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Abstract

Interest in the attracting property of de Sitter space-time has grown during the 'infla­
tionary era' of cosmology. In this dissertation we discuss the more important attempts
to prove the so called 'cosmic no-hair conjecture' ie the proposition that all expand­
ing universes with a positive cosmological constant asymptotically approach de Sitter
space-time. After reviewing briefly the standard FRW cosmology and the success of the
inflationary scenario in resolving most of the problems of standard cosmology, we care­
fully formulate the cosmic no-hair conjecture and discuss its limitations. We present a
proof of the cosmic no-hair theorem for homogeneous space-times in the context of gen­
eral relativity assuming a positive cosmological constant and discuss its generalisations.
Since, in inflationary cosmology, the universe does not have a true cosmological constant
but rather a vacuum energy density which behaves like a cosmological term, we take into
account the dynamical role of the inflaton field in the no-hair hypothesis and examine the
no-hair conjecture for the three main inflationary models, namely new inflation, chaotic
inflation and power-law inflation. A generalisation of a well-known result of Collins and
Hawking [21] in the presence of a scalar field matter source, regarding Bianchi models
which can approach isotropy is given. In the context of higher order gravity theories,
inflation emerges quite naturally without artificially imposing an inflaton field. The con­
formal equivalence theorem relating the solution space of these theories to that of general
relativity is reviewed and the applicability of the no-hair theorems in the general frame­
work of f (R) theories is developed. We present our comments and conclusions about
the present status of the cosmic no-hair theorem and suggest possible paths of future
research in the field.
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Chapter 1

Introduction

The theoretical model on which modern cosmology is based is the Friedmann-Robertson­

Walker (FRW) cosmological model or, the hot big bang model. It assumes that the

universe is perfectly homogeneous and isotropic. Einstein himself made the assumption

of homogeneity and isotropy in order to simplify the mathematical analysis. Today the

experimental observations strongly support this assumption at least for that part of the

universe we can see. The FRW model predicts the expansion of the universe, the large­

scale uniformity of the universe, the light-element abundances (with spectacular precision

in the case of 4He), and possibly the age of the universe. In view of these successes the

FRW cosmology became known as the standard cosmology.

The most important cosmological discovery of the recent decades has been the detec­

tion of the cosmic background radiation (CBR). Its most striking feature is a temperature

isotropy over a wide range of angular scales on the sky. The remarkable uniformity of

the CBR indicates that at the end of the radiation-dominated period (some hundreds of

thousands years after the big bang) the universe was almost completely isotropic. One

then has a difficulty in explaining why there should be such an isotropy in the universe

for the following reason. The finite velocity of light divides the universe into causally

decoherent regions. Roughly speaking, if the age of the universe is T, then regions moving

away because of the expansion of the universe and separated by a distance greater than
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eT will not have enough time to communicate with each other. How did these separated

regions come to be at the same temperature today to better than one part in ten thou­

sand? There are two possible responses to this so-called horizon problem. The first is

that the universe has always been isotropic which means that the initial conditions were

such that the universe was and has remained homogeneous and isotropic. This seems to

be statistically quite improbable. The second response is that the universe came about

in a less symmetric state and evolved through some dynamical mechanisms towards a

FRW state. Soon after the discovery of the cosmic background radiation isotropy, Misner

and others suggested that the universe started off in a chaotic state with inhomogeneities

and anisotropies of all kinds and that various dissipation processes damped out nearly

all of these, leaving only the very small amounts that we see today. This programme was

unable to show that the present state of the universe could be predicted independently of

its initial conditions. In section 2.2 we discuss in more detail the difficulty in explaining

the observed isotropy of the universe - unless one assumes that isotropy persists back to

the big bang - and some other interrelated problems of the standard cosmology.

These problems led to the invention in 1981 of the inflationary scenario which is a

modification of the standard hot big bang model. According to this scenario the very early

universe underwent a short period of exponential expansion, or inflation, during which

its radius increased by a factor of about 1050 times greater than in standard cosmology.

This inflationary phase is also known as de Sitter phase since the de Sitter universe is a

homogeneous and isotropic universe with radius growing exponentially with time. From

times later than about 10-30 sec the history of the universe is described by the standard

cosmology and all the successes of the later are maintained.

To see what this picture implies for our universe, consider a region which at time

t as measured from the big bang has the size of the horizon distance at time t. The

horizon distance at time t is approximately the distance travelled by light in time tie,

equals et. This is evidently the greatest size of a causally coherent region possible. Thus

at time 10-34 sec when inflation commences the size of this region is about 1O-24em.
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After inflation, at time about 10-30 sec) its size has grown to approximately I026cm.

The observable universe at that epoch had a radius of about IOcm, a minuscule part of

the inflating region. Since the universe lay within a region which started as a causally

coherent region, it would have had time to homogenise and isotropise. Thus inflation

naturally explains the uniformity of the universe.

Today it is believed that inflation is the only way to solve most problems of the

standard cosmology. It must be emphasised that the inflationary scenario is far from

being a complete theory describing the very early universe. Several inflationary models

have been developed during the last fifteen years, mainly because there exist different

ways to generate the mechanism of inflation. These models have problems of their own.

Inflation remains an area of active research.

Most models treat inflation in the context of a flat FRW cosmology. This seems

paradoxical since one of the attractive features of the inflationary scenario is that it offers

the possibility of explaining the present state of our universe without assuming special

initial conditions. However, it is not obvious that cosmological models with non-FRW

initial conditions will ever enter an inflationary epoch nor is it obvious that, if inflation

occurs, initial inhomogeneities and anisotropies will be smoothed out. We now address

this central issue of inflation: Does it proceed from very general initial conditions? To

put it another way, does the universe forget its initial state during inflation and evolve

exponentially fast towards a homogeneous and isotopic de Sitter space? With regard

to this question it has been conjectured that all expanding-universe models with positive

cosmological constant asymptotically approach the de Sitter solution. This is referred to

as the cosmic no-hair conjecture. The term 'no-hair' denotes the loss of information

regarding initial space-time geometry caused by evolution under the field equations.

In this dissertation we study the more important attempts to prove the cosmic no-hair

conjecture (NHC). Our treatment will be purely classical, that is, we omit the relevant

works based on quantum gravity. The organization of the material is as follows:

• Chapter Two: We begin by a brief review of the standard cosmological model
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and the problems of the standard cosmology. It follows a sketch of the inflationary

scenario and its successes in the resolution of most of the problems of the standard

model. We state the cosmic no-hair conjecture and discuss some of its limitations.

• Chapter Three: We discuss the cosmic NHC in the context of General Relativity

assuming a positive cosmological constant. The first - and probably the more

. important result - is a theorem due to Wald, who succeeded in proving that the

cosmic NHC is true in the case of homogeneous space-times. We mention a slight

generalisation of Jensen and Stein-Shabes as well as the totally different approach

of Morrow-Jones and Witt.

• Chapter Four: In inflationary models the universe does not have a true cosmo-

logical constant. Rather there is a vacuum energy density which during the slow

evolution of the scalar field remains approximately constant and behaves like a

cosmological term. In this chapter we take into account the dynamics of the scalar

field in the no-hair hypothesis. We examine the NHC for three specific inflationary

models, namely new inflation, chaotic inflation and power law inflation.

• Chapter Five: Interest in generalised theories of gravity has grown during the

'inflationary era' of cosmology, mainly because in the context of higher-order gravity

theories inflation emerges quite naturally without the necessity of imposing an

inflaton field. In this chapter we discuss the no-hair theorems in the general frame

of f (R) theories.

• Chapter Six: We present our comments and conclusions about the cosmic NHC.

We also suggest some paths of research in this field.
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Notation and conventions
In this dissertation we follow the sign conventions of Misner, Thorne and Wheeler

(MTW [59]). In particular we use the metric signature (-, +, +, +) and define the Rie­

mann tensor by

R(X,Y) Z = VxVyZ - VyVxZ - V[X,yjZ

so that

The Ricci tensor is defined as the one-three contraction of the Riemann tensor so that

The Einstein tensor is defined as

where gab is the metric tensor and R is the scalar curvature tensor. The Einstein field

equations read therefore

Throughout most of this work, we use units where the gravitational constant, G,and

the speed of light, c, are set equal to one. However, from section 4.3 to the end we use

units such that c = 87rG = 1.

We employ the abstract index notation discussed in Wald [73]. Thus, latin indices

on a tensor merely denote the type of the tensor (they are part of the notation for the

tensor itself). Greek indices on a tensor represent its components in a given frame. In the

cases where purely spatial tensor components occur, the range of the indices is explicitly

denoted.
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V'a is the symbol for the covariant derivative operator. We occasionally use a semi­

colon (;) to denote covariant differentiation. The symbol Ba stands for the ordinary

derivative operator.

Here are some abbreviations most frequently used in the text.

RD Radiation dominated.

MD Matter dominated.

HE Hawking and Ellis.

FRW Friedmann-Robertson-Walker.

CBR Cosmic background radiation.

GR General relativity.

SEC Strong energy condition.

WEC Weak energy condition.

DEC Dominant energy condition.

NHC No-hair conjecture.

NHT N0-hair theorem.

HOG Higher order gravity.

PPC Positive pressure criterion.

The stress-energy-momentum tensor is usually written as stress tensor or energy-momentum

tensor.
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Chapter 2

The inflationary scenario and the

cosmic no-hair conjecture

Modern theoretical cosmology is based on the investigation of the structure of our universe

with the aid of general relativity. It is well known that the equations of general relativity

cannot be solved for an arbitrary space-time and an arbitrary matter distribution. Hence,

in order to simplify Einstein's equations we make the assumption that the universe is

homogeneous and isotropic. Roughly speaking, homogeneous means that, if we were

located in a different region of our universe, the basic characteristics of our surroundings

would appear the same; and by isotropic we mean that there are no preferred directions

in space. In the next section we begin by a brief review of the standard model, that is,

the cosmological model which is constructed under the assumptions of homogeneity and

isotropy of the universe.
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2.1 The standard model

The homogeneous and isotropic expanding universe is described by the Friedmann­

Robertson-Walker metric

(2.1 )

where k = +1, -1 or 0 for a closed, open or flat universe and a(t) is the scale factor of

the universe.

The evolution of the scale factor is governed by the Einstein equations

.. 471" ( )a=-- p+3p a
3

(2.2)

(2.3)

Here p is the density of the universe and p its pressure. From the last two equations

one can find the conservation equation

(2.4)

Assuming an equation of state of the form p = h - 1)p we deduce from (2.4) that

In particular for p = 0 (dust)

P I'V a-3 matter dominated

and for p = ~p (radiation)

P I'V a-:- 4 radiation dominated.
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In either case when a is small the curvature term kla2 in (2.3) is much smaller than

the density term (871"/3) p and the Friedmann equation (2.3) implies that

For a matter dominated universe

2
a f'.J f3

while for a radiation dominated universe

1
af'.Jf2.

(2.8)

(2.9)

(2.10)

Thus regardless of the spatial geometry (k = ±1, 0) the scale factor vanishes and the

density becomes infinite as t goes to zero. It can be verified that the components of the

curvature tensor Ra bcd also go to infinity as t ---t O. So the point t = 0 is referred to as

the point of the initial cosmological singularity (Big Bang).

It is uncertain at present [43] what is the spatial geometry of the universe, ie what is

the value of the scalar curvature k. It depends on the density p of the universe. In fact

we see from the Friedmann equation (2.3) that the sign of k is determined by the ratio

pi pc of the actual density p to the critical density pc, defined by

3H2

Pc = S;-' (2.11)

where H =0, la is the Hubble parameter. If the quantity n pi pc is less than one,

the universe is open while, if it is larger than one, the universe is closed. Present day

observations [43] give the values

40 ::; H ::; 100 ( km )
sec .Mpc

9
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0.1 ::; n ::; 2 (2.13)

so that the universe is not far from being flat. l

The existence of horizons is characteristic in a FRW space-time [35, 75]. The particle

horizon delimits the causally connected part of the universe that an observer can see at

a given time t. The null geodesic equation for the metric (2.1) gives

dr J1- kr2

dt a (t)
(2.14)

and the physical distance travelled by light in time t (that is, the radius of the particle

horizon) is

r(t) dr t dt'
Rp = a(t) J J = a(t)J-().1 - kr2 a t'

o 0

(2.15)

As an example consider a matter dominated universe, a (t) "-' tf. Equation (2.15)

gives Rp = 3t = 2H- l so that the radius of the observable part of the universe today

(see (2.12)) is

(2.16)

The event horizon delimits that part of the universe from which we can (up to some

time t max ) receive information about events taking place now (at time t):

t
max dt'

Re (t) = a (t) J a (t f )"

t

(2.17)

As seen from (2.17), in a Minkowski space-time (a (t) = const) or in the Friedmann

matter dominated flat universe (a (t) "-' if) there is no event horizon: Re -+ 00 as

IThe controversy about the exact value of the Hubble parameter still holds. Recent observations
have pushed up the lower bound of H with crucial implications for the standard cosmology. The present
day value of H is probably (but not definitely) 80 ± 17kmj (sec .Mps).
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tmax ~ +00. This is not the case for a de Sitter space-time as we shall see later.

2.2 Problems of the standard cosmology

The basic assumption of the Friedmann cosmology is that the universe is perfectly homo­

geneous and isotropic. Homogeneity (on the average) has been verified experimentally

[43] and isotropy is the most striking consequence of the discovery of the cosmic back­

ground radiation (CBR) in 1964. In fact the CBR is uniform to about one part in 104 in

different directions. It seems, however, very improbable that the initial state of the uni­

verse was exactly homogeneous and isotropic [21]. What is more reasonable is to assume

that its initial state was less symmetric and through some mechanisms of isotropisation

the initial nonuniformities became damped so that the universe could approach asymp­

totically its present state. However, as was shown by Collins and Hawking [21]' the class

of initial conditions for which the universe tends for larget to a Friedmann universe is of

measure zero among all possible initial conditions.

Despite its simplicity the standard model is very successful in its predictions of the

Hubble law, the cosmic background radiation and the abundances of the light elements

[43, 75]. It provides a framework in which to discuss the history of the universe from at

least as early as the time of nucleosynthesis (t ~ 10-2 to 102 sec and T ~ 10 to O.lMeV)

until today (t ~ 15Gyr and T rv 2.75K). However, if it is extrapolated backward

to times much earlier than one second after the big bang, several problems are raised.

These problems can be stated in several different but equivalent ways. We review some

of these problems below. For a more detailed exposition see [43, 49, 17].

The first problem is the horizon problem. If the universe were in causal contact at the

end of the radiation dominated epoch, it might be imagined that microphysical processes

smoothed out any temperature fluctuations thus explaining the above mentioned unifor­

mity of the CBR. However, this is impossible because regions at, say, opposite directions

in the sky were separated by many horizon distances [17] and they could not interact.
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The horizon problem is not an inconsistency in the standard model, but it rather repre­

sents a lack of predictive power. The problem is that the large-scale homogeneity of the

universe is not explained or predicted by the model, but instead must be assumed.

The second problem is the flatness problem. As we can see from Friedmann equation

(2.3)

radiation dominated
(2.19)

(2.18)

matter dominated

1
n(t) = 1- x(t)

k 3 { a
2
(t)

x (t) = a2 87rp ex a(t)

so for the very early universe x(t) rv t and n was closer to unity. One can show that [49]

In(1 sec) - 11 :s; 0 (10-16
) (2.20)

(2.21 )

As Linde [49] points out, if the density of the universe was initially (at Planck time)

greater than pc, say by 10-55 pc, the universe would be closed and its lifetime tc = ~M

(M is the 'total mass' of the universe [45]) would be so small that the universe would have

collapsed long ago. If on the other hand the density near the Planck time was 10-55 Pc

less than Pc, the present energy density in the universe would be vanishingly low and life

could not exist. The difficulty in understanding why n was so extraordinarily close to

one at these time scales is known as the flatness problem.

