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ABSTRACT 

Woody plant encroachment is considered one of the most extensive forms of degradation 

affecting savannas in arid and semi-arid ecosystems. Thus, reactive interventions such as 

chemical and mechanical controls, as well as fire application remains the norm in management 

of woody plant encroachment. I conducted a series of woody plant control experiments at the 

Agricultural Research Council’s Roodeplaat experimental ranch, situated in Gauteng Province, 

South Africa. The first experiment was a tree-thinning study at two savanna sites that differ in 

soil texture and woody species. Site 1 was on previously cultivated clay-dominated soils 

characterized by severe soil erosion and was encroached by Vachellia tortilis. Site 2 has never 

been cultivated and was on sandy soils with several woody species. At each site, 24 30 m × 30 

m plots separated by 5 m wide fire breaks were established. Trees were removed to the 

approximate equivalents of 0% (control-no removal), 10%, 20%, 50%, 75% and 100% 

(complete removal of trees), followed by herbicide application on half of the stumps for each 

plot.  I also investigated the effectiveness of Tree Poppers® (weed wrench) as a low-cost 

mechanical control tool to physically uproot seedlings and saplings of woody plants. To 

examine the effectiveness of the Tree Popper®, I used eight dominant tree species that were 

grouped into three height classes (0-49 cm, 50-99 cm, 100-150 cm) of ten seedlings and saplings 

per species per height class. In addition, investigated the effects of five years of annual burning 

on vegetation dynamics in a Vachellia karroo woodland. To determine the effects of annual 

burning on vegetation dynamics, plots (0.25 ha) established in 2013 were used. These studies 

are summarized below: 

(1) I determined the combined effects of tree species, tree thinning, stump diameter and 

herbicide application on resprouting patterns of woody plant species (Dichrostachys cinerea, 

Ehretia crispa, E. rigida, Gymnosporia buxifolia, Pappea capensis, Searsia lancea, S. caffra, 

Vachellia karroo, V. nilotica, V. robusta, V. tortilis and Ziziphus mucronata) that encroach 

study site 1. All the tree species in this study resprouted after cutting. Herbicide application 

significantly reduced the resprouting ability of D. cinerea, E. rigida, V. robusta and Z. 

mucronata. Tree removal positively influenced the resprouting ability and vigour of E. crispa 

only. The diameter of stumps was an important factor in determining resprouting ability, with 

shoot production decreasing with increasing stump diameter. The findings from this study 
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suggest that woody plants are more likely to resprout and survive as juveniles than as adults 

after cutting.   

(2) I found no significant differences in the number of seedlings and saplings uprooted 

by Tree Popper®. However, there were significant differences in the number of juveniles 

uprooted using a Tree Popper® with a few individuals of Vachellia species uprooted. The 

effectiveness of the Tree Popper® may be due to differences in plant morphological structure, 

particularly the root system. The Tree Popper® is not an effective tool for controlling the 

Vachellia species used in this study. However, communal ranchers may mechanically control 

shallow-rooted tree seedlings with the Tree Popper® but not deep-rooted ones, specifically 

Vachellia species. 

(3) In the tree thinning experiment, I determined the effects of different tree thinning-

intensities on grass species-richness, composition, cover, β diversity, and soil fertility. I found 

that tree thinning did not have any significant effects on grass species-richness in either study 

site. However, we found a clear separation of different grass species among the treatments over 

the study period. Different levels of tree thinning increased the abundance of two dominant 

grass species (i.e. Digitaria eriantha and Panicum maximum) in both study sites, particularly 

in moderate (50%) and high removal (75% and 100%) treatments. However, the nitrophilous 

grass (i.e. P. maximum) will likely decline in abundance with time, particularly in the 100% 

thinning treatment because the ecological process that is responsible for N-fixation is no longer 

existent.  Contrastingly, I found no evidence that tree thinning affects the amunt of soil cover. 

In addition, tree thinning did not have a significant impact on soil fertility in either study site. I 

recommend maintaining a stand density of 50% in rangeland affected by woody plant 

encroachment. In this study, 50% thinning created an opportunity for different palatable grass 

species to increase in abundance, which may help to increase forage production.  

(4) I determined the effects of different tree removal-intensities on grass production, 

tree-seedling establishment and growth, and the growth of the remaining large trees. In site 1, 

tree-removal treatments (i.e. 75 and 100%) significantly reduced grass biomass production after 

the first growing season, with no effect after the second season. In site 2, tree removal 

significantly increased grass biomass production. I found no significant effect of tree removal 

on tree seedling establishment in site 1. In site 2, tree removal had a significantly negative effect 

on overall tree seedling establishment. In both sites, there were no significant differences in tree 

seedling growth. Moderate (50%) to high (75%) removal of trees had a positive effect on the 
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growth of remaining large trees in both study sites. I found that increased and/or diminished 

grass biomass production plays a vital role on tree seedling recruitment. Reduced tree 

competition facilitates the growth of the remaining large trees. An implication of these findings 

is that regardless of the substantial costs of woody plant control, the recovery of key ecosystem 

services such as an increased forage production may not be realised. However, this may be 

system-specific. In other systems, the absence of management interventions such as tree 

removal may compromise provision of ecosystem services and ecosystem functioning. 

(5) In the fire experiment, I investigated the effects of five years of annual burning on 

the density of young and adult Vachellia karroo plants. This study also aimed to investigate the 

effects of annual burning on tree growth (i.e. height, stem diameter and canopy size). The results 

supported the “fire-trap” paradigm by demonstrating substantially higher densities of young 

plants in the burned plots than in the unburned plots. In addition, the recruitment of young 

plants and saplings into adult trees was significantly higher in the unburned plots than in the 

burned plots. V. karroo populations substantially increased in growth (height and basal 

diameter) in the unburned plots. Different grass species changed in abundance in response to 

annual burning. However, I found no significant changes in grass species diversity and richness 

between the treatments. I found that the removal of the grass layer by fire and repeated topkill 

increased the number of young V. karroo individuals. Annual burning limited V. karroo 

juveniles and saplings from reaching an adult size class that may have detrimental effects on 

the herbaceous layer. I demonstrated that grass species composition is more prone to fire-

induced changes than species diversity and richness in our study area. In conclusion, I show 

that managers of savanna rangelands may use annual burning to achieve specific vegetation 

structural objectives.  

This thesis demonstrated that mechanical- and chemical -control, as well as fire 

application influences the structure and functioning of savannas. By creating gaps that promote 

grass production, these management practices may assist increase the economic viability of 

savanna ecosystems. However, despite the popular belief that reduced tree densities promote 

ecosystem functions, this thesis demonstrates that the impact of control techniques (especially 

tree thinning) on forage production vary across savanna sites. This thesis also shows that 

management with prescribed annual fire reduced woody plant encroachment across the 5-year 

study, suggesting that fire management can be beneficial and should be explored as a 

management method. 
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Chapter 1: Introduction 1 

 2 

1.1. Backgound 3 

Savannas are ecosystems characterised by a continuous grass layer and a discontinuous layer 4 

of woody plants, are used for both livestock and game ranching (Moustakas et al. 2013). The 5 

coexistence of grasses and trees in savannas has attracted the attention of many researchers over 6 

the last decades (Walter 1939; Walker and Noy-Meir 1982; Jeltsch et al. 2000; Ward 2005; 7 

Ward et al. 2013). Changes in the relative proportion of trees and grasses may change the 8 

structure of savannas (Bond 2008). The changes in structure are regulated by several interacting 9 

factors such as herbivory, fire, soil moisture and nutrients (Frost et al. 1986). However, the 10 

manner in which these interacting factors influence savanna structure is not well understood 11 

(Bond 2008).  12 

The two savanna life forms often compete for the same resources (e.g. nutrients and 13 

water) (Ward et al. 2013). For example, savannas receiving less than about 650 mm of rainfall 14 

per year (Sankaran et al. 2005) are classified as arid or semi-arid regions because soil moisture 15 

limits tree canopy closure, and trees and grasses strongly compete for water (D’Onofrio et al. 16 

2014). Walter’s (1939) two-layer hypothesis is often used to explain the codominance of the 17 

grasses and trees in savannas. The hypothesis suggests that grasses use water from the topsoil 18 

layers because of their shallow root system. In contrast, woody plants would use small amounts 19 

of the topsoil water but would have absolute access to subsoil water below the grass roots (Ward 20 

et al. 2013). In addition, nutrient availability can have profound effects on woody cover (Bond 21 

2010). Studies suggest that soils with low nutrient availability limit tree cover in savannas 22 

because poor soil quality limits tree growth (Bond 2010). In contrast, other studies suggest that 23 

soils with high nutrient availability limit woody plant cover (Mills et al. 2013). When grasses 24 

are present, enhanced soil nutrients lead to water stress, which results in reduced growth of tree 25 

seedlings (Akıncı and Lösel 2012). 26 

The majority of savanna ecosystems are found in drylands, which support about a third 27 

of the world's human population, many of whom rely on pastoralism and thus forage production 28 

for their livelihoods. (Maestre et al. 2016; Prăvălie 2016; Ribeiro et al. 2019). Savanna areas 29 

are long perceived as degraded ecosystems as a result of disturbances such as fire, herbivory 30 

and human activities such as fuel wood harvesting (Bond and Parr 2010; Parr et al. 2014; 31 
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Veldman et al. 2015; Ratnam et al. 2016). Savannas are by nature unstable because the ratio of 32 

trees-to-grasses is constantly fluctuating due to disturbances (Sankaran 2019). Disturbances 33 

prevent these ecosystems from achieving a stable state in the form of a grassland or a forest ( 34 

Jeltsch et al. 2000).  35 

 36 

1.2. Woody plant encroachment    37 

In many areas of southern Africa woody plant densities have increased by 30-50% (Hudak and 38 

Wessman 2001; Ward 2005; Kraaij and Ward 2006). Given the widespread spread of woody 39 

plants into grasslands and savannas in southern Africa and worldwide (Hoffman and Ashwell 40 

2001; Bond 2008; O’Connor et al. 2014; Archer et al. 2017; Skowno et al. 2017), there is a 41 

considerable decline in the agricultural potential of rangelands (Espach 2006; Bӧrner et al. 42 

2007). Although land degradation caused by woody plant encroachment is recognised under 43 

both communal and commercial systems (Lloyd et al. 2002), this problem is particularly acute 44 

for resource-constrained communities in southern Africa. The proliferation of woody plants in 45 

communal rangelands is often attributed to high livestock populations and the lack of 46 

conventional grazing management practices such as rotational grazing and resting, which 47 

diminishes grass cover. Diminished grass cover affords new spaces and resources for the 48 

development of woody plants (Archer et al. 2017).  49 

Woody plant encroachment can drastically alter ecosystem services such as forage 50 

production for livestock and wildlife (Smit 2005). The encroachment of woody plant species 51 

has also been reported to increase the amount of bare soil surfaces and consequently declines 52 

in soil functions, which hinders the recovery of herbaceous plants (Eldridge et al. 2011). Woody 53 

plant encroachment has been ascribed to numerous mechanisms such as overgrazing by large 54 

herbivores, climate change and the suppression of fire that is used to control tree establishment 55 

in savanna ecosystems, and combinations of these factors (Ward 2005; Bond and Midgley 2012; 56 

Eldridge et al. 2013; Ding and Eldridge 2019). In addition, overgrazing by herbivores reduces 57 

both aboveground and belowground grass biomass, thereby reducing grass’s ability to re-grow 58 

and to compete with woody plants for resources (Van Auken 2009). Herbaceous plants, 59 

particularly grasses, have the ability to compete with woody plants for resources, which 60 

supresses woody plant establishment and growth (Kambatuku et al. 2011b, Ward and Esler 61 

2011; Grellier et al. 2012; Vadigi and Ward 2013; Wakeling et al. 2015; Bhadouria et al. 2016; 62 

Morrison et al. 2018). However, the removal of the herbaceous layer through overgrazing 63 
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releases woody plants from competition and potentially enhances their growth (Walter 1939; 64 

Hoffman and Ashwell 2001). Heavy grazing also leads to reduced fuel load resulting in low 65 

fire intensity, which may render fire less effective in controlling woody plants (Hoffman and 66 

Ashwell 2001; Bond 2008). Thus, when overgrazing occurs with a concomitant reduction in 67 

fire frequency, the establishment and growth of woody plants are favoured and promoted (Van 68 

Auken 2009).  69 

An increase in woody plant expansion has also been attributed to an increase in 70 

concentrations of atmospheric CO2 (Ward et al. 2014; Stevens et al. 2017). Elevated 71 

atmospheric CO2 concentration is expected to increase the proliferation of woody plants by 72 

promoting increased belowground carbon storage, resprouting ability and growth rates in tree 73 

saplings, which will enable woody plants to escape from the fire and herbivore-imposed traps 74 

(Hoffmann et al. 2000; Bond and Midgley 2012). In addition, predicted consequences of climate 75 

change such as fluctuating rainfall events, are expected to favour tree growth over grass growth 76 

(Kulmatiski and Beard 2013). Extended periods of increased annual rainfall may lead to 77 

encroachment (Fensham et al. 2005), particularly in arid and semi-arid savannas where woody 78 

cover is limited by rainfall (Sankaran et al. 2005). Increased rainfall leads to enhanced 79 

infiltration of water to deeper soil horizons (Walker and Noy-Meir 1982), which may increase 80 

tree growth rates (February et al. 2013). Therefore, changes in current and future climate have 81 

important implications for ecosystem processes, which results in changes in savanna structure, 82 

composition and function (Sankaran 2019).  83 

 84 

1.3. Woody plant management in savannas 85 

The different perspectives of land owners and users on woody plant encroachment pose a 86 

challenge for managing lands affected by this problem (Archer et al. 2017). Commercial cattle-87 

ranch enterprises regard woody plant encroachment as a deterrent to livestock production. In 88 

contrast, rural communities in semi-arid rangelands prefer a bush-encroached state because they 89 

keep browsers such as goats, and thus see woody plants as an important source of forage and 90 

may favour increases in their abundance. In addition, rural communities may prefer encroached 91 

rangelands because they are dependent on woody plants for fuelwood (Shackleton et al. 2007; 92 

Twine et al. 2003; Inman et al. 2020). In conservation areas, ecologists have concerns that 93 

woody plant encroachment will negatively affect the biodiversity of savanna ecosystems 94 

(Archer et al. 2017).  95 
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Livestock farming, which is the dominant land use in rangelands where woody plant 96 

encroachment occurs, is mostly dependent on grass production, which is frequently 97 

outcompeted by woody plants (Scholes and Archer 1997; Ward 2005; Maestre et al. 2017). 98 

Globally, government sponsored woody plant control programs have been implemented with 99 

the aim of rehabilitating previously economic rangelands that are now faced with economic 100 

problems induced by woody plant encroachment (Hamilton 2004; Ding and Eldridge 2019).  101 

Research has shown that ecological effects conferred by woody plants differ, ranging 102 

from positive to negative or neutral based on land utilisation, type of species and density 103 

(Eldridge et al. 2011). For instance, woody plants at low densities have been demonstrated to 104 

have positive effects on the herbaceous layer, soils and ecological functions (Smit 2005; Chief 105 

et al. 2012). These positive effects of woody plants for forage production diminish at high 106 

densities (Riginos 2009). Therefore, when the objective is to increase or maintain herbaceous 107 

yields adequate for livestock and game farming, it is essential for land managers to manage the 108 

woody layer by controlling the density of mature trees and recruiting tree seedlings to sustain 109 

the economic viability of savannas (Smit 2005; Hare et al. 2020). In most parts of the world, 110 

chemical and mechanical control strategies as well as fire have been widely used to manage 111 

woody plant encroachment (Lett and Knapp 2005; Higgins et al. 2007; Archer et al. 2011; 112 

Archer and Predick 2014; Hoffmann et al. 2020). In North America these techniques are 113 

referred to as brush management, woody weed management in Australia and bush clearing in 114 

Africa (Hamilton et al. 2004; Paynter and Flanagan 2004; Noble and Walker 2006; Archer and 115 

Predick 2014).  116 

 Studies have demonstrated that the effects of tree removal differ within similar 117 

environmental conditions possibly because of the removal methods and/or plant species (Archer 118 

and Predick 2014; Archer et al. 2017; Daryanto et al. 2019). Ding and Eldridge (2019) reported 119 

that plant functional traits may influence ecosystem structure, which may change after tree 120 

removal and therefore influence ecological processes. Additionally, according to Ding and 121 

Eldridge (2019), few studies have evaluated the response of rangelands to tree removal/thinning 122 

among various woody species, raising the question of whether differences in plant traits 123 

influence the ecological or management outcomes of removal methods. The lack of this 124 

information impedes the ability of rangeland ecologists to suggest desirable management 125 

options and procedures that will meet the ecological and management goals that are related to 126 

woody plant removal (Ding and Eldridge 2019).  127 

 128 
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1.3.1. Tree thinning and fire application as woody plant control strategies 129 

The threat posed by woody plant encroachment to the pastoral economy is frequently the 130 

driving force behind the control of encroachment by trees (Olson and Whitson 2002). Woody 131 

plant encroachment can cause a shift from an open savanna to closed woodlands (Eldridge et 132 

al. 2011), changing the ecological functions of the original savanna (Buitenwerf et al. 2012). 133 

When the encroachment of woody species alters ecosystem functions such as the herbaceous 134 

production, then the rehabilitation of such rangelands becomes a high priority. Rehabilitating 135 

degraded rangelands may be achievable by introducing other management regimes (e.g. 136 

mechanical and/or chemical control) in addition to the use of fire, owing to thresholds that 137 

ecosystems may cross (e.g. low fuel loads) during periods of fire suppression (Bassett et al. 138 

2020). In such cases, successful rehabilitation may require structural interventions such as tree 139 

thinning (Smit 2004, 2005; 2014). Tree thinning involves a reduction in the number of trees in 140 

areas where woody plant encroachment has occurred (Smit 2005). Tree density reduction has 141 

been shown to have positive benefits in savannas such as an increase in grass production, which 142 

increases fuel loads (Smit 2005).  143 

 Annual or frequent fires are used to manage woody cover in savanna ecosystems (Bond 144 

2008). In many savanna systems, fire is a common ecological process that affects the structure 145 

and composition of these ecosystems (Gordijn et al. 2012; Higgins et al. 2012; Forrestel et al. 146 

2014). Woody plant species in these savannas have evolved life-history mechanisms that allow 147 

success in fire-prone environments (Higgins et al. 2012; Bond 2016).  Frequent fires affect 148 

savanna structure by reducing tree densities and maintaining tree sizes at certain heights 149 

(Higgins et al. 2000, 2007), thereby reducing the recruitment of saplings into adult-sized woody 150 

plants that may have negative impacts on the herbaceous layer (Ward 2005). Reduced tree cover 151 

following frequent fires renders the savanna susceptible to burning and helps maintain them as 152 

open savannas (Lohmann et al. 2014). This leads to increased fuel loads for fires that could aid 153 

in maintaining low densities of woody plants (Bowles et al. 2017). In addition, frequent fires 154 

can also influence the diversity and composition of the herbaceous layer (Bassest et al. 2020). 155 

Fire removes the aboveground biomass of herbaceous species indiscriminately (Bond and 156 

Keeley 2005), which may shift its species composition.   157 

The positive effects of woody plant control such as increased grass production have 158 

been reported to be relatively short-lived (Daryanto et al. 2019; Ding and Eldridge 2019), 159 

because many woody plants have the ability to resprout from the cut or broken stem after tree 160 

felling or burning (Bond and Midgley, 2001; Shackleton, 2001). Many empirical studies have 161 
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reported on the importance of resprouting as a persistence strategy across different habitats, 162 

from savannas (Shackleton 2000; Higgins et al. 2000; Clarke et al. 2013), forests (Dietze and 163 

Clarke 2008; Poorter et al. 2010) and deserts (Nano and Clarke 2011) to Mediterranean 164 

ecosystems (Verdú 2000; Keeley et al. 2012). Resprouting is a tolerance strategy that allows 165 

persistence at the plant level, enabling it to survive diverse disturbances such as tree cutting 166 

(Shackleton 2000; Nzunda et al. 2014). The resprouting ability of various woody plants is 167 

supported by the non-structural carbohydrate reserves stored in a well-developed, deep-root 168 

system (Vesk and Westoby 2004; Paula and Pausas 2006; Nzunda et al. 2014; Casals and Rios 169 

2018).  At the community level, the ability of woody plants to resprout after disturbance gives 170 

rise to biomes (e.g. savannas) that are resistant to disturbances (Vesk 2006), which may hinder 171 

the effectiveness of control methods such as mechanical removal of trees in the long term 172 

(Enloe et al. 2018). Thus, the ability of woody plants to resprout following cutting renders 173 

further treatments such as chemical application essential. Tree cutting followed by an 174 

immediate application of herbicides to the stump, has been reported to considerably reduce or 175 

prevent future resprouting in numerous woody plant species in various biomes globally (Burch 176 

and Zedaker 2003; Enloe et al. 2018; Young et al. 2017). 177 

 Increased nutrients, clumped seed dispersal and rainfall patchiness or a combination of 178 

them may increase woody plant regeneration, leading to aggregated patterns (Sankaran et al. 179 

2005; Ward 2005; Kraaij and Ward 2006). Research has shown that one of the mechanisms 180 

among others that may lead to woody plant encroachment in savannas is the dispersal of woody 181 

tree seeds by herbivores (Tjelele et al. 2014; Tjelele et al. 2015a, b). Consequently, cost-182 

effective strategies that may help control these seedlings are needed. For instance, it is generally 183 

more expensive to control mature savanna trees because this may require large amounts of 184 

resources (Eldridge and Ding 2020). However, it may be relatively cheaper to control these 185 

trees at their seedling stage. For example, Hale et al. (2020) showed that reintroductions of 186 

prairie dog colonies in North America has limited the proliferation of woody plants. Prairie dog 187 

colonies systematically fell tree saplings, which suppress woody plant growth thereby creating 188 

a “browse trap” that also contributes to a “fire trap” (Hale et al. 2020). Therefore, studies that 189 

test the efficiency of methods of controlling the proliferation of woody plants in savannas could 190 

aid in the development of appropriate control strategies. Mechanical tools such as Tree 191 

Poppers® may help control young trees in savanna rangelands. Tree Poppers® are hand-held 192 

mechanical tools that are designed to physically uproot tree seedlings. It is thus important to 193 

evaluate if Tree Poppers® may constitute a low-cost, potentially long-term, sustainable solution 194 
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for deterring woody plant encroachment and proliferation in savannas, particularly in resource-195 

constrained communities.   196 

 197 

1.4. Aims and objectives of the study 198 

The overall aim of this study was to establish an optimal tree density (sensu Smit 2004, 2005) 199 

that will optimise forage production in two different systems that are situated in the same area. 200 

The effects of tree thinning have been reported in the literature (Archer and Predick 2014; 201 

Archer et al. 2017), however, these studies are often carried out in single locations, encroached 202 

by specific woody plants (e.g. Smit 2005; Ndhlovu et. 2016). Thus, it is of importance to study 203 

the effects of tree thinning on multiple locations that differ in tree species and soils because the 204 

impact of woody plant encroachment is species specific (Eldridge et al. 2011). In addition, this 205 

study aimed to evaluate the effects of five years of annual burning on grass and tree dynamics. 206 

