SOIL LOSS AND RUN-OFF IN UMFOLOZI GAME RESERVE AND THE IMPLICATIONS FOR GAME RESERVE MANAGEMENT

VOLUME 2

JOHAN VENTER

,

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in the Department of Grassland Science Faculty of Agriculture University of Natal Pietermaritzburg

March 1988

CONTENTS

Chapter 2

Figures

2.1	The location of the Hluhluwe and Umfolozi Game Reserves1
2.2	Study area showing non-cull and cull blocks2
2.3	Percentage deviation from mean annual rainfall measured
	at Mpila from July 1959 to June 1986
2.4	Slope map of Umfolozi Game Reserve (modified after Watson,
	1982)
2.5	Geological map of Umfolozi Game Reserve (modified after
	Downing, 1980)
2.6	Soil map of Umfolozi Game Reserve (modified after Spear,
	1980)
2.7	Broad physiognomic vegetation categories occurring in
	Umfolozi Game Reserve (modified after Whateley & Porter,
	1983)

Tables

2.1	Monthly means	of daily maximum an	nd minimum air 🗆	temperatures
	(°C) measured	at Mpila from April	. 1960 to March	1963
	and September	1966 to September 1	.970 (Downing,	1972)8

Chapter 3

Figures

3.1	Location of rainfall simulator sites and adjacent Walker
	transect vegetation monitoring sites
3.2	Location of 1985 rainfall simulator sites
3.3	Dimensions and layout of a typical rainfall simulator
	site
3.4	Mean soil loss (g) from fixed sites located in Acacia
τ 5	Mean soil loss (a) from fixed sites leasted is (a)
0.0	near soll loss (g) from fixed sites located in Acacla
7 /	Mars seil lass () (
3.0	Mean soll loss (g) from a fixed site located in Acacia
	nilotica/Acacia gerrardii woodland13
3.7	Mean soil loss (g) from a fixed site located in
	Spirostachys africana woodland
3.8	Mean percentage run-off from fixed sites located in Acacia
	nigrescens woodland14
3.9	Mean percentage run-off from fixed sites located in Aracia
	tortilis woodland
3.10	Mean percentage run-off from a fixed site located in Acacia
	nilotica/Acacia gerrardii woodland
3.11	Mean percentage run-off from a fixed site located in
	Spirostachys africana woodland15

3.12 Two-dimensional display, obtained by correspondence 3.13 Two-dimensional display, obtained by correspondence 3.14 Two-dimensional display, obtained by correspondence 3.15 Two-dimensional display, obtained by correspondence 3.16 Scattergram of mean soil loss (g) against percentage herbaceous canopy cover.....20 3.17 Scattergram of mean soil loss (g) against percentage 3.18 Scattergram of mean soil loss (g) against percentage 3.19 Scattergram of mean soil loss (g) against percentage 3.20 Scattergram of mean soil loss (g) against maximum grass 3.21 Scattergram of mean soil loss (g) against mean grass 3.22 Scattergram of mean soil loss (g) against percentage herbaceous canopy cover, determined by the USLE method....23 3.23 Scattergram of mean soil loss (g) against percentage 3.24 Scattergram of mean percentage run-off against percentage 3.25 Scattergram of mean percentage run-off against percentage 3.26 Scattergram of mean percentage run-off against percentage 3.27 Scattergram of mean percentage run-off against percentage 3.28 Scattergram of mean percentage run-off against maximum 3.29 Scattergram of mean percentage run-off against mean grass 3.30 Scattergram of mean percentage run-off against percentage herbaceous canopy cover, determined by the USLE method....27 3.31 Scattergram of mean percentage run-off against percentage 3.32 Diagram showing which rainfall simulator data sets were used in the construction and testing of the various 3.33 Frequency of occurrence of observations in various soil loss classes for the 1985 independent data set and the . 3.34 Frequency of occurrence of observations in various soil loss classes for the 1982-85 random data subset and the 3.35 Location of Walker transect vegetation monitoring sites...30 3.36 Dimensions and layout of a typical Walker transect 3.37 Conceptual model of the reaction of the non-cull and cull blocks to differing herbivore densities with respect to

3.38	Trend in predicted mean soil loss from Walker transect
	vegetation monitoring sites in the main and and and and and and and and and an
	blocks

3.39 Relationship between actual stocking rate differential and predicted soil loss differential in the study area......34

Tables

3.1	Physical characteristics of rainfall simulator sites35
3.2	Sites on which rainfall simulator trials were done from
	March 1982 to March 1985
3.3	Soil loss potentials of fixed sites within key woody
	vegetation communities in the non-cull and cull blocks36
3.4	Run-off potentials of fixed sites within key woody
	vegetation communities in the non-cull and cull blocks36
3.5	Data matrix for 1983 rainfall simulator trials used in
	correspondence analysis
3.6	Explanation of codes used in tables, figures and text
3.7	Results of the correspondence analysis of the 1983 raintall
	simulator trial data
3.8	Results of the correspondence analysis of the 1982 raintall
	simulator trial data40
3.9	Results of the correspondence analysis of the 1984 raintail
7 10	Simulator trial data
5.10	results of the correspondence analysis of the 1703 rainal
र 11	Correlation matrix of venetation and soil surface variables
J.11	against mean percentage run-off, mean soil loss and log- of
	mean soil loss
3.12	Results of the steowise multiple regression analysis of
	1982-84 rainfall simulator data for the prediction of soil
	loss
3.13	Results of the stepwise multiple regression analysis of
	1982-85 rainfall simulator data, excluding a 20% random
	subsample, for the prediction of soil loss
3.14	Results of the stepwise multiple regression analysis of
	1982-84 rainfall simulator data for the prediction of
	run-off
3.15	Results of the stepwise multiple regression analysis of
	1982-85 rainfall simulator data, excluding a 20% random
-	subsample, for the prediction of run-off45
3.16	Actual and predicted values for soil loss based on multiple
7 17	regression analysis
3.1/	Actual and predicted values for run-off based on multiple
ד 19	Details of Walker vocatation menitering sites leasted in
0.10	the study area and used in the prediction of soil lass and
	rup-off
3.19	Predicted soil loss from Walker trapsect vegetation
	monitoring sites in the study area
3.20	Stocking rates of grazers and mixed feeders in the study
	area, for the period 1978 to 1986. as determined by
	various counts

Figures

	48
4.1	Monthly more mainfall (mm) measured at six sites in the
4.2	Monthly mean rainfall (mm) measured at 51x 51cc5 in the
_	study area for the period July 1903 to Julie 1903.
4.3	Monthly mean rainfail kinetic energy (0/m / measures at 51%
	sites in the study area for the period daily 1703 to
	June 1986
4.4	Monthly mean rainfall kinetic energy (J/M-) expressed as
	a percentage of annual mean values for the 1983/84, 1984/83
	and 1985/86 rainfall years
4.5	Monthly mean EI_{30} values measured at six sites in the study
	area for the period July 1983 to June 198652
4.6	Monthly mean EI_{30} values expressed as a percentage of annual
	mean values for the 1983/84, 1984/85 and 1985/86 rainfall
	years
4.7	Location of natural run-off plots
4.8	Dimensions and layout of a typical natural run-off site
	in Umfolozi Game Reserve
4.9	Vertical plan of sediment and run-off collecting apparatus
	used in Umfolozi Game Reserve
4.10	Two-dimensional display, obtained by correspondence
	analysis. of 1983/4 natural run-off plot data
4.11	Two-dimensional display, obtained by correspondence
	analysis, of 1984/5 natural run-off plot data
4.12	Two-dimensional display, obtained by correspondence
	analysis, of 1985/6 natural run-off plot data
4.13	Scattergram of log_ appual soil loss (g) against percentage
	herbaceous canopy cover
4.14	Scattergram of log_ annual soil loss (g) against percentage
	litter cover
4.15	Scattergram of log_ annual soil loss (g) against percentage
	soil capping
4.16	Scattergram of log_ annual soil loss (g) against percentage
	susceptible to erosion
4.17	Scattergram of log_ annual soil loss (g) against percentage
	contribution to herbaceous biomass of Aizoon glinoides62
4.18	Scattergram of log_ annual soil loss (q) against maximum
	grass height (cm)
4.19	Scattergram of log_ annual soil loss (g) against mean grass
	height (cm)
4.20	Scattergram of log_ annual soil loss (g) against percentage
	herbaceous canopy cover, determined by the USLE
	method
4.21	Scattergram of log_ annual soil loss (g) against percentage
	surface cover
4.22	Scattergram of log_ annual run-off (1) against percentage
	herbaceous canopy cover
4.23	Scattergram of log_ annual run-off (1) against percentage
	litter cover
4.24	Scattergram of log_ annual run-off (1) against percentage
	soil capping
4.25	Scattergram of log_ annual run-off (1) against percentage
	susceptible to erosion

4.26 Scattergram of log. annual run-off (1) against percentage 4.27 Scattergram of log_ annual run-off (1) against maximum grass 4.28 Scattergram of log_ annual run-off (1) against mean grass 4.29 Scattergram of log. annual run-off (1) against percentage herbaceous canopy cover, determined by the USLE method....68 4.30 Scattergram of log. annual run-off (1) against percentage 4.31 Scattergram of log. annual run-off (1) against woody canopy 4.32 Scattergram of rainfall (mm) against soil loss (g) from 4.33 Scattergram of rainfall (mm) against run-off (1) from run-off events where 201 or less of run-off was measured..70 4.34 Scattergram of cumulative total of mean rainfall (mm) against cumulative total of rainfall per erosion event (mm) measured at gauge 403.....71 4.35 Trend in predicted annual mean soil loss from Walker transect vegetation monitoring sites in the study area ...71 4.36 Relationship between actual stocking rate differential and predicted soil loss differential in the study area......72 4.37 Trend in predicted annual mean run-off from Walker transect vegetation monitoring sites in the study area....72 4.38 Relationship between actual stocking rate differential and predicted run-off differential in the study area......73 Tables 4.1 Monthly rainfall variables measured at six sites in the Monthly rainfall variables measured at six sites in the 4.2 4.3 Monthly rainfall variables measured at six sites in the Annual values for rainfall variables measured at six sites 4.4 in the study area during the 1983/4, 1984/5 and 1985/6 4.5 Physical characteristics of natural run-off plots......78 Annual soil loss values for fixed sites within key woody 4.6 vegetation communities in the non-cull and cull blocks....78 4.7 Annual run-off values for fixed sites within key woody vegetation communities in the non-cull and cull blocks....79 Explanation of codes used in tables, figures and text....80 4.8 4.9 Results of the correspondence analysis of the 1983/4 4.10 Results of the correspondence analysis of the 1984/5 natural run-off plot data.....82 4.11 Results of the correspondence analysis of the 1985/6 natural run-off plot data.....B3 4.12 Correlation matrix of vegetation and soil surface variables against log. of annual soil loss (g) and log. of

- 4.15 Actual and predicted values for annual soil loss and annual run-off based on multiple regression analysis.....85

Figures

5.1	Location of paired rainfall simulator and natural run-off
5.2	Dimensions and layout of a typical paired rainfall simulator and natural run-off site in Umfolozi Game
5.3	Reserve
5.4	Scattergram of mean run-off, determined by the rainfall simulator trials, against annual mean run-off, as
5.5	determined by the natural run-off plots
5.6	based on rainfall simulator trial data91 Predicted annual mean soil loss from Walker transect vegetation monitoring sites in the study area. Predictive equation based on natural run-off plot and rainfall data91
Table	25
5.1	Physical characteristics of paired rainfall simulator and
5.2	Soil loss measurements from rainfall simulator and adjacent
5.3	Correlation matrix of mean soil loss and mean run-off, determined by the rainfall simulator trials, against mean annual soil loss and mean annual run-off, determined by
5.4	Comparison of ranked soil loss values as determined by rainfall simulator trials and adjacent natural run-off
5.5	Comparison of rankings for soil loss and run-off as determined by rainfall simulator trials and from adjacent

5.6 Run-off measurements from rainfall simulator and adjacent natural run-off sites.....94

- 5.10 Comparison of ranked correlation coefficient values for run-off as determined by rainfall simulator trials and natural run-off plots.....98

Chapter 6

Figures

6.1	Location of the study area at Cengeni gate
6.2	And KwaZulu
6.3	Dimensions and layout of a typical Gerlach trough site in
6.4	Vertical plan of Gerlach trough and sediment collecting
6.5	Dimensions and layout of a typical vegetation monitoring
6.6	site located above the Gerlach troughs
4 7	Reserve and KwaZulu
0./	the study area
6.8	Two-dimensional display, obtained by correspondence analysis, of the 1984 herbaceous species composition data
	the Walker (1976) method
6.9	Two-dimensional display, obtained by correspondence analysis, of the 1984 herbaceous species composition data
	at the exclosure and control plots. Data derived using the Barnes et al. (1982) method
6.10	Two-dimensional display, obtained by correspondence
	analysis, of the 1986 herbaceous species composition data at the exclosure and control plots. Data derived using
7 11	the Walker (1976) method107
0.11	analysis, of the 1986 herbaceous species composition data
	at the exclosure and control plots. Data derived using the Barnes <i>et al.</i> (1982) method
ſable	25

6.1 Physical characteristics of Gerlach trough sites.....109 6.2 Annual soil loss (g) measured from Gerlach trough sites in KwaZulu and Umfolozi Game Reserve during the 1984/5 rainfall year.....110

6.3	Annual soil loss (g) measured from Gerlach trough sites in KwaZulu and Umfolozi Game Reserve during the 1985/6 rainfall
6.4	year Results of single classification ANOVA and two-level nested ANOVA on the combined 1984/5 and 1985/6 annual soil loss
6.5	A-horizon depth (cm) measured at 48 randomly located sites in KwaZulu and Umfolozi Game Reserve
6.6	Results of single classification ANOVA and two-level nested ANOVA on the A-horizon depth data set
6.7	Correlation matrix of mean annual soil loss (g) and log. mean annual soil loss (g) against vegetation variables, soil surface variables and slope
6.8	Percentage contribution of each exclosure plot to total annual accumulated herbage for the period November 1984 to March 1987
6.9	Percentage contribution of each control plot to total annual accumulated herbage for the period November 1984 to March 1987
6.10	Results of single classification ANOVA and two-level nested ANOVA on the 1985-87 exclosure plot and the 1985-87
6.11	Data matrix used in correspondence analysis of the 1986 herbaceous species composition data. Data derived using
4 17	the Walker (1976) method
6.13	Total herbaceous species richness in the exclosure and
6.14	Results of single classification, two-level and three-level nested ANOVA on the herbaceous species richness data as
4 15	determined by the nested quadrat technique
0.15	Species have been ranked from highest to lowest percentage frequency of occurrence, based on 40 x 40cm nested quadrat
6.16	Herbaceous species occurring within each exclosure plot. Species have been ranked from highest to lowest percentage frequency of occurrence based on 40 × 40cm guadrat data 110
6.17	Mean percentage contribution to herbaceous biomass of
	Walker (1976) method on the exclosure and control plots. 120
6.18	Mean percentage contribution to herbaceous biomass of herbaceous species in November 1984 as determined by the Barnes <i>et al.</i> (1982) method on the exclosure and
6.19	Mean percentage contribution to herbaceous biomass of
	Walker (1976) method on the evolution of the
6.20	Mean percentage contribution to herbaceous biomass of
	herbaceous species in January 1986 as determined by the Barnes <i>et al.</i> (1982) method on the exclosure and
6.21	Results of the correspondence analysis of the Newscore 1000
	herbaceous species composition data at the control and
	exclosure plots. Data derived using the Walker (1976)

6.22	Results of the correspondence analysis of the November	1984
	herbaceous species composition data at the control and	
	exclosure plots. Data derived using the Barnes	105
	<i>et al.</i> (1982) method	123

- 6.24 Results of the correspondence analysis of the January 1986 herbaceous species composition data at the control and exclosure plots. Data derived using the Barnes et al. (1982) method.....127

Figures

7.1Relationship between soil erosion and mean annual rainfall		
for areas of natural vegetation cover (solid line) and bare		
ground (dashed line). Modified after Branson <i>et al.</i> ,		
1981		
7.2 Map of Africa showing areas particularly susceptible to		
rainfall erosion (hatched area). Modified after Hudson,		
1981		
7.3 Annual rainfall (mm) measured at Mpila for the period		
1959/60 to 1985/86130		
7.4 Mean monthly values of rainfall erosivity in western		
Umfolozi Game Reserve130		
7.5 Relationship between mean annual rainfall and percentage		
herbaceous canopy cover in the cull and non-cull blocks131		
7.6 Relationship between mean annual rainfall and mean grass		
height in the cull and non-cull blocks		
7.7 Relationship between annual mean stocking rate, herbaceous		
canopy cover and mean grass height in the cull block132		
7.8 Relationship between annual mean stocking rate, herbaceous		
canopy cover and mean grass height in the non-cull block.132		
7.9 Herbage accumulation in exclosure plots in KwaZulu and		
Umfolozi Game Reserve during the 1984/5, 1985/6 and 1986/7		
rainfall years133		