Like the horizon problem, the flatness problem is not an inconsistency in the standard

model. The fact that the density of the early universe is almost equal to the critical

density cannot be explained by the model but instead must be assumed in the initial

conditions.

The third problem is the observed small-scale inhomogeneity of the universe. AI-
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though the universe is smooth on large scales, it contains important inhomogeneities

such as stars, galaxies, clusters, and so on. In explaining such a structure, it is necessary

to assume the existence of initial inhomogeneities. For a long time, the origin of these

density perturbations remained obscure [17, 77].

The forth problem is that of the unwanted relics also known as the monopole prob­

lem. In the context of GUTs2 a tremendous overproduction of magnetic monopoles

occurs during the early stages of the universe. The expected monopole density is com­

parable to the baryon density giving an energy density in the universe about 15 orders

of magnitude higher than the critical density pc. The universe would have collapsed long

ago. Besides monopoles, other structures such as domain walls can be produced follow­

ing symmetry-breaking phase transitions in the early universe. For further discussion of

these topological defects we refer to [43, 49].

There are some other problems [49] related to the four mentioned above which can

be put under the general title 'Why is the Universe as it is?'. We do not continue this

list. In the next section we shall discuss a proposal which claims to avoid most of them.

2.3 The Inflationary Scenario

Consider a scalar field <.p described by the Lagrangian density

(2.22)

Its energy-momentum tensor Tab = 8a<.p8b<.p +9abL can be written as

(2.23)

If the field <.p is homogeneous, its spatial derivatives vanish and in an appropriate co­

ordinate system its energy-momentum tensor takes the form of the corresponding tensor

2Grand unified theories
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of a perfect fluid

T~v = diag(p,p,p,p) , (2.24)

where p = ~ (/ +V ('P) and p = ~ ep2 - V ('P). (See also the introductory remarks in

Chapter Four).

A constant scalar field 'P over all space-time simply represents a restructuring of the

vacuum in the sense that the vacuum energy density changes by a quantity proportional

to V ('P). If there were no gravitational effects, this change would be unobservable, but

in general relativity it affects the properties of space-time. In fact V ('P) enters into the

Einstein equation in the following way:

R ab - ~gabR = 81rTab = 81r (T:; - gabV) , (2.25)

where Tab is the total energy-momentum tensor, T::b is the energy-momentum tensor of

ordinary matter and -gabV is the energy-momentum tensor of the vacuum (the constant

scalar field). Of course, V ('P) = V is a constant. Note that (2.25) is just the Einstein

equation with a cosmological constant A, viz.

(2.26)

where A is given by

(2.27)

We may also view (2.25) or (2.26) in vacuum (T::b = 0) as describing a perfect fluid

with p = -p = - V [35]. This large negative pressure has the effect that a homogeneous

and isotropic universe expands exponentially. In fact equations (2.1), (2.2) and (2.3)

imply that

a (t) =

H- 1 cosh Ht

H-l sinhHt

14

if k = +1
if k = 0

if k = -1,

(2.28)



(2.29)

where we have set

H=~ = J8; p.

Note that, according to (2.4), the vacuum energy density does not change as the

universe expands. The solution (2.1) and (2.28), obtained in 1917 by de Sitter, is referred

to as de Sitter space-time and its interesting geometry is well described in HE [35]. As

we shall see in the next section the de Sitter space-time plays a crucial role in inflationary

cosmology. Notice that even the flat (k = 0) de Sitter space-time has an event horizon

(cf. (2.17))

(2.30)

An observer in an exponentially expanding universe can see only those events that take

place no farther than H- 1
.

The inflationary universe is a modification of the standard hot big bang model. The

basic idea of inflation is that the early universe underwent a short period during which

matter was in a metastable false vacuum state driving the evolution of the universe into

exponential expansion. During this period the scale factor increased by a tremendous

factor, perhaps 1050 times greater than in standard FRW cosmology.

Early constructions of inflationary models involved the notion of phase transitions

present in all grand unified theories of elementary particles. It was assumed that the

very early universe was in a hot (T ~ 1014GeV), expanding state and the symmetry

of the fundamental interaction was manifest so that the Higgs fields had zero values.

During the expansion the temperature dropped and some small regions underwent a

phase transition with at least one of the Higgs fields acquiring a non-zero value, resulting

in a broken-symmetry state. However, for certain values of the parameters in most GUTs

the rate of cooling is very fast compared with the rate of the phase transition. This causes

the system to supercool to a negligible temperature with the Higgs field remaining at

zero, resulting in a false vacuum. The false vacuum has a constant energy density P = Ph
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typically of the order of the fourth power of the characteristic mass scale of the theory,

which for GUTs is

(2.31 )

This tremendous energy density drives the universe - more precisely the region where the

phase transition takes place - to exponential expansion with a minuscule time constant

(see (2.29)). As already discussed, a homogeneous and isotropic universe with equation

of state p = -p (which is the case of the false vacuum) expands exponentially with time

constant

1

H-1 = (8;Pf)-2 ~ (lOlOGeV)-l ~ 10-34 sec. (2.32)

Meanwhile quantum or thermal fluctuations cause the Higgs field to deviate from

zero. The field begins to increase with a rate similar to the speed of a ball rolling down

the potential curve. In fact the equation of motion of a scalar field with Lagrangian

density (2.22) is D<p - V' (<p) = O. For a homogeneous scalar field, this equation in the

de Sitter metric takes the form

lp +3H <P +V' (<p) = O. (2.33)

This is just the equation for a ball rolling down a hill with friction. 3 In the beginning

the speed is very slow due to the 'flatness' of the potential - a feature common to

all inflationary models. The damping term 3H <P in (2.33) reflects the expansion of the

universe and helps also to slow down the motion towards the steeper part of the potential.

During this slow-rollover process the energy density remains very nearly equal to Pf and

the exponential expansion continues. More precisely the magnitude of H (cf. (2.32))

3 Actually, this is the equation of particle sliding down a hill with friction; we retain however the
commonly used expression 'slow-rollover process' when describing the evolution of the scalar field.
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Figure 2-1: Schematic illustration of an inflationary potential. The flatness of the poten­
tial is a common feature to all inflationary models. The qualitative phases of inflation
are depicted: slow roll and coherent oscillations about the minimum of the potential.

changes very slowly so we may speak of a quasi-exponential expansion of a (flat) universe

a (t) = ao exp It
H (t') dt' '" ao exp (Ht) (2.34)

rather than a strict de Sitter regime, of (2.28). Thus the universe has enough time to

inflate.

Inflation comes to an end when H begins to decrease rapidly. This happens because

the energy density falls to zero as the scalar field approaches its true-vacuum value. In

fact, when the scalar field 'P reaches the steep part of the potential, it falls quickly to the

minimum and oscillates about it. These oscillations are damped by extra terms in the

equation of motion which arise due to the coupling of 'P with other fields in the theory

[43]. The oscillations are interpreted in quantum field theory as a high density of scalar

particles and the damping corresponds to the decay of these particles into lighter species.

The decay products collide with each other and perhaps decay into still lighter species
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so that the energy rapidly thermalises. The system is reheated to a temperature about

1/3 times the phase transition temperature (as can be calculated by using conservation

of energy). All the enormous false vacuum energy is therefore transformed in a hot gas

of elementary particles in an equilibrium similar to the initial conditions assumed in the

standard model. At this point the inflationary phase joins the standard FRW cosmology

and accordingly the successes of the standard model are maintained.

To illustrate the modifications of the standard model resulting by including an in­

flationary transient stage we use the following parameters which are typical to most

inflationary models4 : H-l
rv 10-34 sec (cf. (2.32)), time required for r..p to evolve to its

equilibrium value ~t rv 10-32 sec ~ 100H- l . We assume that a smooth and causally

coherent region of size less than H- l
rv 1O-23cm - the radius of the event horizon ­

undergoes inflation. During the (quasi-) de Sitter phase the scale factor grows by the

factor Z eHLi.t ~ elOO ~ 3 X 1043 •

We observe that the horizon problem is easily solved. Our observable universe was

the result of inflating a very small region of space that was initially causally connected.

After inflation the size of this region was 3 x 102°cm, much larger than the radius of the

observable universe (about 10cm, as is calculated taking account that the temperature

after reheating is approximately lO14 GeV). The flatness problem is also solved: During

inflation the energy density remained almost constant rv Pi while the scale factor grew by

the factor Z ~ elOO so that the ratio x (t) = :2 s;p decreased by a factor rv e200
• Thus the

scale factor ('radius of curvature') of the universe today should still be much greater than

the present observable radius (2.15), thereby explaining the flatness of the universe. We

also see from (2.18) that n should be exponentially close to unity.s Further, the monopole

4The values of these parameters depend on the model used. In some models the factor Z takes huge
values of order'" 10105

.

5The recent observational facts about the Bubble constant and n (see footnote on page 10) have put
forward the construction of specific inflationary models that lead to n i= 1 today and solve all standard
problems of classical cosmology (see for example [28]). Other modifications of the inflationary paradigm
allow the possibility of a universe divided into infinitely many open universes with all possible values
of n from 0 to 1. These results put theorists on the safe side because, if we find that n = 1, it will
prove inflationary cosmology since most inflationary models predict n =1 and no other theory makes
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problem is solved in the following way: The number density of any unwanted relic is

reduced during inflation by a factor of Z3. That means, with the parameters used already,

that the enormous monopole density predicted by GUTs in the standard cosmology (equal

to the baryon density) is weakened by a factor of about 10130 in inflationary cosmology.

Lastly, resolution of the fourth problem, namely the small scale structure of the universe

is difficult to attain within the model described above. For more details see [43].

The version of inflation presented above is not the original model - usually referred

to as old inflation) proposed by Guth in 1981 [33] and which proved to be unworkable.

It is the variant proposed in 1982 by both Linde [50] and Albrecht and Steinhardt [1],

often referred to as new inflation. However, this scenario is still far from being perfect.

In order for the new inflationary universe to occur the underlying particle theory must

contain a scalar field c.p with the following properties:

i)The potential function V (c.p) must have a minimum at a non-zero value of c.p.

ii)V (c.p) must be very flat in the vicinity of c.p = O. This guarantees the slow evolution

of the scalar field to its equilibrium value thus permitting the universe to achieve enough

inflation.

The early papers on the new inflationary scenario assumed that some of the Higgs

fields responsible for breaking the grand unified symmetry would also play the role of the

field c.p which drives the inflation, but it was realised that this could not be the case [49]. In

most newer models the c.p field is an 'inflaton field' responsible for driving inflation. In 1983

Linde proposed a very simple and elegant model [51], the chaotic inflation. Although the

scalar field is not part of any unified theory, the model successfully implements inflation

and avoids most of the problems of the new inflation [49].

The inflationary scenario - although finality is not still achieved - is today the only

way to solve the great puzzles of the standard model. Its implications for cosmology

are manifold. For example inflation implies that the observable part of the universe is

this prediction. If on the other hand we find that n -t 1, it will not disprove inflation, since we have
models with n -t 1 and no other models of isotropic universe and n -t 1 are known so far. See [52] for a
discussion. .
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many orders of magnitude smaller than the Universe as a whole and it is an impermissi­

ble extrapolation to draw any conclusions about the homogeneity of the later based on

observations of such a tiny component. Outside the regions which underwent inflation

large inhomogeneities could exist. While our immediate neighborhood and well beyond

should be smooth and flat if our broader region inflated, it could be that the universe

on the very largest scales is very irregular with regions inflating at different times and

some regions never inflating at all. Moreover, the 'universes' that evolve in different

inflationary regions could be quite different [49] due for example to a different breaking

of the symmetry of the unified interaction. Furthermore all that we see today arose from

'nothing', in the form of false vacuum energy.

2.4 The cosmic no-hair conjecture

The observable universe today seems to be remarkably homogeneous and isotropic on a

very large scale and the Friedmann cosmology is a successful cosmological model capable

of describing its large-scale properties. In principle the inflationary scenario provides

an explanation of the homogeneity and isotropy of the universe without assuming this

symmetry as part of the initial conditions. However, most investigations of inflationary

models incorporate homogeneity and isotropy from the outset. In the previous section

we analysed inflation in the context of a FRW cosmology assuming that the inflating

regions are smooth enough so that they can be regarded as de Sitter space-times.

It is not obvious that cosmological models with non-FRW initial conditions ever enter

an inflationary epoch nor is it obvious that, if inflation occurs, initial inhomogeneities and

anisotropies will be smoothed out eventually. Therefore the question of the naturalness of

the inflationary scenario is posed in the sense that we have to ask: Does the inflationary

phase in the evolution of the universe proceed from very general initial conditions?

With regard to the question of whether the universe evolves to a homogeneous and

isotropic state during an inflationary epoch, Gibbons and Hawking [31] and Hawking and
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Moss [36] have put forward the following

Conjecture 1 All expanding-universe models with positive cosmological constant asymp­

totically approach the de Sitter solution.

This is referred to as the cosmic no-hair conjecture.

In general relativity solutions of the Einstein equations are believed to settle toward

stationarity as the nonstationary parts dissipate in the form of gravitational radiation.

Such a proposition is very difficult to prove, even for the simplest space-times. Even

if we accept this principle, neither the final state of evolution, that is the stationary

solution nor its uniqueness is at all obvious. The uniqueness assertions are known as 'no­

hair conjectures', to denote the loss of information regarding initial space-time geometry,

caused by evolution under the field equations. This information either radiates out to

infinity or is hidden behind event horizons. The cosmic no-hair conjecture is an assertion

of the uniqueness of the de Sitter metric as a stationary,6 no-black-hole solution of the

Einstein equation with positive cosmological constant.

A few comments about the no-hair conjecture (NHC) are necessary.

• A precise version of this conjecture is difficult to formulate, mainly because of

the vagueness associated with the terms 'asymptotic approach' and 'expanding

universe'.

• There is no general proof (or disproof) of this conjecture.

• Some counter-examples exist of the form 'initially expanding universe models rec­

ollapse to a singularity' without ever becoming de Sitter type universes, the most

obvious one being the closed FRW space-time which collapses before it enters an

inflationary phase (see [13, 9]).

6The stationary nature of de Sitter space-time will be discussed in section 3.3.
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• It should be possible for regions of the universe to collapse to black holes so that

the universe approaches a de Sitter solution with black holes rather than a de

Sitter solution. In addition other special behaviours should be possible such as an

asymptotic approach to an Einstein static universe.

• Although the NHC is not generally valid as it stands, the number and diversity

of the models that do obey this principle lead to the belief that perhaps a weaker

version of the conjecture must be true. 7

2.5 Summary.

In this introductory chapter we reviewed the elements of the FRW cosmology and pre­

sented some of the problems of the standard model. These problems exhibit our inability

to predict the present observable uniformity of the universe from general initial condi­

tions. We outlined very briefly the basic ideas of the inflationary scenario and described

the way it solves most of the problems of the standard cosmology. Finally we posed the

question of how natural is inflation and discussed the cosmic no-hair conjecture. In the

following chapters we review the most important attempts to prove the cosmic NHC. As

we will see much progress has been done towards a no-hair theorem, in the special case

of homogeneous cosmologies.

7Alternatively it could be recast as something less than a principle against which models should be
tested.
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Chapter 3

The cosmic no-hair conjecture in

general relativity

In this chapter we discuss the cosmic NHC in the context of general relativity. By this

we mean that we do not take account of the dynamics of the inflaton field; rather we

attribute the vacuum energy which is necessary for the inflation to a large cosmological

constant. In other words we do not care about the origin of the cosmological term and

we have no mechanism to finish inflation ie to drive the cosmological term to zero value.

