, Keshlan S. Govinder, and Faraimunashe Chirove. The impact of attacks on Ebola treatment centres during the 2018-2020 Kivu outbreak. *Studies in Applied Mathematics*, Submitted.

The author's contributions in each of the papers are as follows:

 $1^{st}Author$ : Literature review, design and implementation of models, edition of papers.  $2^{nd}and \ 3^{rd}Authors$ : Providing advice, discussing issues on models and simulations, proof-reading manuscripts.

Signed:

Suliman Jamiel M. Abdalla

Date: July 2023

### Acknowledgement

- This work is based on the research supported wholly by the National Research Foundation of South Africa (NRF) (Grant Number: 110931). We acknowledge that opinions, findings and conclusions or recommendations expressed in the current research are of the authors alone, and that the NRF accepts no liability whatsoever in this regard.
- I would like first to thank the Almighty Allah, who made this achievement possible. I would also like to thank Him for always choosing the best for me, whether I see good in it or I do not. Secondly, I thank NRF and TWAS for supporting my research. Without them, I would not be able to make this achievement.
- I want to thank my supervisor Prof Keshaln S. Govinder for his support. He supported me through good and challenging times to get to this point. This work had only come to light with his patience and strong academic support.
- I would also like to thank my co-supervisor Professor Faraimunashe Chirove. Whenever I get lost at work, I used to contact him. His great personality and fruitful conversations were invaluable. Difficult things always became easier after talking to him. Thank you, Prof. This work came out only with your help.
- My beautiful wife "Fatima" showed me patience, love and support through the hard times to get to this point as well. My children, Mohamed and Reda, made me smile when I need it the most.

This thesis is dedicated, with prayers and gratitude, to my parents. My late father, **Sheikh Jamiel Mohamed**: Even though he had no formal schooling, he loved learning and encouraged his children's progress in education. My mother, Zeinab Ali Jamie, had been my father's right hand. She showed my father and us (her children) unconditional love and support. To them both, I would like to dedicate this achievement.

## **Table of Contents**

| List of T | ables .  |                                                                   | xii  |
|-----------|----------|-------------------------------------------------------------------|------|
| List of F | igures   |                                                                   | xiii |
| Chapter   | 1        | Introduction                                                      | 1    |
| 1.1       | The inte | erplay between mathematics and epidemiology                       | 1    |
| 1.2       | The epi  | demiology of Ebola virus disease                                  | 2    |
| 1.3       | The 201  | 14-2016 EVD outbreak                                              | 4    |
| 1.4       | The 201  | 18-2020 Kivu outbreak                                             | 5    |
| 1.5       | Outline  |                                                                   | 6    |
| Chapter   | 2        | A Systematic review of mathematical models of the Ebola virus     |      |
|           | (        | disease                                                           | 7    |
| 2.1       | Introdu  | ction                                                             | 7    |
| 2.2       | Method   | ls                                                                | 10   |
| 2.3       | Modelli  | ing issues and approaches                                         | 11   |
|           | 2.3.1    | Spatial transmission models                                       | 13   |
|           | 2.3.2    | Within and between households transmission models                 | 13   |
|           | 2.3.3    | Within host transmission models                                   | 14   |
|           | 2.3.4    | Other transmission models                                         | 15   |
|           | 2.3.5    | Other intervention models                                         | 18   |
| 2.4       | Model of | conclusions and constraints                                       | 20   |
|           | 2.4.1    | Enviro-climatic, socio-geographic and socio-economical factors .  | 20   |
|           | 2.4.2    | Transmission within healthcare units                              | 22   |
|           | 2.4.3    | Transmission from bats, animals and virus shed in the environment | 22   |
|           | 2.4.4    | Spatial transmission                                              | 23   |
|           | 2.4.5    | Behavioural changes                                               | 25   |
|           | 2.4.6    | Other transmission issues                                         | 26   |
|           | 2.4.7    | Vaccinations and therapies                                        | 29   |

|         | 2.4.8  | Other intervention issues                                       | 31 |
|---------|--------|-----------------------------------------------------------------|----|
| 2.5     | Discus | ssion                                                           | 32 |
| Chapter | : 3    | The impact of geographically-targeted vaccinations during the   | !  |
|         |        | 2018-2020 Kivu Ebola outbreak                                   | 35 |
| 3.1     | Introd | uction                                                          | 35 |
| 3.2     | Mode   | l formulation                                                   | 37 |
| 3.3     | Theor  | etical analysis                                                 | 42 |
|         | 3.3.1  | Model Equilibria                                                | 43 |
| 3.4     | Nume   | rical simulations                                               | 48 |
|         | 3.4.1  | Data                                                            | 48 |
|         | 3.4.2  | Model fitting                                                   | 49 |
|         | 3.4.3  | Sensitivity analysis                                            | 49 |
|         | 3.4.4  | The impact of ring vaccinations during the outbreak             | 50 |
|         | 3.4.5  | The impact of geographically-targeted vaccinations              | 51 |
| 3.5     | Discus | ssion                                                           | 52 |
| Chapter | : 4    | The impact of violent attacks on Ebola treatment centres during | •  |
|         |        | the 2018-2020 Kivu outbreak                                     | 60 |
| 4.1     | Introd | uction                                                          | 60 |
| 4.2     | Mode   | l formulation                                                   | 62 |
| 4.3     | Theore | etical analysis                                                 | 66 |
|         | 4.3.1  | Non-negativity and boundedness                                  | 66 |
|         | 4.3.2  | Model Equilibria                                                | 67 |
| 4.4     | Mode   | l fitting and numerical simulations                             | 70 |
|         | 4.4.1  | Model fitting                                                   | 71 |
|         | 4.4.2  | Sensitivity analysis                                            | 71 |
|         | 4.4.3  | The impact of the attacks on Ebola treatment centres            | 73 |
| 4.5     | Discus | ssion                                                           | 75 |
| Chapter | : 5    | Conclusion                                                      | 83 |

| References . |                                       | 35 |
|--------------|---------------------------------------|----|
| Appendix A   | Detailed review of individual studies | 03 |
| Appendix B   | Standard proofs for theorems          | 78 |

## List of Tables

| 3.1 | Model parameters and their interpretations.                                                     | 55  |
|-----|-------------------------------------------------------------------------------------------------|-----|
| 3.2 | Model parameter values and their Sensitivity Indices (S.I) and Con-<br>fidence Intervals (C.I). | 57  |
| 3.3 | Cumulative cases and cumulative ring vaccinations data.                                         | 58  |
| 4.1 | Model parameters and their interpretations.                                                     | 80  |
| 4.2 | Model parameter values and their Sensitivity Indices (S.I) and Con-<br>fidence Intervals (C.I). | 81  |
| A.1 | Detailed review.                                                                                | 104 |

## List of Figures

| 1.1 | The number of EVD cases reported every week (Wk) during the years 2014 and 2015. This figure was adapted from [162]                                                                                                          | 5                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2.1 | Flow diagram of the selection process                                                                                                                                                                                        | 12                   |
| 3.1 | Transfer diagram for the model                                                                                                                                                                                               | 42                   |
| 3.2 | Model fitting with the cumulative EVD cases and cumulative ring vaccinations data.                                                                                                                                           | 50                   |
| 3.3 | Ring vaccinations during the outbreak.                                                                                                                                                                                       | 51                   |
| 3.4 | The impact of GTVs in areas with high infections in the spread of EVD                                                                                                                                                        | 52                   |
| 3.5 | The impact of GTVs in areas with low infections                                                                                                                                                                              | 52                   |
| 4.1 | Transfer diagram for the model                                                                                                                                                                                               | 65                   |
| 4.2 | Model fitting when there are no vaccinations or antiviral treatments.                                                                                                                                                        | 72                   |
| 4.3 | Model fitting when there are vaccinations and antiviral treatments but there are no attacks on ETCs.                                                                                                                         | 72                   |
| 4.4 | The impact of the attacks on ETCs during the 2018-2020 Kivu outbreak. By the model output here, we mean the output of Model (4.3). It should be remarked this represents the case in which no attacks on ETCs is considered. | 75                   |
| 4.5 | The impact of the attacks when the percentage of patients who fled the attacks is $10\%, 20\%, 30\%, 40\%$ and $50\%, \ldots$                                                                                                | 76                   |
| 4.6 | The impact of the attacks when the percentage of patients who did not return to treatments after they fled the attacks is $10\%$ , $20\%$ , $30\%$ , $40$ and $50\%$ .                                                       | <mark>%</mark><br>77 |
| 4.7 | The impact of the attacks if the return of individuals to treatments was delayed by one, two, three, four and five days.                                                                                                     | 78                   |
| 4.8 | The impact of the attacks when patients are treated for one, two, three, four and five days at ETCs before they flee the attacks.                                                                                            | 79                   |
| 4.9 | <b>PRCC</b> for the cumulative cases at $t = 373$                                                                                                                                                                            | 79                   |

### Chapter 1

### Introduction

### 1.1 The interplay between mathematics and epidemiology

Bernoulli proposed the first mathematical model in epidemiology in his work on smallpox [40]. He studied the impact of immunisation against smallpox. He determined how life expectancy would increase if smallpox were eliminated as a reason for death. Hamer [13] explained why the spread of infection should depend on the number of susceptible and infected individuals. He proposed the mass action law for describing a new infection rate, the basic idea for formulating compartmental models. Sir R. A. Ross won the Nobel Prize in medicine for his work on Malaria modelling [13]. It was previously believed that as long as mosquitoes were present in the population, Malaria could not be eliminated. Ross discovered that Malaria is transmitted by the Anopheles mosquito and developed a programme for controlling it at the population level. He introduced a simple compartment model and showed that reducing the Anopheles mosquito below a critical level would be enough to eliminate Malaria. Field trials supported these findings.

Kermack and McKendrick introduced a threshold quantity, which was later denoted by  $\mathcal{R}_0$  [13]. This quantity is called the basic reproduction number [13]. It is defined as the average number of infected cases produced by a single infected person in a fully susceptible population during his/her infectious period. In an epidemic situation, in which the period is short enough to neglect demographic effects, and all infected individuals recover with complete immunity against reinfection, the threshold  $\mathcal{R}_0 = 1$  is the dividing line between the infection dying out and the onset of an epidemic. In a situation that includes a flow of new susceptible individuals, either through demographic effects or recovery without complete immunity against reinfection, the threshold  $\mathcal{R}_0 = 1$  is the dividing line between an approach to a disease-free equilibrium and an approach to an endemic equilibrium, where the disease is always present. Nevertheless, the concept of backward bifurcation presents a complex perspective to this framework [101]. It indicates that, under certain conditions, a stable endemic equilibrium can coexist with a disease-free equilibrium even when  $\mathcal{R}_0 < 1$ .

This phenomenon suggests that simply achieving  $\mathcal{R}_0 < 1$  may not guarantee the elimination of the disease, challenging the conventional threshold-based approach to disease control. Factors such as population heterogeneity, partial immunity, and complex transmission dynamics contribute to backward bifurcation, necessitating more comprehensive strategies for disease eradication [101].

### **1.2** The epidemiology of Ebola virus disease

Ebola virus is part of the Filoviridae family (Filovirus) [26]. The Ebola virus consists of five strains: Zaire Ebola virus (EBOV), Sudan Ebola virus (SUDV), Taï forest or Côte d'Ivoire Ebola virus (TAFV), Bundibugyo Ebola virus (BDBV) and Reston Ebola virus (RESTV). All these strains except RESTV can infect humans and non-human primates, with different pathogenicity, causing Ebola virus disease (EVD) [143]. EBOV is the most lethal. It was associated with the 2014-2016 EVD epidemic in West Africa, causing an infection of more than 28,000 cases and deaths of more than 11,000 [179]. EBOV was discovered after a new fatal viral hemorrhagic fever occurred in a village in Zaire (the Democratic Republic of Congo) in 1976 [180] and in Nazara, South Sudan [161]. The new virus associated with the outbreaks was named Ebola after a river near the Zaire village [113].

EVD is a disease that can be transmitted from animals to humans [156]. It regularly affects and kills non-human primates, such as apes, gorillas, monkeys, and chimpanzees [10]. Additionally, fruit bats from the Pteropodidae family are often considered to be carriers of the Ebola virus [93, 113]. Typically, the initial person infected in an EVD outbreak, referred to as the index case, contracts the disease through the consumption of hunted meat of an infected animal or by direct contact with infected fruit bats [29]. EVD can be transmitted from animals (live or dead) such as antelope, porcupines, non-human primates, and fruit bats to humans through contact with infected animals' blood, organs, or bodily fluids [23]. The Ebola virus can remain in the body cavity and blood of deceased non-human primates for up to seven days. It can also remain up to five days in the dry blood of humans and non-human primates [126, 51]. In some situations, the virus can remain in the fomites of an infected person for more than 30 days [160]. Human-to-human infection occurs through contact with bodily fluids or contaminated fomites of infected individuals [94, 54, 115]. Further, deceased individuals have the highest infection

rate [94]. Social practices such as washing EVD deceased individuals before burial and touching them contribute to the dispersal of EVD [41]. The hospitalisation context can cause further spread of EVD if proper safety protocols are not practiced [121]. Ebola virus can spread from humans to the environment again by inappropriate hygienic and sanitary conditions [11, 10]. EVD is also transmitted sexually [180]. According to WHO, EVD male survivors should practice safe sex for a year from the onset of EVD symptoms or until their semen tested negative twice for EBOV [180].

The incubation period is the period from when an individual becomes infected to the initial appearance of symptoms and signs of the infection [6, 79]. This period ranges from 2 to 21 days for EVD [180], and people are not infectious when asymptomatic. EVD symptoms start with influenza and malaria-like symptoms of headache, fever, muscle pain and sore throat. However, they develop into diarrhoea, vomiting, rash and severe weakness. The final stage is kidney and liver damage and internal and external bleeding [113, 25, 127]. The average EVD case fatality rate is 0.5, but case fatality rates of up to 0.9 have also been recorded in past outbreaks [10, 180].

EVD treatment usually entailed relieving EVD symptoms, oral and intravenous rehydration, and curing other diseases that a patient may have [94]. Now the following steps are followed to interrupt the viral transmission chain [10, 127, 113]:

- Minimising the danger of animals to humans transmission by avoiding contact with fruit bats, monkeys and other non-human primates and avoiding eating their raw meat,
- Reducing the danger of human-to-human infection that results from close contact with EVD-symptomatic individuals, especially with the bodily fluids of these people. If close contact must be made with symptomatic people, for example, taking care of EVD-ill persons at home or hospital, gloves and protective equipment must be worn. Further, hands must be washed properly after caring for and visiting patients,
- Raising public awareness of EVD risks and protective measures,
- Contact tracing of EVD contacts,
- Placing suspected cases in quarantine for three weeks (maximum incubation period),

- Practising prompt and safe burial for EVD deceased individuals,
- Vaccinations,
- Experimental antiviral treatments.

Despite these control efforts, the disease still spreads in many parts of Africa. We hope to study the dynamics of this disease in order to mitigate its effects.

The objectives of this thesis are to:

- 1. identify crucial gaps in the modelling literature and improve prospective models by addressing current models' constraints;
- 2. quantify and study important epidemiological issues on the spread and control of EVD using novel mathematical models.

The deadliest outbreaks in recent history were the 2014-2016 West African outbreak (2014 WA EVD) and the 2018-2020 Kivu outbreak in the Democratic Republic of Congo. We discuss these outbreaks to motivate the problems that the current study explores.

### **1.3 The 2014-2016 EVD outbreak**

One of history's most devastating EVD epidemics occurred between 2014 and 2016 in West Africa. The index case (primary incidence) was an 18-month-old boy living in Meliandou village in Guéckédou prefecture in Guinea who died after becoming infected by EBOV [178]. The origin of the infection is uncertain, but it is likely to have originated from an animal, possibly a bat [162]. Although the outbreak may have started from animals, secondary transmissions have occurred from humans to humans [59]. Figure 1.1 depict how the 2014 WA progressed over two years in Sierra Leone, Liberia and Guinea. Despite the lessons learnt from the modelling efforts of the 2014-2016 WA EVD, the disease continued to spread on a large scale in Africa. Thus, it is vital to systematically review mathematical models of EVD, identify gaps, and improve prospective models by addressing current models' constraints.



Figure 1.1: The number of EVD cases reported every week (Wk) during the years 2014 and 2015. This figure was adapted from [162].

### 1.4 The 2018-2020 Kivu outbreak

The second-largest EVD outbreak in history was declared in North Kivu and Ituri provinces in 2018. The outbreak infected 3481 individuals and caused 2299 deaths. It affected more than 18 health zones in North Kivu and around eight health zones in Ituri provinces [167]. However, not all areas had the same EVD spread. Only six health zones in the North Kivu and Ituri provinces - Beni, Butembo, Kalunguta, Katwa, Mabalako, and Mandima - accounted for roughly 81% of infections by 25 August 2019 [68]. As a result, immunisations directed towards high infection locations may be a critical factor in controlling the spread of EVD when other intervention techniques fail to stop the outbreak's spread.

During the 2018-2020 Kivu outbreak, unidentified assailants stormed an Ebola treatment centre (ETC) in Butembo and burned several buildings and vehicles. The centre had 57 patients including 15 confirmed cases. The incident occurred several days after another attack in Katwa's ETC. Ten patients were present at the Katwa centre, four of whom had been diagnosed with EVD. In a previous outbreak, a group of community members attacked an ETC near Monrovia [66]. They looted items including mattresses containing blood and other bodily fluids of infected individuals [66]. Understanding the interplay between the attacks on Ebola treatment centres (ETCs) and the spread of EVD is critical to comprehend how EVD unfolds in conflict and community distrust zones.

### 1.5 Outline

In Chapter Two, we systematically review previous modelling literature on EVD and determine limitations in these models. A detailed review of each article is presented in an Appendix of this thesis. In Chapter Three, we study the impact of geographically-targeted vaccinations when the spread of EVD cannot be controlled using contact tracing, ring vaccinations and antiviral treatments. The proof of the theorems used in Chapter Three is presented in an Appendix. Chapter four studies the impact of the attacks on Ebola treatment centres during the 2018-2020 Kivu outbreak. In Chapter Five, we summarise the thesis findings and determine routes for future work.

### Chapter 2

# A Systematic review of mathematical models of the Ebola virus disease

### 2.1 Introduction

Recently, humanity has confronted an increasingly difficult re-emergence of the Ebola virus disease (EVD) [98, 132]. According to the World Health Organization (WHO) report in 2019, EVD was classified as one of the top ten threats to global health [182]. To date, more than 26 EVD outbreaks are know to have occurred [23]. The most severe was the 2014 West African Ebola outbreak (2014 WA EVD) which caused more than 11000 deaths followed by the 2018-2020 outbreak in the Democratic Republic of Congo (DR Congo) which caused more than 2000 deaths.

EVD is a zoonotic disease [156]. It follows a periodic cycle in non-human primates (apes, gorillas, monkeys and chimpanzees) and eradicates them [10]. Further, fruit bats of the Pteropodidae family are believed to be a reservoir for the Ebola virus [93, 113]. In almost every EVD outbreak, the first infected case was suspected to be due to eating hunted meat of an infected animal or by contact with fruit bats [29]. Human to human infection occurs through contact with bodily fluids or contaminated fomites of infected individuals [94, 54, 115]. The average EVD case fatality rate (CFR) is 0.5, but case fatality rates of up to 0.9 were also recorded in previous outbreaks [10, 180]. As the number of infected persons escalated during the past EVD outbreaks, many questions emerged about the epidemiology of EVD and the efficiency of tools and methods used for controlling the outbreaks. Mathematical models played an important role in assessing the value of different control measures and forecasting the trajectories of the outbreaks.

A mathematical model in the context of biology is defined to be an equation or a set of equations describing a biological phenomenon that quantitatively explain the phenomenon and ideally predicts its dynamics. Mathematical modelling is the process of formulating and analysing model equations and comparing model prediction with observations. Mathematical modelling of EVD has been effectively utilised to plan strategies for probable geographic spread, handle disease outbreaks in real-time, assess the impact of therapeutic and non-therapeutic control measures, and assist in the formulation of policy decisions [186].

Several studies have surveyed the literature on mathematical modelling of EVD [32, 43, 150, 37, 33, 164, 35, 155, 186, 38]. Chowell and Nishiura [32] reviewed significant epidemiological parameter estimates from historical EVD outbreaks (outbreaks which occurred before the 2014 WA EVD) and conducted a brief comparative review of different historical models and the 2014 WA EVD. Drake et al. [43] reviewed six mathematical modelling articles of outbreaks prior to the 2014 WA EVD. Van Kerkhove et al. [150] created a database of EVD parameter estimates from the past and the 2014 WA EVD. Chretien et al. [37] reviewed 66 studies of mathematical modelling of EVD. They aimed to discuss critical uncertainties addressed by these models, the data used, the public allocation of the data, results, and the performance of these models. Chowell et al. [33] analysed simulation data and reviewed models that accounted for realistic population mixing assumptions. Wong et al. [164] reviewed phenomenological and mechanistic models published from January 2014 to December 2015. They aimed to assess the impact of compartment models and under-reporting in the disease parameter estimates as well as in the disease trajectories. Chowell et al. [35] aimed to provide a viewpoint on some of the difficulties and conclusions learnt from the 2014 WA EVD modelling efforts. Viboud et al. [155] presented findings of an EVD forecasting challenge using synthetic data and conducted a systematic comparison for the performance of eight modelling approaches that participated in the trial. Zitzmann and Kaderali [186] concerned themselves with reviewing the literature on mathematical modelling of viral dynamics. In addition to reviewing six articles of mathematical modelling of the Ebola virus, they also reviewed mathematical models for other viruses, including HIV, Influenza, Hepatitis C, Dengue, and Zika viruses. Dembek et al. [38] reviewed mathematical models for diseases that potentially affect large populations. They presented key findings of some EVD models without discussing the models and their assumptions or approaches.

Most of the articles mentioned above did not review any work published after January 2016. Furthermore, those that have considered such work only focused on either particular

types of models [186], presented only findings for some models [38], or included just a few articles published in 2016 [33, 35, 155]. Additionally, these reviews did not focus on examining models by systematically identifying advantages and limitations or gaps for further research. Thus, there is a gap in the literature for systematically reviewing models published after January 2016.

In light of this, we carried out a systematic review of mathematical models of EVD. The objectives of this review are to present an overview of the mathematical modelling literature on EVD, identify gaps, and improve prospective models by addressing current models' constraints.

To achieve the current study objectives, we focused on reviewing each surveyed model in terms of the proposed problem, the data used, the approach, findings, advantages, and limitations. We chose to survey the modelling approaches because the choice of the method is essential in modelling. For example, phenomenological modelling approaches are generally more useful in providing a general sense of the data when there is not enough information about the disease's natural history parameters or enough data for quantifying modelling that account for the underlying mechanisms by which the disease variables are linked. Mechanistic modelling, on the other hand, is more useful in providing estimates for model parameters and natural history when there is sufficient data.

Models sometimes account for spatial, within-household, and within-host transmissions in their components. Due to its geographical distribution, the 2014 WA EVD become the most devastating EVD outbreak in history. The outbreak is believed to have started with an 18 month old boy living in Meliandou village in Guéckédou prefecture in Guinea and spread regionally and internationally through the mobility of people [178]. Spatial transmission models are used to understand, for example, how the migration of individuals contribute to the dispersal of EVD and how long it could take for the Ebola virus infecting someone in a region to cause subsequent infections in another region. They are also used to understand the impact of spatially-targeted intervention measures. Within-household transmissions in Guinea and more than 66% of the total transmissions in the country [49]. The reason for the increased proportion of the within-household transmission has resulted from the nature of EVD spread. The disease spreads through close contacts with patients via their bodily fluids and contaminated fomites. Modelling can account for within-household transmission and be used to assess the impact of household-targeted interventions. Withinhost transmission models help in understanding the interaction measurements of the Ebola virus with target cells. This modelling is particularly important since the virus is rated at level four in biosafety measures and hence basic research on the virus is limited [63].

Motivated by the importance of the consideration of spatial, within-household and within-host transmission components in modelling, we group our reviewed studies into five ensembles: spatial, within-and-between-households, within-host, other transmission, and other intervention models.

The rest of the chapter is organised as follows: In Section two, we create a system of identifying the surveyed literature. In particular, we set up the characteristics to be used to select eligible studies. Thereafter, we determine these studies. In Section three, we present an overview of the modelling issues and approaches. To achieve this, we revisit the grouping of the surveyed studies, motivated earlier. Thus, we group the surveyed studies into spatial, within-and-between-households, within-host, other transmission, and other intervention models. In Section four, we outline findings and limitations of the reported studies. We initially start with transmission determinants and terminate with interventions. In Section five, we conclude our work and discuss recommendations.

### 2.2 Methods

Many reviews were performed following the PRISMA statement for systematic reviews [109]. We follow the same procedure in the current study. In this section, we state the searching strategy for the literature and the eligibility criteria. Thereafter, we identify articles to be reported.

To conduct a systematic search for the current study, we focused on the PubMed database. PubMed provides a search engine for biomedical and life science literature. The database includes the National Library of Medicine (NLM) and the MEDLINE resources. It incorporates a bibliographic database composed of published literature including journals, conference proceedings and reports. It has been argued that PubMed is an optimal search engine for biomedical electronic publications [47]. To identify articles for the current study, we searched the PubMed database on 25 February 2019 using the following search constraints:

- 1. We used the search keys "ebola" and "model";
- 2. We restricted the search to articles published between 1 January 2016 and 31 December 2018.

The following selection criteria were used to select eligible articles:

- 1. Studies that include mathematical models of EVD in humans;
- 2. Phylogenetic studies were excluded;
- 3. Articles not in English were excluded;
- 4. Review studies were excluded. It should be remarked that the excluded mathematical modelling of EVD reviews were already discussed, in addition to all similar reviews, earlier in the introduction to motivate the current research questions;
- 5. Studies that did not provide any quantifications or simulation using real or synthetic EVD data were excluded.

To identify the eligible articles, the titles and abstracts of articles obtained from the initial systematic search were screened, and those that did not fit the selection criteria were eliminated. The full articles were then read, and subsequently further refined using the selection criteria. The selection process and the results are shown in Figure 2.1.

### 2.3 Modelling issues and approaches

Mathematical models can be classified into phenomenological and mechanistic models. They can also be divided into deterministic and stochastic models. Models can be analysed using mathematical theory or computer simulations. Mathematical theory is beneficial in depicting general patterns from simple models, and computer simulations are useful in drawing specific and precise results from complex models. Still, they generally sacrifice drawing broad conclusions [9]. In this section, we group our reviewed models into five sets: Spatial, within-and-between-households, within-host, other transmission, and other intervention models. We discuss the issues addressed in these models and how they were approached.



### **2.3.1** Spatial transmission models

Several studies accounted for spatial transmission [97, 163, 133, 8, 89, 45, 111, 154, 131, 36, 124, 60, 85]. These studies addressed various issues and used different approaches to express spatial transmission.

Spatial models explored various issues including the risk of regional and international spread [97, 163, 133, 8], estimating the distance of EVD transmission [89], determining individual heterogeneities regarding the spread of EVD [89], and assessing spatially targeted control measures [45]. Spatial modelling was also used to identify the best international intervention measures against EVD [111], understand the spread of EVD in hypothetical cities [124], study the impact of a hypothetical EVD spread in India [133] and estimate the risk of EVD occurrence [60]. One [85] investigated the impact of several spatial spread assumptions made in modelling.

There are different approaches to express spatial transmission. These include using travellers data and either employing phenomenological [163] or mechanistic [97] models or using a geospatial epidemiological framework [133]. Some models also modified the transmission rate with a gravity type parameter [45, 8]. This parameter expresses the dependence of the transmission on the sizes of two interacting populations and the distance between them. When a gravity type parameter is considered, the force of infection decreases with increasing geographical distances and increases with the increase in population density. One [89] employed cell phone GPS data. Some studies [154, 131, 36] used either phenomenological models or a combination of phenomenological and mechanistic models. While one [124] used a compartment framework in an agent-based software called PISKaS, another [133] used a spatiotemporal epidemiological modeller software called STEM. Moss et al. [111] expressed spatial spread by considering different rates of transmission in rural and urban populations. Kramer et al. [85] used a network approach in which the nodes were assumed to be geopolitical administrative units in West Africa, and the edges were assumed to represent how strong were the potential infection routes were among the nodes.

### 2.3.2 Within and between households transmission models

Several models accounted for transmissions within and between households [3, 82, 5]. These models discussed various concerns and used different approaches to consider within

and between household transmission.

Several parameters have been found to be addressed by the within and between household transmission models. One [3] explored the consequence of a household structure, in particular a household size in epidemiological parameters such as the basic reproduction number, the intrinsic growth rate and the epidemic final size. Another [82] aimed to understand the role of community mixing in explaining the sub-exponential aggregation of EVD dynamics at the district-level in the 2014 WA EVD.

Models approached the within and between households transmission in different ways. Some [3, 82] considered transmission within households to be constant while one [5] considered different levels of transmission within households.

### 2.3.3 Within host transmission models

Some studies considered within-host transmission in their components [117, 67, 102].

Viral shedding data were used for different purposes. House et al. [67] employed viral shedding data to estimate model parameters, including the mean of the infectious period for high and low viraemia. Additionally, they aimed to explore the mechanism in which vaccines reduce infection. Nguyen et al. [117] employed the data to understand the impact of the within-host pathogen dynamics into the between-host dynamics and evaluate the impact of EVD vaccination. Martyushev et al. [102] explored how EVD therapies such as ZMapp, TKM-Ebola and Favipiravir mitigate Ebola virus spread. Further, they aimed to understand the relationship between EVD severity and Ebola virus replication.

There are different approaches to express within-host transmission. House et al. [67] used a compartment model composed of three stages, starting with an initial viraemia followed by a second stage consisted of a high and a low viraemia and a final stage that was either death or recovery. Nguyen et al. [117] used a logistic model that was embedded with an age-specific contact network to express transmission between individuals. Martyushev et al. [102] used a compartment model with two target cells: susceptible target cells (monocytes/macrophages and dendritic cells (CD)) and potential target cells (hepatocytes, splenocytes and endotheliocytes).

### 2.3.4 Other transmission models

Several studies predicted the occurrence of EVD [10, 11, 185, 62], and associated the incident of EVD outbreaks with environmental, population, socio-economic, and climatic factors [134, 86, 148]. One studied the role of bats on the EVD occurrence [95]. Some characterised the spread of EVD [129, 48, 158, 118, 88], estimated EVD natural history parameters [144, 55, 125, 151], and explored social and behavioural aspects that characterised the spread of EVD [183, 136]. Some studies [27, 56, 147, 7, 123, 58, 153, 99] forecasted EVD spread trajectories. Others explored the potential impact of EVD sexual spread from male survivors [1], studied the event of super-spreading [90], the factors that might have driven this circumstance [90], and investigated whether the Ebola virus can evolve to become less virulent in the human population [141].

Several models studied the relation of EVD occurrence with some environmental, behavioural, socio-economic, climatic and demographic factors. Others predicted reoccurrence of EVD. One [11] explored whether the effect of environmental transmission of EVD, including poor hygienic practices and the consumption of contaminated bush meat, can explain the re-occurrence of EVD in Africa. Another [10] explored the understanding and forecast of future EVD outbreaks. Schmidt et al. [134] predicted the timing and location of EVD spillover events. Krauer et al. [86] investigated the role of socio-demographic factors in the spread of EVD. Zinszer et al. [185] explored some demographic and environmental predictors of EVD spread. Valeri et al. [148] have systematically investigated the demographic and socio-economic predictors of EVD at the sub-national level in Guinea, Liberia and Sierra Leone. Guo et al. [62] forecasted future reoccurrence of EVD. These models employed different methodologies. One [10] considered a compartment model in which transmission was assumed to happen from humans, fruit bats, non-human primates, and other animals. Another [11] used a compartment model, included environmental transmission as one compartment in the model and assumed infectious humans to have shed the virus in the environment. Guo et al. [62] used a simple SIR model in the absence of intervention measures. Other studies [185, 134, 86, 148] used various statistical methods including regression and Bayesian hierarchical models.

Fruit bats of the Pteropodidae family were believed to be the reservoir for the Ebola virus [93, 113]. Li et al. [95] explored the impact of bats on the EVD spillover event. They used a compartment modelling structure and Markov Chain Monte Carlo simulation.

Several studies aimed to characterise the spread of EVD and analysed EVD data in West Africa. These studies used various approaches. One [129] used an activity-driven and time-varying network in which the set of nodes represented individuals, and the edges represented contacts between these individuals. Another [158] used an age-structured model in which each of the disease stages (e.g., incubation, infectiousness, hospitalisation) was considered as an age of the disease since infection. Ngwa and Teboh-Ewungkem [118] used a deterministic model that integrated EVD data, included quarantine and non-quarantine states and assumed EVD spread in the community to be different than health-care settings. Lachiany and Louzoun [88] considered EVD infection rates to have different distributions including constant, and normal distributions. Fang et al. [48] mapped EVD cases to their geographical locations and used statistical methods to analyse the spatiotem-poral trajectories.

Several models were used to estimate various EVD natural history parameters. Taylor et al. [144] determined the basic reproduction number in the three most affected West African countries by the 2014 WA EVD. Frasso and Lambert [55] estimated the effective reproductive number. Pettey et al. [125] measured the mean incubation period of EVD and the serial interval. Vanhems et al. [151] approximated EVD emergence probability and secondary incidence cases when a patient with undetected EVD was hospitalised. Various approaches were used to find these estimates. Taylor et al. [144] used a hybrid stochastic-deterministic approach based on *SEIR* type model and the Gillespie stochastic simulation. Frasso and Lambert [55] used a discrete-time Markov chain structure of EVD and Bayesian inferential framework. Pettey et al. [125] used publicly available online sources, conducted an online search about recorded EVD reports and built a transmission chain. Vanhems et al. [151] used a stochastic compartment model and the Gillespie simulation. They divided the population into patients, nurses, and physicians.

Some studies proposed alternative approaches to formulate an accurate description of epidemic dynamics [100], explored the problem of parameter identifiability [140] or assessed some common modelling assumptions [18]. One [140] derived a linear Volterratype integral equation from a compartment model of the *SEIR* type. Another [18] fitted cumulative EVD incidences to a logistic growth and used a simple compartment model to explain the underlying reasons for the EVD trajectories produced in the logistic growth. Getz and Dougherty [100] proposed an alternative approach to the standard *SEIR* modelling method using a discrete stochastic Erlang type modelling.

Social and behavioural aspects can characterise the trajectories of EVD outbreaks and explain the underlying reasons for the disease trajectories [183, 136]. One study [183] assessed the impact of individual behavioural changes on EVD trajectories. This study utilised four different EVD forces of infection to implement behavioural change and decided which of them had the best model fitting and disease prediction. Another [136] used a system dynamics approach to understand the impact of social and behavioural factors in the spread of EVD. This study incorporated twitter data about outbreak news as a measure of the psychological and behavioural changes.

To predict the spread of EVD, various methodologies were used with real or synthetic data. Several studies [27, 56, 147, 7, 123, 58, 153] used synthetic EVD data that were produced for the RAPIDD (Program of Research and Policy for Infectious Disease Dynamics of the United States) Ebola forecasting challenge. They aimed to forecast EVD trajectories using the different datasets provided in the challenge and employed different types of approaches (phenomenological, mechanistic, and mixed). Others [139, 99] adapted real data for the three major affected countries by the 2014 WA EVD and used global and phenomenological modelling approaches to forecast EVD incidence and to characterise EVD dynamics.

To study the potential impact of EVD sexual spread from male survivors, Abbate et al. [1] used a compartment model of the SEIR type in which a further compartment C representing the convalescent population was added.

To investigate super-spreading and the factors that might have driven this circumstance, Lau et al. [90] used network-based and Bayesian frameworks. The approach focused on creating transmission trees among EVD cases. A Bayesian model then integrated the data and inferred the distribution of new cases.

To understand whether the Ebola virus can evolve to become less virulent in the human population, Sofonea et al. [141] used a compartment model. They assumed the case fatality rate to be proportional to the transmission rate. An evolution in the population was considered to occur by a rare mutation that creates a different case fatality rate.

To assess the impact of relapse and reinfection in the spread of EVD, Agusto [4] proposed a deterministic compartment model. Recovered individuals in the model were assumed to have a disease relapse or to become reinfected by being exposed to infectious individuals.

### **2.3.5** Other intervention models

Some models [119, 76, 57, 44, 110] assessed the impact of intervention measures including contact tracing, isolation, safe burials and vaccinations. Others [20, 39, 64] explored how to improve the performance of randomised intervention trials. Two studies [184, 75] determined the optimal procedure of eradicating EVD. Another [94] studied the impact of public health education on the spread of EVD. Various other studies evaluated the impact of EVD therapies and vaccines [107, 87, 12, 65, 15, 71].

Intervention trials aim to benefit participants and whole communities. Some models either intended to evaluate the performance of randomised intervention trials or to design intervention trials that have high attainments [20, 39, 64]. One [20] evaluated the feasibility of a prime-boost vaccination trial, while others [39, 64] increased the performance of randomised trials. These studies used various approaches. One [20] used a compartment model in which they assumed susceptible individuals to either be recruited to vaccinated or control groups. Another [39] utilised a metapopulation framework to project areas of the first order of incidence occurrence and those with the highest weekly cases. Harling et al. [64] proposed a class of connectivity-informed designs and utilised connectivity information between clusters in intervention scenarios.

The impact of intervention measures was characterised in many ways. Nieddu et al. [119] introduced a stochastic model that accounted for EVD spillover from its zoonotic reservoir. Interventions were considered by limiting the contact rate with infectious individual, safe burials or reducing the reservoir transmission. Jones-Konneh et al. [76] used an agent-based model. They considered both the initial status of individuals regarding their knowledge about EVD and the status when individuals are well-informed about EVD. Funk et al. [57] structured the population into the general community and the people within healthcare centres. The importance of community engagement was represented in the model as the healthcare-seeking behaviour parameter. Muhammad et al. [44] used a compartment model of the *SEIR* type with further hospitalisation, quarantine, and vaccination components.

Models are sometimes used to find the optimal strategy of eradicating EVD. One [184] was used to calculate the fastest road for drug and vaccine distribution, and to find the storage solution that results in the minimum total cost. Another [75] was used to find critical measures to eradicate EVD optimally. These models incorporated different methodologies. Zhu et al. [184] used a compartment structure and optimisation methods. Jiang et al. [75] proposed a compartment model that accounted for early and advanced stages of infectiousness, hospital isolation, EVD therapy, and vaccination.

To assess the impact of public health education on the dynamics of EVD in Sudan, Levy et al. [94] used a deterministic compartment model that divided the susceptible population into individuals who were knowledgeable about EVD and individuals who were not. They studied the effect of becoming knowledgeable about EVD on the spread of the disease.

To assess the effectiveness of contact tracing in the early phase of an outbreak, Shahtori et al. [110] used an activity driven network method. The contacts of an infectious person were observed for 21 days. Further, this observation was implemented after some delay, and the effects of this delay were evaluated.

EVD therapies and experimental vaccines were extensively used during the 2018-2020 DR Congo outbreak and the late period of the 2014 WA EVD. Several studies evaluated the impact of ring vaccination [107], explored the circumstance under which ring vaccination could control the spread of EVD [87], evaluated the impact of the rVSV-ZEBOV EVD vaccine [12], assessed ring vaccination trial design [65] and evaluated the voluntary vaccination strategy [15]. One [71] evaluated the convalescent blood transfusion therapy and explored vital factors that strengthen this treatment. Motivated by these concerns, the studies above applied various methodologies. One [107] applied a novel methodology that integrated transmission within households and extended families. Another [87] used a statistical method that explored the circumstance under which ring vaccination could control the spread of EVD. Bodine et al. [12] utilised a compartment model that accounted for various risks of infection. Hitchings et al. [65] used a compartment modelling structure and assumed individuals to either be infected by rings of contacts and contacts of contacts or by the general population. Further, they assumed vaccination to be implemented

immediately or after some delay.

Brettin et al. [15] considered a compartment of vaccination in a compartment model. They assumed a population to be well informed about the risk of the disease and the direct and indirect cost of vaccinations. Huo et al. [71] presented a treatment-donation-stockpiles compartment model and assumed that infected individuals to be efficiently hospitalised and safely buried when deceased.

### 2.4 Model conclusions and constraints

There are several questions asked by public health physicians when facing the possibility of an epidemic. These include:

- How severe will an outbreak be?
- How many individuals will be affected by a disease?
- What is the maximum number of individuals that should be treated to stop the spread of an outbreak?
- How long will the epidemic continue?
- How effective is the quarantine of victims in decreasing the seriousness of a plague?

Mathematical models are tools used to answer these questions, among others [9]. They are used to achieve this goal by describing the relationship between variables in a dataset where they seek only to describe the data or, they further explain how these variables are related to each other biologically. However, models are often constrained by simplifying assumptions (e.g., homogeneous mixing) or problems in the datasets (e.g., in-accurateness or incompleteness) [46]. In this section, we discuss model findings and limitations in addition to gaps for further work. We first start with transmission factors and issues followed by intervention factors.

### 2.4.1 Enviro-climatic, socio-geographic and socio-economical factors

In some studies, it was suspected that climatic changes and the expansion of population in addition to some population and socio-economic factors played a crucial role in the spread of EVD [148, 185, 134, 62]. Consequently, these issues were explored and found

to be important variables in associations of EVD occurrence. It has also been found that household and community sizes play an essential role in the spread of EVD [3, 82].

In order to forecast the spread of EVD, some studies [148, 185, 134, 62] used environmental and ecological predictors. Some of these studies made simplified modelling assumptions or did not explore important consequences of their findings. Others, on the other hand, could be applied to new contexts. Many statistical models [148, 185, 134] were used to associate rainfall, urbanicity and the number of households not owning a radio with a high risk of EVD occurrence. However, the causative relations between these risks and the human-to-human spread of EVD with a particular focus on how human mobility and healthcare accessibility are affected by these risks are not studied in any of our reviewed articles. One statistical association model [134] was used to show that the risk of EVD peaks in the transition period between wet and dry seasons and suggested that Central Africa, East Africa and Madagascar to have a high risk of EVD occurrence. However, the model did not incorporate local factors such as the level of hygiene and diet practices (e.g., eating of contaminated bush meat) that are often associated with EVD spillover [10, 11]. Guo et al. [62] forecasted the EVD epidemic to reoccur in 2035. Then it will continue to reoccur after eight to nine years. However, it is not generally simple to predict the reoccurrence of EVD without accounting for many factors that contribute to the probability of EVD spillover. These include environmental changes, urbanicity, and the consumption of bush meat [134].

Household and community sizes played an essential role in the spread of EVD. Adams [3] found that the increase in household sizes to have increased the risk of EVD spread. Further, communities with small household sizes required a modest level of case identification and quarantine. In contrast, those with large sizes required effective quarantine combined with case detection and isolation of the whole household. Kiskowski and Chowell [82] found that the community size and the basic reproduction number for the household and that of community to have characterised the spread of EVD. These studies [3, 82], however, either assumed that the transmission within and between households to be constant or did not account for heterogeneity of transmission within households. In reality, people who look after patients have a higher chance of EVD transmission as compared to other household members [120]. Further, transmission within relatives and friends is higher than transmission among the general community [120].

### 2.4.2 Transmission within healthcare units

Nosocomial transmission has historically played a crucial factor in the spread of EVD [21]. This transmission usually results from poor cleaning or ineffective decontamination at healthcare centres. Several models were used to specify factors that reduced the spread of EVD in healthcare settings and to identify people at high transmission risks [5, 76, 151].

Vanhems et al. [151] estimated EVD emergence probability at hospitals when EVD patients were misdiagnosed and found nurses to have a higher risk of EVD infection compared to other groups (physicians and other non-EVD patients). Their study, however, only assumed direct infection through contact with EVD patients and did not account for indirect transmission that could occur from bad cleaning or inefficient decontamination of the bodily fluids of EVD patients. Further, it was assumed that the isolation efficacy to be 100% as soon a patient was diagnosed with EVD which might also be an overly optimistic assumption given the high contagiousness of EVD.

Several factors were found to have caused a reduction in the spread of EVD within the healthcare system. Ajelli et al. [5] found that the relatively high preparedness of the healthcare system, the early availability of Ebola treatment centers and the application of case isolation and safe burials to have limited the spread in the early stage of the outbreak in Guinea during the 2014 WA EVD. Jones-Konneh et al. [76] found that the increase in the probability of seeking intensive training about EVD and practising appropriate care procedures to have caused a greater decline in EVD infection compared to the increase in the percent of healthcare workers (HCWs) who initially had some knowledge about EVD or those who attended little training about the disease. Jones-Konneh et al., however, did not account for any actual delay in establishing EVD training academies for HCWs.

### 2.4.3 Transmission from bats, animals and virus shed in the environment

Some models [119, 95] were used to determine the effects of the bat's spillover in the spread of EVD. Others [11, 10] were used to identify the impact of environmental transmission resulting from poor cleaning, inadequate decontamination, or unhygienic diet practices such as the provision of raw bush meat.

