
A Support Environment for the

Teaching of Programming

by

Rosanne Stewart

Submitted in fulfilment of the academic requirements

for the degree cif Master of Science

in the Department of Computer Science and Information Systems,

University of Natal

Pietermaritzburg

1996

ABSTRACT

This thesis examines the effectiveness of a specially constructed computer based support

environment for the teaching of computer programming to novice programmers. In order

to achieve this, the following distinct activities were pursued. Firstly, an in-depth

investigation of programming misconceptions and techniques used for overcoming them

was carried out. Secondly, the educational principles gained from this investigation were

used to design and implement a computer based environment to support novice

programmers learning the Pascal language. Finally, several statistical methods were used

to compare students who made use of the support environment to those who did not and

the results are discussed.

11

111

PREFACE

The experimental work described in this dissertation was conducted in the Department of

Computer Science and Information Systems, University of Natal, Pietermaritzburg, under

the supervision of Professor Vevek Ram.

These studies represent original work by the author and have otherwise not been submitted

in any form for any degree or diploma to any University. Where use has been made of the

work of others it is duly acknowledged in the text.

IV

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 INTRODUCfION 1

1.2 RESEARCH OBJECfIVES 2

1.3 LIMITATIONS 4

1.4 OVERVIEW OF THE CHAPTERS 4

2. AN OVERVIEW OF THE PSYCHOLOGY OF PROGRAMMING 7

2.1 lNTRODUCfION 7

2.2 LEARNING OF NEW CONCEPTS 7

2.3 PROGRAMMING- WHAT NEEDS TO BE LEARNT 9

2.4 LEARNING OF PROGRAMMING CONCEPTS 10

2.5 DIFFERENCES BETWEEN NOVICE AND EXPERT PROGRAMMERS 13

2.6 SUCCESSFUL AND UNSUCCESSFUL PROGRAMMER TRAITS 15

2.6.1 Cognitive Style 15

2.6.2 Cognitive Abilities 17

2.6.3 Computer Anxiety & Alienation 19

2.6.4 Access to Computers 19

2.6.51nterest 19

2.6.6 Gender 19

2.6.7 Additionalfactors 20

2.7 NOVICE PROGRAMMERS' MISCONCEPTIONS 20

2.7.1 A Conceptual Classification ofMisconceptions 22

2.7.1.1 Parallelism Bugs 23

2.7.1.2 Intentionality Bugs 25

2.7.1.3 Egocentrism bugs 26

2.7.1.4 Misapplication of analogy 27

2.7.1.5 Overgeneralisations 27

2.7.1.6 Inexpert handling of complexity 28

2.8 PROGRAMMING CONSTRUCT MISCONCEPTIONS 28

2.8.1.11nput Misconceptions 30

2.8.1.2 Output Misconceptions 32

2.8.1.3 Variable Misconceptions 33

2.8.1.4 Assignment Misconceptions 35

2.8.1.5 Loop Misconceptions 37

2.8.1.6 Conditional statements 40

2.8.1.7 Procedure Misconceptions 41

2.8.1.8 Flow ofControl. .41

2.8.1.9 Tracing and Debugging 42

v

2.9 CHAPTER SUMMARY 45

3. STRATEGIES FOR TEACHING PROGRAMMING •••••.....•........••.••..••...........•••.•.........••....•...............46

3.1 INTRODUCTION 46

3.2 EXPLICIT INSTRUCTION ON PROGRAMMING MISCONCEPfIONS .46

3.3 CONCRETE MODELS 47

3.4 THE 'GLASS BOX' APPROACH 48

3.5 EXAMPLE PROGRAMS 49

3.6 CASE STUDIES 50

3.7 TEACHING OF PROGRAMMING PLANS 51

3.8 PUTTING TECHNICAL INFORMATION INTO OWN WORDS 51

3.9 THE COMPUTER AS A TEACHING TOOL 52

3.10 ADDITIONAL TEACHING STRATEGIES 52

3.10.1 Loops 53

3.10.2 Discourse Rules 54

3.11 CHAPfERSUMMARY 54

4. THE DESIGN OF THE PATMAN SUPPORT ENVIRONMENT 55

4.1 INTRODUCTION 55

4.2 THE 'GLASS BOX' APPROACH 56

4.3 LEARNING BY EXAMPLE 57

4.4 FUNCTIONAL REQUIREMENTS 57

4.5 THE SYSTEM MODEL 58

4.5.1 The user interface 58

4.5.2 The lesson code generator 59

4.5.3 Lesson Program Files 59

4.6 HARDWARE 62

4.7 DESIGN OF THE SySTEM 63

4.8 EXTENSIONS TO THE SySTEM 69

5. EXPERIMENTAL METHOD 70

5.1 INTRODUCTION 70

5.2 TEACHING PROCESS 71

5.3 ALLOCATION OF STUDENTS TO GROUPS 72

5.4 TESTING AND EVALUATION PROCEDURE 73

5.4.1 Determination ofpossible influencing background and psychological factors 73

5.4.2 Determination ofthe student misconceptions 74

5.4.3 Programming ability 74

5.5 STATISTICAL TESTS USED TO EVALUATE THE DATA 75

5.5.1 Z-proportion test 75

vi

5.5.2 Analysis of variance 76

5.5.3 Schejfe's multiple comparison method 77

5.5.4 The multiple regression model 77

6. RESULTS AND DISCUSSION 79

6.1 ANALYSIS OF CORRECT RESPONSES FOR WORKSHEET QUESTIONS 79

6.1.1 Worksheet 1 80

6.1.2 Worksheet 2 81

6.1.3 Worksheet 3 83

6.1.4 Summary ofResults 84

6.2 ANALYSIS OF EXAMINATION AND FINAL RESULTS BY STUDENT GROUP 85

6.2.1 Analysis ofExamination Results 85

6.2.2 Analysis ofFinal Course Results 86

6.2.3 Summary ofResults 87

6.3 ANALYSIS OF MISCONCEPTIONS 88

6.3.1 Output statements 90

6.3.2 Input statements 95

6.3.3 Variable concepts 98

6.3.4 Assignment statements 100

6.3.5 Looping constructs 103

6.3.6 If statements 110

6.3.7 Procedures 115

6.3.8 Summary ofResults 118

6.4 THE EFFECT OF PATMAN ON SPECIFIC MISCONCEPTIONS OVER TIME 118

6.5 DEMOGRAPHICS OF STUDENT GROUPS 120

6.6 STUDENTSOPINIONOFPATMAN 122

6.7 CHAPTER SUMMARY 125

7. CONCLUSIONS AND FURTHER RESEARCH 126

REFERENCES 128

APPENDIX A. PATMAN SUPPORT ENVIRONMENT PROGRAMS A.1

APPENDIX B. QUESTIONNAIRES 1,2 AND PATMAN EVALUATION QUESTIONNAIRE........ B.1

APPENDIX C. STUDENT BACKGROUND AND PSYCHOLOGICAL CHARACTERISTICS....... C.1

APPENDIX D. WORKSHEETS 1,2 AND 3 D.l

vu

LIST OF FIGURES

Figure 2.1: Some information processing components of meaningfulleaming. Condition

(a) is transfer of new information from outside to short-term memory.

Condition (b) is availability of assimilative context in long-term memory.

Condition (c) is activation and transfer of old knowledge from long-term

memory to short-term memory (Mayer, R.E., 1981, p. 122) 8

Figure 3.1: Two decision rules for construct selection. (Shackelford & Badre, 1993, p.

988) 53

Figure 4.1: System Diagram 58

Figure 4.2: Three implementations of the guessing game - each with a different looping

construct. 61

Figure 4.3: Student selects a lesson category 63

Figure 4.4: A comment dialogue box prompts the student to think about some issues 64

Figure 4.5: Stepping through the program - the READLN input statement is active 65

Figure 4.6: Stepping through the code - after user has entered a value in dialogue box 66

Figure 4.7: Variable window contains call by value and call by reference parameters as

well as local and global variables 68

Figure 6.1: Worksheet 1 - Percentage of correct responses 80

Figure 6.2: Worksheet 2 - Percentage of Correct Responses 81

Figure 6.3: Worksheet 3 - Percentage of Correct Responses 83

Figure 6.4: Examination Results by Student Group 86

Figure 6.5: Final Results by Student Group 87

viii

LIST OF TABLES

Table 2.1: Summary of programming construct misconceptions and references 43

Table 6.1: Worksheet 1 - Total number of correct responses per student.. 81

Table 6.2: Worksheet 2 - Total number of correct responses per student 82

Table 6.3: Worksheet 3 - Total number of correct responses per student.. 84

Table 6.4: Output statement errors - Percentages and Significance levels 94

Table 6.5: Input statement errors - Percentages and Significance levels 98

Table 6.6: Variable concept errors - Percentages and Significance levels 100

Table 6.7: Assignment statements - Percentages and Significance levels 102

Table 6.8: Looping constructs - Percentages and Significance levels 109

Table 6.9: If Statements - Percentages and Significance levels 114

Table 6.10: Procedures - Percentages and Significance levels 117

Table 6.11: Stage wise comparison of misconceptions 120

Table 6.12: Student responses to 5-point rating scale questions 123

Table 6.13: Benefits of using Patman 123

Table 6.14: Students' comments and suggestions about Patman 125

IX

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Professor Vevek Ram whose

guidance in the preparation of this dissertation was most valuable. In addition I would like

to thank Mrs. Sue Brittain, of the Department of Statistics and Biometry, who assisted me

with the statistical analysis included in this thesis. My thanks also to the students who

participated in this study.

My parents have provided constant support and for this I am most grateful.

My brother, Peter assisted with the proof reading and Leonard EIs provided his technical

expertise. I appreciate their help.

Finally, Mr. Christopher Scogings, a former acting-head of the department of Computer

Science, introduced me to programming. I owe my love of programming to him.

This work was supported in part by the Foundation for Research Development (FRD)

1. INTRODUCTION

1.1 Introduction

When Elliot Soloway, an associate Professor in the Department of Electrical Engineering

and Computer Science at the University of Michigan, asked "Should We Teach Students to

Program?" the reply from several leading programming instructors was an emphatic

"yes"l. Although there was much disagreement about the nature of the programming

instruction and programming environment, all agreed that in the future, programming is not

only going to be taught to Computer Scientists, but that more and more people are going to

require programming instruction to assist in their chosen career (Soloway, 1993). For this

and other reasons, programming has been included in school syllabi at varying levels and is

studied at university level by students from almost all faculties. However, regardless of

one's age or specific field of interest or expertise, learning to program can be difficult.

The primary objective of this research is to examine how novice programmers come to

understand fundamental programming concepts, and to examine the potential of one

particular approach to aid novice programmers' understanding of these fundamental

concepts. The approach examined in this research is the design and implementation of a

computer based support environment, Patman. Patman was developed with the intention

of reducing student misconceptions through the use of specially designed programs and the

glass box approach. It differs from other systems that have implemented the glass box

approach2
, in that the design process emphasised the pedagogical aspects, rather than the

interface characteristics. The design of Patman, was influenced by misconceptions

documented by other researchers and those found in the course of this study. The example

problems, included in the system, were designed with the intention of addressing these

misconceptions.

1 The instructors who replied to Soloway's question included M. Clancy, M. Linn, A. DiSessa and others.

2 See sections 3.4 and 4.2.

2

1.2 Research Objectives

The main objective of this research is

the evaluation of the effectiveness of a support environment in reducing students'

misconceptions and assisting in the acquisition of general programming knowledge.

This involved the pursuit of two sub-objectives, namely:

1. the investigation of novice programmer's problems and misconceptions

2. the development of a support environment to alleviate these problems and

misconceptions.

This research was motivated by the desire to address the following problems which hamper

the teaching of programming to novice programmers:

• the varying ability of the enrolled students

• the prevalence of misconceptions, and

• lecturer to student ratios that are not optimal.

These factors are discussed in turn.

Several factors contribute to one's ability to learn a programming language. Broadly, these

can be broken up into two groups: background and psychological factors. Background

characteristics include previous access to computers and previous programming experience

while psychological factors are those factors that are unique to an individual, such as their

motivation level or their desire to learn to program. Previous studies have found that

background factors are most influential in determining one's ability to program under

conventional methods of teaching. This poses significant problems for programming

instruction at South African Universities. It can be argued that South African Universities

differ from other Universities, especially those of First World countries, in that students

entering university have vastly different background characteristics. Some will have had

full access to computers while others will have had negligible contact. Assuming the

validity of the previous studies, a large number of South African students are not

sufficiently prepared to benefit from conventional computer education methods.

3

Novice programmers are prone to hold many misconceptions about a programming

language. Several studies have attempted to categorise student misconceptions. The

majority of these studies were conducted in First World countries where English is the

mother tongue3
. The portability of these findings to the South African context can be

questioned. Firstly, because of the vastly different background characteristics which

students have, and secondly, because not all students have English as their first language.

For this reason, this study incorporates an investigation into misconceptions held by novice

programmers at a South African University.

When this research was initiated, approximately fifty percent of Introduction to

Programming students failed this course at a South African University4. This is an

indication that conventional teaching methods are inadequate. To further complicate

matters, the number of students taking first year computer courses is growing rapidly each

year, yet the number of lecturers, at best, remain the same. When one considers that

increasing numbers of non-computer career oriented students are likely to request

programming instruction (Soloway, 1993), the challenge is considerable. Unless the nature

of programming instruction changes, programming instructors are unlikely to cope. It is

feasible to investigate and evaluate additional teaching methods that would enable lecturers

to spend less of their limited time explaining the details of syntax matters and rather focus

on the general principles of programming, such as algorithm design and correctness.

The rationale of this research is threefold. Firstly, to teach programming effectively, it is

essential to have an understanding of how students acquire programming knowledge, the

problems they experience and the misconceptions that they have. Secondly, support

environments have the potential to change the nature of teaching. Lecturers are likely to

have more time to focus on the problem solving aspects of programming since support

environments have the potential to provide students with greater control of their learning

process. Not only are students likely to be less dependent on the instructor during formal

3 See section 2.8.

4 The course was offered in the Computer Science and Information Systems Department, University of Natal,

Pietermaritzburg.

4

instruction periods, but they can have access to the support environment out of these times.

This could contribute towards an increase in learning of the greatest number of students for

a given amount of lecturer effort. Thirdly, there is evidence to indicate that support

environments have the potential to compensate for a limited or negatively oriented

background with respect to computer programming. Previous research shows background

characteristics, such as prior computer experience, had less of an impact when the

conventional teaching method was supplemented with a computer basedsupport

environment. Here the success of the student was more related to psychological

orientations such as motivation and self-confidence. This would be advantageous in the

South African context.

1.3 Limitations

This research attempts to illustrate that support environments, which are easily developed

and implemented, can be effective in minimising many of the misconceptions that occur in

programming. It is not the intention of this research to design or develop a computer based

tutoring system. Computer based tutoring systems, and in particular Intelligent tutoring

systems, which include features such as student testing and student modelling, tend to

require considerable development time and testing. Nonetheless, this research provides

strong evidence that the support environment discussed here, is an effective learning tool

and thus can be used as a prototype for the development of a computer based tutoring

system.

1.4 Overview of the Chapters

The thesis is structured around the research objectives. The next chapter investigates the

manner in which novice programmers acquire their programming knowledge and the

difficulties that they experience. The third chapter evaluates teaching strategies with the

intention of minimising programming difficulties commonly encountered among students.

The design of the support environment is the focus of the fourth chapter, and the fifth

chapter describes the experimental process. The sixth chapter addresses the evaluation of

the support environment and a discussion of the results. Details of these chapter contents

are given below.

5

Chapter 2 addresses the understanding of how programming concepts are learnt, in

particular:

• psychological aspects of learning new concepts

• psychological aspects of learning programming concepts

• how programming concepts are represented and structured

• successful and unsuccessful programmer traits

• differences between novice and expert programmers

• novice programmer's misconceptions

In Chapter 3 several teaching strategies are discussed. Although some researchers have

adopted the approach of changing the programming language specifications, this chapter

focuses on those teaching strategies that can be realistically adopted by programming

instructors. Of particular interest, is the glass box approach.

In chapter 4, the design of the support environment based on the findings of chapter 2 and 3

is presented. The system can be considered to be a generic support environment that

dynamically displays what is happening in memory during the execution of statements in

Pascal programs written by an expert. The term generic implies that all students are

assumed to have the same amount of programming knowledge. The system does not treat

users individually, but rather the user is seen as a novice programmer.

Chapter 5 is concerned with the evaluation of the support environment to determine its

effectiveness in reducing student programming errors, in improving general programming

ability and in compensating for a disadvantageous background. To evaluate the system a

formal experimental approach was adopted, and thus control and experimental groups were

required. Chapter 5 commences with a discussion of the conventional and experimental

teaching methods and the allocation of students to groups for the purposes of this study.

The procedures for the collection of student data, such as students' background and

psychological characteristics, and the evaluation of the data are then discussed. Chapter 6

includes considerable statistical testing, and hence a brief explanation of the statistical tests

used is included.

6

Chapter 6 deals with the comparison of the student groups, in terms of examination and

final results, noted misconceptions, performance on worksheet questions and other student

characteristics. This discussion is based on statistical tests. Finally, student opinions of the

support environment are given.

Chapter 7 concludes the thesis with an overview of the research, a discussion of the main

findings of this research and suggestions for possible future research.
\

2. AN OVERVIEW OF THE PSYCHOLOGY OF PROGRAMMING

2.1 Introduction

This chapter addresses different aspects of learning to program. Some psychological

aspects of learning new ideas, and in particular programming concepts are outlined. This is

followed by a detailed study of common difficulties encountered by novice programmers,

and in particular, programming misconceptions. Some language specific difficulties are

also discussed. Furthermore, an attempt is also made to categorise successful and

unsuccessful learner traits. The rationale being that if we understand how students learn to

program, and if we have knowledge of their difficulties, we will be better equipped to teach

programming.

2.2 Learning of new concepts

Learning to program, and more specifically the planning and debugging of programming

tasks, require "...a cognitive involvement which goes beyond rote memorisation or other

low level thinking abilities." (Dalbey & Linn, 1985, p. 254) Cognitive psychologists, and

more specifically Piagetian psychologists, refer to the process of assimilating new

information with existing information as the process of 'meaningful learning' (Jones,

1986; Mayer, 1975, 1976, 1981). Meaningful learning results in understanding which

Mayer describes as "...the ability to use learned information in problem-solving tasks that

are different from what was explicitly taught" (Mayer, 1981, p. 122).

The human cognitive system can be broken down into two parts: short-term memory and

long-term memory. Short-term memory has a limited capacity and duration and can be

considered the active or working memory. The data in short-term memory is the

information to which a person can give active conscious attention. Long-term memory is

regarded as permanent and of unlimited capacity and holds all the knowledge a person has

acquired. Although there are several models of the way information is organised, or

structured in long term memory all the models agree that long-term memory is highly

organised (Jordaan & Jordaan, 1984).

Stimulus--(a-)----1.... SHORT-TERM
r MEMORY

LONG-TERM
MEMORY (b)

-----1~ Response

8

Figure 2.1: Some information processing components of meaningful learning.

Condition (a) is transfer of new information from outside to short-term

memory. Condition (b) is availability of assimilative context in long-term

memory. Condition (c) is activation and transfer of old knowledge from long­

term memory to short-term memory (Mayer, R.E., 1981, p.122).

Mayer (1981) states three conditions have to be met for meaningful learning to occur,

namely: reception, availability and activation. Firstly the learner must pay attention to the

new information, this will allow the information to reach short-term memory, this is called

reception and is depicted as arrow (a) in Figure 2.1 above. The second step towards

meaningful learning is the availability step, depicted as arrow (b): the learner must possess

appropriate prerequisite knowledge in long-term memory to use in assimilating the new

information. The final step involves the learner actively using this existing knowledge

during learning so that the new concepts may be connected with it (arrow (c) in Figure 2.1).

Meaningful learning thus involves learners coming into contact with the new material (i.e.

bringing into short-term memory), then searching long-term memory for 'appropriate

anchoring ideas' or 'ideational scaffolding' (Ausubel, 19685 as cited by Mayer, 1981, p.

122) and then transferring those ideas to short term memory so that they can be combined

with new incoming information.

50riginal source: AUSUBEL, D. P. (1968). Educational Psychology: A Cognitive View, Holt, Rinehart and

Winston, New York.

9

If any of these conditions are not met, 'meaningful learning' cannot take place and the

learner will experience difficulties and be forced to learn each new piece of information by

rote (Mayer, 1981).

2.3 Programming - what needs to be learnt

Linn & Dalbey (1985) have identified an ideal chain of activities, which involve

considerable cognitive skill, required for the acquisition of programming knowledge. This

is useful in that it breaks the acquisition of programming knowledge into three identifiable

steps, and is discussed below. The chain has three main links: (a) single language features,

Cb) design skills, and (c) general problem-solving skills.

(a) Language Features

Students need to learn and understand the features of the language being studied.

Although this knowledge is a prerequisite for the writing of programs, it is of little

general use or benefit. Students with only an understanding of language features

cannot develop code to solve a particular problem.

(b) Design Skills

Design skills are the group of techniques used to combine language features to form a

program that solves a problem, and includes templates and procedural skills. These

skills are essential for students to generate their own code to solve a problem of any

complexity, and are defined thus.

Templates

Linn & Dalbey (1985, p. 192) refer to templates as "...stereotypic patterns of

code that use more than a single language feature..." examples being the

running-total template which accumulates the sum of a finite set of input and

finding the minimum of a group of numbers template. These templates assist

students in solving many problems without inventing new code. Templates can

also reduce the cognitive demands of programming. Students can break down

problems until they can implement the solution using one of their acquired

templates. Students who have acquired templates are able to write more

complicated programs than those who do not.

10

Procedural Skills

Procedural skills are used to combine templates and language features to solve

new programming problems and include: planning, testing and reformulating of

programming plans. Planning is required to solve complex problems. Novices

rarely work on programs complex enough to demand substantial planning, but

experts spend considerable part of their programming time engaged in planning

(Kurland et al., 1984). Testing is required to ensure that a program is reliable

and robust. However novices seldom test their programs substantially and tend

to use obvious or normal forms of input. Experts develop this skill.