Some evidence for the NHC has been discussed by Boucher and Gibbons [18], and

Barrow [3]. They studied small perturbations of de Sitter space-time and found that they

do not grow as the scale factor tends to infinity. Steigman and Turner [70] considered a

perturbed FRW model dominated by shear or negative curvature when inflation begins in

the context of new inflation. They found that the size of a causally coherent region after

inflation is only slightly smaller than the usual one in a purely FRW model. Wald [74] was

the first who succeeded in 1983 to prove that 'all expanding Bianchi cosmologies with

positive cosmological constant A, except type-IX, evolve towards the de Sitter solution

exponentially fast. The behavior of type-IX models is similar provided that A is greater

than a certain bound '. Wald's proof is the prototype for many subsequent works as we

shall see in more detail in the next chapter.
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3.1 Background from differential geometry

In this section we present the necessary geometric notions which are used in all subsequent

chapters. We derive Raychaudhuri's equation which describes the behavior of a family

of timelike geodesics in the presence of a gravitational field. Next we discuss the energy

conditions on the matter content. As we shall see, the energy conditions, although not of

geometric nature, are reasonable inequalities satisfied by the energy-momentum tensor.

The extrinsic curvature of a hypersurface describes how the hypersurface is embedded in

the space-time. Finally we present a very brief review of spatially homogeneous space-

times.

3.1.1 Raychaudhuri's equation

Consider a smooth congruence of timelike geodesics in a space-time (M, g). The corre­

sponding tangent vector field n is normalized to unit length, (n, n) = -1. This means

that the geodesics are parametrized by proper time t and n = a/at. We define the spatial

metric h by

(3.1 )

Note that habnb = hbana = 0 so that hab = gachcb can be regarded as the projection

operator onto the subspace of the tangent space perpendicular to n. In the following we

are interested on the covariant derivative of n. Its geometric meaning will become clear

immediately before section 3.1.4.

We define the expansion) 0, shear) (Y, and rotation) w, of the congruence by

(3.2)

(3.3)

(3.4)
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The tensor fields crab and Wab are purely spatial in the sense that crabnb = wabnb = 0 and

crab is traceless. If the energy-momentum tensor of the matter fields is of the form of a

fluid, then (), cr, and w, are not the expansion, shear and the rotation of the fluid unless

the fluid happens to be moving along the geodesics.

The covariant derivative of n can be expressed as

(3.5)

This can be verified by direct substitution from the previous defining equations (3.2) -

(3.4).1

From the definition of the curvature tensor and the geodesic equation

naVanb = 0 we have

Vb (nCVcn a) - (VbnC) (Vcna) +Radcbndnc

- (\7bnC) (Vcna) +Radcbndnc.

Taking the trace of the last equation we obtain

d() _ C"{"'7 ("{"'7 d) ( C) (d) c ddt = n v c v dn = - Vdn Vcn - Rcdn n

and using (3.5) we get after some manipulation

(3.6)

This equation is known as the Raychaudhuri equation and plays an important role in the

proof of the singularity theorems of general relativity.

1In HE there is a projection ha b for every index of the tensor field na'b in the definitions of the
shea\and the r~ta.tion. Our definitions diffe~ from ~hose in. HE because na;b' is purely spatial, na;bna =
na;bn = O. ThIS IS due to the fact that n IS assocIated with a congruence of geodesics, not merely a
congruence of timelike curves.
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3.1.2 Energy conditions

The actual form of the energy-momentum tensor of the universe is very complicated since

a large number of different matter fields contribute to form it. Therefore it is hopeless to

try to describe the precise form ofthe energy-momentum tensor. However, there are some

inequalities which it is physically reasonable to assume for the energy-momentum tensor.

In many circumstances these inequalities are sufficient to prove via the field equations

many important global results, for example the singularity theorems. In this section we

discuss these inequalities, usually referred to as energy conditions.

At the end of the following section we shall see that, if the right-hand side of (3.6)

is positive, the congruence expands while, if it is negative, geodesics in the congruence

converge. We pay therefore attention to the sign in front of the last term on the right­

hand side of the Raychaudhuri equation. By the Einstein equations this term can be

written as

(3.7)

The quantity Tabnan
b is the energy density as measured by an observer whose 4-velocity

is n. For all known forms of matter this energy density is non-negative and therefore we

impose that

(3.8)

for all timelike vectors u. This condition is known as the weak energy condition (WEC).

An other assumption usually accepted is the strong energy condition (SEC) which states

that

T ab 1
bn n > --T

a - 2 (3.9)

for all unit timelike vectors n. In fact it seems reasonable that the matter stresses will

not be so large as to make the right-hand side of (3.7) negative. Finally, the dominant

energy condition states that

(3.10)
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and TabUb is non-spacelike vector for all timelike vectors u. In particular the dominant

energy condition implies that

(3.11)

where TJ.t1J are the components of Tab in any orthonormal basis with na as the timelike

element of this basis.

To be convinced that the above conditions are reasonable assumptions, let us see

what they imply for a diagonalisable stress-energy tensor TJ.t1J = diag (p, PI, P2, P3) . This

is for example the case of a perfect fluid with stress-energy tensor TJ.t1J = diag (p, P, P, p).

It is easy to see that the energy conditions take the form

p ~ 0 and p+ Pi ~ 0 (i = 1,2,3) (WEC)

p +PI +P2 +P3 ~ 0 and p +Pi ~ 0 (i = 1,2,3) (SEC)

p~IPil (i=1,2,3) (DEC).

For further discussion see for example HE [35].

3.1.3 Extrinsic curvature

(3.12)

Consider now the case that the space-time (M, g) is globally hyperbolic and the congru­

ence of the timelike geodesics is normal to a spacelike hypersurface ~. In every point P

of ~ the unit normal to ~ at P equals the (unit) tangent vector n of the geodesic passing

through p. Then the induced metric tensor h on ~ coincides with the previously defined

'spatial metric' hab = gab + nanb, (3.1). For the same reason the covariant derivative of n

evaluated on ~ coincides with the extrinsic curvature I<ab of ~, viz.

(3.13)
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Of course the tensor field K is purely spatial (see footnote on page 25). Since the

congruence is hypersurface orthogonal,2 we have Wab = 0 which implies that the extrinsic

curvature tensor field is symmetric, ie I<ab = I<ba' Hence, taking the Lie derivative of

the metric with respect to n we find

I<ab ~Lngab

~Ln (h ab - nanb)

~Lnh~b'

(3.14) .

where the geodesic equation was used. If a coordinate system adapted to n is used, then

the components of the extrinsic curvature in these coordinates are

I< _ ~ ahJ1.lJ
J1.lJ - 2 at .

The trace I< of the extrinsic curvature is defined as

(3.15)

(3.16)

so that I< is equal to the mean expansion () of the geodesic congruence orthogonal to E.

One has the following geometric interpretation of I< [68]. Assume E to be a compact

submanifold with boundary (otherwise, take a compact subset of E). For every p in E

denote by /p the geodesic passing through p, ie, /p : [0, cl -t M is a future-directed

geodesic orthogonal to E and satisfying /p (0) = p, with tangent vector field n. For all

t E [O,E], define Et _ {/p (t) : pE E}, that is, Et is the set of all points of E moved

along each geodesic a parametric distance t. If V (t) denotes the Riemannian volume of

Et then it can be shown

Vi (0) = hI<fh;, (3.17)

2A necessery and suficient condition that n be hypersurface orthogonal is n[a 'Vbn cl = O. See for
example Wald [73], appendix B, p 436.
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where nI; is the Riemannian volume element of ~. Thus f{ > 0 roughly means that the

future-directed geodesics orthogonal to ~ are, on the average, spreading out near ~ so

as to increase the volume of ~.

3.1.4 Homogeneous cosmologies

The space-times we deal with in this work are with a few exceptions spatially homo­

geneous. A space-time (M, g) is said to be spatially homogeneous if there exists a one­

parameter family of spacelike hypersurfaces ~t foliating the space-time such that for each

t and for each p, q E ~t there exists an isometry of M which takes p to q. Homogeneous

cosmologies have been studied intensively over the past years (for reviews see Ryan and

Shepley [66], MacCallum [54, 54]). One of the main reasons is that all possible geome­

tries of the spacelike hypersurfaces fall into one of ten classes. Another equally important

reason is that Einstein equations reduce to a system of ordinary differential equations.

In fact because of the spatial symmetry only time variations are non-trivial.

The set of all isometries of a Riemannian manifold forms a Lie group G and the set

of the Killing vector fields (that is, the set of infinitesimal generators of the isometries)

constitutes the associated Lie algebra, with product the commutator. In our case dim G =

dim ~t = 3 provided that G acts simply transitively on each ~t, that is, for every p, q in

~t there exists a unique isometry E G sending p to q. The algebraic structure of the

group G can be described in terms of the Lie algebra since, if v, ware Killing vector

fields, they satisfy

[ ]a ca b c
V, W = - bcV W , (3.18)

where C a
bc are the structure constants of the Lie group. It follows immediately from the

definition that

(3.19)
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and from the Jacobi identity for commutators that

(3.20)

These two equations lead to all three-dimensional Lie groups, or equivalently, all

possible sets of structure constants which satisfy (3.19) and (3.20). Bianchi was the first

to classify all three-dimensional Lie groups into nine types. A slightly different version of

this classification can be obtained in the following way (see Ellis and MacCallum [29]).

The tensor field Ccab can be decomposed as

(3.21 )

where tabc = t[abc] is a three form on the Lie algebra, Mcd = Mdc and Ab is a 'dual' vector.

We can solve for Mab and Ab, taking Ab = caba and Mab = ~c(a cdtb)cd. Inserting (3.21)

into the Jacobi identity (3.20) yields

(3.22)

Therefore the problem of finding all three-dimensional Lie groups is reduced to de­

termine all dual vectors Ab and all symmetric tensors Mab satisfying (3.22). If Ab = 0

(class A), there exist six Lie algebras determined by the rank and signature of Mab. If

Ab :j:. 0 (class B), equation (3.22) implies that rankM cannot be greater than two. Hence,

in this case there exists four possibilities for the rank and signature of Mab. These ten

combinations are tabulated (see eg in Landau and Lifshitz [45], MacCallum [54]) and

called the Bianchi models. For example, the Bianchi type-IX model is determined by

Ab = 0, rankM = 3, signatureM = (+ + +). One can find explicit formulas for Ccab

in different bases in Ryan and Shepley [66]. Useful formulas for the Ricci tensor and

Einstein equations in terms of the structure constants and the spatial metric are also

given in Ryan and Shepley [66].
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The metric of a spatially homogeneous space-time is

(3.23)

where h is the three-metric of the spatial slices and n = a/at is a unit timelike vector

field, orthogonal to the homogeneous hypersurfaces. The vector field n defines the time

coordinate of the space-time. There are many ways to put the metric in a useful form

[53]. For example the spatial coordinates can be chosen as follows. We consider one

homogeneous hypersurface Eo and choose a basis of one-forms w1
, w2 ,w3 which are pre­

served under the isometries, that is, have zero Lie derivative with respect to the Killing

vector fields. It follows that each one-form w i (the index i labels the one-form) satisfies

(see for example Wald [73] section 7.2)

(3.24)

with Ccab the structure constants of the Lie group of isometries of the spacelike hyper­

surfaces. Then the (invariant) spatial metric can be written

(3.25)

where the components hij are constant on Eo.

To construct the full metric we consider for p E Eo the unit normal vector np to Eo

at p (we used the symbol n to denote an arbitrary timelike vector field orthogonal to the

homogeneous hypersurfaces for reasons that will soon become clear). Denote by IP the

geodesic determined by (p, np ) • Then IP will be orthogonal to all the spatial hypersurfaces

it intersects, because the tangent to IP remains orthogonal to all the spatial Killing vector

fields (see for example O'Neill [63], ch.9, lemma 26). We label the other hypersurfaces

by the proper time t of the intersection of IP with the hypersurface, hence, t = const on

each Et. Then the vector field n defined by n a = -,;at will be everywhere orthogonal
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to each Et and the integral curves of n are all geodesics since this is true along IP and

hence is true everywhere on each Et by spatial homogeneity. Now we 'Lie transport' the

w i defined on Eo throughout the space-time along n, ieJ

which implies that w~na = 0 everywhere. We'conclude that the metric (3.23) takes the

form

(3.26)

or equivalently

(3.27)

It is now clear the property of homogeneous space-times mentioned at the beginning of

this section, namely that the Einstein equations become ordinary differential equations

with respect to time.

We note by (3) R the scalar curvature of the spacelike hypersurface which we think

of as a Riemannian three-manifold with metric h. In what follows we make repeated

use of a property of the scalar spatial curvature (3) R, namely that (3) R is nonpositive

in all Bianchi models except type-IX. To prove it, we write the scalar curvature (3)R in

terms of the structure constants Ca
bc of the Lie algebra of the symmetry group of the

homogeneous hypersurface (see [45] or [66])

(3)R = _ca Cc b + !Ca Cc b _!C Cabc
ab c 2 bc a 4 abc . (3.28)

All indices are lowered and raised with the spatial metric, h ab , and its inverse h ab . A

rather lengthy calculation gives for (3) R (by substitution of (3.21) into (3.28) and using

(3.22) )

(3.29)

where h is the determinant of h ab , that is, h-1 = EabcEdefhadhbehcf. From (3.29) it follows
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immediately that, if (3) R is positive then necessarily Mab M ab < ~M2, but then Mab must

be definite (positive or negative) as can be verified by considering a coordinate system

where the tensor Mab is diagonal. In this case (3.22) implies that Ab = O. A look at the

Bianchi classification shows that the combination Ab = 0 and rankM = 3 corresponds

to the type-IX model. What we have shown is that in all Bianchi models except type-IX

the three-scalar curvature is nonpositive

(3) R :::; 0 . (3.30)

This ends the necessary geometric notions which will be used in the development of

this chapter.

3.2 Proof of the cosmic no-hair conjecture for

homogeneous cosmologies (Wald, 1983 )

Our starting point is a (spatially) homogeneous space-time which, according to the results

of the previous section, can be foliated by a one-parameter family of spacelike hypersur­

faces ~t orthogonal to a congruence of timelike geodesics parametrized with proper time

t. As usual, we denote by n = a/at the unit tangent vector field to the geodesics. When

it happens that matter is moving along these geodesics, the expansion, shear and the

rotation of the cosmic fluid coincide with the corresponding quantities of the geodesic

congruence. However, we do not suppose that this be the case as the only property of

the matter stress-energy tensor that we use is that it satisfy the strong and dominant

energy conditions. We use the Einstein equations

Gab + Agab = 87rTab
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to describe the evolution of Bianchi cosmologies. In what follows only two components

of (3.31) are necessary: the time-time component

(3.32)

and the 'Raychaudhuri' equation

(3.33)

The term Rabnanb permits us to transform (3.33) to its more familiar form as follows.

Firstly we decompose f{ab into its trace f{ and traceless part O"ab (see (3.5) and (3.16)),

VIZ.