Some studies characterised the spread of EVD as a function of EVD spillover from the bats [119] and specified the effects of increasing the size of the spillover [95]. Nieddu et al. [119] simulated the vulnerability to EVD as a function of the bats infection rate and

determined a range of values for these rates that trigger isolated and endemic outbreaks. Li et al. [95] found that infected bats might have likely been the source of the EVD spillover. Further, they found increasing the number of daily captured infectious fruit bats to have only reduced the peak timing of an outbreak and not the peak value. Li et al., however, assumed bat's spillover rate to be zero during wet seasons while numerous studies [148, 185, 134] associated wet seasons with enhanced risk of EVD spillover.

Some studies [11, 10] investigated the transmission from a contaminated environment in a simple modelling framework and in the context of a complex life ecology composed of bats, humans and animals. Berge et al. [11] found that in the case of a virus-free environment (that is, no recruitment or provision of the Ebola virus in the environment), the number of infected individuals either became extinct or constant in the long run depending on the value of the basic reproduction number. In the case of a non virus-free environment, a constant number of infected individuals in the long run was found. This number was invariant to any changes in the initial number of infections when there was no virus shed by infectious individuals in the environment. In another model, Berge et al. [10] determined the basic reproduction number  $R_0$  and the stability analysis of a disease-free equilibrium in a complex model that illustrated the interplay of EVD transmission within and among fruit bats, non-human primates and other animals, and the human population. The models [119, 11, 10] assumed the population to be homogeneously mixed regarding spatial spread. However, this assumption is not realistic with the most severe outbreaks that occurred during the last decade.

### 2.4.4 Spatial transmission

Several studies characterised EVD growth at the sub-national level in Guinea, Liberia and Sierra Leone [131, 154, 36, 86]. Some [48, 124] indicated factors that were associated with a spatial spread. Other studies [97, 8] estimated the risk of EVD from travellers. One [85] investigated the impact of a gravity type parameter in the spread of EVD as compared to other spatial modelling techniques. Another [60] associated the road density index (RDI) with a spatial transmission. D'Silva and Eisenberg [45] estimated the impact of spatially-targeted intervention measures.

Several investigations characterised the different growth profiles among the sub-national
levels in the three most affected West African countries by the 2014 WA EVD and determined some factors that were associated with a spatial spread. Some [131, 154, 36] found high variations in EVD growth in the various regions in Guinea, Liberia, and Sierra Leone. Krauer et al. [86] found that the spatial distribution of the disease in prefectures, districts and counties with the highest transmission rates in Guinea, Liberia and Sierra Leone to have clustered regionally whether there is a national border or not. Fang et al. [48] found that EVD invasion at chiefdom level in Sierra Leone to be remarkably correlated with the density of the population, the closeness of treatment centres and the transportation networks. Perez-Acle et al. [124] found that a higher degree of connectivity (through transportation and mobility) and higher proximity to EVD infected areas to have caused higher EVD risks. There are some limitations, however, for these investigations. The studies [131, 154, 36] did not reveal the causes of the high variations in EVD growth. Krauer et al. [86] used early stage data which were generally unreliable and contained case uncertainty due to resource limitations in West Africa and the resemblance of EVD symptoms with other diseases such as Malaria [32]. Further, they assumed the population at the district-level to be homogeneously mixed. Perez-Acle et al. [124] assumed that infected individuals could travel while in reality some might be too sick to travel, hospitalised or quarantined.

Some models were used to assess the impact of a gravity type parameter and the RDI in the spatial spread of EVD [85, 60]. Kramer et al. [85] found that models with a transmission parameter of a gravity type to have created the best characterisation to spatial spread as compared to those models that used diffusion spread or estimated the mobility using cellphone records. Gómez-Barroso et al. [60] found a strong association between the RDI and the risk of EVD occurrence. However, the latter study used data that might contain some unconsidered neighbourhood paths that connect villages. On the other hand, Kramer et al. [85] assumed a gravity-type parameter that does not account for the risk of air travel. Further, it does not consider natural barriers such as rivers or borders between countries.

Some studies estimated the risk of EVD from travellers [97, 8]. Lopez et al. [97] found that in the 15th week of 2014, three individuals among 10,000 travellers from Liberia had EVD. Wiratsudakul et al. [163] found that in early November 2014, the probability of EVD importation into each of the top 20 final destinations for commercial flight passengers travelling from Guinea, Liberia and Sierra Leone reached its peak. Backer et al. [8] found

that between four and ten percent of newly infected people travelled to other districts within the same countries (Guinea, Liberia or Sierra Leone). Further, between zero and 23% of the newly infected persons travelled to other countries. The models [97, 163] did not account for socioeconomic differences of the inhabitants as some could afford international travel while others could not, and did not consider whether frequent travellers were from the most infected areas. Furthermore, Backer et al. [8] did not assume any intervention scenarios such as border closure, check points or hygienity practices such as washing of hands to reduce the chance of disease transmission.

D'Silva and Eisenberg [45] found that when applying local interventions for a district with a high infection rate (0.1% of the total cases) in Guinea, Liberia or Sierra Leone, a reduction of 20% of the total EVD cases in these countries occurred. This study incorporated district and national scale dynamics. However, it did not account for transmission in small scales such as communities (neighborhoods) and villages which have been modeled by Kiskowski and Chowell [82].

To conclude, it was illustrated that just feeding high-speed computers with large amounts of data may not necessarily explain the fundamental processes and properties underlying a specific dynamic phenomenon [16]. Alternatively, it was suggested that the notion of the traditional geographic distance used in spatial models might be replaced with an effective distance [16]. In the notion of effective distance, it was assumed that two locations in the air-transportation network with many passengers should be effectively close compared to locations coupled only by a small number of travelling passengers, irrespective of these locations' geographical distance.

#### 2.4.5 Behavioural changes

Some studies assessed the impact of the earlier implementation of behavioural changes and determined how the change in behaviour could be modelled [94, 183]. Levy et al. [94] revealed that the timing of the behavioural changes in addition to the initial proportion of informed and ill-informed susceptible individuals to have played an important rule in determining the magnitude of an outbreak. Yan et al. [183] found that the force of infection that includes an exponentially declining trajectory as a result of behavioural changes to have created the best model fitting and disease prediction. The force of infection found in the latter study can be adapted and used with data that include behavioural changes to extract other information from the data such as understanding if the difference in age can explain the super-spreading event. On the other hand, the former model [94] can be applied to another context. For example, instead of considering educated and uneducated population groups, two population groups (vaccinated and unvaccinated) can be considered. Consequently, the impact of vaccination can be studied.

#### 2.4.6 Other transmission issues

Many studies have explored the trajectory of EVD [27, 56, 147, 7, 123, 58, 99]. Some focused on estimating EVD natural history parameters [67, 139, 125, 137, 144]. Others measured the impact of super-spreaders and characterised population groups that might have contributed to the super-spreading event [90, 89], described the impact of sexual transmission from survivors [1], addressed the effect of disease relapse and reinfection of recovered individuals [4], or pointed out whether EVD could evolve to become less virulent [141]. One [18] provided important insights about common EVD modelling assumptions. Some studies either suggested an alternative structure to the *SEIR* model [100] or determined a different approach to the nonlinear optimisation methods used in modelling [140].

Several studies [27, 56, 147, 7, 123, 58, 99] were used to predict the spread of EVD. However, some [56, 147, 58] either made a short time forecast of incidences or did not predict epidemic peaks. Champredon et al. [27] found that fitting a compartment model to synthetic data resulted in double bumps in the disease incidence trajectories. This result was explained to emerge from the effect of spatial spread. However, the authors did not include spatial transmission in their modelling. Mangiarotti et al. [99] created a model that only used EVD time series to simulate EVD trajectories and predicted the epidemic for a short period. This study assumed the population of Guinea, Liberia, and Sierra Leone to be homogeneously mixed. However, the spread of EVD in these countries was not similar due to the different healthcare system preparedness and the different contact structure [57, 82, 35].

Many studies estimated vital EVD natural history parameters [67, 139, 125, 137, 144]. House et al. [67] found the mean of the infectious period to be 5.3 days for a low viraemia and 6.8 days for a high viraemia. Smirnova and Chowell [139] predicted EVD final size for the 2014 WA EVD to be  $1.7 \times 10^4$ ,  $1.1 \times 10^4$  and  $3.5 \times 10^3$  in Sierra Leone, Guinea

and Liberia, respectively. Pettey et al. [125] estimated the mean incubation period and the serial interval to be 12.5 days and 19.4 days, respectively. Siettos et al. [137] estimated the effective reproductive number  $R_t$  to be 0.7 from 21 December 2014 to 18 February 2015. However, this figure had increased to 1.98 in the following two months. Taylor et al. [144] found the basic reproduction number  $R_0$  for Guinea, Liberia, and Sierra Leone to be 1.24, 2.06, and 1.71, respectively. The studies [67, 139, 125, 137, 144] had some limitations. Smirnova and Chowell [139] assumed the population of each country (Sierra Leone, Guinea and Liberia) to be homogeneously mixed. Pettey et al. [125] used an online news media report data that might have included misinformation or disclosed personal details of individuals. Further, these online resources might have been altered without prior notice. The strength of the methodology presented by Siettos et al. [137] depends on the accuracy of the data. It is believed that there were issues such as under-reporting in the 2014 WA EVD data [35]. The structure of the Taylor et al. model [144] was relatively simple. It did not include some realistic differences in EVD transmission among the population. Some of these variations were recorded to be among the different districts [154, 131, 36], age groups [5], and community structure [82].

Lau et al. [90, 89] estimated the impact of super-spreaders and characterised the population groups that might have contributed to super-spreading. They found that superspreaders of about 3% of the total EVD cases to be responsible for more than 60% of all generated cases in a dataset from Sierra Leone. Further, they concluded that instantaneous super-spreading to have occurred, mostly, from age groups of less than 15 years old and larger than 45 years old. The studies [90, 89] incorporated only EVD death data. Therefore, the study can only conclude age-specific infectiousness heterogeneity for fatal cases. A different dataset composed of fatal and non-fatal cases can be considered, and agespecific infectiousness heterogeneity in the new context could be explored and contrasted against those of the fatal cases data.

Abbate et al. [1] found that there was generally an insignificant increase in the number of EVD cases resulting from survivor's sexual transmission, but this transmission extended the duration of the disease. The effect of sexual transmission from EVD survivors in metapopulation systems is a potential research project for extending this study.

Agusto [4] found that in the presence of disease reinfection of a recovered person by

an infectious individual, a backward bifurcation was found in which a disease-free equilibrium and an endemic equilibrium coexisted. Disease relapse of a recovered individual was found to lead to more infections compared to disease reinfection. While extending previous studies by including the relapse and reinfection of recovered individuals and studying their impact, Agusto [4] assumed transmission rates in the general population, healthcare settings, urban and rural areas to be equal.

Sofonea et al. [141] found that it was unlikely for the Ebola virus to evolve and become less virulent unless two conditions were satisfied. First, the proportion of unsafe burials should be reduced to less than 4%. Second, the case fatality rate and the EVD transmission rate must have very little or no genetic connection. While assuming transmission rates to be proportional to the case fatality rate (CFR), the model did not consider any heterogeneity in the CFR. However, it was believed EVD deceased to have the highest infection rate compared to living infectious individuals [94].

Burghardt et al. [18] found that EVD models with population-density dependent transmission rates might accurately predict the initial spread in an area. Further, initial growth was found to decrease as the population density increased. While suggesting metapopulation modelling could predict the initial spread of EVD through the flow of travellers, the model did not account for any control measures that might reduce or block the chance of the disease spread in the initial stage of an outbreak. For example, the behaviour of the population might show early positive change of avoiding infection if the population had learnt about the disease from a previous outbreak [94].

Two studies [100, 140] proposed an alternative framework to the SEIR model and determined a different approach to the nonlinear optimisation methods used in modelling. Getz and Dougherty [100] found that an alternative discrete stochastic Erlang type model for the standard SEIR method to have offered a more accurate description of epidemic dynamics. Smirnova et al. [140] found that a methodology based on a linear Volterra-type integral equation and regularization algorithms to have produced a moderate prediction of the impact of the epidemic in Sierra Leone. While the latter modelling framework was based on a compartment model of the SEIR type, it could be extended to include more realistic transmission stages (e.g., infection from the environment and different levels of transmission among contacts). The Getz and Dougherty [100] modelling, on the other hand, considered the population under study to be homogeneously mixed and regarded

transmission only from living infectious persons.

#### 2.4.7 Vaccinations and therapies

The Merck rVSV-ZEBOV and the Johnson & Johnson Ad26.ZEBOV/MVA-BN EVD vaccines, in addition to other EVD therapies, were the major treatments used during the 2018-2020 DR Congo EVD outbreak [105]. Several studies have evaluated the impact of vaccines and therapies [15, 117, 107, 102] and presented important conclusions. Others [65, 39] investigated the feasibility of vaccination randomised trials. One [184] provided an optimal way of storing and delivering EVD vaccines.

The impact of ring, mass, and voluntary vaccination strategies were explored, and valuable insights were provided. Brettin et al. [15] concluded that a voluntary vaccination might be able to eradicate EVD, particularly when added to other control measures. Nguyen et al. [117] found that mass vaccination of 85% coverage can eradicate the disease if it was launched between five months before and one week after the outbreak. Merler et al. [107] concluded that a ring vaccination to be effective in containing an epidemic up to the value of  $R_0 = 1.6$ . This figure was increased when other control measures were added. Kucharski et al. [87] found that when an epidemic is less severe, a ring vaccination could eradicate the outbreak. Camacho et al. [20] suggested that when a vaccination trial was started at an earlier time, the probability of eliminating the disease in vaccinated groups increased. The studies [15, 87, 20], however, contained some limitations. Brettin et al. [15] assumed the population to be rational enough to decide to be vaccinated voluntarily and assumed the population to be well informed about the risk of the disease and the direct and indirect cost of vaccinations. Kucharski et al. [87] did not account for different possible immunity periods that the Merck rVSV-ZEBOV vaccine might have [52]. Camacho et al. [20] did not account for any logistical constraints that may affect the feasibility of the vaccination trial in the studied areas.

Diakite et al. [39] found that if vaccination trials were started ten weeks after the onset of the disease, utilising metapopulation modelling to choose the districts with the highest modelling projection was effective. The proposed metapopulation modelling framework, however, did not account for natural barriers such as rivers that may affect the movement of individuals and create natural protection from the spread of the disease, particularly in the context of Central and West Africa where EVD had the highest level of spread.

EVD therapies and blood transfusions from survivors have increased the chance of recovery for EVD patients. Martyushev et al. [102] found the basic reproduction number to be six for EVD fatal cases and 2.8 for survivors. Further, combining siRNA-based and nucleoside analog-based therapies with an 80% inhibition rate was found to be more likely efficient for otherwise fatal cases even if it was started four days after the onset of symptoms. For non-fatal cases, mono-therapies were found to be sufficient. Huo et al. [71] found the plasma transfusion treatment to have a substantial advantage in increasing the blood bank stockpile and in reducing the CFR. Further, when more blood donors were recruited, and the right track of their contact was kept for re-donation, a more significant reduction in the CFR occurred. The latter study, however, assumed a homogeneously mixed population in a perfect context of hospitalisation and safe burial measures. On the other hand, Martyushev et al. [102] only considered within-host transmission. Their study could be extended to include between-host EVD spread and consequently used to explore EVD transmission and intervention related questions at the individual and population scales. Martyushev et al. [102] assumed a single homogeneous compartment representing multiple organs that are infected at the same time. Chertow et al. [28] criticised this modelling approach. They showed that a one-compartment assumption modelling for the Ebola virus infection and replication counter significant evidence that the Ebola virus infects cells and tissues throughout the body in a nonhomogeneous fashion. Further, they suggested that the multiple body compartment modelling approach will aid the development of more accurate predictive models for EVD.

Zhu et al. [184] found that the speeding up of drug production, and the systematical distribution of drugs and vaccines to be a powerful method for controlling the disease. They further calculated the fastest route for the drug and vaccine distribution and found the storage solution that results in the minimum total cost. This study, however, did not account for heterogeneity regarding the cost depending on the type of the vaccine stored. For example, the two widely used vaccines, the Merck rVSV-ZEBOV, and the Johnson & Johnson Ad26.ZEBOV/MVA-BN have different storage temperatures and consequently different logistical costs [77, 22].

#### 2.4.8 Other intervention issues

Collective control efforts were combined to stop the spread of EVD. These include quarantine, symptom monitoring, contact tracing, and vaccination. Several modelling studies explored the consequence of these measures and obtained essential insights [136, 118, 44, 129, 111, 158, 110, 122].

Several models were used to study the impact of quarantine. Sharareh [136] found that the temporal increase in the rate of quarantine to have resulted from a rise in situation awareness. Ngwa and Teboh-Ewungkem [118] derived a threshold parameter  $R_0$  as a function of the fraction of suspected cases to be quarantined. They found infection to have occurred in treatment centres when all cases were quarantined. Muhammad et al. [44] found the disease to be controlled if the transmission rate of isolated individuals was less than one-fourth of those non-isolated. Further, they found that time-varying optimal quarantine was more effective as compared to a high but fixed level of quarantine. The studies [136, 118, 44] contained some limitations. Sharareh [136] assumed that the three most affected countries by the 2014 WA EVD to be one entity and to have the same rate of transmission. However, the spread of EVD in these countries was not similar due to the different healthcare system preparedness and the different contact structure [57, 82, 35]. Ngwa and Teboh-Ewungkem [118] did not construct a complete treatment based on the most crucial model parameters in the disease spread, and the stochastic effects in the disease growth. Muhammad et al. [44] assumed the transmission to occur only from living infectious individuals (within the community or at hospitals). Thus, they did not consider transmission from deceased individuals or an unclean environment.

Several studies found that early application of control measures and safe burials to improve intervention efforts [129, 111, 158]. Rizzo et al. [129] concluded that the earlier use of intervention strategies to provide a vital decrease in the infected cases and the period of the outbreak. Moss et al. [111] found the early case detection of infected individuals to provide a high decrease in the probability of having a large outbreak. Further, the reduction in transmission resulting from the deceased was found to substantially increase the probability of controlling the outbreak. Webb and Browne [158] found the disease reduction in Guinea and Sierra Leone during the 2014 WA EVD was caused by increased and earlier hospitalisation or isolation of cases. While Rizzo et al. [129] considered individual heterogeneity, they did not account for spatial locations of contacts. Webb and Browne,

on the other hand, considered the entire population to be homogeneously mixed. However, EVD is highly heterogeneous depending on the contact structure and the density of a population [3, 82].

Contact tracing, symptom monitoring, and vaccination represented an essential part of combatting the spread of EVD. Shahtori et al. [110] found that contact tracing to be more effective if the identification of the traced persons was not delayed for more than ten days. Peak et al. [122] found symptom monitoring to be more effective measure in containing EVD compared to quarantine. The increased use of vaccinations [72, 81] motivates extending the latter model to account for vaccinations. One issue that could be investigated is the impact of vaccination measures in controlling EVD compared to non-pharmaceutical intervention measures.

# 2.5 Discussion

Previous reviews provided a brief comparative survey for natural history estimates [32, 150], reviewed only some EVD models [43, 186, 38], systematically reviewed models that were published at some period [164, 37] or discussed difficulties and conclusions of modelling efforts [35]. However, none of these studies had systematically reviewed any work published after January 2016. Further, none of them focused on reviewing each surveyed study with regards to identifying advantages and limitations in the modelling assumptions. In this study, we created a system of reviewing EVD models that resulted in 74 studies (Figure 2.1).

We classified articles broadly in terms of the modelling approaches as well as the model conclusions and constraints. The study has identified many limitations in the reviewed models and sometimes made brief suggestions for future work. We give two detailed examples of these recommendations.

Approximately 84% of EVD patients in Guinea were adults of age greater than 15 years old, but this group was only 54% of the total population [5]. Consequently, age could be an important factor in the spread of EVD. Few studies [5, 90, 89] used age to characterise the spread of EVD. Ajelli et al. [5] used a simple compartment model of the *SEIR* type with two age groups: individuals with age younger or equal to 14 years; and individuals older than 14 years. Lau et al. [90, 89] studied whether age can explain superspreading and proposed that individuals with age less than 15 and greater than 45 years to

be key predictors of super-spreading. However, the dataset used by Lau et al. [90, 89] only included fatal EVD cases and concluded the results to all cases (fatal and non-fatal). On the other hand, the findings concluded by Lau et al. [90, 89] suggest extending the Ajelli et al. [5] model to consider three age groups (individuals with age younger or equal to 14 years, individuals with age of 15 to 45 years, and individuals older than 45 years). The new model can then be used with data that include fatal and non-fatal cases to understand if age can explain super-spreading. In this regard, we propose using the Sierra Leone data presented in Fang et al. [48]. The data were stratified according to age.

The Merck rVSV-ZEBOV and the Johnson and Johnson Ad26.ZEBOV/MVA-BN EVD vaccines were extensively used during the 2018-2020 EVD DR Congo outbreak. The Merck vaccine is given in one dose and its immunity period is unknown. However, it induces high levels of immune responses that can be maintained through 12 months [81, 72]. The Johnson and Johnson vaccine, on the other hand, is believed to have a long-lived immunity [114]. However, the Johnson and Johnson vaccine is given in two doses. The question is, given the high mobility of a population that could affect the effectiveness of the two doses vaccine and an outbreak that lasts longer than one year that might results in an imperfect vaccination strategy for the Merck vaccine as some individuals lose the immunity acquired by the vaccine, what is the best vaccination strategy to be used. One way this problem could be approached is as follows: A compartment model composed of susceptible, exposed, infectious, hospitalised, deceased and recovered compartments can be considered. In this case, EVD transmission could occur by contact with infectious, hospitalised or deceased individuals, or via sexual contact with survivors. If we consider vaccination as one compartment, the sub-model will be the model without vaccination and the full model will be the model with vaccination. If two vaccination compartments were considered for the two types of vaccines, we have more sub-models. In the sub-models and full-model, the basic reproduction number can be derived and stability analysis of the equilibria can be established. Regarding the efficacy problem of the two vaccines, optimal control methods can be used to identify the optimal vaccination strategy in mitigating the spread of EVD.

While surveying models in this chapter and determining their strengths and limitations, we note to clarify that we accept that often research do not give enough data to quantify detailed disease underlying mechanisms and therefore, they gloss over some details. However, that does not mean these details are not important and when more data are available, models can be improved to have better quantifications by considering these details.

To conclude, this study is the first EVD modelling review that has systematically identified limitations in the assumptions of each reviewed model and made collective presentations for these constraints. We hope that this work will help future researchers in developing more realistic models that could help mitigating the spread of EVD.

# **Chapter 3**

# The impact of geographically-targeted vaccinations during the 2018-2020 Kivu Ebola outbreak

# 3.1 Introduction

On 1 August 2018, the World Health Organisation (WHO) was notified about the emergence of a new outbreak of the Ebola virus disease (EVD) in North Kivu province in the eastern part of the Democratic Republic of Congo (DR Congo) [181]. The WHO recommended implementing proven strategies for controlling EVD outbreaks, including contact tracing, ring vaccination, and antiviral treatments. Despite these efforts, the outbreak continued for about two years and became the second-largest Ebola outbreak in history [166]. In the current study, we explore the impact of geographically-targeted vaccinations to areas in North Kivu and Ituri provinces when contact tracing, ring vaccinations and antiviral treatments were unsuccessful in containing the outbreak.

The 2018-2020 Kivu outbreak occurred in more than 18 health zones in North Kivu, and about eight health zones in Ituri provinces [69]. However, the spread of EVD was not similar in all regions. As of 25 August 2019, about 81% of infections occurred in only six health zones (Beni, Butembo, Kalunguta, Katwa, Mabalako and Mandima) in North Kivu and Ituri provinces [68]. Consequently, vaccinations targeted to high infection areas could be feasible when other intervention strategies could not successfully contain the outbreak spread. Indeed while some individuals who qualified to be vaccinated with the ring strategy might reject the vaccination, others who are at high risk because they live in areas with high infections but who do not qualify for the ring strategy might still agree to be vaccinated. The Strategic Advisory Group of Experts on Immunization (SAGE) approved geographically-targeted vaccinations to be used to contain the spread of EVD when ring vaccinations could not be adequately implemented [174]. This strategy assisted in successfully containing the EVD outbreak in Chowe in DR Congo [175].

A number of studies modelled the impact of EVD vaccinations in the past [87, 44, 12,

34, 135, 19]. Kucharski et al. [87] studied the impact of ring vaccinations and concluded that this strategy would control outbreaks when the spread is not very severe. Kucharski et al. [87] did not consider any other intervention measures that are implemented during outbreaks beside the ring strategy.

Muhammad et al. [44] studied the impact of vaccination, hospitalisation and quarantine and derived an optimal vaccination strategy. However, they did not consider EVD transmission from the deceased. Transmission from the deceased is an important transmission route. A single traditional funeral of a famous pharmacist was linked to a dramatic spike in the number of reported EVD cases during the 2014-2016 Ebola outbreak in West Africa [24].

Brettin et al. [15] modelled voluntary vaccination and concluded that a selfishly optimal vaccination drops under the herd immunity level. In contrast, voluntary vaccination can better eradicate the spread of EVD, particularly when added to other control measures. They assumed that the population was adequately rational to choose the vaccinations and that they were fully informed about EVD risks and the direct and indirect costs of vaccinations [2]. However, people do not always choose to be vaccinated or fully understand the risk of the disease. Brettin et al. [15] also did not account for the role of contact tracing or antiviral treatments that are used during outbreaks besides the vaccinations.

Bodine et al. [12] assessed the impact of the rVSV-ZEBOV EVD vaccine in Sierra Leone. They concluded that to eradicate an outbreak, 40% of the general population and 90% of healthcare should be vaccinated. The study did not account for the high variation in EVD trajectories among the different regions [2].

Chowell et al. [34] evaluated the impact of vaccination in the context of different levels of community accessibility. They concluded that ring vaccination would not successfully end EVD outbreaks due to household being inaccessible and significant delays in vaccinations are available. Similar to Muhammad et al. [44], Chowell et al. [34] did not consider the transmission from the deceased. Further, they also did not account for antiviral treatments used during outbreaks.

Seidu et al. [135] studied the long-term behaviour of a model with two susceptible population groups: a high-risk population composed of care-takers of infected persons and individuals who handle EVD deceased; and a low-risk population consisting of other individuals in the population. The authors determined factors that are of most importance

in the disease dynamics. Lin et al. [96] considered a model with two susceptible groups: Low-risk individuals who are vaccinated with the rVSV-ZEBOV vaccine or living in an EVD low-risk areas; and high-risk individuals who are not vaccinated with the rVSV-ZEBOV vaccine or living at an EVD high-risk areas. Seidu et al. [135], and Lin et al. [96] did not study EVD dynamics in imperfect ring vaccination, contact tracing and antiviral treatments contexts.

Most recently, Burton et al. [19] modelled contact tracing by explicitly considering two compartments, one for traced susceptible persons and one for the traced exposed. They put a limitation on the number of tracers. Burton et al. [19] did not assume any vaccination efforts applied besides contact tracing.

In the current study, we address the limitations of [87, 44, 15, 12, 34, 135, 96, 19]. In particular, unlike Kucharski et al., Seidu et al. and Lin et al. [87, 135, 96], we account for contact tracing and antiviral treatments, simultaneously. In contrast to Muhammad et al., Chowell et al. and Brettin et al. [44, 34, 15], we consider transmission from the deceased. Further, we account for the high variation in EVD trajectories among the different regions, unlike Bodine et al. [12].

This Chapter is organised as follows: In the second section, we discuss model assumptions and formulate the model. In Section Three, we discuss the theoretical analysis of the model. In particular, we consider the non-negativity and boundedness of the model solutions. Then, we derive the basic reproduction number. We also study the existence of the model equilibria and establish local stability around these equilibria. In Section Four, we consider model fitting. We introduce data to be used in the fitting, discuss the model fitting, explore the sensitivity of model parameters to the reproduction number and study the impact of ring and geographically-targeted vaccinations during the outbreak. In Section Five, we conclude the study and discuss recommendations.

# **3.2 Model formulation**

Let N be the number of individuals in a population. We assumed this population to be located in areas with high and low levels of infections. Let  $S_H$  and  $S_L$  represent the number of susceptible individuals located in areas with high and low infections, respectively. Let  $V_1$  and  $V_2$  be the number of vaccinations among healthcare and frontline workers residing in areas with high and low infections, respectively. Let  $V_3$  and  $V_4$  be the number of vaccinated contacts and contacts of contacts of infected individuals in the community who were located in areas with a high and a low level of infections, respectively. Let  $V_5$  and  $V_6$ be other vaccinated persons residing in areas with high and low infections. Let E, I, H, Dand R be the number of exposed, infected, hospitalised, infectious deceased and recovered individuals in the population, respectively. Thus, we assume

$$N = S_H + S_L + V_1 + V_2 + V_3 + V_4 + V_5 + V_6 + E + I + H + D + R.$$
(3.1)

The 2018-2020 Kivu outbreak continued for nearly two years [167]. During such an extended period, natural births and deaths could play a role in the dynamics of the disease. We assume individuals were born at a rate  $\Pi$  and died naturally (reasons other than EVD) at a rate  $\mu$ . Human-to-human spread of EVD occurs through bodily fluids or blood of infected individuals [2]. We assume that the effective contact rate among susceptible individuals living in high infection areas with live infectious individuals before any intervention to be  $\beta_0$  and with the infectious deceased to be  $\delta\beta_0$  where  $\delta \in (0, 1)$ . We assume the number of contacts for the infectious deceased to be less than those of living infectious persons since only living persons can voluntarily contact others. Let  $\tau_1$  be a modification parameter that accounts for transmission in low infection areas so that  $\tau_1\beta_0$ and  $\tau_1\delta\beta_0$  are the effective contact rates for the living infectious persons and the infectious deceased with the susceptible individuals residing in low infection areas, respectively. We assume the rates of vaccination in areas with high and low infections to be  $m_1$  and  $m_2$ , respectively.

Ring vaccinations and contact tracing are considered along each other. When contacts and contacts of contacts are identified, they are being vaccinated using the ring strategy. At the same time, contacts are followed up and taken for treatments if they show any symptoms. In the current study, we assume that as contact tracing was considered during the outbreak, the effective contact rate declined. Note that  $V_1 + V_2$  is the number of identified and vaccinated healthcare and frontline workers in the population. Thus, there exists  $s_1 \ge 0$  such that  $s_1(V_1+V_2)$  is the number of contacts for infected individuals among healthcare and frontline workers. Also, note that  $V_3 + V_4$  is the number of of identified and vaccinated contacts of contacts for the infected persons in the community. Thus, there exists a real number  $s_2 \ge 0$  such that  $s_2(V_3 + V_4)$  is the number of contacts for infected individuals in the community. Let  $s_3 \ge 0$  and  $s_4 \ge 0$  be parameters used to account for the effectiveness of contact tracing per each contact so that the effective contact rate becomes

$$\beta_1 + (\beta_0 - \beta_1)e^{-s_3s_1(V_1 + V_2) - s_4s_2(V_3 + V_4)}$$

during the contact tracing and that  $\beta_1$  ( $\beta_1 < \beta_0$ ) is the effective contact rate post contact tracing. Let  $q_1 = s_3 s_1$  and  $q_2 = s_4 s_2$ . It follows that there exists no contact tracing when  $q_1 = q_2 = 0$  and that the higher the values of  $q_1$  and  $q_2$  are, the higher the level of contact tracing. Let  $m_1$  and  $m_2$  be the rates of vaccinating healthcare and frontline workers living in areas with high and low infections, respectively.

Let the average number of contacts and contacts of contacts of an infectious living person be  $n_l$  and of an infectious deceased be  $n_d$ , with  $n_d < n_l$ . Let a be the fraction of healthcare and frontline workers in the population. Let c = 1 - a. The probability of individuals who are non-healthcare workers (non-HCWs) and non-frontline workers (non-FLWs) to be susceptible in the population (depending on where these individuals live) is  $c\frac{S}{N}$  (S denotes  $S_L$  or  $S_H$ ). It follows that the average number of contacts and contacts of contacts for an infectious living person and an infectious deceased with susceptible individuals who are non-HCWs and non-FLWs is  $c\frac{S}{N}n_l$  and  $c\frac{S}{N}n_d$ , respectively. Let  $\frac{1}{2}$  and  $\frac{1}{b}$ be the infectious periods in days for an infectious living person and infectious deceased, respectively. Thus, the daily rates for the average contacts and contacts of contacts of an infectious living person and an infectious deceased with the susceptible individuals who are non-HCWs and non-FLWs are  $c\gamma \frac{S}{N}n_l$  and  $cb \frac{S}{N}n_d$ , respectively. Let p be the probability of the ring vaccination campaign coverage. Thus, daily,  $c\gamma p \frac{S}{N} n_l$  and  $cbp \frac{S}{N} n_d$ , the average number of contacts and contacts of contacts of an infectious living person and an infectious deceased, respectively, were being vaccinated with the ring strategy. Let h be the fraction of hospitalised persons. There were hI and (1-h)I infected persons in the population who were hospitalised and non-hospitalised, respectively. EVD exposure during the outbreak has only happened outside Ebola treatment centres (ETCs) [169]. Hospitalised individuals at ETCs were perfectly isolated during treatments and safely buried when they died [169]. Hence only non-hospitalised infectious individuals had EVD contacts. Thus, the recruitment rate for vaccinating the contacts and contacts of contacts of the living infectious individuals and the infectious deceased were  $c\gamma(1-h)p\frac{S}{N}n_lI$  and  $cbp\frac{S}{N}n_dD$ , respectively.

We assume the rate of vaccination targeted to all other individuals living in areas with high and low infections to be  $g_1$  and  $g_2$ , respectively. A fraction  $\epsilon$  of vaccinated individuals were unprotected despite the vaccination [174]. Exposed individuals were assumed to become infectious at a rate of  $\alpha$ .

EVD hospitalisation was traditionally undertaken by treating symptoms, rehydrating patients orally and intravenously and curing other infections that patients might have [94]. Several antiviral treatments (mAb114, Remdesivir, Zmapp and Regeneron) were investigated during the 2018-2020 Kivu outbreak [104]. Crucially, people who received the Regeneron (REGN-EB3) and mAb114 antiviral treatments soon after their infection showed up to a 90% survival rate [104]. Consequently, Zmapp and Remdesivir were interrupted by the end of August 2019, and only Regeneron (REGN-EB3) and mAb114 were being used instead. Since the interruptions of Zmapp and Remdesivir were expected to change the epidemic curve and since we are only interested in understanding the impact of vaccinations, in the current study, we considered the outbreak before the interruptions of the two vaccines. On the other hand, it was reported that the 2018-2020 Kivu outbreak spread to South Kivu on the 16th of August 2019 [175]. Since we are interested in understanding EVD dynamics in North Kivu and Ituri provinces only, we chose the data timeline before the 16th of August. Thus, to account for EVD spread in North Kivu and Ituri provinces before the interruption of Zmapp and Remdesivir, we considered the outbreak data from the beginning of the outbreak to the 11th of August 2019. We assumed  $\rho$  to be the rate of hospitalisation and treatment with mAb114, Remdesivir, Zmapp or Regeneron.

The rate of geographically-targeted vaccinations  $g_1$  and  $g_2$  can have different values. When  $g_1 = g_2 = 0$  only ring vaccinations were applied in the population, similar to the actual data considered in the current study [168]. The complete process for the model is depicted in Figure 3.1 and a complete description for the model parameters is provided in Table 3.1 and Table 3.2. The model equations are given below:

$$\frac{dS_H}{dt} = \sigma \Pi - (\lambda_1 + \lambda_2 + g_1 + m_1 + \mu) S_H$$

$$\frac{dS_L}{dt} = (1 - \sigma) \Pi - (\lambda_1 \tau_1 + \tau_2 \lambda_2 + g_2 + m_2 + \mu) S_L$$

$$\frac{dV_1}{dt} = m_1 S_H - (\epsilon \lambda_1 + \mu) V_1$$

$$\frac{dV_2}{dt} = m_2 S_L - (\epsilon \lambda \tau_1 + \mu) V_2$$

$$\frac{dV_3}{dt} = \lambda_2 S_H - (\epsilon \lambda_1 + \mu) V_3$$

$$\frac{dV_4}{dt} = \tau_2 \lambda_2 S_L - (\epsilon \lambda_1 \tau_1 + \mu) V_4$$

$$\frac{dV_5}{dt} = g_1 S_H - (\epsilon \lambda_1 + \mu) V_5$$

$$\frac{dV_6}{dt} = g_2 S_L - (\epsilon \lambda_1 \tau_1 + \mu) V_6$$

$$\frac{dE}{dt} = \lambda_1 (S_H + \tau_1 S_L + \epsilon V_1 + \epsilon \tau_1 V_2 + \epsilon V_3 + \epsilon \tau_1 V_4 + \epsilon V_5 + \epsilon \tau_1 V_6) - (\alpha + \mu) E$$

$$\frac{dI}{dt} = \alpha E - (h\rho + (1 - h) \gamma + \mu) I$$

$$\frac{dH}{dt} = h\rho I - (\eta + \mu) H$$

$$\frac{dD}{dt} = f_1 (1 - h) \gamma I - bD$$

$$\frac{dR}{dt} = (1 - h) (1 - f_1) \gamma I + \eta (1 - f_2) H - \mu R$$
(3.2)

where

$$\lambda_{1} = \frac{1}{N} \left( \beta_{1} + (\beta_{0} - \beta_{1}) e^{-q_{1} \frac{(V_{1} + V_{2})}{N} - q_{2} \frac{(V_{3} + V_{4})}{N}} \right) (I + \delta D),$$
  

$$\lambda_{2} = c \frac{p}{N} \left( \gamma (1 - h) n_{l} I + b n_{d} D \right).$$

System (3.2) is naturally appended with the initial conditions:

$$S_H(0) = S_{H,0}$$
,  $S_L(0) = S_{L,0}$ ,  $V_1(0) = V_{1,0}$ ,  $V_2(0) = V_{2,0}$ ,  $V_3(0) = V_{3,0}$ ,  $V_4(0) = V_{4,0}$ ,  
,  $V_5(0) = V_{5,0}$ ,  $V_6(0) = V_{6,0}$ ,  $E(0) = E_0$ ,  $I(0) = I_0$ ,  $H(0) = H_0$ ,  $D(0) = D_0$ , and  
 $R(0) = R_0$ .



Figure 3.1: Transfer diagram for the model

## 3.3 Theoretical analysis

In this section, we first ascertain that all the model's state variables are non-negative for all time t and that the model's solution is bounded.

The basic reproduction number  $\mathcal{R}_0$  is an important figure in characterising the spread of EVD. We used a well-documented method for finding  $\mathcal{R}_0$  [149].

For the EVD model (3.2) to be biologically significant, it is essential to note that all state variables are non-negative at all times.

**Proposition 3.3.1.** Let  $S_H(0)$ ,  $S_L(0)$ ,  $V_1(0)$ ,  $V_2(0)$ ,  $V_3(0)$ ,  $V_4(0)$ ,  $V_5(0)$ ,  $V_6(0)$ , E(0), I(0), H(0), D(0) and R(0) be non-negatives. Then the solution of (3.2) is non-negative for all time t.

We can now declare the statement below, which guarantees the boundedness of the solution for Model (3.2).

**Proposition 3.3.2.** *The non-negative solution of system* (3.2), *characterised in Proposition* 3.3.1 *is bounded for all time* t > 0.

The proof for Propositions 3.3.1 and 3.3.2 are found in Appendix B.

From Propositions, 3.3.1 and 3.3.2 and the trivial existence and uniqueness of a local

solution, system (3.2) is a dynamical system in the biologically feasible compact set

$$\left\{ (S_H(t), S_L(t), V_1(t), V_2(t), V_3(t), V_4(t), V_5(t), V_6(t), E(t), I(t), H(t), D(t), R(t)) \subset \mathbb{R}^{13}_+ : N(t) \le \psi \right\}$$

where

$$\psi = \max\left\{\frac{\Pi}{\mu}, N(0)\right\}.$$

# 3.3.1 Model Equilibria

The disease-free equilibrium (DFE) occurs when I = D = 0 and is given by

$$P_0 = (S_H^*, S_L^*, V_1^*, V_2^*, 0, 0, V_5^*, V_6^*, 0, 0, 0, 0, 0)$$

where  $S_H^* = \frac{\sigma \Pi}{g_1 + m_1 + \mu}$ ,  $S_L^* = \frac{(1 - \sigma) \Pi}{g_2 + m_2 + \mu}$ ,  $V_1^* = \frac{m_1 S_H^*}{\mu}$ ,  $V_2^* = \frac{m_2 S_L^*}{\mu}$ ,  $V_5^* = \frac{g_1 S_H^*}{\mu}$ ,  $V_6^* = \frac{g_2 S_L^*}{\mu}$ .

To calculate the controlled reproduction number ( $\mathcal{R}_c$ ) of the model, we apply the standard method of the next generation matrix [149]. We distinguish between infected states (E, I, H, D) and uninfected states ( $S_H, S_L, V_1, V_2, V_3, V_4, V_5, V_6, R$ ). Let  $\mathcal{F}$  and  $\mathcal{W}$  be the vectors defining new and transported cases, respectively, into infected states.

As in [149],  $\mathcal{R}_c$  is obtained as the dominant eigenvalue of the matrix  $FW^{-1}$  where F and W are the Jacobian matrices of  $\mathcal{F}$  and  $\mathcal{W}$  at the DFE, respectively.

We find

$$\mathcal{R}_{c} = A_{2} \left( \frac{\sigma}{m_{1} + g_{1} + \mu} \left( 1 + \frac{\epsilon(m_{1} + g_{1})}{\mu} \right) + \frac{\tau_{1}(1 - \sigma)}{m_{2} + g_{2} + \mu} \left( 1 + \frac{\epsilon(m_{2} + g_{2})}{\mu} \right) \right)$$
(3.3)

where

$$A_2 = K_1 \frac{\mu \alpha}{(\alpha + \mu)(\gamma(1 - h) + \mu + h\rho)} \left(1 + \frac{\delta f_1 \gamma(1 - h)}{b}\right),$$

and

$$K_1 = \left(\beta_1 + (\beta_0 - \beta_1)e^{-q_1\left(\frac{m_2\Pi(1-\sigma)}{\mu(m_2+g_2+\mu)} + \frac{m_1\Pi\sigma}{\mu(m_1+g_1+\mu)}\right)}\right)$$

When there is no intervention, we have  $q_1 = h = g_1 = g_2 = m_1 = m_2 = 0$ . Thus  $\mathcal{R}_c$  becomes

$$\mathcal{R}_0 = \beta_0 \frac{\alpha}{(\alpha + \mu)(\gamma + \mu)} \left(1 + \frac{\delta f_1 \gamma}{b}\right) \left(\sigma + \tau_1(1 - \sigma)\right).$$

 $\mathcal{R}_0$  can be rewritten as  $\mathcal{R}_{0h} + \mathcal{R}_{0l}$  where

$$\mathcal{R}_{0h} = \beta_0 \sigma \left( \frac{\alpha}{(\alpha + \mu)(\gamma + \mu)} + \frac{\delta \alpha f_1 \gamma}{b(\alpha + \mu)(\gamma + \mu)} \right)$$
(3.4)

and

$$\mathcal{R}_{0l} = \beta_0 \tau_1 (1 - \sigma) \left( \frac{\alpha}{(\alpha + \mu)(\gamma + \mu)} + \frac{\delta \alpha f_1 \gamma}{b(\alpha + \mu)(\gamma + \mu)} \right)$$
(3.5)

represent the contribution to infections for individuals living in areas with high and low levels of infections, respectively.

