
1  

  

  

Estimating critical grassland vegetation moisture parameters using topo- 

climatic variables and remotely sensed data in relation to fire occurrence 

  

  

  

Wenzile Shinga 

215023380 

This thesis is submitted in fulfilment of a Master of Science degree in the School of 

Agriculture, Engineering and Science 

School of Agriculture, Earth and Environmental Sciences 

University of KwaZulu-Natal 

Pietermaritzburg 

Supervisor: Professor Onisimo Mutanga 

Co-supervisor: Dr Mbulisi Sibanda 

January 2021 

 

 

 

 

 

 



2  

  

Abstract  

Quantifying grassland Fuel Moisture Content (FMC) and Equivalent Water Thickness (EWT) is critical 

for establishing early fire-warning systems as well as encouraging proactive fire management strategies. 

This also facilitates the preservation of grassland functions such as carbon sequestration under the 

influence of climate change. Fire danger has been monitored using local weather information from 

multiple stations, which is tedious and lacks spatial representation. Meanwhile, using remote sensing 

and statistical algorithms to estimate grass moisture elements such as FMC and EWT could facilitate a 

better understanding of fire regimes even in inaccessible areas. In this regard, this work sought to i) 

assess the utility of topo-climatic and Sentinel 2 Multispectral Instrument (MSI) satellite data in 

estimating grass FMC and ii) to estimate EWT using Sentinel 2 MSI derived variables in the rangelands 

of Southern Africa using the Random Forest (RF) algorithm. Results of this study showed that FMC 

could be estimated to an R2 and RMSE of 0.68 and 0.039 % m2, respectively. The optimal variables in 

this model were channel networks and elevation. In estimating EWT using Sentinel 2 MSI variables 

only, the RF results yielded an R2 and RMSE of 0.75 and 0.019 g/m2, respectively. The important 

variables identified using RF were Modified Normalised Difference Vegetation Index (NDVI) (Short 

Wave Infra-red (SWIR)1/Band 2), Band 2, Soil Adjusted Vegetation Index, and the Modified Simple 

Ratio (SWIR1/Band 2). This study demonstrates the prospects of utilizing Sentinel 2 MSI satellite 

remotely sensed and top-climatic data in estimating EWT and FMC as fire risk indicators in South 

African grasslands.   
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Chapter one: Background and introduction 

  

  

  

  

  

  

1.1 Introduction  

Grassland landscapes cover approximately 40% of the global surface area and are seen as 

model ecosystems due to their vast socio-economic services at national, local, and catchment 

levels (Le Maitre et al. 2014; Hönigová et al. 2012; Kirkman et al. 2014). In South Africa, 

grasslands cover 336,544 km2 and 73% of all cultivated timber resources occur in this biome 

(De Wit and Blignaut 2006; Gombakomba 2008). In addition, South African grassland 

ecosystems contribute a total of R9, 761 million to the country’s economy and they are the 

most productive biomes providing food crops such as maize and rice (Bommert et al. 2005; 

Neke and Du Plessis 2004; van Zyl Engelbrecht 2018). They also play a vital role in processes 

such as atmospheric carbon sequestration, biodiversity conservation, air quality purification, 

regulating the hydrological cycle (Hönigová et al. 2012; Shoko et al. 2018) as well as providing 
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habitats for animals, including terrestrial isotopes seeking shelter from strong currents (Hassall 

and Tuck 2007). However, the occurrence of disturbances such as wildfires in grassland biomes 

has become a global pandemic Chuvieco et al. 2004. This is because grasses are incapable of 

holding moisture and they wilt and dry relatively faster than other biomes making them more 

vulnerable to fire ignition leading to increased fire frequencies. Meanwhile, there are very 

limited spatial explicit techniques for monitoring wildfire ignition and the impact of these 

wildfires on the grassland ecosystem. There is, therefore, a need for accurate, continuous, and 

effective wildfire monitoring frameworks to understand and manage wildfires to sustain the 

availability of these diverse ecosystem functions and services. Specifically, quantifying and 

understanding factors such as grass Fuel Moisture Content (FMC) and Equivalent Water 

Thickness (EWT) that influence fire occurrence and intensity is a critical step towards building 

robust wildfire monitoring frameworks.  

Conventional methods that involve the cutting of grass samples in the field have been used in 

assessing grass moisture elements, such as the EWT and FMC. However, these traditional 

methods are point-based, can be subjective, time-consuming, costly and are difficult to conduct 

especially in remote areas (Lu 2006; Chen et al. 2016). Alternatively, remote sensing has 

overcome some of these limitations (Kerr and Ostrovsky 2003) by providing relatively cheaper 

data acquisition techniques and datasets that cover larger spatial extents at high revisit 

frequencies (Arroyo et al. 2008; Chen et al. 2016). Remotely sensed datasets thus offer an 

accurate and robust platform for FMC and EWT quantification and determining the occurrence 

of fire probability data that may overcome the limitations of traditional fire monitoring 

(Dasgupta et al. 2007; Adab et al. 2016).   

Satellite sensors that have been applied in fire management studies include Advanced Very 

High-Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensors, which provided moderate spatial, temporal and spectral resolution data. 

However, limitations of older sensors such as the AVHRR include the unsuitability of the 

middle-infra red channel for fire observation as well as coarse spatial resolutions (Chen et al. 

2005a; Hantson et al. 2012; Chen et al. 2005b). Landsat sensors were then largely applied in 

the estimation of FMC and EWT studies as an alternative to its coarse resolution predecessors 

(Chuvieco et al. 2002a; Riaño et al. 2002; Xiao-rui et al. 2005). Although characterized by a 

higher spatial resolution than the previous sensors, the utilization of Landsat TM/ETM in 

vegetation water content mapping is limited by its low temporal resolution of 16 days as well 
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as its spectral band set which does not cover the red edge region of the electromagnetic 

spectrum (EMS) that is fundamental in characterizing vegetation traits.    

New freely available multispectral sensors such as Sentinel 2 Multispectral Imager 

characterized by high spectral, spatial and temporal resolutions offer datasets that could be 

suitable for mapping grass EWT and FMC (Delegido et al. 2011). Specifically, Sentinel 2 MSI 

has a temporal resolution of 5-days, which could be useful for assessing environmental 

phenomena such as fire occurrence. With a spatial resolution at 10m to 60m, it allows for direct 

measurements of vegetation properties (Sibanda et al. 2015; Li and Roy 2017).  This makes it 

suitable for large-scale applications (Vafaei et al. 2018). Moreover, it’s unique spectral 

resolution of 13 bands from the visible (560 nm), near infrared (853 nm) and the shortwave 

infrared regions (1610 nm) important water absorption bands, further increases its accuracy in 

vegetation moisture retrieval and deriving vegetation indices (VIs) (Drusch et al. 2012).  

A large and growing body of literature illustrates that the use of vegetation indices derived 

from the new generation of multispectral sensors increases the accuracy of estimating 

vegetation traits, such as FMC and EWT (Drusch et al. 2012; Tian et al. 2016; Yebra et al. 

2013). This is because VIs show better sensitivity of vegetation to water content than individual 

spectral bands (Yebra et al. 2008; Yebra et al. 2013; van Zyl Engelbrecht 2018). This is because 

VIs allow for the combination of spectral bands for a clearer understanding of vegetation 

quantity and quality while removing variability caused by canopy geometry, soil background, 

sun-view angles and atmospheric condition when measuring biophysical properties (Wang et 

al. 2008). The use of VIs in estimating FMC and EWT is based on the hypothesis that 

chlorophyll content of leaves and the degree of drying are proportional (Chuvieco et al. 2004). 

Meanwhile, fire occurrence and minimal moisture content are generally associated with semi-

dry and dry leaves with less chlorophyll content. VIs applied in monitoring vegetation include 

the Enhanced Vegetation Index (EVI), Normalized Vegetation Index (NDVI), and the 

Normalized Difference Water Index (NDWI), to mention a few. In both FMC and EWT 

quantification studies, literature shows that the NDVI which is the ratio of the visible and near-

infrared wavelengths, is the most popular but is limited in explaining water quantity in grasses 

because it is independent of errors in atmospheric corrections, topography distortions and 

saturation when vegetation cover is dense (Chuvieco et al. 2004; Chuvieco et al. 2002a; Dilley 

et al. 2004; Tian et al. 2016). Other studies applied the Normalized Difference Wetness Index 

and the Global Vegetation Moisture Index because they are less sensitive to atmospheric effects 
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than the NDVI (Pu et al. 2008). However, validation from other studies is still needed to 

identify and assess the robustness of VIs used in FMC and EWT quantification (Sow et al. 

2013).  

Meanwhile, it has been noted that the incorporation of environmental variables improves the 

accuracies of models in estimating vegetation attributes (Hawbaker et al. 2008; Yebra et al. 

2013). Moreover, FMC and EWT of vegetation are generally affected by topographic and 

climatic variables amongst others (Holden and Jolly 2011; van Zyl Engelbrecht 2018). 

Topographic variables are important in explaining FMC and EWT variations because they are 

critical drivers of soil moisture content which in-turn regulates plant moisture content. 

Meanwhile, climatic variables such as temperature and precipitation are the most common in 

establishing and explaining plant moisture content as they also regulate evapotranspiration as 

well as plant and soil moisture content (Nyman et al. 2015; Holden and Jolly 2011). 

Considering that vegetation health and productivity are affected by seasonality, there is a need 

to evaluate how these climate-related variables will affect the variations in EWT and FMC 

(Shinoda et al. 2010). It is, therefore, paramount to identify and utilize techniques that can be 

efficient in combining remotely sensed, topographic and climatic data variables for accurate 

characterisation of FMC and EWT required in drawing up better wildfire monitoring initiatives.  

The combination of optimal satellite sensors, vegetation indices, and topographic data can be 

further optimized by using robust statistical algorithms for fire-monitoring frameworks. 