(3.34)

We can then express Gabnan
b in terms of the three-geometry of the homogeneous hyper­

surface using the Gauss-Codacci equation (HE, [35])

1 (3)R 1R R a b 1 (}/'a)2 1 Tab- = - + bn n - - 1. + - f{ bli2 2 a 2 a 2 a . (3.35)

Observe that the sum of the first two terms on the right-hand side of the Gauss-Codacci

equation equals Gabnan
b

, while the last term of this equation simplifies as f{abf{ab =

~f{2 +O"aW
ab

. Putting all these together in (3.32) we obtain

2 3 ab 3 (3) b
f{ = 3A + -0" bO" - - R +247l"T bnan2 a 2 a' (3.36)

Eliminating Rabnanb from (3.6) and (3.33) we obtain the Raychaudhuri equation with

cosmological constant (compare to (3.6))

} "T A 1 f{2 ab 8 (T 1 T) a bi = - 3" - O"abO" - 7l" ab - "2gab n n .
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These last two equations are the basic tools in proving the NHT for h<:>mogeneous cos­

mologies. Our aim is to show that the metric h has the asymptotic form

by showing first that J{ is bounded - in fact it tends exponentially to a certain limit.

This will be done by constructing certain inequalities starting from (3.36) and (3.37) and

the energy conditions.

At the end of the previous section we proved that (3)R ::::; 0 in all Bianchi models

except type-IX. We observe that, assuming a negative spatial scalar curvature, all terms

in the right-hand side of (3.36) are positive and so we turn our attention to any Bianchi

model which is not type-IX. Using the strong energy condition (3.9), the dominant energy

condition (3.10) and (3.30), we obtain from (3.36) and (3.37)

.1 2J{< A - -J{ < O.- 3 - (3.38)

Assuming that the universe is initially expanding ie J{ > 0 at some arbitrary time t = 0,

then the universe expands for ever ie J{ > 0 for all time since J{2 2: 3A implies that J{

cannot pass through zero. Therefore at all times we have

The first inequality of (3.38) also implies

J{ 1
---<-­
J{2 - 3A - 3

which after integration yields

(3.39)

(3.40)

y< vIM
i - tanh (at) , where a = I"f.
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For convenience we write together the inequalities (3.39) and (3.41)

T J3A
J3A ::; A::; h ( )"tan at

(3.42)

We see that the expansion rate f{ approaches J3A exponentially fast, Equation (3.36)

implies

(3.43)

We deduce that the shear approaches almost exponentially to zero and the universe

rapidly isotropises. From the same equations (3.36) and (3.41) we find that the energy

density also approaches zero in a few time-constants 0'.-1 since

(3.44)

As a consequence of the dominant energy condition all components of the energy-momentum

tensor rapidly approach zero (see (3.11)). From (3.14) and the fact that f{ ----+ J3A as

aab ----+ 0 we see that the metric asymptotically has the form

hab (t) = exp [20'. (t - to)] hab (to) . (3.45)

Finally (3.36) implies that the spatial curvature (3) R also goes to zero,. The scaling

property of the Ricci tensor,

(3) Rab (t) = exp [- 20'. (t - to)] (3)Rab (to) ,

(which can be verified by direct substitution in the formula giving the Ricci tensor in

terms of the metric tensor) tells us that the universe becomes flat exponentially fast.

In conclusion, for t ~ 0'.-1, any initially expanding Bianchi space-time not of type-IX

becomes isotropic and flat (the shear and the spatial curvature vanish), expands at a

constant rate f{ = J3A and appears to be matter free ie, becomes an empty de Sitter
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space-time. A careful analysis of the asymptotic approach to de Sitter space-time can be

found in Barrow and Gotz [11].

What happens in the case of Bianchi type-IX models? In such models the scalar

curvature (3) R can be positive, but the largest value it can take for fixed determinant h

and given Mab is (see Wald [74])

( )
2/3

(3) _ ~ det M
Rmax - 2 h1/ 3

(3.46)

(3.47)
A ~ (3) R _ ~ (det M)2/3

> 2 max - 4 h1/ 3

From (3.36) and (3.37) we see that a large enough positive cosmological constant could

still cause the same behavior to a Bianchi type-IX universe. Suppose that initially we

have

and that the universe initially expands that is K > O. From (3.14) it follows that

h /h = 2K. Hence h increases. We note that K remains positive by (3.36) provided

that the above inequality for A is still satisfied. This inequality can be violated only if

h becomes smaller than its initial value which is impossible. We conclude that K never

passes through zero and h continues to increase. By the same type of arguments used in

the other Bianchi models we can show that the universe approaches de Sitter space-time.

Therefore Wald's theorem is proved.

We can show by a more physical argument why Wald's theorem is to be expected.

For this purpose we need only the time-time component of Einstein equations (3.32) as

our analysis will be quite qualitative.

Denoting the scale factors of the three principal axes of the universe by Xi, i = 1,2,3

and the mean scale factor by a = vt, where V = X 1X 2X 3 , (3.32) is written as

(3.48)

The function F depends on the Bianchi model and contains all the information about
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the anisotropic expansion of the mean scale factor. The detailed form of F can be found

in [29]. The only property of F that we will use is that in all Bianchi models F decreases

at least as fast as a-2 • Equation (3.48) is the analog of the Friedmann equation for

anisotropic cosmologies. For the FRW models, Xl = X 2 = X 3 and F = kja2
• The term

V jV in (3.48) is the expansion ]{ in Wald's theorem.

As the universe expands, the function F in (3.48) decreases at least as a- 2 and the

term Tabnanb decreases as some power of a (for example as a-4 for a radiation dominated

FRW universe). It is clear that the cosmological constant eventually dominates the
1

terms 87rTabnanb and F. This happens in about one Hubble time, Hol = (Aj3f'i, and

a'" exp Hot. We see that the anisotropic term F and the ordinary matter content of the

universe decay exponentially with time and the space-time rapidly approaches de Sitter.

3.3 Other approaches to the cosmic no-hair

conjecture in General Relativity

There are several attempts to generalise the no-hair theorem for homogeneous cosmologies

proven by Wald to the cases of inhomogeneous or arbitrary space-times. We describe

briefly two of these attempts. The first is due to Jensen and Stein-Shabes [41] and

consists of a slight modification of Wald's theorem.

Theorem 1 [Jensen &J Stein-Shabes]. Let (M, g) be an arbitrary synchronous space­

time of any dimension with positive cosmological constant, the energy-momentum tensor

satisfying the dominant and strong energy conditions and a scalar spatial curvature which

is always positive. Then (M, g) evolves towards a de Sitter space-time.

A few comments about the assumptions of the theorem are necessary. Synchronous

space-time is evidently a space-time that can be described by a synchronous reference sys­

tem. This is always possible provided that the space-time is globally hyperbolic. Global
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hyperbolicity is also a necessary condition for the existence of spacelike hypersurfaces

which foliate the space-time. Hence the notion of spatial curvature is meaningful.

The proof of the theorem goes exactly as in the homogeneous case and we do not

repeat it here. In fact a careful reading of Wald's proof reveals that homogeneity is used

only to show that the scalar three-curvature is nonpositive in all homogeneous cosmologies

except for Bianchi type-IX models. In the present case the non-positivity of the spatial

curvature is imposed from the beginning as an assumption.

Despite the fact that the proof of Jensen and Stein-Shabes is almost verbatim Wald's

proof, the physical implications of their theorem are quite interesting. Consider all pos­

sible space-times which can be foliated by spacelike hypersurfaces. Foliation by spacelike

hypersurfaces is not a severe restriction because as mentioned above, this is the case of

globally hyperbolic space-times, a very large subset of all possible space-times. In fact

Penrose [65] has conjectured that all physically reasonable space-times must be globally

hyperbolic. Fix a hypersurface which will be considered as initial hypersurface ~o. It

is clear that the concept of a scalar three-curvature of a given sign is meaningless as

the curvature varies from point to point on ~o. However, it is possible that the scalar

curvature has constant sign throughout ~o. It is reasonable to assume that about half of

these special initial hypersurfaces have negative curvature and the corresponding space­

times are good candidates for the validity of the NHT. It may be that the set of these

special initial hypersurfaces is of measure zero in the set of all initial hypersurfaces. In an

arbitrary initial hypersurface ~o we can refine the argument by considering small regions

on ~o, where the three-curvature has a given sign. This is always possible because (3) R is

a continuous function of position on ~o. Then the regions of negative (3) R play the role

of candidates for the validity of the NHT. However, this does not necessarily mean that

these negatively curved regions will inflate. In order that the NHT be applicable, (3) R

must be nonpositive for all subsequent time of interest, not only at the initial hypersur­

face. The detailed evolution of (3) R depends on the motion of the matter and the full

set of Einstein equations must be used. A continuity argument of the time dependence
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of (3) R does not guarantee that (3) R will remain negative for a few time constants )3/A.

The above discussion though quite qualitative suggests that it is not unreasonable to

believe that the NHC may be applicable to a wide class of space-times [64].

A quite different study of the cosmic NHC is a theorem of Morrow-Jones and Witt

[58] which is formulated as follows.

Theorem 2 [Morrow-Jones 8 Witt]. In the absence of black holes, the only locally static

solutions to the Einstein equations in vacuum with positive cosmological constant are the

de Sitter and Nariai solutions.

An analogous result for A < 0 was obtained by Boucher, Gibbons and Horowitz [19]

who proved that anti-de Sitter space-time is the unique solution to Rab = Agab which

is strictly stationary and asymptotically anti-de Sitter. In an attempt to generalise this

result for A > 0 the above authors noted that the main difficulty is the fact that de Sitter

space-time has no spatial asymptotic regions.3

We recall that a space-time is said to be stationary if it admits a timelike Killing vector

field, K. Any (smooth) vector field is the generator of diffeomorphisms. The timelike

character of K guarantees that these diffeomorphisms are time translations while the

Killing property of K means that the generated diffeomorphisms are isometries. Hence

the space-time geometry does not change under the flow of the vector field. Therefore

the definition agrees with the usual notion of stationarity as time translation invariance.

Further a space-time is said to be static if it is stationary and the Killing field K = a/at

is orthogonal to a family of (spacelike) hypersurfaces (see HE [35]).

The hypersurfaces can be thought of as surfaces of constant time labelled by the

parameter t. It can be shown (see Wald [73]) that, if we choose arbitrary coordinates

Xl, x 2
, x 3 on one of the spacelike hypersurfaces, the metric components take the form

d 2- _V2 (I 2 3) dt 2 h .. (I 2 3) d id js - x ,x ,x + ~J x, X ,x X x, (3.49)

3The case A = 0 has been examined by Lichnerowicz (see for example [46]) who proved that the only
strictly static, asymptotically flat solution is Minkowski space-time.
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where V 2 = _J{aJ{r;. and i,j = 1,2,3. We see immediately that the diffeomorphism

defined by t --+ -t is an isometry. Thus the formal definition agrees with the usual

notion of static space-time as being time-reflection invariant.

What does de Sitter space-time have to do with stationarity? How can we think of a

stationary space-time which first contracts and then expands exponentially? The answer

is that there is a coordinate system such that de Sitter space-time appears static. This is

true because in general relativity there is no specially chosen time so that what appears

dynamic with respect to one coordinate system may appear static with respect to another

system of coordinates.

de Sitter space is more easily visualized as the hyperboloid

(3.50)

embedded in a five-dimensional Lorentz space. The radius of the hyperboloid is H- I =

j3/A (cf. equation (2.29)). In coordinates (t,x,fJ,<p) defined on the hyperboloid by

XO H-I sinh Ht

Xl H-I cosh Ht cos X

x 2 H-I cosh Ht sin X cos {} (3.51 )

x 3 H-I cosh Ht sin X cos {}

x 4 H-I cosh Ht sin X sin {} sin <p

the de Sitter metric takes the usual form of a FRW universe

(3.52)
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with topology R x S3. In coordinates (t, r, (), <p), defined by

1

xQ (H- 2 - r2 )2 sinhHt
1

Xl (H- 2 - r2 )2 cosh Ht

x2 r cos () (3.53)

x3 r sin () sin <p

x4 r sin () cos <p

the metric takes the form of a static universe with event horizon H-I

(3.54)

The static Killing vector field is K = a/at. Since there is a coordinate singularity at

r = H-I , de Sitter space is not strictly static by the definition given above. However,

it is locally static in the sense that every point of the space-time has a neighborhood

which admits a static Killing vector field. We give three examples to clarify the concept:

Minkowski space-time is static, de Sitter space-time is locally static and Schwarzschild

space-time is neither static nor locally static. In fact, in the interior of the Schwarzschild

event horizon there is no timelike Killing vector field.

The Nariai metric [44] can be written as

(3.55)

where d0,2 is the metric of a two-sphere. The spatial geometry of this space-time is that

of R x S2, the radius of S2 remaining constant. The Nariai solution is very unstable

under perturbations of the S2 part of the metric [67] and therefore it cannot represent

a space-time toward which others may evolve. Therefore it seems plausible to regard de

Sitter solution as the unique space-time toward which all other solutions evolve.

The proof of the theorem consists of the following steps: Locally static solutions

must have at least one static Killing vector field which is timelike on a open region
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U C M. It follows that the solution on U is one of Petrov types I, D, O. Next it can

be shown that there are no strictly static solutions. (This is easily proved in the case

of compact spatial slices. If we assume that the spatial slices are non-compact, then the

field equations and Meyer's theorem lead toa contradiction). Thus one can find two

different static Killing vector fields Kt and K2 which are timelike on open sets Ut and

U2 respectively. This excludes the possibility of a Petrov type I solution on Ut n U2 •

Standard results of the theory of elliptic nonlinear partial differential equations ensure

that the metric is analytic on Ut n U2 • On the other hand a solution is not Petrov type I

iff a certain invariant cl> formed from combinations of the Riemann tensor vanishes. Since

cl> is analytic and vanishes on Ut n U2 , it vanishes everywhere on M. Thus the solutions

are either everywhere on M of type D or everywhere on M of type O. If the solution is

type 0, the Weyl tensor is zero so the space-time has constant curvature and is therefore

de Sitter space-time. If the solution is type D, the space-time is known to have the Nariai

metric. For details of the proof see [58].

3.4 Summary

In this chapter we developed the necessary material from differential geometry which

is needed for Wald's proof. It is also helpful in the following chapters. We presented

Wald's proof in great detail for two reasons. Firstly it is the first attack to the cosmic

NHC and secondly, as already mentioned, it constitutes the frame of all subsequent no­

hair theorems for homogeneous space-times. We discussed a generalisation by Jensen

and Stein-Shabes and closed this chapter with the totally different approach to the NHC

of Morrow-Jones and Witt. In all of the above discussion we assumed the validity of

Einstein equations with a positive cosmological constant and ordinary matter content,

without having any inflationary model in mind. In the next chapter we examine whether

the NHT remains true in the finite period of inflation.
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Chapter 4

The cosmic no-hair conjecture in

inflationary cosmology

In the previous chapter we discussed the NHC in the context of General Relativity,

assuming a positive cosmological constant. However, in inflationary models the universe

does not have a true cosmological constant. Rather there is a vacuum energy density,

which during the slow evolution of the scalar field remains approximately constant and

behaves like a cosmological term. Therefore we are faced with the question: Does the

universe evolve towards a de Sitter type state before the potential energy of the scalar

field reaches its minimum? The object of this chapter is to take into account the dynamics

of the scalar field in the no-hair hypothesis.