Next, we show the existence of an endemic equilibrium

$$(S_H^*, S_L^*, V_1^*, V_2^*, V_3^*, V_4^*, V_5^*, V_6^*, E^*, I^*, H^*, D^*, R^*)$$

where

$$\begin{split} S_{H}^{*} &= \frac{\sigma \Pi}{\lambda_{1} + \lambda_{2} + g_{1} + m_{1} + \mu} \\ S_{L}^{*} &= \frac{(1 - \sigma)\Pi}{\lambda_{1}\tau_{1} + \lambda_{2}\tau_{2} + g_{2} + m_{2} + \mu}, \\ V_{1}^{*} &= \frac{m_{1}S_{H}^{*}}{\epsilon\lambda_{1} + \mu}, \\ V_{2}^{*} &= \frac{m_{2}S_{L}^{*}}{\epsilon\lambda_{1}\tau_{1} + \mu}, \\ V_{3}^{*} &= \frac{\lambda_{2}S_{H}^{*}}{\epsilon\lambda_{1}\tau_{1} + \mu}, \\ V_{4}^{*} &= \frac{\lambda_{2}\tau_{2}S_{L}^{*}}{\epsilon\lambda_{1}\tau_{1} + \mu}, \\ V_{5}^{*} &= \frac{g_{1}S_{H}^{*}}{\epsilon\lambda_{1} + \mu}, \\ V_{6}^{*} &= \frac{g_{2}S_{L}^{*}}{\epsilon\lambda_{1}\tau_{1} + \mu}, \\ E^{*} &= \frac{\lambda_{1}}{(\alpha + \mu)} \left(S_{H}^{*} + \tau_{1}S_{L}^{*} + \epsilon V_{1}^{*} + \tau_{1}\epsilon V_{2}^{*} + \epsilon V_{3}^{*} + \tau_{1}\epsilon V_{4}^{*} + \epsilon V_{5}^{*} + \tau_{1}\epsilon V_{6}^{*}\right), \\ I^{*} &= \frac{\alpha}{h\rho + (1 - h)\gamma + \mu}E^{*}, \end{split}$$

with

$$\begin{split} H^* &= \frac{h\rho}{\eta + \mu} I^*, \\ D^* &= \frac{f_1(1-h)\gamma}{b} I^*, \\ R^* &= \frac{1}{\mu} \left( (1-f_1)\gamma I^* + \eta (1-f_2) H^* \right), \\ N^* &= \frac{\Pi}{\mu} - (b-\mu) D^*, \\ \lambda_1 &= \left( \beta_1 + (\beta_0 - \beta_1) e^{-q_1 \frac{(V_1^* + V_2^*)}{N^*} - q_2 \frac{(V_3^* + V_4^*)}{N^*}} \right) \left( \frac{I^* + \delta D^*}{N^*} \right), \\ \lambda_2 &= c \frac{p}{N^*} \left( \gamma (1-h) n_l I^* + b n_d D^* \right). \end{split}$$

As in [108, 152], the equilibria of system (3.2) correspond the fixed points of the following system

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} \phi_1(\lambda_1, \lambda_2) \\ \phi_2(\lambda_1, \lambda_2) \end{pmatrix},$$
(3.6)

where

$$\begin{split} \phi_1(\lambda_1,\lambda_2) &= \left(\beta_1 + (\beta_0 - \beta_1)e^{-q_1\frac{(V_1^* + V_2^*)}{N^*} - q_2\frac{(V_3^* + V_4^*)}{N^*}}\right) \left(\frac{I^* + \delta D^*}{N^*}\right),\\ \phi_2(\lambda_1,\lambda_2) &= c\frac{p}{N^*} \left(\gamma(1-h)n_lI^* + bn_dD^*\right). \end{split}$$

Note that  $\phi_1(\lambda_1, \lambda_2)$  is continuous in  $\lambda_1 \in [0, \infty)$ . Further  $\phi_1(0, \lambda_2) = 0$  and

$$\lim_{\lambda_1 \to \infty} \phi_1(\lambda_1, \lambda_2) = B_1$$

where

$$B_{1} = \frac{\alpha\beta_{0} \left(b + \delta f_{1}\gamma(1-h)\right)\mu}{\alpha f_{1}\gamma(1-h)\mu + \alpha b \left((1-f_{1})\gamma(1-h) + \mu + h\rho\right) + b\mu \left(\gamma(1-h) + \mu + h\rho\right)}.$$

We have that  $B_1$  is positive. Thus  $\phi_1(\lambda_1, \lambda_2)$  is bounded for  $\lambda_1 \in [0, \infty)$ .

We also have that

$$\frac{d\phi_1}{d\lambda_1}(0,0) = \mathcal{R}_c.$$

Let  $\mathcal{R}_c > 1$ . We argue that there exists r in a neighbourhood of zero, say  $(0, \delta_1)$  such

that  $\phi_1(r, \lambda_2) > r$ , otherwise, for all neighbourhoods near zero,  $\phi_1(r, \lambda_2) \le r$  which would imply that

$$\frac{d\phi_1}{d\lambda_1}(0,\lambda_2) = \lim_{\lambda_1 \to 0^+} \frac{\phi_1(\lambda_1,\lambda_2) - \phi_1(0,\lambda_2)}{\lambda_1} = \lim_{\lambda_1 \to 0^+} \frac{\phi_1(\lambda_1,\lambda_2)}{\lambda_1} \le 0$$

which is a contradiction. It follows that there exists an  $r \in (0, \infty)$  such that  $\phi_1(r, \lambda_2) > r$ . Since  $\phi_1(\lambda_1, \lambda_2)$  is bounded as  $\lambda_1 \to \infty$ , there exists an M > 0 such that  $\phi_1(M, \lambda_2) < M$ . Let  $Z(\lambda_1) = \lambda_1 - \phi_1(\lambda_1, \lambda_2)$ . We have  $Z(r, \lambda_2) < 0$  and  $Z(M, \lambda_2) > 0$ . Using the Intermediate Value Theorem, there exists a  $\lambda_1^* \in (r, M)$  such that  $\phi_1(\lambda_1^*, \lambda_2) = \lambda_1^*$ .

We have  $I^* = \frac{\alpha}{h\rho + (1-h)\gamma + \mu}E^* = A_3E^*$  where  $A_3 = \frac{\alpha}{h\rho + (1-h)\gamma + \mu}$ . Also  $D^* = \frac{f_1(1-h)\gamma}{b}I^* = \frac{f_1(1-h)\gamma}{b}A_3E^* = A_4E^*$  where  $A_4 = \frac{f_1(1-h)\gamma}{b}A_3$ . We have

$$\phi_2(\lambda_1, \lambda_2) = c \frac{p}{N^*} (\gamma(1-h)n_l A_3 + bn_d A_4) E^*$$

Note that  $\phi_2(\lambda_1^*, \lambda_2)$  is continuous for  $\lambda_2 \in [0, \infty)$ . We have

$$\lim_{\lambda_2 \to 0} \phi_2(\lambda_1^*, \lambda_2) = cp \left(\gamma(1-h)n_l A_3 + bn_d A_4\right) \frac{A_6}{\frac{\Pi}{\mu} - A_5 A_6} > 0,$$

where  $A_5 = (b - \mu) \frac{f_1(1-h)\gamma}{b} A_3$ , and  $A_6$  is given by

$$\frac{\lambda_1}{(\alpha+\mu)} \left( \left(1 + \frac{\epsilon(m_1+g_1)}{\epsilon\lambda_1+\mu}\right) \frac{\sigma\Pi}{\lambda_1+g_1+m_1+\mu} + \tau_1 \left(1 + \frac{\epsilon(m_2+g_2)}{\epsilon\lambda_1\tau_1+\mu}\right) \frac{(1-\sigma)\Pi}{\lambda_1\tau_1+g_2+m_2+\mu} \right)$$

Further

$$\lim_{\lambda_2 \to \infty} \phi_2(\lambda_1^*, \lambda_2) = cp A_3 \gamma(1-h) \left( n_l + f_1 n_d \right) \frac{\frac{\lambda_1^* \epsilon \Pi}{(\alpha+\mu)} \left( \frac{\sigma}{\epsilon \lambda_1^* + \mu} + \frac{(1-\sigma)\tau_1}{(\epsilon \lambda_1^* \tau_1 + \mu)} \right)}{\frac{\Pi}{\mu} - A_5 \left( \frac{\lambda_1^* \epsilon \Pi}{(\alpha+\mu)} \left( \frac{\sigma}{\epsilon \lambda_1^* + \mu} + \frac{(1-\sigma)\tau_1}{(\epsilon \lambda_1^* \tau_1 + \mu)} \right) \right)}$$

Thus,  $\phi_2(\lambda_1^*, \lambda_2)$  is bounded in  $\lambda_2 \in (r_1, \infty)$ .

Let  $\lim_{\lambda_2\to 0} \phi_2(\lambda_1^*, \lambda_2) = k$ . We have k > 0. Then there exists an  $r_1 \in (0, \infty)$  such that  $\phi_2(\lambda_1^*, r_1) > r_1$ . Otherwise for all  $r_1 \in (0, \infty)$ ,  $\phi_2(\lambda_1^*, r_1) \le r_1$ , which contradictorily would imply that

$$\lim_{r_1 \to 0} \phi_2(\lambda_1^*, r_1) \le \lim_{r_1 \to 0} r_1 = 0.$$

We conclude that there exists an  $r_1 \in (0, \infty)$  such that  $\phi_2(\lambda_1, r_1) > r_1$ .

From the boundedness of  $\phi_2(\lambda_1^*, \lambda_2)$  in  $\lambda_2 \in (r_1, \infty)$ , we deduce that there exists an  $M_1 \in (r_1, \infty)$  where  $\phi_2(\lambda_1^*, M_1) < M_1$ . Let  $Z_1(\lambda_2) = \lambda_2 - \phi_2(\lambda_1^*, \lambda_2)$ . Then  $Z_1(r_1) < 0$  and  $Z_1(M_1) > 0$ . From the intermediate value theorem, there exists a  $\lambda_2^* \in (r_1, M_1)$  such that  $Z(\lambda_2^*) = 0$ . That is,  $\phi_2(\lambda_1^*, \lambda_2^*) = \lambda_2^*$ .

We now first concern ourselves with the stability of the model solution near the DFE. We first obtained the characteristic equation of the Jacobian matrix of Model (3.2), evaluated at the DFE ( $P_0$ ):

$$0 = (-\lambda - \mu)^{7} (-(\eta + \mu) - \lambda) (-(g_{1} + m_{1} + \mu) - \lambda)) (-(g_{2} + m_{2} + \mu) - \lambda) \\ [(-b - \lambda)(-(\alpha + \mu) - \lambda) (-(\gamma(1 - h) + \mu + h\rho) - \lambda) + \lambda A_{11} + b(\alpha + \mu)(\gamma(1 - h) + \mu + h\rho)\mathcal{R}_{c}]$$

where

$$A_{11} = A_{12} \left( \frac{\sigma}{m_1 + g_1 + \mu} \left( 1 + \frac{\epsilon(m_1 + g_1)}{\mu} \right) + \frac{\tau_1(1 - \sigma)}{m_2 + g_2 + \mu} \left( 1 + \frac{\epsilon(m_2 + g_2)}{\mu} \right) \right)$$

and

$$A_{12} = \alpha \mu \left( \beta_1 + (\beta_0 - \beta_1) e^{-q_1 \left( \frac{m_2(1-\sigma)}{m_2 + g_2 + \mu} + \frac{m_1 \sigma}{m_1 + g_1 + \mu} \right)} \right).$$

Let  $c_1 = (\alpha + \mu)$  and  $c_2 = \gamma(1 - h) + \mu + h\rho$ . Then the characteristic equation becomes

$$0 = (-\lambda - \mu)^{7} (-(\eta + \mu) - \lambda) (-(g_{1} + m_{1} + \mu) - \lambda)) (-(g_{2} + m_{2} + \mu) - \lambda)$$
  

$$= (-(b + \lambda)((c_{1} + \lambda) (c_{2} + \lambda) + \lambda A_{11} + bc_{1}c_{2}\mathcal{R}_{c})$$
  

$$= (-\lambda - \mu)^{7} (-(\eta + \mu) - \lambda)(-(g_{1} + m_{1} + \mu) - \lambda)) (-(g_{2} + m_{2} + \mu) - \lambda)$$
  

$$(-\lambda^{3} - a_{1}\lambda^{2} - a_{2}\lambda + bc_{1}c_{2} (\mathcal{R}_{c} - 1)).$$
(3.7)

where  $a_1 = (c_1 + c_2 + b)$  and  $a_2 = (c_1c_2 + b(c_1 + c_2) - A_{11})$ . Note that  $\mathcal{R}_c < 1$  implies that

$$c_1 c_2 > A_{11} + A_{13} > 0$$

where  $A_{13} = A_{11} \frac{\delta f_1 \gamma (1-h)}{b}$ . Thus,  $a_2 > 0$  and Equation (3.7) becomes

$$0 = (-\lambda - \mu)^{7} (-(\eta + \mu) - \lambda) (-(g_{1} + m_{1} + \mu) - \lambda)) (-(g_{2} + m_{2} + \mu) - \lambda)$$
  
=  $(\lambda^{3} + a_{1}\lambda^{2} + a_{2}\lambda + bc_{1}c_{2}(1 - \mathcal{R}_{c})).$  (3.8)

Using the Routh-Hurwitz criterion for stability, all eigenvalues have negative real parts when  $\mathcal{R}_c < 1$ . Hence the DFE is locally asymptotically stable when  $\mathcal{R}_c < 1$ . On the other hand, when  $\mathcal{R}_c > 1$ , using Descartes's rule of sign, Equation (3.8) has at least one positive root. Thus, the DFE is unstable when  $\mathcal{R}_c > 1$ .

The condition for the local stability of the endemic equilibrium is found as in [108]. The Jacobian matrix around the positive fixed point  $(\lambda_1^*, \lambda_2^*)$  is given by

$$\begin{pmatrix} \frac{d\phi_1(\lambda_1^*,\lambda_2^*)}{d\lambda_1} & \frac{d\phi_1(\lambda_1^*,\lambda_2^*)}{d\lambda_2} \\ \frac{d\phi_2(\lambda_1^*,\lambda_2^*)}{d\lambda_1} & \frac{d\phi_2(\lambda_1^*,\lambda_2^*)}{d\lambda_2} \end{pmatrix}$$

The spectral radius  $\rho^*$  of this Jacobian matrix is used to determine the condition for the local stability at the endemic equilibrium. When  $\rho^* < 1$ , the endemic equilibrium is locally asymptotically stable and unstable when  $\rho^* > 1$ .

# 3.4 Numerical simulations

In this section, we introduce data to quantify the model, discuss the model fitting and sensitivity analysis and explore the impact of ring and geographically-targeted vaccinations.

# 3.4.1 Data

North Kivu and Ituri provinces are among the most densely inhabited provinces with a population of about 11 million persons [142]. As the 2018-2020 Ebola outbreak continued to spread in North Kivu and Ituri provinces for over one year, it became essential to integrate all available data to assess the impact of additional intervention measures to control the disease spread. To quantify system (3.2), we integrate the cumulative EVD cases and ring vaccination data. The cumulative EVD cases were adapted from the Humanitarian Data Exchange website [68] while the ring vaccinations data were manually collected from the WHO situation reports [168] and are made available in Table 3.3.

### 3.4.2 Model fitting

To solve the initial value problem (3.2), we applied the odeint function of Scipy [145]. This function is used to solve a system of ordinary differential equations using the ISODA algorithm from the FORTRAN library odepack. System (3.2) was fitted to the EVD data using the optimize.curve\_fit function of Scipy [146]. This function uses non-linear least squares for the fitting. It also allows us to compute the 67% confidence interval of the parameter estimates. We fitted the cumulative cases function

$$\int_0^t \left(\alpha E(s)\right) \ ds$$

of system (3.2) to the cumulative cases data. The cumulative ring vaccinations function

$$\int_{0}^{t} (m_1 S_H(s) + m_2 S_L(s) + \lambda_2 S_H(s) + \lambda_2 \tau_2 S_L(s)) dt$$

of system (3.2) was fitted to the cumulative ring vaccinations data. The model fitting is shown in Figure 3.2 and the estimated parameters are reported in Table 3.1 and Table 3.2. The 67% confidence interval of the parameter estimates was used to calculate 95% confidence interval for the parameter estimates using the algorithm introduced by Kahil [78].

The basic reproduction number is a crucial figure in characterising the spread of EVD [2]. A number of studies have estimated  $\mathcal{R}_0$  in the range of 1.36 and 4.71 [31, 50, 91, 92, 116, 53, 21]. From the parameters obtained from the model fitting, we estimated  $\mathcal{R}_0$  to be 1.79 ( $\mathcal{R}_{0h} = 1.46$  and  $\mathcal{R}_{0l} = 0.33$ ).

## 3.4.3 Sensitivity analysis

To minimize EVD-related morbidity and mortality, it is essential to comprehend the relative significance of the various factors contributing to EVD transmission and prevalence. Sensitivity analysis is used to identify parameters that significantly impact EVD transmission and prevalence. In this subsection, we followed Chitnis et al. [30] to identify the impact of the different parameters on  $\mathcal{R}_c$ . They used the normalised forward sensitivity index method. The normalised forward sensitivity index of  $\mathcal{R}_c$  to any parameter is the ratio of the relative change in  $\mathcal{R}_c$  to the relative change in that parameter [30]. It can be



Figure 3.2: Model fitting with the cumulative EVD cases and cumulative ring vaccinations data.

defined using partial derivatives as follows:

$$\Upsilon_p^{\mathcal{R}_c} = \frac{\partial \mathcal{R}_c}{\partial p} \times \frac{p}{\mathcal{R}_c}$$

where p is any of the parameters that comprise  $\mathcal{R}_c$ . We obtain the sensitivity indices of  $\mathcal{R}_c$  with respect to each parameter of  $\mathcal{R}_c$  and present the results in Table. 3.2. The most sensitive parameter is the transmission rate of living infectious individuals who are located in areas with high infections ( $\beta_0$ ). Other important parameters include the fraction of susceptible patients living in areas with high infections ( $\sigma$ ) and the rate at which non-hospitalised persons recover or die ( $\gamma$ ). For example, since  $\Upsilon_{\sigma}^{\mathcal{R}_c} = +0.76$ , decreasing (or increasing)  $\sigma$  by 10% decreases (or increases)  $\mathcal{R}_c$  by 7.6%. On the other hand, as  $\Upsilon_{\gamma}^{\mathcal{R}_c} = -0.643$ , decreasing (or increasing)  $\gamma$  by 10% increases (or decreases )  $\mathcal{R}_c$  by 6.43%.

#### 3.4.4 The impact of ring vaccinations during the outbreak

Ring vaccinations were extensively applied during the 2018-2020 Kivu outbreak. There were over 185000 vaccinations on the 373rd day of the outbreak (the end date of the considered time window for the data). We estimated the cumulative ring vaccinations for susceptible persons who live in areas with a low level of infections on the 373rd day of the outbreak to be about 150000 (Figure. 3.3). On the other hand, only about 36300 persons were estimated to be vaccinated in areas with a high level of infections (Figure. 3.3).



Figure 3.3: Ring vaccinations during the outbreak.

These findings show that the ring vaccination coverage was mainly focused on areas with low levels of infections. However, the contributions of infected persons living in areas with a low level of infections to  $\mathcal{R}_0$  was only about 18%. The low level of ring vaccinations in areas with high infections might explain the continuation of the outbreak in these areas.

They were several reasons for the low vaccinations level in areas with high infections. Some people in high infection areas were inaccessible because they resided in unsafe areas that rebel groups controlled; some resisted the vaccinations or attacked the vaccination campaigns [34, 176]. For example, following community unrest in Butembo, the vaccination facilities were unreachable [171]. In Beni, it was estimated that about one-third of health care workers were not offered the vaccine [165].

## 3.4.5 The impact of geographically-targeted vaccinations

During the 2018-2020 Kivu outbreak, it was estimated that about 0.0158% of the total population were vaccinated on the 373rd day. If GTVs in areas with high infections were implemented so that total vaccinations in the population were increased by 60% by the 373rd day of the outbreak, the cumulative cases would have decreased by 15% (Figure. 3.4). Further, the need for ring vaccinations in the population was decreased by more than 15%. On the other hand, to achieve the 15% decrease in EVD cases, we found that it required increasing EVD vaccinations to more than 1000% by the 373rd day using GTVs



Figure 3.4: The impact of GTVs in areas with high infections in the spread of EVD



Figure 3.5: The impact of GTVs in areas with low infections

in areas with low infections (Figure. 3.5).

# 3.5 Discussion

Insecurity and community reluctance make combatting disease spread difficult. It is also challenging to apply public health interventions in locations where the government has little control. In particular, contact tracing, ring vaccinations, and antiviral treatments might be unsuccessful. One prominent illustration of such issues is the 2018-2020 Kivu outbreak. Ring vaccinations were one of the essential measures applied during the 2018-2020 Kivu outbreak. Despite the ring vaccination efforts, the outbreak spread and became the second-largest outbreak in history.

The most helpful vaccination strategies to contain the spread of EVD should maximise the impact of vaccination while minimising global expenditures, actions, and human distress resulting from an outbreak. Mass vaccination is not readily achievable because the endemic region comprises much of West and Central Africa [172], placing over half a billion people at risk. It was found that vaccination coverage of 80% would be required to establish the herd immunity against EVD for a vaccine with a 90% efficacy and  $\mathcal{R}_0$ of 4 [103]. Financial/logistical burdens and poor vaccine acceptance in the affected regions make mass vaccination challenging. Vaccinations with the ring strategy, similarly, confront different obstacles. Many EVD contacts and contacts of contacts might be inaccessible, or they refuse to be vaccinated [34].

The best vaccination strategy is tailor based on epidemiological characteristics and modelling of each situation. While early contact tracing and ring vaccination may be sufficient for small outbreaks in isolated populations, additional strategies may be required to contain large-scale outbreaks [103, 34, 138]. The current study found the geographically-targeted vaccination in areas with high infections to be an excellent intervention in the 2018-2020 Kivu outbreak when the disease spread could not be contained using contact tracing, ring vaccinations, and antiviral treatments. This strategy could also help foster vaccine trust as people start realising the benefits of vaccinations in containing the outbreak at an early stage of an outbreak.

We found that ring vaccination coverage was mainly focused in areas with low levels of infections as opposed to areas with high infections (Figure. 3.3). We explored the impact of geographically-targeted vaccinations (GTV) in areas with high levels of infections. We found that geographically targeted vaccinations (GTVs) in areas with high infections to be a much more feasible strategy compared to GTVs in regions with low infections. For example, if the GTVs in areas with high infections strategy was implemented so that vaccinations were increased by 60% by the 373rd day of the outbreak, the total EVD cases in the population would be decreased by 15% (Figure. 3.4). Further, the need for ring vaccinations in the population would be decreased by more than 15% (Figure. 3.4). On the other hand, to achieve the 15% decrease in EVD cases, we found that it required increasing EVD vaccinations to more than 1000% by the 373rd day using GTVs in areas with low infections (Figure. 3.5).

During an outbreak, the most critical priority is maintaining and enhancing the effectiveness and efficiency of all elements of EVD responses, particularly determinating all possible contacts, closely following them up, isolating those who display EVD symptoms as soon as possible and strengthening other interventions pillars including ring vaccinations and antiviral treatments. These measures must be maintained and bolstered to interrupt transmission and control the outbreak. When EVD outbreaks are not contained with these measures, such as the 2018-2020 Kivu outbreak, then geographically-targeted vaccinations in areas with high levels of infections can successfully mitigate the spread of EVD.

| Parameter          | Interpretation                                                                      |
|--------------------|-------------------------------------------------------------------------------------|
| П                  | Birth rate.                                                                         |
| $n_l$              | The number of contacts and contacts of contacts of a living infectious person.      |
| $n_d$              | The number of contacts and contacts of contacts of an infectious deceased.          |
| p                  | The probability of coverage for the ring vaccination campaign.                      |
| $\frac{1}{\alpha}$ | The incubation period.                                                              |
| $\frac{1}{\gamma}$ | The average time from symptoms onset to either recovery or to EVD death for         |
| ,                  | infectious individuals who were not hospitalised.                                   |
| $\epsilon$         | The fraction of vaccinated individuals that are not immunised by the vaccination.   |
| $\frac{1}{b}$      | The average time from EVD death to burial.                                          |
| $\beta_0$          | The transmission rate before any intervention takes place for the living infectious |
|                    | individuals who are located in areas with high infections.                          |
| $\beta_1$          | The transmission rate post contact tracing for living infectious individuals who    |
|                    | are located in areas with high infections.                                          |
| $\mu$              | Natural mortality rate.                                                             |
| $\frac{1}{\rho}$   | The average time from symptoms onset to hospitalisation.                            |
| $f_1$              | The probability of EVD deaths for non-hospitalised individuals.                     |
| $f_2$              | The probability of EVD deaths for hospitalised cases.                               |
| $\frac{1}{\eta}$   | The average time from hospitalisation to either recovery or to EVD death.           |
| $	au_1$            | A modification parameter. It accounts for the transmission from susceptible indi-   |
|                    | viduals living in areas with low levels of infections.                              |
| $	au_2$            | A modification parameter that accounts for the ring vaccination in susceptible      |
|                    | populations living in areas with low levels of infections.                          |
| $m_1$              | Vaccination rate for healthcare and frontline workers located at areas with high    |
|                    | level of infections.                                                                |
| $m_2$              | Vaccination rate for healthcare and frontline workers located at areas with low     |
|                    | level of infections.                                                                |
| σ                  | The fraction of susceptible individuals living in areas with high infections.       |
| δ                  | A modification parameter that accounts for the transmission from the deceased.      |

Table 3.1: Model parameters and their interpretations.

# Continued Table 3.1.

| $q_1$ | A parameter that accounts for the level of contact tracing among healthcare and  |
|-------|----------------------------------------------------------------------------------|
|       | frontline workers.                                                               |
| $q_2$ | A parameter that accounts for the level of contact tracing in the community.     |
| h     | A fraction of the infected individuals that were hospitalised at Ebola treatment |
|       | centres and treated with mAb114, Remdesivir, Zmapp or Regeneron antiviral        |
|       | treatments.                                                                      |
| a     | The fraction of healthcare or frontline workers in the population.               |
| $g_1$ | The rate of geographically-targeted vaccinations for areas with high infections. |
| $g_2$ | The rate of geographically-targeted vaccinations for areas with low infections.  |
|       |                                                                                  |

| Parameter  | Unit          | Estimate                  | 67% C.I                            | S.I          | Estimates source |
|------------|---------------|---------------------------|------------------------------------|--------------|------------------|
| П          | people<br>day | 534.33                    |                                    |              | Calculated       |
| $n_l$      | none          | 70                        | [40.00, 100.0]                     |              | Fitted           |
| $n_d$      | none          | 60                        | [49.0, 71.0]                       | _            | Fitted           |
| p          | none          | 0.7                       | _                                  | _            | [174]            |
| α          | $day^{-1}$    | 0.1                       | _                                  | +0.000459788 | [150]            |
| $\gamma$   | $day^{-1}$    | 0.178                     |                                    | -0.642585    | [150]            |
| $\epsilon$ | none          | 0.025                     |                                    | +0.0084987   | [173]            |
| b          | $day^{-1}$    | 0.580                     | _                                  | -0.12427     | [150]            |
| $\beta_0$  | $day^{-1}$    | 1.43                      | [1.32, 1.54]                       | +0.99        | Fitted           |
| $\beta_1$  | $day^{-1}$    | 0.88                      | [0.773, 0.990]                     | +0.00000867  | Fitted           |
| $\mu$      | $day^{-1}$    | $\frac{1}{60 \times 365}$ | _                                  | +0.242062    | [83]             |
| ρ          | $day^{-1}$    | 0.182                     | _                                  | -0.232887    | [112]            |
| $f_1$      | none          | 0.74                      | _                                  | +0.12427     | [112,            |
|            |               |                           |                                    |              | 170]             |
| $f_2$      | none          | 0.424                     | _                                  | _            | [112]            |
| $\eta$     | $day^{-1}$    | 0.073                     | [0.00, 0.234]                      | _            | Fitted           |
| $	au_1$    | none          | 0.0410                    | [0.0230, 0.0571]                   | +0.208498    | Fitted           |
| $	au_2$    | none          | 0.910                     | [0.847, 0.973]                     | _            | Fitted           |
| $m_1$      | $day^{-1}$    | 0.0000180                 | [0.00, 0.000609]                   | -0.215163    | Fitted           |
| $m_2$      | $day^{-1}$    | 0.00000726                | [0.00, 0.000113]                   | -0.0276156   | Fitted           |
| σ          | none          | 0.1536                    | _                                  | +0.753664    | [70]             |
| δ          | none          | 0.811                     | [0.691, 0.932]                     | +0.12427     | Fitted           |
| $q_1$      | $people^{-1}$ | 0.000089                  | $\left[ 0.000079, 0.000098  ight]$ | -0.0000054   | Fitted           |
| $q_2$      | $people^{-1}$ | 0.0001                    | $\left[ 0.00007, 0.00013  ight]$   |              | Fitted           |
| h          | none          | 0.229                     | _                                  | -0.0420288   | [112]            |
| a          | none          | 0.00311                   | _                                  |              | [170]            |

Table 3.2: Model parameter values and their Sensitivity Indices (S.I) and Confidence Intervals (C.I).

| Date       | Cumulative cases | Cumulative ring |
|------------|------------------|-----------------|
|            |                  | vaccinations    |
| 05-08-2018 | 43               | 0               |
| 12-08-2019 | 57               | 0               |
| 20-08-2018 | 102              | 0               |
| 26-08-2018 | 111              | 4130            |
| 02-09-2018 | 122              | 6134            |
| 09-09-2018 | 132              | 8229            |
| 16-09-2018 | 142              | 9572            |
| 23-09-2018 | 150              | 11417           |
| 02-10-2018 | 162              | 13550           |
| 07-10-2018 | 181              | 15285           |
| 15-10-2018 | 216              | 17976           |
| 21-10-2018 | 238              | 20789           |
| 28-10-2018 | 268              | 24142           |
| 04-11-2018 | 300              | 26687           |
| 11-11-2018 | 333              | 28727           |
| 19-11-2018 | 373              | 32625           |
| 26-11-2018 | 421              | 35958           |
| 03-12-2018 | 453              | 39845           |
| 10-12-2018 | 500              | 44447           |
| 16-12-2018 | 539              | 48119           |
| 25-12-2018 | 585              | 53610           |
| 01-01-2019 | 608              | 54153           |
| 06-01-2019 | 625              | 56509           |
| 14-01-2019 | 658              | 60460           |
| 21-01-2019 | 699              | 64403           |
| 28-01-2019 | 734              | 69231           |
| 03-02-2019 | 785              | 73309           |

Table 3.3: Cumulative cases and cumulative ring vaccinations data.

| 10-02-2019 | 816  | 77680  |
|------------|------|--------|
| 17-02-2019 | 840  | 80989  |
| 24-02-2019 | 872  | 83755  |
| 03-03-2019 | 897  | 853411 |
| 10-03-2019 | 923  | 86917  |
| 17-03-2019 | 960  | 86917  |
| 24-03-2019 | 1016 | 91283  |
| 31-03-2019 | 1089 | 93686  |
| 07-04-2019 | 1154 | 96133  |
| 14-04-2019 | 1264 | 101195 |
| 22-04-2019 | 1353 | 104342 |
| 28-04-2019 | 1466 | 106872 |
| 05-05-2019 | 1572 | 111494 |
| 12-05-2019 | 1705 | 114498 |
| 19-05-2019 | 1826 | 121147 |
| 26-05-2019 | 1920 | 124825 |
| 02-06-2019 | 2008 | 129001 |
| 10-06-2019 | 2071 | 131471 |
| 16-06-2019 | 2168 | 135887 |
| 23-06-2019 | 2239 | 140794 |
| 30-06-2019 | 2338 | 146319 |
| 07-07-2019 | 2418 | 154037 |
| 14-07-2019 | 2501 | 161400 |
| 21-07-2019 | 2592 | 171052 |
| 28-07-2019 | 2671 | 178121 |
| 04-08-2019 | 2763 | 186350 |
| 11-08-2019 | 2831 | 192257 |
| 18-08-2019 | 2887 | 197172 |
| 25-08-2019 | 2976 | 204730 |

Continued Table 3.3.
# **Chapter 4**

# The impact of violent attacks on Ebola treatment centres during the 2018-2020 Kivu outbreak

## 4.1 Introduction

The Democratic Republic of the Congo (DR Congo) reported an Ebola virus disease (EVD) outbreak in North Kivu and Ituri provinces on 1 August 2018. The World Health Organization (WHO) announced the outbreak in DR Congo to be a Public Health Emergency of International Concern (PHEIC) [61].

Conflicts and community mistrust marked by kidnappings and murders of healthcare and frontline workers prevented intervention campaigns from being deployed in many areas in North Kivu, and Ituri provinces [159]. Furthermore, attacks on healthcare personnel and Ebola treatment centres (ETCs) have caused the closure of some ETCs, resulting in the inaccessibility of ETCs for EVD patients. Most seriously, attacks on ETCs put the attackers and the general community at risk of acquiring the disease from contaminated items or patients who fled the attacks to the community [73, 66].

Several major attacks on ETCs occurred in DR Congo and Liberia in the recent past. Two occurred during the 2018-2020 Kivu outbreak in Katwa, and Butembo [73]. In Butembo, some unknown assailants attacked an ETC, setting some facilities and cars on fire [73]. The centre included 57 patients, among which 15 were confirmed cases [73]. The incident happened a few days after another attack at an Ebola treatment centre (ETC) in Katwa. The Katwa centre included ten patients, among whom four were confirmed cases [73]. Some patients in Butembo's treatment centre fled to nearby forests, putting the community at risk of acquiring the disease [73]. Another attack occurred during the 2014-2016 West African (WA) EVD outbreak. A group of individuals from the community attacked an ETC near Monrovia [66]. They looted items, including mattresses containing blood and other bodily fluids of infected individuals [66].

Understanding the interplay between the effect of attacks on ETCs and the spread of

EVD can inform how the disease unfolds in conflict and community distrust zones. Several previous studies explored the impact of conflicts and community mistrusts on EVD spread. Kelly et al. [80] investigated the impacts of targeted and non-targeted violence on EVD spread. They found that the time-dependent reproduction number increased by 0.1 when a 2.92 increase occurred in violent events. Furthermore, the most substantial influence on EVD transmission arrived from Ebola-targeted violence, mainly caused by civilian-induced incidents. Kraemer et al. [84] explored the relationship between EVD transmission and the occurrence of conflicts and violence. They found that conflicts were associated with the magnitude of EVD outbreaks in health zones in North Kivu and Ituri. Wells et al. [159] investigated the relationship between conflicts and EVD spread. They found that preceding unrest and conflict events significantly affected the speed of case isolation and vaccination efficiency. Wannier et al. [157] compared transmission rates among different health zones during the 2018-2020 Kivu outbreak. They found that violence during the 2018-2020 Kivu outbreak significantly increased the spread of EVD.

Kelly et al. [80] and Kraemer et al. [84] are observational studies. While these studies provide insights into the associations between conflicts and EVD spread, they can not be used to simulate the number of EVD cases, deaths, hospitalisations, and vaccinations given different levels of community distrust. Wells et al. [159] also did not explicitly account for hospitalisations or whether some hospitalised individuals could escape the attacks on ETCs to the community. In addition, Wannier et al. [157] did not make use of the vaccination data to quantify their model. In the current study, we address these limitations while quantifying our model with actual data to assess the impact of the attacks on ETCs.

Our current EVD model also differs from other previous EVD modelling studies. Unlike Seidu et al. [135], Bodine et al. [12] and Lin et al. [96], we consider susceptible persons to have different risks of infections depending on their geographical locations. Further, unlike Brettin et al. [15], and Chowell et al. [34], we account for transmission from the deceased.

Finally, in the current study, we model the transmission dynamics of EVD while accounting for ring vaccinations, antiviral treatments and contact tracing measures that were used in recent EVD outbreaks.

This Chapter is laid out as follows: We explore model assumptions and formulation in

the second section. The theoretical analysis of the model is discussed in Section Three. We first discuss the model solution' non-negativity and boundedness. The basic reproduction number is then calculated. We obtain the model equilibria and discuss their stability analysis. In Section Four, we discuss the model fitting and numerical findings. In Section Five, we conclude our study and discuss recommendations.

#### 4.2 Model formulation

During the 2018-2020 Kivu outbreak, 81% of EVD cases were located in six health zones: Beni, Butembo, Kalunguta, Katwa, Mabalako, and Mandima [68]. As a result at the beginning of the outbreak, we assume that 81% of infections are associated with these health zones. We call these health zones areas with high infections. Other health zones in North Kivu and Ituri are called areas with low infections. Let  $S_H$  and  $S_L$  be the number of susceptible individuals residing in areas with high and low infections, respectively. Let Vbe the number of vaccinated individuals in the population. Let E, I, H, D and R be the number of people exposed, infected, hospitalised, infectious deceased and recovered in the population, respectively. Let  $I_a$  be the number of hospitalised persons who fled the ETCs because of the attacks and joined the community. Let N be the population of the North Kivu and Ituri provinces so that

$$N = S_H + S_L + V + E + I + H + I_a + D + R.$$
(4.1)

The 2018-2020 EVD outbreak in North Kivu and Ituri continued for almost two years [167]. Natural births and deaths might play a role in the dynamics of a disease when the disease is extended for a long period. Thus, we assume  $\Pi$  and  $\mu$  are the numbers of births and natural deaths (reasons other than EVD) in the population, respectively. The spread of EVD from one person to another occurs through contact with the bodily fluids of infected persons. Before any intervention was considered, we assume the effective contact rate among susceptible individuals residing in areas with high infections and living infectious persons is  $\beta_0$ . We assume  $\beta_2$  is the effective contact rate among the susceptible individuals living in areas with high infections and the infectious deceased. Let  $\delta$  be a positive number so that  $\beta_2 = \delta\beta_0$ . Let  $\tau_1$  be a modification parameter that accounts for transmission in low infection areas so that  $\tau_1\beta_0$  and  $\tau_1\beta_2$  are the effective contact rates for

the living infectious persons and the infectious deceased with the susceptible individuals residing in low infection areas, respectively. We assume the vaccination rates in areas with high and low infections to be  $m_1$  and  $m_2$ , respectively.

Contact tracing involves identifying and isolating exposed individuals as soon as they are symptomatic. As contact tracing is considered, the effective contact rate declines due to the isolation of symptomatic persons. We remark the number of vaccinated persons Vinvolves the contacts and contacts of contacts for infected persons. Thus, we can find a number  $s_1 > 0$  such that the number of contacts among the vaccinated persons is  $s_1V$ . Let  $s_2 \ge 0$  be a parameter which accounts for the effectiveness of contact tracing per each contact person so that the effective contact rate  $\beta_0$  becomes

$$\beta_1 + (\beta_0 - \beta_1)e^{-s_2s_1V}$$

during the contact tracing where  $\beta_1$  ( $\beta_1 < \beta_0$ ) is the effective contact rate post contact tracing. Let  $q = s_2 s_1$ . It follows that there exists no contact tracing when q = 0. On the other hand, the higher the value of q, the higher the effectiveness of contact tracing. It also follows that there exists a  $\delta_1 \in (0, 1)$  such that  $\beta_1 = \delta_1 \beta_0$ .

EVD hospitalisation has generally been managed by treating symptoms, rehydrating patients orally and intravenously, and treating any additional infections that patients may have [94]. During the 2018-2020 Kivu outbreak, four antiviral medications (mAb114, Remdesivir, Zmapp, and Regeneron) were considered [104]. The rate of hospitalisation and treatment with mAb114, Remdesivir, Zmapp, or Regeneron are assumed to be  $\rho$ . Hospitalised individuals at ETCs are properly isolated throughout treatments and safely buried when they die at the ETCs [169]. Hospitalised persons may escape treatments due to the attacks on ETCs and put the community at risk of acquiring the disease [73, 73]. We assume the rate at which hospitalised individuals fled treatments due to the attacks on ETCs to be  $\zeta_1$  and the rate at which these individuals returned to ETCs to be  $\zeta_2$ .

The complete process for the model is depicted in Figure 4.1, and a full description of

the model parameters is provided in Table 4.1. The model equations are described below:

$$\frac{dS_H}{dt} = \sigma \Pi - (\lambda_1 + m_1 + \mu) S_H$$

$$\frac{dS_L}{dt} = (1 - \sigma) \Pi - (\lambda_1 \tau_1 + m_2 + \mu) S_L$$

$$\frac{dV}{dt} = m_1 S_H + m_2 S_L - (\epsilon \lambda_1 + \mu) V$$

$$\frac{dE}{dt} = \lambda_1 (S_H + \tau_1 S_L + \epsilon V) - (\alpha + \mu) E$$

$$\frac{dI}{dt} = \alpha E - (h\rho + (1 - h) \gamma + \mu) I$$

$$\frac{dH}{dt} = h\rho I + l_2 \zeta_2 I_a - ((1 - l_1)\eta + l_1 \zeta_1 + \mu) H$$

$$\frac{dI_a}{dt} = l_1 \zeta_1 H - ((1 - l_2)\theta + l_2 \zeta_2 + \mu) I_a$$

$$\frac{dD}{dt} = f_1 (1 - h) \gamma I + (1 - l_2)\theta f_3 I_a - bD$$

$$\frac{dR}{dt} = (1 - h) (1 - f_1) \gamma I + \eta (1 - l_1) (1 - f_2) H + (1 - l_2)\theta (1 - f_3) I_a - \mu R$$
(4.2)

where

$$\lambda_{1} = \frac{1}{N} \left( \beta_{1} + (\beta_{0} - \beta_{1})e^{-qV} \right) (I + I_{a} + \delta D) = \frac{1}{N} \left( \delta_{1}\beta_{0} + (\beta_{0} - \delta_{1}\beta_{0})e^{-qV} \right) (I + I_{a} + \delta D) = \frac{1}{N} \beta_{0} \left( \delta_{1} + (1 - \delta_{1})e^{-qV} \right) (I + I_{a} + \delta D).$$

System (4.2) is considered along with the initial conditions:  $S_H(0) = S_{H0}$ ,  $S_L(0) = S_{L0}$ ,  $V(0) = V_0$ ,  $E(0) = E_0$ ,  $I(0) = I_0$ ,  $H(0) = H_0$ ,  $I_a(0) = I_{a0}$ ,  $D(0) = D_0$  and  $R(0) = R_0$ .

To study the impact of the attacks on ETCs, we simulate the full model (4.2). However, we first created submodels in which we considered the cases when no attacks at ETCs exist and when no interventions are available. Then we quantify these submodels using the 2018-2020 Kivu outbreak data.

When there are no attacks on the ETCs, Model 4.2 becomes the sub-model, described below:



Figure 4.1: Transfer diagram for the model

$$\frac{dS_H}{dt} = \sigma \Pi - (\lambda_1 + m_1 + \mu) S_H$$

$$\frac{dS_L}{dt} = (1 - \sigma) \Pi - (\lambda_1 \tau_1 + m_2 + \mu) S_L$$

$$\frac{dV}{dt} = m_1 S_H + m_2 S_L - (\epsilon \lambda_1 + \mu) V$$

$$\frac{dE}{dt} = \lambda_1 (S_H + \tau_1 S_L + \epsilon V) - (\alpha + \mu) E$$

$$\frac{dI}{dt} = \alpha E - (h\rho + (1 - h) \gamma + \mu) I$$

$$\frac{dH}{dt} = h\rho I - (\eta + \mu) H$$

$$\frac{dD}{dt} = f_1 (1 - h) \gamma I - bD$$

$$\frac{dR}{dt} = (1 - h) (1 - f_1) \gamma I + \eta (1 - f_2) H - \mu R$$
(4.3)

where

$$\lambda_1 = \frac{1}{N} \left( \beta_1 + (\beta_0 - \beta_1) e^{-qV} \right) \left( I + \delta D \right).$$

Further  $S_H(0) = S_{H0}$ ,  $S_L(0) = S_{L0}$ ,  $V(0) = V_0$ ,  $E(0) = E_0$ ,  $I(0) = I_0$ ,  $H(0) = H_0$ ,  $D(0) = D_0$  and  $R(0) = R_0$ .

Further, when there are no attacks on the ETCs, vaccinations or antiviral treatments, Model 4.2 becomes the sub-model, described below:

$$\frac{dS_H}{dt} = \sigma \Pi - (\lambda_1 + \mu) S_H$$

$$\frac{dS_L}{dt} = (1 - \sigma) \Pi - (\lambda_1 \tau_1 + \mu) S_L$$

$$\frac{dE}{dt} = \lambda_1 (S_H + \tau_1 S_L) - (\alpha + \mu) E$$

$$\frac{dI}{dt} = \alpha E - (\gamma + \mu) I$$

$$\frac{dD}{dt} = f_1 \gamma I - bD$$

$$\frac{dR}{dt} = (1 - f_1) \gamma I - \mu R$$
(4.4)

where

$$\lambda_1 = \frac{\beta_0}{N} \left( I + \delta D \right).$$

Further  $S_H(0) = S_{H0}$ ,  $S_L(0) = S_{L0}$ ,  $E(0) = E_0$ ,  $I(0) = I_0$ ,  $D(0) = D_0$  and  $R(0) = R_0$ .

# 4.3 Theoretical analysis

This section establishes that the state variables for Model (4.2) are non-negative at all times and that the solution is bounded. The basic reproduction number ( $\mathcal{R}_0$ ) is a critical figure in describing the spread of EVD. We obtain  $\mathcal{R}_0$  using a well-documented approach, described in [149].

## 4.3.1 Non-negativity and boundedness

It is necessary to show that all state variables are non-negative for all times so that system (4.2) is biologically significant.

**Proposition 4.3.1.** The solution for system (4.2) is non-negative whenever  $S_H(0), S_L(0), V(0), E(0), I(0), H(0), I_a(0), D(0)$  and R(0) are non-negatives.