A new approach is needed to understand and develop sustainable strategies aimed at controlling 207 

the spread of woody plant encroachment while promoting palatable grass production. Studying 208 

the effects of different techniques such as tree thinning and fire application on grass species 209 

composition, grass biomass, soil fertility and tree dynamics could help rehabilitate degraded 210 

rangelands. 211 

The main objectives of this study were to: 212 

1) determine the effects of mechanical clearing of woody plants and associated chemical 213 

application on the tree stumps on resprouting ability of the cut trees, 214 

2) to determine the effectiveness of Tree Poppers® (hand-held mechanical tools) on uprooting 215 

seedlings of several woody species, 216 

3) investigate the impact of reduction of tree density on grass species richness, composition and 217 

soil fertility, 218 

4) determine the effects of tree thinning on the yields of herbaceous plants and on tree seedling 219 

dynamics and growth of remaining woody plants, 220 

5) investigate the effects of fire on the composition and diversity of grasses, and tree growth 221 

patterns, and 222 

6) explore guidelines and procedures to meet ecological and management objectives associated 223 

with tree thinning and fire application in bush-encroached rangelands. 224 

 225 
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1.5. Outline of the thesis and questions addressed 226 

The thesis is comprised of six chapters. Chapter one introduces the study and includes a 227 

discussion on savannas, woody plant encroachment and management, ecological dynamics 228 

related to tree thinning and fire application and the theory underlying the study. Chapters two, 229 

three, four and five report data on different elements of the experimental study, whereas chapter 230 

six summarizes and integrates the results obtained in the preceding experimental chapters.  231 

In chapter two, I investigated the effects of mechanical clearing of trees followed by chemical 232 

application of an herbicide on the tree stumps of woody plants on resprouting ability. In 233 

addition, I investigated the effectiveness of Tree Poppers® to mechanically uproot seedlings of 234 

different woody species. This chapter addressed the following questions: Does a higher density 235 

of trees reduce resprouting ability and vigour of felled trees? What are the effects of herbicide 236 

application on resprouting ability and vigour of cut trees of different species? Is tree stem size 237 

an important predictor of resprouting ability among different woody species? Are Tree 238 

Poppers® (hand-held mechanical equipment) effective in controlling juvenile woody plants in 239 

savannas? 240 

In chapter three, I studied the effects of tree thinning on understory plant dynamics. I sought to 241 

address the following questions: What are the effects of different levels of tree thinning on grass 242 

species richness and composition? What is the impact of tree thinning on bare soil cover? How 243 

do different levels of tree thinning affect soil fertility? 244 

Chapter four asks the following questions: What are the effects of tree thinning on grass 245 

biomass production? Does tree thinning enhance or deter tree seedling emergence and growth? 246 

Are canopy gaps established through tree thinning beneficial to the remaining mature trees in 247 

terms of growth?  248 

Chapter five addresses the following questions: What is the impact of annual burning on the 249 

recruitment of tree seedlings? Can annual burning reduce the density of mature trees? What are 250 

the effects of annual burning on tree growth (i.e. basal diameter, height and canopy size)? What 251 

are the effects of annual burning on grass species composition and diversity?  252 

Chapter six presents conclusions and provides future directions for all results obtained in the 253 

experimental chapters. 254 

 255 
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1.6. Study area 256 

The study was performed at the Roodeplaat Experimental ranch (25º36ʹ29˝S, 28º2ʹ08˝E; 1182 257 

m) of the Agricultural Research Council in Gauteng Province, South Africa (Figure 1.1). The 258 

ranch’s natural vegetation component, which is used for livestock production and wildlife, 259 

covers over 2100 ha. The vegetation type of the ranch is classified as the Marikana Thornveld. 260 

The dominant woody plants of the ranch are Vachellia (previously Acacia) karroo, Senegalia 261 

(formerly Acacia) caffra (Mucina and Rutherford 2006). The ranch is also dominated by 262 

Vachellia tortilis, Ziziphus mucronata and Euclea tree species. The grass layer of the ranch is 263 

characterised by Digitaria eriantha, Melinis repens, Panicum maximum, Setaria sphacelata 264 

and Sporobolus africanus. Eragrostis curvula, Themeda triandra, and Heteropogon contortus 265 

are some of the important grasses found on the ranch (Van Rooyen 1983). The average annual 266 

precipitation is 687 mm, with the majority of it falling during the austral summer (November 267 

to March). The daily maximum temperature in summer ranges between 20-29 °C, while the 268 

minimum winter temperature can decrease to 2-16 °C. The soil types of the study area are 269 

described as Vertisols, Ferralsols and Luvisols. The study area is situated on the Roodeplaat 270 

Igneous Complex, which belongs to the Post-Waterberg Formation (Panagos et al. 1998). The 271 

Roodeplaat Igneous Complex is a unique ring-shaped structure with a diameter of 272 

approximately 16 km and is also referred to as the “Roodeplaat volcano” (Panagos et al. 1998). 273 

 On the farm, three sites that vary in grasses, tree species and soils were selected. The 274 

first study site (hereafter study site 1) was on clay-dominated soils characterized by severe soil 275 

degradation in the form of surface erosion (gully) and crust formations. Site 1 (25º36ʹ10˝S, 276 

28º20ʹ32˝E; 1171 m) was under crop cultivation more than 20 years ago and is now encroached 277 

by a monospecific stand of V. tortilis at a mean density of 2 961 plants ha-1 (formerly Acacia 278 

tortilis) (Kyalangalilwa et al. 2013). At the second study site (hereafter site 2) (25º36ʹ06˝S, 279 

28º20ʹ03˝E; 1185 m) woody plant management programmes were not applied prior to the study. 280 

This resulted in closed canopy conditions at the onset of the experiment, with multiple woody 281 

plant species. Site 2 was on sandy soils and is encroached at a mean density of 4 065 plants ha-282 

1 by several woody species including S. caffra, V. karroo, Vachellia (formerly Acacia) nilotica, 283 

Vachellia (formerly Acacia) robusta, V. tortilis and Z. mucronata. Site 2 has never been 284 

cultivated and was not used for grazing.  The study site has mainly been grazed and browsed 285 

by an unknown number of free ranging game species.  The third study site (hereafter site 3) 286 

(25º35ʹ45˝S, 28º20ʹ39˝E; 1158 m) was in a V. karroo woodland on clay soils. Site 3 was also 287 

previously cultivated more than 20 years ago.   288 



10 

 

  

 289 

 290 

Figure 1.1. Map of South Africa showing the position of the Roodeplaat Farm in the Pretoria 291 

area of Gauteng Province. On the right is a Google Maps image of the farm. 292 
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Abstract 678 

Communal rangelands in many African countries are suffering from woody plant 679 

encroachment. We sought to explore potential solutions for communal ranchers that would be 680 

cost-effective. We conducted two field experiments to determine (1) the effects of different tree 681 

removal treatments (10%, 20%, 50%, 75% and 100%), and herbicide application on resprouting 682 

ability and vigour of several woody plant species; and (2) the effectiveness of Tree Poppers® 683 

(weed wrench) as a low-cost mechanical control tool to physically uproot seedlings and saplings 684 

of woody species. In the first experiment, we examined 12 plant species from 20 plots (30 m x 685 

30 m) each subjected to tree removal, followed by herbicide application on half of the stumps 686 

for each plot. In the second experiment, eight dominant tree species were grouped into three 687 

height classes (0-49 cm, 50-99 cm, 100-150 cm) of ten seedlings and saplings per species per 688 

height class. All the tree species in this study resprouted 9 mo after cutting. Herbicide 689 

application significantly reduced the resprouting ability of Dichrostachys cinerea (L.) Wight & 690 

Arn, Ehretia rigida (Thunb.) Druce, Vachellia robusta (Burch.) Kyalangalilwa & Boatwright 691 

and Ziziphus mucronata Willd. Tree removal positively influenced the resprouting ability and 692 

vigour of Euclea crispa (Thunb.) Gürke only. The diameter of stumps was an important factor 693 

in determining resprouting ability, with shoot production decreasing with increasing stump 694 

diameter. We found no significant differences in the number of seedlings and saplings uprooted 695 

by Tree Poppers® among the different size classes. There were significant differences in the 696 

number of juveniles uprooted using a weed wrench with a few individuals of Vachellia species 697 

uprooted. Woody plants are more likely to resprout and survive as juveniles than as adults after 698 

cutting. Communal ranchers may mechanically control shallow-rooted tree seedlings with a 699 

weed wrench but not deep-rooted ones, specifically Vachellia species. 700 

 701 

Keywords: picloram; savanna; stem diameter; tree cutting; weed wrench; woody plant 702 

encroachment. 703 

 704 

  705 
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2.1. Introduction 706 

Woody plant encroachment is considered one of the most extensive forms of degradation 707 

affecting savanna rangelands in arid and semi-arid areas globally (Hoffman and Ashwell 2001; 708 

Ward 2005; Bond 2008; O’Connor et al. 2014).  In Africa, woody plant encroachment reduces 709 

the amount of grazing land for ranchers (Vetter 2013). In South Africa, nearly 6 million ha of 710 

communal rangelands are negatively affected (Shackleton et al. 2001; Hoffman and Ashwell 711 

2001). 712 

Woody plant encroachment can drastically reduce forage production for livestock and 713 

wildlife animals (Smit 2005; Ward 2005; Ward et al. 2014). To properly manage and sustain 714 

the economic viability of savanna rangelands affected by woody plant encroachment, it is 715 

important to encourage the ecological benefits of woody plants in terms of nitrogen fixation by 716 

leguminous trees (Mureva et al. 2018) and the improvement of hydraulic lift while limiting their 717 

encroachment (Smit 2005; Magda et al. 2009; Eldridge et al. 2013; Mureva and Ward 2016; 718 

Marquart et al. 2019).  719 

Effective rangeland management can be achieved by developing appropriate strategies 720 

that can help increase or maintain grass production adequate for livestock- and game-ranching 721 

(Smit 2004; Harmse et al. 2016). One strategy for optimizing the availability of grass and 722 

maintaining the ecological benefits conferred by woody plants is by reducing the tree density 723 

(also termed tree thinning), which involves a reduction in the number of trees in areas where 724 

woody plant encroachment has occurred (Smit 2005). Tree density reduction has been shown 725 

to have positive benefits in savannas such as an increase in grass production and reducing soil 726 

erosion (Smit 2005; Ndhlovu et al. 2016). Globally, brush management techniques may include 727 

mechanical control methods such as shredding or roller chopping to remove most of the woody 728 

layer (Smit 2005; Archer 2010; Eldridge and Ding 2020). These methods are widely used in 729 

developed countries such as the United States of America and Australia (Eldridge and Ding 730 

2020). In southern Africa, resource-constrained communal ranchers cannot normally afford to 731 

implement these methods. Given that the problem of woody plant encroachment is particularly 732 

acute in communal rangelands (Mograbi et al. 2015), alternative low-cost strategies that are 733 

effective, less complex and that can control the growth and survival of young trees in small-734 

scale rangeland systems are needed. Mechanical tools such as Tree Poppers® may help control 735 

young trees in communal rangelands (see https://treepopper.co.za). Tree Poppers® are hand-736 

held mechanical tools that are designed to physically uproot tree seedlings. Tree Poppers® work 737 

in a similar way to weed wrenches that are normally used in North America by nature 738 
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conservation groups and land management agencies to control young trees (see e.g. 739 

https://www.theuprooter.com). The use of Tree Poppers® in savanna rangelands for mechanical 740 

woody-plant control has not previously been recorded in southern Africa. 741 

A problem that is widely understood is that mechanical-control methods are limited by 742 

the abilities of many trees to resprout after disturbances (Neke et al. 2006; Mwavu and 743 

Witkowski 2008; Poorter et al. 2010; Moyo et al. 2015; Pausas and Keeley 2017). Many 744 

empirical studies have demonstrated the importance of resprouting as a persistence strategy 745 

across different habitats, from savannas (Shackleton 2000; Higgins et al. 2000; Clarke et al. 746 

2013), forests (Dietze and Clarke, 2008; Poorter et al., 2010) and deserts (Nano and Clarke, 747 

2011) to Mediterranean ecosystems (Verdú 2000; Keeley et al. 2012). Woody plants have been 748 

reported to regenerate from the cut or broken stem as well as through seedling recruitment 749 

(Zimmerman et al. 1994; Lamont and Markey 1995; Bond and Midgley 2001; Shackleton 750 

2001). Resprouting is a mechanism that allows individual plants to regenerate after the 751 

elimination of the above-ground biomass and persist in ecosystems with recurrent disturbances 752 

(Bond and Midgley 2001; Del Tredici 2001; Ickes et al. 2003; Vesk 2006; Nzunda et al. 2014; 753 

Pausas and Keeley 2014). The resprouting ability of various woody plants is supported by the 754 

non-structural carbohydrate reserves stored in a well-developed, deep-root system (Vesk and 755 

Westoby 2004; Paula and Pausas 2006; Nzunda et al. 2014; Casals and Rios 2018). 756 

Additionally, gap formation through high intensities of tree removal may reduce stump shading 757 

by the remaining trees (Casals and Rios 2018), which may consequently result in an increase 758 

in resprouting ability and vigour (Shultz et al. 2009; Casals and Rios 2018). Resprouting vigour 759 

depends on the allocation of belowground stored reserves and the capacity to acquire new 760 

resources through photosynthesis (Vesk and Westoby 2004; Casals and Rios 2018), which may 761 

be enhanced by high intensities of tree removal. Regardless, shoots produced by the cut stumps 762 

are undesirable because they have the ability to regrow into mature trees with multiple stems 763 

that may have negative competitive effects for resources on grasses (Shackleton 2000; Nano 764 

and Clarke 2010). To prevent tree stumps from regenerating after tree cutting, the cut stumps 765 

are frequently treated with chemical herbicides (Burch and Zedaker 2003; Ansley and 766 

Castellano 2006; Enloe et al. 2018). However, poverty-stricken communal ranchers may be 767 

unable to afford such herbicides, so we sought to determine whether they could use other, less-768 

expensive means. 769 

In general, the larger the stump, the greater the belowground resources that the plant has 770 

to support resprouting (Neke et al. 2006). However, there is considerable variance in this 771 
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relationship; some authors have found the opposite pattern (Keeley 2006) and some have found 772 

no relationship (Nzunda et al. 2008; Mostacedo et al. 2009). These results suggest that the 773 

effects of stump diameter on resprouting ability may be species-specific, and may be related to 774 

the development of the root systems of the species (Wigley et al. 2019; Zhou et al. 2020). 775 

Differences in root systems among tree species may subsequently influence resprouting patterns 776 

and the efficacy of control methods.  777 

Here we examined the resprouting patterns of 12 dominant woody plant species at 778 

Roodeplaat ranch in Gauteng Province of South Africa. We applied mechanical tree removal 779 

and herbicides to determine which of these two factors were most important for controlling 780 

woody plant encroachment. We sought to determine the combined effects of tree species, 781 

removal treatments, stump diameter, and herbicide application on resprouting patterns of the 782 

study species. Further, we investigated the effectiveness of Tree Poppers® to mechanically 783 

uproot tree seedlings and saplings of eight dominant species in the study area. To achieve these 784 

aims, we conducted two field experiments and made the following predictions: (1) A higher 785 

density of trees in low-removal treatments will result in reduced resprouting ability and vigour 786 

due to stump shading by the remaining trees; (2) Herbicide application will result in reduced or 787 

no growth from cut stumps regardless of the species; (3) There will be a positive correlation 788 

between resprouting ability and stump diameter because larger trees should have greater storage 789 

of below-ground resources (Nzunda et al., 2008); (4) The effectiveness of Tree Poppers® is 790 

likely to be negatively affected by seedling height and be greater for shallow-rooted trees. 791 

 792 

2.2. Materials and Methods 793 

2.2.1. Study Area 794 

The study was conducted at the Roodeplaat experimental farm of the Agricultural Research 795 

Council (25º36ʹ29˝S, 28º2ʹ08˝E) in Gauteng Province, South Africa. The farm is about 2100 796 

ha, which is mostly used for livestock and game production. The vegetation type of the farm is 797 

Marikana Thornveld (Mucina and Rutherford 2006). Vachellia (formerly Acacia) karroo and 798 

Senegalia (formerly Acacia) caffra (Kyalangalilwa et al. 2013), are among the major dominant 799 

woody plants on the farm. Other dominant woody plants includes Euclea species, Vachellia 800 

(formerly Acacia) tortilis and Ziziphus mucronata. Coates-Palgrave’s (2002) nomenclature for 801 

tree species was followed. The grass component of the site is characterised by Digitaria 802 

eriantha, Eragrostis curvula, Heteropogon contortus, Melinis repens, Panicum maximum, 803 

Setaria sphacelata, Sporobolus africanus and Themeda triandra. We used van Oudtshoorn’s 804 
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(2006) nomenclature for grass species. The study area is a mesic savanna with a mean annual 805 

rainfall of 687 mm, which largely falls between November and March. The minimum 806 

temperature during the winter season ranges between 2-16°C and maximum summer 807 

temperature ranges between 20-29°C. The study area is located on the Roodeplaat Igneous 808 

Complex (Panagos et al. 1998). The study was conducted on sandy soils (67% sand; 16% silt; 809 

17% clay). Although the study was not conducted in a communal area, tree species examined 810 

in this study are common in many communal savanna rangelands in South Africa. 811 

 812 

2.2.2. Research Design 813 

The study was carried out in two sites within the ranch. The first study site consisted of 20 plots 814 

of 30 m x 30 m each subjected to different intensities of tree removal. Tree densities were 815 

determined by doing a direct count of all trees in each plot. Trees were removed in October 816 

2018 to the approximate equivalents of 10%, 20%, 50%, 75% and 100% (total clearing of the 817 

tree density) per plot, following Smit (2005). The plots were close to each other and were 818 

separated by 5-m wide fire breaks. Tree removal treatments were replicated four times and 819 

allocated randomly. Trees were cut with a chainsaw and any accumulated sawdust or debris 820 

was removed from the cut stumps. All trees were cut at a height of 0.25 m (Shackleton 2000; 821 

Moyo et al. 2015). The herbicide used contains picloram as its active ingredient (Teague and 822 

Killilea 1990; Burch and Zedaker 2003). This herbicide is a water-soluble systemic herbicide 823 

with residual activity that acts through roots and cut surfaces of woody plants (Teague and 824 

Killilea 1990). The herbicide was applied at a concentration of 6 mL L-1 of water (Browser 825 

Herbicide®, Arysta Lifesciences). Tree stumps were treated with herbicide within 15 min after 826 

felling during the growing season. A knapsack sprayer (Spraying Systems TG-1, Delavan CE 827 

1) with a single solid-cone nozzle was used for herbicide application.  828 

The combined effects of tree species, removal treatments, stump diameter, and herbicide 829 

application on the resprouting ability were examined on the following woody species that 830 

encroach study site 1: Dichrostachys cinerea, Euclea crispa, Ehretia rigida, Gymnosporia 831 

buxifolia, Pappea capensis, Searsia lancea, Senegalia caffra, Vachellia karroo, V. nilotica, V. 832 

robusta, V. tortilis and Ziziphus mucronata. To determine the regrowth patterns for each 833 

resprouting stump the following variables were measured in each plot 9 months after tree felling 834 

towards the end July 2019: (1) total number of resprouting shoots per stump, (2) number of 835 

leaves on the leader (longest) shoot, (3) shoot length of the leader shoot and (4) shoot diameter 836 
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of the leader shoot, measured at the base of the shoot. Shoot production was calculated as the 837 

number of shoots produced per unit area of stump (Moyo et al. 2015).  838 

In study site 2, we assessed the effectiveness of Tree Poppers® (Fig. 2.1) to mechanically 839 

uproot woody seedlings and saplings of eight dominant species during the wet season (February 840 

2019) (viz. D. cinerea, E. crispa, E. rigida, G. buxifolia, V. karroo, V. nilotica, V. tortilis and 841 

Z. mucronata). We used plant height to differentiate between seedlings and saplings (i.e., trees 842 

taller than 1 m were considered saplings). Individual plants were grouped into three height 843 

classes (i.e., 0-49 cm; 50-99 cm; 100-150 cm) of 10 tree seedlings per species per height class. 844 

In the study area, there were no D. cinerea and V. nilotica saplings of the third height class (i.e., 845 

100-150 cm). Tree seedlings and saplings that were uprooted by the Tree Poppers® were 846 

recorded as successfully removed and those that were either not removed or broke at the bottom 847 

of the stem were recorded as unsuccessful. A single person of 70 kg body weight carried out 848 

the removal of tree seedlings and saplings. 849 

The effectiveness of the Tree Poppers® mechanical tool may depend on soil moisture 850 

(Treepopper, 2019). We conducted the Tree Poppers® experiment during the wet season in 851 

February 2019. To determine the soil water content of the study area, eight soil samples at  852 

were collected to a depth of 0.3 m, weighed and oven-dried at 60 C for 72 h. Soil moisture 853 

content was calculated as moisture content m (moisture) [%] = 100 × (weight wet - weight dry) 854 

/ weight dry (Fatma et al. 2018). Soil samples collected while assessing the Tree Poppers® had 855 

a moisture content of 16.6 ± 1.6% (mean ± 1 SE).  856 

 857 

2.2.3. Data Analysis 858 

Prior to analysis, shoot production data were log10-transformed to ensure a normal distribution 859 

of residuals. We used multivariate analysis of covariance (MANCOVA) to test the effects of 860 

tree species, stump diameter, herbicide application and tree removal treatments on the 861 

resprouting ability and vigour of the study plants. Shoot production, number of leaves, shoot 862 

length and shoot diameter were the dependent variables, with stump diameter as a covariate. 863 

MANCOVA was used to reduce Type 1 error that may be caused by testing multiple dependent 864 

variables on the same subjects. We used the Wilks' Lambda test statistic to investigate the effect 865 

of treatments (species, herbicide application and tree removal) on resprouting parameters. 866 

When the MANCOVA was significant, we used univariate ANOVA to identify factors that 867 

contributed to the significant MANCOVA, followed by a Bonferroni post hoc test among 868 

groups of each factor. We used linear regression to determine the relationship between 869 
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resprouting ability of the trees and stump diameter. A two-factor ANOVA was used to 870 

determine whether there were significant effects of tree species and tree height on the number 871 

of juvenile plants uprooted by the Tree Popper®. The number of juveniles uprooted were the 872 

dependent variables while the plant species and height class were the independent variables. A 873 

Bonferroni post hoc test was applied for pairwise comparisons of the mean number of juveniles 874 

uprooted by Tree Poppers®. IBM SPSS for Windows v. 26 (IBM SPSS 2019) was used for all 875 

data analysis. 876 

 877 

2.3. Results 878 

There was a significant interaction between tree species and tree-removal treatments (Wilks' λ 879 

= 0.714; F = 1.846; P < 0.001) and the interaction between tree species and herbicide 880 

application (Wilks' λ = 0.963; F = 2.200; P < 0.004). We found a significant effect of tree 881 

removal on resprouting patterns (Wilks’ λ = 0.971; F = 1.705; P < 0.039) (Fig. 2.2). A 882 

Bonferroni post hoc test revealed that tree removal had a significant effect on the resprouting 883 

patterns of E. crispa only. We found that shoot diameter (P = 0.001) and shoot production (P = 884 

0.004) of E. crispa were inconsistently affected by the removal treatments. We found significant 885 

effects of stump diameter on resprouting patterns of 10 of the 12 study species (Wilks’ λ = 886 