Reformulating involves the modification of program code, usually as a result of

problems found in the testing phase. Novices seldom make substantial changes

to their code, rather focusing on localised changes.

(c) Problem-Solving Skills

This is the last link in the chain of activities. These are templates and procedural skills

common to many or all formal systems. For example, templates such as the insertion

sort can be used in several programming languages and can be applied to other

domains, such as card playing. The acquisition of these skills usually require a

substantial amount of programming experience.

2.4 Learning of Programming concepts

Many authors have considered the process of learning to program as the closest one gets to

the tabular rasa, or blank slate, situation of childhood (Sheil, 1981; Jones, 1985; elements,

1986; Putnam, 1986). Most novice programmers do not have an appropriate cognitive

framework in which to incorporate the new knowledge (Dalbey & Linn, 1985; Jones,

1985). As a result students initially rely on inappropriate analogies within their existing

knowledge domain or "memorise each piece of new information by rote as a separate item

to be added to memory" (Mayer, 1981). Both strategies hinder the effective learning of

programming. The use of inappropriate analogies results in students possessing many

misconceptions (Bayman & Mayer, 1983), many of which take months, or even years, of

programming experience to eradicate6
. The use of the rote learning strategy prevents

6 See section 2.8.

11

meaningful learning from taking place, as the new information is not assimilated with the

existing knowledge. As a result students will not understand the new concepts, and will be

unable to transfer the new concepts to unique situations.

Generally, when someone initially learns to program they have to deal with three

interwoven, yet separate cognitive tasks:

• " ...orientation, finding out what programming is for, what kinds of problems can be

tackled and what the eventual advantages might be of expending effort in learning the

skill." (Du Boulay, 1986, p. 57)

• " ...understanding the general properties ofthe machine that one is learning to control,

the notional machine..." (Du Boulay, 1986, p. 57).

• learning the syntax and semantics of the formal language that has to be learnt.

Du Boulay (1986) comments that " ...much ofthe 'shock' of the first few encounters

between the learner and the system are compounded by the student's attempt to deal with

all these different kinds of difficulty at once." The student is overloaded with new

concepts as a result of the inherent complexity of the problem.

Initially, students have difficulty understanding what a program can do for them, and how

it can be used to solve a particular problem and consequently have difficulty structuring

their algorithms (Du Boulay & O'Shea, 1981). This problem is compounded by the usual

analogy used by teachers to assist programmers in the initial programming stages: novices

are instructed to write algorithms as if they were giving directions to a friend, or creating a

recipe. "Part of a novice's difficulty in planning is caused by the disparity between the

familiar conventions for specifying a plan to a human being...and a computer program" (Du

Boulay & O'Shea, 1981). Miller (1975)7, as cited by Du Boulay and O'Shea, found that a

fundamental difference is the 'qualificational' human specification as opposed to the

'conditional' computer specification. Students have difficulty translating from the more

natural 'qualificational' specifications ofthe form "PUT RED THINGS IN BOX I" to

'conditional' specifications of the form "IF THING IS RED THEN PUT IN BOX I" (Du

7 Original source: MILLER, L.A. (1975). Naive programmer problems with specification of transfer-of­

control. Proceedings of the AFIPS National Computer Conference, Vol. 44, p. 657-663.

12

Boulay & O'Shea, 1981). Novices tend to under specify algorithms and develop

algorithms for specific instances of a problem rather than a general algorithm.

A necessary requirement for students to learn to program, is the internalising of a 'mental

model' of the programming system (Hoc, 1977; Dalbey & Linn, 1985). The term 'mental

model' is borrowed from cognitive psychologists who use the term mental model to refer

to the organisation of memory into structures (Merrill, 1991). Bayman and Mayer (1983)

refer to the mental model of the programming system as "the user's conception of the

'invisible' information processing that occurs inside the computer between input and

output" (Bayman & Mayer, 1983, p. 677). The mental model of the language and

computer, develops over time, as a student uses the programming system (Bayman &

Mayer, 1983). Unfortunately little instructional effort is given to assist students in

developing an accurate mental model of the language or system (Bayman & Mayer, 1983).

lones (1984) noted that novices scrutinise any aspect ofthe available learning resources,

such as screens and notes, for confIrmation of their own mental models. This may result in

students developing a mental model that is inaccurate or incoherent (Bayman & Mayer,

1983; lones, 1984). Du Boulay states that students frequently develop "...reasonable

theories of how the system works, given their limited experience, except that the theories

are incorrect" (Du Boulay, 1986, p. 72).

During the acquisition of the syntax and semantics of the formal language, several errors

occur. Syntactic errors are incorrect statements which result in a compiler or interpreter

error. Semantic errors involve the misuse of correct statements, such as the output of a

variable value, before it has been initialised. Novices make semantic errors more

frequently and they fInd these harder to diagnose, compared to syntactic errors (Du Boulay

& O'Shea, 1981; Allwood, 1986). It has also been noted than these errors are not

randomly distributed among the language constructs, but rather are clustered around certain

constructs (Du Boulay & O'Shea, 1981). These semantic errors are referred to as

misconceptions in this thesis, and they are generally said to occur as a result of a student

possessing a faulty mental model of the programming system.

Another difficulty in acquiring programming expertise, is the acquisition of 'standard

structures' (Du Boulay, 1986), 'conceptual chunks' (lones, 1985), 'schemas' , 'plans'

13

(Soloway et al., 1982; Joni & Soloway, 1986; Detienne & Soloway, 1990) or 'templates'

(Linn & Dalbey, 1985; Anderson, 1986; Linn & Clancy, 1992a, 1992b, 1993). This

equates to Linn & Dalbey's (1985) second link in the chain of cognitive skills. These

standard structures represent abstract segments or chunks of code, which are customised

depending on the specific programming task currently being undertaken (Soloway et al.,

1982). Comparative studies of novice and expert programmers have shown that novices

are yet to acquire these standard structures, or conceptual chunks (Dalbey & Linn, 1985;

Jones, 1985; Spohrer & Soloway, 1986). Novices "...tend to isolate and memorise rather

than integrate and organise" (Linn, 1992, p. 121).

In addition, the standard structures or chunks that students do learn are often constraining

because they are learned from a limited set of examples (Anderson et al., 1984). As a

result, novices are not able to keep up with the memory demands of the new language

(Anderson et al. 1984; Linn & Dalbey, 1985).

Lastly the student has to develop strategies for putting everything together to solve a

specific problem: "... mastering the pragmatics of programming, ...how to specify, develop,

test and debug a program ..." (Du Boulay, 1986, p. 58). Generally novices are not expected

to develop a great deal of expertise in problem analysis and specification in an introductory

programming course (Dalbey & Linn, 1985), consequently this is not a concern of this

thesis. Rather this thesis is concerned with students' understanding of the syntax and

semantics of a programming language, the accuracy and completeness of their mental

models and the degree to which they have acquired standard programming structures.

2.5 Differences between novice and expert programmers

A comparison of novice and expert programmers is useful in developing an understanding

of how programming knowledge is structured or organised, and what needs to be done to

develop that knowledge representation in novice programmers. It can also highlight the

shortcomings of programming instruction. Novice programmers are those that have not yet

successfully completed a programming course. Expert programmers are those that have

successfully completed a programming degree and have had several years of programming

experience.

14

Schneiderman et al. (1976) studied expert and novice programmer's abilities to recall

programs. When a meaningful program was given, the expert programmers were able to

recall more lines of code than novice programmers. When a program consisted of random

program statements no difference in recall ability was noted. This is seen as evidence of

expert programmers structuring their programming knowledge into chunks of meaningful

code or program schemata. Novice programmers are less able to form these chunks.

Analogous findings were found in novice and expert chess players by Chase and Simon8 in

1973 (Allwood, 1986).

In Adelson's (1981) study of novice and expert programmers, subjects were required to

recall lines of code, at most 16, which had been shown to them one at a time. Experts

recalled more lines and had a different organisation in the recall compared to the novices.

It was also found that novices had a smaller chunk size, and a less stable and less

hierarchical organisation of the programming concepts than the experts.

More recent research has been undertaken by Rist (1986). Rist asked novice and experts

programmers to group lines of code that were "...related to each other in their action" (Rist,

1986, p. 32), but gave no basis for this division. Although, novices did use some plan

based groupings, they reverted to more syntactic groupings when programs became more

, complex. Generally, novice programmers grouped more lines of code together based on

their syntactic characteristics, while expert programmers used plan based groups. This

indicates that although novices have acquired some templates or plans, they are not as fully

developed as those of expert programmers.

Expert programmers have a more accurate and well-constructed 'mental model' than

novice programmers (Hoc, 1977). Expert programmers are more adequately able to cope

with the complexities of writing a program to solve a particular problem as they have more

highly organised domain knowledge. Developing these standard structures is an important

factor in developing programming expertise (Dalbey & Linn, 1985). Novices need to be

8 Original Source: CHASE, W.G. & SIMON, H.A. (1973). Perception in chess. Cognitive Psychology,

Vol. 4, p. 55-81.

15

encouraged to acquire an organisation that is more like that of an expert, but they need help

in this endeavour. This is a responsibility of programming instructors.

2.6 Successful and Unsuccessful programmer traits

In an attempt to understand the process of learning to program in more detail, many authors

have examined the traits of successful and unsuccessful programmers. Coombs et al.

(1982) believe"...analysis of the contrasting learning strategies used by successful and

unsuccessful learners should provide data on the nature of computing information itself and

on the cognitive skills required for its acquisition".

2.6.1 Cognitive Style

Coombs et al. (1981, 1982) note that writers on cognitive style, a pattern of strategies a

thinker uses to handle information, generally make their definitions "in terms of polar

dispositions" and cite the following examples (p. 296 & 454):

convergent thinking

vertical thinking

analytic

verbal

sequential

field independence

- divergent thinking

- lateral thinking

- gestalt

- spatial

- simultaneous

- field dependence

(Hudson, 1966)

(de Bono, 1967)

(Levy-Agresti & Sperry, 1968)

(Paivo, 1971)

(Luria, 1966)

(Witkin, Dyk, Faterson,

Goodenough & Karp, 1962)

Coombs etal. (1981, 1982) noted that all of the above dichotomies are similar, although

not identical, in that they all describe cognitive style in terms of two contrasting modes.

Coombs et al. describe these dichotomies as follows (Coombs et aI., 1981, p. 296; Coombs

et aI., 1982, p. 454):

" ...(a) a mode that is active, analytical, articulated, specific and critical;

(b) a mode that is passive, global, vague, diffuse and uncritical."

16

Coombs et al. (1981, 1982) classified their learners into operational or comprehension

learners, following Pask's (1976)9 categorisation of cognitive style based on human

information processing. Operation learners, adopt a bottom-up approach, concentrating of

the details of the new material and work 'upwards' towards a general understanding.

These learners concentrate on the logical relations between the material. Comprehension

learners, adopt a top-down approach, concentrating on a global picture and then deal with

the specifics. These learners may not be able to perform the operations required to use the

new material, as they often ignore the relations that connect the different material together

(Du Boulay & O'Shea, 1981; Coombs et al., 1981, 1982; Dalbey & Linn, 1985).

From their empirical research on fIrst time programmers learning FORTRAN at the

university level, Coombs et al. (1981, 1982) were able to distinguish some discernible

behavioural differences between the comprehension and operation learners, namely:

during lectures

practical exercises

general or

conceptual questions

operation learners

• gave priority to writing the

facts down

• completed more exercises

• accepted exercises as given

and solvable

• extended the problems once

they had solved the initial

specifications

• rarely asked such questions

comprehension learners

• focused on understanding the

information

• completed less exercises

• questioned exercises validity

• rarely experimented with the

language outside the given

exercises

• commonly asked such questions

Coombs et al. (1981, 1982) concluded that the successful learners, namely the operation

learners, produced a more abstract representation of language structures, and are less bound

to the context of the specifIc examples, than the comprehension learners. Coombs et al.

(1981, 1982) thus conjecture that the operation learners would be more flexible in their

9 Original source: PASK, G, (1976). Conversation theory: Application in Education and Epistemology,

Elsevier, Amsterdam, p. 85-86.

17

problem solving. From these experiments the authors were able to conclude that students

who are more successful in acquiring programming skill were those learners who "paid

close attention to detail, systematically abstracted the critical features of programming

structures and represented structural relations in terms of rule form." (Coombs et al., 1982,

p.474)

It can be argued that one way of assisting students in programming knowledge would be to

lead them towards an operational strategy. However it is necessary to take heed of Pask's

warning, as cited by Coombs et al.. Students find it very hard to adopt a differing learning

style, and even when they do they are significantly less effective than those who have it

naturally. Taking heed of these findings, some researchers (Dalbey & Linn, 1985;

Cavaiani, 1989) have suggested that in order to overcome the consequences of the

mismatch of teaching methods to learning style, different teaching strategies should be

adopted for different students based on their learning style.

2.6.2 Cognitive Abilities

High general ability students perform well in programming classes (Linn & Dalbey, 1985).

However, Mayer et al. (1986) caution that this might not signal high general ability as a

necessary requirement for programming, but rather the ability of the test"...to predict

success in academic learning under a wide variety of situations" (p. 608). It remains

necessary to determine the specific skills required for programming.

However, in the few studies undertaken, conflicting factors have been seen to be most

influential. Snow (1980)10, as cited by Mayer, reported that 'diagramming', non-verbal

logical reasoning, and mathematics problem solving correlated with learning BASIC.

Webb (1984) stated that a mathematical test consisting of word problems and computation

problems was the best predictor of success in learning Logo. Other contributing factors

were non-verbal logical reasoning and spatial ability. Clements (1986) found that

mathematical ability, logical operations, creativity and field dependence were all related to

10 Original source: SNOW, RE. (1980). Aptitude processes, in Vot 1, Aptitude, Learning and Instruction,

Snow, R.E.; Federico, P. & Montague, W.E. (eds.), Erlbaum, Hillsdale, N.J., p. 27-63.

18

most components of Logo programming. However, Clements' study reveals a lack of

consistency in the relationship between cognitive abilities and the ability to perform

programming tasks for first and third graders. For example, "Creativity and mathematics

achievement best predicted the total off-computer score of first graders..." but "... field

dependence and creativity were most predictive of the total off-computer score.." of third

graders. Although some of these differences can be understood in terms of developmental

differences, it must be noted that measures of cognitive ability"... may be differentially

predictive for various age groups, who may use divergent solution processes". Clements

concluded from his empirical research that "...Logo programming is not just for the

mathematically proficient." This contrasts with Goodwin and his colleagues (Goodwin &

Sanati, 1986; Goodwin & Wilkes, 1986) studies of Pascal programmers. They found

mathematics to be a good predictor of success in an introductory programming course.

However Wileman et al. (1981) also found no strong evidence to indicate that BASIC

programming success was based on mathematical or scientific ability. They found Reading

Comprehension, Alphabetic and Numeric Sequences, Logical Reasoning, Algorithmic

Execution and Alphanumeric Translation skills to be more reasonable predictors of

success.

Mayer and his colleagues (1986) found that learning to program in BASIC was related to

general ability, especially logical reasoning and spatial ability. However, they also

identified two specific thinking skills which tended to predict success in learning BASIC:

"...ability to translate word problems into equations or answers (problem translation skill),

and ability to predict the outcome of a procedure or set of directions that is stated in

English (procedure comprehension skill)" (Mayer, 1986, p. 609).

Generally these results can be summarised by stating that general ability is correlated to

success in programming, however more specific skills have been isolated. These include

non-verbal skills, such as logical reasoning, and problem translation and procedure

comprehension skills. Mathematical skill is also cited.

19

2.6.3 Computer Anxiety & Alienation

Computer anxiety is "the fear of impending interaction with a computer that is

disproportionate to the actual threat presented by the computer,,11 and computer alienation

refers to "generalised feelings of despair, discontent, or frustration" (Ray & Minch, 1990,

p.478). Generally, students who have less computer anxiety achieve higher scores on

programming tasks (Ray & Minch, 1990; Chen & Vecchio, 1992). A similar relationship

exists between computer alienation and programming tasks (Ray & Minch, 1990).

2.6.4 Access to Computers

Access to computers has been seen to be a contributing factor in learning to program.

However this is only a significant factor when insufficient computer resources are available

to the student. Linn & Dalbey (1985) categorised student access as high and low. High

access students included students with home access and possible additional access. Low

access students were those students who had no home access. In their research at several

schools they found that their was a significant difference between high and low access

students' performance only when there was insufficient in-school access.

2.6.5 Interest

Interest in the topic will make students more motivated, however this has not been found to

be a substantial influencing factor in the success of students learning to program (Linn &

Dalbey, 1985).

2.6.6 Gender

Generally it is agreed that in terms of programming ability there is no difference between

male and female students (Mazlack, 1980; Linn & Dalbey, 1985).

11 Original source: HOWARD, G.S.; MURPHY, C.M. & THOMAS, G.E. (1986). Computer Anxiety

considerations for design of introductory computer courses. In Proceedings of the 1986 annual Meeting of

the Decision Science Institute, Atlanta, GA: Decision Science Institute, p. 630-632.

20

2.6.7 Additional factors

Introverts vs. Extroverts

Introverted individuals tend to perform better than more extroverted individuals on certain

programming tasks. Chen & Vecchio (1992) postulate that this is perhaps as a

consequence of introverts being better able to focus their attention on cognitively

demanding tasks.

Attitudinal Characteristics

A strong predictor of programming success is if the student expects the course to be

difficult. This attitude has a negative impact on programming success. If students prefer

problems with one rather than multiple solutions, this also negatively impacts their

programming success (Goodwin & Wilkes, 1986). If students find the assignments easy

and the programming instructor helpful, a positive impact is seen on programming success

(Goodwin & Sanati, 1986).

Generally it can be said that programming is dependent on aptitude and personality

characteristics of an individual (Goodwin & Sanati, 1986; Goodwin & Wilkes, 1986; Chen

& Vecchio, 1992).

2.7 Novice Programmers' Misconceptions

A programming misconception is an incorrect notion of one, or a combination of many,

programming constructs. It is a persistent misunderstanding which may be maintained for

several years by the programmer. For example, a common misconception that novice

programmers experience is that a variable named LARGEST would take on the value of

the largest of several inputs.

A misconception is different from a programming error, as an error is often a result of

carelessness or short-sightedness of the programmer. On the other hand, misconceptions

often require the programmer to reconstruct their perception of the underlying machine or

compiler. This process of reconstructing or fine tuning sometimes takes several months of

programming. As a result, some so called expert programmers still have incorrect mental

models (Du Boulay, 1986).

21

In this study, errors such as the most frequent Pascal syntactic error, the omission of a

semicolon (Ripley & Druseikis, 1978), are not considered to be misconceptions. These are

rather considered to be language specific problems which could be eradicated by improving

the programming language specifications. This study of programming misconceptions

focuses on those programming problems which require the student to reconstruct or modify

their perception of the conceptual machine, and those problems which are language

independent.

Misconceptions are widespread. They occur in primary to adult students (Pea, 1986). In

addition, research has shown that they occur in most programming languages (Pea, 1986),

although most research has examined novice programmers learning BASIC or Pascal. It

has also be found that misconceptions are transferred from one programming language to

another. Thus, students who learn to program in one programming language and then

another, not only transfer their knowledge but their misconceptions as well.

Misconceptions occur as a result of insufficient knowledge of the required domain. Much

of program instruction (incorrectly) treats learning to program as a new and independent

skill which relies little on previous knowledge or learning. Pea (1986) refers to the novice

programmer as being in a state which is the closest an adult will get to "situation of a

tabula rasa" (Pea, 1986, p. 26).

Novice programmers, having little knowledge on which to base their current learning

experiences tend to work intuitively. As a result, they develop survival techniques, which

are, at times, inappropriate. One such survival technique which is common among novices

is to use the analogous situation of conversing with a human, when attempting to

understand the process of programming. Unfortunately, this analogy results in several

misconceptions as the computer is given additional interpretative powers which are beyond

the power of a computer or compiler. Pea (1986) referred to conceptual 'bugs' and

classified the 'superbug' as the "default strategy that there is a hidden mind somewhere in

the programming language that has intelligent interpretative powers". Novices also rely on

knowledge from other domains such as mathematical algebra.

22

Further problems arise as a result of the programming languages themselves. Most

programming languages have chosen commands or instructions derived from English to

assist the programmer in writing code. However, this often causes misconceptions in

novice programmers, as they associate too much of the English meaning to the command.

The Pascal 'while' looping construct is an example. Novice programmers associate the

temporal nature of the 'while' English word to the construct and falsely believe that the

loop is terminated as soon as the condition is no longer true12
. This occurs as a result of

"...the mismatch between the designer's and the user's understanding of what is implied..."

by a certain command (Du Boulay, 1986). Novice programmers may also assume that the

system has inference capabilities of a human because of the naturalness of the language

(Du Boulay, 1986). The grammar of programming languages, which are mostly English­

like, is also seen to be a problem, especially for programmers whose first language is not

English. These programmers must not only learn the vocabulary but also the grammar of

the programming languages (Du Boulay & O'Shea, 1981).

All these factors contribute to the novice programmer developing inappropriate mental

models of the underlying machine on which the program runs. The remainder of this

chapter discusses particular programming misconceptions in more detail. Initially, a

conceptual classification of misconceptions is presented. The conceptual classification of

misconceptions classifies the misconceptions based on the students' underlying thought

processes. The chapter concludes with an in-depth discussion of programming constructs

and their associated misconceptions.

2.7.1 A Conceptual Classification of Misconceptions

In Pea's (1986) study of1anguage-independent conceptual 'bugs' in novice programmers,

he has identified three classes of bugs: parallelism, intentionality and egocentrism bugs.

Pea suggests that these misconceptions are a result of the "'superbug', the default strategy

that there is a hidden mind somewhere in the programming language that has intelligent

interpretative powers" (Pea, 1986, p. 26).