In many inflationary models the particular form of the potential V (c.p) of the infla­

ton field is predicted by some particle theory. An alternative approach is to consider

very simple forms of V (<p) such as m 2<p2 or A<p4, not directly related to any particular

physical theory. This approach is reasonable since we do not really know which theory

of particle physics best describes the very early universe. We shall examine the NHC for

three specific inflationary models, namely new inflation, chaotic inflation and power-law

inflation. The terminology derives mainly from the form of the potential function of the

scalar field which drives the inflation.
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In all models we assume that the scalar field 'P is minimally coupled to gravity with

a Lagrangian

The energy-momentum tensor of the scalar field T~ = V a'PVb'P +9abL is usually written

as

(4.1 )

We suppose that the energy-momentum tensor Tab of the remaining matter satisfies

the strong and dominant energy conditions ie, Tabnanb 2: - (1/2) T and Tabnanb 2: 0,

where n is any unit, timelike vector field. In the previous chapter we chose n to be the

tangent vector field to a congruence of timelike geodesics orthogonal to the homogeneous

hypersurfaces. Although we do not assume that matter is moving along these geodesics,

we can formally treat the scalar field as a perfect fluid with velocity vector field

Furthermore, we construct the spacelike homogeneous hypersurfaces in such a way that

ua is hypersurface orthogonal. In other words we identify the vector field n with the

velocity vector field u of the fluid representing the scalar field 'P. In the following the field

'P is supposed to be homogeneous so that its spatial derivatives vanish. With the above

choice of n we have naVa = a/at hence,

where

(4.2)

1 .2
P = 2" 'P +V('P)

1 .2
and p = 2" 'P - V ('P) .
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4.1 Cosmic no-hair conjecture in new inflation

In this section we discuss the NHT in new inflation for homogeneous space-times. The

particular form of the potential of the scalar field is of no importance provided that

it has the general properties mentioned in Chapter Two. We begin with a qualitative

discussion of a no-hair theorem in new inflation. For this purpose we need only the

time-time component of the Einstein equations

(4.4)

and the equation of motion of the scalar field

Dep - V' (ep) = o.

Denoting the scale factors of the three principal axes of the universe by Xi, i = 1,2,3

and the mean scale factor by a = vt, where V = X 1X 2X 3 , (4.4) reads

(4.5)

(See also (3.48) and the remarks following that equation.) The only property of F that

we use is that, for all Bianchi models, F decreases at least as fast as a- 2 • The equation

of motion of the scalar field Dep - V' (ep) = 0 becomes

'P +f{ rp +V' (ep) = 0 (4.6)

because the spatial derivatives of ep vanish. As usual we assume that at the beginning

of inflation the value epi of the field ep is far from the minimum of its potential. ep rolls

slowly down its potential so the term rp in (4.3) is negligible. Thus as long as ep is near

epi the universe is endowed with an almost constant vacuum energy density VD =V (epi)

or equivalently a cosmological term.
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It is now clear why Wald's result should be applicable in the present case. As the

universe expands, the function F in (4.5) decreases at least as a-2 • Also the term

Tabnanb decreases with a (for example as a-4 for a radiation dominated FRW universe).

However, the energy density of the scalar field, 87rp, remains a constant (i=::j 87rVD) and

eventually dominates the terms 87rTabnanb and F. This happens in about one Hubble
1

time, HOl = (87rVD)-2, and a r-..J expHot. We see that the anisotropic term F and

also the ordinary matter content of the universe decay exponentially with time and the

space-time rapidly approaches that of de Sitter.

It remains to verify that in the time it takes the space-time to become nearly de Sitter,

r.p does not roll down to the minimum of its potential. The flatness of the potential in

the vicinity of r.pi permits us to neglect the acceleration term i.p from (4.6) so that

Integrating we find that

1'P dr.p rt v dt
'Pi V' (r.p) = - lo f{'

(4.7)

(4.8)

where tv is the time when the universe becomes vacuum dominated. We wish to esti­

mate the change 8r.p of the scalar field before the universe becomes vacuum dominated.

Assuming that V' (r.p) i=::j Vi (r.pi) and a r-..J t n so that f{ = 3nt- l we find from (4.8) that

The matching conditions of a and aat tv (the time of change from power-law expansion

to exponential expansion) yield t v = nHr;l and therefore 8r.p can be written as

(4.9)

Using (4.7) with f{ = 3Ho we see that the change in r.p during the pre-inflationary epoch

is n/2 times the change in r.p during the first Hubble time of the de Sitter epoch. In other
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words, during the preinflationary epoch 'P does not change more than in the first e-fold of

inflation. Thus the vacuum energy is not exhausted before the universe begins to inflate.

From the above qualitative analysis we conclude that the cosmic NHT must be true

for homogeneous cosmological models in the context of new inflation. Moreover, the

universe approaches de Sitter space-time before the inflaton field reaches the minimum

of its potential. Of course the above results cannot be stated strictly in the form of a

theorem as was the case of Wald's theorem. The reason is that we made use only of the

general properties of the potential function V (tp) and consequently we could not solve

exactly (4.6) (see also the comments at the end of this section).

Another question related to isotropisation during inflation is the following. Since the

period of exponential expansion is finite, it could be possible that curvature perturbations

which decrease more slowly than the energy density of the universe, that is more slowly

than a-4 (RD) or a-3 (MD), will eventually dominate over the energy density. Turner

and Widrow [72] have shown that although some homogeneous models will become again

anisotropic) inflation postpones this event to an exponentially distant time in the future

and models which inflate sufficiently to solve the horizon and flatness problems will today

still be very isotropic. Jensen and Stein-Shabes [40, 41] arrived at similar results, namely

the anisotropies re-enter the horizon after a very long time.

Following Turner and Widrow [72] we use the spatial components of the Einstein

equations

(4.10)

where the total (ordinary matter + scalar field) stress-energy tensor Tab of the universe

is that of a perfect, isotropic fluid with equation of state p = (, - 1) p. In order that this

fluid represent appropriately the matter content of the universe which evolves from an

inflationary phase towards the matter dominated present epoch, the coefficient, is not

fixed, but varies according to the period of the evolution of the universe. Thus, = 0

corresponds to vacuum energy, , = 4/3 to a radiation dominated universe and, = 1 to
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a matter dominated universe. The conservation equation \7aTab = 0 yields

(4.11)

(compare to (2.5)).

With notation as in (4.5) we denote the expansion rates in the principal directions of

the universe by bi =Xi / Xi. Hence, f{ = bl +b2 +b3 • For diagonalisable Bianchi models

f{ turns out to be the trace of the extrinsic curvature defined by (3.16). Recall that the

diagonalisable Bianchi space-times are those for which the matrix hij of the three-metric

of the homogeneous hypersurface, hab = hijW~Wb, i, j = 1,2,3 can be put in diagonal

form (cf. also (3.26) for notation). These are all Bianchi models except type -IV and

-VIIh . In the diagonal case it is not difficult to show [66] that the Einstein tensor Gab

is diagonal with eigenvectors (dtt ,(wIt ,(w2t and (w3t. Since the energy-momentum

tensor for a perfect fluid is diagonalisable ie, has eigenvalues - p, p, p, p, corresponding

respectively to the eigenvectors (dtt ,(wlt ,(w2t ,(w3t ,we conclude that, for all Bianchi

models except type -IV and -VIIh , equations (4.10) can be written as [29]

(4.12)

The functions Fi decrease at least as a-2 = V-~ (see Ellis and MacCallum [29] for the

detailed form of the Fi ). This is the only property of the Fi that we will use. For Bianchi

types IV and VIIh there is an additional term on the right-hand side of (4.12), due to

the non-diagonalisability of these models. Since this term decreases as some power of

a-I, every argument used in this section is applicable to these models, but for the sake of

simplicity we will not treat them separately. Taking the spatial trace of (4.10) we obtain

(4.13)

Equations (4.12) and (4.13) are reduced to the Friedmann equation in the case of isotropic
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cosmologies, that is, Xl = X 2 = X 3 = a and hi = H =0, la. If Fi = 0 and I =1= 1,

the expansion rates become asymptotically equal and we interpret the functions Fi as

measuring the degree of anisotropy.

Turner and Widrow [72] assume that the universe inflates and that Fi can be treated

as perturbations in (4.12) and (4.13). Denoting by F a typical Fi we write F = Ep where

the function E is supposed to have small initial value, say Ei ~ 0.1. With appropriate

choices of I it is possible to solve the above equations during the following periods:

inflation, post-inflation phase, radiation dominated era and matter dominated period.

For example, during inflation we have

p = ~2 ~ V (cp)

,~O

V~ H2
=} V I'V exp (Ht)

. H2
hi +I< hi = F +3'

(4.14)

Since F I'V V- ~ I'V exp (- ~Ht) , the above equations can be easily solved giving, at the

end of inflation,

E I'V Ei exp (-2N) ,

where N is the number of e-folds the universe inflates. Similarly after inflation the

corresponding equations yield

(
2/'"1)"1-2/3

E I'V t .

The last two equations allow the estimation of the present-day value of E. We emphasise

that I depends on the period under consideration. For example I = 1 during the matter

dominated period (from T ~ 10eV or t ~ 1Olosec until today, T = 2.7I<). Given

that observations constrain Etoday to less than 10-4
, the necessary value of Nmin can be

computed. It happens that Nmin has almost the same value [43] which is required to solve

the horizon and flatness problems. Anisotropy will become important again when E ~ 1.

This will happen in the exponentially distant future at time t I'V exp (3N - 3Nmin ) 1010yr
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(see [72] for the details). As Turner and Widrow point out, a finite epoch of inflation

does not smooth the universe globally. Rather it creates large smooth regions, sufficiently

large to encompass our Hubble volume at this late moment of the history of the universe.

One may feel uncomfortable with two points in the above treatment of Turner and

Widrow. The first point is that it is not proved that once the universe begins to inflate

it will evolve towards de Sitter space-time regardless of the initial conditions ie the

magnitude of the initial anisotropy. In the discussion above, the initial anisotropy is

taken to be small enough so that it can be treated as a small perturbation of a FRW

universe. The second point is that the scalar field <.p, which is part of the dynamics, is

treated phenomenologically. In fact, the device of a variable equation of state is used

to bypass the study of the evolution of <.p through its equation of motion (4.6). Of

course we cannot solve exactly the equation (4.6) except for very special forms of the

potential (see [39] for a simple example). Since we considered only the general properties

of the potential as essential for our discussion we can only expect to find the asymptotic

behavior of the solutions. In the following sections we shall see that a more specific type

of the potential function endows a more active role to the equation of motion of the scalar

field.

4.2 Cosmic no-hair conjecture in chaotic inflation:

a quadratic model

Chaotic inflation is based on the evolution of a scalar field with a simple potential which

usually has the form V (<.p) '" <.p2n, n = 1,2,3, ....The exact form of the potential is of no

importance since the scalar field in this model is not part of any particle theory. In fact,

as we have already mentioned at the end of the Chapter Two, the scalar field plays no

other role than driving inflation.

Before examining the general case, we start with the simple example of a quadratic

chaotic inflationary model for homogeneous space-times. We assume a homogeneous
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scalar field with potential V (<p) = ~m2<p2 which dominates the energy density of the

usual matter of the universe. The result is exponential expansion provided that the

scalar field is larger than (see [49])

<Pi = J4:' (4.15)

We proceed in a way analogous to Wald's proof (see section 3.2). Consider the time-

time component of Einstein's equation

and the 'Raychaudhuri' equation

a b (3 .2) ( 1 ) a bRabn n = 871" "2 <p -p +871" Tab - "29abT n n .

The last two equations can be expressed in terms of the three-geometry of the homoge­

neous hypersurface as follows:

(4.16)

(4.17)

All quantities appearing in these equations were defined in the preliminaries of the pre­

vious chapter. The term ~ cl -p is just (T~ - ~9abTcp) nanb.

The equation of motion of the scalar field O<p - V' (<p) = 0 becomes (see (4.6))

. . 2
p= -K <P, or cp +K ep +V' (<p) = o. (4.18)

Since we consider homogeneous cosmologies which are not of type-IX, the scalar

curvature (3)R is nonpositive. Combining (4.16) and (4.17) with the energy conditions
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SEC (3.9) and DEC (3.10) we take

k:::;o. (4.19)

Although J{ decreases monotonically, it cannot pass through zero since (4.16) implies

that J{2 - 247fp ~ O. Thus, if the universe is initially expanding, then it will expand for

ever ie, J{ > 0 for all time.

Following Moss and Sahni [60], we consider the quantity

s = ~ (J{2 - 247f p) .

Taking the time derivative of S and using (4.17) and (4.18) we obtain

We see immediately that

. 2 2 J3S < --J{S = --S -S +247fp.
- 3 3 2

(4.20)

(4.21 )

(4.22)

(4.23)

The above inequality cannot be integrated immediately because p is a function of time

(although slowly-varying). However, during exponential expansionp is bounded below by

the potential energy Vi = ~m2'Pi, where 'PI is given by (4.15), hence we have 247fp ~ 9m2
•

Integration of (4.22) yields
6m2

a aab < S < -----".---
ab - - sinh2 (mt)"

Here the first inequality follows directly from (4.16). Inequality (4.23) shows that the

shear of the timelike congruence rapidly approaches zero. By the same type of reasoning

as in Wald's proof we arrive at analogous results for the asymptotic behavior of the

matter energy density and the geometry of the spacelike slices. (For a formal proof see

the general case below). However, we have not yet answered the question of whether

the universe isotropises ie, whether the shear vanishes before the end of the inflationary
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era. To this end we have to study the evolution of the scalar field via equation (4.18).

Consider what happens during the time interval 0 < t < m-I. If J{ were zero, the

solution would be <.po cos mt +m-I <Po sin mt, where <.po and <Po are the initial values of <.p

and <P. The presence of damping has the effect that <.p does not decrease as in the case

with zero damping factor that is, the solution of (4.18) satisfies

I .
<.p (t) > <.po cos mt +m- <.po sin mt (4.24)

From (4.23) we see that the anisotropy dies away if exponential expansion continues up

to time t = m-I that is, if <.p > <.pi at t = m-I. Inequality (4.24) suggests that it suffices

to take as initial conditions

(4.25)

Note that a larger anisotropy damps more efficiently the slow rolling of the scalar field

thus producing more inflation.

The above analysis applies to all Bianchi cosmologies which are initially expanding

except type-IX. It can be slightly generalised to the case of inhomogeneous cosmologies

with negative spatial scalar curvature. In fact in the above proof we use no other prop­

erty of homogeneous space-times which are non-type-IX than the nonpositivity of (3) R.

Therefore, assuming an inhomogeneous space-time with negative scalar three-curvature

of the spacelike slices, we could proceed by repeating the above reasoning in the same way

Jensen & Stein-Shabes claimed to generalise Wald's theorem (see theorem 1 in Chapter

Three and the comments following).

In the case of Bianchi type-IX models the universe could recollapse before infla­

tion begins. This is certainly true for some highly curved models. However, if initially

Aej jective - V (<.p) > t (3) R (compare to inequality (3.47) in Wald's proof), then it can be

shown [42] that the universe avoids recollapse. Moreover, even in the case of a Bianchi

type- IX cosmology the anisotropy is bounded as in (4.23), provided that the universe
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expands.

There are two weak points of the above version of the cosmic no-hair theorem. Firstly

the result depends on the initial conditions (4.25) for the scalar field. However, there

is some evidence that even for large values of 1'fI1, the shear disappears within a fixed

interval of time. This was claimed numerically by Moss and Sahni [60] for a Bianchi type­

I model. The second weakness is more serious. As we shall see shortly, in this model

J{ tends to zero as t -+ 00. Therefore, if the shear decays more slowly than the rate of

universal expansion, this would build up a large cumulative anisotropy with increasing

time. Therefore, we must state more carefully what isotropisation of the universe means.

Collins and Hawking were the first to give a precise definition of isotropisation for

a homogeneous universe [21]. According to their definition a model is said to approach

isotropy if, as t -+ +00,

i)

ii)

iii)

iv)

h -+ +00, where h is the determinant of the spatial metric,
b hacTbcnb

Tabnan > 0 and b -+ 0,
Tabnan

a
---; -+ 0, where 2a2 = a abaab and
li

1

dab h-3 hab tend to some constants, d~b' with det dab = 1.