Machine learning algorithms like multiple linear regression, support vector machines and 

random forest (RF) have been widely used to improve vegetation moisture modeling and fire 

management studies (Gottuk et al. 2002). Rated among the top data science algorithms, the RF 

algorithm has been applied to vegetation monitoring and mapping (Chen et al. 2020). Random 

forest is a simple, robust and accurate regression algorithm that can perform both regression 

and classification tasks (Cootes et al. 2012). The RF has been widely used because of its ability 

to handle missing and large data sets without compromising model accuracies (Guo et al. 

2016). Literature on the utility and application of regression algorithms shows that the RF 

algorithm produced higher predictive ability and processing speed than logistic regression and 

multiple linear regressions in understanding spatial patterns Oliveira et al. 2012; Guo et al. 

2016; Collins et al. 2018). The RF is a machine-learning algorithm that uses bootstrap 

aggression to determine and combine random trees (Guo et al. 2016; Zhou et al. 2016).It is in 

this regard that random forest was perceived to be the most suitable algorithm for estimating 

grass moisture elements in this study. Therefore, this study aimed to model the spatial 
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distribution of FMC and EWT in parts of the eThekwini municipality grasslands during the dry 

season using the random forest algorithm.  

  

1.2 Aim and objectives   

The overarching objective of this study was to model the spatial distribution of FMC and EWT 

in parts of the KwaZulu-Natal Sandstone Sourveld (KZNSS) rangelands during the dry season. 

This was achieved based on two specific objectives which were are as follows:  

1. To assess the utility of Sentinel 2 MSI derived variables in estimating grass EWT.  

  

2. To estimate grassland FMC using topo-climatic and Sentinel 2 MSI derived variables. 

1.3 Summary of the Thesis  

Chapter One: General Introduction  

The general introduction of the thesis provides a background to the economic and ecosystem 

importance of grasslands on a global and national level. The chapter also explored the need to 

quantify critical grassland moisture parameters (FMC and EWT) that can be used as indicators 

of fire incidence. The chapter discusses the use of remote sensing techniques to estimate these 

parameters compared to using traditional techniques. Lastly, the chapter provides the aim and 

objectives of the study.   

 

Chapter Two:   Testing the Utility of Sentinel 2 MSI In Estimating Equivalent Water Thickness (EWT) 

Of the Endangered Grasslands in Southern Africa As A Proxy for Fire Incidence  

This chapter investigates the utility of remote sensing to estimate EWT in endangered South African 

rangelands. Specifically, the chapter tests the utility of Sentinel 2 MSI derived spectral bands and 

vegetation indices (standard, moisture-based and SWIR-based) using the robust RF machine learning 

algorithm. The chapter also investigates the relationship between estimated rangeland EWT and fire 

occurrence.   
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Chapter Three: Estimating Grass Fuel Moisture Content (FMC) In Communal Grasslands of South  

Africa Using Remotely Sensed Data Combined with Topo-Climatic Variables  

This chapter demonstrated the use of DEM and WorldClim data in concert with Sentinel 2 MSI 

derived variables in estimating the EWT of communal grasslands. The chapter discusses the 

optimal results derived using the RF algorithm. The relationship that exists between estimated 

grassland EWT and fire incidence is also established using the logistic regression.  

  

Chapter Four: Synthesis  

The synthesis chapter provides a summary of the major results, implications of the study and final 

conclusions.    
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Chapter two 

Testing the utility of Sentinel 2 MSI in estimating Equivalent Water Thickness (EWT) 

of the endangered grasslands in South Africa as a proxy for fire incidence 

 

Rangelands visited in Thoyana (Photo captured by Wenzile Shinga 2019)  
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Abstract 

For years, fire danger has been monitored using methods such as local weather information 

from multiple stations to provide a good basis for monitoring fire over complex, inaccessible 

terrains. The shift to the utility of remote sensing to better understand periods where vegetation 

experiences more water stress across different biomes has been successful in demonstrating the 

timeliness and accuracy of such methods. Equivalent Water Thickness (EWT) is a crucial 

vegetation moisture parameter in managing fire-prone communities such as the endangered 

South African KwaZulu-Natal Sandstone Sourveld (KZNSS), especially during the dry season. 

It is in this regard, that the utility of Sentinel 2 Multispectral Instrument (MSI) satellite data 

was tested in estimating grass EWT in the rangelands of South Africa using the random forest 

(RF) algorithm as a proxy for fire incidence. Specifically, the performance of standard spectral 

bands, general vegetation health, modified and moisture-related vegetation indices (VIs) were 

compared in estimating EWT. The results of the study showed that the SWIR region (1376.9 

nm - 2185.7 nm), in particular SWIR Band 12, was the most important Sentinel 2 MSI derived 

band in estimating EWT. The moisture indices yielded an R2 of 0.66, outperforming the 

standard and modified VIs. Modified NDVI and simple ratio vegetation indices estimated EWT 

to an R2 = 0.65 and RMSE of 0.031 g/m-2 and standard VIs estimated EWT with an R2 = 0.62 

and RMSE of 0.019 g/m-2, respectively. EWT was estimated with an R2 of 0.75 and RMSE of 

0.018 g/m-2 when the optimal variables were used (Modified NDVI (SWIR1/Band2), Band 2, 

SAVI, and the Modified SR (SWIR1/Band 2)). Therefore, this study demonstrates the 

prospects of utilizing Sentinel 2 MSI satellite remotely sensed data in estimating EWT as a 

proxy and a pathway towards understanding fire occurrences and frequency in endangered 

grasslands of southern Africa such as the KZNSS.  

  

Keywords: Equivalent Water Thickness, KZNSS, Moisture indices, Modified vegetation  

indices, Fire management      
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2.1 Introduction  

Understanding water content in grasslands is a fundamental step towards assessing rangeland 

fire hazards (Yebra et al. 2013). As a backbone to the agricultural system, grasslands cover 

40% of the earth (6 billion hectares) (Lemaire et al. 2005; Féret et al. 2019; Ward et al. 2016). 

The global grassland community, in its entirety, helps to mitigate climate change by storing 

more carbon than the forest biome (Dass et al. 2018). In the Southern African context, 

rangelands play a critical role in animal and plant biodiversity and carbon and nutrient cycles, 

among other ecosystem services (Lemaire et al. 2005; Ward et al. 2016). Rangelands also 

contribute to rural livelihoods and national economies. For instance, South African grassland 

services contribute approximately R2.88 billion towards its economy (Drury et al. 2016). 

Grasslands such as the KwaZulu-Natal Sandstone Sourveld (KZNSS) are home to an array of 

endemic bird species like the Blue Crane that is listed under the critically endangered species 

(Arnott 2006; Maphisa 2015). However, the functioning of this biome is threatened by climate 

change, heavy transformation to feed the growing human populations, overgrazing, urban 

sprawl and wildfires (Liu et al. 2018; Lopes et al. 2017; Neke and Du Plessis 2004). However, 

frequent fires are the principal threat to livelihoods and biodiversity in these rangelands and 

require urgent attention (Liu et al. 2018; Lopes et al. 2017). Therefore, the need for optimal 

assessment of Southern African rangelands is critical and paramount to preserving their 

biodiversity and function.  

KZNSS is a prominent Southern African type of grassland which covers 179 671 hectares. It 

is prominent because it is a portion of the Maputuland-Pololand-Albany biodiversity hotspot 

in South Africa. In this regard, it requires frequent monitoring and assessment according to the 

Biodiversity Act 10 of 2004 which states that to maintain biodiversity there should be 

appropriate management and conservation of South Africa’s biodiversity  (Drury et al. 2016). 

The KZNSS is predominantly characterized by endemic vegetation of forbs, bushclamps and 

geoxylic suffrutices and approximately 90% is under-protected (Boon et al. 2016). Due to 

changing fire regimes, further grassland patches are degraded and encroached by woody 

vegetation. Although an essential tool in maintaining the grassland landscape structure, 

frequent fire occurrences presents a growing threat to such ecological landscape, biodiversity, 

ecological function and stability (Russell-Smith et al. 2002; McGranahan et al. 2016; Sow et 

al. 2013). There is, therefore, an imperative need to quantify fire events swiftly and accurately 

to manage such endangered ecosystems and preserve their function. The management of such 
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rangelands has been facilitated by investigating, extrapolating and quantifying critical 

vegetation fire parameters such as canopy water content (Ceccato et al. 2001; Sow et al. 2013).  

Plant water content constitutes 40-80% of the plant’s leaf volume and as such, it is a critical 

biochemical parameter in understanding fire propagation, intensity and pattern (Chuvieco et 

al. 2002b; Ceccato et al. 2001; Mobasheri and Fatemi 2013; Wang et al. 2010). High 

percentages of water content reduce fire propagation and result in low fire intensities since 

there will be limited dry matter to initiate combustion. Plant water content in relation to fire is 

calculated as Fuel Moisture Content (FMC) or Equivalent Water Thickness (EWT), the latter 

is defined as the volume of water per unit area (Datt 1999; Féret et al. 2019). EWT is quantified 

throughout the fire season using empirical traditional laboratory methods which are tedious, 

time-consuming and spatially limited. These generally include the cutting and weighing of wet 

and dry grass biomass to quantify their moisture content. EWT is an indicator of grass curing 

and fire intensity; hence there is a need for more robust and efficient spatially explicit 

approaches for characterizing it (Jackson et al. 2004; Shen et al. 2005; Yilmaz et al. 2008). 

  

Meanwhile, remote sensing facilities provide a quicker, cheaper and non-destructive approach 

to estimate EWT for fire management at local to regional scales (Danson and Bowyer 2004; 

Datt 1999; Yilmaz et al. 2008). Literature on the potential of remote sensing in retrieving EWT 

illustrates that the sensitivity of reflectance is wavelength-dependent, with water absorption 

peaks observed at 970nm, 1200nm, 1450nm and 1950nm being highly sensitive to grass foliar 

and grass canopy moisture content (Cao and Wang 2017; Shen et al. 2005; Sjöström et al. 

2009). Specifically, the reflectance in the SWIR section of the EMS tends to increase with the 

decrease of leaf water content. Moreover, the sensitivity of the SWIR to plant water content 

variations provides a good basis for estimating EWT compared to other vegetation biophysical 

properties like Fuel Moisture Content (Danson and Bowyer 2004; Wang and Shi 2007). 