7.1	Summary of results on the influence of livestock grazing on sediment yield in the United States of America and South
	Africa
7.2	Summary of soil loss results from western Umfolozi Game
	Reserve obtained from rainfall simulator trials and
	natural run-off plots
7.3	Correlation matrix of rainfall and stocking rate against
	vegetation variables
7.4	Correlation matrix of vegetation variables, rainfall and stocking rate against mean soil loss (kg/ha)

Figures

8.1	Cross-section through a landscape showing position and
	extent of depression mesic grassland maintained as a
	result of seasonal waterlogging of the soil
92	Cross-section through a landscape showing the effect of

- 8.2 Cross-section through a landscape showing the effect of lowering the landscape base level on the extent of depression mesic grassland......136
- 8.4 Location of hydrologically maintained depression mesic grasslands in the Hluhluwe and Umfolozi Game Reserves...138

Figure 2.1 The location of the Hluhluwe and Umfolozi Game Reserves

~

Figure 2.3 Percentage deviation from mean annual rainfall measured at Mpila from July 1959 to June 1986

Figure 2.4 Slope map of Umfolozi Game Reserve (modified after Watson, 1982)

Table 2.1	Monthly means of daily	saxious and sinisus) air temperatures	(°C) measured at Mpila
	from April 1960 - Marc	h 1963 and September	1966 - September	1970 (Downing, 1972)

HONTH	JULY	AUG	SEPT	0CT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE
MAXIMUM MEAN	25,3	26,8	26,8	28,4	29,4	30,7	32,6	32,9	29,9	27,6	26,7	25,3
MINIMUM MEAN	13,2	14,9	17,3	18,2	18,5	19,9	21,8	21,6	20,3	17,4	15,7	13,2

Table 2.2 Maximum, minimum and mean monthly rainfall (mm) measured at Mpila from July 1959 to June 1986

HONTH	JULY	AUG	SEPT	0CT	NDV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	
MAXIMUM	352.5	78.2	172.1	196.8	204.4	302.8	507.3	373.7	222.5	118.6	156.6	86.5	
MININUM	0	0	6.1	8.5	22.5	14.6	6.1	10.3	0	8.9	Û	Û	
MEAN	25.8	25.7	43.6	78.2	88.5	76.3	101.5	101.0	70.9	43.2	27.9	19.5	,

Table 2.3 Annual rainfall (mm) measured at Mbhuzana from July 1981 to June 1986

ANNUAL RAINFALL (mm)
620.4
333.1
1123.6
752.7
593.1

Figure 3.3 Dimensions and layout of a typical rainfall simulator site

Figure 3.4 Mean soil loss (g) from fixed sites located in *Acacia* tortilis woodland. The mean is depicted by a crossbar and the range by a vertical line

Figure 3.5 Mean soil loss (g) from fixed sites located in *Acacia* nigrescens woodland. The mean is depicted by a crossbar and the range by a vertical line

Site 294 ----

Figure 3.6 Mean soil loss (g) from a fixed site located in Acacia nilotica/Acacia gerrardii woodland. The mean is depicted by a crossbar and the range by a vertical line

Site 296 ----

Figure 3.7 Mean soil loss (g) from a fixed site located in *Spirostachys africana* woodland. The mean is depicted by a crossbar and the range by a vertical line

Figure 3.8 Mean percentage run-off from fixed sites located in Acacia nigrescens woodland. The mean is depicted by a crossbar and the range by a vertical line

Figure 3.9 Mean percentage run-off from fixed sites located in Acacia tortilis woodland. The mean is depicted by a crossbar and the range by a vertical line

Site 294 -

Figure 3.10 Mean percentage run-off from a fixed site located in Acacia nilotica/Acacia gerrardii woodland. The mean is depicted by a crossbar and the range by a vertical line

Site 296 ----

Figure 3.11 Mean percentage run-off from a fixed site located in Spirostachys africana woodland. The mean is depicted by a crossbar and the range by a vertical line

Figure 3.12 Two-dimensional display, obtained by correspondence analysis, of 1983 rainfall simulator trial data

	HCC1 SUR MPR4	MSE2 B MSE3 MPR3	LITC		
MPR5	HČC2 MSL4	мёдн		ROCK	53,22
SQCA		MAGH			
		MPR2			
	SUTE •				
	<i>,</i>				
	Avis 2 26, 04				woo

Figure 3.13 Two-dimensional display, obtained by correspondence analysis, of 1982 rainfall simulator trial data

Figure 3.14 Two-dimensional display, obtained by correspondence analysis, of 1984 rainfall simulator trial data

Figure 3.15 Two-dimensional display, obtained by correspondence analysis, of 1985 rainfall simulator trial data

Figure 3.16 Scattergram of mean soil loss (g) against percentage herbaceous canopy cover

Figure 3.17 Scattergram of mean soil loss (g) against percentage susceptible to erosion

20

Figure 3.18 Scattergram of mean soil loss (g) against percentage soil capping

Figure 3.19 Scattergram of mean soil loss (g) against percentage litter cover

Figure 3.20 Scattergram of mean soil loss (g) against maximum grass height (cm)

Figure 3.21 Scattergram of mean soil loss (g) against mean grass height (cm)

Figure 3.22 Scattergram of mean soil loss (g) against percentage herbaceous canopy cover, determined by the USLE method

Figure 3.23 Scattergram of mean soil loss (g) against percentage surface cover

Figure 3.24 Scattergram of mean percentage run-off against percentage herbaceous canopy cover

Figure 3.25 Scattergram of mean percentage run-off against percentage susceptible to erosion

Figure 3.26 Scattergram of mean percentage run-off against percentage soil capping

Figure 3.27 Scattergram of mean percentage run-off against percentage litter cover

Figure 3.28 Scattergram of mean percentage run-off against maximum grass height (cm)

Figure 3.29 Scattergram of mean percentage run-off against mean grass height (cm)

Figure 3.30 Scattergram of mean percentage run-off against percentage herbaceous canopy cover, determined by the USLE method

Figure 3.31 Scattergram of mean percentage run-off against percentage surface cover

Figure 3.32 Diagram showing which rainfall simulator data sets were used in the construction and testing of the various predictive models

Figure 3.33 Frequency of occurrence of observations in various soil loss classes for the 1985 independent data set (\mathbf{N}) and the 1982-84 data set (\mathbf{N})

Figure 3.34 Frequency of occurrence of observations in various soil loss classes for the 1982-85 random data subset (\Box) and the remainder of the 1982-85 data set (\Box)

Figure 3.36 Dimensions and layout of a typical Walker transect vegetation monitoring site

---- Cull block --- Non-cull block

1.

Figure 3.37 Conceptual model of the reaction of the non-cull and cull blocks to differing herbivore densities with respect to soil loss and run-off

Year

Non-cull block — Cull block ———

Figure 3.38 Trend in predicted mean soil loss from Walker transect vegetation monitoring sites in the non-cull and cull blocks. The mean is depicted by a crossbar, the standard error by a vertical bar and the range by a vertical line

Figure 3.39 Relationship between actual stocking rate differential and predicted soil loss differential in the study area

		======	***************************************	=======================================		=========================
SITE	EXPERIMENTAL	BLOCK	WOODY VEGETATION	SDIL CLAS	SIFICATION	SLOPE
NUMBER	NON-CULL	CULL	COMMUNITY	FORM	SERIES	(%)
296	X		Spirostachys africana	Shortlands	Sun valley	4,0
279	X		Acacia tortilis	Shortlands	Glendale	8,8
241	X		Acacia nigrescens	Mayo	Tshipise	9,6
206	X		Acacia nigrescens	Mayo	Tshipise	9,5
294	Ă		Acacia nilotica/Acacia gerrardii	Valsrivier	Lindley	8,6
295		Х	Acacia nigrescens	Mayo	Pafuri	7,9.
280		X	Acacia tortilis	Swartland	Omdraai	3,6
284		X	Acacia tortilis	Swartland	Swartland	10,3
======		2222222				

Table 3.1 Physical characteristics of rainfall simulator sites

Table 3.2	Sites on whic	h rainfall	simulator	trials
	were done fro	om March 190	32 to March	1985

MARCH 1982 APRIL 1983 MARCH 1984 MARCH 1985 296 296 296 -	==================== R	AINFALL SIMUL	ATOR TRIAL SI	TES
296 296 296 -	MARCH 1982	APRIL 1983	MARCH 1984	MARCH 1985
	296	296	296	-
279 279 279 -	279	279	279	-
241 241 241 241	241	241	241	241
-* 206 206 -	-*	206	206	-
294 294 294 294	294	294	294	294
295 295 -** -**	295	295	-**	-**
280 280 280 -	280	280	280	_
284 284 284 284	284	284	284	284

* Site 206 started in 1983 ** Site 295 destroyed by Cyclone Domoina in January 1984

NORTH WEREFALLOW CONSULTY		DURATION	MEAN SOIL LOSS (g)				
MUDDY VEGELATION COMPONITY	SILE NUMBER	(YEARS)	NON-CULL BLOCK	CULL BLOCK			
Acacia tortilis	279	3	3402.7±1375.4 (803.3-7878.6)	-			
	280	3	-	365.5±138.5 (32.6-853.9)			
	284	3	-	437.4±93.0 (109.1-764.4)			
Acacia nigrescens	241	3	696.0 <u>±</u> 193.2 (231.6-149.4)	-			
	206	2	3422.9±2245.3 (71.2-9687.9)	- ·			
	295	2	-	1522.9±567.2 (558.8-2023.2)			
Acacia nilotica/Acacia gerrardii	294	3	1808.6±852.9 (285.7-5764.4)	-			
Spirostachys africana	296	3	2575.4±972.0 (200.5-5800.9)	-			

Table 3.3 Soil loss potentials of fixed sites within key woody vegetation communities in the non-cull and cull blocks. Values given are mean and standard error and, in parentheses, range

-

Table 3.4 Run-off potentials of fixed sites within key woody vegetation communities in the non-cull and cull blocks. Values given are mean and standard error and, in parentheses, range

WOBBY VERETATION COMMUNITY	STTE NUMBER	DURATION	MEAN PERCENTAGE RUN-OFF			
	SITE NUMBER	(YEARS)	NON-CULL BLOCK	CULL BLOCK		
Acacia tortilis	279	3	73.1±9.5 (44.0-100.0)	-		
	280	3	-	53.8±7.9 (22.8-71.1)		
	284	2	-	79.3±4.6 (65.0-92.5)		
Acacia nigrescens	241	3	49.3±3.8 (37.4-64.2)	-		
	206	2	76.5±8.1 (55.9-89.9)	-		
	295	2	-	60.2±5.6 (49.9-72.1)		
Acacia nilotica/Acacia gerrardii	294	3	75.7±3.8 (65.4-89.0)			
Spirostachys africana	296	3	80.5±6.2 (63.7-100.0)			

================== DE	INDEPENDENT VARIABLES (ROWS)										
VARIABLES (COLUMNS)		HCC1 (%)	LITC (%)	50CA (%)	5UTE (%)	ROCK (%)	МАБН (се)	ME6H (cn)	нсс2 (%)	SURC (%)	WBCC (%)
	MSLI (0-100g)	-	-	-	-	-	_	-	-	-	-
MEAN	MSL2 (101-500g)	67,4	36,3	24,0	31,4	0,2	58,7	33,0	67,7	53,0	0,0
SOIL	MSL3 (501-1 000g)	53.4	19,0	29,6	35,9	0,4	33,1	9,2	54,0	55,3	0,2
LU55	MSL4 (1 001-5 000g)	37,2	9,2	44,8	62,6	1,0	26,4	9,1	3 9 ,0	31,7	1,6
	MSL5 (5 001-10 000g)	12,2	5,6	81,7	87,7	0,3	9,4	4,5	15,2	14,8	1,5
	MPR1 (0-20%)	78,7	48,6	10,2	18,9	0,2	76,5	43,8	79,0	58,0	0,0
	MPR2 (21-40%)	59,0	38,7	6,3	12,6	0,2	43,7	12,1	60,5	67,5	0,5
PERCENTAGE	MPR3 (41-60%)	45,5	10,6	30,7	53,2	0,8	30,3	10,8	45,8	37,5	1,2
KUN-UFF	MPR4 (61-80%)	35,6	10,2	51,4	64,4	1,0	24,7	8,8	38,0	32,4	2,8
	MPR5 (81-100%)	18,3	5,1	77,7	81,6	0,2	11,2	4,6	20,6	20,9	0,2

Table 3.5 Data matrix for 1983 rainfall simulator trials used in correspondence analysis #

For explanation of codes see Table 3.6

Table 3.6 Explanation of codes used in tables, figures and text

	=======	
MEAN COTL LOSS	MSL1 (v	very low)
HEAN SULL LUSS	MSLZ (1	low)
	MSL3 (⊠	∎oderate)
	MSL4 (H	high)
	MSL5 (v	very high)
	HPR1 (v	very low)
RUN-OFF	MPRZ (1	low)
	MPR3 (a oderate)
	MPR4 (1	high)
	MPR5 (v	very high)
DEPETATION	HCC1 He	erbaceous canopy cover (%) measured by Walker's (1976) method
VARIABLES	LITC L	itter cover (%)
	MAGH Ma	laximum grass height (cm)
	MEGH M	lean grass height (cm)
	HCC2 H	lerbaceous canopy cover (%) measured by USLE method (WISCHMEIER, 1975)
	SURC SI	urface cover (%)
	WOCC Wo	loody canopy cover (%)
	SOCA S	boil capping (%)
VARIABLES	SUTE SI	usceptibility to erosion (%)
	ROCK RO	lock (%)

	<u>а</u> т	PRINCI	PAL AXIS	1	PRINCI	PAL AXIS	2
VARIABLES	ULI	K=1	COR	CTR	K=2	COR	CTR
HCC1	962	-290	930	53	-54	32	28
LITC	B63	524	845	78	78	18	26
SOCA	788	807	7 84	361	53	4	24
SUTE	99 2	670	9 9 2	312	1	0	0
ROCK	312	304	153	1	309	160	9
MAGH	787	-372	932	68	93	57	63
MEGH	788	-451	549	43	404	439	514
HCC2	971	-260	929	44	-55	42	29
SURC	963	-245	616	35	-184	347	292
WOCC	370	644	313	5	-275	57	14
MSL2	925	-358	834	74	119	91	123
MSL3	759	-150	326	10	-173	433	202
MSL4	744	246	720	25	-45	24	12
MSL5	977	924	968	308	93	9	47
MPR1	967	-541	869	188	183	7 8	321
MPR2	912	-522	815	128	-180	97	227
MPR3	221	40	40	1	82	181	42
MPR4	779	300	759	38	-48	20	15
MPR5	961	783	958	229	45	3	11

.

.