Condition (i) says that the universe expands indefinitely. It implies also that J{ > 0

and so it excludes a universe that could recollapse. Condition (ii) can be written more

simply in a synchronous coordinate system: Too> 0 and Toi/Too -+ 0 as t -+ 00,

i = 1,2,3. It requires the average velocity of the matter relative to the hypersurfaces of

homogeneity to die away in time. Condition (iii) seeks to exclude those models in which

the shear decays more slowly than the universe expands. Condition (iv) implies that the

cumulative anisotropy! 13 = Id adt, must approach a constant 130 [12] as t -+ 00.

In order to examine which homogeneous cosmologies isotropise Collins and Hawking

also made use of the dominant energy condition (DEC) and the positive pressure criterion

(PPG) which requires
3

LTkk ~ O.
k=l
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The first theorem of Collins and Hawking [21] states the following.

Theorem 3 [Gollins (3 Hawking 1973j. If the DEG and PPG are satisfied) the universe

can approach isotropy only if it is one of the types I) V) VIIo and VIh.

The proof is based on the Einstein field equations without a cosmological constant.

We shall see that the theorem remains true in the context of the general chaotic inflation

ie assuming a scalar field with a convex and positive potential having a local minimum

equal to zero.

4.3 Cosmic no-hair conjecture in chaotic inflation:

the general case

(For the rest of this dissertation, c = 87fG = 1). We are now moving on to the general

case. This means that we are not concerned with a particular form of the scalar field

potential. We consider an arbitrary convex, positive potential having a local minimum at

V ('P = 0) =Vo· As already mentioned, most ofthe potentialsused in chaotic inflationary

models belong to this class.

In terms of the three-geometry of the homogeneous hypersurfaces the time-time com­

ponent of the Einstein tensor, the 'Raychaudhuri' equation and the spatial components

of the Ricci tensor read

(4.27)

(4.28)

(4.29)

Equations (4.27) and (4.28) take the form of the corresponding ones found in Chapter

Three provided that we decompose [{ab into its trace and traceless part

(4.30)
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We use the abbreviations

(4.31 )

so that the SEC and DEC read Ts (n) 2: 0 and Tw (n) 2: O. The Einstein equations

corresponding to equations (4.27)-(4.29) become (recall that 81rG = 1)

(4.32)

(4.33)

(4.34)
. e (3)f{ ab +f{ f{ab - 2f{aef{ b - R ab

= heahdb (Ted - ~gedT) + ~ (p - p) hab ,

where (4.2) and (4.3) were used. The general asymptotic properties of the solutions to

the above equations are summarized in the following

Lemma 1 If we assume the following:

The dominant and strong energy conditions hold

The scalar spatial curvature is nonpositive

The potential is convex and positive) hence V (<p) 2: Vo for all <p

The universe is initially expanding) ie f{ 2: 0 at an (arbitrary chosen) initial time

t = O.

Then we obtain the following asymptotic forms for the solutions of the Einstein system

(4-32)-(4·34):

i) i< ::; 0 and f{ 2: 0 for all t 2: 0 and

ii) (3) R, Tabnanb, T, <P tend to zero and f{ ~ J3Vo as t ~ +00.

Proof. i) If we had only a constant cosmological term, k ::; 0 would follow directly from

Raychaudhuri equation (4.33) and f{ 2: 3A > 0 from the time-time component of the

Einstein equation (4.32) (see Wald's theorem). In the present case we can not proceed
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in the same way because the energy-momentum tensor of the inflaton field <.p violates the

strong energy condition and the term p + 3p in the right-hand side of (4.33) could be

negative. However, addition of equations (4.32) and (4.33) yields

(4.35)

Using the algebraic inequality

(4.36)

(which can be easily verified by bringing the tensor J{ab to diagonal form) and the fact

that p +p =(j}> 0 we conclude from (4.35) that k ::; O. On the other hand, eliminating

J{abJ{ab from (4.32) and (4.33) we have

2' (3) ( a b 1) 3( )J{ + J{= - R + Tabn n - 2T + 2 p - p

and, since p - p = 2V ~ 0, we conclude that

(4.37)

(4.38)

By a Raychaudhuri-type argument we find that J{ ~ 0 for t ~ O.

ii) J{ (t) is a decreasing function, bounded below by zero. Therefore

limt-++oo J{ (t) ~ 0 and limt_+oo k (t) = O. Since the right-hand side of (4.35), is a sum

of non-negative functions of time, we conclude that all these functions have zero limit as

t ~ +00. Finally, (4.37) implies that J{ (t) ~ V3Vo as t ~ +00.•

A corollary of the above lemma is that the shear, (72, also tends to zero as t ~ +00.

In fact the term 3J{abJ{ab - J{2 in (4.35) equals 3(7aWab .

We discuss now the possibility of isotropisation of a homogeneous universe with a

scalar field in the spirit of the Collins and Hawking criterion on page 55. Equations

(4.2) and (4.3) show that there exist time intervals where the scalar field behaves as
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ordinary matter, ie, like a perfect fluid with nonnegative pressure and also there exist

time intervals where the PPC is violated. Therefore Theorem 3 is not directly applicable.

It turns out to be convenient to consider a suitably defined average equation of state for

the scalar field.

There are two quite different cases to consider depending on whether VG > 0 or Vo = O.

In the first case limt->+oo f{ (t) = v!3Vo i= 0 so that (J'I f{ --+ 0 as t --+ +00 and the universe

isotropises according to the Collins and Hawking criterion. The local minimum VG of the

potential acts as a cosmological constant and the universe becomes de Sitter space with

Ho = ~f{ = J~VG· In short Wald's theorem is applicable and the conclusions at the

end of its proof remain valid. In the second case the shear still vanishes asymptotically,

but now f{ also tends to zero. It is not obvious whether limt-++oo (J' If{ exists and equals

zero. This is the case of the quadratic model where as we saw vanishing of the shear

does not guarantee that the universe isotropises. This is not surprising since, according

to the theorems of Collins and Hawking [21], most homogeneous models (with ordinary

matter) do not approach isotropy. A generalisation to the scalar field case of the first

theorem of Collins and Hawking was given in 1991 by Heusler [37]. We discuss briefly

the line of proof of this result.

To begin we define a time-dependent coefficient of state for the scalar field <.p

so that we have an effective equation of state

p(t) = (,(t) -l)p(t).

(4.39)

(4.40)

Since the ratio Vip takes all values between 0 (<.p = 0) and 1 (tP= 0), ,(t) takes all values

between 0 (cosmological constant, p = -p) and 2 (stiff matter, p = p). Therefore there

are time intervals when the scalar field does not behave like an effective cosmological

term. We encountered a similar situation in the new inflation treatment of Turner and

59



Widrow [72] (see page 48) where the total matter content of the universe was modelled

by a perfect fluid with a varying equation of state. Therefore, in order to investigate

the (possible) asymptotic isotropisation of the homogeneous models, we need a kind

of average equation of state. It turns out that it is convenient to define a new time

coordinate by

T = JJ{ (t) dt. (4.41 )

Essentially we use the determinant of the spatial metric as new time parameter since

J{ = (In Jh,)'. If we exclude models which could recollapse, condition (i) of the Collins

and Hawking isotropisation criterion (see page 55) implies that T is an increasing function

of t and tends to +00 as t -t +00. Heusler [37] proves the following

Lemma 2 Any homogeneous model of Bianchi type II, Vlo, VIII, IV or Vlh coupled to

a scalar field, can only approach isotropy as t -t +00 if

p 1 1
- -t - and ph"3 -t +00.
J{2 3'

The Bianchi models mentioned in the lemma are exactly those which do not contain

an FRW solution. Under precisely the same assumptions we prove that

IV) > ~
\ p - 3'

where 0 denotes the time average with respect to T given by (4.41). From (4.18) we have

p= -2J{ (p - V) .

Using the definition of I (t) the above equation can be integrated to give

Substitution of the above equation into the relation pht -t 00 of the previous lemma
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together with the new time variable (4.41) yields

lim exp (~7 - J1(7) d7) = +00.
'T->+oo 3

We conclude that
1i'T 2(,) _ lim - I ~ -

'T->+oo 7 'To 3

and so, by (4.39), we finally obtain

(4.42)

The inequality (4.42) is inconsistent with isotropisation in the spirit of lemma 1. More

precisely, we have the following

Lemma 3 If V (tp) is a convex, non-negative function with local minimum V (0) = 0

and K~ 0 ~ K, K 2+ K?:. 0 for all t ?:. 0, then every solution of (4.18) with p (0) ?:. 0

and piK 2 ---+ c as t ---+ +00, where c is a strictly positive real number, satisfies

(4.43)

The assumptions on K are reasonable in view of lemma 1, while piK 2 ---+ C IS a

necessary condition for isotropisation by Lemma 2. The proof of this assertion consists

of taking the time average of (4.18) written in terms of the new time 7. The result is

(for details we refer again to [37])

2(L (1- V)) = (L V'tp)
K2 p K2 P

(4.44)

and, since limt->+oo piK 2 = C i= 0, this term can be eliminated in (4.44). On the other

hand the convexity of V (tp) implies that Vtp, tpV' (tp) ?:. V (tp). Hence (4.44) yields
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that is,

G)s~.•
The preceding result, inequality (4.43), contradicts the necessary condition for isotropi­

sation, inequality (4.42). This shows that the first theorem of Collins and Hawking (The­

orem 3) remains true in the case of a scalar field. In conclusion one has the following

result: [37]

Theorem 4 {Heusler}. Any homogeneous cosmological model coupled to a scalar field

with a convex) positive potential having a local minimum at I.{) = 0 with V (0) = 0 and

ordinary matter satisfying the DEC and SEC can approach isotropy only if it is of the

types I) V) VIIo or Vlh.

In [37] the Bianchi type-IX is also included in the statement of the above theorem.

This is incorrect, since the nonpositivity of (3) R is a necessary condition of the byproduct

f{2+ K? 0 of lemma 1, which in turn is one of the assumptions of lemma 3. The spatial

scalar curvature of Bianchi IX may be positive. In fact (3) R is positive if the three­

dimensional Ricci tensor is isotropic (see Lemma 2 and Theorem 1 in Collins & Hawking

[21]). Therefore a separate analysis is necessary if one wishes to include Bianchi IX in

the above theorem.

4.3.1 Application: An exponential potential

Consider a model with a scalar field having a potential

V (I.{)) = Voexp (- AI.{)) ,

where Vo and A are constants. In the spirit of chaotic inflation such a field may not

come from any particular particle theory. However, exponential potentials do arise in the

effective four-dimensional theories induced by Kalusa-Klein theories. Moreover, many
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higher order gravity theories naturally lead to inflation with an exponential potential as

we will see in more detail in the next chapter.

An homogeneous and isotropic cosmological model driven by a scalar field with an

exponential potential was studied by Halliwell [34). He showed that there exists a solution

with power-law inflation (a (t) '" tP , p > 1) and this solution is an attractor. Power-law

inflation will be discussed in the following section. In this section we examine the question

of isotropisation of homogeneous cosmologies based on such a scalar field. Following

Ibanez, Hoogen and Coley [38) we write down the Einstein equations (see for example

equations (4.16)-(4.18)) in the form

. 1'2 2· 2
J{= --li - 2a - r.p +V

3

cp +J{ (P -AV = 0,

where 2a2 = aabaab. With the use of new expansion variables (see [38) for the details)

and the time coordinate defined by (4.41) it can be shown that Lemma 2 implies that

(P IJ{ - A/3 ~ 0 as T ~ +00. As a consequence (Vip) = 1 - A2 /6. In order that the

necessary condition for isotropisation, inequality (4.42), be satisfied A2 must be less than

2. Thus, if A2 > 2 and the model is not of Bianchi types I, V or V I I, then it cannot

isotropise. It is worth to note that the necessary condition A2
:::; 2 for isotropisation is

compatible with the condition A2 < 2 which is necessary for inflation (see [34) and the

discussion at the beginning of the following section).

The above treatment of the NHC is incomplete for two reasons. Firstly ordinary

matter is not included in the model. Secondly, as the above authors themselves point out

[38), their treatment does not imply that all models with A2
:::; 2 can approach isotropy.

In the next section we will show precisely this, namely that for A2 < 2 the isotropic

power-law inflationary FRW solution is the unique attmctor for any initially expanding
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Bianchi model (except probably type IX) with a scalar field having an exponential potential

and ordinary matter satisfying the usual energy conditions.

4.4 Cosmic no-hair conjecture in power-law inflation

A common feature of all inflationary models is that the mean scale factor a (t) of the

universe accelerates with time

a(t) > 0 (4.45)

or more generally the Lie derivative of the trace of the extrinsic curvature with respect

to n is positive, LnK > O. So far we have considered models in which the scale factor

expands exponentially a (t) ex: exp (Ht). There exists another class of models satisfying

condition (4.45), the so called power-law inflationary models in which

a(t) ex: tn, n> 1. (4.46)

Such a dependence on time of the scale factor can arise from a scalar field with an

exponential potential, V (rp) = VD exp (-)..rp) , where VD and)" are constants. In this case

the Friedmann equation is

(
")2 1a "2

3 -;; = 2" rp +VD exp (-)..rp)

and the equation of motion of the scalar field is

.. a"
rp +3- rp ->.Voexp (->.rp) = O.

a

Barrow [4] gives an exact solution of the Einstein equations with a scalar field of this

type in a flat FRW metric. It is

a (t) I'.J tP
, p = const, 'P (t) = liP In t,
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provided that we take VD = p (3p - 1) and A = J2/p.

As we mentioned in the previous section, power-law inflation driven by a scalar field

with exponential potential was also studied by Halliwell [34]. He showed that the solution

(4.47) is an attractor for open (k = -1) and flat (k = 0) FRW models.

Most of the inflationary models of particle physics exhibit power-law rather than

pure exponential expansion. As we shall see in more detail in the next chapter, many

generalised theories of gravity which are conformally equivalent to the Einstein theory

with a scalar field whose potential is of exponential type lead naturally to power-law

inflation. Therefore, it seems natural to examine the applicability of the no-hair theorem

in such inflationary models.

In the most general inhomogeneous case the problem is mathematically intractable.

However, for homogeneous cosmologies Kitada and Maeda [42] proved a no-hair theorem

in the spirit of Wald's theorem. Below we present the most interesting points of their

work omitting the details of their proof which is similar to Wald's proof.