Therefore, there is a need to assess the potential of the SWIR section with other sections of the 

EMS in estimating EWT as a step towards drawing up robust and effective fire monitoring and 

management strategies in the Southern African context.   

Numerous space-borne earth observation satellites have been widely used to estimate EWT as 

a proxy for fire incidences. These space-borne EO facilities include Landsat, Hyperion, 

Moderate Resolution Imaging Spectroradiometer (MODIS) and World-View (Hunt Jr et al. 

2016; Maffei and Menenti 2014). Despite the high temporal resolution and moderate spectral 
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resolutions associated with MODIS and Landsat, their spatial and spectral resolutions are still 

somewhat coarse in characterizing elements of vegetation canopy water content such as EWT 

(Chen et al. 2005a; Hantson et al. 2013). It is anticipated that the new generation, freely-

available sensors such as the Sentinel 2 Multispectral Sensor (MSI) with greater prospects in 

remote sensing of vegetation elements could accurately estimate ETW, specifically when 

considering its high spatial resolution of up to 10 m in comparison to its predecessors (i.e. 

Landsat with a spatial resolution of 30 m to 120 m and MODIS with a spatial resolution of 250 

m to 1000 m). This makes it suitable for local to regional scale remote sensing of rangeland 

fire-related elements such as EWT as a proxy for fire occurrence and intensity (Sibanda et al. 

2015; Sonobe et al. 2017; Toming et al. 2016). Its high spectral resolution of 13 bands covers 

the red–edge section (720 nm) of the EMS which is very critical in characterizing vegetation 

subtle variations of plant elements such as chlorophyll, leaf area index and water content. 

Therefore, the presence and provision of freely available Sentinel 2 MSI could make it possible 

to assess vegetation health and extrapolate key vegetation fire parameters like EWT. 

However, it is insufficient to base fire hazard and vegetation moisture content assessments on 

standard spectral bands only as they are highly susceptible to noise. Vegetation indices (VIs) 

tend to circumvent and normalize the effects of internal leaf structure and other noise effects 

by combining individual spectral bands (Chuvieco et al. 2002b; Shen et al. 2005). For example, 

Yilmaz et al. (2008) achieved excellent results in estimating EWT using VIs like the 

Normalized Difference Infrared Index (NDII). Popular VIs used in estimating EWT include 

the Normalized Difference Vegetation Index (NDVI), moisture-based indices such as the 

Normalized Difference Water Index (NDWI) and the Global Vegetation Moisture index 

(GVMI) (Ferreira et al. 2011; Sow et al. 2013). However, to the best of our knowledge, there 

is no specified VI suitable for mapping a specific vegetation parameter. Meanwhile, with 

respect to the proven relationship between SWIR and foliar water, there is, therefore, a need to 

assess the influence of Sentinel 2 MSI’s SWIR derived VIs in relation to moisture. Moisture-

related VIs such as the NDWI as well as conventional VIs can therefore be used as a proxy to 

characterise EWT for fire-related incidence and intensities in South African rangelands such 

as the KZNSS. 

  

The integration of new generation sensors such as Sentinel 2 MSI with machine learning 

algorithms like stochastic gradient boosting, support vector machine and random forest 

regression (RF) has been proven to be effective in characterizing vegetation traits using 
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remotely sensed data (Chuvieco et al. 2002b; De Wit and Blignaut 2006; Yuan et al. 2019). 

For instance, the RF algorithm is flexible, relatively robust and has been proven to have high 

prospects of accurately and effectively estimating grassland elements such as EWT (Blanco et 

al. 2018; Oliveira et al. 2012). The RF algorithm can handle large data inputs and can maintain 

accuracy when dealing with missing data (Yuan et al. 2019). For example, in monitoring the 

variation of vegetation water content, Yuan et al. (2019) concluded that the RF algorithm 

performed better than the generalized regression neural network and back-propagation neural 

network, producing RMSEs lower than 0.03 g/m-2.    

In this regard, it is perceived that combining the robust RF algorithm with Sentinel 2 MSI’s 

superior spectral data will be instrumental in building a framework for mapping and monitoring 

fire hazards in the rangelands of Southern Africa based on EWT estimation. Therefore, this 

study aimed to estimate EWT (g/m2) of the endangered KZNSS using Sentinel 2 MSI standard 

spectral bands (VIS, NIR-SWIR bands) and VIs based on the RF ensemble. To achieve this, 

the overall objective compared the performance of the bands and standard, moisture and 

modified VIs is estimating grassland EWT as a proxy for characterizing the fire hazards.  

  

2.2 Methods  

2.2.1Study site  description 

This study was conducted at Thoyana (30.77083 S, 30.76002 E) (Figure 2.1which is a rural 

community situated south of the eThekwini Municipality in KwaZulu-Natal, South Africa. This 

area is incorporated under the Durban Metropolitan Open Space System (D’MOSS) which is a 

program that aims to connect open spaces in public, private and traditional owned communities 

to protect and conserve biodiversity. The biodiversity in Thoyana includes various native forbs, 

invasive alien like Cromolaena odorata plants and snake species. Thoyana is mainly 

characterised by small scale farming, sugar cane plantations, Eucalyptus plantations and 

extensive grasslands that include Themeda triandra, Aristida junciformis and Hyparrhenia 

hirta.   
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Figure 2.1: Map of (a) South African province (b) the study are within KwaZulu-Natal and (c) map 

showing Thoyana boundary and grasslands. 

2.2.2 Fieldwork   

Field data was collected during the dry season of 2019 (06 September- 09 September). Pri or 

to field data collection,  the Generate random sample points tool in ArcMap 10.4 was used to 

generate 120 sample points in the grassland stratum. The randomly generated points were 

loaded in the hand-held Trimble GPS with an accuracy of 10 cm to 20 cm  and was then used 

to navigate to each sampling point in the field. Upon arrival at each sampling point, a 10 m × 

10 m quadrat corresponding with the 10 m spatial resolution of Sentinel 2 MSI was established. 

Within each quadrat, three sub-sampling plots measuring 0.5 m × 0.5 m were randomly selected 

for characterizing grass EWT. Specifically, grass samples were clipped from each subplot and 

the wet biomass (g) was measured along with the Leaf Area Index (LAI). The LI-COR 2200 

was used to measure the leaf area index above the canopy level at each sub-sampling point. 

Wet grass biomass weight was then measured soon after clipping using a digital scale. The 

weight was recorded along with the center coordinate of the 10 m x 10 m quadrat. These 

samples were then packed, clearly labelled in paper bags and transported to the laboratory to 

  

(a) 

(b) 

(c) 
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be oven-dried. Samples were dried in the oven at a temperature of 100℃ for 48 hours to derive 

their dry biomass (g) and moisture content. The measured and recorded wet biomass, dry 

biomass as well as LAI were then used to derive EWT (g/m2) using the formula:  

  

EWT (g m-2) = (FW) – (DW) / (LAI) 

  

where EWT is Equivalent Water Thickness in g m-2, FW is the wet biomass, DW is the dry biomass and 

LAI is Leaf area index estimate measured using the Li-COR 2200. Subsequently, these measurements 

were then averaged for each 10 m plot. 

2.2.3 Image acquisition and pre-processing   

A freely available, cloud-free Sentinel 2 MSI image acquired on the 1st of September 2019 was 

selected and downloaded from the Earth explorer website (https://earthexplorer.usgs.gov/). 

Sentinel 2 MSI has spectral information of 13 spectral bands at a spatial resolution of 10 m - 

60 m, covering the visible (560 nm), red-edge (740 nm), near-infrared (853 nm), and SWIR 

(1610 nm) sections of the EMs. The image was then pre-processed for geometric and 

radiometric distortions. The Q-GIS semi-automatic plugin with a DOS1 atmospheric correction 

function was used to pre-process and convert the images from DN values to surface reflectance. 

The bilinear resampling tool in ArcMap 10.4 was then used to resample all 20 m and 30 m 

spatial resolution Sentinel 2 MSI bands to match the 10 m by 10 m grass sample plots.  

2.2.4 Deriving spectral variables  

Ahead of calculating VIs, pre-processed Sentinel 2 MSI spectral bands were clipped to the 

boundary of Thoyana using the Mask layer tool on the Q-Gis software 3.14. Individual 

reflectance values for each sample point (n = 121) were extracted using the Extract multiple 

values to points tool in ArcGis 10.1.  The ArcGis 10.1 software was used to calculate a total of 

51 VIs comprising of moisture-based, SWIR based SR and NDVI and conventional vegetation 

health VIs using the Raster calculation function in ArcGIS 10.4. A large portion of the VIs 

used for this study were chosen based on their performance in other studies that estimated EWT 

(Danson and Bowyer 2004; Wang et al. 2009; Sow et al. 2013). The SWIR based SR and NDVI 

VIs were computed based on the following equations;  
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𝑅𝛾𝑖 − 𝑅𝛾𝑗 

NDVI =  

𝑅𝛾𝑖 + 𝑅𝛾𝑗 

𝑅𝛾𝑖 

SR =  

𝑅𝛾𝑗 

where Rγi and Rγj are different possible SWIR based Sentinel 2 MSI spectral band combinations.   

2.2.5 Statistical analysis and accuracy assessment  

 RF is a robust statistical algorithm that uses a bootstrap aggregation where several trees (ntree) 

are constructed from a random number of samples derived from the training data (spectral 

variables). The RF algorithm is made up of trees generated by bootstrap aggregation where a 

third of the original sample size is left out for model validation. At each node, a random subset 

of predictors is used to split each tree. The resulting average from all tress combined is used to 

predict an outcome (Oliveira et al. 2012). The RF algorithm used a total of 121 sample points 

which were randomly split into 70% training and 30% testing data for each analysis (Yilmaz 

et al. 2008; Arevalo-Ramirez et al. 2020). To determine which predictor variables are more 

important to the dependent variable, RF selects and ranks predictor variables in order of 

importance and in this study variable importance scores (VI) were assigned to the important 

input spectral variables (Rodriguez-Galiano et al. 2014). The R2, RMSE and RRMSE 

parameters were used to evaluate the accuracy of each RF model. To evaluate the accuracy of 

the estimated EWT map, the relationship between fire presence and EWT was established using 

the logistic regression algorithm. To achieve this, MODIS freely available fire point data (n = 

50) at a spatial resolution of 1 km (https://firms2.modaps.eosdis.nasa,gov/map/) was 

downloaded to run a logistic regression. A further 50 sample points where fire did not occur in 

the study area were generated using the Create random points function on ArcGis 10.1 to run 

the logistic regression.  