Table 3.7Results of the correspondence analysis of the 1983
rainfall simulator trial data

		PRINCIPAL AXIS 1		PRINCIF	PRINCIPAL AXIS 2			
VARIABLES	UL I	K=1	COR	CTR	K=2	COR	CTR	
HCC1	961	-62	287	39	96	674	195	
LITC	941	306	856	408	97	85	84	
SOCA	749	-281	644	298	-113	105	99	
ROCK	699	487	685	23	-69	14	1	
MAGH	987	96	367	89	-123	620	302	
MEGH	645	113	632	36	-15	13	1	
HCC2	251	-91	213	54	-38	38	20	
SURC	842	-33	226	12	56	616	69	
WOCC	927	916	250	41	-1505	677	229	
*SUTE	0	-78	0	34	-332	0	1241	
MSL2	613	68	148	33	120	465	210	
MSL3	44	22	40	4	8	4	1	
MSL4	467	-148	422	106	48	45	23	
MPR1	498	118	498	75	4	0	0	
MPR2	903	188	332	174	-246	571	608	
MPR3	652	112	405	95	88	247	119	
MPR4	344	-122	325	80	30	19	10	
MPR5	717	-261	695	432	-46	22	28	

- -

Table 3.8 Results of the correspondence analysis of the 1982 rainfall simulator trial data

* Supplementary point

VARIABLES	QLT	PRINCI	PRINCIPAL AXIS 1			NCIPAL AXIS 2		
VHRIHDLES	نظت	K=1	COR	CTR	K=2	COR	CTR	
HCC1	933	-4	5	0	-57	928	55	
LITC	459	199	447	50	33	12	4	
SOCA	793	-73	7 8	6	197	695	107	
SUTE	909	-9	1	0	291	708	332	
ROCK	256	-21	2	0	226	254	2	
FORB	983	-592	982	767	25	1	4	
MAGH	974	113	972	86	-5	2	0	
MEGH	786	171	777	84	19	9	З	
HCC2	557	-8	21	0	-45	536	34	
SURC	795	-5	24	0	-35	771	22	
WOCC	918	230	34	7	1165	884	437	
MSL1	723	115	590	69	55	133	41	
MSL2	7 9 0	66	470	22	-54	320	38	
MSL3	944	-238	917	283	-41	27	22	
MPR2	929	230	859	269	-65	70	56	
MPR3	870	258	890	338	-6	0	1	
MPR4	785	53	146	15	-110	639	160	
MPR5	247	29	15	4	232	940	682	
*MSL4	960	-506	882	1259	151	78	294	

. •

TABLE 3.9 Results of the correspondence analysis of the 1984 rainfall simulator trial data

_

* Supplementary point

VARIABLES	QLT	PRINCI	PRINCIPAL AXIS 1			PAL AXIS 2			
VHRIHDLES	ULL I	K=1	COR	CTR	K=2	COR	CTR		
HCC1	951	-20	241	6	36	710	94		
LITC	884	107	843	86	24	41	21		
SOCA	997	-544	997	433	-5	0	0		
SUTE	998	-407	993	281	31	5	8		
ROCK	711	21	0	0	559	711	51		
FORB	940	232	310	28	-330	630	281		
MAGH	705	23	683	9	-3	22	1		
MEGH	983	152	941	149	32	42	34		
HCC2	898	-11	286	2	-17	612	20		
SURC	979	-18	671	5	-12	308	12		
WOCC	965	-40	13	1	-347	952	477		
MSL1	728	70	685	67	43	256	125		
MSL2	964	37	152	18	-83	812	457		
MSL3	984	-174	978	369	14	6	12		
MPR1	990	154	909	328	46	81	149		
MPR3	825	18	85	5	-53	740	183		
MPR4	971	-131	911	213	34	60	73		
*MPR2	91	6	1	1	-58	90	219		

Table 3.10	Results of the corresponde	nce analysis d	of the	1985
	rainfall simulator trial d	lata		

* Supplementary point

DEPENDENT				CDEFFICI	ENT OF CO	====== RRELATION	 (r)		=========	============	
VARIABLES	HCC1	LITC	SOCA	SUTE	AIZ	MAGH	MEGH	ROCK	HCC2	SURC	WOCC
MEAN PERCENTAGE RUN-OFF	-0.424 ##	-0.646 ##	0.628 ##	0.515 ##	-0.227 n.s.	-0.403 ##	-0,370 1	-0.248 n.s.	-0.318 \$	-0.324 ‡	0.155 n.s.
MEAN SOIL LDSS	-0.733 \$\$	-0.403 \$\$	0.793 **	** 0.803	-0.159 n.s.	-0.706 **	-0.532 \$	0.073 n.s.	-0.635 ##	-0.803 \$\$	0.263 n.s.
LOGe OF MEAN SOIL LOSS	-0.776 \$\$	-0.429 \$\$	0.761 ##	0.821 \$\$	-0.013 n.s.	-0.832 ##	-0.770 #	0.220 n.s.	-0.761 ##	-0.832 **	0.036 n.s.
	=======				===========			=========	=========	===========	
	Key 										
	n.s.= no \$ = si	t signific gnificant	ant at 5% pro	bability	level						
	11 = si	gnificant	at 1% pro	bability	level						
	degrees	of freedom	1 = 46								

 Table 3.11
 Correlation matrix of vegetation and soil surface variables against mean percentage run-off. mean soil loss

 soil loss and log of mean soil loss

 e

.

Table 3.12 Results of the stepwise multiple regression analysis of 1982-84 rainfall simulator data for the prediction of soil loss

METHOD/S USED TO MEASURE INDEPEN-	INDEPENDENT Variable	BETA COFFEICIENT	CONFIDENC	E LIMITS	PARTIAL	SIGNIFICANCE	PERCENTAGE VARIAT-	
DENT VARIABLES			UPPER	LOWER			R-SQ	
WALKER (1976) Method	CONSTANT Magh HCC1	8.9141 -0.0266 -0.0160	-0.01508 0.00 4 66	-0.03807 -0.03672	23.055 7.777	p<0.01 p<0.01 (d.f.n1=2,n2=45	69,2 73,7	
WALKER (1976) & USLE (WISCHMEIER 1975) METHODS	CONSTANT SURC MEGH	9.0603 -0.0301 -0.0371	-0.02137 -0.02146	-0.03873 -0.05271	40.340 19.525	p<0.01 p<0.01 (d.f.n1=2,n2=45	69,2 78,5	
				*				

Table 3.13 Results of the stepwise multiple regression analysis of 1982-85 rainfall simulator data, excluding a 20% random subsample, for the prediction of soil loss

		==========================			========			
METHOD/S USED TO MEASURE INDEPEN-	INDEPENDENT Variarie	BETA COFFEICIENT	CONFIDENC	E LIMITS A	PARTIAL E-TEST	SIGNIFICANCE	PERCENTAGE VARIAT-	
DENT VARIABLES			UPPER				R-SQ	
WALKER (1976)	CONSTANT	5.9383						
METHOD	SUTE	0.0300	0.03926	0.02065	41.294	p<0.01	75,4	
	NEGH	-0.0211	-0.00840	-0.03387	7.731	p<0.01	78,6	
						(d.f.n1=2,n2=51)	
WALKER (1976) &	CONSTANT	9.0025						
USLE (WISCHMEIER	SURC	-0.0319	-0.02372	-0.04006	52.120	p<0.01	76.1	
1975) METHODS	MEGH	-0.0238	-0.01257	-0.03494	12.667	p<0.01	80.9	
						(d.f.n1=2,n2=51)	

Table 3.14 Results of the stepwise multiple regression analysis of 1982-84 rainfall simulator data for the prediction of run- off

		==================			=======			
METHOD/S USED TO MEASURE INDEPEN-	INDEPENDENT Vartari f	BETA	CONFIDENC	E LIMITS	PARTIAL	SIGNIFICANCE	PERCENTAGE VARIAT-	
DENT VARIABLES			UPPER LOWER				R-SO	
WALKER (1976)	CONSTANT	36.1376						
METHOD	LITC	-0.6493	-0.46613	-0,83250	15.517	p<0.01	41.8	
	SOCA	0.6796	1.22218	0.13710	17.565	P<0.01	53,0	
	MAGH	0.3626	0.67331	0.05199	6.8 05	p<0.01	59.3	
						(d.f.n1=3,n2=44)	,	
WALKER (1976) &	CONSTANT	-2,0964						
USLE (WISCHMEIER	LITC	-0.4850	-0.32303	-0.64692	11.076	r≤0.01	41 D	
1975) METHODS	SOCA	0.9995	1.52584	0.47323	40.372	n<0.01	41,0 53 A	
	SURC	0.7323	1.02550	0.43908	24.306	n<0.01	55,0 66 t	
	WOCC	2.3597	2.50555	2.21389	6.276	p<0.01	70.4	
						(d.f.n1=4,n2=43)	, v, t	

METHOD/S USED TO MEASURE INDEPEN- DENT VARIABLES	INDEPENDENT VARIABLE	BETA COEFFICIENT	CONFIDENC	E LIMITS F F LOWER	PARTIAL TEST	SIGNIFICANCE	PERCENTAGE VARIAT- ION EXPLAINED BY R-SQ
WALKER (1976) METHOD	CONSTANT HCC1 LITC ROCK	56.0545 0.5440 -0.4000 -10.0248	0.79650 -0.06035 -9.82151	0.29141 -0.73964 -10.22800	16.094 5.548 3.532	p<0.01 p<0.01 0.05>p>0.01 (d.f.ni=3,n2=50	46,4 52,2 55,3
WALKER (1976) & USLE (WISCHMEIER 1975) METHODS	CONSTANT SOCA SURC LITC	5.5126 0.9777 0.5852 -0.4692	1.36081 1.07934 -0.21575	0.59452 0.09105 -0.72273	22.588 8.989 8.436	p<0.01 p<0.01 p<0.01 (d.f.n1=3,n2=50	46,4 52,6 59,5

Table 3.15 Results of the stepwise multiple regression analysis of 1982-85 rainfall simulator data, excluding a 20% random subsample, for the prediction of run-off

Table 3.16 Actual and predicted values for soil loss based on multiple regression analysis

1985 INDE	RAINFALL SIMU PENDENT DATA S	LATOR TRIAL ET	RESERVÉ 1982-85	DATA SUBSET F RAINFALL SIMU	ROM ILATOR TRIALS
ACTUAL LOGe	PREDICTED LOG	e SOIL LOSS (g)	ACTUAL LOGe	PREDICTED LOG	ie SOIL LOSS (g)
(g)	EQUATION 3.1	EQUATION 3.2	(g)	EQUATION 3.3	EQUATION 3.4
5.1411 5.0562 4.8645 5.2781 6.0640 5.4289 5.2591 5.8816 4.7933 4.6131 5.4566 5.4476 6.7191 5.6626 5.4873 6.1738 5.5880 5.6265 5.2231 5.1658	4.7344 4.7610 5.0454 5.0321 4.7900 5.0990 4.7136 4.4738 4.5960 4.6306 4.6306 4.3964 4.8195 5.5435 4.7237 5.3304 5.7166 4.9101 5.0589 5.1681 5.3307	4.6870 4.6425 4.7372 4.9932 4.9232 5.2555 4.7543 4.1371 4.5823 4.5942 4.3259 4.7241 5.7868 5.1305 5.7235 6.1867 5.3882 5.4554 5.4723 5.4723	5.4873 5.6265 5.2231 6.6887 4.6923 6.3108 3.4843 5.6791 7.8109 7.9456 7.2791 7.0682 5.0888 7.4776	5.8514 5.6217 5.6658 6.1501 5.2980 5.8412 4.9705 7.3757 7.8470 7.9954 7.4935 6.3057 5.9474 6.8467	5.8169 5.6130 5.6872 5.9328 5.2202 5.5910 4.8527 7.3571 7.9472 7.9753 7.3069 6.4294 5.9228 6.9688
5.1057 	J.3307	J.6371			
determination: Coefficient of	D = 0.188	D = 0.216	Coefficient of determination Coefficient of	f D = 0.682 f	D = 0.680
efficiency:	E = 0.955	E = 0.809	efficiency:	E = 0.639	E = 0.652

1985 Indep	RAINFALL SIMU ENDENT DATA S	LATOR TRIAL ET	RESERVE 1982-85	DATA SUBSET RAINFALL SIM	FROM ULATOR TRIALS
ACTUAL	PREDICTED RUN	-OFF (%)	ACTUAL	PREDICTED RUN	-OFF (%)
RUN-UFF (%)	EQUATION 3.5	EQUATION 3.6	(%)	EQUATION 3.7	EQUATION 3.8
3.6	49.6	48.7	46.1	88.9	53.1
9.4	47.9	43.4	69.1	85.4	45.6
54.2	28.0	35.8	49.2	87.4	47.0
48.5	25.7	32.7	53.8	94.0	63.3
56.2	43.6	49.8	65.0	104.1	61.8
58.4	53.7	53.5	74.3	98.6	68.0
24.0	67.5	58.1	71.1	92.2	48.2
29.5	51.6	61.9	66.2	75.7	75.9
5.2	32.8	39.7	84.8	73.4	72.2
6.7	38.4	53.5	72.1	49.2	73.7
44.4	41.4	64.2	73.4	59.5	51.5
70.2	38.7	52.1	70.9	92.7	58.0
32.0	61 . B	62.1	50.0	75.8	39.9
21.0	57.1	54.1	77.5	82.2	67.5
46.1	57.3	57.6			
67.7	70.2	83.0			
54.3	54.8	129.8			
69.1	49.9	52.7			
49.2	52.8	62.9			
46.7	58.7	64.8			
Coefficient o			Coefficient d		
determination Coefficient o	: D = 0.005	D = 0.075	determination Coefficient of	n: D = 0.062	D = 0.273
efficiency:	E = 0.417	E = 1.074	efficiency:	E = 4.495	E = 0.326
Error functio	n: F1= 0.412	F1= 0,999	Error functio	n: F1= 4.433	F1= 0.053

Table 3.17 Actual and predicted values for run-off based on multiple regression analysis

Table 3.18 Details of Walker vegetation monitoring sites located in the study area and used in the prediction of soil loss

	NUMBER OF SITES			
WOUDY VEGETATION COMPONITY	CULL BLOCK	NON-CULL BLOCK		
Acacia grandicornuta/Spirostachys africana	4	9		
Acacia tortilis	3	5		
Acacia nigrescens	3	3		

	PREDICTED MEA	N SOIL LOSS (g)
YEAR	NON-CULL BLOCK	CULL BLOCK
1979	2374.4±502.2 (532-5066) n=10	357.9±19.2 (307-399) n=4
1980	1902.9±318.6 (577-3927) n=10	483.3±58.1 (376-575) n=3
1981	2064.9 <u>+</u> 300.4 (439-4311) n=17	1345.9±208.8 (509-2000) n=8
1982	1256.7±147.6 (317-3220) n=29	591.3±59.4 (253-1059) n=17
1983	3129.6±655.2 (200-6233) n=12	1910.1±501.1 (434-3772) n=6
1984	399.0±47.1 (136-612) n=10	218.9±34.1 (144-308) n=4
1985	633.7±101.5 (167-1590) n=17	356.7±47.7 (149-651) □=10
1986	1052.5 <u>+</u> 149.3 (286-2057) n=17	1250.5±214.0 (460-2812) n=10

Table	3.19	Predicted soil loss from Walker transect vegetation
		monitoring sites in the study area. Values given are
		mean and standard error and, in parentheses, range

Table 3.20 Stocking rates of grazers and mixed feeders in the study area for the period 1978 to 1986, as determined by various counts

CC	UNT	COUNT	STOCKING F	ATE (kg/ha)	STOCKING RATE
DA	TE	TYPE	NON-CULL (x) CULL (y)	(x)/(y)
JULY AUG JULY AUG AUG SEPT AUG JULY SEPT JUNE OCT FEB	1978 1979 1980 1981 1981 1981 1982 1983 1983 1984 1984 1985 1985 1985	HELICOPTER HELICOPTER HELICOPTER HELICOPTER HELICOPTER HELICOPTER HELICOPTER HELICOPTER TOTAL GROUND HELICOPTER FIXED-WING FIXED-WING FIXED-WING	61.1 59.8 54.5 42.4 49.7 34.6 37.5 26.8 71.9 42.2 21.3 23.0 15.2	85.5 69.3 67.1 30.2 37.4 26.6 35.1 40.4 70.2 36.6 37.4 20.9 25.3	0.71 0.86 0.81 1.40 1.33 1.30 1.07 0.67 1.02 1.15 0.57 1.10
JULY NOV	1986 1986	FIXED-WING FIXED-WING	30.6 26.6	39.0 31.9	0.79 0.84

47

Figure 4.2 Monthly mean rainfall (mm) measured at six sites in the study area for the period July 1983 to June 1986

Monthly mean rainfall (mm)

Figure 4.3 Monthly mean rainfall kinetic energy (J/m^2) measured at six sites in the study area for the period July 1983 to June 1986

Figure 4.4 Monthly mean rainfall kinetic energy (J/m[∞]) expressed as a percentage of annual mean values for the 1983/84, 1984/85 and 1985/86 rainfall years

 1983/4
 1984/5
 1985/6

Figure 4.6 Monthly mean EI_{30} values expressed as a percentage of annual mean values for the 1983/84, 1984/85 and 1985/86 rainfall years

Figure 4.8 Dimensions and layout of a typical natural run-off site in Umfolozi Game Reserve

Figure 4.10 Two-dimensional display, obtained by correspondence analysis, of 1983/4 natural run-off plot data

Figure 4.11 Two-dimensional display, obtained by correspondence analysis, of 1984/5 natural run-off plot data

Figure 4.12 Two-dimensional display, obtained by correspondence analysis, of 1985/6 natural run-off plot data

Figure 4.13 Scattergram of log_ annual soil loss (g) against percentage herbaceous canopy cover

Figure 4.14 Scattergram of log_e annual soil loss (g) against percentage litter cover

Figure 4.15 Scattergram of log_ annual soil loss (g) against percentage soil capping

Figure 4.16 Scattergram of log_ annual soil loss (g) against percentage susceptible to erosion

Figure 4.17 Scattergram of log_e annual soil loss (g) against percentage contribution to herbaceous biomass of *Aizoon glinoides*