0.885; F = 29.383; P < 0.001). There was no significant effect of stump diameter on resprouting 887 

for E. rigida (P = 0.276) and V. karroo (P = 0.181). Furthermore, we observed a significant 888 

negative relationship between stump diameter and shoot production on all the study species, 889 

except for E. rigida where there was no clear pattern (Fig. 2.3). 890 

We found a significant effect of herbicide application on resprouting patterns of five of 891 

the 12 study species (Wilks’ λ = 0.819; F = 50.798; P < 0.001) (Table 2.1). Significant effects 892 

of herbicide application were found on E. rigida, V. robusta, V. tortilis and Z. mucronata (P < 893 

0.05). A marginally significant effect (P < 0.058) of herbicide application was found for D. 894 

cinerea (Table 2.1). Tree stumps treated with herbicide had a mean mortality of 79.1% 895 

compared to the control (untreated) mean of 13.89%.  896 

We found significant differences in the number of juveniles removed using the Tree 897 

Poppers® (P < 0.05) among species, with a higher number of juveniles removed for E. crispa, 898 

E. rigida, G. buxifolia and Z. mucronata than for D. cinerea, V. karroo, V. nilotica and V. tortilis 899 

(Fig. 2.4). Although a substantial number of D. cinerea juveniles were uprooted, a Bonferroni 900 

post hoc test showed no significant differences between D. cinerea and the Vachellia species.  901 
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Also, we found no significant differences in the number of seedlings removed among the height 902 

classes regardless of the tree species (P > 0.05) (Table 2.2).  903 

 904 

2.4. Discussion 905 

 906 

Tree removal 907 

 908 

After brush management, tree regeneration is a major potential problem encountered by 909 

resource-constrained communal ranchers (Hoffman and Ashwell 2001; Moyo et al. 2015). All 910 

the tree species in this study resprouted following cutting, demonstrating their ability to 911 

regenerate from the damaged tissues. Our results are consistent with the results obtained by 912 

similar studies demonstrating woody plants’ abilities to resprout after disturbances (Shackleton 913 

2001; Bond and Midgley 2001; Mwavu and Witkowski 2008; Sands and Abrams 2009). The 914 

ability of woody plants to resprout after disturbance may be attributed to the stored resources 915 

(Clarke et al. 2013; Nzunda et al. 2014). The current study results suggest that trees examined 916 

in this study have the ability to regenerate after cutting and thus further stump treatments may 917 

be required to successfully control the plants to ensure long-term reduction of woody 918 

populations. Reduced tree populations will improve forage production. This may, however, 919 

pose a challenge for communal ranchers who seldom have access to sufficient funds to finance 920 

control of woody plants. Thus, controlling woody plants by uprooting them at the seedling stage 921 

may be a viable option for communal ranchers.    922 

Different intensities of tree-removal applied in this study were not important 923 

determinants of resprouting ability (shoot production) and vigour (shoot length and shoot 924 

diameter) of 11 of the 12 species examined. This may be attributed to the distribution pattern 925 

of woody plants in savanna rangelands (Mureva and Ward 2016). Competition for resources 926 

(particularly soil moisture) among savanna trees usually results in reduced plant densities and 927 

sizes, and leads to a more regular pattern of tree distribution (Pillay and Ward 2012). Density 928 

of the remaining trees in the low tree removal-treatments may have not been sufficient to 929 

suppress resprouting. However, we observed that certain tree stumps that were under or in close 930 

proximity to the remaining trees showed a relatively low production of shoots and leaves 931 

regardless of species.  Shading by the remaining trees may reduce resprouting of individual 932 

stumps due to limited light availability because many savanna trees are shade-intolerant 933 

(Gordon et al. 2006; Hoffmann et al. 2012). For example, Casals and Rios (2018) reported that 934 
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stump shading limits resprouting vigour of Buxus sempervirens (forest tree) as a result of tree-935 

removal. Nevertheless, we found that tree removal had a significant effect on the resprouting 936 

ability and vigour of E. crispa.  However, the results did not show a clear pattern. For example, 937 

resprouting ability and vigour were significantly higher from 20% and 50% removal than in 938 

other treatments. These results were not consistent with our prediction that resprouting ability 939 

and vigour will be significantly lower in the low removal-treatments (10% and 20%). Thus, the 940 

effects of tree removal on Euclea crispa suggest possible influence by undetermined factors 941 

outside the scope of our study. 942 

We predicted that larger stumps would show a higher resprouting ability than smaller 943 

stumps. However, we found that shoot production decreased with increasing stump diameter of 944 

the study plants, except for Ehretia rigida. Similar studies have demonstrated that the 945 

effectiveness of resprouting differs according to tree age, which is usually measured by stem 946 

diameter at the time of disturbances (Bellingham and Sparrow 2000, 2009; del Tredici 2001; 947 

Keeley 2006; Dietze and Clarke 2008; Sands and Abrams 2009). For example, several studies 948 

(e.g., Keely 2006; Mwavu and Witkowski 2008; Sands and Abrams 2009) reported that tree 949 

species resprout as juveniles and lose their ability to resprout when they reach the adult stage. 950 

Additionally, models developed by Gould et al. (2007) to predict resprouting ability among 951 

oaks in the central Appalachians in Pennsylvania (USA) show that white oak Quercus alba 952 

trees rapidly lost their resprouting abilities with increasing stem diameter. The causes of this 953 

resprouting pattern in woody species are unclear, but are often assumed to arise from a 954 

combination of genetic, physiological and related anatomical changes that occur with stage of 955 

tree development (del Tredici 2001; Waters et al. 2010; Clarke et al. 2013). 956 

Waters et al. (2010) suggested that the resprouting ability of woody plants as influenced 957 

by plant age is related to bud senescence. Thick bark in older trees may inhibit resprouting 958 

abilities through hindering bud emergence (Clarke et al. 2013; Charles-Dominique et al. 2015). 959 

In systems that experience disturbances such as frequent fires (e.g., study site 1), trees avoid 960 

such disturbances by growing tall and developing a thicker bark (Vesk and Westoby 2004; Vesk 961 

2006; Higgins et al. 2000; Bond 2008; Burrows et al. 2008). Where faster growth allows trees 962 

to escape damage by disturbances such as frequent fires, then resprouting ability may decline 963 

with increasing size (Vesk 2006).  964 

The tendency of young trees to be better resprouters than older trees is reported to be an 965 

effective adaptive strategy against frequent fires (Keeley et al. 2012; Pausas and Keeley 2017). 966 

Shackleton (2001) demonstrated that larger stems take longer to respond to the initial cutting, 967 
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but once recovered have the capacity to regrow at a rate faster than that of smaller stems. 968 

Shackleton’s (2001) study (39 mo) lasted longer than our study (9 mo). This may possibly 969 

explain why the results from his study and ours differed.  970 

 971 

Chemical Control 972 

 973 

Herbicide application significantly reduced the resprouting abilities of D. cinerea, E. 974 

rigida, V. robusta, and Z. mucronata. Although herbicide application significantly reduced 975 

shoot length and leaf production of V. tortilis, it did not affect the resprouting ability (i.e. shoot 976 

production) and diameter of the leader shoot of this species (Table 2). Furthermore, herbicide 977 

application had no significant effect on the resprouting ability of seven species tested (E. crispa, 978 

G. buxifolia, P. capensis, S. lancea, V. caffra, V. karroo and V. nilotica), inconsistent with our 979 

prediction that herbicide application will significantly reduce the resprouting ability of all cut 980 

stumps regardless of species. A possible reason for the inconsistency of the effects of herbicide 981 

application across species may be attributed to the equal concentration of picloram applied to 982 

the cut stumps and time of application for each plant species. Elsewhere, Enloe et al. (2015) 983 

found that the herbicide triclopyr amine applied at a 25% v/v (i.e. (volume of solute/volume of 984 

solution) x 100) concentration was not effective for Triadica sebifera control, an invasive 985 

woody species invading the south-eastern United States. However, in the same study, Enloe et 986 

al. (2015) found that the same amount of triclopyr amine was effective in controlling Ligustrum 987 

sinense, which invades the same area. Their results also showed that reducing the recommended 988 

concentrations of two herbicides (i.e. glyphosate and triclopyr amine) by 50% was effective for 989 

controlling L. sinense. Reducing herbicide inputs into the environment is a desirable goal for 990 

land users globally (Enloe et al. 2018), and particularly for resource-poor communal ranchers. 991 

Thus, testing the amount of picloram needed to kill certain woody species may be of importance 992 

for land users in southern African savannas. This will inform land managers on optimal 993 

concentrations of picloram to use on certain species. Moreover, the seasonal timing of herbicide 994 

application on cut stumps has been reported to influence subsequent resprouting of woody 995 

plants (Badalamenti et al. 2015; Enloe et al. 2016, 2018). In our study, trees were cut and treated 996 

with herbicide during the wet season. However, Enloe et al. (2018) demonstrated that woody 997 

plants are controlled better with herbicides during autumn (fall) when woody plants are not 998 

actively growing. Additionally, Burch and Zedaker (2003) showed that using mixtures of 999 

several herbicides provide better control than using single herbicides because different 1000 
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herbicides have different physiological pathways and modes of action. Future studies should 1001 

focus on testing the optimal concentrations and time (wet or dry season) of application of 1002 

different herbicides needed to kill the tree stumps of the species we examined.   1003 

 1004 

Mechanical Control 1005 

 1006 

Our prediction that weed wrenches such as Tree Poppers® may be an effective 1007 

mechanical tool to control woody plant seedlings and saplings was partially supported by our 1008 

results. We also predicted that the effectiveness of the Tree Poppers® would differ among 1009 

different plant species due to differences in rooting systems. The majority of Vachellia trees, 1010 

regardless of species, were either not successfully uprooted or broke at the base of the stem. 1011 

This is because many Vachellia species have a long taproot to access underground water (Ward 1012 

and Esler 2011; Kambatuku et al. 2013). This kind of root system makes it difficult to uproot 1013 

seedlings of these species. In cases where the seedlings broke at the bottom of the stem, 1014 

supplemental chemical treatments would be necessary to completely control the plant. 1015 

However, we found no significant differences in the number of uprooted Vachellia and D. 1016 

cinerea juveniles. We ascribe this to the absence of taller D. cinerea plants (i.e. 100-150 cm) in 1017 

the study area and note that plant height was not an important factor in determining the 1018 

effectiveness of the Tree Poppers®.  Regardless, the Tree Popper® harvesting tool was effective 1019 

in controlling the D. cinerea seedlings (Table 3), which is among the major woody plant 1020 

encroachers in southern African savannas (Kraaij and Ward 2006; O’Connor et al. 2014). 1021 

Wakeling and Bond (2007) have shown that D. cinerea reproduces vegetatively by means of 1022 

root suckering, which means that the roots of this species are often close to the surface. 1023 

Moreover, the Tree Popper® harvesting tool was effective in uprooting tree seedlings of 1024 

shallow-rooted E. crispa, E. rigida, G. buxifolia and Z. mucronata. This is due to the differences 1025 

in root depths between the aforementioned species and the Vachellia species. Our results 1026 

suggest that communal ranchers may mechanically control shallow-rooted tree seedlings with 1027 

Tree Poppers® but not deep-rooted species such as those in the Vachellia genus.  1028 

 1029 

2.5. Conclusions and Management Implications 1030 

Our findings provide evidence that woody species in our study area are capable of resprouting 1031 

after cutting. However, different levels of tree removal were not a major determinant of 1032 

resprouting success in this study. The effects of herbicides in preventing tree stumps from 1033 
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resprouting are species-specific. Stump diameter was the most important factor affecting 1034 

resprouting capabilities of the study plants. Woody plants species from the study area are more 1035 

likely to resprout and survive disturbances as juveniles than as adults.  1036 

Although the Tree Popper® was not effective in controlling the Vachellia species that 1037 

are responsible for much of the woody plant encroachment in southern Africa (Hoffman and 1038 

Ashwell 2001), it was adequate for control of D. cinerea, another major encroacher in the 1039 

region. The results provided a scientific basis for deciding whether Tree Poppers® are viable 1040 

rehabilitation tools for managing tree seedlings in the study area. Further development of hand-1041 

held tools may revolutionize mechanical bush-control measures, particularly in developing 1042 

countries with limited economic resources. This information may better inform land managers 1043 

regarding more effective approaches to inform communal ranchers regarding control of young 1044 

trees that can encroach savannas.  1045 
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Table 2.1. The effect of herbicide application on mean of each of number of leaves, shoot 1288 

diameter (cm), length of the leader shoot (longest shoot) (cm) and shoot production of 12 tree 1289 

species. Significant differences of the ANOVA results are denoted with an *. Species names 1290 

are Dichrostachys cinerea (n = 72), Euclea crispa (n = 151), Ehretia rigida (n = 100), 1291 

Gymnosporia buxifolia (n = 82), Pappea capensis (n = 35), Searsia lancea (n = 42), Senegalia 1292 

caffra (n = 40), Vachellia karroo (n = 55), V. nilotica (n = 70), V. robusta (n = 201), V. tortilis 1293 

(n= 47) and Ziziphus mucronata (n = 140). 1294 

Species Treatment Significance 

of Wilks’ λ in 

MANCOVA 

(p value) 

Number of 

leaves    

(mean ± SE) 

Diameter of 

the leader 

shoot   (mean 

± SE) 

Length of the 

leader shoot   

(mean ± SE)  

Shoot 

production 

(mean ± SE) 

D. cinerea Herbicide 

Control 

               

0.058 

0 ± 0 

5.29 ± 2.83 * 

0.03 ± 0.01 

0.49 ± 0.07 

6.20 ± 3.13 

68.03 ± 9.39 

13.5 ± 0.8 

193.3 ± 32.6 * 

E. crispa Herbicide 

 

Control 

               

0.225 

0.77 ± 0.88  0.03 ± 0.01 3.79 ± 1.44 25.32 ± 10.67 

 46.24 ± 6.42  0.31 ± 0.04 37.60 ± 3.61 204.44 ± 

29.79 

E. rigida Herbicide 

Control 

               

0.001 

1.32 ± 0.64 

20.63 ± 4.02 * 

0.04 ± 701.24 

0.75 ± 0.07 * 

4.81 ± 3.22 

65.85 ± 5.93 * 

20.6 ± 9.2 

317.9 ± 29.6 * 

G. buxifolia  Herbicide 

Control 

               

0.138 

 

0.52 ± 0,35 

8.34  ± 2.14 

0.05 ± 0.02 

0.33 ± 0.05 

2.35 ± 1.03 

22.76 ± 3.34 

9.0 ± 3.7 

149.8 ± 42.4 

P. capensis Herbicide 

Control 

               

0.099 

 

5.17 ± 1.82 

16.38 ± 4.55 

0.08 ± 0.02 

0.37 ± 0.09 

6.54 ± 2.58 

119.66 ± 87.26 

44.5 ± 21.8 

156.2 ± 37.8 

S. lancea Herbicide 

Control 

               

0.347 

 

11.68 ± 7.18 

90.75 ± 23.48 

0.12 ± 0.06 

2.81 ± 1.82 

9.64 ± 4.89 

89.00 ± 9.71 

114.7 ± 100.1 

194.9 ± 28.5 

V. caffra Herbicide 

Control 

               

0.122 

 

10.37 ± 3.91  

57.06 ± 16.04 

0.21 ± 0.07 

0.45 ± 0.08 

3.70 ± 10.06 

62.29 ± 10.19 

28.1 ± 9.7 

134.3 ± 36.9 
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V. karroo Herbicide 

Control 

               

0.158 

 

0.78 ± 0.63 

5.72 ± 2.54 

0.01 ± 0.01 

0.35 ± 0.07 

1.89 ± 1.36 

42.22 ± 4.68 

10.1 ± 6.2 

221.7 ± 85.3 

V. nilotica Herbicide 

Control 

               

0.083 

 

2.87 ± 2.17 

42.31 ± 9.30 

0.04 ± 0.03 

0.36 ± 0.05 

2.09 ± 1.23 

42.28 ± 5.45 

3.9 ± 2.9 

130.1 ± 29.5 

V. robusta Herbicide 

Control 

               

0.004 

 

3.63 ± 1.08 

21.15 ± 4.29 

0.09 ± 0.02 

0.42 ± 0.04 * 

5.84 ± 1.15 

39.64 ± 3.08 * 

6.8 ± 1.7 

155.7 ± 15.2 * 

V. tortilis Herbicide 

Control 

               

0.038 

 

14.96 ± 4.88 

78.94 ± 13.52 * 

0.15 ± 0.05 

0.65 ± 0.12 

17.67 ± 4.75 

61.94 ± 6.67 * 

98.6 ± 48.2 

212.9 ± 63.5 

Z. mucronata Herbicide 

Control 

                

0.001 

3.83 ± 1.66 

118.30 ± 13.17 * 

0.07 ± 0.02 

1.05 ± 0.08 * 

7.02 ± 2.44 

104.92 ± 5.89 * 

4.3 ± 1.5 

192.4 ± 26.8 * 

 1295 

 1296 

 1297 

 1298 

 1299 

 1300 

 1301 

 1302 

 1303 

 1304 

 1305 

 1306 

 1307 

 1308 

 1309 

 1310 

 1311 

 1312 

 1313 
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Table 2.2. Proportion of tree seedlings and saplings successfully uprooted with Tree Poppers® 1314 

per height class among woody plant species. 1315 

Height 

class (cm) 

D. 

cinerea 

E. 

crispa 

E. 

rigida 

G. 

buxifolia 

V. 

karroo 

V. 

nilotica 

V. 

tortilis 

Z. 

mucronata 

0 – 49  1 0.9 0.9 0.9 0 0.3 0.1 0.9 

50 – 99 0.8 1 1 1 0.2 0 0 1 

100 – 150 – 1 1 0.9 0.3 – 0 1 

 1316 

 1317 

 1318 

 1319 

 1320 

 1321 

 1322 

 1323 

 1324 

 1325 

 1326 

 1327 

 1328 

 1329 

 1330 

 1331 

 1332 

 1333 

 1334 

 1335 

 1336 

 1337 

 1338 

 1339 

 1340 



45 

 

  

 1341 

Figure 2.1. Shows the Tree Popper® harvesting tool or weed wrench (Pictures by 1342 

Treepopper.co.za). 1343 

 1344 

 1345 

 1346 

 1347 

 1348 

 1349 

 1350 

 1351 

 1352 

 1353 

 1354 

 1355 

 1356 

 1357 

 1358 

 1359 
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 1360 

 1361 

Figure 2.2. Mean shoot production (± 1 S.E.) of D. cinerea, E. crispa, E. rigida, G. buxifolia, 1362 

P. capensis, S. lancea, V. caffra, V. karroo, V. nilotica, V. robusta, V. tortilis and Z. mucronata 1363 

stumps at different removal treatments (100 % removal = total clearing of tree biomass). 1364 

Different superscript letters represent significant differences based on a Bonferroni post hoc 1365 

test. 1366 

 1367 

 1368 

 1369 

 1370 

 1371 

 1372 

 1373 

 1374 

 1375 

 1376 

 1377 

 1378 
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 1379 

Figure 2.3. The relationship between stump diameter and new shoot production of D. cinerea, 1380 

E. crispa, E. rigida, G. buxifolia, P. capensis, S. lancea, V. caffra, V. karroo, V. nilotica, V. 1381 

robusta, V. tortilis and Z. mucronata. 1382 

 1383 

 1384 

 1385 

 1386 

 1387 

 1388 

 1389 

 1390 

 1391 

 1392 

 1393 

 1394 
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 1395 

Figure 2.4. Mean proportion of tree seedlings and saplings (i.e. Vachellia karroo, V. nilotica, 1396 

V. tortilis, Dichrostachys cinerea, Euclea crispa, Ehretia rigida, Gymnosporia buxifolia and 1397 

Ziziphus mucronata) successfully removed (± 1 S.E.) using Tree Poppers®. Different 1398 

superscript letters represent significant differences based on a Bonferroni post hoc test. 1399 

 1400 

 1401 

 1402 

 1403 

 1404 

 1405 

 1406 

 1407 

 1408 

 1409 

 1410 

 1411 

 1412 

 1413 
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Chapter 3: Short-term response of grass species richness, composition, β diversity and 1414 

soil dynamics after tree thinning in a South African savanna 1415 
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Abstract 1444 

In savannas, woody plant encroachment negatively affects ecosystem services such as forage 1445 

production and thus, reactive interventions such as tree thinning are commonly applied. We 1446 

conducted a field experiment in two study sites with 24 plots (30 m x 30 m) in each site to 1447 

determine the effects of different tree thinning-intensities (0%, 10%, 20%, 50%, 75% and 100% 1448 

tree removal), on grass species-richness, composition, cover, β diversity, and soil fertility and 1449 

cover. We found that tree thinning did not have significant effects on grass species-richness in 1450 

either study site. In site 1, β diversity results showed no treatment effects on compositional 1451 

change between thinned plots and the control (no thinning). However, in site 2, β diversity 1452 

results demonstrated moderate compositional change between thinned plots and the control 1453 

plots. Different levels of tree thinning increased the abundance of two dominant grass species, 1454 

Digitaria eriantha and Panicum maximum in both study sites, particularly in moderate (50%) 1455 

and high removal (75% and 100%) treatments. However, the nitrophilous P. maximum will 1456 

likely decline in abundance over time, particularly in the 100% tree thinning treatment because 1457 

N-fixation from trees will no longer exist because of the lack of woody plants.  Contrastingly, 1458 

we found no evidence that tree thinning alters soil cover. In addition, different levels of tree 1459 

thinning did not have a significant impact on soil fertility in either study site. The 50% tree 1460 

thinning created an opportunity for different palatable grass species to increase in abundance, 1461 

which may be important for forage production that may support livestock and wild herbivores 1462 

in savannas. Maintaining a certain density of woody plants in rangelands affected by woody 1463 

plant encroachment will help maintain the ecological benefits conferred by woody plants on the 1464 

herbaceous layer, soil enrichment and provision of browse.  1465 

Keywords: communal rangelands, rehabilitation, soil erosion, tree clearing, woody plant 1466 

encroachment 1467 

 1468 

 1469 

 1470 

 1471 

 1472 

 1473 

 1474 
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3.1. Introduction 1475 

In savanna rangelands, the imbalance in the coexistence of trees and grasses caused by woody 1476 

plant encroachment negatively affects ecosystem services such as forage production (Ward 1477 

2005, Riginos et al. 2009; Schleicher et al. 2011). Thus, reactive interventions such as tree 1478 

thinning remains are normally applied (Smit 2005, Smit 14; Ndhlovu et al. 2016a; Ding and 1479 

Eldridge 2019). Tree-thinning (also termed brush management) has been widely employed to 1480 

improve the quality of forage production and maintain the economic viability of rangelands that 1481 

are affected by woody plant encroachment (Smit 2005; Ndhlovu et al. 2016a). Tree thinning 1482 

often involves clearing the total tree-biomass (Ludwig and Tongway 2002; Smit 2005; Ndhlovu 1483 

et al. 2016a). Although woody-plant clearing leads to a significant increase of the herbaceous 1484 

layer (Ludwig and Tongway 2002), in low-input agro-ecosystems where irrigation and 1485 

fertilisation are not applied, complete thinning of all trees could negatively affect rangeland 1486 

productivity, particularly in the long term (Sangha et al. 2005; Smit 2014).  1487 

Studies of woody plant encroachment have shown their ecological effects on rangeland 1488 

productivity (Ludwig et al. 2003; Smit 2005; Kambatuku et al. 2013; Marquart et al. 2019). 1489 

Woody plants are able to take up deeper water resources to the surface through their deep root 1490 

systems by means of a process called hydraulic lift (Ludwig et al. 2003; Schleicher et al. 2011; 1491 