2.2.6 Analysis stages and Random Forest models 

A total of four analysis stages were followed in this study to estimate EWT (Table 2.1). The 

first stages compared all Sentinel 2 MSI bands excluding the SWIR and all Sentinel 2 MSI 

spectral bands in estimating EWT. The second stage tested the performance of Modified VIs 

based on the SWIR and moisture VIs in relation to general VIs in estimating EWT using the 

RF ensemble. In the final stage, the optimal spectral variables from the combined datasets were 
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used to estimate EWT.  The final optimal model was used to create the final FMC distribution 

using the most important variables of the model.  

Table 2.1: Sentinel 2 MSI derived parameters and stages followed in estimating grassland EWT  

Analysis stage  Variable  Description   Spectral reflectance 

1  Individual spectral bands  Sentinel 2 MSI Single reflectance   Visible bands (blue, green, 

red),Red edge 

(Re1,Re2,Ee3),Near-

infrared (NIR, NIRn), 

Shortwave infrared 

(SWIR1, SWIR2) 

    

2  Standard VIs  General health vegetation indices  NDVI, NDVI2, EVI, 

EVI2, SAVI, GNDVI, 

NDSI, DVI 

    

  

  

Moisture VIs  

 

 

 

Modified VIs   

 Indices that are indirectly related  

to water content in plants 

 

SWIR-based modified NDVI  

And Simple Ratio indices  

NDWI, MSI, SIWSI, 

MNDI, GVMI, MI 

 

SWIR/Blue, 

SWIR1/Green, 

NDVI_SWIR1/Green, 

NDVI_SWIR2/Blue, 

SWIR2/NIRn, 

SWIR2/Green               

 

3  Combined VIs  All vegetation indices combined   

    

4  Combined variables 

(VIs and Bands)  

All data sets (VIs and Spectral Bands) 

combined  
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2.3 Results  

2.3.1 Descriptive statistics of measured EWT.   

Table 2.2 illustrates the descriptive statistics of the measured EWT. The normality test shows a 

mean of 2.55 g/m-2 and a deviation of 2.50 to the mean.  

 Table 2.2 Descriptive statistics of measured EWT  

  Parameter    Value (g m-2)  

Minimum Maximum  1.12 4.30  

Mean  2.55  

Median  2.45  

Standard Deviation   2.50  

Skewness   0.90  

    

  

2.3.2 Estimating KZNSS grasslands EWT using Sentinel 2 MSI bands  

Figure 2.2 shows that estimating EWT using all wavebands (including the SWIR region) 

produces significantly a higher estimation accuracy when SWIR bands are excluded. The 

results show that including the SWIR region resulted in an R2 of 0.51 and an RRMSE of 7.568 

(RMSE = 0.300 g/m2) whereas its exclusion resulted in an R2 of 0.40 and an RRMSE of 7.696 

(RMSE = 0.312 g/m2) (Figure 2.2 (a)). The SWIR2 Band proved to be the most influential 

spectral variable in estimating EWT (Figure 2.2 (d)) whereas in exclusion (Figure  

2.2 (c)) the visible Band 2 had the highest variable importance score.   
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Figure 2.6: Map showing the estimated spatial distribution of grassland EWT (a) and (b) the logistic 

regression relationship that exists between predicted fires and estimated EWT.  

 

2.4 Discussion  

 This study sought to investigate the use of Sentinel 2 MSI derived spectral bands and standard and 

modified vegetation indices in estimating grassland EWT in the KZNSS, South Africa.    

2.4.1 Estimation KZNSS grassland EWT using Sentinel 2 MSI data  

Findings of this study showed that EWT could be optimally estimated using a combination of 

Sentinel 2 MSI spectral derived data, to an R2 = 0.75 and an RMSE of 0.018 g/m2 using 

modified NDVI (SWIR2 / Blue), DVI, Blue , the SAVI and modified Simple Ratio (SWIR1 / 

Blue), in order of importance. The importance and influence of the SWIR region in this study 

is due to the sensitivity of this region to vegetation water content (Sow et al. 2013). 

Specifically, the region 1565 nm to 1655 nm and 2100 nm to 2280 nm covered by Sentinel 2 

MSI’s Band 11 and 12 are proximal to the known water absorption regions (1450 nm, 1950 nm 

and 2500 nm) (Curran 1989; Sims and Gamon 2003). This then explains the strong influence 

of SWIR derived VIs. These results also are similar to those of Wang and Shi (2007) who noted 

that the SWIR based Simple ratio indices had a stronger relationship with EWT. Meanwhile, 

the importance of visible Blue band in this study could be attributed to the lack of pigmentation 

in grasslands as some were not photosynthetically active. Generally, plants absorb the visible 

blue light during the process of photosynthesis, and they reflect highly in this region. During 

(a) 
(b) 
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the senescence period of plants and a lack of pigmentation in the drier seasons (Mashaba et al. 

2016; Roy 1989).   

2.4.2 The performance of vegetation indices and spectral bands in estimating grassland EWT 

Overall, the study confirms the findings of an increasing body of literature showing that VIs 

outperform spectral bands in estimating vegetation traits such as EWT (Mobasheri and Fatemi 

2013; Yi et al. 2014; Zhang et al. 2018). Vegetation indices outperformed spectral bands in 

estimating KZNSS grassland EWT by an R2 magnitude of 0.11 and an RMSE magnitude of 

0.0.012 g/m2. This conclusion is attributed to the ability of VIs to limit the effect of variations 

in leaf scattering which is common when using individual spectral bands.   

The performance of VIs is attributed to their ability to interpret spectral information while 

simultaneously removing variability caused by canopy geometry and atmospheric conditions 

(Pu et al. 2008). Earlier studies such as Danson and Bowyer (2004) support that normalized 

ratios suppress the effects of variations in internal leaf scattering that are otherwise prominent 

in the utility of individual spectral data. The study also concluded that VIs such as those derived 

based on NIR wavelengths where water absorption is weak and SWIR bands where water 

absorption is strong, producing RMSEs as low as 0.0029 g/m2.   

In comparing the performance and importance of moisture-related indices with general 

vegetation health indices, the results of Figure 2.3(b) show that overall, moisture-related 

vegetation indices, particularly the NDWI were more critical in estimating EWT. This is 

because moisture-based indices are designed to be more sensitive to water absorption. The 

results in Figure 2.4(b) specifically are similar to those of Mashaba et al. (2016), where the 

NDWI and Shortwave Infrared Water Stress Index (SIWSI) were highly sensitive to vegetation 

moisture compared to general vegetation health assessment VIs like the NDVI and EVI. An 

earlier study by Dennison et al. (2006) found that the water-based NDWI had a stronger 

statistical relationship to vegetation water content compared to chlorophyll absorption-based 

indices despite being less sensitive to sparse vegetation like grasslands. Estimating EWT with 

the utility of modified VIs proved to produce an increase of 0.04 in R2 compared to that of 

standard VIs. The results of the final analysis in Figure 2.3(d) show that the combination of all 

optimal VIs produced the highest R2 of 0.68 and a low RMSE of 0.009 g/m2 in estimating 

EWT.  
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In estimating EWT using spectral bands with the inclusion of the SWIR produced a higher 

accuracy (R2 = 0.51 (Figure 2.2a)) when compared to its exclusion ((R2 = 0.40) Figure 2.2c)). 

The influence of the SWIR region in estimating EWT as a proxy for foliar moisture content 

could be explained by the fact that the SWIR is highly sensitive to the variations in foliar 

moisture content hence its significant influence in estimating EWT in this study (Cao and Wang 

2017). Particularly, the SWIR observed peaks at 97 0nm, 1200 nm, 1450 nm and 1950 nm are 

the most sensitive to and therefore more suitable to retrieving EWT (Shen et al. 2005; Cao and 

Wang 2017; Sjöström et al. 2009). Our findings, with the exception of visible Blue band (490 

nm) are similar to findings by Mobasheri and Fatemi (2013) who found that reflectance in the 

visible and NIR produced the lowest correlation with EWT in relation to the SWIR. Similarly, 

Danson and Bowyer (2004) explained that the NIR region is primarily controlled by internal 

leaf structure and therefore has a lower correlation with EWT. Meanwhile, the foliar water 

content is significantly associated with the SWIR region. However, the study noted that the 

SWIR region, Band 11, was not as important as the SWIR Band 12 in estimating EWT. This is 

because it falls within the region of atmospheric water absorption and this may limit its use 

with satellite-borne data (Cao et al. 2017).   

The results of this study have demonstrated the success of the Sentinel 2 MSI derived variables 

in estimating EWT using the RF model. The study specifically showed that moisture VIs and 

Modified SWIR VIs have the greatest potential in estimating grassland EWT. The resulting 

spatial distribution of estimated EWT shows that fires are more likely to occur in areas of lower 

EWT.   

2.5 Relevance of the observed findings  

The findings of this study demonstrate the opportunities presented by Sentinel 2 MSI data for 

deriving insightful baseline information on near real-time rangeland conditions that could help 

in fostering sustainable utilisation of these cost-effective resources. Specifically, Sentinel 2 

MSI developed models could be very useful in deriving routine rangeland information that can 

support decision-making on the type of fire management practices to adopt. Furthermore, these 

results illustrate the unique potential of EO facilities in informing policy and decision making 

as well as operational implementation in mainly under-resourced regions such as Southern 

Africa where agriculture and grassland ecosystems still play a critical role in rural economies 

and livelihoods.  
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2.6 Conclusion  

This study tested the utility of Sentinel 2 MSI remotely sensed data in estimating grassland 

EWT as a proxy for characterising fire hazards in the endangered KZNSS grasslands. The study 

tested, in particular, the utility of the Sentinel 2 MSI SWIR derived spectral variable in relation 

to the visible and NIR spectral variables in estimating the EWT of the KZNSS grassland using 

the random forest Regression algorithm. The results demonstrated that:    

• Sentinel 2 MSI has great potential in estimating Southern Africa local scale grassland EWT 

with RMSEs ranging from 0.008-0.312 g/m2.   