We can now declare the statement below, which guarantees the boundedness of the solution for system (4.2).

**Proposition 4.3.2.** The solution of system (4.2), determined in Proposition 4.3.1, is bounded for all time t > 0.

The proofs for Propositions 4.3.1 and 4.3.2 are done similar to the proofs of Propositions 3.3.1 and 3.3.2.

From Proposition 4.3.1, Proposition 4.3.2 and the trivial existence and uniqueness of a local solution, it follows that system (4.2) is a dynamical system in the biologically feasible compact set

$$\Big\{(S_H(t), S_L(t), V(t), E(t), I(t), H(t), I_a(t), D(t), R(t)) \subset \mathbb{R}^9_+ : N(t) \le \psi \Big\},\$$

where

$$\psi = \max\left\{\frac{\Pi}{\mu}, N(0)\right\}.$$

#### 4.3.2 Model Equilibria

The disease-free equilibrium (DFE) is found when  $I = I_a = D = 0$  and it is given by

$$P_0 = (S_H^*, S_L^*, V^*, 0, 0, 0, 0, 0),$$

where  $S_H^* = \frac{\sigma \Pi}{m_1 + \mu}$ ,  $S_L^* = \frac{(1 - \sigma) \Pi}{m_2 + \mu}$ ,  $V^* = \frac{m_1 S_H^* + m_2 S_L^*}{\mu}$ .

We use the next-generation matrix method [149] to obtain the controlled reproduction number ( $\mathcal{R}_c$ ). We differentiate between the infected states ( $E, I, H, I_a, D$ ) and uninfected states ( $S_H, S_L, V, R$ ). We assume  $\mathcal{F}$  and  $\mathcal{W}$  as vectors representing the new and transported cases into the infected states, respectively.

Let F and W be Jacobian matrices of  $\mathcal{F}$  and  $\mathcal{W}$ , described in [149]. Thus,  $\mathcal{R}_c$  is defined to be the dominant eigenvalue of  $FW^{-1}$ . We find  $\mathcal{R}_c$  to be:

$$A_{2}\left(\beta_{1} + (\beta_{0} - \beta_{1})e^{-q\left(\frac{m_{2}\Pi(1-\sigma)}{\mu(m_{2}+\mu)} + \frac{m_{1}\Pi\sigma}{\mu(m_{1}+\mu)}\right)}\right)\left(\frac{\sigma}{m_{1}+\mu}\left(1 + \frac{\epsilon(m_{1})}{\mu}\right) + \frac{\tau_{1}(1-\sigma)}{m_{2}+\mu}\left(1 + \frac{\epsilon(m_{2})}{\mu}\right)\right)$$
(4.5)

where

$$A_{2} = \left(\frac{\mu\alpha}{(\alpha+\mu)(\gamma(1-h)+\mu+h\rho)}\left(1+\frac{\delta_{1}f_{1}\gamma(1-h)}{b}\right) + A_{21}\right)$$
$$A_{21} = A_{22}\left(1+f_{3}(1-l_{2})\theta\right),$$

and

$$A_{22} = \frac{l_1 \zeta_1 h \rho}{(\mu + (1 - l_2)\theta + l_2 \zeta_2) (\eta (1 - l_1) + \mu + l_1 \zeta_1) - l_1 l_2 \zeta_1 \zeta_2}$$

When there are no interventions, we have  $q_1 = h = m_1 = m_2 = 0$ . Thus,  $\mathcal{R}_c$  becomes

$$\mathcal{R}_0 = \beta_0 \frac{\alpha}{(\alpha + \mu)(\gamma + \mu)} \left(1 + \frac{\delta f_1 \gamma}{b}\right) \left(\sigma + \tau_1 (1 - \sigma)\right).$$

When there are no attacks on ETCs ( $\zeta_1 = 0$ ), we have  $A_{22} = 0$ . Hence  $\mathcal{R}_c$  becomes  $\mathcal{R}_{c,na}$ 

$$\mathcal{R}_{c,\mathrm{na}} = A_3 \left( \frac{\sigma}{m_1 + \mu} \left( 1 + \frac{\epsilon(m_1)}{\mu} \right) + \frac{\tau_1(1 - \sigma)}{m_2 + \mu} \left( 1 + \frac{\epsilon(m_2)}{\mu} \right) \right)$$

where

$$A_{3} = \left(\beta_{1} + (\beta_{0} - \beta_{1})e^{-q\left(\frac{m_{2}\Pi(1-\sigma)}{\mu(m_{2}+\mu)} + \frac{m_{1}\Pi\sigma}{\mu(m_{1}+\mu)}\right)}\right) \left(\frac{\mu\alpha}{(\alpha+\mu)(\gamma(1-h)+\mu+h\rho)}\left(1 + \frac{\delta_{1}f_{1}\gamma(1-h)}{b}\right)\right)$$

Next, we show the existence of an endemic equilibrium

$$(S_{H}^{*}, S_{L}^{*}, V^{*}, E^{*}, I^{*}, H^{*}, I_{a}^{*}, D^{*}, R^{*}),$$

where

$$\begin{split} S_{H}^{*} &= \frac{\sigma \Pi}{\lambda_{1} + m_{1} + \mu} \\ S_{L}^{*} &= \frac{(1 - \sigma) \Pi}{\lambda_{1} \tau_{1} + m_{2} + \mu}, \\ V^{*} &= \frac{m_{1} S_{H}^{*} + m_{2} S_{L}^{*}}{\epsilon \lambda_{1} + \mu}, \\ E^{*} &= \frac{\lambda_{1}}{(\alpha + \mu)} \left( S_{H}^{*} + \tau_{1} S_{L}^{*} + \epsilon V^{*} \right), \\ I^{*} &= \frac{\alpha}{h\rho + (1 - h)\gamma + \mu} E^{*}, \end{split}$$

with

$$\begin{split} H^* &= \frac{h\rho I^*}{((1-l_1)\eta + l_1\zeta_1 + \mu) - \frac{l_2\zeta_2 l_1\zeta_1}{(1-l_2)\theta + l_2\zeta_2 + \mu}},\\ I_a^* &= \frac{l_1\zeta_1 H^*}{((1-l_2)\theta + l_2\zeta_2 + \mu)}\\ D^* &= \frac{f_1(1-h)\gamma}{b} I^* + \frac{(1-l_2)\theta f_3 I_a^*}{b},\\ R^* &= \frac{1}{\mu} \left((1-h)(1-f_1)\gamma I^* + \eta(1-l_1)(1-f_2)H^* + (1-l_2)(1-f_3)\theta I_a^*\right),\\ N^* &= \frac{\Pi}{\mu} - \frac{(b-\mu)D^*}{\mu},\\ \lambda_1 &= \left(\beta_1 + (\beta_0 - \beta_1)e^{-qV^*}\right) \left(\frac{I^* + I_a^* + \delta D^*}{N^*}\right). \end{split}$$

As in [108, 152], the equilibria points of system (4.2) correspond the fixed points of the following system

$$\lambda_1 = \phi(\lambda_1) = \left(\beta_1 + (\beta_0 - \beta_1)e^{-qV^*}\right) \left(\frac{I^* + I_a^* + \delta D^*}{N^*}\right).$$
(4.6)

The variables  $I^*, I^*_a$  and  $D^*$  can be rewritten as

$$\begin{split} I^* &= \frac{\alpha}{h\rho + (1-h)\gamma + \mu} E^*, \\ I^*_a &= \frac{l_1\zeta_1 h\rho\alpha}{((1-l_2)\theta + l_2\zeta_2 + \mu) \left(((1-l_1)\eta + l_1\zeta_1 + \mu) - \frac{l_2\zeta_2 l_1\zeta_1}{(1-l_2)\theta + l_2\zeta_2 + \mu}\right) (h\rho + (1-h)\gamma + \mu)} E^*, \\ D^* &= \frac{\alpha \left(f_1(1-h)\gamma\right)}{b \left(h\rho + (1-h)\gamma + \mu\right)} E^* \\ &+ \frac{((1-l_2)\theta f_3) l_1\zeta_1 h\rho\alpha}{b((1-l_2)\theta + l_2\zeta_2 + \mu) \left((((1-l_1)\eta + l_1\zeta_1 + \mu) - \frac{l_2\zeta_2 l_1\zeta_1}{(1-l_2)\theta + l_2\zeta_2 + \mu}\right) (h\rho + (1-h)\gamma + \mu)} E^* \end{split}$$

Note from (4.6) that  $\phi(\lambda_1)$  is continuous in  $\lambda_1 \in [0, \infty)$ . Further  $\phi(0) = 0$ . On the other hand,

$$\lim_{\lambda_1 \to \infty} \left( \beta_1 + (\beta_0 - \beta_1) e^{-qV^*} \right) = \beta_0.$$

Thus, to find  $\lim_{\lambda_1\to\infty}\phi(\lambda_1),$  it is enough to find  $\lim_{\lambda_1\to\infty}E^*.$  We have

$$\lim_{\lambda_1 \to \infty} E^* = \frac{\Pi}{\alpha + \mu}.$$

.

Hence  $\phi(\lambda_1)$  is bounded for  $\lambda_1 \in [0, \infty)$ .

We also have that

$$\frac{d\phi}{d\lambda_1}(0) = \mathcal{R}_c$$

Let  $\mathcal{R}_c > 1$ . We propose that we have r in a neighbourhood of zero, say  $(0, \delta_1)$  such that  $\phi(r) > r$ . Otherwise, for all neighbourhoods near zero,  $\phi(r) \le r$  which implies that

$$\frac{d\phi}{d\lambda_1}(0) = \lim_{\lambda_1 \to 0^+} \frac{\phi(\lambda_1) - \phi(0)}{\lambda_1} = \lim_{\lambda_1 \to 0^+} \frac{\phi(\lambda_1)}{\lambda_1} \le 0,$$

which is a contradiction. Hence, there exists an  $r \in (0, \infty)$  such that  $\phi(r) > r$ . Since  $\phi(\lambda_1)$  is bounded as  $\lambda_1 \to \infty$ , we have an M > 0 such that  $\phi(M) < M$ . Let  $Z(\lambda_1) = \lambda_1 - \phi_1(\lambda_1)$ . We have Z(r) < 0 and Z(M) > 0. Using the Intermediate Value Theorem, we have a  $\lambda_1^* \in (r, M)$  such that  $\phi(\lambda_1^*) = \lambda_1^*$ . Hence, there exists a non-zero solution  $\lambda_1^*$  to Equation (4.6). Equivalently, system (4.2) has an endemic equilibrium. The condition for the local stability is computed as in [108]. The Jacobian matrix around the zero fixed point  $\lambda_1 = 0$  for system (4.6) is given by

$$\frac{d\phi_1(0)}{d\lambda_1} = \mathcal{R}_c$$

Thus, the DFE is locally asymptotically stable if  $\mathcal{R}_c < 1$  and it is unstable if  $\mathcal{R}_c > 1$ . On the other hand, the endemic equilibrium is locally asymptotically stable if  $\frac{d\phi_1(\lambda_1^*)}{d\lambda_1} < 1$  and it is unstable if  $\frac{d\phi_1(\lambda_1^*)}{d\lambda_1} > 1$ .

## 4.4 Model fitting and numerical simulations

To study the impact of the violent attacks on ETCs, we use cumulative cases and ring vaccination data to quantify our models. The cumulative case data are collected from the WHO situational reports, while the cumulative ring vaccinations are adapted from the Humanitarian Data Exchange website [68]. We consider a timeline for these data which starts from the beginning of the outbreak (5 August 2018) to the last date after which ETCs are attacked (23 February 2019). This timeline was divided into two periods: the first three weeks (5 August to 25 August 2018) and the next six months (26 August 2018 to 23 February 2019). During the first period, vaccinations and antiviral treatments were not considered. We fit systems (4.4) and (4.3) to the data reported during the first and the

second periods, respectively.

We discuss the impact of vaccinations, contact tracing and antiviral treatment during the outbreak. We are then concerned with the numerical insights on the impact of the attacks on ETCs during the 2018-2020 Kivu outbreak.

# 4.4.1 Model fitting

To solve the initial value problems (4.3) and (4.4), we apply the odeint function of Scipy [145]. This function is used to solve a system of ordinary differential equations using the ISODA algorithm from the FORTRAN library odepack. Sub-models (4.3) and (4.4) are fitted to the EVD data using optimize.curve\_fit function of Scipy [146]. This function uses non-linear least squares for the fitting. It also allows to compute the 67% confidence interval of the parameter estimates.

To quantify Model (4.3), we use the values of known parameters as shown in Table 4.2. We fit the cumulative cases function

$$\int_0^t \alpha E(s) \ ds \tag{4.7}$$

of Model (4.4) to the cumulative cases data reported for the period of 5 August to 25 August 2018 and estimated  $\mathcal{R}_0$  to be 3.28. Other parameters of Model (4.3) are estimated by fitting the cumulative cases function Equation (4.7) and vaccination function

$$\int_0^t \left( m_1 S_H(s) + m_2 S_L(s) \right) ds$$

of Model (4.3) to the data reported for the period of 26 August 2018 to 23 February 2019. We present the model fitting in Figure 4.2 and Figure 4.3. The complete list of the estimated parameters and 67% confidence interval is presented in Table 4.1 and Table 4.2.

## 4.4.2 Sensitivity analysis

To understand morbidity and mortality related to the attacks on ETCs, it is critical first to understand the relative importance of the various factors influencing EVD transmission and prevalence when there are no attacks on ETCs. Sensitivity analysis is used to identify



Figure 4.2: Model fitting when there are no vaccinations or antiviral treatments.



Figure 4.3: Model fitting when there are vaccinations and antiviral treatments but there are no attacks on ETCs.

variables that significantly impact EVD transmission and prevalence. In this subsection, we follow Chitnis et al. [30] to identify the impact of the different parameters on  $\mathcal{R}_{c,na}$ . They used the normalised forward sensitivity index method. The normalised forward sensitivity index of  $\mathcal{R}_{c,na}$  to any parameter is the ratio of the relative change in  $\mathcal{R}_{c,na}$  to the relative change in that parameter [30]. It can be defined using partial derivatives as follows:

$$\Upsilon_p^{\mathcal{R}_{c,\mathrm{na}}} = \frac{\partial \mathcal{R}_{c,\mathrm{na}}}{\partial p} \times \frac{p}{\mathcal{R}_{c,\mathrm{na}}}$$

where p is any of the parameters that compose  $\mathcal{R}_{c,na}$ . We obtain the sensitivity indices of  $\mathcal{R}_{c,na}$  to each parameter of  $\mathcal{R}_{c,na}$  (Table. 4.2). We find that the most sensitive parameter is the effective contact rate among susceptible individuals residing in areas with high infections and the living infectious persons  $\beta_0$ . Other important parameters include the fraction of susceptible patients living in areas with high infections ( $\sigma$ ) and the rate at which non-hospitalised persons recover or die ( $\gamma$ ). For example, since  $\Upsilon_{\sigma}^{\mathcal{R}_{c,na}} = +0.754$ , decreasing (or increasing)  $\sigma$  by 10% decreases (or increases)  $\mathcal{R}_{c,na}$  by 7.54%. On the other hand, as  $\Upsilon_{\gamma}^{\mathcal{R}_{c,na}} = -0.643$ , decreasing (or increasing)  $\gamma$  by 10% increases (or decreases )  $\mathcal{R}_{c,na}$  by 6.43%.

### 4.4.3 The impact of the attacks on Ebola treatment centres

As previously anticipated in this study, the epidemic curve would change after August 2019, specifically after the 373rd day of the outbreak, due to the new policy on antiviral treatments. To assess the impact of ETCs attacks during the 2018-2020 Kivu outbreak, we consider the outbreak data from the beginning of the outbreak to the 373rd day of the outbreak.

We compare the actual data between February 2019 (the date on which the attacks on ETCs started) and August 2019 with the model outputs (Figure 4.4). We find that the attacks on ETCs increased the number of cases in the population by about 17% on the 373rd day of the outbreak. Indeed, the number of cases dramatically increased in Katwa and Butembo following the attacks on ETCs [74]. However, from Figure 4.4, it should be remarked that the number of cases in the population did not increase immediately after the attacks on ETCs, probably because it usually takes a few latent periods before the number of cases in the population dramatically rises due to the attacks on ETCs.

We have no data for the parameters  $\zeta_1, \zeta_2, \theta, l_1$  and  $l_2$ . It follows however, from the definition of these parameters that their values lie in the interval [0, 1]. Also, we have no data for  $f_3$ . However, it is natural to assume EVD patients have the highest probability of EVD deaths if not hospitalised. That is,  $f_2 \leq f_1$  and  $f_3 \leq f_1$ . Further, hospitalised individuals who interrupted treatments because of the attacks have a higher probability of EVD deaths than other hospitalised individuals. That is  $f_2 \leq f_3$ . It follows that  $f_2 \leq f_3 \leq f_1$ .

To explore the interplay between the different levels of attacks on ETCs and the level

of infections in the population, we assume that  $f_3 = \frac{f_1+f_2}{2}$ . Further, we fix the value of four other parameters ( $\zeta_1$ ,  $\zeta_2$ ,  $\theta$ ,  $l_1$  and  $l_2$ ), while we vary one of them. As a result, when 10% of the hospitalised flee the attacks after they spend three days at ETCs, the cumulative cases on the 373rd day increase by more than 30% if these patients spend three days in the community, after which they all return to the ETCs (Figure. 4.5). When half of these individuals return to ETCs, the cumulative cases increase by about 50% (Figure. 4.6). Further, when these patients spend one more day in the community, after which they all return to treatments, the cumulative cases rise by an additional 10% (Figure. 4.7). We also find that when the patients are treated for one more day before they flee the attacks, the cumulative cases are reduced by 10% (Figure 4.8).

We remark that the interactions among the parameters  $\zeta_1$ ,  $\zeta_2$ ,  $\eta$ ,  $\theta$ ,  $f_3$ ,  $l_1$  and  $l_2$  produce non-obvious dynamics for EVD (Figures: 4.5, 4.6, 4.8 and 4.7). In particular, it is still unclear which of these parameters is the most influential in the dynamics of EVD on the space of all possible values for these parameters. To identify parameters that have the highest impact on the prevalence of EVD, we conduct sensitivity analysis using the Latin Hypercube Sampling (LHS) scheme with Partial Rank Correlation Coefficients (PRCC) approach.

To proceed with the sensitivity analysis, let  $\alpha_1 = l_1\zeta_1$ ,  $\alpha_2 = l_2\zeta_2$ ,  $\alpha_3 = (1 - l_2)\theta f_3$ ,  $\alpha_4 = (1 - l_2)\theta(1 - f_3)$  and  $\alpha_5 = (1 - l_1)\eta(1 - f_2)$ . Thus,  $\alpha_1, \alpha_2$  and  $\alpha_3$  are the rates at which hospitalised individuals flee the attacks, patients who escaped the attacks return to the ETCs, and patients who escaped the attacks die in the community due to EVD. The parameters  $\alpha_4$  and  $\alpha_5$  represent the rate at which individuals who fled the attacks recover and the rate at which they die in the community after they fled the attacks, respectively.

We remark that the parameters  $\zeta_1, \zeta_2, \eta, \theta, l_1$  and  $l_2$ , lie in the interval [0, 1] while  $f_3$  lies in the interval  $[f_1, f_2]$ . It follows that the parameters  $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$  lie in the interval [0, 1].

We generate 400 samples for each parameter  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  and  $\alpha_5$ , using a uniform distribution over the interval [0, 1]. We use PRCC to identify how sensitive the cumulative cases with respect to changes in the different parameter values. Figure 4.9 shows that the most influential parameters in the dynamics of EVD are, in order, the rates at which hospitalised individuals flee the attacks, individuals who fled the attacks recover from EVD and patients who escaped the attacks return to the ETCs. These rates must be given



Figure 4.4: The impact of the attacks on ETCs during the 2018-2020 Kivu outbreak. By the model output here, we mean the output of Model (4.3). It should be remarked this represents the case in which no attacks on ETCs is considered.

priority during EVD interventions.

## 4.5 Discussion

Ebola virus disease is a highly contagious lethal infection. On 1 August 2018, the Ministry of Health of DR Congo declared the tenth EVD outbreak in DR Congo. The outbreak occurred in areas with ongoing armed conflicts in Kivu and Ituri provinces. In addition to armed conflicts, community distrust largely contributed to the spread of EVD during the 2018-2020 Kivu outbreak. Healthcare was particularly a victim of systematic attacks. In the current study, we concern ourselves with studying the impact of attacks on ETCs. Attacks on ETCs can be very destructive because hospitalised EVD patients might flee ETCs due to the attacks and join the community. Additionally, attackers can become exposed to EVD by contact with the patients or by touching or stealing beddings, mattresses or other items that patients use.

During the 2018-2020 Kivu outbreak, patients fled the attacks on ETCs in Katwa and Butembo. A spike of cases increased in these areas following the attacks on ETCs. In the current study, we developed a mathematical model to understand the impact of the attacks on ETCs during the 2018-2020 Kivu outbreak. We estimate that the attacks on



Figure 4.5: The impact of the attacks when the percentage of patients who fled the attacks is 10%, 20%, 30%, 40% and 50%.

ETCs caused the cases to rise by 17% in August 2019. We also find that if 10% of the hospitalised flee the attacks on ETCs, the cumulative cases on the 373rd-day increase by more than 30% (Figure. 4.5) if these individuals spend three days in the community, after which they all return to ETCs. If half of these individuals return to ETCs for treatments, the cumulative cases increase by about 50% (Figure. 4.6). If these individuals' return to the ETCs is delayed by one day, the cumulative cases are raised by an additional 10% (Figure. 4.7). On the other hand, when patients are treated for one more day before they flee the attacks, the cumulative cases are reduced by about 10%.

Global sensitivity analysis shows that the most influential parameters in the dynamics of EVD are, in order, the rates at which hospitalised individuals flee the attacks, individuals who fled the attacks recover from EVD and patients who escaped the attacks return to the ETCs. Thus, these rates must be prioritised during EVD interventions.

The rate at which hospitalized individuals flee the attacks can be minimized by tackling the reasons for hostilities against EVD response teams. Three significant reasons can be



Figure 4.6: The impact of the attacks when the percentage of patients who did not return to treatments after they fled the attacks is 10%, 20%, 30%, 40% and 50%.

identified for the distrust and hostility towards EVD response efforts [128]. First, EVD symptoms are similar to more familiar diseases such as malaria and Lassa Fever. EVD is revealed distinctively only at later stages. Isolated rural people value high-quality home care for diseases such as malaria and feel deprived when they cannot provide the same for EVD. Secondly, EVD diagnosis is based on Phlebotomy. Many believe that ETCs are places for mining of blood. A village chief remarked that they have heard of giving ill persons blood transfusions but have not heard of sick people forced to give blood [128]. These suspicions are based on unethical practices of blood sample extraction and sample theft during EVD outbreaks [128]. Thirdly, people in many parts of Africa have priorities other than EVD. These include poverty, other endemic diseases and instability. Many people question the reasons that foreigners care so much about EVD [128]. Some believe that foreigners are probably scared of EVD or that there is money in patients' body parts or blood [128]. Also, some believe the virus could have some hidden utility (facts about cold war germ and unknown molecular patents) [128].



Figure 4.7: The impact of the attacks if the return of individuals to treatments was delayed by one, two, three, four and five days.

Evidence is thus needed to support the change of attitudes. For example, families must recognise that those most involved in care for patients at home are at the highest risk of becoming infected. A steady flow of discharged survivors from ETCs can also change perceptions that the ETCs are where people went only to die. Social learning about EVD through trusted village chiefs, friends and family members can also be effective.

To conclude, while hostility towards ETCs can dramatically hinder EVD control efforts, addressing the reasons for these hostilities is highly recommended.



Figure 4.8: The impact of the attacks when patients are treated for one, two, three, four and five days at ETCs before they flee the attacks.



Figure 4.9: PRCC for the cumulative cases at t = 373.

Table 4.1: Model parameters and their interpretations.

| Parameter          | Interpretation                                                                    |
|--------------------|-----------------------------------------------------------------------------------|
| Π                  | Birth rate.                                                                       |
| <u>1</u>           | The incubation period.                                                            |
| $\frac{\alpha}{1}$ | The average time from symptoms onset to either recovery or to EVD death for an    |
| $\gamma$           | infected person.                                                                  |
| $\epsilon$         | The fraction of vaccinated individuals that are not immunised by the vaccination. |
| $\frac{1}{h}$      | The average time from EVD death to burial.                                        |
| $\frac{1}{c}$      | The average time from hospitalisation to escaping treatments due to the attacks   |
| ζ1                 | on ETCs.                                                                          |
| $\frac{1}{c}$      | The average time in which individuals who escaped treatments returns to ETCs.     |
| $l_1^{\zeta_2}$    | The proportion of hospitalised individuals who escaped treatments due to the      |
| Ĩ                  | attacks on ETCs.                                                                  |
| $l_2$              | The proportion of people who returned to the ETCs after fleeing the attacks.      |
| $\beta_0$          | The effective contact rate among susceptible individuals residing in areas with   |
|                    | high infections and the living infectious persons.                                |
| $\mu$              | Natural mortality rate.                                                           |
| $\frac{1}{a}$      | The average time from symptoms onset to hospitalisation.                          |
| $\frac{1}{\theta}$ | The average time from fleeing ETCs to recovery or to deaths.                      |
| $f_1$              | The probability of EVD deaths for non-hospitalised individuals.                   |
| $f_2$              | The probability of EVD deaths for hospitalised cases.                             |
| $f_3$              | The probability of EVD deaths for hospitalised who escaped treatments.            |
| $\frac{1}{n}$      | The average time from hospitalisation to either recovery or to EVD death.         |
| $	au_1$            | A modification parameter that accounts for the transmission to individuals living |
|                    | in areas with low levels of infections.                                           |
| $m_1$              | Vaccination rate for healthcare and frontline workers located in areas with high  |
|                    | level of infections.                                                              |
| $m_2$              | Vaccination rate for healthcare and frontline workers located in areas with low   |
|                    | level of infections.                                                              |

Continued Table 4.1.

| $\sigma$   | The fraction of susceptible individuals living in areas with high infections.     |
|------------|-----------------------------------------------------------------------------------|
| δ          | A modification parameter that accounts for the transmission from the deceased.    |
| $\delta_1$ | A modification parameter that accounts for the impact of contact tracing.         |
| q          | A parameter which accounts for the effectiveness of contact tracing per each con- |
|            | tact person.                                                                      |
| h          | A fraction of the infected individuals that are hospitalised at Ebola treatment   |
|            | centres and treated with mAb114, Remdesivir, Zmapp or Regeneron antiviral         |
|            | treatments.                                                                       |

Table 4.2: Model parameter values and their Sensitivity Indices (S.I) and Confidence Intervals (C.I).

| Parameter  | Unit       | Estimates     | 67% <b>C</b> .I | S.I          | Estimate'  |
|------------|------------|---------------|-----------------|--------------|------------|
|            |            |               |                 |              | source     |
| П          | $day^{-1}$ | 534.33        | _               | _            | Calculated |
| $\alpha$   | $day^{-1}$ | 0.1           | _               | +0.000101938 | [150]      |
| $\gamma$   | $day^{-1}$ | 0.178         | _               | -0.0758866   | [150]      |
| $\epsilon$ | none       | 0.025         | _               | +0.0235735   | [173]      |
| b          | $day^{-1}$ | 0.580         | _               | -0.0955563   | [150]      |
| $\beta_0$  | $day^{-1}$ | 1.860394      | [1.36, 2.34]    | +0.223347    | Fitted     |
| $\mu$      | $day^{-1}$ | 0.0000456621  | _               | +0.136341    | [83]       |
| ρ          | $day^{-1}$ | 0.182         | _               | -0.0518473   | [112]      |
| $f_1$      | none       | 0.74          | _               | +0.0955563   | [112,      |
|            |            |               |                 |              | 170]       |
| $f_2$      | none       | 0.424         | _               | _            | [112]      |
| $\eta$     | $day^{-1}$ | 0.068         | _               | _            | Fitted     |
| $	au_1$    | none       | 0.0244        | _               | +0.0238758   | Calculated |
| $m_1$      | $day^{-1}$ | 0.00003637094 | [0, 0.12]       | -0.0810586   | Fitted     |
| $m_2$      | $day^{-1}$ | 0.000037468   | [0, 0.02]       | -0.0174366   | Fitted     |
| $\delta_1$ | none       | 0.3800        | [0, 0.95]       | +0.173929    | Fitted     |

Continued Table 4.2.

| σ | none          | 0.1536     | _           | +0.171541  | [70]   |
|---|---------------|------------|-------------|------------|--------|
| δ | none          | 2.89195    | [2.1, 3.68] | +0.0955563 | Fitted |
| q | $people^{-1}$ | 0.00012598 | [0, 0.01]   | -0.0380043 | Fitted |
| h | none          | 0.229      | _           | -0.0293077 | [112]  |

# **Chapter 5**

# Conclusion

Mathematical modelling is used to understand the dynamics of a disease, handle disease outbreaks in real time, assess the impact of therapeutic and non-therapeutic control measures, and assist in formulating policy decisions [14]. While many models were suggested to advise public health physicians to understand the dynamics of EVD and control its spread, the disease continued to spread in Africa. Thus, we first explored the limitations of EVD modelling studies. Unlike previous models, we reviewed articles published from 2016 to 2018. We focused on surveying each article to identify its advantages and limitations. We classified articles broadly according to the modelling approaches and the model conclusions and constraints. We identified many limitations in the reviewed models and provided brief suggestions for future work. We then explored two important problems in EVD dynamics: the impact of vaccinations and the interplay between the attacks on ETCs and EVD spread.

The most effective vaccination plan is a customized response based on epidemiological traits and context-based modelling. Early contact tracing and ring vaccination may be sufficient for small epidemics in isolated groups, but further measures are needed to control widespread EVD outbreaks [103, 34, 138]. We explored the impact of GTVs in areas with high infections when EVD cannot be contained using contact tracing, ring vaccinations, and antiviral treatments. We quantified our model with the 2018–2020 Kivu outbreak data. We first estimated that 81% of the basic reproduction number is associated with areas of high infections. Further, we found that implementing GTVs in areas with high infections so that the total vaccinations are increased by 60% decreased EVD cases by 15%. On the other hand, we needed to increase the vaccinations to more than 1000% to achieve the 15% decrease in EVD cases if we implement GTVs in areas with low infections. We concluded that it is essential to maintain all intervention measures during outbreaks, including contact tracing, ring vaccinations and antiviral treatments. When the spread of EVD is not contained despite these measures, GTVs in areas with high infections can be implemented

to mitigate the spread of EVD.

During the 2018-2020 Kivu outbreak, EVD patients fled the attacks on ETCs in Katwa and Butembo. A spike in cases occurred following the ETCs attacks in these areas. We explored the interplay between ETCs attacks and EVD spread. We estimated that due to the attacks on ETCs, the cumulative cases during the 2018-2020 Kivu outbreak increased by 17% in August 2019. We also found that when 10% of the hospitalised individuals fled the attacks on ETCs after spending only three days under treatment, the cumulative cases increased by more than 30% even if these individuals all returned to the ETCs three days later. On the other hand, if only half of these individuals returned to ETCs for treatment, the cumulative cases increased by approximately 50%. Further, when these patients spent one more day in the community, after which they all return to ETCs, the cumulative cases are raised by an additional 10%. Global sensitivity analysis showed that the most influential parameter in the dynamics of EVD is the rate at which hospitalised individuals escaped the attacks, followed by the rate at which individuals who fled the attacks recovered from EVD and the rate at which patients who escaped the attacks returned to the ETCs.

Mathematical theory is beneficial in depicting general patterns from simple models. On the other hand, computer simulations are good at drawing specific results from complex models but sacrifice drawing general conclusions. A trade-off exists between a model's complexity level and the ability to parametrise the model with the available data reliably [130]. The complexity of a model is a function of the number of parameters needed to characterise the states of the system and the range of the dynamics that can be identified from the model (e.g. the number of equilibrium points, oscillations, bifurcation, chaos) [130]. Simple models have fewer parameters to be characterised from the data. We are working on a project that involves developing a simple SEIR model which includes constant rates to describe contact tracing and vaccinations. The model is much simpler compared to the models considered in this thesis. Further, the estimated parameters have narrower confidence intervals. Thus there are more reliable estimates. We will also study a stochastic version of our simpler model in future work.

In this thesis, we reviewed previous EVD models and contributed to understanding critical issues of EVD dynamics. We hope our review will help researchers develop more realistic models to help mitigate the spread of EVD. We also hope that our models will guide public health practitioners to take steps to limit EVD outbreak spread.

# References

- ABBATE, J. L., MURALL, C. L., RICHNER, H., AND ALTHAUS, C. L. Potential impact of sexual transmission on Ebola virus epidemiology: Sierra Leone as a case study. *PLOS Neglected Tropical Diseases 10*, 5 (05 2016), 1–15.
- [2] ABDALLA, S. J. M., CHIROVE, F., AND GOVINDER, K. S. A systematic review of mathematical models of the Ebola virus disease. *International Journal of Modelling* and Simulation 42, 5 (2022), 814–830.
- [3] ADAMS, B. Household demographic determinants of Ebola epidemic risk. *Journal* of Theoretical Biology 392 (2016), 99–106.
- [4] AGUSTO, F. Mathematical model of Ebola transmission dynamics with relapse and reinfection. *Mathematical Biosciences* 283 (2017), 48–59.
- [5] AJELLI, M., MERLER, S., FUMANELLI, L., PASTORE Y PIONTTI, A., DEAN, N., M. LONGINI, I., ELIZABETH HALLORAN, M., AND VESPIGNANI, A. Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: A computational modeling analysis. *BMC Medicine 14* (09 2016).
- [6] ANDERSON, R. M., AND MAY, R. M. Infectious diseases of humans: Dynamics and control. Oxford university press, 1992.
- [7] ASHER, J. Forecasting Ebola with a regression transmission model. *Epidemics* 22 (2018), 50–55.
- [8] BACKER, J. A., AND WALLINGA, J. Spatiotemporal analysis of the 2014 Ebola epidemic in West Africa. *PLOS Computational Biology* 12, 12 (12 2016), 1–17.
- [9] BENDER, E. A. An introduction to mathematical modeling. Courier Corporation, 2012.
- [10] BERGE, T., BOWONG, S., LUBUMA, J., AND MANYOMBE, M. L. M. Modeling Ebola virus disease transmissions with reservoir in a complex virus life ecology. *Mathematical Biosciences and Engineering* 15 (2018), 21–56.
- [11] BERGE, T., LUBUMA, J., MOREMEDI, M., MORRIS, N., AND KAONDERA-SHAVA, R. A simple mathematical model for Ebola in Africa. *Journal of Biological Dynamics 11*, 1 (2016), 42–74.
- [12] BODINE, E. N., COOK, C., AND SHORTEN, M. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. *Mathematical Biosciences and Engineering* 15, 2 (2018), 337–359.

- [13] BRAUER, F., CASTILLO-CHAVEZ, C., FENG, Z., BRAUER, F., CASTILLO-CHAVEZ, C., AND FENG, Z. Introduction: A prelude to mathematical epidemiology. *Mathematical Models in Epidemiology* (2019), 3–19.
- [14] BRAUER, F., VAN DEN DRIESSCHE, P., AND WU, J., Eds. Mathematical Epidemiology. No. 1945 in Mathematical Bioscience subseries. Springer, Berlin, Heidelberg, 2008.
- [15] BRETTIN, A., ROSSI-GOLDTHORPE, R., WEISHAAR, K., AND EROVENKO, I. Ebola could be eradicated through voluntary vaccination. *Royal Society Open Science* 5, 1 (01 2018).
- [16] BROCKMANN, D. Human mobility, networks and disease dynamics on a global scale. Springer International Publishing, 2018, pp. 375–396.
- [17] BROWN, G., OLESON, J., AND PORTER, A. An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two Ebola outbreaks. *Biometrics* 72 (11 2015), 335–343.
- [18] BURGHARDT, K., VERZIJL, C., HUANG, J., INGRAM, M., SONG, B., AND HASNE, M.-P. Testing modeling assumptions in the West Africa Ebola outbreak. *Scientific Reports 6* (09 2016).
- [19] BURTON, D., LENHART, S., EDHOLM, C. J., LEVY, B., WASHINGTON, M. L., GREENING, B. R., WHITE, K. A. J., LUNGU, E., CHIMBOLA, O., KGOSIMORE, M., CHIROVE, F., RONOH, M., AND MACHINGAUTA, M. H. A mathematical model of contact tracing during the 2014–2016 West African Ebola Outbreak. *Mathematics 9*, 6 (2021).
- [20] CAMACHO, A., EGGO, R., GOEYVAERTS, N., VANDEBOSCH, A., MOGG, R., FUNK, S., KUCHARSKI, A., WATSON, C., VANGENEUGDEN, T., AND ED-MUNDS, W. Real-time dynamic modelling for the design of a cluster-randomized phase 3 Ebola vaccine trial in Sierra Leone. *Vaccine 35* (12 2016).
- [21] CAMACHO, A., KUCHARSKI, A., FUNK, S., BREMAN, J., PIOT, P., AND ED-MUNDS, W. Potential for large outbreaks of Ebola virus disease. *Epidemics 9* (2014), 70–78.
- [22] CAPELLE, M. A., BABICH, L., VAN DEVENTER-TROOST, J. E., SALERNO, D., KRIJGSMAN, K., DIRMEIER, U., RAABY, B., AND ADRIAANSEN, J. Stability and suitability for storage and distribution of Ad26.ZEBOV/MVA-BN®-Filo heterologous prime-boost Ebola vaccine. *European Journal of Pharmaceutics and Biopharmaceutics 129* (2018), 215–221.
- [23] CENTERS FOR DISEASE CONTROL AND PREVENTION. 40 years of Ebola virus disease around the world. http://www.who.int/news-room/ fact-sheets/detail/ebola-virus-disease. Accessed: 2018-08-28.

- [24] CENTERS FOR DISEASE CONTROL AND PREVENTION. Cluster of Ebola virus disease linked to a single funeral — Moyamba district, Sierra Leone, 2014. https://www.cdc.gov/mmwr/volumes/65/wr/mm6508a2.htm. Accessed: 2022-01-12.
- [25] CENTERS FOR DISEASE CONTROL AND PREVENTION. Ebola (Ebola virus disease. https://www.cdc.gov/vhf/ebola/transmission/index. html. Accessed: 2018-08-28.
- [26] CENTERS FOR DISEASE CONTROL AND PREVENTION. What is Ebola virus disease? https://www.cdc.gov/vhf/ebola/about.html, 2018. Accessed: 2018-08-28.
- [27] CHAMPREDON, D., LI, M., BOLKER, B. M., AND DUSHOFF, J. Two approaches to forecast Ebola synthetic epidemics. *Epidemics* 22 (2018), 36 42.
- [28] CHERTOW, D. S., SHEKHTMAN, L., LURIE, Y., DAVEY, R. T., HELLER, T., AND DAHARI, H. Modeling challenges of Ebola virus-host dynamics during infection and treatment. *Viruses 12*, 1 (2020), 106.
- [29] CHIPPAUX, J.-P. Outbreaks of Ebola virus disease in Africa: the beginnings of a tragic saga. *Journal of Venomous Animals and Toxins including Tropical Diseases* 20, 1 (2014), 02–14.
- [30] CHITNIS, N., HYMAN, J. M., AND CUSHING, J. M. Determining important parameters in the spread of Malaria through the sensitivity analysis of a mathematical model. *Bulletin of Mathematical Biology* 70, 5 (2008).
- [31] CHOWELL, G., HENGARTNER, N., CASTILLO-CHAVEZ, C., FENIMORE, P., AND HYMAN, J. The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. *Journal of Theoretical Biology* 229, 1 (2004), 119–126.
- [32] CHOWELL, G., AND NISHIURA, H. Transmission dynamics and control of Ebola virus disease (EVD): A review. *BMC Medicine 12* (10 2014), 196.
- [33] CHOWELL, G., SATTENSPIEL, L., BANSAL, S., AND VIBOUD, C. Mathematical models to characterize early epidemic growth: A review. *Physics of Life Reviews* 18 (2016), 66 – 97.
- [34] CHOWELL, G., TARIQ, A., AND KISKOWSKI, M. Vaccination strategies to control Ebola epidemics in the context of variable household inaccessibility levels. *PLOS Neglected Tropical Diseases 13*, 11 (2019), 1–23.
- [35] CHOWELL, G., VIBOUD, C., SIMONSEN, L., MERLER, S., AND VESPIGNANI,
   A. Perspectives on model forecasts of the 2014-2015 Ebola epidemic in West Africa: Lessons and the way forward. *BMC Medicine 15*, 42 (12 2017).

- [36] CHOWELL, G., VIBOUD, C., SIMONSEN, L., AND MOGHADAS, S. M. Characterizing the reproduction number of epidemics with early subexponential growth dynamics. *Journal of The Royal Society Interface 13*, 123 (2016).
- [37] CHRETIEN, J.-P., RILEY, S., AND GEORGE, D. B. Mathematical modeling of the West Africa Ebola epidemic. *eLife* 4 (2015), e09186.
- [38] DEMBEK, Z. F., CHEKOL, T., AND WU, A. Best practice assessment of disease modelling for infectious disease outbreaks. *Epidemiology and Infection 146*, 10 (2018), 1207–1215.
- [39] DIAKITE, I., MOORING, E. Q., VELÁSQUEZ, G. E., AND MURRAY, M. B. Novel ordered stepped-wedge cluster trial designs for detecting Ebola vaccine efficacy using a spatially structured mathematical model. *PLOS Neglected Tropical Diseases* 10, 8 (08 2016), 1–22.
- [40] DIETZ, K., AND HEESTERBEEK, J. Bernoulli was ahead of modern epidemiology. *Nature* 408, 6812 (2000), 513–514.
- [41] DIETZ, P. M., JAMBAI, A., PAWESKA, J. T., YOTI, Z., AND KSAIZEK, T. G. Epidemiology and risk factors for Ebola virus disease in Sierra Leone—23 may 2014 to 31 January 2015. *Clinical Infectious Diseases 61*, 11 (2015), 1648–1654.
- [42] DOKUBO, E. K., WENDLAND, A., MATE, S. E., LADNER, J. T., HAMBLION, E. L., RAFTERY, P., BLACKLEY, D. J., LANEY, A. S., MAHMOUD, N., WAYNE-DAVIES, G., ET AL. Persistence of Ebola virus after the end of widespread transmission in Liberia: an outbreak report. *The Lancet Infectious Diseases 18* (07 2018).
- [43] DRAKE, J., BAKACH, I., R. JUST, M., O'REGAN, S., GAMBHIR, M., AND CHUN-HAI FUNG, I. Transmission models of historical Ebola outbreaks. *Emerging Infectious Diseases 21* (08 2015), 1447–1450.
- [44] DURE AHMAD, M., USMAN, M., KHAN, A., AND IMRAN, M. Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination. *Infectious Diseases of Poverty 5* (12 2016).
- [45] D'SILVA, J. P., AND EISENBERG., M. C. Modeling spatial invasion of Ebola in West Africa. *Journal of Theoretical Biology* 428 (2017), 65–75.
- [46] ELLNER, S., GALLANT, A. R., AND THEILER, J. Detecting nonlinearity and chaos in epidemic data. *Epidemic models: their structure and relation to data* (1995), 229–247.
- [47] FALAGAS, M. E., PITSOUNI, E. I., MALIETZIS, G. A., AND PAPPAS, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. *The FASEB Journal* 22, 2 (2008), 338–342.