Figure 4.18

Scattergram of log_ annual soil loss (g) against maximum grass height (cm)

Figure 4.19 Scattergram of log_ annual soil loss (g) against mean grass height (cm)

Figure 4.20 Scattergram of log_ annual soil loss (g) against percentage herbaceous canopy cover, determined by the USLE method

Figure 4.21 Scattergram of log_ annual soil loss (g) against percentage surface cover

Figure 4.22 Scattergram of log_ annual run-off (1) against percentage herbaceous canopy cover

Figure 4.23 Scattergram of log_ annual run-off (1) against percentage litter cover

Figure 4.24 Scattergram of log. annual run-off (1) against percentage soil capping

Figure 4.25 Scattergram of log. annual run-off (1) against percentage susceptible to erosion

Figure 4.26 Scattergram of log. annual run-off (1) against percentage rock

Figure 4.27 Scattergram of log. annual run-off (1) against maximum grass height (cm)

Figure 4.28 Scattergram of log_ annual run-off (1) against mean grass height (cm)

Figure 4.29 Scattergram of log. annual run-off (1) against percentage herbaceous canopy cover, determined by the USLE method

Figure 4.30 Scattergram of log. annual run-off (1) against percentage surface cover

Figure 4.31 Scattergram of log. annual run-off (1) against woody canopy height (cm)

Figure 4.32 Scattergram of rainfall (mm) against soil loss (g) from erosion events where 25g or less of soil was lost

Figure 4.33 Scattergram of rainfall (mm) against run-off (1) from run-off events where 201 or less of run-off was measured

Figure 4.34 Scattergram of cumulative total of mean rainfall (mm) against cumulative total of rainfall per erosion event (mm) measured at gauge 403

Figure 4.35 Trend in predicted annual mean soil loss from Walker transect vegetation monitoring sites in the study area. The mean is depicted by a crossbar and 95% confidence limits by a vertical line

Figure 4.36 Relationship between actual stocking rate differential and predicted soil loss differential in the study area

Differential between non-cull & cull blocks

Figure 4.37 Trend in predicted annual mean run-off from Walker transect vegetation monitoring sites in the study area. The mean is depicted by a crossbar and 95% confidence limits by a vertical line

Figure 4.38 Relationship between actual stocking rate differential and predicted run-off differential in the study area

=======					======
MONTH	YEAR	TOTAL RAIN	TOTAL KINETIC ENERGY	EI30 INDEX	SAMPLE
		(nø)	(J/sq. a)	(erosivity units)	SIZE
JUL	1983	17.9#	81‡	282‡	1
AUG	1983	42.7\$	266‡	1 497#	i
SEP	1983	6.9*	95‡	407\$	1
0CT	1983	69.8±1.2 (67.9-71.9)	336±156 (42-576)	2 411±1 328 (102-4 702)	3
NOV	1983	168.7±10.0 (142.3-189.9)	2 296±260 (1 639-2 851)	58 773±16 269 (19 270-93 095)	4
DEC	1983	50.6±3.0 (43.7-58.7)	603±74 (411-765)	11 980±2 936 (4 432-19 275)	5
JAN	1984	504.2±19.1 (456.8-549.4)	11 383±1 117 (10 032-12 528)	683 886±99 811 (534 567-798 488)	5
FEB	1984	137.1±3.1 (134.0-140.1)	1 949±101 (1 848-2 051)	29 707±746 (28 962-30 453)	2
MAR	1984	106.6±15.6 (73.2-134.0)	1 462±313 (840-2 095)	44 920±17 303 (9 989-80 299)	4
APR	1984	28.1±1.8 (25.1-31.2)	130±18 (95-152)	543±104 (341-683)	3
MAY	1984	5.0±1.1 (1.5-7.5)	62±19 (8-103)	273±124 (5-703)	5
JUN	1984	22.7±1.2 (19.8-26.5)	138±25 (50-189)	850±202 (214-1 370)	5
	=======				

Table 4.1 Monthly rainfall variables measured at six sites in the study area for the 1983/4 rainfall year. Values given are mean and standard error and, in parentheses, range

only one data point

HONTH	****** Year	TOTAL RAIN (อาต)	TOTAL KINETIC ENERGY (J/sq.œ)	EI30 INDEX (erosivity units)	SAMPLE SIZE
JUL	1984	63.5±4.0 (44.5-72.6)	724±80 (403-924)	6 358±1 219 (2 887-10 085)	 б
AUG	1984	63.7±6.2 (39.2-71.3)	429±31 (324-489)	3 741±271 (2 798-4 309)	5
SEP	1984	23.9±1.2 (21.2-28.0)	414±36 (310-559)	8 795±1 540 (5 655-14 611)	6
OCT	1984	86.7±4.2 (73.8-99.6)	1 154±83 (949-1 406)	25 627±3 497 (15 369-36 166)	5
NOV	1984	59.1±3.4 (48.1-69.8)	1 010±89 (747-1 365)	19 931±3 020 (10 644-30 150)	6
DEC	1784	91.2±6.5 (79.8-112.3)	1 995±208 (1 605-2 715)	69 793±18 563 (32 625-134 499)	5
JAN	1985	103.9±0.1 (103.8-104)	1 486±31 (1 454-1 517)	19 412±24B (19 164-19 660)	2
FEB	1985	109.7 <u>±</u> B.8 (181.9-199.5)	2 259±197 (2 063-2 456)	38 918±11 207 (27 712-50 125)	2
MAR	1985	3.9±1.4 (0.6-8.9)	37 <u>±</u> 24 (0-129)	248±209 (0-1 077)	5
APR	1985	3.6±1.1 (1.3-5.7)	54 <u>±</u> 21 (18-103)	301±174 (30-764)	4
MAY	1985	4.3±2.1 (1.8-8.4)	75 <u>±</u> 60 (B-195)	987 <u>+</u> 953 (8-2 893)	3
JUN	1985	*	*	z	0

Table 4.2 Monthly rainfall variables measured at six sites in the study area for the 1984/5 rainfall year. Values given are mean and standard error and, in parentheses, range

~

I missing data

MONTH	YEAR	TOTAL RAIN (sm)	TOTAL KINETIC ENERGY (J/sq.∎)	EI30 INDEX (erosivity units)	SAMPLE SIZE
JUL	1985	7.7 <u>+</u> 1.6 (5.0-10.7)	49 <u>+</u> 9 (36-67)	193 <u>+</u> 53 (138-299)	3
AUG	1985	4.6±1.2 (2.8-8.2)	33±15 (15-79)	118±91 (15-391)	4
SEP	1985	42.6±14.1 (27.7-70.8)	699 <u>+</u> 295 (363-1 288)	13 623 <u>+</u> 8 853 (3 784-31 290)	2
OCT	1985	103.6 <u>±</u> 18.7 (77.8-140.0)	2 038 <u>+</u> 224 (1 776-2 485)	63 233±2 610 (58 756-67 794)	3
NOV	1985	9.8±0.9 (7.2-12.4)	93 <u>+</u> 20 (31-153)	452±154 (38−1 023)	6
DEC	1985	56.3 <u>+</u> 1.5 (54.8-57.7)	947 <u>+</u> 19 (928-966)	11 929 <u>+</u> 880 (11 049-12 808)	2
JAN	1986	58.0±4.3 (41.1-65.3)	1 051±64 (917-1 278)	38 451±7 167 (20 268-55 259)	5
FEB	1986	145.2#	3540#	201 594#	1
MAR	1986	47.1 <u>±</u> 1.6 (44.3-51.4)	503 <u>+</u> 24 (451-568)	3 806±490 (3 061-5 220)	4
APR	1986	11.8 <u>+</u> 1.2 (8.6-14.4)	68 <u>+</u> 18 (39-122)	177±41 (120-297)	4
MAY	1786	0.6 <u>±</u> 0.1 (0.5-0.7)	0 (0-2)	0 (0-1)	4
JUN	1986	23.2±4.8 (5.3-31.1)	3 4 1 <u>+</u> 63 (93-431)	3 402 <u>±</u> 655 (840-4 255)	5
========					

Table 4.3 Monthly rainfall variables measured at six sites in the study area for the 1985/6 rainfall year. Values given are mean and standard error and, in parentheses, range

only one data point

RINFALL	RAINFALL (MH)						RAINFAL	L KINET	IC ENER	GY (J/:	(н.р		EI 30 INDEX					
YEAR	241	284	294	402	403	411	241	284	294	402	403	411	241	204	294	402	403	411
983/4×	576.5	717.7	642.5	631.7	667.6	667.0	5 878	8 886	7 360	6 920	7 637	7 593	84 281	228 906	149 960	122 854	143 834	138 726
984/5	633.6	729.8	714.9	607.1	689.1	696.1	8 295	9 728	10 521	9 665	8 876	7 939	190 229	196 885	290 168	187 638	139 591	154 209
98576	490.4	537.6	498. 2	538-8	570.6	543.9	9 343	8 705	8 417	9 296	10 372	9 625	301 128	340 738	336 154	307 613	364 185	333 732
	(F-test	= 20.7	; p<0.0	1; d.f.	= 2, 15	; >	(F-test	= 8.6	; p<0.0	1; d.f.	= 2, 15	>	~~~~~~~~~~~~	(F-test =	30.1; p<	0.01; d.f	.= 2, 15)	

able 4.4 Annual values for rainfall variables measured at six sites in the study area during the 1983/4, 1984/5 and 1985/6 rainfall years

excludes rainfall from Cyclone Domoina in January 1984

======= PLOT	EXPERIMENTAL	BLOCK	AUTOGRAPHIC	RAINGAUGE	WOODY VEGETATION	SOIL CLAS	SIFICATION	SLOPE
NUMBER	NON-CULL	CULL	PRESENT	ABSENT	COMMUNITY	FORM	SERIES	(%)
241	X		X		Acacia nigrescens	MAYO	TSHIPISE	9.5
294	X		X		Acacia nilotica/A.gerrardii	VALSRIVIER	LINDLEY	6.8
402	X		X		Acacia tortilis	SWARTLAND	ROSEHILL	11.0
284		X	X		Acacia tortilis	SWARTLAND	SWARTLAND	10.1
403		X	X		Acacia nigrescens	MAYO	TSHIPISE	8.3
411		X	X		Acacia nilotica/A.gerrardii	GLENROSA	TREVANIAN	6.6
404#	X			X	Acacia tortilis	VALSRIVIER	WATERVAL	5.2
406#	X			X	Acacia tortilis	MAYD	MSINSINI	7.2
412#	X			X	Acacia grandicornuta	VALSRIVIER	ARNISTON	4.9
414#	X			X	Acacia tortilis	SWARTLAND	OMDRAAI	4.7
====== ≰ plots	installed du	 ring 19		ll year				

Table 4.6 Annual soil loss values for fixed sites within key woody vegetation communities in the non-cull and cull blocks. Values given are mean and standard error for the entire monitoring period. The range is given in parentheses

WORNY VEGETATION COMMUNITY	SITE	MONITORING	ANNUAL SOIL	LOSS (g)
	NUMBER	(YEARS)	NON-CULL BLOCK	CULL BLOCK
Acacia tortilis	402	3	10 126±8 001 (137-49 611)	-
	2 B 4	3	-	1 327±37 (135-2 209)
	404	2	2 184±718 (1 023-4 241)	-
	406	2	936±91 (709-1 110)	-
	414	2	590±183 (279-1 117)	-
Acacia nigrescens	241	3	758±157 (306-1 403)	-
	403	3	-	900±509 (215-3 415)
Acacia nilotica/Acacia gerrardii	294	2	3 199 <u>+</u> 1 065 (322-5 805)	~
	411	3	-	624±199 (110-1 476)
Acacia grandicornuta	412	2	640±110 (403-842)	-

Table 4.5 Physical characteristics of natural run-off plots

WOODY VECETATION COMMUNITY	SITE	MONITORING	RUN-OFF	(as)
	NUMBER	(YEARS)	NON-CULL BLOCK	CULL BLOCK
Acacia tortilis	402	3	31.4±16.5 (7.6-113.1)	-
	284	3	-	42.2±9.0 (14.4-70.4)
	404	2	21.7±2.9 (15.3-28.8)	-
	406	2	15.3 <u>+</u> 6.7 (7.4-35.5)	-
	414	2	16.4 <u>+</u> 4.5 (8.8-28.4)	-
Acacia nigrescens	241	2	9.3±2.6 (2.4-17.5)	-
	403	3	-	4.9±1.0 (2.0-7.8)
Acacia nilotica/Acacia gerrardii	294	2	23.9±3.1 (13.5-33.6)	-
	411	3	-	36.4 <u>±</u> 10.3 (8.1-75.5)
Acacia grandicornuta	412	2	11.3±1.4 (0.4-15.2)	-

Table 4.7 Annual run-off values for fixed sites within key woody vegetation cummunities in the non-cull and cull blocks. Values given are mean and standard error for the entire monitoring period. The range is given in parentheses

	ASL1	(very low)
	ASL2	(10w)
SUIL LUSS	ASL3	(moderate)
	ASL4	(high)
	ASL5	(very high)
	AR01	(very low)
	AR02	(low)
	AR03	(moderate)
	AR04	(high)
	AR05	(very high)
	HCC1	Herbaceous canopy cover (%) measured by Walker's (1976) method
	LITC	Litter cover (%)
VHNIHBLES	MAGH	Maximum grass height (cm)
	MEGH	Mean grass height (cm)
	FORB	Contribution forbs make to total herbaceous biomass (%)
	HCC2	Herbaceous canopy cover (%) measured by USLE method (WISCHMEIER,
	SURC	Surface cover (%)
	WOCC	Woody canopy cover (%)
SATI SURFACE	SOCA	Soil capping (%)
VARIABLES	SUTE	Susceptibility to erosion (%)
	ROCK	Rock (%)

Table 4.8 Explanation of codes used in tables, figures and text

-

=======================================			=========			===========	
		PRINC	IPAL AXIS	51	PRINC	IPAL AXIS	5 2
	ul I	K=1	COR	CTR	K=2	COR	CTR
HCC1	908	-79	585	17	-59	323	57
LITC	864	-421	701	106	204	163	156
SOCA	986	601	967	360	86	19	47
SUTE	980	533	962	360	74	18	44
ROCK	661	-589	614	13	164	47	6
FORB	855	34	10	1	-295	845	412
MAGH	826	-43	445	5	41	381	31
MEGH	846	-95	826	10	15	20	2
HCC2	756	-62	454	10	-51	302	41
SURC	946	-86	919	20	-14	27	З
WOCC	862	-517	651	99	295	211	202
ASL1	971	-340	925	302	 76	46	 96
ASL3	517	0	0	0	-68	517	69
ASL4	847	204	601	87	131	246	224
ASL5	939	448	919	379	67	20	54
AR01	976	-283	971	204	21	5	7
AR02	932	57	69	7	-200	863	542
AR03	768	96	722	21	-24	46	8
ASL2* ==========	638	-46	31	5	-205	607	630
* 0 1						==========	========

Table 4.9 Results of the correspondence analysis of the 1983/4 natural run-off plot data

* Supplementary point

		PRINC	IPAL AXIS		PRINC	IPAL AXIS	========= 5 2
VARIABLES	UIL I	K=1	COR	CTR	K=2	COR	CTR
HCC1	520	20	444	5	-7	76	2
LITC	993	221	982	255	-23	11	9
SOCA	964	-14	1	0	389	963	583
SUTE	692	-207	660	75	46	32	12
ROCK	504	56	5	0	-543	499	96
FORB	945	-507	930	478	66	15	26
MAGH	840	25	565	9	17	275	14
MEGH	325	15	119	1	-19	206	7
HCC2	188	9	103	1	8	85	З
SURC	850	1	1	0	-14	849	10
WOCC	906	-283	639	175	-183	267	237
ASL1	899	-84	631	85	 56	 268	120
ASL2	721	57	270	38	73	451	205
ASL3	916	-104	452	121	-106	464	404
AR01	871	118	614	166	-75	257	221
ARO2	974	-158	945	284	28	29	30
ARO4	904	159	888	305	22	16	19
ARO3* ===========	729	9 =====================================	1	1	189	728	1342

Table 4.10 Results of the correspondence analysis of the 1984/5 natural run-off plot data

* Supplementary point

===========	======	======== PRINC	IPAL AXIS	======================================	PRINC	IPAL AXIS	
VARIABLES	QLT	K=1	COR	CTR	 К=2	COR	CTR
HCC1	164		49	0	8	115	2
LITC	992	-517	835	181	224	156	484
SOCA	997	522	991	441	44	6	45
SUTE	993	258	991	169	-12	2	6
ROCK	585	-474	402	8	-320	183	51
FORB	164	-109	151	9	-32	13	11
MAGH	983	-232	936	96	-51	47	68
MEGH	886	-134	860	11	24	26	5
HCC2	463	-28	402	2	-10	61	3
SURC	968	-141	951	47	19	17	13
WOCC	843	-246	524	36	-192	319	311
ASL1	170	-252	152	120	88	18	207
ASL2	7	-49	7	5	11	0	З
ASL3	373	451	372	348	25	1	15
ASL4	69	34	З	2	-155	66	657
AR01	338	-417	338	337	-3	0	0
AR02	3	-35	3	2	17	0	8
AR03	242	326	235	185	59	7	87
AR04 ==========	3======:	26	1	1	-29	2	22

۰.