• The inclusion of the SWIR proved to yield a significant increase in the accuracies from R2 of 

0.40 to 0.51 in estimating EWT.  

• SWIR derived VIs proved to be influential in estimating EWT of South African grasslands 

during the dry season    

The results of this study show that there is a strong relationship between remote sensing and 

grassland EWT. Therefore, it proves that cost-effective remote sensing methods will 

confidently estimate EWT in South African grasslands. This study may aid in future research 

on the seasonal variation of EWT as a proxy of fire occurrence across endangered South 

African grasslands. However, more research is still needed in identifying the seasonal 

relationships that exist between EWT and remote sensing across more South African 

rangelands and different vegetation covers like forests, to foster and support fire management 

studies at the national to regional level.  Together with EWT, FMC has also been used to 

identify areas that are at higher risk of intense fire ignition and spread using remotely sensed 

variables. However, there is a shortage of studies investigating the relationship between EWT, 

remotely sensed variables and topo-climatic variables in South Africa. Therefore, after 

successfully assessing the performance of Sentinel 2 MSI remotely sensed data in estimating 

grassland water elements, this work then sought to assess whether the incorporation of 

topographic and climatic variables could improve the estimation of grass moisture element 

(FMC) related to fire occurrence.    
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Chapter three 

Estimating grass Fuel Moisture Content (FMC) in communal grasslands of South Africa 

using remotely sensed data combined with topo-climatic variables 

  

  

  

Rangelands visited in Thoyana (Photo captured by Wenzile Shinga 2019)  
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Abstract  

Quantifying grassland Fuel Moisture Content (FMC) is critical for establishing early fire-

warning systems to encourage proactive fire-management strategies and preserve grassland 

functions such as carbon sequestration. Although seemingly accurate, traditional methods are 

limited in terms of efficiency and temporal coverage or sampling frequency. Therefore, 

remotely sensed data combined with statistical algorithms could be efficiently used to derive 

FMC for a better understanding of fire regimes. In this regard, the objective of this paper was 

to assess the performance of topo-climatic variables in concert with Sentinel 2 Multispectral 

Instrument (MSI) data in estimating grassland FMC using the random forest (RF) algorithm in 

communal rangelands. Three models were performed in estimating grassland FMC based on 

(i) topo-climatic variables, (ii) remotely sensed data as well as (iii) a combination of topo-

climatic and remotely sensed data. Results of the study showed that when topo-climatic 

variables were combined with remotely sensed data an RMSE of 0.190 %/m2 and an R2 of 0.73 

were attained. The variables used in the optimal model for estimating FMC were channel 

networks, elevation, wind speed and water vapour, Normalized difference Infrared Index 

(NDII), Normalized difference water index (NDWI) as well as the SWIR Band 11 (1910 nm). 

Remotely sensed data (RMSE = 0.20 %/m2 and R2 = 0.70) outperformed the topo-climatic 

variables (RMSE = 0.039 %/m2 and R2 = 0.68) in estimating FMC. Overall, these results show 

that there is great potential for using topo-climatic and remotely sensed data in estimating FMC 

in communal rangelands. This is a critical step for developing proactive fire monitoring 

frameworks in the context of southern African grasslands.    

  

3.1 Introduction   

Grassland landscapes cover approximately 40% of the global surface area and are critical 

ecosystems due to the vast ecosystem services that they offer at national, catchment, and local 

scales (Hönigová et al. 2012; Kirkman et al. 2014; Lemaire et al. 2005; Sibanda et al. 2015). 

In South African grasslands cover 336,544 km2 of the total 1, 268, 991 km2 of land 

(Gombakomba 2008). However, it is where approximately 73% of all cultivated timber 

resources occur (Egoh et al. 2011; Gombakomba 2008; Kotzé et al. 2013). Additionally, South 

Africa, grasslands contribute substantially to the economy. For instance, they inject a total of 

R9, 761 million annually through agriculture and mining and it is the most suitable and 

productive biome in terms of livestock farming (Bommert et al. 2005; Kotzé et al. 2013; Neke 

and Du Plessis 2004). Grasslands also play a vital role in processes such as atmospheric carbon 
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sequestration, biodiversity conservation, air quality purification, and regulating the 

hydrological cycle (Hönigová et al. 2012; Shoko et al. 2018). However, the sustainability and 

perpetuity of such ecosystem services is threatened by catastrophic events such as fire 

occurrences which lead to loss of life and the destruction of natural habitats, despite the efforts 

of fire-fighters (Vallejo and Alloza 2015). Furthermore, grassland ecosystem disturbances such 

as wildfires are not well understood. Therefore, there is a need for robust spatially explicit 

mechanisms and frameworks for effectively forecasting wildfire occurrences to preserve these 

ecosystem services. To effectively forecast and understand the occurrence of fires, there is a 

need to quantify factors such as Fuel Moisture Content (FMC) that influence their occurrence 

and intensity.   

Literature investigating the occurrence of wildfires in grasslands has mainly focused on 

quantifying above-ground biomass (AGB) as a proxy of fuel load, and fire scar mapping 

(Johansen et al. 2001; Lentile et al. 2006; Slik et al. 2008). However, other than biomass 

accumulation, a host of other factors such as FMC affect the propagation, intensity, and spread 

of fires (Cardoso et al. 2018). FMC plays a critical role in fire ignition, intensity, and spread. 

Low levels (%) of grass moisture content mean higher probabilities of fire occurrence (Bond 

et al. 2003). Grass FMC tends to be affected by a range of variables which include topographic 

and climatic variables (Holden and Jolly 2011; van Zyl Engelbrecht 2018). Literature states 

that low lying areas coupled with south-facing slopes in the southern hemisphere tend to exhibit 

low levels of FMC.  Complex relationships between topo-climatic factors like solar radiation 

and elevation which in turn creates biophysical gradients that affect FMC (Holden and Jolly 

2011). Quantifying and understanding how these factors influence grassland FMC, particularly 

during the dry season is imperative to managing fire patterns (Hurteau et al. 2014). Therefore, 

there is a need to examine the relationship between FMC as a function of topographic and 

climatic variations, especially in communal rangeland areas to facilitate the establishment of 

effective fire forecasting and monitoring measures.  

Conventionally, FMC and fuel load are quantified using point-based destructive empirical field 

sampling approaches which are labour intensive due to the cutting and weighing of grass 

samples. Such traditional methods are time-consuming and subject to error, especially when 

conducted at landscape scales (Lentile et al. 2006). Meanwhile, EO facilities through remote 

sensing have made it possible to accurately quantify fire-related grass attributes such as FMC 

at a landscape scale in grassland ecosystems (Chen et al. 2005a; Dilley et al. 2004). 

Particularly, in the study by Chen et al. (2005a), vegetation water content for corn and soybeans 
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in Iowa, USA was estimated to a maximum R2 of 0.84 using Moderate Resolution Imaging 

Spectroradiometer (MODIS) NIR (1240 nm) and SWIR (1640 nm – 2130 nm) bands showing 

the potential of remotely sensed data in retrieving vegetation moisture content.  Also, satellite-

borne digital elevation models (DEM), have provided a better platform to retrieve topographic 

factors to facilitate the quantification of grassland FMC. Therefore, remote sensing platforms 

can provide more cost-effective and efficient FMC retrieval techniques. 

For instance, the Moderate Resolution Imaging Spectroradiometer (MODIS), National 

Oceanographic and Atmospheric Administration- advanced very high-resolution radiometer 

(NOAA-AVHRR) and Systeme pour L’Observation de la Terre have been widely used studies 

relating to fire ecology(Chen et al. 2005a; Hantson et al. 2012). However, MODIS and NOAR-

AVHRR have a low spatial  resolution of 250 meters (m) and 1 kilometer (km) respectively 

which results in poor satellite imagery. Alternatively, new generation sensors such as the 

Landsat 8 Operational Land Imager (OLI) and Sentinel 2 (MSI) have made characterization of 

vegetation traits such as moisture content more effective. For example, Sentinel 2 MSI is 

characterized by 13 spectral bands, a spatial resolution of up to 10 m and has as an improved 

swath width of 290 km, which makes it suitable for mapping grassland FMC (Badi 2019). 

When testing the utility of Sentinel 2 MSI in retrieving shrubland FMC, fairly good result of 

an R2 of 0.66 and an RMSE of 44.16 %  (Kwang et al. 2018). Therefore, the spatial and spectral 

capabilities of Sentinel 2 MSI need to be investigated in characterizing grass canopy FMC. 

When compared to its predecessors, the recently launched Sentinel 2 MSI with a robust and 

higher spectral resolution, could help facilitate more accurate retrieval of FMC. Hence there is 

a need to assess its utility in estimating grass FMC. 

Studies that used remotely sensed data in estimating FMC focused on the utility of the SWIR 

region (Chuvieco et al. 2002a; Sow et al. 2013). The SWIR region observes water absorption 

peaks at 1400nm-2500nm when determining vegetation water content (Sow et al. 2013).  

Additionally, several studies have proven the potential of using vegetation indices (VIs) such 

as the NDVI in estimating grassland FMC. However, these studies note that, although NDVI 

is the most popular index, it is limited in explaining water quantity in grasses because it is 

susceptible to atmospheric influences, topographic distortions and it saturates when vegetation 

cover is dense (Chen et al. 2005a; Chuvieco et al. 2002a; Chuvieco et al. 2004; Dilley et al. 