Kambatuku et al. 2013; Ward et al. 2013; Marquart et al. 2019). This in turn allows grasses, 1492 

which generally have shorter root systems, to access more water, which positively influences 1493 

their growth and persistence, especially in water-limited agro-ecosystems (Ludwig and Dawson 1494 

2003). In addition, at low densities woody plants have been reported to protect the top soil layer 1495 

from erosion by improving vegetation cover (Marquart et al. 2019), which promotes rainfall 1496 

infiltration and reduces runoff (Herrick et al. 2005; Ndhlovu et al. 2016). Moreover, many 1497 

savanna leguminous trees are able to fix atmospheric nitrogen in symbiosis with their 1498 

Rhizobium bacteria (Cramer et al. 2007; Kambatuku et al. 2013). This nitrogen also becomes 1499 

available to the grasses, which in turn, may positively influence grass production and grass 1500 

species composition (Smit 2005). For example, certain nitrophilous grasses such as Panicum 1501 

maximum, grow well under leguminous trees (Bosch and Van Wyk 1970; Smit 2005). Similarly, 1502 

other grass species may be lost in the presence of woody plants, particularly the shade-intolerant 1503 

species (Ndhlovu et al. 2016b). Consequently, tree thinning may influence grass species 1504 

richness, composition and diversity (Dodson and Peterson 2010). The canopy gaps created 1505 

through tree thinning are expected to lead to an increase in species richness and abundance of 1506 

different grass species due to reduced competition for water, nutrients and light availability 1507 
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(Savadogo et al. 2008; Bassett et al. 2020). It is thus important to test how understory 1508 

communities and individual grass species react to tree thinning.  1509 

Despite the ecological benefits conferred by leguminous trees, woody plant 1510 

encroachment is regarded as an indication of rangeland degradation (Ward 2005; O’Connor et 1511 

al. 2014; Archer et al. 2017) and has the potential to threaten the social and ecological viability 1512 

of livestock and game farming (Archer and Predick 2014). However, at low densities, woody 1513 

plants have been reported to have positive effects on herbaceous plant production and soil cover 1514 

(Smit 2005; Marquart et al. 2019). In this study, we evaluated the effects of different tree 1515 

thinning-intensities on grass species richness, composition, and soil fertility and soil cover at 1516 

two savanna sites that differ in soil texture and woody species at Roodeplaat ranch in the 1517 

Gauteng Province of South Africa. The predictions were: 1518 

 1) Grass-species richness will increase with increasing intensity of tree-thinning 1519 

because thinning may increase the abundance of previously suppressed grasses; 1520 

 2) Grass species that are adapted to nutrient-enriched sub-canopies and neighbourhoods 1521 

of the trees will decrease in abundance with increasing tree-thinning intensities; 1522 

3) Total clearing of trees will have a negative effect on soil fertility in both study sites 1523 

because biological nitrogen fixation and soil nutrient accumulation are no longer operational; 1524 

4) The thinning treatments will reduce the amount of bare soil because the removal of 1525 

woody plants is expected to increase herbaceous biomass and cover. 1526 

 1527 

3.2. Materials and methods 1528 

3.2.1. Study area 1529 

The study was carried out at Roodeplaat Experimental Farm (25º36ʹ29˝S, 28º2ʹ08˝E) which is 1530 

situated in the north of Gauteng Province, South Africa. Roodeplaat farm is a 2100 ha farm of 1531 

the Agricultural Research Council (ARC), and it is used for livestock and wildlife production. 1532 

The vegetation of this area is described as the Marikana Thornveld (Mucina and Rutherford 1533 

2006) and is dominated by several woody plants, which include Euclea species, Vachellia 1534 

(previously Acacia) karroo, Senegalia (formerly Acacia) caffra, Vachellia (previously Acacia) 1535 

tortilis (Kyalangalilwa et al. 2013) and Ziziphus mucronata. We used Coates-Palgrave’s (2002) 1536 

nomenclature for tree species. The grass layer consists of Digitaria eriantha, Melinis repens, 1537 

Panicum maximum, Setaria sphacelata, and Sporobolus africanus. Eragrostis curvula, 1538 

Themeda triandra, and Heteropogon contortus are some of the important grasses found on the 1539 

ranch (Van Rooyen 1983). van Oudtshoorn’s (2006) nomenclature is followed for grass species. 1540 
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The farm receives annual precipitation of 687 mm with most of it falling during summer 1541 

(November to March). The maximum daily temperature of the area in summer ranges between 1542 

20-29 °C, while the minimum winter temperature can decrease to 2-16 °C. The most common 1543 

soil types of the study area are Ferralsols, Luvisols, and Vertisols. The study area is situated on 1544 

the Roodeplaat Igneous Complex, which belongs to the Post-Waterberg Formation (Panagos et 1545 

al. 1998). The Roodeplaat Igneous Complex is a unique ring-shaped structure with a diameter 1546 

of approximately 16 km and is also referred to as the “Roodeplaat volcano” (Panagos et al. 1547 

1998). Rainfall and temperature data for the study area was received from an accredited 1548 

Agricultural Research Council’s Institute for Soil, Climate and Water (Figs. 3.1 and 3.2).  1549 

 1550 

3.2.2. Study design 1551 

The study was conducted in two sites that vary in grasses, tree species and soils within the same 1552 

ranch from October 2018 to April 2020 over two growing seasons. The first study site (hereafter 1553 

study site 1) was on clay-dominated soils (sand 38%; silt 17%; clay 45%) characterized by 1554 

severe soil degradation in the form of surface erosion and crust formations. The study site had 1555 

a closed canopy woodland dominated by V. tortilis. The second study site (hereafter study site 1556 

two) was on sand-dominated soils (67% sand; 16% silt; 17% clay) with several common woody 1557 

species (Dichrostachys cinerea, Euclea crispa, Ehretia rigida, Gymnosporia buxifolia, Pappea 1558 

capensis, Searsia lancea, Senegalia caffra, V. karroo, Vachellia (formerly Acacia) nilotica, V. 1559 

robusta, V. tortilis and Ziziphus mucronata). 1560 

At each site, we set up 24 plots of 30 m × 30 m each subjected to different intensities of 1561 

tree thinning. Tree thinning-treatments were replicated four times and allocated randomly to 1562 

the plots. Trees were removed to the approximate equivalents of 0% (control-no removal), 10%, 1563 

20%, 50%, 75% and 100% (total clearing of the tree biomass), following Smit (2005). The plots 1564 

were fenced to restrict grazing/browsing by livestock. Grass species richness and composition 1565 

were determined using the nearest-plant species method described by Hardy and Tainton 1566 

(1993). Because the size of our plots was relatively small (i.e. 30 m x 30 m), the nearest species 1567 

and basal strikes were estimated along a 25 m line transect in each plot. At 1-m intervals, a 1568 

metal rod was dropped and any herbaceous species on which the rod struck (basal strikes) was 1569 

identified. When the distance to the nearest plant was ≥ 30 cm from the marked step point, 1570 

‘‘bare ground’’ was recorded. This technique has been reported to be sufficient to obtain 1571 

reliable results (Tefera et al. 2010). Percentage bare ground was calculated following Herrick 1572 

et al. (2005). Grass species richness was calculated by summing the total number of plant 1573 
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species in each plot. Pielou's Evenness Index was used to calculate grass species evenness.  1574 

diversity was calculated using Sørensen index between each pair of treatments (control vs 1575 

thinning treatments), using the formula Cs = 2j/(a + b), where “j” is the number of species 1576 

shared between two treatments and “a” and b are the numbers of species unique to each 1577 

treatment. The herbaceous surveys were conducted before tree thinning and at the end of two 1578 

growing seasons during the experimental period.  1579 

To assess the effects of tree thinning on soil properties (pH, organic carbon), five soil 1580 

samples at 5 cm depth were collected from each plot, 5 m from each corner and one from the 1581 

centre of each plot. The soil samples from each plot were mixed together to obtain one 1582 

composite sample. The soil organic carbon was determined using the Walkley-Black method 1583 

(Walkley and Black 1934). Soil pH (H2O) was determined using a pH meter in a 1:5 soil:water 1584 

suspension. We determined soil fertility by growing radish, Raphanus sativus. Raphanus 1585 

sativus has no known preference for a specific soil type and is considered a reliable bioassay 1586 

(Olsvig-Whittaker and Morris 1982; Ward et al. 1998). Three soil samples collected 5 m from 1587 

each corner of the plot and from the centre were used. The three soils were collected 2 m apart 1588 

and mixed together to form one sample and a total of five soil samples per plot. Prior to planting, 1589 

radish seeds were germinated in growth chambers. The germination tests used circular plastic 1590 

petri dishes (9 cm in diameter) containing one disc of filter paper and 5 ml of distilled water. 1591 

The germination chamber was kept at a temperature of 20-30 °C with 16 h of dark period and 1592 

8 h of light period. Germinated seeds were then transplanted into seedling trays and grown for 1593 

4 weeks. Radish plant material including below ground storage organs wereharvested and oven 1594 

dried at 70ºC for 72 h and weighed to calculate the dry-matter yield. The differences in plant 1595 

dry material were used to determine the variations of soil quality among the treatments.  1596 

 1597 

3.2.3. Data analysis 1598 

Prior to analysis, data were square-root transformed to ensure a normal distribution of residuals. 1599 

We used multivariate analysis of covariance (MANCOVA) to test the effects of tree thinning 1600 

on grass species-richness. MANCOVA was used to reduce Type 1 error caused by testing 1601 

multiple dependent variables on the same subjects. Grass species-richness recorded in the first 1602 

and second growing seasons were considered the dependent variables. Grass species richness 1603 

recorded before treatment application was used as a covariate. MANOVA was applied to test 1604 

the effects of the tree thinning treatments on soil pH and organic carbon, which were the 1605 

dependent variables. We used the Wilks' Lambda test statistic to investigate the effect of the 1606 
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thinning treatments on grass species-richness and soil parameters. When the MANCOVA was 1607 

significant, we used ANOVA for significant differences, followed by a Bonferroni post hoc test 1608 

among groups. One-way ANOVA was applied to test for significant differences in soil fertility 1609 

as indexed by the soil assay based on radish biomass. IBM SPSS for Windows v. 26 (IBM SPSS 1610 

2019) was used for all data analysis.  1611 

Canonical correspondence analysis was used to determine the effects of tree thinning 1612 

on grass species composition. Species composition analyses were performed using XLSTAT 1613 

software (version 2020.5, Addinsoft, New York, USA). 1614 

 1615 

3.3. Results 1616 

Values of  diversity of grasses for study sites 1 and 2 are presented in Fig. 3.3. Tree thinning 1617 

had no significant effect on grass species-richness in either site (Wilks' λ = 0.451; F = 0.931; p 1618 

> 0.539 for site 1 and Wilks' λ = 0.753; F = 0.332; p > 0.990 for site 2,). Values for grass species 1619 

richness and evenness are presented in table 3.1. There was a significant association between 1620 

different grass species and the thinning treatments in both sites during the two growing seasons 1621 

(χ2 = 3435, p < 0.001 and χ2 = 4278, p < 0.001, respectively) (Figs. 3.4 and 3.5). In site 1, tree 1622 

thinning had a substantial effect on Digitaria eriantha and Sporobolus africanus, with the 1623 

former increasing in abundance in cleared plots (100%) and the latter in the 50% removal 1624 

treatment (Fig. 3.6). In site 2, Heteropogon contortus (the most dominant grass species before 1625 

treatment application) decreased in abundance in all treatments, with the most decreases 1626 

observed in 75% and 100% thinning treatments. Moderate (50%) and high intensities (75% and 1627 

100%) of tree thinning increased the abundance of palatable grasses (i.e. D. eriantha and 1628 

Panicum maximum) in site 2 (Fig. 3.7). 1629 

We found no significant differences in bare soil area among treatments in sites 1 and 2 1630 

(Wilks' λ = 0.523; F = 1.225; p > 0.313 and Wilks' λ = 0.687; F = 0.662; p > 0.750, respectively) 1631 

(Table 3.2).  There were no significant differences in soil organic matter and pH among the 1632 

different thinning treatments in site 1 (Wilks' λ = 0.585; F = 1.044; p > 0.429 and site 2 (Wilks' 1633 

λ = 0.688; F = 0.700; p > 0.717). Additionally, we found no significant differences in soil 1634 

fertility among thinning treatments as indexed by the soil assay (radish biomass) in sites 1 and 1635 

2 (F = 0.898; p > 0.485 and F = 0.975; p > 0.436, respectively) (Table 3.3). 1636 

 1637 
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3.4. Discussion 1638 

Woody plant encroachment can greatly influence the species richness and composition of 1639 

herbaceous plants particularly grasses, and soil functions (Archer and Predick 2014; Ding and 1640 

Eldridge 2019; Bassett et al. 2020). Studies have reported that woody vegetation thinning may 1641 

create canopy gaps that can either result in increased grass species diversity or create 1642 

unfavourable thermal conditions that may favour growth of drought-tolerant grass species due 1643 

to competition for resources (Casado et al. 2004; Savadogo et al. 2008; Angassa et al. 2012). 1644 

Although it was difficult to single out particular species that were consistently associated with 1645 

thinning treatments at either site this study demonstrated that the abundance of dominant grass 1646 

species changed in response to different levels of tree thinning. However, we found no 1647 

significant differences in grass species richness among the treatments in either study site. Grass 1648 

species evenness also showed no change as result of tree thinning in either site. In addition, tree 1649 

thinning was not an important determinant of soil fertility and cover in either study site, but see 1650 

site 1 (Table 3.2).   1651 

 1652 

3.4.1. The impact of tree thinning on β diversity and grass species richness 1653 

We expected thinned treatment plots to change in grass species composition compared to the 1654 

control treatment. In site 1, values of β diversity showed no indication of treatment effects on 1655 

compositional change between thinned plots and the control. However, in site 2, β diversity 1656 

results demonstrated moderate compositional change between thinned plots and the control (no 1657 

thinning). The emergence and disappearance of certain grass species after the two growing 1658 

seasons in site 2 could explain the species turnover. The findings from site 2 suggest that tree 1659 

thinning may cause a change in grass species composition after treatment application. These 1660 

findings were consistent with Dodson and Peterson (2010) who demonstrated that tree thinning 1661 

leads to a change in herbaceous species composition relative to the control. These results 1662 

showed that thinned plots may change in grass species composition compared to the control 1663 

plots, although this may be site specific. Regardless, the results from both study sites were not 1664 

consistent with the prediction that increases in tree thinning will result in a significant increase 1665 

in grass species richness. This is because grass species richness significantly decreases in 1666 

rangelands affected by woody plant encroachment (Mogashoa et al. 2021). Thus, the duration 1667 

of this study may have not been sufficient to cause substantial changes in grass species richness. 1668 

However, the results from our study are consistent with the results obtained in Burkina Faso, 1669 

West Africa by Savadogo et al. (2008) who reported negligible effects of tree thinning on grass 1670 
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species-richness in a mesic savanna. Our study findings suggest that grass species richness in 1671 

these savannas is resistant to thinning imposed changes and/or the duration of the study was 1672 

insufficient to cause significant changes. 1673 

 1674 

3.4.2. The impact of tree thinning on the abundance of grass species  1675 

It is established that substantial effects of tree thinning on the herbaceous recovery are observed 1676 

after 2 years (Lett and Knapp 2005; Archer and Predick 2014). This may explain an increase in 1677 

abundance of different grass species in this study post thinning. In both study sites, the thinning 1678 

treatments were associated with an increase in abundance of different grass species, while no 1679 

thinning (control) had limited impact. In site 1, clear effects of tree thinning were observed on 1680 

the abundance of two dominant grasses, Digitaria eriantha and Sporobolus africanus after the 1681 

two growing seasons. The abundance of D. eriantha was not affected in other treatments (0%, 1682 

10%, 20%, 50%, and 75%) but significantly increased in cleared plots (i.e. 100% removal 1683 

treatment). On the other hand, S. africanus substantially declined in abundance in all treatments 1684 

but increased in the 50% thinning treatment. An increase in abundance of D. eriantha in cleared 1685 

plots may be attributed to the substantial reduction of tree competition following clearing, 1686 

particularly for soil moisture. Although tree thinning showed a substantial effect on the 1687 

abundance of S. africanus in site 1, the causes of these effects were not clear. S. africanus has 1688 

been identified as an indicator species of rangeland degradation (Mansour et al. 2012). We 1689 

expected S. africanus to remain high in abundance in the control and low thinning (i.e. 10%) 1690 

plots only. This is because encroached rangelands are a sign of degradation (Ward 2005; Okin 1691 

et al., 2006), and tree thinning is expected to restore the rangeland (Smit 2005; Ding and 1692 

Eldridge 2019). Thus, the increased abundance of S. africanus in 50% thinning only suggest 1693 

possible influences by undetermined factors.  1694 

In site 2, moderate (50%) and high intensities of tree thinning (75% and 100%) 1695 

positively affected the abundance of Panicum maximum. These results contradicted the 1696 

expectation that grasses such as P. maximum that normally prefer to grow under tree canopies 1697 

will reduce in abundance, particularly in 75% and 100% thinning treatments. Additionally, 1698 

there was a substantial increase in abundance of D. eriantha in the 50% thinning treatment. The 1699 

abundance of Heteropogon contortus, the most dominant grass species prior to tree thinning in 1700 

site 2 substantially reduced in all treatments with the lowest reductions observed in 75% and 1701 

100% thinning compared to other treatments. An increase in abundance of P. maximum in 50% 1702 

thinning treatment may be attributed to the ability of this species to colonize fertile islands 1703 
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created by N-fixing tree species (Smit 2005). The results from site 2 are consistent with Smit 1704 

(2005) who reported an increase in abundance of P. maximum under trees and between canopies 1705 

after tree thinning. Moreover, an increase in abundance of D. eriantha suggests that 50% 1706 

thinning in site 2 may have created an opportunity for different palatable grass species to 1707 

increase in abundance, which may be important for ecosystem services such as forage 1708 

production that may support livestock and wild herbivores in savannas (van Oudtshoorn (2006).  1709 

The majority of the dominant woody plants in site 2, such as D. cinerea, S. caffra and 1710 

Vachellia spp. are nitrogen-fixing legumes (Schulze et al. 1991). Consequently, 75% thinning 1711 

and complete removal of the total tree biomass (100%) may have created favourable conditions 1712 

for P. maximum to increase in abundance because of the significant reduction of competition 1713 

from trees. Also, P. maximum tends to be highly competitive (Smith et al. 2013), and therefore, 1714 

the decline in abundance of other grass species observed in 75% and 100% thinning treatments 1715 

may be due to increased competition among the grasses. However, because P. maximum 1716 

performs better in nitrogen-rich soils, it will likely decline in abundance with time in 75% and 1717 

100% thinning treatments. This is because post-clearing effects on soil fertility and its effects 1718 

on the herbaceous layer have been reported to be transient as they are a legacy of ecological 1719 

processes that are no longer existent (Kaur et al. 2007; Ndhlovu et al. 2016a, b).  1720 

The results from both study sites demonstrated that tree thinning has both positive and 1721 

negative effects on the abundance of different grass species. Our results are consistent with 1722 

Ndhlovu et al. (2016b) who showed that clearing Prosopis trees that are invasive species in 1723 

South Africa (Bromilow 1995), positively and negatively influenced the abundance of different 1724 

grass species. Additionally, our results agree with Smit and Rethman (1999) who demonstrated 1725 

that tree thinning increases the abundance of different grass species, particularly pioneer grasses 1726 

in a Colophospermum mopane savanna in South Africa. The results from both of our study sites 1727 

demonstrated that changes in the composition of the grass species may have been stimulated by 1728 

a reduction in competition from woody plants or through recruitment of new species from the 1729 

seedbank (Mndela et al. 2019; Bassett et al. 2020). Many studies have indicated that woody 1730 

plants suffer from competition from grasses (e.g. Kraaij and Ward 2006; Riginos et al. 2009; 1731 

Tjelele et al. 2015; Grellier et al. 2012; Vadigi and Ward 2013); here we showed that the reverse 1732 

was also possible.  1733 

 1734 
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3.4.3. The effect of tree thinning on plant cover and soil fertility  1735 

Woody plant encroachment has been reported to results in the desertification of rangelands by 1736 

increasing bare soil areas (Eldridge et al. 2011). As a result, we expected moderate (50%) and 1737 

high intensities (75 and 100%) of thinning of the woody vegetation to reduce percentage bare 1738 

soil area because tree thinning is expected to increase grass biomass production and cover (Smit 1739 

and Rethman 1999; Smit 2005; Ndhlovu et al. 2016a). In both study sites, we did not find any 1740 

significant differences in percentage bare soil area among the thinning treatments. However, 1741 

see the results from site 1. Our results are consistent with the results of Ding and Eldridge’s 1742 

(2019) meta-analysis where they found no evidence that tree thinning changes bare soil cover. 1743 

The results from both study sites demonstrated that tree thinning did not have any effect on soil 1744 

cover. In addition, tree thinning may in turn reduce soil erosion because an increase in 1745 

abundance of different grass species is expected to protect the soil layer from erosion (Berendse 1746 

et al.  2015). 1747 

 Research has demonstrated that tree clearing (complete removal of trees) may negatively 1748 

affect soil properties related to fertility (Sangha et al. 2005; Abbasi et al. 2010). We expected 1749 

changes in soil organic carbon, pH and fertility in cleared plots compared to other treatments in 1750 

the present study. Our results were not consistent with this expectation. We related this to the 1751 

short study period (two growing seasons). Studies on tree clearing have shown that soil 1752 

properties relating to soil fertility may take longer (between five and seven years) to change 1753 

(Sangha et al. 2005; Kaur et al. 2007). Although high intensities of tree thinning did not have 1754 

any negative effects on soil fertility in either study site, this may change over time (Kaur et al. 1755 

2007). The lack of a significant reduction in soil fertility in high-thinning treatments 1756 

(particularly complete removal of trees) in this study may be due to the temporary legacy of 1757 

nitrogen fixation and nutrient accumulation by woody plants (Ward et al. 1998; Ward and 1758 

Ngairorue 2000; Sangha et al. 2005). Nonetheless, our results are consistent with Kaur et al. 1759 

(2007) and Ndhlovu et al. (2016a, b) who demonstrated that soil fertility remains adequate for 1760 

herbaceous production after clearing woody plants. These findings suggest that properties 1761 

related to soil fertility in either site are resistant to tree thinning-induced changes.  1762 

 1763 

3.5. Conclusions 1764 

We showed that thinning of encroaching trees may change grass species composition but not 1765 

species richness, although this may be site-specific. Most importantly, tree thinning was not 1766 

associated with negative effects on the abundance of palatable grass species in either study site. 1767 
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For instance, D. eriantha and P. maximum, which are highly palatable grasses, were positively 1768 

associated with the thinning treatments in the two sites. However, we found no evidence that 1769 

tree thinning reduces the amount of bare soil through increased herbaceous cover in either site. 1770 

In addition, different levels of tree thinning did not have a significant impact on soil fertility. 1771 

This study provides insight into effects of tree thinning on grass vegetation and soil functions. 1772 

Long-term studies should test the effects of different levels of tree thinning on palatable grass 1773 

production and soil fertility, which is relevant for informing land managers regarding effective 1774 

bush control methods that would result in increased economic viability of savanna rangelands.  1775 

 1776 
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Table 3.1 Grass species richness and evenness in study sites 1 and 2 during the study period. 1931 