Table 4.11 Results of the correspondence analysis of the 1985/6 natural run-off plot data

Table 4.12 Correlation matrix of vegetation and soil surface variables against log annual soil loss (g) and log annual runoff (l) e e

DEPENDENT	COEFFICIENT OF CORRELATION (r)												
VARIABLES	HCC1	LITC	SOCA	SUTE	ROCK	FORB	AIZ	MAGH	MEGH	HCC2	SURC	WOCC	WOCH
LOGe ANNUAL Soil Loss	-0.558 ##	-0.575 \$	0.546 \$\$	0.692 \$\$	-0.091 n.s.	-0.049 n.s.	0.286 #	-0,458 \$\$	-0.509 \$\$	-0.557 ##	-0.637 ##	-0.135 n.s.	-0.204 n.s.
LOGe ANNUAL RUN-OFF	-0.343 #	-0.528 \$\$	0.573 11	0.483 ##	-0.404 \$\$	0.206 n.s.	0.153 n.s.	-0.301 ‡	-0.383 \$\$	-0.337 \$	-0.443 \$\$	-0.266 n.s.	-0.443 \$\$
					======								
n.s.= not si	ignifican ficant at ficant at freedom =	t 5% probat 1% probat 50	oility lev Dility lev	vel Vel									

Table 4.13 Results of the stepwise multiple regression analysis of the 1983/4, 1984/5 and 1985/6 natural run-off plot data, excluding a 25% random subsample, for the prediction of soil loss

METHOD/S USED TO	INDEPENDENT	BETA	CONFIDENCE LIMITS PARTIAL		SIGNIFICANCE	PERCENTAGE VARIAT-	
DENT VARIABLES	VARIABLE	COEFFICIENT			F-TEST		R-59
WALKER (1976) Method	CONSTANT SUTE TOT.RAIN	2.8715 0.0582 0.0036	0.07891 0.02896	0.03740 -0.02184) 31.267 3.442	p<0.01 p<0.05 (d.f.n1=2,n2=36)	46,5 51,2
WALKER (1976) & USLE (WISCHMEIER, 1975) METHODS	CONSTANT Sute Surc	-3.6286 0.1346 0.0953	0.226 4 5 0.20771	0.04271 -0.01717	8.544 3.874	p<0.01 p<0.05 (d.f.n1=2,n2=36)	46,5 51,7

.

Table	4.14	Results	of t	he ste	pwise	aultip	ler	regressio	n analysi	s of	the	1983/4,	1984/5	and 1	985/6	natural
		run-off	plot	: data,	exclu	iding a	252	% random	subsample	, fo	r the	predic	tion of	run-c	off	

			===========		========		
METHOD/S USED TO MEASURE INDEPEN-	INDEPENDENT	BETA CONFIDENCE LIMITS PART		PARTIAL	SIGNIFICANCE	PERCENTAGE VARIAT-	
DENT VARIABLES	VARIABLE	COEFFICIENT	UPPER	LOWER	F-TEST		R-SQ
WALVED (1074)	CONCTANT	-2 1043					
METHOD	SOCA	0.0254	0.03967	0.01107	9.318	p<0.01	32,5
	FURB	0.0244	0.03928	0.00954	9.673	p<0.01	40,8
	RAIN-WEI SEAS.	. 0.025	0.08039	-0.03029	16.851	p<0.01	46,1
	RAIN-EFFECTIVE	-0.01	0.04016	-0.06008	13.463	p<0.01	61,4
						(d.f.n1=2,n2=36)
WALKER (1976) &	CONSTANT	-2.1043					
USLE (WISCHMEIER,	SDCA	0.0254	0.03967	0.01107	9.318	p<0.01	32,5
1975) METHODS	FORB	0.0244	0.03928	0.00954	9.673	p<0.01	40,8
	RAIN-WET SEAS.	0.025	0.08039	-0.03029	16.851	p<0.01	46.1
	RAIN-EFFECTIVE	-0.01	0.04016	-0.06008	13.463	p<0.01	61.4
						(d.f.n1=2,n2=36)

Table 4.15 Actual and predicted values for annual soil loss and annual run-off based on multiple regression analysis

RESERVE DATA SUBSET FROM 1983/4, 1984/5 AND 1985/6 NATURAL RUN-OFF PLOT DATA SET

ACTUAL LOGE ANNUAL SOIL LOSS	PREDICTED L(SOIL LO	DGe ANNUAL SS (g)	ACTUAL LOGE ANNUAL	PREDICTED LOGe ANNUAL RUN-OFF (mm)	
(g)	EQUATION 4.1	ATION 4.1 EQUATION 4.2		EQUATION 4.4	
7.2464 8.6665 9.0438 5.1358 5.3327 5.7071 6.9305 6.0913 7.2828 8.6572 6.4213 5.9994 6.2596	6.6696 7.4252 7.6831 5.9178 5.7729 5.5560 6.6091 7.1911 7.9846 8.4247 7.4078 6.4459 6.9697	6.6263 7.1571 7.7864 5.6126 5.6986 5.4386 6.2871 6.4895 8.0567 8.3544 6.8609 6.4464	2.7926 3.5155 3.2086 3.7832 2.1247 0.8206 3.1393 2.8863 3.5206 3.1833 3.7695 2.1335	2.1810 3.1400 3.3204 1.8448 1.9077 1.5340 2.6249 3.2094 3.2094 3.4864 3.2022 3.5518 2.6184	
Coefficient of determination: Coefficient of efficiency: Error function:	D = 0.616 E = 0.598 F1= 0.018	D = 0.617 E = 0.612 F1= 0.005	2.3556 Coefficient of determination: Coefficient of efficiency: Error function	2.5390 D = 0.406 E = 0.337 : F1= 0.069	

	R	AINFALL VARIABL	ES
RAINFALL YEAR	TOTAL RAINFALL (mm)	WET SEASON RAINFALL (mm)	EFFECTIVE RAINFALL (mm)
1978/79*	599.2	454.7	404.7
1979/80*	450.6	346.3	225.0
1980/81*	635.5	359.6	400.3
1981/82	635.4	428.0	516.9
1982/83	333.1	250.2	208.7
1983/84*	* 624.7	529.0	428.2
1984/85	745.7	563.8	606.9
1985/86	593.1	467.8	490.7

Table 4.16 Rainfall variables calculated from daily rainfall records kept at Mpila and Mbhuzana outpost

* Daily rainfall records from Mpila

** Rainfall recieved during Cyclone Domoina not included

Table 4.17 Predicted annual soil loss from Walker transect vegetation monitoring sites in the study area. Values given are mean and standard error and, in parentheses, range

RAINFALL	PREDICTED ANNUAL SOIL LOSS (g)						
YEAR	NON-CULL BLOCK	CULL BLOCK					
1978/79	10 765±4 551 (376~36 295)	244±30 (183-324)					
1979/80	3 201±915 (337-11 948)	219±37 (158-285)					
1980/81	7 911 <u>+</u> 1 831 (360-25 664)	3 163 <u>+</u> 774 (455-6 203)					
1981/82	2 854 <u>+</u> 884 (237-13 369)	684 <u>+</u> 169 (188-1 684)					
1982/83	6 082±1 691 (109-14 337)	899±309 (122-1 552)					
1983/84	680±156 (213-1 601)	308±41 (232-417)					
1984/85	2 171±610 (306-8 551)	1 056±415 (273-4 604)					
1985/86	2 333±538 (190-7 550)	2 954 <u>+</u> 891 (436-10 101)					

RAINFALL	I	PREDICTED ANNUAL	RUN-OFF (mm)	
YEAR	NON-CU	LL BLOCK	aul	BLOCK
1978/79	35.2 ± 7.6	(19.5 - 66.2)	8.8 ± 1.6	(5.5 - 13.0)
1979/80	4.4 ± 0.6	(2.4 - 7.5)	2.7 ± 0.4	(2.0 - 3.4)
1980/81	0.5 ± 0.02	(0.3 - 0.9)	0.6 ± 0.05	(0.4 - 0.9)
1981/82	2.1 ± 0.3	(0.9 - 6.5)	1.4 ± 0.1	(0.9 - 2.1)
1982/83	0.7 ± 0.1	(0.1 - 1.2)	0.5 <u>+</u> 0.07	(0.3 - 0.7)
1983/84	111.9 ± 30.2	(26.4 - 266.9)	33.1 ± 1.8	(29.9 - 36.8)
1984/85	25.7 ± 3.8	(11.5 - 58.8)	18.4 ± 4.5	(9.7 - 57.9)
1985/86	6.6 ± 0.9	(3.3 - 18.5)	4.6 ± 0.7	(2.9 - 8.3)

Table 4.18 Predicted annual run-off from Walker transect vegetation monitoring sites in the study area. Values given are mean and standard eror and, in parentheses, range

Figure 5.2 Dimensions and layout of a typical paired rainfall simulator and natural run-off site in Umfolozi Game Reserve

Figure 5.3 Scattergram of mean soil loss, determined by the rainfall simulator trials, against annual mean soil loss, as determined by the natural run-off plots

Figure 5.4 Scattergram of mean run-off, determined by the rainfall simulator trials, against annual mean run-off, as determined by the natural run-off plots

Figure 5.5 Predicted mean soil loss from Walker transect vegetation monitoring sites in the study area. Predictive equation based on rainfall simulator trial data

Figure 5.6 Predicted annual mean soil loss from Walker transect vegetation monitoring sites in the study area. Predictive equation based on natural run-off plot and rainfall data

SITE	EXPERIMENT	AL BLOCI	K WOODY VEGETATION	SOIL CLA	SSIFICATION	SLOPE	(X)
NUMBER	NON-CULL	CULL	COMMUNITY	FORM	SERIES	NAT.RUN-OFF	RAIN SIMUL.
241	X		Acacia nigrescens	MAYO	TSHIPISE	9.5	9.6
294	X		Acacia nilotica/A.gerrardı	i VALSRIVIER	LINDLEY	5.8	8.6
402\$	X		Acacia tortilis	SWARTLAND	ROSEHILL	11.0	8.6
404#	X		Acacia tortilis	VALSRIVIER	WATERVAL	5.2	5.1
414#	X		Acacia tortilis	SWARTLAND	OMDRAAI	4.7	4.2
284		X	Acacia tortilis	SWARTLAND	SWARTLAND	10.1	10.3
403 \$		X	Acacia nigrescens	MAYO	TSHIPISE	B.3	6.6
411#		X	Acacia nilotica/A.gerrard	ii GLENROSA	TREVANIAN	6.6	7.5
======================================	sites ins	======= talled d	uring 1984/5 rainfall year				

Table 5.1 Physical characteristics of paired rainfall simulator and natural run-off sites

Table 5.2 Soil loss measurements from rainfall simulator and adjacent natural run-off sites. Values given are the mean and, in parentheses, the range. Mean soil loss values for rainfall simulator sites were obtained from storms 1, 2 and 3

SITE	RAINFALL	RAINFALL SIMULATOR SITE	NATURAL RUN-OFF SITE
NUMBER	YEAR	MEAN SOIL LOSS (g)	ANNUAL MEAN SOIL LOSS (g)
241	1983/4	225 (210-252)	1 047 (691-1 403)
284		318 (109-396)	1 995 (1 780-2 209)
294		540 (286-839)	5 367 (4 929~5 805)
241	1984/5	119 (112-171)	404 (306-502)
284		131 (103–196)	247 (170-323)
294		278 (189-430)	343 (322-364)
402		184 (128-358)	334 (207-461)
403		108 (101-121)	311 (301-321)
411		221 (217-234)	150 (110-190)
404		372 (192-828)	1 539 (1 023-2 055)
414		376 (242-483)	361 (279-442)

Table 5.3 Correlation matrix of mean soil loss and mean runoff, determined by the rainfall simulator trials, against mean annual soil loss and mean annual runoff, determined by the natural run-off plots

======================================		CORRELATION C	DEFFICIENT	
SIMULATOR TRIALS	MEAN ANNUAL SOIL LOSS	LOGe MEAN ANNUAL SOIL LOSS	MEAN ANNUAL RUN-OFF	LOGe MEAN ANNUAL RUN-OFF
MEAN SOIL LOSS	0.794 **	0.746 **		-
LOGe MEAN SOIL LOSS	0.672 *	0.673 *	-	-
MEAN RUN-OFF	_	-	0.762 **	0.811 **
LOGe MEAN RUN-OFF	_	-	0.648 *	0.862 **
 Кеу 				
n.s.= not * = signif **= signif d.f.= 9	significant icant at 5% icant at 1%	probability le probability le	evel evel	

Table 5.4Comparison of ranked soil loss values as determined by rainfallsimulator trials and adjacent natural run-off plots

SITE	RAINFALL	RANKING FROM HIGHEST	RANKING FROM HIGHEST TO LOWEST SOIL LOSS		
NUMBER	YEAR	RAINFALL SIMULATOR SITE	NATURAL RUN-OFF SITE	OF RANKS	
294	1983/4	11	11	0	
284	1983/4	8	10	-2	
404	1984/5	9	9	0	
241	1983/4	6	8	-2	
241	1984/5	2	7	-5	
414	1984/5	10	6	4	
294	1984/5	7	5	2	
402	1984/5	4	4	0	
403	1984/5	1	3	-2	
284	1984/5	3	2	1	
411	1984/5	5	,	4	

Table 5.5 Comparison of rankings for soil loss and run-off as determined by rainfall simulator trials and from adjacent natural run-off plots

	=======================================		=========	
RANKING	SOIL LOSS	RANKING	RUN-OFF	RANKING
CLASS	NUMBER	(%)	NUMBER	(%)
EQUAL	3	27.3	4	36.4
± 1 RANK	1	9.1	2	18.2
± 2 RANKS	4	36.4	2	18.2
± 3 RANKS	0	-	1	9.1
> 3 RANKS DIFFERENCE	3	27.2	2	18.2

Table 5.6 Run-off measurements from rainfall simulator and adjacent natural run-off sites. Values given are the mean and, in parentheses, the range. Mean run-off values for rainfall simulator sites were obtained from storms 1, 2 and 3

SITE	RAINFALL	RAINFALL SIMULATOR SITE	NATURAL RUN-OFF SITE
NUMBER	YEAR	MEAN RUN-OFF (1)	ANNUAL MEAN RUN-OFF (1)
241	1983/4	202 (192-315)	473 (285-661)
284		472 (411-668)	2 742 (2 632-2 851)
294		475 (473-539)	1 305 (1 248-1 362)
241	1984/5	53 (29-77)	116 (96-135)
284		263 (252-400)	1 191 (601-1 780)
294		278 (273-403)	725 (547-902)
402		140 (125-233)	420 (339-501)
403		28 (25-48)	86 (80-92)
411		275 (206-493)	403 (330-475)
404		117 (97–205)	1 051 (935-1 166)
414		277 (218-429)	542 (358-726)

SITE	RAINFALL	RANKING FROM HIGHEST	DIFFERENCE	
NUMBER	YEAR	RAINFALL SIMULATOR SITE	NATURAL RUN-OFF SITE	OF RANKS
284	1983/4	10	11	-1
294	1983/4	11	10	1
284	1984/5	6	9	-3
404	1984/5	3	8	-5
294	1984/5	9	7	2
414	1984/5	8	6	2
241	1983/4	5	5	0
402	1984/5	4	4	0
411	1984/5	7	3	4
241	1984/5	2	2	0
403	1984/5	1	1	0

Table 5.7 Comparison of ranked run-off values as determined by rainfall simulator trials and adjacent natural run-off plots