2004). Therefore, this facilitates and motivates the need to assess the utility of additional 

measures such as topographic and climatic factors in concert with remotely sensed data to 

estimate FMC (Sow et al. 2013).   
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To improve FMC studies, the combination of remotely sensed data and powerful statistical 

algorithms has been proven to further increase the accuracy and reliability of spatial models. 

Support vector machines and random forest (RF) are amongst the popular robust statistical 

algorithms (Lu and He 2019; Pan et al. 2018). Meanwhile, the RF algorithm has been shown 

to improve estimation accuracies of fire extent and fire spread models and FMC distribution 

models (Gottuk et al. 2002). As a non-parametric ensemble, the RF algorithm is 

computationally light, offers ease of access and use when applied in vegetation modeling 

studies, especially in concert with remotely sensed data. Moreover, RF offers flexibility and 

performs well even with limited training data sets (Karlson et al. 2015; Pal 2005). In a study 

by Yuan et al. (2019), the RF algorithm outperformed the generalized regression, neural 

network, and the back-propagation neural network with reported RMSE values as low as 0.03 

g/m-2 when investigating variations in water content of forest vegetation. It is in this regard that 

this study sought to determine the effectiveness of combining topo-climatic variables and 

remotely sensed data in estimating the spatial distribution of FMC in a communal grassland 

area, using the RF regression algorithm.  

  

3.2 Methods  

3.2.1 Study area  

The study was conducted in Thoyana communal area, KwaZulu-Natal province in South Africa 

(refer to figure 2.1). Thoyana is a traditional community recently adopted under the EThekwini 

Municipality and Durban Metropolitan Open Space Systems that covers an area of 119.300468 

km2. This area is characterised by built-up areas and a variety of vegetation. Vegetation is 

characterised by a wide variety of invasive alien plants such as chromolaena odorata, an 

extensive area of communal Eucalyptus plantations, and a range of grassland species. Thoyana 

sits at an elevation ranging from a minimum of 0.98838 m to a maximum of 592 m with an 

annual rainfall average of 1010 mm.   
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Figure 3.1:  Map showing the extent of Thoyana, KwaZulu-Natal grasslands  

3.2.2 Image acquisition and pre-processing   

To determine the extent of Thoyana’s grassland community, two Sentinel 2 MSI images 

acquired on the 1st and 10th of September 2019 were selected and downloaded from Earth 

Explorer (https://earthexplorer.usgs.gov/). The images were then pre-processed and corrected 

for geometric and radiometric errors in QGIS software and the individual bands stacked to 

produce a stacked image in order to classify the first image. To perform a supervised 

classification on the first image, training classes were produced in ArcMap 10.4 with the classes 

being grasslands, bare area, built-up areas, water bodies, and other land cover types. The 

grassland stratum was then extracted from the pre-processed and classified image to observe 

the spatial extent of Thoyana grasslands. The second pre-processed Sentinel 2 MSI image was 

then atmospherically corrected using the DOS1 function on Q-Gis to convert DN to canopy 

reflectance. The pre-processed image was then used to calculate VIs (n = 15) (refer to Table 

3.1) using the Raster Calculator tool on the ArcMap 10.4 platform.  
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 3.2.3 Field data collection and analysis  

In this study, fieldwork was conducted from the 6th to 9th of September 2019 during the dry 

season to characterise biomass. Prior to the fieldwork, 120 sample points were randomly 

generated from the grassland stratum on Arcmap 10.4 and imported to a 30 cm hand-held 

Tremble global positioning System (GPS) with a 10 cm to 20 cm field accuracy for navigation 

in the field. Upon arrival at each sampling point, quadrats covering an area of 10 m × 10 m 

were established. A plot size of 10 m × 10 m was chosen such that it corresponds with the 10 

m spatial resolution of Sentinel 2 MSI. Within each quadrat, three 0.5 m × 0.5 m, sub-quadrats 

were randomly selected. In each quadrant, grass samples were clipped and their wet biomass 

derived using a digital scale and the sub-quadrants of each 10 m × 10 m quadrat were averaged 

to provide a good representation of the wet weight for each quadrant. The samples were then 

packed in clearly labelled paper containers and transported to the laboratory. In the laboratory, 

grass samples were dried in an oven set at a temperature of  

100℃ at the University of KwaZulu-Natal grassland science facilities. After 48 hours, the grass 

samples were weighed again to determine their dry weight and the dry weight of each sub-

quadrat was also averaged to represent the entire quadrant. Recorded measurements were then 

used to derive FMC using the following formula:  

FMC= [(Wf – Wd)/ Wd] ×100 

Where Wf is the fresh weight and Wd the dry weight.   

 3.2.4 Topo-climatic variables  

The study used twenty-one topo-climatic variables consisting of local, non-local, and combined 

topographic variables as well as climatic variables (i.e. temperature and precipitation) (Table 

3.2). The topographic variables were derived from a 30 m resolution NASA Shuttle Radar 

Topography Mission (SRTM) digital elevation model (DEM) downloaded from Earth 

Explorer. Topographic indices were derived using SAGA in QGIS (2.3.2). Bioclimatic raster 

data with a 1 km spatial resolution prior to re-sampling was downloaded from World-Clim data 

website (https://www.worldclim.org/). The derived grid datasets were resampled to match the 

10m spatial resolution of Sentinel 2 MSI and sample plot size.  
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Thereafter, a Pearson’s correlation test between the topographic indices was conducted to 

assess their correlation to each other. Another correlation analysis was conducted between all 

the variables and the measured FMC.  

Spectral and topo-climatic variables used in the study: 

Table 3.1: Sentinel 2A spectral variables used to estimate FMC 

Variable Description  Name 

Individual 

spectral 

bands 

Sentinel 2 MSI Single 

reflectance  

Blue, Green, Red, Red-

edge 1 

(Re1), Red-edge 2 (Re2), 

Red-edge 3 (Re3), Near-

infrared (NIR), Near-

infrared narrow (NIRn), 

Shortwave infrared Band 

11 (SWIR1), Shortwave 

Infrared Band 12 

(SWIR2) 

   

Standard 

VIs 

Individual band combinations NDWI, NDSI, EVI, 

EVI2, DVI, NDVI, 

NDVI2, GNDVI, 

MNDVI, GVMI, SIWSI, 

SAVI, MI, MSI, NDII 
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regression line with an output value ranging from one to zero. The RMSE measures the average 

deviation of the estimates from the observed values. The RF result of estimating FMC using 

the most important variables were then used to develop the spatial distribution map grass FMC. 

To further evaluate the results of the estimated distribution of FMC, the relationship between 

fire occurrence and estimated FMC needed to be established. To do this, MODIS detected fire 

occurrences (n =50 ) at a spatial resolution of 1 km were downloaded from the NASA fire data 

archive (https:/firms2.modaps.eosdis.nasa.gov/map/). These were then used as presence data 

to run a logistic regression to determine the relationship between FMC and the probability of 

fire occurrence. An additional 50 points were randomly generated in ArcMap 10.1 to run the 

logistic regression denoting the absence of fires.  

3.3.3 Stages followed in estimating FMC  

Before regression analysis was conducted, we conducted exploratory data analysis which 

included the computation of descriptive statistics and correlation analyses amongst the 

topographic variables as well as between all explanatory variables and measured FMC. Three 

models were computed using three datasets. The first regression model was conducted using 

the remotely sensed data as input datasets i.e. raw bands and vegetation indices. Thereafter, the 

Topo-climatic variables were used to derive the second RF regression. In the third stage, a 

regression combining both remotely sensed data and Topo-climatic variables was computed. 

The final stages included mapping the spatial distribution of FMC and establishing if it was 

related to fire occurrence in the study area based on the logistic regression.  

The RF results of estimating FMC using the most important variables were then used to develop 

the spatial distribution map MODIS fire data (https:/firms2.modaps.eosdis.nasa.gov/map/) was 

then used to run a logistic regression in order to determine the relationship between estimated 

FMC and fire occurrence.   

  

3.4. Results   

3.4.1 Descriptive statistics   

Even though a non-parametric algorithm was used in this study, the FMC data did not 

significantly deviate from the normal distribution curve. The observed data had a mean of 3.87 

%/m2 and a standard deviation of 1.92 were calculated. Further descriptive statistics of 

measured grassland FMC showed FMC (%) to be ranging from 0.157 %/m2 to 7.5101 %/m2.  





49  

  

 

Table 3.3: Pearson correlation test p-values between topo-climatic variables 

 

Variables Vertical_D Analytical Aspect Channel_Ne CI Cross_Sect Flow_Accum Longitudinal LS_Factor Relative_S Slope Elevation TWI Valley_Dep Precipitation SRadiation Max.Temperature 

Min 

Temperature Wind W. v apour 

Vertical_D 0 0.4850 0.9626 0.0169 0.0645 0.0001 0.0002 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.8171 0.4549 0.8940 0.7142 0.9285 0.7026 

Analytical 0.4850 0 < 0.0001 0.3185 0.7336 0.8099 0.0979 0.2029 < 0.0001 0.6532 < 0.0001 0.1625 0.4248 0.6832 0.6955 0.9036 0.4224 0.9294 0.9761 0.8059 

Aspect 0.9626 < 0.0001 0 0.0239 0.4526 0.1828 0.0029 0.1158 0.2358 0.4611 0.4231 0.0921 0.1556 0.6703 0.7578 0.9458 0.4503 0.9576 0.9190 0.8521 

Channel_Ne 0.0169 0.3185 0.0239 0 0.2222 0.0313 0.4596 0.0026 0.0269 0.0170 0.0237 < 0.0001 0.2802 0.0027 0.0022 0.0094 0.0134 0.0059 0.0230 0.0094 

CiI 0.0645 0.7336 0.4526 0.2222 0 < 0.0001 < 0.0001 < 0.0001 0.2092 < 0.0001 0.7714 0.0367 < 0.0001 < 0.0001 0.0262 0.0413 0.3890 0.2374 0.0294 0.2773 

Cross_Sect 0.0001 0.8099 0.1828 0.0313 < 0.0001 0 < 0.0001 < 0.0001 0.5110 < 0.0001 0.0633 0.0027 < 0.0001 < 0.0001 0.0338 0.1024 0.1528 0.1580 0.1075 0.1687 