Values inside brackets respresent grass species evenness. 1932 

Site and period Treatments 

 0% 10% 20% 50% 75% 100% 

Site 1       

Before tree removal 13 ± 2 (0.8) 11 ± 3.2 (0.7) 12 ± 1.9 (0.8) 12 ±1.8 (0.8) 13 ± 1.1 (0.9) 11 ± 2.2 (0.8) 

First season 12 ±2 .1 (0.8) 9 ± 3.6 (0.8) 11 ± 1.2 (0.9) 10 ± 1.6 (0.9) 12 ± 2.1 (0.8) 10 ± 1.6 (0.9) 

Second season 10 ± 2.5 (0.9) 10 ± 2.4 (0.9) 12 ± 1.8 (0.8) 14 ± 2.4 (0.8) 11 ± 2.1 (0.8) 9 ± 4.7 (0.6) 

       

Site 2       

Before tree removal 13 ± 1.9 (0.9) 12 ± 3.6 (0.7) 12 ± 2.2 (0.8) 11 ± 2.6 (0.8) 12 ± 1.9 (0.9) 13 ± 2.5 (0.8) 

First season 14 ± 2.1 (0.8) 17 ± 1.4 (0.8) 17 ± 1.5 (0.8) 15 ± 1.2 (0.9) 13 ± 2.1 (0.8) 17 ± 1.8 (0.8) 

Second season 9 ± 2.6 (0.9) 13 ± 3.1 (0.7) 13 ± 2.1 (0.8) 11 ± 2.8 (0.8) 13 ± 2.0 (0.9) 14 ± 2.9 (0.8) 

 1933 

 1934 

 1935 

 1936 

 1937 

 1938 

 1939 

 1940 

 1941 

 1942 

 1943 

 1944 

 1945 

 1946 

 1947 

 1948 

 1949 

 1950 

 1951 
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Table 3.2. Percentage bare area in study sites 1 and 2 at Roodeplaat during the study period. 1952 

Site and period Treatments  

 0% 10% 20% 50% 75% 100% 

Site 1       

Before tree removal 20 25 32 34 39 39 

First season 0 22 25 35 23 37 

Second season 8 10 11 22 18 27 

       

Site 2       

Before tree removal 6 8 12 18 3 3 

First season 3 6 4 9 6 3 

Second season 6 5 1 5 3 1 

 1953 

 1954 

 1955 

 1956 

 1957 

 1958 

 1959 

 1960 

 1961 

 1962 

 1963 

 1964 

 1965 

 1966 

 1967 

 1968 

 1969 

 1970 

 1971 

 1972 

 1973 
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Table 3.3 Mean (± 1 S.E.) soil parameters measured for study sites 1 and 2. 1974 

Soil parameters Treatments  

 0% 10% 20% 50% 75% 100% 

Site 1       

       

Soil pH (H2O) 7.2 ± 0.36 7.1 ± 0.19 7.0 ± 0.27 6.6 ± 0.45 7.2 ± 0.24 6.8 ± 0.19 

Soil organic carbon (%) 1.5 ± 0.20 1.6 ± 0.07 1.5 ± 0.11 2.0 ± 0.20 1.6 ± 0.14 1.6 ± 0.07 

Bioassay biomass (g) 0.53 ± 0.05 0.59 ± 0.03 0.60 ± 0.04 0.64.1 ± 0.03 0.60 ± 0.02 0.60 ± 0.04 

       

Site 2       

       

Soil pH (H2O) 6.5 ± 0.09 6.2 ± 0.09 6.4 ± 0.15 6.5 ± 0.17 6.3 ± 0.10 6.5 ± 0.14 

Soil organic carbon (%) 3.0 ± 0.34 2.6 ± 0.27 2.6 ± 0.27 3.4 ± 0.46 2.5 ± 0.44 3.0 ± 0.44 

Bioassay biomass (g) 0.26 ± 0.21 0.23 ± 0.03 0.30 ± 0.3 0.28 ± 0.03 0.26 ± 0.04 0.32 ± 0.04 

 1975 

 1976 

 1977 

 1978 

 1979 

 1980 

 1981 

 1982 

 1983 

 1984 

 1985 

 1986 

 1987 

 1988 

 1989 

 1990 

 1991 
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 1992 

Fig. 3.1. Mean monthly temperatures (°C) recorded at the Roodeplaat farm during the 1993 

experimental period (2018/2019, 2019/2020). 1994 

 1995 

 1996 

 1997 

 1998 

 1999 

 2000 

 2001 

 2002 

 2003 

 2004 

 2005 

 2006 

 2007 

 2008 

 2009 

 2010 
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 2011 

Fig. 3.2. Monthly total-rainfall recorded at Roodeplaat experimental farm during the two 2012 

growing seasons (October-April) of the experimental period (2018/2019, 2019/2020). 2013 
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 2027 

 2028 

Fig. 3.3. Values of β diversity (based on Sørensen’s index) between thinning treatments and the 2029 

control over the study period (A = first growing season; B = second growing season) in site 1 2030 

(ST1) and site 2 (ST2). Key to treatments: 1, 10%, 2, 20%; 3, 50%; 4, 75%; 5, 100%.  2031 

 2032 

 2033 

 2034 

 2035 

 2036 

 2037 

 2038 

 2039 

 2040 

 2041 

 2042 

 2043 

 2044 

 2045 

 2046 

 2047 
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 2048 

Fig. 3.4. Correspondence analysis (CA) scatterplot showing grass species assemblages in 2049 

different thinning treatments during the study period in study site 1. Key to treatments: T1, 0%; 2050 

T2, 10%, T3, 20%; T4, 50%; T5, 75%; T6, 100%. The numbers 0, 1 and 2 on the treatments 2051 

represents grass species assemblages before treatment application and, after the first and second 2052 

growing seasons post tree thinning. Key to species: SP1, Aristida adscensionis; SP 2, Aristida 2053 

bipartita; SP6, Bothriochloa insculpta; SP12, Digitaria eriantha; SP13, Eragrostis curvula; 2054 

SP14, Eragrostis chloromelas; SP23, Setaria sphacelata var. torta; SP24; Sporobolus africanus 2055 

SP27, Urochloa mossambicensis. 2056 
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 2057 

Fig. 3.5. Correspondence analysis (CA) scatterplot showing grass species assemblages in the 2058 

tree thinning treatments during the study period in study site 2. The numbers 0, 1 and 2 on the 2059 

treatments represents grass species assemblages before treatment application and, after the first 2060 

and second growing seasons post tree thinning. Key to treatments: T1, 0%; T2, 10%, T3, 20%; 2061 

T4, 50%; T5, 75%; T6, 100%. The numbers 0, 1 and 2 on the treatments represent grass species 2062 

assemblages before treatment application, first and second growing seasons after tree thinning, 2063 

respectively. Key to species: Key to species: SP3, Aristida congesta subsp. Barbicollis; SP4, 2064 

Aristida congesta subsp. congesta; SP5, Aristida junciformis; SP7, Brachiaria serrata; SP8, 2065 

Cenchrus ciliaris; SP11, Cenchrus ciliaris; SP12, Digitaria eriantha; SP, Eragrostis 2066 

chloromelas; SP15, Eragrostis curvula; SP16, Eragrostis racemosa; SP17, Heteropogon 2067 

contortus; SP20, Melinis repens; SP21, Panicum maximum; SP25, Themeda triandra, SP27, 2068 

Urochloa mossambicensis; SP28, Andropogon chinensis; SP30, Cymbopogon pospischilii; 2069 

SP31, Enneapogon cenchroides; SP33, Eragrostis gummiflua; SP34, Eragrostis rigidior; SP36, 2070 

Schmidtia kalihariensis; SP37, Schmidtia pappophoroides; SP39, Setaria sphacelata var. 2071 

sericea.  2072 
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 2073 

Fig. 3.6. Grass species abundance (%) from study site 1 before and after tree thinning. The 2074 

letters embedded in the figures resprent collection period (A = before tree thinning (September 2075 

2018); B = during first growing season (March 2019); C = during the second growing season 2076 

(March 2020)). 2077 
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 2086 

Fig. 3.7. Grass species abundance (%) from study site 2 before and after tree thinning. The 2087 

letters embedded in the figures represent collection period (A = before tree thinning (September 2088 

2018); B = during first growing season (March 2019); C = during the second growing season 2089 

(March 2020). 2090 
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Abstract 2118 

The removal of trees in rangelands can create gaps and lead to increased grass production that 2119 

could suppress tree seedling recruitment and growth. However, gaps can also enhance the 2120 

growth of remaining trees. We conducted a field experiment at two savanna sites with different 2121 

soil texture and woody species. We used 24 plots (30 m × 30 m) at each site to determine the 2122 

effect of tree removal-intensities (0%, 10%, 20%, 50%, 75% and 100%) on grass production, 2123 

tree-seedling establishment and growth, and growth of the remaining large trees. Site 1 was on 2124 

previously cultivated severely-eroded clay-dominated soils, encroached by a monospecific 2125 

stand of Vachellia tortilis. Site 2 had never been cultivated, and was on sandy soils with several 2126 

woody species. At site 1, 75 and 100% tree removal significantly reduced standing grass 2127 

biomass towards the end of the first growing season, with no differences towards the end of the 2128 

second season. At site 2, tree removal significantly increased grass biomass. There was no 2129 

significant effect of tree removal on tree seedling establishment at site 1. At site 2, tree removal 2130 

had a significantly negative effect on overall tree seedling establishment. At both sites, there 2131 

were no significant differences in tree seedling growth. Moderate (50%) to high (75%) removal 2132 

of trees had a positive effect on the growth of remaining large trees at both study sites. We 2133 

found that increased and/or diminished grass biomass plays a vital role in tree seedling 2134 

recruitment. Reduced tree competition facilitates growth of remaining large trees. An 2135 

implication of these findings is that, regardless of the substantial costs of woody plant control, 2136 

the recovery of key ecosystem services such as an increased forage production may not be 2137 

realised. However, we recognize that this may be system-specific. In other systems, the absence 2138 

of management interventions such as tree removal may compromise provision of ecosystem 2139 

services and ecosystem functioning. 2140 

 2141 

Keywords: Grass competition; Restoration; Soil erosion; Tree competition; Woody plant 2142 

encroachment  2143 
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4.1. Introduction 2144 

Interactions among mature trees play a significant role in structuring savannas (Meyer et al. 2145 

2007; Sea and Hanan 2012; Schleicher et al. 2011a, b). While these interactions can either 2146 

reduce or facilitate woody plant encroachment (Meyer et al. 2008; Pillay and Ward 2012), in 2147 

savanna rangelands (Jeltsch et al. 2000) such interactions may lead to woody plant 2148 

encroachment. Given the negative effects of woody plant encroachment on pastoral 2149 

productivity, ecologists and land users have often considered tree removal (also termed tree 2150 

thinning) as a management option  (Smit 2005; Brudvig et al. 2011; Ndhlovu et al. 2016). High 2151 

tree densities in savannas may negatively affect tree growth due to competition among woody 2152 

species (Kambatuku et al. 2011a; Pillay and Ward 2012, 2014) and is associated with a 2153 

reduction in the size of one or more neighbours (Meyer et al. 2007). However, the removal of 2154 

some trees may result in substantial increase in size of remaining individuals (Smit 2001; 2155 

Shackleton 2002; Back et al. 2009; Brudvig et al. 2011; Schleicher et al. 2011a, b). Moreover, 2156 

increased woody plant size can also benefit rangelands by increasing understory grass and forb 2157 

biomass because of increased water availability and/or nutrient contents below the tree canopy 2158 

area (Treydte et al. 2008; Schleicher et al. 2011b). 2159 

In savannas, large trees have been reported to limit tree seedling establishment by 2160 

outcompeting seedlings for resources (Loth et al. 2005; Brudvig and Asbjornsen 2009), so tree 2161 

removal can promote tree seedling establishment and growth (Kambatuku et al. 2011a; Smit 2162 

2014). Tree removal in rangelands can open the canopy while maintaining a pool of recruits to 2163 

replace large, older trees when they die (Schnitzer et al. 2001; Sapkota and Odén 2009; Smit 2164 

2014). However, gaps created by tree removal can increase grass production (Smit 2005; Sagar 2165 

et al. 2012), which negatively affects tree seedling germination, survival and growth 2166 

(Kambatuku et al. 2011b, Ward and Esler 2011; Grellier et al. 2012; Vadigi and Ward 2013; 2167 

Wakeling et al. 2015; Bhadouria et al. 2016; Morrison et al. 2018). Increased grass biomass is 2168 

expected to reduce tree seedling establishment similarly to tree establishment. Evidence 2169 

suggests Vachellia seeds do not germinate under Vachellia trees (Loth et al. 2005). The 2170 

suppressive effect of grass competition has also been reported to affect larger trees (Riginos 2171 

2009). Regardless, there is considerable variance in this relationship; some studies have found 2172 

that grasses facilitate tree seedling survival and growth (Duncan and Chapman 2003; Anthelme 2173 

and Michalet 2009; Tomlinson et al. 2019), whereas others have found non-significant effects 2174 

of grasses on tree seedling performance (Scariot et al. 2008).  2175 
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The effects of tree removal can differ within similar environments (Archer and Predick 2176 

2014), with site-specific drivers such as plant species and soils perhaps responsible for these 2177 

variations (Ding and Eldridge 2019). Few studies have compared the response of rangelands to 2178 

removal of different tree species, which leaves open whether differences in species traits 2179 

influence the ecological or management outcomes of removal (Ding and Eldridge 2019). For 2180 

example, multi-specific stands usually have a higher total ecosystem productivity and tree 2181 

density compared with monospecific stands (Pretzsch 2014) because monospecific stands are 2182 

often associated with more intense self-thinning, resulting in lower tree density (Pretzsch 2014).  2183 

Mixed tree species may also improve resource use compared with monospecific stands by 2184 

improving resource supply and capture (Forrester 2015). In addition, plant traits may be an 2185 

important determinant of the outcome of tree removal (Ding and Eldridge 2019). For example, 2186 

woody species such as Vachellia tortilis enhance water infiltration and soil nutrients inside their 2187 

canopies rather than outside the canopies (Ludwig et al. 2003; Abdallah et al. 2008). This 2188 

suggest that canopy gaps created through tree removal may not be beneficial in increasing 2189 

overall herbaceous biomass production in a V. tortilis monospecific stand.  2190 

Soil texture may also affect plant growth. Soil texture alters water intake rate, storage 2191 

and aeration (Rodriguez-Iturbe and Porporato 2004). Studies have shown that sand-dominated 2192 

soils allow for rapid infiltration and permeability of soil water (Laio et al. 2006). In clay-2193 

dominated soils, infiltration which increase run-off or waterlogging (Knapp et al. 2008). Since 2194 

water extraction is more difficult from clayey than sandy soils, particularly when soil moisture 2195 

content is low (Fensham et al. 2015), soil texture could alter tree and grass physiological 2196 

responses to soil moisture variability, aggravating water stress. Thus, differences in plant 2197 

species and soil texture could be important determinants of ecological services after tree 2198 

removal. 2199 

In this study, we evaluated the effects of different intensities of tree-removal on grass 2200 

biomass, tree seedling establishment and growth, and the growth of the remaining large trees at 2201 

Roodeplaat farm, Gauteng Province, South Africa. We tested the following predictions:  2202 

(1) Grass biomass will increase with increasing tree removal because of reduced 2203 

competition from woody plants; and  2204 

(2) Increased grass biomass after tree removal will reduce tree seedling establishment;   2205 

(3) Reduced tree competition through moderate (50%) and high (75%, 100%) tree 2206 

removal will significantly increase the growth (stem diameter, height and canopy size) of tree 2207 

seedlings and growth of the remaining trees.  2208 
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 2209 

4.2. Materials and methods 2210 

4.2.1. Study area 2211 

The study was conducted at Roodeplaat Experimental Farm (25º36ʹ29˝S, 28º2ʹ08˝E) which is 2212 

situated in the north of Gauteng Province, South Africa. Roodeplaat farm is a 2100 ha farm of 2213 

the Agricultural Research Council (ARC), and it is used for livestock production and wildlife. 2214 

The vegetation of this area is described as the Marikana Thornveld (Mucina and Rutherford 2215 

2006) and dominated by woody plants, which include Vachellia (previously Acacia) karroo, 2216 

Senegalia (formerly Acacia) caffra, Vachellia tortilis (Kyalangalilwa et al. 2013), Ziziphus 2217 

mucronata, and some Euclea tree species. We used Coates-Palgrave (2002)’s nomenclature for 2218 

tree species. The grass layer consists of Digitaria eriantha, Melinis repens, Panicum maximum, 2219 

Setaria sphacelata, and Sporobolus africanus. Eragrostis curvula, Themeda triandra and 2220 

Heteropogon contortus are some of the important grasses found on the ranch (Van Rooyen 2221 

1983). van Oudtshoorn (2006)'s nomenclature is used for grass species. The area receives 2222 

annual precipitation of 687 mm with most of it falling during summer (November to March). 2223 

The maximum daily temperature of the area in summer ranges between 20-29 °C, while the 2224 

minimum winter temperature can decrease to 2-16 °C. The most common soil types of the study 2225 

area are Ferralsols, Luvisols, and Vertisols. The study area is situated on the Roodeplaat 2226 

Igneous Complex, which belongs to the Post-Waterberg Formation (Panagos et al. 1998).  2227 

The study was conducted in two sites within the same farm. The first study site 2228 

(hereafter site 1) was on clay-dominated soils (38% sand; 17% silt; 45% clay) characterized by 2229 

severe soil degradation in the form of surface erosion and crust formations. Site 1 was under 2230 

crop cultivation more than 20 years ago and is now encroached by a monospecific stand of V. 2231 

tortilis. Site 1 was encroached at a mean density of 2 961 plants ha-1. The second study site 2232 

(hereafter site 2) was on sandy soils (67% sand; 16% silt; 17% clay) with several woody species 2233 

(Dichrostachys cinerea (L.) Wight & Arn, S. caffra (Thunb.) P.J.H. Hurter & Mabb, V. karroo 2234 

(Hayne) Banfi & Glasso, V. nilotica (L.) P.J.H. Hurter & Mabb, V. robusta (Burch.) 2235 

Kyalangalilwa & Boatwright, V. tortilis (Forssk.) Galasso & Banfi and Ziziphus mucronata 2236 

(Willd.). Site 2 has never been cultivated and was encroached at a mean density of 4 065 plants 2237 

ha-1. Site 2 was characterised by a virtually low grass cover and, was grazed and browzed by 2238 

an unknown number of game species. The experimental sites were fenced to exclude herbivores 2239 

from the area during the study duration. Rainfall and temperature data for the study area was 2240 
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received from an accredited Agricultural Research Council’s Institute for Soil, Climate and 2241 

Water (Figs. 4.1 and 4.2). The present study lasted for 18 months (October 2018 to April 2020). 2242 

 2243 

4.2.2. Study design 2244 

At each site, 24 plots of 30 m × 30 m were established and subjected to different intensities of 2245 

tree removal. Tree removal treatments were replicated four times and allocated randomly to the 2246 

plots. Trees were cut with a chainsaw to the approximate equivalents of 0% (control-no 2247 

removal), 10%, 20%, 50%, 75% and 100% (complete removal of trees, Smit (2005)) in October 2248 

2018 at the beginning of the wet season. Grass biomass was assessed using five randomly-2249 

placed 50 cm × 50 cm quadrats in each plot, with all of the grass samples within the quadrats 2250 

harvested regardless of species. Grass samples were collected towards the end of the wet season 2251 

of each year (in March). Harvested grass material was oven dried at 70ºC for 72 h and dry-2252 

matter yield calculated.  2253 

The effects of tree removal on seedling establishment were determined through a direct 2254 

count of all tree seedlings in each plot before treatments were applied and at the end of the study 2255 

period in April 2020. To investigate the effects of tree removal on the growth of tree seedlings 2256 

and large trees at site 1, five seedlings and five large trees of V. tortilis from each plot were 2257 

randomly marked and monitored for growth over two growing seasons. At site 2, seven tree 2258 

species (D. cinerea, S. caffra, V. karroo, V. nilotica, V. robusta, V. tortilis and Z. mucronata) 2259 

were randomly marked (i.e. two seedlings and two large trees per species per plot) and 2260 

monitored for growth. At site 2, four plants (i.e. two seedlings and two large trees) per species 2261 

per plot were used. Tree seedlings were defined as pre-reproductive trees < 1 m in height. 2262 

Tree and seedling growth were measured by recording height, canopy area (maximum 2263 

and perpendicular lengths) and stem diameter. Seedling stem diameter was measured at the base 2264 

of the stem; tree diameter was re-measured at a permanently marked point to minimize error. 2265 

Four healthy shoots were randomly selected on each tree, permanently marked, and monitored 2266 

for growth (length). The shoots included shoots from both the upper and lower canopy (Smit 2267 

2001). Only live trees were measured. Tree measurements were made on trees >2 m in height. 2268 

Measurements were recorded at the beginning and end of the study. Tree and seedling canopy 2269 

sizes were calculated using an ellipse function (C = abπ / 4.0), where “a” = long axis and “b” = 2270 

perpendicular short axis of the canopy (Smith and Grant 1986). Plant growth rate was calculated 2271 



81 

 

  

using: Relative growth rate (RGR) = (lnW2-lnW1)/(t2-t1), where W1 and W2 refer to log‐2272 

transformed plant measurements at times t1 and t2 (Hoffmann and Poorter 2002).  2273 

 2274 

4.2.3. Data analysis 2275 

Prior to analysis, data were log10 transformed to conform to ANOVA test assumptions. We used 2276 

multivariate analysis of covariance (MANCOVA) to test the effects of tree removal on grass 2277 

biomass production, where grass biomass recorded after the first and the second growing 2278 

seasons were considered the dependent variables. Grass biomass and tree density recorded 2279 

before tree removal were used as covariates. We used MANCOVA to reduce Type 1 error 2280 

caused by testing multiple dependent variables. Wilks' Lambda test statistic was used to 2281 

investigate the effect of the removal treatments on the measured parameters. For significant 2282 

MANCOVA results, we used univariate ANOVA to test which tree-removal levels differed 2283 

significantly from the others. ANCOVA was used to test the effects of tree removal on seedling 2284 

establishment, where the number of seedlings after tree removal was considered the dependent 2285 

variable. The number of seedlings recorded before tree removal was used as a covariate. Tree 2286 

and seedling stem-diameter, height and canopy area (growth rates) were analysed using 2287 

MANOVA. To determine the effects of the tree removal on tree canopy shoot-growth, we used 2288 

one-way ANOVA. A Bonferroni post hoc test was applied for pairwise comparisons among the 2289 

removal treatments. Data from the two sites were analysed separately. IBM SPSS for Windows 2290 

v. 26 (IBM SPSS 2019) was used for data analysis. 2291 

 2292 

4.3. Results 2293 

There were significant differences in grass biomass among tree-removal treatments at study site 2294 

1 (Wilks' λ = 0.330; F = 2.223; p < 0.044) (Fig. 4.3). ANOVA results showed that grass biomass 2295 

was significantly different among treatments during the first growing season only at site 1 (F = 2296 

5.357; p = 0.004). A Bonferroni post hoc test revealed that the control plots had a higher 2297 

recorded grass biomass than at 75% and 100% (complete removal) removal treatments. In 2298 

addition, the grasses Digitaria eriantha (Steud.) and Sporobolus africanus (Poir.) Robyns & 2299 