- [48] FANG, L.-Q., YANG, Y., JIANG, J.-F., YAO, H.-W., KARGBO, D., LI, X.-L., JIANG, B.-G., KARGBO, B., TONG, Y.-G., WANG, Y.-W., LIU, K., KAMARA, A., DAFAE, F., KANU, A., JIANG, R.-R., SUN, Y., SUN, R.-X., CHEN, W.-J., MA, M.-J., DEAN, N. E., THOMAS, H., LONGINI, I. M., HALLORAN, M. E., AND CAO, W.-C. Transmission dynamics of Ebola virus disease and intervention effectiveness in Sierra leone. *Proceedings of the National Academy of Sciences 113*, 16 (2016).
- [49] FAYE, O., BOELLE, P.-Y., HELEZE, E., FAYE, O., LOUCOUBAR, C., MAGAS-SOUBA, N., SOROPOGUI, B., KEITA, S., GAKOU, T., BAH, E., KOIVOGUI, L., SALL, A., AND CAUCHEMEZ, S. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. *The Lancet Infectious Diseases 15*, 3 (2015), 320–326.
- [50] FERRARI, M. J., BJØRNSTAD, O. N., AND DOBSON, A. P. Estimation and inference of  $R_0$  of an infectious pathogen by a removal method. *Mathematical Biosciences 198*, 1 (2005), 14–26.
- [51] FISCHER, R., JUDSON, S., MIAZGOWICZ, K., BUSHMAKER, T., PRESCOTT, J., AND MUNSTER, V. J. Ebola virus stability on surfaces and in fluids in simulated outbreak environments. *Emerging Infectious Diseases 21*, 7 (2015), 1243.
- [52] FOOD AND DRUG ADMINISTRATION. ERVEBO prescribing information. https://www.fda.gov/media/133748/download, 2020. Accessed: 2020-06-02.
- [53] FORSBERG WHITE, L., AND PAGANO, M. A likelihood-based method for realtime estimation of the serial interval and reproductive number of an epidemic. *Statistics in medicine* 27, 16 (2008).
- [54] FRANCESCONI, P., YOTI, Z., DECLICH, S., ONEK, P., FABIANI, M., OLANGO, J., ANDRAGHETTI, R., ROLLIN, P., OPIRA, C., GRECO, D., AND SALMASO, S. Ebola hemorrhagic fever transmission and risk factors of contacts, Uganda. *Emerging Infectious Diseases 9*, 11 (12 2003), 1430–1437.
- [55] FRASSO, G., AND LAMBERT, P. Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: An application to the Ebola epidemic in Sierra Leone. *Biostatistics (Oxford, England)* 17 (06 2016).
- [56] FUNK, S., CAMACHO, A., KUCHARSKI, A. J., EGGO, R. M., AND EDMUNDS, W. J. Real-time forecasting of infectious disease dynamics with a stochastic semimechanistic model. *Epidemics* 22 (2018), 56–61.
- [57] FUNK, S., CIGLENECKI, I., TIFFANY, A., GIGNOUX, E., CAMACHO, A., EGGO,
  R., KUCHARSKI, A., EDMUNDS, W., BOLONGEI, J., AZUMA, P., CLEMENT,
  P., ALPHA, T., STERK, E., TELFER, B., ENGEL, G., PARKER, L., SUZUKI,
  M., HEIJENBERG, N., AND REEDER, B. The impact of control strategies and

behavioural changes on the elimination of Ebola from lofa county, liberia. *Philosophical Transactions of the Royal Society B: Biological Sciences* 372 (05 2017).

- [58] GAFFEY, R. H., AND VIBOUD, C. Application of the CDC EbolaResponse modeling tool to disease predictions. *Epidemics* 22 (2018), 22–28.
- [59] GIRE, S. K., GOBA, A., ANDERSEN, K. G., SEALFON, R. S., PARK, D. J., KANNEH, L., JALLOH, S., MOMOH, M., FULLAH, M., DUDAS, G., ET AL. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. *Science 345*, 6202 (2014), 1369–1372.
- [60] GÓMEZ-BARROSO, D., DE VELASCO, E. R., VARELA, C., LEÓN, I., AND CANO, R. I. Spread of Ebola virus disease based on the density of roads in West Africa. *Geospatial Health* 12, 2 (2017).
- [61] GREEN, A. DR Congo Ebola virus treatment centres attacked. *The Lancet 393*, 10176 (2019).
- [62] GUO, Z., XIAO, D., LI, D., WANG, X., WANG, Y., YAN, T., AND WANG, Z. Predicting and evaluating the epidemic trend of Ebola virus disease in the 2014-2015 outbreak and the effects of intervention measures. *PLOS ONE 11*, 4 (2016), e0152438.
- [63] HALFMANN, P., KIM, J. H., EBIHARA, H., NODA, T., NEUMANN, G., FELD-MANN, H., AND KAWAOKA, Y. Generation of biologically contained Ebola viruses. *Proceedings of the National Academy of Sciences 105*, 4 (2008), 1129– 1133.
- [64] HARLING, G., WANG, R., ONNELA, J.-P., AND GRUTTOLA, V. Leveraging contact network structure in the design of cluster randomized trials. *Clinical Trials 14* (10 2016).
- [65] HITCHINGS, M. D. T., GRAIS, R. F., AND LIPSITCH, M. Using simulation to aid trial design: Ring-vaccination trials. *PLOS Neglected Tropical Diseases 11*, 3 (03 2017), 1–12.
- [66] HOFFMAN, D. A crouching village: Ebola and the empty gestures of quarantine in Monrovia. *City & Society 28*, 2 (2016).
- [67] HOUSE, T., FORD, A., LAN, S., BILSON, S., BUCKINGHAM-JEFFERY, E., AND GIROLAMI, M. Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry. *Journal of The Royal Society Interface 13*, 121 (2016).
- [68] HUMANITARIAN DATA EXCHANGE PLATFORM. Ebola Cases and Deaths in the North Kivu Ebola Outbreak in the Democratic Republic of the Congo (DRC). https://data.humdata.org/dataset/ ebola-cases-and-deaths-drc-north-kivu. Accessed: 2021-06-11.

- [69] HUMANITARIAN DATA EXCHANGE PLATFORM. Ebola cases and deaths in the North Kivu Ebola outbreak in the Democratic Republic of the Congo (DRC). https://data.humdata.org/dataset/ ebola-cases-and-deaths-drc-north-kivu/resource/ 5f5a0ce9-4e44-440f-9d04-86784ecc7b5f. Accessed: 2020-12-18.
- [70] HUMANITARIAN Data EXCHANGE PLATFORM. Ebola cases and deaths in the North Kivu Ebola outbreak in the Democratic Republic of the Congo (DRC). https://data.humdata.org/ dataset/rdc-statistiques-des-populations/resource/ 05a36633-1c79-4ed4-9750-a06ae5d69f63. Accessed: 2022-01-17.
- [71] HUO, X., SUN, X., LAN, K., AND WU, J. Treatment–donation-stockpile dynamics in Ebola convalescent blood transfusion therapy. *Journal of Theoretical Biology* 392 (2016), 53–61.
- [72] HUTTNER, A., AGNANDJI, S. T., COMBESCURE, C., FERNANDES, J. F., BACHE, E. B., KABWENDE, L., NDUNGU, F. M., BROSNAHAN, J., MONATH, T. P., LEMAÎTRE, B., ET AL. Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study. *The Lancet Infectious Diseases 18*, 7 (2018), 738– 748.
- [73] ILUNGA KALENGA, O., MOETI, M., SPARROW, A., NGUYEN, V.-K., LUCEY, D., AND GHEBREYESUS, T. A. The ongoing Ebola epidemic in the Democratic Republic of Congo, 2018–2019. *The New England Journal of Medicine 381*, 4 (2019).
- [74] INSECURITY INSIGHT WEBSITE. Attacks on health care during the 10th Ebola response in the Democratic Republic of the Congo. Accessed: 2022-08-20.
- [75] JIANG, S., WANG, K., LI, C., HONG, G., ZHANG, X., SHAN, M., LI, H., AND WANG, J. Mathematical models for devising the optimal Ebola virus disease eradication. *Journal of Translational Medicine 15*, 1 (06 2017).
- [76] JONES-KONNEH, T., SUDA, T., SASAKI, H., AND EGAWA, S. Agent-based modeling and simulation of nosocomial infection among healthcare workers during Ebola virus disease outbreak in Sierra Leone. *The Tohoku Journal of Experimental Medicine 245* (08 2018), 231–238.
- [77] JUSU, M., GLAUSER, G., SEWARD, J., BAWOH, M., TEMPEL, J., FRIEND, M., LITTLEFIELD, D., LAHAI, M., JALLOH, H., SESAY, A., CAULKER, A., SAMAI, M., THOMAS, V., FARRELL, N., AND WIDDOWSON, M.-A. Rapid establishment of a cold chain capacity of -60° or colder for the STRIVE Ebola vaccine trial during

the Ebola outbreak in Sierra Leone. *The Journal of infectious diseases 217* (05 2018), S48–S55.

- [78] KAHIL, F. Confidence intervals in model fitting. https://fakahil. github.io/coding/confidence-intervals-in-model-fitting/ index.html. Accessed: 2022-11-18.
- [79] KEELING, M. J., AND ROHANI, P. *Modeling infectious diseases in humans and animals*. Princeton University Press, 2011.
- [80] KELLY, J. D., WANNIER, S. R., SINAI, C., MOE, C. A., HOFF, N. A., BLUMBERG, S., SELO, B., MOSSOKO, M., CHOWELL-PUENTE, G., JONES, J. H., OKITOLONDA-WEMAKOY, E., RUTHERFORD, G. W., LIETMAN, T. M., MUYEMBE-TAMFUM, J. J., RIMOIN, A. W., PORCO, T. C., AND RICHARDSON, E. T. The impact of different types of violence on Ebola virus transmission during the 2018-2020 outbreak in the Democratic Republic of the Congo. *The Journal of Infectious Diseases 222*, 12 (2020).
- [81] KENNEDY, S. B., BOLAY, F., KIEH, M., GRANDITS, G., BADIO, M., BAL-LOU, R., ECKES, R., FEINBERG, M., FOLLMANN, D., GRUND, B., GUPTA, S., HENSLEY, L., HIGGS, E., JANOSKO, K., JOHNSON, M., KATEH, F., LOGUE, J., MARCHAND, J., MONATH, T., NASON, M., NYENSWAH, T., ROMAN, F., STAVALE, E., WOLFSON, J., NEATON, J. D., AND LANE, H. C. Phase 2 placebocontrolled trial of two vaccines to prevent Ebola in Liberia. *The New England Journal of Medicine 377*, 15 (2017), 1438–1447.
- [82] KISKOWSKI, M., AND CHOWELL, G. Modeling household and community transmission of Ebola virus disease: epidemic growth, spatial dynamics and insights for epidemic control. *Virulence* 7, 2 (2016), 163–173.
- [83] KNOEMA Democratic Republic of the Congo WEBSITE. Life expectancy birth. https://knoema.com/atlas/ at Democratic-Republic-of-the-Congo/topics/Demographics/ Age/Life-expectancy-at-birth#:~:text=In%202019%2C% 201ife%20expectancy%20at, the%20Congo%20was%2060.68% 20years. Accessed: 2020-11-03.
- [84] KRAEMER, M., PIGOTT, D., HILL, S., VANDERSLOTT, S., REINER, R., STASSE, S., BROWNSTEIN, J., GUTIERREZ, B., DENNIG, F., HAY, S., WINT, W., PYBUS, O., CASTRO, M., VINCK, P., PHAM, Y. P., NILLES, E., AND CAUCHEMEZ, S. Dynamics of conflict during the Ebola outbreak in the Democratic Republic of the Congo 2018–2019. BMC Medicine 18, 13 (2020).
- [85] KRAMER, A. M., PULLIAM, J. T., ALEXANDER, L. W., PARK, A. W., ROHANI, P., AND DRAKE, J. M. Spatial spread of the West Africa Ebola epidemic. *Royal Society Open Science 3*, 8 (2016).

- [86] KRAUER, F., GSTEIGER, S., LOW, N., HANSEN, C. H., AND ALTHAUS, C. L. Heterogeneity in district-level transmission of Ebola virus disease during the 2013-2015 epidemic in West Africa. *PLOS Neglected Tropical Diseases 10*, 7 (07 2016), 1–14.
- [87] KUCHARSKI, A., EGGO, R., WATSON, C., CAMACHO, A., FUNK, S., AND ED-MUNDS, W. Effectiveness of ring vaccination as control strategy for Ebola virus disease. *Emerging Infectious Diseases 22* (01 2016).
- [88] LACHIANY, M., AND LOUZOUN, Y. Effects of distribution of infection rate on epidemic models. *Physical Review E 94* (08 2016).
- [89] LAU, M. S., GIBSON, G. J., ADRAKEY, H., MCCLELLAND, A., RILEY, S., ZELNER, J., STREFTARIS, G., FUNK, S., METCALF, J., DALZIEL, B. D., ET AL. A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—with an application to the 2014-2015 West Africa Ebola outbreak. *PLOS Computational Biology 13*, 10 (2017).
- [90] LAU, M. S. Y., DALZIEL, B. D., FUNK, S., MCCLELLAND, A., TIFFANY, A., RILEY, S., METCALF, C. J. E., AND GRENFELL, B. T. Spatial and temporal dynamics of superspreading events in the 2014–2015 West Africa Ebola epidemic. *Proceedings of the National Academy of Sciences 114*, 9 (2017), 2337–2342.
- [91] LEGRAND, J., GRAIS, R. F., BOELLE, P.-Y., VALLERON, A.-J., AND FLA-HAULT, A. Understanding the dynamics of Ebola epidemics. *Epidemiology & Infection 135*, 4 (2007), 610–621.
- [92] LEKONE, P. E., AND FINKENSTÄDT, B. F. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. *Biometrics* 62, 4 (2006), 1170–1177.
- [93] LEROY, E., KUMULUNGUI, B., POURRUT, X., ROUQUET, P., HASSANIN, A., YABA, P., DÉLICAT, A., PAWESKA, J., GONZALEZ, J.-P., AND SWANEPOEL, R. Fruit bats as reservoirs of Ebola virus. *Nature* 438 (2006), 575–576.
- [94] LEVY, B., EDHOLM, C., GAOUE, O., KAONDERA-SHAVA, R., KGOSIMORE, M., LENHART, S., LEPHODISA, B., LUNGU, E., MARIJANI, T., AND NYABADZA, F. Modeling the role of public health education in Ebola virus disease outbreaks in Sudan. *Infectious Disease Modelling* 2, 3 (2017), 323 – 340.
- [95] LI, Q., LU, F., DAI, C., FAN, M., WANG, W., AND WANG, K. Simulating the potential role of media coverage and infected bats in the 2014 Ebola outbreak. *Journal of Theoretical Biology* 412 (2017), 123–129.
- [96] LIN, Q., MUSA, S., ZHAO, S., AND HE, D. Modeling the 2014–2015 Ebola virus disease outbreaks in Sierra Leone, Guinea, and Liberia with effect of high- and low-risk susceptible individuals. *Bulletin of Mathematical Biology* 82, 102 (2020).

- [97] LOPEZ, L. F., AMAKU, M., COUTINHO, F. A. B., QUAM, M., BURATTINI, M. N., STRUCHINER, C. J., WILDER-SMITH, A., AND MASSAD, E. Modeling importations and exportations of infectious diseases via travelers. *Bulletin of Mathematical Biology* 78, 2 (2016), 185–209.
- [98] MAGAL, P., AND RUAN, S. Structured Population Models in Biology and Epidemiology, vol. 1936. Berlin: Springer, 01 2008.
- [99] MANGIAROTTI, S., PEYRE, M., AND HUC, M. A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–2016). *Chaos: An Interdisciplinary Journal of Nonlinear Science* 26, 11 (2016).
- [100] MARCUS GETZ, W., AND DOUGHERTY, E. Discrete stochastic analogs of Erlang epidemic models. *Journal of Biological Dynamics 12* (01 2018), 16–38.
- [101] MARTCHEVA, M. Methods for deriving necessary and sufficient conditions for backward bifurcation. *Journal of Biological Dynamics* 13, 1 (2019). PMID: 31362605.
- [102] MARTYUSHEV, A., NAKAOKA, S., SATO, K., NODA, T., AND IWAMI, S. Modelling Ebola virus dynamics: Implications for therapy. *Antiviral Research 135* (2016), 62–73.
- [103] MASTERSON, S. G., LOBEL, L., CARROLL, M. W., WASS, M. N., AND MICHAELIS, M. Herd immunity to Ebolaviruses is not a realistic target for current vaccination strategies. *Frontiers in Immunology* 9 (2018).
- [104] MAXMEN, A. Two Ebola drugs show promise amid ongoing outbreak. https:// www.nature.com/articles/d41586-019-02442-6. Accessed: 2020-07-01.
- [105] MAXMEN, A. Two Ebola drugs show promise amid ongoing outbreak. *Nature* (08 2019).
- [106] MELTZER, M., ATKINS, C., SANTIBANEZ, S., KNUST, B., PETERSEN, B., ERVIN, E., NICHOL, S., DAMON, I., AND WASHINGTON, M. Estimating the future number of cases in the Ebola epidemic—Liberia and Sierra leone, 2014–2015. *Morbidity and mortality weekly report. Surveillance summaries (Washington, D.C.* : 2002) 63 (09 2014), 1–14.
- [107] MERLER, S., AJELLI, M., FUMANELLI, L., PARLAMENTO, S., PASTORE Y PI-ONTTI, A., DEAN, N. E., PUTOTO, G., CARRARO, D., LONGINI, JR., I. M., HALLORAN, M. E., AND VESPIGNANI, A. Containing Ebola at the source with ring vaccination. *PLOS Neglected Tropical Diseases 10*, 11 (11 2016), 1–11.
- [108] MOGHADAS, S. M., GUMEL, A. B., MCLEOD, R. G., AND GORDON, R. Could condoms stop the AIDS epidemic? *Journal of theoretical medicine* 5, 3-4 (2003), 171–181.

- [109] MOHER, D., LIBERATI, A., TETZLAFF, J., ALTMAN, D. G., ET AL. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Int J Surg 8*, 5 (2010), 336–341.
- [110] MONTAZERI SHAHTORI, N., FERDOUSI, T., SCOGLIO, C., AND DARABI SAH-NEH, F. Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. *Mathematical Biosciences & Engineering 15* (10 2018), 1165–1180.
- [111] MOSS, R., HICKSON, R. I., MCVERNON, J., MCCAW, J. M., HORT, K., BLACK, J., MADDEN, J. R., TRAN, N. H., MCBRYDE, E. S., AND GEARD, N. Modelinformed risk assessment and decision making for an emerging infectious disease in the Asia-Pacific region. *PLOS Neglected Tropical Diseases 10*, 9 (2016).
- [112] MULANGU, S., DODD, L. E., DAVEY, R. T., TSHIANI MBAYA, O., PROSCHAN, M., MUKADI, D., LUSAKIBANZA MANZO, M., NZOLO, D., TSHOMBA OLOMA, A., IBANDA, A., ALI, R., COULIBALY, S., LEVINE, A. C., GRAIS, R., DIAZ, J., LANE, H. C., MUYEMBE-TAMFUM, J.-J., AND THE PALM WRITING GROUP. A Randomized, controlled trial of Ebola virus disease therapeutics. *The New England Journal of Medicine 381*, 24 (2019). PMID: 31774950.
- [113] MURPHY, F. A. Ebola virus disease An introduction. http: //www.searo.who.int/entity/emerging\_diseases/ebola/ ebola\_virus\_disease\_intro.pdf?ua=1, 2018. Accessed: 2018-08-28.
- [114] MUTUA, G., ANZALA, O., LUHN, K., ROBINSON, C., BOCKSTAL, V., ANU-MENDEM, D., AND DOUOGUIH, M. Safety and immunogenicity of a 2-dose heterologous vaccine regimen with Ad26.ZEBOV and MVA-BN-Filo Ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Nairobi, Kenya. *The Journal of Infectious Diseases 220*, 1 (02 2019), 57–67.
- [115] NAMILAE, S., DERJANY, P., MUBAYI, A., SCOTCH, M., AND SRINIVASAN, A. Multiscale model for pedestrian and infection dynamics during air travel. *Phys. Rev. E* 95 (05 2017), 052320.
- [116] NDANGUZA, D., M. TCHUENCHE, J., AND HAARIO, H. Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo. *Afrika Matematika* 24 (2013), 55–68.
- [117] NGUYEN, V. K., MIKOLAJCZYK, R., AND HERNANDEZ-VARGAS, E. A. Highresolution epidemic simulation using within-host infection and contact data. BMC public health 18, 1 (2018).
- [118] NGWA, G., AND TEBOH-EWUNGKEM, M. A mathematical model with quarantine states for the dynamics of Ebola virus disease in human populations. *Computational and Mathematical Methods in Medicine 2016* (01 2016).
- [119] NIEDDU, G. T., BILLINGS, L., KAUFMAN, J. H., FORGOSTON, E., AND BIANCO, S. Extinction pathways and outbreak vulnerability in a stochastic Ebola model. *Journal of The Royal Society Interface 14*, 127 (2017).
- [120] NOBLE, C., BAGROW, J. P., AND BROCKMANN, D. The role of caretakers in disease dynamics. *Journal of Statistical Physics* 152, 4 (07 2013), 787–798.
- [121] OLU, O., KARGBO, B., KAMARA, S., WURIE, A. H., AMONE, J., GANDA, L., NTSAMA, B., POY, A., KUTI-GEORGE, F., ENGEDASHET, E., ET AL. Epidemiology of Ebola virus disease transmission among health care workers in Sierra Leone, May to December 2014: a retrospective descriptive study. *BMC Infectious Diseases* 15, 1 (2015), 1–9.
- [122] PEAK, C., CHILDS, L., GRAD, Y., AND BUCKEE, C. Comparing nonpharmaceutical interventions for containing emerging epidemics. *Proceedings of the National Academy of Sciences 114*, 15 (2017), 4023–4028.
- [123] PELL, B., KUANG, Y., VIBOUD, C., AND CHOWELL, G. Using phenomenological models for forecasting the 2015 Ebola challenge. *Epidemics* 22 (11 2016).
- [124] PEREZ-ACLE, T., FUENZALIDA, I., MARTIN, A., SANTIBÁÑEZ, R., H, R., BERNARDIN, A., M. BUSTOS, A., GARRIDO, D., DUSHOFF, J., AND LIU, J. Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach. *Biochemical and Biophysical Research Communications* 498 (11 2017).
- [125] PETTEY, W., CARTER, M., TOTH, D., SAMORE, M., AND GUNDLAPALLI, A. Constructing Ebola transmission chains from West Africa and estimating model parameters using internet sources. *Epidemiology and Infection 145* (05 2017), 1– 10.
- [126] PRESCOTT, J., BUSHMAKER, T., FISCHER, R., MIAZGOWICZ, K., JUDSON, S., AND MUNSTER, V. J. Postmortem stability of Ebola virus. *Emerging Infectious Diseases 21*, 5 (2015), 856.
- [127] REWAR, S., AND MIRDHA, D. Transmission of Ebola virus disease: An overview. Annals of Global Health 80, 6 (2014), 444 – 451.
- [128] RICHARDS, P., MOKUWA, E., WELMERS, P., MAAT, H., AND BEISEL, U. Trust, and distrust, of Ebola treatment centers: A case-study from Sierra Leone. *PLOS ONE 14*, 12 (2019).
- [129] RIZZO, A., PEDALINO, B., AND PORFIRI, M. A network model for Ebola spreading. *Journal of Theoretical Biology 394* (2016), 212–222.
- [130] ROOSA, K., AND CHOWELL, G. Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models. *Theoretical Biology and Medical Modelling 16* (01 2019).

- [131] SANTERMANS, E., ROBESYN, E., GANYANI, T., SUDRE, B., FAES, C., QUIN-TEN, C., VAN BORTEL, W., HABER, T., KOVAC, T., VAN REETH, F., TESTA, M., HENS, N., AND PLACHOURAS, D. Spatiotemporal evolution of Ebola virus disease at sub-national level during the 2014 West Africa epidemic: Model scrutiny and data meagreness. *PLOS ONE 11*, 1 (01 2016), 1–11.
- [132] SARMA, N. Emerging and re-emerging infectious diseases in South East Asia. Indian Journal of Dermatology 62 (09 2017), 451–455.
- [133] SAU, A. A simulation study on hypothetical Ebola virus transmission in india using spatiotemporal epidemiological modeler (STEM): a way towards precision public health. *Journal of Environmental and Public Health 2017* (2017).
- [134] SCHMIDT, J., PARK, A., KRAMER, A., HAN, B., ALEXANDER, L., AND DRAKE,
  J. Spatiotemporal fluctuations and triggers of Ebola virus spillover. *Emerging Infectious Diseases 23* (03 2017).
- [135] SEIDU, B., BORNAA, C., AND MAKINDE, O. D. An Ebola model with hypersusceptibility. *Chaos, Solitons and Fractals 138* (2020), 109938.
- [136] SHARAREH, N. The Ebola crisis and the corresponding public behavior: A system dynamics approach. *PLOS Currents Outbreaks* 8 (11 2016).
- [137] SIETTOS, C. I., ANASTASSOPOULOU, C., RUSSO, L., GRIGORAS, C., AND MY-LONAKIS, E. Forecasting and control policy assessment for the Ebola virus disease (EVD) epidemic in Sierra leone using small-world networked model simulations. *BMJ open 6*, 1 (2016).
- [138] SKRIP, L. A., AND GALVANI, A. P. Next steps for Ebola vaccination: Deployment in non-epidemic, high-risk settings. *PLOS Neglected Tropical Diseases 10*, 8 (08 2016), 1–6.
- [139] SMIRNOVA, A., AND CHOWELL, G. A primer on stable parameter estimation and forecasting in epidemiology by a problem-oriented regularized least squares algorithm. *Infectious Disease Modelling* 2, 2 (2017), 268–275.
- [140] SMIRNOVA, A., DECAMP, L., AND CHOWELL, G. Forecasting epidemics through nonparametric estimation of time-dependent transmission rates using the SEIR model. *Bulletin of Mathematical Biology* (2017), 1–23.
- [141] SOFONEA, M., ALDAKAK, L., VALDÉS VILLARREAL BOULLOSA, L., AND AL-IZON, S. Can Ebola virus evolve to be less virulent in humans? *Journal of Evolutionary Biology 31* (12 2017).
- [142] STATOIDS WEBSITE. Provinces of the Democratic Republic of Congo (Congo Kinshasa). http://www.statoids.com/ucd.html. Accessed: 2021-06-11.
- [143] SULLIVAN, N., YANG, Z.-Y., AND NABEL, G. J. Ebola virus pathogenesis: Implications for vaccines and therapies. *Journal of Virology* 77, 18 (2003), 9733–9737.

- [144] TAYLOR, B. P., DUSHOFF, J., AND WEITZ, J. S. Stochasticity and the limits to confidence when estimating  $R_0$  of Ebola and other emerging infectious diseases. *Journal of Theoretical Biology* 408 (2016), 145–154.
- [145] THE SCIPY COMMUNITY. scipy.integrate.odeint. https://docs.scipy. org/doc/scipy/reference/generated/scipy.integrate. odeint.html. Accessed: 2022-11-18.
- [146] THE SCIPY COMMUNITY. scipy.optimize.curvefit. https://docs. scipy.org/doc/scipy/reference/generated/scipy.optimize. curvefit.html. Accessed: 2022-11-18.
- [147] TUITE, A. R., AND FISMAN, D. N. The IDEA model: A single equation approach to the Ebola forecasting challenge. *Epidemics* 22 (2018), 71–77.
- [148] VALERI, L., PATTERSON-LOMBA, O., GURMU, Y., ABLORH, A., BOBB, J., TOWNES, F. W., AND HARLING, G. Predicting subnational Ebola virus disease epidemic dynamics from sociodemographic indicators. *PLOS ONE 11*, 10 (10 2016), 1–16.
- [149] VAN DEN DRIESSCHE, P., AND WATMOUGH, J. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. *Mathematical Biosciences 180*, 1 (2002), 29 – 48.
- [150] VAN KERKHOVE, M., BENTO, A., FERGUSON, N., AND DONNELLY, C. A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making. *Nature Scientific Data* 2 (05 2015), 1–10.
- [151] VANHEMS, P., RAESFELDT, R., ECOCHARD, R., AND VOIRIN, N. Emergence of Ebola virus disease in a french acute care setting: A simulation study based on documented inter-individual contacts. *Scientific Reports 6* (11 2016).
- [152] VELASCOHERNANDEZ, J. A model for chagas disease involving transmission by vectors and blood transfusion. *Theoretical Population Biology* 46, 1 (1994), 1–31.
- [153] VENKATRAMANAN, S., LEWIS, B., CHEN, J., HIGDON, D., VULLIKANTI, A., AND MARATHE, M. Using data-driven agent-based models for forecasting emerging infectious diseases. *Epidemics* 22 (2018), 43–49.
- [154] VIBOUD, C., SIMONSEN, L., AND CHOWELL, G. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. *Epidemics* 15 (2016), 27–37.
- [155] VIBOUD, C., SUN, K., GAFFEY, R., AJELLI, M., FUMANELLI, L., MERLER, S., ZHANG, Q., CHOWELL, G., SIMONSEN, L., AND VESPIGNANI, A. The RAPIDD Ebola forecasting challenge: Synthesis and lessons learnt. *Epidemics* 22 (2018), 13–21.

- [156] WALSH, M., AND SIDDIQI, H. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: Interaction between population density and vegetation cover. *PeerJ 3* (2015), e735.
- [157] WANNIER, S. R., WORDEN, L., HOFF, N. A., AMEZCUA, E., SELO, B., SINAI, C., MOSSOKO, M., NJOLOKO, B., OKITOLONDA-WEMAKOY, E., MBALA-KINGEBENI, P., AHUKA-MUNDEKE, S., MUYEMBE-TAMFUM, J. J., RICHARD-SON, E. T., RUTHERFORD, G. W., JONES, J. H., LIETMAN, T. M., RIMOIN, A. W., PORCO, T. C., AND KELLY, J. D. Estimating the impact of violent events on transmission in Ebola virus disease outbreak, Democratic Republic of the Congo, 2018–2019. *Epidemics 28* (2019).
- [158] WEBB, G., AND BROWNE, C. A model of the Ebola epidemics in West Africa incorporating age of infection. *Journal of biological dynamics 10*, 1 (2016), 18–30.
- [159] WELLS, C. R., PANDEY, A., NDEFFO MBAH, M. L., GAÜZÈRE, B.-A., MALVY, D., SINGER, B. H., AND GALVANI, A. P. The exacerbation of Ebola outbreaks by conflict in the Democratic Republic of the Congo. *Proceedings of the National Academy of Sciences 116*, 48 (2019).
- [160] WESTHOFF SMITH, D., HILL-BATORSKI, L., N'JAI, A., EISFELD, A. J., NEU-MANN, G., HALFMANN, P., AND KAWAOKA, Y. Ebola virus stability under hospital and environmental conditions. *The Journal of Infectious Diseases 214*, suppl\_3 (2016), S142–S144.
- [161] WHO EBOLA RESPONSE TEAM. Ebola virus disease in West Africa the first 9 months of the epidemic and forward projections. *The New England Journal of Medicine 371*, 16 (2014), 1481–1495. PMID: 25244186.
- [162] WHO EBOLA RESPONSE TEAM, AGUA-AGUM, J., ALLEGRANZI, B., ARI-YARAJAH, A., AYLWARD, R. B., BLAKE, I. M., BARBOZA, P., BAUSCH, D., BRENNAN, R. J., CLEMENT, P., COFFEY, P., CORI, A., DONNELLY, C. A., DORIGATTI, I., DRURY, P., DURSKI, K., DYE, C., ECKMANNS, T., FERGU-SON, N. M., FRASER, C., GARCIA, E., GARSKE, T., GASASIRA, A., GURRY, C., HAMBLION, E., HINSLEY, W., HOLDEN, R., HOLMES, D., HUGONNET, S., JARAMILLO GUTIERREZ, G., JOMBART, T., KELLEY, E., SANTHANA, R., MAHMOUD, N., MILLS, H. L., MOHAMED, Y., MUSA, E., NAIDOO, D., NEDJATI-GILANI, G., NEWTON, E., NORTON, I., NOUVELLET, P., PERKINS, D., PERKINS, M., RILEY, S., SCHUMACHER, D., SHAH, A., TANG, M., VARSANEUX, O., AND VAN KERKHOVE, M. D. After Ebola in West Africaunpredictable risks, preventable epidemics. *The New England Journal of Medicine* 375, 6 (08 2016), 587—596.
- [163] WIRATSUDAKUL, A., TRIAMPO, W., LAOSIRITAWORN, Y., AND MODCHANG, C. A one-year effective reproduction number of the 2014–2015 Ebola outbreaks in the widespread West African countries and quantitative evaluation of air travel restriction measure. *Travel Medicine and Infectious Disease 14*, 5 (2016), 481–488.

- [164] WONG, Z. S. Y., BUI, C. M., CHUGHTAI, A. A., AND MACINTYRE, C. R. A systematic review of early modelling studies of Ebola virus disease in West Africa. *Epidemiology and Infection 145*, 6 (2017), 1069–1094.
- [165] WORLD HEALTH ORGANISATION. Aid group says Ebola vaccine is not reaching enough people. https://www.nature.com/articles/ d41586-019-02879-9. Accessed: 2022-01-17.
- [166] WORLD HEALTH ORGANISATION. Ebola in the Democratic Republic of the Congo - North Kivu, Ituri 2018-2020. https://www.who.int/emergencies/ diseases/ebola/drc-2019. Accessed: 2020-12-23.
- [167] WORLD HEALTH ORGANISATION. Ebola outbreak 2021- North Kivu. https://www.who.int/emergencies/situations/ ebola-2021-north-kivu. Accessed: 2022-01-12.
- [168] WORLD HEALTH ORGANISATION. Ebola virus disease. https://www.afro. who.int/health-topics/ebola-virus-disease. Accessed: 2021-06-11.
- [169] WORLD HEALTH ORGANISATION. Ebola virus disease Democratic Republic of Congo: External situation report 10 / 2019. https: //apps.who.int/iris/bitstream/handle/10665/275373/ SITREP\_EVD\_DRC\_20181009-eng.pdf. Accessed: 2022-01-11.
- [170] WORLD HEALTH ORGANISATION. Ebola virus disease Democratic Republic of Congo: External situation report 56/2019. https://apps.who.int/iris/ rest/bitstreams/1243121/retrieve. Accessed: 2022-01-11.
- [171] WORLD HEALTH ORGANISATION. External situation report 40. https: //apps.who.int/iris/bitstream/handle/10665/312264/ SITREP\_EVD\_DRC\_20190507-eng.pdf. Accessed: 2022-01-17.
- [172] WORLD HEALTH ORGANISATION. History of Ebola virus disease (EVD) outbreaks. https://www.cdc.gov/vhf/ebola/history/chronology. html. Accessed: 2021-12-13.
- [173] WORLD HEALTH ORGANISATION. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of the Congo: an example of integration of research into epidemic response. https://www.who.int/csr/resources/publications/ebola/ ebola-ring-vaccination-results-12-april-2019.pdf. Accessed: 2020-11-03.
- [174] WORLD HEALTH ORGANISATION. SAGE interim recommendations on vaccination against Ebola Virus Disease (EVD). https://reliefweb.

int/attachments/abf0cdfe-c209-33d5-a346-0dade24abe89/ interim\_ebola\_recommendations\_feb\_2019.pdf. Accessed: 2020-12-23.

- [175] WORLD HEALTH ORGANISATION. Second Ebola vaccine to complement "ring vaccination" given green light in DRC. https://www.medbox.org/pdf/ 5e148832db60a2044c2d5d07. Accessed: 2022-07-19.
- WHO: 13 [176] WORLD HEALTH ORGANISATION. health workers infected in DRC Ebola outbreak. https:// www.cidrap.umn.edu/news-perspective/2018/08/ who-13-health-workers-infected-drc-ebola-outbreak. Accessed: 2021-12-30.
- [177] WORLD HEALTH ORGANIZATION. Implementation and management of contact tracing for Ebola virus disease: emergency guideline. https://apps.who.int/iris/handle/10665/185258. Accessed: 2023-07-20.
- [178] WORLD HEALTH ORGANIZATION. Origins of the 2014 Ebola epidemic. http://www.who.int/csr/disease/ebola/one-year-report/ virus-origin/en/, 2015. Accessed: 2018-09-03.
- [179] WORLD HEALTH ORGANIZATION. Ebola Situation Report, 2016. Accessed: 2018-08-28.
- [180] WORLD HEALTH ORGANIZATION. Ebola virus disease. http://www.who. int/news-room/fact-sheets/detail/ebola-virus-disease, 2018. Accessed: 2018-08-28.
- [181] WORLD HEALTH ORGANIZATION. Ebola virus disease in the Democratic Republic of the Congo: External situation report 01. https: //apps.who.int/iris/bitstream/handle/10665/273640/ SITREP\_EVD\_DRC\_20180807-eng.pdf?ua=1, 2018. Accessed: 2020-04-26.
- [182] WORLD HEALTH ORGANIZATION. Ten threats to global health in 2019. https://www.who.int/news-room/feature-stories/ ten-threats-to-global-health-in-2019, 2020. Accessed: 2020-02-11.
- [183] YAN, Q., TANG, S., AND XIAO, Y. Impact of individual behaviour change on the spread of emerging infectious diseases. *Statistics in Medicine* 37, 6 (2018), 948–969.
- [184] ZHU, J.-M., WANG, L., AND LIU, J.-B. Eradication of Ebola based on dynamic programming. *Computational and Mathematical Methods in Medicine 2016* (2016).

- [185] ZINSZER, K., MORRISON, K., VERMA, A., AND BROWNSTEIN, J. Spatial determinants of Ebola virus disease risk for the West African epidemic. *PLOS Currents* 9 (03 2017).
- [186] ZITZMANN, C., AND KADERALI, L. Mathematical analysis of viral replication dynamics and antiviral treatment strategies: From basic models to age-based multi-scale modeling. *Frontiers in microbiology 9* (07 2018), 1546.

## Appendix A

## Detailed review of individual studies

Some reviews were structured according to estimated EVD parameters [32, 43, 150]. One [32] created a comparison between each natural history parameter for the past EVD outbreaks and the 2014 WA EVD. Another [37] listed critical uncertainties among different models. One [164] recorded the approaches, assumptions, and datasets of each reviewed model. Another [35] discussed different conclusions acquired from the 2014 WA EVD models. In this section, we survey each of our reviewed study in terms of the research problem, type of data, approaches, results, preferences, and constraints or gaps for further research. We describe this survey in Table A.1.

## Table A.1: Detailed review.

| Ref. | Research ques-<br>tion                                       | Data                                                                                   | Methodology                                                                                                                                                                                                                                                       | Conclusions                                                                                                                              | Advantages                                                                                                                                  | Limitations/gaps                                                                                                                                                                              |
|------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [97] | Addressing EVD<br>spread through<br>international<br>travel. | The weekly EVD<br>incidence data of<br>Liberia available<br>from the WHO web-<br>site. | A compartment model was<br>used for estimating the frac-<br>tion of the latent population.<br>It was assumed that only<br>latent individuals could<br>travel internationally and<br>the probability of exporting<br>EVD from Liberia to the<br>USA was estimated. | The probability of exporting<br>EVD from Liberia to the<br>USA in the 15th week of<br>2014 was estimated to be<br>0.3 per 1,000 persons. | The model incorporated the<br>volume of airline travellers<br>from infected countries<br>and calculated the risk of<br>disease exportation. | The study assumed the<br>people in Liberia to be<br>homogeneously mixed and<br>did not account for whether<br>areas of frequent travellers<br>were the most affected areas<br>by the disease. |

| Ref.  | Research ques-    | Data                | Methodology                  | Conclusions                            | Advantages                   | Limitations/gaps              |
|-------|-------------------|---------------------|------------------------------|----------------------------------------|------------------------------|-------------------------------|
|       | tion              |                     |                              |                                        |                              |                               |
| [163] | Addressing the    | The cumulative      | The classical SIR model      | The daily effective repro-             | The model helped in iden-    | The study assumed that the    |
|       | risk of export-   | EVD cases data for  | was used to estimate the     | ductive number was esti-               | tifying the critical risk of | population of the three most  |
|       | ing EVD to        | Guinea, Liberia and | effective reproductive num-  | mated to be from $0.27$ to             | EVD importation, and con-    | affected West African coun-   |
|       | the top 20 fi-    | Sierra Leone was    | bers for Guinea, Liberia,    | $1.32,0.62$ to $1.38,\text{and}\;0.81$ | sequently assisted in the    | tries to be homogeneously     |
|       | nal destinations  | used. This data was | and Sierra Leone. The aver-  | to 1.32 for Guinea, Liberia,           | preparedness and the alloca- | mixed regarding air travel    |
|       | for commercial    | made available by   | age weekly number of trav-   | and Sierra Leone, respec-              | tion of resources to control | ignoring socio-economic       |
|       | flight passengers | the WHO.            | ellers were adapted from     | tively. In early November              | EVD.                         | status. Further, the model    |
|       | travelling from   |                     | the literature and stochas-  | 2014, the probability of               |                              | did not account for any       |
|       | Guinea, Liberia,  |                     | tically simulated with a     | EVD importation into each              |                              | other EVD importation         |
|       | and Sierra Leone. |                     | Poisson distribution to ac-  | of the top 20 final desti-             |                              | routes, such as roads, navy   |
|       |                   |                     | count for uncertainty. These | nation countries reached               |                              | ships, or connecting flights. |
|       |                   |                     | in addition to the fraction  | its peak. The restriction of           |                              |                               |
|       |                   |                     | of infected individuals in   | air travel resulted in a re-           |                              |                               |
|       |                   |                     | Guinea, Liberia, and Sierra  | duction of the risk of EVD             |                              |                               |
|       |                   |                     | Leone were used to esti-     | importation to about 67%.              |                              |                               |
|       |                   |                     | mate the weekly number of    |                                        |                              |                               |
|       |                   |                     | EVD imported cases using     |                                        |                              |                               |
|       |                   |                     | a Binomial distribution.     |                                        |                              |                               |

| Ref.  | Research ques-   | Data                 | Methodology                  | Conclusions                  | Advantages                     | Limitations/gaps             |
|-------|------------------|----------------------|------------------------------|------------------------------|--------------------------------|------------------------------|
|       | tion             |                      |                              |                              |                                |                              |
| [133] | Improving public | The model was        | The proposed framework       | The study described the      | The combination of the         | The study had only consid-   |
|       | health planning  | quantified using     | was a geospatial epidemio-   | spatiotemporal distribution  | epidemic model with a          | ered the worst case scenario |
|       | to combat a hy-  | parameter estimates  | logical modelling. It was    | of EVD and found that        | geospatial modelling frame-    | and did not account for      |
|       | pothetical EVD   | that were adapted    | simulated using a spa-       | within two years almost half | work gave insights about       | any interventions that may   |
|       | spread in India. | from the literature. | tiotemporal epidemiological  | of the population of India   | the spatial spread of the dis- | happen during outbreaks.     |
|       |                  |                      | modelling software. The      | would have been infected     | ease. This information is      |                              |
|       |                  |                      | epidemic model considered    | by the disease.              | important for public health    |                              |
|       |                  |                      | was an SEIR compartment      |                              | planners to target areas at    |                              |
|       |                  |                      | model. This model incorpo-   |                              | high risks effectively.        |                              |
|       |                  |                      | rated EVD natural history    |                              |                                |                              |
|       |                  |                      | estimates from the litera-   |                              |                                |                              |
|       |                  |                      | ture and simulated the worst |                              |                                |                              |
|       |                  |                      | case scenario.               |                              |                                |                              |

| The estimated results de-                                          |
|--------------------------------------------------------------------|
| The estimated results de-                                          |
| The estimated results de                                           |
| pend mainly on the accu-                                           |
| acy of the data. Issues                                            |
| such as under-reporting                                            |
| were common in the 2014                                            |
| WA EVD data [35]. Addi-                                            |
| ionally, the model did not                                         |
| account for any intervention                                       |
| scenarios such as border                                           |
| closure among countries,                                           |
| checking points among dis-                                         |
| ricts or hygienity practices.                                      |
| vacy<br>such<br>were<br>WA<br>iona<br>accc<br>scen<br>clos<br>chec |

| Ref. | Research ques-   | Data                  | Methodology                  | Conclusions                                   | Advantages                    | Limitations/gaps            |
|------|------------------|-----------------------|------------------------------|-----------------------------------------------|-------------------------------|-----------------------------|
|      | tion             |                       |                              |                                               |                               |                             |
| [89] | Characterising   | GPS locations of      | A statistical framework was  | The degree of super-                          | The study enabled extract-    | The study only incorporated |
|      | the spatiotem-   | where the bodies of   | first used in which new in-  | spreading was estimated to                    | ing vital information. It     | EVD fatal cases. However,   |
|      | poral spread and | 200 EVD deceased      | cidences were assumed to     | be 0.47, indicating signifi-                  | highlighted the importance    | it concluded age specific   |
|      | estimating key   | were collected for    | follow a non-homogeneous     | cantly high super-spreading.                  | of considering age-specific   | infectiousness to all cases |
|      | outbreak parame- | safe burials. Infor-  | Poisson process. The prob-   | Further, age groups younger                   | heterogeneities and commu-    | in the community (fatal and |
|      | ters of EVD.     | mation regarding      | ability of a new infection   | than $15 \ {\rm and} \ {\rm older}$ than $45$ | nity transmission. Further,   | non-fatal).                 |
|      |                  | age, sex, and the     | being a certain distance and | were found to be more                         | it ascertained the role of    |                             |
|      |                  | burial time were      | direction from the source of | infectious compared to                        | super-spreaders in the trans- |                             |
|      |                  | also included in the  | infection depended only on   | others. The median dis-                       | mission of EVD.               |                             |
|      |                  | dataset. The data     | the pattern of movement of   | tance of EVD spread was                       |                               |                             |
|      |                  | was collected in      | the infected persons and the | found to be $0.85$ kilome-                    |                               |                             |
|      |                  | Sierra Leone by the   | density of the susceptible   | tres which might indicate a                   |                               |                             |
|      |                  | International Federa- | individuals.                 | higher transmission within                    |                               |                             |
|      |                  | tion of Red Cross.    |                              | a nearby community such                       |                               |                             |
|      |                  |                       |                              | as households and extended                    |                               |                             |
|      |                  |                       |                              | families.                                     |                               |                             |