Flow_Accum 0.0002 0.0979 0.0029 0.4596 < 0.0001 < 0.0001 0 < 0.0001 0.2623 < 0.0001 0.5475 0.3568 < 0.0001 < 0.0001 0.0782 0.2863 0.8987 0.7098 0.0170 0.7291 

Longitudinal < 0.0001 0.2029 0.1158 0.0026 < 0.0001 < 0.0001 < 0.0001 0 0.2429 < 0.0001 0.0256 0.0002 < 0.0001 < 0.0001 0.0304 0.3225 0.3481 0.3506 0.1049 0.3542 

LS_Factor 0.0001 < 0.0001 0.2358 0.0269 0.2092 0.5110 0.2623 0.2429 0 0.0869 < 0.0001 0.0116 < 0.0001 0.5951 0.7087 0.7341 0.4055 0.5868 0.4158 0.6635 

 

Relative_S < 0.0001 0.6532 0.4611 0.0170 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0869 0 0.0081 < 0.0001 < 0.0001 < 0.0001 0.9669 0.5886 0.9929 0.7676 0.9904 0.8104 

Slope < 0.0001 < 0.0001 0.4231 0.0237 0.7714 0.0633 0.5475 0.0256 < 0.0001 0.0081 0 0.0058 < 0.0001 0.7601 0.8939 0.9294 0.3331 0.4303 0.7946 0.5035 

Elevation < 0.0001 0.1625 0.0921 < 0.0001 0.0367 0.0027 0.3568 0.0002 0.0116 < 0.0001 0.0058 0 0.0118 < 0.0001 0.0466 0.0814 0.0133 0.0265 0.2143 0.0260 

TWI < 0.0001 0.4248 0.1556 0.2802 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0118 0 0.0001 0.1982 0.4913 0.4611 0.5044 0.2003 0.5401 

Valley_Dep < 0.0001 0.6832 0.6703 0.0027 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.5951 < 0.0001 0.7601 < 0.0001 0.0001 0 0.3994 0.7295 0.5089 0.5155 0.9475 0.4501 

Precipitation 0.8171 0.6955 0.7578 0.0022 0.0262 0.0338 0.0782 0.0304 0.7087 0.9669 0.8939 0.0466 0.1982 0.3994 0 < 0.0001 < 0.0001 < 0.0001 

< 

0.0001 < 0.0001 

S.Radiation 0.4549 0.9036 0.9458 0.0094 0.0413 0.1024 0.2863 0.3225 0.7341 0.5886 0.9294 0.0814 0.4913 0.7295 < 0.0001 0 < 0.0001 < 0.0001 

< 

0.0001 < 0.0001 

Max.Temp 0.8940 0.4224 0.4503 0.0134 0.3890 0.1528 0.8987 0.3481 0.4055 0.9929 0.3331 0.0133 0.4611 0.5089 < 0.0001 < 0.0001 0 < 0.0001 0.0457 < 0.0001 

Min.Temp 0.7142 0.9294 0.9576 0.0059 0.2374 0.1580 0.7098 0.3506 0.5868 0.7676 0.4303 0.0265 0.5044 0.5155 < 0.0001 < 0.0001 < 0.0001 0 0.7887 < 0.0001 

Wind 0.9285 0.9761 0.9190 0.0230 0.0294 0.1075 0.0170 0.1049 0.4158 0.9904 0.7946 0.2143 0.2003 0.9475 < 0.0001 < 0.0001 0.0457 0.7887 0 0.9135 

W.Vapour 0.7026 0.8059 0.8521 0.0094 0.2773 0.1687 0.7291 0.3542 0.6635 0.8104 0.5035 0.0260 0.5401 0.4501 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.9135 0 
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Vertical_D = Vertical Distance, Analytical_S = Analytical Slope, Channel_Net  = Channel Networks, CI = Convergence Index, Cross sectional = Cross sectional curvature, Flow_Acc = Flow Accumulation, 

Longitudinal_Curve = Longitudinal curvature, Valley_Dep = Valley Depth, TWI = Topographic wetness index, Valley_Dep = Valley Depth, Relative S = Relative Slope, LS Factor = Slope Length and Steepness Factor, 

S.Radiation = Solar Radiation , Max Temp = maximum temperature Min Temp = minimum temperature, W.Vapour = Water Vapour 
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there are fewer water vapour molecules in the atmosphere. Therefore, in the dry season there is less 

moisture for plants to assimilate, leading to drier fuels (Machmuller 2014).   

A study by Nyman et al. (2015) , concluded that in smaller scales, FMC is primarily affected by factors 

such as aspect, slope, elevation and relative humidity. In a similar study by Martínez et al. (2009) 

investigating the importance of weather conditions on determining surface fuels, it was found that 

precipitation (mm) and temperature were significant and highly significant to FMC levels. Temperature 

exhibited an R2 = 0.85 in estimating FMC. However, this study did not find a high significance between 

temperature and FMC.   

The significance of the SWIR variable Band 11 to the optimal estimation of FMC has been widely 

discussed in literature because the variable lies in the moisture absorption region of the EMS where water 

absorption peaks are observed (Sow et al. 2013). In their study estimating herbaceous Senegal, West 

Africa FMC of grasslands , Sow et al. (2013) found that FMC was estimated to an R2 of 0.82 when using 

MODIS NIR (841 nm – 876 nm) and SWIR  (1230 nm – 1652 nm) based on VIs like the Global Vegetation 

Moisture Index. This study also showed a significant relationship between the NIR-SWIR derived VIs, 

especially those using the SWIR region ((1376.9 nm – 2185.7 nm). 

 

3.5.2 Comparing the performance of Sentinel 2 MSI and Topo-climatic variables in estimating grassland 

FMC  

In comparing the results of the performance of Sentinel 2 MSI and topo-climatic variables, results show 

that estimating FMC using exclusively topo-climatic variables outperform the performance of raw bands 

and VIs. The use of topo-climatic variables also proved to yield a lower RMSE (0.039 %/m2) than that of 

raw bands (RMSE = 0.159 %/m2) and VIs (RMSE = 0.101 %/m2). The good performance of using strictly 

topo-climatic variables is as a result of grass being herbaceous vegetation. Grassland FMC therefore is 

influenced mainly by topographic and climatic factors because of a level of co-dependence between topo-

climatic variables and FMC variations (Moeslund et al. 2013). An example of this was discussed by 

Nyman et al. (2015) who noted that in higher elevations there are aspect-related effects on incoming solar 

radiation showing that there is a significant relationship between elevation, aspect and solar radiation in 

relation to the availability of water in plants.   

With regards to estimating FMC using Sentinel 2 MSI variables, the use of raw bands only yielded the 

lowest R2 (R2 = 0.55) and yielded a slightly higher RMSE (RMSE = 0.159 %/m2) than when VIs (RMSE 

= 0.101 %/m2) were used. When comparing the results of the Sentinel 2 MSI variables ((i)VIs and (ii) 

raw bands and VIs) there is a successive increase in R2. This shows that the combination of all Sentinel 2 

MSI facilitates higher accuracy and lower error of estimation (R2=  

0.70; RMSE = 0.20 %/m2) compared to using strictly VIs or raw bands due to the model’s ability to further 

limit errors due to effects like structural leaf effects (Chen et al. 2016). The RF model using VIs yielded 

a higher accuracy (R2 = 0.57), with the most important variables being the MI, NDSI, MNDVI and the 

NDWI.   

In a similar study by Bisquert et al. (2014), the EVI estimated vegetation water content with an accuracy 

of R2 = 0.84. Studies estimating FMC using remotely sensed data have shown that moisture-related VIs 

such as the NIR and SWIR based NDII and the NDWI correlation with FMC (Cao et al. 2017; Dennison 

et al. 2006). This is because the NIR and SWIR regions are more sensitive to changes in liquid water 

content of vegetation canopies than they are to atmospheric effects (Wang et al. 2008; Wang and Shi 

2007).    

In a study monitoring variations of vegetation water content, Yuan et al. (2015) found that the NDVI 

produced higher correlation results compared to NDWI and NDII, while the study by ZORMPAS et al. 
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(2017) contradicted this showing that the NDVI produced a weak relationship (R2 = 0.01) with FMC. This 

is because the NDVI does not directly measure the variations of vegetation moisture content, although it 

measures the effect of moisture content on chlorophyll (Cao et al. 2017; Sow et al. 2013). This is 

influenced by the type of vegetation that is being investigated because, in denser vegetation, the NDVI 

will perform better than when it is used to retrieve moisture from sparse vegetation cover. In this study 

the NDVI was not influential in estimating FMC.   

Topo-climatic variables showed to have a significant relationship with FMC in the optimal model. 

However, a major limitation to the study was the lack of literature on the use and effectiveness of topo-

climatic variables in estimating the spatial distribution of FMC within South African grasslands.  

3.6 Relevance of the findings of this study   

Results of the study illustrate that there is a strong relationship between grassland FMC of communal 

grasslands and topo-climatic factors, such as elevation. Therefore, the modelling of critical FMC using 

these factors can be used to show its spatial variation and to feed into early fire warning systems in 

grasslands across South Africa to facilitate cheaper, timely and cost-effective methods of fire management 

practices. However, more studies on the seasonal relationship between FMC and topo-climatic factors are 

needed in order to determine the seasonal relationships that exist between these factors.   

  

3.7 Conclusion   

This paper investigated (i) the effectiveness and influence of combining topo-climatic and Sentinel 2 MSI 

derived variables in modelling South African grasslands FMC in and around communal areas, (ii) the use 

of the RF variable importance selection to determine important topo-climatic and Sentinel 2 MSI derived 

variables in modelling FMC levels.  

The results demonstrated that:   

• Topo-climatic variables have a high association with estimated grassland FMC compared to 

Sentinel 2 MSI derived variables in the optimal model.  

•  The Sentinel 2 MSI has great potential in modelling biophysical factors like FMC that influence 

fire propagation, spread and intensity in South Africa.   

