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Abstract 

 

Understanding the intrinsic and extrinsic influences that affect large herbivore assemblages are 

important for protected area managers, especially if their current rate of population decline in Africa 

continues. I aimed to determine how large herbivore species in African grazing ecosystems, respond 

to intrinsic and extrinsic influences, and the implications of these influences for their conservation.  

 

Conservation planners struggle to reliably reconstruct grazer assemblages for ecological restoration 

into areas from which they were extirpated, because of the lack of historical distribution data for their 

regions. Large herbivore population trends in Mkambati Nature Reserve were investigated in order to 

determine how well grazing herbivores established since introduction, how the success of the 

introduction was influenced by facilitation and competition, and what the conservation implications 

are for the ecological restoration. Reconstructing species assemblages for ecological restoration, 

using biogeographic and biological information, could potentially provide the opportunity for a grazer 

assemblage which included beneficial facilitatory effects. A well-packed grazer assemblage in turn 

could potentially lead to an ecosystem which is able to maintain its grazer assemblage structure.  

 

I investigated the factors influencing forage patch use behaviour in Mkambati Nature Reserve. A 

limited set of traits yielded different patch use rules for different species. Patch use was influenced by 

anthropogenic impacts such as poaching and changed fire regimes.   

 

Environmental heterogeneity, species’ traits, water availability as well as anthropogenic influences, 

affected large herbivore behaviour. The dominant movement behaviour of large herbivores was 

Brownian motion, with one to four exponential distributions. When animals faced the trade-off 

between forage quality and quantity during the dry season, they moved further between forage areas 

and water sources in order to get to better forage. The number of movement scales, i.e. exponential 
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step length distributions, increased in more heterogeneous areas, and home range size and fences 

had a significant affect on the number of movement scales.  

 

Finding suitable forage patches in a heterogeneous landscape, where patches change both spatially 

and temporally, poses challenges to large herbivores for maintaining energy budgets. I tested 

whether large herbivores used visual cues to gain a priori knowledge about potential higher value 

foraging patches at a habitat-patch scale. Large grazing herbivores did not use visual cues but rather 

adapted their movement behaviour to the heterogeneity of the specific landscape.   

 

In conclusion, I demonstrated that intrinsic factors, including individual species’ traits  can influence 

the way large herbivores interact with their environment. These factors, in turn, determine how large 

herbivores react to extrinsic factors such as poaching, fire, artificial water holes and fences which are 

important to consider in the conservation management of protected areas. 
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1.1 INTRODUCTION 

Understanding how intrinsic and extrinsic factors influence the movement and behaviour of large 

ungulates is important for protected area managers, as these could influence individual species 

survival abilities as well as have effects on other species and the ecosystem. With many of Africa’s 

large herbivore populations currently in decline (Vie et al. 2009, Craigie et al. 2010), understanding 

the spatial interaction between animals, the environment and anthropogenic influences is key to the 

long-term conservation of these populations (Bailey et al. 1996, Viswanathan et al. 1999, Owen-

Smith et al. 2010). This is especially important because large herbivore population declines in the last 

three decades are mainly attributed to anthropogenic (human) impacts (Vie et al. 2009, Craigie et al. 

2010).  

 

In this chapter I review the different concepts related to intrinsic and extrinsic influences on African 

large herbivore assemblages and conservation. I describe how different large herbivores are 

classified according to their different traits. I also describe the known effect of facilitation and 

competition on large herbivore population structure and species richness. I introduce the concept of 

heterogeneity and scale in relation to large herbivore foraging and movement. I introduce patch 

foraging behaviour to the considerations of this study. I detail animal search movement behaviour in 

recent and past literature, and how animal movement is affected by predation as well as 

anthropogenic effects such as poaching, artificial water sources and fences. I introduce the 

background, status and management practice of protected areas in South Africa. I state the research 

question, describe the research aim and objectives, and indicate the significance of the study. Finally, 

I provide an outline of the thesis. 

 

1.2 LARGE MAMMALIAN HERBIVORE FEEDING TYPES 

African ecosystems are well known for their exceptional diversity of large mammalian herbivores, of 

which a large proportion are ruminant bovids with a few non-ruminant equids (Grange et al. 2004). 

Early studies identified a variety of feeding patterns or feeding type categories among large 

herbivores (Lamprey 1964, Hofmann and Stewart 1972, Gordon 2003). Broader feeding type 

categories classify large herbivores into grazers, mixed feeders preferring grass, mixed feeders 
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preferring browse and browsers (Grunow 1980, McNaughton and Georgiadis 1986, Gordon 2003). 

The feeding type categories classify ruminants into  concentrate selectors, intermediate types and 

grass/roughage eaters (Hofmann 1989), and non-ruminants as non-selective roughage eaters (Bell 

1971).  

 

The feeding strategy of ruminants relies on efficient extraction and use of protein and energy with an 

inability to maintain a high intake rate and processing capability, resulting in them needing to select 

for high protein plant components (Bell 1971, Duncan et al. 1990). The non-ruminant is much more 

tolerant of poor quality forage but must maintain a high rate of intake to be able to survive on this type 

of food (Bell 1971, Duncan et al. 1990, Bailey et al. 1996). The selectivity of a non-ruminant is 

considered to be much less intense than that of a ruminant (Bell 1971). In areas with much moribund 

vegetation, grazing ruminants face particular constraints because nearly all vegetation biomass has a 

low quality, which reduces food intake rates or increases the need for selectivity (Drescher et al. 

2006a, Drescher et al. 2006b, van Langevelde et al. 2008). Some concentrate selectors are 

morphologically adapted to be very selective at times when suitable forage is scarce (Gordon and 

Illius 1988, Schuette et al. 1998). Non-ruminants by contrast, are  considered to be more tolerant of 

fibrous food and are less selective (van Soest 1982). 

 

The feeding type of a large herbivore is, therefore, an intrinsic constraint on the habitat that they can 

effectively use, and provides an understanding as to how one species may be more or less 

constrained than another in a particular set of environmental conditions. I will include the species’ 

foraging type as one of the intrinsic factors I consider through the thesis. 

 

1.3 FACILITATION AND COMPETITION 

Resource competition and facilitation could have a significant effect on the structure and species-

richness of large mammal assemblages (Gordon and Illius 1996, Prins and Olff 1998a, Arsenault and 

Owen-Smith 2002, Olff et al. 2002). Allometric relationships between body size and metabolic rate, 

and body size and gut capacity, predict that large grazers can survive on lower quality forage but 
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require higher bulk intake diets, while smaller grazers require higher quality forage, but can cope with 

lower quantities of it (Demment and Soest 1985). This suggests that, for species within the same 

guild, those that are more similar in size are likely to occupy a similar niche (Gordon and Illius 1996, 

Prins and Olff 1998a, Kleynhans et al. 2011). This increases the likelihood of competitive interactions 

(Wilmshurst et al. 2000, Arsenault and Owen-Smith 2002, Mishra et al. 2002) even though this 

interaction is modified by the type of digestive system of these ungulates, as ruminants of larger sizes 

could directly compete with smaller non-ruminants (Illius and Gordon 1992). Ultimately competitive 

interactions between species could lead to the extinction of the poorer competitor (Prins and Olff 

1998a, Olff et al. 2002). When the abundance of one herbivore species decreases its competitive 

influence declines, and competitive release of other species may occur (Kareiva 1982). This 

competitive release can cascade into lower trophic levels, as the forage species composition shifts in 

response to changed foraging behaviour of the released herbivore species (Ripple et al. 2001, Fortin 

et al. 2005, Lagendijk et al. 2012).  

 

Hutchinson’s weight ratio theory predicts that character displacement among sympatric species leads 

to sequences in which each species is twice the mass of the next (Hutchinson 1959). The higher the 

species diversity in an area the closer the species packing will be (i.e., difference between body mass 

amongst species) (Prins and Olff 1998a, Olff et al. 2002, Klop and Prins 2008, Namgail et al. 2010). 

Closer species packing is expected in complex or highly heterogeneous systems (May 1973) as is 

the case in African grazing ecosystems (Prins and Olff 1998a, Cromsigt and Olff 2006, Bonyongo 

and Harris 2007). Grazing by larger animals decreases the grass biomass as they are better suited to 

handle high biomass/low nutrient quality forage (Bell 1971, Illius and Gordon 1987, Bailey et al. 1996, 

Prins and Olff 1998a, Murray and Illius 2000). Furthermore, grazing often increases quality and 

decreases the stem-leaf ratio, thus facilitating improved food intake (Drescher et al. 2006a, Drescher 

et al. 2006b). These two processes lead to facilitation for smaller grazers (McNaughton 1976, Prins 

and Olff 1998a), which would maximize both production and utilization in the grass layer (Vesey-

FitzGerald 1960, Bell 1971, McNaughton 1976). Such facilitation could result in a higher total grazer 

biomass in an area, and result in closer species packing (Prins and Olff 1998a, Cromsigt and Olff 

2006, Cromsigt et al. 2009). 
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Extrinsic factors such as competition and facilitation, and the intrinsic effect of body size, therefore 

have important effects on the structure and species-richness of large mammal assemblages. I will 

consider the extrinsic factors of competition or facilitation among species, in combination with the 

intrinsic factor of body size (and its allometric consequences), as to how they affect large herbivore 

assemblages in the context of protected area restoration. 

 

1.4 HETEROGENEITY AND SCALE 

Large herbivores react to spatial patterns in topography and forage distribution i.e. to changes in 

environmental heterogeneity (Bailey et al. 1996). Resource heterogeneity occurs at different spatial 

and temporal scales, which make it difficult to predict at which particular scale resource selection by 

large herbivores might occur (Senft et al. 1987a, Bailey et al. 1996). Scales are defined by rates of 

foraging processes and ecosystem processes, and the boundaries between units at each scale are 

defined by animal behaviour (Senft et al. 1987a). The spatial scales of resolution range from the 

chemical composition of individual plant parts, to the habitat patch, the landscape and the regional 

system which contains the entire distribution range of a particular animal (Senft et al. 1987a, Bailey et 

al. 1996). The temporal scale is equally broad, ranging from the amount of time spent feeding on a 

particular plant to the seasonal shift in range and foraging behaviour (Wilmshurst and Fryxell 1999, 

Ager et al. 2003). Patch selection is scale-dependent, and although herbivores can often afford to be 

selective on a fine scale (plant part or species), this may not be the case at coarse scales (habitat 

scale) due to energetic constraints (van Beest et al. 2010). 

 

Resource heterogeneity at different spatial and temporal scales is an essential extrinsic factor to 

consider and may influence animals in different ways. For example, in behaviour related to the way 

large herbivores move to find suitable forage. I will consider the extrinsic factors of heterogeneity and 

scale with intrinsic factors such as body size on movement behaviour of large herbivores in the 

context of protected areas and grazing ecosystems.  
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1.5 PATCH FORAGING BEHAVIOUR 

Grazing ungulate’s food occurs in discrete patches (Prins 1996, Bailey and Provenza 2008, Prins and 

Van Langevelde 2008b) that are reasonably homogeneous with respect to some environmental 

feature (Bailey et al. 1996, Bailey and Provenza 2008, Owen-Smith et al. 2010). Large herbivores 

feed within forage patches and then move through areas where no or little acceptable food is 

encountered (Bailey et al. 1996, Prins 1996, Owen-Smith 2005). They use high-value food by 

adjusting their movements to habitat structure (Fortin 2003, de Knegt et al. 2007). They accelerate 

when moving between forage patches (Shipley et al. 1996) and spend more time in more rewarding 

patches (Distel et al. 1995, Courant and Fortin 2012). Normally feeding is the dominant activity within 

a forage patch, even though ungulates engage in other activities such as walking, resting and 

drinking (Green and Bear 1990, Ryan and Jordaan 2005, Shannon et al. 2008).  

 

Acceptable forage or habitat patches might not be discernible from a distance, may change with 

influence from other herbivores (Arsenault and Owen-Smith 2002, Kohi et al. 2011), and/or their 

location may shift continuously as forage quality changes due to abiotic circumstances (e.g., fire, 

rainfall or flood recession) (Olff et al. 2002, Archibald and Bond 2004, de Knegt et al. 2008, van Beest 

et al. 2010). Herbivores are, therefore, faced with a challenge of how to find and choose good quality 

forage patches in a landscape where the location and quality of such patches are continuously 

changing (Senft et al. 1987a, Bailey et al. 1996). Large herbivores may use a range of behaviours to 

enhance their foraging efficiency (Beekman and Prins 1989, Bailey et al. 1996). They may use a 

priori knowledge for memory (from a previous visit to the patch)(Edwards et al. 1996, Dumont and 

Petit 1998, Fortin 2003, Brooks and Harris 2008) or find new patches through visual cues (Edwards 

et al. 1997, Howery et al. 2000, Renken et al. 2008). If the presentation of the forage resource is 

complex (e.g. when forage patches are not well defined), or the distribution of forage patches are 

likely to change continuously (e.g. when a patch is grazed or the grass sward becomes less suitable 

for grazing due to ageing), then recalling the location of forage patches may be of limited value 

(Edwards et al. 1997). In such heterogeneous situations, i.e. in both space and time, the capacity to 

recognise and assess the potential reward from different forage patches at a distance through visual 

cues, would promote foraging success (Edwards et al. 1997). A number of field based studies have 
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linked movement patterns to the use of memory by large herbivores to locate or revisit suitable forage 

patches (Ramos-Fernandez et al. 2003, Brooks and Harris 2008). 

 

Extrinsic factors could potentially influence patch use behaviour of large herbivores. In addition, the 

way different species with varied intrinsic traits deals with these factors could be different. This in turn 

could have impacts on ecosystems and more specifically protected areas. I will consider the influence 

of extrinsic factors linked to intrinsic traits on patch use behaviour of large herbivores. 

 

1.6 ANIMAL SEARCH MOVEMENT 

Animal movement is a core mechanism that influences a number of ecological processes at 

individual (e.g., home ranges, foraging), population (e.g., metapopulation connectivity, invasion 

dispersal), community (e.g., assemblages, species coexistence), and ecosystem levels (nutrient 

cycling, spread of disease, seed dispersal, trampling) (Turchin 1996, Fryxell et al. 2008, Nathan 

2008, Delgado et al. 2009). Animal movement matrices can be used to provide perspective on 

complex biological interactions between individuals and the environment they exist in (Shannon 

2005, Birkett et al. 2012, Delsink et al. 2013, Jachowski et al. 2013) 

 

Animal search movements consists of a discrete series of displacements (i.e. step lengths) separated 

by successive re-orientation events (i.e. turning angles)(Bartumeus et al. 2005). Foraging and 

searching behaviour have been described using two different types of random movement behaviours, 

namely random walks (Brownian motion) and Lévy walks (Viswanathan et al. 1996, Viswanathan et 

al. 1999, Bartumeus et al. 2005, Edwards et al. 2007). Random walks reflect essentially similar steps 

(on the same spatial scale) separated by orientation and changing turn angles (Viswanathan et al. 

1999). Lévy walks reflect clusters of shorter steps that are connected by rare large steps (Edwards et 

al. 2012).  Lévy walkers can outperform Brownian random walkers as they revisit patches far less 

often, and because the larger steps potentially increase the probability of finding new patches 

(Viswanathan et al. 1999, Raposo et al. 2009, Viswanathan 2010).  
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More recently the composite Brownian motion emerged as a strong alternative model to the Lévy 

walks (Benhamou 2007, de Jager et al. 2011, Schultheiss and Cheng 2011, Jansen et al. 2012, 

Reynolds 2013), whereby animals switch between two or more Brownian walks, each characterised 

by an exponential step-length distribution (Jansen et al. 2012, Reynolds 2013).  In heterogeneous 

environments, Brownian walks, at two different scales (composite Brownian motions), e.g., a small-

scale area-restricted search (within patches) mixed with a set of large movements (between 

patches), can be close to optimal (Benhamou 2007). The composite Brownian walk closely 

resembles a Lévy motion and could also be considered as more optimal or efficient than ordinary 

Brownian motion (Schultheiss and Cheng 2011, Reynolds 2013).  

 

These recently developed movement models, with the more robust statistical methodology, opened a 

new avenue to investigate animal movement behaviour. I will use these new models to test a number 

of hypothesis related to extrinsic and intrinsic factors in large herbivore behaviour.  

 

1.7 ANTHROPOGENIC EFFECTS ON ANIMAL MOVEMENT 

Human activities have an influence on animal movement behaviour in various ways including 

poaching, providing artificial water holes and erecting fencing: 

a. Poaching 

In Africa, poaching has substantial effects on large herbivore behaviour, population densities, 

spatial distribution and movement (du Toit 1995, Fischer and Eduard 2007, Vie et al. 2009, 

Waltert et al. 2009, Craigie et al. 2010). Poaching can cause large herbivores to respond in 

the same way as they do to predation risk (Morgantini and Hudson 1985, Manor and Saltz 

2003, Blom et al. 2004, Proffitt et al. 2009), especially in areas with high poaching incidence 

(Fischer and Eduard 2007, Hayward 2009b).  

 

Large herbivores avoid becoming prey to predators, by responding to predation risk (Kie 

1999, Creel et al. 2005, Fortin et al. 2005, Creel et al. 2008, Valeix et al. 2009b). They 

display a variety of behavioural responses to predation risk, which may be additive on, or 
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compensatory for, its effects (Creel et al. 2008). Responses to predation includes altering 

time budgets (Brown and Kotler 2004, Fortin et al. 2004, Marion et al. 2009, Pays et al. 

2011), habitat choice (Festa-Bianchet 1988, Creel et al. 2005, Fortin et al. 2005), grouping 

(Marion et al. 2009), sensitivity to environmental conditions (Winnie et al. 2006), and diet 

(Christianson and Creel 2007). Forage resources in risky areas need to be worth the risk in 

order for herbivores to make use of such areas. Herbivores may choose to ignore predator 

risk when deciding where to forage, and focus on quality of forage resources and/or other 

factors instead (Prins 1996). However, they may also respond by avoiding predators (Creel 

et al. 2005, Valeix et al. 2009a) or by moving out of harm’s way when predators are 

encountered (Fischhoff et al. 2007, Winnie and Creel 2007). 

 

b. Artificial water holes 

Abiotic factors such as surface water supplies are the primary determinants of large-scale 

distribution patterns of large herbivores in Africa and act as constraints within which they 

have to interact with biotic features such as forage resources (Bailey et al. 1996, Redfern et 

al. 2003, Smit et al. 2007). In historic times, natural lakes, rivers and streams served as water 

sources to large herbivores. With the increased presence of man, large herbivore 

populations in Africa are increasingly confined to protected areas (Carruthers 2008). Early 

protected area management approaches tended to be “agricultural” in nature (Carruthers 

2008), with artificial water holes being established in many parks to provide water for wildlife 

use, and to maximize access to forage resources in areas with little natural water supplies, 

especially during the dry season (Owen-Smith 1996, Chamaille-Jammes et al. 2007). 

Excessive numbers of artificial water holes can, however, potentially have negative effects 

by: favouring water-dependent ungulates at the expense of rarer species; increasing 

predator impacts on prey populations; increasing vegetation degradation; worsening animal 

mortalities during droughts; and decreasing ecosystem stability as well as biodiversity loss 

(Owen-Smith 1996).  

In many cases, large herbivores select different habitats and show a variety of movement 

patterns during times of low versus high resource availability (Ager et al. 2003, Venter and 

Watson 2008, Cornélis et al. 2011, Birkett et al. 2012). This is because they become 
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nutritionally stressed during the dry season when both forage quality and quantity are 

reduced (Prins 1996). In addition, surface water sources can dry up which influences the 

trade-off foragers face between nutritional requirements and surface-water constraints when 

forage quantity is reduced (Redfern et al. 2003). Forage quality and quantity are most 

affected near water sources, as animals tend to congregate in these areas due to water 

dependency (Redfern et al. 2003). The reduced forage quantities during dry years forces 

large herbivores to travel further from water sources to meet their nutritional requirements 

(Redfern et al. 2003, Venter and Watson 2008). The trade-off between nutritional 

requirements and surface-water constraints that species face varies according to their water 

dependence, size, feeding preference and digestive system (Redfern et al. 2003, Smit et al. 

2007). For example, in Kruger National Park grazers were found to be more dependent on 

artificial water sources than browsers and mixed-feeders which were more dependent on 

rivers (Smit et al. 2007).  

c. Fences 

Fences are constructed to delineate land ownership, control access, contain animals, 

prevent the spread of disease and to protect livestock and crops (Boone and Hobbs 2004, 

Grant 2008). Fences and other barriers to animal movements can effectively limit larger 

migratory movements of large herbivores (Boone and Hobbs 2004, Loarie et al. 2009, 

Naidoo et al. 2012), thereby influencing their movement behaviour and altering space use 

patterns (Vanak et al. 2010). By limiting mobility of large herbivores, fenced areas become 

fragments within the landscape (Boone and Hobbs 2004). Fences may also entangle or 

electrocute herbivores, excise important resources needed by species, and allow resident 

populations to become too dense and potentially cause degradation of the vegetation (Boone 

and Hobbs 2004).  

Extrinsic factors, especially those caused by humans, may have a substantial influence on animal 

behaviour. This is especially the case in protected areas where managers need to be aware of the 

possible unintended anthropogenic impacts on large herbivores. I will consider these anthropogenic 

extrinsic factors and how they relate to large herbivore intrinsic features and behaviour. 
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1.8 SOUTH AFRICAN PROTECTED AREAS 

The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the 

global network of protected areas covers 11.5% of the earth’s land surface and provides an 

invaluable service in shielding ecosystems from destructive use and reducing biodiversity loss 

(Rodrigues et al. 2004). In South Africa protected areas were conceptualised by the end of the 19th 

century, due to the seriously depleted state of the wildlife populations caused by unsustainable 

hunting practises (Carruthers 2008). Since then a large number of formal protected areas have been 

created which currently covers 6.5% (790 km2) of South Africa’s land-surface area (Jackelman et al. 

2008). South Africa also has a substantial number of private protected areas and game ranches (van 

der Waal and Dekker 1998, Lindsey et al. 2009). A private protected area is a property of any size 

that is managed for the protection of biodiversity and owned or otherwise secured by individuals, 

communities, corporations, or non-governmental organisations (Jones et al. 2005). During the past 

30 years, South Africa’s wildlife industry, mainly in the form of private protected areas and game 

ranches, has developed into a multimillion dollar industry with positive benefits for employment 

creation, ecotourism and biodiversity (van der Waal and Dekker 1998, Sims-Castley et al. 2005). In 

South Africa both formal and private protected areas as well as game ranches play an important role 

in the conservation of large ungulates (van der Waal and Dekker 1998, Sims-Castley et al. 2005) 

which is reflected in their growing population numbers (Craigie et al. 2010). 

 

1.9 PROTECTED AREA MANAGEMENT 

Protected areas are an efficient way of protecting wild animals (Balmford et al. 1995), and, therefore, 

is an important conservation strategy many countries adopt (Bertzky et al. 2012; Hockings 2003). 

However, protected areas face an era of great change because they are facing increasingly complex 

challenges in understanding and conserving their biodiversity features (Venter et al. 2008), which are 

in mostly driven by anthropogenic influences (Venter et al. 2008, Biggs et al. 2011). Challenges 

facing protected areas include: alien plant and animal invasions, uncontrolled fires, bush 

encroachment, artificial water sources, dam building, disease, erosion, land invasion, land use 

change, solid waste management, mining, isolation, poaching, purposeful species eradication, 

resource utilization, siltation and tourism (Goodman 2003). Venter et al., (2008) describes the all-

encompassing challenge for protected area management as: “To be confident that management 
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actions taken today are underpinned by reliable information and sound thinking, so that today‘s 

actions have a good chance of being successful in future ecological and social climates”.  

 

There is a positive relationship between protected area management planning and performance 

(Goodman 2003). Systematic conservation planning assists in defining biodiversity conservation 

targets, evaluate how protected area networks perform with respect to these targets,  identify 

additional areas that might be needed to meet these targets, as well as zoning land use and 

infrastructure planning within protected areas (Goodman 2003, Holness and Biggs 2011). Strategic 

protected area management planning, in turn, deals with protected area operations, i.e. day-to-day 

management actions to achieve operational and organizational goals (Biggs and Rogers 2003). Both 

these type of management planning processes require a great deal of information and understanding 

of ecosystem patterns and processes, as well as knowledge on technical management 

methodologies for implementation (Biggs and Rogers 2003, Goodman 2003). 

 

Adaptive protected area management have been taking a foothold in more prominent protected areas 

in South Africa over the last decade (Biggs and Rogers 2003, Venter et al. 2008). Adaptive 

management involves management within certain ecosystem thresholds, which allows management 

to respond if the set ecosystem threshold is crossed (Biggs and Rogers 2003, Venter et al. 2008, 

Biggs et al. 2011). Thresholds of potential concern (TPC’s) are used as a tool which explicitly set 

these thresholds, which allows protected area managers to measure when management action 

needs to be adapted or not (Venter et al. 2008, Biggs et al. 2011, Gaylard and Ferreira 2011). 

Biophysical and social sciences are critical for TPC formulation, as socio-ecological information forms 

the cornerstone of its implementation, and protected area management cannot be expected to 

understand the management meaning clearly, without understanding of the inter-linkages between 

these (Biggs et al. 2011, Gaylard and Ferreira 2011). 

 

It is, however, important to understand ecological systems within protected areas in order to 

implement effective conservation action. My study will attempt to improve knowledge about large 
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herbivore ecology and make a contribution to improve conservation management of large herbivores 

in protected areas. 

 

1.10 PROTECTED AREA RESTORATION 

In many protected areas, the management interventions are intended to restore ecological patterns 

and processes that have been affected by anthropogenic disruption (Heinen 2002, Suding et al. 

2004, Hayward 2009a). A common element of these interventions is to reintroduce ‘suitable’ species 

to, or remove ‘undesirable’ species from protected areas (Griffith et al. 1989, Novellie and Knight 

1994, Fischer and Lindenmayer 2000, Atkinson 2001, Gusset et al. 2008). The reintroduction of 

indigenous herbivores to an ecosystem reintroduces natural disturbance and processes that are 

thought to support or promote the re-establishment of local diversity (Simenstad et al. 2006). A 

reintroduction is considered to be successful if it results in a self-sustaining population (Griffith et al. 

1989). Reintroductions of large mammals to protected areas have had various levels of success over 

the last few decades (Griffith et al. 1989, Novellie and Knight 1994, Fischer and Lindenmayer 2000). 

Conservation authorities opt to use a precautionary approach when deciding which species to 

introduce or maintain in protected areas, as non-indigenous species are potentially harmful to 

habitats in which they did not evolve (Spear and Chown 2009, Spear et al. 2011). A critical aspect of 

this restoration process is the selection of species that are ‘suitable’. In many instances, the past is 

used to determine which species are suitable, assuming that indigenous species are the most 

appropriate to achieve restoration objectives (List et al. 2007, Hayward 2009a, Boshoff and Kerley 

2010).  

 

Incorrect predictions of grazing assemblages not suitable for the restoration of protected areas could 

potentially have a detrimental influence on biodiversity. My study will attempt to improve methodology 

to predict the right grazer assemblages for effective protected area restoration. 

  



14 
 

 
 

1.11 PROBLEM STATEMENT 

The behaviour ecology of large mammalian herbivores reflects the choices they make expressed in 

the form of changes in behaviour (Gaillard et al. 2010). Foraging theory concerns activities related to 

the acquisition of food (Owen-Smith et al. 2010) and this addresses a herbivore’s decisions regarding 

where to search, when to feed, which food types to consume, and when to terminate feeding and 

move on (Stephens and Krebs 1986, Owen-Smith et al. 2010). The interaction between herbivores 

and their environment can be detected in their movement behaviour (Frair et al. 2005) which takes 

place at several scale levels: from steps between foraging stations, to daily movement in home 

ranges, to seasonal migratory movements (Prins and Van Langevelde 2008a). Advances in GPS 

tracking (telemetry) technology have made the acquisition of high quality fine scale movement data 

possible (Hebblewhite and Haydon 2010, Owen-Smith et al. 2010).  

 

Fine scale movement tracking data are useful in studies on habitat selection (Creel et al. 2005, 

Galanti et al. 2006), home range behaviour (Shannon et al. 2006, Massé and Côté 2012), animal 

migration (Boone et al. 2006, Hebblewhite and Merrill 2011), ecology and conservation of species 

(Royer et al. 2005, Hays et al. 2006), conservation impacts (Proffitt et al. 2009, Phipps et al. 2013) 

and projecting impacts of climate change (Durner et al. 2009). However, many of these studies are 

characterized by either a focus on the spatial and temporal aspects of the species behaviour, i.e. 

where and when animals move, or deal with predator-prey or herbivore-forage interactions, and the 

vast majority deal with a single species only (Fortin et al. 2005, Frair et al. 2005). There are also a 

myriad of publications that focus on defining search efficiency in movement behaviour (Viswanathan 

et al. 1996, Viswanathan et al. 1999, Bartumeus 2005, Benhamou 2007, Edwards et al. 2007, 

Bartumeus 2009, Edwards et al. 2012, Jansen et al. 2012). However, there are few studies which 

compare movement behaviour among species to understand how their movements are responses to 

intrinsic and extrinsic influences (Underwood 1983).  

 

Intrinsic factors such as body size, muzzle width, digestive system and feeding type, can influence 

the way large herbivores interact with their environment (Bell 1971, Bailey et al. 1996, Gordon and 

Illius 1996, Clauss and Hummel 2005, Prins and Van Langevelde 2008b, Hopcraft et al. 2011). These 
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factors in turn determine how large herbivores react to extrinsic factors such as seasonal changes of 

forage resources, competition, predation, poaching, fire, artificial water holes and fences (Prins 1996, 

Boone and Hobbs 2004, Fischer and Eduard 2007, Creel and Christianson 2008, Valeix et al. 2009a, 

Waltert et al. 2009, Parrini and Owen-Smith 2010, Sensenig et al. 2010, Vanak et al. 2010, Hassan 

and Rija 2011). Many studies have focused on either intrinsic or extrinsic factors (see references 

above) but only few studies have managed to link the two sets of factors, and to then apply it to real-

time conservation practice and implications for management (Vanak et al. 2010, Delsink et al. 2013, 

Jachowski et al. 2013).  

 

This study falls within the ‘Conservation Biology Domain’ and focuses on determining how different 

African large herbivore species, affected by various intrinsic factors, respond through movement 

behaviour, to extrinsic factors in protected areas. I will apply the understanding gained to improve 

conservation practice and management. 

  

1.12 AIMS AND OBJECTIVES 

The aim of the study was to determine how selected African large herbivore species, constrained by 

various intrinsic factors, respond to key extrinsic factors in protected areas. 

The study therefore had the following objectives and sub-objectives: 

1) To determine how well grazing herbivores have become established since introduction to the 

main study area, how this was influenced by facilitation and competition (extrinsic factors), 

and what the implications are for ecological restoration. The sub-objectives were: 

a. To investigate grazer diversity for the protected area under different conceivable 

assemblages based on biological principles and/or management practise. 

b. To assess the results against a separate established grazer assemblage. 

c. To critically evaluate current conservation management policy regarding wildlife 

introductions and removals. 

d. To make recommendations for a future management approach. 
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2) To determine what factors influenced forage patch use behaviour of large herbivores. The 

sub-objectives were: 

a. To determine how two species of large herbivores with contrasting feeding type 

(intrinsic factor), used forage patches in a landscape of nutrient poor, moribund 

grassland (extrinsic factors), with a mosaic of higher quality forage patches (extrinsic 

factor), under a gradient of higher and lower poaching risk (extrinsic factor) . 

b. To determine the differences in patch choice of two species, of differing physiology 

and anatomy (intrinsic factors), by assessing their choices according to burnt and 

unburnt patches, poaching risk, distance from previous patch, patch size and patch 

age (extrinsic factors). 

3) To determine what factors affected scale of movement of large herbivores. The sub-

objectives were: 

a. To test whether eight African large herbivore species, with a variety of morphological 

traits (intrinsic factors), coming from landscapes of varying heterogeneity (extrinsic 

factor), showed a difference in step length distributions and number of scales at 

which movement takes place. 

b. To determine if season, morphological traits, home ranges and fencing affected 

movement scale 

To establish if large herbivores with different morphological traits (intrinsic factors) use visual cues 

when searching for new patches at a habitat patch scale. The aim and objectives deals with extrinsic 

and intrinsic factors influencing large herbivores and their conservation. As a conservation 

practitioner (I am an ecologist in a conservation agency), I tried to address relevant and current 

issues that I deal with on a day-to-day basis, hence, the relatively broad aim. I believe that 

addressing these questions will produce a valuable piece of work which will contribute to large 

herbivore conservation. 

 

1.13 SIGNIFICANCE OF THE STUDY 

There have been alarming declines in large mammal populations in protected areas in Africa in the 

last three decades, which are mainly attributed to habitat loss as well as to consumptive use (Vie et 

al. 2009, Craigie et al. 2010). Effective conservation management of African large ungulates is thus 
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crucial as conservation managers attempt to simulate natural processes and maintain heterogeneity 

of ecosystems to promote conservation outcomes in protected areas (Grant et al. 2011). Many 

studies have focused on intrinsic or extrinsic factors affecting large herbivores (Prins 1996, Boone 

and Hobbs 2004, Fischer and Eduard 2007)  but only few studies have managed to link the two sets 

of  factors and apply this to conservation management practise (Vanak et al. 2010, Delsink et al. 

2013, Jachowski et al. 2013). My study focuses on understanding how animals are responding to 

their environment, whether through community richness, population success, or through different 

scales of behaviour (patch use or movement path). Importantly, I separate how intrinsic factors 

expressed through behaviour can influence large herbivores’ reactions to extrinsic factors. In 

addition, the study links the findings to conservation practice and considers the implications for 

conservation management. 

 

Protected area management agencies often struggle to reliably reconstruct grazer assemblages 

because of the lack of historical distribution data for their regions.  Incorrect predictions of grazing 

assemblages could potentially affect biodiversity negatively. The linking of ecological patterns and 

processes to historical distribution data is mentioned by several authors (Boshoff and Kerley 2001, 

Bernard and Parker 2006), but few examples exist where this was actually done (List et al. 2007, 

Kuemmerle et al. 2012). This would suggest that conservation authorities are not using the full set of 

available tools when making management decisions for protected area restoration, especially when 

historical distribution data are lacking. This is a concern, as depauperate herbivore assemblages 

could have negative implications for biodiversity and associated patterns and processes (Chapin et 

al. 2000), both of which are goals for protected area conservation management (Venter et al. 2008). 

My study addresses this critical flaw in conventional approaches of reconstructing grazer 

assemblages for protected area ecological restoration and describes a method to overcome this. 

 

Environmental heterogeneity such as in water or forage availability, species traits, as well as 

anthropogenic influences have a substantial effect on the ecological patterns and processes that 

shape the distribution of large herbivores (Boone and Hobbs 2004, Loarie et al. 2009, Vanak et al. 

2010, Cornélis et al. 2011, Duffy et al. 2011). Understanding how different species in a system vary 
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their behaviour to meet their biological needs and how they deal with anthropogenic impacts such as 

poaching, artificial water sources and fences, should underpin such conservation management 

strategies, as their responses could influence individual species’ ability to persist, as well as effecting 

on other species and the ecosystem (Fortin et al. 2005, Ripple and Beschta 2007). My study 

addresses an information gap regarding the influence of anthropogenic impacts such as poaching, 

artificial water sources and fences on large herbivores movement behaviour, contrasted across a 

number of species. When these factors are ignored by conservation management, this could have 

negative consequences for protected areas and the biodiversity they contain. 

 

Large grazing herbivores have to deal with a range of challenges in their daily quest for survival. For 

example, finding a forage patch in a heterogeneous landscape where patches differ in suitability, 

poses a challenge, especially if individuals have no a priori knowledge of the location of the most 

suitable patches (Senft et al. 1987a, Bailey et al. 1996, Prins 1996). In such heterogeneous 

situations, in both space and time, the ability to recognise and assess different forage patches at a 

distance through visual cues, would promote foraging success (Edwards et al. 1997). A number of 

field based studies have linked movement patterns to the use of memory by large herbivores to 

locate or revisit suitable forage patches (Ramos-Fernandez et al. 2003, Brooks and Harris 2008), but 

none have tested if large herbivores use visual cues to find forage patches at a habitat patch scale. 

My study addresses this question, and provides evidence on the importance of visual cues in 

foraging at a habitat patch scale. 

 

Information regarding large herbivore movement behaviour and how it is linked to intrinsic and 

extrinsic factors is essential for effective protected area management (Biggs et al. 2011, Gaylard and 

Ferreira 2011, Grant et al. 2011), because protected area managers cannot be expected to plan 

conservation action effectively without understanding cause-and-effect impacts of large herbivore 

assemblages on ecosystems (Delsink et al. 2013, Jachowski et al. 2013). This study provides 

important information which could benefit conservation management of large herbivores in protected 

areas. 
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1.14 STUDY OUTLINE 

The study is presented in six chapters, of which chapters three to six are all written in the format for 

publication in peer reviewed journals: 

Chapter 2: Study areas and species. This chapter described the nature reserves and study species 

which were investigated during the study. More detail was provided on Mkambati Nature Reserve, 

where the bulk of my study was performed.  

Chapter 3: Reconstructing grazer assemblages for protected area restoration. This part of the study 

addressed Objective 1, to determine how well grazing herbivores have become established since 

introduction to Mkambati Nature Reserve, how this was influenced by facilitation and competition, 

and what the implications are for ecological restoration. I present a situation analysis of the large 

ungulate introduction and persistence history of Mkambati Nature Reserve, which, in addition, also 

addressed the conservation management challenge of effectively reconstructing grazer assemblages 

for protected area restoration purposes.  

Chapter 4: Forage patch use by grazing herbivores in a South African grazing ecosystem. Objective 

2, to determine what factors influence forage patch use behaviour of large herbivores is addressed. 

The chapter investigated the factors that influence forage patch use behaviour in Mkambati Nature 

Reserve. I investigated how non-ruminant zebra (Equus burchelli), and ruminant red hartebeest 

(Alcelaphus buselaphus camaa), used burnt patches in a landscape mosaic of forage patches of 

different nutritional quality, size, inter-patch distances and proximity to poaching risk.  

Chapter 5: Extrinsic and intrinsic factors affecting large African herbivores movements. The chapter 

addressed Objective 3, to determine what factors effect scale of movement of large herbivores. I 

tested whether eight different African large herbivore species, with different feeding niches and 

digestive strategies, coming from landscapes of varying heterogeneity, show a difference in step 

length distribution and movement scale complexity. In addition, I also investigated whether 

seasonality and anthropogenic influences such as fences, influence movement scale.  

Chapter 6: Large grazing herbivores don’t use visual cues to find forage patches at a habitat patch 

scale. Chapter six addressed Objective 4, to establish if large herbivores used visual cues when 

searching for new patches at a habitat patch scale. I tested whether three large grazing herbivores 
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with a variety of different traits, improve efficiency when foraging at a heterogeneous habitat patch 

scale, by using visual cues to gain a priori knowledge about potential higher value foraging patches.  

Chapter 7: Conclusion. The concluding chapter highlighted the main research findings and how these 

have addressed the research aim and objectives. I also provided conservation management 

recommendations and listed potential future research focus areas. 
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Chapter 2: Study areas and species 
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2.1 INTRODUCTION 

This chapter describes the protected areas and study species which were investigated during the 

study. More detail is provided on Mkambati Nature Reserve and its associated study species where 

the bulk of the study was performed.  

 

2.2 STUDY AREAS 

All the study areas were formal or private conservation areas in South Africa. They are all managed 

with two main objectives, i.e. the conservation of biodiversity and providing benefits for employment 

creation, ecotourism as well as economic development. 

 

2.2.1 Mkambati Nature Reserve 

Mkambati Nature Reserve is situated on the coast of Pondoland, in the Eastern Cape Province, 

South Africa (31˚13’-31˚20’S and 29˚55’-30˚04’E). The reserve lies between Port Edward (30 km to 

the north east) and Port St Johns (59 km to the south west) (Shackleton 1989). The Reserve covers 

an total area of 7720 ha The reserve forms part of the Pondoland Centre of Plant Endemism, one of 

235 sites identified globally as having important botanical biodiversity features (de Villiers and 

Costello 2013). The reserve is thus regarded as being of both regional and national conservation 

significance and contains an unique combination of plant species, many of which are rare or endemic 

to the area (ECPB 2009, de Villiers and Costello 2013). The Mtentu River to the north, the Msikaba 

River in the south, and approximately 12 km of coastline in the east form the natural boundaries of 

the reserve. All the surrounding land is owned by communities (Amadiba communities to the north, 

Lambasi communities to the south and Mkhambati communities to the west) (ECPB 2009).  The only 

non-natural boundary is the border fence to the west. 

 

The climate is sub-tropical with a relatively high humidity (Shackleton et al. 1991). The coastal 

location adjacent to the warm Agulhas Current provides for minimal differences between minimum 

and maximum daily temperatures (de Villiers and Costello 2013). The average rainfall is 1 200mm 

per annum, with the majority falling during spring and summer (September to February) (Shackleton 
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et al. 1991). On average, June is the driest month with a mean of rainfall 48 mm, and March is the 

wettest with a mean rainfall of 155 mm (Shackleton et al. 1991).  A minimum of 50 mm rain is 

expected every month. Strong winds can occur with dominant winds blowing from the south-west or 

north-east (Shackleton et al. 1991). 

 

The surface rock formations of the region are primarily sandstone of marine origin with localised 

dolerite intrusions (ECPB 2009, de Villiers and Costello 2013). An “island” of this sandstone, 

extending in a narrow band (15 km wide) from the uMzimkhulu River in southern KwaZulu-Natal to 

the Mbotyi region, is home to numerous plant species which are uncommon or absent from 

surrounding substrates (de Villiers and Costello 2013). The dominant soil forms in the reserve are 

Mispah (65%), Clovelly (16%), Champagne (7%) and Pinedene (2%) (Shackleton 1989) (Figure 

2.1A). The soils are also generally deep (> 1.2 m) (Shackleton 1989). Mkambati falls within the Indian 

Ocean Coastal Belt Biome but also contains small pockets of the Forest Biome (Rutherford et al. 

2006b). The two major vegetation types present in Mkambati are Scarp Forest (Mucina and 

Geldenhuys 2006) and Pondoland-Ugu Sandstone Coastal Sourveld (Mucina et al. 2006d).  It 

consists of approximately 490 ha. of wetland, 662 ha. forest, 40 ha. scrubland and 6250 ha. 

grassland habitat  (Shackleton et al. 1991).  