12 See section 2.7.2.1.

23

Pea's classification is worthy of consideration as it is a first attempt at a classification of

programming misconceptions, and gives the reader a global understanding of novice

programmers' underlying thought processes. Consequently each of his three classes of

bugs are discussed below. In Du Boulay's (1986) study of novices' difficulties in learning

to program, he briefly highlighted three types of errors: misapplications of analogy,

overgeneralisations and the inexpert handling of complexity. These error types can be used

to categorise novice programmers misconceptions and are also discussed below.

2.7.1.1 Parallelism Bugs

This is the perception that several lines of code "... in a program can be active or somehow

known to the computer at the same time, or in parallel" (Pea, 1986, p. 27). This

misconception occurs in two main contexts.

The first, is in the context in which conditional statements occur outside of loops. Pea

(1986) gives the following example (p. 27):

IF SIZE = 10, THEN PRINT "HELLO

where SIZE13 is the variable name in the conditional statement. Later in the program a

loop is introduced to increment (by one) the variable SIZE until it reaches ten.

FOR SIZE = 1 TO 10, PRINT "SIZE
NEXT SIZE

Eight out of the fifteen high school students in their second year of Computer Science

predicted that HELLO would be printed when SIZE became 10. The novices failed to

comprehend that the IF statement would be inactive by the time the variable SIZE became

ten. Rather, the students stated that the IF statement was waiting for the variable to

become ten. One student stated: "It looks at the program all at once because it is so fast"

(Pea, 1986, p. 27). Pea interprets these comments by suggesting that the student attributes

13 To distinguish program variables in the text, the convention in this and subsequent references to variables is

the use of the Courier font.

24

the program to have the ability to monitor the status of every line in the program

simultaneously.

This misconception is also noticeable when students are asked to predict the outcome of a

program which includes a while statement. As many as a third of the Pascal students

predicted that the while loop would be halted as soon as the exiting condition became true.

To understand the student perception of if and while statements, Pea examined the usage of

conditionals in natural language as it was his contention that these bugs were as a result of

the 'superbug'. In other words, he believed that students were using the inappropriate

analogy of conversing with a human. Pea suggests that if you offer to help someone if they

are having difficulty with something, the individual might take you up on your offer several

hours, days, months or even years later. In fact, in English usage, the decision is rarely

instantaneous, the temporal nature of the conditional is based on the context of the

situation. However, in computer programming the conditional response is immediate.

If one examines the usage of a while expression in natural language, such as "while the

highway is two lanes, continue north" (Pea, 1986, p. 28), it is understandable why novice

programmers should have this misconception that the while loop is continuously monitored

for the exit condition. The while statement in computer programming is at odds with the

natural language interpretation of a while statement.

Novices, experiencing symptoms of the parallelism bug have more than likely applied their

knowledge of natural language to the new domain of computer language. The students

have incorrectly transferred their knowledge of natural language to the more structured

programming language context.

The second context in which the parallelism bug is evident, is one in which variables are

assigned values or initialised after the lines of code which use the variables. Pea (1986)

gives the following lines of code as an example (p. 28):

25

AREA = Height X Width
Input Height
Input Width
PRINT "AREA

When the product of Height and width are calculated on the first line, the current

values, or if they have not yet been assigned a value, two arbitrary or default values, will be

multiplied and assigned to AREA. However, many students assume that the product of the

inputted Height and Width variables will be assigned to AREA and printed out in the

fourth line. The students fail to realise that the programming language is unable to look

ahead to determine the desired values for the variables Height and Width. They have

given the programming language (or machine) the ability to process statements as a human

listener or reader would be capable of doing. They have assembled all the given

information to produce the required result. Pea notes that in natural language domains

students are encouraged to scan ahead as a reading strategy, and it is this very principle that

has led them astray in the more formal domain of programming language comprehension.

2.7.1.2 Intentionality Bugs

Intentionality bugs are those problems which arise as a result of students assigning

predictive abilities to the program, or as Pea (1986) states "...goal directedness or

foresightedness ... " (p. 29). The students assume that the program is capable of

determining the intention of the code, thereby indicating that they attribute human qualities

to the program. This class of misconception is evident when students are required to

comprehend or trace through a program. Pea (1986) demonstrates this misconception with

the use of the following Logo program example (Pea 1986):

TO SHAPE :SIDE
IF :SIDE = 10 STOP
REPEAT 4 [FORWARD :SIDE RIGHT 90]
SHAPE :SIDE/2
END

When one types SHAPE 40, the program will draw a large square of size 40 and then a

smaller one inside the first and then stop. Initially, SIDE has a value of 40. In the second

line, the condition statement determines whether the code should be terminated, as the

SIDE is not equal to ten, it will continue to execute the third line. In this line the process

26

of moving fonyard forty units and then turning ninety degrees is repeated four times. This

in effect draws the first square. The penultimate line repeats the execution of the code, but

with a size of twenty. When the code is repeated after drawing a square of twenty units,

the execution is stopped on the second line due to the condition statement.

When students are required to predict the outcome of the code, some students incorrectly

interpret the conditional statement's usage. Erroneously, some students predicted that the

code will result in the box of size 10 being drawn. They interpreted the conditional as a

command 'encouraging' the computer to draw a square of size ten. When Pea (1986)

questioned these students as to why a square of size 10 would be drawn, they responded by

saying things such as "... because it wants to draw a square". These students have given the

program intentional powers.

2.7.1.3 Egocentrism bugs

This class of misconceptions takes its name from the psychological phenomenon which is

common amongst children. Egocentrism is an overemphasis on the perspective of self

relative to that of others. Egocentrism is usually manifest in tasks which place strenuous

cognitive demands on the individual. In programming, egocentrism bugs are those bugs

"...where students assume that there is more of their meaning for what they want to

accomplish in the program than is actually present in the code they have written" (Pea

1986). Students give the program the ability to interpret what they intend and not

necessarily what they have written in the program. As a consequence, variable values or

essential lines of code are often omitted. These skeleton programs are not a result of

sloppy work but rather a consequence of the student assuming that the program is able to

fill in all the missing bits to accomplish the intend task.

Soloway et al. (1982) have also found the existence of a persistent misconception which

can be considered to be a further example of the egocentrism bug. They labelled this

misconception the 'mushed variable' bug. A quarter of their Pascal students erroneously

used the same variable for more than one role. Soloway et al. (1982) refer to code in which

students have used the variable X to both store the value of some input and to hold a

running total of the input variables. In this instance, students are assuming that the

27

program is able to determine in which role the variable is required to be used, and use it

accordingly.

Egocentrism bugs occur when students are required to write code to accomplish a task.

Intentionally bugs occur when students trace or depict the outcome of some correct code.

Both classes of misconceptions are a result of the student attributing too much

interpretative power or intelligence to the computer. In parallelism bugs the student

assumes that more than one line of code can be active at any instance. In this case the

student is attributing the computer with the intelligence to assimilate and process more than

one bit of information at a time, a characteristic of human interactions. As has been

discussed, all these errors result from the student erroneously applying the analogy of

conversing with a human, when they are interacting with the program or machine.

Pea suggests that if we wish to overcome these errors, that methods to diagnose the

misconceptions must be developed. The programs or problems in which misconceptions

can arise should be frequently and explicitly given to the student by the teacher. Also, the

novice programmer needs to be made aware of what must be explicitly expressed in the

code and what is done by the compiler or interpreter.

2.7.1.4 Misapplication of analogy

These types of errors arise as a result of a student attributing "... more structure or

relationships from an analogy than are warranted" (Du Boulay, 1986, p. 58). Du Boulay

refers to the infamous box analogy of a variable: students erroneously believe that a

variable can hold more than one value. Pea's 'superbug' is a result of students misapplying

the human analogy to the programming system.

2.7.1.5 Overgeneralisations

These types of errors are a result of the novice overgeneralising one feature of the system to

another. For example, because the formal parameters of a Pascal procedure are separated

by semicolons, a student might erroneously separate the actual parameters with a

semicolon. Although Du Boulay gives only syntactic examples he states that these types of

28

errors are not necessarily limited to syntactic errors. Soloway et al. (1982) believe that

some errors occur as a result of students overgeneralising the counter variable concept to

input variable concepts14
• In many instances, these errors can be considered to be as a

result of inconsistencies of the programming language design.

2.7.1.6 Inexpert handling of complexity

Du Boulay (1986) believes that inexpert handling of complexity is the cause of the third

type of error. More specifically, students do not understand the interactions of different

sub-parts of a program and thus improperly interleave them in the program.

2.8 Programming Construct Misconceptions

The above discussion focused on a conceptual classification of language independent bugs

or misconceptions. Other authors have concentrated on studying novices' actual problems

while studying particular languages. This section summarises these researchers results

from a more language oriented approach. This is not necessarily in conflict with Pea's

classification. Nonetheless, it is necessary to classify the misconceptions in terms of

language constructs to appreciate the complexity of the problem.

There are three measures of errors: error frequency, error proneness and error-persistence.

Error frequency determines how often a particular error is noted. Error proneness refers to

the overall frequency of a particular error relative to its use. There is evidence that a small

number of error types account for the majority of all errors. For example, conditions are

highly error-prone even though they account for a relatively small number of actual errors.

That is novices are highly likely to make an error when coding a conditional although they

generally do not include many conditions in their programs (Young, 1974 as cited by Du

Boulay & O'Shea, 1981). Error persistence refers to the rate at which errors are eliminated

from the programs or the user's mental model. Errors with high persistence take longer to

diagnosis and eradicate. The while loop's temporal error is an example of a high error

persistence situation (Du Boulay & O'Shea, 1981).

14 See Section 2.8.1.3.

29

This study is primarily concerned with error proneness. Given the constraints of most

teaching situations, programming instructors need to focus their attention on those

constructs or plans which have high error proneness.

The statistics discussed in this section are based on research on Pascal and BASIC novice

programmers who attended college or high school programming courses in the USA during

the 1980's (Bayman et aI., 1983; Putnam et aI., 1986; Sleeman et al., 1986).

In Putnam et al. 's study, the students were high school BASIC novice programmers, from

five different schools, who had completed a BASIC programming course. Ninety-six

students were examined with a six item test. Four test items required students to predict

the outcome of a four to ten-line program and two items required the students to debug a

slightly more complex program. A written description of the intent of the programs was

provided. Fifty-six students were subsequently interviewed to allow the researchers to

understand the exact nature of the individual student's problems more fully.

Sleeman et al. 's study, (same authors as above), involved an analysis of high school Pascal

novice programmers, from three different schools. Most students had some previous

BASIC exposure. The method was the same as the BASIC experiment described in the

previous paragraph except for two factors: the administered test was refined and fewer

students were interviewed. The screening test included nine items in which the student had

to predict the outcome and one debugging item. As the authors were limited to

interviewing 35 of the 67 students by logistics, they selected the students with the most

significant difficulties.

The third study (Bayman & Mayer, 1983) involved thirty college undergraduate students

who had successfully completed an introductory BASIC course. In this study, the test

required the students to explain in natural language (English) the steps that the computer

would carry out to complete the programming statement.

30

2.8.1.1 Input Misconceptions

Input misconceptions are those misconceptions which students have regarding the reading

of input. Given a series of input values, students with input misconceptions will falsely

predict which value ,is accepted by the computer based on some characteristic of the

program code. Students failed to understand that input is accepted in a sequential manner,

without any impliCit selection process. "More of the students ... had difficulties with READ

statements than with any other aspect of the BASIC language" (Putnam et aI., 1986). The

input misconceptions will be discussed in turn.

'Semantically constrained Reads' - In this instance the misconception is that the program

can select values from the given input based on the basis of features of those inputted

values (Sleeman et al. , 1986). The most common view was that a READ statement used

with a meaningful variable name selected the most appropriate value for the variable in

terms of the variable name (Putnam et al., 1986; Sleeman et aI., 1986).

Sleeman et al. (1986) use the following Pascal program as an example:

PROGRAM B1;
VAR First, Smallest, Largest: INTEGER;
BEGIN

WRITELN('Enter three numbers'};
READLN(Largest, Smallest, First};

END.

Given the input 5, 10 and 1, students with this misconception believe that the variable

Smallest will take on the value 1, Largest will take on the value 10 and First the

value 5.

Declaration order determines the order in which values are read into variables - Students

with this misconception would assign values to variables based on the order of declaration,

if the declaration order and input command (READ statement) were not the same (Sleeman

et al., 1986).

Below is a Pascal program which could serve to diagnose students who hold this

misconception:

31

PROGRAM example2;
VAR B, A, C:INTEGER;
BEGIN

WRITELN('Enter three numbers'};
READLN (C, B, A)

END.

Given the input: 25, 10 and 20 students with this misconception would argue that B gets

the fust value (25), A gets the second value (10) and C (20) gets the last value because of

the order in which the variables were declared (Sleeman et aI., 1986).

Variables are assigned values based on the variables' alphabetical order - This

misconception occurred when students "...tried to impose meaning on single-letter variable

names in READ statements" (Putnam et aI., 1986, p. 464). The following BASIC program

illustrates this misconception (Putnam et aI., 1986):

40 READ A
50 READ B
60 READ N
200 DATA 9, 38, -100, 5, 12

Students with this misconception stated that A gets the first value, namely 9 "... (because 9

is the fust value in the DATA statement)...", B gets the second value (38) and N would be

assigned the value 12 "...because N is near the end of the alphabet and 12 is the last

number in the list of data" (Putnam et aI., 1986, p. 464-465).

Multiple-value variables - In this instance this misconception is that variables can be

assigned more than one value at one time. This error often occurs with the semantically

constrained input misconception. For example (Sleeman et aI., 1986):

PROGRAM B3;
VAR Even, Odd: INTEGER;
BEGIN

WRITELN('Enter data: '};
READLN(Even, Odd};

END.
Input: 3 2 10 5

Students consistently stated that Even would be assigned the values 2 and 10, and Odd

would hold the values 3 and 5. One variation of the multiple value variable misconception

is that students falsely believe that all the values are assigned to (all) the variables.

32

Another variation is that students thought that a variable name is capable of holding the

same number of values as characters in the name, hence a 3 character variable e.g. Odd

would be capable of holding 3 values simultaneously. These variations were less frequent

than the general form of the multiple-value variable misconception.

Another error noted with input statements can be observed when students execute

programs. Students do not understand where the to-be-input data comes from. In novice

programmer situations this is invariably the keyboard, yet students do not understand that

the control shifts from the computer to the user at this point (Bayman & Mayer, 1983; Du

Boulay, 1986). Furthermore, in most languages, the syntax of an input statement disguises

the fact that the variable mentioned in the input statement has it's value changed, or

initialised, by the input statement (Du Boulay, 1986).

2.8.1.2 Output Misconceptions

These errors appear to be language dependent. Three errors were noted in Pascal regarding

statements such as

WRITELN('Enter a number: ')i

1. caused a number to be read, similarly WRITELN ('Enter 5 numbers:') would

cause 5 numbers to be read.

2. caused the variable name and value to be printed.

3. after the statement has been executed the program can choose a number from the input

values.

Bayman and Mayer (1983) have noted that novices have difficulty in conceiving that

output statements merely display on the screen what they are instructed to do. They also

assume functional capabilities when a semantic variable is included in the output

statement.

Another error involved students not distinguishing the difference between the BASIC

commands PRINT C and PRINT "C" or the Pascal commands WRITE (, C ') and

WRITE (C). Without inverted commas the value of the variable C is outputted, otherwise

33

the character C is outputted. Students either ignored the quotation marks, or believed that

the quotation marks would cause the value of the variable to be printed.

Other occasional errors noted by Putnam et al. (1986) are the repeated print and multiple­

value print misconceptions. One student, who had major programming difficulties, thought

that an output statement of the form PRINT X would cause the value of X to be printed

several times. Putnam et al. (1986) labelled this the repeated print misconception.

Students with the multiple-value print misconception believed that all previous values

associated with a variable would be printed when the variable was printed.

2.8.1.3 Variable Misconceptions

The most common misconception regarding variables is that a variable can hold more than

one value simultaneously. This misconception manifests itself in various situations. One

such situation is the multiple value read mentioned above under input misconceptions.

Some students recognised that the values were READ in one at a time, but believed that

previous variable values will still be known. They believed that the values were collated in

some way into the variable - that the variable acted in a similar way as a stack data

structure. Hence they believed that a subsequent output statement would result in all the

values being displayed (Putnam et aI., 1986). This is probably as a result of the

misapplication of the box analogy15 for a variable. Students believe that the values

overwritten are still available somewhere and can be retrieved (Du Boulay, 1986).

Confusion of variables - Here students confuse two variables in a program. Sleeman et al.

(1986) illustrate this with the following Pascal statements:

READLN(P); Q:=Q+l;

Students with this misconception interpreted the line of code as:

Q=P+l;

In diagnosing errors which occur when students write their own programs, Soloway et al.

(1982) have referred to 'mushed variables'. A 'mushed variable' is when a single variable

15 See section 2.7.1.4.

34

is used incorrectly for more than one role. An example is shown below (Soloway et al.,

1982, p. 50):

program Student26_Problem2;
var X, Ave : integer;
begin

repeat
read (X);
X:=X + X

until X + X > 100;
Ave :'= X div Nx;
Write (Ave)

end.

Here the student has used the variable X as both an input variable and a counter variable.

Although the authors could not explain this error, they concluded that it was probably due

to the student assuming that the computer had some interpretative skills. Students assumed

that because they themselves could distinguish the different roles of the one variab!e, so

could the computer and hence use the different values appropriately (Soloway et aI., 1982).

This is an example of Pea's (1986) egocentrism bugs.

Initial value of the variable is maintained rather than updated - Putnam et al. (1986)

postulate that this problem could merely be as a result of difficulties with tracing code.

Students were simply overloaded due to the complexity of the problem. Du Boulay (1986)

argues that this may be linked to the idea of a variable remembering its previous value and

believes that this error concerns the temporal scope of the assignment statement. Students

may think that the variable "...value does not fade away and hangs around until either

explicitly changed, the contents of memory are erased or the machine switched off' (Du

Boulay, 1986, p. 65).

Printing of variable values - two variations of this misconception are evident (Sleeman et

aI., 1986):

a) Values of variables are printed whenever the variable is encountered on the LHS

(left hand side) of an expression.

b) The value of the LHS variable is printed whenever its value changes.

When students have been required to write programs, a common error is for an input

statement to be included before the loop, but not inside the loop. Soloway et al. (1982)

35

believe that this is not a result of carelessness, but rather the overgeneralisation of the

concept of the counter variable to an input variable. Students with this misconception

believe that decrementing an input variable by one will return the previous value of the

variable, in the same way decrementing a counter variable by one returns the previous

value of the counter. Further evidence is the selection qf the Prev_Num variable, by the

student, to hold this previous input value. This finding can also be as a result of the student

misapplying the box analogy to a variable, and it supports Putnam et al. 's (1986) and Du

Boulay's (1986) findings that students believe that a variable is able to collate all inputs

using mechanisms such as a stack.

2.8.1.4 Assignment Misconceptions

Reversal of the assignment statement - This is evident in both Pascal and BASIC novice

programmers. For example, A: =B (Pascal) or LET A = B (BASIC) is interpreted by

students with this misconception as meaning that B gets the value of variable A as opposed

to the correct interpretation of A getting the value of B. However this seems to be a minor

conceptual problem as most students with this misconception interpret statements of the

form A: = B + C (Pascal) or LET A: = B + C (BASIC) correctly (Putnam et aI.,

1986).

Assignment statement is equivalent to the Boolean comparison operation - students with

this misconception believe that statements such as LET C = C + 1 are invalid as C (say

with a value 0) cannot be equal to C + 1 (1), however statements such as LET W = A

+ 1 were considered valid by the same students (Putnam et aI., 1986). Other students

learning Pascal interpreted the assignment statement as a comparison. Thus A: =B is

interpreted as the Boolean comparison of the variables A and B, the result of which is true

only if the variables' values are the same (Sleeman et aI., 1986). Putnam et al. (1986)

suspect that variations of this misconception appears to occur as a result of students

incorrectly transferring knowledge from another domain, namely algebra.

Variables swap values - A: =B is interpreted as temp: =A, A: =B and B: =temp

(Sleeman et al., 1986).

36

Instantiated variable's value is printed - Given the sequence A: =2; B: =3; A: =B one

student in Sleeman et al. 's 1986 study stated that 2 =3 would be printed.

Links variables together - An assignment of the form A: =B links the variables A and B in

some way, so that whatever happens to A in the future also happens to B. This is as a result

of students failing to see the difference between the identity and equality of two variables

(Du Boulay, 1986).

Other students believe that an assignment statement has no effect (Sleeman et al., 1986).

Some authors have postulated that these errors are a result of the overloading of operators

such as the equivalence symbol (Ripley & Druseikis, 1978; Du Boulay & O'Shea, 1981).

Soloway et al. (1982) have noted that novice programmers experience more difficulty with

the running total variable concept compared to the counter variable concept, although both

concepts require similar assignment statements. They put forward three hypotheses which

could account for this observation.

1. The activity of counting, which uses the counter variable concept, and the activity of

summing values, which uses the running total variable concept, are different activities.

2. "Students might learn the notion of a counter as a special entity..." and do not

decompose the assignment statement into a left hand side variable getting the value of

the right hand side expression. Consequently, when students are confronted with the

running total variable concept, they have to "...confront their understanding of the

particular type of assignment statement needed in this context" (Soloway et al., 1982,

p.47).

3. The running total variable update requires the addition of a variable, whereas the

counter variable update requires the addition of a constant. Soloway et al. (1982)

postulate that novices find variable concepts harder than constants.

37

2.8.1.5 Loop Misconceptions

2.8.1.5.1 General looping errors

The errors discussed in this section apply to all types of looping constructs such as the

Pascal WHILE, FOR and REPEAT loop constructs.

WRITELN adjacent to loop is included in the loop. A Pascal program which illustrates

this error is:

PROGRAM A5;
VAR I, X: INTEGER;
BEGIN

FOR 1:= 1 TO 3 DO
BEGIN

WRITELN('Enter a number. ');
READLN (X) ;

END;
WRITELN (X) ;

END.

Given the input 6 3 4 2 4 1 8 students indicate the output is 6 3 4 when in reality

only the 4 will be displayed (Sleeman et aI., 1986, p. 13).