Tournay dominated site 1. At site 2, tree removal significantly increased grass-biomass at the 2300 

end of the first and second growing seasons (Wilks' λ = 0.067; F = 8.624; p < 0.001). Grass 2301 

biomass increased in the plots totally cleared of trees in the first growing season at site 2 (F = 2302 

14.280; p = 0.001). Towards the end of the second growing-season, grass biomass was greater 2303 

than the previous season across all treatments, with substantial increases at 50%, 75% and 100% 2304 
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removal (F = 7.713; p = 0.001). Grass biomass largely consisted of Panicum maximum and 2305 

Setaria sphacelata var. sericea (Stapf) Clayton in the cleared plots at site 2.No significant 2306 

differences in tree seedling establishment were recorded among treatment levels at sites 1 (p > 2307 

0.05) and 2 (p > 0.05) before tree removal. Tree removal level did not affect tree seedling 2308 

establishment at site 1 (p > 0.05). At site 2, tree removal level significantly reduced mean tree 2309 

seedling establishment (p < 0.05), with greatest reductions at 50%, 75% and 100% removal 2310 

(Fig. 4.4). Mean seedling recruitment (i.e. number of trees) after tree removal was significantly 2311 

different between the 50-100% removed and the 0-20% removed at site 2. However, at both 2312 

sites, there were no significant differences in seedling growth among treatment levels (Wilks' λ 2313 

= 0.809; F = 1.406; p = 0.410 and Wilks' λ = 0.878; F = 1.374; p = 0.156 for sites 1 and 2, 2314 

respectively).  Significant differences were recorded in mean large tree growth among 2315 

treatments at site 1 (Wilks' λ = 0.377; F = 8.956; p < 0.001) (Fig. 4.5). A Bonferroni post hoc 2316 

test indicated that only trees in the 75% removal treatment significantly increased in stem 2317 

diameter, height and canopy area compared with other treatments. Large tree canopy-area 2318 

results were supported by results for shoot growth which showed that size (i.e. length) of canopy 2319 

shoots in the 75% removal treatment increased significantly more following tree removal than 2320 

trees in other treatment levels (p = 0.001). Large trees in the 50% removal treatment showed a 2321 

greater increase in canopy area and height than the control (no removal). We also recorded a 2322 

significant increase in large tree height at site 2 in the 50% and 75% removal treatments (Wilks' 2323 

λ = 0.410; F = 14.594; p < 0.001), but no treatments differences for canopy area (p = 0.639). A 2324 

significant difference was only recorded in large tree height only. At site 2, growth in stem 2325 

diameter was not significantly affected by tree-removal level (p = 0.147 and p = 0.639, 2326 

respectively). The canopy-area results were supported by the canopy shoot-growth results that 2327 

showed no significant differences among removal treatments (p = 0.856).  2328 

 2329 

4.4. Discussion 2330 

4.4.1. The impact of tree removal on grass production 2331 

Diminished grass biomass production during the first growing season in the 75% and 100% 2332 

removal treatments in site 1 can be attributed to the ability of Vachellia tortilis to facilitate 2333 

herbaceous biomass under their canopies (Yadeta et al. 2018; Abdallah et al. 2008). For 2334 

example, Yadeta et al. (2018) demonstrated that herbaceous biomass increases under V. tortilis 2335 

canopies rather than in open spaces. Other studies have demonstrated that tree removal may 2336 

have contrasting effects on herbaceous production (Archer and Predick 2014; Ding and 2337 
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Eldridge 2019). Literature syntheses by Archer and Predick (2014) based on North American 2338 

studies indicated that only 64% of the papers emerging from their work reported an increase in 2339 

herbaceous biomass following tree removal. The results from site 1 were consistent with Beale 2340 

(1973) who recorded substantial declines in grass yield with low tree densities. In addition, the 2341 

results from site 1 were consistent with Allegretti et al. (1997) who reported negligible effects 2342 

of tree removal on herbaceous cover. The results from site 1 after the first growing season 2343 

suggest that high intensities of tree removal may further diminish the grass layer, particularly 2344 

during low rainfall seasons. Additionally, the results from site 1 suggest that success of bush 2345 

encroachment control through tree removal may also depend on soil texture. For instance, Smit 2346 

(2005) reported a recovery of the herbaceous layer after tree removal in eroded sand-dominated 2347 

soils, a result consistent with findings from site 2 (sand-dominated soils).  2348 

The results from site 2 were consistent with results from similar studies showing that 2349 

grass biomass increases as a result of tree removal (Brockway et al. 2002; Smit 2005, 2014; 2350 

Lett and Knapp 2005; Angassa et al. 2012; Ndhlovu et al. 2016). It is established that substantial 2351 

effects of tree removal on the herbaceous production are observed after 2 years (Lett and Knapp 2352 

2005; Archer and Predick 2014). This may explain the significant increase of grass biomass 2353 

production in cleared plots only in site 2 in the second growing season. Increases in grass 2354 

biomass depend on annual rainfall (Archer and Predick 2014). In the study area, rainfall was 2355 

higher during the second growing season than during the first growing season. Thus, the results 2356 

from site 2 may have been driven by increased rainfall availability. Importantly, the results from 2357 

site 2 were supported by Ludwig and Tongway (2002) who reported that tree removal in a 2358 

Eucalyptus savanna in Queensland (Australia) increased grass production. Also, Smit (2005, 2359 

2014) showed that the removal of some trees positively affected the herbaceous layer in a 2360 

Colophospermum mopane savanna in South Africa, a result consistent with those of Angassa 2361 

et al. (2012). The results from study site 2 suggest that tree removal may help rehabilitate the 2362 

herbaceous layer in rangelands affected by woody plant encroachment. For some sites, this may 2363 

need to be accompanied by seed replenishment. However, we did not measure the size and 2364 

composition of the soil seed bank in order to determine whether the lower biomass of site 1 2365 

may have been driven by a depauperate soil seed bank. 2366 

Additionally, high rainfall is known to promote grass production in savanna rangelands. 2367 

In study site 2, grass biomass production was relatively low after tree removal during the first 2368 

growing season (low rainfall) across all treatments except for plots that were cleared of all trees. 2369 

However, during the second growing season (high rainfall) (see Fig. 4.2), grass biomass 2370 
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increased in all treatments, with greater increases observed in moderate- (50%) and high- (75 2371 

and 100%) removal treatments. These results suggest that the interaction between tree removal 2372 

and high rainfall availability may positively affect the herbaceous layer and improve the 2373 

rangelands, although this may depend on the system. For example, Smit (2005) reported the 2374 

suppression of the herbaceous layer by C. mopane even under high rainfall availability. 2375 

 2376 

4.4.2. The effects of tree removal on tree-seedling establishment and growth 2377 

The lack of significant differences in growth response of the tree seedlings could be attributed 2378 

to the negative and positive responses of the herbaceous layer after tree removal in the study 2379 

sites. In site 1, diminished grass production across all treatments may have provided seedlings 2380 

with an equal opportunity for growth, resulting in the lack of substantial differences in seedling 2381 

growth among the treatments (Grellier et al. 2012; Vadigi and Ward 2014). In site 2, grass 2382 

production increased across all the treatments, with higher increases observed in 50%, 75% and 2383 

100% removal treatments. Grass production in site 2 may have suppressed the growth of 2384 

seedlings in all treatments. The results from site 2 are consistent with those of Morrison et al. 2385 

(2018) who showed that, in the Serengeti ecosystem in Tanzania, increased grass production 2386 

hinders the growth of V. tortilis and V. robusta seedlings. This pattern was confirmed by Pierce 2387 

et al. (2019) who reported that in New Mexico (USA), grasses negatively affected the 2388 

performance of Prosopis glandulosa seedlings. Vadigi and Ward (2014) also demonstrated the 2389 

negative effects of grass competition on humid (> 1000 mm mean annual rainfall) and mesic 2390 

(about 750 mm mean annual rainfall) tree saplings in north-eastern coastal region of KwaZulu-2391 

Natal, South Africa.    2392 

The results from site 1 could be related to undetermined factors such as the predation of 2393 

V. tortilis seeds by insects and a possible reduction in the soil seed bank (possibly caused by 2394 

rainfall-induced soil erosion) in the study site (Jiao et al. 2009; Ward et al. 2010). Nonetheless, 2395 

the results from study site 1 were consistent with the results of Brudvig and Asbjornsen (2008), 2396 

who reported that in Iowa (USA), tree removal did not have any significant effects on the 2397 

density of white oak Quercus alba seedlings. We attributed the results from site 2 to the higher 2398 

grass biomass production after tree removal in 50%, 75%, and 100% removal treatments, which 2399 

may have possibly suppressed the establishment of tree seedlings (see also Grellier et al. 2012). 2400 

Additional research has shown that grasses suppress seedling establishment and survival (Ward 2401 

and Esler 2011; Grellier et al. 2012; Vadigi and Ward 2013; Morrison et al. 2018; Pillay and 2402 

Ward 2020). For instance, in the Northern Cape Province in South Africa (mean annual rainfall 2403 
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= 350 mm), Ward and Esler (2011) found a significant negative effect of grass cover on 2404 

Senegalia (formerly Acacia) mellifera seedling establishment, a finding that was consistent 2405 

with Cramer et al. (2007) from the east coast of KwaZulu-Natal province (South Africa) with 2406 

a much higher rainfall (ca. 1,000 mm per annum). These effects were also reported by Grellier 2407 

et al. (2012), who showed that grass cover negatively affected Vachellia (formerly Acacia) 2408 

sieberiana seedling establishment. Our results suggest that changes in grass biomass after tree 2409 

removal play a vital role in tree seedling establishment, seedling survival and growth, and 2410 

consequently woody plant encroachment in savannas.  2411 

 2412 

4.4.3. The impact of tree removal on large tree growth 2413 

Our data from both study sites were consistent with the prediction that large trees from moderate 2414 

(50%) to high (75%) removal-intensities will significantly increase in growth (stem diameter, 2415 

height and canopy area). This is also consistent with the results from similar studies that 2416 

investigated the effects of tree removal on the growth of the remaining individuals (Smit 2001; 2417 

Brudvig et al. 2011; Kambatuku et al. 2011a). For example, in a Colophospermum mopane 2418 

savanna in South Africa, Smit (2001) reported that tree removal reduced inter-tree competition, 2419 

which resulted in a significant increase in the vegetative growth of the remaining trees, a finding 2420 

that was consistent with Brudvig et al. (2011). This pattern was also confirmed by Kambatuku 2421 

et al. (2011a), who showed that the removal of neighbouring woody plants results in greater 2422 

growth of the remaining trees. Our results suggest that reduced tree competition through 2423 

moderate to high intensities of tree removal may facilitate the growth of the remaining trees. 2424 

However, we caution against high intensities (75 –100%) of tree removal as this may result in 2425 

large gaps between the remaining trees and/or lack of woody vegetation, which may favour an 2426 

increase in soil erosion, particularly when the grass biomass is compromised (Smit 2014). 2427 

 2428 

4.5. Conclusion 2429 

While tree removal may increase standing grass biomass in multi-tree-species systems on 2430 

healthy soils, it may not be effective in monospecific stands especially on eroded clay soils. We 2431 

suggest that future research including grazing animals will be helpful in identifying long-term 2432 

management options for controlling woody plant encroachment while promoting the 2433 

herbaceous layer, as will studies that tests the effects of tree removal on species composition. 2434 

The implications of our results for woody plant encroachment and management are that in 2435 

rangelands that are severely affected by woody plant encroachment, the removal of some of the 2436 
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woody material may release the remaining individuals from competition-induced size limits. A 2437 

further implication of these findings is that the recovery of key ecosystem services such as an 2438 

increased forage production may not be realised, regardless of investment in woody species 2439 

control. However, we results may be system-specific. In other systems encroached rangelands 2440 

the absence of management interventions such as tree removal may compromise grass 2441 

production. 2442 
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 2681 

Fig. 4.1. Mean monthly temperatures (°C) recorded at the Roodeplaat farm during the 2682 

experimental period (2018/2019, 2019/2020).  2683 
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 2684 

Fig. 4.2. Monthly total-rainfall recorded at Roodeplaat experimental farm during the two 2685 

growing seasons (October-April) of the experimental period (2018/2019, 2019/2020). 2686 
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 2700 

Fig. 4.3. Mean (± 1 S.E.) grass biomass production after tree removal in study sites 1 (ST1) and 2701 

2 (ST2). The different superscripts represent significant differences from a Bonferroni post hoc 2702 

test. Treatments range from 0% = no removal (control) to 100 % removal = complete tree 2703 

removal. 2704 
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 2714 

Fig. 4.4. Mean (± 1 S.E.) seedling recruitment after tree removal in sites 1 and 2 (ST1, ST2, 2715 

respectively). Different superscript letters represent significant differences among treatments, 2716 

based on a Bonferroni post hoc test. Treatments range from 0% = no removal (control) to 100% 2717 

= complete removal of trees. Mean seedling recruitment after tree removal was significantly 2718 

different between the 50-100% removed and the 0-20% removed in study site 2.  2719 
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 2734 

Fig. 4.5. Mean (± 1 S.E.) height- and canopy area growth of large trees. Different superscript 2735 

letters represent significant differences based on a Bonferroni post hoc test. Treatments range 2736 

from 0% = no removal (control) to 75% removal of trees. 2737 
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Abstract 2777 

Fire is a common ecological process that affects the structure and composition of savanna 2778 

ecosystems globally. In this study, we investigated the effects of 5 years of annual burning on 2779 

the growth (i.e. height, stem diameter and canopy size) and density of young and adult Vachellia 2780 

karroo plants. In addition, we determined the impact of annual burning on grass species 2781 

composition and diversity, using 25 m x 25 m plots dominated by V. karroo seedlings and 2782 

saplings. Measurements of V. karroo tree densities and growth were carried out in each plot 2783 

before treatment application and after five years of annual burning. Grass surveys were 2784 

conducted before treatment application in 2013 during the wet season and again in the years 2785 

2016 and 2018. Our results supported the “fire-trap” paradigm by demonstrating substantially 2786 

higher densities of young plants in the burned plots than in the unburned plots. In addition, the 2787 

recruitment of young plants and saplings into adult trees was significantly greater in the 2788 

unburned plots than in the burned plots. V. karroo trees substantially increased in growth (height 2789 

and basal diameter) in the unburned plots. The grasses changed in abundance in response to 2790 

annual burning in burned plots. However, there were no significant changes in grass species 2791 

diversity between the treatments. We found that the removal of the grass layer by fire and 2792 

repeated topkill of trees increased the number of young V. karroo individuals. Annual burning 2793 

limited V. karroo juveniles and saplings from reaching an adult size class that may have 2794 

detrimental effects on the herbaceous layer. We demonstrated that grass species composition is 2795 

more prone to fire-induced changes than species diversity and richness in our study area. In 2796 

conclusion, we show that annual burning can be used to achieve specific objectives such as a 2797 

reduction in woody cover in our study area.  2798 
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5.1. Introduction  2809 

The increasing density of woody plants in savannas threatens these ecosystems worldwide (Van 2810 

Auken 2009; Naito and Cairns 2011; D’Odorico et al. 2012; Mitchard and Flintrop 2013; 2811 

Stevens et al. 2016).  The proliferation of trees and shrubs threatens the herbaceous layer, which 2812 

provides forage for livestock and wildlife (Wigley et al 2010). In primary grasslands, the 2813 

herbaceous layer is also highly diverse, with many endemics (Bond 2016). Thus, woody plant 2814 

encroachment is regarded as a form of rangeland degradation (Ward 2005; Okin et al. 2006; 2815 

Scholes 2009). This is because grazing which is the dominant land use over many rangelands 2816 

where woody plant encroachment occurs, is mostly based on grasses, which are frequently 2817 

outcompeted by woody plants (Ward 2005; Archer and Predick 2014; Maestre et al. 2017). The 2818 

negative effects of woody plant encroachment on animal production makes this problem an 2819 

important concern for both human livelihoods and nature conservation (Wigley et al. 2009; 2820 

O’Connor et al. 2014). Although woody plant encroachment is of global concern (Scholes and 2821 

Archer 1997; Brown and Archer 1999; Kraaij and Ward 2006; Wiegand et al. 2006; Britz and 2822 

Ward 2007), its management is local in scale (Archer and Predick 2014).  2823 

 Changes in woody plant density and structure, which may depend on local management 2824 

may contribute to woody encroachment in savannas (Case and Staver 2017; Hoffmann et al. 2825 

2020). Disturbances such as fire play an important role in regulating plant cover (Bond 2008; 2826 

Staver et al. 2009; Gordijn et al. 2014; Hoffmann et al. 2020). Globally, the fire-mediated 2827 

bottleneck has been used to explain how fire regulates savanna woody structure (Prior et al. 2828 

2010, Bond et al. 2012, Freeman et al. 2017, Nguyen et al. 2019). Frequent fires reduce mature-2829 

tree cover and maintain vegetation in a juvenile state by top-killing saplings and seedlings 2830 

thereby retarding their transition to adulthood (Higgins et al. 2000; Bond et al. 2003, 2005), 2831 

which result in a high density of fire-trapped stems. Lower densities of mature trees are crucial 2832 

for the development of a grass layer (Smit 2004, 2005; Ward 2005). Tree-density reduction 2833 

may enhance fuel loads for fires that could aid in maintaining low densities of woody plants 2834 

(Bowles et al. 2017). 2835 

 Fire can also facilitate encroachment by creating open spaces for woody plant seedling 2836 

recruitment (Grellier et al. 2012, 2013; Tjelele et al. 2015). The removal of the grass biomass 2837 

by fire may allow tree seeds to germinate en masse (Tjelele et al. 2015). Numerous studies have 2838 

demonstrated that competition from grasses negatively affect seedling germination, survival 2839 

and growth (Kambatuku et al. 2011, Ward and Esler 2011; Grellier et al. 2012; Vadigi and 2840 

Ward 2013; Wakeling et al. 2015; Bhadouria et al. 2016; Morrison et al. 2018), which may 2841 
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limit the recruitment of tree seedlings into adult trees. In addition, fire may increase the 2842 

abundance of young plants, which are able to persist even under frequent fires through 2843 

resprouting (Keeley 2006; Prior et al. 2010; Pausas and Keeley 2014, 2017). Resprouting allows 2844 

individual plants to regenerate after the elimination of the aboveground biomass and persist in 2845 

ecosystems with recurrent disturbances such as frequent fires (Vesk 2006; Nzunda et al. 2014; 2846 

Pausas and Keeley 2014). 2847 

 Studies have shown that fire does not only affect the woody layer but can also have 2848 

profound effects on the grass layer (O'Connor et al. 2004; Uys et al. 2004). Savanna fires are 2849 

ground fires and because of this, the understory layer is burned prior to the onset of burning of 2850 

woody material. Thus, frequent fires are expected to have a substantial effect on understory 2851 

plant communities (Ripley et al. 2015). One of the key steps for understanding the effects of 2852 

fire on the grass layer is to determine how plant communities react to burning. Fire can influence 2853 

the diversity and composition of the herbaceous layer by removing the aboveground biomass 2854 

of herbaceous species indiscriminately (Bond and Keeley 2005; Bassest et al. 2020), which may 2855 

shift species composition of grasses (O'Connor et al. 2004). This is because in fire-managed 2856 

systems only grasses that can regrow their aboveground parts quickly are expected to increase 2857 

in abundance relative to those that grow slowly (Ripley et al. 2015). 2858 

In this study, we evaluated the effects of annual burning on tree density and growth in a 2859 

Vachellia karroo woodland at Roodeplaat farm in Gauteng Province of South Africa. In 2860 

addition, we assessed the effects of annual burning on grass composition and richness. We 2861 

focused on V. karroo because it is one of the most common woody plant encroachers in southern 2862 

Africa (O’Connor et al. 2014).  To achieve the study objectives, we established the following 2863 

hypotheses: 2864 

1) Annual burning will increase the density of young V. karroo plants. 2865 

2) V. karroo seedlings and saplings in unburned plots will substantially increase in height, 2866 

basal diameter and canopy size, which will result in a higher density of adults. 2867 

3) Annual burning will change grass species composition, diversity and richness. 2868 

 2869 

5.2. Materials and methods 2870 

5.2.1. Study area 2871 

Field experiments were carried out at Roodeplaat farm of the Agricultural Research Council, 2872 

Pretoria, South Africa (25º36ʹ29˝S, 28º2ʹ08˝E). The area is about 2100 ha and is primary used 2873 

for beef and game farming. Study site receives a mean annual rainfall of 687 mm, with most of 2874 
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it occurring between November and March. The place experience a mean maximum 2875 

temperature of 20-29 °C during the growing season (summer), while during dry season (winter) 2876 

mean minimum temperature drops to 2-16°C.  The soils of the area are classified as Vertisols, 2877 

Ferralsols and Luvisols. Mucina and Rutherford (2006) classified the vegetation as Marikana 2878 

Thornveld, which is dominated by Vacchellia karroo (formerly Acacia) and Senegalia caffra 2879 

(formerly Acacia) (Kyalangalilwa et al. 2013). However, Vachellia tortilis (formerly Acacia), 2880 

Ziziphus mucronata and some Euclea tree species are also dominant. Coates-Palgrave’s (2002) 2881 

nomenclature was used for tree species. The herbaceous layer is covered by Digitaria eriantha, 2882 

Eragrostis curvula, Melinis repens, Panicum maximum, Setaria sphacelata and Sporobolus 2883 

africanus. Other important grasses include Themeda triandra, and Heteropogon contortus (Van 2884 

Rooyen 1983). van Oudtshoorn’s (2006) nomenclature is followed for grass species. The study 2885 

area is situated on the Roodeplaat Igneous Complex, which belongs to the Post-Waterberg 2886 

Formation (Panagos et al. 1998). The Roodeplaat Igneous Complex is a unique ring-shaped 2887 

structure with a diameter of approximately 16 km and is also referred to as the “Roodeplaat 2888 

volcano” (Panagos et al. 1998). 2889 

 At the beginning when the experiment was set-up, the study site was dominated by V. 2890 

karroo seedlings (76% of the total density) followed by saplings (14%) and adult trees (8%), 2891 

respectively. The study site was under crop cultivation more than 20 years ago and there was 2892 

no record of fire manegement prior to the study. The study site was selected because research 2893 

studies have reported that fire can be most effective in the control of young trees (< 2m in 2894 

height) as compared with old trees that have escaped the “fire trap” (Bond 2008; Lohmann et 2895 

al. 2014).  2896 

 2897 

5.2.2. Study design 2898 

Sixteen plots of 25 m x 25 m were used in this study. Eight plots were randomly selected and 2899 

burned annually during the dry season for five years (2013-2017). The other eight plots were 2900 

not burned. We note that the timing of fire needs to be strictly controlled (Govender et al. 2006). 2901 

In general, if fires occur towards the beginning of the wet season (i.e. before trees produce), 2902 

then fire creates space in the grass sward (which is the primary fuel load) for the tree seeds to 2903 

germinate en masse, resulting in bush encroachment. However, if fires occur at the beginning 2904 

of the dry season, the fire will kill those young tree seedlings that have managed to recruit 2905 

during the wet season, and the savanna will remain open (Frost and Robertson 1985; Ward 2906 

2005). Thus, plots were burned at the early stages of the dry season of each year. 2907 
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Measurements of V. karroo densities and growth were undertaken along a 25 m x 5 m 2908 

rectangular transect placed at the center of each plot before treatment application and five years 2909 

after the last annual burning. In this study, we define young plants as trees < 1 m in height, 2910 

saplings as trees between 1 and 2 m, and adults as trees greater than > 2 m (sensu escape height; 2911 