| Ref. | Research ques-    | Data                 | Methodology                    | Conclusions                     | Advantages                  | Limitations/gaps                |
|------|-------------------|----------------------|--------------------------------|---------------------------------|-----------------------------|---------------------------------|
|      | tion              |                      |                                |                                 |                             |                                 |
| [45] | Examining spa-    | The 2014 WA EVD      | The proposed approach was      | Local interventions were        | The model accounted for     | The model did not account       |
|      | tially targeted   | WHO data for         | a compartment model for-       | found to be mostly effective    | the disease dynamics at     | for transmission in small       |
|      | control measures. | Guinea, Liberia,     | mulated for the district and   | in Liberia, while long-range    | the district and national   | scales such as communi-         |
|      |                   | and Sierra Leone     | national scales. Spatially     | control measures were dom-      | levels. It was used to pre- | ties (neighbourhoods) and       |
|      |                   | were considered for  | targeted control measures      | inantly relevant in Sierra      | dict incidences and deaths  | villages. Kiskowski and         |
|      |                   | the period of May to | were examined, while the       | Leone. Furthermore, results     | in Guinea, Liberia, and     | Chowell [82] have consid-       |
|      |                   | October 2014.        | mobility of individuals was    | at the district-level showed    | Sierra Leone, and to assess | ered this scale of transmis-    |
|      |                   |                      | expressed using a gravity      | that when applying local in-    | spatially targeted control  | sion. It will be interesting to |
|      |                   |                      | type parameter. Further, the   | terventions at a district with  | measures.                   | combine the latter approach     |
|      |                   |                      | role of local intervention     | a high infection rate ( $0.1\%$ |                             | with the current to assess      |
|      |                   |                      | (e.g., quarantine of indi-     | of the total cases) in Sierra   |                             | the impact of interventions     |
|      |                   |                      | viduals at the district-level) | Leone, Liberia or Guinea,       |                             | targeted to a village or a      |
|      |                   |                      | and long-range intervention    | a reduction of $20\%$ on the    |                             | community.                      |
|      |                   |                      | measures (e.g., border clo-    | total EVD cases occurred in     |                             |                                 |
|      |                   |                      | sure between countries) was    | the three countries.            |                             |                                 |
|      |                   |                      | evaluated.                     |                                 |                             |                                 |
|      |                   |                      |                                |                                 |                             |                                 |

| Ref.  | Research ques-      | Data                 | Methodology                 | Conclusions                  | Advantages                  | Limitations/gaps               |
|-------|---------------------|----------------------|-----------------------------|------------------------------|-----------------------------|--------------------------------|
|       | tion                |                      |                             |                              |                             |                                |
| [111] | Evaluating the      | EVD natural history  | The proposed model was      | Early case detection was     | The model considered the    | The model did not account      |
|       | risk of a possible  | and other model pa-  | a stochastic compartment    | found to provide a higher    | transmission in rural set-  | for vaccination. However, it   |
|       | spread of EVD in    | rameters were either | model. The transmission     | decrease in the probability  | tings to be different from  | can be extended to include     |
|       | the Asia-Pacific    | assumed or adapted   | was assumed to occur in     | of having a large outbreak.  | urban. Crucially, high pop- | this situation. One issue that |
|       | region and as-      | from the literature. | rural and urban settings,   | Further, the reduction in    | ulation density was repeat- | could be addressed in this     |
|       | sessing different   | Further, Papua New   | with the latter considered  | the transmission from the    | edly associated with high   | case is determining the best   |
|       | control strategies. | Guinea was used as   | to have higher infectious-  | deceased individuals was     | risk of transmission in the | distribution strategy for a    |
|       |                     | a case study. Popu-  | ness for patients. Further, | found to have substantially  | literature [148, 185, 134]. | vaccine.                       |
|       |                     | lation density data  | the transmission from the   | increased the probability of | Additionally, the transmis- |                                |
|       |                     | were obtained from   | deceased varied according   | controlling the outbreak.    | sion from deceased indi-    |                                |
|       |                     | the Centre for In-   | to the dominant religion.   |                              | viduals in the model was    |                                |
|       |                     | ternational Earth    | This model was used to      |                              | assumed to vary according   |                                |
|       |                     | Science Information  | study several intervention  |                              | to the dominant religion.   |                                |
|       |                     | Network of Colom-    | strategies.                 |                              |                             |                                |
|       |                     | bia University.      |                             |                              |                             |                                |

| Ref.  | Research ques-   | Data               | Methodology                  | Conclusions               | Advantages                | Limitations/gaps              |
|-------|------------------|--------------------|------------------------------|---------------------------|---------------------------|-------------------------------|
|       | tion             |                    |                              |                           |                           |                               |
| [124] | Addressing a     | The estimates      | A compartment model com-     | Both a higher degree of   | The agent-based model     | The assumption of free        |
|       | spatial hetero-  | that were used to  | posed of susceptible $S$ ,   | connectivity and higher   | combined the topology of  | mobility for infectious in-   |
|       | geneity of EVD   | parametrize the    | exposed E, infected I, re-   | proximity were connected  | connectivity among the    | dividuals is not realistic as |
|       | among hypotheti- | model were adapted | moved $R$ , and deceased $D$ | with higher values of EVD | cities and the population | some of these individuals     |
|       | cal cities.      | from the 2014 WA   | compartments was used. A     | growth rates.             | density.                  | might be too sick to travel,  |
|       |                  | EVD literature.    | population of a hypothetical |                           |                           | hospitalised, or quarantined. |
|       |                  |                    | country composed of four     |                           |                           |                               |
|       |                  |                    | cities was assumed. These    |                           |                           |                               |
|       |                  |                    | cities were connected using  |                           |                           |                               |
|       |                  |                    | bidirectional roads and a    |                           |                           |                               |
|       |                  |                    | free movement of individ-    |                           |                           |                               |
|       |                  |                    | uals. The model was anal-    |                           |                           |                               |
|       |                  |                    | ysed using an agent-based    |                           |                           |                               |
|       |                  |                    | software called PISKaS.      |                           |                           |                               |
|       |                  |                    |                              |                           |                           |                               |

| Ref. Resea  | arch ques- | Data                  | Methodology                    | Conclusions                  | Advantages                   | Limitations/gaps          |
|-------------|------------|-----------------------|--------------------------------|------------------------------|------------------------------|---------------------------|
| tion        |            |                       |                                |                              |                              |                           |
| [154] Chara | acterising | The daily and         | A phenomenological model       | While the districts of       | This modelling provided a    | The study did not explore |
| the ea      | arly phase | weekly EVD inci-      | called a generalised growth    | Margibi of Liberia, and      | useful tool to characterise  | the causes of the sub-    |
| traject     | ctories of | dence time series of  | model was proposed. It was     | Bo and Bombali of Sierra     | the early growth profile for | exponential growth.       |
| EVD.        | ).         | the 1976 DR Congo     | assumed the disease inci-      | Leone showed a nearly ex-    | a disease, especially when   |                           |
|             |            | outbreak, the 2000    | dences to be proportional      | ponential growth with $p$    | there is not enough data     |                           |
|             |            | Uganda outbreak       | to the cumulative number       | close to one, Kenema of      | to quantify mechanistic      |                           |
|             |            | and for several re-   | of cases depending on an       | Sierra Leone and Bomi        | modelling.                   |                           |
|             |            | gions of West Africa  | EVD growth rate $(r)$ and a    | of Liberia had shown         |                              |                           |
|             |            | during the 2014       | declaration of growth pa-      | slow growth with $p$ near    |                              |                           |
|             |            | WA EVD. The data      | rameter $(p)$ . The parameters | 0.1. Generally, a sub-       |                              |                           |
|             |            | were obtained from    | r and $p$ were estimated by    | exponential growth was       |                              |                           |
|             |            | the WHO and from      | fitting the model to EVD in-   | the most prevalent for the   |                              |                           |
|             |            | historical EVD liter- | cidence data using the least   | different EVD growth pro-    |                              |                           |
|             |            | ature.                | square methods.                | files at the district-level. |                              |                           |
|             |            |                       |                                |                              |                              |                           |

| Ref.  | <b>Research ques-</b> | Data                  | Methodology                 | Conclusions                   | Advantages                  | Limitations/gaps            |
|-------|-----------------------|-----------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|
|       | tion                  |                       |                             |                               |                             |                             |
| [131] | Evaluating the        | The WHO cumula-       | Several quantities were es- | Several district-level param- | The variability in the      | The study did not investi-  |
|       | district-level spa-   | tive cases and deaths | timated, including the spa- | eters were estimated, in-     | strength of the outbreak    | gate the underlying reasons |
|       | tial heterogeneity    | for each district in  | tiotemporal distribution of | cluding the district-specific | at the district-level high- | for the high variability of |
|       | of the 2014 WA        | Guinea, Liberia, and  | the EVD growth rates and    | effective reproductive. Fur-  | lighted the importance of   | EVD spread at the district- |
|       | EVD.                  | Sierra Leone.         | the weekly expected num-    | ther, a variation was found   | spatially-targeted control  | level.                      |
|       |                       |                       | ber of new cases at each    | in the growth of the dis-     | measures.                   |                             |
|       |                       |                       | district, using Bayesian    | ease in various regions in    |                             |                             |
|       |                       |                       | inference. Furthermore, a   | Guinea, Liberia, and Sierra   |                             |                             |
|       |                       |                       | compartment model was       | Leone.                        |                             |                             |
|       |                       |                       | composed, and several pa-   |                               |                             |                             |
|       |                       |                       | rameters, including the     |                               |                             |                             |
|       |                       |                       | under-reporting rate, were  |                               |                             |                             |
|       |                       |                       | estimated by fitting this   |                               |                             |                             |
|       |                       |                       | model to the EVD cases and  |                               |                             |                             |
|       |                       |                       | death data.                 |                               |                             |                             |
|       |                       |                       |                             |                               |                             |                             |

| Ref. | Research ques-    | Data                  | Methodology                   | Conclusions                     | Advantages                               | Limitations/gaps            |
|------|-------------------|-----------------------|-------------------------------|---------------------------------|------------------------------------------|-----------------------------|
|      | tion              |                       |                               |                                 |                                          |                             |
| [36] | Expanding the     | The daily and         | The generalised growth        | A declining trajectory of $R_t$ | This study has implications              | The study is a data-driven  |
|      | characterisa-     | weekly EVD inci-      | model was first fitted to the | was found as the generation     | for vaccination trials. In the           | one and that the accuracy   |
|      | tion of the early | dence time series of  | first three to five disease   | interval increased. Further,    | standard $SIR$ model, it is              | of the estimated parameters |
|      | sub-exponential   | the 1976 DR Congo     | generations of the data.      | $R_t$ was found to be sensi-    | established that $(1 - \frac{1}{R_0})\%$ | depends on the precision    |
|      | growth of an      | outbreak, the 2000    | Consequently, an EVD          | tive to small changes in the    | of the population must be                | of the data. Issues such    |
|      | outbreak using    | Uganda outbreak       | growth rate $(r)$ and a dec-  | declaration parameter $p$ .     | vaccinated to eradicate                  | as under-reporting were     |
|      | the generalised   | and for several re-   | laration parameter $(p)$ were | The effective reproductive      | the disease. However, this               | common in the 2014 WA       |
|      | growth model      | gions of West Africa  | estimated. These estimates    | number was also found to        | fraction may be lower when               | EVD data [35].              |
|      | and estimating    | during the 2014       | and the generalised growth    | have varied across the dif-     | the outbreak shows a sub-                |                             |
|      | the effective     | WA EVD. The data      | model were used in the sim-   | ferent geographical areas       | exponential initial growth               |                             |
|      | reproduction      | were obtained from    | ulation of EVD incidences.    | during the 2014 WA EVD.         | that was indicated in the                |                             |
|      | number $(R_t)$ .  | the WHO and from      | The generation interval       | The highest recorded value      | current study.                           |                             |
|      |                   | historical EVD liter- | along with the simulated      | of $R_t$ was 2.5 in Montser-    |                                          |                             |
|      |                   | ature.                | incidences were used to       | rado in Liberia, whereas the    |                                          |                             |
|      |                   |                       | estimate $R_t$ .              | lowest was 1.03 in Bomi.        |                                          |                             |
|      |                   |                       |                               |                                 |                                          |                             |

| Ref. | Research ques-   | Data                  | Methodology                  | Conclusions               | Advantages                   | Limitations/gaps             |
|------|------------------|-----------------------|------------------------------|---------------------------|------------------------------|------------------------------|
|      | tion             |                       |                              |                           |                              |                              |
| [60] | Estimating the   | The spatial locations | The RDI was used to deter-   | A strong association was  | This study used the RDI      | It is possible that the data |
|      | risk of EVD      | of the districts in   | mine the mobility of people  | found between RDI and the | and confirmed that the num-  | that were used in the study  |
|      | occurrence using | the three most af-    | in districts. It was calcu-  | risk of EVD occurrence.   | ber of people living and     | might have missed some       |
|      | the road density | fected countries by   | lated by dividing the road   | For example, a three per- | moving in an area to have    | paths that connect villages. |
|      | index (RDI).     | the 2014 WA EVD,      | lengths (measured in kilo-   | cent increase in the risk | played an important rule     |                              |
|      |                  | and the road network  | metres) by the district area | of EVD infection was      | in the spread of EVD. As a   |                              |
|      |                  | data were obtained    | (measured in square kilo-    | recorded when the RDI     | result, the RDI can be used  |                              |
|      |                  | from the Socioe-      | metres). A stochastic model  | increased by 0.01.        | in future models to quantify |                              |
|      |                  | conomic Data and      | was used to understand the   |                           | spatial transmission models. |                              |
|      |                  | Applications Center   | relation between the risk of |                           |                              |                              |
|      |                  | (SEDAC).              | EVD occurrence and RDI.      |                           |                              |                              |

| Ref. | Research ques-    | Data                  | Methodology                  | Conclusions                  | Advantages                  | Limitations/gaps             |
|------|-------------------|-----------------------|------------------------------|------------------------------|-----------------------------|------------------------------|
|      | tion              |                       |                              |                              |                             |                              |
| [85] | Assessing several | Digital maps of ad-   | The model used was a net-    | The generalised gravity      | The results of this study   | The gravity-type assump-     |
|      | assumptions       | ministrative units in | work approach in which       | model was found to have      | outlined the importance of  | tion that was chosen in this |
|      | that are used to  | Guinea, Liberia, and  | the nodes were assumed to    | created the best characteri- | geographical considerations | study does not predict the   |
|      | model spatial     | Sierra Leone was      | be the geopolitical admin-   | sation to the spatial spread | when modelling spatial      | risk of air travel.          |
|      | transmission.     | obtained from the     | istrative units in the three | compared to other models     | spread. These results have  |                              |
|      |                   | GADM database.        | countries, and the edges     | that used diffusion spread   | also shown the weakness     |                              |
|      |                   | Other population and  | were assumed to represent    | or estimated the mobility    | in using diffusion spread   |                              |
|      |                   | mobility informa-     | how strong were the poten-   | using cellphone records.     | and cellphone data records  |                              |
|      |                   | tion were obtained    | tial infection routes among  | On the other hand, a lower   | to estimate the mobility as |                              |
|      |                   | from various other    | the nodes. Different as-     | transmission probability     | compared to the gravity-    |                              |
|      |                   | resources includ-     | sumptions that weight the    | was found among countries    | type assumption.            |                              |
|      |                   | ing WorldPop and      | links among the nodes were   | compared to within-country   |                             |                              |
|      |                   | Flowminder.           | assumed including diffusion  | probability.                 |                             |                              |
|      |                   |                       | and gravity-type force of    |                              |                             |                              |
|      |                   |                       | infections.                  |                              |                             |                              |
|      |                   |                       |                              |                              |                             |                              |

| Ref. | <b>Research</b> ques- | Data               | Methodology                   | Conclusions                   | Advantages                             | Limitations/gaps           |
|------|-----------------------|--------------------|-------------------------------|-------------------------------|----------------------------------------|----------------------------|
|      | tion                  |                    |                               |                               |                                        |                            |
| [17] | Characterising        | The WHO EVD        | A discrete spatial model      | The model was applied to      | A realistic estimation for             | The exposure intensity pa- |
|      | the spatial spread    | incidences for the | was proposed. The proba-      | the 2014 WA EVD, and          | the disease trajectories               | rameter in the modelling   |
|      | of EVD.               | 1995 EVD in Kikwit | bility that a person at some  | although with a weak confi-   | was provided using the                 | is different among various |
|      |                       | city in Uganda and | spatial location and point of | dence, it was used to predict | newly derived $\mathcal{R}_0$ in the   | places depending on the    |
|      |                       | the 2014 WA EVD.   | time becomes infected was     | that as of January 2015, the  | modelling as opposed to the            | contact structure. Deter-  |
|      |                       |                    | calculated as a function of   | epidemic would gradually      | classical $\mathcal{R}_0$ that assumes | mining the value of this   |
|      |                       |                    | the spatiotemporal exposure   | slow down until finally be-   | a homogeneously mixed                  | parameter requires expert  |
|      |                       |                    | intensity, the proportion of  | ing contained in April or     | population.                            | knowledge.                 |
|      |                       |                    | the distance between spatial  | May 2015.                     |                                        |                            |
|      |                       |                    | locations, and the propor-    |                               |                                        |                            |
|      |                       |                    | tion of infected persons.     |                               |                                        |                            |
|      |                       |                    | In addition to further as-    |                               |                                        |                            |
|      |                       |                    | sumptions, these enabled      |                               |                                        |                            |
|      |                       |                    | deriving a newly adjusted     |                               |                                        |                            |
|      |                       |                    | spatial basic reproduction    |                               |                                        |                            |
|      |                       |                    | number $(R_0)$ .              |                               |                                        |                            |

| lesearch ques-    | Data                                                                                                                                                                           | Methodology                                                                                                                                                                                                                                                                                                                   | Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limitations/gaps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| on                |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Determining the   | EVD natural his-                                                                                                                                                               | The dynamics of the frac-                                                                                                                                                                                                                                                                                                     | The study found that com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transmission within a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The study assumed the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| elationship of    | tory and the demo-                                                                                                                                                             | tion of households at each                                                                                                                                                                                                                                                                                                    | munities with small house-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | household and extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | transmission within and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ne size of house- | graphic parameters                                                                                                                                                             | epidemiological suscep-                                                                                                                                                                                                                                                                                                       | hold sizes require a moder-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | family represented the ma-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | between households to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| olds and the      | for Guinea, Liberia,                                                                                                                                                           | tible, exposed, infectious,                                                                                                                                                                                                                                                                                                   | ate level of case identifica-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | jority of transmission in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | constants. However, those                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| alance of trans-  | and Sierra Leone                                                                                                                                                               | and recovered (SEIR)                                                                                                                                                                                                                                                                                                          | tion and quarantine. On the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2014 WA EVD [49]. Indeed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | who look after patients have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nissions within   | were adapted from                                                                                                                                                              | state was described using a                                                                                                                                                                                                                                                                                                   | other hand, when the size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | structuring the transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a higher chance of EVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nd between        | the literature.                                                                                                                                                                | compartment model. The                                                                                                                                                                                                                                                                                                        | of households was large, ef-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | according to households                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | transmission as compared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ouseholds and     |                                                                                                                                                                                | transitions among these                                                                                                                                                                                                                                                                                                       | fective quarantine combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in this study allowed for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to other household mem-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ne spread of      |                                                                                                                                                                                | states were modelled using                                                                                                                                                                                                                                                                                                    | with case identifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | investigating the role of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bers. Further, transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VD.               |                                                                                                                                                                                | a continuous-time Markov                                                                                                                                                                                                                                                                                                      | and isolation of the whole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | household structure in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | within relatives and friends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |                                                                                                                                                                                | process. These models were                                                                                                                                                                                                                                                                                                    | household were required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | spread of EVD. Further,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | is also higher than trans-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |                                                                                                                                                                                | modified to account for                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | it allowed for assessing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mission with the general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |                                                                                                                                                                                | case identification measures                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | household-targeted control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | community.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |                                                                                                                                                                                | followed by quarantine of                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | measures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                | households.                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | esearch ques-<br>m<br>etermining the<br>ationship of<br>e size of house-<br>lds and the<br>lance of trans-<br>ssions within<br>d between<br>useholds and<br>e spread of<br>/D. | search ques-<br>nDatanEVD natural his-<br>tory and the demo-<br>graphic parametersationship of<br>e size of house-<br>graphic parametersgraphic parameters<br>for Guinea, Liberia,<br>and Sierra Leonedance of trans-<br>ssions within<br>d between<br>useholds and<br>e spread of<br>VD.were adapted from<br>the literature. | search ques-<br>nDataMethodologymEVD natural his-<br>tory and the demo-<br>graphic parametersThe dynamics of the frac-<br>tion of households at each<br>epidemiological suscep-<br>tible, exposed, infectious,<br>and recovered (SEIR)ds and the<br>d betweenfor Guinea, Liberia,<br>and Sierra Leoneand recovered (SEIR)<br>state was described using a<br>the literature.d between<br>useholds andthe literature.compartment model. The<br>states were modelled using<br>a continuous-time Markov<br>process. These models were<br>modified to account for<br>case identification measures<br>followed by quarantine of<br>households. | search ques-<br>nDataMethodologyConclusionsnEVD natural his-<br>tory and the demo-<br>graphic parametersThe dynamics of the frac-<br>tion of households at each<br>epidemiological suscep-<br>tible, exposed, infectious,<br>and recovered (SEIR)The study found that com-<br>munities with small house-<br>hold sizes require a moder-<br>tion and quarantine. On the<br>size of trans-ad betweenthe literature.compartment model. The<br>transitions among theseof households was large, ef-<br>fective quarantine combinedvible, expessed ofstates were modelled using<br>a continuous-time Markovwith case identifications<br>and isolation of the whole<br>process. These models were<br>household were required.vible, expended by quarantine of<br>households.isolation of the whole<br>households. | search ques-<br>nDataMethodologyConclusionsAdvantagesndermining the<br>e size of house-<br>graphic parametersThe dynamics of the frac-<br>tion of households at eachThe study found that com-<br>munities with small house-<br>hold sizes require a moder-<br>family represented the ma-<br>tible, exposed, infectious,<br>and Sierra LeoneThe dynamics of <i>EEIR</i> Nold sizes require a moder-<br>iority of transmission in the<br>and recovered ( <i>SEIR</i> )To and quarantine. On the<br>tible, exposed, infectious,<br>and recovered ( <i>SEIR</i> )2014 WA EVD [49]. Indeed<br>structuring the transmission<br>transmissiond between<br>useholds and<br>e spread of<br>( <i>D</i> ).the literature.compartment model. The<br>states ware modelled using a<br>transitions among these<br>a continuous-time Markovfor Guine, Liberia,<br>a continuous-time Markovwith case identifications<br>investigating the role of<br>in this study allowed for<br>investigating the role of<br>a continuous-time Markovmoisehold were required,<br>investigating the role of<br>indisid to account for<br>it allowed for assessing<br>case identification measuresmoisehold were required,<br>investigating the role of<br>it allowed for assessing<br>household-targeted control<br>followed by quarantine of<br>household were required,<br>household-targeted control<br>measures. |

| Ref. | Research ques-   | Data                 | Methodology                  | Conclusions                         | Advantages                   | Limitations/gaps              |
|------|------------------|----------------------|------------------------------|-------------------------------------|------------------------------|-------------------------------|
|      | tion             |                      |                              |                                     |                              |                               |
| [82] | Characterising   | EVD natural history  | The approach used was an     | In the absence of control           | The model simulation in-     | The model did not account     |
|      | the sub-national | parameters and the   | individual-based SEIR        | measures and the initial            | dicated consistent patterns  | for the heterogeneity of      |
|      | (district) level | average household    | network model in which       | phase of the outbreak, an           | with the district-level dy-  | transmission within house-    |
|      | dynamics of the  | size were adapted    | individuals were exposed     | endemic state travelling            | namics in Guinea, Liberia,   | holds where active contact    |
|      | 2014 WA EVD.     | from the literature. | to infectiousness as a re-   | waves of new infections             | and Sierra Leone. It suc-    | occurs with persons who       |
|      |                  |                      | sult of transmissions within | existed moving through the          | cessfully reproduced expo-   | closely care for patients. In |
|      |                  |                      | their households and neigh-  | population network. The             | nential growth for the sec-  | contrast, less frequent con-  |
|      |                  |                      | bourhoods. Intervention      | community sizes and $\mathcal{R}_0$ | ond and the third generation | tact occurs with individuals  |
|      |                  |                      | measures in the network      | for the household and com-          | of infections followed by a  | who do not.                   |
|      |                  |                      | were applied locally within  | munity characterised these          | sub-exponential growth for   |                               |
|      |                  |                      | a community (neighbour-      | waves. Further, a small             | several subsequent disease   |                               |
|      |                  |                      | hood) and globally in the    | wave of infectious indi-            | generations.                 |                               |
|      |                  |                      | entire network (entire popu- | viduals was realised when           |                              |                               |
|      |                  |                      | lation).                     | there was a $45\%$ epidemic         |                              |                               |
|      |                  |                      |                              | control.                            |                              |                               |

| Ref. | Research ques-    | Data                  | Methodology                  | Conclusions                    | Advantages                   | Limitations/gaps             |
|------|-------------------|-----------------------|------------------------------|--------------------------------|------------------------------|------------------------------|
|      | tion              |                       |                              |                                |                              |                              |
| [5]  | Understanding     | Several datasets      | The approach used was a      | The relatively high pre-       | The study included several   | The model did not explic-    |
|      | the transmis-     | were obtained from    | stochastic individual-based  | paredness of the healthcare    | datasets and considered      | itly account or estimated    |
|      | sion dynamics     | various resources in- | modelling in which trans-    | system, the early avail-       | EVD heterogeneity among      | the resistance of people     |
|      | in Guinea and     | cluding the Guinean   | mission within households,   | ability of Ebola treatment     | the different age groups and | that could reduce the effec- |
|      | assessing the im- | Ministry of Health,   | extended families, within    | centres, and the application   | the general population. The  | tiveness of contact tracing  |
|      | pact of control   | the WHO and the       | healthcare units, and during | of case isolation and safe     | study has further combined   | during epidemics (people     |
|      | interventions.    | Guinean national      | burials were explicitly mod- | burials were found to have     | various methodologies to     | behaviour was the im-        |
|      |                   | census. The datasets  | elled. Control measures,     | limited the spread from the    | estimate model parameters.   | portant factor during the    |
|      |                   | include the weekly    | including contact tracing    | initial stage. Further, con-   |                              | 2014 WA EVD and the          |
|      |                   | EVD incidences, age   | and safe burials, were con-  | tact tracing was found to be   |                              | 2018-2020 EVD of the DR      |
|      |                   | group and household   | sidered.                     | a critical factor in eliminat- |                              | Congo [136]).                |
|      |                   | size distributions.   |                              | ing the disease.               |                              |                              |
|      |                   |                       |                              |                                |                              |                              |

| Ref.  | Research ques-    | Data                 | Methodology                  | Conclusions                            | Advantages                    | Limitations/gaps              |
|-------|-------------------|----------------------|------------------------------|----------------------------------------|-------------------------------|-------------------------------|
|       | tion              |                      |                              |                                        |                               |                               |
| [102] | Analysing EVD     | The number of Ebola  | Three compartments com-      | High viral loads in fatalities         | The study employed vi-        | The model did not account     |
|       | viral data and    | virus RNA copies     | posed of susceptible target  | were preserved by recruit-             | ral data to estimate critical | for between-host EVD          |
|       | exploring how     | per millilitre in a  | cells, infected cells, and   | ing a large number of po-              | immunological and virolog-    | spread and has not been       |
|       | anti-Ebola virus  | patient serum (viral | viral load were assumed.     | tential target cells. For the          | ical parameters. Further, it  | used to explore EVD trans-    |
|       | therapies, in-    | load) of 18 EVD      | The susceptible compart-     | fatal cases, $\mathcal{R}_0$ was found | assessed the effects of ex-   | mission and intervention      |
|       | cluding ZMapp,    | survivors and 27     | ment was partitioned into    | to be approximately six,               | perimental treatments. The    | related questions at the pop- |
|       | TKM-Ebola,        | fatalities from the  | potential target cells and   | while that of survivors was            | findings improved knowl-      | ulation scale.                |
|       | and Favipiravir   | Uganda outbreak of   | susceptible target cells,    | approximately 2.8. Further,            | edge about Ebola virus        |                               |
|       | restrain Ebola    | the year 2000. This  | and the infected into non-   | it was found that combining            | spread within-host and de-    |                               |
|       | virus replication | data were adapted    | productively infected cells  | siRNA-based and nucleo-                | termined optimal use of       |                               |
|       | and reduce EVD    | from the literature. | and productively infected    | side analog-based therapies            | therapies.                    |                               |
|       | infection.        |                      | cells. The model was fitted  | with an $80\%$ inhibition rate         |                               |                               |
|       |                   |                      | to the fatal and non-fatal   | was more likely efficient for          |                               |                               |
|       |                   |                      | case data. The effect of     | otherwise fatal cases even             |                               |                               |
|       |                   |                      | anti-Ebola virus therapies,  | if it was started four days            |                               |                               |
|       |                   |                      | including anti-body based,   | after the onset of symptoms.           |                               |                               |
|       |                   |                      | siRNA-based, and nucleo-     | For non-fatal cases, mono-             |                               |                               |
|       |                   |                      | side analog-based therapies, | therapies were found to be             |                               |                               |
|       |                   |                      | was assessed.                | sufficient.                            |                               |                               |
|       |                   |                      |                              |                                        |                               |                               |

| Ref. | Research ques-      | Data                 | Methodology                   | Conclusions                  | Advantages                   | Limitations/gaps           |
|------|---------------------|----------------------|-------------------------------|------------------------------|------------------------------|----------------------------|
|      | tion                |                      |                               |                              |                              |                            |
| [67] | Analysing Ebola     | An EVD viral shed-   | The proposed method was       | The mean of the infectious   | The model employed a         | The study assumed the ba-  |
|      | viral load dataset. | ding data were       | a compartment model com-      | period was found to be $5.3$ | modern a Bayesian Markov     | sic reproduction number to |
|      |                     | adapted from the     | posed of three stages, start- | days for a low viraemia      | chain Monte Carlo method,    | be fixed while this might  |
|      |                     | literature. The data | ing with an initial viraemia  | and 6.8 days for a high      | reproduced the trends of the | generally be slightly dif- |
|      |                     | were stratified into | followed by a second stage    | viraemia.                    | data, and estimated some     | ferent depending on the    |
|      |                     | high and low vi-     | which consists of a high and  |                              | natural history parameters   | contact structure and mix- |
|      |                     | raemic disease path- | a low viraemia and a final    |                              | of EVD.                      | ing patterns.              |
|      |                     | ways for a sample of | stage that is death or recov- |                              |                              |                            |
|      |                     | hospitalised Ebola   | ery. Model parameters were    |                              |                              |                            |
|      |                     | cases for the 1995   | estimated using a Bayesian    |                              |                              |                            |
|      |                     | DR Congo outbreak.   | approach.                     |                              |                              |                            |

| Ref.  | Research ques-  | Data                 | Methodology                   | Conclusions                           | Advantages                   | Limitations/gaps            |
|-------|-----------------|----------------------|-------------------------------|---------------------------------------|------------------------------|-----------------------------|
|       | tion            |                      |                               |                                       |                              |                             |
| [117] | Understanding   | Model parameter es-  | The within-host viral load    | The overall estimate of               | This study considered a      | The study did not consider  |
|       | the effect of   | timates were adapted | dynamics was modelled         | $\mathcal{R}_0$ was found to be 1.43. | multi-scale aspect of mod-   | heterogeneity regarding     |
|       | the within-host | from the literature. | using a logistic model. It    | However, this estimate was            | elling, connecting within-   | spatial locations. However, |
|       | pathogen dy-    |                      | was embedded with an age-     | different among different             | host and between-host        | people within-households    |
|       | namics into the |                      | specific contact network      | age groups, with the highest          | scales. It allowed for as-   | and those located close to  |
|       | between-host    |                      | to express transmission       | being 4.7 for the age group           | sessing the timing and the   | EVD patients such neigh-    |
|       | dynamics.       |                      | between individuals. A        | of 10 to 14 years old. Mass           | effectiveness of vaccination | bours were believed to have |
|       |                 |                      | variation of the disease sus- | vaccination of $85\%$ cover-          | strategies and indicated the | a higher transmission as    |
|       |                 |                      | ceptibility between different | age was found to eradicate            | importance of considering    | compared to other commu-    |
|       |                 |                      | age groups and the initial    | the disease if it was started         | EVD heterogeneity among      | nity members [89].          |
|       |                 |                      | viral load exposure was       | between five months be-               | different age groups.        |                             |
|       |                 |                      | considered.                   | fore and one week after the           |                              |                             |
|       |                 |                      |                               | outbreak.                             |                              |                             |

| Ref. | Research ques-    | Data                | Methodology                 | Conclusions                             | Advantages                | Limitations/gaps               |
|------|-------------------|---------------------|-----------------------------|-----------------------------------------|---------------------------|--------------------------------|
|      | tion              |                     |                             |                                         |                           |                                |
| [11] | Determining       | Model parameters    | A compartment model was     | In the case of a virus-free             | The study focused on      | The model was relatively       |
|      | whether the       | were either assumed | considered in which envi-   | environment, the number of              | environment-to-humans-    | simple. It did not account     |
|      | effect of en-     | or adapted from the | ronmental transmission was  | infected individuals either             | to-environment transmis-  | for realistic stages of EVD    |
|      | vironmental       | literature.         | considered as one compart-  | became extinct or constant              | sion routes, and the the- | infectiousness, including      |
|      | transmission of   |                     | ment, and the recruitment   | (endemic) in the long run               | oretical and numerical    | the incubation period. Fur-    |
|      | EVD, including    |                     | of such transmission was    | depending on the value of               | analyses were carefully   | ther, the population was       |
|      | poor hygienic     |                     | assumed to be constant.     | $\mathcal{R}_0$ . In the case of a non- | conducted. The existence  | assumed to be homoge-          |
|      | practices and the |                     | Further, infectious living  | virus-free environment, a               | of an endemic equilibrium | neously mixed. Also, the       |
|      | consumption of    |                     | and deceased individu-      | constant number of infected             | with environmental trans- | model considered the trans-    |
|      | contaminated      |                     | als were assumed to shed    | individuals in the long run             | mission could explain the | mission rate to be constant;   |
|      | bush meat, can    |                     | infectiousness in the envi- | was found. This number                  | re-occurrence of EVD in   | however, in reality, this var- |
|      | explain the re-   |                     | ronment. The existence of   | was invariant to any change             | Africa.                   | ied depending on the level     |
|      | occurrence of     |                     | non-negative solutions and  | in the initial number of                |                           | of control intervention and    |
|      | EVD in Africa.    |                     | the stability analysis were | infectious individuals when             |                           | people's perception of the     |
|      |                   |                     | established.                | there was no virus shed by              |                           | disease.                       |
|      |                   |                     |                             | the contagious individuals              |                           |                                |
|      |                   |                     |                             | and the deceased in the                 |                           |                                |

environment.

| Ref. | Research ques-   | Data                | Methodology                   | Conclusions                         | Advantages                   | Limitations/gaps             |
|------|------------------|---------------------|-------------------------------|-------------------------------------|------------------------------|------------------------------|
|      | tion             |                     |                               |                                     |                              |                              |
| [10] | Understanding    | EVD natural his-    | A deterministic compart-      | Non-negativity and bound-           | The introduced paradigm      | The study did not consider   |
|      | the spread of    | tory parameter val- | ment model was considered.    | edness of the solutions of          | was a novel model that ac-   | EVD spread among differ-     |
|      | EVD and predict- | ues utilised in the | It described the interplay of | the full model were estab-          | counted for the spread of    | ent geographical locations.  |
|      | ing future EVD   | modelling were      | EVD transmission within       | lished. Further, the basic          | EVD in a complex life ecol-  | This is particularly impor-  |
|      | outbreaks.       | contained in the    | and among three essential     | reproduction number $\mathcal{R}_0$ | ogy involving the reservoir, | tant consideration since     |
|      |                  | literature.         | populations: fruit bats, non- | was found for the disease-          | the non-human primates       | EVD spillover usually oc-    |
|      |                  |                     | human primates and other      | free equilibrium of the full        | and bush animals, and the    | curs in remote areas and     |
|      |                  |                     | animals, and the human        | model, and global stability         | human population.            | spreads to urban regions     |
|      |                  |                     | population. Furthermore,      | analysis of this equilibrium        |                              | with the mobility of people. |
|      |                  |                     | a new compartment com-        | was established.                    |                              |                              |
|      |                  |                     | posed of the free virus shed  |                                     |                              |                              |
|      |                  |                     | in the environment by in-     |                                     |                              |                              |
|      |                  |                     | fectious individuals was      |                                     |                              |                              |
|      |                  |                     | considered.                   |                                     |                              |                              |

| Ref.  | Research ques-    | Data                  | Methodology                   | Conclusions                   | Advantages                | Limitations/gaps           |
|-------|-------------------|-----------------------|-------------------------------|-------------------------------|---------------------------|----------------------------|
|       | tion              |                       |                               |                               |                           |                            |
| [134] | Predicting the    | Several datasets      | The region of interest in the | Annual EVD spillover risk     | This study associated new | The study did not consider |
|       | timing and lo-    | were integrated       | study was the part of Africa, | peaks were found in Cen-      | areas that had not been   | diet and hygiene factors,  |
|       | cation of EVD     | including EVD         | which receives over 500       | tral Africa, while at some    | viewed previously to have | and the eating of contam-  |
|       | spillover events. | spillover origin,     | millimetres of rainfall every | months of the year, new ar-   | a risk of EVD spillover,  | inated bush meat when      |
|       |                   | timing, spatial pre-  | year. A statistical modelling | eas were found to be at high  | including East Africa and | predicting the spread of   |
|       |                   | dictors and other     | approach was used for asso-   | risks, including East Africa  | Madagascar.               | EVD.                       |
|       |                   | triggering candi-     | ciating EVD spillovers with   | and Madagascar. Further,      |                           |                            |
|       |                   | dates. These datasets | spatiotemporally changing     | the risk of EVD spillover     |                           |                            |
|       |                   | were obtained from    | covariates such as rainfall,  | was found to be the lowest    |                           |                            |
|       |                   | various resources     | vegetations, and the size of  | in the driest months of the   |                           |                            |
|       |                   | including the WHO     | the human population.         | year, while this risk peaks   |                           |                            |
|       |                   | and the Columbia      |                               | in the transition periods be- |                           |                            |
|       |                   | University Center for |                               | tween wet and dry seasons.    |                           |                            |
|       |                   | International Earth   |                               | An increase in the human      |                           |                            |
|       |                   | Science Information   |                               | population was also found     |                           |                            |
|       |                   | Network.              |                               | to increase the risk of EVD   |                           |                            |
|       |                   |                       |                               | spillover.                    |                           |                            |
|       |                   |                       |                               |                               |                           |                            |

| Ref. | <b>Research</b> ques- | Data                   | Methodology                          | Conclusions                            | Advantages                    | Limitations/gaps            |
|------|-----------------------|------------------------|--------------------------------------|----------------------------------------|-------------------------------|-----------------------------|
|      | tion                  |                        |                                      |                                        |                               |                             |
| [86] | Investigating the     | WHO data on the        | EVD growth rates were es-            | The spatial distribution of            | The model was used for es-    | Early-stage EVD data used   |
|      | role of socio-        | weekly EVD inci-       | timated for the early stage          | the disease at the districts,          | timating the growth rates at  | in this modelling were gen- |
|      | demographic           | dences at the subna-   | of the outbreak using a gen-         | préféctures or counties with           | the sub-national level in the | erally unreliable, under-   |
|      | factors in the        | tional level in Sierra | eralised linear mixed-effects        | the highest transmission               | three countries simultane-    | reported, or reported with  |
|      | spread of EVD.        | Leone, Guinea, and     | statistical model (GLMM).            | rate in Liberia, Guinea,               | ously, unlike some models     | delays [32]. Further, the   |
|      |                       | Liberia.               | Based on this estimation             | and Sierra Leone, respec-              | (e.g., [57]) that consider    | model has assumed the pop-  |
|      |                       |                        | and the reported serial in-          | tively, appeared to cluster            | each outbreak in a region     | ulation of the sub-national |
|      |                       |                        | terval distribution, the basic       | regionally, whether there              | separately.                   | regions to be homoge-       |
|      |                       |                        | reproduction number $\mathcal{R}_0$  | is a national border or not.           |                               | neously mixed.              |
|      |                       |                        | was derived. An association          | A positive association was             |                               |                             |
|      |                       |                        | between socio-demographic            | also found between $\mathcal{R}_0$ and |                               |                             |
|      |                       |                        | factors and $\mathcal{R}_0$ was mea- | urbanization factors such as           |                               |                             |
|      |                       |                        | sured using a uni-variable           | high population density and            |                               |                             |
|      |                       |                        | linear regression model.             | high wealth index.                     |                               |                             |
|      |                       |                        |                                      |                                        |                               |                             |

| Ref.  | Research ques- | Data               | Methodology                    | Conclusions                | Advantages                    | Limitations/gaps             |
|-------|----------------|--------------------|--------------------------------|----------------------------|-------------------------------|------------------------------|
|       | tion           |                    |                                |                            |                               |                              |
| [185] | Investigating  | EVD confirmed      | A Bayesian hierarchical        | EVD risk was associated    | This study suggested envi-    | The causative relations      |
|       | some demo-     | cases data were    | Poisson model was used to      | with increases in rain-    | ronmental and population-     | between the identified asso- |
|       | graphic and    | obtained from the  | determine EVD risk and to      | fall, the area that urban  | level characteristics associ- | ciations and the human-to-   |
|       | environmental  | WHO. Demographic   | assess the spatial variability | land covers, the number of | ated with EVD.                | human spread of EVD with     |
|       | predictors of  | and environmental  | described by the selected      | households not owning a    |                               | a particular focus on how    |
|       | EVD spread.    | data were obtained | predictors.                    | radio, and the number of   |                               | the human's mobility and     |
|       |                | from demographic   |                                | years of education.        |                               | healthcare accessibility are |
|       |                | and health surveys |                                |                            |                               | affected by these risks were |
|       |                | and satellites.    |                                |                            |                               | not studied.                 |

| Ref. Research    | ques- Data                    | Methodology                 | Conclusions                  | Advantages                  | Limitations/gaps            |
|------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|
| tion             |                               |                             |                              |                             |                             |
| [148] Systematic | ally Cumulative reported      | The early stage of EVD      | A positive association was   | Three different models      | The data used contained     |
| investigatir     | ng the cases data at the sub- | growth rates at the sub-    | found between areas of a     | were used to determine      | case uncertainty due to re- |
| demograph        | ic and national level of the  | national level in the three | higher level of education    | the best fit for the EVD    | source limitations in West  |
| socio-econ       | omic three countries were     | countries was estimated     | and higher severity of EVD.  | growth rates. Furthermore,  | Africa and the resemblance  |
| predictors       | of obtained from the          | using polynomial, logis-    | This was explained by also   | the factors which were      | of EVD symptoms with        |
| EVD at the       | e sub- WHO.                   | tic, and exponential growth | finding a positive associa-  | found to be associated with | other diseases such as      |
| national lev     | vel in                        | models. These rates and     | tion between a high severity | the severity of EVD can     | Malaria [32]. Further, it   |
| Guinea, Li       | beria,                        | the epidemic size were then | of the epidemic and other    | be used in the future by    | contained a delay between   |
| and Sierra       | Leone.                        | associated with various     | factors that are strongly    | countries to understand the | the time a case was found   |
|                  |                               | socio-economic and de-      | associated with education,   | spread of EVD in real-time  | until it was documented     |
|                  |                               | mographic features using    | such as urbanicity, wealth,  | and to determine areas of   | nationally first and by the |
|                  |                               | regression models.          | and population density.      | high risks.                 | WHO afterwards.             |