We assume that the inflaton field has a potential

v ('P) = VD exp (- A'P) . (4.48)

The solution (4.47) given by Barrow indicates that power-law inflation occurs whenever

A < J2. It is surprising that this is also the condition for isotropisation according to

Heusler, as we saw in the previous section. A further restriction on A of the form

O<A< ~- Y3 (4.49)

is necessary for the validity of inequality (4.59) below. Firstly we consider Bianchi cos­

mologies except type-IX. As usual the strong and dominant energy conditions for the

energy-momentum tensor Tab of the remaining matter are among our assumptions. Fur­

ther, remembering the abbreviations (4.31) and that p = ~ ep2 +V, equations (4.16) and
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(4.17) become

(4.50)

(4.51 )

Following Kitada & Maeda [42] we define a new time coordinate T by

(4.52)

For simplicity we use again a dot to denote differentiation with respect to T, that is, for

a function f of time we have df /dt = je-"t)..'P. We also introduce new, tilded variables,

A, where A _ A exp (~A<p) . The significance of these transformations will be discussed

in the next chapter. In terms of these new variables equations (4.50) and (4.51) take the

form

-2 ( 1 . 2 ) 3 b 3 (3) - -
f{ = 3 '2 <p +Vo + '2aabaa - '2 R +Tw (n)

....:..- . 2 1-2 A- . b-
f{= - <p +Vo - 3f{ = "'if{ <P -aabaa - Ts (n)

and the equation of motion of the scalar field, (4.18), becomes

(4.53)

(4.54)

(4.55)

We suppose that the universe is initially expanding ie, f{ > 0~ f{ > 0, at some initial

time and define the function S (compare with (4.20))

(4.56)

Using equations (4.54) and (4.55), and differentiating S with respect to T (compare to

(4.21)) we obtain the following inequality

(4.57)
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Inequality (4.57) is similar to inequality (4.22). Further combining equations (4.53) and

(4.56) we find

J{2 - ~ (f?> 3'1ro2 -

and from this inequality with 0 ::; >. < )2/3 we conclude that

2J{ - 3>' <P? 3a > 0,

(4.58)

(4.59)

where

(4.60)

With this bound, inequality (4.57) can be integrated yielding

o::; S(7) ::; So exp (- a7) , (4.61 )

where So = S (0) . Again, as in Wald's theorem, the time-time component of the Einstein

equations, (4.53), implies that

0::; < S(7). (4.62)

Inequalities (4.61) and (4.62) show that, during one e-folding time a-I, the expansion

rate J{ of the universe is dominated by the inflaton energy density; the shear and the

three-curvature rapidly vanish ie, the spatial sections become nearly flat and isotropic

and the universe appears to be matter-free.

We note that the expansion rate J{ does not vanish asymptotically as is the case for

chaotic inflation studied by Moss & Sahni [60] (see the comment before the Collins &

Hawking isotropisation criterion on page 55 and the analysis after the proof of lemma 1).

Therefore this model of power-law inflation avoids the problems mentioned at the end of

the discussion of the quadratic model and satisfies the third condition of the criterion of

isotropisation of Collins and Hawking.
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How fast does the universe isotropise with respect to the cosmic time t? We saw that

isotropisation occurs rapidly in terms of the T time. In order to return to time t we use

the isotropic attracting solution (4.47). Inserting c.p in (4.52) we find

where q is a positive constant depending on ,\ (refer to [42] ). The dependence of the

original variables on t is therefore

5, (Jab(Jab , (3) R, Tw (n)

K 2 , p rv t-2 .

(4.63)

We emphasise again that the anisotropy vanishes faster than the universe expands ie, no

cumulative anisotropy develops for large t.

Wald's results for Bianchi type-IX cosmologies may be extended to cover the case of

the power-law inflation model. Firstly we note that if, 50 ~ 0, equations (4.57)-(4.60)

imply that S~ -a5 ~ 0 and so 5 is bounded above, 5(T) ~ max {0,50 exp (-aT)} .

Although the three-curvature of Bianchi type-IX models may be positive, it is bounded

by (3) Rmax rv h-t, where h is the determinant of the spatial metric (see (3.46)). At

the end of Wald's proof we saw that in the case of a true cosmological constant, A the

universe could still evolve towards de Sitter space-time provided that A is initially large

enough, A > ~ (3) Rmax (cf. condition (3.47)). In the present situation we see that, if

we define an effective cosmological 'constant' Aej j == V (c.p), Wald's proof is extended to

the case of the power-law inflation. In fact a careful analysis leads to the result that, if

initially we have Aejj > ~(3)Rmax , then -~5 :::;(3) R :::;(3) Rmax (0) exp (-3a/xT) , that is,

(3) R decays to zero (see [42] again for the technical details). The new time constant a Ii
is greater than a-I which implies that the convergence time in type-IX is longer than

that in the other Bianchi types.

So far we have seen that the power-law solution is the unique attractor for the open
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and flatFRW models as well as for almost all initially expanding Bianchi-type models,

coupled with a scalar field having exponential potential. Is there enough reason to believe

that the cosmic NHT is true in general for power-law inflation? A possible answer is

given by Miiller, Schmidt and Starobinsky [61], who constructed a generic inhomogeneous

solution in the form of an asymptotic series that locally approaches the power-law solution

(4.47) as ---+ +00. However, some inhomogeneous ever-expanding cosmological models

undergoing power-law inflation do not approach homogeneity and isotropy as t ---+ +00.

Barrow [4] gives such counter-examples using a class of metrics found by Wainwright and

Goode (see [4] for references).

4.5 Summary

In this chapter we discussed several cosmic no-hair theorems in three large classes of

inflationary models, namely new inflation, chaotic inflation and power-law inflation. We

showed that the NHT remains true at least for homogeneous cosmologies, in the sense that

the universe has enough time to isotropise before the inflaton field reaches the minimum

of its potential. In the following chapter we shall discuss the attractor property of de

Sitter space-time in the context of another mechanism of inflation which does not rely on a

scalar field, but emerges naturally from curvature corrections to the Einstein Lagrangian.
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Chapter 5

Cosmic no-hair conjecture in

generalized theories of gravity

It is well known that the vacuum Einstein field equations can be derived from an action

principle

where the Lagrangian density LE is just the Ricci scalar R

LE=R

(5.1)

(5.2)

and EO is the natural volume element EO =~ dxo 1\ dx 1 1\ dx 2 1\ dx3 • If matter fields are

included in the theory an appropriate Lmatter term must be added to the Lagrangian

density (5.2).

Einstein was the first to modify his original theory in an attempt to obtain a static

cosmological model. This modified theory can be derived from a Lagrangian density

L = R-2A, (5.3)

where A is the cosmological constant. Since then there have been numerous attempts
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to generalize the action (5.1) by considering action functionals that contain curvature

invariants of higher than first order in (5.3). These Lagrangians generally involved linear

combinations of all possible second order invariants that can be formed from the Riemann,

Ricci and scalar curvatures, namely

R Rabed
abed ,

iklmR R st
€ ikst lm'

The reasons for considering higher order generalizations of the action (5.1) are multi­

ple. Firstly, there is no a priori physical reason, to restrict the gravitational Lagrangian

to a linear function of R. Secondly it is hoped that higher order Lagrangians would create

a first approximation to an as yet unknown theory of quantum gravity. For example a

certain combination of the above second order invariants may have better renormalisa­

tion properties than general relativity [71]. Thirdly one expects that on approach to a

space-time singularity, curvature invariants of all orders ought to play an important dy­

namical role. Far from the singularity, when higher order corrections become negligible,

one should recover general relativity. It is also hoped that these generalised theories of

gravity might exhibit better behavior near singularities.

In this chapter we consider higher order gravity (HOG) theories, wherein the La­

grangian density is an arbitrary analytic function of the scalar curvature R. This is

obviously not the most general class of HOG theories, but the inclusion of curvature

invariants other than R would greatly complicate matters [14]. There is another reason

for this choice of the Langrangian closely related to the inflationary scenario as we shall

see in the next section.
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5.1 Field equations and the conformal equivalence

theorem

We consider a Lagrangian density of the form

L = f (R), (5.4)

where f (R) is assumed to be an analytic function of the scalar curvature. By varying

L with respect to the metric tensor g, the action principle provides the vacuum field

equations [22, 14]

(5.5)

where 0 = gabVaVb and a prime (') denotes differentiation with respect to R. These are

fourth order equations ie they contain fourth order derivatives of the metric. Therefore

it is not surprising that very few solutions exist in the literature. For a discussion of

cosmological solutions and stability issues see [14, 22, 25]. Among other difficulties related

to the field equations (5.5) we mention the need for additional initial conditions in the

formulation of the Cauchy problem, besides the usual ones in general relativity.

Fortunately there is a method to overcome most of these problems. This is the

conformal equivalence theorem proved by Barrow and Cotsakis [8]: Under a suitable

conformal transformation, equations (5.5) reduce to the Einstein field equations with a

scalar field as a matter source. We can see this by considering the transformation!

(5.6)

lStrictly speaking the metrics in the transformation (5.6) are said to be conformally related, while a
conformal transformation is a diffeomorphism f : (M, g) --+ (M, g) such that f* g = (22 g; see eg [62] for
a discussion.
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where 0 2 is a smooth strictly positive function chosen so that

0 2 = / (R). (5.7)

Granted the relation between the tensors Rab and R in the space-time (M, g) to the

corresponding ones Rab and R in the space-time (M, g) (see for example Wald [73],

appendix D) we may transform the field equations (5.5) in the new space-time (M, g) .

Moreover, on the introduction of the scalar field 'P by

'P = ~ln (l (R»)

the conformally transformed field equations become

These are the Einstein equations for a scalar field source with potential

v = i (/)-2 (R/ - f).

(5.8)

(5.9)

(5.10)

The theorem of Barrow and Cotsakis allows one to study the dynamical properties

of higher order gravity theories by analysing them in the conformal picture, that of

Einstein's equations with a scalar field matter content. The authors state their result in

D dimensions, but for our purposes a four-dimensional treatment is sufficient. If matter

fields with energy-momentum tensor T;:b (g) are present in the original space-time (M, g) ,

the field equations become

(5.11)

In the conformally related space-time, (M, g) , the corresponding Einstein equations be-
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come

(5.12)

where T::'b (g,g) is the right-hand side of (5.9). For a discussion on the question of the

physical reality of the two metrics involved and other interpretation issues see [22, 23].

An interesting feature of HOG theories is that inflation emerges in these theories in a

most direct way. In one ofthe first inflationary models, proposed in 1980 by Starobinsky

[69], inflation is due to the R 2 correction term in a gravitational Lagrangian L = R+ (3R2

where (3 is a constant. Instead of having to rely on the existence of a scalar field,

inflation in the present context is driven by the higher order curvature terms present in

the Langrangian without assuming a scalar field at all. Here the role of the scalar field

is played by the scalar curvature of the space-time. The situation is not surprising under

the light of the conformal transformation theorem stated above.

As a concrete example consider the quadratic Lagrangian theory

(5.13)

where A is the cosmological constant. With the use of equations (5.7) and (5.8) the

conformal transformation (5.6) takes the form

g = (1 +2(3R)g. (5.14)

The potential of the scalar field (see (5.10)) in the conformally equivalent picture is

(5.15)

As Maeda [55] has pointed out, this potential possesses a flat plateau V (<p) -+ 1/ (8(3)

as <p -+ +00 and leads to exponential inflation.
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5.2 Stability of homogeneous and isotropic solutions

Before proceeding to discuss in detail the inflationary scenario and the applicability of

the cosmic no-hair theorem in HOG theories we must first examine the existence of the

de Sitter solution in the context of these theories. Moreover, if such a solution exists, we

must study its stability properties.

In general relativity (GR) de Sitter space-time can be defined as the maximally sym­

metric vacuum solution of the Einstein equations (see HE [35]). To see this, recall that

the space-times of constant curvature are locally characterized by the condition

which is equivalent to

1
Rabcd = 12 R (9ac9bd - 9ad9bc) (5.16)

(5.17)

The second Bianchi identities, Rab[cdie) = 0, imply that R is covariantly constant ie

R = Ra = const. (5.18)

The Einstein tensor is therefore Rab - ~R9ab = -~Ra9ab' Hence, one can regard these

spaces as solutions of the vacuum Einstein equations with A = ~Ra, ie the de Sitter

solution. (If Ra = 0, the solution is Minkowski space-time. The de Sitter space-time is

the only maximally symmetric curved space-time).

To see what equations (5.16)-(5.18) imply for the HOG field equations we insert the

above three constraints in (5.5) and take the following simple existence condition

Raj' (Ra) = 2f (Ra). (5.19)

Thus, given any f (R) gravity theory, if there exists a solution Ra of (5.19), then the

theory contains the GR de Sitter solution with constant curvature Ra. For example for
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the f (R) = R - 2A theory (GR) the existence condition gives Ra = 4A. For the purely

quadratic theory f (R) = R2 , the condition (5.19) is identically satisfied that is, solutions

exist for any value of Ra.

The general quadratic theory (5.13) admits the de Sitter space-time as a solution

provided that Ra = 4A. This solution is stable if (3 < 0, but unstable if (3 > 0 [14]. When

A is zero, the exact de Sitter solution of GR corresponding to exponential inflation is not

a solution of the quadratic theory. However, an exact solution of the R+ (3R2 theory can

be found (see [56, 14]), viz.

aa (t) rv exp (Bt - At2
)

with A, B constants and A = 7~13 < O.
(5.20)

In general f (R) theories without a cosmological constant still admit a near-de Sitter

solution corresponding to a quasi-exponential expansion of the universe. These solutions

have the form a (t) rv exp [H (t) t] , where H (t) is no longer constant but a slowly varying

(decreasing) function of time. For example, in the quadratic case above, H (t) is linearly

decaying H (t) = B - At. Although mathematically more complicated, quasi-exponential

expansion is more realistic as a model of inflation.

Since (5.20) is not solution of GR, the cosmic NHC in the framework of higher order

gravity theories could be reformulated as follows [24]: All solutions of the HOG theories

derived from a Lagrangian L=f(R) with a metric which can be written in a synchronous

form and a stress-energy tensor satisfying the strong and dominant energy conditions)

asymptotically approach the quasi-de Sitter solution (5.20). As Cotsakis and Flessas [24]

point out, a stability analysis of the solution (5.20) is essentially equivalent to examining

the validity of the above version of the cosmic NHC for solutions of the form

a (t) = eBt-At2 (1 + to (t)),

to (t) ~ 1.
(5.21 )

If these solutions turn out to have a stable regime in HOG, then in that regime the solution
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(5.20) will be an attractor for all solutions of the form (5.21). Thus, the cosmic NHT (in

its HOG version) for homogeneous and isotropic space-times will follow immediately.

The stability analysis carried out by the above authors shows that conditions can

always be found such that t (t) -+ 0 as t -+ +00 (see [24] for the details). This means

that all solutions of HOG theories of the form (5.21) eventually settle down to the quasi­

stationary state described by (5.20). Thus the above stated form of the cosmic NHT in

HOG theories is true for homogeneous and isotropic cosmologies. The result does not

rely on the corresponding NHT in general relativity and shows that small homogeneous

and isotropic perturbations of the metric tensor tend to zero as t -+ +00.

5.3 No-hair theorems for homogeneous space-times

A cosmic NHT for homogeneous cosmologies in a quadratic theory has been demonstrated

by Maeda [55] (see also Mijic & Stein-Shabes [57]). The proof is based on the conformal

equivalence theorem and thus relies on general relativity dynamics.

In the following we discuss the cosmic NHC for a quadratic Lagrangian (5.13) without

cosmological constant. For a f (R) = R + {3R2 theory the field equations (5.5) take the

form

(5.22)

With the corresponding conformal factor (5.7) we have the conformally related metric

g = (1 +2{3R) g. Introducing the scalar field (see (5.8))

'P = ~ln(l + 2{3R)

we can write the field equations in the conformal picture as
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Figure 5-1: The potential in the conformally equivalent system. The height of the plateau
is Voo = 1/8{3.

Ocp - Vi (cp) = 0,

where the potential V is (see (5.15))

As already mentioned this potential has a long and flat plateau (see figure 5-1). When cp

is far from the minimum of the potential, V is almost constant V00 - limep-++oo V (cp) =

1/ (8{3) . Thus V has the general properties for inflation to commence and Voo behaves as

a cosmological term.

Consider now homogeneous Bianchi-type space-times. According to the results of

section 3.1.4 the metric can be written (we drop the tilde - for simplicity) as

d 2 - dt2 h·· (t) i j .. - 1 2 3s - - + ~J W W Z, J - , , .
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This fact greatly simplifies the matters because the scalar field defined by (5.23) can be

treated as homogeneous. Moreover, as we already mentioned in section 3.1.4 the Einstein

equations (5.24) become ordinary differential equations with respect to time.