 

More than 80 % of Mkhambati Nature Reserve is grassland, and it is the only conservation area in 

the Eastern Cape incorporating a portion of the Pondoland–Natal Sandstone Coastal Sourveld veld 

type (Mucina et al. 2006d). Shackleton (1991) described six dominant grassland communities within 

Mkambati (Figure 2.1B). These communities are the Tristachya leucothrix - Loudetia simplex short 

grassland community; Tristachya leucothrix - Athrixia phylicoides short grassland community; 

Festuca costata - Albuca setosa medium grassland community; Stoebe vulgaris - Athanasia calva 

short shrub grassland community; Cymbopogon validus - Digitaria natalensis medium grassland 

community; and the Aristida junciformis - Helichrysum mixtum short grassland community 

(Shackleton et al. 1991). The grasslands are considered to be nutrient poor (Shackleton et al. 1991, 

Shackleton and Mentis 1992).  
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Figure 2.1: The soils (A) and vegetation (B) in Mkambati Nature Reserve (Shackleton 1989) 
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Fire plays an important ecological role in the grasslands of Mkambati (Shackleton 1989, 1990, 

Shackleton et al. 1991, Shackleton and Mentis 1992). Grassland fire stimulates temporary regrowth 

high in crude protein (8.6% compared to 4.6%, in older grassland); phosphorus concentrations (0.1% 

compared to 0.05%, in older grassland) and dry matter digestibility (38.6% compared to 27.1%, in 

older grassland) (Shackleton 1989). Nutrient concentrations remain elevated for up to 6 months post 

burn, by when  they are comparable to surrounding unburned grassland (Shackleton and Mentis 

1992). Frequent fires cause a continuously changing landscape mosaic of nutrient-rich burnt patches 

within a matrix of older, moribund grassland and older burnt patches (Figure 2.2). Most fires are 

ignited by poachers with the aim of attracting animals to certain areas once the new grass starts to 

grow.  

 

Poachers cross the two major rivers, i.e. the Mtentu river (on the north-eastern boundary) and the 

Msikaba river (on the south-western boundary), to poach wildlife in Mkambati. Security patrols and 

field ranger records show that poachers use rifles, dogs and snares, and poaching intensity 

decreases away from the two major rivers (Eastern Cape Parks and Tourism Agency, unpublished 

data). This results in concordant danger and fire gradients within Mkambati. There are also 

prescribed management burns, but due to the high poacher driven fire incidence this rarely takes 

place. Lightning also causes fires, but only few have been recorded on Mkambati, and none during 

the study period (Eastern Cape Parks and Tourism Agency, unpublished data). 

 

There are several large herbivore species present in Mkambati, but no large predators (Peinke et al. 

2010) (Table 2.1). In total 1 344 medium to large herbivores were introduced to Mkambati in 1979 to 

create a hunting ranch that was aimed at attracting international clientele (de Villiers and Costello 

2013). Species introduced in 1979 were blesbok (Damaliscus pygargus phillipsi), blue wildebeest 

(Connochaetes taurinus), greater kudu (Tragelaphus strepsiceros), impala (Aepyceros melampus), 

springbok (Antidorcas marsupialis), gemsbok (Oryx gazelle), eland  (Tragelaphus oryx), red 

hartebeest (Alcelaphus buselaphus camaa), Hartmann’s mountain zebra (Equus zebra hartmannae), 

plain’s zebra (Equus burchelli) and giraffe (Giraffa camelopardalis) (de Villiers and Costello 2013).  
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Figure 2.2: The fires recorded in Mkambati Nature Reserve during the study period. 
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The animals originated mainly from the Kwazulu-Natal Province in South Africa, as well as from 

Namibia (de Villiers and Costello 2013). Approximately 30% (427) of the introduced animals died 

shortly after introduction (Sunday Times, South Africa, 24 August 1980) and the cause was attributed 

to “stress and starvation” (de Villiers and Costello 2013). The hunting venture failed commercially, 

after which Mkambati’s status was changed to nature reserve (de Villiers and Costello 2013).  

 

Mkambati’s main management objective is to conserve biodiversity and to provide sustainable 

benefits to local communities through natural resource use and tourism (ECPB 2009). The large 

mammalian herbivores play a significant role in both these stated objectives. 
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Table 2.1: The species and population sizes of ungulates present in Mkambati Nature Reserve during 
the 2010 game census (Peinke et al. 2010). 

 

Species  Mean ± Standard 

deviation 

Coefficient of 

variation 

Blesbok (Damaliscus pygargus phillipsi) 379±10 3 

Blue wildebeest (Connochaetes taurinus) 2±0 0 

Bushbuck (Tragelaphus scriptus) 6±3 46 

Common duiker (Sylvicapra grimmia) 1±1 100 

Eland (Tragelaphus oryx) 129±3 2 

Impala (Aepyceros melampus) 1±2 115 

Kudu (Tragelaphus strepsiceros) 9±4 48 

Red hartebeest (Alcelaphus buselaphus camaa) 239±5 5 

Southern reedbuck (Redunca arundinum) 25±17 67 

Springbok (Antidorcas marsupialis) 11±3 30 

Plains zebra (Equus burchelli) 328±28 9 
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2.2.2 Baviaanskloof Nature Reserve 

The Baviaanskloof Nature Reserve (33º26’-33º53’ S and 23º35’-24º59’ E) is situated in the west of 

the Eastern Cape Province, South Africa extending from Uitenhage near Port Elizabeth to 

Willowmore on the Western Cape provincial boundary. The reserve is 211 476 ha. in size and covers 

most of the Kouga and Baviaanskloof mountain ranges, part of the Tsitsikamma Mountains in the 

south, and part of the Grootwinterhoek and Elandsrivier Mountains to the east (Venter et al. 2010). 

The topography of the reserve consists of vast mountain ranges cut by deep river valleys running 

from east to west. The reserve is situated between the arid Steytlerville karoo and the mesic southern 

Cape coast. The bulk of the reserve falls within the eastern part of the Fynbos biome (Rutherford et 

al. 2006b). The northern areas of the reserve fall within the Nama-karoo biome (Mucina et al. 2006b) 

while the eastern areas mostly fall within the Albany-thicket biome (Hoare et al. 2006). The Forest 

biome (Mucina and Geldenhuys 2006) is represented in the narrow river valleys and the Grassland 

biome (Mucina et al. 2006a) on the plateaus of the old African land surface in the Kouga and 

Baviaanskloof mountain ranges.  

 

The average rainfall varies between the west and the east, with the driest months being January and 

February and the wettest months being July and August. Several large herbivore species are also 

present and leopard (Panthera pardus) is the only large predator present in the reserve (Reeves et 

al. 2011). There are currently a small population of Cape mountain zebra (Equus 

zebra)(23        ) and medium sized population of African buffalo (Syncerus caffer)(    

        ) present on the reserve (Reeves et al. 2011). Other herbivore species include red 

hartebeest (Alcelaphus buselaphus), eland (Tragelaphus oryx), kudu (Tragelaphus strepsiceros), 

bushbuck (Tragelaphus scriptus), Cape grysbok (Raphicerus melanotis), mountain reedbuck 

(Redunca fulvorufula), grey rhebuck (Pelea capreolus), klipspringer (Oreotragus oreotragus) and 

black rhino (Diceros bicornis) (Reeves et al. 2011).  
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2.2.3 Kruger National Park 

Kruger National Park (22º20’-25º32’ S and 30º53’-32º02’ E) is located in the north-eastern South 

African lowveld spanning the provincial border between the Mpumalanga and Limpopo Provinces 

(Venter et al. 2003). The national park is approximately 2 300 000 ha. in size, which includes private 

and provincial reserves; Manyeleti, Makuya, Balule, Letaba, Klaseri, Timbavati, Umbabat and Sabi 

Sands and stretches  from the Crocodile River in the south up to the Levuvhu River in the north 

(Venter et al. 2003, Delsink et al. 2013). On average, it lies 300 m above sea level and consists 

mainly of plains with a low to moderate relief (Venter et al. 2003). Kruger falls within two climate 

zones: the lowveld bushveld zone in the south (rainfall 500-700 mm per annum) and the arid 

bushveld zone in the north (rainfall 300-500 mm annually)(Venter et al. 2003). Kruger falls within the 

summer rainfall zone and peaks in January/February (Venter et al. 2003). The whole of Kruger lies 

within the Savanna biome (Rutherford et al. 2006b), which can be broadly divided into two main 

ecological types: broad-leaved savanna which occupies approximately 75% and fine-leaved savanna 

which occupies the remaining 25% (Venter et al. 2003). The savanna varies in structure and 

composition at the local scale, and the factors that determine its heterogeneity are related mostly to 

soil, fire, climate and herbivory (du Toit 2003, Venter et al. 2003). The elephant population in Kruger 

National Park approached a total estimated number of 13 000 in 2006 (Owen-Smith et al. 2006). 

There is also a large number and variety of ungulate species in the park. The large predators in the 

park include lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), spotted 

hyena (Crocuta crocuta), wild dog (Lycaon pictus) and brown hyena (Parahyaena brunnea) (Pienaar 

1969). 

 

2.2.4 Pilanesberg National Park 

Pilanesberg National Park (25º8'–25º22' S and 26º57'–27º13' E) is located in the remains of an 

extinct volcano, in the North-west Province, South Africa (Slotow and Van Dyk 2004). The national 

park is approximately 55 000 ha. in size. The topography consist of hilly savanna terrain and the 

vegetation consists of Acacia and broad-leaf bushveld which have thicket to open grassland patches 

(Slotow and Van Dyk 2004). There is one major river system running southeast through the central 

part of the park, with one large dam in the centre of the park, and a number of smaller dams 

scattered throughout the park (Slotow and van Dyk 2001). Rainfall is approximately 630 mm per 
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annum, and falls in summer, which are very hot (mean temperature 28–31 ºC) while the winters are 

cold (minimum temperature 1–5 ºC)(Slotow and van Dyk 2001). The park was proclaimed in 1979, 

and since then, approximately 6 000 individuals from a variety of wildlife species have been 

reintroduced to the park (Slotow and van Dyk 2001). The large predators include lion (Panthera leo), 

leopard (Panthera pardus), cheetah (Acinonyx jubatus), spotted hyena (Crocuta crocuta), wild dog 

(Lycaon pictus) and brown hyena (Parahyaena brunnea) (van Dyk and Slotow 2003). 

 

2.2.5 Mkhuze Game Reserve 

The Mkhuze Game Reserve (27º33’–27º48’S and 32º08’-32º25’ E) is situated located on the coastal 

plain east of the Lebombo Mountains in the Kwazulu-Natal Province, South Africa (White and 

Goodman 2010). The reserve is approximately 45 200 ha. in size. The climate is warm to hot, humid 

sub-tropical, with two distinct seasons: a warm, dry winter from April to September and a hot, humid 

summer from October to March (Balme et al. 2010). The average annual rainfall is 550 mm p.a., and 

the mean monthly temperatures range from 33 ºC in January to 19 ºC in July (Balme et al. 2010). The 

dominant habitat type is broad-leafed woodland interspersed with grasslands and wooded 

grasslands, whith a similar composition throughout the reserve (van Rooyen and Morgan 2007). The 

reserve supports a number of ungulate species which includes blue wildebeest (Connochaetes 

taurinus), eland (Tragelaphus oryx), plains zebra (Equus burchelli), and African elephant (Loxodonta 

africana). 

 

2.2.6 iSimangaliso World Heritage Site 

The iSimangaliso World Heritage Site (32º20'-32º56' E and 26º51'-28º28' S) is situated on the south-

eastern coast of Kwazulu-Natal, South Africa (Kwazulu-Natal Nature Conservation Service 1999). 

The park is 239 566 ha (Kwazulu-Natal Nature Conservation Service 1999) and has a subtropical 

climate with warm, moist summers (mean annual temperatures exceed 21 ºC), and mild dry winters 

(Kwazulu-Natal Nature Conservation Service 1999). Rainfall at the coast varies from 1 200 to 1 300 

mm per annum, with 60% of the rainfall in summer (November to March) and the rest in winter (May 

to September) (Kwazulu-Natal Nature Conservation Service 1999). The vegetation of the Park is 

exceptionally diverse, and contains a mosaic of forest, thickets, woodlands, grassland and several 
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wetland types, the distribution of which is largely determined by topography, moisture regimes and 

edaphic conditions (Kwazulu-Natal Nature Conservation Service 1999). There are 18 large herbivore 

species present in the park (Kwazulu-Natal Nature Conservation Service 1999). The large predators 

in the park include, leopard (Panthera pardus), spotted hyena (Crocuta crocuta) and brown hyena 

(Parahyaena brunnea) (Xander Combrink pers. com.). 

 

2.2.7 Mapungubwe National Park 

The Mapungubwe National Park (22º10’-22º17’ S and 29º08’-29º32’E) is located on the South African 

side of the confluence of the Shashe and Limpopo rivers in the Limpopo province, South Africa 

(SANPARKS 2012). The park is 28 168 ha in size (SANPARKS 2012). Mapungubwe comprises an 

scenic semi-arid landscape with various geological (SANPARKS 2012). The winter is mild with an 

average daily temperature of 20 ºC while summer temperatures can reach up to a maximum of 45 ºC 

(Shrestha et al. 2012). Most rainfall occurs in the summer with an annual mean of 300–400 mm 

(Shrestha et al. 2012).The main vegetation types that occur in the parks are Musina Mopane 

Bushveld, Limpopo Ridge Bushveld (Rutherford et al. 2006a) and Subtropical Alluvial Vegetation 

(Mucina et al. 2006c). Diverse plant communities occur on rocky outcrops surrounded by 

Commiphora-Colophospermum veld on the undulating terrain (Götze 2002). River- and floodplain-

associated vegetation includes Acacia xanthophloea, Hyphaene petersiana palmveld, Salvadora 

australis shrubveld on the floodplains, and Acacia stuhlmanni communities on old agricultural fields 

(Götze 2002). Herbivores in the park include eland (Tragelaphus oryx), gemsbok (Oryx gazella), 

impala (Aepyceros melampus), kudu (Tragelaphus strepsiceros), waterbuck (Kobus ellipsiprymnus), 

blue wildebeest (Connochaetes taurinus), plains zebra (Equus burchelli), African elephant 

(Loxodonta africana) and white rhino (Ceratotherium simum) (SANPARKS 2012, Shrestha et al. 

2012). 

 

2.2.8 Welgevonden Private Game Reserve 

Welgevonden Private Game Reserve (24º10’-24º25’ S and 27º45’-27º56’ E) is a privately owned 

wildlife reserve, 33 000 ha. in size, situated in the Waterberg region of the Limpopo province, South 

Africa (Kilian and Bothma 2003). The topography consist of mountainous areas with a number of 
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plateaus and open plains (Kilian and Bothma 2003).  The reserve is situated in a warm and 

temperate summer rainfall area with a mean annual rainfall off  670 mm (Kilian 2003). The mean 

annual maximum temperature is 26.5 ºC and the mean annual minimum temperature is 11 ºC (Kilian 

2003). The main vegetation types that occur in the reserve are Central Sandy Bushveld, Western 

Sandy Bushveld and Waterberg Mountain Bushveld (Rutherford et al. 2006a). The leached, acidic, 

sandy soils give rise to nutrient-poor, low quality sour veld that cannot support large numbers of 

herbivores (Kilian 2003). The reserve supports a number of ungulate species which includes blue 

wildebeest (Connochaetes taurinus), red hartebeest (Alcelaphus buselaphus), eland (Tragelaphus 

oryx), plains zebra (Equus burchelli), white rhino (Ceratotherium simum), and African elephant 

(Loxodonta africana) (Kilian 2003). The large predators on the reserve include lion (Panthera leo), 

leopard (Panthera pardus), cheetah (Acinonyx jubatus), spotted hyena (Crocuta crocuta) and brown 

hyena (Parahyaena brunnea) (Kilian 2003, Kilian and Bothma 2003). 

 

2.2.9 Asante Sana Private Game Reserve 

Asante Sana Private Game Reserve (32º15’-32º21’ S; 24º52’-25º04’E) is a privately owned hunting 

and game reserve 10 700 ha. in size, situated near the town of Graaff-Reinet, Eastern Cape 

province, South Africa (Kok 2011). Prior to the establishment of the game reserve, the land use was 

small livestock farming (Kok 2011). In 1995, the stock farms were converted into a private game 

reserve (Kok 2011). Thereafter, various species like kudu (Tragelaphus strepsiceros), impala 

(Aepyceros melampus), lechwe (Kobus leche), springbok (Antidorcas marsupialis), African elephant 

(Loxodonta africana), white rhinoceros (Ceratotherium simum), African buffalo (Syncerus caffer), and 

giraffe (Giraffa camelopardalis) were introduced onto the reserve (Kok 2011, Shrestha et al. 2012). 

The mean annual precipitation for a ten-year period (2001-2010) was 287 mm (Kok 2011). Rainfall 

peaks during the warm summer months of January to March and is at its lowest during June to 

August (Kok 2011). The winters are cold with an average 24 hr. temperature of 13 ºC and the 

summer hot with maximum ambient temperatures of 38 ºC (Shrestha et al. 2012).  The reserve is 

mountainous and altitudes range between 980 m to 2 320 m above sea level (Kok 2011). The 

vegetation consists of two major vegetation units, Karoo Escarpment Grassland and Camdeboo 

Escarpment Thicket (Mucina et al. 2006b). These vegetation units roughly coincide with the altitudinal 
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ranges found throughout the park. The Karoo Escarpment Grassland is associated with higher (> 

1300 m) altitude and Camdeboo Escarpment Thicket with lower (< 1300 m) altitudes (Kok 2011). 

  

2.3 STUDY SPECIES 

A number of species with different intrinsic traits, i.e. feeding type, digestive strategy and muzzle 

width have been included in the study in order to achieve the research objectives. The species 

included in this study were the impala, red hartebeest, blue wildebeest, eland, African buffalo, plains 

zebra, Cape mountain zebra and African elephant. 

 

2.3.1 Impala (Aepyceros melampus) 

The impala (Aepyceros melampus melampus, Lichtenstein 1812) is one of six subspecies of which 

only two occur in southern Africa (Skinner and Chimimba 2005). The other subspecies in this region 

is the black-faced impala (A. melampus petersi) (Skinner and Chimimba 2005). Impala are distributed 

widely in the eastern woodlands of Africa, from central Kenia to South Africa (Skinner and Chimimba 

2005). Impala associate with open woodland (Skinner and Chimimba 2005) and they are classified as 

intermediate mixed feeders (Hofmann 1989) which make use of both graze and browse (Okello et al. 

2002). The amount of browse and graze consumed is dependent on seasonal rainfall patterns and 

the associated availability of green grass (Skinner and Chimimba 2005). They are ruminants with a 

relatively selective foraging strategy that is associated with a high foraging efficiency, cropping rate 

and low intake rate (Okello et al. 2002). They are water dependent and rarely move far from surface 

water (Young 1972, Skinner and Chimimba 2005). 

  

2.3.2 Red hartebeest (Alcelaphus buselaphus) 

The red hartebeest (Alcelaphus buselaphus, Pallas, 1766) is one of two species of the Alcelaphus 

genus (Skinner and Chimimba 2005). Several subspecies are recognized i.e. A. b. swayni from 

Ethiopia; A. b. tora from Sudan, Eritrea and Ethiopia;  and A. b. major from West Africa (Skinner and 

Chimimba 2005). In southern Africa, they occur in Namibia, Botswana, Zimbabwe and South Africa. 

Red hartebeest are considered to be predominantly selective grazers that will make use of browse 
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under limited resource conditions (Kilian, 1993; Murrey, 1993). Red hartebeest prefer open habitat 

and mainly occur in grasslands of various types (Skinner and Chimimba 2005). In areas with much 

moribund vegetation, grazing ruminants such as the red hartebeest face particular constraints 

because nearly all vegetation biomass has a low quality, which reduces food intake rates (Drescher 

et al. 2006a, Drescher et al. 2006b, van Langevelde et al. 2008). The hartebeest is an example of a 

concentrate selector; its skull morphology is specially adapted to be very selective at times when 

good forage is scarce (Schuette et al. 1998). 

 

2.3.3 Blue wildebeest (Connochaetes taurinus) 

The blue wildebeest (Connochaetes taurinus, Burchell 1823) belongs to the tribe Alcelaphini with  two 

species in the genus that also include the black wildebeest C. gnou (Skinner and Chimimba 2005). 

Blue wildebeest are widespread and occur in most of the savanna areas of Africa (Skinner and 

Chimimba 2005). They are associated with woodlands and the availability of shade and drinking 

water are considered to be important for their survival (Skinner and Chimimba 2005). Blue wildebeest 

move on a seasonal basis in order to find suitable forage in the form of short grass (Ben-Shahar and 

Coe 1992, Skinner and Chimimba 2005) and mass migrations in search of suitable grazing are not 

uncommon (Bell 1971). They are predominantly grazers with a preference for short green grazing 

lawns (Attwell 1977, Skinner and Chimimba 2005). Their ability to make use of short grass is 

reflected in their wide muzzle and efficient tongue which make them capable of cropping short grass 

but less effective in tall grass environments (Ego et al. 2003).   

 

2.3.4 Eland (Tragelaphus oryx) 

The eland, (Tragelaphus oryx, Pallas, 1766) belongs to the tribe Tragelaphini (spiral-horned 

antelope), with three subspecies of the common eland being listed, T. o. oryx occupying the southern 

parts of the distribution range (South Africa, Botswana and Namibia), T. o. livingstoni  the central 

parts (Angola, Zambia, Democratic Republic of the Congo, Zimbabwe, Mozambique and Malawi) and 

T. o. pattersonianus occupying the northern parts extending into the Somali arid areas (Ansell 1972). 

Eland have a wide distribution in Africa, ranging from south-eastern Sudan and south-western 

Ethiopia southwards (Skinner and Chimimba 2005). Historically eland occurred throughout the 
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Eastern Cape including the former Transkei area (Boshoff et al. 2007, Skead 2007). Eland are 

considered to be mixed feeders preferring browse (Hofmann and Stewart 1972, Watson and Owen-

Smith 2000). Due to their ability to utelize a wide veriety of food resouces and their independence of 

surface drinking water they are able to make use of several different habitats (Watson and Owen-

Smith 2000). 

 

2.3.5 African buffalo (Syncerus caffer) 

The African buffalo (Syncerus caffer, Sparrman 1779) is the only extant member of the Syncerus 

genus (Kingdon 1997). Three subspecies are recognized: the large black Cape buffalo, Syncerus 

caffer caffer, the small red forest buffalo, Syncerus caffer nanus, and an intermediate form from West 

Africa, Syncerus caffer brachyceros (Kingdon 1997). A fourth subspecies, Syncerus caffer mathewsi, 

the relic “mountain buffalo” is recognized by some authorities (Kingdon 1997). It is reported that there 

is considerable intergradation of the different subspecies where their distribution ranges overlap 

(Skinner and Chimimba 2005). Buffalo’s former range, before the influence of European settlers, 

stretched over most of southern Africa and Angola, through central and east Africa to the southern 

borders of Sudan and Ethiopia (Sinclair 1977). African buffalo are still present in most of the southern 

African countries such as Namibia, Botswana, Zimbabwe, Mozambique and South Africa (Winterbach 

1998). The digestive system of a buffalo is typical of bulk and roughage grazers, and is not suitable 

for a diet of browse (Hofmann 1989), but they will occasionally take browse (Novellie et al. 1991, 

Venter and Watson 2008).  

 

2.3.6 Plains zebra (Equus burchelli) 

The plains zebra (Equus burchelli, Gray, 1824) represents one of four species in the genus which 

forms part of the family Equidae under the order Perissodactyla (Bronner et al. 2003). The species 

occurs in most parts of southern Africa where it has been introduced in various protected areas and 

game farms (Skinner and Chimimba 2005). Plains zebra are gregarious, organized in small family 

groups headed by a stallion with a number of mares and their foals (Skinner and Chimimba 2005). 

They are water dependent and normally stay within 10-12 km from the nearest water source (Skinner 

and Chimimba 2005). Plains zebra are described as a savanna species which prefer more open 



37 
 

 
 

areas in woodland habitats (Skinner and Chimimba 2005). It is well known that they undertake daily 

and seasonal movements in order to find suitable forage areas (Skinner and Chimimba 2005). Zebra 

are considered to be grazers, but they do take browse occasionally (Prins and Olff 1998a, Gagnon 

and Chew 2000). Zebra are non-ruminants and they are much more tolerant to poor quality forage 

but must maintain a high rate of intake to be able to survive on this type of food (Bell 1971, van Soest 

1982, Okello et al. 2002).  

 

2.3.7 Cape mountain zebra (Equus zebra zebra) 

The mountain zebra (Equus zebra) are characterized by the more numerous dark stripes on the head 

and body in contrast to those found in the plains zebra (Equus burchelli). A distinctive characteristic 

of the mountain zebra is that they, unlike most equids, have a dewlap (Penzhorn 1988). In the Cape 

mountain zebra (Equus zebra zebra, Linnaeus 1758) the upper two to three stripes on the 

hindquarter are very broad as opposed to those that are less broad in the Hartmann’s mountain 

zebra (Equus zebra hartmannae) (Penzhorn 1988). Historically, the Cape mountain zebra historically 

occurred in the mountainous regions of the Cape Province of South Africa, extending from the 

Amatole Mountains in the Cathcart District to the Kamiesberg in Namaqualand (Millar 1970, Skead 

2007). Cape mountain zebra are non-ruminants and in Mountain Zebra National Park they prefer 

grassland vegetation communities moving from plateaus with stands of Themeda triandra grass in 

the summer to mountain slopes in the winter (Novellie et al. 1988, Winkler 1992). These movements 

are generally associated with change in diet quality (Novellie et al. 1988). Cape mountain zebra are 

predominantly grazers, but might occasionally take browse in times when the quality and quantity of 

the grazing layer declines (Novellie et al. 1988). 

 

2.3.8 African elephant (Loxodonta africana) 

The African elephant (Loxodonta africana, Blumenbach 1797) represents one of two species on the 

African continent, the other being the forest elephant L. cyclotis (Skinner and Chimimba 2005). 

Elephants historically occurred throughout Africa south of the Sahara desert (Carruthers et al. 2008). 

They are non-ruminants and mixed feeders, preferring either grass or browse depending on the 

season (Codron et al. 2006, Shannon et al. 2013). Elephants concentrate their foraging within areas 
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of high forage availability that are sufficiently close to water and large enough to optimize the 

efficiency of movement and foraging (De Knegt et al. 2011). Surface-water is a strong determinant of 

elephant spatial use and may take precedence over the role that landscape heterogeneity plays in 

their movement (de Beer and van Aarde 2008, De Knegt et al. 2011). Conflict between elephants and 

humans is common in areas where rural human settlements and elephant ranges overlap, and 

elephants change their movement behaviour and habits in an attempt to avoid interacting with 

humans (Van Aarde et al. 2008). 

 

2.4 SUMMARY 

This chapter reviewed the protected areas included in this study as well as the animals that were 

studied. The bulk of this study was performed on Mkambati Nature Reserve where red hartebeest, 

eland and plains zebra were studied. The results in Chapters 3, 4 and 6 are focused on this protected 

area. A comparison was also done of grazer assemblages between Mkambati Nature Reserve and 

iSimangaliso World Heritage Site in Chapter 3. Chapter 5 investigated several large mammalian 

herbivore species in a number of wildlife areas. These include African buffalo and Cape mountain 

zebra in Baviaanskloof Nature Reserve; African elephant in Mkhuze Game Reserve, Pilanesberg 

National Park and Kruger National Park; blue wildebeest and plains zebra in Welgevonden Private 

Game Reserve; and eland, blue wildebeest and impala in Asante Sana Private Game Reserve and 

Mapungubwe National Park. Mkambati Nature Reserve was described in detail, but only short 

descriptions were made off the other study areas to provide sufficient information related to the 

research objectives of Chapter 3 and 5. In addition, a short description of each species was also 

provided. 
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ABSTRACT  

Protected area management agencies often struggle to reliably reconstruct grazer assemblages due 

to a lack of historical distribution data for their regions. Incorrect predictions of grazing assemblages 

could potentially affect biodiversity negatively. The objective of the study was to determine how well 

grazing herbivores have become established since introduction to the Mkambati Nature Reserve, 

South Africa, how this was influenced by facilitation and competition, and how indigenous grazer 

assemblages can best be predicted for effective ecological restoration. Population trends of several 

grazing species were investigated in order to determine how well they have become established 

since introduction. Five different conceivable grazing assemblages reflecting a range of approaches 

that are commonly encountered during conservation planning and management decision making 

were assessed. Species packing was used to predict whether facilitation, competition or co-existence 

were more likely to occur, and the species packing of the different assemblages were assessed using 

ANCOVA. Reconstructing a species assemblage using biogeographic and biological information 

provides the opportunity for a grazer assemblage that allows for facilitatory effects, which in turn 

leads to an ecosystem that is able to maintain its grazer assemblage structure. The strength of this 

approach lies in the ability to overcome the problem of depauperate grazer assemblages, resulting 

from a lack of historical data, by using biogeographical and biological processes, to assist in more 

effectively reconstructing grazer assemblages. Adaptive management of grazer assemblage 

restoration through reintroduction, using this approach would further mitigate management risks.  
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3.1 INTRODUCTION 

There have been alarming declines in large mammal populations in protected areas in Africa in the 

last three decades, which are mainly attributed to habitat loss as well as to consumptive use (Vie et 

al. 2009, Craigie et al. 2010). In southern Africa, protected areas have been more successful in 

maintaining their large mammal populations due to effective conservation management (Owen-Smith 

and Mills 2006, Craigie et al. 2010). In many of these protected areas, the management interventions 

are intended to restore ecological patterns and processes that have been affected by anthropogenic 

disruption (Heinen 2002, Suding et al. 2004, Hayward 2009a). A common element of these 

interventions is to reintroduce ‘suitable’ species to, or remove ‘undesirable’ species from, protected 

areas (Griffith et al. 1989, Novellie and Knight 1994, Fischer and Lindenmayer 2000, Atkinson 2001, 

Gusset et al. 2008).  

 

The reintroduction of indigenous herbivores to an ecosystem, reintroduces natural disturbance and 

processes that are thought to support or promote the re-establishment of local diversity (Simenstad et 

al. 2006). A reintroduction is considered to be successful if it results in a self-sustaining population 

(Griffith et al. 1989). Reintroductions of large mammals to protected areas have had various levels of 

success over the last few decades (Griffith et al. 1989, Novellie and Knight 1994, Fischer and 

Lindenmayer 2000). Most of the unsuccessful reintroductions are attributed to unsuitable habitat 

(Castley et al. 2001), animals being non-indigenous (outside of their historical distribution range) 

(Novellie and Knight 1994), and to behavioural problems of the reintroduced animals (Slotow and van 

Dyk 2001, Venter 2004). Often, however, these explanations are either tautological, or based on 

suppositions. Conservation authorities opt to use a precautionary approach when deciding which 

species to introduce or maintain in protected areas, as non-indigenous species are potentially 

harmful to habitats in which they did not evolve (Spear and Chown 2009, Spear et al. 2011). A critical 

aspect of this restoration process is the selection of species that are ‘suitable’. In many instances, the 

past is used to determine which species are suitable, assuming that indigenous species are the most 

appropriate to achieve restoration objectives (List et al. 2007, Hayward 2009a, Boshoff and Kerley 

2010). This piecing together of the past is frequently based on historical mammal distribution data 

(historical records in diaries, journals and correspondence of early explorers, settlers, hunters, 

missionaries or naturalists as well as from archaeological records and rock paintings) thus leading to 
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the reconstruction of local historic animal assemblages (Heinen 2002, Bernard and Parker 2006, List 

et al. 2007, Boshoff and Kerley 2010). But the process of deciding which species is ‘suitable’ or 

‘undesirable’ is not an exact science and is open to criticism (Bernard and Parker 2006, List et al. 

2007).   

 

Resource competition and facilitation could have a significant effect on the structure and species-

richness of large mammal assemblages (Prins and Olff 1998a, Arsenault and Owen-Smith 2002, Olff 

et al. 2002). Allometric relationships between body size and metabolic rate, and body size and gut 

capacity, predict that larger grazers can survive on lower quality forage but require higher bulk intake 

diets (Demment and Soest 1985, Kramer and Prins 2010). Conversely, smaller grazers require 

higher quality forage, but can cope with lower quantities of it (Demment and Soest 1985). This 

suggests that for species within the same guild, the more similar in size the more similar a niche they 

would occupy (Prins and Olff 1998a, Kleynhans et al. 2011). This increases the likelihood of 

competitive interactions (Wilmshurst et al. 2000, Arsenault and Owen-Smith 2002, Mishra et al. 

2002), despite this interaction being modified by the type of digestive system of these ungulates 

because  ruminants of larger sizes could directly compete with smaller non-ruminants (Illius and 

Gordon 1992).  Ultimately competitive interactions between species could lead to the extinction of the 

lesser competitor (Prins and Olff 1998a, Olff et al. 2002). When the number of one of the herbivore 

species decreases, competitive release of other species may occur as the effect of a competing 

herbivore species’ declines (Kareiva 1982). This competitive release can cascade into lower trophic 

levels, as the forage species composition shifts in response to changed foraging behaviour of the 

released herbivore species (Lagendijk et al. 2012).  

 

Hutchinson’s weight ratio theory predicts that character displacement among sympatric competing 

species leads to sequences in which each species is twice the mass of the next (Hutchinson 1959). 

The higher the species diversity in an area the closer the species packing will be (i.e., reduced 

difference in body mass among species) (Prins and Olff 1998a, Olff et al. 2002, Klop and Prins 2008, 

Namgail et al. 2010). Closer species packing is expected in complex or highly heterogeneous 

systems (May 1973) as is the case in African grazing ecosystems (Prins and Olff 1998a, Cromsigt 
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and Olff 2006, Bonyongo and Harris 2007). The grazing by larger grazers decreases grass biomass 

as they are better suited to handle high biomass/low nutrient quality forage (Bell 1971, Bailey et al. 

1996, Prins and Olff 1998a, Murray and Illius 2000). Furthermore, grazing often increases forage 

quality and decreases the stem-leaf ratio thus facilitating food intake (Drescher et al. 2006a, Drescher 

et al. 2006b). These two processes lead to facilitation for smaller grazers (McNaughton 1976, Prins 

and Olff 1998a), which would maximize production and subsequent utilization of the grass layer 

(Vesey-FitzGerald 1960, Bell 1971, McNaughton 1976). Such facilitation will result in a higher total 

grazer biomass in an area, and in closer species packing (Prins and Olff 1998a, Cromsigt and Olff 

2006, Cromsigt et al. 2009). 

 

The linking of these type of ecological patterns and processes to historical distribution data is 

mentioned by several authors (Boshoff and Kerley 2001, Bernard and Parker 2006), but few 

examples exist where this was actually done (List et al. 2007, Kuemmerle et al. 2012). This would 

suggest that conservation authorities are not using the full set of available tools when making 

management decisions for protected area restoration, especially when historical distribution data are 

lacking. This is a concern, as depauperate herbivore assemblages could have negative implications 

for biodiversity and associated patterns and processes (Chapin et al. 2000), both of which are goals 

for protected area conservation management (Venter et al. 2008).  

 

The aim of this study was to determine how well grazing herbivores established since introduction, 

how it was influenced by facilitation and competition, and how indigenous grazer assemblages can 

best be predicted for ecological restoration. The objectives of the study were therefore to: (1) 

investigate the role of facilitation and competition on species persistence for eight grazing species 

post re-introduction; (2) investigate grazer diversity for the protected area under different conceivable 

assemblages based on biological principles and/or management practice; (3) assess our results 

against a separate, established, grazer assemblage; (4) critically evaluate current conservation 

management policy regarding wildlife reintroductions and removals in protected areas and (5) make 

recommendations for a future management approach.  
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3.2 STUDY AREA  
Mkambati Nature Reserve is a 77-km2 provincial nature reserve situated on the east coast of the 

Eastern Cape Province, South Africa (31˚13’-31˚20’S and 29˚55’-30˚04’E). The reserve was 

established in 1977, before which it was communal grazing land. The stated objective for the current 

management of the reserve is the conservation of Mkambati’s unique biodiversity features (ECPB 

2009). The reserve lies within the Indian Ocean Coastal belt bio-region (Rutherford et al. 2006b) and 

Pondoland centre of plant endemism (Conservation International and South African National 

Biodiversity Institute 2010), and has a mild sub-tropical climate with relatively high rainfall (1200 mm) 

and humidity (Shackleton 1990, de Villiers and Costello 2013). Soils originates from the Natal Group 

sandstones and are acidic, dystrophic and sandy (Shackleton 1989). Small forest fragments occur in 

the reserve, and wetland patches are abundant. Some 80 % of the reserve consists of Pondoland–

Natal Sandstone Coastal Sourveld Grassland (Mucina et al. 2006d). Fires, ignited mainly by 

poachers, are frequent, which causes a landscape mosaic with nutrient-rich grass patches within a 

matrix of older, moribund grassland (Venter pers.observation), which are considered to be nutrient 

poor (Shackleton et al. 1991, Shackleton and Mentis 1992). 

 

A total of 1 344 medium to large herbivores were introduced to Mkambati in 1979 to create a hunting 

ranch that aimed at an international clientele (de Villiers and Costello 2013). Species introduced were 

blesbok (Damaliscus pygargus phillipsi), blue wildebeest (Connochaetes taurinus), greater kudu 

(Tragelaphus strepsiceros), impala (Aepyceros melampus), springbok (Antidorcas marsupialis), 

gemsbok (Oryx gazelle), eland (Tragelaphus oryx), red hartebeest (Alcelaphus buselaphus camaa), 

Hartmann’s mountain zebra (Equus zebra hartmannae), plain’s zebra (Equus burchelli) and giraffe 

(Giraffa camelopardalis) (de Villiers and Costello 2013). The animals originated mainly from the 

Kwazulu-Natal Province in South Africa, as well as from Namibia (de Villiers and Costello 2013). 

Approximately 30% (427) of the introduced animals died shortly after introduction (Sunday Times, 

South Africa, 24 August 1980), with the cause being attributed to “stress and starvation” (de Villiers 

and Costello 2013).  The hunting venture failed commercially, after which Mkambati’s status was 

changed to nature reserve (de Villiers and Costello 2013). In 2002 a culling program was initiated, 

initially to reduce animal numbers, but later (2004 onwards) to remove species that were considered 

to be non-indigenous from the reserve (ECPB 2010). The removals were based on recommendations 
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derived from historical mammal distribution data (Boshoff et al. 2004, Skead 2007), which later 

shaped the development of a large mammal management policy (ECPB 2010). Up to 2013, there 

were still no large predators present in Mkambati Nature Reserve. 

 

3.3 METHODS  

To determine how well grazing herbivores established in Mkambati since introduction population data 

were collected from various sources in order to establish population fluctuations from 1979 (when 

introductions took place) to 2010 (when the most recent game census was carried out) (Shackleton 

1989, Feely 2005, Peinke et al. 2007, Venter 2007, Peinke et al. 2010, de Villiers and Costello 2013). 

The counting methods over the years varied between known group counts (on foot), to single aerial 

counts and triplicate aerial counts (using a helicopter) in the later years (Venter 2007). We have 

limited our investigation to mammalian species > 2 kg in mass that have grass as an important 

component (> 10%) in their diet. Species mass and feeding type data were sourced from literature 

(Prins and Olff 1998a, Gagnon and Chew 2000, Skinner and Chimimba 2005). Some of the species 

investigated (e.g., eland and impala), are mixed feeders (Watson and Owen-Smith 2000, van der 

Merwe and Marshal 2012), which allowed for a different kind of niche differentiation (grazer/browser), 

but the study was simplified by only considering them as grazers, as was done by Prins and Olff, 

(1998a) and Olff et al., (2002).  

 

Five conceivable assemblages were investigated, and although assemblages one to four are specific 

to the circumstances of Mkambati, they do reflect a range of approaches that are commonly 

encountered during conservation planning and management decision making elsewhere (Table 3.1).  

Assemblage 1 – ‘Introduction’: This assemblage was based on the nine grazer species that 

were introduced to Mkambati in 1979 together with three species already present at that time (Table 

3.1). The assemblage reflects objectives that were understood to be economic (‘consumptive use’) 

rather than biological (ecological or biogeographic), and implemented at a time when experience with 

the restoration of African large herbivore assemblages was still limited.  



46 
 

 
 

Assemblage 2 – ‘Status quo’: This assemblage was based on all grazer species that were 

still present in Mkambati by the year 2010 (Table 3.1). The assemblage reflects the outcome of the 

original decision, the subsequent culling (2002) and decision to remove what was considered to be 

non-indigenous species (2004), and the performance of the remaining species up to 2010.  

Assemblage 3 – ‘Current policy’: This assemblage was based on all grazer species that 

would be present in Mkambati if the currently approved large mammal management policy (ECPB 

2010) were implemented (Table 3.1). Assemblage 3 was similar to Assemblage 2, but took into 

account recommendations based only on historical records (Boshoff et al. 2004) to modify the 

assemblage. All species that were considered to be non-indigenous are removed, and additional 

species that were considered to be indigenous, but which do not occur in 2010, are reintroduced. 

Assemblage 4 – ‘Biogeographic’: This assemblage was based on all grazer species that 

would be present in Mkambati if a biogeographic approach were followed (Table 3.1). There is good 

evidence (Griswold 1991, Minter et al. 2004, Rutherford et al. 2006b) that Mkambati falls within the 

same biogeographic region as the Kwazulu-Natal and southern Mozambique coast, which is 

confirmed by recent new empirical evidence (Linder et al. 2012). Based on the above evidence, we 

accumulated historical distribution data for the Indian Ocean coastal belt bioregion (Rutherford et al. 

2006b) in order to produce a comprehensive species list which included all species that were 

recorded to have occurred within this region in the past (Rowe-Rowe 1994, Plug 2004, Skead 2007, 

Uys 2012, Fisher et al. 2013).   

Assemblage 5 – ‘iSimangaliso’: This assemblage was based on the grazer assemblage 

present in the coastal sections of the iSimangaliso World Heritage Site (van Rooyen 2004) (in 

Kwazulu-Natal Province), which falls within the same biogeographic region as Mkambati, namely the 

Indian Ocean coastal belt (Rutherford et al. 2006b)(Table 1). iSimangaliso has similar rainfall patterns 

(1200 -1300 mm p.a.) (Kwazulu-Natal Nature Conservation Service 1999) and soil characteristics 

(nutrient poor and well leached) when compared with Mkambati (Witkowski and Wilson 2001, Mucina 

et al. 2006d). Programmes aimed at the re-establishment of locally extinct species have been 

implemented in the park (Kwazulu-Natal Nature Conservation Service 1999). In particular, there have 

been successful introductions of buffalo Syncerus caffer, waterbuck Kobus ellipsiprymnus (Kwazulu-

Natal Nature Conservation Service 1999). The assemblage reflects an external reference point from 
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within the same biogeographical region, with a well-established indigenous grazer assemblage, of 

which most have persisted naturally.  

 

Species packing was determined to assess the role of facilitation and competition on species 

persistence for all assemblage’s following the method of Prins and Olff, (1998a) and Olff et al., 

(2002), in which the natural logarithm of body mass was regressed against rank number, with the 

smallest species in the assemblage ranked one, the next species ranked two, etc. When the natural 

logarithm of species body weight is plotted against the rank number, the slope is predicted to be 

 ln2  0.693     if there is a sequence where each species is exactly twice as heavy as the next 

(Prins and Olff 1998a). Under such circumstances, the weight ratio WR  equals 
ln 2e  is 2 . Therefore, 

the natural logarithm of body weight of the i -th species  iW  is expected to depend on the rank 

number   iR where the regression line follows the function: 

 ln i iW aR b   

where iW  is the body mass of the i -th species in the assemblage and iR  its rank number (Prins and 

Olff 1998a). The WR  is then obtained by the function 

aWR e  

Based on Hutchinson’s hypothesis, [21] predicted that in a functional group, facilitation is more likely 

to occur at a weight ratio  2WR  , competition at 2WR  , while co-existence will occur at 2WR  . 