However, Sleeman et al. (1986) noticed that PASCAL novice programmers who had this

misconception with FOR loops did not necessary have the same problem with WHILE

loops and vice versa. The error appears to be consistent not with looping constructs in

general but with a particular loop construct.

Data-driven looping - Here students believe the number of iterations is dependent on the

number of data items to be read. A BASIC example is as follows:

10 FOR I = 1 TO 5
20 READ X
30 PRINT X
40 NEXT I
50 DATA 5, 8, 6, 3, 10, 11, 1, 25, 2

The following output was predicted by students: 5 8 6 3 10 11 25 2. This

program will only read and print the first five data values.

38

A variation of the data-driven looping is that students believe that the loop controls the

number of times the process is repeated (the rows) and the number of data values determine

the number of columns for each row. The Pascal example is as follows:

PROGRAM A2j
VAR I, X:INTEGER
BEGIN

FOR 1:= 1 TO 3 DO
BEGIN

WRITELN('Enter a number')j
READLN (X) j

WRITELN(X)
END

END.

Given the input: 6 3 4 2 4 1 8, students suggested the following output would result:

6 3 4 2 4 1 8

6 3 4 2 4 1 8

6 3 4 2 4 1 8

Scope problems - Three problems can be categorised as loop scope problems:

1. only the last instruction of the loop is executed multiple times. This misconception was

only noticed by Sleeman et al. (1986) when the last instruction was a WRITE(LN)

statement. The WRITELN instruction in the loop is executed the correct number of

times, but all preceding loop instructions are only executed once.

2. BEGINIEND or indentation defines a loop in Pascal. For example:

PROGRAM A3j
VAR X:INTEGERj
BEGIN

WRITELN('Enter a number. ')j
READLN (X) j

WRITELN(X)
END.

Given the input 6 3 4 2 4 1 8 students predicted that all the numbers in the data

set would be printed out despite the absence of a looping construct (Sleeman et aI.,

1986).

3. After a loop is executed control goes to the first statement of the program. This error

occurred in " ...short programs where the error could be interpreted as re-initialising

variables each loop-cycle" (Sleeman et aI., 1986).

39

2.8.1.5.2 Errors specific to FOR loops

Four errors were noted only in the context of FOR loops, these will be discussed in turn.

The control variable does not have a value inside the loop in the case of Pascal (Sleeman et

al., 1986).

The FOR loop statement acts as a constraint on the embedded READLN statement. For

example (Sleeman et al., 1986, p. 16):

PROGRAM A5;
VAR I, X: INTEGER;
BEGIN

FOR I :=1 TO 3 DO
BEGIN

WRITELN{'Enter a number. ');
READLN (X) ;

END;
WRITELN (X) ;

END.

Given the input 6 3 4 2 1 8, students with this misconception believed that only

values 3 2 and 1 would be read and displayed, as this is the range of the FOR loop

control variable. This program will actual read the first three numbers and display the last

value read in (4).

Other students believed that the FOR statement specified the number of times a variable's

value would be displayed. Hence the above segment of code resulted in students predicting

that each of the nine numbers in the data segment would be printed five times. The

program would actually read in and print out the fust five numbers only once.

A final FOR loop misconception involved the use of the control variable. Some Pascal

programmers thought it was acceptable to change the value of the control variable within

the loop. They also failed to realise that the control variable is simply a counter which is

incremented with each iteration of the loop.

40

2.8.1.6 Conditional statements

If statements result in several misconceptions. All of the misconceptions seem to occur as

a result of students failing to understand the flow of control of an IF statement, although

most students understood the basic concept of a conditional (Putnam et al., 1986).

Several errors were noted specifically when a conditional is false. These are outlined

below.

When a conditional is false:

• program execution is halted if the condition is false and there is no ELSE

branch (Sleeman et al., 1986)

• execution of the entire program terminates (Putnam et al., 1986)

• control is passed to the beginning of the program (Putnam et al., 1986)

Both the THEN and the ELSE branches are executed (Sleeman et al., 1986)

The THEN statement is executed whether or not the condition is true (Sleeman et al.,

1986)

When an IF statement results in a branch to a PRINT statement, both the variable and the

value in the conditional expression are printed (Putnam et al., 1986).

Example:

30 IF N = 0 THEN GOTO 60

60 PRINT SMALLEST

A student predicted the following output: 1 0, where 1 is the value of the variable

SMALLEST and 0 the value of the conditional. When the conditional in line 30 was

changed to N = - 9 9, the student predicted the output to be 1 - 9 9 .

The statement directly after an IF statement without an ELSE branch is interpreted as the

ELSE branch. Thus statements of the form IF <a> THEN i <C> i is interpreted

as IF <a> THEN ELSE <c>;.

41

In writing conditional statements, students have greater difficulty with OR statements than

AND statements, and the combination of the OR Boolean operator with a negative test

expression results in high error frequency (Miller, 1974).

2.8.1.7 Procedure Misconceptions

Two misconceptions occur in procedures, both indicate a lack of understanding of flow of

control. In the first, all statements, including those in procedures are executed in the order

they appear in a top to bottom scan of the program. In the second, procedures are executed

when they are encountered in a top to bottom scan of the code and again when they are

called within the program.

2.8.1.8 Flow of Control

Putnam et al. (1986) found the following flow of control misunderstandings in their

BASIC novice programmers.

All statements in a program must be executed at least once, even statements that might be

skipped due to branching in the code. For example, one student when requested to trace

the following program:

10 LET X = 1
20 LET Y = 2
30 IF X = 1 THEN GOTO 50
40 PRINT X
50 PRINT Y
60 END

correctly stated that the value of Y would be printed at line 50, but then incorrectly stated

that because line 40 had been missed the computer would go back and execute line 40

before terminating.

Another similar misconception was that all PRINT statements in a program are executed.

Students with these flow of control misconceptions appear to be of the impression that all

code in the program is there for a purpose and thus must be executed (Putnam et al., 1986).

42

Generally, students experience difficulty with accurately following or predicting the flow

of control of a program. Du Boulay (1986) observed that although students recognised that

a program represents a sequence of instructions, they at times forgot that each instruction

operates in an environment, or state, created by the previous instructions. Some students

believe that the instructions are somehow executed all at once at the end of the program,

while others fail to realise that the next instruction is always executed unless explicitly

instructed otherwise (Du Boulay, 1986). Also, students using the divide and conquer

design heuristic often fail to take into account the interaction between chunks of code

(Soloway, 1982; Du Boulay, 1986).

2.8.1.9 Tracing and Debugging

This has been found to be one of the hardest programming tasks for novice programmers

(Putnam, 1986; Sleeman, 1986). Generally students would infer the function of a program

from a few statements and hence ignore or misinterpret lines of code that did not concur

with their initial interpretation of the program (Putnam, 1986; Sleeman, 1986).

For example, students would incorrectly infer that the program below would find the

smallest number of a set of numbers as a result of the dominance of the variable

Smallest (Sleeman et al., p. 17):

PROGRAM 11;
VAR smallest, Number: INTEGER;
BEGIN

WRITELN('Enter a number: ');
READLN(Number);
Smallest:= Number;
WHILE Smallest <> 0 DO
BEGIN

IF Smallest > Number THEN
Sma1lest:= Number;

WRITELN('Enter a number: ');
READLN(Number) ;

END;
WRITELN(Smallest)

END.

In other situations, students would interpret the program based on what they consider to be

reasonable output. Given the following code:

43

PROGRAM F2;
VAR number: INTEGER;
BEGIN

WRITE('Enter a number: ');
READLN (Number) ;
IF number = 7 THEN

WRITELN('Unlucky number');
IF number = 10 THEN

WRITLEN('Lucky number');
WRITELN('The Number was', Number)

END.

and the input 10 students correctly stated that the program would output 'Lucky

Number', but they then indicated that the program would terminate "...as there's no point

in doing the next line as we know the value must be ten as it's a lucky number... "

(Sleeman et al., p. 18).

Also students would spend a lot of time debugging or understanding a particular section of

the program, making assumptions about the other parts of the program. And lastly students

had problems keeping track of the variables in a program. As mentioned earlier in this

section, this could merely be a result of the complexity of the debugging or tracing task.

However it appears that students fail to understand the rote behaviour of the computer in

executing programs, and rather assume that the computer will act as a reasonable human,

inferring or using intuition where necessary.

The following table serves to summarise programming constructs and their associated

misconceptions discussed so far.

Table 2.1: Summary of programming construct misconceptions and references

b) Declaration order determines the order in
which values are read into variables

c) Alphabetic order of variables determines the
order in which values are read into variables

d) Multiple-value variables

Sleeman et al. - frequent & consistent
Putnam et al. - frequent & consistent
Sleeman - fairly frequent & consistent

Putnam et al. - occasional

Sleeman et al. - frequent & consistent
Putnam et al. - fre uent & consistent

Putnam et al. - occasional
Bayman & Mayer (1983) -7% of
students
Putnam et al. - occasional
Putnam et al. - occasional

2. Output statements
a) an output statement causes a number to be read Sleeman et al. - occasional
b) output statement causes variable name and its Sleeman et al. - occasional

value to be displayed
c) after an output statement has been executed the Sleeman et al. - occasional

program can choose a value from input
d) Misinterpretation of statements of the form:

PRINT 11 C 11 (BASIC) or WRITE (I C')

(Pascal)
e) Repeated print
f) Multiple-value print

44

3. Variables
a) Multiple-value variables

b) Confusion of variables

c) Initial value maintained
d) Printing of variables when variable:

i) on LHS of expression
ii) value changes

4. Assignment Statements
a) reversal

b) comparison operator
c) variables swap values
d) instantiated variable's value is printed

e) links variables together
f) no effect

5. Loop Statements
a) output statement following loop included

within scope of loop
b) data-driven looping

c) scope
i) if the last instruction of a loop is a

WRITE(LN), only this statement is
executed multiple times

ii) BEGINIEND or indentation defines a loop
iii)after a loop is executed control goes to the

first statement of the program
d) Errors specific to FOR loops:

i) control variable has no value
ii) control value acts as input constraint

iii)for loop specifies no. of times variables'
values are displayed

iv)acceptable to change control variable's
value within the loop

Sleeman et al. - frequent
Putnam et al. - frequent
Sleeman et al. - occasional
Putnam et al. - not quantified
Putnam et al. - not quantified

Sleeman et al. - occasional
Sleeman et al. - occasional

Putnam et al. - occasional &
inconsistent
Sleeman et al. - occasional
Sleeman et al. - occasional
Sleeman et al. - occasional
Bayman & Mayer (1983) -7%
Du Boulay (1986) - not quantified
Sleeman et al. - occasional

Sleeman et al. - frequent
Putnam et al. - fairly frequent
Sleeman et al. - several
Putnam - occasional

Sleeman et al. - occasional

Sleeman et al. - occasional
Sleeman et al. - occasional

Sleeman et al. - fairly frequent
Sleeman et al. - occasional
Putnam et al. - fairly frequent
Putnam et al. - occasional

Putnam et al. - not quantified

45

6. IF statements
a) When a conditional is false

i) program execution is halted if there is no Sleeman et al. - occasional
ELSE branch

ii) execution of the entire program terminates Putnam et al. -occasional
iii)control is passed to the beginning of the Putnam et al. - occasional

program
b) Both THEN and ELSE branches are executed Sleeman et al. - occasional
c) the THEN branch is always executed Sleeman et al. - occasional
d) conditional value and variable value are Putnam et al. - occasional

displayed Bayman & Mayer (1983) - 10%
e) statement following IF statement becomes Sleeman et al. - occasional

ELSE branch
7. Procedures

a) In order Sleeman et al. - frequent
b) In order + call Sleeman et al. - fairly frequent

8. Flow of control
a) all statements are executed Putnam et al. - occasional
b) all prints executed Putnam et al. - occasional

Sleernan et al. (1986): Total population (35) Frequent =25%+(8+ students), fairly frequent =4-7, occasIOnal =]-3.

Putnarn et al. (1986): Total population (56) Frequent =25%+ (l4+students), fairly frequent =6-13, occasional =1-5.

2.9 Chapter Summary

In this chapter, programming knowledge representations and the learning process involved

in acquiring this knowledge was discussed. The acquisition of a mental model of the

programming environment, and general programming plans were seen as critical in the

development of programmer expertise. Novice programmers' misconceptions were

discussed at a general and specific level and it was evident from this discussion that novice

programmers have considerable difficulties with low-level programming knowledge. Most

of the novice programmers never pass the semantic level understanding of programming

languages in introductory programming courses. Students also have faulty mental models

and acquire few general programming plans.

3. STRATEGIES FOR TEACHING PROGRAMMING

3.1 Introduction

This section discusses several strategies for teaching programming so as to minimise the

difficulties students experience while learning to program in a more effective manner.

Teaching methods can make a difference. In exemplary programming classes, medium

ability students do as well as high ability programmers, and better than medium ability

students in typical programming classes (Linn & Dalbey, 1985). Shackelford & Badre

(1993) go further. They argue that students experience difficulty in solving simple

programming tasks not because of the difficulty of the problem, nor due to the required

algorithmic thinking skills, nor the inherent difficulty of programming languages, but

rather as a consequence of the consistently incomplete, and sometimes inaccurate,

instructional treatment of language construct usage. Furthermore, it is not realistic to

change the programming language environment, but one can realistically address the

quality of the teaching strategy.

Generally it can be said that programming instruction must encourage understanding of

concepts, i.e. meaningful learning, rather than rote learning, because programming involves

the transfer of existing knowledge to new situations (Mayer, 1981). Students are expected

to write novel programs, and consequently, students need to find a way of connecting the

. new information to existing knowledge.

3.2 Explicit instruction on programming misconceptions

Common sense might suggest that this approach would be the most effective. An

experiment, undertaken by Stemler (1989), which looked at the effect of instruction on

programmers misconceptions, resulted in disappointing results. The subjects were junior

and senior school BASIC programming students. All students were given the same

assignments, used the same textbook and received 55 minutes of instructional time per day

for the semester. The control group, a class of 11 students, worked through the text book

and completed all questions at the end of each chapter in addition to the class programming

47

assignments and tests. The experimental group, two classes of 11 students each, received

verbal instruction, which focused on assisting students in overcoming or avoiding

misconceptions. In addition to the exercises at the end of each textbook chapter, students

in the experimental group were also required to complete homework exercises of different

natures: completing a program or predicting the output of short programs. At the end of

the study there was no significant difference in the groups based on the misconceptions

test. It was noted, however, that students who received explicit instruction on common

flow of control misconceptions appeared to perform better in programming tasks. Stemler

notes that this finding verifies a study (Sleeman & Gong, 1985)16 in which it was reported

that "many misconceptions could be remediated effectively through a combination of: (a)

explicit training about the syntax and semantics of specific constructions in the

programming languages, Cb) requiring a learner to predict outcomes of short programs, and

(c) providing students with interactive computer feedback" (Stemler, 1989, p. 31).

Significantly Stemler noticed, however, that students in both the experimental and control

groups "...had difficulty with reading and predicting the output of programs" (p. 32). Even

those students who were relatively more efficient in generating correct programs had

difficulty following the logic of a program that was not theirs. Stemler concluded that

" ...explicit instruction in the misconception areas was beneficial, but that many students

still needed more experience with tracing programs and predicting the output" (p. 33).

3.3 Concrete models

The most popular suggestion for encouraging meaningful learning in programming is that

of providing the students with a concrete model (Mayer, 1976; Bayman & Mayer, 1983;

Lieberman, 1984). Mayer proposes that providing students with a concrete model gives

them a set into which new information can be assimilated. Mayer (1976) found that

students who were given a concrete model excelled in tasks requiring a moderate amount

of transfer presumably because the model allowed the students to integrate or assimilate the

new technical information to meaningful existing concepts. Concrete models have their

16 Original source: SLEEMAN, D. & GONG, B. (1985). From clinical interviews to policy

recommendations: A case study in high school programming. Stanford: Stanford university School of

Education, March. (ERIC Document Reproduction Service NO. ED 257 415).

48

strongest effect in situations where learners are unlikely to possess useful prerequisite

concepts. They are thus most useful when the material is unfamiliar, such as programming,

and for low-ability or inexperienced students (Mayer, 1981). Furthermore through his

empirical research, Mayer (1981), noted that for a concrete model to be effective, it must

be available to the student prior to or during, as opposed to after, the learning process.

A further argument for the use of a concrete model is that providing students with a

concrete model assists them in developing a more accurate and consistent mental model of

the system. Even if learners are not given a view of the computer, students will form their

own impressions which "...may be rather impoverished, relying on coincidence, and may

be insufficient to explain much of the observed behaviour" (Du Boulay, 1986, p. 59).

3.4 The 'glass box' approach

The glass box approach is an example of a concrete model which enables the learner to

'see' what goes on inside the computer. Each command results in an observable change in

the computer. The rationale is that if students can see what is happening inside the

computer they will be able to develop more accurate mental models. However it is not

necessary for the learner to be able to see all changes, only those necessary to assist the

user in understanding the new concepts (Mayer, 1979; 1981). Mayer refers to the

appropriate level of description, as the transaction level, where "a transaction consists of an

action, an object, and a location in the computer" (Mayer, 1981, p. 137). For each

programming statement there is a transaction, and thus Mayer suggests that the glass box

should illustrate these transactions.

Du Boulay et al. 's (1981) notional machine also utilises the glass box approach. Their

notional machine is an idealised model of the computer implied by the constructs of the

programming language. Two key design principles of the notional machine are simplicity

and visibility. The authors argue that a central difficulty in teaching novice programming

is describing what the machine can be instructed to do or how it manages to do it. The

notional machine addresses this difficulty by showing the learner certain of its workings in

action. Seeing the internal workings of the programming commands allows students to

encode information in a more coherent and useful way (Du Boulay, 1981), and thus they

49

can develop a more accurate mental model. The glass box assists the student in learning

the relation between a "program on the page and the mechanism it describes" (Du Boulay,

1986, p. 59). Although this concept is essential for the development of programming

skills, it is a concept which is grasped only gradually (Du Boulay, 1986).

Goodwin and Sanati's (1986) Paslab learning package is a further example of the glass box

approach. Essentially the package was designed with the intention of allowing students to

understand what is happening inside the computer relative to statements in Pascal programs

constructed by an expert. A comparison of final results obtained by students in the

introductory programming courses who had and had not used the system, revealed that

there was a change in the distribution of results. In the population of students who made

use of Paslab, there was a sharp rise in students moving out of the failing category (11 %, as

opposed to 23% of non-Paslab students) and into the category of 'acceptable' performance

(68% compared to 55%, but the percentage of students receiving a grade of 'distinction'

did not alter (21 %, compared to 22%). The inference drawn by Goodwin & Sanati (1986)

was that the Paslab learning system helped students with lesser backgrounds but did not

provide a 'boost' to higher ability students. These results concur with Mayer's (1981)

findings that concrete models are more beneficial to low-ability students. A further

observation made by Goodwin and Sanati (1986) was that the Paslab system changed the

factors that affected the students' performances in the course. Under conventional teaching

conditions, that is the non-Paslab conditions, background characteristics of students, such

as previous computer experience, had a major impact on the final results those students

received. Under Paslab conditions, the dominant factors shifted to the psychological

characteristics of the student, such as motivational level. However the authors cautioned

that these findings might be unique to technical institutions, and in particular the Worcester

Polytechnic Institute, and thus need to be replicated in non-technical institutions. This is

one of the objectives of this study.

3.5 Example Programs

Schemata or plans are an essential part of an expert programmer's domain knowledge.

Novices need to acquire these schemata or plans to become proficient in programming.

Most novices experience difficulty in abstracting plans from the limited examples they are

50

given, although the most successful manage. Students are assisted in acquiring these

general programming strategies by the use of numerous examples of similar problems

(lones, 1984). Not only is the inclusion of numerous examples beneficial to the

development of organised domain knowledge, but students like the use of lots of examples

(Dalbey & Linn, 1985).

3.6 Case Studies

Another technique, which has more recently been suggested by Linn and Clancy and

colleagues, is the use of case studies for programming (Lino, 1992; Linn & Clancy, 1992a,

1992b; Schank et aI., 1993). Lino and Clancy offer an alternative to the more traditional

syntax oriented organisation of most program instruction. They propose the use of case

studies to assist students in the acquisition of program design skills, similar to those of an

expert programmer.

Each of their case studies include:

• a statement of the programming problem

• a narrative description of the process used by an expert to solve the problem

• a listing of the expert's code

• study questions to provide practice in program design, problem solving and analysis,

• test questions to assess student's understanding of the program solution (Linn &

Clancy, 1992b, p. 121).

Linn & Clancy (1992b) suggest that the expert narrative included in the case studies model

expert program design skills by implementing eight principles of program design. These

are listed below (l992a, 1992b):

1. The Recycling principle - reuse of ideas and templates: chunks of code or programming

plans.

2. The Multiple Representation principle - consider multiple representations of each

design template such as natural language, pseudecode etc. to attain a robust

understanding of programming templates.

3. The Alternative Paths Principle - generate and evaluate alternative designs for problems

51

4. The Reflection Principle - reflect on alternative designs for programming problems and

on problem-solving processes.

5. The Fingerprint Principle - develop effective debugging skills by associating symptoms

of bugs with the appropriate bug.

6. The Divide-and-Conquer Principle - code and test complex programs a piece at a time

to isolate program bugs and to reduce the cognitive demands of programming.

7. The Persecution Complex Principle - test for all possible weaknesses in the program

using typical and extreme cases.

8. The Literacy Principle - produce code that is self-documenting so that it is easy to

understand, modify, and debug.

Although the use of case studies has been found to improve pre-university students' design

abilities, it is not an approach that can easily adopted by program instructors. Firstly, no

case study design guidelines are discussed by the authors to assist instructors in developing

their own case studies. Secondly, the development of reasonable case studies is time­

consuming - the expert commentary was typically 20 or more pages long in Linn and

Clancy's examples. Thirdly, students found the case studies difficult to read although the

authors have addressed this issue, to some degree, through the use of on-line template

libraries and hypermedia tools (Linn, 1992; Schank et al., 1993). Nevertheless, this

approach does appear to benefit students in acquiring program design skills.