INDEPENDENT	RAINFALL SIMULATOR TRIALS			NATURAL RUN- OFF PLOTS	
VARIABLES	LOGe MEAN	LOGe MEAN	MEAN	LOGE ANNUAL	LOGe ANNUAL
	SOIL LOSS	RUN-OFF	RUN-OFF	SOIL LOSS	RUN-OFF
HCC1	-0.8123	-0.3461	-0.4124	-0.5583	-0.3431
	**	**	**	**	*
LITC	-0.5526	-0.5395	-0.5838	-0.5751	-0.5280
	**	**	**	**	**
SOCA	0.7964	0.4765	0.6115	0.6462	0.5727
	**	**	**	**	**
SUTE	0.8502	0.4385	0.5283	0.6918	0.4828
	**	**	**	**	**
AIZ	0.0851	0.0284	-0.0727	0.2864	0.1527
	n.s.	n.s.	n.s.	*	n.s.
MAGH	-0.8399	-0.5040	-0.5678	-0.4582	-0.3006
	**	**	**	**	*
MEGH	-0.7627	-0.4884	-0.4917	-0.5087	-0.3828
	**	**	**	**	**
ROCK	0.2920	-0.0373	-0.0757	-0.0913	-0.4041
	*	n.s.	n.s.	n.s.	**
HCC2	-0.7935	-0.3662	-0.4118	-0.5565	-0.3374
	**	**	**	**	*
SURC	-0.8741	-0.3696	-0.4495	-0.6371	-0.4432
	**	**	**	**	**

Table 5.8 Correlation matrix of vegetation and soil surface variables against soil loss and run-off as determined by rainfall simulator trials and natural run-off plots

Key

n.s.= not significant * = significant at 5% probability level ** = significant at 1% probability level d.f.= 50

INDEPENDENT	RANKING FROM HI	DIFFERENCE	
VARIABLE	LOGe MEAN SOIL LOSS	LOGE ANNUAL SOIL LOSS	OF RANKS
ROCK	9	10	-1
AIZ	10	9	1
MAGH	3	8	-5
MEGH	7	7	0
HCC2	6	6	0
HCC1	4	5	-1
LITC	8	4	4
SURC	1	3	-2
SOCA	5	2	3
SUTE	2	1	1

Table	5.9	Comparison of ranked correlation coefficient values for
		soil loss as determined by rainfall simulator trials and
		natural run-off plots

Wilcoxon matched-pairs signed-ranks test:	Smallest T score = 6.0 (n.s.)
(N = 5;	two-tailed test; $alpha = 0.05$)

-60

Key

.

n.s.= not significant
	RANKING FRO	M HIGHEST TO	LOWEST		OF RANKS	
INDEPENDENT VARIABLE	LOGe MEAN RUN-OFF (1)	MEAN RUN-OFF (2)	LOGE ANNUAL RUN-OFF (3)	(1) vs (3)	(2) vs (3)	
AIZ	10	10	10	0	0	
MAGH	2	3	9	-7	-6	
HCC2	7	8	8	-1	0	
HCC1	8	7	7	1	0	
MEGH	3	5	6	-3	-1	
ROCK	9	9	5	4	4	
SURC	6	6	4	2	2	
SUTE	5	4	З	2	1	
LITC	1	2	2	-1	0	
SOCA	4	1	1	3	0	
LOGe MEAN RUN-OFF vs. LOGe ANNUAL RUN-OFF : Wilcoxon matched-pairs signed-ranks test: smallest T score = 22.0 (n.s.) (N = 9; two-tailed test; alpha = 0.05) MEAN RUN-OFF vs. LOGe ANNUAL RUN-OFF : Wilcoxon matched-pairs signed-ranks test: smallest T score = 17.0 (n.s.) (N = 5; two- tailed test; alpha = 0.05)						

Table 5.10 Comparison of ranked correlation coefficient values for run-off as determined by rainfall simulator trials and natural run-off plots

Key

n.s.= not significant

Figure 6.1 Location of the study area at Cengeni gate

Figure 6.2 Location of Gerlach trough sites in Umfolozi Game Reserve and KwaZulu

Figure 6.3 Dimensions and layout of a typical Gerlach trough site in the study area

Figure 6.4 Vertical plan of Gerlach trough and sediment collecting apparatus

.

Figure 6.5 Dimensions and layout of a typical vegetation monitoring site located above the Gerlach troughs

Figure 6.6 Location of exclosure and control plots in Umfolozi Game Reserve and KwaZulu

103

Figure 6.7 Dimensions and layout of a typical exclosure plot site in the study area

Figure 6.8 Two-dimensional display, obtained by correspondence analysis, of the 1984 herbaceous species composition data at the exclosure and control plots. Data derived using the Walker (1976) method

Figure 6.9 Two-dimensional display, obtained by correspondence analysis, of the 1984 herbaceous species composition data at the exclosure and control plots. Data derived using the Barnes *et al.* (1982) method

Figure 6.10 Two-dimensional display, obtained by correspondence analysis, of the 1986 herbaceous species composition data at the exclosure and control plots. Data derived using the Walker (1976) method

Figure 6.11 Two-dimensional display, obtained by correspondence analysis, of the 1986 herbaceous species composition data at the exclosure and control plots. Data derived using the Barnes *et al*. (1982) method

SITE	LOCA	TION	TOPOGRAF	TOPOGRAPHICAL POSITION		SLOPE
NUMBER	UGR	KWZ	UPPER	MID	LOWER	(%)
1 2 3	x x x		x x x			22.0 ± 2.94 (17.0 - 32.0)
4 5 6 7 8	x x x x x			x x x x x		9.2 ± 0.61 (6.5 - 12.8)
9 10 11 12	x x x x				X X X X	7.0 <u>+</u> 0.31 (6.2 - 8.4)
13 14 15		X X X	x x x			17.7 <u>+</u> 2.18 (12.9 - 25.6)
16 17 18 19 20		x x x x x		X X X X X		7.7 ± 0.21 (6.9 - 8.8)
21 22 23 24		× × ×			X X X X	7.7 <u>+</u> 0.57 (5.1 - 9.5)

.

Table 6.1 Physical characteristics of Gerlach trough sites. Values for slope are given as mean and standard error and, in parentheses, range

Table 6.2 Annual soil loss (g) measured from Gerlach trough sites in KwaZulu and Umfolozi Game Reserve during the 1984/5 rainfall year. Values given are mean and standard error and, in parentheses, range

POSITION	ANNUAL SOIL LOSS (g)							
ON SLOPE	UMFOLOZI GAME RESERVE	KWAZULU						
UPPER	49.9 ± 6.4 (32.6 - 75.9) n = 6	141.5 ± 76.4 (19.3 - 463.6) n = 6						
MID	66.9 ± 12.4 (18.5 - 128.9) n = 10	$91.0 \pm 15.2 (26.6 - 174.6)$ n = 10						
LOWER	55.5 ± 9.0 (34.3 - 106.3) n = 8	156.3 ± 20.5 (57.4 - 234.7) n = 8						
ENTIRE SLOPE	58.9 ± 6.1 (18.5 - 128.9) n = 24	125.4 ± 20.9 (19.3 - 463.6) n = 24						

Table 6.3 Annual soil loss (g) measured from Gerlach trough sites in KwaZulu and Umfolozi Game Reserve during the 1985/6 rainfall year. Values given are mean and standard error and, in parentheses, range

POSITION	ANNUAL SO)IL LOSS (g)
ON SLOPE	UMFOLOZI GAME RESERVE	KWAZULU
UPPER	2 735.1 ± 720.8 (332.5 - 5 689.3) n = 6	4 296.1 ± 2 982.6 (412.5 - 19 091.0) n = 6
MID	143.2 ± 29.8 (51.3 - 338.9) n = 10	698.8 ± 166.4 (117.5 - 1 807.8) n = 10
LOWER	757.9 <u>+</u> 166.4 (330.6 - 1 651.0) n = 8	3 155.0 ± 726.5 (784.1 - 5 984.3) n = 8
ENTIRE SLOPE	996.1 ± 279.4 (51.3 - 5 689.3) n = 24	2 416.9 ± 800.8 (117.5 - 19 091.0) n = 24

Table 6.4 Results of single classification ANOVA and two-level nested ANOVA on the combined 1984/5 and 1985/6 annual soil loss data set

_

		==================	322222223	
D.F.	SUM OF SQUARES	MEAN SQUARE	F VALUE	SIGNIFICANCE
1 22 23	1.30696 E7 1.29915 E8 1.42984 E8	1.30696 E7 5.90521 E6	2.21	n.s.
2 21 23	3.92200 E7 1.03764 EB 1.42984 EB	1.96100 E7 4.94116 E6	3.97	0.05>p>0.01
1) 4 18 23	1.30696 E7 4.44367 E7 8.54780 E7 1.42984 E8	1.30696 E7 1.11092 E7 4.74878 E6	1.14 2.34	ກ.s. n.s.
	D.F. 1 22 23 2 21 23 1) 4 18 23	D.F. SUM OF SQUARES 1 1.30696 E7 22 1.29915 E8 23 1.42984 E8 2 3.92200 E7 21 1.03764 E8 23 1.42984 E8 1 1.30696 E7 3 4 4.44367 E7 18 8.54780 E7 23 1.42984 E8	D.F. SUM OF SQUARES MEAN SQUARE 1 1.30696 E7 1.30696 E7 22 1.29915 E8 5.90521 E6 23 1.42984 E8 2 1.96100 E7 2 3.92200 E7 1.96100 E7 21 1.03764 E8 4.94116 E6 23 1.42984 E8 1 1.30696 E7 1.30696 E7 1 1.30696 E7 1.30696 E7 1.30696 E7 1 1.30696 E7 1.30696 E7 1.30696 E7 1 1.30696 E7 1.30696 E7 1.1092 E7 18 8.54780 E7 4.74878 E6 23 1.42984 E8	D.F. SUM OF SQUARES MEAN SQUARE F VALUE 1 1.30696 E7 1.30696 E7 2.21 22 1.29915 E8 5.90521 E6 23 23 1.42984 E8 2 3.92200 E7 1.96100 E7 3.97 21 1.03764 E8 4.94116 E6 23 1.42984 E8 1 1.30696 E7 1.30696 E7 1.14) 4 4.44367 E7 1.11092 E7 2.34 18 8.54780 E7 4.74878 E6 23 1.42984 E8

Table 6.5 A-horizon depth (cm) measured at 48 randomly located sites in KwaZulu and Umfolozi Game Reserve. Values given are mean and standard error and, in parentheses, range

		=======================================			
POSITION	A-HORIZON E	EPTH (cm)			
ON SLOPE	UMFOLOZI GAME RESERVE	KWAZULU			
UPPER	9.5 ± 0.9 (3 - 20) n = 24	$7.6 \pm 0.6 (4 - 14)$ n = 24			
MID	$16.0 \pm 2.7 (6 - 70)$ n = 40	$10.4 \pm 0.5 (3 - 18)$ n = 40			
LOWER	$26.0 \pm 2.7 (12 - 62)$ n = 32	22.0 ± 0.9 (12 - 30) n = 32			
ENTIRE SLOPE	17.7 ± 1.6 (3 - 70) n = 96	13.6 ± 0.7 (3 - 30) n = 96			

\$

SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN SQUARE	F VALUE	SIGNIFICANCE
AMONG GROUPS (KWZ vs UGR) WITHIN GROUPS TOTAL	1 22 23	103.6 2 320.6 2 424.2	103.6 105.5	0.98	n.s.
AMONG GROUPS (UPPER vs MID vs LOWER) WITHIN GROUPS TOTAL	2 21 23	926.9 1 497.3 2 424.2	463.5 71.3	6.50	p<0.01
AMONG GROUPS (KWZ vs UGR) AMONG SUBGROUPS (UPPER vs MID vs LOWER) WITHIN GROUPS TOTAL	1 4 18 23	103.6 940.4 1 380.2 2 424.2	103.6 235.1 76.7	0.42 3.07	n.s. n.s.

Table 6.6 Results of single classification ANOVA and two-level nested ANOVA on the A-horizon depth data set

Table 6.7 Correlation matrix of mean annual soil loss (g) and log mean annual soil loss (g) against vegetation variables, soil surface variables and slope e

DEPENDENT	COEFICIENT OF CORRELATION (r)												
VARIABLES	HCC1	LITC	SOCA	SUTE	ROCK	FORB	AIZ	MAGH	MEGH	HCC2	SURC	WOCC	%SLO
MEAN ANNUAL Soil Loss	-0.513 ##	-0.400 \$\$	0.214 n.s.	0.416 \$\$	0.488 \$\$	0.269 n.s.	-0.083 n.s.	-0.423 ##	-0.345 ‡	-0.522 ##	-0.559 ##	-0.019 n.s.	0.165 n.s.
LOGe MEAN ANNUAL SOIL LOSS	~0.804 \$\$	-0.747 ##	0.568 ##	0.757 ##	0.413 \$\$	0.274 n.s.	0.087 n.s.	-0.735 ##	-0.678 \$\$	-0.807 ##	-0.834 \$\$	-0.048 n.s.	0.338 n.s.
Кеу 													
n.s.= not si	n.s.= not significant ≰ = significant at 5% probability level #≇ = significant at 1% probability level												

degrees of freedom = 46

.

Table 6.8 Percentage contribution of each exclosure plot to total annual accumulated herbage for the period November 1984 to March 1987

********	PE	PERCENTAGE CONTRIBUTION TO TOTAL ANNUAL ACCUMULATED HERBAGE										
POSITION	NOVEMBE	R 1984	MARCH	MARCH 1985		MARCH 1986		MARCH 1987				
ON SLOPE	KWZ	UGR	KWZ	UGR	KWZ	UGR	KWZ	UGR				
UPPER	4.4	18.7	9.4	15.1	6.0	9.8	7.3	11.3				
MID	12.9	13.9	12.0	18.0	13.9	17.6	16.2	22.9				
LOWER	26.7	23.5	20.2	25.2	27.9	24.7	21.0	21.2				
TOTAL	44.0	56.0	41.7	58.3	47.9	52.1	44.4	55.5				

Table 6.9 Percentage contribution of each control plot to total annual accumulated herbage for the period November 1984 to March 1987

	PE	PERCENTAGE CONTRIBUTION TO TOTAL ANNUAL ACCUMULATED HERBAGE										
POSITION	NOVEMBER 1984		MARCH	MARCH 1985		MARCH 1986		1987				
UN SLUPE	KWZ	UGR	KWZ	UGR	KWZ	UGR	KWZ	UGR				
UPPER	4.6	16.1	10.2	11.4	8.9	17.0	3.8	16.4				
MID	24.0	15.8	21.7	11.4	9.9	15.9	14.3	26.0				
LOWER	18.9	20.6	18.4	26.8	18.8	29.5	8.0	31.4				
TOTAL	47.5	52.5	50.4	49.6	37.6	62.4	26.1	73.9				

DATA SET	SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN SQUARE	F VALUE	SIGNIFICANCE
	AMONG GROUPS (KWZ vs UGR) WITHIN GROUPS TOTAL	1 16 17	56.5 662.7 719.2	56.5 41.4	1.36	n.s.
EXCLOSURE Plot	AMONG GROUPS (UPPER vs MID vs LOWER) WITHIN GROUPS TOTAL	2 15 17	550.9 168.3 719.2	275.5 11.2	24.55	p<0.01
	AMONG GROUPS (KWZ vs UGR) AMONG SUBGROUPS (UPPER vs MID vs LOWER) WITHIN GROUPS TOTAL	1 4 12 17	56.5 570.3 92.4 719.2	56.5 142.6 7.7	0.40 18.51	n.s. p<0.01
	AMDNG GROUPS (KWZ vs UGR) WITHIN GROUPS TOTAL	1 16 17	286.4 768.5 1 054.9	286.4 48.0	5.96	0.05>p>0.01
CONTROL Plot	AMONG GROUPS (UPPER vs MID vs LOWER) WITHIN GROUPS TOTAL	2 15 17	354.4 700.5 1 054.9	177.2 46.7	3.79	0.05>p>0.01
	AMONG GROUPS (KWZ vs UGR) AMONG SUBGROUPS (UPPER vs MID vs LOWER) WITHIN GROUPS TOTAL	1 4 12 17	286.4 458.1 310.4 1 054.7	286.4 114.5 25.9	2.50 4.43	n.s. 0.05>p>0.01

*

•

Table 6.10	Results of single classification	ANDVA and two-level neste	ed ANOVA on the 1985-87 exclosure plot and
	the 1985-87 control plot herbage	accumulation data sets	

Table 6.11 Data matrix used in correspondence analysis of the 1986 herbaceous species composition data. Data derived using the Walker (1976) method*