They predicted that when species body mass are too far apart; the larger grazers will keep the grass 

in a state of utilization in which the vegetation quality is too low for small herbivores, in which case 

facilitation will not occur. They further predicted that when species are similar in body mass, they 

might not gain enough from facilitation, and competition will increase (Prins and Olff 1998a). Based 

on this a weight ratio of 2WR   was considered optimal for allowing facilitatory processes needed in 

an optimal grazer assemblages. Species packing for conceivable assemblages one to four were 

compared first in order to investigate differences in historical, current and proposed conceivable 

assemblages within Mkambati.  
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Table 3.1: The five different grazer assemblages used during the study. For each assemblage 
species body weights were ranked with the smallest species ranked one, the next largest species 
ranked two, etcetera. 

 

Species Common 
name 

Mass 
(kg)# 

Assemblage ranks 

   1  
Introduction 
assemblage 

2 
Status quo 
assemblage 

3  
Current 
policy 

assemblage 

4  
Bio-

geographical  
assemblage 

5 
iSimangaliso 
assemblage 

Pronolagus 
crassicaudatus 

Natal red 
rock rabbit 

2.2 1 1 1 1  

Lepus saxatilis Shrub hare 2.5 2 2 2 2 1 

Ourebia ourebi Oribi 15   3 3 2 

Redunca 
fulvorufula 

Mountain 
reedbuck 

29.5    4 3 

Antidorcas 
marsupialis 

Springbok 33 3 3    

Aepyceros 
melampus  

Impala 51 4 4  5 4 

Redunca 
arundinum 

Southern 
reedbuck 

58 5 5 4 6 5 

Damaliscus 
pygargus  

Blesbok 64 6 6    

Phacochoerus 
africanus 

Warthog 73.5    7 6 

Damaliscus lunatus Tsessebe 131     7 

Alcelaphus 
buselaphus 

Red 
hartebeest 

150 7 7 5 8  

Connochaetes 
taurinus 

Blue 
wildebeest 

189 8 8  9 8 

Oryx gazella Gemsbok 195 9     

Kobus 
ellipsiprymnus 

Waterbuck 201    10 9 

Equus burchelli  Plain’s zebra 235 10 9  11 10 

Equus zebra  Hartmann’s 
mountain 
zebra 

262 11     

Tragelaphus oryx Eland 511 12 10 6 12 11 

Syncerus caffer Buffalo 544   7 13 12 

Ceratotherium 
simum 

White 
rhinoceros 

1875    14 13 

Hippopotamus 
amphibius 

Hippopotamu
s 

1900    15 14 

Loxodonta africana African 
elephant 

3550   8 16 15 

#Body weight data (average of both sexes) from Prins & Olff (1998), Gagnon & Chew (2000) and Skinner & Chimimba 

(2005)  
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A one-way analysis of co-variance (ANCOVA) was conducted to determine if there was a significant 

difference in the degree of species packing for conceivable assemblages one to four. The proposed 

‘biogeographic’ assemblage was then compared to an external reference point, i.e. ‘iSimangaliso’, in 

order to assess accuracy of the predicted grazer assemblage. To determine if there was a difference 

in species packing for assemblage four and five, a t-test was used. Statistical analysis was conducted 

using IBM SPSS Statistics for Windows, Version 19.0. (Armonk, NY: IBM Corp.). We compared 

grazer species abundance among the five different conceivable assemblages according to weight, by 

generated weight ranges, in which each weight range is more or less half the mass of the next 

heavier weight range (see (Hutchinson 1959, Prins and Olff 1998a)). The weight ranges were: mini 

grazers (2-10 kg), small grazers (11-30 kg), small-medium grazers (31-100 kg), medium grazers 

(101-200 kg), medium-large grazers (201-500 kg), large grazers (501-1000 kg), mega-grazers (1001-

2000 kg) and mega+ -grazers (> 2000 kg). 

 

 3.4 RESULTS 

Dealing with the assumed local indigenous species (Boshoff et al. 2004) first, the population of red 

hartebeest had an initial weak decline                          until culling of blesbok and 

blue wildebeest started in 2002, from when population growth showed an upward trend         

                 (Figure 3.1). The number of southern reedbuck remained relatively stable at 

between 20 - 50 individuals                        (Figure 3.1). Numbers of eland 

fluctuated between 100 - 200 individuals before and during times when culling took place 

                                                   (Figure 3.1).  

 

For the assumed non-indigenous species, numbers of blesbok declined initially after introduction, 

where-after their numbers fluctuated between 500 - 800 individuals                   

                               . Blue wildebeest showed a strong population growth 

initially                          (Figure 3.1). The population started declining in 2002 due 

to culling, and was totally removed by 2011                           (Figure 3.1). The 

numbers of plain’s zebra steadily increased to, and stabilized between 300 and 400 animals by 2010 

                                                    (Figure 3.1). The 
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number of Hartmann’s mountain zebra started declining after introduction and the species was extinct 

on Mkambati by 2000, 20 years post-introduction                         (Figure 3.1). 

The numbers of gemsbok declined straight after the introduction until the species went extinct in 1999 

                         (Figure 3.1). The population of impala declined after 

introduction, and crashed to < 30 animals                           (Figure 3.1), with 

only a few (3) being alive in 2010                        . The springbok numbers grew 

initially until 1992 (± 60 individuals) when the population started to decline          

                (Figure 1), and by 2012 there were only 11 animals left         

               . None of the springbok population changes were statistically significant. Of the 

supposedly indigenous species, some did well after introduction and some less so, and, of the 

supposedly non-indigenous species, the same can be said (Table 3.2). 

 

When the ANCOVA was performed we first determined that there was a linear relationship between 

log mass and rank number for each conceivable assemblage, by visually assessing the scatterplot 

(Figure 3.2). There was heterogeneity of regression slopes as the interaction term was statistically 

significant,                         , but with visual inspection of the scatterplot it was 

concluded that this would have a minor effect on the results because the interaction occurred at the 

very lower end of the scatterplot (Figure 3.2) see (D’Alonzo 2004). Standardized residuals for the 

conceivable assemblages and for the overall model were normally distributed, as assessed by 

Shapiro-Wilk's test         . There was homoscedasticity and homogeneity of variances, as 

assessed by visual inspection of a scatterplot and Levene's test of homogeneity of variance    

      , respectively. There were no outliers in the data, as assessed by no cases with standardized 

residuals greater than ±3 standard deviations. There was a statistically significant difference between 

the different conceivable assemblages,                         . Post hoc pairwise 

analysis performed with a Bonferroni adjustment indicated a significant difference between the 

‘Introduction’ and ‘biogeographical’ assemblages versus the ‘current policy’ assemblage (Table 3.3). 

The result of the t-test indicated that there was no significant difference in species packing between 

the ‘biogeographic’ and ‘iSimangaliso’ assemblages                        . The WR  for 

the ‘status quo’ and ‘current policy’ assemblages were < 2, indicating lower species packing and thus 

higher potential for competitive grazing interactions (Table 3.4 and Figure 3.2). The  WR for the 
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‘introduction’, ‘biogeographical’ and ‘iSimangaliso’ assemblages were > 2, indicating higher species 

packing and thus higher potential for facilitation among grazing species (Table 3.4 and Figure 3.2).  

 

In order to assess the different species’ ability to persist post introduction we needed to compare 

‘introduction’ assemblage with the ‘status quo’ assemblage. The number of species within the small 

grazer, mega grazer and mega+ grazer body weight ranges, were depauperate in both ‘introduction’ 

and the ‘status quo’ assemblages (Figure 3.3). There was a decrease in the number of species in the 

medium (-2) and medium-large (-1) grazer weight ranges in the period between 1979 and 2010 (i.e., 

time period between ‘Introduction’ and the ‘status quo’ assemblages)(Figure 3.3).  

 

There were no species present in the medium-large and mega grazer weight ranges for the ‘current 

policy’ assemblage (Figure 3.3). In addition there was only one species per range for the small, 

small-medium, medium, and mega+ grazer weight ranges (Figure 3.3). There were between 2 and 3 

species for all weight ranges in the ‘biogeographical’ assemblage, except the mega+ weight range, 

which only had one species (Figure 3.3). The species packing results for the ‘introduction’, 

‘biogeographical’ and ‘iSimagaliso’ assemblages indicate a facilitation assemblage, achievable with a 

suite of 12; 16 to 15 grazing species, which are relatively evenly spread over all weight ranges, 

except for the ‘introduction’ assemblage which did not have representative species in the very large 

weight ranges. The ‘biogeographical’ and ‘iSimagaliso’ assemblages were similar, except for a 

depauperate mini grazer weight range in the ‘iSimagaliso’ assemblage (Figure 3.3).  
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Table 3.2: A summary of the population trends of the large herbivores based on their presumed 
status of indigenous versus non-indigenous, from when they were introduced to Mkambati Nature 
Reserve in 1979, until the latest game census in 2010. 

 

Presumed status 

(Boshoff et al. 

2004) 

Number of 

species 

Increasing 

population trend  

Decreasing 

population trend  

Stable 

population trend  

Indigenous 3 2 0 1 

Non-indigenous 7 2 3 2 
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Figure 3.1: Linear regression lines indication the population growth/decline of red hartebeest, 
southern reedbuck, eland, blesbok, blue wildebeest, plains zebra, Hartmann’s mountain zebra, 
gemsbok, impala and springbuck in Mkambati Nature Reserve before and during culling. Species that 
were culled were blesbok and blue wildebeest. Dashed lines indicate the 95% CI of the predicted 
mean. 
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Figure 3.2: Linear regression lines with the natural logarithm of species’ body mass is plotted against 
the rank number to indicate the degree of species packing for the ‘Introduction’, ‘Status quo’, ‘Current 
policy’, ‘Biogeographic’, and ‘iSimangaliso’ grazer assemblages. 
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Table 3.3: Post-hoc pairwise comparisons indicating the differences between species packing 
amongst the different conceivable assemblages 

 

Assemblage Mean 

Difference*  

Std. 

Error 

Sig. 95% Confidence Interval for 

Difference 

Lower Bound Upper Bound 

Introduction assemblage versus Status 

quo assemblage 

-0.371 0.382 1.000 -1.433 0.691 

Introduction assemblage versus Current 

policy assemblage 

-1.116 0.398 0.047 -2.222 -0.010 

Introduction assemblage versus 

Biogeographical assemblage 

0.393 0.336 1.000 -0.539 1.324 

Status quo assemblage versus Current 

policy assemblage 

-0.745 0.418 0.493 -1.904 0.415 

Status quo assemblage versus 

Biogeographical assemblage 

0.764 0.379 0.303 -0.288 1.815 

Current policy assemblage versus 

Biogeographical assemblage 

1.509 0.398 0.003 0.404 2.614 

*A negative value indicates that the first assemblage have a higher species packing than the second 
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Table 3.4: The degree of species packing for the different conceivable assemblages in Mkambati 
Nature Reserve. 

 

Assemblage Number 

of 

species 

R2-

value 

Weight 

ratio 

(WR) 

    

‘Introduction’ 12 0.837 3.669 

‘Status quo’ 10 0.895 1.751 

‘Current policy’ 8 0.975 1.751 

‘Biogeographic’ 16 0.952 2.773 

‘iSimangaliso’ 15 0.949 5.207 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

 
 

 

 

Figure 3.3: The weight ranges for the grazing species under the five different conceivable 
assemblages investigated during the study. Weight ranges were grouped as mini grazers (2-10 kg), 
small grazers (11-30 kg), small-medium grazers (31-100 kg), medium grazers (101-200 kg), medium-
large grazers (201-500 kg), large grazers (501-1000 kg), mega grazers (1001-2000 kg) and mega+ 
grazers (> 2000 kg). Conceivable assemblages ‘biogeographic’ and ‘iSimangaliso’ are considered 
best. Each species is represented by a silhouette. 

 

 

 

 

 

 



58 
 

 
 

 

3.5 DISCUSSION  

Forage quality, in many cases, decreases with increasing grass biomass, which imposes an 

important constraint on net nutrient and energy intake by grazers (Prins and Olff 1998a, Olff et al. 

2002), which is also the case in Mkambati (Shackleton 1990, Shackleton and Mentis 1992). The 

presence of larger grazers can decrease grass biomass (because they are better suited to handle 

high biomass/low nutrient quality forage)(Bell 1971, Bailey et al. 1996, Prins and Olff 1998a), and 

increase quality as well as decrease stem-leaf ratio of forage, thereby facilitating food intake for 

smaller grazers (McNaughton 1976, Prins and Olff 1998a, Drescher et al. 2006a, Drescher et al. 

2006b).  

 

In the case of Mkambati the evidence suggests competitive exclusion resulting in local extinction of 

some species. This is supported by the species packing values that were <2, as well as evidence of 

population decline of species in certain weight ranges in the time period that lapsed between the 

‘introduction’ and the ‘status quo’ assemblage. Shorter term effects that may in addition indicate 

competitive exclusion can also be seen in the increased population growth of red hartebeest (from 

2002 onwards) after the decline of blue wildebeest due to the culling program. Although the 

‘introduction’ assemblage showed a facilitation scenario, we reason that it happened in the lower 

weight ranges, and there was a general lack of facilitation within higher weight ranges, i.e. large and 

mega grazers upwards. In high rainfall areas (≥750 mm p.a.) mega grazers such as the white rhino 

and hippopotamus act as influential ecosystem engineers, creating and maintaining short grass 

swards, which alter habitat for other grazers and change the fire regime (Owen-Smith 1987, Truett et 

al. 2001, Waldram et al. 2008). Elephant, through trampling effect rather than grazing, are probably 

also able to facilitate availability of grazing resources in dense overgrown areas (Vesey-FitzGerald 

1960). This ecosystem engineering role cannot be replicated by smaller grazers (Waldram et al. 

2008). The lack of facilitation effects could thus be linked to the evidence of competition driven 

species decline in “overpopulated weight ranges” in, especially, the larger, i.e. medium and medium-

to-large weight ranges. It can reasonably be argued, in the case of gemsbok and Hartman’s zebra, 

which normally occur in more arid areas (Coetzee 1969), that poor habitat suitability and their non-

indigenous status could have been the main factor responsible for the species demise (Novellie and 
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Knight 1994, Castley et al. 2001). This argument could, however, be tautological in that the 

conclusions are made once the species fails to establish. We argue that, in addition to failure to 

establish due to a habitat suitability disadvantage, these grazing species may also have been less 

competitive. Had there been fewer effective competitors and increased facilitation from larger 

grazers, these species may have been able to overcome the habitat suitability disadvantage and 

persisted. Our argument, based on missing biological processes, is strengthened by the data 

showing a prolonged period (20 years) of decline of the said species.  

 

The ‘current policy’ assemblage produced the lowest equal degree of species packing (lowest WR ), 

with a resulting increase of likelihood for interspecific competition. In this case, facilitation is unlikely, 

as there were several gaps in the larger weight ranges (medium-large and mega grazers) of the 

grazer assemblage. There are two noteworthy observations regarding the ‘current policy’ 

assemblage. Firstly, a small grazing species assemblage of only eight species in a grass dominated 

ecosystem is unusual compared to larger species assemblages in other African ecosystems (Mean = 

20; ± 3 SD; n = 8) (Rowe-Rowe 1994, Boshoff and Kerley 2001, Bonyongo and Harris 2007, Klop 

and Prins 2008). Secondly the lack of ‘mega’ grazers in the assemblage is contrary to the expected 

assemblage of more abundant mega grazers in high rainfall (Fritz et al. 2002) or high 

biomass/nutrient poor regions (Bell 1982). The ‘current policy’ assemblage, although intended to 

have a restoration and thus biodiversity conservation objective, may prove to carry the highest risk. In 

this assemblage, the removal of species might trigger, and could already have triggered, competitive 

release which may affect lower trophic levels, and cause forage species composition shifts, in 

response to changed foraging behaviour of the released herbivore species, which could potentially 

affect biodiversity patterns and processes (Chapin et al. 2000, Zavaleta et al. 2001, Lagendijk et al. 

2012). The risk to biodiversity could further increase due to a higher fire frequency, caused by fuel 

load build-up when grass biomass is not effectively cropped by grazers (Bond and Keeley 2005, 

Fuhlendorf et al. 2009, Leonard et al. 2010). This could effectively keep Mkambati in a ‘fire trap’, 

which currently seems to be the case (Venter, personal observation). Furthermore, the lack of larger 

grazers creates an ecosystem devoid of facilitatory effects which in turn leads to an ecosystem which 

is unable to maintain its herbivore assemblage structure (Prins and Olff 1998a).  
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The use of only vegetation types in combination with historical distribution data to predict grazer 

distribution patterns (Boshoff and Kerley 2001, Boshoff et al. 2004) could thus potentially provide 

inaccurate results (Bernard and Parker 2006, List et al. 2007). Examples exist where older historical 

distribution predictions were later proven inaccurate when new evidence was produced (Goodman 

and Tomkinson 1987, Cramer and Mazel 2007). For these reasons, we predict that the current policy 

approach will not be able to optimally achieve Mkambati’s stated biodiversity conservation purpose 

(ECPB 2010). The weakness in this approach lies inherently in the lack of a full grazer assemblage, 

planned for by using insufficient historical data. 

 

Biogeographic regions are better defined by combining vertebrate data with vegetation data due to a 

large degree of congruence in distributions caused by the effect of vertebrate distributions (Linder et 

al. 2012). Plant species tend to be responsive to localized environmental conditions, while animal 

species respond to the broader vegetation structure (i.e. biogeographical regions), which could be a 

spatially more coherent representation of the floristic patterns (Linder et al. 2012). Medium to large 

grazers in Africa are well known for their ability to move/migrate over large distances, driven by 

regional seasonal changes in forage conditions (Bell 1971, McNaughton 1985, Drent and Prins 1987, 

Fryxell et al. 2005, Skead 2007), which further supports the use of broader, biogeographical, rather 

than a narrower vegetation type approach. The ‘biogeographic’ assemblage thus seems to be the 

more appropriate model to use. This assemblage is similar to an established grazer assemblage in 

‘iSimangaliso’ in the same biogeographic region.  

 

The ‘biogeographic’ assemblage, with a full, evenly spread (equal number of species for each weight 

class) grazer species assemblage, provides the opportunity for a grazing ecosystem that allows for 

facilitatory effects, that leads to an ecosystem that is able to maintain its herbivore assemblage 

structure. This in turn maximizes production and utilization in the forage layer which could increase 

grazer biomass. It would also allow Mkambati to escape from its current ‘fire trap’ of a very high fire 

return rate. When an assemblage exists where there is a lack of sufficient historical data, the 

biogeographic approach could be considered to be the more responsible conservation management 

approach.  Furthermore this approach has the highest likelihood of achieving Mkambati’s stated 
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purpose and restoration objectives. The strength of this approach lies in the ability to overcome the 

problem of depauperate grazer assemblages, caused by a lack of historical data, by using 

biogeography and ecological processes, to assist in more effectively restoring grazer ecosystems.  

The proposed approach however, is still very simplistic in nature and various additional factors could 

be considered. Mouth anatomy, sexual dimorphism, season and population density, for example, 

could be important factors that contribute to niche overlap and ecosystem engineering effects 

(Arsenault and Owen-Smith 2008, Kleynhans et al. 2011). Size scaling as hypothesised by (Prins and 

Olff 1998a) still needs to be convincingly proved as fact. In addition there is also a limitation that a 

decision is always required as to which historical stage any reconstruction is aiming to match. Current 

ecological conditions may not equate to those at a chosen time and it may be impossible to recreate 

a herbivore assemblage from a particular historical time. The biological approach could address this 

issue partially but less so for the biogeographical approach.  

 

3.6 MANAGEMENT IMPLICATIONS 

It remains important that non-indigenous species are not introduced into formal protected areas due 

to the potential risk associated with such an action (Atkinson 2001, Castley et al. 2001, Spear and 

Chown 2009). When there is no confirmation from historical data that a species was present in the 

immediate vicinity of the protected area, but biological or biogeographical patterns contradicts the 

historical assessment, reintroduction should be planned using a strategic adaptive management 

approach (Biggs and Rogers 2003). This approach should take cognisance of all the potential risks 

(Castley et al. 2001, Spear and Chown 2009) and be focussed on improving incomplete 

understanding and reducing the identified risks. This should take place through an iterative process 

of setting reintroduction objectives, implementing reintroduction actions and evaluating the 

implications of their outcomes for future management action (Biggs and Rogers 2003, Gaylard and 

Ferreira 2011, Roux and Foxcroft 2011). This could involve re-introducing certain species (as 

identified through biogeographical and biological assessment tools), setting thresholds of potential 

concern (TPC’s)(Biggs et al. 2011), intensively monitor the species’ effect on the ecosystem and the 

grazer assemblage, later deciding to remove or maintain them, depending on conclusions derived 

from set TPC’s. A protected area restoration strategy that aims to simulate the natural processes and 

heterogeneity of a system should thus make full use of all the tools available to reconstruct past 
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species assemblages. These tools are not limited to historical distribution data but include 

biogeographic and biological approaches. The model proposed in this study should not be seen as 

the ultimate solution for predicting large herbivore assemblages but rather as a contribution to the 

development of more scientifically robust and defendable protected area restoration methodology.  

 

3.7 CONCLUSION 

We conclude that it is the larger grazers missing from the Mkambati grazer suite, thus creating an 

ecosystem devoid of facilitatory effects exerted by these species, which in turn leads to an ecosystem 

that cannot maintain its herbivore assemblage structure. If certain species are excluded from the 

system purely based on assumptions derived from local colonial history and early explorer travel 

habits, the scientific validity of the assessment of their non-indigenous status should be questioned, 

especially when biological or biogeographical patterns contradict the historical assessment. The 

functioning of grazing ecosystems is driven by various patterns and processes, and excluding certain 

species, weight ranges or guilds, could potentially be just as detrimental to biodiversity as including 

non-indigenous species.  
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Chapter 4: Forage patch use by grazing 

herbivores in a South African grazing ecosystem 

 

Jan A. Venter, Jacob Nabe-Nielson, Herbert H.T. Prins & Rob Slotow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

 
 

ABSTRACT 

Understanding how different herbivores make forage patch use choices explains how they maintain 

an adequate nutritional status, which is important for effective conservation management of grazing 

ecosystems. Using telemetry data, we investigated non-ruminant zebra (Equus burchelli), and 

ruminant red hartebeest (Alcelaphus buselaphus subspecies camaa), use of burnt patches in a 

landscape mosaic of nutrient poor, old grassland interspersed with young, recently burnt, nutrient rich 

grass patches. The Mkambati Nature Reserve landscape on the east-coast of South Africa provided 

large grazers with a challenge in finding and using appropriate patches in which to forage to meet 

their nutritional requirements. In Mkambati, grassland fires, mostly ignited by poachers, induce re-

growth of young nutrient rich grass, which subsequently attract grazers. Using MANOVA we tested if 

the study animals foraged more in burnt patches than in the unburned grassland and whether burnt 

patch use was related to the distance to the previously visited burnt patch, burnt patch size, burnt 

patch age and distance to areas with high poaching risk. In general, zebra moved faster than red 

hartebeest, and both species moved faster in unburnt grassland than in burnt patches. Red 

hartebeest and zebra patch selection were influenced by inter-patch distance, patch age, patch size 

and poaching risk. A limited set of intrinsic traits, i.e. body mass, digestion strategy and muzzle width, 

may cause different patch use rules for the two species. Large ungulates patch use behaviour varied 

among species and across conditions, and was influenced by anthropogenic impacts such as 

poaching and changed fire regimes. This could potentially affect biodiversity negatively and needs to 

be factored into management of conservation areas.  
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4.1 INTRODUCTION 

In protected areas, conservation managers attempt to simulate natural processes and maintain 

heterogeneity of ecosystems to promote conservation outcomes (Grant et al. 2011). For large African 

ungulates, whose populations have declined over the last three decades (Craigie et al. 2010), 

effective conservation management is crucial (Carbutt and Goodman 2013). Understanding how 

species in a system vary their behaviour to meet their biological needs and deal with anthropogenic 

impacts should underpin such conservation management strategies (Gibbs et al. 1999). This paper 

presents the results of a study that investigated the patch use behaviour of two different grazing 

ungulate species. 

 

Large herbivores feed within forage patches and in doing so, move through areas where no or little 

acceptable food is encountered (Bailey et al. 1996, Prins 1996, Owen-Smith 2005), and utilize high-

value food by adjusting their movements to habitat structure (Fortin 2003, de Knegt et al. 2007). They 

accelerate when moving between food items (Shipley et al. 1996) and they spend more time in more 

rewarding patches (Distel et al. 1995, Courant and Fortin 2012). Normally, feeding is the dominant 

activity within a forage patch, although large herbivores engage in other activities such as walking, 

resting and drinking (Green and Bear 1990, Ryan and Jordaan 2005, Shannon et al. 2008). 

Acceptable forage or habitat patches might not be discernible from a distance, and their location may 

shift continuously as the forage quality changes due to abiotic circumstances (e.g., fire, rainfall or 

flood recession) (Olff et al. 2002, Archibald and Bond 2004, de Knegt et al. 2008, van Beest et al. 

2010), or influences from other herbivores (Arsenault and Owen-Smith 2002, Kohi et al. 2011). 

Herbivores are, therefore, faced with the challenge of how to find and choose good quality forage 

patches in a landscape where the location of suitable patches is continuously changing (Senft et al. 

1987a, Bailey et al. 1996). Understanding how different herbivores make these choices explains how 

they maintain an adequate nutritional status, which is important for effective conservation 

management of grazing ecosystems.  

 

Grazing ungulate food occurs in discrete patches (Prins 1996, Bailey and Provenza 2008, Prins and 

Van Langevelde 2008b), and these patches are reasonably homogeneous with respect to some 
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environmental feature(s) (Bailey et al. 1996, Bailey and Provenza 2008, Owen-Smith et al. 2010). 

Patch selection is scale-dependant, and although herbivores can often afford to be selective on a fine 

scale (plant part or species), this may not be the case at coarse scales (habitat patch) due to the 

energetic constraints of having to moving further without reward (van Beest et al. 2010). The quality 

of a patch, and the likelihood that it is selected by an animal, will be influenced by various factors, 

such as patch size and inter-patch distance (Gross et al. 1995, Sibbald and Hooper 2003, Wallace 

2008).  

 

In addition, herbivores also need to avoid becoming prey to predators, and do so by responding to 

predation risk (Kie 1999, Creel et al. 2005, Fortin et al. 2005, Creel et al. 2008, Valeix et al. 2009b). 

Foragers may choose to ignore predator risk when deciding where to forage, and focus on the quality 

of forage resources and/or other factors (Prins 1996). However, they may also respond by avoiding 

predators (Creel et al. 2005, Valeix et al. 2009a) or by moving out of harm’s way when predators are 

encountered (Fischhoff et al. 2007, Winnie and Creel 2007). Human disturbance can cause large 

herbivores to respond in the same way as they do to natural predators (Morgantini and Hudson 1985, 

Manor and Saltz 2003, Blom et al. 2004, Proffitt et al. 2009), especially in areas with high poaching 

incidence (Fischer and Eduard 2007, Hayward 2009b).  

 

An area where patch forage behaviour may be particularly important is the fire-prone, nutrient poor 

grasslands on the east coast of South Africa. Here, grassland fires induce re-growth of young nutrient 

rich grass (Shackleton and Mentis 1992), which may subsequently attract grazers (Parrini and Owen-

Smith 2010, Allred et al. 2011). In these coastal grasslands, the biomass productivity is very high, 

and the grazing pressure is often too low to prevent the accumulation of moribund grass (Shackleton 

1990). The moribund, low nutrient grassland are interspersed with young, recently burned, nutrient 

rich grass patches (Shackleton and Mentis 1992). This landscape provides large grazers with a 

challenge in finding the appropriate forage patches, from which they can consume suitable food to 

maintain or surpass their nutritional requirements. The east coast grasslands of South Africa thus 

form a good model system to study grazer-forage interactions that are typical for the many under-

grazed savanna grasslands. 
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Our study aim was to determine which factors influence forage patch use behaviour of large 

herbivores. We investigated how two species of large herbivores zebra (Equus burchelli) and red 

hartebeest (Alcelaphus buselaphus) with contrasting intrinsic traits, used forage patches in a 

landscape of nutrient poor, moribund grassland, with a mosaic of higher quality forage patches, under 

a gradient of higher and lower poaching risk. The differences in patch choice between the two 

species were investigated to establish any differences as a result of their intrinsic traits, i.e. their 

physiology and anatomy. This was done by assessing: (1) whether burnt patches were selected as 

preferred forage habitat; (2) the confounding effects of poaching risk; (3) effects of distance from the 

previous patch, patch size and patch age (time since burnt), on choice, and, (4) contrasting patch 

choice between zebra and red hartebeest. In order to test for poaching and fire effects we also tested 

whether there was concordant danger and fire gradients within Mkambati, with risk decreasing from 

the boundary rivers. 

 

4.2 STUDY AREA 

The Mkambati Nature Reserve (Mkambati) is a 77-km2 provincial nature reserve situated on the east 

coast of the Eastern Cape Province, South Africa (31˚13’-31˚20’S and 29˚55’-30˚04’E). The climate is 

mild sub-tropical with a relatively high humidity (de Villiers and Costello 2013). The high rainfall (1 

200 mm annually), mild mean daily temperatures (18 ˚C winter and 22 ˚C summer), and presence of 

abundant streams and wetlands, results in a landscape that is not water limited in any season. 

Forests occur in small patches (mostly in fire refuge areas). More than 80 % of Mkambati consists of  

Pondoland–Natal Sandstone Coastal Sourveld grassland (Mucina et al. 2006d). The grassland 

communities are considered to be nutrient poor (Shackleton et al. 1991, Shackleton and Mentis 

1992). 

 

Grassland fire stimulates temporary regrowth high in crude protein (8.6% compared to 4.6%, in older 

grassland), phosphorus concentrations (0.1% compared to 0.05%, in older grassland) and dry matter 

digestibility (38.6% compared to 27.1%, in older grassland) (Shackleton 1989). Nutrient 

concentrations remain elevated for up to 6 months post burn, by which time they are comparable to 
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surrounding unburned grassland (Shackleton and Mentis 1992). Frequent fires cause a continuously 

changing landscape mosaic of nutrient-rich burnt patches within a matrix of older, moribund 

grassland and older burnt patches. Most fires are ignited by poachers with the aim to attract animals 

to certain areas. Poachers cross the two major rivers, i.e. the Mtentu river (on the north-eastern 

boundary) and the Msikaba river (on the south-western boundary), to poach wildlife in Mkambati. 

Security patrols and field ranger records show that poachers use rifles, dogs and snares (Eastern 

Cape Parks and Tourism Agency, unpublished data). There are also prescribed management burns, 

but due to the high poacher fire incidence this rarely takes place. Lightning also causes fires, but only 

few have been recorded on Mkambati, and none during the study period (Eastern Cape Parks and 

Tourism Agency, unpublished data). Several large herbivore species are present in Mkambati but no 

large predators (Peinke et al. 2010). 

 

In our study area, the two most dominant grazers are plains zebra (Equus burchelli) and red 

hartebeest (Alcelaphus buselaphus camaa). In areas with much moribund vegetation, grazing 

ruminants such as the red hartebeest face particular constraints because nearly all vegetation 

biomass has a low quality, which reduces food intake rates (Drescher et al. 2006a, Drescher et al. 

2006b, van Langevelde et al. 2008). The hartebeest is an example of a concentrate selector; its skull 

morphology is specially adapted to be very selective at times when good forage is scarce (Schuette 

et al. 1998). The non-ruminant zebra, in contrast, is much more tolerant to poor quality forage but 

must maintain a high rate of intake to be able to survive on this type of food (van Soest 1982, Okello 

et al. 2002). We therefore expected two possible scenarios: that zebra are better able to use more 

fibrous, older grassland patches than are red hartebeest (Sensenig et al. 2010), or that hartebeest, 

with their ability to be so selective due to special anatomy, could use the same older grassland, but 

there would be differences in selection strategies within patches.  

 

4.3 METHODS 

All poaching incidents recorded by Mkambati field rangers between 2008 and 2010 were mapped 

and the distance to the nearest major river calculated in metres using ArcGIS (ArcGIS Desktop: 

Release 10. Redlands, CA: Environmental Systems Research Institute). 
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Seven zebra (6 female and 1 male) and nine red hartebeest (8 female and 1 male) were fitted with 

GPS-UHF collars (Africa Wildlife Tracking CK., RSA), active from September 2008 to August 2011. 

All animals were darted by an experienced wildlife veterinarian from a Robinson 44 helicopter. The 

work was approved by, and conducted in strict accordance with, the recommendations in the 

approved standard protocols of the Animal Ethics Sub-committee of the University of Kwazulu-Natal. 

All field work was conducted by, or under the supervision of the first author, a staff member of the 

Eastern Cape Parks and Tourism Agency, as part of the operational activities of the appointed 

management authority of Mkambati (Eastern Cape Parks and Tourism Agency Act no. 2 of 2010, 

Eastern Cape Province, South Africa). The animals were in separate harems or herds when they 

were collared. The collars were set to take a GPS reading every 30 min, and data were downloaded 

via UHF radio signal. The collars remained functional between four and 16 months depending on 

various factors, including loss of animals to poaching (11% of N=26), lost collars (23% of N=26) 

natural mortality (3% of N=26), and malfunction (23% of N=26). We suspected that the collars lost 

could also be attributed to poaching which would increase potential poaching effects to 34%. Data 

downloaded from the collars were converted to geographical information system (GIS) format, after 

which it was manually screened for missing values. Sections of the data with missing values were 

removed and not used in the analysis. 

 

All grassland fires in Mkambati from January 2007 (18 months before first collars were deployed) to 

August 2011, were mapped by Mkambati field rangers. Each burnt patch was given a unique ID 

number, and all unburnt patches (patches that have not burned post-2007) were given the same 

unique ID number. The patch ID number was linked to the collar data using ArcGIS (ArcGIS Desktop: 

Release 10. Redlands, CA: Environmental Systems Research Institute). Patch visits were defined as 

the period from when an individual animal entered a burnt patch or unburnt grassland until it left 

again. Movement speed    (metre per hour) was calculated using the equation: 

   
 ⁄         

(1) 
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Where time spent   per visit was the sum of 30 min intervals (GPS-UHF data) per visit, and the 

cumulative distance   covered over that time was the total distance (m) travelled per patch visit. 

 

To compare factors influencing the use of burnt patches, visits to these areas were identified from the 

GPS data. For this analysis, the location data in unburnt patches was not used. We measured: (1) 

the distance (m) to the nearest major river which served as a proxy for poaching risk; (2) the 

distances (m) between burnt patch centroids; (3) burnt patch sizes (ha); and (4) time (days) since 

burn. A control was established by also measuring the four different factors for all the available burnt 

patches not visited at the time of each choice. The distance from the previous patch (m) was 

calculated by measuring the distance between the centroid of the burnt patch that the animal had 

departed to the centroid of the new burnt patch entered. Due to the nature of the data used in the 

analysis, i.e. burnt patch visits rather than consecutive 30 min GPS points there was no risk of 

autocorrelation (Dray et al. 2010).  

 

4.4 DATA ANALYSIS 

First we used a linear regression analysis to test whether there was a relationship between number of 

poaching incidents and distance from the major rivers. The linear regression analysis was performed 

using IBM SPSS Statistics for Windows, Version 19.0. (Armonk, NY: IBM Corp.). We tested whether 

animals preferred foraging in burnt patches than in the unburned grassland by assessing time spent 

per visit and speed travelled per visit, using a MANOVA. To separate species effects from random 

variations among individuals, the independent variables included both a species identifier and a 

habitat variable describing whether the animal was in a burnt patch or in unburnt grassland and 

adding an individual animal identifier as a covariate. Both the time spent and speed travelled 

variables were log transformed and a total of 11 extreme outliers identified through box-plots were 

removed from the data set in order to avoid them materially affecting the result. We tested whether 

the animals’ burnt patch use was related to the distance to the previously visited burnt patch, burnt 

patch size, burnt patch age (i.e., time since burn in days) and distance to areas with high poaching 

risk (near the major rivers) using MANOVA. The dependent variables were distance to the previously 

visited burnt patch, burnt patch size, time since burn, and distance to the nearest major river. The 
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independent variables was whether the patch was visited or not and species, and the covariate was 

an individual animal identifier. We did not separate the sexes in the analysis because there was only 

one male per species. The MANOVA’s was performed using IBM SPSS Statistics for Windows, 

Version 19.0. (Armonk, NY: IBM Corp.). The MANOVA was complemented with a logistic regression 

analysis to assess if the probability that a patch was entered depended on the distance to the patch 

from the previous patch, the size of the patch, the days since it burned, and distance to major river. 

The logistic regression analysis were done using the R-Statistics package version 2.11 (R-

Development-Core-Team 2011).  

 

4.5 RESULTS 

The linear regression established that distance from major river could significantly predict number of 

poaching incidents, F(1, 4) = 7.066, p = 0.05 and  it accounted for 64% of the explained variability in 

poaching incidents (Figure 4.1). The time animals spent in a patch depended on the habitat type, 

animal species, and individual animal (Table 4.1). The species-habitat type interaction was 

statistically significant (Table 4.1). Both zebra and red hartebeest spent more time during visits to 

burnt patches than to the unburned grassland (Figure 4.2). Red hartebeest generally spend more 

time in both burnt patches and old grassland compared to zebra (Figure 4.2). The speed animals 

moved at while in a patch depended on the habitat type, animal species, and individual animal (Table 

4.1). For speed in a patch the species-habitat interaction were significant (Table 4.1). Both red 

hartebeest and zebra moved equally fast in both habitats, but zebra moved faster than red hartebeest 

(Figure 4.2). Compared to other available patches, both zebra and red hartebeest chose to enter 

patches closer to the one they last vacated  and there was no difference between the two species in 

this regard (Table 4.2 and Figure 4.3). Both species entered younger burnt patches more frequently, 

but zebra were less likely to visit older burnt patches than red hartebeest (Table 4.2 and Figure 4.3). 

Although both species selected relatively large patches, zebra mostly used larger patches (Table 4.2 

and Figure 4.3). Both species were more likely to enter patches further from the major rivers, but 

zebra were more likely to do so (Table 4.2 and Figure 4.3). The probability that a new patch was 

entered depended on the distance to the patch the animal previously visited, the size of the new 

patch, time since it burned, and the distance to the major river (Table 4.3).  
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Figure 4.1: The relationship between number of poaching incidents (as recorded by field rangers on 
Mkambati from 2008 to 2010), and distance from the nearest major river. 
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Table 4.1: The results of the MANOVA test, testing for a) the difference between mean time spent 
within the unburnt grassland and the burnt patches; b) the difference between mean speed travelled 
within the unburnt grassland and the fire-patch mosaic. 

 

Source df † F P Value 

a) Time spent    

Individual 1 1.672 0.196 

Habitat  1 304.486 <0.0001 

Species 1 8.338 0.004 

Habitat * Species 1 7.292 0.007 

Residuals 8523   

b) Speed travelled    

Individual 1 113.463 <0.0001 

Habitat  1 13.401 <0.0001 

Species 1 1122.71 <0.0001 

Habitat * Species 1 5.182 0.023 

Residuals 8523   
             † Residual degrees of freedom in the model represent visits to forage patches 

 

 

 

 

 

 



74 
 

 
 

 

 

Figure 4.2: Time spent and movement speeds per visit to burnt patches and old grassland for zebra 
and red hartebeest. Error bars indicate upper and lower 95% CI. Silhouettes indicate species. 
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Table 4.2: The results of the MANOVA test, testing for: a) the distance between the fire-patch that the 
animal left and the new fire-patch an animal entered in comparison to the other patches it did not 
enter; b) the size of the patch of the new fire-patch an animal entered in comparison to the other fire-
patches it did not enter; c) the time (days) since burning of the new patch an animal entered in 
comparison to the other fire-patches it did not enter and; d) the distance from nearest major river to 
the new fire-patch an animal entered in comparison to the fire-patches it did not enter 

 

Source df † F P value 

a) Distance to previous patch       

Individual animal 1.000 0.029 0.864 

Patch being entered 1.000 4170.870 <0.0001 

Species 1.000 0.212 0.645 

Patch being entered * Species 1 7.016 0.008 

Residuals 138409 

  b) Patch size 

 

    

Individual animal 1.000 4.322 0.038 

Patch being entered 1.000 4459.201 <0.0001 

Species 1.000 58.413 <0.0001 

Patch being entered * Species 1.000 42.48 <0.0001 

Residuals 138409 

  c) Days since burn 

 

    

Individual animal 1.000 205.699 <0.0001 

Patch being entered 1.000 244.943 <0.0001 

Species 1.000 317.149 <0.0001 

Patch being entered * Species 1.000 0.641 0.423 

Residuals 138409 

  d) Distance to river 

 

    

Individual animal 1.000 6.013 0.014 

Patch being entered 1.000 3426.923 <0.0001 

Species 1.000 7.461 0.006 

Patch being entered * Species 1.000 38.11 <0.0001 

Residuals 138409     
† Residual degrees of freedom in the model represent visits to forage patches 
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Table 4.3: The results of the logistic regression analysis to assess whether the probability that a new 
patch is entered depends on the distance from the burnt patch, the patch size, days since burn and 
the distance to a major river. 

 

Interaction Estimate Std. Error z-value P-value 

Intercept -1.960 0.077 -25.518 <0.0001 

Distance to previous patch -5.71x10-4 1.2x10-5 -47.278 <0.0001 

Patch size 8.79x10-4 1.9x10-5 45.321 <0.0001 

Time since burn (days) -1.67x10-3 6.1x10-5 -27.518 <0.0001 

Distance to major river 3.67x10-4 1.4x10-5 26.183 <0.0001 

Species 1.03 0.3 3.433 0.0005 

Distance to previous patch x 

species 

0.02x10-4 2.2x10-5 0.073 0.9418 

Patch size x species -2.44x10-4 3.7x10-5 -6.636 <0.0001 

Time since burn x species 8.32x10-4 1.05x10-4 7.902 <0.0001 

Distance to major river x 

species 

-0.88x10-4 0.25x10-4 -3.471 0.0005 
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Figure 4.3: The effect of inter-patch distance; time since burn; patch size and; distance to major river, 
of fire-patches entered compared to fire-patches not entered, by red hartebeest and zebra. Error bars 
indicate upper and lower 95% CI. Silhouettes indicate species. 
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4.6 DISCUSSION 

Red hartebeest moved slower and spend more time in patches compared to zebra. This was 

expected because being ruminants they have to spend more time resting while ruminating (Bell 

1971). By having a more efficient digestive system red hartebeest thus moved slower through 

patches in the landscape compared to zebra. Contrary to expectations, red hartebeest used older 

burnt patches more than zebra. In east Africa, ruminants selected recently burnt patches more 

compared to non-ruminants (Sensenig et al. 2010). The east African grassland biomass is depleted 

seasonally at the onset of the dry season by high grazing pressure (McNaughton 1976). At 

Mkambati, grazing pressure is so low that significant accumulation of grass biomass occurs 

(Shackleton 1990), which, after a few months of growth, results in large quantities of moribund grass. 

Hartebeest have a specially adapted “long faced” skull morphology that enables them to graze scarce 

re-growth from between this moribund material when good forage is scarce (Schuette et al. 1998). 

This was evidenced by the abundant presence of “feeding holes” in moribund grass patches at 

Mkambati, made by the muzzle of red hartebeest, (Pers obs. Jan A. Venter). Although the patches 

lost their elevated nutritional value due to aging and the build-up of moribund material, this adaptation 

probably enabled red hartebeest to use older burnt patches more even though there were younger 

burned patches of better quality available elsewhere.  