3.7 Teaching of programming plans

Mayer (1981) postulates that teaching students programming schemata will assist in their

understanding of programming as their knowledge can be more highly organised. Program

schemata give statements a higher level meaning and alleviate some cognitive overload.

3.8 Putting technical information into own words

Mayer (1981) has suggested the technique of encouraging students to relate the material to

a familiar situation, and more specifically getting them to put technical information into

their own words. Although this strategy does not assist students in developing an accurate

mental model of the programming environment, it does encourage students to assimilate

52

the new knowledge, and consequently meaningful learning can occur (Linn and Clancy,

1992a, 1992b).

3.9 The computer as a teaching tool

Computers are seen as a useful instructional environment for programming because it has

the capacity to provide the feedback needed to assess one's performance. Some examples

of systems that have used computers in the teaching of programming are the Stanford BIP

project (Barr et al., 1976), Pascal Tutoring Aid (Doukidis et al., 1989) and Paslab

(Goodwin & Sanati, 1986). All address the teaching of programming to novice

programmers.

A further advantage of the computer as a teaching tool is that it provides a mechanism for

guided discovery. Dalbey & Linn (1985) suggest that guided discovery makes the learner

responsible for gathering and using feedback while learning, and that this is advantageous

as these are the skills that programmers ultimately require when designing their own

programs. However, Dalbey & Linn caution that some computer control maybe necessary

to develop all the skills necessary for programming.

Computer Assisted Learning tools are not uncommon although very few are implemented

in programming courses, and generally the shift is towards intelligent tutoring systems.

However, to be effective these systems tend to require substantial development time to be

of tangible benefit to the students. Consequently these approaches are beyond the scope of

this thesis.

3.10 Additional teaching strategies

These teaching strategies attempt to assist students in writing programs. The first deals

with the appropriate selection of a looping construct, and the second puts forward the

usefulness of providing novice programmers with stylistic guidelines to assist in the

writing of their own programs.

53

3.10.1 Loops

Shackelford & Badre (1983) have developed the 'constructive use rule' for loop constructs

which attempts to assist students in the selection of an appropriate loop construct.

The constructive use rule:

(a) if the value of the control variable is simply a count of the number of iterations,

use a "FOR" loop.

(b) if the value of the control variable exists apart from the loop (you need only

access it), use a "WHILE" loop;

(c) if the value of the control variable exists only after computation within the loop,

use a "REPEAT" loop.

Figure 3.1: Two decision rules for construct selection. (Shackelford & Badre, 1993, p. 988)

They categorised the three Pascal loop constructs into order-influenced loop schema as

shown below (Shackelford & Badre, 1993, p. 988):

FOR (test)

BEGIN

Get a value

Process value

END (for)

REPEAT

Get a value

Process value

UNTIL (test)

Get a value

WHILE (tes t)

BEGIN

Process value

Get a value

END (while)

Essentially the FOR and REPEAT loop constructs imply a 'Get-Process' ordering and the

WHILE construct implies a 'Process-Get' ordering. They observed that students' preferred

looping construct was the WHILE loop (44% of all loop implementations). In 75% of the

WHILE loop implementations the unnatural 'Get-Process' ordering was used with a 21%

success rate. When the WHILE loop was implemented with the more natural 'Process-Get'

ordering, a success rate of 70% was noted. All other loop attempts had a success rate of

57%.

It appears that conventional program instruction does not assist students in selecting the

most appropriate looping construct. Consequently there is an absence of any effective

54

basis for decisions regarding the selection of loop constructs. However for novices it

clearly matters which loop implementation is used. Subject performance improved

dramatically when both the definition and the application of the WHILE loop were

constrained and hence Shackelford & Badre (1983) suggest that the WHILE loop should be

repositioned relative to the FOR and REPEAT constructs with each having comparable

status with respect to application. This approach, which modifies the instructional

treatment of the programming language, results in a significant improvement in novice

programmers' performance.

3.10.2 Discourse Rules

Expert programmers also have knowledge about discourse rules, which are the stylistic

conventions in programming, and which assist in the readability of programs (Letovsky,

1986). Joni & Soloway (1986) found that in 90% of the novice programs they analysed,

some discourse rules had been violated. They suggest that instructors encourage students

to develop good programming practices and develop a set of maxims and discourse rules to

assist students in the acquisition of these practices.

3.11 Chapter Summary

Several strategies for dealing with effective program instruction have been suggested. All

of which attempt to improve, with varying success, the acquisition of one or more types of

programming knowledge.

4. THE DESIGN OF THE PATMAN SUPPORT ENVIRONMENT

4.1 Introduction

Several factors have been cause for concern in entry level programming courses taught at

the University of Natal, Pietermaritzburg. These include the varying background

characteristics of students, the high failure rates, and in particular the high failure rate of

students from disadvantaged backgrounds, and the increasing student to lecturer ratios.

These problems will be discussed in turn.

In the past, students enrolling in computer courses have had vastly different computer

experience: some students are computer literate while others may have never seen a

computer before enrolling in the course. This placed, and still does place, an additional

difficulty on the instructor who must attempt to accommodate the needs of both groups.

This problem still exists as students who have no experience are taught in the same lecture

as student who have studied Computer Science as a matriculation subject.

Student failure rates have been alarmingly high. Prior to this research, on average fifty

percent of students failed the Introduction to Programming course. This was not unique to

this course as other programming courses at the same university have failure rates above

forty percent. Moreover, the majority of black students have failed programming courses.

Goodwin and Sanati (1986) found that under traditional teaching methods, background

characteristics were most influential in determining a student's success in the course, while

under their experimental approach, which incorporated the use of the Paslab, they found

that psychological factors, such as learning style were more important.

To further complicate matters, student to lecturer ratios are worsening and as a result,

lecturers are not able to attend to individual student's needs adequately. This problem is

likely to persist and possibly worsen as tertiary institutions battle for adequate financial

support.

56

An additional resource that gives students greater control of their learning pace would be

valuable under these circumstances. Furthermore a system that would minimise the role of

background characteristics would be beneficial. This research is a first attempt at

addressing these problems. It is particularly concerned with investigating the affects of a

support environment on students' misconceptions and the individual characteristics that

determine the students' success in the course. This research also seeks to determine

whether the approach adopted in this research to solve these problems is adequate.

The system was developed using the 'glass box' approach as a mechanism for providing

students with insightful examples. The effectiveness of this support environment in

minimising student misconceptions and improving general programming ability is the

focus of this study. The name given to the system is Patman, which is derived from Pascal

Assistant Tutor.

4.2 The 'glass box' approach

In terms of novice programmers misconceptions, Pea (1986) has postulated that these

errors occur as a result of the novice attributing the computer with human characteristics.

A system that implements the glass box approach is not merely capable of showing the user

the effects of the programming language constructs, but also the manner in which the

computer executes commands. The glass box approach is favourable in that students are

visually made aware of the step-by step nature of computers. This can be used to dispel the

notion that computers are intuitive, or that more than one program construct can be active

at anyone time.

Many researchers have suggested the possibility of this approach and postulated its effect

(Peele, 1975; Du Boulay, O'Shea & Monk, 1981; AlIen, 1982; Lieberman, 1984; Goodwin

& Sanati, 1986; Pea, 1986), as discussed under teaching strategies (see section 3.4). Some

of these researchers comments are listed below.

• Du Boulay, O'Shea & Monk (1981) - "the use of a notational machine which is an

idealised model of a computer implied by the constructs of the programming language"

• AlIen (1982) - "schematic illustrations of a computer's action facilitate the learning of

programming of skills"

57

• Lieberman (1984) - "Watching a program work step-by-step"..."greatly facilitates

understanding of the internal workings of a program".

4.3 Learning by example

Other researchers (Jones, 1984; Linn & Clancy, 1985, 1992a, 1992b, 1993) have suggested

that learning by example can assist students in arranging their knowledge. Experts think

about problem solutions abstractly in terms of plans or templates while novices think of

actual code and in classification of code experiments, experts classify code according to the

actions, while novices classify according to some superficial characteristic of the code.

(Schneiderman, 1976; Adelson, 1981; Rist, 1986). Linn and Clancy found that by

providing students with case studies, students were able to improve their sorting

mechanisms. Linn and Clancy, in their research into the benefits of providing students

with case studies noted seven principles. The benefits of two of these principles, the

recycling principle and the multiple representation principle, were a result of giving

complete program segments to students. The recycling principle refers to the fact that

providing students with examples encourages students to use existing knowledge and

templates rather than reinventing the wheel. The multiple representation principle involves

showing different representations of the same templates to assist students in acquiring more

robust ones.

4.4 Functional requirements

The following issues were considered in the development of the functional requirements of

the system.

• The users are novice programmers with varying degrees of computer literacy and

consequently the system should be easy to use without confounding or interfering with

the learning process. The system also needs to be robust and intuitive as students

would be using the system without the assistance of an experienced user.

• The users are required to use Turbo Pascal 5.0 as their programming environment.

Therefore, to assist in the ease of use of the system the Turbo Pascal menu system and

hotkeys ought to be mimicked to maximise transfer of knowledge about the use of the

58

one system to the other. The system output and error messages must be compatible

with the Turbo Pascal 5.0 environment.

• Students have varying abilities, weak: points and learning speeds and consequently the

system should allow students to control their learning process.

4.5 The system model

The system is comprised of three components, as shown in Figure 4.1.

User Interface

Lesson Code
Generator

Figure 4.1: System Diagram

4.5.1 The user interface

The user interface is responsible for the dialogue with the user and is intended to provide a

robust, simple, intuitive interface similar to that of the student's programming

environment. The user may use the mouse or keyboard to select all menu options. Menu

options that are not available in the current context are disabled. For example, the run

menu option is disabled until the user opens a lesson as it would be inappropriate to run a

program prior to it being open. One menu option that differs from the Turbo Pascal

environment is the Next Lesson option, which is enabled once a student has opened a

lesson. This was included in the system at the request of the students.

The 'glass box' approach is implemented through the use of four window areas which are

visible once a student has opened a lesson. The program window contains the program

59

code, the display window shows the output generated from the program, the input window

shows the user input and the variable window displays all declared variables and their

values.

4.5.2 The lesson code generator

The lesson code generator parses the selected lesson's program and generates a series of

control statements when the lesson is initially selected. This generated code includes the

code necessary to update the four windows and to control the flow of control. As the user

steps or runs the selected program, the actions described in the generated code are

performed. These actions are typically:

• create variable in variable window

• get user input

• display input value in input window

• edit variable value in variable window

• show output in display window

• move to program line x.

• remove local variables from variable window.

4.5.3 Lesson Program Files

The design of the programs formed the backbone of the system. The success or failure of

the system, in reducing students' misconceptions, could be attributed in part to the design

of the lesson program files. It was imperative to include programs that would force

students to re-adjust an incorrect or inaccurate conceptual model of the programming and

computer environment by presenting the students with programs that would contradict

these inaccurate conceptual models. All the programs included in the system were written

by the author with the intention of addressing at least one misconception per program.

Often it was possible to address several misconceptions in one program. For example, the

program below addresses the following misconceptions:

• Line 1 shows that a WRITELN output statement is different from a READLN input

statement as only two numbers are accepted for input.

60

• Line 2 addresses variable concepts in general, and in particular the multiple value and

semantic input misconceptions.

• Lines 3 and 4 address output statement misconceptions and variable concepts.

PROGRAM Multlnt2;
VAR num_bigger_10,num_smaller_10:INTEGER;
BEGIN

WRITELN{'Enter 4 numbers: '); {line 1}
READLN{num_smaller_10,num_bigger_10); {line 2}
WRITELN{'Numbers greater than 10 are ',num_bigger_10);{line 3}
WRITELN{'Numbers less than 10 are ',num_smaller_10); {line 4}

END.

To prevent the overloading of concepts, in most instances the programs were restricted to

deal with at most three major misconceptions.

Other considerations in the design of the programs were the illustration of:

• general algorithms or plans such as finding a maximum value (Soloway et al., 1982;

Jom & Soloway, 1986)

• the particular programming constructs in suitable problem solving situations (Soloway

et al., 1982)

• good programming principles (Joni & Soloway, 1986).

This said, it was sometimes necessary to develop code that made use of inappropriate

program constructs, or that were not user friendly. For example the program discussed

above violates several good program design principles. The program has an inappropriate

user prompt and uses inappropriate variable names and produces incorrect output.

However, the intention is for students to re-evaluate their perceptions of these statements

based on the generated output.

Other programs required students to compare outputs from several programs. For example,

similar programs were written, each using a different looping construct, in an attempt to

illustrate the appropriate (or inappropriate) use of each looping construct. This is

illustrated in Figure 4.2.

PROGRAM for~ess; PROGRAM repeat_guess;

VAR mynum, yournum, counter: INTEGER; AR mynum, yournum, try: INTEGER j

BEGIN BEGIN

mynum:=13; mynum:=5; try:=l;

WRITE ('Guess the number I am thinking of! WRITE('Guess the number I am thinking of!

'I; 'I;

READLN(yournum); READLN(yournum);

FOR counter: =9 TO 12 do BEGIN REPEAT

IF (yournum > rnynum) THEN IF (yournum > mynum) THEN

WRITE (I Too High.. guess again: '); WRITE (I Too High.. guess again: I) i

IF (yournum < mynum) THEN IF (yournum < mynum) THEN

WRITE ('Too Low.. guess again: '); WRITE (I Too Low.. guess again: ');

READLN(yournum) i IF yournurn <> mynurn THEN BEGIN

END; try:=try+l;

IF (yournum :: mynum) THEN READLN(yournum) i

WRITELN('You guessed correctly the END;

fourth time!') UNTIL (yournum :: mynum);

ELSE WRlTELN('You failed to guess WRITE { 'You guessed my number in " try, •

correctly even after four guesses! ' } ; guesses. ') ;

61

PROGRAM While_guess;

AR mynurn,yournum,try:INTEGERj

BEGIN

mynum:=18; try:=l;

WRITE (.Guess the number I am thinking of!

'I;

RElIDLN (yournum) ;

WHILE (yournum <> mynum) DO

BEGIN

IF (yournum > mynum) THEN

WRITE ('Too High .. guess again: ')

ELSE

WRITE('Too Low .. guess again: ');

try:=try+l;

RElIDLN (yournum) ;

END;

WRITELN ('You guessed my number in ',try,'

guesses') ;

END.

END. END.

Figure 4.2: Three implementations of the guessing game - each with a different

looping construct17

It was hoped that inappropriate use of a looping construct would result in students having

to determine why the program had not behaved as expected, and thereby force the students

to change their conceptual model of the looping constructs. These comparison programs

also attempted to allow students to distinguish the difference between particular

programming constructs and to learn general algorithms. The objective of showing

students general algorithms, have been mentioned earlier in this work, namely aligning the

novices knowledge structuring to be more closer to that of an expert and to facilitate the

recycling principle.

A total of seventy one programs were included in the system18. The programming

constructs included in the system were restricted to the following:

• Input constructs: READLN statement

• Output constructs: WRITE and WRITELN statements

• If statements

• Assignment statements

17 To display the programs next to each other in the figure, some WRITELN statements have been wrapped

around to the next line; in Patman these statements appear on one line.

18 Appendix A contains a complete listing of all programs included in the system.

62

• Looping constructs: repeat, while and for loops

• Data Types: strings, integers, arrays and Boolean variables

• Procedures and functions with call-by-value and call-by-reference parameters and local

and global variables

The programs used by Sleeman et al. (1986) in diagnosing student misconceptions were a

valuable source of information for the development of the these programs. These programs

formed the basis of several programs included in Patman.

4.6 Hardware

As the system was intended for novice programmers with minimal computer literacy, the

system had to be user friendly. Furthermore, as the system was a prototype, the potential to

expand the system into a fully fledged tutoring system for teaching novice programmers,

was a design consideration. Windows, with its built in graphical user interface capabilities,

was thus considered a desirable platform on which to build the system. The system was

developed for a Windows platform using Turbo Pascal for Windows 1.5.

The minimal requirements of the system are:

• a computer capable of running Windows 3.x or higher

• 2 Mb hard drive space

• VGA capable monitor

• a mouse (optional)

63

4.7 Design of the system

The remainder of this section discusses a typical Patman session with the intention of

illustrating design considerations and decisions.

The student initiates the learning process by selecting a lesson category (see Figure 4.3)

and program.

Figure 4.3: Student selects a lesson category

The selected program is then displayed in the program window. To encourage students to

notice peculiarities and to benefit from the program's intended learning objectives, a

comment dialogue is displayed before the student can commence with the lesson (Figure

4.4).

64

Looping Concepts (Advanced): Lesson 1.2.3

FOR_GUESS.PAS REP_GUESS.PAS WHI_GUESS.PAS

Which program(s) implement the guessing game the best?

Why is the for_guess program's output so different from the

other two programs' output?

Which loops are most suitable for this sort of task?

PROGRAM repeat-luess;
VAR mynum,yournum,try:INTEGER;
BEGIN

mynum:=5; try:=1 ;
\VRITE('Guess the number I am thinking of! ');
READLN(yournum);
REPEAT

IF (yournum > m"'==····~···"d!··""~·~~~====,==~='''==,~"'"'====,~

\VRITE('Too Hi
IF (yournum <

\VRITE('Too L
IF yournum <>

try:=tryt1;
READLN(yourn

END;
UNTIL (yournum
\VRITEryou gue

END.

Figure 4.4: A comment dialogue box prompts the student to think about some issues

These comments were designed to encourage students to note the difference between

several program segments and to determine which programming construct is most suitable

for the particular task. Often the comments were phrased in the form of a question and it

was the responsibility of the student to answer the question by executing the program code.

The user can now open a new lesson, or step or run through the program code. When a

student steps through the code they are required to select the step function to proceed to the

next program statement. When a program has been completed and the user opts to step

through the code again, a dialogue box appears indicating that the program has been

completed and the code will be reset. This is in accordance with the Turbo Pascal

environment. When a student selects the run option the program is automatically executed.

During the execution of a program, the active program statement is highlighted using red

text, to assist the students in following the flow of control through the program (see Figure

65

4.5). Whenever necessary, the other windows are updated to reflect the resultant action of

the program statement These statements will now be discussed in turn.

Active program Declared and Declared but

PROGRAM repeat..guess;
VAR mynum,yournum,try:INTEGER;
BEGIN

mynum:=5; try:=1;
WRITE('Guess the number I am thinking oft ');
READLN(yournum);
REPEAT

IF (yournum > mynum) THEN
WRITE('Too High.. guess again:

IF (yournum -< mynum) THEN
WRITE('Too Low.. guess again:

IF yournum -<> mynum THEN BE
try:=try+1;
READLN(yournum);

END;
UNTIL (yournum = mynum);
WRITE('You guessed my number in •,try,' guesses.');

END,

Output generated from prior

WRITE statement

User input in Input

Dialogue Box

Figure 4.5: Stepping through the program - the READLN input statement is active.

During the execution of a declaration statement, the declared variables are written in the

variable window. All variables appear in the variable window based on the declaration

order. During the execution of a declaration statement no value is associated with a

variable (Figure 4.5). This was done to illustrate the need for the initialisation of variables.

In one input lesson, a variable value is displayed before being assigned a value to further

demonstrate this concept. It was decided to keep the variable value blank, rather than to

associate some miscellaneous value with the variable to minimise confusion. Once the

variable is given a value, an arrow (- >) links the variable and its value. Parameters and

local variables required special representation. This will be discussed later.

66

During the execution of an input statement, a series of actions are performed. Initially, an

input dialogue box is displayed (Figure 4.5). Although this is different from the Turbo

Pascal environment, this deviation was considered justified as it reinforces the distinction

between input and output statements. All keyboard responses are restricted to this box

which was designed to react in the same way as the default input environment of Turbo

Pascal. To close the dialogue box students can use the OK button or the enter key. If the

entered value is not of the required type, an error occurs and the program execution is

terminated. If the user does not enter an adequate number of inputs the dialogue box

reappears. This mimics the Turbo Pascal environment. If a valid variable value is entered,

this value is written in three windows as illustrated in Figure 4.6.

Active program statement Variable is updated with variable value

yournum -} 3

try -} 1

PROGRAM repeat-luess;
VAR mynum,yournum,try:INTEGER;
BEGIN

mynum:=5; try:=l;
WRITErGuess the number I am thinking of! ');
READLN(yournum);
REPEAT

IF (yournum > mynum) THEN
WRITE('Too High.. guess again: ');

IF (yournum <: mynum) THEN
WRITE('Too Low.. guess again: ,;

IF yournum <:> mynum THEN BEGIN
try:=try+1;
READLN(yournum);

END;
UNTIL (yournum = mynum);
WRITErVou guessed my number in .,try,. guesses:);

END.

Display window shows user input Input window shows user input

Figure 4.6: Stepping through the code· after user has entered a value in dialogue box

67

Firstly, the input window reflects the entered value. The input window was considered

necessary to allow students to do a walk-through of the program and verify the resultant

output. Secondly, the entered variable value is shown in the display window, this was done

to coincide with the Turbo Pascal environment, in which the default input and output

devices are shown in the same space. Lastly the entered value is shown in the variable

window, in which the variable value is updated.

An output statement results in the output being shown in the display window, and an

assignment statement results in the variable value being updated in the variable window.

Procedure and function parameters required special representation in the variable window

as did local variables. Parameters are associated with their global variable in the variable

window as shown in (Figure 4.7). Call-by-reference parameters are represented using the

<-> symbol to reflect the two way interchange of data. Call-by-value parameters are

represented by the I-> symbol to reflect the one way data exchange. Local variables are

indicated by including the word 'local' in parenthesis after the variable name.

68

Global variable with call by reference parameter
Global variable with call by value parameter

PROGRAM confuse 1;
VAR iJ,k:INTEGER; {global}

PROCEDURE Change(i:INTEGER;VARj:INTEGER);
VARk:INTEGER; {local}
BEGIN

k:=2;
i:=i+k;
j:=j+1;
WRITELN(i,' •J,' .,k);

END;

BEGIN
i:=l; j:=2; k:=3;
change(iJ); {passing parameters}
WRITELN(i,' •J,' .,k);

END.