		PLOT NUMBER										
SPECIES	413.1	413.2	413.3	413.4	415.1	415.2	415.3	415.4	419.1	419.2	419.3	419.4
		PERCENTAGE CONTRIBUTION TO HERBACEOUS SPECIES BIOMASS										
FORB	30.6	49.3	44.1	44.0	9.5	8.3	3.6	5.2	19.4	15.0	26.0	12.4
PNAT	1.6	4.1	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PCOL	3.1	1.1	0.0	3.6	2.1	2.5	3.8	5.1	4.0	26.8	21.2	6.5
PMAX	16.9	7.2	1.1	0.0	2.1	0.0	0.0	0.0	.4	.4	.9	1.1
DISW	10.6	0.0	0.0	0.0	66.2	70.2	0.0	1.1	20.1	3.5	0.0	0.0
ARBA	1.8	0.0	1.5	.9	2.4	4.3	0.0	0.0	.4	0.0	0.0	0.0
DELE	4.6	10.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHGA	23.4	24.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SPPY	1.1	2.8	8.6	3.3	0.0	0.0	0.0	0.0	3.5	0.0	0.0	0.0
URMO	.4	0.0	0.0	0.0	5.5	2.5	0.0	2.1	0.0	0.0	3.9	.4
ERSU	5.9	.4	1.1	5.5	6.7	8.5	7.7	9.6	13.6	1.7	8.8	24.6
SETS	0.0	1.1	.4	6.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
THEM	0.0	0.0	35.8	35.0	0.0	0.0	19.0	5.1	9.8	23.6	26.9	43.9
CYPC	0.0	0.0	7.2	1.1	0.0	0.0	.9	0.0	0.0	.4	12.0	6.3
PDEU	0.0	0.0	.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UREL	0.0	0.0	.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EUST	0.0	0.0	0.0	0.0	1.1	2.5	1.9	1.7	27.2	19.4	.4	2.4
SPNI	0.0	0.0	0.0	0.0	.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIAR	0.0	0.0	0.0	0.0	0.0	1.1	61.6	70.2	0.0	1.5	0.0	0.0
HETC	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0
BOTH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.1	0.0	0.0
DISP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.6	0.0	2.5
SPUI	0.0	0.0	0.0	.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HFIL =======	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

* For explanation of codes see Table 6.12

Table 6.12 Explanation of codes used in tables, figures and text SPECIES SPECIES NAME CODE _____ ARBA Aristida barbicollis BOTH Bothriochloa insculpta CENC Cenchrus ciliaris Chloris gayana CHGA CYPC Cymbopogon plurinodis CYVA Cymbopogon validus Digitaria argyrograpta DIAR DISP Digitaria species DISW Digitaria swazilandensis DIHE Diheteropogon amplectens DELE Diplachne eleusine ERCU Eragrostis curvula ERSU Eragrostis superba EUST Eustachys paspaloides FORB Forb species HETC Heteropogon contortus HFIL Hyparrhenia filipendula PCOL Panicum coloratum PDEU Panicum deustum PMAX Panicum maximum PNAT Panicum natalense RREP Rhynchelytrum repens SETS Setaria sphacelata SPUI Species unidentified SPNI Sporobolus nitens SPPY Sporobolus pyramidalis THEM Themeda triandra Urelytrum squarrosum UREL URMO Urochloa mosambicensis PLOT PLOT POSITION AND TREATMENT NUMBER KwaZulu, upper slope, control 413.1 413.2 KwaZulu, upper slope, exclosure 413.3 UGR, upper slope, exclosure 413.4 UGR, upper slope, control 415.1 KwaZulu, mid-slope, control 415.2 KwaZulu, mid-slope, exclosure 415.3 UGR, mid-slope, exclosure 415.4 UGR, mid-slope, control 419.1 KwaZulu, lower slope, control KwaZulu, lower slope, exclosure 419.2 419.3 UGR, lower slope, exclosure 419.4 UGR, lower slope, control ______

116

		=======================================			========		
POSITION	SIZE OF	 KWA2	KWAZULU UMFOLOZI				
ON SLOPE	QUADRAT	EXCLOSURE	CONTROL	EXCLOSURE	CONTROL		
UPPER	20x20cm 20x40cm 40x40cm	6 7 9	9 9 9 9	9 10 11	8 10 11		
	MEAN	7.3	9.0	10.0	9.7		
MID	20x20cm 20x40cm 40x40cm	10 10 10	9 9 10	12 12 12	11 11 11		
	MEAN	10.0	9.3	12.0	11.0		
LOWER	20x20cm 20x40cm 40x40cm	14 14 14	12 13 14	10 10 10	12 13 13		
	MEAN	14.0	13.0	10.0	12.7		

Table 6.13 Total herbaceous species richness in the exclosure and control plots in KwaZulu and Umfolozi Game Reserve

.

Table 6.14 Results of single classification, two-level and three-level nested ANOVA on the herbaceous species richness data as determined by the nested quadrat technique

SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN SOUARE	F VALUE	SIGNIFICANCE
AMONG GROUPS (UGR vs KWZ)	1	1.8	1.8	0.45	 ۶.s.
WITHIN GROUPS	34	134.2	3.9		
TOTAL	35	136.0			
AMONG GROUPS (UPPER vs MID vs LOWER)	2	70.2	35.1	17.59	 s<0.0t
WITHIN GROUPS	33	65.8	2.0		P
	35	136.0			
ANONG GROUPS (UGR vs KWZ)	1	1.8	i.8	0 07	
AMONG SUBGROUPS (UPPER vs MID vs LOWER)	4	100.9	25.2	22 70	a(0.01
ITHIN GROUPS	30	33.3	1.1		p(0.01
TOTAL	35	136.0			
AMONG GROUPS (UGR vs KWZ)		 1.8	 1 B	 # 00	
MONG SUBGROUPS (CONTROL vs EXCLOSURE)	2	0.9	0.4	0.07	11.5.
MONG SUBSUBGROUPS (UPPER vs MID vs LOWER)	8	118.7	t4_R	24 27	9.5.
ITHIN GROUPS	24	14.7	0.6	27.21	10.01
TOTAL	35	136.0	010		
	======				

Table 6.15 Herbaceous species occurring within each control plot. Species have been ranked from highest to lowest percentage frequency of occurrence, based on 40 x 40 cm nested quadrat data

POSITION	SPECIES OCCURRING WITHIN EAC	T INDEX OF	
ON SLOPE	KWAZULU	UMFOLOZI GAME RESERVE	(Si)
UPPER	Forb Digitaria swazilandensis Aristida barbicollis Diplachne eleusine Eragrostis superba Panicum coloratum Eragrostis curvula Panicum maximum Panicum natalense	Forb Themeda triandra Eragrostis superba Eragrostis curvula Aristida barbicollis Cymbopogon plurinodis Panicum maximum Eustachys paspaloides Rhynchelytrum repens Panicum coloratum Hyparrhenia filipendula	0.60
MID	Digitaria swazilandensis Digitaria argyrograpta Forb Panicum coloratum Eragrostis superba Panicum maximum Eustachys paspaloides Urochloa mosambicensis Themeda triandra Aristida barbicollis	Digitaria argyrograpta Eragrostis superba Forb Eustachys paspaloides Panicum coloratum Themeda triandra Heteropogon contortus Aristida barbicollis Digitaria swazilandensis Urochloa mosambicensis Digitaria species	0.86
LOWER	Forb Eragrostis superba Digitaria swazilandensis Eustachys paspaloides Panicum coloratum Themeda triandra Aristida barbicollis Urochloa mosambicensis Cymbopogon plurinodis Digitaria species Panicum maximum Digitaria argyrograpta Sporobolus nitens Sporobolus pectinatus	Forb Panicum coloratum Eragrostis superba Eustachys paspaloides Themeda triandra Cymbopogon plurinodis Aristida barbicollis Urochloa mosambicensis Digitaria species Panicum maximum Sporobolus smutsii Digitaria swazilandensis Urochloa panicoides	0.92

Table 6.16 Herbaceous species occurring within each exclosure plot. Species have been ranked from highest to lowest percentage frequency of occurrence, based on 40×40 cm nested quadrat data

POSITION	SPECIES OCCURRING WITHIN EACH PLOT RANKED FROM HIGHEST TO LOWEST					
ON SLOPE	KWAZULU	UMFOLOZI GAME RESERVE	(Si)			
UPPER	Forb Digitaria swazilandensis Diplachne eleusine Panicum maximum Eragrostis curvula Eragrostis superba Aristida barbicollis Panicum coloratum Rhynchelytrum repens	Forb Eragrostis curvula Themeda triandra Eragrostis superba Panicum maximum Aristida barbicollis Cymbopogon plurinodis Rhynchelytrum repens Species unidentified Panicum deustum Urochloa mosambicensis	0.40			
MID	Digitaria swazilandensis Digitaria argyrograpta Forb Aristida barbicollis Themeda triandra Eragrostis superba Urochloa mosambicensis Eustachys paspaloides Panicum coloratum Sporobolus nitens	Digitaria argyrograpta Forb Eragrostis superba Eustachys paspaloides Panicum coloratum Aristida barbicollis Heteropogon contortus Digitaria species Digitaria swazilandensis Panicum maximum Themeda triandra Urochloa mosambicensis	0.82			
LOWER	Panicum coloratum Forb Eragrostis superba Urochloa mosambicensis Eustachys paspaloides Digitaria swazilandensis Digitaria species Themeda triandra Cymbopogon plurinodis Aristida barbicollis Sporobolus nitens Panicum maximum Digitaria argyrograpta Sporobolus pectinatus	Forb Eragrostis superba Panicum coloratum Themeda triandra Eustachys paspaloides Cymbopogon plurinodis Aristida barbicollis Panicum maximum Urochloa mosambicensis Digitaria argyrograpta	0.83			

Table 6.17 Mean percentage contribution to herbaceous biomass of herbaceous species in November 1984 as determined by the Walker (1976) method on the exclosure and control plots

POSITION	HERBACEOUS SPECIES	MEAN PERCENT TRIBUTION TO	AGE CON- BIOMASS	INDEX OF	
ON SLOPE		KWZ	UGR	SIMILARITY (Si)	
	Forb	27.5	53.4		
	Digitaria swazilandensis	27.4	0.0		
	Diplachne eleusine	21.0	.2		
	Panicum maximum	6.2	0.0		
	Eragrostis curvula	4.0	5.7		
	Panicum coloratum	3.9	.2		
	Cenchrus ciliaris	3.6	0.0		
	Aristida barbicollis	3.3	1.8		
UPPER	Eragrostis superba	2.2	4.2	0.58	
	Cymbopogon plurinodis	.6	0.0		
	Themeda triandra	.5	25.6		
	Cymbopogon validus	0.0	6.2		
	Hyparrhenia filipendula	0.0	.9		
	Diheteropogon amplectens	0.0	-6		
	Panicum deustum	0.0	.6		
	Heteropogon contortus	0.0	.4		
—— ——————————————————————————————————	Rhynchelytrum repens	0.0	.2		
	Digitaria swazilandensis	66.7	65.5		
	Panicum maximum	8.5	0.0		
	Forb	7.1	2.2		
	Eragrostis superba	6.6	12.1		
	Aristida barbicollis	3.6	.8		
	Urochloa mosambicensis	2.0	1.9		
MID	Panicum coloratum	1.6	3.4	0.73	
	Bothriochloa insculpta	1.5	0.0		
	Urochloa mosambicensis	1.2	.9		
	Digitaria argyrograpta	.8	1.2		
	Sporobolus nitens	.4	0.0		
	lhemeda triandra	0.0	10.6		
	Heteropogon contortus	0.0	1.1		
	Lymbopogon validus	0.0	.2		
	Themeda triandra	32.0	46.2		
	Bothriochloa insculpta	27.4	.2		
	Panicum coloratum	7.7	14.6		
	Ford	7.3	7.2		
	Fanicum maximum	7.1	2.9		
	L'agrostis superba	5.2	8.2		
	Fuctorbyc ====1=::	4.1	.9	0.82	
	Digitaria	2.7	1.4		
	Digitaria SWAZIIANDENSIS	2.5	0.0		
	Digitaria Species	2.3	0.0		
	Aristida barbissii:	1.3	1.8		
	Funda Dar Dicollis	.4	0.0		
		0.0	16.7		

Table 6.18 Mean percentage contribution to herbaceous biomass of herbaceous species in November 1984 as determined by the Barnes <u>et al</u>. (1982) method on the exclosure and control plots

-

POSITION	HERBACEOUS SPECIES	MEAN PERCENT	MEAN PERCENTAGE CON- TRIBUTION TO BIOMASS		
ON SLOPE		KWZ	LUGR	SIMILARITY (Si)	
UPPER	Forb Digitaria swazilandensis Diplachne eleusine Panicum maximum Eragrostis curvula Panicum coloratum Cenchrus ciliaris Aristida barbicollis Eragrostis superba Cymbopogon plurinodis Themeda triandra Hyparrhenia filipendula Cymbopogon validus Panicum deustum	28.4 27.4 20.8 6.0 3.9 3.8 3.5 2.9 2.1 .6 .5 0.0 0.0 0.0	54.8 0.0 .2 0.0 5.0 .2 0.0 1.8 4.0 0.0 25.2 .9 6.2 .6	0.58	
	Diheteropogon amplectens Rhynchelytrum repens Heteropogon contortus	0.0 0.0 0.0	.2 .6 .4		
MID	Digitaria swazilandensis Panicum maximum Forb Aristida barbicollis Bothriochloa insculpta Urochloa mosambicensis Eragrostis superba Panicum coloratum Eustachys paspaloides Digitaria argyrograpta Themeda triandra Cymbopogon validus Heteropogon contortus	75.3 7.6 5.2 3.0 1.5 1.4 1.2 .9 .8 .6 0.0 0.0 0.0 0.0	73.4 0.0 1.8 .8 0.0 1.9 11.1 3.4 1.1 .7 3.0 1.9 .9	0.76	
LOWER	Themeda triandra Bothriochloa insculpta Panicum coloratum Forb Panicum maximum Eragrostis superba Urochloa mosambicensis Eustachys paspaloides Digitaria species Digitaria argyrograpta Digitaria swazilandensis Aristida barbicollis Cymbopogon validus	31.5 28.4 8.5 7.5 7.2 4.8 4.1 2.9 2.2 1.2 1.1 .6 0.0	48.4 .2 14.6 6.0 1.9 7.8 1.9 .9 0.0 1.8 0.0 0.0 16.4	0.82	

Table 6.19 Mean percentage contribution to herbaceous biomass of herbaceous species in January 1986 as determined by the Walker (1976) method on the exclosure and control plots

POSITION	HERBACEOUS SPECIES	MEAN PERCENTA TRIBUTION TO	GE CON- BIOMASS	INDEX OF
ON SLOPE		KWZ	UGR	SIMILARITY (Si)
	Forb	40.0	44.0	
	Chloris gayana	23.7	0.0	
	Panicum maximum	12.0	.6	
	Diplachne eleusine	7.3	0.0	
	Digitaria swazilandensis	5.3	0.0	
	Eragrostis superba	3.2	3.3	
	Panicum natalense	2.8	0.0	
	Panicum coloratum	2.1	1.8	
UPPER	Sporobolus pyramidalis	1.9	5.9	0.58
	Aristida barbicollis	.9	1.2	
	Setaria sphacelata	.6	3.2	
	Urochloa mosambicensis	.2	0.0	
	Themeda triandra	0.0	35.4	
	Cymbopogon plurinodis	0.0	4.2	
	Panicum deustum	0.0	.2	
	Urelytrum squarrosum	0.0	.2	
<u> </u>	Species unidentified	0.0	.2	
	Digitaria swazilandensis	68.2	.6	
	Forb	8.9	4.4	
	Eragrostis superba	7.6	8.7	
	Urochloa mosambicensis	4.0	1.1	
	Aristida barbicollis	3.3	0.0	
	Panicum coloratum	2.3	4.4	
MID	Panicum natalense	1.8	0.0	
MID	Eustachys paspaloides	1.8	1.8	0.67
	Panicum maximum	1.1	0.0	
	Digitaria argyrograpta	.6	65.9	
	Sporodolus nitens	.5	0.0	
	loemeda triandra	0.0	12.1	
	Neteropogon contortus	0.0	.8	
		0.0	.5	
	Eustachys paspaloides	23.3	1.4	
	Themeda theireduce	17.2	19.2	
	Papicum coloratur	16.7	35.4	
	Digitaria suazilandensis	15.4	13.8	
	Fracrostis suppres	11.8	0.0	
	Digitaria species	/.6	16.7	
	Storobolus overmidalie	3.3	1.2	0.73
	Bothriochlos insculate	1.8	0.0	
	Digitaria argyrograpta	1.3	0.0	
	Papicum maximum	-8	0.0	
	Aristida barbicollic	- 4	1.0	
	Cymbonogon nluripodie	•2	0.0	
	Urochloa mosambicensie	.∠	9.2	
			2.1	

Table 6.20 Mean percentage contribution to herbaceous biomass of herbaceous species in January 1986 as determined by the Barnes <u>et al</u>. (1982) method on the exclosure and control plots