 

In contrast to red hartebeest, zebra should be more tolerant of fibrous food, but would have to sustain 

a much higher intake rate to maintain energy levels when feeding on low-quality forage (Bell 1971, 

Okello et al. 2002). Zebra moved faster and further than red hartebeest which is consistent with their 

higher food intake requirements associated with their digestive system. Higher movement rates by 

zebra compared to ruminants have also been observed in other recent studies (Owen-Smith and 

Goodall 2014). In hindgut fermenters (non-ruminants), faster throughput is an advantage that 

outweighs their lower digestive efficiency, particularly when feeding on poor quality foods (Illius and 

Gordon 1992). When other species of equids were faced with similar trade-offs their decisions 

depended on forage quality (Edouard et al. 2010). It is probable that zebra with their wider muzzle, 

are better able to exploit very short grass sprouting on recently burnt patches, and thus maximize bite 

size and intake rate on these swards (Gordon and Illius 1988) compared to red hartebeest which are 

not able to do so with equal efficiency. We thus showed that intrinsic traits, such as muzzle width, 
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could possibly carry over into patch use rules in an unexpected way. As muzzle width can evolve 

relatively independently of body mass, our results show how a very limited set of intrinsic traits (i.e. 

body mass, digestion strategy and muzzle width) may yield very different patch use rules for animals 

that rely on the same resource. 

 

Red hartebeest and zebra in Mkambati selected patches closer to the one they came from, 

supporting other studies on patch selection (Gross et al. 1995, Sibbald and Hooper 2003). The red 

hartebeest and zebra in Mkambati chose to use larger burnt patches compared to other available 

burnt patches. Smaller burnt patches could have higher quality grass compared to larger burns, due 

to being maintained as closely cropped grazing lawns (Sensenig et al. 2010). In addition, smaller-

bodied animals prefer smaller burns (Sensenig et al. 2010). Intensive grazing by smaller herbivores 

could change grazing conditions and potentially displace other large herbivores (Illius and Gordon 

1992). Red hartebeest and zebra chose to visit larger habitat patches, which may be related to 

interspecific competition. If smaller patches are preferred by smaller grazers (Cromsigt et al. 2009, 

Sensenig et al. 2010), species such as blesbok (Damaliscus pygargus phillipsi) (61 kg as compared 

to 140 kg for red hartebeest and 210 kg for zebra), which were present in large numbers in 

Mkambati, would have the competitive advantage. By altering the vegetation state (being able to 

temporarily maintain very small burned patches as closely cropped grazing lawns) (Sensenig et al. 

2010), we would predict blesbok to be able to competitively exclude the larger grazers like red 

hartebeest and zebra (Illius and Gordon 1987, Prins and Olff 1998b).  

 

Both red hartebeest and zebra reduced the probability of encountering poachers by choosing to visit 

patches further away from major rivers. By focussing on suitable patches within areas of lower 

‘predation’ (or poaching) risk (Gude et al. 2006, Thaker et al. 2010), rather than only reacting when 

‘predators’(or poachers) are encountered (Creel et al. 2005, Fortin et al. 2005, Kittle et al. 2008), 

hartebeest and zebra appear to have a cognitive approach to patch use at a habitat patch scale by 

actively avoiding high poaching risk areas. With ever increasing poaching in Africa (Hayward 2009b, 

Waltert et al. 2009, Craigie et al. 2010), this is a result that has significant implications for protected 

area management. The consistent unnatural selection of forage areas by ungulates due to poaching 
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impact could have negative impacts on forage resources (Ruggiero 1992), ecosystem services 

(Wright and Duber 2001, Brodie et al. 2009) and biodiversity through cascading effects (Ripple and 

Beschta 2007, Eisenberg et al. 2013). This effect could be worse in small- to medium-sized protected 

areas. 

 

4.7 CONCLUSION 

In conservation areas, where managers attempt to simulate the natural processes and heterogeneity 

of ecosystems (Grant et al. 2011), patch use dynamics of large herbivores is a critical aspect to 

consider. In this study, we demonstrated how red hartebeest and zebra actively use particular types 

of burnt patches with suitable forage, and that their choice of foraging patches was influenced by 

direct and secondary poaching effects. This illustrates that both fire management and anti-poaching 

action could potentially impact ecosystems (Ripple and Beschta 2007, Eisenberg et al. 2013). This is 

especially the case for more intensively managed small- to medium-sized conservation areas like 

Mkambati Nature Reserve.     
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ABSTRACT 

Understanding environmental as well as anthropogenic factors that influence large herbivore 

ecological patterns and processes should underpin their conservation and management. We 

assessed the influence of intrinsic (feeding niche, digestive strategy), extrinsic environmental 

(seasonality, landscape heterogeneity) and extrinsic anthropogenic (fencing) factors on movement 

behaviour of eight African large herbivore species. We were particularly interested in scaling effects 

in response to complexity using movement metrics as response indicators. Four frequency 

distributions were used to model the distribution of individual animal step length data. A cumulative 

odds ordinal logistic regression with proportional odds was used to determine the effect of season, 

feeding niche, number of vegetation types, home range size, and fences on the number of 

exponential distributions observed. The dominant movement behaviour was Brownian motion, with 

one to four exponential distributions. In other words, large herbivores used multi-scale small area 

restricted searches, mixed with possible multi-scale large movements in the process of finding 

suitable forage resources. When animals faced the trade-off between forage quality and quantity 

during the dry season, they moved further between forage areas and water sources in order to get to 

better forage, which added to the number of movement scales observed. Elephants (Loxodonta 

africana) had a lower number of movement scales, compared to all the other feeding types, which 

could be attributed to them being able to switch between browse and graze, thereby avoiding 

interspecific competition at lower feeding heights during the dry seasons. However, no difference in 

the number of movement scales could be detected among ruminant grazers, ruminant mixed feeders 

and non-ruminant grazers, which may need more frequent data-points to discriminate. The number of 

movement scales increased in more heterogeneous areas. Animals with larger home ranges, which 

are also larger species, and animals more restricted by fences, had fewer movement scales. In order 

for managers to effectively manage protected areas and associated biodiversity they need take 

cognisance of the different scales animals operate under, and the different factors that may be 

important for different species.  
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5.1 INTRODUCTION 

Environmental heterogeneity, such as in water or forage availability, species traits, and 

anthropogenic influences have a substantial effect on the ecological patterns and processes that 

shape the distribution of large herbivores (Boone and Hobbs 2004, Loarie et al. 2009, Vanak et al. 

2010, Cornélis et al. 2011, Duffy et al. 2011). Understanding how these factors influence the 

movement behaviour of large herbivores is important for protected area managers, as these could 

influence individual species’ ability to persist, and have a negative effect on other species in an 

ecosystem (Fortin et al. 2005, Ripple and Beschta 2007). Environmental heterogeneity occurs at 

different spatial and temporal scales, which makes it difficult to predict at what scales resource 

selection by large herbivores occurs (Senft et al. 1987a, Bailey et al. 1996), and poor understanding 

may result in mismatch in the scale at which interventions are made relative to the underlying 

biological system (Delsink et al. 2013).  

 

Large herbivores select resources at different scales: plant part, plant species, vegetation types and 

landscape regional scale (Jarman 1974, Senft et al. 1987b, Bailey et al. 1996, Prins and Van 

Langevelde 2008a, Owen-Smith et al. 2010). In most cases, there is a proportional relationship 

between the time a large herbivore spends in an area, and the available quality and quantity of forage 

(Bailey et al. 1996, Owen-Smith et al. 2010). This relationship between herbivores and their 

environment can be detected in distinct movement scales (Frair et al. 2005), which takes place at 

several scale levels: from steps between foraging stations, to daily movement in home ranges, to 

seasonal migratory movements (Viswanathan et al. 1999, Bartumeus et al. 2005, Searle et al. 2007, 

Prins and Van Langevelde 2008a).  

 

There is considerable interspecific variability in herbivore morphological traits (van Soest 1996), and  

animals react to their environment in different ways, related to these traits (Jarman 1974, 

McNaughton and Georgiadis 1986, Bailey et al. 1996, Prins and Van Langevelde 2008a). African 

ecosystems are well known for their exceptional diversity of large mammalian herbivores, with the 

majority consisting of bovids, which are ruminants, co-existing with a few equids, which are non-

ruminants (Prins and Olff 1998b, Gagnon and Chew 2000, Grange et al. 2004). Early studies have 
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identified a variety of feeding patterns or feeding niche categories among large herbivores (Lamprey 

1964, Hofmann and Stewart 1972, Gagnon and Chew 2000). These feeding niches are normally 

driven by morphological traits such as body size, feeding type, digestive strategy and muzzle width 

(Jarman 1974, van Soest 1996, Shipley 1999). Broader feeding types categorise large herbivores 

into grazers, mixed feeders and browsers (Grunow 1980, McNaughton and Georgiadis 1986).  

 

The digestive strategy of a ruminant relies on efficient extraction and use of protein at the cost of 

increasing intake rate and processing capability (Bell 1971, Hofmann 1989, Shipley 1999). The non-

ruminant is much more tolerant of poor quality forage but must maintain a high rate of intake to be 

able to survive on this type of food (Bell 1971, Illius and Gordon 1992, Shipley 1999). Their selectivity 

is, therefore, much less intense compared to ruminants (Bell 1971). A large number of studies have 

focussed on the topic of animal movement versus environmental heterogeneity (extrinsic factors) 

(Gross et al. 1995, Frair et al. 2005, de Knegt et al. 2007, Humphries et al. 2010, de Jager et al. 

2011), but only a few have investigated the role of morphological traits (intrinsic factors) in animal 

movement behaviour (Searle et al. 2007, Prins and Van Langevelde 2008a).  

 

Abiotic factors, such as surface water supplies, are one of the primary determinants of large-scale 

distribution patterns of large herbivores, and act as constraints within which they have to interact with 

biotic features such as forage resources (Bailey et al. 1996, Redfern et al. 2003, Smit et al. 2007). In 

many cases, large herbivores select different habitats, and move differently, during times of low 

versus high resource availability (Ager et al. 2003, Venter and Watson 2008, Cornélis et al. 2011, 

Birkett et al. 2012). This is because they become nutritionally stressed during the dry season when 

both forage quality and quantity are reduced (Prins 1996). Surface water sources can dry up, which 

influences the trade-off foragers face between nutritional requirements and surface-water constraints 

when forage quantity is reduced (Redfern et al. 2003).  

 

Forage quality and quantity are most affected near water sources, because animals tend to 

congregate in these areas due to water dependency (Redfern et al. 2003). The reduced forage 
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quantities during dry years force large herbivores to travel further from water sources to meet their 

nutritional requirements (Redfern et al. 2003, Venter and Watson 2008). The trade-off between 

nutritional requirements and surface-water constraints that species face varies according to the 

species’ water dependence, size, feeding type and digestive system (Redfern et al. 2003, Smit et al. 

2007). For example, in Kruger National Park, grazers are more dependent on artificial water sources, 

compared to browsers, and mixed-feeders are more dependent on rivers (Smit et al. 2007).  

 

The amount of space animals’ use can be defined by their home range size (Funston et al. 1994, 

Leggett 2006). Larger species tend to have larger home range sizes (Lindstedt et al. 1986), and feed 

at coarser grain scales, which could potentially influence the number of spatial scales at which 

animals move, or are responsive to (Prins and Van Langevelde 2008a). The available space for 

animals to use, and the influence of reserve fences (Boone and Hobbs 2004, Loarie et al. 2009, 

Naidoo et al. 2012), could also influence animal movement by limiting larger migratory movements 

(Boone and Hobbs 2004, Loarie et al. 2009, Naidoo et al. 2012).  

 

Animal movements consists of a discrete series of displacements (steps, varying in length) separated 

by successive re-orientation events (turning angles)(Bartumeus et al. 2005). Animal forage and 

search behaviour has been generally described using two different types of random movement 

behaviours, namely: random walks (Brownian motion) and Lévy walks (Viswanathan et al. 1996, 

Viswanathan et al. 1999, Bartumeus et al. 2005, Edwards et al. 2007).  Random walks are essentially 

similar steps (on the same spatial scale) separated by orientation and changing turn angles 

(Viswanathan et al. 1999). Lévy walks reflect clusters of shorter steps that are connected by rare 

large steps (Edwards et al. 2012). Lévy walkers can outperform Brownian random walkers in forage 

searching efficiency as they revisit patches far less often, and because the larger steps potentially 

increase the probability of finding new patches in a shorter time (Viswanathan et al. 1999, Raposo et 

al. 2009, Viswanathan 2010).  
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More recently the composite Brownian motion emerged as a strong alternative model to the Lévy 

walks (Benhamou 2007, de Jager et al. 2011, Schultheiss and Cheng 2011, Jansen et al. 2012, 

Reynolds 2013), where animals switch between two or more Brownian walks (i.e. switch spatial 

scale), each characterised by an exponential step-length distribution representing a movement scale 

(Jansen et al. 2012, Reynolds 2013). Brownian walks at two or more different scales (composite 

Brownian motions), e.g., a small-scale area-restricted search (within patches) mixed with a set of 

large scale movements (between patches), can be an optimal approach to find suitable forage 

(Benhamou 2007).  

 

We tested whether eight African large herbivore species, with a variety of morphological traits 

(feeding types and digestive strategies), coming from landscapes of varying vegetation 

heterogeneity, showed a difference in step length distributions and movement scale complexity (i.e. 

number of movement scales). Our data was ideal for this purpose as it covered various species form 

a number of different habitat types. In addition, we also tested a number of hypotheses related to 

factors that could affect movement scale complexity: a) we expected that large herbivores would 

show more movement scales during the dry season because reduction in forage resources forces 

them to move larger distances to meet their dietary requirements; b) we predicted that animals with 

different intrinsic traits, specifically feeding type and digestive strategy, would differ in their number of 

movement scales because these influences how they interact with habitats and forage resources; c) 

we expected more movement scales in areas with higher heterogeneity because forage resources 

would be more variable in what they offer under different conditions; d) we expected species with 

larger home ranges, which are normally larger bodied species (which we confirm with our data), to 

have fewer movement scales because they feed at a courser grain scale; and e) we expected 

species that are more constrained by fences to have fewer movement scales due to large migratory 

movements and their “natural” ranging behaviour being restricted. 

 

5.2 STUDY AREA 

The species data originated from eight different reserves in South Africa representing various levels 

of seasonal variability, heterogeneity, area size, and large herbivore assemblages (Table 5.1). The 
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species studied were impala (Aepyceros melampus), red hartebeest (Alcelaphus buselaphus), blue 

wildebeest (Connochaetes taurinus), eland (Tragelaphus oryx), African buffalo (Syncerus caffer), 

Cape mountain zebra (Equus zebra), plains zebra (Equus burchelli) and African elephant (Loxodonta 

africana) (Table 5.1). Data from GPS-UHF and GPS-GSM collars that were produced as part of our 

own (Mkambati and Baviaanskloof) and a number of other published studies (Jachowski et al. 2012, 

Shrestha et al. 2012, Delsink et al. 2013), and unpublished studies were used.  

 

All field work that took place on Mkambati and Baviaanskloof were conducted by, or under the 

supervision of the first author, a staff member of the Eastern Cape Parks and Tourism Agency, as 

part of the operational activities of the appointed management authority of Mkambati (Eastern Cape 

Parks and Tourism Agency Act no. 2 of 2010, Eastern Cape Province, South Africa). Field work on 

the other reserves was ethically and legally approved, and was conducted by the various relevant 

institutions (Jachowski et al. 2012, Shrestha et al. 2012, Delsink et al. 2013) including the 

management authority of Welgevonden Private Game Reserve.  

 

5.3 METHODS 

The collars were set to take a coordinate reading every 30 min, 1 hour or 2 hours which was 

dependent on the study area. Data downloaded from the collars were converted to GIS format, and 

any parts of the data sets with missing values were removed. Data were converted to the same time 

frequency (2 hour intervals) by removing data points in-between, as the majority of the data were 

collected at this time interval.  

 

Step lengths (distance between each locality point recorded by the GPS-UHF and GPS-GSM collars) 

were calculated for each animal’s data set using Geospatial Modelling Environment (Beyer 2012) and 

ArcGIS (ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute). All 

step lengths < 6 m were excluded during the analysis in order to remove non-movements and false 

movements due to GPS-error.  
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Table 5.1: The species and reserves investigated during this study. Biomes were classified according 
to (Rutherford et al. 2006b) 

 

Study area and biome Species studied with number of data subsets Geographical location Size (ha) 

Mkambati Nature Reserve – 

Grassland 

Eland (Tragelaphus oryx)       

Plains zebra (Equus burchelli)        

Red hartebeest (Alcelaphus buselaphus)       

31˚13’- 31˚20’ S and  

29˚55’- 30˚04’ E 

7720 

Baviaanskloof Nature 

Reserve - Fynbos 

Cape mountain zebra (Equus zebra)       

African buffalo (Syncerus caffer)       

33º26’-33º53’ S and  

23º 35’-24º 59’E 

211476 

Kruger National Park - 

Savanna 

African elephant (Loxodonta africana)        22º20’-25º32’ S and  

30º53’-32º02’ E 

2300000 

Pilanesberg National Park - 

Savanna 

African elephant (Loxodonta africana)       25º8'–25º22' S and 

 26º57'–27º13' E 

55000 

Mkhuze Game Reserve - 

Savanna 

African elephant (Loxodonta africana)       27º33’–27º48’ S and 

 32º08’ - 32º25’ E    

45291 

Mapungubwe National Park - 

Savanna 

Impala (Aepyceros melampus)       

Eland (Tragelaphus oryx)       

Blue wildebeest (Connochaetes taurinus)       

22º10’- 22º17’ S and 

29º08’- 29º32’ E 

28168 

Welgevonden Private Game 

Reserve -Savanna 

Plains zebra (Equus burchelli)        

Blue wildebeest (Connochaetes taurinus)    

    

24º10’- 24º25’ S and  

27º45’- 27º56’ E 

33000 

Asante Sana Private Game 

Reserve - Nama-Karoo 

Impala (Aepyceros melampus)        

Eland (Tragelaphus oryx)       

Blue wildebeest (Connochaetes taurinus)       

32º15’- 32º21’ S and  

24º52’- 25º04’E 

10700 
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Two subsets of data were extracted from each animal’s data set representing two dry season months 

(July/August) and two wet season months (January/February). For the reserve in the winter rainfall 

area, i.e. Baviaanskloof Nature Reserve, we used July/August as the wet season and 

January/February as the dry season.  In order to test our hypotheses we identified a number of 

explanatory variables, i.e. season, feeding niche, number of vegetation types, home range size and 

level of space use. Feeding niche represented a combination of the feeding niche and digestive 

system of each species and was grouped into ruminant grazers (red hartebeest, blue wildebeest, 

African buffalo), non-ruminant grazers (plains zebra and Cape mountain zebra), ruminant mixed 

feeders (impala and eland) and non-ruminant mixed feeders (African elephant). Number of vegetation 

types represented the number of categories, as classified by (Mucina and Rutherford 2006), that 

were visited by the animals over that period determined by the location (GPS) points. Vegetation 

types visited were grouped into three categories: ≤2 vegetation types, 3 vegetation types and ≥4 

vegetation types.  

 

We were not able to use body size as an explanatory variable in the analysis because, with it 

included, the assumption of proportional odds was not met, as assessed by a full likelihood ratio test 

comparing the residual of the fitted location model to a model with varying location parameters 

                   . Larger bodied species however, normally have larger home ranges 

(Lindstedt et al. 1986), so we regressed the natural logarithm of species body mass against the 

natural logarithm of home range size, which indicated a significant positive correlation         

               when outliers were removed (identified using box-plots) (Figure 5.1). We were, 

therefore, able to use home range size as a proxy for body size because it was intrinsically 

connected. Home range size     was calculated as the minimum convex polygon in hectares using 

the ‘bounding containers’ tool in ArcGIS (ArcGIS Desktop: Release 10. Redlands, CA: Environmental 

Systems Research Institute) and divided into quartiles using IBM-SPSS Statistics 21 (SPSS Inc., 

Chicago IL). The resultant four home range groupings was ≤954 ha (small); 955-2524 ha (medium); 

2525-6348 ha (medium-to-large); and ≥6349 ha (large).  
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Figure 5.1: The regression line indicates a linear relationship between the natural logarithm of 
species body weight (kg) plotted against home range size (ha) for the species studied (R2 = 0.827; 
y=1.79+1.07*x). The reference lines separate the different home range size groupings used in our 
analysis. 
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The level of space use, or space use index      , independent variable was calculated as:  

      ⁄  

where   is nature reserve size in hectares. The space use index gives a relative value of how much 

of the space available to an individual animal was used (i.e how much the animal is 

contained/bounded by the boundaries/fences of the reserve relative to their home range). The closer 

to 1 this index was the more the animal used all the available space within the reserve.  

The level of space use variable was divided into quartiles using IBM-SPSS Statistics 21 (Armonk, 

NY: IBM Corp.). The resultant four space use groupings was ≤ 0.028 (low); 0.029-0.060 (medium); 

0.061-0.181 (medium-to-high); and ≥ 0.182 (high). 

 

5.4 DATA ANALYSIS 

Regarding step length, four frequency distributions were used to express this distribution for the data 

subsets: (a) exponential (Brownian motion); (b) power law (Lévy walk); c) truncated power law 

distributions (truncated Lévy walk); and (d) hyper exponential functions (composite Brownian walk) 

that are mixtures of two, three or four exponential distributions following the methodology of (Jansen 

et al. 2012) (Table 5.2). The lower truncation value was set to 6 m (see above). A model selection 

procedure based on the Akaike Information Criterion (AIC) was applied to compare the step length 

distributions (Jansen et al. 2012) (Figure 5.2 and Table 5.2). While one model may indeed be 

favoured over another, it might not be a suitable model (Edwards et al. 2012), so we used 

Kolmogorov-Smirnov (KS) goodness-of-fit tests and R2 values to test if the models were consistent 

with the data. The statistical tests were conducted using R (R-Development-Core-Team 2011). R-

codes for step length analysis are available from http://mathbio.bl.rhul.ac.uk/People/alla/r-code.  

 

A cumulative odds ordinal logistic regression with proportional odds was used to determine the effect 

of season, feeding niche, number of vegetation types, home range size, and fences on the number of 

movement scales (number of different exponential distributions within the same dataset) using IBM-

SPSS Statistics 21 (Armonk, NY: IBM Corp.).  

http://mathbio.bl.rhul.ac.uk/People/alla/r-code
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Table 5.2: Probability density function, inverse cumulative, Maximum Likelihood Estimate (MLE) and 
log-likelihood functions for exponential, power law, truncated power law and hyper-exponential (mix 
of exponentials) distributions (Jansen et al. 2012) used to model the movement data. 

 

Models Probability density 
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Inverse cumulative MLE or log-likelihood 
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Figure 5.2: Examples indicating the step length distributions with the four frequency distributions used 
to model step length distribution. The circles represent the inverse cumulative frequency of step 
length data. The curves represent Brownian motion, Lévy walk, a truncated Lévy walk, and a 
composite Brownian walk consisting of a mixture of two, three or four exponentials depending on 
which model was favoured. Models favoured in these examples are (A) Brownian walk with 2 

exponential distributions                               ; (B) Brownian walk with 3 
exponential distributions                                                 
         ; (C) Brownian walk with 4 exponential distributions              
                                                              . An 
individual result of an elephant, buffalo and red hartebeest are displayed in these examples. 
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For the movement scales, the ordinal dependent variable was number of exponential step-length 

distributions, i.e. movement scales (grouped as 1 and 2 movement scales; 3 movement scales and 4 

movement scales) derived from the step length distribution model which produced the best fit 

according to the Akaike weights and Kolmogorov-Smirnov goodness-of-fit tests (Addendum A). 

Individual datasets with one and two movement scales were combined due to the low number of 

movements with only one scale (n=6 from N=114). 

 

5.5 RESULTS  

We tested a total of 114 animal data subsets from eight species in eight reserves (Appendix B). For 

all the individual animals tested, the resulting Akaike weights mainly supported the composite 

Brownian motion step length distributions with one, two, three or four movement scales (Figure 5.3). 

For impala, red hartebeest, blue wildebeest and Cape mountain zebra, the resulting Akaike weights 

most supported the composite Brownian motion step length distributions with three or four movement 

scales (Figure 5.3). For eland, the resulting Akaike weights mainly supported the composite Brownian 

motion step length distributions with three or four movement scales in the dry season, but two and 

three movement scales in the wet season (Figure 5.3). For African buffalo, the Akaike weights mainly 

supported the composite Brownian motion step length distributions with three movement scales 

(Figure 5.3). For plains zebra, the resulting Akaike weights mainly supported the composite Brownian 

motion step length distributions with three or four movement scales in the wet season but two and 

three movement scales in the dry season (Figure 5.3). For African elephant, the Akaike weights 

mainly supported the composite Brownian motion step length distributions with three movement 

scales in the dry season and two in the wet season (Figure 5.3). 

 

The cumulative odds ordinal logistic regression with proportional odds test had the following results. 

Separate binomial logistic regressions indicated that there were proportional odds     

               , which meant that each independent variable had an identical effect at each 

cumulative division of the ordinal dependent variable, once body weight was removed (see methods). 

There was also no multicollinearity detected amongst the independent variables.  
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Figure 5.3: The step length distributions best describing movement patterns of the different species. 
The mean Akaike (AIC) weights of the frequency step length distributions of data subsets indicate 
which models Brownian motion; Lévy walk; truncated Lévy walk; or composite Brownian walks were 
favoured in different seasons (see Table 5.1 for sample sizes). 
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The deviance goodness-of-fit test indicated that the model was a good fit to the observed 

data                           , but a number of cells were sparse, with zero 

frequencies in 58.1% of cells. However, the final model significantly predicted the dependent variable 

over and above the intercept-only model                        . Overall, there was a 

lower number of movement scales for wet versus dry season (Table 5.3 and Figure 5.4). In general, 

the feeding type                             had a significant effect on the number of 

movement scales, but there was no significant effect on the number of vegetation types 

                          , home range size                           , or 

space use index                            on the number of movement scales (Figure 

5.4). For pairwise contrasts, we detected significantly more movement scales for non-ruminant 

grazers, ruminant grazers, and ruminant mixed feeders versus non-ruminant mixed feeders (Table 

5.3). There were fewer movement scales detected for ≤ 2 vegetation types versus ≥ 4 vegetation 

types (Table 5.3). A lower number of movement scales for medium-to-large home ranges versus the 

medium sized home range were also observed (Table 5.3 and Figure 5.1). There were more 

movement scales for medium-to-high space use indices versus the high space use indices (Table 

5.3).  

 

As non-ruminant mixed feeders were driving the odds ratios in the above analysis, we ran an 

additional ordinal regression analysis where these feeders were excluded from the model. This model 

also significantly predicted the dependent variable over and above the intercept-only model 

                       . In this case there was also a lower number of movement scales 

detected for wet versus dry season                      , but neither the feeding type 

(                         , the number of vegetation types             

              , home range size                           , nor space use index 

                           had any significant effect on the prediction of the scale of 

movement. 
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Table 5.3: The result of the cumulative odds ordinal logistic regression with pairwise comparisons indicating the effect of season, feeding type, home range size, 

and level of space use on the number of movement scales (         in bold indicate significant effects). 

 

Pairwise comparison B Std. Error Wald df p-value Lower 

Bound 

Upper 

Bound 

Exp B Lower Upper 

Wet season versus Dry season -1.121 0.409 7.501 1 0.006 -1.924 -0.319 0.326 0.146 0.727 

Non-ruminant grazer versus Non-ruminant 

mixed feeder 

4.008 1.274 9.895 1 0.002 1.511 6.505 55.016 4.529 668.266 

Non-ruminant grazer versus Ruminant mixed 

feeder 

-0.237 0.656 0.13 1 0.718 -1.522 1.049 0.789 0.218 2.856 

Nonruminent grazer versus Ruminant grazer -0.7 0.544 1.656 1 0.198 -1.766 0.366 0.497 0.171 1.442 

Ruminant grazer versus Non-ruminant mixed 

feeder 

4.708 1.26 13.951 1 <0.001 2.237 7.178 110.776 9.368 1309.959 

Ruminant grazer versus Ruminant mixed feeder 0.463 0.568 0.666 1 0.414 -0.649 1.576 1.589 0.522 4.835 

Ruminant mixed feeder versus Non-ruminant 

mixed feeder 

4.244 1.179 12.969 1 <0.001 1.934 6.554 69.698 6.919 702.055 

≤2 Vegetation types versus ≥4 Vegetation types -1.346 0.676 3.962 1 0.047 -2.672 -0.021 0.26 0.069 0.98 

3 Vegetation types versus ≤2 Vegetation types 0.911 0.496 3.379 1 0.066 -0.06 1.883 2.488 0.941 6.573 

3 Vegetation types versus ≥4 Vegetation types -0.435 0.712 0.374 1 0.541 -1.83 0.96 0.647 0.16 2.611 

Medium sized home range versus Large sized 

home range 

-0.561 1.082 0.268 1 0.604 -2.682 1.56 0.571 0.068 4.761 

Medium sized home range versus Small sized 

home range 

0.113 0.624 0.033 1 0.857 -1.111 1.336 1.119 0.329 3.805 
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Table 5.3 continued ……           

Pairwise comparison B Std. Error Wald df p-value Lower 

Bound 

Upper 

Bound 

Exp B Lower Upper 

Medium-to-large sized home range versus Large 

sized home range 

-1.776 1.022 3.022 1 0.082 -3.778 0.226 0.169 0.023 1.254 

Medium-to-large sized home range versus 

Medium sized home range 

-1.215 0.599 4.109 1 0.043 -2.39 -0.04 0.297 0.092 0.961 

Medium-to-large sized home range versus Small 

sized home range 

-1.102 0.63 3.057 1 0.08 -2.338 0.133 0.332 0.097 1.143 

Small sized home range versus Large sized 

home range 

-0.674 1.104 0.372 1 0.542 -2.837 1.49 0.51 0.059 4.438 

Low level of space use versus High level of 

space use 

1.272 0.685 3.442 1 0.064 -0.072 2.615 3.566 0.931 13.663 

Medium level of space use versus High level of 

space use 

1.191 0.677 3.097 1 0.078 -0.135 2.517 3.29 0.873 12.397 

Medium level of space use versus Low level of 

space use 

-0.081 0.573 0.02 1 0.888 -1.203 1.042 0.923 0.3 2.836 

Medium-to-high level of space use versus High 

level of space use 

1.37 0.649 4.454 1 0.035 0.098 2.642 3.934 1.103 14.038 

Medium-to-high level of space use versus Low 

level of space use 

0.098 0.6 0.027 1 0.87 -1.078 1.274 1.103 0.34 3.577 

Medium-to-high level of space use versus 

Medium level of space use 

0.179 0.594 0.09 1 0.764 -0.986 1.344 1.196 0.373 3.833 
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Figure 5.4: The effect of (A) season; (B) feeding type; (C) number of vegetation types; (D) home range size; and E) level of space use on the number of 
movement scales indicated by the percentage of data subsets which produced 1 and 2, 3 or 4 movement scales.  
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5.6 DISCUSSION 

A number of studies claim that Lévy walks are often encountered in animal movement (Viswanathan 

et al. 1996, Viswanathan et al. 1999, Ramos-Fernandez et al. 2003, de Knegt et al. 2007). However, 

several studies generated controversy because the accuracy of statistical methods that have been 

used to identify Lévy movement behaviour are questionable (Sims et al. 2007, Humphries et al. 2010, 

Edwards et al. 2012, Jansen et al. 2012). Our study showed that the dominant movement behaviour 

of the animals was Brownian motions, with one, or mixtures of a few, movement scales. This 

confirms more recent evidence that when rigorous statistical procedures are adhered to, the Lévy 

type movements in the animal world becomes an exception rather than the rule (Benhamou 2007, 

Edwards et al. 2007, Edwards et al. 2012, Jansen et al. 2012). It also supports the simulations in 

other studies (Benhamou 2007) that, showed that, in heterogeneous landscapes, Brownian walks at 

two- or more different movement scales, i.e. small-scale area-restricted searches (within suitable 

forage areas) combined with large movements (between forage areas), could be used as an optimal 

strategy to search for habitat patches. However, our study indicated that the complexity in movement 

scales, were even larger, with multi-scale small area restricted searches (indicating forage item 

patchiness), mixed with multi-scale large movements (indicating levels of forage suitability in lower 

quality habitats when moving between high quality habitat patches and movements to water 

resources).  

 

Regarding the hypothesis that the animals would show more movement scales during the dry season 

versus the wet season, the results indicated that seasonality was an important factor driving the 

number of movement scales for the large herbivores tested during this study. Spatial variation in the 

African landscape results in a heterogeneous distribution of resources that are influenced by rainfall 

and temperature along seasonal cycles (Funston et al. 1994, Cornélis et al. 2011, Birkett et al. 2012). 

In many cases, large herbivores select different habitats and show different movement patterns 

during times of low versus high resource availability (Ager et al. 2003, Venter and Watson 2008, 

Cornélis et al. 2011, Birkett et al. 2012). This is because they become nutritionally stressed during 

the dry season when both forage quality and quantity are reduced (Prins 1996). In addition, surface 

water sources can dry up, which influences the trade-off foragers face between nutritional 

requirements and surface-water constraints when forage quantity is reduced (Redfern et al. 2003). 
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Forage quality and quantity are most affected near water sources because animals tend to 

congregate in these areas due to water dependency (Redfern et al. 2003). The reduced forage 

quantities during dry years forces large herbivores to travel further from water sources to meet their 

nutritional requirements (Redfern et al. 2003, Venter and Watson 2008). The fact that, in general 

there were fewer movement scales detected in the wet season versus the dry season suggest that 

when animals were forced to trade-off forage quality and quantity during the dry season (Redfern et 

al. 2006), when they moved further between forage areas and water sources in order to satisfy their 

forage requirements (Venter and Watson 2008). This could have resulted in the decrease in the 

number of movement scales that was observed. The effect of water availability on movement scale 

should, however, be further investigated using finer-scale movement data. 

 

Regarding the hypothesis that animals with different morphological traits (feeding type and digestive 

system) would have different number of movement scales, the study found that non-ruminant mixed 

feeders (elephant) generally had a lower number of movement scales, compared to all the other 

feeding types. Elephants concentrate their foraging within areas of high forage availability that are 

sufficiently close to water and large enough to optimize the efficiency of foraging (De Knegt et al. 

2011). Surface-water is a strong determinant of elephant space use, and may take precedence over 

the role that landscape heterogeneity plays in their movement (de Beer and van Aarde 2008, De 

Knegt et al. 2011). Elephants are also able to change their diet from graze to browse in times with 

low resource availability (de Boer et al. 2000, Codron et al. 2006, Shannon et al. 2013), which 

enabled them to stay closer to water resources compared to grazers, hence the observed difference 

found in this study. This poses the question as to why there was such a difference between elephants 

and the ruminant mixed feeders, i.e. eland and impala,  as the diet switching has been observed for 

both species elsewhere (Watson and Owen-Smith 2000, Codron et al. 2006). It is possible that the 

difference between elephant versus eland and impala could be related to interspecific competition 

and availability of browse for browsers at specific heights. There is considerable interspecific 

competition amongst smaller browsers for forage that gives the taller browsers (elephants) the 

advantage of feeding at heights where there is less interspecific competition (Cameron and du Toit 

2007), and thus lower levels of depletion effects, except in cases where there is heavy intraspecific 

competition (Chamaille-Jammes et al. 2007, Chamaillé-Jammes et al. 2008). It is thus possible that 
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eland and impala could, therefore, show similar movement scales to the grazers (more movement 

scales) due to the effect of higher interspecific competition, leading to forage quantity depletion at 

lower levels in the browse layer, which are similar to a depletion effect in the grass layer. This study 

does not provide clear evidence for this type of interspecific competition effect, but rather highlights it 

as a possible hypothesis for future research. 

 

The weak results from testing for differences between the feeding types other than elephant could 

have been affected by the time interval of our telemetry data. This problem has been identified in 

other studies (Ager et al. 2003). The smaller ungulates might be exhibiting a finer scale of movement 

behaviour which the two hour interval frequency of the current data was not able to detect. A higher 

interval frequency of sampling might be required to detect all movement scales in order to efficiently 

compare differences amongst the smaller ungulates (ruminant grazers, ruminant mixed feeders and 

non-ruminant grazers), and testing this hypothesis probably requires a higher temporal resolution of 

the data.  

 

Regarding the hypothesis that animals will have fewer movement scales in areas with lower 

vegetation heterogeneity, the results confirmed a lower number of movement scales were there were 

fewer vegetation types. Large herbivores exhibit distinct scales in movement that are in many cases 

related to habitat heterogeneity (Redfern et al. 2003, Frair et al. 2005). More movement scales would 

be expected as herbivores move through a mosaic of vegetation patches of variable suitability (more 

heterogeneous) compared to more homogeneous vegetation. In this study while vegetation 

heterogeneity would appear to have had an effect on number of movement scales, the relationship 

was not strong. We used broad landscape scale vegetation types (Mucina and Rutherford 2006) as 

there was a lack of a finer scale standardized habitat maps for all the reserves. A stronger 

relationship might be detected if a finer scale habitat map and higher interval frequency movement 

data were used.  
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The hypothesis that species with larger home ranges, which we confirmed are also larger species 

(Lindstedt et al. 1986, du Toit 1990), will have fewer movement scales was partially supported by this 

study. Because larger herbivores feed at a courser grain scale (Prins and Van Langevelde 2008a), 

we expected them to have fewer movement scales because they interact with their habitat in a less 

complex manner. However, the results did not convincingly support our hypothesis, because animals 

with large home ranges were equal in movement scale to those animals with smaller home range 

sizes. The number of movement scales difference between animals with medium-to-large home 

ranges versus animals with medium sized home ranges seemed to be driven by the larger species, 

such as eland and African buffalo, generally having two or three movement scales, which occurred 

mainly in the medium-to-large home range size grouping. Other species, such as blue wildebeest, 

red hartebeest, plans zebra and Cape mountain zebra which are considered medium sized grazers, 

grouped in both the medium-to-large and the medium sized home ranges, and generally moved with 

a wider (2, 3 and 4) number of movement scales.  

 

The hypothesis that species which are more restricted by fences would have fewer movement scales 

was confirmed by this study. Because large migratory movements are limited by fences (Boone and 

Hobbs 2004, Loarie et al. 2009, Naidoo et al. 2012) we expected species to have fewer movement 

scales because of this restriction. This result has significant implications for protected area 

management, as it shows that an important part of these species natural ecological processes, i.e. 

the migratory process and extensive ranging behaviour, is prevented from functioning as it should 

(Shannon et al. 2006). The implication is that large herbivores that were able to migrate and/or range 

further, as seasonal forage changes took place, in order to make use of the suitable forage resources 

in the broader landscape, are now not able to do this. This in turn increases pressure on local forage 

resources that could result in unnatural overgrazing (Shannon et al. 2006, de Beer and van Aarde 

2008).  

 

Identifying movement scale determinants of large herbivores can benefit their management and 

conservation, as it allows an understanding of herbivore species spatial dynamics, impacts, and 

associated ecological processes. Scales are defined by rates of foraging and ecosystem processes, 
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while boundaries between units, at each scale, are defined by animal behaviour (Senft et al. 1987a). 

The movement data used in the analysis were over relatively short time periods, and did not include 

year to year changes or major changes over a lifetime. Regardless of this, the results indicate that 

large herbivore movement behaviour is complex in scale which has important implications for 

conservation management in protected areas (Coe et al. 1976, Cumming et al. 2010, Delsink et al. 

2013). In order for managers to effectively manage protected areas and associated biodiversity they 

need take cognisance of the different scales animals operate under. This should be followed by 

implementation of management action at appropriate scales to prevent scale mismatch (Cumming et 

al. 2010, Delsink et al. 2013). 

 

5.7 CONCLUSION 

Our results suggest that intrinsic factors such as large herbivore traits, and extrinsic factors such as, 

surface water, vegetation heterogeneity, interspecific competition and fences potentially influence the 

scales at which animals move. Large herbivores deal with limitations in nutritional requirements 

during low resource times by adapting their movement behaviour, thereby incurring an increased cost 

of traveling to-and-from water sources in order to satisfy their nutritional requirements (Prins 1996). 

Anthropogenic influences caused by management actions, for example construction of artificial water 

holes and fences, have an effect on animal movement that could have significant impacts on 

ecosystems in protected areas (Redfern et al. 2003, de Beer and van Aarde 2008). Protected area 

managers should thus be aware of scale complexity in animal movement in order to initiate 

appropriate conservation management action. 
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Chapter 6: Large grazing herbivores do not use 

visual cues to find forage patches at a habitat 

patch scale 
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ABSTRACT 

Understanding the ecology of large herbivores is conceptually complex, but important for their 

conservation and management. Finding suitable forage patches in a heterogeneous landscape, 

where patches change dynamically both spatially and temporally, could be challenging to large 

herbivores, especially if they have no a priori knowledge of the location of the patches. We tested 

whether three large grazing herbivores with a variety of different traits, improve their efficiency when 

foraging at a heterogeneous habitat patch scale, by using visual cues to gain a priori knowledge 

about potential higher value foraging patches. For each species (zebra (Equus burchelli), red 

hartebeest (Alcelaphus buselaphus subspecies camaa) and eland (Tragelaphus oryx)), we used 

Brownian motions, Lévy walks, truncated Lévy walks and composite Brownian walks to model step 

length distribution for three “visibility of patch” classes. The visibility classes were moving within the 

same patch, to a different, visible patch, and to a patch not visible from the current patch. All three 

species favoured Brownian motion models with two or more exponential distributions (composite 

Brownian movement behaviour) for all three visibility classes, and only a small proportion of their 

movements were directional regardless of the visibility class. Step lengths were significantly longer 

for all species when moving to non-visible patches. These large grazing herbivores did not use visual 

cues when foraging at a habitat patch scale, but rather adapted their movement behaviour to the 

heterogeneity of the specific landscape.  In addition, as composite Brownian movement behaviour 

best explained movement strategies, complexity in scale of large herbivore movement have the 

potential to explain movement behaviour in relation to species’ intrinsic traits such as body size, 

feeding type, digestive strategy and muzzle width. 
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6.1 INTRODUCTION 

Large herbivores may use a range of behaviours to enhance their foraging efficiency (Beekman and 

Prins 1989, Bailey et al. 1996). However, finding a forage patch in a heterogeneous landscape where 

patches differ in suitability poses a challenge, especially if individuals have no a priori knowledge of 

the location of the most suitable patches (Senft et al. 1987a, Bailey et al. 1996, Prins 1996). Large 

herbivores may gain a priori knowledge using memory (from a previous visit to the patch) (Edwards 

et al. 1996, Dumont and Petit 1998, Fortin 2003, Brooks and Harris 2008) or through visual cues 

(Edwards et al. 1997, Howery et al. 2000, Renken et al. 2008). If the forage resource is complex 

(e.g., when forage patches are not well defined), or the distribution of the forage patches are likely to 

change continuously (e.g., when a patch is grazed or the grass sward becomes unpalatable due to 

ageing), then recalling the location of forage patches may be of limited value (Edwards et al. 1997).  

In such situations, heterogeneous in both space and time, the ability to recognise and assess 

different forage patches at a distance through visual cues, would promote foraging success (Edwards 

et al. 1997). A number of studies have linked movement patterns to the use of memory (Dumont and 

Petit 1998, Ramos-Fernandez et al. 2003, Brooks and Harris 2008), or use of visual cues at a finer 

scale (e.g. bite, feeding station and food patch scale) (Laca 1998, Howery et al. 2000, Hewitson et al. 