Local variable

Global variable

Figure 4.7: Variable window contains call by value and call by reference parameters

as well as local and global variables

Once the procedure or function has been completed these lines disappear from the variable

window to indicate that they are only available within the scope of the procedure or

function.

Other statements such as looping constructs, if statements, procedure and function calls,

affect the flow of control and are thus visible through the sequence of highlighted

statements. It is the responsibility of the student to notice this change in flow of control.

At any stage during the stepping through of a program, the user is able to select a menu

option. However the user is not able to edit the program code, or the contents of the

display, input and variable windows.

69

4.8 Extensions to the system

A possible extension to the system would have been to provide users with the ability to edit

the program code or type in their own code. This would have required the inclusion of a

compiler to check the syntax and semantics of the user generated code. In itself, this would

not have presented a problem as Turbo Pascal provides a stand alone compiler. A more

serious problem would have been the extension of the lesson parser to be able to cope with

all Pascal statements. The extension of the system, although useful, was considered

beyond the scope of the current research objectives.

A further extension to the system would have been to test students' understanding of

concepts. Moreover, these test results could have directed students to additional lessons

based on their apparent understanding of the tested concepts. In this case some of the user

control would have been given to the computer. Although this could have been included in

the system with relative ease, this was seen to be a confounding issue in the system as the

research would have entered the realms of computer assisted tutoring which was not the

intention of this research. However the inclusion of a testing mechanism to provide

students with feedback and additional motivation would have been desirable.

5. EXPERIMENTAL METHOD

5.1 Introduction

Students who enrolled in the Introduction to Programming course, at the University of

Natal, Pietermaritzburg in 1992 and 1993, were used as subjects for the experimental

work. The Introduction to Programming students were considered to be suitable subjects

for a number of reasons. They were taught Pascal programming and little else and no

previous computer knowledge or experience was required for the course. Furthermore, the

course was ideal for testing general principles of programming, as students from different

faculties and of different years of study tended to enrol for the course. Students also had

different motivations for enrolling in the course. Some students required the credit for

their chosen major subject while other students enrolled for the course as they had a desire

to learn to program. Moreover, the students had a mixed background of Pascal

programming knowledge and were representative of a large spectrum of the University

population in terms of their courses, faculties, age, year of study, race and gender.

Students who enrolled for the Introduction to Programming course of 1992, were

monitored to determine their programming misconceptions. This data was used to

determine if there were any misconceptions peculiar to the South African context, and

more specifically, the course taught at the University of Natal. This data influenced the

design of the Patman support environment, as the program examples included in Patman

were designed, as part of this research, to accommodate these misconceptions.

A comparative experimental approach was decided upon to determine the effectiveness of

Patman in reducing novice programmers' misconceptions and its ability to improve their

general programming ability. A formal experimental method was planned, hence a control

group and an experimental group were required. The control group would be exposed to

the conventional teaching methods and would thus provide evidence of novice

programmers' misconceptions under these teaching methods. The experimental group

would be the same in all respects as the control group except that they would be allowed to

make use of an additional resource, the Patman program. The two student groups would

71

then be compared to determine if the Patman support environment provided any benefits to

the experimental group. Students who enrolled for the Introduction to Programming class

of 1993 formed these two groups, namely the control group (CONTROL '93) and the

experimental group (PATMAN). While the primary reason for investigating the 92 student

group (CONTROL '92) was to identify misconceptions for the design of Patman,

additional data gathered could also be used to allow the comparison of:

• the CONTROL '92 and CONTROL '93 unsupported student groups

• the CONTROL '92 and PATMAN student groups

• the CONTROL '93 and PATMAN student groups

The first comparison is useful to determine the stability of the Introduction to Programming

course under conventional teaching methods from year to year. The second comparison,

although not of primary concern, provides additional information of the effectiveness of the

Patman support environment. The third comparison, which is of primary concern, provides

a clear indication of the performance of those students who made use of the additional

resource, namely the Patman support environment, compared to those students who were

taught using conventional teaching methods.

5.2 Teaching process

The Introduction to Programming course was taught during a 13 week semester. Students

were required to attend two lectures and one tutorial per week. In addition, students were

also required to submit a weekly programming assignment. Tutorials were more

interactive than lectures, with approximately 30 students per group. During each tutorial,

students were expected to complete an algorithm of the weeks' programming assignment.

It was the responsibility of the tutor to assist students, usually on an individual basis, with

any problems. Students later completed their programming assignment during their own

time. To do this, students invariably made use of the campus computer laboratories,

although a small percentage used home computers. The maintenance of hardware and

software was the responsibility of the non-academic Computer Services Division (CSD) of

the University of Natal, Pietermaritzburg. A Computer Science postgraduate student was

also available to assist students while using the PCs.

72

Student assessment was broken down into two components, namely the class mark and the

examination mark. The class mark was comprised of ten practical assignments and two

class tests and contributed 30% towards the final student assessment. A two hour written

examination at the end of the course formed the remaining 70% of the final mark.

The above course description and assessment applied to all students who participated in the

experiment and in this thesis is considered to be the conventional method of teaching.

Although the students who formed the experimental group were taught and assessed in the

same manner as both control groups, they were also able to make use of the Patman

support environment. Experimental group students used Patman for a maximum of one

hour at a fixed time on a weekly basis, due to limited computer resources. During this time

students were allowed to run any of the available lessons as many times as they liked.

Although students were not prevented from interacting with fellow students, little

interaction was noted during the sessions. Occasionally students would ask their neighbour

for some assistance or comment on something they had discovered, but generally students

appeared to be serious and deep in concentration while using Patman. Most students

finished the lessons before the hour was up, but some students continued using the system

for the full hour. It was also observed that most students ran the same lesson three or four

times, while some students spent considerably longer on each lesson. On average, students

used Patman for a total of 3 hours and 25 minutes during the eight available Patman

sessions, or 35 minutes per session.

5.3 Allocation of students to groups

Of the 106 students who initially enrolled for the 1993 Introduction to Programming

course, 50 students were randomly selected to attend the Patman sessions, but some

reshuffling occurred to accommodate students' time table clashes. Students who did not

attend any Patman sessions were considered part of the 1993 control group.

To assist in the evaluation of students' misconceptions and the effectiveness of the system,

all students were required to complete 2 questionnaires and 3 worksheets during the

semester.

73

Of the 50 selected Patman students, five students were dropped from the experimental

group as they attended three or less Patman sessions. Two students did not complete the

course and three students did not complete all necessary worksheets and questionnaires,

and hence were also excluded from the experimental group. Of the original 56 students

included in the CONTROL '93 group, 35 students completed the course and 33 students

completed all worksheets and questionnaires. Thus, of the 83 students who completed the

1993 Introduction to Programming course, 40 students formed the PATMAN experimental

group and 33 students formed the CONTROL '93 group. Of the 64 students who wrote the

1992 Introduction to Programming final examination, 61 students completed all

worksheets and questionnaires and thus formed the CONTROL '92 group.

5.4 Testing and Evaluation Procedure

5.4.1 Determination of possible influencing background and psychological factors

Two questionnaires19 were developed: one was completed during the first tutorial and the

other a few weeks later once students had made use of the computers and completed a few

practical assignments. The first questionnaire included items which would not be

influenced by the course, such as the student's matriculation results, their preferred

problem type, their previous exposure to computers. The second questionnaire mainly

included psychological factors, such as the student's computer anxiety and alienation, their

opinion of the helpfulness of tutorials, tutors, lectures, practical assignments and whether

they had considered dropping the course.

The questionnaires were primarily based on Goodwin and colleagues experiments of

programmer traits (Goodwin & Sanati, 1986; Goodwin & Wilkes, 1986) and Matta and

Kern's (1989) literary review. Although programmer aptitude tests are traditionally

unreliable (Calitz, 1984), an attempt was made to determine some programmer

characteristics that might affect their success in the course. This data was required to

19 The questionnaires are included in Appendix B.

74

determine if there was a substantial difference between the control and experimental

groups.

5.4.2 Determination of the student misconceptions

Three worksheets were designed to determine the students' misconceptions2o
• These were

based on the work done by Sleeman and colleagues' (Putnam et aI., 1986; Sleeman et aI.,

1986) experimental work on programming misconceptions. All three worksheets were

completed by students during their tutorial sessions, after 4 weeks, 9 weeks and 12 weeks

of programming instruction. Although there was no time limit most students completed

the worksheet within 20 minutes. The worksheets were administered once the relevant

programming concepts had been lectured and after the students could have been expected

to obtain a working knowledge of the concepts by completing the programming assignment

dealing, either directly or indirectly, with the particular construct.

On completion of the worksheets, the responses were analysed by the experimenter to

determine which misconceptions were evident. This data was used to determine the error

proneness of programming constructs and whether there was a significant difference

between the control and experimental groups in the frequency of misconceptions and also

to determine if there were any misconceptions specific to the South African context.

5.4.3 Programming ability

The students' examination and final results for the introductory programming courses were

used as a measure of the students' programming abilities. Both results were obtained

independently of the experimenter and was the responsibility of the lecturers and external

examiners. These measures of programming ability were used to determine any differences

in the student groups, and hence the success of Patman.

20 The worksheets are included in Appendix D.

75

5.5 Statistical tests used to evaluate the data

5.5.1 Z-proportion test

A Z-proportion test provides a mechanism to make statistical comparisons between two

groups. In this thesis it has been used to answer questions of the form:

1. Is the proportion of students in the CONTROL '92 group who considered deregistering

from the course different from the proportion of CONTROL '93 group's students who

considered deregistering?

2. Did a larger proportion of the CONTROL '93 group's students experience a particular

misconception than the PATMAN group's students?

As this statistical tool tests hypotheses about the difference between 2 population

proportions, tests were required for each pair of data, namely:

• CONTROL '92 versus CONTROL '93

• CONTROL '92 versus PATMAN group

• CONTROL '93 versus PATMAN group.

When this test was used to compare the proportion of students who experienced a

particular error, the control groups were compared to determine if the proportion of

students were the same. However the experimental group was compared with each control

group in turn, to determine whether a smaller proportion of the experimental group

experienced a particular difficulty compared to the control group. This equates to

questions of the form 2, whereas the control group questions are of the form 1.

In statistical terminology the above description can be phrased as follows.

The two control groups were analysed using the hypotheses:

Ho: PCONTROL '92= PCONTROL '93 where p = proportion of students with correct answers

HA: PCONTROL '92 :;t: PCONTROL '93

The experimental group was separately compared to each control group using the

hypotheses:

Ho: PPATMAN ~PCONTROL

HA: PPATMAN< PCONTROL

where p =proportion of students with correct answers

76

For hypothetical tests, such as the Z-proportion test, it is also necessary to determine an

alpha level. An alpha level, represents the confidence level at which one wants to make the

decision to reject the null hypothesis (Ho). If there is a notable difference in the

populations being tested, an alpha level indicates how likely it is that the noted difference

is actually due to chance. An alpha level of 0.05 indicates that there is a 5% likelihood that

the proportions are actually from the same population, with an alpha level of 0.01 this

likelihood is only 1%. Statistically, an alpha level of 0.05 is considered reasonable while

with an alpha level of 0.01 one can be even more confident that the null hypothesis has

been correctly rejected. In this research, both alpha levels are used as the groups were

often found to be significantly different even at an alpha level of 0.01.

The decision to reject or accept the null hypotheses is based on the following decision rule:

If Z :::; Zcritical, accept Ho.

IfZ > ZcriticaJ. reject Ho.

For the control group comparison

Z critical =1.96 (a =0.05) Z critical =2.576 (a =0.01)

and for the experimental versus control group comparisons

Z critical =1.645 (a =0.05) Z critical =2.326 (a =0.01)

5.5.2 Analysis of variance

Analysis of variance (ANOVA) is a statistical procedure used to examine the variation in

populations to determine whether the populations are equal. In this research it was used to

answer questions of the form:

• Are the mean final results for each student group different?

Once again, it is necessary to select an alpha level to determine the necessary confidence

level of the decision. A further indication of the likelihood of the noted differences

actually being due to chance is the probability factor. A probability factor (p) of 0.001

indicates that there is only a one tenth percent of a chance that the results are due to chance.

Any value of p < 0.01 is considered reasonable.

77

In statistical terms the null and alternative hypotheses were:

Ho: !J.CONTROL '92 = !J.CONTROL '93 =!J.PATMAN where !J.i =mean of student group i

HA: not all means are equal

5.5.3 Scheffe's multiple comparison method

Once an ANOVA test has indicated that the means of several populations are sufficiently

different, Scheffe's method can be used to determine which populations are different. This

is done on a pairwise comparison basis, and hence three comparisons were required as was

the case for the Z-proportion test.

Analysis of variance analysis and Scheffe's multiple comparison method together provide a

way of determining whether there are any significant differences between groups' means.

The Z-proportion test is a method to determine whether there are any significant

differences between groups' proportions.

5.5.4 The multiple regression model

In multiple regression, a set of independent variables are used to model a dependent

variable. In this thesis multiple regression was used to determine those background and

psychological factors that influenced a student's success in the programming course. For

each student group the final result and examination results were independently modelled

based on the set of independent variables, or predictors, which were obtained from the

questionnaires and included such factors as the students' matriculation results, learning

style and previous experience with computers.

In experiments of this nature, the possibility exists that some attribute of one or more

student groups, which is external to the experimental process and which account for the

observed difference in the student groups may apply. This is of particular concern. Since

the groups in this experiment were randomly allocated, it is possible that there could be

some significant difference in one or more of the student groups' psychological and

background characteristics. For each student group, multiple regression modelling was

used to determine which of these student characteristics were influential in determining a

78

student's success in the course in terms of their final and examination results. It was then

possible to determine whether there were any significant differences between the groups in

terms of these influencing characteristics.

6. RESULTS AND DISCUSSION

The results of this investigation will be presented in five separate sections. The first three

correspond to the three methods used for obtaining them. This is followed by a

comparison ofthe demographics of the student groups and, finally, the student's evaluation

of the support environment itself..

6.1 Analysis of Correct Responses for Worksheet Questions

This section compares the proportion of students in the three groups who correctly

answered each worksheet question. This comparison facilitates an evaluation of the

Patman support environment. If the proportion of PATMAN's students who correctly

answer a question is greater than the proportion of control group students who do so, the

difference can be attributed to the support environment. It would also be an indication that

the support environment was successful in improving students' acquisition of programming

knowledge.

A student response to a worksheet question was considered to be correct if the student

answered the question exactly as required. The majority of the worksheet questions, eleven

out of fourteen, required the student to indicate the output of the program code. In these

questions, there were lots of opportunities for students to make careless mistakes. Only

exact answers were accepted. If the student had carelessly written output on the same line

instead of on separate lines, the answer was not considered correct. Likewise, if the student

used the incorrect input values, but everything else was correct, the response was

considered incorrect.

For each question the proportion of correct responses were analysed using a Z-proportion

test which tested the hypotheses about the difference between two population proportions.

The results of the three worksheets are discussed separately.

80

6.1.1 Worksheet 1

Worksheet 1 was administered in the fourth week of the semester after the experimental

group students had spent a mean time of 33 minutes on Patman. Figure 6.1 shows the

percentage of correct responses for each question per student group. The percentage of

correct responses for the experimental group was consistently higher than either control

group. Statistically, the proportion of correct responses for the experimental group was

significantly higher than the CONTROL '92 group for Question 1 Ca =0.01), Question 2

Ca =0.05) and Question 4 Ca =0.01). The proportion of correct responses for the

experimental group was significantly higher than those of the CONTROL '93 group for

Question 3 Ca =0.05).

Although the results appear to indicate that the CONTROL '92 group was worse than the

CONTROL '93 group for questions 1,2 and 4, statistically there was no significant

difference between the control groups for all four questions.

Worksheet 1: Percentage of Correct Responses per Student Group

I 11II Control '92 • Control '93 IllI PATMAN I
100-,---------------------------------~

90

go 80
2
Cl 70
'E
-8 60
.a
III 50o
~ 40
j!l
5i 30
f!
~ 20

10

o

80

Question 1 Question 2 Question 3
Question Number

Question 4

Figure 6.1: Worksheet 1 - Percentage of correct responses

The total number of correct responses per student for worksheet one are reflected in Table

6.1

81

Table 6.1: Worksheet 1- Total number of correct responses per student

o
1

2

3

4

31

41

16

8

3

21

48

9

15

6

10

23

40

15

13

It should be noted that more than 50% of the experimental group correctly answered 2 or

more questions, in contrast the majority of the control groups' students answered at most 1

question correctly. Analysis of variance and Scheffe' s method indicated that there was a

significant difference (a:=0.01, p =0.00093) between the CONTROL '92 and PATMAN

groups' means.

6.1.2 Worksheet 2

Worksheet 2 was administered in the ninth week of the semester after the experimental

group had spent a mean time of 1 hour and 58 minutes on the system. The percentage of

correct responses for each question are shown in Figure 6.2.

Worksheet 2: Percentage of Correct Responses per Student Group

I • Control '92 • Control '93 EJPAnMN I
35

30
Q,
:::I
0c:; 25

C

~ 20
iii
'015..
'"..
C 10

~..
11. 5

0

Question 1 Question 2 Question 3 Question 4 Question 5
Question t-tJmber

Figure 6.2: Worksheet 2 - Percentage of Correct Responses

82

The proportion of correct responses for the experimental group was consistently higher

than both of the control groups. Statistically, there was no significant difference between

the CONTROL '93 group and the PATMAN group, however the proportion of correct

responses for the experimental group was significantly higher than the CONTROL '92

group for Question 1 (a =0.01), Question 2 (a =0.05) and Question 5 (a =0.01). There

was no significant difference between the three student groups for Questions 3 and 4.

In general, the students performed poorly on this worksheet. The lowest percentage of

correct responses was achieved on question 4. This question included an if statement

within a while statement, and required considerable tracing expertise. Only 5%, 9% and

11% of the CONTROL '92, CONTROL '93 and PATMAN groups respectively correctly

answered this question. The percentage of correct responses for Question 1, which dealt

with assignment statements, was unexplainably low for the CONTROL '92 group (7%)

compared to the other two student groups. In addition to being significantly lower than the

PATMAN group's 33% it was also significantly different (a = 0.01) from the CONTROL

'93 group's 27%.

The total number of correct responses per student on this worksheet are shown in

Figure 6.2.

Table 6.2: Worksheet 2 - Total number of correct responses per student

0 70 52 50

1 15 21 15

2 8 12 8

3 5 6 18

4 2 9 10

5 0 0 0

83

Analysis of variance and Scheffe's method revealed that there was a significant difference

(a =0.05, P =0.001) between the CONTROL '92 and PATMAN groups' means.

6.1.3 Worksheet 3

Worksheet 3 was administered in the twelfth week of the semester after students had spent

a mean time of 3 hours and 25 minutes on Patman. The percentage of correct responses

per question for worksheet 3 are reflected in Figure 6.3.

Worksheet 3: Percentage of Correct Responses per Student Group

I 11 Control '92 • Control '93 Cl PAlMAN . I
100

90
Co

80:::I

2
Cl 70
C
CD 60'a

~ 50
'0
CD 40Cl

~ 30CD

~ 20Do

10

0
Question 1

85

Question 2 Question 3
Question t<lJmber

Question 4 Question 5

Figure 6.3: Worksheet 3 - Percentage of Correct Responses

Again, the proportion of correct responses for the experimental group was consistently

higher than both of the control groups for all questions. The PATMAN group was

significantly better than the CONTROL '92 group on Question 1 (a = 0.01), Question 2 (a

=0.01), Question 3 (a =0.05) and Question 5 (a =0.01). The experimental group was

also better than the CONTROL '93 group on Question 1 (a =0.01), Question 2 (a =0.05),

Question 4 (a = 0.01) and Question 5 (a = 0.05). There was no significant difference

between the control groups.

The largest percentage of correct responses was achieved for Question 1. The'92 and ' 93

control groups achieved 51% and 42% success respectively, compared to the experimental

group's success of 85%.

84

Based on the total number of correct responses per student, students generally did

considerably better on worksheet 3 compared to the previous worksheets. See Figure 6.3.

Table 6.3: Worksheet 3 - Total number of correct responses per student

4

5

5

3

3

3

18

10

Analysis of variance and Scheffe' s method indicated that there was a significant difference

(a =0.01, P < 0.001) between PATMAN and both control groups' means.

6.1.4 Summary of Results

The results discussed in this section are summarised below.

In terms of the proportion of correct responses per student group, the experimental group

was consistently higher than both control groups for all fourteen worksheet questions.

Compared to the CONTROL '92 group, the experimental group proportion was

significantly better for ten questions and compared to the CONTROL '93 group it was

significantly better for four questions. The control groups were significantly different for

one question.

In terms of the mean number of correct responses per student for each worksheet, the

experimental group was better than both control groups for all three worksheets. The

PATMAN group was significantly better than the CONTROL '92 group for worksheets

one and two, and significantly better than both control groups for worksheet 3.

85

It can be concluded from these results that there was a noticeable difference between the

two control groups and the experimental groups, in terms of the correct responses for

worksheet question. Hence, it can be said that the Patman support environment assisted the

experimental group students in acquiring programming knowledge.

6.2 Analysis of Examination and Final results by Student

Group

In many respects the worksheet questions can be considered an unfair representation of a

student's ability to program, especially as the questions were designed to trap the student's

errors. In the context of this research, which aimed to determine if common

misconceptions noted in novice programmers could be minimised through the use of

Patman, it was appropriate. However it was not the only aim of this research. A further

objective was to determine if the Patman system could assist students in becoming better

programmers.

Examination and final results were used as an indication of a student's general

programming ability. The examination process was independent of this research. The

lecturers of the course set the examination and marked the students' scripts, overseen by an

external examiner. It was the responsibility of the external examiner to ensure a reasonable

standard was applied and that the scripts were marked fairly. Thus it is assumed that the

examination results were a reasonable representation of the students' programming

abilities. The examination and final course results are the focus of this section.