Bond 2008). Young plants consisted of newly established seedlings and resprouting plants that 2912 

were killed by fire. Tree growth measurements consisted of (i) tree height, (ii) canopy size in 2913 

two perpendicular directions, and (iii) stem basal diameter. To ensure consistency, stem basal 2914 

diameter was measured at the base of every plant.  2915 

 Grass species composition and diversity were determined using the nearest plant species 2916 

technique described by Hardy and Tainton (1993). Because our plots were relatively small (25 2917 

m x 25 m), we assessed the closest species and basal strikes along a 25 m line transect in each 2918 

plot. At 1-m intervals, a metal rod was dropped and any herbaceous species on which the rod 2919 

struck (basal strikes) were identified. When the distance to the nearest plant was 30 cm from 2920 

the marked step point, ‘‘bare ground’’ was recorded. Tefera et al. (2010) showed that this 2921 

technique is sufficient to obtain reliable results. The herbaceous surveys were conducted before 2922 

treatment application in the year 2013 (February) during the wet season. The measurements 2923 

were collected again during the wet seasons of the years 2016 and 2018. Grass species richness 2924 

was calculated by summing the total number of plant species in each plot. Shannon-Wiener 2925 

index of species diversity was calculated for each plot. Pielou's Evenness Index was used to 2926 

calculate grass species evenness. In addition, β diversity was calculated using Sørensen’s index 2927 

between each pair of treatments (no-burn vs burn treatments), using the formula Cs = 2j/(a + 2928 

b), where “j” is the number of species shared between two treatments and “a” and b are the 2929 

numbers of species unique to each treatment (Sørensen 1948). Rainfall data for the study area 2930 

was received from the accredited Institute for Soil, Climate and Water of the ARC (Fig. 5.1). 2931 

 2932 

5.2.3. Statistical analysis 2933 

Multivariate analysis of covariance (MANCOVA) was used to investigate the effects of fire on 2934 

the density of young plants, saplings and adult trees of V. karroo. Initial density of V. karroo 2935 

young plants, saplings and adult tree densities recorded before treatment application were used 2936 

as covariates. The density of V. karroo (young plants, saplings and adult trees) plants recorded 2937 

after five years of burning were considered the dependent variables. We also used MANCOVA 2938 

to determine the effects of fire on tree growth (height, basal stem diameter and canopy size), 2939 

where the initial height, basal stem diameter and canopy size were used as covariates. 2940 
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MANCOVA was also applied to test whether there were fire effects on grass species richness 2941 

and diversity. The initial species richness and diversity recorded before treatment application 2942 

were used as covariates. MANCOVA was used to reduce Type 1 error caused by testing 2943 

multiple dependent variables. Data for V. karroo densities and growth were analysed separately. 2944 

IBM SPSS v. 26 (IBM 2019) was used for data analysis. Canonical correspondence analysis 2945 

was used to determine the effects of annual burning on grass species composition (Masunga et 2946 

al. 2013). Species composition analyses were performed using XLSTAT software (version 2947 

2020.5, Addinsoft, New York, USA). 2948 

 2949 

5.3. Results 2950 

We found significant differences in V. karroo densities between burned and unburned plots 2951 

(Wilks' λ = 0.338; F = 5.867; P < 0.017). ANOVA results showed that the density of young V. 2952 

karroo plants was significantly higher in burned plots than in unburned plots and adult tree 2953 

densities higher in the no-burn treatment (Fig 5.2). However, sapling densities were similar 2954 

between treatments. There were significant differences in plant growth between the treatments 2955 

(Wilks' λ = 0.865; F = 8.462; P < 0.001). ANOVA results showed that the differences were in 2956 

tree height (F = 17.919; P < 0.001) and basal stem diameter (F = 11.486; P < 0.001) (Fig. 5.3), 2957 

which were greater in the no-burn treatment than in burned plots. However, there were no 2958 

significant differences in canopy size between the treatments (F = 2.429; P > 0.121). 2959 

There was a significant association between the grass species and the treatments (χ2 = 2960 

751.75, P < 0.001) (Fig. 5.5).  Bothriochloa insculpta was the most dominant grass spceices 2961 

that increased in abundance in both treatments after 3 years. Grass species Aristida congesta 2962 

subsp. congesta, Cenchrus ciliaris and Digitaria filiformis increased in abundance in the burn 2963 

treatment at the end of the study period. Also, at the end of the study period Panicum maximum 2964 

started to show an increase in abundance in the no-burn treatment. Values for grass species 2965 

richness and evenness are presented in Table 5.2. We found no significant effect of burning on 2966 

grass species richness and grass diversity between the treatments (Wilks' λ = 0.711; F = 0.731; 2967 

P > 0.618 and Wilks' λ = 0.784; F = 1.655; P > 0.232, respectively (Table 5.3).  2968 

 2969 

5.4. Discussion 2970 

This study indicates that fire played a prominent role on V. karroo tree densities, which also 2971 

affects vegetation structure. These results show that the “fire-trap” paradigm holds in the V. 2972 

karroo-dominated area by supporting the following constituents of the model: 1) burned plots 2973 
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had a substantially higher abundance of V. karroo seedlings and saplings that are prone to 2974 

repeated fires than unburned plots; 2) the recruitment of young plants and saplings into mature 2975 

trees was significantly higher in the unburned plots than in the burned plots (Table 5.1). 2976 

Furthermore, the abundance of different grass species changed in response to annual burning 2977 

after three years of annual burning. We found annual burning to change the grass species 2978 

composition again after five years. However, grass species diversity, richness and evenness did 2979 

not change as a result of annual burning.  2980 

 2981 

5.4.1. Effects of annual burning on tree dynamics 2982 

Our results supported the notion that burning would increase young V. karroo plants because 2983 

of resprouting stems and new tree seedling recruits. A smilar study undertaken in the same 2984 

ecosystem also showed that tree seedling densities of V. nilotica and Dichrostachys cinerea 2985 

increased with burning (Tjelele et al. 2015). Increased densities of young plants in burned plots 2986 

suggest that the removal of the grass layer by fire relieves V. karroo seedlings from competitive 2987 

effect of grasses (Ward and Esler 2011; Pillay and Ward 2020). Additionally, the resprouting 2988 

ability of V. karroo after the loss of aboveground biomass may also explain the substantial 2989 

abundance of young plants in the burned plots. These results are similar to the findings of 2990 

Wigley et al. (2009), who demonstrated resprouting of V. karroo plants from the base after 2991 

losing all the above-ground parts due to burning, which may have resulted in a high density of 2992 

young plants. In this regard, the use of heavy browsing to restrict the growth and survival of 2993 

juvenile V. karroo plants could be vital in reducing the encroachment of this species. Our results 2994 

show that the removal of the grass layer by fire and repeated “top kill” of woody plants enhances 2995 

the abundance of young V. karroo individuals (see also Prior et al. 2010; Tjelele et al. 2015).  2996 

These results are consistent with the prediction that adult V. karroo plants would 2997 

substantially increase in density in the unburned plots whereas fire reduces adult tree densities 2998 

(D’Odorico et al. 2006; Hanan et al. 2008; Smit et al. 2010).  Prior et al. (2010) demonstrated 2999 

that repeated annual fires reduced the density of adult trees in an Australian mesic savanna. 3000 

Similarly, Sankaran et al. (2008) reported that frequent fires reduced woody plant cover and 3001 

maintained most of the woody plants in a juvenile state.  In addition, the results reported by 3002 

Higgins et al. (2007) who demonstrated that fire suppresses tree density and cover of adult trees 3003 

supported our findings. The results of this study showed that the absence of fire in rangelands 3004 

dominated by young V. karroo plants increases the density of adult trees, which may have 3005 

negative outcomes for rangeland productivity (Gordijn et al. 2012).  3006 
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Weak competitive interactions among V. karroo trees may explain our canopy size 3007 

results (Pillay and Ward 2012, 2014; Mureva and Ward 2016). In a humid savanna in KwaZulu-3008 

Natal, South Africa, Pillay and Ward (2012) showed that the competitive interactions among 3009 

V. karroo trees are relatively weak and thus results in smaller canopy sizes. Additionally, 3010 

Archibald and Bond (2003) showed that V. karroo trees in savannas grow taller instead of wide 3011 

to avoid disturbances such as fire. Nonetheless, annual burning in our study suppressed the 3012 

growth in height of V. karroo trees through repeated top kill, thereby providing little opportunity 3013 

for the plants to grow into the taller fire-resistant size classes (Bond et al. 2012; Hoffmann et 3014 

al. 2020). Moreover, even without fire-induced mortality, repeated top kill could prevent the 3015 

recruitment of reproductive individuals, reducing the possibility of woody plant encroachment 3016 

(Higgins et al. 2000).  Repeated top-kill may also reduce time to replenish belowground 3017 

resources that are necessary for resprouting (Nzunda et al. 2014). The results from the current 3018 

study suggest that recurring annual fire may significantly prevent V. karroo juveniles and 3019 

saplings from growing outside the flame zone, which may have detrimental effects by 3020 

suppressing the herbaceous layer.   3021 

 3022 

5.4.2. Effects of annual burning on grass dynamics 3023 

Despite the distinct grass species assemblages for fire and no-fire treatments (Fig. 4), it was 3024 

difficult to single out specific grass species that were consistently associated with either burned 3025 

or unburned plots. For example, the abundance of Bothriochloa insculpta was associated with 3026 

both treatments after 3 years of annual burning. Although B. insculpta is a fire tolerant grass 3027 

(Plumptre et al. 2010), the results from this study show that this species is able to increase in 3028 

abundance in plots where fire is not a treatment. Nonetherless, after five years of annual 3029 

burning, grass species such as Aristida congesta subsp. congesta, Cenchrus ciliaris (another 3030 

fire tolerant grass) and Digitaria filiformis that may have been favoured by frequent fires were 3031 

responsible for changes in grass composition in the fire treatment. Moreover, Panicum 3032 

maximum that is known to be sensitive to disturbances started to show an increase in abundance 3033 

in the control plots after 5 years in the unburned plots, a result similar with the findings of Smith 3034 

et al. (2013) who showed an increase of P. maximum in unburned plots. Fynn et al. (2005) also 3035 

demonstrated that tall-stature grasses such P. maximum increase in abundance in unburned 3036 

plots. Our results concur with Smith et al. (2013) who showed that annual burning changed 3037 

grass species composition in a South African savanna. These results demonstrate that annual 3038 

burning in our study area caused a shift of grass species composition.  3039 
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The lack of a fire effects on grass species richness and diversity can be attributed to the 3040 

short duration of this study. Long-term fire application studies often report an increase in grass 3041 

species diversity and richness, although this may be site-specific (Smith et al. 2013). 3042 

Nonetheless, our β diversity values shown that the treatments were similar in grass species 3043 

composition over the study period (Table 5.2), which was not suprising considering that many 3044 

grass species that were common before treatment application remained common after 5 years 3045 

of burning. Our findings concur with the findings from other studies that demonstrated that 3046 

grass species composition is more prone to changes than species richness after frequent fire 3047 

application (O'Connor et al. 2004; Uys et al. 2004). These findings suggest that grass 3048 

communities in our study area are resilient to annual fire disturbances. Alternatively, 5 years of 3049 

fire application was insufficient to shift patterns of species diversity and richness. 3050 

 3051 

5.5. Conclusion 3052 

We showed that annual burning can be used to reduce woody cover in the study area, which 3053 

may lead to an increase in grass production. We found that the removal of the grass layer by 3054 

fire and repeated topkill of woody plants increased the abundance of young V. karroo trees. 3055 

Annual burning also prevented V. karroo tree seedlings and saplings from reaching an adult 3056 

tree stage where they can possibly reproduce and produce seeds that would further increase 3057 

encroachment of the rangeland (Bond 2008). We also showed that fire suppression allows V. 3058 

karroo trees to increase in stem growth and height, whose shading effects on herbaceous plants 3059 

including grasses may result in reduced fuel loads. Thus, successful rehabilitation of woody-3060 

plant encroached rangelands may require structural interventions such as tree thinning in 3061 

addition to the use of fire (Smit 2004, 2005; 2014; Bassett et al. 2020). This is because fire can 3062 

be insufficient for killing large trees (Lohmann et al. 2014). An implication of these results is 3063 

that fire should be applied to control V. karroo plants when they are still in their juvenile stage 3064 

to avoid having to resort to costly approaches such as chemical or mechanical treatments. 3065 

Nonetheless, annual burning did not have significant effects on grass species richness and 3066 

diversity. However, grass species composition changed in the burn treatment, as annually 3067 

burned plots showed a clear separation of grass species between the treatments over the study 3068 

period. 3069 

 3070 
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Table 5.1. Mean (± S.E.) Vachellia karroo plant densities before (2013) and after (2018) 3330 

treatment application in burned (n = 8) and unburned (n = 8) plots at Roodeplaat farm.  3331 

Treatment V. karroo density (number of plants /ha) 

 Juveniles Saplings Adults 

 Before After Before After Before After 

 

Fire  

      

270 ± 13 1010 ± 21 310 ± 12 520 ± 11 30 ± 6 450 ± 17 

 

No fire 

      

220 ± 14 350 ± 29 320 ± 11 410 ± 21 70 ± 8 1180 ± 24 

 3332 
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 3342 
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Table 5.2. Grass species richness and evenness in the fire and no-fire treatments over the study 3355 

period. 3356 

Treatments Period Richness Evenness 

Fire 2013 9 ± 8.7 0.8 

No-fire 2013 7 ± 12.8 0.8 

    

Fire 2016 7 ± 10.9 0.8 

No-fire 2016 9 ± 7.2 0.8 

    

Fire 2018 13 ± 4.8 0.9 

No-fire 2018 13 ± 4.6 0.8 
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Table 5.3. β diversity (calculated as Sørensen’s index) of grasses between and within treatments 3378 

over the study period. 3379 

Treatments Period β diversity 

   

Fire vs no fire 2013 0.9 

   

Fire vs no fire 2016 1 

   

Fire vs no fire 2018 0.8 

   

Fire vs no fire 2013 vs 2016 0.9 

   

Fire vs no fire 2013 vs 2018 0.6 

   

Fire vs fire 2016 vs 2018 0.7 

   

No fire vs no fire 2013 vs 2016 0.7 

   

No fire vs no fire 2013 vs 2018 0.6 

   

No fire vs no fire 2016 vs 2018 0.7 
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 3387 

Figure 5.1. Yearly total-rainfall recorded at Roodeplaat farm during the experimental period 3388 

(2012-2018). 3389 
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 3399 

Figure 5.2. Mean (± 1 S.E.) density of young V. karroo plants in fire and no-fire treatments over 3400 

the study period at Roodeplaat farm. 3401 
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 3410 

Figure 5.3. Mean (± 1 S.E.) density of adult V. karroo plants in fire and no-fire treatments over 3411 

the study period at Roodeplaat farm.  3412 
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 3422 

Figure 5.4. Mean (± 1 S.E.) height- and stem basal diameter growth of V. karroo plants in the 3423 

fire and no-fire treatments.  3424 
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 3438 

Figure 5.5. Correspondence analysis (CA) scatterplot showing grass species assemblages in fire 3439 

and no-fire treatments during the study period at Roodeplaat farm. Species names are: A.con= 3440 

Aristida congesta subsp. congesta; A.cs = Aristida congesta subsp. barbicollis; B.ins = 3441 

Bothriochloa insculpta; B.rad = Bothriochloa radicans; C.cil = Cenchrus ciliaris; C.dac = 3442 

Cynodon dactylon; D.eri = Digitaria eriantha; D.fil = Digitaria filiformis; E.chl = Eragrostis 3443 

chloromelas; E. cur = Eragrostis curvula; H.con = Heteropogon contortus; H.tam = 3444 

Hyparrhenia tamba; M.rep = Melinis repens; P.max = Panicum maximum; S.sph = Seteria 3445 

sphacelata; S.afri = Sporobolus africanus; U. mos = Urochloa mossambicensis. After 5 years 3446 

of annual fire, burned plots were more associated with A. congesta subsp. congesta, C. ciliaris 3447 

and D. filiformis, E. chloromelas and S. africanus. In addition, M. repens and P. maximum were 3448 

associated with no-fire treatment. 3449 

 3450 

 3451 

 3452 
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Chapter 6: The impact of woody plant control on rangeland productivity in a southern 3453 

African savanna: Synthesis and future directions 3454 

6.1. Introduction 3455 

The negative effects of woody plant encroachment on ecosystem functioning are well known, 3456 

particularly where pastoralism is the primary land use (Hoffman and Ashwell 2001; Ward 2005; 3457 

Bond 2008; Archer et al. 2011; Eldridge et al. 2011; O’Connor et al. 2014). Woody plant 3458 

encroachment is generally associated with reductions in forage production and biodiversity, and 3459 

has the potential to threaten the social and economic viability of rangelands (Smit 2005). 3460 

Therefore, when considering the detrimental effects of woody plant encroachment, it is not 3461 

surprising that management of woody plants and rehabilitation of ecosystems affected by this 3462 

problem have become of priority to ecologists and land managers globally (Ding and Eldridge 3463 

2019). 3464 

Many African woody plants harbour nitrogen-fixing bacteria in their root nodules 3465 

(Cramer et al. 2010; Kambatuku et al. 2013b), which may result in greater soil nutrient 3466 

concentrations (Ward et al. 2018). Also, this may promote ecohydrological functions 3467 

(Kambatuku et al. 2013a; Eldridge and Soliveres 2015) and improve vegetation cover and 3468 

consequently reduce soil erosion (Ndhlovu et al. 2016). Developing appropriate strategies that 3469 

could help promote forage production and biodiversity, while encouraging the benefits of 3470 

woody plants in savannas is central to rangeland productivity (Smit 2005; Ding and Eldridge 3471 

2019). Tree clearing and the application of fire are some of the main control methods often 3472 

applied to combat woody plant encroachment in savanna rangelands (Smit 2004; 2005; Ding 3473 

and Eldridge 2019). However, knowledge gaps still exist on rangeland recovery following the 3474 

application of tree control measures. These gaps make it difficult to determine if further 3475 

management is needed to achieve sustainable rangeland recovery for improved livestock 3476 

production. In addition, monitoring the recovery of the rangeland after treatment application 3477 

may help land managers choose management options suitable for their rangelands. In this 3478 

chapter, I summarize and integrate the results obtained in the preceding chapters, and discuss 3479 

new perspectives contributed through this thesis to the current understanding of tree thinning 3480 

and range burning on rangelands productivity. This study investigated the following: 3481 

1. Effects of chemical and mechanical control of woody plants on resprouting potential 3482 

and tree seedling populations in a savanna, 3483 
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2. Short-term responses of grass species richness, composition, β diversity and soil 3484 

dynamics after tree thinning in a South African savanna, 3485 

3. The impact of tree thinning on seedling recruitment and growth of woody plant species, 3486 

and 3487 

4. Short-term effects of fire on vegetation dynamics in a Vachellia karroo dominated 3488 

woodland 3489 

 3490 

6.2. Stem size is a more important predictor of resprouting than herbicide application and 3491 

tree thinning on savanna tree species 3492 

 3493 

In chapter two (Chemical and mechanical control of woody plants on resprouting and seedling 3494 

production in communal rangelands), our prediction that all the tree species in this study will 3495 

resprout following cutting was supported by the study findings. The study plants demonstrated 3496 

their ability to regenerate from the damaged tissues. Different intensities of tree thinning were 3497 

not important predictors of resprouting potential. Herbicide application was important in 3498 

suppressing resprouting ability of four of the 12 species studied. However, I found that stump 3499 

diameter was the most important determinant of resprouting ability of the study species post-3500 

tree thinning. However, the effect of stump diameter on resprouting abilities in trees varies 3501 

across ecosystems (Lévesque et al. 2011; Syampungani et al. 2017). I also showed that woody 3502 

plants are more likely to resprout and survive disturbances as juveniles than as adults in 3503 

southern African savannas. These findings contradict the results reported by Shackleton (2000, 3504 

2001), conducted in a southern African savanna. I explained that these resprouting patterns by 3505 

woody plants may be influenced by plant age, which is related to bud senescence (Waters et al. 3506 

2010). Thick bark in older trees may inhibit resprouting abilities because it may hinder bud 3507 

emergence (Clarke et al. 2013; Charles-Dominique et al. 2015). Although I did not measure 3508 

tree bark thickness, the postulation about tree age, which is measured by stem diameter at the 3509 

time of disturbance, is supported by empirical evidence (Clarke et al. 2013; Charles-Dominique 3510 

et al. 2015).  3511 

In chapter two, I also established that the effectiveness of herbicide application on 3512 

preventing stump regeneration is species specific. I explained that the inconsistency of 3513 

herbicide application across species may be attributed to the amount of picloram applied to the 3514 

cut stumps and time of application for each plant species. Enloe et al. (2015) showed that tree 3515 

species react differently to the amount of herbicide applied. In addition, trees in this study were 3516 
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cut and treated with herbicide during the wet season. The seasonal timing of herbicide 3517 

application on cut stumps has been shown to have a significant impact on subsequent 3518 

resprouting of woody plants (Badalamenti et al. 2015; Enloe et al. 2016, 2018). The control of 3519 

woody plants with herbicides is more effective during the dry season (Enloe et al. 2018).  3520 

Chapter two also investigated the effectiveness of Tree Poppers® (hand-held tools) to 3521 

mechanically uproot tree seedlings and saplings of eight dominant species in the study area. 3522 

This was important because, in southern Africa, the problem of woody plant encroachment is 3523 

often more severe in communal rangelands (Mograbi et al. 2015). Communal rangelands in 3524 

South Africa cover nearly 6 million ha (Shackleton et al. 2001), and are used by resource-3525 

constrained rural communities mostly for livestock production (Vetter 2013). Therefore, 3526 

alternative low-cost strategies that are effective, less complex and that can control the growth 3527 

and survival of young trees in small-scale rangeland systems are essential. I expected that the 3528 

effectiveness of Tree Poppers® depended on seedling height and root morphology of the study 3529 

plants. I found that Tree Poppers® were effective in controlling shallow-rooted tree seedlings 3530 

such as Dichrostachys cinerea, Ehretia rigida, Euclea crispa, Gymnosporia buxifolia and 3531 

Ziziphus mucronata. Tree Poppers® were not effective in controlling the Vachellia (V. karroo, 3532 

V. nilotica and V. tortilis) tree seedlings used in the study that have been reported to be among 3533 

the major woody plant encroachers in southern African savannas (Hoffman and Ashwell 2001; 3534 

Kraaij and Ward 2006; O’Connor et al. 2014). I explained that the ineffectiveness of the tool 3535 

was because many Vachellia species have a long taproot to access underground water (Ward 3536 

and Esler 2011; Kambatuku et al. 2013a). This kind of root system makes it difficult to uproot 3537 

seedlings of these species. The Tree Popper® harvesting tool was, however, effective in 3538 

controlling the D. cinerea seedlings, which is also among the major woody plant encroachers 3539 

in southern African savannas (Kraaij and Ward 2006; O’Connor et al. 2014). The results 3540 

provided a scientific basis for deciding whether Tree Poppers® are viable rehabilitation tools 3541 

for managing tree seedlings in communal rangelands. 3542 

 3543 

6.3. The effects of tree thinning on grass species richness, composition, β diversity and soil 3544 

dynamics 3545 

 3546 

Chapter three (Short-term responses of grass species richness, composition, β diversity and soil 3547 

dynamics after tree thinning in a South African savanna) examined the effects of tree thinning 3548 

on grass species richness, composition and β diversity. Additionally, I tested the effects of tree 3549 
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thinning on soil fertility and cover. β diversity findings from this study demonstrated that tree 3550 

thinning may change grass species composition, although this may be site-specific. The 3551 

emergence and disappearance of certain grass species during the study period was responsible 3552 

for the change in species composition (see also Dodson and Peterson 2010). I also showed in 3553 

this chapter that tree thinning does not cause significant changes in grass species richness. These 3554 

findings suggest that grass species richness in these savannas is resistant to thinning-imposed 3555 

changes. However, the duration of the study may have been insufficient to cause significant 3556 

changes. Importantly, I also found that tree thinning stimulated the abundance of the dominant 3557 

grasses Digitaria eriantha and Panicum maximum, which are highly palatable grass species. 3558 