2005) by large herbivores to locate or revisit suitable forage patches. However, no one has tested if 

large herbivores use visual cues to find forage patches at a broader habitat patch scale.  

 

Animal movements consist of a discrete series of displacements (i.e. step lengths) separated by 

successive re-orientation events (i.e., turning angles) (Bartumeus et al. 2005). Forage and search 

behaviour have been described using two different types of random movement behaviours, namely: 

random walks (Brownian motion) and Lévy walks (Viswanathan et al. 1996, Viswanathan et al. 1999, 

Bartumeus et al. 2005, Edwards et al. 2007).  Random walks reflect essentially similar steps (on the 

same spatial scale) separated by orientation and changing turn angles (Viswanathan et al. 1999). 

Lévy walks reflect clusters of shorter steps that are connected by rare large steps (Edwards et al. 

2012).  Lévy walkers can outperform (i.e., search efficiency) Brownian random walkers as they revisit 

patches far less often, and because the larger steps potentially increase the probability of finding new 

patches (Viswanathan et al. 1999, Raposo et al. 2009, Viswanathan 2010).  
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More recently, the composite Brownian motion emerged as a strong alternative model to the Lévy 

walks (Benhamou 2007, de Jager et al. 2011, Schultheiss and Cheng 2011, Jansen et al. 2012, 

Reynolds 2013), whereby animals switch between two or more Brownian walks, each characterised 

by an exponential step-length distribution (Jansen et al. 2012, Reynolds 2013).  In heterogeneous 

environments, Brownian walks at two different scales (composite Brownian motions), for example a 

small-scale area-restricted search (within patches) mixed with a set of large movements (between 

patches), can be close to optimal foraging movement behaviour (Benhamou 2007). The composite 

Brownian walk closely resembles a Lévy motion, and could be considered as more efficient than 

ordinary Brownian motions (Schultheiss and Cheng 2011, Reynolds 2013).  

 

We tested whether three grazing herbivore species, with a variety of traits (body size, feeding type, 

digestive strategy and muzzle width) use visual cues when foraging at the habitat patch scale. By 

habitat patch scale, we mean a daily range at a 10 hour temporal scale while feeding, walking, 

drinking, resting with movement within and between habitats as adapted from Owen-Smith (2010) 

and Bailey et al., (1996). We did this by developing and testing predictions based on movement path 

shape, directionality and step length under three patch visibility classes (Table 6.1). In particular, we 

expected directional movement to visible patches, random (Brownian) movement within the same 

patch and Lévy motion when moving to non-visible patches. Demonstrating a difference between 

movement behaviour in response to visible versus invisible habitat patches, would enable an 

understanding of the importance of visual cues to large herbivores when moving between patches at 

a habitat patch scale.   
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Table 6.1: Predictions and observations in assessing whether visual cues are used in habitat scale 
movement/search strategies of zebra, red hartebeest and eland across three different patch visibility 
classes.  

 

Visibility class Movement path shape Directionality Step length 

Predicted Observed Predicted Observed Predicted Observed 

Movement 

within a visible 

patch 

Brownian 

motion 

Composite 

Brownian 

motion 

Random Random Short, 

variable 

length 

Short, 

variable 

length 

Movement to 

visible patch 

Straight line Composite 

Brownian 

motion 

Very 

directional 

Random Long, 

constant 

length 

Short, 

variable 

length 

Movement to a 

patch not 

visible 

Lévy motion Composite 

Brownian 

motion 

Very non-

directional 

Random Variable 

length 

Long, 

variable 

length 
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6.2 STUDY AREA 

Mkambati Nature Reserve is a 77 km2 provincial nature reserve situated on the east coast of the 

Eastern Cape Province, South Africa (31˚13’-31˚20’S and 29˚55’-30˚04’E). The climate is mild sub-

tropical with a relatively high humidity (de Villiers and Costello 2013). The coastal location, adjacent 

to the warm Agulhas Current, causes minimal variation in mean daily temperatures (18 ˚C winter and 

22 ˚C summer) (de Villiers and Costello 2013). The average rainfall is 1 200 mm, with most 

precipitation in spring and summer (September - February) (Shackleton 1990). The high rainfall, mild 

temperatures, and presence of abundant streams and wetlands, results in a landscape that is not 

water limited in any season. Forests occur in small patches (mostly in fire refuge areas), and wetland 

habitats are abundant. More than 80% of Mkambati consists of Pondoland–Natal Sandstone Coastal 

Sourveld grassland (Mucina et al. 2006d). Mkambati contains a range of large herbivore species, but 

no large predators (Venter et al. 2014b). 

 

The grassland is considered to be nutrient poor (Shackleton et al. 1991, Shackleton and Mentis 

1992). Grassland fire stimulates temporary regrowth high in crude protein (8.6% compared to 4.6%, 

in older grassland), phosphorus concentrations (0.1% compared to 0.05%, in older grassland) and 

dry matter digestibility (38.6% compared to 27.1%, in older grassland) (Shackleton 1989). Nutrient 

concentrations remain elevated for up to 6 months post-burn, after which they are comparable to 

surrounding, unburnt grassland (Shackleton and Mentis 1992). Frequent fires cause a landscape 

mosaic of nutrient-rich burnt patches within a matrix of older, moribund grassland. This landscape is 

thus continuously changing due to new fires that are set and the maturing process of the grassland. 

Recalling the location of grazing forage patches (using memory) would in this case be of limited value 

which enabled us to test predictions of movement behaviour relative to visibility of forage patches. 

 

6.3 METHODS 

Five plains zebra (Equus burchelli), six red hartebeest (Alcelaphus buselaphus subspecies camaa) 

and five eland (Tragelaphus oryx) were fitted with GPS-UHF collars (Africa Wildlife Tracking CC., 

Pretoria, RSA) between September 2008 and July 2012. All animals were darted by an experienced 

wildlife veterinarian from a Robinson 44 helicopter. The work was approved by, and conducted in 
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strict accordance with the recommendations in the approved standard protocols of, the Animal Ethics 

Sub-committee of the University of KwaZulu-Natal. All field work was conducted by, or under the 

supervision of the first author, a staff member of the Eastern Cape Parks and Tourism Agency, as 

part of the operational activities of the appointed management authority of Mkambati (Eastern Cape 

Parks and Tourism Agency Act no. 2 of 2010, Eastern Cape Province, South Africa). The zebra and 

red hartebeest were in separate harems or herds when they were collared, but some eland were in 

the same herd. The collars were set to take a GPS reading every 30 min, and data were downloaded 

via UHF radio signal. The collars remained functional between 4 and 16 months depending on 

various factors, including loss of animals to poaching, natural mortality, or malfunctioning. Data 

downloaded from the collars were converted to geographical information system (GIS) format and 

sections of the data sets with missing values were removed and not used in the analysis.  

 

Step lengths were calculated for each walk using the Hawths Analysis Tools extension (Beyer 2007) 

to ArcGIS (ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute). 

“Walks” were extracted per species (Eland      ; Red hartebeest      ; Plains zebra 

     ). A “walk” consisted of 20 consecutive steps which constituted 10 hours of movement 

behaviour during daylight hours (6:00AM to 6:00PM)(Figure 6.1). Ten hours of movement 

represented movement between patches at a habitat patch scale as adapted from (Bailey et al. 1996) 

and (Owen-Smith et al. 2010). To confirm whether ten hours of movement were indeed within a 

realistic distance range for the habitat patch scale in ours situation, we calculated and compared the 

mean distance between patches as well as mean animal “walk” distances per species. Starting points 

were randomly selected, with the visibility from the starting point of each walk being determined using 

the “viewshed analysis tool” in the Spatial Analyst extension of ArcGIS (ArcGIS Desktop: Release 10. 

Redlands, CA: Environmental Systems Research Institute). This resulted in a grid map (raster) layer 

that  indicated all areas that were visible and not visible to the animal from that specific point at its 

shoulder height (female shoulder height: eland   ̅          (Posselt 1963); red hartebeest 

 ̅          (Stuart and Stuart 2007); plains zebra  ̅          (Skinner and Chimimba 

2005))(Figure 6.1). The end point was classified as the patch where the animal spent the majority 

(≥50%) of the final 3 h (6 locations) of the “walk” (Figure 6.1).  
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Figure 6.1: An example of a 10 hour “walk” extracted from the data from the departure point 
(indicated by “Start”) to where the animal ended (indicated by “End”). Here the animal spent the 
majority of the last three hours of its “walk” in an area which was not visible from the starting point 
(indicated by grey). The striped area indicates a recent fire patch. 
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All patches in the landscape were allocated a unique number, and classified as either burnt grassland 

(fire patches) or unburnt grassland (unburnt patches) (Figure 6.1). The location of the fire patches 

were recorded by field rangers between January 2007 and July 2012, and later digitally defined on 

maps using ArcGIS. Each GPS locality along a “walk” was linked to a patch classification using the 

Spatial Analyst extension of ArcGIS (ArcGIS Desktop: Release 10. Redlands, CA: Environmental 

Systems Research Institute) (see Figure 2.2). All unburnt areas (areas that were never noted as 

burnt between January 2007 and July 2012) were considered as one unburnt patch, and was given 

the same unique identification number. The “walks” were then classified into three different classes 

according to the patch visibility, a movement: (a) to within the same patch where the departure point 

is located; (b) to a new patch that was visible from the departure point; and (c) to a new patch not 

visible from the departure point. All step lengths < 6 m were excluded during analysis in order to 

remove non-movements, as well as false movements due to GPS-error. 

 

6.4 DATA ANALYSIS 

We tested whether there was excessive variability amongst individual animal step lengths, which 

could potentially influence the step length models, by comparing mean walk distance for different 

species and visibility classes using separate ANOVA’s.   

 

Four frequency distributions were used to model step length distribution for the three different 

visibility outcome classes of each species: (a) exponential (Brownian motion); (b) power law (Lévy 

walk); (c) truncated power law distributions (truncated Lévy walk); and (d) hyper exponential functions 

(composite Brownian walk) which is a combination of two, three or four exponential distributions 

following the methodology of Jansen et al. (2012) (Table 5.2). The lower truncation value of the 

models were specified as the smallest value in the data sets (which was set to 6 m, see above). The 

unique likelihood functions of the respective probability distributions were used to find the maximum 

likelihood estimates for the parameters, which were used to plot the distributions and compute Akaike 

Information Criterion (AIC) weights to compare models  (Jansen et al. 2012) (Table 5.2). Although 

one model may indeed be favoured over another, it may not be a suitable model (Edwards et al. 

2012), and the Kolmogorov-Smirnov (KS) goodness-of-fit tests and R2 values were therefore used to 
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test if the models were consistent with the data. The statistical tests were conducted using R (R-

Development-Core-Team 2011), with R-codes for step length analysis being available from 

http://mathbio.bl.rhul.ac.uk/People/alla/r-code. 

 

Besides the shape of the walk, we further contrasted directionality (concentration of turning angles) 

and step lengths between the three visibility classes. We used the Rayleigh test of circular uniformity 

from CircSTats package in R (R-Development-Core-Team 2011) to calculate the mean resultant 

length   for each individual “walk”. This parameter   provided a measure of concentration of turning 

angles that falls in the interval [0, 1](Duffy et al. 2011). When   is close to 1, data are highly 

concentrated in one direction, and when it is close to 0 data are widely dispersed (Duffy et al. 2011). 

Rayleigh test provides p-values associated with   to test whether it was reasonable to reject angle 

uniformity. When       and the   value indicated significance        , walks were considered 

to be concentrated in one direction (directional). We compared mean step lengths for the different 

visibility class for each species with ANOVA and post-hoc Tukey tests using R (R-Development-

Core-Team 2011). 

  

6.5 RESULTS 

A visual comparison of an error bar plot confirmed that the mean distance between patches   ̅  

          as well as mean animal “walk” distances for the different species (Eland  ̅  

         ; Red hartebeest  ̅           ; Zebra  ̅           ) was within a 

realistic distance range, reflecting movements at a habitat patch scale, as adapted from Bailey et al. 

(1996) and Owen-Smith et al. (2010)  (Figure 6.2). There was little variability in mean walk lengths 

amongst individuals and visibility classes for the different species (Table 6.1). We were thus confident 

that individual step length variability would not have a significant influence on the step length models.   
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Figure 6.2: The mean distance between patches as well as mean animal “walk” distances per 
species indicating that ten hours of movement were within a realistic distance range. Horizontal bars 
indicate ±SD. 
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Table 6.2: Individual ANOVA test results indicate limited variability of mean walk length of individuals 

of different species in the different visibility classes. The only significant results is that of red 

hartebeest in the ‘within visible’ class and zebra in the ‘to not visible’ class. 

 

Visibility class df F-value P-value 

Eland    

to not visible 4;156 0.612 0.654 

to visible 4; 28 0.213 0.929 

within visible 4;110 2.221 0.071 

Red hartebeest    

to not visible 5;128 1.928 0.094 

to visible 4;23 1.897 0.145 

within visible 5;121 3.189 0.010 

Zebra    

to not visible 4;136 3.402 0.011 

to visible 3; 13 2.516 0.104 

within visible 4;114 1.763 0.141 
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A composite Brownian motion was the best description of movement for all three species for each of 

the three visibility classes (Table 6.1 and Figure 6.3). For eland, the resulting AIC weights most 

supported the composite Brownian motion with three exponential distributions for movement to 

patches not visible to them, and the composite Brownian motion with two exponential distributions for 

movements by eland to visible, and within visible patches. Red hartebeest movement to patches not 

visible to them, as well as movement within visible patches, were most supported by the composite 

Brownian motion with four exponential distributions. Movements by the hartebeest to visible patches 

were most supported by the composite Brownian motion with three exponential distributions.  

 

For zebra, movement to patches not visible to them was best described by the composite Brownian 

motion with four exponential distributions. Movements by zebra to, and within, visible patches were 

most supported by the composite Brownian motion with three exponential distributions. In each case 

the fit of the preferred model to the data was confirmed by Kolmogorov-Smirnov goodness-of-fit tests 

(Figure 6.4 and Table 6.4). For eland and zebra, movements were more complex (happened at more 

spatial scales) to patches not visible compared to those that were visible (Table 6.3).  

 

For all visibility classes, eland movements happened at fewer spatial scales compared to hartebeest 

and zebra (Table 6.3). In the absence of the composite Brownian motion models, the truncated Lévy 

walk models best described all three visibility classes for hartebeest, as well as for movement to not 

visible patches and within the same patch class for zebra (Table D1 in online supplementary 

information). However, the truncated Lévy walk models were not supported by the goodness-of-fit 

tests, with a         in all these cases except for the hartebeest to visible patches class, where 

there was still a much stronger support for a composite Brownian motion model (Table 6.4).  

 

A low proportion of walks for eland (7% to not visible; 0% to visible; and 5% within visible) and 

hartebeest (6% to not visible; 3% to visible; and 8% within visible) in each visibility class were 

directional         (Figure 6.4). Zebra had a higher proportion of directional walks (12% to not 

visible; 17% to visible; and 17% within visible) compared to eland and hartebeest (Figure 6.4). For 
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mean step lengths, the effect of visibility class was highly significant both for pooled species data 

(                   )  for separate species(                   ), and for the 

interaction between visibility class and species                      (Figure 6.5).  

  

For all three species, step lengths in the “within visible” and “to visible” classes were of similar length 

                     , but the step lengths for both these categories were significantly shorter 

than step lengths to “not visible” classes          . Zebra had significantly longer step lengths 

compared to the two antelope species          , and the difference between eland and 

hartebeest were smaller            (Figure 6.5). The longer step lengths for the movement to 

the non-visible class held for all the species when they were tested independently (Zebra: to visible 

vs not visible        ; within visible vs not visible        ; Eland: to visible vs not visible 

       ; within visible vs not visible        ; and  Hartebeest: to visible vs not visible 

       ; within visible vs not visible        ) (Figure 6.5).  

 

Differences among species within visibility classes were not uniform. Zebra had significantly longer 

step lengths than hartebeest in all visibility classes                                       

                             , but zebra only had significantly longer step lengths than eland 

in the “not visible” class          (Figure 6.5). Hartebeest had significantly shorter step lengths 

than eland in the “within visible” class           and almost significantly shorter in than eland the 

“to visible” class            (Figure 6.5). 
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Figure 6.3: The actual step length distribution for eland, hartebeest and zebra movement with four 
frequency distributions to model step length distribution for the three different visibility outcome 
classes of each species. The circles represent the inverse cumulative frequency of step length data. 
The curves represent Brownian motion, Lévy walk, a truncated Lévy walk, and a composite Brownian 
walk consisting of a mixture of two, three or four exponentials depending on which model best-fit the 
data. 
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Table 6.3: The number of spatial scales at which movement took place for eland, red hartebeest and 
zebra, derived from the composite Brownian walks indicating complexity in spatial scales (see also 
Table 6.4 for statistical results). 

 

Species Movement class 

Movement within 

visible patch 

Movement to a visible 

patch 

Movement to a patch 

not visible 

Eland 2 spatial scales 2 spatial scales 3 spatial scales 

Red hartebeest 4 spatial scales 3 spatial scales 4 spatial scales 

Zebra 3 spatial scales 3 spatial scales 4 spatial scales 
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Table 6.4: The best-fit parameters, maximum log-likelihood, Akaike weights, Kolmogorov-Smirnov goodness-of-fit and r2 values for fitting 
exponential, power law, truncated power law and mixtures of exponentials to the step length distribution for eland, red hartebeest and zebra from 
Mkambati Nature Reserve. 

Species and 
movement 

n Models Parameters MLL AIC AIC Weight KS- test r² 

  
          D-statistic P-value   

Eland - to not 
visible 

2901 

Exponential (Brownian walk)  λ = 0.005 -18493.36 36988.73 0.0000 0.0807 <0.0001 0.9962 

Power law (Lévy walk) µ = 1.342 -19708.08 39418.16 0.0000 0.2585 <0.0001 0.8340 

Truncated power law (Lévy 
walk)  

µ = 1.100 -19095.68 38193.37 0.0000 0.1699 <0.0001 0.9325 

Mix of two exponentials 
(composite Brownian 
motion) 

p = 0.088; λ1 = 0.225; λ2 = 0.004 -18330.21 36666.42 0.0000 0.0283 0.1968 0.9991 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.083; p2 = 0.022; λ1 = 
0.248; λ2 = 0.001; λ3 = 0.005 

-18313.46 36636.92 0.8800 0.0217 0.5008 0.9991 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.084; p2 = 3.6x10
-9

; p3 = 
0.746; λ1 = 0.020; λ2 = 0.237; λ3 
= 0.005; λ4 = 0.002 

-18313.45 36640.90 0.1200 0.0217 0.5008 0.9992 

Eland - to visible 585 

Exponential (Brownian walk)  λ = 0.006 -3575.82 7153.64 0.0000 0.1060 0.0028 0.9934 

Power law (Lévy walk) µ = 1.370 -3799.68 7601.37 0.0000 0.2359 <0.0001 0.8578 

Truncated power law (Lévy 
walk)  

µ = 1.100 -3609.01 7220.02 0.0000 0.1726 <0.0001 0.9478 

Mix of two exponentials 
(composite Brownian 
motion) 

p = 0.137; λ1 = 0.128; λ2 = 0.005 -3539.25 7084.49 0.8668 0.0325 0.9172 0.9989 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.137; p2 = 0.082; λ1 = 
0.128; λ2 = 0.005; λ3 = 0.005 

-3539.25 7088.49 0.1173 0.0325 0.9172 0.9989 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.136; p2 = 0.082 p3 = 0.183  
λ1 = 0.128  λ2 = 0.005  λ3 = 0.005  
λ4 = 0.005 

-3539.25 7092.49 0.0159 0.0325 0.9172 0.9989 
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Table 6.4 continued…..        

Species and 
movement 

n Models Parameters MLL AIC AIC Weight KS- test r² 

  
    

   
D-statistic P-value 

 

Eland - within 
visible 

1978 

Exponential (Brownian walk)  λ = 0.006 -12108.87 24219.75 0.0000 0.0935 <0.0001 0.9956 

Power law (Lévy walk) µ = 1.368 -12875.41 25752.81 0.0000 0.2452 <0.0001 0.8579 

Truncated power law (Lévy 
walk)  

µ = 1.100 -12307.24 24616.48 0.0000 0.1562 <0.0001 0.9502 

Mix of two exponentials 
(composite Brownian 
motion) 

p = 0.120; λ1 = 0.136; λ2 = 0.005 -12004.46 24014.91 0.8592 0.0142 0.9889 0.9997 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.119; p2 = 0.096; λ1 = 
0.138; λ2 = 0.004; λ3 = 0.005 

-12004.43 24018.87 0.1190 0.0137 0.9928 0.9998 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.103; p2 = 0.034; p3 = 
0.304; λ1 = 0.158; λ2 = 1.030; λ3 
= 0.005; λ4 = 0.005 

-12004.13 24022.26 0.0218 0.0131 0.9956 0.9998 

Hartebeest - to 
not visible 

2213 

Exponential (Brownian walk)  λ = 0.005 -13935.15 27872.29 0.0000 0.2291 <0.0001 0.9425 

Power law (Lévy walk) µ = 1.411 -13545.73 27093.47 0.0000 0.1645 <0.0001 0.9349 

Truncated power law (Lévy 
walk)  

µ = 1.262 -13328.17 26658.33 0.0000 0.0944 <0.0001 0.9709 

Mix of two exponentials 
(composite Brownian 
motion) 

p = 0.710; λ1 = 0.017; λ2 = 0.002 -13316.05 26638.10 0.0000 0.1012 <0.0001 0.9887 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.220; p2 = 0.664; λ1 = 
0.132; λ2 = 0.008; λ3 = 0.001 

-13122.11 26254.22 0.2051 0.0230 0.5993 0.9997 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.209; p2 =  0.097; p3 = 
0.574; λ1 =  0.139; λ2 =  0.016; λ3 
= 0.007; λ4 = 0.001 

-13120.77 26251.54 0.7949 0.0226 0.6245 0.9997 
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Table 6.4 continued……..        

Species and 
movement 

n Models Parameters MLL AIC AIC Weight KS- test r² 

  
    

   
D-statistic P-value 

 

Hartebeest - to 
visible 

493 

Exponential (Brownian walk)  λ = 0.008 -2900.50 5803.00 0.0000 0.2170 <0.0001 0.9558 

Power law (Lévy walk) µ = 1.452 -2860.38 5722.76 0.0000 0.1521 <0.0001 0.9425 

Truncated power law (Lévy 
walk)  

µ = 1.232 -2792.53 5587.05 0.0000 0.0669 0.2193 0.9851 

Mix of two exponentials 
(composite Brownian 
motion) 

p = 0.362; λ1 = 0.089; λ2 = 0.005 -2783.51 5573.02 0.0000 0.0467 0.6567 0.9953 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.151; p2 =  0.485; λ1 = 
0.383; λ2 = 0.004; λ3 = 0.026 

-2769.86 5549.73 0.8808 0.0264 0.9955 0.9987 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.150; p2 = 5.3x10
-5

; p3 = 
0.486; λ1 = 0.384; λ2 = 0.383; λ3 
= 0.004; λ4 = 0.026 

-2769.86 5553.73 0.1192 0.0640 0.9955 0.9987 

Hartebeest - 
within visible 

1949 

Exponential (Brownian walk)  λ = 0.009 -11171.18 22344.35 0.0000 0.1591 <0.0001 0.9776 

Power law (Lévy walk) µ = 1.450 -11339.83 22681.67 0.0000 0.1724 <0.0001 0.9282 

Truncated power law (Lévy 
walk)  

µ = 1.246 -11092.93 22187.86 0.0000 0.0965 <0.0001 0.9739 

Mix of two exponentials 
(composite Brownian 
motion) 

p = 0.289; λ1 = 0.087; λ2 = 0.006 -10921.14 21848.28 0.0000 0.0369 0.1399 0.9979 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.209; p2 = 0.147; λ1 =  
0.134; λ2 = 0.003; λ3 = 0.010 

-10888.65 21787.29 0.3021 0.0210 0.7816 0.9996 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.170; p2 =  0.055; p3 = 
0.485; λ1 = 0.173; λ2 = 0.002; λ3 
=  0.007; λ4 = 0.017 

-10885.81 21785.62 0.6979 0.0185 0.8937 0.9997 
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Table 6.4 continued……..        

Species and 
movement 

n Models Parameters MLL AIC AIC Weight KS- test r² 

  
    

   
D-statistic P-value 

 

Zebra - to not 
visible 

2713 

Exponential (Brownian walk)  λ = 0.003 -18383.14 36768.27 0.0000 0.2610 <0.0001 0.9047 

Power law (Lévy walk) µ = 1.346 -18302.17 36606.33 0.0000 0.2385 <0.0001 0.9174 

Truncated power law (Lévy 
walk)  

µ = 1.157 -17876.40 35754.80 0.0000 0.1485 <0.0001 0.9650 

Mix of two exponentials 
(composite Brownian 
motion) 

p = 0.766; λ1 =  0.010; λ2 = 0.001 -17458.78 34923.56 0.0000 0.0240 0.4175 0.9994 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.221; p2 =  0.587; λ1 = 
0.022; λ2 = 0.007; λ3 = 0.001 

-17443.33 34896.66 0.0452 0.0136 0.9625 0.9998 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.035; p2 = 0.302; p3 = 
0.506;  λ1 = 0.004;  λ2 =  0.004; 
λ3 = 0.015; λ4 = 0.001 

-17438.28 34890.76 0.9548 0.0133 0.9707 0.9998 

Zebra - to visible 326 

Exponential (Brownian walk)  λ = 0.006 -1999.62 4001.23 0.0000 0.1350 0.0053 0.9814 

Power law (Lévy walk) µ = 1.395 -2066.90 4135.79 0.0000 0.2607 <0.0001 0.8797 

Truncated power law (Lévy 
walk)  

µ = 1.172 -2013.86 4029.72 0.0000 0.1626 0.0003 0.9439 

Mix of two exponentials 
(composite Brownian 
motion) 

p =  0.890; λ1 =  0.010; λ2 = 
0.001 

-1952.03 3910.06 0.1698 0.0491 0.8272 0.9982 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.054; p2 = 0.095; λ1 = 
0.186; λ2 =  0.001; λ3 = 0.009 

-1948.57 3907.14 0.7313 0.0368 0.9800 0.9990 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 =  0.054; p2 = 0.095; p3 = 
0.253; λ1 = 0.186; λ2 =  0.001; λ3 
= 0.009; λ4 = 0.009 

-1948.57 3911.14 0.0990 0.0368 0.9800 0.9990 
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Table 6.4 continued…….        

Species and 
movement 

n Models Parameters MLL AIC AIC Weight KS- test r² 

  
    

   
D-statistic P-value 

 

Zebra - within 
visible 

2225 

Exponential (Brownian walk)  λ = 0.005 -13949.55 27901.10 0.0000 0.1892 <0.0001 0.9485 

Power law (Lévy walk) µ = 1.382 -14216.97 28435.94 0.0000 0.2521 <0.0001 0.8963 

Truncated power law (Lévy 
walk)  

µ = 1.203 -13922.82 27847.65 0.0000 0.1699 <0.0001 0.9476 

Mix of two exponentials 
(composite Brownian 
motion) 

p =  0.835; λ1 = 0.011; λ2 = 0.001 -13447.30 26900.59 0.0003 0.0166 0.9181 0.9999 

Mix of three exponentials 
(composite Brownian 
motion) 

p1 = 0.013; p2 = 0.162; λ1 = 
1.476; λ2 = 0.001; λ3 = 0.011 

-13437.36 26884.72 0.8807 0.0099 0.9999 0.9999 

Mix of four exponentials 
(composite Brownian 
motion) 

p1 = 0.013; p2 = 9.3x10
-5

; p3 = 
0.825; λ1 = 1.460; λ2 = 1.46; λ3 = 
0.011; λ4 = 0.001 

-13437.36 26888.72 0.1189 0.0103 0.9998 0.9999 
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Figure 6.4: The effect of visibility classes on the directionality of “walks” of the zebra, red hartebeest 

and eland studied in Mkambati Nature Reserve. When       and the   value indicated 
significance (       as indicated by the reference line), walks were considered as concentrated in 
one direction (directional) (Duffy et al. 2011). 
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Figure 6.5:The effect of visibility classes on mean step length of zebra, hartebeest and eland studied 
in Mkambati Nature Reserve. Error bars indicates 95% Confidence Interval 
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6.6 DISCUSSION 

A composite Brownian motion was observed for three study species when they were moving to new 

habitat patches. Our hypothesis that large herbivores use visual cues when moving to search for 

patches at a habitat patch scale could thus be rejected.  Our results support the simulations by 

Benhamou (2007) which showed that, in patchy environments Brownian walks at two- or more 

different scales (composite Brownian motions), combining small-scale area-restricted searches 

(within patches) and large movements between patches, were used as an optimal strategy to search 

for habitat patches. 

 

Our study demonstrates scale complexity in grazers’ behaviour. One or more small area restricted 

searches within patches were mixed with one or more large-scale movements between patches. The 

search pattern found in this study supports a more “adaptive approach” (Benhamou 2007, Reynolds 

and Rhodes 2009), because when a suitable patch is encountered it triggers switching from several 

levels of more extensive search modes to several levels of more intensive within-patch search 

modes. During these fine scale search modes at the bite, feeding station and food patch scale 

(Owen-Smith et al. 2010) animals would make use of visual and olfactory cues to find suitable forage 

items (Edwards et al. 1997, Laca 1998). At courser scales (e.g. habitat patch scale), herbivores 

would randomly move, with an increased intensity (larger step lengths) until they are able to detect 

more suitable forage (at the finer scale) (Benhamou 2007). The search patterns displayed by our 

study animals thus indicate an adaption of their movement to the patchiness of the environment 

rather than a spontaneously generated power-law distribution (Lévy movement) of step lengths, 

which would be expected if visual cues (or the lack thereof) had played a major role (Benhamou 

2007). Adaptations of animal movement behaviour to patchiness at the habitat scale, was observed 

elsewhere (Viswanathan et al. 1999, de Knegt et al. 2007, Duffy et al. 2011), and is convincingly 

confirmed by this study. 

 

The main difference detected among the three visibility classes was that longer step lengths were 

used during movements to non-visible patches versus visible patches. The finding complies with 

observations made by Laca (1998) who studied searching behaviour of domestic cattle. Cattle 
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showed a strong tendency to move in the same direction when animals had no memory about food 

locations, regardless of failures and successes in finding food (Laca 1998). Combining observations 

by Laca (1998) with our observations we can expect that when animals cannot see patches from a 

distance, e.g. at a habitat patch scale, (and have no memory about patch distribution), they are more 

likely to move larger distances in the same direction. 

 

In addition, the zebra used larger step lengths, had more directional walks, and their movements 

were more complex in scale, compared to eland and hartebeest. These variations could be linked to 

differences in the species intrinsic traits, such as digestive system, muzzle width and body weight 

(Senft et al. 1987a, Prins and Van Langevelde 2008b). Non-ruminant zebra, are less efficient at 

digesting food, and have to maintain a higher intake-rate to maintain their energy requirements (Bell 

1971, Demment and Soest 1985, Illius and Gordon 1992). This should cause them to move more 

frequently from one food patch to another as food patches are depleted due to grazing (Bell 1971). In 

addition, zebra have a wider muzzle than the two ruminant species which makes them capable of 

using very short grass swards (which are common in recently burned grass patches). Zebra have 

been shown to prefer newly burned grassland (Sensenig et al. 2010), but the lower biomass in 

recently burned patches are depleted much quicker, forcing them to keep moving to new food 

patches (Venter et al. 2014a). In addition, higher directionality of zebra movement could indicate that 

they may be more efficient in finding new forage patches. Both these factors would cause higher 

movement intensity and complexity, as we observed with zebra. Red hartebeest also had complex 

movement scales, but compared to zebra and eland had the shortest step lengths. Red hartebeest is 

an example of a concentrate selector; its skull morphology is specially adapted to enable them to be 

very selective at times when good forage is scarce (Schuette et al. 1998). In areas with much 

moribund vegetation, grazing ruminants such as the red hartebeest face particular constraints 

because nearly all vegetation biomass has a low quality, which reduces food intake rates (Drescher 

et al. 2006a, Drescher et al. 2006b, van Langevelde et al. 2008). By being more selective, hartebeest 

would probably need to have more spatially complex movement scales. Red hartebeest, being the 

smaller ruminant (compared to eland), needing less, but better quality, forage to meet their nutritional 

and energy requirements (Demment and Soest 1985, Illius and Gordon 1992), used a strategy where 

they foraged using random, smaller step lengths whether they were moving within patches or to 
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unseen patches. They thus made use of both less suitable patches and more nutritious patches in a 

similar way.   

 

Eland movements, by contrast, were less complex in scale compared to both zebra and hartebeest, 

which could be related to their body size and digestive system. Eland are one of the larger African 

ruminant species and are considered to be selective feeders (which includes browse) that requires a 

diet of high nutritive value, low fibre and high protein content (Arman and Hopcraft 1975).  They also 

have a relatively small rumen in relation to their body size and retain food in the rumen for a shorter 

time (comparable to cattle), which allows for a greater appetite (compared to hartebeest) (Arman and 

Hopcraft 1975). It is, therefore, surprising that they showed less complexity in movement scale 

compared to zebra and hartebeest. This behaviour could possibly be linked to their diet, as being 

able to browse, they can overcome the challenge of dealing with a landscape of nutrient poor 

moribund grassland by eating forbs and trees (when available). Forbs are common, especially in 

newly burned patches in Mkambati (Shackleton 1989). In the case of trees, which is a resource that 

does not change as continuously burnt grassland, eland should be able to return to browsing patches 

by using memory. This could possibly explain the less complex movement behaviour. However one 

would have expected more directional movements if that were the case.  

 

The results of this study are consistent with the hypothesis that large grazers do not use visual cues 

when making foraging decisions at a habitat patch scale, but rather adapt their search mode 

according to habitat or forage heterogeneity and quality. However, the evidence should be seen as 

circumstantial rather than conclusive. Further research is needed in order to eliminate alternative 

explanations such as habitat patch distance. In addition, the composite Brownian movement 

behaviour outcomes showed that complexity in scale of large herbivore movement has the potential 

to explain movement behaviour in relation to species traits such as body size, feeding type, digestive 

strategy and muzzle width.  
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Chapter 7: Conclusion 
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7.1 INTRODUCTION 

This chapter highlights the main research findings and how these addressed the research aim and 

objectives. I also provide conservation management recommendations and list potential future 

research focus areas.  

 

The behaviour ecology of large mammalian herbivores reflects the choices they make, expressed in 

the form of changes in behaviour (Gaillard et al. 2010). Foraging theory concerns specifically 

activities related to the acquisition of food (Owen-Smith et al. 2010), and in the context of this thesis, I 

addressed herbivore movement and patch use decisions (Stephens and Krebs 1986, Owen-Smith et 

al. 2010). The interaction between herbivores and their environment can be detected in their 

movement behaviour (Frair et al. 2005), which takes place at several scale levels: from steps 

between foraging stations, to daily movement in home ranges, to seasonal migratory movements 

(Prins and Van Langevelde 2008a). Advances in GPS tracking (telemetry) technology have made the 

acquisition of high quality fine scale movement data possible (Hebblewhite and Haydon 2010, Owen-

Smith et al. 2010). Fine scale movement tracking data are useful in studies on habitat selection 

(Creel et al. 2005, Galanti et al. 2006), home range behaviour (Shannon et al. 2006, Massé and Côté 

2012), animal migration (Boone et al. 2006, Hebblewhite and Merrill 2011), ecology and conservation 

of species (Royer et al. 2005, Hays et al. 2006), conservation impacts (Proffitt et al. 2009, Phipps et 

al. 2013) and projecting impacts of climate change (Durner et al. 2009). Many of these studies are 

characterized by a focus on the spatial and temporal aspects of the species behaviour, i.e. where and 

when animals move, predator-prey or herbivore-forage interactions, with many studies researching a 

single species only (Mårell et al. 2002, Fortin et al. 2005, Rahimi and Owen-Smith 2007, Winnie and 

Creel 2007, Loarie et al. 2009). There are also a myriad of publications on search efficiency in 

movement behaviour (Viswanathan et al. 1996, Viswanathan et al. 1999, Bartumeus 2005, 

Benhamou 2007, Edwards et al. 2007, Bartumeus 2009, Edwards et al. 2012, Jansen et al. 2012).  

 

Intrinsic factors such as body size, muzzle width, digestive system and feeding type, can influence 

the way large herbivores interact with their environment (Bell 1971, Bailey et al. 1996, Gordon and 

Illius 1996, Clauss and Hummel 2005, Prins and Van Langevelde 2008b, Hopcraft et al. 2011). 
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Intrinsic factors also determine the way large herbivores react to extrinsic factors such as seasonal 

changes of forage resources, competition, predation, poaching, fire, artificial water holes and fences 

(Prins 1996, Boone and Hobbs 2004, Fischer and Eduard 2007, Creel and Christianson 2008, Valeix 

et al. 2009a, Waltert et al. 2009, Parrini and Owen-Smith 2010, Sensenig et al. 2010, Vanak et al. 

2010, Hassan and Rija 2011).  

 

Many studies have focused on either intrinsic or extrinsic factors (see references above), but only few 

studies managed to link the two components and applied such understanding to real-time 

conservation practise and implications for management (Vanak et al. 2010, Delsink et al. 2013, 

Jachowski et al. 2013). This study use movement behaviour to compare the effect of intrinsic and 

extrinsic influences on different species, and to define how they respond to these influences. 

Understanding these interactions are important for the long term conservation of large mammalian 

herbivore populations because both intrinsic and/or extrinsic factors could influence species 

persistence as well as ecosystem health (Boyce 1998, Grant et al. 2011).  In addition, such 

understanding can assist in conservation planning and management of herbivore assemblages in 

protected areas (Gaylard and Ferreira 2011, Grant et al. 2011). 

 

The aim of the study was to determine how African large herbivore species, influenced by various 

intrinsic factors, respond, through movement behaviour, to extrinsic factors in protected areas. The 

results of the study indicate that intrinsic factors such as individual species traits (body size, muzzle 

width, digestive system and feeding type) can influence the way large herbivores interact with their 

environment, and that these factors in turn determine how large herbivores react to extrinsic factors 

such as poaching, fire, artificial water holes and fences.  

 

7.2 RESEARCH FINDINGS  

In order to answer my research question, I focussed on four separate research objectives: 

1. My first objective was to conduct a situation analysis on Mkambati Nature Reserve in order 

to determine how well grazing herbivores have become established since their introduction, 
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how this was influenced by facilitation and competition, and what the implications were for 

ecological restoration. I concluded that the absence of larger grazers in the Mkambati grazer 

assemblage was creating an ecosystem devoid of facilitatory effects exerted by these 

species, which in turn leads to an ecosystem that cannot maintain its herbivore assemblage 

structure. The functioning of grazing ecosystems are driven by various patterns and 

processes (Bailey et al. 1996), and excluding certain species, weight ranges or guilds could 

potentially be detrimental to ecosystem functioning (Cromsigt and Olff 2006, Waldram et al. 

2008). I propose a biogeographical and biological approach to reconstructing grazer 

assemblages for protected areas. This approach should take cognisance of all the potential 

risks facing managers (Spear and Chown 2009), and should be focussed on improving 

incomplete understanding and reducing the identified risks. This can be achieved by an 

adaptive management approach underpinned by an efficient monitoring system (Biggs and 

Rogers 2003). Thresholds of potential concern, designed to detect undesirable changes in 

biodiversity, could function to guide management and catalyse change in management 

action when needed (Biggs et al. 2011). I concluded that a protected area restoration 

strategy, that aims to simulate the natural processes and heterogeneity of a system 

(Goodman 2003), should make full use of all the tools available to reconstruct past species 

assemblages. These tools are not limited to historical distribution data (Boshoff and Kerley 

2010), but also include biogeographic and biological approaches (Prins and Olff 1998a). 

This part of the study provided a useful approach to follow in planning of restoration of 

grazer ecosystems in protected areas. This approach will increase the scientific rigour 

needed conservation management decision making processes (Biggs et al. 2011), and 

enhance the effectiveness of protected areas in conserving biodiversity (Goodman 2003). 

 

2. The second objective of this study was to determine what factors influence forage patch use 

behaviour. In conservation areas, where managers attempt to simulate the natural 

processes and heterogeneity of ecosystems (Goodman 2003), inter-patch movement 

behavioural responses of large herbivores are a critical aspect to consider (Gibbs et al. 

1999, Carbutt and Goodman 2013). In this study, I demonstrated how red hartebeest 

(Alcelaphus buselaphus camaa) and plains zebra (Equus burchelli) actively use particular 

types of burnt patches with suitable forage, and that their choice of foraging patches was 
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influenced by poaching risk and fire. The implications of this for protected area managers 

are that the impact of unregulated poaching and human induced fire regimes have 

significant effects in the spatial behaviour of large herbivores (Gude et al. 2006, Thaker et 

al. 2010). Because of this there could be a considerable edge effect on large herbivore 

habitat use within protected areas (Woodroffe and Ginsberg 1998, Balme et al. 2010). Both 

fire management and anti-poaching action could thus have an unanticipated impact on 

ecosystems (Ruggiero 1992, Ripple et al. 2001, Searle et al. 2008, Eisenberg et al. 2013). 

This is especially the case for more intensively managed small- to medium-sized 

conservation areas (Kerley et al. 2008). The interesting discovery in this part of the study 

was that animals select the areas they forage in, based on extrinsic influences such as 

poaching risk. The implication for conservation management is that direct and indirect 

poaching effects could cause undesirable ecosystem change. Anti-poaching action is thus 

not just about protecting target species but also protecting ecosystems and biodiversity in 

general. 

 

3. The third objective of the study was to determine the factors effecting scale of movement of 

large herbivores. Identifying determinants of large herbivore movement scale can benefit 

their management and conservation, as it allows the understanding of herbivore species 

spatial dynamics and associated ecological processes (Delsink et al. 2013, Jachowski et al. 

2013). Scales are defined by rates of foraging and ecosystem processes, and boundaries 

between units, at each scale, are defined by animal behaviour (Senft et al. 1987a, Bailey et 

al. 1996). My results suggest that water and landscape heterogeneity, large herbivore traits, 

interspecific competition and fences influence the scale complexity of large herbivore 

movement. The results demonstrate that species deal with limitations in nutritional 

requirements during low resource times by adapting their movement behaviour, thereby 

incurring an increased cost of traveling to-and-from water sources in order to satisfy their 

nutritional requirements (Redfern et al. 2003, Smit et al. 2007, de Beer and van Aarde 

2008). A novel discovery of this part study was that the influence of intrinsic factors, and 

their effect on extrinsic factors could be detected in movement scale complexity.  
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4. My fourth objective was to establish if large herbivores use visual cues when searching for 

new patches at a habitat patch scale. No studies have been able to demonstrate if large 

herbivores use visual cues when foraging at a habitat-patch scale. My study suggests that 

large herbivores indeed don’t appear to use visual cues when foraging at a habitat-patch 

scale, but rather adapt their search mode according to habitat or forage heterogeneity and 

quality (Benhamou 2007).  

 

 

7.3 DISCUSSION AND RECOMMENDATIONS 

Intrinsic factors such as, body size, muzzle width, digestive system and feeding type, influence the 

way large herbivores interact with their environment (Bell 1971, Bailey et al. 1996, Gordon and Illius 

1996, Clauss and Hummel 2005, Prins and Van Langevelde 2008b, Hopcraft et al. 2011). These 

intrinsic factors, in turn, determine how large herbivores respond to extrinsic factors such as seasonal 

changes of forage resources, competition, predation, poaching, fire, artificial water holes and fences 

(Prins 1996, Boone and Hobbs 2004, Fischer and Eduard 2007, Creel and Christianson 2008, Valeix 

et al. 2009a, Waltert et al. 2009, Parrini and Owen-Smith 2010, Sensenig et al. 2010, Vanak et al. 