6.2.1 Analysis of Examination Results

A histogram of the examination results are shown in Figure 6.4. The mean percentages

acquired in the examinations were 48.58%, 55.21 % and 68.40% for the CONTROL '92,

CONTROL '93 and PATMAN groups respectively.

86

Histogram of Examination Results by Student Group

I11 Control '92 IlControl '93 E1PATMAN!

3O-r----....----,----,-----,-----,-----,---,---,-----,---,

25 -1---+---+----+----+----j-

0-

il 20 +---+=:;---+----j--
(;

i
~

in 15+---
'0

f
~ 10 +-----""1
~

5+-----

0-1----
0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Examination Result (%)

Figure 6.4: Examination Results by Student Group

Using ANOVA and Scheffe's method, the PATMAN group was found to be significantly

higher than the CONTROL '92 group (a = 0.01, p < 0.001) and the CONTROL '93 (a =

0.05, p < 0.001) group. However, as a result of the large proportion of control '92 group

students in the range 11-20%, the assumption of normality could not readily be assumed.

The examination results were then tested using a Kruska1-Wallis one way analysis of

variance test. Using this test the student groups were still found to be significantly

different (p < 0.001).

The percentage of students who failed the examination Le. obtained a result less than 50,

are also noteworthy: 46% of the CONTROL '92 group and 39% of the CONTROL '93

group failed, as opposed to the 8% of the experimental group.

6.2.2 Analysis of Final Course Results

The final results were calculated by including

• the two test marks, which each counted 9% percent,

87

• the weekly practicals, which contributed 12% percent, and

• the examination result.

The final result gives an impression of a student's overall understanding of the course

throughout the semester. The final results are depicted in Figure 6.5.

Histogram of Final Results by Student Group

I.control '92 .Control '93 Illl PATMAN I
3O.-----,------,--------r---,--~---_r__--~--__r--~--___,

25 -l----f----+-----+-------t-------j~;___

Q.e20 -l----f----+-----+-------t---
e"

i
iii 15 -l-----1-----\----+-­
'0.,
f
fl 10 +----t----+
.f

5 +----t----+

o+----t------+
0-10 11-20 21-30 31-40 41-50 51·60

Final Resun (%)

61·70 71-80 81·90 91·100

Figure 6.5: Final Results by Student Group

The average results for the three student groups were 53.70%, 55.47% and 68.39%

respectively. Again, using an ANOVA test and Scheff6's method, the PATMAN groups

[mal results were found to be significantly higher (a =0.01, P < 0.(01) than either control

groups'results. The percentage of students who failed were as follows: 33% of both

control groups and 5% of the experimental group.

6.2.3 Summary of Results

From the analysis of the examination and final results it can be concluded that the

experimental group students benefited significantly from using the PATMAN system. The

experimental group results were considerably higher than both control groups for the

88

examination and the overall course. The percentages of PATMAN students who failed the

examination and course were significantly lower than both CONTROL groups. This

confers with Goodwin and Sanati's (1986) finding that support environments of this nature

assist students with disadvantaged backgrounds. There was no significant differences

between the control groups with respect to examination and final course results.

The previous two sections have examined the difference between the experimental and

control groups with regard to the final and examination results and the number of correct

responses on the worksheet questions. In all cases, the experimental group was

considerably better than either control group. This indicates that the PATMAN support

environment was successful in assisting novices in acquiring general programming

knowledge. The following section examines the differences in student groups in terms of

the programming construct misconceptions to determine whether this improvement in the

PATMAN students' performance is as a result of a reduction in misconceptions.

6.3 Analysis of Misconceptions

Student responses to all 14 worksheet questions were analysed to categorise all errors and

misconceptions. Where necessary, students were interviewed to fully understand their

thought processes and to enable accurate categorisation of their problems. These

interviews reinforced Pea's (1986) findings in many respects. Students frequently

attributed human characteristics to the computer and that they also frequently interpreted

the simplest constructs as conceptually complex.

Initially all misconceptions noted in Sleeman et al. 's (1986) and Putnam et al. 's (1986)

research were used as possible errors, however it soon became evident that students were

making additional errors consistently. These errors are included in the data presented in

this chapter, although it must be noted that these errors are not necessarily deep conceptual

errors. Some might simply be a result of carelessness.

To minimise experimenter bias, the categorisation of errors was done without reference to

the students. All student responses were analysed using the same error categories. This

was done on a question by question basis. Thereafter, error categories were grouped

89

together and a total per student was obtained. At this stage, each student had a value for

each error category. A value of zero indicated that no occurrences of that error had been

noted. Finally, a error percentage was obtained for the three student groups: CONTROL

'92, CONTROL '93 and PATMAN. Whenever results are given in the text they appear in

this order.

The data presented in the Tables in this section are all percentages to assist comparison of

the student groups by the reader. These percentages were obtained by dividing the value of

each error category by the number of students in each student group, multiplied by the

number of times that error was noted. For example, a misconception which occurred

frequently, was the multiple valued variable misconception. This error appeared in

response to three questions. Fifty nine occurrences were noted for the CONTROL '92

group. The percentage represented in this section (see Table 6.4), was calculated with the

numerator of 59, and the denominator of 3 multiplied by 61, the size of the group.

It should be noted that in the Tables misconceptions and errors are grouped together.

Although Patman was designed with the intention of minimising the deeper underlying

misconceptions, surface level errors have also been included. This was decided upon

ftrstly to present a complete analysis of the student responses, and secondly it was

sometimes difficult to categorise student errors. If the experimenter was in any doubt

regarding the categorisation of the student error, the surface level error was recorded.

These errors might also be ,of interest to anyone who is an instructor of programming, and

in particular Pascal programming. For the remainder of this section, misconceptions and

errors are more generally referred to as errors, unless the distinction is significant.

Furthermore, the errors tabulated for each construct are presented in descending order of

frequency for the whole population. Whenever it was feasible to calculate the percentage of

students who correctly understood a particular programming construct, these percentages

have been included as the last entry in the Table.

All errors are presented and discussed by programming constructs: output statements, input

statements, variable concepts, assignment statements, looping constructs, if statements and

procedures. In each section, actual student responses are presented to illustrate the noted

errors. This is followed by a discussion of previous research in the fteld. Where

90

appropriate, differences between the proportion of students in each student group who

experienced a particular misconception are noted.

6.3.1 Output statements

The output statement errors were the most difficult to categorise. In many instances the

experimenter had to resort to categorising errors as 'incorrect output statement'.

Furthermore, in the initial worksheet questions, some output errors were so severe that they

indicated a complete lack of understanding of output statements. The were labelled 'no

understanding of output statements'. To illustrate the noted misconceptions and errors

associated with output statements, the following program (worksheet 1 - question 3) will be

used21
.

PROGRAM three;
VAR x: INTEGER;
BEGIN

WRITELN('Enter a number. ');
READLN(x) ;
WRITELN (x) ;
WRITELN('The value of x is 5');
WRITELN (x) ;

END.

This worksheet question was designed specifically to reveal students misconceptions with

output statements. Given the following input: 6 3 4 2 4 1 8 students were requested to

specify the output of the program when executed.

Correct Output:

Enter a number.
6
The value of x is 5
6

To illustrate the errors actual student responses will be given and discussed.

Student Response 1:

21 For relative percentages and significance levels of the output statement misconceptions see Table 6.4.

91

6
THE VALUE OF X IS 5
6

This student omitted the output generated from the first output statement, namely

WRITELN('Enter a number. ');

Statements of this form are usually included in programs to provide the user with

instructions about what input is required of them. This error was categorised as the 'no

Enter' output error, which occurred frequently in all student groups. Invariably, user­

friendly statements of this form are followed by an input statement, as is the case here. In

the example above, the student appears to have interpreted the WRITELN and READLN

statement as one input statement. This supports Sleeman et al. 's (1986) finding that

students believed output statements of this form caused a number to be read. Similarly,

WRITELN('Enter 4 numbers:') caused four numbers to be read. This error was found to be

a persistent error, as it was evident in all three worksheets.

Student Response 2:

Please enter the number
6,3,4,2,4,18
The value of the number is 5

This student was categorised as having several errors. Firstly the student illustrated that he

had no understanding of output statements as he haphazardly changed the contents of the

output statements. The student also did not display the output of the last write statement,

this error is classified as 'no output after WRITELN('The value of x is 5');' in Table 6.4.

Although this error claimed the highest proportion of all students, this error is not a

consistent error as it was peculiar to this program. It appears that students interpreted the

previous output statement as constraining all future output. This error was documented by

Sleeman et al. (1986) and Putnam et al. (1986). The final error noted in this program was

the 'multiple valued variable' misconception. This will be further discussed under the

variable misconceptions section.

92

Student Response 3:

The value of 6 3 4 2 4 1 8 is 5

This student was categorised into the 'no Enter' error category and the 'no output after

WRITELN('The value of x is 5');'. These errors have been discussed above. The student

also substituted the value of variable x for the character x in the output statement, thus

indicating that he had difficulty discerning between output statements of the form

WRITELN (I x I) and WRITELN (x). Statements of the latter form indicate that the value
I

of variable x must be displayed; statements of the former form indicate that everything

between quotation marks must be displayed exactly as stipulated. This error was found to

be an occasional error by Sleeman et al. (1986) and Putnam et al. (1986). Furthermore the

student illustrated a general misunderstanding of output statements as he omitted additional

output statements and was hence included in the 'incorrect output statement' category.

Lastly the student indicated that 'multiple valued variables' are possible. This error will be

further discussed with other variable misconceptions and errors.

Student Response 4:

Enter a number: 6 3 4 2 4 1 8
6
The value of x is 6
6

This example demonstrates 2 errors. The additional numbers at the end of the fist line have

been included by the student to demonstrate the user input. This in itself is not incorrect.

However, by doing so, the student has demonstrated two concepts. Firstly, it can be seen

that the student correctly understands the concept that a variable can only take on one

value. The student understands that although the user enters several values, only the initial

value is assigned to the variable. Secondly, they have carelessly ignored, or even

misunderstood, the distinction between the WRITE and WRITELN output statements.

WRITELN and WRITE have exactly the same syntax except that at the end of a WRITELN

statement the cursor is positioned at the beginning of the following line. The more serious

error evident in this example is that the student has 'changed the output to make it

semantically correct'. As variable x has a value of 6 and not 5 they have changed the

second to last output statement to WRITELN (I The value of x is 6 I). Using

93

Pea's (1986) classification of misconceptions, this error can be categorised as an

intentionality bug.

Student Response 5:

6
The value if x is 5
5

This student was categorised into two error categories. Firstly, the 'no Enter' error

category as they omitted the first output generated from the first WRlTELN statement.

Secondly, they erroneously indicated that output statements are capable of changing

variable values and hence were included in the 'WRITE('x') changes value of variable x

error category. This can be considered to be a serious misconception, as the student is not

merely misinterpreting the notation of the output statement, but in addition changing the

value of the variable.

Student Response 6:

6
3
The value of x is 5
4

This example, once again demonstrates the 'no enter' error, however this student has also

erroneously interpreted statements of the form WRITELN (x) as input statements. This

concurs with Sleeman et at. 's (1986) research.

Generally, the output errors noted in this investigation, coincide with Bayman and Mayer's

(1983) fmdings that students have difficulty in conceiving that output statements only

display what they have been instructed to do. They often predict what the intended output

is, and thus fall prey to the intentionality bug.

The output errors are shown in Table 6.4. For each error the following information is

shown:

• the relative percentage of occurrences for each student group

94

• the significance of any differences between groups in terms of the percentage of error

occurrences. If the cell contains a hyphen this indicates that there is no significant

difference between the groups.

Table 6.4: Output statement errors· Percentages and Significance levels

no output after WRITELN('The value of x is 5'); 44 36

no understanding of output statements 43 33

no Enter 39 27 27 0.01 om
incorrect output statement 35 29 22 0.01 0.05

No distinction between WRITE and WRITELN 15 9 14 0.05

statements

WRITE('x') changes value of x 10 12 13

Changed output to make it semantically 10 3 0 0.05

correct

WRITELN(x) interpreted as input statement 7 2 4

No distinction between WRITELN(x) and 3 3 5

WRITELN('x') statements

In terms of the milder 'incorrect output statement' error category the experimental group

was significantly better than either control group. In terms of the 'no write understanding'

error category, a significantly smaller proportion of the experimental group fell into this

category compared to the CONTROL '92 group. In both instances there was no significant

difference between control groups.

Students frequently failed to display the output from statements such as WRITELN('Enter a

number'). This occurred in several questions and in 39%, 27% and 27% of all instances for

the respective groups. It should be noted that in this instance, the CONTROL '92 group

was significantly different (a=O.Ol) from the CONTROL '93 group, and significantly

higher (a=O.O1) than the experimental group.

Another error category which indicated that there was a significant difference between the

control groups, was that where students carelessly disregarded the difference between the

WRITE and WRITELN output statements. In this case, the control groups were

95

significantly different at an alpha level of 0.05. The proportion of PATMAN students who

omitted the output after the WRlTELN('The value of x is 5') statement was significantly

lower than both control groups. As regards the 'output changed to be semantically correct'

error, the proportion of the experimental group was significantly lower than the

CONTROL '92 group.

Unless stated above, there were no significant differences between the proportion of

students with these misconceptions. This may be attributable to the experimental group

only having spent a mean time of 33 minutes on Patman prior to completing the first

worksheet.

6.3.2 Input statements

Several worksheet questions (13/14) required that students interpret the READLN input

statement. However most of the errors were detected in the earlier worksheet questions,

when students were still familiarising themselves with the elementary programming

concepts. A noticeable improvement over time was noted by the examiner.

To enable easier trapping of student errors, students were required to make use of given

input values whenever required. This was achieved by supplying students with input

sequences below the segment of code, as done by Sleeman et al. (1986) in their research.

As this was a potential problem for students, a verbal explanation was given at the

beginning of each worksheet session in addition to the written instructions included on

each worksheet.

The input statement errors were easier to categorise than the output statement errors and all

of the errors indicate deeper underlying misconceptions22
.

The 'semantically constrained input' misconception is the most frequent misconception

associated with input statements. Students with this misconception believe that input

statements are capable of selecting the most appropriate input value for a variable, in terms

22 For relative percentages and significance levels of the input statement errors see Table 6.5.

of the semantic meaning of the variable name. The following program illustrates this

misconception:

PROGRAM four;

VAR max, min, first, last: INTEGER;
BEGIN

WRITELN('Enter a list of numbers');
READLN(max, min, first, last);
WRITELN ('Largest Number: I, max) ;
WRITELN('Smallest Number: ',min);
WRITELN ('Last Number: ' ,min) ;
WRITELN('First Number: ',first);

END.

Given the input 5 13 1 6, the correct output for this program would be:

Enter a list of numbers
Largest Number: 5
Smallest Number: 13
Last Number: 6
First Number: 1

Students frequently indicated that the output would be as follows:

Enter a list of numbers
Largest Number: 13
Smallest Number: 1
Last Number: 6
First Number: 5

They have selected appropriate input values for each variable based on its semantic

meaning.

The following example will be used to illustrate some of the other input concept

misconceptions:

PROGRAM two;
VAR b,c,a:INTEGER;
BEGIN

WRITELN('Enter three numbers');
READLN (c , b, a) ;

END.

This worksheet question required students to indicate the value of variables a, band c

after line 5 had been executed, given the following input: 15 25 20. As READLN

96

97

statements associate each input with the stipulated variables in a sequential manner,

variable c would have the value 15, variable b the value 2 5 and variable a the value 2 O.

Correct response:

a 20 b 25 c 15

Student Response 1: Declaration order

a 20 b 15 c 25

Here the student has looked at the declaration order of variables, which in this case is b, C

and a and associated the input values with the variables based on this order. Hence

variable b gets the initial input value, variable c the second and variable a the last input

value.

Student Response 2: Alphabetic order

a 15 b 25 c 20

Here the alphabetic order of the variables has determined the associativity of the variables

and the input values. Hence variable a has been assigned the initial value, b the next and c

the last input value.

Student Response 3: Numeric order

a 15 b 20 c 25

Here the alphabetic order and the numeric order of the variables have been matched.

Variable a is assigned the lowest numeric input value, b the middle numeric value, and c

the largest numeric input value. This could be considered to be a sub-class of the

semantically constrained input error, however it appears to be restricted to variables with

no meaningful name. Students seem to impose meaning on the variables based on their

alphabetic order.

The final error noted with input statements is the belief that the input statement was

capable of selecting some arbitrary input value.

98

All the input statement errors discussed above were noted by Sleeman et al. (1986) and

Putnam et al. (1986), with the exception of the matching of the alphabetic order of

variables to the numeric ordering of input values.

All noted errors are shown in Table 6.5 along with any significant differences between the

student groups.

Table 6.5: Input statement errors - Percentages and Significance levels

Semantically constrained input 32 27

Declaration order determines the order in 15 3 5

which variables are read into variables

Variables are assigned values based on 8 10 3

the variables alphabetic order

Variables are assigned values based on 10 6 3

their alphabetic order and the inputs

numeric order

Variable selects value 3 2 5

A significantly smaller proportion of the experimental group compared to the CONTROL

'92 group had the semantically constrained input misconception. With all other input

statement misconceptions there were no significant differences between the student groups.

6.3.3 Variable concepts

During the discussion of output statement errors, reference was made to multiple valued

variables in Examples 3 and 4. Students incorrectly assign more than one value to a

variable. This misconception is frequently associated with the semantically constrained

input misconception23
.

For example, given the following program:

23 For relative percentages and significance levels of the variable concept errors see Table 6.6.

99

PROGRAM one;
VAR Even, Odd: INTEGER;
BEGIN

WRITELN('Enter four numbers: I);

READLN(Even,Odd);
END.

and the following input: 3 2 10 5, variable Even would have the value 3 and variable

Odd would have the value 2. Forty three percent of all students indicated that variable

Even would have the values 2 and 10, and variable Odd the odd input values, namely: 3

and 5.

A variation of this multiple valued variable misconception is the belief that a variable holds

the accumulated total, or running total of several values. Students with this misconception

indicated that variable Even would have the value 12 (i.e. the sum of 2 and 10) and Odd 8

(i.e. the sum of 3 and 5). Another variation of this multiple valued variable misconception

is the belief that the variable indicates the number of values that have been assigned to the

variable, hence variable Even would have the value 2 as would variable Odd.

As noted by Sleeman et al. (1986), students were misled by the output statement

WRITELN (I Enter four numbers: '). Students believed that this caused four

numbers to be read, and hence devised methods of dealing with the inputs.

Some students had a general problem of tracing through programs and keeping track of

variable values. This error was most noticeable in the responses to worksheet two's fourth

question. This question had two variables, p and q, which were used for different purposes,

but students frequently confused the variables. Some students believed that variables

maintain their initial value. This variable will be included in the discussion of assignment

statement errors.

All except one of the above mentioned misconceptions were also noted by Sleeman et al.

(1986) in their research. The misconception peculiar to this research is the 'variable value

is the number of values assigned to variable' misconception. The noted variable

misconceptions are summarised in Table 6.6 below.

100

Table 6.6: Variable concept errors - Percentages and Significance levels

Initial value maintained 16 17 9

Variable holds accumulated total 16 9 0 om 0.05

Variable value is the number of values 11 9 0 0.05 0.05

read into variable

Confusion of variables 6 11 3 0.05 om
Printing of variable when value changes 3 0 8

The proportion of the experimental group's students was significantly lower than both

control groups for three misconceptions, namely: 'variable holds accumulated total' of all

input, 'variable value is the number of values assigned to variable' and 'confusion of

variables' .

6.3.4 Assignment statements

Two worksheet questions dealt with assignment statements, namely questions 2.1 and 2.4

Worksheet question 2.1 will be used to illustrate some of the assignment misconceptions24.

PROGRAM One;
VAR a,b,c:INTEGER;
BEGIN

WRITELN{' Enter two numbers: ');
READLN (a , b) ;
WRITELN (a) ;
WRITELN (b) ;
b:=a;
a:=a+l;
c:=a + b;
WRITELN (a) ;
WRITELN (b) ;
WRITELN (c) ;

END.

24 For relative percentages and significance levels of the assignment statement errors see Table 6.7.

101

Given the input: 2 3 4 the correct output is:

Enter two numbers:
2
3
3
2
5

Student Response 1:

2
3
4
2
6

Here the student has demonstrated two errors, firstly the 'no enter' error and secondly they

have interpreted the a: =b assignment statement as a swap statement. However, as noted

by Sleeman et al. (1986) this was not a consistent error as assignment statements of the

form a : =a+1 and c : =a + b were correctly interpreted. This was also seen in this

research.

Student Response 2:

Enter two numbers:
2
3
2
3
5

Here the student has kept the initial values of variables a and b, thereby ignoring the first

two assignment statements, but correctly assigned the summation of variables a and b to

variable c. Although this error was noted primarily with assignment statements it was

included under variable misconceptions as mentioned earlier.

102

Student Response 3:

Enter two numbers
2
3
2
3
5
3
2
5

Here the student included three additional numbers in the output. These corresponded to

the three assignment statements. As the variables changed, their new value was written to

output. This was also noted by Sleeman et al. (1986).

A less frequent assignment statement error was the 'reversal of the assignment operator' .

Students interpreted statements of the form a : =b, which means variable a takes on the

value of variable b, as variable b is assigned the value of variable a. This was not a

consistent error as students with this misconception interpreted assignments of the form

a: =b+l correctly.

There was no evidence to indicate that students had interpreted the assignment statement as

a comparison operator. This is contrary to Sleeman et al. 's findings.

Table 6.7 summarises all assignment statement information.

Table 6.7: Assignment statements - Percentages and Significance levels

The proportion of the experimental group that exhibited symptoms of the assignment

statement 'swaps variable values' misconception was significantly less than the

103

CONTROL '93 group (a =0.05). Less frequent misconceptions were also noted in all

student groups regarding the 'printing of variable value when the variable is on the left

hand side of a statement' and the 'reversal of the assignment operator'. There were no

significant differences between all student groups with regard to either misconception. A

comparison of the proportion of students who correctly interpreted the assignment

statement indicated that the experimental group was significantly better than both control

groups (a=0.05).