These results are important for provision of ecosystem services such as forage production that 3559 

may support livestock and wild herbivores in savannas. However, the nitrophilous P. maximum 3560 

will likely decline in abundance with time in high-removal treatments (75% and 100%) because 3561 

this species prefers fertile islands created by N-fixing tree species (Smit 2005). 3562 

Contrary to expectations, tree clearing did not have a significant impact on soil fertility 3563 

in either of the two study sites used for chapter 3. Studies on tree clearing have shown that soil 3564 

properties relating to soil fertility may take longer periods (between five and seven years) to 3565 

change (Sangha et al. 2005; Kaur et al. 2007). I explained that the lack of a significant reduction 3566 

in soil fertility in high-tree thinning treatments (particularly complete removal of trees) in this 3567 

study may be due to the temporary legacy of nitrogen fixation and nutrient accumulation by 3568 

woody plants (Ward et al. 1998; Ward and Ngairorue 2000; Sangha et al. 2005). Similar to the 3569 

findings of Ding and Eldridge (2019), there was no evidence that tree thinning changes the 3570 

amount of soil cover. 3571 

 3572 

6.4. The impact of tree removal on grass biomass production, seedling emergence and 3573 

growth of woody species 3574 

 3575 

In chapter four (The impact of tree removal on grass biomass production, seedling recruitment 3576 

and growth of woody species), I tested the effects of tree thinning on grass biomass production, 3577 

tree-seedling emergence and growth, and the growth of the remaining mature trees in two study 3578 

sites (hereafter site 1 and site 2) that differ in soil texture and woody species. Site 1 was located 3579 

on clay-dominated soils on land that was previously cultivated. The soils are severely eroded, 3580 

and were encroached by Vachellia tortilis. Site 2 was located on sandy soils with no history of 3581 

cultivation, and with mixed species of woody plants. In site 1, I found that tree thinning 3582 
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significantly reduced grass biomass production after the first growing season, whereas there 3583 

was no change in the second growing season. I explained that the diminished grass biomass 3584 

production during the first growing season in site 1 can be attributed to the ability of Vachellia 3585 

tortilis (the only tree species in site 1) to facilitate herbaceous biomass under their canopies, as 3586 

has been reported by other studies for this tree (e.g. Yadeta et al. 2018; Abdallah et al. 2008). 3587 

V. tortilis is known to enhance water infiltration and amounts of soil nutrients underneath their 3588 

canopies (Ludwig et al. 2003; Abdallah et al. 2008). For example, Yadeta et al. (2018) 3589 

demonstrated that herbaceous biomass increases under V. tortilis canopies rather than in open 3590 

spaces. In addition, the overall diminished grass biomass production in site 1 after the two 3591 

growing seasons may possibly be related to the occurrence of soil erosion. Studies have shown 3592 

that soil erosion leads to a decline of the herbaceous layer thereby increasing runoff of the 3593 

topsoil and reduced water infiltration (Chartier et al. 2013). In addition, I found that tree 3594 

thinning did not affect seedling emergence in site 1. 3595 

In site 2, tree thinning increased grass biomass production with substantial increases in 3596 

50%, 75% and 100% (complete removal) thinning treatments, which was also associated with 3597 

substantial reduction in tree-seedling emergence. Additionally, for two study sites I found that 3598 

the removal had no effect on tree-seedling growth. However, tree thinning substantially 3599 

increased the growth (canopy area and tree height) of the remaining trees where 50% and 75% 3600 

of the woody layer was removed in both sites. I argued that the lack of significant differences 3601 

in tree-seedling establishment in site 1 could be related to undetermined factors such as the 3602 

removal of V. tortilis seeds by insects and a possible reduction in the soil seed bank (possibly 3603 

caused by rainfall-induced soil erosion) in the study site (Jiao et al. 2009; Ward et al. 2010). 3604 

Furthermore, I explained that the lack of substantial differences in growth response of the tree 3605 

seedlings could be attributed to the negative and positive responses of the herbaceous layer after 3606 

tree thinning in both study sites. In site 1, diminished grass production across all treatments 3607 

may have provided seedlings with an equal opportunity for growth, resulting in the lack of 3608 

substantial differences in seedling growth among the treatments (Grellier et al. 2012). In site 2, 3609 

the increased grass production may have suppressed seedling growth across all treatments, with 3610 

the highest increases observed in 50%, 75%, and 100% thinning treatments. Research has 3611 

shown that grasses suppress seedling recruitment and growth (Ward and Esler 2011; Grellier et 3612 

al. 2012; Vadigi and Ward 2013; Morrison et al. 2018). The results found in chapter four 3613 

suggest that increased and/or diminished grass-biomass production after tree thinning played a 3614 

vital role on seedling recruitment and growth.  3615 
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In chapter four, I also predicted that the remaining mature trees from moderate (50%) 3616 

to high (75%) tree removal-intensities will significantly increase in growth (stem diameter, 3617 

height and canopy area) because of the reduced tree competition. I found that reduced tree 3618 

density in the moderate and high intensities of tree removal treatments facilitated the growth of 3619 

the remaining mature trees. These results are consistent with those from similar studies that 3620 

investigated the effects of tree removal on the growth of the remaining individuals in contrasting 3621 

habitats (Smit 2001; Brudvig et al. 2011; Kambatuku et al. 2011a).  3622 

 3623 

6.5. The effects of annual burning on vegetation dynamics in a Vachellia karroo woodland 3624 

 3625 

Chapter five (Short-term effects of fire on vegetation dynamics in a Vachellia karroo dominated 3626 

woodland) investigated the effects of five years of annual burning on the density of young and 3627 

adult Vachellia karroo trees. I also determined the effects of annual burning on tree growth (i.e. 3628 

total plant height, stem diameter and canopy size). In addition, I examined the impact of annual 3629 

burning on grass species composition and richness. The results supported the “fire-trap” 3630 

paradigm by demonstrating substantially higher densities of young plants in the burned plots 3631 

than in the unburned plots. Moreover, the recruitment of young V. karroo trees into adult trees 3632 

was significantly higher in the unburned plots than in the burned plots. Also, V. karroo trees 3633 

substantially increased in height and basal diameter growth in the unburned plots. I argued that 3634 

the removal of the grass layer by fire and the ability of V. karroo to resprout from the base after 3635 

topkill led to a significant increase of young plants in burned plots (Wigley et al. 2009; Pillay 3636 

and Ward 2020). These findings are consistent with the results from similar studies, which 3637 

reported that frequent fires reduce woody cover and maintain most of the woody vegetation in 3638 

a juvenile state (Higgins et al. 2007; Sankaran et al. 2008; Prior et al. 2010). 3639 

Annual burning was found to be ineffective in influencing grass species composition 3640 

and diversity in our savanna site. I explained that long-term studies on fire application (see 3641 

Smith et al. 2010) usually report a change in grass species richness and diversity. Thus, these 3642 

findings suggest that grass communities in savannas are resistant to change by annual fires, 3643 

and/or the duration of fire application was insufficient to change grass diversity and richness. 3644 

However, there was evidence that grass species composition was changing in the burn 3645 

treatment, as annually burned plots showed a clear separation of grass species between the 3646 

burning treatments. 3647 
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 3648 

6.7. Management implications  3649 

6.7.1. Pastoralism 3650 

Tree thinning has been widely employed to improve the quality and quantity of forage 3651 

production and maintain the economic viability of rangeland that are affected by woody plant 3652 

encroachment (Smit 2005; Ndhlovu et al. 2016), particularly where pastoralism is the main land 3653 

use. Although, the study was not conducted in an area used purely for pastoralism, tree species 3654 

examined in this study negatively affect many pastoral areas in South Africa (O’Connor et al. 3655 

2014). I showed in this study that cut trees have the ability to resprout from the cut stems. In 3656 

this case, stump treatment with chemicals may be helpful. However, in the scenario of resource-3657 

constrained communal farmers, stump burning might be a viable option (see also Dreber et al. 3658 

2019). Regardless of the general notion that tree-thinning increases grass production, I showed 3659 

that thinning may have both positive and negative effects on grass production. Thus, the effects 3660 

of tree thinning on grass production are site specific. Factors such as tree species (see Ding and 3661 

Eldridge 2019), soil type and possibly erosion (in the current study) may determine the success 3662 

of tree thinning on grass biomass production. I recommend the implementation of preventative 3663 

soil-erosion measures before applying tree-removal practices in eroded rangelands. 3664 

Additionally, in systems where the recovery of the herbaceous layer does not occur naturally, I 3665 

recommend restorative interventions such as the re-introduction of perennial grasses from seeds 3666 

and/or planting grasses (e.g. Falcão et al. 2020). However, in chapter 3, I also showed that tree 3667 

thinning does not have negative effects on the density of palatable grass species. The 3668 

implications of the effects of tree thinning on palatable grass species for pastoralism is that 3669 

adequate production of good quality forage that may support livestock and wild herbivores in 3670 

savannas may be enhanced. Nonetheless, in rangelands where the objective is to relieve the 3671 

herbaceous layer from the suppressive effects of woody plants, I recommend maintaining the 3672 

equivalent stand density of 50% (depending on the original density). Removing higher 3673 

intensities (75-100%) of trees may result in large gaps between the remaining trees, which may 3674 

favour subsequent woody plant encroachment or invasion by alien plants and possibly an 3675 

increase in soil erosion (see also Smit 2014; Ndhlovu et al. 2016).    3676 

Where tree thinning improves understory production (particularly grasses), the 3677 

increased grass biomass may suppress tree seedling performance. By constraining seedling 3678 

establishment and growth, grasses may limit woody plant encroachment (Kambatuku et al. 3679 

2011b). However, grazing animals may remove grasses, and allow tree seedlings to grow into 3680 
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mature trees that could re-encroach rangelands (Sankaran et al. 2008). Thus, an adjusted 3681 

management system and reduced stocking rate might prevent woody plant encroachment by 3682 

maintaining the suppressive effects of grasses on tree seedlings. Additionally, the recruitment 3683 

of shallow-rooted tree seedlings of certain species should be reduced by making use of hand-3684 

held mechanical instruments such as the weed wrench (Tree Poppers®) (see chapter two). 3685 

Reduced tree competition had a significant effect on the growth of the remaining mature 3686 

trees regardless of tree species or site. The implications of these results for management of 3687 

woody plant encroachment in impacted rangelands is that the removal of some of the woody 3688 

plants may release the remaining individuals from competition-induced size limits. Scattered 3689 

large trees are important in rangelands for improving hydrological functions because they 3690 

possess deeper roots, and produce a greater cover and mass of litter, which can increase 3691 

infiltration by promoting aggregation and accumulation of soil organic matter (Bronick and Lal 3692 

2005; Marquart et al. 2019). Thus, scattered large trees have the potential to achieve greater N 3693 

fixation rates than smaller trees, which can improve grass production, which may benefit 3694 

pastoralism in savanna rangelands.  3695 

The implications of annual burning for bush encroachment control are that burning 3696 

reduces woody plant cover (Bond 2008; Prior et al. 2010), which leads to an open savanna. An 3697 

open savanna benefits pastoralism by increasing light intensities that may improve production 3698 

of herbaceous vegetation for grazers (Smith et al. 2013). Also, reduced woody cover may 3699 

reduce the competitive effects of woody plants on grasses, which may increase the abundance 3700 

of various grass species (chapters 3 and 5). An increase in the abundance of different grass 3701 

species may not only benefit animal production, but may also shield the soil layer from erosion 3702 

(Berendse et al. 2015). An increase in forage production and a reduction of soil erosion may 3703 

benefit range managers economically.  3704 

 3705 

6.7.2. Biodiversity 3706 

Savanna rangelands provide habitat for game and non-game wildlife and thus have a 3707 

considerable multidimensional value (Archer and Predick 2014; Stevens et al. 2016; Archer et 3708 

al. 2017). It is important to keep some of the woody plants while promoting the herbaceous 3709 

layer (Smit 2005; Archer and Predick 2014). Consequently, high intensities of tree thinning 3710 

and/or total clearing of woody plants may not only worsen the rangeland in the long run (Smit 3711 

2014), but may also affect the biodiversity of rangelands (Martin and McIntyre 2007; Kutt and 3712 

Martin 2010; Isaacs et al. 2013). Management practices that avoid total removal of woody 3713 
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plants are expected to not only benefit pastoralism in terms of forage production but may also 3714 

have positive effects on biodiversity (Kutiel et al. 2000; Fulbright et al. 2013; Hale et al. 2020). 3715 

For example, Kutiel et al. (2000) showed that total clearing of woody plants reduces the 3716 

abundance of small mammals such as rodents in cleared areas. Rodents play a vital role in 3717 

savannas by performing the role of seed predators (Kappler et al. 2012; Hale et al. 2020), which 3718 

may help reduce woody plant encroachment. In addition, total removal of the woody layer may 3719 

negatively affect food availability of rodents. Furthermore, studies have shown that bird species 3720 

that spend most of their time foraging on the ground but nest in the mid-canopy are reduced in 3721 

numbers where woody vegetation has been cleared (Woinarski and Catterall 2004; Kutt and 3722 

Martin 2010). Thus, tree clearing may alter birds’ habitat. Woody plant clearing may also have 3723 

a negative effect on browsing mammals (Isaac et al. 2013; Inman et al. 2020). Thus, high 3724 

intensities of tree removal may alter ecosystem functions and reduce biodiversity. It is therefore, 3725 

important to maintain a certain density of the woody layer that will not negatively affect 3726 

pastoralism, rangeland biodiversity and nature conservation. 3727 

Although the primary impact of fire is on the vegetation, burning may have profound 3728 

effects on fauna, particularly in protected areas where the main objective is the conservation of 3729 

biodiversity (Murphy et al. 2010). Fire has both direct and indirect effects on biodiversity 3730 

(Andersen et al. 2012). However, fire-induced mortality of animals is often low (Andersen et 3731 

al. 2012). This is because the majority of animals in fire-prone areas are well adapted to it, and 3732 

have consequently developed a range of responses to fire (Frost 1984). Range burning may 3733 

indirectly affect biodiversity by altering vegetation structure and composition (Bond 2008). 3734 

This can result in changes in quantity and quality of forage, vegetation cover, and micro-site 3735 

characteristics (Murphy et al. 2010), which may negatively affect animal populations. 3736 

Moreover, range burning may lead to open fields that may reduce predation because visibility 3737 

is improved (Isaac et al. 2013). Consequently, other animal species may become vulnerable to 3738 

predation. Thus, in rangelands where pastoralism is the main objective, land managers may 3739 

trade off conserving biodiversity for increased forage production for livestock. The negative 3740 

effects of fire on biodiversity may be reduced by the retention of nearby unburnt habitat. 3741 

However, this does not suggest complete fire exclusion. Long-term fire exclusion may cause 3742 

detrimental changes to habitats via woody plant encroachment (Gordijn et al. 2012). 3743 

 3744 
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6.8. Future research 3745 

The encroachment of woody plants into open savannas, woodlands and grasslands has long 3746 

been of concern to managers in areas where pastoralism is the primary land use (e.g. Fisher 3747 

1950). Future research studies must develop appropriate management strategies aimed at 3748 

controlling woody plant encroachment while promoting ecosystem functions of rangelands. In 3749 

chapter two, herbicide application failed to control the stumps of all the tree species and thus it 3750 

is important to determine all dynamics related to stumps treatment following cutting. 3751 

Furthermore, it will also be crucial to contribute to closing the research and knowledge gaps 3752 

identified in this thesis. 3753 

 3754 

6.8.1. The influence of herbicide concentration, application timing and stump burning on 3755 

resprouting patterns of woody species  3756 

 3757 

The ability of trees to resprout following cutting is one of the challenges rangelands managers 3758 

are faced with when thinning the density of woody vegetation (Archer and Predick 2014). This 3759 

challenge renders further treatment of the stumps necessary in order to completely control the 3760 

plant (Badalamenti et al. 2015). Stump treatment is therefore vital in maintaining long-term 3761 

herbaceous production and low woody plant cover. Herbicide application and stump burning 3762 

are some of the viable options that land mangers could employ (Enloe et al. 2018; Dreber et al. 3763 

2019). The effectiveness of herbicide application has been demonstrated to depend on a number 3764 

of factors such as tree species, type of herbicide, herbicide concentrations and the timing of 3765 

herbicide application (Badalamenti et al. 2016; Enloe et al. 2015, 2016, 2018). For instance, in 3766 

chapter two I showed that herbicide application controlled four of the 12 woody species 3767 

examined. Testing the amount of herbicide concentration needed to kill certain woody species 3768 

may be of importance for land users in southern African savannas. Moreover, the seasonal 3769 

timing of herbicide application on cut stumps has been reported to influence subsequent 3770 

resprouting of woody plants (Badalamenti et al. 2016; Enloe et al. 2016, 2018). Future research 3771 

should focus on testing the adequate concentrations and time (wet or dry season) of application 3772 

of different herbicides needed to kill the stumps of certain tree species.  3773 

 Applying fire to tree stumps has also been shown to be a viable option to limit 3774 

resprouting by woody plants (Dreber et al. 2019; Hare et al. 2020). This technique involves 3775 

treating stem basal area of individual trees with fire (Hare et al. 2020), which may be time 3776 

consuming and laborious.   Thus, a better approach is needed, particularly in systems where 3777 
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tree thinning may increase the density and biomass of herbaceous layer including fuel loads. 3778 

Plot-level fire application in these systems may prevent the regeneration of tree stumps. This 3779 

may be a viable option for resource-constrained communal ranchers who cannot normally 3780 

afford treatments such as herbicides. Therefore, future studies should examine the effects of 3781 

whole-plot (block burning) fire application on the resprouting dynamics of woody species after 3782 

the recovery of the herbaceous layer. This information may inform land managers on economic 3783 

approaches to supress tree stump regeneration after tree thinning. 3784 

 3785 

6.8.2. Can a combination of tree thinning, application of soil erosion control measures and 3786 

re-introduction of perennial grasses rehabilitate eroded rangelands of different soil 3787 

textures? 3788 

 3789 

In arid and semi-arid ecosystems, soil erosion has been recognized as a major feature of soil 3790 

degradation, and is considered one of the main factors responsible for reduced soil fertility and 3791 

desertification (Michaelides et al. 2009). At low densities, woody plants have been reported to 3792 

protect the soil from erosion by improving heabecous vegetation cover (Marquart et al. 2019), 3793 

which promotes infiltration and reduces runoff (Herrick et al. 2005; Ndhlovu et al. 2016). 3794 

However, in the current study I observed that tree thinning in the clay soil-dominated study site 3795 

further degraded the rangelands, possibly because of soil erosion. This was not the case in the 3796 

sandy-dominated site. These results suggest that the success of tree-removal may largely 3797 

depend on factors such as soil erosion and soil texture. Soil texture is known to directly affect 3798 

soil aeration, water infiltration, nutrient retention capacity and erodibility (Hare et al. 2020). 3799 

Water infiltration and permeability is slow in clay soils and rapid in sandy soils (Coppock 3800 

1994). The observations from the current study suggest that the removal of woody plants in 3801 

clay-dominated soils may severely affect hydrological functions, which may result in 3802 

diminished herbaceous plant production.  3803 

In most cases, a single method is not always effective to achieve sustainable control of 3804 

woody plant encroachment. Therefore, a combination of different techniques may successfully 3805 

rehabilitate rangelands affected by woody plant encroachment (Bassett et al. 2020; Hare et al. 3806 

2020). Future research may reveal whether a combination of tree thinning, soil-erosion control 3807 

measures and the re-introduction of perennial grasses will rehabilitate eroded rangelands, 3808 

particularly in clay-dominated areas.   3809 

 3810 
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6.8.3. Effects of fire application and tree thinning on the herbaceous layer and ecosystem 3811 

structure 3812 

Woody plant encroachment caused by fire suppression and overgrazing (among other causes) 3813 

may limit the effectiveness of fire for achieving target structure and composition (Ward 2005; 3814 

Bond 2008; Lohmann et al. 2014). Therefore, successful rehabilitation of rangelands 3815 

encroached by woody plants may require a combination of mechanical thinning and fire 3816 

application (Bassett et al.  2020). Additionally, savanna trees may escape the “fire trap” by 3817 

growing tall (sensu Higgins et al. 2000; Grady and Hoffmann 2012; Keeley et al. 2011; Dantas 3818 

and Pausas 2013). Consequently, the application of fire alone may not be sufficient to cause 3819 

any substantial changes in woody cover (Lohmann et al. 2014). Future studies that focus on the 3820 

interaction between tree thinning and fire may inform land managers on effective woody plant 3821 

control methods. 3822 

 3823 

6.9. Conclusions 3824 

This thesis demonstrated that mechanical- and chemical -control, as well as fire application 3825 

influences the structure and functioning of savannas.  These management strategies may help 3826 

increase the economic viability of savanna ecosystems by creating gaps that increase forage 3827 

production. However, despite the notion that reduced tree densities improves ecosystem 3828 

functions, this thesis shows that the effects of these control measures (particularly tree thinning) 3829 

on forage production are not consistent across savanna sites (see also Ding and Eldridge 2019). 3830 

Apart from promoting the growth of the remaining large trees, in other sites tree thinning may 3831 

also diminish grass biomass, which may potentially intensify land degradation. Thus, the 3832 

success of tree thinning may depend on local drivers of encroachment (Figure 6.1). In addition, 3833 

this thesis demonstrated that the positive effects of tree thinning on grass production may 3834 

relatively be short-lived (c.a. 5 years) because of the ability of cut trees to resprout (sensu 3835 

Archer et al. 2011).  3836 

This thesis also shows that management with prescribed annual fire reduced woody 3837 

plant encroachment across the 5-year study, demonstrating that fire management may be 3838 

effective and should be explored as a management strategy. In addition, this study supported 3839 

the existence of a fire-mediated recruitment bottleneck in V. karroo dominated stands. Thus, 3840 

land owners and/or managers should consider the most appropriate control methods (i.e. 3841 

mechanical, chemical or fire) for specific goals based on the target species in order to manage 3842 

savannas. In conclusion, this thesis demonstrated that regardless of the substantial costs of 3843 
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woody plant control, the recovery of key ecosystem services such as an increased forage 3844 

production may not be realised. However, I recognize that this may be system-specific. In other 3845 

systems, the absence of management interventions such as tree thinning may compromise 3846 

provision of ecosystem services and ecosystem functioning (see Archer and Predick 2014). In 3847 

addition, this thesis shows that land managers of savannas may use annual burning to achieve 3848 

specific vegetation structural objectives, particularly in rangelands that are dominated by 3849 

woody plants whose sizes are within the flame zone of grass fires (Lohmann et al. 2014). 3850 

 3851 

 3852 

 3853 

Figure 6.1. The conceptual framework of the components summarised in this chapter. The 3854 

thickness of the arrows indicates the factor’s significance.  3855 
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