2010, Hassan and Rija 2011). Protected areas are facing increasingly complex challenges in 

understanding and conserving their biodiversity features (Venter et al. 2008). These challenges are 

mostly driven by anthropogenic influences (Venter et al. 2008, Biggs et al. 2011), which are extrinsic 

factors directly affecting large herbivore assemblages, as have been demonstrated in my study.  

 

Strategic protected area management planning, which deals with protected area operations, requires 

a great deal of information and understanding of ecosystem patterns and processes to be effective 

(Biggs and Rogers 2003, Goodman 2003). This is especially the case when an adaptive 

management approach is followed (Biggs and Rogers 2003), because, to be able to measure the 

effect of management action on ecosystems requires a monitoring system that produces a great deal 

of high quality information (Biggs et al. 2011, Gaylard and Ferreira 2011). A better understanding of 

the link between intrinsic factors and extrinsic factors and their effect on spatial behaviour is 

important for the management of large herbivore assemblages and mitigation of anthropogenic 

influences on ecosystem processes (Jachowski et al. 2013). My study have been able to link intrinsic 
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factors, i.e. body size, muzzle width, digestive system and feeding type, effects on movement 

behaviour to what appears to be the effects of extrinsic factors, i.e. seasonal changes of forage 

resources, competition, predation, poaching, fire, water sources and fences. More importantly, I have 

demonstrated that different species react to environmental influences in different ways. This is 

important because it highlights the danger of a “one shoe fits all” kind of protected area management 

approach. For example, artificial water holes were created in Kruger National Park, between 1902 

and 1980, in order to enhance wildlife numbers (Harrington et al. 1999, Venter et al. 2008). The 

provision of artificial waterholes attracted high numbers of zebra (Equus burchelli) and wildebeest 

(Connochaetes taurinus) to areas in the park where they were normally present in low densities only, 

particularly during drought conditions (Harrington et al. 1999). This, in turn, had cascading effects 

through increased predation on rarer antelope such as roan antelope (Hippotragus equinus), due to a 

build-up in lion (Panthera leo) numbers, following the zebra and wildebeest influx, which had a 

devastating effect on roan antelope (Harrington et al. 1999). Similar cascading effects have been 

observed in Yellowstone with interactions between wolves (Canis lupus), elk (Cervus elaphus) and 

aspen trees (Populus tremuloides) (Boyce 1998, Ripple et al. 2001, Ripple and Beschta 2007). 

Managing a protected area for a single species or single objective, without considering how other 

species react to the same influence could thus have negative consequences.  

 

Another important extrinsic factor is poaching, which currently has a negative effect on large 

herbivore populations in Africa (du Toit 1995, Fischer and Eduard 2007, Vie et al. 2009, Waltert et al. 

2009, Craigie et al. 2010). Poaching can cause large herbivores to respond in the same way as they 

do to natural predators by choosing to ignore risk when deciding where to forage (Prins 1996), 

avoiding risky areas (Creel et al. 2005, Valeix et al. 2009a), or by moving out of harm’s way when 

poachers are encountered (Fischhoff et al. 2007, Winnie and Creel 2007). My study indicated that 

species such as plains zebra were more responsive, in their patch selection behaviour, to avoiding 

poaching risk, than red hartebeest. However both species’ choice of foraging patches was influenced 

by direct and secondary poaching effects. This means that animals in protected areas exposed to 

poaching exhibits unnatural resource use patterns which affects forage resources in an unnatural 

way. This could potentially affect protected areas negatively (Boyce 1998, Ripple et al. 2001).  

 



138 
 

 
 

My study also highlights the importance of scale complexity in large herbivore movement behaviour, 

especially where extrinsic factors such as seasonality, vegetation heterogeneity, surface water 

supplies and the effect of fences are concerned. My study furthermore emphasised that the 

behaviour was driven by intrinsic factors in a prominent way. Resource heterogeneity occurs at 

different spatial and temporal scales, which make it difficult, but important, to determine at which 

particular scale resource selection by large herbivores might occur (Senft et al. 1987a, Bailey et al. 

1996). Scale mismatches occur when the scale of ecological variation and the scale of protected area 

management action are aligned in such a way that functions of the socio-ecological system are 

disrupted and components of the ecosystem are lost as a consequence (Cumming et al. 2010). 

When scale mismatches occur in protected area management, the risk of failing to achieve set 

conservation management targets increase (Cumming et al. 2010, Delsink et al. 2013). Delsink et al. 

(2013) have shown that, even though Kruger National Park has an adaptive management approach 

(Biggs and Rogers 2003), they have failed to move away from setting numerical targets in their 

elephant management, due to scale mismatch in elephant movement behaviour and their landscape 

approach. My study emphasise the importance of scale in the conservation management of large 

herbivore assemblages.  

 

It is thus important for protected area managers to carefully evaluate possible effects of their intended 

management actions on large grazer assemblages, by considering effects on all species, or at least 

functional groups of species (Blondel 2003). When an adaptive management approach is followed 

(Biggs and Rogers 2003) thresholds of potential concern (TPC’s) (Biggs et al. 2011), and associated 

monitoring programs (McGeoch et al. 2011), should also be set and developed by functional group. 

This should prevent managers from not anticipating possible effects of management action on non-

target species. This approach would improve management effectiveness (Boyce 1998, Goodman 

2003).  

 

In many protected areas, the management interventions are intended to restore ecological patterns 

and processes that have been affected by anthropogenic disruption (Heinen 2002, Suding et al. 

2004, Hayward 2009a). A common element of these interventions is to reintroduce ‘suitable’ species 
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to, or remove ‘undesirable’ species from, protected areas (Griffith et al. 1989, Novellie and Knight 

1994, Fischer and Lindenmayer 2000, Atkinson 2001, Gusset et al. 2008). The reintroduction of 

indigenous herbivores to an ecosystem reintroduces natural disturbance and processes that are 

thought to support or promote the re-establishment of local diversity (Simenstad et al. 2006). 

Conservation authorities opt to use a precautionary approach when deciding which species to 

introduce or maintain in protected areas, as non-indigenous species are potentially harmful to 

habitats in which they did not evolve (Spear and Chown 2009, Spear et al. 2011). A critical aspect of 

this restoration process is the selection of species that are ‘suitable’. In many instances, the past is 

used to determine which species are suitable, assuming that indigenous species are the most 

appropriate to achieve restoration objectives (List et al. 2007, Hayward 2009a, Boshoff and Kerley 

2010).  

 

My study on the current grazer assemblage in Mkambati Nature Reserve suggests that there was a 

lack of beneficial facilitation by larger and mega grazers (Owen-Smith 1987, Truett et al. 2001, 

Waldram et al. 2008) which could have resulted in competitive exclusion and subsequent local 

extinction of some species.  

 

In addition, I indicated that the assemblage prescribed by the current policy (ECPB 2010), based on 

historical distribution data only, could result in a depauperate grazer assemblage with an increased 

likelihood for interspecific competition. In the context of the current policy, I determined that 

facilitation is unlikely because of: an unusually small grazing species assemblage for a grass 

dominated ecosystem (Rowe-Rowe 1994, Boshoff and Kerley 2001, Bonyongo and Harris 2007, Klop 

and Prins 2008), the lack of ‘mega’ grazers in the assemblage (Bell 1982, Fritz et al. 2002), and a 

high risk because of competition effects (Chapin et al. 2000, Zavaleta et al. 2001, Lagendijk et al. 

2012). The effect of such a depauperate grazer assemblage could be: a higher fire frequency, 

caused by fuel load build-up when grass biomass is not effectively cropped by grazers (Bond and 

Keeley 2005, Fuhlendorf et al. 2009, Leonard et al. 2010), and an ecosystem devoid of facilitatory 

effects which in turn leads to an ecosystem which is unable to maintain its herbivore assemblage 
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structure (Prins and Olff 1998a). Both these factors caries a high biodiversity risk, and I therefore do 

not recommended the current policy for implementation in Mkambati. 

 

The ‘biogeographic’ assemblage that I proposed in this study, has a full, evenly spread, grazer 

species assemblage, which provides the potential opportunity for a grazing ecosystem that allows for 

beneficial facilitatory effects. This leads to an ecosystem that should be able to maintain its herbivore 

assemblage structure better. The advantages of this assemblage are that it should be able to 

maximize production and utilization in the forage layer which could increase grazer biomass (Prins 

and Olff 1998a), and it potentially allows for an escape from Mkambati’s current ‘fire trap’ of a very 

high fire return rate (Waldram et al. 2008). The restoration of mega- and larger grazers to Mkambati 

could have additional benefits such as decreasing risk of unnatural fire regimes caused by poachers. 

If the fuel load is decreased in this way, unnatural fire occurrence could be decreased and the 

potential effect on large herbivores concentrating in certain areas (due to poaching fires) could 

potentially decrease (a problem identified in chapter 4). The strength of this approach lies in the 

ability to overcome the problem of depauperate grazer assemblages, which were caused by a lack of 

historical data for the region, by using biogeography and ecological processes, to assist in effectively 

predicting grazer assemblages that can actually achieve restoration goals.  

 

The following recommendations are made for the ecological restoration of Mkambati Nature Reserve: 

1. To introduce larger grazers first (see Table 3.1) and stop the removal of plains zebra 

(Equus burchelli), as this is where the critical gap is. Here the introduction of African 

buffalo (Syncerus caffer) and white rhino (Ceratotherium simum) should be 

prioritized to fill this critical gap of ‘mega’ grazers in the assemblage (Bell 1982, Fritz 

et al. 2002). 

2. For white rhino, there is no confirmation from historical data that the species was 

present in the immediate vicinity of the protected area, but my biological and 

biogeographical predictions contradict the historical assessment. The reintroduction 

should thus be approached using a strategic adaptive management approach 

(Biggs and Rogers 2003).  
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3. This should take place through an iterative process of setting reintroduction 

objectives, implementing reintroduction actions and evaluating the implications of 

their outcomes for future management action (Biggs and Rogers 2003, Gaylard and 

Ferreira 2011, Roux and Foxcroft 2011). This would involve setting thresholds of 

potential concern (TPC’s)(Biggs et al. 2011), and intensively monitoring the species’ 

effect on the ecosystem and the grazer assemblage (McGeoch et al. 2011). 

4. Based on the monitoring results and TPC’s, decisions can be made to remove or 

maintain them, depending on the monitoring outcomes. 

5. More introductions should follow after this, following the same process, until the 

grazer assemblage is fully restored. 

  

A protected area restoration strategy that aims to simulate the natural processes and heterogeneity 

of a system should thus make full use of all the tools available to reconstruct past species 

assemblages. These tools are not limited to historical distribution data but include biogeographic and 

biological approaches. It is however recognized that socio-economic considerations play an 

increasing role in protected area management. It is thus important that planned restoration actions 

also take cognisance of these aspects. My works focused on the ecological and biodiversity aspects 

only.  

 

Acceptable forage or habitat patches might not be discernible from a distance, may change with 

influence from other herbivores (Arsenault and Owen-Smith 2002, Kohi et al. 2011), and their location 

may shift continuously as forage quality changes due to abiotic circumstances (e.g., fire, rainfall or 

flood recession) (Olff et al. 2002, Archibald and Bond 2004, de Knegt et al. 2008, van Beest et al. 

2010). Herbivores are therefore faced with a challenge in how to find and choose good quality forage 

patches in a landscape where the location and quality of such patches are continuously changing 

(Senft et al. 1987a, Bailey et al. 1996). Large herbivores may use a range of behaviours to enhance 

their foraging efficiency (Beekman and Prins 1989, Bailey et al. 1996). They may gain a priori 

knowledge using memory (from a previous visit to the patch) (Edwards et al. 1996, Dumont and Petit 

1998, Fortin 2003, Brooks and Harris 2008) or find new patches through visual cues (Edwards et al. 
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1997, Howery et al. 2000, Renken et al. 2008). If the presentation of the forage resource is complex 

(e.g. when forage patches are not well defined), or the distribution of forage patches are likely to 

change continuously, then recalling the location of forage patches may be of limited value (Edwards 

et al. 1997). In such heterogeneous situations, i.e. in both space and time, the capacity to recognise 

and assess (reward) different forage patches, at a distance through visual cues, would promote 

foraging success (Edwards et al. 1997).  

 

This last part of my study was more of biological interest rather than of significant conservation 

management importance. However it addressed a question which remained unanswered up to now. 

A number of field based studies have linked movement patterns to the use of memory by large 

herbivores to locate or revisit suitable forage patches (Ramos-Fernandez et al. 2003, Brooks and 

Harris 2008). Research has also shown that large herbivores use visual cues at a food-patch (finer) 

scale (Edwards et al. 1997, Howery et al. 2000, Renken et al. 2008). However, no studies have been 

able to show if large herbivores use visual cues when foraging at a habitat-patch scale. My study 

provided evidence that large herbivores possibly make limited use visual cues when foraging at a 

habitat-patch scale. Such understanding of the scale at which herbivores make decisions, will 

influence their behaviour, and this will indicate the scale of biological relevance to the herbivores 

(Jachowski et al. 2012, Delsink et al. 2013, Jachowski et al. 2013). It is important to note that this 

study only focussed on three species in a specific grazing ecosystem and that the results are derived 

from a limited sample size. It could be that the results are not conclusive enough. It is thus 

recommended that there needs to be more independent investigations to confirm that these results. It 

is therefore, important to understand, define and monitor the scale of behaviour to ensure that 

management interventions are planned at the correct spatial scale (Delsink et al. 2013). 

 

7.4 FUTURE WORK 

While this study has answered a number of questions, it has raised additional ones that could benefit 

from research: 
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In the conclusion of Chapter 3, I question the conventional approach of only using historical 

distribution data when planning reintroductions of animals to protected areas for ecological 

restoration. I also proposed that this approach be strengthened by using biological and 

biogeographical methods. My proposed approach can, however, still be refined and expanded upon. 

Specific research questions in this regard are: 

1. Is a biogeographic area the relevant spatial feature to use and does it make adequate 

provision of forage during seasonal cycles? This is especially relevant to the assumed 

historical migratory movements of a number of African species. Are there other spatial 

features that would be more relevant to use, for example vulture movements (some bird 

species migratory and seasonal movement habits are ancient (Salewski and Bruderer 2007), 

and could provide clues to where large mammal migrations took place in the past) or the 

modelling of regional seasonal forage quality changes related to rainfall patterns.  

2. Do the hypothesised facilitation processes derived from the modelled grazer assemblages 

actually take place in well packed assemblages? 

3. Could the species packing approach be applied to browsers and perhaps even to large 

predators? 

4. What role does other morphological features, for example muzzle width, play in facilitation 

and competition between large herbivores? 

5. What role does sexual dimorphism play in facilitation and competition between large 

herbivores? 

6. How would socio-economic considerations influence restoration objectives under different 

protected area scenarios? 

7. Are there limitations to the number of species a system could cope with? 

 

In addition, the approach used in this research should also be replicated and tested in other 

ecosystems. Where historical animal records are concerned, there is also a need to explore how this 

is influenced by old travel routes (Bernard and Parker 2006), what causes gaps in historical 

distribution data as well as possible pre-colonial anthropogenic effects on wildlife. Currently, many 

unsubstantiated assumptions (for example, rivers are effective barriers to animal movement and 
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therefore drive distribution patterns) made from these data sets need to be properly validated 

(Venter, personal observation). 

 

During my investigation into patch use behaviour, I concluded that poaching and fire play a significant 

role in how animals decide to use these patches. I recommended that patch use behaviour in relation 

to fire and risk effects should be unpacked at a finer scale. A specific question around this topic is: 

8. How is patch use related to daily changes in quality and quantity of the forage resource as 

well as risk? When reward in relation to energy cost is unravelled, patch use could be linked 

to optimal foraging theory. 

 

I was able to show that water and heterogeneity, large herbivore traits and interspecific competition 

influenced the scales at which large herbivores move. The questions that should be highlighted are 

related to both the temporal and spatial scale: 

9. Could differences in movement scales be detected with finer frequency data (10 to 30 min 

location intervals) between; species with different traits, fine scale vegetation types 

(heterogeneity), biomes, and different types of water sources (artificial and natural)? 

10. What is the effect of time on movement scale complexity, i.e. day, week, month and year? 

 

My study provided evidence that large grazers do not use visual cues when foraging at a habitat 

patch scale but rather adapt their search mode according to habitat or forage heterogeneity and 

quality. Two research question remains to be answered adequately: 

11. How do visual and/or olfactory cues play a role at finer scales of selection? 

12. At what scale do animals make the switch from using visual cues to only using displacement 

movement? 
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7.5 CONCLUDING REMARKS 

In my study, I demonstrated that individual species’ intrinsic traits can influence the way large 

herbivores interact with their environment. These factors determine, in turn, how large herbivores 

react to extrinsic factors such as poaching, fire, artificial water holes and fences which are important 

to consider in the conservation management of protected areas. The study thus had a strong focus 

on application. 

 

My study’s findings also had broader implications. For example I showed that the Hutchinson’s 

weight ratio theory (Hutchinson 1959) can be used in an innovative way to predict species 

assemblages, as was previously proposed as a testable model by Prins and Olff (1998). The 

important take-home-message I needed to convey was that current models in predicting 

assemblages are grossly inadequate, and a new approach was needed. The publication that was 

published on this topic will hopefully be catalyst for change in the way we think about restoration of 

protected areas in the future. 

 

Since Viswanathan et al. (1996) produced one of the first publications opening the debate on whether 

Lévy walks could be used as a movement model for animals, a large number of publications either 

supported or rejected it as viable (Bartumeus 2005, Bartumeus et al. 2005, Benhamou 2007, 

Edwards et al. 2007, Edwards 2008, Bartumeus 2009, Auger-Méthé et al. 2011, de Jager et al. 2011, 

Edwards 2011, Grünbaum 2011, Edwards et al. 2012, Jansen et al. 2012). The whole debate was 

recently only reasonably resolved by two authors who provided adequate statistical models to show 

that composite Brownian motions are in fact more suitable in explaining animal movement (Edwards 

et al. 2012, Jansen et al. 2012). The resultant composite Brownian motions, with the more robust 

statistical models, opened a new avenue which I explored in my study. I was now able to use scale 

complexity in composite Brownian motions to test a number of hypotheses. I thus moved away from 

the now exhausted debate on Lévy walks versus Brownian motions, and used the recently developed 

models to answer my research questions.  
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However, in my view, the most important contribution my study made was to effectively link extrinsic 

an intrinsic factors to animal behaviour, and to protected area management. In my experience as a 

conservation practitioner I have seen too many times that well intended decisions around large 

herbivore management, that are not well grounded in strong understanding of animal behaviour, have 

unintended negative consequences. This problem is also highlighted in several literature sources 

(Harrington et al. 1999, Craigie et al. 2010, Grant et al. 2011, Delsink et al. 2013, Cromsigt and te 

Beest 2014). In many cases, conservation management authorities are forced by prevailing 

circumstances to make these decisions, and little can be done other than to mitigate or manage the 

consequences. But, in some cases, conservation management decisions can be improved by simply 

considering a broader range of cause-effect mechanisms, such as extrinsic and intrinsic factors on 

animal behaviour. Hopefully, my study has broadened knowledge sufficiently in order to contribute to 

this. 
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A1: VENTER, J.A., PRINS, H.H.T., BALFOUR, D.A., SLOTOW, R., 2014. Reconstructing grazer 

assemblages for protected area restoration. PLOS ONE 9(3): e90900 
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A2: VENTER, J.A., NABE-NIELSEN, J., PRINS, H.H.T., SLOTOW, R., 2014. Forage patch use by 

grazing herbivores in a South African grazing ecosystem. Acta Theriologica  59:457–466. 
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APPENDIX B: The best-fit parameters, maximum log-likelihood, Akaike weights, Kolmogorov-Smirnov goodness-of-fit and r2 values 

for fitting exponential, power law, truncated power law and mixtures of exponentials to the step length distribution for impala, blue 

wildebeest, eland, red hartebeest, African buffalo, plains zebra, Cape mountain zebra and African elephant from a number of wildlife 

areas in South Africa 

 

Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

African buffalo AG446 Baviaanskloof Nature Reserve dry Brownian motion -3846.6600 7.6953E+03 0.0000 0.0991 0.0095 0.9940 

African buffalo AG446 Baviaanskloof Nature Reserve dry Brownian motion 2exp -3808.2150 7622.4300 3.0000E-04 0.0532 0.4233 0.9962 

African buffalo AG446 Baviaanskloof Nature Reserve dry Brownian motion 3exp -3798.5300 7607.0610 7.3980E-01 0.0202 0.9999 0.9994 

African buffalo AG446 Baviaanskloof Nature Reserve dry Brownian motion 4exp -3797.5760 7609.1530 2.5990E-01 0.0183 1.0000 0.9996 

African buffalo AG446 Baviaanskloof Nature Reserve dry Power law -4090.7270 8183.4550 0.0000E+00 0.2862 2.20E-16 0.8099 

African buffalo AG446 Baviaanskloof Nature Reserve dry Truncated power law -3939.5900 7881.1800 0.0000E+00 0.2128 0.0000 0.9084 

African buffalo AG446 Baviaanskloof Nature Reserve wet Brownian motion -4487.7190 8.9774E+03 0.0000 0.1575 0.0000 0.9802 

African buffalo AG446 Baviaanskloof Nature Reserve wet Brownian motion 2exp -4394.4350 8794.8700 0.0000E+00 0.0535 0.3062 0.9947 

African buffalo AG446 Baviaanskloof Nature Reserve wet Brownian motion 3exp -4382.3820 8774.7640 8.8080E-01 0.0153 1.0000 0.9997 

African buffalo AG446 Baviaanskloof Nature Reserve wet Brownian motion 4exp -4382.3820 8778.7640 1.1920E-01 0.0153 1.0000 0.9997 

African buffalo AG446 Baviaanskloof Nature Reserve wet Power law -4642.5380 9287.0760 0.0000E+00 0.2385 2.20E-16 0.8708 

African buffalo AG446 Baviaanskloof Nature Reserve wet Truncated power law -4463.4030 8928.8060 0.0000E+00 0.1544 0.0000 0.9555 

African buffalo AG447 Baviaanskloof Nature Reserve dry Brownian motion -4532.0210 9.0660E+03 0.0000 0.1411 0.0000 0.9818 

African buffalo AG447 Baviaanskloof Nature Reserve dry Brownian motion 2exp -4471.8260 8949.6530 2.7290E-01 0.0243 0.9901 0.9992 

African buffalo AG447 Baviaanskloof Nature Reserve dry Brownian motion 3exp -4469.0560 8948.1130 5.8930E-01 0.0137 1.0000 0.9997 

African buffalo AG447 Baviaanskloof Nature Reserve dry Brownian motion 4exp -4468.5090 8951.0180 1.3790E-01 0.0167 1.0000 0.9997 

African buffalo AG447 Baviaanskloof Nature Reserve dry Power law -4767.5370 9537.0750 0.0000E+00 0.2519 2.20E-16 0.8778 

African buffalo AG447 Baviaanskloof Nature Reserve dry Truncated power law -4550.4970 9102.9940 0.0000E+00 0.1851 0.0000 0.9584 

African buffalo AG447 Baviaanskloof Nature Reserve wet Brownian motion -4234.5870 8.4712E+03 0.0000 0.1304 0.0000 0.9890 

African buffalo AG447 Baviaanskloof Nature Reserve wet Brownian motion 2exp -4162.8680 8331.7370 1.5600E-02 0.0509 0.3897 0.9963 

African buffalo AG447 Baviaanskloof Nature Reserve wet Brownian motion 3exp -4156.8520 8327.7040 8.6700E-01 0.0159 1.0000 0.9995 

African buffalo AG447 Baviaanskloof Nature Reserve wet Brownian motion 4exp -4156.8520 8327.7040 1.1730E-01 0.0159 1.0000 0.9995 

African buffalo AG447 Baviaanskloof Nature Reserve wet Power law -4430.7000 8863.4000 0.0000E+00 0.2512 2.20E-16 0.8591 
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Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

African buffalo AG447 Baviaanskloof Nature Reserve wet Truncated power law -4229.8070 8461.6150 0.0000E+00 0.1860 0.0000 0.9451 

African elephant A99 Pilanesberg National Park dry Brownian motion -3899.3330 7.8007E+03 0.0000 0.0906 0.0259 0.9902 

African elephant A99 Pilanesberg National Park dry Brownian motion 2exp -3884.1620 7774.3250 1.6280E-01 0.0208 0.9998 0.9996 

African elephant A99 Pilanesberg National Park dry Brownian motion 3exp -3880.6520 7771.3030 7.3760E-01 0.0189 1.0000 0.9996 

African elephant A99 Pilanesberg National Park dry Brownian motion 4exp -3880.6540 7775.3090 9.9600E-02 0.0189 1.0000 0.9996 

African elephant A99 Pilanesberg National Park dry Power law -4241.1690 8484.3390 0.0000E+00 0.3283 2.20E-16 0.8385 

African elephant A99 Pilanesberg National Park dry Truncated power law -4040.0350 8082.0700 0.0000E+00 0.2943 0.0000 0.9251 

African elephant AG015 Kruger National Park wet Brownian motion -5619.5290 1.1241E+04 0.1559 0.0676 0.0833 0.9972 

African elephant AG015 Kruger National Park wet Brownian motion 2exp -5616.0280 11238.0600 6.9930E-01 0.0705 0.0632 0.9972 

African elephant AG015 Kruger National Park wet Brownian motion 3exp -5615.9850 11241.9700 9.8800E-02 0.0705 0.0632 0.9972 

African elephant AG015 Kruger National Park wet Brownian motion 4exp -5614.7470 11243.4900 4.6100E-02 0.0691 0.0727 0.9972 

African elephant AG015 Kruger National Park wet Power law -6394.2010 12790.4000 0.0000E+00 0.4245 2.20E-16 0.7052 

African elephant AG015 Kruger National Park wet Truncated power law -6097.8660 12197.7300 0.0000E+00 0.4662 0.0000 0.8012 

African elephant AG017 Kruger National Park dry Brownian motion -3790.4540 7.5829E+03 0.0000 0.0658 0.2428 0.9960 

African elephant AG017 Kruger National Park dry Brownian motion 2exp -3786.4130 7578.8260 0.0000E+00 0.0658 0.2428 0.9959 

African elephant AG017 Kruger National Park dry Brownian motion 3exp -3757.2060 7524.4130 8.9020E-01 0.0288 0.9877 0.9990 

African elephant AG017 Kruger National Park dry Brownian motion 4exp -3757.2990 7528.5980 1.0980E-01 0.0309 0.9748 0.9989 

African elephant AG017 Kruger National Park dry Power law -4178.1720 8358.3450 0.0000E+00 0.3663 2.20E-16 0.8076 

African elephant AG017 Kruger National Park dry Truncated power law -4030.8340 8063.6690 0.0000E+00 0.3148 0.0000 0.8898 

African elephant AG017 Kruger National Park wet Brownian motion -3527.2280 7.0565E+03 0.0968 0.0668 0.2872 0.9940 

African elephant AG017 Kruger National Park wet Brownian motion 2exp -3523.1380 7052.2760 7.8270E-01 0.0691 0.2509 0.9941 

African elephant AG017 Kruger National Park wet Brownian motion 3exp -3523.1380 7056.2760 1.0590E-01 0.0691 0.2509 0.9941 

African elephant AG017 Kruger National Park wet Brownian motion 4exp -3523.1210 7060.2410 1.4600E-02 0.0691 0.2509 0.9940 

African elephant AG017 Kruger National Park wet Power law -3961.8640 7925.7290 0.0000E+00 0.3963 2.20E-16 0.7302 

African elephant AG017 Kruger National Park wet Truncated power law -3793.5090 7589.0190 0.0000E+00 0.3963 0.0000 0.8254 

African elephant AG319 Kruger National Park dry Brownian motion -4791.1610 9.5843E+03 0.0002 0.0343 0.8045 0.9976 

African elephant AG319 Kruger National Park dry Brownian motion 2exp -4785.2940 9576.5870 1.1900E-02 0.0429 0.5403 0.9977 

African elephant AG319 Kruger National Park dry Brownian motion 3exp -4779.0020 9568.0040 8.7010E-01 0.0458 0.4565 0.9978 

African elephant AG319 Kruger National Park dry Brownian motion 4exp -4779.0020 9572.0040 1.1770E-01 0.0458 0.4565 0.9978 

African elephant AG319 Kruger National Park dry Power law -5327.7260 10657.4510 0.0000E+00 0.3605 2.20E-16 0.7734 

African elephant AG319 Kruger National Park dry Truncated power law -5084.9850 10171.9700 0.0000E+00 0.3176 0.0000 0.8746 

African elephant AG320 Kruger National Park dry Brownian motion -5686.8360 1.1376E+04 0.1162 0.0463 0.4112 0.9968 
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Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

African elephant AG320 Kruger National Park dry Brownian motion 2exp -5682.9350 11371.8700 7.7820E-01 0.0463 0.4112 0.9968 

African elephant AG320 Kruger National Park dry Brownian motion 3exp -5682.9350 11375.8700 1.0530E-01 0.0463 0.4112 0.9968 

African elephant AG320 Kruger National Park dry Brownian motion 4exp -5686.8360 11387.6700 3.0000E-04 0.0463 0.4112 0.9968 

African elephant AG320 Kruger National Park dry Power law -6440.2000 12882.4000 0.0000E+00 0.4054 2.20E-16 0.8150 

African elephant AG320 Kruger National Park dry Truncated power law -6114.5100 12231.0200 0.0000E+00 0.4381 0.0000 0.8906 

African elephant AG322 Kruger National Park dry Brownian motion -5360.9860 1.0724E+04 0.0073 0.0548 0.2358 0.9944 

African elephant AG322 Kruger National Park dry Brownian motion 2exp -5354.4790 10714.9600 6.6310E-01 0.0604 0.1489 0.9943 

African elephant AG322 Kruger National Park dry Brownian motion 3exp -5353.3050 10716.6100 2.9030E-01 0.0618 0.1318 0.9942 

African elephant AG322 Kruger National Park dry Brownian motion 4exp -5353.3050 10720.6100 3.9300E-02 0.0618 0.1318 0.9942 

African elephant AG322 Kruger National Park dry Power law -6028.2570 12058.5100 0.0000E+00 0.3904 2.20E-16 0.6796 

African elephant AG322 Kruger National Park dry Truncated power law -5713.0870 11428.1700 0.0000E+00 0.4213 0.0000 0.7871 

African elephant AG322 Kruger National Park wet Brownian motion -5466.4550 1.0935E+04 0.4659 0.0430 0.5384 0.9986 

African elephant AG322 Kruger National Park wet Brownian motion 2exp -5466.4550 10938.9100 6.3000E-02 0.0430 0.5384 0.9986 

African elephant AG322 Kruger National Park wet Brownian motion 3exp -5462.5710 10935.1400 4.1490E-01 0.0445 0.4957 0.9986 

African elephant AG322 Kruger National Park wet Brownian motion 4exp -5462.5710 10939.1400 5.6200E-02 0.0445 0.4957 0.9987 

African elephant AG322 Kruger National Park wet Power law -6180.3910 12362.7800 0.0000E+00 0.3989 2.20E-16 0.7870 

African elephant AG322 Kruger National Park wet Truncated power law -5876.2910 11754.5800 0.0000E+00 0.4261 0.0000 0.8654 

African elephant AM119 Mkhuze Game Reserve wet Brownian motion -5427.4570 1.0857E+04 0.1434 0.0268 0.9694 0.9992 

African elephant AM119 Mkhuze Game Reserve wet Brownian motion 2exp -5423.8340 10853.6700 7.4090E-01 0.0268 0.9694 0.9992 

African elephant AM119 Mkhuze Game Reserve wet Brownian motion 3exp -5425.1490 10860.3000 2.6900E-02 0.0253 0.9826 0.9991 

African elephant AM119 Mkhuze Game Reserve wet Brownian motion 4exp -5421.9550 10857.9100 8.8800E-02 0.0164 1.0000 0.9997 

African elephant AM119 Mkhuze Game Reserve wet Power law -6002.1190 12006.2400 0.0000E+00 0.3616 2.20E-16 0.7756 

African elephant AM119 Mkhuze Game Reserve wet Truncated power law -5695.5950 11393.1900 0.0000E+00 0.3869 0.0000 0.8703 

African elephant AM13 Pilanesberg National Park dry Brownian motion -3942.4280 7.8869E+03 0.0000 0.0944 0.0162 0.9860 

African elephant AM13 Pilanesberg National Park dry Brownian motion 2exp -3938.8300 7883.6590 0.0000E+00 0.0944 0.0162 0.9859 

African elephant AM13 Pilanesberg National Park dry Brownian motion 3exp -3924.4750 7858.9500 8.8030E-01 0.0315 0.9518 0.9984 

African elephant AM13 Pilanesberg National Park dry Brownian motion 4exp -3924.4710 7862.9410 1.1970E-01 0.0315 0.9518 0.9985 

African elephant AM13 Pilanesberg National Park dry Power law -4300.7710 8603.5410 0.0000E+00 0.3389 2.20E-16 0.8738 

African elephant AM13 Pilanesberg National Park dry Truncated power law -4083.7370 8169.4740 0.0000E+00 0.3167 0.0000 0.9449 

African elephant AM14 Pilanesberg National Park dry Brownian motion -3725.9870 7.4540E+03 0.0000 0.1332 0.0002 0.9700 

African elephant AM14 Pilanesberg National Park dry Brownian motion 2exp -3689.8550 7385.7100 8.6180E-01 0.0469 0.6008 0.9970 

African elephant AM14 Pilanesberg National Park dry Brownian motion 3exp -3689.8550 7389.7100 1.1660E-01 0.0469 0.6008 0.9970 
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Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

African elephant AM14 Pilanesberg National Park dry Brownian motion 4exp -3689.5460 7393.0910 2.1500E-02 0.0469 0.6008 0.9968 

African elephant AM14 Pilanesberg National Park dry Power law -4019.9390 8041.8790 0.0000E+00 0.3396 2.20E-16 0.8327 

African elephant AM14 Pilanesberg National Park dry Truncated power law -3851.6120 7705.2240 0.0000E+00 0.2758 0.0000 0.9227 

African elephant AM6 Pilanesberg National Park dry Brownian motion -3668.4130 7.3388E+03 0.0000 0.0690 0.1669 0.9922 

African elephant AM6 Pilanesberg National Park dry Brownian motion 2exp -3655.4270 7316.8540 2.0590E-01 0.0268 0.9919 0.9996 

African elephant AM6 Pilanesberg National Park dry Brownian motion 3exp -3652.2020 7314.4050 7.0060E-01 0.0268 0.9919 0.9996 

African elephant AM6 Pilanesberg National Park dry Brownian motion 4exp -3652.2170 7318.4340 9.3500E-02 0.0287 0.9824 0.9996 

African elephant AM6 Pilanesberg National Park dry Power law -4014.9210 8031.8420 0.0000E+00 0.3295 2.20E-16 0.8626 

African elephant AM6 Pilanesberg National Park dry Truncated power law -3826.1880 7654.3750 0.0000E+00 0.2893 0.0000 0.9371 

African elephant AM67 Kruger National Park dry Brownian motion -3910.9780 7.8240E+03 0.0000 0.0984 0.0178 0.9898 

African elephant AM67 Kruger National Park dry Brownian motion 2exp -3906.8300 7819.6610 0.0000E+00 0.0984 0.0178 0.9897 

African elephant AM67 Kruger National Park dry Brownian motion 3exp -3829.4970 7668.9950 8.8090E-01 0.0697 0.1870 0.9982 

African elephant AM67 Kruger National Park dry Brownian motion 4exp -3829.4980 7672.9960 1.1910E-01 0.0697 0.1870 0.9982 

African elephant AM67 Kruger National Park dry Power law -4310.9890 8623.9780 0.0000E+00 0.3955 2.20E-16 0.8280 

African elephant AM67 Kruger National Park dry Truncated power law -4176.8540 8355.7080 0.0000E+00 0.3361 0.0000 0.8868 

African elephant AM67 Kruger National Park wet Brownian motion -4472.5960 8.9472E+03 0.0450 0.0551 0.4009 0.9963 

African elephant AM67 Kruger National Park wet Brownian motion 2exp -4467.8510 8941.7030 7.0080E-01 0.0570 0.3592 0.9962 

African elephant AM67 Kruger National Park wet Brownian motion 3exp -4466.9180 8943.8350 2.4130E-01 0.0532 0.4454 0.9957 

African elephant AM67 Kruger National Park wet Brownian motion 4exp -4467.8510 8949.7030 1.2800E-02 0.0570 0.3592 0.9963 

African elephant AM67 Kruger National Park wet Power law -5065.1040 10132.2080 0.0000E+00 0.4297 2.20E-16 0.8247 

African elephant AM67 Kruger National Park wet Truncated power law -4834.1700 9670.3400 0.0000E+00 0.4829 0.0000 0.8841 

African elephant AM67b Kruger National Park dry Brownian motion -4713.0990 9.4282E+03 0.0000 0.0990 0.0058 0.9908 

African elephant AM67b Kruger National Park dry Brownian motion 2exp -4708.9430 9423.8860 0.0000E+00 0.0990 0.0058 0.9899 

African elephant AM67b Kruger National Park dry Brownian motion 3exp -4627.5820 9265.1650 9.0480E-01 0.0386 0.7665 0.9981 

African elephant AM67b Kruger National Park dry Brownian motion 4exp -4627.8340 9269.6680 9.5200E-02 0.0369 0.8155 0.9981 

African elephant AM67b Kruger National Park dry Power law -5139.2060 10280.4120 0.0000E+00 0.3792 2.20E-16 0.7431 

African elephant AM67b Kruger National Park dry Truncated power law -4974.2910 9950.5820 0.0000E+00 0.3238 0.0000 0.8368 

African elephant AM67b Kruger National Park wet Brownian motion -4675.5410 9.3531E+03 0.0185 0.0651 0.1686 0.9939 

African elephant AM67b Kruger National Park wet Brownian motion 2exp -4670.1960 9346.3930 5.2390E-01 0.0668 0.1478 0.9939 

African elephant AM67b Kruger National Park wet Brownian motion 3exp -4668.3980 9346.7970 4.2800E-01 0.0771 0.0624 0.9934 

African elephant AM67b Kruger National Park wet Brownian motion 4exp -4669.0690 9352.1390 2.9600E-02 0.0753 0.0727 0.9936 

African elephant AM67b Kruger National Park wet Power law -5208.0850 10418.1690 0.0000E+00 0.3921 2.20E-16 0.7479 
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Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

African elephant AM67b Kruger National Park wet Truncated power law -4976.4170 9954.8350 0.0000E+00 0.3750 0.0000 0.8474 

African elephant AM67c Kruger National Park dry Brownian motion -4247.1310 8.4963E+03 0.1259 0.0667 0.1813 0.9935 

African elephant AM67c Kruger National Park dry Brownian motion 2exp -4243.3580 8492.7160 7.4150E-01 0.0667 0.1813 0.9934 

African elephant AM67c Kruger National Park dry Brownian motion 3exp -4243.2060 8496.4120 1.1680E-01 0.0667 0.1813 0.9933 

African elephant AM67c Kruger National Park dry Brownian motion 4exp -4243.2060 8500.4120 1.5800E-02 0.0667 0.1813 0.9933 

African elephant AM67c Kruger National Park dry Power law -4720.2310 9442.4610 0.0000E+00 0.3852 2.20E-16 0.7227 

African elephant AM67c Kruger National Park dry Truncated power law -4532.1980 9066.3950 0.0000E+00 0.3667 0.0000 0.8217 

African elephant AM67c Kruger National Park wet Brownian motion -4306.1040 8.6142E+03 0.1021 0.0565 0.3854 0.9978 

African elephant AM67c Kruger National Park wet Brownian motion 2exp -4302.0720 8610.1450 7.7840E-01 0.0585 0.3442 0.9978 

African elephant AM67c Kruger National Park wet Brownian motion 3exp -4302.0720 8614.1450 1.0540E-01 0.0585 0.3442 0.9978 

African elephant AM67c Kruger National Park wet Brownian motion 4exp -4302.0770 8618.1530 1.4200E-02 0.0585 0.3442 0.9978 

African elephant AM67c Kruger National Park wet Power law -4822.0040 9646.0080 0.0000E+00 0.4055 2.20E-16 0.7667 

African elephant AM67c Kruger National Park wet Truncated power law -4611.4240 9224.8480 0.0000E+00 0.4133 0.0000 0.8566 

African elephant AM67d Kruger National Park dry Brownian motion -4234.0450 8.4701E+03 0.1131 0.0613 0.2487 0.9976 

African elephant AM67d Kruger National Park dry Brownian motion 2exp -4230.1290 8466.2580 7.6880E-01 0.0613 0.2487 0.9976 

African elephant AM67d Kruger National Park dry Brownian motion 3exp -4230.1290 8470.2590 1.0400E-01 0.0613 0.2487 0.9976 

African elephant AM67d Kruger National Park dry Brownian motion 4exp -4230.1290 8474.2580 1.4100E-02 0.0613 0.2487 0.9976 

African elephant AM67d Kruger National Park dry Power law -4784.5850 9571.1710 0.0000E+00 0.3964 2.20E-16 0.7361 

African elephant AM67d Kruger National Park dry Truncated power law -4539.6810 9081.3620 0.0000E+00 0.4252 0.0000 0.8339 

African elephant AM90 Kruger National Park dry Brownian motion -4043.1920 8.0884E+03 0.0000 0.0951 0.0156 0.9903 

African elephant AM90 Kruger National Park dry Brownian motion 2exp -4040.9860 8087.9710 0.0000E+00 0.0951 0.0156 0.9901 

African elephant AM90 Kruger National Park dry Brownian motion 3exp -4001.8700 8013.7400 5.6200E-01 0.0448 0.6558 0.9974 

African elephant AM90 Kruger National Park dry Brownian motion 4exp -4000.1190 8014.2380 4.3800E-01 0.0466 0.6044 0.9974 

African elephant AM90 Kruger National Park dry Power law -4458.8690 8919.7390 0.0000E+00 0.3731 2.20E-16 0.7685 

African elephant AM90 Kruger National Park dry Truncated power law -4312.0060 8626.0130 0.0000E+00 0.3116 0.0000 0.8587 

African elephant AM90 Kruger National Park wet Brownian motion -4238.3390 8.4787E+03 0.0000 0.0728 0.1010 0.9947 

African elephant AM90 Kruger National Park wet Brownian motion 2exp -4235.9430 8477.8860 0.0000E+00 0.0728 0.1010 0.9942 

African elephant AM90 Kruger National Park wet Brownian motion 3exp -4204.2430 8418.4860 8.0230E-01 0.0213 0.9995 0.9995 

African elephant AM90 Kruger National Park wet Brownian motion 4exp -4203.6440 8421.2880 1.9770E-01 0.0213 0.9995 0.9995 

African elephant AM90 Kruger National Park wet Power law -4645.5250 9293.0490 0.0000E+00 0.3552 2.20E-16 0.7857 

African elephant AM90 Kruger National Park wet Truncated power law -4462.8990 8927.7970 0.0000E+00 0.3144 0.0000 0.8760 