| Ref. | Research ques-    | Data                | Methodology                | Conclusions                   | Advantages                   | Limitations/gaps             |
|------|-------------------|---------------------|----------------------------|-------------------------------|------------------------------|------------------------------|
|      | tion              |                     |                            |                               |                              |                              |
| [62] | Forecasting fu-   | EVD cases and death | A simple SIR model was     | In the absence of interven-   | The SIR model in the study   | The study predicted reoc-    |
|      | ture reoccurrence | data for Guinea,    | proposed in the absence of | tion measures, the model      | accounted for vitality rates | curance of EVD. However,     |
|      | of EVD.           | Liberia, and Sierra | intervention. The model    | was used to predict a high    | that many models over-       | it is not simple to predict  |
|      |                   | Leone were used in  | was extended with detailed | mortality rate for the out-   | looked. This consideration   | EVD reoccurrence with-       |
|      |                   | the modelling. The  | compartments, and differ-  | break and to forecast the     | is essential in modelling    | out accounting for factors   |
|      |                   | data were obtained  | ent types of intervention  | epidemic to reoccur in        | a disease that lasts for an  | that contribute to the prob- |
|      |                   | from the WHO.       | measures and transmission  | 2035. Then it will continue   | extended period, such as     | ability of EVD spillover.    |
|      |                   |                     | routes were considered.    | after eight to nine years. As | the 2014 WA EVD and          | These include environmen-    |
|      |                   |                     |                            | a result, mass vaccinations   | the 2018-2020 DR Congo       | tal changes, urbanicity, and |
|      |                   |                     |                            | were proposed.                | outbreak [11].               | the consumption of bush      |
|      |                   |                     |                            |                               |                              | meat [134].                  |

| Ref. | Research ques-   | Data                   | Methodology                    | Conclusions                 | Advantages                     | Limitations/gaps             |
|------|------------------|------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|
|      | tion             |                        |                                |                             |                                |                              |
| [95] | The impact of    | EVD reported cases     | A compartment model was        | It was found that media     | The model had successfully     | The bats' spillover rate was |
|      | media coverage   | and deaths for         | used. The model was com-       | coverage to have signifi-   | combined exponentially         | assumed to be zero during    |
|      | on controlling   | Guinea, Liberia, and   | posed of susceptible $(S)$ ,   | cantly reduced EVD peak-    | declining transmission rates   | wet seasons. However,        |
|      | the spread of    | Sierra Leone were      | exposed $(E)$ , quarantined    | ing time and value and that | resulting from people con-     | numerous studies (e.g.,      |
|      | EVD and the      | obtained from the      | (Q), infectious $(I)$ , hospi- | infected bats might have    | sciousness about the spread    | [148, 185, 134]) associated  |
|      | role of bats on  | Centers for Disease    | talised $(H)$ and deceased     | likely been the source of   | of the disease and the likeli- | wet seasons with enhanced    |
|      | EVD spillover on | Control and Preven-    | but not buried $(F)$ compart-  | the EVD spillover. Further, | hood of EVD spillover from     | risk of EVD spillover.       |
|      | humans.          | tion (CDC) website.    | ments. A Markov Chain          | increasing the number of    | infected bats. It utilised     |                              |
|      |                  | Model parameters       | Monte Carlo simulation         | daily captured infectious   | available EVD cumula-          |                              |
|      |                  | were either adapted    | was used to fit the model      | fruit bats only reduced the | tive case and death data to    |                              |
|      |                  | from the literature or | to the cumulative case and     | peak timing and not the     | estimate the community,        |                              |
|      |                  | estimated.             | death data and for searching   | peak value.                 | healthcare, and the bat rate   |                              |
|      |                  |                        | the optimal values for the     |                             | of infection.                  |                              |
|      |                  |                        | estimated parameters.          |                             |                                |                              |
|      |                  |                        |                                |                             |                                |                              |
| Ref. | Research ques-     | Data                   | Methodology                  | Conclusions                  | Advantages                     | Limitations/gaps            |
|------|--------------------|------------------------|------------------------------|------------------------------|--------------------------------|-----------------------------|
|      | tion               |                        |                              |                              |                                |                             |
| [48] | Characterising     | A database of EVD      | EVD cases were mapped        | The disease invasion at      | The study integrated rich      | The study has not inves-    |
|      | the spread of      | suspected and in-      | to their geographical loca-  | chiefdoms was found to       | EVD data available for         | tigated whether age have    |
|      | EVD and un-        | fected cases in Sierra | tions, and statistical meth- | be remarkably correlated     | an extended period. It ac-     | played an important factor  |
|      | derstanding the    | Leone from May         | ods were used to analyse     | with the density of the pop- | counted for different inter-   | in the spread of EVD. The   |
|      | impact of con-     | 2014 to September      | the spatiotemporal tra-      | ulation, the closeness of    | vention phases. Addition-      | EVD patient dataset used in |
|      | trol interventions | 2015 was obtained      | jectories. Poisson mod-      | treatment centres, and the   | ally, this study was used to   | the study can be adapted to |
|      | in the 2014 WA     | from the Sierra        | elling was used to model     | transportation network. At   | model household transmis-      | explore this issue.         |
|      | EVD in Sierra      | Leone Ministry of      | case importation and local   | the chiefdom level, the sec- | sibility and to analyse the    |                             |
|      | Leone.             | Health and Sanita-     | transmission by adjusting    | ondary infection caused by   | spatiotemporal dynamics        |                             |
|      |                    | tion (SLMHS). The      | socio-demographic and in-    | an infected person per week  | of EVD. Furthermore, the       |                             |
|      |                    | database also con-     | tervention factors. Chain    | was found to have been re-   | study identified vital factors |                             |
|      |                    | tained individual      | binomial distribution was    | duced by $65\%$ at the end   | contributing to the spread     |                             |
|      |                    | information includ-    | used to model households'    | of December 2014, and the    | of EVD and assessed the        |                             |
|      |                    | ing age, gender,       | transmissibility (i.e., the  | household transmissibility   | impact of control interven-    |                             |
|      |                    | residential address,   | potential infection of an    | was also decreased by about  | tions.                         |                             |
|      |                    | and EVD onset date.    | index case at a household    | 80% after December 2014.     |                                |                             |
|      |                    |                        | to another member in the     |                              |                                |                             |
|      |                    |                        | household).                  |                              |                                |                             |

| Ref.  | Research ques- | Data               | Methodology                  | Conclusions                  | Advantages                   | Limitations/gaps              |
|-------|----------------|--------------------|------------------------------|------------------------------|------------------------------|-------------------------------|
| t     | tion           |                    |                              |                              |                              |                               |
| [158] | Analysing EVD  | The WHO cumula-    | Different stages of EVD      | It was found that disease    | The study considered a       | The study considered the      |
| C     | dynamics in    | tive EVD reported  | such as incubation, in-      | reduction in Guinea and      | continuous variable for the  | entire population to be       |
| (     | Guinea and     | cases for the 2014 | fectiousness, hospitali-     | Sierra Leone was caused      | age of disease since infec-  | homogeneously mixed.          |
| S     | Sierra Leone.  | WA EVD in Guinea   | sation were considered       | by an increased early hos-   | tion which most studies      | However, EVD is gener-        |
|       |                | and Sierra Leone.  | as a different age of dis-   | pitalisation or isolation of | approximate using disease    | ally highly heterogeneous     |
|       |                |                    | ease since infection, and an | cases. The latter was also   | compartments. Therefore,     | depending on the contact      |
|       |                |                    | age-structured model was     | connected with an increase   | the study accounted for all  | structure and the population  |
|       |                |                    | applied. Removal rates due   | of case identification or    | types of infection including | density [3, 82]. On the other |
|       |                |                    | to isolation or hospitali-   | contact tracing.             | sexual transmission result-  | hand, different types of      |
|       |                |                    | sation, unreported disease   |                              | ing from EVD survivors       | functions can be employed     |
|       |                |                    | mortality, and recovery      |                              | and post-death infection.    | for the removal rates to      |
|       |                |                    | were connected with epi-     |                              |                              | accommodate new applica-      |
|       |                |                    | demic outcomes. Further,     |                              |                              | tions, for example, studying  |
|       |                |                    | the impact of these rates    |                              |                              | the impact of vaccinations.   |
|       |                |                    | was quantified.              |                              |                              |                               |
|       |                |                    |                              |                              |                              |                               |

| Ref.  | Research ques-  | Data                   | Methodology                 | Conclusions                           | Advantages                  | Limitations/gaps             |
|-------|-----------------|------------------------|-----------------------------|---------------------------------------|-----------------------------|------------------------------|
|       | tion            |                        |                             |                                       |                             |                              |
| [118] | Characterising  | Model parameters       | A deterministic compart-    | A threshold parameter $\mathcal{R}_0$ | This study provided a       | The study did not provide a  |
|       | the spread of   | were either adapted    | ment model was proposed.    | was derived as a function             | comprehensive model in      | complete treatment on de-    |
|       | EVD in an im-   | from the literature or | The model accounted         | of the fraction of suspected          | a complex-life environment  | termining the most crucial   |
|       | perfect quaran- | assumed.               | for quarantine and non-     | cases who will be quaran-             | in which quarantine was     | parameters in the spread of  |
|       | tine situation. |                        | quarantine states. It was   | tined. When this fraction             | not efficient. It accounted | the disease and the stochas- |
|       |                 |                        | used to study EVD in the    | was zero, the infection was           | for those individuals who   | tic effects in the disease   |
|       |                 |                        | community and healthcare    | high and occurred in the              | escaped quarantine and      | growth.                      |
|       |                 |                        | settings. Individuals were  | community. When all cases             | returned at a later stage.  |                              |
|       |                 |                        | assumed to be suscepti-     | were quarantined, the in-             |                             |                              |
|       |                 |                        | ble, suspected, probable,   | fection only occurred in              |                             |                              |
|       |                 |                        | infected with either early  | treatment centres. An en-             |                             |                              |
|       |                 |                        | dry or late wet stages, and | demic equilibrium existed             |                             |                              |
|       |                 |                        | removed due to recovery or  | when $\mathcal{R}_0 > 1$ whose size   |                             |                              |
|       |                 |                        | EVD death.                  | was determined by the mag-            |                             |                              |
|       |                 |                        |                             | nitude of $\mathcal{R}_0$ .           |                             |                              |

| Ref. | Research ques-   | Data                  | Methodology                  | Conclusions                  | Advantages                   | Limitations/gaps           |
|------|------------------|-----------------------|------------------------------|------------------------------|------------------------------|----------------------------|
|      | tion             |                       |                              |                              |                              |                            |
| [88] | Understanding    | The observed EVD      | The infection rates were     | In Liberia and Sierra Leone, | The study assumed people     | The study assumed the pop- |
|      | the effects of   | cases in Guinea,      | assumed to have differ-      | the scale-free and the Gaus- | to have different tendencies | ulation in each country to |
|      | infectiousness   | Liberia and Sierra    | ent distributions including  | sian distributions were      | to be infected. For exam-    | have the same distribution |
|      | heterogeneity    | Leone were used in    | constant, scale-free, Gaus-  | found to be more favoured    | ple, individuals who closely | for the rate of infection. |
|      | in the spread of | the study. These data | sian, uniform and normal     | in fitting the data compared | care for patients have a     | However, EVD trajectories  |
|      | EVD.             | were collected by the | distributions. The rates of  | to the uniform distribution. | higher chance of been in-    | were different among the   |
|      |                  | health authorities in | infection were coupled with  | In Guinea, on the other      | fected compared to other     | different regions in each  |
|      |                  | those countries.      | the standard $SIR$ model.    | hand, all distributions fit- | members in a community.      | country depending on the   |
|      |                  |                       | The $SIR$ model was fitted   | ted the data better than the |                              | contact structure and mix- |
|      |                  |                       | to the EVD data in the three | constant distribution.       |                              | ing patterns [154, 82].    |
|      |                  |                       | countries.                   |                              |                              |                            |
|      |                  |                       |                              |                              |                              |                            |

| Ref. | Research ques-<br>tion                  | Data                                                                           | Methodology                                                                                                                                                                                                                                                                                                                                                                                          | Conclusions                                                                                                                                                                                                                                       | Advantages                                                                                                                                    | Limitations/gaps                                                                            |
|------|-----------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| [129 | Characterising<br>the spread of<br>EVD. | The WHO EVD data<br>of Liberia for the<br>period of April to<br>December 2014. | The approach used was an<br>activity-driven model with<br>a time-varying network<br>in which the set of nodes<br>represented individuals,<br>and the edges represented<br>contacts between these<br>individuals. Individuals<br>were classified into differ-<br>ent disease compartments.<br>The model was fitted to<br>the WHO data, and used to<br>assess time-varying inter-<br>vention measures. | The model made a one-<br>year projection. Further,<br>it was deduced that the<br>earlier application of the<br>intervention policies would<br>produce a more significant<br>reduction of the infected<br>cases and the period of the<br>outbreak. | The study accounted for<br>social and behavioural ac-<br>tivities in the network of<br>contacts using the function<br>of activity potentials. | The study did not account<br>for or describe spatial loca-<br>tions of contacts explicitly. |

| Ref.  | Research ques-     | Data                 | Methodology                 | Conclusions                    | Advantages                              | Limitations/gaps           |
|-------|--------------------|----------------------|-----------------------------|--------------------------------|-----------------------------------------|----------------------------|
|       | tion               |                      |                             |                                |                                         |                            |
| [144] | Proposing a hy-    | The cumulative and   | A compartment model of      | The basic reproduction         | The study obtained the con-             | The structure of the model |
|       | brid stochastic-   | incidence cases data | the susceptible-exposed-    | number for Guinea, Liberia,    | fidence interval of $\mathcal{R}_0$ and | did not include realistic  |
|       | deterministic      | of the 2014 WA       | infectious-recovered-       | and Sierra Leone were          | suggested including process             | EVD differences in trans-  |
|       | approach for esti- | EVD were obtained    | deceased type was used.     | found to be $1.24, 2.06$ , and | noise to create a narrower              | mission among the popu-    |
|       | mating the basic   | from the WHO web-    | A stochastic version of the | 1.71, respectively. The $95%$  | confidence interval.                    | lation. Some of these were |
|       | reproduction       | site. Other model    | model was simulated using   | confidence interval to these   |                                         | recorded to be variations  |
|       | number.            | parameters were ei-  | the Gillespie framework fo- | values were respectively       |                                         | among the different dis-   |
|       |                    | ther assumed or also | cusing only on realisations | (1.04, 1.42), (1.93, 2.27)     |                                         | tricts [154, 131, 36], age |
|       |                    | adapted from the     | that produce more than $50$ | and $(1.40, 1.82)$ . Further,  |                                         | groups [5], and community  |
|       |                    | literature.          | cases.                      | it was found that the dif-     |                                         | structure [82].            |
|       |                    |                      |                             | ference between fitting to     |                                         |                            |
|       |                    |                      |                             | cumulative or incidence        |                                         |                            |

cases to be negligible.

| Ref. | Research ques-   | Data                   | Methodology                   | Conclusions                 | Advantages                  | Limitations/gaps            |
|------|------------------|------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|
|      | tion             |                        |                               |                             |                             |                             |
| [55] | Analysing the    | The EVD incidence      | A discrete-time Markov        | Model parameters, includ-   | The study presented an im-  | The model did not account   |
|      | 2014 WA EVD      | data that was utilised | chain structure of EVD        | ing the incubation period,  | portant stochastic tool for | for transmission in the     |
|      | in Sierra Leone. | in the modelling       | transmission was con-         | EVD onset to recovery,      | understanding EVD dynam-    | healthcare context nor the  |
|      |                  | were adapted from      | structed. This structure was  | onset to death, and the ef- | ics. It enabled estimating  | variation of transmission   |
|      |                  | the Ministry of        | associated with a set of or-  | fective reproductive number | the effective reproductive  | among the different regions |
|      |                  | Health and San-        | dinary differential equations | were estimated. The latter  | number while accounting     | in Sierra Leone.            |
|      |                  | itation of Sierra      | when the population was       | was found to be robust to   | for under-reporting.        |                             |
|      |                  | Leone. The data        | large. A Bayesian inferen-    | under-reporting.            |                             |                             |
|      |                  | were reported for the  | tial framework was used to    |                             |                             |                             |
|      |                  | period of May 2014     | estimate model parameters.    |                             |                             |                             |
|      |                  | to January 2015.       | The model accounted for       |                             |                             |                             |
|      |                  |                        | under-reporting in the data   |                             |                             |                             |
|      |                  |                        | using the negative binomial   |                             |                             |                             |
|      |                  |                        | distribution.                 |                             |                             |                             |

 Table A.1 – Continued from previous page

| Ref.  | Research ques-   | Data                | Methodology                | Conclusions                  | Advantages                    | Limitations/gaps              |
|-------|------------------|---------------------|----------------------------|------------------------------|-------------------------------|-------------------------------|
|       | tion             |                     |                            |                              |                               |                               |
| [125] | Estimating EVD   | EVD onset of trans- | An online search was con-  | The mean incubation period   | The study used news media     | An online news media re-      |
|       | spreading param- | mission and out-    | ducted about recorded EVD  | and serial interval were     | reports. The advantage of     | port where the study data     |
|       | eters.           | comes data that     | reports, and consequently, | estimated to be 12.5 days    | using these data is that they | were obtained might in-       |
|       |                  | were used were re-  | a transmission chain was   | and 19.4 days, respectively. | might identify vital and      | clude misinformation or       |
|       |                  | ported in various   | built. Model parameters    |                              | detailed information related  | disclosed personal details of |
|       |                  | online news media   | were estimated and com-    |                              | to the transmission which     | individuals. Further, these   |
|       |                  | sources in Nigeria  | pared with estimates from  |                              | might otherwise become        | online resources might be     |
|       |                  | and Liberia.        | other studies.             |                              | undetected. Further, these    | altered without prior notice. |
|       |                  |                     |                            |                              | data are often published in   |                               |
|       |                  |                     |                            |                              | near the actual time.         |                               |

| Ref.  | Research ques-   | Data                | Methodology                  | Conclusions                   | Advantages                 | Limitations/gaps            |
|-------|------------------|---------------------|------------------------------|-------------------------------|----------------------------|-----------------------------|
|       | tion             |                     |                              |                               |                            |                             |
| [137] | Analysing EVD    | The WHO 2014 WA     | The model used was a small   | The simulation revealed       | The framework combined     | The strength of these types |
|       | in Sierra Leone  | EVD data for Sierra | world network and agent-     | a decline in the epidemic     | agent-based modelling      | of methodologies usually    |
|       | for the period   | Leone.              | based approach in which      | trajectories from 21 Decem-   | and complex network ap-    | depends on the accuracy     |
|       | of 21 December   |                     | individuals and their daily  | ber 2014 to 18 February       | proaches simultaneously.   | of the data supplied in the |
|       | 2014 to 17 April |                     | social interactions were     | 2015 compared to previ-       | Furthermore, various pa-   | modelling. Issues such      |
|       | 2015.            |                     | simulated. The transition    | ous months. The effective     | rameters were evaluated,   | as under-reporting were     |
|       |                  |                     | between the different epi-   | reproductive number $R_t$     | and an accurate short term | common in the 2014 WA       |
|       |                  |                     | demic states was mod-        | was estimated to be 0.7 in    | forecast was made.         | EVD data [35].              |
|       |                  |                     | elled using a discrete non-  | this period. However, that    |                            |                             |
|       |                  |                     | Markovian random process.    | increased to 1.98 in the next |                            |                             |
|       |                  |                     | Model parameters were es-    | two months. Further, the      |                            |                             |
|       |                  |                     | timated by fitting the model | model projected that the      |                            |                             |
|       |                  |                     | to the WHO reported data     | epidemic would increase       |                            |                             |
|       |                  |                     | using optimisation methods.  | through July 2015.            |                            |                             |

| Ref. | Research ques-   | Data                  | Methodology                  | Conclusions                    | Advantages                   | Limitations/gaps              |
|------|------------------|-----------------------|------------------------------|--------------------------------|------------------------------|-------------------------------|
|      | tion             |                       |                              |                                |                              |                               |
| [151 | ] Estimating EVD | The contact data be-  | A stochastic compartment     | The emergence probability,     | The model was used to        | The study did not assume      |
|      | emergence prob-  | tween patients and    | model was proposed. The      | defined to be the number       | assess the risk of EVD       | any indirect transmission     |
|      | ability and sec- | healthcare workers    | studied population was di-   | of simulations having a        | occurrence at hospitals in   | that could occur, for exam-   |
|      | ondary incidence | were adapted from     | vided into patients, nurses, | minimum of one secondary       | areas that are un-associated | ple, from poor cleaning or    |
|      | cases when a     | the literature. This  | and physicians. The impact   | incidence case divided by      | with EVD risk. Crucially, it | ineffective decontamination   |
|      | patient with un- | dataset was com-      | of varying the transmission  | the whole number of sim-       | was assumed EVD patients     | in hospitals. Further, it was |
|      | detected EVD is  | posed of 200 patients | probability per contact, the | ulations, was estimated.       | to be in the dry phase, and  | assumed isolation efficacy    |
|      | hospitalised.    | and 46 healthcare     | daily number of contacts,    | As the transmission proba-     | either misdiagnosed or       | to be $100\%$ as soon the pa- |
|      |                  | workers, including    | and the duration of EVD      | bility increased, the emer-    | under-diagnosed.             | tient was diagnosed with      |
|      |                  | 27 nurses and 11      | non-specific symptoms        | gence probability moder-       |                              | EVD. However, achieving       |
|      |                  | physicians.           | were studied. The Gille-     | ately increased from $7\%$     |                              | such an efficacy might be     |
|      |                  |                       | spie algorithm was used to   | to a plateau at about $84\%$ . |                              | an overly optimistic as-      |
|      |                  |                       | simulate the model.          | Further, nurses were re-       |                              | sumption given the high       |
|      |                  |                       |                              | marked to have a higher        |                              | contagiousness of EVD.        |
|      |                  |                       |                              | EVD emergence probability      |                              |                               |
|      |                  |                       |                              | as compared to physicians      |                              |                               |
|      |                  |                       |                              | or non-EVD patients.           |                              |                               |

| Ref.  | Research ques-     | Data                 | Methodology                   | Conclusions                  | Advantages                  | Limitations/gaps             |
|-------|--------------------|----------------------|-------------------------------|------------------------------|-----------------------------|------------------------------|
|       | tion               |                      |                               |                              |                             |                              |
| [140] | Proposing an       | The WHO EVD data     | A compartment model of        | It was found that the ap-    | The study considered a      | The compartments assumed     |
|       | alternative ap-    | of Sierra Leone and  | the SEIR type was pro-        | proach can produce a mod-    | time-varying transmission   | in the model were relatively |
|       | proach to the      | Liberia for the 2014 | posed. Consequently, a        | erate prediction of the im-  | rate and employed a math-   | simplified stages for EVD    |
|       | nonlinear opti-    | WA EVD.              | linear Volterra-type inte-    | pact of the epidemic. For    | ematical method to avoid    | transmission. For example,   |
|       | misation method    |                      | gral equation was derived     | example, using the modified  | the problem of parameter    | it did not account for post- |
|       | of solving the     |                      | from the model equations.     | truncated singular value     | identifiability that might  | death infection of EVD nor   |
|       | problem of fitting |                      | The solution to the integral  | decomposition algorithm      | result from limited data of | sexual transmission from     |
|       | model parame-      |                      | equation was projected into   | for two districts in Sierra  | an emerging disease.        | male survivors.              |
|       | ters to data.      |                      | a finite subspace spanned     | Leone, the transmission rate |                             |                              |
|       |                    |                      | by Legendre polynomials,      | was found to adequately      |                             |                              |
|       |                    |                      | and three regularizing al-    | been reduced in urban set-   |                             |                              |
|       |                    |                      | gorithms were compared to     | tings. Still, this decline   |                             |                              |
|       |                    |                      | assess the reliability of the | in infections was found      |                             |                              |
|       |                    |                      | forecasts.                    | to be more erratic in rural  |                             |                              |
|       |                    |                      |                               | regions.                     |                             |                              |

| Ref. | Research ques-    | Data                  | Methodology                    | Conclusions                   | Advantages                   | Limitations/gaps               |
|------|-------------------|-----------------------|--------------------------------|-------------------------------|------------------------------|--------------------------------|
|      | tion              |                       |                                |                               |                              |                                |
| [18] | Evaluating some   | The WHO cumula-       | The cumulative EVD cases       | It was found that EVD         | This study has simultane-    | The study did not account      |
|      | common EVD        | tive EVD incidences   | at the administrative level    | models with population-       | ously assessed homoge-       | for any control measures       |
|      | assumptions       | at the sub-national   | were modelled using logis-     | density dependent transmis-   | neous mixing assumption      | that might reduce or block     |
|      | made in mod-      | level in the major    | tic growth. A simple com-      | sion rates might accurately   | and studied whether all      | the chance of the disease      |
|      | elling, including | West African coun-    | partment model composed        | predict the initial spread.   | strains have an equal chance | spread in the initial stage of |
|      | the homogeneous   | tries affected by the | of susceptible, decreasingly   | Further, initial growth       | of occurrence.               | an outbreak. For example,      |
|      | mixing.           | 2014 WA EVD. Data     | infectious, and recovered      | was found to decrease as      |                              | the behaviour of the pop-      |
|      |                   | on the international  | compartments was used          | the population density in-    |                              | ulation might show early       |
|      |                   | migration and pop-    | to explain the underlying      | creased which might be        |                              | positive change of avoiding    |
|      |                   | ulation information   | reasons for the EVD tra-       | caused by an improved         |                              | infection if the population    |
|      |                   | were adapted from     | jectories produced by the      | healthcare system in ar-      |                              | had learnt about the disease   |
|      |                   | the Flowminder and    | logistic growth. A statistical | eas with high population      |                              | from a previous outbreak       |
|      |                   | the Geohive datasets. | method was also used to un-    | density. Further, it was con- |                              | [94].                          |
|      |                   |                       | derstand whether all EVD       | cluded that it is appropriate |                              |                                |
|      |                   |                       | strains can have a uniform     | to assume all EVD strains     |                              |                                |
|      |                   |                       | transmissibility.              | to have the same probability  |                              |                                |
|      |                   |                       |                                | of occurrence.                |                              |                                |

| Ref.  | <b>Research ques-</b> | Data                  | Methodology                   | Conclusions                 | Advantages                      | Limitations/gaps           |
|-------|-----------------------|-----------------------|-------------------------------|-----------------------------|---------------------------------|----------------------------|
|       | tion                  |                       |                               |                             |                                 |                            |
| [100] | Proposing an          | The 2014 WA EVD       | A modified SEIR model in      | The proposed models were    | The study included real-        | The modelling only consid- |
|       | alternative           | incidence data for    | which each of the $E$ and $I$ | fitted to the data, and the | istic stages of residence       | ered the early exponential |
|       | approach to           | Liberia for a period  | compartments were divided     | results were compared to    | time at the disease compart-    | phase of an epidemic and   |
|       | the standard          | of 74 weeks starting  | into sub-compartments         | the classical SEIR mod-     | ments. It also accounted for    | did not assume any inter-  |
|       | SEIR modelling        | from the initial out- | was presented. A discrete     | elling forecast. The pro-   | stochasticity, which plays a    | vention scenario. Further, |
|       | method using a        | break in March 2014   | stochastic version of this    | posed models were found     | significant role in the initial | it was assumed the popula- |
|       | discrete stochas-     | were used in the      | model was formulated with     | to utilise a substantially  | phase of epidemics since all    | tion to be homogeneously   |
|       | tic Erlang type       | modelling. The data   | some additional assump-       | longer computational time   | outbreaks begin with small      | mixed, and only considered |
|       | modelling.            | were obtained from a  | tions about the exposed and   | as compared to the classi-  | cases.                          | transmission from living   |
|       |                       | previous study.       | infectious compartments.      | cal SEIR. However, they     |                                 | persons.                   |
|       |                       |                       |                               | offered a more accurate     |                                 |                            |
|       |                       |                       |                               | description of epidemic     |                                 |                            |

dynamics.

| Ref.  | <b>Research ques-</b> | Data                 | Methodology                 | Conclusions                  | Advantages                  | Limitations/gaps             |
|-------|-----------------------|----------------------|-----------------------------|------------------------------|-----------------------------|------------------------------|
|       | tion                  |                      |                             |                              |                             |                              |
| [183] | Understanding         | The WHO EVD          | A phenomenological model    | The force of infection that  | This methodology com-       | The force of infection that  |
|       | the effects of        | reported data from   | was fitted to the hospital  | includes an exponentially    | bined behavioural changes   | created the best fitting and |
|       | the individual        | 17 June 2014 to 3    | notifications data to esti- | declining trajectories of    | and a population-based      | prediction can be adapted in |
|       | behavioural           | May 2015 for the     | mate behavioural changes.   | EVD incidences as a re-      | compartment model that      | future studies when data in- |
|       | changes on EVD        | most serious regions | Further, the rate of be-    | sult of behavioural changes  | enabled an understanding of | clude behavioural changes.   |
|       | trajectories.         | during the 2014      | havioural changes was im-   | was found to create the      | how individuals behaviour   |                              |
|       |                       | WA EVD including     | plemented to four different | best model fitting and pre-  | could affect the spread of  |                              |
|       |                       | Guinea, Liberia and  | EVD force of infection in   | diction. Further, a larger   | the disease.                |                              |
|       |                       | Sierra Leone were    | a susceptible-infectious-   | rate of behavioural change   |                             |                              |
|       |                       | used.                | recovered-deceased com-     | was found to have caused a   |                             |                              |
|       |                       |                      | partments model. The        | more significant reduction   |                             |                              |
|       |                       |                      | impact of the force of in-  | in the number of hospi-      |                             |                              |
|       |                       |                      | fections on behavioural     | tal notifications, including |                             |                              |
|       |                       |                      | changes was studied.        | infected cases and deaths.   |                             |                              |

| Ref.  | <b>Research ques-</b> | Data                 | Methodology                  | Conclusions                    | Advantages                    | Limitations/gaps              |
|-------|-----------------------|----------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|
|       | tion                  |                      |                              |                                |                               |                               |
| [136] | The impact of         | The WHO num-         | A systems dynamics ap-       | The model simulation           | This modelling approach       | The spread of EVD in the      |
|       | social and be-        | ber of EVD inci-     | proach was used in the       | showed that the increase       | followed the behavioural      | three countries was not sim-  |
|       | havioural factors     | dences and deaths    | modelling. It created causal | in the rate of quarantine      | aspect of EVD spread in       | ilar due to different health- |
|       | in the spread of      | in Guinea, Liberia,  | loops for social and be-     | over time to have resulted     | detail in causal loops, and   | care system preparedness      |
|       | EVD.                  | and Sierra Leone.    | havioural aspects, including | from the rise in the situation | identified important factors  | [35]. Therefore, it would     |
|       |                       | Another dataset used | quarantine, perception of    | awareness and practising       | that impact the spread of the | have been more practical if   |
|       |                       | was the Twitter news | EVD death, and situation     | of safe burials. However,      | disease.                      | the model was used to study   |
|       |                       | data about EVD.      | awareness. It included pub-  | public attention did not       |                               | the dynamics of EVD in        |
|       |                       |                      | lic attention by incorporat- | have a significant impact      |                               | each of the three countries   |
|       |                       |                      | ing twitter data about the   | on reducing the spread of      |                               | differently.                  |
|       |                       |                      | disease news as a measure    | EVD.                           |                               |                               |
|       |                       |                      | of the psychological and     |                                |                               |                               |
|       |                       |                      | behavioural changes.         |                                |                               |                               |

| Ref. | Research ques-   | Data                 | Methodology                 | Conclusions                   | Advantages                  | Limitations/gaps               |
|------|------------------|----------------------|-----------------------------|-------------------------------|-----------------------------|--------------------------------|
|      | tion             |                      |                             |                               |                             |                                |
| [27] | Exploring two    | A synthetic EVD      | Two modelling approaches    | Models were fitted to the     | The compartment model       | The study did not account      |
|      | methods of fore- | data were used. This | were used. The first model  | data, and parameters were     | used a population that was  | for a spatial structure in the |
|      | casting EVD      | data was produced    | was a stochastic compart-   | estimated. Fitting the com-   | structured into a general   | modelling, while the data      |
|      | trajectories.    | for the purpose of   | ments model with a general  | partment model to the data    | community and health-       | indicated the existence of     |
|      |                  | the Program of Re-   | community and healthcare    | resulted in double bumps in   | care workers. This allows   | spatial spread.                |
|      |                  | search and Policy    | workers. The epidemic pa-   | the disease incidence trajec- | for identifying EVD inci-   |                                |
|      |                  | for Infectious Dis-  | rameters in this model was  | tories. This was explained    | dences in each group and    |                                |
|      |                  | ease Dynamics of     | estimated using a Bayesian  | to emerge from a spatial      | understanding the impact of |                                |
|      |                  | the United States    | approach. A generalised re- | spread in which one sub-      | targeted interventions. The |                                |
|      |                  | (RAPIDD) EVD         | newal equation (GRE) with   | epidemic has reached its      | GRE model, on the other     |                                |
|      |                  | forecasting chal-    | a latent variable was used  | maximum in a region while     | hand, uses few parameters   |                                |
|      |                  | lenge.               | in the second model. The    | another is still growing in   | to be identified from the   |                                |
|      |                  |                      | latter used a Markov Chain  | another area.                 | data.                       |                                |
|      |                  |                      | Monte Carlo method for the  |                               |                             |                                |
|      |                  |                      | fitting.                    |                               |                             |                                |
|      |                  |                      |                             |                               |                             |                                |

| Ref. | Research ques- | Data            | Methodology                  | Conclusions                   | Advantages                    | Limitations/gaps              |
|------|----------------|-----------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|
|      | tion           |                 |                              |                               |                               |                               |
| [56] | Analysing EVD  | The RAPIDD EVD  | A semi-mechanistic model     | The model was able to         | The study made use of EVD     | The model made only a         |
|      | data in actual | synthetic data. | was proposed. The model      | reproduce the data trajecto-  | natural history parameters    | short time forecast of inci-  |
|      | time.          |                 | was described using a com-   | ries. Individual variability  | from previous outbreaks.      | dence and did not make a      |
|      |                |                 | partment modelling frame-    | in trajectories was found de- | Additionally, it did not      | long term prediction for the  |
|      |                |                 | work, and transmission       | pending on the transmission   | describe detailed underlying  | final size, the peak size, or |
|      |                |                 | between individuals was      | rate and the stochasticity of | mechanisms by which the       | the peak timing.              |
|      |                |                 | assumed to follow a random   | the observed incidence.       | disease variables are linked. |                               |
|      |                |                 | walk. The model was fitted   |                               | The latter is useful when     |                               |
|      |                |                 | to the data using a Bayesian |                               | models do not get enough      |                               |
|      |                |                 | approach.                    |                               | data to quantify the detailed |                               |
|      |                |                 |                              |                               | underlying mechanisms.        |                               |

| Ref.  | Research ques-  | Data            | Methodology                               | Conclusions                 | Advantages                   | Limitations/gaps            |
|-------|-----------------|-----------------|-------------------------------------------|-----------------------------|------------------------------|-----------------------------|
|       | tion            |                 |                                           |                             |                              |                             |
| [147] | Forecasting the | The RAPIDD EVD  | A simple phenomenologi-                   | It was found that model     | The approach used was rel-   | The study did not make ef-  |
|       | spread of EVD   | synthetic data. | cal model was proposed in                 | estimates made later in     | atively simple and had few   | fective use of the detailed |
|       | using a phe-    |                 | which new incidences were                 | the epidemic, in three of   | assumptions unlike some      | data provided in some of    |
|       | nomenological   |                 | assumed to be proportional                | the four RAPIDD data        | mechanistic approaches       | the RAPIDD data scenarios.  |
|       | model.          |                 | to the basic reproduction                 | scenarios, approximated     | which include many param-    | Further, the study did not  |
|       |                 |                 | number $(\mathcal{R}_0)$ and inversely    | the true peak week more     | eters and assumptions. The   | correctly predict the epi-  |
|       |                 |                 | proportional to a control                 | closely. Further, the model | latter might face identifia- | demic peak in Scenario four |
|       |                 |                 | intervention measure (d).                 | performance was found       | bility issues in the case of | of the RAPIDD data.         |
|       |                 |                 | The disease incidences were               | to be among the best $60\%$ | limited data.                |                             |
|       |                 |                 | assumed to follow a Poisson               | participant models in the   |                              |                             |
|       |                 |                 | distribution. The maximum                 | RAPIDD EVD forecasting      |                              |                             |
|       |                 |                 | likelihood approach was ap-               | challenge.                  |                              |                             |
|       |                 |                 | plied for the model fitting,              |                             |                              |                             |
|       |                 |                 | and consequently, $\mathcal{R}_0$ and $d$ |                             |                              |                             |
|       |                 |                 | were determined.                          |                             |                              |                             |

| Ref. | <b>Research ques-</b> | Data            | Methodology                 | Conclusions                  | Advantages                    | Limitations/gaps               |
|------|-----------------------|-----------------|-----------------------------|------------------------------|-------------------------------|--------------------------------|
|      | tion                  |                 |                             |                              |                               |                                |
| [7]  | Analysing the         | The RAPIDD EVD  | The model proposed was a    | The study predicted the      | The model was relatively      | The model was used to          |
|      | EVD RAPIDD            | synthetic data. | discrete-time and discrete  | timing and sizes of the      | simple and required less      | forecast EVD spread at the     |
|      | synthetic data        |                 | states, stochastic compart- | peak incidences before one   | computational power. Fur-     | national level and did not     |
|      | and forecast-         |                 | ment model. The reproduc-   | month. Furthermore, the      | ther, it had a strong overall | account for heterogeneity      |
|      | ing the disease       |                 | tive number was modelled    | model projected a reason-    | performance and used fewer    | in transmission among dif-     |
|      | trajectories.         |                 | as a multiplicative normal  | ably precise final outbreak  | parameters.                   | ferent districts. Further, the |
|      |                       |                 | random walk, and new in-    | size 30 to 40 weeks earlier. |                               | model did not account for      |
|      |                       |                 | fection was assumed to      |                              |                               | variation among different      |
|      |                       |                 | follow a Poisson distribu-  |                              |                               | transmission routes, in-       |
|      |                       |                 | tion.                       |                              |                               | cluding within-healthcare,     |
|      |                       |                 |                             |                              |                               | within-households, and         |
|      |                       |                 |                             |                              |                               | community transmissions.       |

| Ref.  | Research ques-     | Data            | Methodology                 | Conclusions                 | Advantages                | Limitations/gaps            |
|-------|--------------------|-----------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|
|       | tion               |                 |                             |                             |                           |                             |
| [123] | Predicting the     | The RAPIDD EVD  | A logistic model that as-   | The logistic model was      | The proposed phenomeno-   | Phenomenological models     |
|       | size and trajecto- | synthetic data. | sumes an early exponential  | found to have underesti-    | logical models were rel-  | used in the study do not    |
|       | ries of EVD.       |                 | growth was used to forecast | mated the peak size, the    | atively simple and do not | make effective use of natu- |
|       |                    |                 | EVD spread. These predic-   | timing of the peak, and the | contain many model as-    | ral history parameters that |
|       |                    |                 | tions were compared with    | final size. However, the GR | sumptions as compared to  | are obtained from previous  |
|       |                    |                 | another phenomenologi-      | model performed well re-    | compartment models.       | outbreaks as compared to    |
|       |                    |                 | cal model -the Generalised  | garding disease forecast -  |                           | mechanistic models.         |
|       |                    |                 | Richard's (GR) model - that | predicting a range of epi-  |                           |                             |
|       |                    |                 | assumed a varied growth     | demic dynamics profiles     |                           |                             |
|       |                    |                 | from exponential to sub-    | (sub-exponential to expo-   |                           |                             |
|       |                    |                 | exponential.                | nential).                   |                           |                             |

| Ref. | Research ques-   | Data            | Methodology                   | Conclusions                  | Advantages                 | Limitations/gaps            |
|------|------------------|-----------------|-------------------------------|------------------------------|----------------------------|-----------------------------|
|      | tion             |                 |                               |                              |                            |                             |
| [58] | Reviewing the    | The RAPIDD EVD  | The EbolaResponse model       | To control EVD, it was       | The EbolaResponse tool     | The EbolaResponse tool      |
|      | performance of   | synthetic data. | [106] was a mechanis-         | found in the modified        | was modified to facilitate | and its modified version    |
|      | the 2014 WA      |                 | tic Markov chain model.       | model that more than $80\%$  | the applicability to the   | were not able to make a     |
|      | EVD EbolaRe-     |                 | Some modifications were       | of EVD cases were needed     | RAPIDD challenge data.     | long term prediction, nor   |
|      | sponse model     |                 | made. For example, the        | to be hospitalised at ETCs   | This modification provided | were they able to spatially |
|      | [106] forecasts  |                 | transmission categories       | or effectively isolated at   | a comparison of the model  | disaggregate EVD transmis-  |
|      | and suggesting   |                 | were slightly modified        | homes and safely buried if   | performance corresponding  | sion.                       |
|      | a further devel- |                 | to transmission at Ebola      | they are deceased. On the    | to other models that were  |                             |
|      | opment on the    |                 | treatment centres (ETCs),     | contrary, the original model | used to model the 2014 WA  |                             |
|      | model.           |                 | transmission in the com-      | was used to determine this   | EVD.                       |                             |
|      |                  |                 | munity while practising       | figure to be $70\%$ .        |                            |                             |
|      |                  |                 | safe burials effectively, and |                              |                            |                             |
|      |                  |                 | transmission in the com-      |                              |                            |                             |
|      |                  |                 | munity without practising     |                              |                            |                             |
|      |                  |                 | a safe burial or any other    |                              |                            |                             |
|      |                  |                 | control measure.              |                              |                            |                             |

| Ref.  | <b>Research</b> ques- | Data            | Methodology               | Conclusions                       | Advantages                 | Limitations/gaps              |
|-------|-----------------------|-----------------|---------------------------|-----------------------------------|----------------------------|-------------------------------|
|       | tion                  |                 |                           |                                   |                            |                               |
| [153] | Forecasting the       | The RAPIDD EVD  | A data-driven agent-based | The model showed an ex-           | This modelling described a | The study did not account     |
|       | spread of EVD         | synthetic data. | approach was used. The    | cellent performance in the        | detailed agent-based mech- | for spatial transmission. On  |
|       | using an agent-       |                 | framework accounted for   | data-rich scenario of the         | anistic framework and used | the other hand, the mod-      |
|       | based approach.       |                 | synthetic population, so- | RAPIDD challenge. In this         | rigorous approaches for    | elling structure has utilised |
|       |                       |                 | cial contact network, and | case, the model findings          | model calibration.         | many parameters and quan-     |
|       |                       |                 | an SEIR compartment       | included epidemic timing,         |                            | tifying these parameters      |
|       |                       |                 | structure. Model calibra- | the final size of infected        |                            | might lead to identifiability |
|       |                       |                 | tion was proceeded using  | individuals and $\mathcal{R}_0$ . |                            | issues in the case of limited |
|       |                       |                 | optimisation and Bayesian |                                   |                            | data.                         |
|       |                       |                 | approaches.               |                                   |                            |                               |

| Ref. | <b>Research</b> ques- | Data                  | Methodology                | Conclusions                 | Advantages                   | Limitations/gaps            |
|------|-----------------------|-----------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|
|      | tion                  |                       |                            |                             |                              |                             |
| [99] | Estimating the        | The infections and    | The modelling used was a   | The model was used to       | The modelling framework      | The study assumed the pop-  |
|      | time evolution of     | the deceased individ- | chaotic theory framework   | simulate the trajectories   | allowed for analysing a      | ulation of Guinea, Liberia, |
|      | EVD incidences.       | uals time series for  | that obtained models that  | of the data and to predict  | problem with highly in-      | and Sierra Leone to be      |
|      |                       | Guinea, Liberia, and  | can reproduce global solu- | the epidemic for a short    | teractive environmental,     | homogeneously mixed.        |
|      |                       | Sierra Leone. The     | tions by only using EVD    | period while assuming the   | biological, behavioural, and | However, the spread of      |
|      |                       | WHO recorded this     | time series. Model simula- | behaviour of the population | economical factors that are  | EVD in these countries      |
|      |                       | data during the 2014  | tions were compared with   | to have not changed in such | combined to create chal-     | was not similar due to the  |
|      |                       | WA EVD for the pe-    | the observed data to eval- | a period.                   | lenging dynamics.            | different healthcare sys-   |
|      |                       | riod of March 2014    | uate the accuracy of the   |                             |                              | tem preparedness and the    |
|      |                       | to January 2015.      | predictions.               |                             |                              | different contact structure |
|      |                       |                       |                            |                             |                              | [57, 82, 35].               |

| Ref. Research ques-   | Data                 | Methodology                 | Conclusions                         | Advantages                   | Limitations/gaps          |
|-----------------------|----------------------|-----------------------------|-------------------------------------|------------------------------|---------------------------|
| tion                  |                      |                             |                                     |                              |                           |
| [139] Forecasting EVD | The WHO EVD          | The model used was phe-     | A sub-exponential growth            | One advantage of this        | The studied population in |
| incidence and         | incidence data about | nomenological. Model        | was found to have mostly            | model is that it can be used | each country was assumed  |
| characterising its    | the 2014 WA EVD      | parameters, including in-   | characterised estimates             | during the early disease     | to be homogeneously       |
| dynamics using a      | in Sierra Leone,     | trinsic growth rate and the | from the early stage EVD            | epidemic, particularly in    | mixed.                    |
| phenomenologi-        | Guinea, and Liberia  | final epidemic size, were   | growth data in the three            | the case of the scarcity of  |                           |
| cal model.            | were used.           | estimated using the least   | countries. The model pre-           | reliable information about   |                           |
|                       |                      | square methods.             | dicted the final size to be         | the disease mechanisms of    |                           |
|                       |                      |                             | $1.7\times10^4, 1.1\times10^4$ and  | spread.                      |                           |
|                       |                      |                             | $3.5 \times 10^3$ for Sierra Leone, |                              |                           |
|                       |                      |                             | Guinea and Liberia, respec-         |                              |                           |
|                       |                      |                             | tively.                             |                              |                           |