It turns to be convenient to s~lit the energy-momentum tensor of the scalar field (that

is, the right-hand side of (5.24)) into a term without the potential Tab - \7a'P\7b'{) ­

~ (\7'P)2 gab plus the potential term - Vgab. It is then easily seen that the Tab part of

the energy-momentum tensor satisfies the strong and dominant energy conditions. The

time-time component of (5.24), the Raychaudhuri equation and the equation of motion

of the scalar field are (compare to equations (3.36), (3.37) and (4.18))

. 1 2 ab' 2
K = - - K - aaW - 'P +V

3

p= - K <p2, or 'P +K <p +V' = 0 .

(5.25)

(5.26)

(5.27)

We are now ready, to prove the cosmic NHC following Wald's method. It can be seen

from figure (5-1) that, as long as inflation continues, V remains less than Voo ' Then, the

above three equations imply

I3E < K < J3V:
yvvoo - - tanhat

(5.28)

·2 2Voo
'P < 2'- sinh cd

where a = JVoo /3 = vf24f3 . The proof is analogous to the way we arrived at equations

(3.42)-(3.44) from equations (3.36) and (3.37).

Once the universe evolves on the plateau of the potential and is initially expanding,

K is always positive by (5.25). This implies that p< 0 and so, losing energy, the universe
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evolves towards the minimum of the scalar field. Equations (5.28) show that anisotropy

dies away in one Hubble time a-I and the kinetic energy (p2 of the scalar field also

disappears within a-I. The universe reaches the potential minimum (when 'P = 0) at

which the cosmological term automatically vanishes. Using physical arguments Maeda

claims that inflationary phase is a transient attractor. Hence inflation and consequent

isotropisation is a quite natural phenomenon in R2 gravity theory [55].

We discussed inflation in the equivalent space-time (M, g) , but it is not obvious that

the above attraetor property is maintained in the original space-time (M, g). This is

probably an unimportant question since there is much evidence that in most cases the

rescaled metric g is the real physical metric [23]. However, since during inflation the

scalar field 'P changes very slowly and the two metrics are related by g = exp (- ~'P) g,

it is easily seen that inflation happens in the original picture also.

Berkin [16] arrived at similar results for Bianchi type-I and type-IX universes in

R + (3R2 theory without relying on the conformal equivalence theorem. Using the field

equations (5.5) of the theory he showed that Bianchi type-I model always isotropises. The

same is true for Bianchi type- IX universes with the exception of some positive curvature

models.

5.3.1 The D-dimensional case

It is interesting to note that in higher dimensions R2 gravity theory exhibits power-law

inflation. In a D-dimensional space-time (5.8) becomes

1

'P = (D -1)2 ln / (R)
D-2

(see for example [22] or [8]). Then in the case of the quadratic Lagrangian the potential

(5.10) is

1 ( ( ))2 ( )V - - 1 - ex - D-2 ex D-4
- 8(3 P [iliI'P P V<D-I)(D-2) 'P .
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The potential has a very flat plateau in the four-dimensional case, but, when D > 4 it

diverges exponentially as rp ---+ +00, ie,

1 ( D-4 )
V '" 8(3 exp V(D-l)(D-2) rp for large rp.

As discussed in Chapter Four, in the case of an exponential potential the expansion of

the mean scale factor a is power-law. Assuming a flat FRW D-dimensional space-time

the same analysis which led to the solution (4.47) now yields

4
(5.29)

where -A is the coefficient in the exponent of the potential. Inflation occurs whenever

p> 1; hence IAI must be less than 2/VD - 2. This restricts the dimension of the space­

time to be smaller than ten. Therefore the dimension D = 10 is marginal for power-law

inflation in the context of the R + (3R2 gravity theory.

Once again inflation in the rescaled system guarantees (power-law) inflation in the

original system [55]. To see this we write (5.6) for a FRW metric as

By (5.7) we find from the solution (5.29)

(5.30)

n - exp ( 1 (f)) ex i-m
- V(D-l)(D-2) T ,

m- 2
- AV(D-l)(D-2)

(5.31 )

as can be seen by inspection. Since dt = ndt, we have t ex t1+m • The solution in the

original system is therefore

(5.32)

with the exponent of t larger than unity whenever p > 1.

A stability analysis in power-law inflationary solutions of HOG theories with La-
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grangian L = Rn is given in Cotsakis and Saich [26]. We assume a homogeneous and

isotropic D-dimensional space-time. To find out which theories exhibit power-law infla­

tion we investigate under what conditions the potential (5.10) has the form exp (-)..r.p) .

This leads to a Clairaut equation for f (R) which has two solutions: f (R) = R+2A, that

is, general relativity with cosmological constant and f (R) = Rn, n = const. Using the

conformal equivalence theorem a similar analysis with that given for the R + f3R2 case

(cf. equations (5.30)-(5.32)) shows that power-law inflation occurs whenever D =I=- 2n

and a (t) rv tP with p = (n - 1) (2n - 1) / (2 - n). As the above authors show, the re­

sults do not approach general relativity in the limit R ---+ 0, but this can be rectified

if the f (R) = Rn theory is modified to be f (R) = R + f3Rn. If we restrict ourselves

to four dimensions and write down the analogue to the Raychaudhuri equation for the

f (R) = Rn theory in the FRW metric, we take a third order non-linear differential equa­

tion for the scale factor a (t) [26]. We use the exact solution ao (t) rv t P to this equation

as a background solution and consider (isotropic) perturbations of the form

a (t) = ao (t)[l +E (t)], E (t) ~ 1. (5.33)

This is similar to the perturbation analysis (see equation (5.21)) in the quasi-exponential

inflation case. The result is E (t) rv tW
, where w depends on n. The stable solutions

correspond (for n > 0) to 0 < n < 1/2 and 5/4 < n < 2. In particular, the power-law

solution is unstable for any Rn theory with n > 2. The case n = 2 corresponds to a de

Sitter solution which is stable against homogeneous and isotropic perturbations.

5.4 Summary

In this chapter we reviewed higher order gravity theories based on a Lagrangian L =

f (R). Apart from other reasons these theories are interesting because they provide a

natural frame of inflation caused by higher order corrections to the Einstein-Hilbert

Lagrangian. Thus there is no need for the deliberate introduction of a scalar field to drive
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inflation. This fact becomes more transparent after one uses the conformal equivalence

theorem discussed on page 72. We discussed the attractor property of inflating solutions

in these theories for homogeneous and isotropic space-times. A NHT for homogeneous

space-times in the R+ j3R2 was proved making use of the conformal equivalence theorem.

Finally, we discussed briefly D-dimensional space-times which seem to exhibit power-law

inflation in both conformally equivalent frames.
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Chapter 6

Concluding remarks

6.1 On the assumptions of the cosmic no-hair

theorems

The property of the de Sitter space-time that it be an attractor for a large set of cos­

mological initial data has been exploited in various inflationary models. As already

discussed, there exist initial data that do not allow inflation to produce a large, locally

isotropic and homogeneous universe. One such set of initial data are those which evolve

towards short-lived universes that recollapse before inflation can occur. This problem

has been recognised implicitly in some proofs of no-hair theorems by restricting atten­

tion to models with nonpositive spatial curvature. In fact the general motif of the cosmic

no-hair theorems is the following: Given an initially expanding space-time with nonpos­

itive scalar spatial curvature and an energy-momentum tensor satisfying certain energy

conditions, prove that the solution approaches asymptotically de Sitter. However, closed

universes with positive spatial curvature need not recollapse. Consider for example the

closed (k = +1) FRW universe (2.1)
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which has always positive spatial curvature, (3)R = 3/ (2a2
) . The Raychaudhuri equation

and the time-time component of the Einstein equations become

(~)2 +~ = e.
a a2 3

If the matter content is a perfect fluid with equation of state

p = (-y - 1) P, I E [0,2],

then this universe will recollapse only if

p> 0 and p +3p > O.

(6.1)

(6.2)

(6.3)

For instance, if we chose I = 2/3, then a (t) '" t and, if I = 0, then a (t) '" cosh Ht,

with H = const. Thus, when p + 3p < 0, closed FRW models do not recollapse. As

Barrow [4,3], pointed out, the condition p+3p < 0 is identical to that required to produce

inflation. More generally inflation occurs whenever the energy-momentum tensor of the

total matter content of the universe violates the strong energy condition

(SEC).

This conclusion holds even III the case of anisotropic and inhomogeneous models.

Equation (6.1) generalises to (compare to (3.6»

dO 1 2 2 2 . a ( 1 ) a bdt = - 3"0 - 20' +2w + \7a n - Tab - "2gabT n n ,

where 20'2 = 0'aW
ab

, 2w2 = WabWab and \7a ita is the acceleration term. (Throughout this

dissertation we always assume that the integral curves of the vector field n are timelike
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geodesics and so the acceleration term vanishes.) Defining the mean expansion scale

factor a(t) by 3 a la 0, we can make the similarity of the above equation with the

Friedmann equation (6.1) more transparent:

(6.4)

We see that the condition for inflation (a > 0) is also sufficient to prevent the recollapse of

the universe. The sign of ais determined not only by the matter term (Tab - ~gabT) nanb

but also by the anisotropic terms on the right-hand side of (6.4).

We conclude that the conditions on the matter content of the universe necessary to

achieve inflation are sufficient to prevent the recollapse of closed universes. When the

SEC holds after inflation, a closed (isotropic) universe is free to recollapse. Therefore,

in the presence of matter fields violating the SEC, the restriction (3)R ::; 0 excludes a

large class of ever expanding inflationary universes. Such models are for example space­

times containing perfect fluid with hypersurface-orthogonal velocity fields (w = 0) which

possess shear a, mean expansion rate 0, and three-curvature (3) R. We write again the

equation of state

p = (-y - 1) p, 'Y = const E [0,2] ,

the Raychaudhuri equation

dO 1 2 2 1
- = - -0 - 2a +- (p +3p)
dt 3 2 '

the time-time component of the Einstein equations

and the conservation equation

p+0 (p + p) = O.
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A class of solutions to these equations was given by Collins [20]

p ex: (P

(7D2= ~ (3, - 2) (1 - ;2) (6.9)

We see from equations (6.5)-(6.9) that models violating the SEC (3,- 2 < 0) which can

drive inflation all possess (3) R > O. However, the cosmic NHT is not applicable in these

inflationary models, because (J' / () -t constant as t -t +00. This means that anisotropy

does not die away fast enough as the universe expands and the conditions of isotropisation

of Collins & Hawking on page 55 do not hold.

Barrow [3] wrote that positive-spatial-curvature universes were excluded from the

proofs of cosmic no-hair theorems because it was believed that they do not expand

forever. This exclusion was based upon the incorrect equating of closed with recollapsing

universes. We have seen that in most no-hair theorems Bianchi type-IX model occupies

a special position among spatially homogeneous space-times. Lin and Wald have shown

that the Bianchi type-IX model without cosmological constant will recollapse at some

time provided that the matter satisfies the DEC and has nonnegative average pressure

[47, 48]. This result could be generalised in the case of HOG theories, starting with

quadratic Lagrangians. However, as we saw in Wald's theorem, any type-IX space-time

with a positive cosmological constant approaches de Sitter space-time if initially (see

condition (3.47))

A 1(3)R> 2 max· (6.10)

Wald's criterion for isotropisation is unsatisfactory in discussing the generality of infla­

tion in type-IX models for the following reasons. Firstly inequality (6.10) is a sufficient

condition for inflation of the Bianchi type-IX space-time, hence there may be many in-
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flationary solutions which do not satisfy the above criterion [27]. The second reason is

that it is uncertain how probable are these universes initially satisfying inequality (6.10)

among all possible initial conditions. It is known that the Bianchi type-IX space-time

exhibits a chaotic behavior near the singularity with or without the cosmological term,

like a particle oscillating in a triangle potential well [15]. The trajectory of the particle

is inflationary if A dominates the spatial curvature, otherwise the universe recollapses.

Den and Ishihara [27] investigated the chaotic trajectories near the singularity and found

that there exists a strong mixing of inflationary and non-inflationary trajectories. In

other words it is impossible to predict which trajectory will inflate if one sets the initial

condition near the singularity. Since one expects that quantum gravitational effects play

an important role near the singularity, an approach based on quantum cosmology seems

to be more appropriate. Using a semiclassical analysis Yokoyama and Maeda [76] found

'"that most of the classical trajectories are inflationary, even though they do not satisfy

Wald's criterion at the beginning of the classical evolution.

The strong energy condition is assumed to hold in most no-hair theorems. In many

respects SEC is an unrealistic energy condition in the context of inflation. Inflation

occurs when a matter field violates the SEC, hence it is unreasonable to expect all

the remaining matter fields to satisfy the SEC. Barrow [6] constructs simple counter­

examples to the effect that if matter satisfies the weaker DEC (or the WEC) but violates

the SEC, an initially de Sitter space-time may evolve towards the flat Friedmann universe

a (t) ,...., t2/(3-y) for large t. In conclusion, if the SEC is dropped, then the NHT is not true

because the de Sitter solution may become unstable. The same is true in the R + j3R2

theory: de Sitter solution can become unstable if matter satisfies the DEC, but violates

the SEC [7].
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6.2 General review of the cosmic no-hair conjecture

How general are the cosmic no-hair theorems discussed so far? In the case of a true

cosmological constant present for all time, homogeneous space-times except possibly the

Bianchi type-IX do satisfy the cosmic NHT. From the discussion in Chapter Three one

may have the impression that the cosmic NHT holds quite generally, if we exclude the

Nariai metric as an attractor as this metric is unstable (see the theorem of Morrow-Jones

and Witt in section 3.3). However, this theorem has a serious drawback: it is a statement

about a certain asymptotic behavior of solutions to the Einstein equations in vacuum.

We anticipate that if matter is included - possibly satisfying some energy conditions ­

then the theorem may not be true (cf comments immediately following Theorem 2 in

section 3.3).

The no-hair theorems in the context of general relativity are quite satisfactory from a

mathematical point of view. However, for inflation to be a natural phase in cosmological

evolution, NHTs must be proved in the context of inflationary models where the cosmo­

logi<;al term is not constant and has a finite duration. As we discussed in Chapters Four

and Five, this problem can be considered as solved at least for homogeneous space-times

in the following cases; in chaotic inflation up to certain constraints (see Heusler's theorem

in section 4.3), in power-law inflation, in new inflation, although there is not a general

proof taking account of the dynamical evolution of the inflaton field. This is mainly

due to the fact that there 'does not exist a generally accepted particle model to provide

an exact effective potential for the scalar field which drives inflation. The situation is

similar in the case of inflation due to the vacuum polarization changing the gravitational

Lagrangian at high values of the Ricci scalar. As we saw in Chapter Five, the attractor

property of de Sitter space-time - as is usually referred the cosmic NHT in generalised

gravity theories - has been established in many f (R) theories. A generalization or re­

formulation of the cosmic NHC is possibly necessary in some theories (see the comments

following the solution (5.20)). The applicability of the cosmic NHT in these theories is

not surprising but is due to the conformal equivalence theorem [8] discussed in section
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5.1. For a review of different inflation theories related by the conformal transformation

theorem see Gottlober et al [32].

For inhomogeneous space-times the situation is still rather obscure. Without the most

general cosmological solution to the Einstein field equations no systematic research has

been done in this direction to our knowledge. Apart from the above mentioned theorem

(theorem 2 in section 3.3) a model with a scalar field with positive exponential potential

as the only matter content has been studied and an inhomogeneous solution in the form of

an asymptotic series approaching locally the power-law solution was found [61]. Counter­

examples of inflating inhomogeneous space-times that do not approach homogeneity and

isotropy as t --+ +00 also exist [4].
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