African elephant AM92 Kruger National Park dry Brownian motion -5170.2210 1.0342E+04 0.0000 0.0882 0.0084 0.9881 



175 
 

 
 

Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

African elephant AM92 Kruger National Park dry Brownian motion 2exp -5108.2080 10222.4200 6.3190E-01 0.0413 0.5880 0.9990 

African elephant AM92 Kruger National Park dry Brownian motion 3exp -5108.2080 10226.4200 8.5500E-02 0.0413 0.5880 0.9990 

African elephant AM92 Kruger National Park dry Brownian motion 4exp -5105.0120 10224.0200 2.8270E-01 0.0413 0.5880 0.9990 

African elephant AM92 Kruger National Park dry Power law -5640.0640 11282.1300 0.0000E+00 0.3627 2.20E-16 0.8261 

African elephant AM92 Kruger National Park dry Truncated power law -5415.5680 10833.1400 0.0000E+00 0.3129 0.0000 0.9020 

Blue wildebeest AG227 Welgevonden Game Reserve wet Brownian motion -5239.7920 1.0482E+04 0.0000 0.3636 0.0000 0.7956 

Blue wildebeest AG227 Welgevonden Game Reserve wet Brownian motion 2exp -4788.9770 9583.9530 0.0000E+00 0.0955 0.0049 0.9898 

Blue wildebeest AG227 Welgevonden Game Reserve wet Brownian motion 3exp -4749.5070 9509.0140 8.8080E-01 0.0545 0.2799 0.9981 

Blue wildebeest AG227 Welgevonden Game Reserve wet Brownian motion 4exp -4749.5070 9513.0140 1.1920E-01 0.0545 0.2799 0.9981 

Blue wildebeest AG227 Welgevonden Game Reserve wet Power law -4941.7010 9885.4020 0.0000E+00 0.1924 4.87E-11 0.9377 

Blue wildebeest AG227 Welgevonden Game Reserve wet Truncated power law -4808.6390 9619.2780 0.0000E+00 0.1030 0.0018 0.9800 

Blue wildebeest AG228 Welgevonden Game Reserve dry Brownian motion -5657.7710 1.1318E+04 0.0000 0.1969 0.0000 0.9661 

Blue wildebeest AG228 Welgevonden Game Reserve dry Brownian motion 2exp -5541.8490 11089.7000 0.0000E+00 0.0977 0.0024 0.9847 

Blue wildebeest AG228 Welgevonden Game Reserve dry Brownian motion 3exp -5540.1220 11090.2400 0.0000E+00 0.0963 0.0029 0.9852 

Blue wildebeest AG228 Welgevonden Game Reserve dry Brownian motion 4exp -5506.8210 11027.6400 1.0000E+00 0.0496 0.3508 0.9955 

Blue wildebeest AG228 Welgevonden Game Reserve dry Power law -5887.3640 11776.7300 0.0000E+00 0.2762 2.20E-16 0.8577 

Blue wildebeest AG228 Welgevonden Game Reserve dry Truncated power law -5663.7300 11329.4600 0.0000E+00 0.2323 0.0000 0.9323 

Blue wildebeest AG228 Welgevonden Game Reserve wet Brownian motion -5166.5700 1.0335E+04 0.0000 0.3427 0.0000 0.8553 

Blue wildebeest AG228 Welgevonden Game Reserve wet Brownian motion 2exp -4817.4400 9640.8810 0.0000E+00 0.0475 0.4331 0.9956 

Blue wildebeest AG228 Welgevonden Game Reserve wet Brownian motion 3exp -4792.3520 9594.7050 7.1870E-01 0.0415 0.6060 0.9990 

Blue wildebeest AG228 Welgevonden Game Reserve wet Brownian motion 4exp -4791.2910 9596.5810 2.8130E-01 0.0415 0.6060 0.9990 

Blue wildebeest AG228 Welgevonden Game Reserve wet Power law -4980.9010 9963.8020 0.0000E+00 0.2047 1.07E-12 0.9426 

Blue wildebeest AG228 Welgevonden Game Reserve wet Truncated power law -4809.5360 9621.0710 0.0000E+00 0.1172 0.0002 0.9871 

Blue wildebeest AG231 Welgevonden Game Reserve dry Brownian motion -5628.2060 1.1258E+04 0.0000 0.4655 0.0000 0.7359 

Blue wildebeest AG231 Welgevonden Game Reserve dry Brownian motion 2exp -5031.1830 10068.3700 0.0000E+00 0.0842 0.0195 0.9943 

Blue wildebeest AG231 Welgevonden Game Reserve dry Brownian motion 3exp -4998.8200 10007.6400 8.8080E-01 0.0521 0.3389 0.9963 

Blue wildebeest AG231 Welgevonden Game Reserve dry Brownian motion 4exp -4998.8200 10011.6400 1.1920E-01 0.0521 0.3389 0.9963 

Blue wildebeest AG231 Welgevonden Game Reserve dry Power law -5196.2750 10394.5500 0.0000E+00 0.2251 8.55E-15 0.9273 

Blue wildebeest AG231 Welgevonden Game Reserve dry Truncated power law -5037.2530 10076.5100 0.0000E+00 0.1424 0.0000 0.9676 

Blue wildebeest AG231 Welgevonden Game Reserve wet Brownian motion -5759.7290 1.1521E+04 0.0000 0.4591 0.0000 0.7592 

Blue wildebeest AG231 Welgevonden Game Reserve wet Brownian motion 2exp -5160.3340 10326.6700 0.0000E+00 0.0742 0.0526 0.9940 

Blue wildebeest AG231 Welgevonden Game Reserve wet Brownian motion 3exp -5143.4560 10296.9100 1.0000E-04 0.0561 0.2508 0.9968 
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Blue wildebeest AG231 Welgevonden Game Reserve wet Brownian motion 4exp -5132.2180 10278.4400 9.9990E-01 0.0530 0.3114 0.9984 

Blue wildebeest AG231 Welgevonden Game Reserve wet Power law -5336.1850 10674.3700 0.0000E+00 0.2136 1.66E-13 0.9482 

Blue wildebeest AG231 Welgevonden Game Reserve wet Truncated power law -5164.3860 10330.7700 0.0000E+00 0.1409 0.0000 0.9819 

Blue wildebeest AG232 Welgevonden Game Reserve dry Brownian motion -6152.8340 1.2308E+04 0.0000 0.4269 0.0000 0.7835 

Blue wildebeest AG232 Welgevonden Game Reserve dry Brownian motion 2exp -5612.2470 11230.4900 0.0000E+00 0.0665 0.1004 0.9947 

Blue wildebeest AG232 Welgevonden Game Reserve dry Brownian motion 3exp -5598.5150 11207.0300 8.8080E-01 0.0665 0.1004 0.9952 

Blue wildebeest AG232 Welgevonden Game Reserve dry Brownian motion 4exp -5598.5150 11211.0300 1.1920E-01 0.0665 0.1004 0.9952 

Blue wildebeest AG232 Welgevonden Game Reserve dry Power law -5895.2330 11792.4700 0.0000E+00 0.2482 2.20E-16 0.9447 

Blue wildebeest AG232 Welgevonden Game Reserve dry Truncated power law -5671.5910 11345.1800 0.0000E+00 0.2201 0.0000 0.9788 

Blue wildebeest AG232 Welgevonden Game Reserve wet Brownian motion -5406.7780 1.0816E+04 0.0000 0.2644 0.0000 0.9187 

Blue wildebeest AG232 Welgevonden Game Reserve wet Brownian motion 2exp -5189.2510 10384.5000 1.0000E-04 0.0620 0.1477 0.9948 

Blue wildebeest AG232 Welgevonden Game Reserve wet Brownian motion 3exp -5178.2760 10366.5500 4.8580E-01 0.0591 0.1880 0.9967 

Blue wildebeest AG232 Welgevonden Game Reserve wet Brownian motion 4exp -5176.2190 10366.4400 5.1410E-01 0.0591 0.1880 0.9966 

Blue wildebeest AG232 Welgevonden Game Reserve wet Power law -5461.1490 10924.3000 0.0000E+00 0.2201 1.14E-14 0.9135 

Blue wildebeest AG232 Welgevonden Game Reserve wet Truncated power law -5256.6530 10515.3100 0.0000E+00 0.1625 0.0000 0.9741 

Blue wildebeest AG233 Welgevonden Game Reserve dry Brownian motion -6631.0430 1.3264E+04 0.0000 0.2607 0.0000 0.9081 

Blue wildebeest AG233 Welgevonden Game Reserve dry Brownian motion 2exp -6403.4870 12812.9700 0.0000E+00 0.0566 0.1966 0.9952 

Blue wildebeest AG233 Welgevonden Game Reserve dry Brownian motion 3exp -6385.0330 12780.0700 7.4500E-01 0.0510 0.3016 0.9981 

Blue wildebeest AG233 Welgevonden Game Reserve dry Brownian motion 4exp -6384.1050 12782.2100 2.5500E-01 0.0662 0.0833 0.9977 

Blue wildebeest AG233 Welgevonden Game Reserve dry Power law -6832.5560 13667.1100 0.0000E+00 0.2979 2.20E-16 0.8673 

Blue wildebeest AG233 Welgevonden Game Reserve dry Truncated power law -6546.4540 13094.9100 0.0000E+00 0.3200 0.0000 0.9322 

Blue wildebeest AG234 Welgevonden Game Reserve dry Brownian motion -6604.5160 1.3221E+04 0.0000 0.2214 0.0000 0.9292 

Blue wildebeest AG234 Welgevonden Game Reserve dry Brownian motion 2exp -6427.1830 12802.7700 0.0000E+00 0.0649 0.1011 0.9934 

Blue wildebeest AG234 Welgevonden Game Reserve dry Brownian motion 3exp -6396.3830 12804.6100 7.1550E-01 0.0494 0.3534 0.9964 

Blue wildebeest AG234 Welgevonden Game Reserve dry Brownian motion 4exp -6395.3050 12804.6100 2.8450E-01 0.0494 0.3534 0.9963 

Blue wildebeest AG234 Welgevonden Game Reserve dry Power law -6858.1000 13718.2000 0.0000E+00 0.2948 2.20E-16 0.8422 

Blue wildebeest AG234 Welgevonden Game Reserve dry Truncated power law -6563.1530 13128.3100 0.0000E+00 0.3470 0.0000 0.9096 

Blue wildebeest AG235 Welgevonden Game Reserve dry Brownian motion -3998.0190 7.9980E+03 0.0000 0.2117 0.0000 0.9527 

Blue wildebeest AG235 Welgevonden Game Reserve dry Brownian motion 2exp -3808.2930 7622.5860 0.0000E+00 0.0757 0.0714 0.9967 

Blue wildebeest AG235 Welgevonden Game Reserve dry Brownian motion 3exp -3791.5450 7593.0900 0.0000E+00 0.0448 0.6058 0.9964 

Blue wildebeest AG235 Welgevonden Game Reserve dry Brownian motion 4exp -3778.6130 7571.2260 1.0000E+00 0.0396 0.7528 0.9969 

Blue wildebeest AG235 Welgevonden Game Reserve dry Power law -4023.0150 8048.0310 0.0000E+00 0.2582 2.20E-16 0.8626 
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Blue wildebeest AG235 Welgevonden Game Reserve dry Truncated power law -3945.6820 7893.3650 0.0000E+00 0.1721 0.0000 0.9224 

Blue wildebeest AG235 Welgevonden Game Reserve wet Brownian motion -3880.6670 7.7633E+03 0.0078 0.0466 0.4870 0.9959 

Blue wildebeest AG235 Welgevonden Game Reserve wet Brownian motion 2exp -3874.7370 7755.4740 3.9670E-01 0.0481 0.4446 0.9965 

Blue wildebeest AG235 Welgevonden Game Reserve wet Brownian motion 3exp -3872.4580 7754.9150 5.2460E-01 0.0481 0.4446 0.9948 

Blue wildebeest AG235 Welgevonden Game Reserve wet Brownian motion 4exp -3872.4580 7758.9160 7.1000E-02 0.0481 0.4446 0.9947 

Blue wildebeest AG235 Welgevonden Game Reserve wet Power law -4212.4030 8426.8050 0.0000E+00 0.2702 2.20E-16 0.8368 

Blue wildebeest AG235 Welgevonden Game Reserve wet Truncated power law -4010.1480 8022.2960 0.0000E+00 0.1910 0.0000 0.9292 

Blue wildebeest AG236 Welgevonden Game Reserve dry Brownian motion -5218.8280 1.0440E+04 0.0000 0.2618 0.0000 0.9068 

Blue wildebeest AG236 Welgevonden Game Reserve dry Brownian motion 2exp -4922.4450 9850.8900 0.0000E+00 0.0444 0.5185 0.9965 

Blue wildebeest AG236 Welgevonden Game Reserve dry Brownian motion 3exp -4914.6530 9839.3070 0.0000E+00 0.0414 0.6078 0.9965 

Blue wildebeest AG236 Welgevonden Game Reserve dry Brownian motion 4exp -4899.8190 9813.6390 1.0000E+00 0.0473 0.4350 0.9977 

Blue wildebeest AG236 Welgevonden Game Reserve dry Power law -5283.7030 10569.4050 0.0000E+00 0.3166 2.20E-16 0.8049 

Blue wildebeest AG236 Welgevonden Game Reserve dry Truncated power law -5113.7350 10229.4690 0.0000E+00 0.2367 0.0000 0.8901 

Blue wildebeest AG236 Welgevonden Game Reserve wet Brownian motion -4290.9900 8.5840E+03 0.0000 0.0481 0.4456 0.9968 

Blue wildebeest AG236 Welgevonden Game Reserve wet Brownian motion 2exp -4279.6440 8565.2890 8.5000E-03 0.0310 0.0000 0.9980 

Blue wildebeest AG236 Welgevonden Game Reserve wet Brownian motion 3exp -4273.4890 8556.9770 5.4040E-01 0.0434 0.5777 0.9970 

Blue wildebeest AG236 Welgevonden Game Reserve wet Brownian motion 4exp -4271.6690 8557.3380 4.5110E-01 0.0434 0.5777 0.9970 

Blue wildebeest AG236 Welgevonden Game Reserve wet Power law -4683.7220 9369.4440 0.0000E+00 0.3039 2.20E-16 0.7999 

Blue wildebeest AG236 Welgevonden Game Reserve wet Truncated power law -4499.1630 9000.3250 0.0000E+00 0.2233 0.0000 0.8986 

Blue wildebeest WIL16 Asante Sana Game Reserve dry Brownian motion -4084.8750 8.1718E+03 0.0000 0.1108 0.0006 0.9966 

Blue wildebeest WIL16 Asante Sana Game Reserve dry Brownian motion 2exp -3871.6330 7749.2660 0.0000E+00 0.0569 0.2299 0.9981 

Blue wildebeest WIL16 Asante Sana Game Reserve dry Brownian motion 3exp -3830.3080 7670.6170 8.7550E-01 0.0524 0.3183 0.9957 

Blue wildebeest WIL16 Asante Sana Game Reserve dry Brownian motion 4exp -3830.2590 7674.5190 1.2450E-01 0.0524 0.3183 0.9953 

Blue wildebeest WIL16 Asante Sana Game Reserve dry Power law -4239.3740 8480.7480 0.0000E+00 0.256 2.20E-16 0.8270 

Blue wildebeest WIL16 Asante Sana Game Reserve dry Truncated power law -4152.4320 8306.8640 0.0000E+00 0.1707 0.0000 0.8974 

Blue wildebeest WIL17 Asante Sana Game Reserve dry Brownian motion -4018.1030 8.0382E+03 0.0000 0.1021 0.0021 0.9976 

Blue wildebeest WIL17 Asante Sana Game Reserve dry Brownian motion 2exp -3841.8280 7689.6570 0.0000E+00 0.0549 0.2766 0.9985 

Blue wildebeest WIL17 Asante Sana Game Reserve dry Brownian motion 3exp -3801.5350 7613.0710 3.6000E-03 0.0442 0.5431 0.9952 

Blue wildebeest WIL17 Asante Sana Game Reserve dry Brownian motion 4exp -3793.9230 7601.8460 9.9640E-01 0.0412 0.6349 0.9958 

Blue wildebeest WIL17 Asante Sana Game Reserve dry Power law -4190.0360 8382.0730 0.0000E+00 0.253 2.20E-16 0.8250 

Blue wildebeest WIL17 Asante Sana Game Reserve dry Truncated power law -4101.2230 8204.4460 0.0000E+00 0.1662 0.0000 0.8990 

Blue wildebeest WIL17 Asante Sana Game Reserve wet Brownian motion -4419.8990 8.8418E+03 0.0000 0.1043 0.0013 0.9902 
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Blue wildebeest WIL17 Asante Sana Game Reserve wet Brownian motion 2exp -4400.0020 8806.0030 0.0000E+00 0.1058 0.0011 0.9881 

Blue wildebeest WIL17 Asante Sana Game Reserve wet Brownian motion 3exp -4301.7210 8613.4410 8.8080E-01 0.0611 0.1632 0.9959 

Blue wildebeest WIL17 Asante Sana Game Reserve wet Brownian motion 4exp -4301.7210 8617.4410 1.1920E-01 0.0611 0.1632 0.9959 

Blue wildebeest WIL17 Asante Sana Game Reserve wet Power law -4648.8420 9299.6840 0.0000E+00 0.3085 2.20E-16 0.8023 

Blue wildebeest WIL17 Asante Sana Game Reserve wet Truncated power law -4525.1680 9052.3350 0.0000E+00 0.1997 0.0000 0.8936 

Blue wildebeest WIL18 Asante Sana Game Reserve dry Brownian motion -3969.7890 7.9416E+03 0.0000 0.1448 0.0000 0.9932 

Blue wildebeest WIL18 Asante Sana Game Reserve dry Brownian motion 2exp -3812.7940 7631.5880 0.0000E+00 0.0806 0.0258 0.9952 

Blue wildebeest WIL18 Asante Sana Game Reserve dry Brownian motion 3exp -3788.6280 7587.2560 0.0000E+00 0.0806 0.0258 0.9927 

Blue wildebeest WIL18 Asante Sana Game Reserve dry Brownian motion 4exp -3612.8300 7239.6600 1.0000E+00 0.0687 0.0850 0.9917 

Blue wildebeest WIL18 Asante Sana Game Reserve dry Power law -4088.3760 8178.7520 0.0000E+00 0.2388 2.20E-16 0.8404 

Blue wildebeest WIL18 Asante Sana Game Reserve dry Truncated power law -4022.7870 8047.5740 0.0000E+00 0.1701 0.0000 0.8932 

Blue wildebeest WIL18 Asante Sana Game Reserve wet Brownian motion -4160.8350 8.3237E+03 0.0000 0.1035 0.0018 0.9920 

Blue wildebeest WIL18 Asante Sana Game Reserve wet Brownian motion 2exp -4111.6600 8229.3200 1.0000E+00 0.1005 0.0026 0.9912 

Blue wildebeest WIL18 Asante Sana Game Reserve wet Brownian motion 3exp -4000.1600 8010.3210 1.0000E+00 0.0487 0.4169 0.9980 

Blue wildebeest WIL18 Asante Sana Game Reserve wet Brownian motion 4exp -4045.6470 8105.2930 0.0000E+00 0.0365 0.7731 0.9977 

Blue wildebeest WIL18 Asante Sana Game Reserve wet Power law -4340.8230 8683.6460 0.0000E+00 0.2922 2.20E-16 0.8367 

Blue wildebeest WIL18 Asante Sana Game Reserve wet Truncated power law -4251.6430 8505.2870 0.0000E+00 0.2055 0.0000 0.9050 

Blue wildebeest WIL19 Asante Sana Game Reserve dry Brownian motion -4095.7550 8.1935E+03 0.0000 0.0925 0.0064 0.9978 

Blue wildebeest WIL19 Asante Sana Game Reserve dry Brownian motion 2exp -4030.3270 8066.6530 0.0000E+00 0.0478 0.4294 0.9984 

Blue wildebeest WIL19 Asante Sana Game Reserve dry Brownian motion 3exp -3902.5210 7815.0420 2.0040E-01 0.0463 0.4701 0.9974 

Blue wildebeest WIL19 Asante Sana Game Reserve dry Brownian motion 4exp -3899.1370 7812.2740 7.9960E-01 0.0373 0.7394 0.9975 

Blue wildebeest WIL19 Asante Sana Game Reserve dry Power law -4265.5770 8533.1530 0.0000E+00 0.2493 2.20E-16 0.8394 

Blue wildebeest WIL19 Asante Sana Game Reserve dry Truncated power law -4176.5210 8355.0420 0.0000E+00 0.1627 0.0000 0.9101 

Blue wildebeest WIL19 Asante Sana Game Reserve wet Brownian motion -3798.9180 7.5998E+03 0.0000 0.1296 0.0001 0.9817 

Blue wildebeest WIL19 Asante Sana Game Reserve wet Brownian motion 2exp -3732.5120 7471.0240 0.0000E+00 0.1243 0.0003 0.9800 

Blue wildebeest WIL19 Asante Sana Game Reserve wet Brownian motion 3exp -3635.1230 7280.2460 8.8320E-01 0.0560 0.3313 0.9965 

Blue wildebeest WIL19 Asante Sana Game Reserve wet Brownian motion 4exp -3635.1460 7284.2920 1.1680E-01 0.0560 0.3313 0.9965 

Blue wildebeest WIL19 Asante Sana Game Reserve wet Power law -3968.5190 7939.0380 0.0000E+00 0.303 2.20E-16 0.8057 

Blue wildebeest WIL19 Asante Sana Game Reserve wet Truncated power law -3862.9420 7727.8850 0.0000E+00 0.1961 0.0000 0.8974 

Blue wildebeest WIL20 Asante Sana Game Reserve dry Brownian motion -4106.0900 8.2142E+03 0.0000 0.1174 0.0002 0.9965 

Blue wildebeest WIL20 Asante Sana Game Reserve dry Brownian motion 2exp -3859.6630 7725.3270 0.0000E+00 0.0565 0.2336 0.9983 

Blue wildebeest WIL20 Asante Sana Game Reserve dry Brownian motion 3exp -3817.3230 7644.6470 8.8640E-01 0.0550 0.2610 0.9959 
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Blue wildebeest WIL20 Asante Sana Game Reserve dry Brownian motion 4exp -3817.3780 7648.7560 1.1360E-01 0.0550 0.2610 0.9958 

Blue wildebeest WIL20 Asante Sana Game Reserve dry Power law -4249.1970 8500.3940 0.0000E+00 0.2437 2.20E-16 0.8374 

Blue wildebeest WIL20 Asante Sana Game Reserve dry Truncated power law -4165.8630 8333.7270 0.0000E+00 0.1620 0.0000 0.9037 

Blue wildebeest WIL5 Mapungubwe National Park dry Brownian motion -4937.4440 9.8769E+03 0.0000 0.1431 0.0000 0.9820 

Blue wildebeest WIL5 Mapungubwe National Park dry Brownian motion 2exp -4814.5660 9635.1310 0.0000E+00 0.0912 0.0053 0.9858 

Blue wildebeest WIL5 Mapungubwe National Park dry Brownian motion 3exp -4767.3700 9544.7400 1.5000E-03 0.0449 0.4693 0.9987 

Blue wildebeest WIL5 Mapungubwe National Park dry Brownian motion 4exp -4758.8620 9531.7250 9.9850E-01 0.0351 0.7731 0.9991 

Blue wildebeest WIL5 Mapungubwe National Park dry Power law -5043.3780 10088.7570 0.0000E+00 0.244 2.20E-16 0.8568 

Blue wildebeest WIL5 Mapungubwe National Park dry Truncated power law -4892.7630 9787.5260 0.0000E+00 0.1248 0.0000 0.9543 

Blue wildebeest WIL5 Mapungubwe National Park wet Brownian motion -4728.0110 9.4580E+03 0.0000 0.0877 0.0104 0.9868 

Blue wildebeest WIL5 Mapungubwe National Park wet Brownian motion 2exp -4679.7820 9365.5650 0.0000E+00 0.0848 0.0146 0.9860 

Blue wildebeest WIL5 Mapungubwe National Park wet Brownian motion 3exp -4665.3960 9340.7920 4.8030E-01 0.0468 0.4426 0.9957 

Blue wildebeest WIL5 Mapungubwe National Park wet Brownian motion 4exp -4663.3170 9340.6350 5.1970E-01 0.0512 0.3321 0.9957 

Blue wildebeest WIL5 Mapungubwe National Park wet Power law -5071.0500 10144.1010 0.0000E+00 0.3114 2.20E-16 0.8090 

Blue wildebeest WIL5 Mapungubwe National Park wet Truncated power law -4843.2150 9688.4300 0.0000E+00 0.2442 0.0000 0.9213 

Blue wildebeest WIL6 Mapungubwe National Park dry Brownian motion -4831.1360 9.6643E+03 0.0000 0.1408 0.0000 0.9791 

Blue wildebeest WIL6 Mapungubwe National Park dry Brownian motion 2exp -4747.4780 9500.9560 0.0000E+00 0.1221 0.0001 0.9780 

Blue wildebeest WIL6 Mapungubwe National Park dry Brownian motion 3exp -4700.8150 9411.6310 0.0000E+00 0.0302 0.9093 0.9994 

Blue wildebeest WIL6 Mapungubwe National Park dry Brownian motion 4exp -4659.1050 9332.2100 1.0000E+00 0.0287 0.9361 0.9994 

Blue wildebeest WIL6 Mapungubwe National Park dry Power law -4998.5540 9999.1090 0.0000E+00 0.25 2.20E-16 0.8569 

Blue wildebeest WIL6 Mapungubwe National Park dry Truncated power law -4836.6210 9675.2430 0.0000E+00 0.1351 0.0000 0.9569 

Blue wildebeest WIL7 Mapungubwe National Park dry Brownian motion -4878.9860 9.7600E+03 0.0000 0.1507 0.0000 0.9773 

Blue wildebeest WIL7 Mapungubwe National Park dry Brownian motion 2exp -4734.9260 9475.8520 0.0000E+00 0.1113 0.0003 0.9787 

Blue wildebeest WIL7 Mapungubwe National Park dry Brownian motion 3exp -4688.8710 9387.7430 6.5470E-01 0.0451 0.4665 0.9988 

Blue wildebeest WIL7 Mapungubwe National Park dry Brownian motion 4exp -4687.5110 9389.0230 3.4530E-01 0.0451 0.4665 0.9991 

Blue wildebeest WIL7 Mapungubwe National Park dry Power law -4975.3640 9952.7280 0.0000E+00 0.2211 1.67E-15 0.8762 

Blue wildebeest WIL7 Mapungubwe National Park dry Truncated power law -4808.1950 9618.3910 0.0000E+00 0.1056 0.0007 0.9700 

Blue wildebeest WIL7 Mapungubwe National Park wet Brownian motion -4335.4970 8.6730E+03 0.0000 0.0568 0.2182 0.9957 

Blue wildebeest WIL7 Mapungubwe National Park wet Brownian motion 2exp -4309.6220 8625.2440 2.0000E-04 0.0553 0.2440 0.9953 

Blue wildebeest WIL7 Mapungubwe National Park wet Brownian motion 3exp -4299.3220 8608.6440 8.6500E-01 0.0466 0.4454 0.9976 

Blue wildebeest WIL7 Mapungubwe National Park wet Brownian motion 4exp -4299.1810 8612.3620 1.3480E-01 0.0422 0.5731 0.9977 

Blue wildebeest WIL7 Mapungubwe National Park wet Power law -4636.5110 9275.0230 0.0000E+00 0.2897 2.20E-16 0.8488 
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Blue wildebeest WIL7 Mapungubwe National Park wet Truncated power law -4446.7130 8895.4250 0.0000E+00 0.1849 0.0000 0.9451 

Blue wildebeest WIL8 Mapungubwe National Park dry Brownian motion -4760.7390 9.5235E+03 0.0000 0.1695 0.0000 0.9708 

Blue wildebeest WIL8 Mapungubwe National Park dry Brownian motion 2exp -4664.2150 9334.4310 0.0000E+00 0.0678 0.0772 0.9959 

Blue wildebeest WIL8 Mapungubwe National Park dry Brownian motion 3exp -4522.6590 9055.3180 3.7700E-02 0.0523 0.2884 0.9988 

Blue wildebeest WIL8 Mapungubwe National Park dry Brownian motion 4exp -4517.4190 9048.8390 9.6230E-01 0.0367 0.7263 0.9992 

Blue wildebeest WIL8 Mapungubwe National Park dry Power law -4830.1270 9662.2550 0.0000E+00 0.2147 1.34E-14 0.8926 

Blue wildebeest WIL8 Mapungubwe National Park dry Truncated power law -4691.3400 9384.6800 0.0000E+00 0.1017 0.0013 0.9728 

Blue wildebeest WIL8 Mapungubwe National Park wet Brownian motion -4312.5190 8.6270E+03 0.0000 0.0598 0.1724 0.9957 

Blue wildebeest WIL8 Mapungubwe National Park wet Brownian motion 2exp -4251.2410 8508.4830 1.5000E-03 0.0627 0.1350 0.9952 

Blue wildebeest WIL8 Mapungubwe National Park wet Brownian motion 3exp -4242.8470 8495.6930 8.8180E-01 0.0569 0.2175 0.9944 

Blue wildebeest WIL8 Mapungubwe National Park wet Brownian motion 4exp -4242.8690 8499.7380 1.1670E-01 0.0569 0.2175 0.9946 

Blue wildebeest WIL8 Mapungubwe National Park wet Power law -4612.5940 9227.1870 0.0000E+00 0.2843 2.20E-16 0.8169 

Blue wildebeest WIL8 Mapungubwe National Park wet Truncated power law -4438.8660 8879.7330 0.0000E+00 0.1706 0.0000 0.9266 

Blue wildebeest WIL9 Mapungubwe National Park dry Brownian motion -4902.9660 9.8079E+03 0.0000 0.1190 0.0001 0.9848 

Blue wildebeest WIL9 Mapungubwe National Park dry Brownian motion 2exp -4736.9340 9479.8680 0.0000E+00 0.1006 0.0016 0.9842 

Blue wildebeest WIL9 Mapungubwe National Park dry Brownian motion 3exp -4692.0780 9394.1550 4.0500E-01 0.0411 0.5907 0.9974 

Blue wildebeest WIL9 Mapungubwe National Park dry Brownian motion 4exp -4689.6930 9393.3860 5.9500E-01 0.0397 0.6353 0.9976 

Blue wildebeest WIL9 Mapungubwe National Park dry Power law -5058.4250 10118.8510 0.0000E+00 0.2422 2.20E-16 0.8453 

Blue wildebeest WIL9 Mapungubwe National Park dry Truncated power law -4895.9610 9793.9220 0.0000E+00 0.1275 0.0000 0.9480 

Blue wildebeest WIL9 Mapungubwe National Park wet Brownian motion -4698.7190 9.3994E+03 0.0000 0.0781 0.0294 0.9889 

Blue wildebeest WIL9 Mapungubwe National Park wet Brownian motion 2exp -4681.3420 9368.6850 2.0000E-04 0.0753 0.0400 0.9876 

Blue wildebeest WIL9 Mapungubwe National Park wet Brownian motion 3exp -4670.8980 9351.7950 8.8070E-01 0.0593 0.1755 0.9951 

Blue wildebeest WIL9 Mapungubwe National Park wet Brownian motion 4exp -4670.8980 9355.7960 1.1910E-01 0.0593 0.1755 0.9951 

Blue wildebeest WIL9 Mapungubwe National Park wet Power law -5066.3590 10134.7170 0.0000E+00 0.3271 2.20E-16 0.8049 

Blue wildebeest WIL9 Mapungubwe National Park wet Truncated power law -4841.2080 9684.4160 0.0000E+00 0.2504 0.0000 0.9171 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve dry Brownian motion -4726.3820 9.4548E+03 0.2740 0.0515 0.3120 0.9965 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve dry Brownian motion 2exp -4725.9830 9457.9650 5.5300E-02 0.0515 0.3120 0.9964 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve dry Brownian motion 3exp -4722.5640 9455.1280 2.2840E-01 0.0229 0.9931 0.9991 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve dry Brownian motion 4exp -4719.9030 9453.8070 4.4230E-01 0.0215 0.9971 0.9991 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve dry Power law -5183.0450 10368.0900 0.0000E+00 0.3233 2.20E-16 0.8466 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve dry Truncated power law -4922.7930 9847.5870 0.0000E+00 0.2790 0.0000 0.9349 
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KS-D KS p-
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Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve wet Brownian motion -4687.2290 9.3765E+03 0.0000 0.0631 0.1097 0.9936 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve wet Brownian motion 2exp -4681.1580 9368.3170 1.0000E-04 0.0631 0.1097 0.9935 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve wet Brownian motion 3exp -4669.4730 9348.9470 9.9950E-01 0.0261 0.9655 0.9993 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve wet Brownian motion 4exp -4675.1130 9364.2260 5.0000E-04 0.0247 0.9794 0.9993 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve wet Power law -5099.6800 10201.3600 0.0000E+00 0.3045 2.20E-16 0.8707 

Cape mountain 
zebra 

AG442 Baviaanskloof Nature Reserve wet Truncated power law -4841.3310 9684.6620 0.0000E+00 0.2455 0.0000 0.9508 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve dry Brownian motion -4179.1990 8.3604E+03 0.0000 0.0872 0.0214 0.9881 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve dry Brownian motion 2exp -4163.2940 8332.5880 4.4100E-02 0.0252 0.9916 0.9989 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve dry Brownian motion 3exp -4163.2940 8336.5880 6.0000E-03 0.0252 0.9916 0.9989 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve dry Brownian motion 4exp -4156.2240 8326.4490 9.4990E-01 0.0268 0.9827 0.9988 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve dry Power law -4548.8570 9099.7140 0.0000E+00 0.3272 2.20E-16 0.8368 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve dry Truncated power law -4325.7930 8653.5870 0.0000E+00 0.2903 0.0000 0.9989 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve wet Brownian motion -4786.6560 9.5753E+03 0.0000 0.1397 0.0000 0.9706 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve wet Brownian motion 2exp -4716.0180 9438.0350 1.9610E-01 0.0260 0.9657 0.9991 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve wet Brownian motion 3exp -4716.0180 9442.0350 2.6500E-02 0.0260 0.9657 0.9991 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve wet Brownian motion 4exp -4710.6410 9435.2810 7.7730E-01 0.0342 0.7854 0.9992 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve wet Power law -5087.7660 10177.5320 0.0000E+00 0.2973 2.20E-16 0.8750 

Cape mountain 
zebra 

AG443 Baviaanskloof Nature Reserve wet Truncated power law -4896.8940 9795.7870 0.0000E+00 0.2014 0.0000 0.9492 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve dry Brownian motion -4814.3340 9.6307E+03 0.0000 0.0912 0.0045 0.9853 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve dry Brownian motion 2exp -4786.9570 9579.9150 4.0110E-01 0.0381 0.6604 0.9987 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve dry Brownian motion 3exp 4784.5690 9579.1380 5.9150E-01 0.0381 0.6604 0.9986 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve dry Brownian motion 4exp -4786.9570 9587.9150 7.3000E-03 0.0381 0.6604 0.9987 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve dry Power law -5229.8660 10461.7330 0.0000E+00 0.3211 2.20E-16 0.8812 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve dry Truncated power law -4989.1830 9980.3660 0.0000E+00 0.2503 0.0000 0.9499 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve wet Brownian motion -4492.7150 8.9874E+03 0.3645 0.0591 0.1773 0.9922 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve wet Brownian motion 2exp -4491.2930 8988.5860 2.0460E-01 0.0576 0.1992 0.9919 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve wet Brownian motion 3exp -4488.6750 8987.3500 3.7960E-01 0.0519 0.3079 0.9955 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve wet Brownian motion 4exp -4488.6750 8991.3500 5.1400E-02 0.0519 0.3079 0.9955 

Cape mountain 
zebra 

AG444 Baviaanskloof Nature Reserve wet Power law -4911.4410 9824.8810 0.0000E+00 0.3271 2.20E-16 0.8392 

Cape mountain AG444 Baviaanskloof Nature Reserve wet Truncated power law -4461.1470 9324.2950 0.0000E+00 0.2666 0.0000 0.9353 



182 
 

 
 

Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

zebra 

Eland AU073 Mkambati Nature Reserve dry Brownian motion -5278.3190 1.0559E+04 0.0001 0.0515 0.2970 0.9973 

Eland AU073 Mkambati Nature Reserve dry Brownian motion 2exp -5275.6940 10557.3900 1.0000E-04 0.0459 0.4351 0.9970 

Eland AU073 Mkambati Nature Reserve dry Brownian motion 3exp -5264.7970 10539.5900 8.8060E-01 0.0167 1.0000 0.9995 

Eland AU073 Mkambati Nature Reserve dry Brownian motion 3exp -5264.7970 10543.5900 1.1920E-01 0.0167 1.0000 0.9995 

Eland AU073 Mkambati Nature Reserve dry Power law -5819.8780 11641.7600 0.0000E+00 0.3505 2.20E-16 0.7954 

Eland AU073 Mkambati Nature Reserve dry Truncated power law -5549.8300 11101.6600 0.0000E+00 0.3282 0.0000 0.8892 

Eland AU073 Mkambati Nature Reserve wet Brownian motion -4779.0900 9.5602E+03 0.8650 0.0362 0.7556 0.9988 

Eland AU073 Mkambati Nature Reserve wet Brownian motion 2exp -4779.0900 9564.1800 1.1710E-01 0.0362 0.7556 0.9988 

Eland AU073 Mkambati Nature Reserve wet Brownian motion 3exp -4779.0900 9568.1800 1.5800E-02 0.0362 0.7556 0.9988 

Eland AU073 Mkambati Nature Reserve wet Brownian motion 3exp -4779.0900 9572.1800 2.1000E-03 0.0362 0.7556 0.9988 

Eland AU073 Mkambati Nature Reserve wet Power law -5337.4810 10676.9600 0.0000E+00 0.3565 2.20E-16 0.8025 

Eland AU073 Mkambati Nature Reserve wet Truncated power law -5056.5800 10115.1600 0.0000E+00 0.3391 0.0000 0.8924 

Eland EL10 Mapungubwe National Park dry Brownian motion -5013.8870 1.0030E+04 0.0000 0.0847 0.0105 0.9909 

Eland EL10 Mapungubwe National Park dry Brownian motion 2exp -4973.2860 9952.5720 0.0000E+00 0.0820 0.0146 0.9905 

Eland EL10 Mapungubwe National Park dry Brownian motion 3exp -4995.6030 10001.2060 0.0000E+00 0.0178 0.9998 0.9994 

Eland EL10 Mapungubwe National Park dry Brownian motion 3exp -4957.9420 9929.8830 1.0000E+00 0.0246 0.9798 0.9992 

Eland EL10 Mapungubwe National Park dry Power law -5358.9460 10719.8930 0.0000E+00 0.2855 2.20E-16 0.8543 

Eland EL10 Mapungubwe National Park dry Truncated power law -5126.6150 10255.2300 0.0000E+00 0.2063 0.0000 0.9505 

Eland EL11 Mapungubwe National Park dry Brownian motion -4720.6450 9.4433E+03 0.0000 0.0552 0.2447 0.9969 

Eland EL11 Mapungubwe National Park dry Brownian motion 2exp -4717.0070 9440.0150 0.0000E+00 0.0305 0.9057 0.9988 

Eland EL11 Mapungubwe National Park dry Brownian motion 3exp -4717.0070 9444.0150 0.0000E+00 0.0305 0.9057 0.9988 

Eland EL11 Mapungubwe National Park dry Brownian motion 3exp -4688.0690 9390.1370 1.0000E+00 0.0305 0.9057 0.9986 

Eland EL11 Mapungubwe National Park dry Power law -5134.2370 10270.4750 0.0000E+00 0.3096 2.20E-16 0.8455 

Eland EL11 Mapungubwe National Park dry Truncated power law -4915.4160 9832.8320 0.0000E+00 0.2326 0.0000 0.9381 

Eland EL11 Mapungubwe National Park wet Brownian motion -3941.9880 7.8860E+03 0.0000 0.0500 0.4858 0.9973 

Eland EL11 Mapungubwe National Park wet Brownian motion 2exp -3931.0690 7868.1370 0.0000E+00 0.0375 0.8259 0.9989 

Eland EL11 Mapungubwe National Park wet Brownian motion 3exp -3905.5500 7821.0990 8.8290E-01 0.0411 0.7323 0.9989 

Eland EL11 Mapungubwe National Park wet Brownian motion 3exp -3905.5700 7825.1400 1.1710E-01 0.0375 0.8259 0.9989 

Eland EL11 Mapungubwe National Park wet Power law -4274.1620 8550.3240 0.0000E+00 0.3161 2.20E-16 0.8146 

Eland EL11 Mapungubwe National Park wet Truncated power law -4101.9630 8205.9260 0.0000E+00 0.2411 0.0000 0.9146 

Eland EL12 Mapungubwe National Park dry Brownian motion -5136.6120 1.0275E+04 0.0000 0.0564 0.1979 0.9965 
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KS-D KS p-
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R2 

Eland EL12 Mapungubwe National Park dry Brownian motion 2exp -5054.9270 10115.8500 2.8540E-01 0.0495 0.3348 0.9961 

Eland EL12 Mapungubwe National Park dry Brownian motion 3exp -5054.7600 10119.5200 4.5600E-02 0.0481 0.3685 0.9960 

Eland EL12 Mapungubwe National Park dry Brownian motion 3exp -5050.0750 10114.1500 6.6900E-01 0.0206 0.9978 0.9992 

Eland EL12 Mapungubwe National Park dry Power law -5535.8960 11073.7900 0.0000E+00 0.304 2.20E-16 0.8025 

Eland EL12 Mapungubwe National Park dry Truncated power law -5293.0810 10588.1600 0.0000E+00 0.2366 0.0000 0.9161 

Eland EL12 Mapungubwe National Park wet Brownian motion -4812.5730 9.6271E+03 0.0000 0.0433 0.5347 0.9981 

Eland EL12 Mapungubwe National Park wet Brownian motion 2exp -4770.5510 9547.1010 1.4550E-01 0.0404 0.6236 0.9979 

Eland EL12 Mapungubwe National Park wet Brownian motion 3exp -4766.8440 9543.6880 8.0170E-01 0.0202 0.9989 0.9994 

Eland EL12 Mapungubwe National Park wet Brownian motion 3exp -4767.5630 9549.1260 5.2900E-02 0.0216 0.9969 0.9993 

Eland EL12 Mapungubwe National Park wet Power law -5201.3410 10404.6810 0.0000E+00 0.3001 2.20E-16 0.8097 

Eland EL12 Mapungubwe National Park wet Truncated power law -4983.5670 9969.1350 0.0000E+00 0.2237 0.0000 0.9192 

Eland EL22 Asante Sana Game Reserve dry Brownian motion -4700.1860 9.4024E+03 0.0000 0.1427 0.0000 0.9798 

Eland EL22 Asante Sana Game Reserve dry Brownian motion 2exp -4652.9500 9311.8990 0.0000E+00 0.1259 0.0000 0.9777 

Eland EL22 Asante Sana Game Reserve dry Brownian motion 3exp -4508.2610 9026.5230 8.7810E-01 0.0308 0.8875 0.9990 

Eland EL22 Asante Sana Game Reserve dry Brownian motion 3exp -4508.2360 9030.4720 1.2190E-01 0.0308 0.8875 0.9990 