| Ref. | Research ques-                                                                       | Data                                                                                                                                              | Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limitations/gaps                                                                                                                                                                                                                                                                      |
|------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1]  | tion<br>The potential<br>impact of EVD<br>sexual spread<br>from male sur-<br>vivors. | The 2014 WA EVD<br>incidence data in<br>Sierra Leone. The<br>data were obtained<br>from the WHO pa-<br>tient database and<br>situational reports. | A compartment model of<br>the SEIR type was used in<br>which a new compartment<br>C that represent the con-<br>valescent population was<br>added. The SEIR model<br>was fitted to the EVD data<br>while assuming the num-<br>ber of the reported cases<br>to have followed a nega-<br>tive binomial distribution.<br>Consequently, model pa-<br>rameters were estimated<br>using the maximum likeli-<br>hood approach. The sensi-<br>tivity of the model outputs<br>to changes in the compo-<br>nents of the transmission<br>rate of the survivors was<br>studied using Monte Carlo<br>simulations. | It was found that in general,<br>there was an insignificant<br>increase in the number of<br>EVD cases resulting from<br>survivor's sexual trans-<br>mission, but this number<br>extended the period of the<br>disease. For example, when<br>there was a 0.1% transmis-<br>sion probability per sex act<br>and three months of conva-<br>lescence, only a few EVD<br>additional cases occurred,<br>but the period of the out-<br>break increased by 83 days. | The study suggested a novel<br>method for investigating<br>the impact of EVD male<br>survivors. It described the<br>rate of sexual transmission<br>from survivors according to<br>the average sexual activities<br>and the per act probability<br>of transmission. The study<br>considered a range of val-<br>ues for these components<br>from studies in human im-<br>munodeficiency virus and<br>predicted the effect of sex-<br>ual transmission from EVD<br>survivors. | The study did not account<br>for any potential trans-<br>mission from female sur-<br>vivors, while this has been<br>recorded in the literature<br>(e.g., [42]). The effect of<br>sexual transmission from<br>EVD survivors in metapop-<br>ulation systems was also not<br>considered. |
|      |                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |

| Ref. | Research ques-  | Data                        | Methodology                  | Conclusions                  | Advantages                   | Limitations/gaps             |
|------|-----------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|      | tion            |                             |                              |                              |                              |                              |
| [90] | Determining     | The dataset includes        | The approach used was a      | Few super-spreaders of       | The findings of the model    | The dataset used in the      |
|      | the effect of   | GPS locations of            | transmission network-based   | about $3\%$ of the total EVD | suggested the significance   | study only included fatal    |
|      | super-spreaders | where the bodies of         | method which concentrated    | cases were found to be re-   | of targeted-intervention. In | EVD cases. However, the      |
|      | and character-  | 200 EVD deceased            | on creating transmission     | sponsible for more than      | this case, the importance of | study concluded the results  |
|      | ising factors   | were collected for          | trees among EVD cases.       | 60% of all generated cases.  | focusing on super-spreaders  | for all cases (fatal and no- |
|      | that might have | safe burials. Further,      | These were established by    | Further, most of the EVD     | when planning control mea-   | fatal).                      |
|      | driven super-   | it contained age,           | using a Bayesian model       | spread happened within a     | sures.                       |                              |
|      | spreading.      | sex, time of burial,        | that integrated the data and | relatively short distance of |                              |                              |
|      |                 | and the onset of            | inferred the distribution of | 2.5 kilometres. Instanta-    |                              |                              |
|      |                 | symptoms. The data          | new cases.                   | neous EVD spread risk was    |                              |                              |
|      |                 | were collected in           |                              | found to have mostly been    |                              |                              |
|      |                 | Sierra Leone by             |                              | exerted by the age groups of |                              |                              |
|      |                 | the International           |                              | less than $15$ years old and |                              |                              |
|      |                 | Federation of Red           |                              | larger than 45 years old.    |                              |                              |
|      |                 | Cross.                      |                              |                              |                              |                              |
|      |                 | Federation of Red<br>Cross. |                              | larger than 45 years old.    |                              |                              |

| Ref.  | Research ques-   | Data                | Methodology                  | Conclusions                  | Advantages                   | Limitations/gaps              |
|-------|------------------|---------------------|------------------------------|------------------------------|------------------------------|-------------------------------|
|       | tion             |                     |                              |                              |                              |                               |
| [141] | Understanding    | Model parameter     | A compartment model of       | The study concluded that     | The model introduced a       | The model did not account     |
|       | whether the      | estimates used were | SEIR type with a further     | it is unlikely for the Ebola | novel study of understand-   | for an age or a sex-related   |
|       | Ebola virus can  | adapted from the    | transmission from deceased   | virus to evolve and be-      | ing the virulence of EVD     | heterogeneity in the fatality |
|       | evolve to become | literature.         | individuals and survivors    | come less virulent unless    | that accounts for transmis-  | rate.                         |
|       | less virulent in |                     | was assumed. Viral load      | two conditions were satis-   | sions from living infectious |                               |
|       | the human popu-  |                     | was considered to be pos-    | fied. First, the proportion  | (patients and survivors)     |                               |
|       | lation.          |                     | itively correlated with the  | of unsafe burials must be    | and from the deceased. The   |                               |
|       |                  |                     | case fatality rate (CFR) and | reduced to a very low figure | high virulence of the Ebola  |                               |
|       |                  |                     | transmission rate to be pro- | and be brought to less than  | virus was explained by its   |                               |
|       |                  |                     | portional to the CFR. An     | 4%. Second, the CFR and      | life cycle that adapt the    |                               |
|       |                  |                     | evolution in the population  | the EVD transmission rate    | three aforementioned stages  |                               |
|       |                  |                     | was assumed to proceed by    | must have very little or no  | of infectiousness.           |                               |
|       |                  |                     | a rare mutation that creates | genetic connections.         |                              |                               |
|       |                  |                     | a different CFR.             |                              |                              |                               |

| Ref. | Research ques-    | Data                 | Methodology                  | Conclusions                            | Advantages                   | Limitations/gaps                |
|------|-------------------|----------------------|------------------------------|----------------------------------------|------------------------------|---------------------------------|
|      | tion              |                      |                              |                                        |                              |                                 |
| [4]  | Assessing the     | Model parameter      | A deterministic compart-     | The basic reproduction                 | The current study extended   | The model did not account       |
|      | impact of relapse | estimates that were  | ment model was proposed.     | number $\mathcal{R}_0$ was derived and | previous studies by in-      | for transmission hetero-        |
|      | and reinfection   | used to quantify the | It incorporated the early    | found to be increasing as              | cluding the relapse and      | geneity regarding infec-        |
|      | in the spread of  | model were adapted   | and late stages of infection | the relapse parameter in-              | reinfection of recovered in- | tion in the community and       |
|      | EVD.              | from the literature. | in addition to immune and    | creased. In the presence of            | dividuals and studying their | healthcare settings. It also    |
|      |                   |                      | susceptible recovered in-    | disease reinfection, a back-           | impact.                      | did not consider transmis-      |
|      |                   |                      | dividuals. The latter was    | ward bifurcation was found             |                              | sion to be different accord-    |
|      |                   |                      | assumed to have a dis-       | in which a disease-free                |                              | ing to spatial locations (e.g., |
|      |                   |                      | ease relapse or to become    | equilibrium and an endemic             |                              | urban and rural areas).         |
|      |                   |                      | reinfected. Model well-      | equilibrium coexisted. Dis-            |                              |                                 |
|      |                   |                      | posedness and stability of   | ease relapse was found to              |                              |                                 |
|      |                   |                      | equilibria analyses were     | lead to more infections as             |                              |                                 |
|      |                   |                      | conducted.                   | compared to disease rein-              |                              |                                 |
|      |                   |                      |                              | fection. Further, models that          |                              |                                 |
|      |                   |                      |                              | do not include relapse and             |                              |                                 |
|      |                   |                      |                              | reinfection underestimated             |                              |                                 |
|      |                   |                      |                              | the disease trajectories.              |                              |                                 |
|      |                   |                      |                              |                                        |                              |                                 |

| Ref. | Research ques-    | Data               | Methodology                    | Conclusions                   | Advantages                    | Limitations/gaps               |
|------|-------------------|--------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|
|      | tion              |                    |                                |                               |                               |                                |
| [20] | Assessing the     | The WHO weekly     | A stochastic model was         | When the vaccination trial    | The model gave a mean of      | The vaccinated and control     |
|      | feasibility of    | EVD incidences     | used in which individu-        | was started at an earlier     | assessing the feasibility of  | groups were partitioned        |
|      | a prime-boost     | for three areas in | als were divided into sus-     | time, the probability of      | a vaccination trial. Further, | into clusters. However, the    |
|      | vaccination trial | Sierra Leone, viz. | ceptible (S), exposed (E),     | eliminating the disease       | fitting the model to the data | model was fitted to EVD in-    |
|      | in three areas in | Kambia, Port Loko, | infectious but not yet re-     | in the vaccinated groups      | of the three regions enabled  | cidences at the district-level |
|      | Sierra Leone.     | and Western Area.  | ported (I), infectious and     | increased. The probability    | understanding the different   | and not at the cluster level.  |
|      |                   |                    | reported (J), and removed      | of detecting the difference   | impacts of the vaccine trial  | Additionally, the model did    |
|      |                   |                    | (R) compartments. Sus-         | between the number of         | among these regions.          | not account for any logis-     |
|      |                   |                    | ceptible individuals were      | disease incidences in the     |                               | tical constraints that may     |
|      |                   |                    | assumed to be recruited to     | vaccinated and control        |                               | affect the feasibility of the  |
|      |                   |                    | either vaccinated or control   | groups increased when the     |                               | vaccination trial in the stud- |
|      |                   |                    | groups. A Bayesian ap-         | vaccination trial was started |                               | ied regions.                   |
|      |                   |                    | proach, viz. Markov Chain      | at a later time.              |                               |                                |
|      |                   |                    | Monte Carlo was used for       |                               |                               |                                |
|      |                   |                    | fitting the model to the data. |                               |                               |                                |

| Ref. | Research ques- | Data                 | Methodology                  | Conclusions                  | Advantages                    | Limitations/gaps              |
|------|----------------|----------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|
|      | tion           |                      |                              |                              |                               |                               |
| [39] | Improving the  | The WHO district     | An ordered SWCT (OS-         | All of the OSWCT trials      | This study linked the         | The gravity type assump-      |
|      | stepped-wedge  | and county level     | WCT) method was pro-         | showed a higher efficacy     | SWCT method with a grav-      | tion used in the modelling    |
|      | cluster trial  | case count data of   | posed in which clusters      | as compared to the SWCT.     | ity type metapopulation       | does not account for fac-     |
|      | (SWCT) method. | Sierra Leone and     | were ordered to increase     | However, they all lost ef-   | model. Further, it accounted  | tors that may affect the      |
|      |                | Liberia. Geospa-     | the efficiency of the SWCT.  | fectiveness when they were   | for infected individuals with | movement of individuals in    |
|      |                | tial data containing | This ordering was based on   | delayed. Furthermore, when   | early dry and with late wet   | Central and West African      |
|      |                | chiefdom bound-      | an observed EVD incidence    | the trials started ten weeks | symptoms. Crucially, only     | contexts. These include       |
|      |                | aries were obtained  | data (data-OSWCT), a         | after the onset of the dis-  | the latter was assumed to     | road closure resulting from   |
|      |                | from the database of | model projection about the   | ease, the peak-OSWCT was     | transmit EVD.                 | rainfall and natural barriers |
|      |                | Global Administra-   | order of the first incidence | more efficient.              |                               | such as rivers. Hence, the    |
|      |                | tive Areas (GADM).   | occurrence (first-OSWCT),    |                              |                               | gravity assumption may        |
|      |                | Population densi-    | and the districts with the   |                              |                               | overestimate the risk of the  |
|      |                | ties of each of the  | highest model projection     |                              |                               | disease spread.               |
|      |                | chiefdoms of Sierra  | of weekly cases (peak-       |                              |                               |                               |
|      |                | Leone, as well as    | OSWCT). A metapopu-          |                              |                               |                               |
|      |                | the distance be-     | lation framework with a      |                              |                               |                               |
|      |                | tween them, were     | gravity type assumption      |                              |                               |                               |
|      |                | estimated.           | was adapted to describe the  |                              |                               |                               |
|      |                |                      | movement of individuals      |                              |                               |                               |
|      |                |                      | among the chiefdoms.         |                              |                               |                               |

| Ref. | <b>Research ques-</b> | Data                 | Methodology                 | Conclusions                   | Advantages                  | Limitations/gaps             |
|------|-----------------------|----------------------|-----------------------------|-------------------------------|-----------------------------|------------------------------|
|      | tion                  |                      |                             |                               |                             |                              |
| [64] | Improving the         | Model parameter es-  | A community-structured      | It was found that the         | The proposed trial designs  | The approach requires in-    |
|      | performance           | timates were adapted | population was generated    | connectivity-informed de-     | utilise connectivity infor- | formation on connectivity    |
|      | of cluster ran-       | from the literature. | using a stochastic simula-  | sign interventions decrease   | mation between clusters     | concerning how epidemics     |
|      | domised trials.       |                      | tion with 20 clusters, each | the total infections by up to | in intervention scenarios.  | spread (e.g., by close con-  |
|      |                       |                      | consisting of 200 individ-  | 20% in comparison with the    | Consequently, they cause    | tact or through sexual part- |
|      |                       |                      | uals. The population was    | traditional stepped wedge     | a reduction in the number   | ners). This information is   |
|      |                       |                      | assumed to have six dis-    | cluster randomised trial.     | of infections more rapidly  | usually hard to obtain accu- |
|      |                       |                      | ease states (susceptible,   |                               | as compared to cluster ran- | rately.                      |
|      |                       |                      | exposed, infectious, hospi- |                               | domised trials.             |                              |
|      |                       |                      | talised, funeral, removed). |                               |                             |                              |
|      |                       |                      | In order to provide a rapid |                               |                             |                              |
|      |                       |                      | epidemic control, a class   |                               |                             |                              |
|      |                       |                      | of connectivity-informed    |                               |                             |                              |
|      |                       |                      | designs was proposed for    |                               |                             |                              |
|      |                       |                      | cluster randomised trials.  |                               |                             |                              |

| Ref.  | Research ques-    | Data                  | Methodology                  | Conclusions                   | Advantages                  | Limitations/gaps             |
|-------|-------------------|-----------------------|------------------------------|-------------------------------|-----------------------------|------------------------------|
|       | tion              |                       |                              |                               |                             |                              |
| [119] | Characterising    | Natural history       | A stochastic model that      | Outbreak vulnerability was    | The model accounted for     | The study did not ac-        |
|       | the spread of     | parameters were       | describes the transition     | simulated as a function of    | inherited randomness of the | count for a metapopulation   |
|       | EVD and the im-   | adapted from the lit- | between the susceptible, ex- | the reservoir transmission    | spillover event of EVD.     | spread. This consideration   |
|       | pact of interven- | erature or assumed.   | posed, infectious, deceased, | rate, and a range of values   |                             | is, in particular, important |
|       | tion measures.    |                       | hospitalised, and recovered  | for these rates that cause    |                             | since EVD spillover usually  |
|       |                   |                       | individuals was proposed.    | isolated and endemic out-     |                             | happens in remote areas      |
|       |                   |                       | In addition to the infec-    | breaks was determined. In-    |                             | and expands to urban re-     |
|       |                   |                       | tiousness from humans,       | creasing the safe burial rate |                             | gions with the movement of   |
|       |                   |                       | susceptible individuals were | and reducing the contact      |                             | people.                      |
|       |                   |                       | assumed to be exposed to     | rate was found to control     |                             |                              |
|       |                   |                       | EVD spillover from ani-      | the outbreaks ultimately.     |                             |                              |
|       |                   |                       | mals. Various intervention   |                               |                             |                              |
|       |                   |                       | measures were assessed, in-  |                               |                             |                              |
|       |                   |                       | cluding quarantine and safe  |                               |                             |                              |
|       |                   |                       | burials. Monte Carol simu-   |                               |                             |                              |
|       |                   |                       | lation was used to simulate  |                               |                             |                              |
|       |                   |                       | the model.                   |                               |                             |                              |

| Ref. | Research ques-    | Data                | Methodology                   | Conclusions                   | Advantages                   | Limitations/gaps            |
|------|-------------------|---------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
|      | tion              |                     |                               |                               |                              |                             |
| [76] | Determining key   | Model parameters    | Agent-based modelling         | Increasing the probability    | The study explored how       | The model did not account   |
|      | elements that     | were either assumed | and simulation were used.     | of seeking intensive training | EVD training workshops       | for any actual geographical |
|      | help in prevent-  | or adapted from the | The modelling included        | and practising appropriate    | could protect healthcare     | distributions of HCWs.      |
|      | ing the spread    | literature.         | the initial educational state | care procedures was found     | workers and showed the       | It also did not account     |
|      | of EVD among      |                     | about the disease, followed   | to have caused a signifi-     | value of effective prepared- | for delays in establishing  |
|      | health care work- |                     | by training to avoid EVD.     | cant decline in EVD infec-    | ness and the right attitude  | EVD training academies for  |
|      | ers (HCWs)        |                     | The study had further ac-     | tion. On the other hand,      | towards the profession to    | HCWs.                       |
|      | during EVD out-   |                     | counted for how well health   | increasing the percentage     | fight EVD infection among    |                             |
|      | breaks.           |                     | care workers performed in     | of HCWs who initially had     | HCWs.                        |                             |
|      |                   |                     | avoiding infection. Addi-     | knowledge about the dis-      |                              |                             |
|      |                   |                     | tionally, the study consid-   | ease or those who attended    |                              |                             |
|      |                   |                     | ered conditions and param-    | some training during the      |                              |                             |
|      |                   |                     | eters that were important in  | outbreak was less signifi-    |                              |                             |
|      |                   |                     | hindering EVD infection.      | cant.                         |                              |                             |

| Ref. | Research ques-     | Data                | Methodology                 | Conclusions                | Advantages                 | Limitations/gaps           |
|------|--------------------|---------------------|-----------------------------|----------------------------|----------------------------|----------------------------|
|      | tion               |                     |                             |                            |                            |                            |
| [57] | Estimating the     | Detailed epidemic   | Two transmission routes     | The basic reproduction     | The population was struc-  | The study did not account  |
|      | public health      | data about Lofa     | were considered: within     | number was found to have   | tured into a general com-  | for unreported EVD cases   |
|      | response and       | county of Liberia.  | Ebola treatment centres     | generally decreased from   | munity and individuals     | in the community that were |
|      | behavioural        | The data were ex-   | (ETCs) and in the commu-    | early August with the ex-  | within healthcare centres. | common during the 2014     |
|      | changes that con-  | tracted from the    | nity. Transmission from the | pansion of the number of   | The study highlighted the  | WA EVD [35].               |
|      | tributed to ending | records of the min- | deceased was assumed to     | ETCs. The healthcare-      | importance of community    |                            |
|      | EVD outbreak.      | istry of health and | occur only in the commu-    | seeking rate was doubled   | engagement in alleviating  |                            |
|      |                    | social welfare of   | nity. Super-spreading was   | during the outbreak. Iso-  | the disease.               |                            |
|      |                    | Liberia.            | implicitly considered by    | lation of EVD patients at  |                            |                            |
|      |                    |                     | assuming the time-varying   | ETCs reduced the basic re- |                            |                            |
|      |                    |                     | EVD transmission rate to    | production number to about |                            |                            |
|      |                    |                     | have a normal distribution. | two-thirds of its original |                            |                            |
|      |                    |                     |                             | estimate.                  |                            |                            |

| Ref. | Research ques-  | Data                 | Methodology                   | Conclusions                  | Advantages                  | Limitations/gaps              |
|------|-----------------|----------------------|-------------------------------|------------------------------|-----------------------------|-------------------------------|
|      | tion            |                      |                               |                              |                             |                               |
| [44] | Resource plan-  | Model parameter      | A compartment model of        | If the transmission rate of  | The model accounted for     | The study assumed trans-      |
|      | ning to control | estimates used were  | SEIR type with further        | isolated individuals was     | transmission from peo-      | mission only from living in-  |
|      | the spread of   | either documented    | hospitalisation, quarantine,  | less than one-fourth of the  | ple at high risk, including | fectious individuals (in the  |
|      | EVD.            | in the literature or | and vaccination components    | non-isolated, the basic re-  | healthcare workers, family  | community or at hospitals)    |
|      |                 | assumed.             | was introduced. Optimal       | production number was less   | members, and persons who    | and did not consider a trans- |
|      |                 |                      | control and sensitivity anal- | than one. Further, it was    | are involved in the burial  | mission from the deceased     |
|      |                 |                      | ysis methods were used to     | found that the time-varying  | of EVD deceased. It also    | or an unclean environment.    |
|      |                 |                      | assess resource utilisation   | optimal quarantine was       | accounted for transmission  |                               |
|      |                 |                      | and vaccination effective-    | more effective as compared   | from the general popula-    |                               |
|      |                 |                      | ness. They were also used     | to a high but fixed level of | tion.                       |                               |
|      |                 |                      | to identify parameters that   | quarantine.                  |                             |                               |
|      |                 |                      | were the most influential in  |                              |                             |                               |
|      |                 |                      | the model dynamics.           |                              |                             |                               |

| Ref.  | Research ques-  | Data                | Methodology                   | Conclusions                       | Advantages                   | Limitations/gaps             |
|-------|-----------------|---------------------|-------------------------------|-----------------------------------|------------------------------|------------------------------|
|       | tion            |                     |                               |                                   |                              |                              |
| [184] | Eradicating the | The WHO reported    | A compartment model was       | The basic reproduction            | The study used a disease     | The model did not account    |
|       | spread of EVD   | data for Guinea,    | proposed. EVD drugs and       | number $(\mathcal{R}_0)$ was cal- | compartment structure and    | for heterogeneity regarding  |
|       | using a dynamic | Liberia, and Sierra | vaccines were assumed to      | culated. It indicated that        | motivated the impact of      | the cost of vaccines depend- |
|       | programming     | Leone from 27 May   | be distributed according to   | speeding up drug produc-          | studying drugs and vac-      | ing on the type of vaccine   |
|       | approach.       | to 28 November      | the number of infected and    | tion and distributing drugs       | cines delivery. It helped in | stored. For example, the     |
|       |                 | 2014.               | susceptible cases in each     | and vaccines systematically       | planning the cost of storing | two widely used vaccines,    |
|       |                 |                     | district. Optimisation meth-  | to be a powerful method           | and distributing drugs and   | the Merck rVSV-ZEBOV         |
|       |                 |                     | ods were used to calculate    | of controlling EVD. Fur-          | vaccines.                    | and the Johnson & Johnson    |
|       |                 |                     | the fastest road for drug and | ther, the study identified the    |                              | Ad26.ZEBOV/MVA-BN            |
|       |                 |                     | vaccine distributions and     | fastest road and the mini-        |                              | have different storage tem-  |
|       |                 |                     | to find the storage solution  | mum total storage.                |                              | peratures which creates      |
|       |                 |                     | that results in the minimum   |                                   |                              | different logistical costs   |
|       |                 |                     | total cost.                   |                                   |                              | [77, 22].                    |
|       |                 |                     |                               |                                   |                              |                              |
| Ref. | <b>Research ques-</b> | Data                 | Methodology                    | Conclusions                    | Advantages                  | Limitations/gaps            |
|------|-----------------------|----------------------|--------------------------------|--------------------------------|-----------------------------|-----------------------------|
|      | tion                  |                      |                                |                                |                             |                             |
| [75] | Studying the          | The WHO total EVD    | An SEIR type model was         | The study predicted the        | The study described a de-   | The study did not ex-       |
|      | optimal strategy      | cases for Liberia    | considered. The model in-      | outbreak would reach its       | tailed regional EVD spread  | plore the optimal vacci-    |
|      | for eradicating       | during the 2014      | corporated for early and       | second peak at the end of      | and made a systematic eval- | nation strategy between     |
|      | EVD.                  | WA EVD. This data    | advanced stages of infec-      | February 2015 and termi-       | uation for different inter- | two types of vaccines       |
|      |                       | were recorded for    | tiousness, hospital isolation, | nate in September 2015.        | vention strategies.         | (the rVSV-ZEBOV and         |
|      |                       | the period of 2 July | EVD therapy, and vaccina-      | To control the spread, the     |                             | Ad26.ZEBOV/MVA-BN)          |
|      |                       | 2014 to 28 August    | tion. The model was fitted     | study suggested control-       |                             | in the context of the 2018- |
|      |                       | 2014.                | to the Liberian data, and      | ling regional transmission,    |                             | 2020 DR Congo outbreak.     |
|      |                       |                      | EVD transmission rate was      | practising effective hospital- |                             |                             |
|      |                       |                      | estimated. Further, the im-    | isation, and vaccination.      |                             |                             |
|      |                       |                      | pact of different types of     |                                |                             |                             |
|      |                       |                      | intervention measures, and     |                                |                             |                             |
|      |                       |                      | regional transmission were     |                                |                             |                             |
|      |                       |                      | studied.                       |                                |                             |                             |

| Ref. | Research ques-   | Data              | Methodology                  | Conclusions                  | Advantages                   | Limitations/gaps            |
|------|------------------|-------------------|------------------------------|------------------------------|------------------------------|-----------------------------|
|      | tion             |                   |                              |                              |                              |                             |
| [94] | Assessing the    | The 1976 and the  | A deterministic compart-     | The analysis of the full     | Some crucial assumptions     | The study assumed trans-    |
|      | effect of public | 1979 EVD data of  | ment model was used.         | model, with educated and     | were made in the study.      | mission in the community    |
|      | health education | the Nzara area in | Some individuals were as-    | uneducated persons, re-      | It was considered EVD        | as one unit and did not ac- |
|      | on the dynam-    | Sudan. These data | sumed to be educated about   | vealed that the initial pro- | transmission in the com-     | count for having a higher   |
|      | ics of EVD in    | were adapted from | EVD and took necessary       | portion of educated and      | munity to be different from  | chance of transmission from |
|      | Sudan.           | the literature.   | measures to avoid infection. | non-educated susceptible     | healthcare centres. Fur-     | household members, rela-    |
|      |                  |                   | Individuals who did not      | individuals and the timing   | ther, the study accounted    | tives and friends.          |
|      |                  |                   | take these measures were     | of the behavioural changes   | for environmental spread.    |                             |
|      |                  |                   | recruited to become edu-     | (seeking hospitalisation)    | The results obtained in the  |                             |
|      |                  |                   | cated about disease trans-   | played an important role in  | modelling showed the im-     |                             |
|      |                  |                   | mission. The impact of this  | determining the magnitude    | portance of public health    |                             |
|      |                  |                   | recruitment was studied.     | of the outbreak.             | education in controlling the |                             |
|      |                  |                   | An optimisation method       |                              | disease.                     |                             |
|      |                  |                   | was used to estimate model   |                              |                              |                             |
|      |                  |                   | parameters.                  |                              |                              |                             |
|      |                  |                   |                              |                              |                              |                             |

| Ref.  | Research ques-     | Data                 | Methodology                 | Conclusions                  | Advantages                   | Limitations/gaps              |
|-------|--------------------|----------------------|-----------------------------|------------------------------|------------------------------|-------------------------------|
|       | tion               |                      |                             |                              |                              |                               |
| [110] | Assessing the      | The EVD natural      | An activity-driven network  | It was found that contact    | The study has relevantly     | The study did not account     |
|       | effectiveness of   | history and the net- | method was employed in      | tracing to be more effective | adapted an activity-driven   | for the frequency of con-     |
|       | contact tracing in | work parameters      | which the activity poten-   | if the identification of the | modelling or temporal so-    | tact with infectious persons. |
|       | the early phase of | were adapted from    | tial of an individual was   | traced persons was not       | cial networks to record      | However, nurses and peo-      |
|       | an outbreak.       | the literature.      | assigned according to some  | delayed for more than ten    | contacts of an infected in-  | ple who frequently care       |
|       |                    |                      | probability distribution.   | days.                        | dividual and conducted       | for patients have a higher    |
|       |                    |                      | The contacts of an infec-   |                              | extensive simulation using a | chance of infection com-      |
|       |                    |                      | tious person were observed  |                              | different range of delays.   | pared to others. Further,     |
|       |                    |                      | for 21 days, but sometimes  |                              |                              | the study did not account     |
|       |                    |                      | this observation was imple- |                              |                              | for infectiousness from the   |
|       |                    |                      | mented after some delay.    |                              |                              | deceased.                     |
|       |                    |                      | The effects of this delay   |                              |                              |                               |
|       |                    |                      | were assessed.              |                              |                              |                               |

| Ref.  | Research ques-    | Data                    | Methodology                  | Conclusions                   | Advantages                    | Limitations/gaps             |
|-------|-------------------|-------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|
|       | tion              |                         |                              |                               |                               |                              |
| [122] | Assessing the     | Model parameters        | An agent-based model of      | It was found that the effects | The model findings were in    | The study did not assess     |
|       | relationship be-  | were adapted from       | SEIR type was proposed.      | of control interventions,     | line with the WHO empha-      | the impact of vaccination    |
|       | tween EVD nat-    | the literature or esti- | The model focused on un-     | including quarantine and      | sis on not recommending       | in controlling the spread of |
|       | ural history and  | mated.                  | derstanding the dynamics in  | symptom monitoring to be      | quarantine since it restricts | EVD as compared to the       |
|       | different con-    |                         | the early epidemic phase of  | influenced by the natural     | personal liberty and creates  | other non-pharmaceutical     |
|       | trol intervention |                         | the outbreak. The impact of  | history of EVD and the con-   | stigmatisation [177].         | measures.                    |
|       | strategies.       |                         | quarantine, symptom mon-     | tainment feasibility within   |                               |                              |
|       |                   |                         | itoring, and contact tracing | healthcare settings. Fur-     |                               |                              |
|       |                   |                         | was evaluated. The most      | ther, symptom monitoring      |                               |                              |
|       |                   |                         | crucial intervention mea-    | was found to be the most      |                               |                              |
|       |                   |                         | sures on the dynamics of     | effective measure in con-     |                               |                              |
|       |                   |                         | the disease were identified  | taining EVD compared to       |                               |                              |
|       |                   |                         | via the Partial Rank Corre-  | quarantine.                   |                               |                              |
|       |                   |                         | lation Coefficient method.   |                               |                               |                              |

| Ref.  | Research ques-   | Data                  | Methodology                  | Conclusions                    | Advantages                  | Limitations/gaps             |
|-------|------------------|-----------------------|------------------------------|--------------------------------|-----------------------------|------------------------------|
|       | tion             |                       |                              |                                |                             |                              |
| [107] | Providing a      | The datasets used     | The model used was an        | It was found that ring vac-    | The study was used to in-   | The model did not account    |
|       | quantitative es- | included the distri-  | individual-based compart-    | cination was efficient in      | tegrate transmission within | for different possible immu- |
|       | timate for the   | bution of household   | ment model. It was used      | containing EVD up to the       | households and extended     | nity periods that the Merck  |
|       | effectiveness of | sizes in Pujehun,     | to simulate the spread of    | value of 1.6 for the effective | families. Further, it was   | rVSV-ZEBOV, assumed in       |
|       | ring vaccination | Sierra Leone. Ad-     | EVD within-households,       | reproductive number $(R_t)$ .  | used to simultaneously      | the study, might have [52].  |
|       | trials.          | ditionally, they in-  | extended families, and the   | Further, if the period from    | assess the effect of ring   |                              |
|       |                  | cluded household      | general community. The       | EVD onset to hospitalisa-      | vaccination and other non-  |                              |
|       |                  | distribution in vil-  | within-household and ex-     | tion became between two        | pharmaceutical measures.    |                              |
|       |                  | lages in the district | tended family transmission   | and three days, two kilo-      |                             |                              |
|       |                  | and town of Pujehun.  | represented the contacts and | metres were added to the       |                             |                              |
|       |                  | These datasets were   | contacts of contacts used in | area covered by the ring       |                             |                              |
|       |                  | obtained from demo-   | the ring vaccination.        | vaccination, and improved      |                             |                              |
|       |                  | graphic and health    |                              | quarantine was practised,      |                             |                              |
|       |                  | surveys and analysis  |                              | the disease could have         |                             |                              |
|       |                  | of aerial images.     |                              | been contained for up to       |                             |                              |
|       |                  |                       |                              | $R_t = 2.6.$                   |                             |                              |
|       |                  |                       |                              |                                |                             |                              |

| Ref. | Research ques-   | Data                 | Methodology                             | Conclusions                  | Advantages                   | Limitations/gaps             |
|------|------------------|----------------------|-----------------------------------------|------------------------------|------------------------------|------------------------------|
|      | tion             |                      |                                         |                              |                              |                              |
| [87] | Assessing the    | An individual-level  | Individuals who could not               | It was found at the starting | The study accounted for      | Similar to [107], this model |
|      | effectiveness of | EVD spread data for  | be associated with any                  | of the 2014 WA EVD that      | EVD transmission from        | did not account for the vac- |
|      | EVD vaccina-     | Guinea. The data     | recognised transmission                 | ring vaccination would not   | cases that were not recorded | cination immunity period.    |
|      | tion.            | were obtained during | chain were assumed to have              | have been enough to con-     | in any transmission chain    | This consideration is im-    |
|      |                  | the 2014 WA EVD      | a basic reproduction num-               | tain the outbreak. However,  | and explored the circum-     | portant when outbreaks       |
|      |                  | by the WHO and the   | ber $(\mathcal{R}_0)$ of seven. Cases   | later when the epidemic was  | stance under which ring      | continue for a long period.  |
|      |                  | Guinean Ministry of  | within the known transmis-              | less severe, this policy was | vaccination could control    |                              |
|      |                  | Health.              | sion chain had $\mathcal{R}_0 = 0.66$ . | more significant.            | the spread of EVD.           |                              |
|      |                  |                      | A ring was defined to be all            |                              |                              |                              |
|      |                  |                      | individuals who could be                |                              |                              |                              |
|      |                  |                      | part of the identified trans-           |                              |                              |                              |
|      |                  |                      | mission chains. A branch-               |                              |                              |                              |
|      |                  |                      | ing process and binomial                |                              |                              |                              |
|      |                  |                      | distribution were used to               |                              |                              |                              |
|      |                  |                      | assess the impact of ring               |                              |                              |                              |
|      |                  |                      | vaccination.                            |                              |                              |                              |

| Ref. | Research ques-  | Data                 | Methodology                  | Conclusions                              | Advantages                     | Limitations/gaps             |
|------|-----------------|----------------------|------------------------------|------------------------------------------|--------------------------------|------------------------------|
|      | tion            |                      |                              |                                          |                                |                              |
| [12] | Evaluating the  | The data used was    | A compartment model was      | The basic reproduction                   | The model assumed the          | The study considered EVD     |
|      | impact of the   | the 2014 WA EVD      | utilised. The model ac-      | number ( $\mathcal{R}_0$ ) was estimated | general population to either   | trajectories in Sierra Leone |
|      | rVSV-ZEBOV      | cumulative cases     | counted for various risks of | to be 1.33. Additionally,                | have a high or low risk of     | as one unit and did not ac-  |
|      | EVD ring vacci- | and deaths in Sierra | infection, and for improved  | it was found that to stop                | infection. Crucially, the ring | count for the high variation |
|      | nation.         | Leone. Additionally, | survival rate resulting from | the outbreak, $40\%$ of the              | vaccination was applied to     | in EVD trajectories among    |
|      |                 | EVD natural history  | an increase in the number of | total population and $95\%$ of           | those of high risk. Further,   | the different districts.     |
|      |                 | parameters were      | trained healthcare workers.  | healthcare workers should                | the model assumed differ-      |                              |
|      |                 | adapted from the     | Latin Hypercube Sampling     | have been vaccinated.                    | ent vaccination strategies     |                              |
|      |                 | literature.          | (LHS) over the uniform       |                                          | and predicted an array of      |                              |
|      |                 |                      | distributions for the set of |                                          | vaccination coverages.         |                              |
|      |                 |                      | model parameters and the     |                                          |                                |                              |
|      |                 |                      | least square methods were    |                                          |                                |                              |
|      |                 |                      | used to estimate model pa-   |                                          |                                |                              |
|      |                 |                      | rameters.                    |                                          |                                |                              |
|      |                 |                      |                              |                                          |                                |                              |

| Ref. | Research ques-    | Data                   | Methodology                   | Conclusions                   | Advantages                    | Limitations/gaps             |
|------|-------------------|------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|
|      | tion              |                        |                               |                               |                               |                              |
| [65] | Using simulation  | Model parameters       | A compartment model           | It was estimated that $7,100$ | The model incorporated        | The population in each ring  |
|      | to assess a ring  | were either adapted    | structure was used. Indi-     | participants were needed      | simulation into the process   | of contacts and contact of   |
|      | vaccination trial | from the literature or | viduals in rings of infected  | in order to reach $80\%$ of   | of designing a vaccination    | contacts was assumed to      |
|      | design.           | assumed.               | individuals were enrolled     | the power of detecting the    | trial. It allowed understand- | have the same rate of trans- |
|      |                   |                        | in the trial and either imme- | difference between the im-    | ing how the sample size and   | mission. However, people     |
|      |                   |                        | diately vaccinated or after   | mediately vaccinated and      | the expected outcome of a     | who closely care for pa-     |
|      |                   |                        | some delay. The cumulative    | the delayed groups. These     | trial are influenced by the   | tients have a higher chance  |
|      |                   |                        | incidences in the immedi-     | figures, however, were sen-   | population characteristics    | of transmission compared     |
|      |                   |                        | ate and delayed vaccinated    | sitive to the settings of the | and the vaccine efficacy.     | to others. Further, contacts |
|      |                   |                        | groups were recorded and      | parameters and the proper-    |                               | have a higher transmission   |
|      |                   |                        | used to estimate vaccina-     | ties of the vaccine.          |                               | rate compared to the con-    |
|      |                   |                        | tion efficacy and calculate   |                               |                               | tacts of contacts.           |
|      |                   |                        | the sample size required to   |                               |                               |                              |
|      |                   |                        | achieve the efficacy.         |                               |                               |                              |
|      |                   |                        |                               |                               |                               |                              |

| Ref. | Research ques-     | Data                   | Methodology                  | Conclusions                  | Advantages                   | Limitations/gaps             |
|------|--------------------|------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|      | tion               |                        |                              |                              |                              |                              |
| [15] | Evaluating a       | EVD natural history    | The study utilised a com-    | As a result of the high risk | The study assessed a novel   | The study assumed the        |
|      | voluntary vacci-   | parameters, vital-     | partment modelling struc-    | of EVD infection, a volun-   | strategy of Ebola vaccina-   | population to be rational    |
|      | nation strategy of | ity rates, and other   | ture and accounted for vac-  | tary vaccination was found   | tion (voluntary vaccination) | enough to decide to be       |
|      | EVD.               | model parameters       | cination by adding a new     | to be very close to the herd | using a game-theoretic ap-   | vaccinated voluntarily and   |
|      |                    | were either adapted    | compartment for this pur-    | immunity level. Conse-       | proach.                      | to be well informed about    |
|      |                    | from the literature or | pose. The basic reproduc-    | quently, it might eradicate  |                              | the risk of the disease and  |
|      |                    | assumed.               | tion number and the vacci-   | EVD, particularly when       |                              | the direct and indirect cost |
|      |                    |                        | nation threshold of reaching | added to other control mea-  |                              | of vaccination.              |
|      |                    |                        | herd immunity were de-       | sures.                       |                              |                              |
|      |                    |                        | rived. A game-theoretic      |                              |                              |                              |
|      |                    |                        | concept was introduced       |                              |                              |                              |
|      |                    |                        | to model the voluntary       |                              |                              |                              |
|      |                    |                        | vaccination, and the Nash    |                              |                              |                              |
|      |                    |                        | equilibrium was derived.     |                              |                              |                              |

| Ref. | <b>Research ques-</b> | Data                   | Methodology                 | Conclusions                    | Advantages                   | Limitations/gaps              |
|------|-----------------------|------------------------|-----------------------------|--------------------------------|------------------------------|-------------------------------|
|      | tion                  |                        |                             |                                |                              |                               |
| [71] | Understanding         | Model parameters       | A treatment-donation-       | The convalescent plasma        | The study provided a novel   | The studied population was    |
|      | the impact of         | were either adapted    | stockpiles compartment      | treatment was found to be      | methodology in assessing     | assumed to be homoge-         |
|      | convalescent          | from the literature or | model was used. It was      | significant in reducing the    | convalescent blood transfu-  | neously mixed in a perfect    |
|      | blood transfusion     | estimated.             | assumed that infected in-   | case fatality rate and in-     | sion therapy and found vital | context of EVD hospital-      |
|      | therapy.              |                        | dividuals to be efficiently | creasing the blood bank        | factors that strengthen this | isation and safe burials.     |
|      |                       |                        | hospitalised and safely     | storage. Further, when         | treatment.                   | However, these assump-        |
|      |                       |                        | buried when deceased.       | more blood donors were         |                              | tions are not realistic with  |
|      |                       |                        |                             | recruited, and the right track |                              | most of EVD outbreaks         |
|      |                       |                        |                             | of their contact was kept for  |                              | that occurred during the last |
|      |                       |                        |                             | re-donation, more reduc-       |                              | decade.                       |
|      |                       |                        |                             | tion in the case fatality rate |                              |                               |
|      |                       |                        |                             | occurred.                      |                              |                               |

## **Appendix B**

## Standard proofs for theorems

*Proof of Proposition 3.3.1.* The first and the second equations of System (3.2) can be rewritten as

$$\frac{dS_H}{dt} = \sigma \Pi - A_1(t)S_H \tag{B.1}$$

and

$$\frac{dS_L}{dt} = (1 - \sigma) \Pi - B_1(t)S_L, \tag{B.2}$$

where

 $A_1(t) = \lambda_1 + \lambda_2 + g_1 + m_1 + \mu$ 

and

$$B_1(t) = \lambda_1 \tau_1 + \tau_2 \lambda_2 + g_2 + m_2 + \mu.$$

Equations (B.1) and (B.2) are linear first order equations in  $S_H$  and  $S_L$ , respectively, and have the solutions:

$$S_{H}(t) = S_{H}(0)e^{-\int_{0}^{t}A_{1}(s)ds} + e^{-\int_{0}^{t}A_{1}(s)ds} \times \int_{0}^{t}\sigma\Pi e^{-\int_{0}^{u}A_{1}(w)dw}du \ge 0;$$

and

$$S_L(t) = S_L(0)e^{-\int_0^t B_1(s)ds} + e^{-\int_0^t B_1(s)ds} \times \int_0^t (1-\sigma)\Pi e^{-\int_0^u B_1(w)dw} du \ge 0$$

for all t. Remark that the non-negativity of  $V_1(t)$ ,  $V_2(t)$ ,  $V_3(t)$ ,  $V_4(t)$ ,  $V_5(t)$ ,  $V_6(t) E(t)$ , I(t), H(t), D(t), and R(t) depends on the non-negativity of  $S_H(t)$  and  $S_L(t)$ . In fact, similar to proving the non-negativity of  $S_H(t)$  and  $S_L(t)$ , it is straightforward to show that these state variables are non-negative for all time t. This completes the proof of the proposition.

*Proof of Proposition 3.3.2.* From Equation (3.1), it follows that if N is bounded, all state

variables that compose N will be bounded. Thus, it suffices to show that N is bounded. From (3.2),

$$\frac{dN}{dt} = \Pi - \mu N + (\mu - b)D - \eta f_2 H \tag{B.3}$$

Note that the disease-induced death rate b is much larger than the natural death rate  $\mu$ . Thus,  $\mu - b < 0$ . Hence

$$\frac{dN}{dt} \le \Pi - \mu N. \tag{B.4}$$

Application of the Gronwall inequality yields

$$N(t) \le \frac{\Pi}{\mu} + \left(N(0) - \frac{\Pi}{\mu}\right)e^{-\mu t}.$$
(B.5)

We can see from (B.5) that if  $N(0) < \frac{\Pi}{\mu}$ ,

$$0 \le N(t) < \frac{\Pi}{\mu}.$$

On the other hand,  $N(0) \geq \frac{\Pi}{\mu}$  implies that

$$N(t) \le \frac{\Pi}{\mu} + \left(N(0) - \frac{\Pi}{\mu}\right)e^{-\mu t} \le \frac{\Pi}{\mu} + N(0) - \frac{\Pi}{\mu} = N(0).$$

Thus, N(t) is bounded for all t > 0.