• In the dry season, topo-climatic variables like channel networks and elevation showed to be critical 

in estimating FMC and overall surpassed the performance of remotely sensed variables in the 

combined RF model.  

• The probability of fire occurrence is associated with lower FMC variations within rangelands.  

Overall, the study shows that there is a significant relationship between FMC of South African grasslands 

topo-climatic factors and remote sensing. Therefore, the integration of these variables in early fire-

warning will enable higher and more reliable results. Additionally, the study shows that the use of the 

Sentinel 2 MSI has the potential of accurately characterising and modelling FMC during the dry season.   

  

2.8 Acknowledgements  

We wish to thank the Durban Research Action Partnership (D’RAP) and the National Research 

Foundation of South Africa (NRF) Research Chair initiative in Land Use Planning and Management 

(Grant Numbers: 84157), NRF Grant (119791) for funding this research. We would also like to thank 

Siphiwokuhle Buthelezi and Helen Snethemba Ndlovu for their field and laboratory assistance.  

  



56  

  

  

  

  

  

Chapter Four: Synthesis 

 

Rangelands visited in Thoyana (Photo captured by Wenzile Shinga 2019)  

 

4.1 Introduction  

Grasslands are among the most diverse ecosystems that sustain human livelihoods, animals and 

atmospheric processes (Dass et al. 2018). However, these grasslands are extensively transformed by 

frequent wildfires. Hence, the management of wildfires is critical in preserving these functions. Fire 

management techniques stem from understanding critical fire ignition parameters such as Fuel Moisture 

Content (FMC) and Equivalent Water Thickness (EWT) to global monitoring and observation systems of 

live fires (Chuvieco et al. 2002b, Pu et al. 2008). The moisture conditions of different vegetation types 

tend to determine the occurrence and intensity of fires (Mistry and Berardi 2005, Pan et al. 2018). 

Rangelands, in particular, are more vulnerable to fire ignition because they hold less moisture and wilt 

faster than other vegetation types. In this regard, there is a need to establish practical techniques to 

quantify these grassland moisture parameters. FMC and EWT are also a function of environmental factors 

including elevation and precipitation, as such, these need to be incorporated in quantifying them. 

However, more traditional techniques of quantifying these parameters are time-consuming and costly. 

Therefore, there is a need to adopt efficient and more affordable techniques to accurately quantify FMC 

and EWT in relation to fire occurrence. Remote sensing techniques offer more accurate techniques by 

satellite imagery with high spatial and temporal resolutions, suitable for assessing and quantifying 

vegetation FMC and EWT. In this regard, this study sought to test the utility of estimating EWT and FMC 

using topo-climatic and Sentinel 2 MSI derived variables (raw bands and VIs). To achieve this objective, 

the following specific objectives were investigated;  

• To estimate the spatial distribution of EWT in the KZNSS using remotely sensed data  

• To estimate the spatial distribution of FMC in communal grasslands at Thoyana, South Africa using 

topo-climatic variables and remotely sensed data  
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4.1.2 Testing the utility of Sentinel 2 MSI in estimating Equivalent Water Thickness (EWT) of the 

endangered grasslands in Southern Africa as a proxy for fire incidence  

The SWIR region (1376.9 nm – 2185.7 nm) has proven to be sensitive to canopy water content and 

therefore it was hypothesised that it could be applicable in retrieving grassland EWT for understanding 

fire occurrences (Cao et al. 2017, Danson and Bowyer 2004a, Hantson et al. 2012). In that regard, this 

study tested the utility of Sentinel 2 MSI derived variables in estimating rangeland EWT using random 

forest. Specifically, the performance of Sentinel 2 MSI derived bands, standard VIs, moisture-based VIs 

and SWIR-based VIs was evaluated in estimating EWT using the RF ensemble.  

The model derived using bands only, with the exclusion of the SWIR region (1376.9 nm – 2185.7 nm), 

exhibited an R2 of 0.40 and an RMSE of 0.312 g/m2 with the most important variables being Blue (Band 

2), Green (Band 3) and Near-infrared narrow (Band 8A). The inclusion of the SWIR region (1376.9 nm 

– 2185.7 nm) in the bands only RF model improved the accuracies to an R2 of 0.51 and an RMSE of 0.300 

g/m2, with the most influential variables being SWIR (Band 11), Blue (Band 2) and broad NIR (Band 8). 

Meanwhile, the model derived using standard VIs yielded an R2 of 0.62 and an RMSE of 0.019 g/m2 

where the GNDVI, NDSI and NDVI2 were the optimal predictor variables. The importance of SWIR-

based VIs further cemented the findings of other studies that evaluated the effectiveness of the SWIR 

region in estimating EWT. In comparing the results of moisture-based VIs and standard VIs the former 

produced higher accuracy (R2 = 0.66; RMSE = 0.041 g/m2) than that of standard VIs (R2 = 0.62; RMSE 

= g/m2). Variable importance scores for the model derived using moisture VIs showed that the NDWI, 

SIWSI and the NDMI were the most important predictor variables. The model derived using SWIR based 

VIs yielded an R2 of 0.65 and an RMSE of 0.031g/m2 and RF identified the SR SWIR 2 (Band 12) / Blue 

(Band 2), SR SWIR 1(Band 11) / Green (Band 3) and NDVI SWIR1 (Band 11) / Blue (Band 2) as the 

most influential variables. The optimal model derived when all Sentinel 2 MSI variables (bands, standard 

VIs, moisture-based VIs and SWIR-based VIs) were combined, exhibited the best performance (R2 = 0.75, 

RMSE = 0.018 g/m2) in estimating EWT when compared to the other models. The SWIR-based VIs were 

the most important variables selected by RF. This optimal (combined data) model was then used to map 

the spatial variation of rangeland EWT across the study area. Logistic regression was used to illustrate 

that there was a significant relationship between modelled EWT and fire incidences.  An increase in the 

probability of fire incidences was associated with a decrease in EWT.  

4.1.3 Estimating grass Fuel Moisture Content (FMC) in communal grasslands of South Africa using 

remotely sensed data combined with topo-climatic variables  

In fire management studies, it is critical to establish efficient, cost-effective and relatively accurate 

techniques for quantifying FMC as well as understanding its relationship with fire incidences. Topo-

climatic variables such as elevation, precipitation, and wind speed are integral in the spatial variation of 

FMC across different landscapes (Pan et al. 2018, Vallejo and Alloza 2015). In addition, remote sensing 

has demonstrated its ability in retrieving grassland moisture properties, with the SWIR region being highly 

sensitive to vegetation moisture at canopy level (Sow et al. 2013). Therefore, understanding the effect of 

estimating FMC with topo-climatic and remotely sensed data is important for estimating its spatial 

variation across communal grasslands. This study sought to test the combination of the STRM DEM 

derived topographic variables, climatic variables and Sentinel 2 MSI derived variables in estimating FMC 

using the RF algorithm.   

The RF model derived using topo-climatic variables produced an R2 of 0.68 and RMSE of 0.039 %/m2 

with the most influential variables being channel networks, elevation, precipitation and Band 11. The 

performance of Bands only yielded an R2 of 0.55 and RMSE of 0.159 %/m2. The most influential variables 

identified using the RF ensemble were SWIR (Band 11), Blue (Band 2) and the Red edge (Band 7). The 

RF model derived using VIs produced slightly higher accuracies of R2 = 0.57 and an RMSE of 0.101 

%/m2. The most important variables in the RF model based on VIs were identified as the Moisture Index, 
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EVI and NDWI. Meanwhile, the RF model combining bands and VIs exhibited an R2 of 0.70 and an 

RMSE of 0.20 %/m2 with the SWIR (Band 11), EVI and NDII being the most influential variables. The 

optimal RF model derived when topo-climatic and remotely sensed variables were combined exhibited 

an R2 of 0.73 and an RMSE of 0.190 %/m2. Specifically, the most influential topo-climatic variables 

included the channel networks, elevation, precipitation and wind while the most influential Sentinel 2 

MSI derived variables were SWIR (Band 11), NDWI and the vegetation Red-edge Band 8A. Overall, 

variable importance showed that optimal Sentinel 2 MSI derived variables for estimating grassland FMC 

were the SWIR Band 11 among the raw bands and the NDWI and Moisture Index among the VIs. The 

RF optimal model was then used to generate a map of FMC distribution within the communal grasslands 

of Thoyana. The probability of fire incidences increased with a decrease in FMC, based on logistic 

regression.  

  

4.2 Implications of the study  

This work serves a baseline study to future academic research investigating the utility of topo-climatic 

and remotely sensed data with regards to fire incidence in South African grasslands. The utility of freely 

available sensors like the Sentinel 2 MSI can be successfully adopted in vegetation analysis by various 

industries, especially the public sector to implement and facilitate more inexpensive vegetation 

monitoring practices in relation to fire management. Moreover, this study is a step towards developing 

robust timely and effective frameworks for monitoring wildfire occurrences, especially in grassland 

ecosystems.  

 

4.3 Conclusion and Recommendations  and Limitations 

 The main aim of this study was to test the utility of DEM derived topographic variables, climatic variables 

and Sentinel 2 MSI derived variables in estimating grassland moisture parameters in Southern Africa. The 

findings of this study illustrated that combining topo-climatic and Sentinel 2 MSI variables is effective in 

estimating FMC. Meanwhile, rangeland EWT can be successfully estimated using Sentinel 2 MSI derived 

using the SWIR based VIs. Moreover, FMC and EWT proved to be good indicators of fire incidence in 

grasslands. There were some limitations to the study. The first limitation is concerning the lack of previous 

studies to reference with regards to methods of estimating FMC and EWT in South Africa. This may have 

affected have the quality of the theory and the understanding of methods used to estimate grassland FMC 

and EWT. The second limitation concerns the sample size used in the study. Generally, if a large sample 

size is used there is expected to be better results, therefore as a recommendation the sample size of future 

studies can be increased to observe better estimation results. Future research on fire incidence still needs 

to test the utility of topo-climatic and remotely sensed data in different seasonal conditions to understand 

the magnitude of how seasonal moisture variations affect fire incidences in the Southern African 

rangeland.  
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