Eland EL22 Asante Sana Game Reserve dry Power law -4832.5250 9667.0500 0.0000E+00 0.2517 2.20E-16 0.8635 

Eland EL22 Asante Sana Game Reserve dry Truncated power law -4722.0520 9446.1040 0.0000E+00 0.1580 0.0000 0.9376 

Eland EL22 Asante Sana Game Reserve wet Brownian motion -3511.1330 7.0243E+03 0.0000 0.0519 0.4849 0.9968 

Eland EL22 Asante Sana Game Reserve wet Brownian motion 2exp -3459.6880 6925.3750 6.0000E-04 0.0519 0.4849 0.9962 

Eland EL22 Asante Sana Game Reserve wet Brownian motion 3exp -3450.3910 6910.7820 8.7290E-01 0.0327 0.9439 0.9990 

Eland EL22 Asante Sana Game Reserve wet Brownian motion 3exp -3450.3230 6914.6460 1.2650E-01 0.0327 0.9439 0.9990 

Eland EL22 Asante Sana Game Reserve wet Power law -3771.5850 7545.1690 0.0000E+00 0.3077 2.20E-16 0.7954 

Eland EL22 Asante Sana Game Reserve wet Truncated power law -3620.6060 7243.2120 0.0000E+00 0.2192 0.0000 0.9114 

Eland EL23 Asante Sana Game Reserve dry Brownian motion -4388.2520 8.7785E+03 0.0000 0.1215 0.0001 0.9829 

Eland EL23 Asante Sana Game Reserve dry Brownian motion 2exp -4268.9460 8543.8920 0.0000E+00 0.1201 0.0001 0.9809 

Eland EL23 Asante Sana Game Reserve dry Brownian motion 3exp -4307.7410 8625.4810 0.0000E+00 0.0367 0.7263 0.9987 

Eland EL23 Asante Sana Game Reserve dry Brownian motion 3exp -4197.4580 8408.9160 1.0000E+00 0.0395 0.6371 0.9989 

Eland EL23 Asante Sana Game Reserve dry Power law -4537.4040 9076.8070 0.0000E+00 0.2444 0.0000 0.8710 

Eland EL23 Asante Sana Game Reserve dry Truncated power law -4454.9270 8911.8530 0.0000E+00 0.1723 0.0000 0.9304 

Eland EL24 Asante Sana Game Reserve dry Brownian motion -4577.0690 9.1561E+03 0.0000 0.2475 0.0000 0.9369 

Eland EL24 Asante Sana Game Reserve dry Brownian motion 2exp -4383.6340 8773.2680 0.0000E+00 0.0811 0.0197 0.9946 

Eland EL24 Asante Sana Game Reserve dry Brownian motion 3exp -4355.8860 8721.7720 0.0000E+00 0.0626 0.1273 0.9977 
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Eland EL24 Asante Sana Game Reserve dry Brownian motion 3exp -4256.0930 8526.1860 1.0000E+00 0.0526 0.2845 0.9973 

Eland EL24 Asante Sana Game Reserve dry Power law -4462.1170 8926.2340 0.0000E+00 0.1679 0.0000 0.9409 

Eland EL24 Asante Sana Game Reserve dry Truncated power law -4391.0700 8784.1410 0.0000E+00 0.0996 0.0019 0.9781 

Eland EL25 Asante Sana Game Reserve dry Brownian motion -4590.4400 9.1829E+03 0.0000 0.1182 0.0001 0.9833 

Eland EL25 Asante Sana Game Reserve dry Brownian motion 2exp -4511.1560 9028.3110 0.0000E+00 0.0348 0.7775 0.9995 

Eland EL25 Asante Sana Game Reserve dry Brownian motion 3exp -4446.0310 8902.0620 5.1280E-01 0.0250 0.9779 0.9992 

Eland EL25 Asante Sana Game Reserve dry Brownian motion 3exp -4444.0830 8902.1650 4.8720E-01 0.0223 0.9942 0.9996 

Eland EL25 Asante Sana Game Reserve dry Power law -4767.7100 9537.4200 0.0000E+00 0.2531 0.0000 0.8731 

Eland EL25 Asante Sana Game Reserve dry Truncated power law -4663.2420 9328.4830 0.0000E+00 0.1613 0.0000 0.9392 

Eland EL25 Asante Sana Game Reserve wet Brownian motion -2039.3640 4.0807E+03 0.0000 0.0446 0.8912 0.9927 

Eland EL25 Asante Sana Game Reserve wet Brownian motion 2exp -2002.8300 4011.6610 8.6260E-01 0.0536 0.7206 0.9922 

Eland EL25 Asante Sana Game Reserve wet Brownian motion 3exp -2002.8310 4015.6620 1.1670E-01 0.0536 0.7206 0.9922 

Eland EL25 Asante Sana Game Reserve wet Brownian motion 3exp -2002.5580 4019.1150 2.0800E-02 0.0625 0.5278 0.9920 

Eland EL25 Asante Sana Game Reserve wet Power law -2197.3750 4396.7490 0.0000E+00 0.2976 0.0000 0.8097 

Eland EL25 Asante Sana Game Reserve wet Truncated power law -2091.8720 4185.7440 0.0000E+00 0.2083 0.0000 0.9226 

Eland SAT64 Mkambati Nature Reserve dry Brownian motion -4037.2530 8.0765E+03 0.6371 0.0322 0.9340 0.9980 

Eland SAT64 Mkambati Nature Reserve dry Brownian motion 2exp -4036.3640 8078.7280 2.0970E-01 0.0340 0.9033 0.9980 

Eland SAT64 Mkambati Nature Reserve dry Brownian motion 3exp -4036.2580 8082.5160 3.1600E-02 0.0376 0.8251 0.9979 

Eland SAT64 Mkambati Nature Reserve dry Brownian motion 3exp -4032.9090 8079.8180 1.2160E-01 0.0376 0.8251 0.9979 

Eland SAT64 Mkambati Nature Reserve dry Power law -4485.7610 8973.5210 0.0000E+00 0.3470 0.0000 0.7929 

Eland SAT64 Mkambati Nature Reserve dry Truncated power law -4256.3280 8514.6560 0.0000E+00 0.3417 0.0000 0.8822 

Eland SAT65 Mkambati Nature Reserve dry Brownian motion -4440.4610 8.8829E+03 0.4082 0.0410 0.6849 0.9981 

Eland SAT65 Mkambati Nature Reserve dry Brownian motion 2exp -4439.6460 8885.2920 1.2480E-01 0.0459 0.5415 0.9980 

Eland SAT65 Mkambati Nature Reserve dry Brownian motion 3exp -4437.9380 8885.8770 9.3200E-02 0.0443 0.5886 0.9981 

Eland SAT65 Mkambati Nature Reserve dry Brownian motion 3exp -4434.5490 8883.0990 3.7380E-01 0.0459 0.5415 0.9981 

Eland SAT65 Mkambati Nature Reserve dry Power law -4963.1540 9928.3070 0.0000E+00 0.3803 0.0000 0.7543 

Eland SAT65 Mkambati Nature Reserve dry Truncated power law -4734.3600 9470.7200 0.0000E+00 0.3541 0.0000 0.8575 

Eland SAT65 Mkambati Nature Reserve wet Brownian motion -4963.3480 9.9287E+03 0.0853 0.0296 0.9149 0.9992 

Eland SAT65 Mkambati Nature Reserve wet Brownian motion 2exp -4959.1200 9924.2400 7.9190E-01 0.0254 0.9763 0.9994 

Eland SAT65 Mkambati Nature Reserve wet Brownian motion 3exp -4959.1200 9928.2400 1.0720E-01 0.0254 0.9763 0.9994 

Eland SAT65 Mkambati Nature Reserve wet Brownian motion 3exp -4959.0470 9932.0930 1.5600E-02 0.0254 0.9763 0.9994 

Eland SAT65 Mkambati Nature Reserve wet Power law -5526.4120 11054.8250 0.0000E+00 0.3526 0.0000 0.7952 
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Eland SAT65 Mkambati Nature Reserve wet Truncated power law -5265.3480 10532.6960 0.0000E+00 0.3202 0.0000 0.8890 

Impala IMP1 Mapungubwe National Park dry Brownian motion -4169.5620 8.3411E+03 0.0000 0.0930 0.0047 0.9899 

Impala IMP1 Mapungubwe National Park dry Brownian motion 2exp -4072.5100 8151.0200 3.0000E-04 0.0701 0.0645 0.9915 

Impala IMP1 Mapungubwe National Park dry Brownian motion 3exp -4062.4850 8134.9700 9.9970E-01 0.0544 0.2529 0.9933 

Impala IMP1 Mapungubwe National Park dry Brownian motion 3exp -4109.9070 8233.8140 0.0000E+00 0.0544 0.2529 0.9934 

Impala IMP1 Mapungubwe National Park dry Power law -4418.9330 8839.8670 0.0000E+00 0.2332 0.0000 0.8588 

Impala IMP1 Mapungubwe National Park dry Truncated power law -4199.6860 8401.3720 0.0000E+00 0.1416 0.0000 0.9560 

Impala IMP1 Mapungubwe National Park wet Brownian motion -3219.9970 6.4420E+03 0.0000 0.0630 0.2658 0.9963 

Impala IMP1 Mapungubwe National Park wet Brownian motion 2exp -3185.4470 6376.8930 6.4000E-02 0.0571 0.3793 0.9959 

Impala IMP1 Mapungubwe National Park wet Brownian motion 3exp -3180.7760 6371.5520 9.2390E-01 0.0276 0.9905 0.9988 

Impala IMP1 Mapungubwe National Park wet Brownian motion 3exp -3183.1110 6380.2210 1.2100E-02 0.0492 0.5699 0.9971 

Impala IMP1 Mapungubwe National Park wet Power law -3429.1300 6860.2590 0.0000E+00 0.2717 0.0000 0.8593 

Impala IMP1 Mapungubwe National Park wet Truncated power law -3286.1950 6574.3910 0.0000E+00 0.1673 0.0000 0.9575 

Impala IMP13 Asante Sana Game Reserve dry Brownian motion -3910.2680 7.8225E+03 0.0000 0.1165 0.0005 0.9930 

Impala IMP13 Asante Sana Game Reserve dry Brownian motion 2exp -3744.8670 7495.7340 0.0000E+00 0.0874 0.0179 0.9944 

Impala IMP13 Asante Sana Game Reserve dry Brownian motion 3exp -3745.3390 7500.6780 0.0000E+00 0.0890 0.0150 0.9948 

Impala IMP13 Asante Sana Game Reserve dry Brownian motion 3exp -3729.6690 7473.3380 1.0000E+00 0.0372 0.7855 0.9988 

Impala IMP13 Asante Sana Game Reserve dry Power law -4073.5010 8149.0020 0.0000E+00 0.2184 0.0000 0.8654 

Impala IMP13 Asante Sana Game Reserve dry Truncated power law -3914.3920 7830.7830 0.0000E+00 0.1133 0.0007 0.9642 

Impala IMP14 Asante Sana Game Reserve dry Brownian motion -4392.3190 8.7866E+03 0.0000 0.1111 0.0004 0.9928 

Impala IMP14 Asante Sana Game Reserve dry Brownian motion 2exp -4162.6400 8331.2800 0.0000E+00 0.0707 0.0626 0.9946 

Impala IMP14 Asante Sana Game Reserve dry Brownian motion 3exp -4163.3800 8336.7590 0.0000E+00 0.0693 0.0720 0.9947 

Impala IMP14 Asante Sana Game Reserve dry Brownian motion 3exp -4147.3150 8308.6310 1.0000E+00 0.0462 0.4509 0.9982 

Impala IMP14 Asante Sana Game Reserve dry Power law -4564.3750 9130.7500 0.0000E+00 0.2280 0.0000 0.8632 

Impala IMP14 Asante Sana Game Reserve dry Truncated power law -4372.2640 8746.5290 0.0000E+00 0.1270 0.0000 0.9637 

Impala IMP14 Asante Sana Game Reserve wet Brownian motion -4379.1410 8.7603E+03 0.0000 0.0649 0.1150 0.9972 

Impala IMP14 Asante Sana Game Reserve wet Brownian motion 2exp -4332.8710 8671.7420 0.0000E+00 0.0442 0.5204 0.9977 

Impala IMP14 Asante Sana Game Reserve wet Brownian motion 3exp -4264.3400 8538.6800 8.1860E-01 0.0265 0.9707 0.9992 

Impala IMP14 Asante Sana Game Reserve wet Brownian motion 3exp -4263.8470 8541.6930 1.8140E-01 0.0265 0.9707 0.9992 

Impala IMP14 Asante Sana Game Reserve wet Power law -4657.7400 9317.4810 0.0000E+00 0.2581 0.0000 0.8341 

Impala IMP14 Asante Sana Game Reserve wet Truncated power law -4414.0780 8830.1570 0.0000E+00 0.1917 0.0000 0.9435 

Impala IMP2 Mapungubwe National Park dry Brownian motion -3416.2330 6.8345E+03 0.0000 0.1153 0.0018 0.9906 
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Impala IMP2 Mapungubwe National Park dry Brownian motion 2exp -3341.6230 6689.2460 0.0000E+00 0.0662 0.1972 0.9941 

Impala IMP2 Mapungubwe National Park dry Brownian motion 3exp -3294.8010 6599.6010 1.0000E+00 0.0321 0.9476 0.9981 

Impala IMP2 Mapungubwe National Park dry Brownian motion 3exp -3332.8740 6679.7490 0.0000E+00 0.0340 0.9194 0.9978 

Impala IMP2 Mapungubwe National Park dry Power law -3572.3240 7146.6480 0.0000E+00 0.2136 0.0000 0.8597 

Impala IMP2 Mapungubwe National Park dry Truncated power law -3424.6870 6851.3740 0.0000E+00 0.1191 0.0011 0.9567 

Impala IMP4 Mapungubwe National Park dry Brownian motion -4574.7480 9.1515E+03 0.0000 0.0774 0.0284 0.9975 

Impala IMP4 Mapungubwe National Park dry Brownian motion 2exp -4505.5530 9017.1070 4.6590E-01 0.0408 0.5952 0.9980 

Impala IMP4 Mapungubwe National Park dry Brownian motion 3exp -4504.3630 9018.7250 2.0740E-01 0.0352 0.7717 0.9984 

Impala IMP4 Mapungubwe National Park dry Brownian motion 3exp -4501.9090 9017.8170 3.2660E-01 0.0267 0.9614 0.9992 

Impala IMP4 Mapungubwe National Park dry Power law -4826.7610 9655.5210 0.0000E+00 0.2447 0.0000 0.8435 

Impala IMP4 Mapungubwe National Park dry Truncated power law -4606.3800 9214.7610 0.0000E+00 0.1519 0.0000 0.9503 

Impala IMP4 Mapungubwe National Park wet Brownian motion -4339.1710 8.6803E+03 0.0000 0.0753 0.0429 0.9963 

Impala IMP4 Mapungubwe National Park wet Brownian motion 2exp -4234.1340 8474.2680 8.8000E-03 0.0487 0.3971 0.9970 

Impala IMP4 Mapungubwe National Park wet Brownian motion 3exp -4271.5680 8553.1350 0.0000E+00 0.0295 0.9292 0.9988 

Impala IMP4 Mapungubwe National Park wet Brownian motion 3exp -4225.4140 8464.8270 9.9120E-01 0.0369 0.7452 0.9981 

Impala IMP4 Mapungubwe National Park wet Power law -4594.2310 9190.4620 0.0000E+00 0.2555 0.0000 0.8414 

Impala IMP4 Mapungubwe National Park wet Truncated power law -4413.5550 8829.1100 0.0000E+00 0.1462 0.0000 0.9495 

Plains zebra AG217 Welgevonden Game Reserve wet Brownian motion -6075.4080 1.2153E+04 0.0000 0.2087 0.0000 0.9161 

Plains zebra AG217 Welgevonden Game Reserve wet Brownian motion 2exp -5908.1610 11822.3200 0.0000E+00 0.1562 0.0000 0.9606 

Plains zebra AG217 Welgevonden Game Reserve wet Brownian motion 3exp -5874.1710 11758.3400 1.7320E-01 0.1486 0.0000 0.9767 

Plains zebra AG217 Welgevonden Game Reserve wet Brownian motion 3exp -5870.6080 11755.2200 8.2680E-01 0.1486 0.0000 0.9766 

Plains zebra AG217 Welgevonden Game Reserve wet Power law -6302.4880 12606.9800 0.0000E+00 0.2808 0.0000 0.8216 

Plains zebra AG217 Welgevonden Game Reserve wet Truncated power law -6005.1450 12012.2900 0.0000E+00 0.3468 0.0000 0.8894 

Plains zebra AG218 Welgevonden Game Reserve wet Brownian motion -6231.8160 1.2466E+04 0.0004 0.0725 0.0495 0.9906 

Plains zebra AG218 Welgevonden Game Reserve wet Brownian motion 2exp -6224.4880 12454.9800 8.1700E-02 0.0725 0.0495 0.9908 

Plains zebra AG218 Welgevonden Game Reserve wet Brownian motion 3exp -6220.1180 12450.2400 8.7400E-01 0.0669 0.0864 0.9919 

Plains zebra AG218 Welgevonden Game Reserve wet Brownian motion 3exp -6221.1110 12456.2200 4.3800E-02 0.0683 0.0755 0.9919 

Plains zebra AG218 Welgevonden Game Reserve wet Power law -6972.1630 13946.3300 0.0000E+00 0.3642 0.0000 0.7315 

Plains zebra AG218 Welgevonden Game Reserve wet Truncated power law -6638.3690 13278.7400 0.0000E+00 0.4580 0.0000 0.8053 

Plains zebra AG219 Welgevonden Game Reserve dry Brownian motion -6259.5380 1.2521E+04 0.0780 0.0549 0.2225 0.9923 

Plains zebra AG219 Welgevonden Game Reserve dry Brownian motion 2exp -6255.3070 12516.6100 7.2550E-01 0.0549 0.2225 0.9923 

Plains zebra AG219 Welgevonden Game Reserve dry Brownian motion 3exp -6254.7400 12519.4800 1.7300E-01 0.0576 0.1778 0.9923 
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Plains zebra AG219 Welgevonden Game Reserve dry Brownian motion 3exp -6254.7380 12523.4800 2.3500E-02 0.0576 0.1778 0.9924 

Plains zebra AG219 Welgevonden Game Reserve dry Power law -6998.2770 13998.5500 0.0000E+00 0.3772 0.0000 0.7343 

Plains zebra AG219 Welgevonden Game Reserve dry Truncated power law -6681.7020 13365.4000 0.0000E+00 0.4170 0.0000 0.8160 

Plains zebra AG219 Welgevonden Game Reserve wet Brownian motion -5724.7960 1.1452E+04 0.0112 0.0383 0.7011 0.9979 

Plains zebra AG219 Welgevonden Game Reserve wet Brownian motion 2exp -5720.1140 11446.2300 1.6320E-01 0.0369 0.7460 0.9980 

Plains zebra AG219 Welgevonden Game Reserve wet Brownian motion 3exp -5716.6080 11443.2200 7.3610E-01 0.0354 0.7893 0.9983 

Plains zebra AG219 Welgevonden Game Reserve wet Brownian motion 3exp -5716.7150 11447.4300 8.9500E-02 0.0369 0.7460 0.9981 

Plains zebra AG219 Welgevonden Game Reserve wet Power law -6406.1690 12814.3400 0.0000E+00 0.3658 0.0000 0.7563 

Plains zebra AG219 Welgevonden Game Reserve wet Truncated power law -6123.3480 12248.7000 0.0000E+00 0.4189 0.0000 0.8303 

Plains zebra AG220 Welgevonden Game Reserve dry Brownian motion -6704.3900 1.3411E+04 0.0000 0.0950 0.0028 0.9910 

Plains zebra AG220 Welgevonden Game Reserve dry Brownian motion 2exp -6700.6550 13407.3100 0.0000E+00 0.0937 0.0034 0.9910 

Plains zebra AG220 Welgevonden Game Reserve dry Brownian motion 3exp -6670.8680 13351.7400 8.6070E-01 0.0358 0.7404 0.9986 

Plains zebra AG220 Welgevonden Game Reserve dry Brownian motion 3exp -6670.6890 13355.3800 1.3930E-01 0.0358 0.7404 0.9986 

Plains zebra AG220 Welgevonden Game Reserve dry Power law -7386.3300 14774.6600 0.0000E+00 0.3664 0.0000 0.7891 

Plains zebra AG220 Welgevonden Game Reserve dry Truncated power law -7052.9680 14107.9400 0.0000E+00 0.4518 0.0000 0.8531 

Plains zebra AG220 Welgevonden Game Reserve wet Brownian motion -5784.0480 1.1570E+04 0.0000 0.0942 0.0053 0.9950 

Plains zebra AG220 Welgevonden Game Reserve wet Brownian motion 2exp -5739.7350 11485.4700 1.8130E-01 0.0478 0.4284 0.9968 

Plains zebra AG220 Welgevonden Game Reserve wet Brownian motion 3exp -5738.0680 11486.1400 1.3000E-01 0.0463 0.4691 0.9969 

Plains zebra AG220 Welgevonden Game Reserve wet Brownian motion 3exp -5734.4000 11482.8000 6.8880E-01 0.0209 0.9986 0.9994 

Plains zebra AG220 Welgevonden Game Reserve wet Power law -6285.7480 12573.5000 0.0000E+00 0.3438 0.0000 0.7512 

Plains zebra AG220 Welgevonden Game Reserve wet Truncated power law -5996.9680 11995.9400 0.0000E+00 0.3976 0.0000 0.8321 

Plains zebra AG221 Welgevonden Game Reserve dry Brownian motion -6168.7750 1.2340E+04 0.0043 0.0587 0.1798 0.9909 

Plains zebra AG221 Welgevonden Game Reserve dry Brownian motion 2exp -6164.2180 12334.4400 5.5000E-02 0.0587 0.1798 0.9910 

Plains zebra AG221 Welgevonden Game Reserve dry Brownian motion 3exp -6159.5060 12329.0100 8.2860E-01 0.0659 0.0965 0.9920 

Plains zebra AG221 Welgevonden Game Reserve dry Brownian motion 3exp -6159.5060 12333.0100 1.1210E-01 0.0659 0.0965 0.9920 

Plains zebra AG221 Welgevonden Game Reserve dry Power law -6879.6740 13761.3500 0.0000E+00 0.3625 0.0000 0.7585 

Plains zebra AG221 Welgevonden Game Reserve dry Truncated power law -6529.1910 13060.3800 0.0000E+00 0.4556 0.0000 0.8294 

Plains zebra AG221 Welgevonden Game Reserve wet Brownian motion -6166.3870 1.2335E+04 0.0000 0.1700 0.0000 0.9739 

Plains zebra AG221 Welgevonden Game Reserve wet Brownian motion 2exp -6032.5260 12071.0500 7.0800E-02 0.0648 0.1081 0.9938 

Plains zebra AG221 Welgevonden Game Reserve wet Brownian motion 3exp -6028.1090 12066.2200 7.9370E-01 0.0663 0.0948 0.9938 

Plains zebra AG221 Welgevonden Game Reserve wet Brownian motion 3exp -6027.8770 12069.7500 1.3550E-01 0.0663 0.0948 0.9939 

Plains zebra AG221 Welgevonden Game Reserve wet Power law -6532.0710 13066.1400 0.0000E+00 0.2839 0.0000 0.8125 
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Plains zebra AG221 Welgevonden Game Reserve wet Truncated power law -6239.5960 12481.1900 0.0000E+00 0.3501 0.0000 0.8795 

Plains zebra AG223 Welgevonden Game Reserve dry Brownian motion -5772.0030 1.1546E+04 0.0000 0.0538 0.2581 0.9973 

Plains zebra AG223 Welgevonden Game Reserve dry Brownian motion 2exp -5759.8300 11525.6600 5.0030E-01 0.0354 0.7679 0.9984 

Plains zebra AG223 Welgevonden Game Reserve dry Brownian motion 3exp -5757.9590 11525.9200 4.4010E-01 0.0340 0.8093 0.9988 

Plains zebra AG223 Welgevonden Game Reserve dry Brownian motion 3exp -5757.9590 11529.9200 5.9500E-02 0.0340 0.8093 0.9988 

Plains zebra AG223 Welgevonden Game Reserve dry Power law -6382.3680 12766.7400 0.0000E+00 0.3499 0.0000 0.7589 

Plains zebra AG223 Welgevonden Game Reserve dry Truncated power law -6071.0120 12144.0200 0.0000E+00 0.3994 0.0000 0.8451 

Plains zebra AG223 Welgevonden Game Reserve wet Brownian motion -5745.2960 1.1493E+04 0.0000 0.1164 0.0002 0.9840 

Plains zebra AG223 Welgevonden Game Reserve wet Brownian motion 2exp -5706.2280 11418.4600 1.5340E-01 0.0417 0.5815 0.9985 

Plains zebra AG223 Welgevonden Game Reserve wet Brownian motion 3exp -5702.6700 11415.3400 7.2870E-01 0.0431 0.5375 0.9984 

Plains zebra AG223 Welgevonden Game Reserve wet Brownian motion 3exp -5702.4920 11418.9800 1.1780E-01 0.0417 0.5815 0.9985 

Plains zebra AG223 Welgevonden Game Reserve wet Power law -6239.2550 12480.5100 0.0000E+00 0.3261 0.0000 0.8346 

Plains zebra AG223 Welgevonden Game Reserve wet Truncated power law -5941.3080 11884.6200 0.0000E+00 0.3549 0.0000 0.9086 

Plains zebra AG224 Welgevonden Game Reserve dry Brownian motion -6118.6610 1.2239E+04 0.0000 0.0678 0.0676 0.9934 

Plains zebra AG224 Welgevonden Game Reserve dry Brownian motion 2exp -6111.9290 12229.8600 7.0000E-04 0.0623 0.1137 0.9926 

Plains zebra AG224 Welgevonden Game Reserve dry Brownian motion 3exp -6103.3710 12216.7400 4.5880E-01 0.0285 0.9262 0.9980 

Plains zebra AG224 Welgevonden Game Reserve dry Brownian motion 3exp -6101.2070 12216.4100 5.4060E-01 0.0271 0.9492 0.9980 

Plains zebra AG224 Welgevonden Game Reserve dry Power law -6725.4280 13452.8600 0.0000E+00 0.3537 0.0000 0.7701 

Plains zebra AG224 Welgevonden Game Reserve dry Truncated power law -6436.6760 12875.3500 0.0000E+00 0.3713 0.0000 0.8582 

Plains zebra AG225 Welgevonden Game Reserve dry Brownian motion -6150.6040 1.2303E+04 0.0029 0.0447 0.4518 0.9984 

Plains zebra AG225 Welgevonden Game Reserve dry Brownian motion 2exp -6148.0970 12302.1900 4.9000E-03 0.0203 0.9980 0.9992 

Plains zebra AG225 Welgevonden Game Reserve dry Brownian motion 3exp -6140.9950 12291.9900 7.9760E-01 0.0203 0.9980 0.9992 

Plains zebra AG225 Welgevonden Game Reserve dry Brownian motion 3exp -6140.4060 12294.8100 1.9460E-01 0.0257 0.9673 0.9991 

Plains zebra AG225 Welgevonden Game Reserve dry Power law -6851.8610 13705.7200 0.0000E+00 0.3808 0.0000 0.7609 

Plains zebra AG225 Welgevonden Game Reserve dry Truncated power law -6542.6960 13087.3900 0.0000E+00 0.4146 0.0000 0.8448 

Plains zebra AG225 Welgevonden Game Reserve wet Brownian motion -5680.7770 1.1364E+04 0.0000 0.1007 0.0017 0.9850 

Plains zebra AG225 Welgevonden Game Reserve wet Brownian motion 2exp -5648.4840 11302.9700 3.3900E-01 0.0302 0.9089 0.9985 

Plains zebra AG225 Welgevonden Game Reserve wet Brownian motion 3exp -5647.2720 11304.5400 1.5420E-01 0.0317 0.8771 0.9985 

Plains zebra AG225 Welgevonden Game Reserve wet Brownian motion 3exp -5644.0820 11302.1600 5.0680E-01 0.0360 0.7595 0.9986 

Plains zebra AG225 Welgevonden Game Reserve wet Power law -6190.4890 12382.9800 0.0000E+00 0.3338 0.0000 0.8327 

Plains zebra AG225 Welgevonden Game Reserve wet Truncated power law -5897.6410 11797.2800 0.0000E+00 0.3612 0.0000 0.9053 

Plains zebra AG226 Welgevonden Game Reserve wet Brownian motion -5997.6630 1.1997E+04 0.0000 0.0944 0.0048 0.9875 
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Plains zebra AG226 Welgevonden Game Reserve wet Brownian motion 2exp -5967.4080 11940.8200 1.1200E-02 0.0472 0.4369 0.9976 

Plains zebra AG226 Welgevonden Game Reserve wet Brownian motion 3exp -5964.0230 11938.0500 4.4600E-02 0.0472 0.4369 0.9978 

Plains zebra AG226 Welgevonden Game Reserve wet Brownian motion 3exp -5958.9700 11931.9400 9.4430E-01 0.0501 0.3614 0.9981 

Plains zebra AG226 Welgevonden Game Reserve wet Power law -6525.2290 13052.4600 0.0000E+00 0.3407 0.0000 0.7953 

Plains zebra AG226 Welgevonden Game Reserve wet Truncated power law -6229.5730 12461.1500 0.0000E+00 0.3923 0.0000 0.8726 

Plains zebra AU070 Mkambati Nature Reserve dry Brownian motion -5283.3950 1.0569E+04 0.7893 0.0463 0.4112 0.9974 

Plains zebra AU070 Mkambati Nature Reserve dry Brownian motion 2exp -5283.0420 10572.0800 1.5220E-01 0.0490 0.3412 0.9980 

Plains zebra AU070 Mkambati Nature Reserve dry Brownian motion 3exp -5283.1980 10576.4000 1.7600E-02 0.0476 0.3752 0.9978 

Plains zebra AU070 Mkambati Nature Reserve dry Brownian motion 3exp -5280.3560 10574.7100 4.0900E-02 0.0476 0.3752 0.9974 

Plains zebra AU070 Mkambati Nature Reserve dry Power law -5901.7850 11805.5700 0.0000E+00 0.3673 0.0000 0.8587 

Plains zebra AU070 Mkambati Nature Reserve dry Truncated power law -5602.6600 11207.3200 0.0000E+00 0.3469 0.0000 0.9293 

Plains zebra AU074 Mkambati Nature Reserve dry Brownian motion -4995.4190 9.9928E+03 0.2790 0.0619 0.1398 0.9976 

Plains zebra AU074 Mkambati Nature Reserve dry Brownian motion 2exp -4992.4950 9990.9900 7.0290E-01 0.0633 0.1234 0.9976 

Plains zebra AU074 Mkambati Nature Reserve dry Brownian motion 3exp -4995.4190 10000.8380 5.1000E-03 0.0619 0.1398 0.9976 

Plains zebra AU074 Mkambati Nature Reserve dry Brownian motion 3exp -4992.4870 9998.9750 1.3000E-02 0.0633 0.1234 0.9976 

Plains zebra AU074 Mkambati Nature Reserve dry Power law -5583.8250 11169.6490 0.0000E+00 0.3784 0.0000 0.7759 

Plains zebra AU074 Mkambati Nature Reserve dry Truncated power law -5317.4430 10636.8860 0.0000E+00 0.3424 0.0000 0.8782 

Plains zebra AU074 Mkambati Nature Reserve wet Brownian motion -3992.5370 7.9871E+03 0.2483 0.0662 0.1615 0.9911 

Plains zebra AU074 Mkambati Nature Reserve wet Brownian motion 2exp -3989.7790 7985.5570 5.3010E-01 0.0801 0.0501 0.9941 

Plains zebra AU074 Mkambati Nature Reserve wet Brownian motion 3exp -3989.7790 7989.5570 7.1700E-02 0.0801 0.0501 0.9941 

Plains zebra AU074 Mkambati Nature Reserve wet Brownian motion 3exp -3987.0420 7988.0850 1.4980E-01 0.0801 0.0501 0.9941 

Plains zebra AU074 Mkambati Nature Reserve wet Power law -4430.1970 8862.3930 0.0000E+00 0.3693 0.0000 0.8700 

Plains zebra AU074 Mkambati Nature Reserve wet Truncated power law -4217.3170 8436.6340 0.0000E+00 0.3188 0.0000 0.9343 

Plains zebra AU374 Mkambati Nature Reserve wet Brownian motion -4887.4430 9.7769E+03 0.2327 0.0466 0.4253 0.9944 

Plains zebra AU374 Mkambati Nature Reserve wet Brownian motion 2exp -4884.6290 9775.2580 5.2540E-01 0.0551 0.2330 0.9963 

Plains zebra AU374 Mkambati Nature Reserve wet Brownian motion 3exp -4884.6290 9779.2580 7.1100E-02 0.0551 0.2330 0.9963 

Plains zebra AU374 Mkambati Nature Reserve wet Brownian motion 3exp -4881.7530 9777.5060 1.7080E-01 0.0551 0.2330 0.9962 

Plains zebra AU374 Mkambati Nature Reserve wet Power law -5442.8330 10887.6660 0.0000E+00 0.3658 0.0000 0.8666 

Plains zebra AU374 Mkambati Nature Reserve wet Truncated power law -5188.5420 10379.0840 0.0000E+00 0.3234 0.0000 0.9361 

Plains zebra AU375 Mkambati Nature Reserve wet Brownian motion -4840.5140 9.6830E+03 0.8154 0.0709 0.0577 0.9977 

Plains zebra AU375 Mkambati Nature Reserve wet Brownian motion 2exp -4840.5140 9687.0270 1.1030E-01 0.0709 0.0577 0.9977 

Plains zebra AU375 Mkambati Nature Reserve wet Brownian motion 3exp -4840.5140 9691.0270 1.4900E-02 0.0709 0.0577 0.9977 
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Plains zebra AU375 Mkambati Nature Reserve wet Brownian motion 3exp -4837.1340 9688.2680 5.9300E-02 0.0738 0.0432 0.9978 

Plains zebra AU375 Mkambati Nature Reserve wet Power law -5469.7070 10941.4150 0.0000E+00 0.3830 0.0000 0.8605 

Plains zebra AU375 Mkambati Nature Reserve wet Truncated power law -5199.8440 10401.6880 0.0000E+00 0.3560 0.0000 0.9288 

Red hartebeest AU063 Mkambati Nature Reserve wet Brownian motion -4184.7020 8.3714E+03 0.0000 0.1317 0.0000 0.9791 

Red hartebeest AU063 Mkambati Nature Reserve wet Brownian motion 2exp -4123.4320 8252.8630 0.0000E+00 0.0423 0.6173 0.9980 

Red hartebeest AU063 Mkambati Nature Reserve wet Brownian motion 3exp -4109.2740 8228.5470 8.8080E-01 0.0157 1.0000 0.9998 

Red hartebeest AU063 Mkambati Nature Reserve wet Brownian motion 3exp -4109.2740 8232.5470 1.1920E-01 0.0157 1.0000 0.9998 

Red hartebeest AU063 Mkambati Nature Reserve wet Power law -4361.1460 8724.2920 0.0000E+00 0.2524 0.0000 0.8667 

Red hartebeest AU063 Mkambati Nature Reserve wet Truncated power law -4217.1900 8436.3800 0.0000E+00 0.1395 0.0000 0.9566 

Red hartebeest AU064 Mkambati Nature Reserve dry Brownian motion -4944.8360 9.8917E+03 0.0000 0.0467 0.4244 0.9986 

Red hartebeest AU064 Mkambati Nature Reserve dry Brownian motion 2exp -4919.4610 9844.9210 4.8700E-02 0.0297 0.9141 0.9987 

Red hartebeest AU064 Mkambati Nature Reserve dry Brownian motion 3exp -4914.6150 9839.2300 8.3790E-01 0.0368 0.7254 0.9984 

Red hartebeest AU064 Mkambati Nature Reserve dry Brownian motion 3exp -4914.6150 9843.2300 1.1340E-01 0.0368 0.7254 0.9984 

Red hartebeest AU064 Mkambati Nature Reserve dry Power law -5415.7640 10833.5280 0.0000E+00 0.3281 0.0000 0.7516 

Red hartebeest AU064 Mkambati Nature Reserve dry Truncated power law -5143.1420 10288.2830 0.0000E+00 0.3112 0.0000 0.8612 

Red hartebeest AU064 Mkambati Nature Reserve wet Brownian motion -4472.8660 8.9477E+03 0.0000 0.0726 0.0571 0.9947 

Red hartebeest AU064 Mkambati Nature Reserve wet Brownian motion 2exp -4453.2110 8912.4210 1.1000E-03 0.0652 0.1136 0.9943 

Red hartebeest AU064 Mkambati Nature Reserve wet Brownian motion 3exp -4444.5440 8899.0870 8.7980E-01 0.0193 0.9996 0.9994 

Red hartebeest AU064 Mkambati Nature Reserve wet Brownian motion 3exp -4444.5440 8903.0870 1.1910E-01 0.0193 0.9996 0.9994 

Red hartebeest AU064 Mkambati Nature Reserve wet Power law -4834.4480 9670.8960 0.0000E+00 0.2889 0.0000 0.8253 

Red hartebeest AU064 Mkambati Nature Reserve wet Truncated power law -4590.7010 9183.4030 0.0000E+00 0.2415 0.0000 0.9286 

Red hartebeest AU065 Mkambati Nature Reserve wet Brownian motion -1902.7850 3.8076E+03 0.0000 0.2426 0.0000 0.9553 

Red hartebeest AU065 Mkambati Nature Reserve wet Brownian motion 2exp -1792.9000 3591.7990 0.0000E+00 0.0754 0.3511 0.9934 

Red hartebeest AU065 Mkambati Nature Reserve wet Brownian motion 3exp -1782.8200 3575.6390 1.1220E-01 0.0426 0.9446 0.9980 

Red hartebeest AU065 Mkambati Nature Reserve wet Brownian motion 3exp -1778.7510 3571.5020 8.8780E-01 0.0361 0.9888 0.9980 

Red hartebeest AU065 Mkambati Nature Reserve wet Power law -1862.7860 3727.5720 0.0000E+00 0.1803 0.0001 0.9212 

Red hartebeest AU065 Mkambati Nature Reserve wet Truncated power law -1816.8000 3635.6010 0.0000E+00 0.0885 0.1831 0.9718 

Red hartebeest AU371 Mkambati Nature Reserve dry Brownian motion -4968.7210 9.9394E+03 0.0000 0.0704 0.0635 0.9953 

Red hartebeest AU371 Mkambati Nature Reserve dry Brownian motion 2exp -4958.8550 9923.7100 0.0000E+00 0.0690 0.0730 0.9945 

Red hartebeest AU371 Mkambati Nature Reserve dry Brownian motion 3exp -4934.6010 9879.2030 1.1860E-01 0.0345 0.8024 0.9982 

Red hartebeest AU371 Mkambati Nature Reserve dry Brownian motion 3exp -4930.5950 9875.1900 8.8140E-01 0.0345 0.8024 0.9983 

Red hartebeest AU371 Mkambati Nature Reserve dry Power law -5393.6000 10789.2000 0.0000E+00 0.3132 0.0000 0.7907 
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Species ID Property Season Model MLL AIC AIC 
Weight 

KS-D KS p-
value 

R2 

Red hartebeest AU371 Mkambati Nature Reserve dry Truncated power law -5159.2640 10320.5290 0.0000E+00 0.2658 0.0000 0.8898 

Red hartebeest AU371 Mkambati Nature Reserve wet Brownian motion -4297.9980 8.5980E+03 0.0000 0.0856 0.0165 0.9937 

Red hartebeest AU371 Mkambati Nature Reserve wet Brownian motion 2exp -4270.1420 8546.2840 0.0000E+00 0.0581 0.2196 0.9957 

Red hartebeest AU371 Mkambati Nature Reserve wet Brownian motion 3exp -4256.6490 8523.2980 8.5530E-01 0.0275 0.9654 0.9993 

Red hartebeest AU371 Mkambati Nature Reserve wet Brownian motion 3exp -4256.4260 8526.8520 1.4470E-01 0.0275 0.9654 0.9993 

Red hartebeest AU371 Mkambati Nature Reserve wet Power law -4567.9630 9137.9250 0.0000E+00 0.2661 0.0000 0.8443 

Red hartebeest AU371 Mkambati Nature Reserve wet Truncated power law -4403.6150 8809.2300 0.0000E+00 0.1667 0.0000 0.9372 

Red hartebeest AU372 Mkambati Nature Reserve wet Brownian motion -4389.8270 8.7817E+03 0.0000 0.0694 0.0822 0.9946 

Red hartebeest AU372 Mkambati Nature Reserve wet Brownian motion 2exp -4364.4600 8734.9200 5.1000E-03 0.0211 0.9985 0.9991 

Red hartebeest AU372 Mkambati Nature Reserve wet Brownian motion 3exp -4357.3230 8724.6450 8.7630E-01 0.0211 0.9985 0.9995 

Red hartebeest AU372 Mkambati Nature Reserve wet Brownian motion 3exp -4357.3230 8728.6460 1.1860E-01 0.0211 0.9985 0.9994 

Red hartebeest AU372 Mkambati Nature Reserve wet Power law -4729.1610 9460.3210 0.0000E+00 0.2971 0.0000 0.8263 

Red hartebeest AU372 Mkambati Nature Reserve wet Truncated power law -4521.3810 9044.7610 0.0000E+00 0.2247 0.0000 0.9239 

Red hartebeest AU452 Mkambati Nature Reserve dry Brownian motion -4356.7930 8.7156E+03 0.0000 0.0530 0.3123 0.9974 

Red hartebeest AU452 Mkambati Nature Reserve dry Brownian motion 2exp -4328.3650 8662.7310 5.3970E-01 0.0287 0.9477 0.9988 

Red hartebeest AU452 Mkambati Nature Reserve dry Brownian motion 3exp -4327.7390 8665.4780 1.3660E-01 0.0303 0.9228 0.9989 

Red hartebeest AU452 Mkambati Nature Reserve dry Brownian motion 3exp -4324.8760 8663.7530 3.2370E-01 0.0303 0.9228 0.9988 

Red hartebeest AU452 Mkambati Nature Reserve dry Power law -4737.8990 9477.7980 0.0000E+00 0.3132 0.0000 0.8218 

Red hartebeest AU452 Mkambati Nature Reserve dry Truncated power law -4566.0460 9134.0910 0.0000E+00 0.2209 0.0000 0.9127 

Red hartebeest AU452 Mkambati Nature Reserve wet Brownian motion -4020.0830 8.0422E+03 0.0000 0.1398 0.0000 0.9820 

Red hartebeest AU452 Mkambati Nature Reserve wet Brownian motion 2exp -3959.7750 7925.5500 7.6200E-02 0.0309 0.9309 0.9981 

Red hartebeest AU452 Mkambati Nature Reserve wet Brownian motion 3exp -3955.8390 7921.6790 5.2800E-01 0.0163 1.0000 0.9996 

Red hartebeest AU452 Mkambati Nature Reserve wet Brownian motion 3exp -3954.1270 7922.2550 3.9580E-01 0.0163 1.0000 0.9996 

Red hartebeest AU452 Mkambati Nature Reserve wet Power law -4197.5460 8397.0910 0.0000E+00 0.2228 0.0000 0.8864 

Red hartebeest AU452 Mkambati Nature Reserve wet Truncated power law -4005.4130 8012.8260 0.0000E+00 0.1528 0.0000 0.9682 
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