POSITION	HERBACEOUS SPECIES	MEAN PERCENT	AGE CON BIOMASS	INDEX OF
ON SLOPE		KWZ	UGR	SIMILARITY (Si)
	Forb	40.2	44.5	
	Chloris gayana	22.9	0.0	
	Panicum maximum	12.6	.5	
	Diplachne eleusine	7.6	0.0	
	Digitaria swazilandensis	5.0	0.0	
	Eragrostis superba	3.0	2.4	
	Panicum natalense	2.5	0.0	
	Panicum coloratum	2.2	1.8	
	Sporobolus pyramidalis	1.9	6.4	
UPPER	Aristida barbicollis	.8	1.2	0.62
	Setaria sphacelata	.5	3.4	
	Urochloa mosambicensis	.5	0.0	
	Cymbopogon plurinodis	.2	4.3	
	Themeda triandra	0.0	34.5	
	Urelytrum squarrosum	0.0	.5	
	Panicum deustum	0.0	.2	
	Species unidentified	0.0	.2	
	Hyparrhenia filipendula	0.0	.2	
	Digitaria swazilandensis	73.5	.5	
	Forb	6.6	4.0	
	Eragrostis superba	6.5	7.8	
	Urochloa mosambicensis	3.6	.9	
	Aristida barbicollis	2.4	0.0	
	Panicum coloratum	2.3	3.2	
MID	Panicum natalense	1.8	0.0	
MID	Eustachys paspaloides	1.4	1.5	0.67
	Panicum maximum	1.1	0.0	
	Digitaria argyrograpta	.6	53.6	
	Sporodolus nitens	.2	0.0	
	Heneda triandra	0.0	27.7	
	Neteropogon contortus	0.0	.5	
		0.0	.2	
	Eustachys paspaloides Forb	21.4	1.3	
	Themeda triandra	18.5	17.9	
	Papicum coloratum	16.0	35.4	
	Digitaria ruazilandensia	15.6	13.9	
	Francetic cuporba	12.3	0.0	
	Digitaria species	7.8	18.0	
	Sparabalus avremidelie	J.6	1.4	0.73
	Bothriochlos insculato	T.8	0.0	
	Digitaria argyrographa	1.4	0.0	
	Panicum maximum	.8	0.0	
		.5	.9	
	Aristida barbicollic	.2	8.9	
	Urochina mosambiconcic	.2	0.0	
		0.0	2.1	

Table 6.21	Results of the correspondence analysis of the November
	1984 herbaceous species composition data at the control
	and exclosure plots. Data derived using the Walker
	(1976) method

		PRINCIPAL AXIS 1			PRINCIPAL AXIS 2			
VARIABLES		K=1	COR	CTR	K=2	COR	CTR	
THEM	820	-802	818	218	-42	2	1	
PCOL	226	-515	197	25	-199	29	5	
DISW	974	9 72	775	451	-491	199	149	
DELE	706	1200	221	90	1776	485	254	
PMAX	40	230	37	4	71	З	0	
ERCU	651	46	0	0	1278	651	60	
ERSU	487	86	25	1	-366	462	20	
ARBA	290	633	266	12	194	24	1	
FORB	713	-68	4	1	901	709	323	
CENC	502	1376	145	20	2158	357	64	
CYPC	502	1376	145	3	2158	357	10	
HFIL	183	-764	54	2	11B0	129	5	
CYVA	406	-1015	389	70	216	17	4	
PDEU	183	-764	54	1	1180	129	3	
DIHE	183	-764	54	1	1180	129	3	
RREP	183	-764	54	0	11B0	129	1	
HETC	87	462	49	1	-402	38	1	
DIAR	205	-258	33	1	-585	172	7	
SPNI	365	1056	227	1	-824	138	1	
URMO	432	-119	12	0	-707	420	17	
BOTH	297	-898	201	69	-621	96	43	
EUST	346	-340	77	2	-633	269	9	
DISP	135	-997	101	7	-582	34	3	
413.1	675	619	326	60	640	349	83	
413.2	730	930	251	135	1284	479	333	
413.3	531	-516	186	50	702	345	119	
413.4	486	-327	84	19	716	402	120	
415.1	614	636	438	81	-403	176	42	
415.2	873	791	569	109	-577	304	75	
415.3	708	548	346	53	-559	362	71	
415.4	832	659	443	79	-616	389	89	
419.1	440	-691	340	90	-376	100	34	
419.2	358	-673	283	92	-346	75	31	
419.3	515	-775	512	118	-66	3	1	
419.4	529	-770	523	114	-87	6	2	

Table 6.22Results of the correspondence analysis of the November1984 herbaceous species composition data at the controland exclosure plots. Data derived using the Barnes et al.(1982) method

VARIABLES		PRINCIPAL AXIS 1			PRINCIPAL AXIS 2			
	UL I	K=1	COR	CTR	K=2	COR	CTR	
THEM	850	-910	830	236	143	20	8	
PCOL	280	-550	211	25	315	69	11	
DISW	7 85	1080	885	543	363	100	85	
DELE	673	806	100	36	-1926	573	284	
PMAX	31	177	21	2	-121	10	1	
ERCU	630	-99	3	0	-1291	627	54	
ERSU	161	-31	2	0	280	159	9	
ARBA	269	533	206	7	-294	63	З	
FORB	733	-212	35	12	-947	678	339	
CENC	473	916	64	8	-2304	409	68	
CYPC	473	916	64	1	-2304	409	11	
HFIL	158	-802	60	2	-1029	7 8	4	
CYVA	318	-834	317	45	53	1	0	
PDEU	158	-802	60	1	-1029	98	2	
DIHE	158	-802	60	0	-1029	9 8	1	
RREP	158	-802	60	1	-1029	9 8	2	
HETC	107	565	92	1	228	15	0	
DIAR	212	-390	62	2	606	150	6	
URMO	399	-244	46	1	676	353	16	
BOTH	318	-866	187	59	726	131	58	
EUST	249	-276	34	1	697	215	10	
DISP	145	948	92	5	725	53	4	
413.1	675	460	182	30	-755	493	111	
413.2	705	656	126	60	-1401	579	380	
413.3	496	-575	227	55	-626	269	7 0	
413.4	505	-436	137	31	-715	368	115	
415.1	685	755	581	101	320	104	25	
415.2	874	967	696	139	489	178	49	
415.3	829	829	608	108	500	221	55	
415.4	831	745	579	90	492	252	54	
419.1	479	-732	352	90	440	127	45	
419.2	382	-679	269	83	441	113	49	
419.3	528	-B00	488	112	230	40	13	
419.4	544 ========	-767	498	101	234	46	13	

Table 6.23 Results of the correspondence analysis of the January 1986 herbaceous species composition data at the control and exclosure plots. Data derived using the Walker (1976) method

VARIABLES	QLT	PRINCIPAL AXIS 1			PRINCIPAL AXIS 2		
		K=1	COR	CTR	K=2	COR	CTR
FORB	703	333	451	62	-248	252	71
PNAT	417	1339	345	35	615	72	15
PCOL	446	-507	285	43	382	161	50
PMAX	773	1481	734	138	342	39	15
ARBA	90	242	13	1	587	77	17
DELE	795	1890	791	109	140	4	1
CHGA	914	1890	899	353	250	15	13
SPPY	316	211	23	2	-737	293	45
URMO	200	318	32	4	727	168	42
ERSU	254	-355	158	25	278	96	31
SETS	278	147	4	0	-1207	274	48
THEM	900	-503	458	105	-494	442	209
CYPC	417	-451	118	12	-717	299	62
PDEU	331	-65	0	0	-1715	331	5
UREL	331	-65	0	0	-1715	331	5
EUST	580	-694	170	57	1076	410	281
SPNI	83	467	8	0	1399	75	8
HETC	40	-847	40	2	-90	0	0
BOTH	453	-740	124	З	1206	329	16
SPUI	228	-152	2	0	-1383	226	З
DISP	262	-840	167	13	635	95	16
DISW	52	-679	46	136	263	6	42
	219	77	0	2	1283	219	1212
413.1	880	1313	845	344	271	35	30
413.2	878	1313	878	375	-24	0	0
413.3	685	-45	2	0	-830	683	298
413.4	568	-105	13	2	-669	555	202
415.1	184	324	34	8	678	150	73
415.2	239	-209	24	4	627	215	65
415.3	288	-602	287	39	-43	1	0
415.4	354	-402	198	11	358	156	19
419.1	382	-442	124	35	638	258	150
419.2	547	-612	323	9 0	510	224	128
419.3	261	-358	226	32	-142	35	10
419.4	449	-510	375	59	-226	74	24

* Supplementary point

Table 6.24	Results of the correspondence analysis of the January
	1986 herbaceous species composition data at the control
	and exclosure plots. Data derived using the Barnes <u>et</u> <u>al</u> .
	(1982) method

VARIABLES	GLT	PRINCIPAL AXIS 1		PRINCIPAL AXIS 2			
		K=1	COR	CTR	K=2	COR	CTR
FORB	772	-84	12	2	-661	760	165
PNAT	360	-1078	314	12	-614	46	2
PCOL	34	213	34	4	-28	0	0
PMAX	402	-650	103	17	-1106	299	54
DISW	984	-1402	624	454	1066	360	296
ARBA	517	-910	471	10	286	46	1
DELE	476	-602	54	7	-1674	422	61
CHGA	528	-645	77	24	-1560	451	159
SPPY	238	7	0	0	-756	238	16
URMO	455	-561	171	6	724	284	11
ERSU	77	122	22	2	193	55	5
SETS	80	244	6	1	-807	74	7
THEM	395	559	374	90	-134	21	6
CYPC	117	371	56	5	-386	61	6
PDEU	322	-127	З	0	-1295	319	2
UREL	58	286	7	0	-759	51	1
EUST	17	64	1	0	236	16	4
SPNI	412	-1737	260	2	1330	152	1
DIAR	709	1599	473	356	1130	236	200
HETC	201	1329	167	2	600	34	0
BOTH	3	-90	1	0	115	2	0
DISP	19	312	18	1	-91	1	0
SPUI	56	292	7	0	-745	49	0
HFIL	56	292	7	0	-745	49	0
413.1	880	-589	141	45	-936	356	128
413.2	878	-422	56	23	-1346	569	260
413.3	685	223	38	7	-558	242	48
413.4	568	227	35	7	-547	209	45
415.1	184	-1355	612	239	977	318	140
415.2	239	-1234	560	212	1034	392	168
415.3	288	1037	642	153	441	115	31
415.4	354	1419	436	267	1048	238	164
419.1	382	-286	58	1	180	22	5
419.2	547	199	25	6	-33	0	0
419.3	261	267	69	11	-198	39	7
419.4	449	369	128	19	-144	19	र

==

Table 6.25 Comparison of the Walker (1976) and Barnes <u>et al</u>. (1982) methods used to collect herbaceous species composition data in KwaZulu and Umfolozi Game Reserve. Critical values of T are based on the 5% level of significance using a two-tailed test

WILCOXON MATCHED PAIRS		AZULU	UMFOLOZI G	UMFOLOZI GAME RESERVE		
SIGNED-RANKS TEST	1984	1986	1984	1986		
N	14	14	11	11		
CRITICAL T VALUE	21	21	11	11		
CALCULATED T VALUE	59.0	99.5	75.0	51.5		
LEVEL OF SIGNIFICANCE	n.s.	n.s.	n.s.	n.s.		

Figure 7.1 Relationship between soil erosion and mean annual rainfall for areas of natural vegetation cover (solid line) and bare ground (dashed line). Modified after Branson *et al.*, 1981

Figure 7.2 Map of Africa showing areas particularly susceptible to rainfall erosion (hatched area). Modified after Hudson, 1981

Figure 7.3 Annual rainfall (mm) measured at Mpila for the period 1959/60 to 1985/86. Arrow indicates the beginning of the non-cull/cull experiment

Figure 7.4 Mean monthly values of rainfall erosivity in western Umfolozi Game Reserve. Mean values calculated from the 1983/4, 1984/5 and 1985/6 rainfall years

Figure 7.5 Relationship between mean annual rainfall and percentage herbaceous canopy cover in the cull and non-cull blocks

Figure 7.6 Relationship between mean annual rainfall and mean grass height in the cull and non-cull blocks

Figure 7.7 Relationship between annual mean stocking rate, herbaceous canopy cover and mean grass height in the cull block

Figure 7.8 Relationship between annual mean stocking rate, herbaceous canopy cover and mean grass height in the non-cull block

Figure 7.9 Herbage accumulation in exclosure plots in KwaZulu and Umfolozi Game Reserve during the 1984/5, 1985/6 and 1986/7 rainfall years. Annual rainfall is shown in the KwaZulu upper slope histogram
LOCATION	EXPERIMENTAL TECHNIQUE	GRAZING T	REATMENT	SED	IMENT YIELD RATIO	REFERENCES
COLORADO	PLOTS	UNGRAZED V	S HEAVILY GRAZED	1:	2.4	Durnford, 1954
COLORADO	Gauged Catchments	UNGRAZED ∨ HEAVI	's VERY LY GRAZED	1:	1.3 - 2.0	Lusby <u>et al</u> ., 1971
TEXAS	INFILTROMETER	UNGRAZED V LIOUS	's CONTIN- Ly GRAZED	1:	1.3	McGinty <u>et</u> <u>al</u> ., 1978
TEXAS	INFILTROMETER	UNGRAZED v	's HEAVILY GRAZED	1:	6.8 - 28.8	Wood & Blackburn, 1981
COLORADO	PLOTS	UNGRAZED V	's HEAVILY GRAZED	1:	2.3	Currie, 1975
TRANSVAAL	PLOTS	UNGRAZED V	'S MODERATELY GRAZED	1:	1.5 - 4.0	Haylett, 1960

Table 7.1Summary of results on the influence of livestock grazing on sedimentyield in the United States of America and South Africa

Table 7.2 Summary of soil loss results from western Umfolozi Game Reserve obtained from rainfall simulator trials and natural run-off plots

	MONITORING		AL MEAN	MEAN	ANNUAL	SOIL	
TECHNIQUE	PERIOD	(t/ha)		SUIL LOSS (t/ha)		LOSS	
	(YEARS)	aur	NON-CULL	CULL	NON-CULL	RATIO	
RAINFALL SIMULATOR	4	0.26	0.88	-	-	1:3.4	
NATURAL RUN- OFF PLOTS	3	-	-	0.24	0.74	1:3.1	

DEPENDENT	COEFFICIENT OF CORRELATION				
	CULL	BLOCK	NON-CULL BLOCK		
VHRINBLES	ANNUAL	STOCKING	ANNLAL	STOCKING	
	RAINFALL	RATE	RAINFALL	RATE	
	(mm)	(kg/ha)	(mm)	(kg/ha)	
HERBACEOUS	0.775	-0.573	0.832	-0.466	
CANOPY COVER	*	n.s.	*	n.s.	
MEAN GRASS	0.925	-0.414	0.904	-0.510	
HEIGHT	**	n.s.	**	n.s.	

Table 7.3 Correlation matrix of rainfall and stocking rate against vegetation variables. Vegetation data derived from Walker transects

Key

1.C y

n.s.= not significant * = significant at 5% probability level ** = significant at 1% probability level degrees of freedom = 6

Table 7.4 Correlation matrix of vegetation variables, rainfall and stocking rate against mean soil loss (kg/ha). Soil loss data derived from rainfall simulator trials

DEPENDENT	COEFFICIENT OF CORRELATION			
VARIABLES	HERBACEOUS	MEAN GRASS	ANNUAL	STOCKING
	CANOPY	HEIGHT	RAINFALL	RATE
	COVER (%)	(cm)	(mm)	(kg/ha)
MEAN SOIL	-0.829	-0.573	-0.672	-0.386
LOSS	*	n.s.	n.s.	n.s.
LOGe MEAN	-0.975	-0.802	-0.808	-0.226
SOIL LOSS	**	*	*	n.s.

```
Key
```

```
n.s.= not significant
* = significant at 5% probability level
** = significant at 1% probability level
degrees of freedom = 6
```


Figure 8.1 Cross-section through a landscape showing position and extent of depression mesic grassland maintained as a result of seasonal waterlogging of the soil

Figure 8.2 Cross-section through a landscape showing the effect of lowering the landscape base level on the extent of depression mesic grassland

Figure 8.3 Cross-section through a landscape showing the effect of artificially raising the base level and stabilising donga incision on depression mesic grassland

138

Figure 8.4 Location of hydrologically maintained depression mesic grasslands in the Hluhluwe and Umfolozi Game Reserves. Modified after Macdonald, 1982

Figure 8.5 Relationship between mean run-off per storm and litter cover. Data obtained from natural run-off plots