6.3.5 Looping constructs

Loop statements were mainly dealt with in worksheet 2. FOR loops were the focus of 3

questions (2.2, 2.5 and 3.1), REPEAT loops the focus of one question (2.3) and WHll...E

loops the focus of another question (2.4). This balance was decided upon as a result of

Sleeman et al.'s (1986) and Putnam et al.'s (1986) research, as they found that the majority

of errors occurred in FOR loop constructs. However, in retrospect it appears that the

questions concerning loop statements might have benefited from being formulated

differently for two reasons. Firstly, the WHILE loop question's complexity was

compounded by the nested if statement. Secondly, students found worksheet two

considerably harder than the other worksheets. This could have been as a result of the

inherent complexity of some of the questions or merely that students were tested on

concepts prior to them having sufficient time to digest the concepts. However, when the

worksheet questions were scheduled, the lecturer was confident that the students had been

adequately prepared. It might have been beneficial to have delayed the administration of

worksheet 2. Furthermore, had more time been available during the semester it might have

been beneficial to have had an additional worksheet which dealt with less complex looping

constructs prior to the more complex ones. Unfortunately, it was necessary that the

worksheets be scheduled to provide minimal disruption to the normal class requirements.

Moreover once fixed for the CONTROL '92 group, the tests for the '93 student groups

were administered at a corresponding time in 1993 to provide consistency within years.

These comments do not apply equally to FOR loops as they were covered more frequently

in questions with simpler programs.

104

Notwithstanding the above, noteworthy results were obtained from the analysis of the

I
. 25oopmg construct errors .

The following program will be used to illustrate some of the noted looping misconceptions:

PROGRAM Five;
VAR num,val:integer;
BEGIN

FOR num:=l TO 3 DO
BEGIN

WRITELN('Enter a number: ');
READLN (val);

END;
WRITELN (val) ;

END.

Given the input [6 3] [3 4 5] [2 1] [8] 26 the correct output is:

Enter a number:
Enter a number:
Enter a number:
2

Student Response 1:

Enter a number:
Enter a number:
Enter a number:

Here the student has omitted the output generated from the WRITELN statement

immediately after the loop. A similar error was noted by Sleeman et al. (1986) in short

programs, after a loop is executed students believed that control goes to the first statement

of the program

Student Response 2:

Enter a number:
Enter a number:
Enter a number:
Enter a number:
8

25 For relative percentages and significance levels of the looping construct errors see Table 6.8.

26 The brackets are used to represent the different sequence of inputs. When the program first requires input 6

and 3 will be entered, the second time 3, 4 and 5 will be entered and so on.

105

Here the student has ignored the loop's control variable value and looped for all input

given. This error is not restricted to looping constructs, as the error is also evident in

programs without such constructs. For example, students interpreted BEGIN and END

statements, as well as indentation as looping mechanisms. Students with this

misconception assumed that the code would be repeated for all input. This was categorised

by Sleeman et al. (1986) and Putnam et al. (1986) as the 'data-driven looping'

misconception.

Student Response 3:

Enter a number:
2

Here the student has only generated the output from the first output statement of the loop

once. This error is only noted for output statements which give the user some guidance, all

other output statements, and statements in general, within the scope of the loop are

correctly executed each time the loop is executed.

Student Response 4:

Enter a number:
6
Enter a number:
3
Enter a number:
2

This student has included the output statement immediately after the loop within the scope

of the loop. This error is peculiar to output statements, and as noted by Sleeman et al.

(1986) and Putnam et al. (1986), students who had this misconception for a particular

looping construct did not necessarily have it for all looping constructs. This is a peculiar

misconception which eludes explanation.

106

Student Response 5:

Enter a number: 6
6 6 6
Enter a number: 3
3 3 3
Enter a number: 2
2 2 2
Enter a number: 8
8 8 8

This example demonstrates four errors. Firstly the student has not distinguished between

WRITE and WRITELN statements, secondly she has included the last WRITELN within

the scope of the FOR loop, and thirdly by using all input she has fallen into the 'data driven

looping' error category. Finally the student has indicated that each value is displayed three

times, hence the FOR loop specifies the number of times a variable value is displayed.

This error was also noted by Sleeman et al. (1986) and Putnam et al. (1986).

Student Response 6:

Enter a number:
3

Here the student has selected an input value for the variable within the range of the FOR

loops control variable. Hence 3 was assigned to variable val, and execution of the loop

halted. Students with this misconception have interpreted the FOR loop as a constraint on

input. If no input values satisfy the range of the control variable students indicate that an

error will occur.

Student Response 7:

Enter a number: 6
Enter a number: 3
3
Enter a number: 2
2
Enter a number:8

Once again, this example illustrates several misconceptions. The student has failed to

distinguish between WRITE and WRITELN statements, she has included the WRITELN

statement immediately after the loop within the scope of the loop, and she has

demonstrated 'data driven looping'. The student has also selected to output the value of

107

variable val, only when its value is within the range of the control variable. She has

interpreted the FOR loop control variable as an output constraint.

When students were requested to generate the output from the following program

PROGRAM One;
VAR number: INTEGER;
BEGIN

FOR number:=l TO 3 DO BEGIN
WRITELN(number*2);

END;
END.

several students were unable to generate the output. They either indicated that an error

would be generated or requested input. These students thus believed that a FOR loop

'control variable has no value within the scope of a loop'. Sleeman et al. (1986) found that

some students did not realise that the control variable is a counter which is incremented

with each iteration of the loop. No evidence of this error was noted in this research.

Three additional errors were noted with the following program:

PROGRAM Three;
VAR letter:CHAR;
BEGIN

WRITE('Enter a character: ');
READLN (letter) ;
REPEAT

WRITELN('You entered letter: ',letter);
WRITE('Enter a character: ');
READLN (letter) ;

UNTIL (letter='N') or (letter=' n ');
WRITLEN(letter) ;

END.

Given the following input: rh] [Q] [n] [N] [r] the correct output is:

Enter a character:
You entered letter: h
Enter a character:
You entered letter: Q
Enter a character:
n

108

Student Response 1:

Enter a character:
You entered letter: h
Enter a character:
You entered letter: Q
Enter a character:
You entered letter: n

Here the student has understood that the loop must terminate once character on' had been

read into variable letter. However he has proceeded to generate the output from the

first output statement of the WHll.,E loop, and then terminated the program. He also

omitted the output statement which follows the WHILE loop. This student has changed the

output to make it more meaningful. He appears to have given the computer interpretative

powers.

Student Response 2:

Enter a character:
You entered letter: h
Enter a character:
You entered letter: Q

Here the student has stopped too soon. She has anticipated that the next input character

will satisfy the stopping criteria, and hence she has terminated prior to getting the input

from the user. This error was classified as the 'Terminate loop too soon' error. She has

also omitted the output generated from the output statement directly after the loop. This is

an example of an intentionality misconception.

Student Response 3:

Enter a character:
You entered letter: h
Enter a character:
You entered letter: Q
Enter a character:
You entered letter: n
Enter a character:
N

This student has terminated the loop after both uppercase and lowercase n's have been

entered. This student, although understanding that the loop terminates after the until

conditional has been met, has misinterpreted the until conditional to mean both upper and

109

lowercase n. This could be a surface level error, or a symptom of a more serious

misconception.

The looping errors are summarised in Table 6.8. In addition, the percentage of students

who ignored the looping construct, and the percentage of students who correctly interpreted

the looping constructs have been included.

Table 6.8: Looping constructs - Percentages and Significance levels

No write after loop 32 21 8 om om
You entered letter n 15 18 21

data-driven looping 25 9 4 0.01 0.01 0.05

both Nand n 21 9 8 0.05

Enter once only 14 11 13

Terminate loop too soon 17 15 5 0.01 om
WRITELN immediately after loop included 14 2 4 0.01 0.05

in scope of loop

scope problem 6 4 3

FOR loops:

control variable can be changed in loop 6 11 3 0.05 0.01

control variable has no value within the 13 6 0 0.01

scope of the loop

FOR loop specifies no. of times variable 7 9 3 0.05 0.05

value is displayed

control value acts as input constraint 8 8 3 0.05 0.05

control value acts as output constraint 8 7 2 0.01 0.05

Ignored WHILE loop statement 33 30 34

Ignored FOR loop statement 17 10 7 om
Ignored REPEAT loop statement 16 6 5 0.05

Considering all 13 looping errors the experimental group was significantly better than the

CONTROL '92 group in 10 instances, and 7 instances compared to the CONTROL '93

group. However in 2 instances the CONTROL '92 group was also considerably worse than

110

the CONTROL '93 group, in addition to being worse than the PATMAN group. Namely

in 'data driven looping' and the inclusion of a WRITELN following a loop into the loop.

Included in the Table above, is the proportion of students who ignored the looping

construct. The WHILE loop was ignored by 33%, 30% and 34% of '92, '93 CONTROL

and PATMAN groups. This could be an indication that the question was asked before the

students had adequate time to digest the concept, and reinforces the comments made

earlier. The FOR loop was ignored by 17%, 10% and 7% of the respective groups and

similarly for the REPEAT loop (16%, 6%, 5%). There was no significant difference

between the groups with regard to the WHILE loop, however the experimental group fared

significantly better that the CONTROL '92 group with regard to the ignoring of the

REPEAT and FOR loops.

Finally, the analysis of the proportion of students who correctly applied the looping

constructs indicated that an average of 24%, 18% and 50% of all students correctly

interpreted the REPEAT, WHILE and FOR loops. There was no significant difference in

the student groups regarding the WHILE and REPEAT loops, however, for FOR loops the

experimental group was significantly better than both control groups at and alpha level of

0.01.

6.3.6 If statements

The most frequent error of the experimental group was that of stopping the output if the

condition evaluated to false27
. This error was noted for question 2.4 in which the if

statement was included in a WHILE loop:

27 For relative percentages and significance levels of the if statement errors see Table 6.9.

111

PROGRAM Four;
VAR p,q:INTEGER;
BEGIN

q:=O;
WRITE(IEnter a number: ');
READLN (p) ;
WHILE P <> 0 DO
BEGIN

IF P > 0 THEN
q:=q+1;

WRITE(IEnter a number: I);
READLN(p) ;

END;
WRITELN (q) ;

END.

As mentioned earlier, this program was possibly the hardest worksheet question as it

included the if statement within the while statement. Only seven percent of all students

correctly answered this question. It was also not often possible to establish students'

thought processes for this question, and hence students were interviewed to establish their

problems.

Given the input: [1] [-1] [- 3] [4] [0] the program generates the following

output:

Enter a number:
Enter a number:
Enter a number:
Enter a number:
Enter a number:
2

Several errors occur in conditional statements of the form IF (condition) THEN (action). If

the condition is false students reacted in several ways.

Student Response 1:

Enter a number:
Enter a number:
1

This student has terminated execution of the program when the conditional statement

became false. Statements which provide an alternative action in the form of IF THEN

112

ELSE statements, do not yield such drastic termination. This error was also noted by

Sleeman et al. (1986) and Putnam et al. (1986).

Student Response 2:

Enter a number:
Enter a number:
Enter a number:
2

It is not immediately obvious how the student generated this output, but after interviewing

the student, it was determined that she has treated the output statement immediately after

the IF THEN statement as the ELSE component of the conditional statement. This error

was also noted by Sleeman et al. (1986).

Student Response 3:

Enter a number:
Enter a number:
q=l
Enter a number:
q=l
Enter a number:
Enter a number:
2

Here the student has printed the value of q when the conditional was false. Although

several students had their own variation of how and what was generated when the

conditional was false, they all had one concept in common: they generated some output to

indicate the current status of the program at that stage when the condition was false.

Another error made by students was the interpretation of the if statement condition as an

assignment. If the condition was not satisfied students would arbitrarily assign a value to

the variable to satisfy the condition. This error was not found by Sleeman et al. (1986) or

Putnam et al. (1986).

113

The other conditional statement errors will be demonstrated using the program below.

PROGRAM Three;
VAR number:INTEGER;
BEGIN

WRITE('Enter a number: ');
READLN (number) ;
IF number = 7 THEN

WRITELN('Unlucky number');
IF number = 10 THEN

WRITELN('Lucky number');
WRITELN('The number was',number);

END.

The correct output for this program, given the input: [4] [10] [7] is as follows:

Enter a number:
The number was 4

Although this program was designed to determine students' conditional statement

misconceptions, a more serious misconception was noted in several students' responses.

Students appear to have given the computer interpretative capabilities and hence have

edited the generated output to make it more meaningful. Bayman and Mayer (1983) found

this to be a common problem.

Student Response 1:

The number was Lucky Number
The number was Unlucky number

This student demonstrates three errors. Firstly the student has generated output for all

input and thus fall into the 'data driven looping' error category. Secondly, he has changed

the output to make it more meaningful to himself. He has substituted output of the form:

Unlucky number
The number was 7

for output of the form:

The number was Lucky Number

Lastly he has not generated any input when variable number had a value of 4. Other

students with this misconception indicated that an error would be generated because 4 was

not a lucky number. This misconception is referred to as 'relationship between conditional

and input value' error. This error is another example of the intentionality bug, students

114

appear to have given the computer interpretative capabilities to generate output which is

more meaningful.

Student Response 2:

Enter a number
Unlucky number
Lucky number
The number was 4

Here the student has executed the if statement regardless of the conditional value being true

or false. This was also noted by Sleeman et al.. (1986).

A final error noted by Sleeman et al.. (1986), Putnam et al.. (1986) and also in this

investigation, was that students believed that the THEN action of an IF THEN ELSE

statement was always executed.

The percentage of occurrences for the if statement errors are tabulated below (Table 6.9).

Table 6.9: If Statements - Percentages and Significance levels

Halt program if the conditional of an IF 11 24 45 0.01 0.05

THEN statement is false

statement following an IF THEN statement 25 21 10 0.05

is considered the ELSE branch

Relationship between conditional and 21 24 3 om 0.01

Input value error.

If the conditional is false, output to 23 12 0 om 0.05

indicate the current status of the program

is generated

if =assignment 11 14 om 0.01

Always THEN 6 6 9

The proportion of experimental students exhibiting the 'halt if the conditional of an IF

THEN statement is false' error was, significantly higher (a=O.OI) than both control

groups. No explanation can be given as to why such a large proportion of the experimental

115

group fell into this error category. Considering all other misconceptions the experimental

group fared significantly better than one or both control groups, in four of the five

instances. The proportion of experimental group students who correctly interpreted the if

statements was significantly (a=O.Ol) better than both control groups.

6.3.7 Procedures

Only one worksheet question dealt with procedures. The following program will be used

to illustrate the noted procedure misconceptions28
. These errors indicate students difficulty

with tracing the flow of control during program execution.

The following program:

PROGRAM Four;
VAR number: INTEGER;

PROCEUDRE Letters;
BEGIN

WRITELN ('ijkl') ;
WRITELN ('mnop ,) ;

END;

BEGIN
WRITE ('qrst');
Letters;
Letters;

END.

will generate the following output when executed:

qrstijkl
mnop
ijkl
mnop

Student Response 1:

ijkl
mnop

Here the student has traced the program in a top-down scan of the code and terminated

execution at the end of the procedure. This error indicates that the student is unaware of

28 For relative percentages and significance levels of the procedure errors see Table 6.10.

116

procedural abstraction and the general flow of control of programs. This error is classified

in Table 6.10 as 'executed procedure only'.

Student Response 2:

qrst
ijkl
mnop

Here the student has traced the program in the correct manner but only executed the

procedure once. Possibly the student has seen no advantage in calling the procedure twice

and hence omitted the second call to the procedure. This was the most common error

noted with procedures. This error was not noted by Sleeman et al.. (1986) and Putnam et

al.. (1986) The student has also failed to distinguish between WRITE and WRITELN

statements. This is surprising as this is a surface level error. One would expect students to

be able to distinguish the difference between the statements by the twelfth week of

programming instruction.

Student Response 3:

ijkl
mnop
qrst

Here the student has done a top-down scan of the code and generated the output in that

order. This illustrates a general misunderstanding with flow of control of programs and

procedural abstraction. This error was called the 'order appear' error.

Student Response 4:

ijkl
mnop
qrst
ijkl
mnop
ijkl
mnop

Here the student has generated the output from the procedure prior to execution of the main

part of the program. During the execution of the main body of the program they have

correctly called and executed the procedure. Students with this misconception, understand

117

the concept of procedural abstraction, but have a problem with the flow of control

beginning in the main body of the program.

Student Response 5:

qrst

The final error regarding procedures is illustrated in this student's response. She has

simply omitted the procedure calls, thus demonstrating a misunderstanding with procedural

abstraction.

The errors regarding procedures are summarised in the following Table.

Table 6.10: Procedures - Percentages and Significance levels

Procedure only once 39 6 10 om 0.01

Order appear 21 24 3 0.01 0.01

Procedure only 3 21 0 0.01 om
Order appear + call 2 9 3

No procedure call 2 9 3

With respect to the procedure errors, there was a significant difference between the control

groups (Table 6.10) on two accounts. In one instance, in which students only executed the

procedure once, the CONTROL '92 group was significantly different from the CONTROL

'93 group and significantly higher than the experimental group. In the second instance, in

which only the procedure was executed, the CONTROL '93 group was significantly

different from the CONTROL '92 group and significantly higher than the experimental

group. Also, significantly fewer experimental group students executed the statements in

the order they appeared, compared to both control groups. Finally, a significantly larger

proportion (78%) of the PATMAN group correctly executed the code, compared to the

39% and 33% of the '92 and '93 CONTROL groups. This is an indication that the support

environment was successful in demonstrating the flow of control through a program.

118

6.3.8 Summary of Results

From the above discussion of the programming constructs and misconceptions, the results

can be summarised as follows:

• In one error instance the experimental group was significantly higher than both control

groups. This is unexplainable.

• Out of the 49 documented errors, the experimental group was significantly better than

one or both control groups in 29 instances, and in the other instances there appeared to

be no significant difference between the groups.

• It could also be said that there was more significant difference between the

experimental and control groups with regard to the constructs that were tested in the

later worksheet questions and less significant difference between the groups with

regard to the earlier testing of constructs. This suggests that the more time students

spent on the Patman system, the more benefit the system was to them.

• The proportion of experimental students who correctly interpreted the assignment,

while, repeat, for, if and procedure statements was greater than that of either control

group. In four of the six instances in which these constructs were tested, these

proportions were significantly higher (~O.05) than either control group. There were

no significant differences between the control groups.

Many misconceptions noted in previous research by Sleeman et al. (1986) and Putnam et

al. (1986) were verified by this investigation. A few misconceptions, peculiar to this

research were also identified. The analysis of the worksheets, which tested for

misconceptions in this research, provides strong evidence that the Patman support

environment was successful in minimising several misconceptions.

6.4 The Effect of PATMAN on Specific Misconceptions over

Time

At the outset of this research it was necessary to decide between two experimental

approaches. The fust being a longitudinal study in which the benefits of the use of

PATMAN for each student would be monitored throughout the semester. In this approach

119

the focus would have been to determine students misconceptions prior to using PATMAN,

and then to assess whether these students had maintained these same misconceptions after

using PATMAN. The second approach would have b~en to compare two groups of

students, one which made use of PATMAN and one which did not. In this approach the

intention would be to determine if there was any significant difference between the groups

of students, and if so this could be attributed to the use of PATMAN. The first approach

was abandoned for several reasons. The PATMAN lessons were not designed to address

particular misconceptions but rather to assist students in the acquisition of accurate

conceptual models of the programming and computer environment. To allow for the

accurate assessment ofpre-PATMAN misconceptions it would have been necessary to

delay the use of PATMAN until a student had been exposed to all the programming

concepts under normal learning conditions, and only then could students commence with

the additional PATMAN lessons. This would have necessitated students attending the

PATMAN lessons after the course had been completed, and as a result was not feasible.

This said, the first experimental approach could have been adopted if the scope of the

research, and hence PATMAN, was limited to a small subset of misconceptions. However,

it was felt that the examination of only a small set of misconceptions would have

contradicted the research objectives. Novice programmers commonly have a wide variety

of misconceptions and it was the intention of this research to identify these misconceptions.

An hence the second experimental approach was adopted.

Nevertheless, it would still have been possible for a stage wise comparison of students over

time if worksheets two and three included additional questions which attempted to trap the

same misconceptions which had been noted in previous worksheets. Unfortunately this

was not possible as limited time was available for the administration of worksheets with

the course's time constraints. Nevertheless, it was possible to determine the affect of the

use of PATMAN over time with regard to a few misconceptions. These misconceptions

were those that were noted in more than one worksheet. The percentage of PATMAN

students who were categorised as having a particular misconception at different times

during the semester are shown in Table 6.11. Worksheet one, was administered during the

fourth week of the semester, worksheet two, during the ninth week and worksheet three

during the twelfth week.

120

Table 6.11: Stage wise comparison of misconceptions

no Enter (Output statements)

WRITElN(x) interpreted as input statement

(Output statements)

No distinction between WRITE and

WRITElN statements (Output statements)

Multiple-valued variables (Variables)

Confusion of variables (Variables)

FOR Loop: control variable can be

changed in loop (looping constructs)

FOR loop specifies no. of times variable

value is displayed (looping constructs)

Ignored FOR loop statement (looping

constructs)

If statements: always THEN (If statements)

All input used

42.5

45.0

5.0

60.0

7.5

10.0

10.0

5.0

12.5

20.0

30.0

0.0

17.5

0.0

o

2.5

2.5

2.5

In Table 6.11 the empty cells indicate that the misconception was not included in the

relevant worksheet. Of the ten misconceptions, there was a reduction in the percentage of

students over time with regard to nine misconceptions. This indicates that PATMAN was

able to assist students in overcoming these particular misconceptions. However, it appears

that the opposite was true for one misconception. That is, the 'no Enter' output error

category. At the time of worksheets one and two, 35 % of the PATMAN students were

categorised with this error and at the time of worksheet three, 37.5%. As discussed early

this was categorised as a surface level error as it was not persistent, and it could be a result

of carelessness on behalf of the student. Nevertheless, as there was no substantial change

in the percentage of students who fell into this error category over time, it can be assumed

that PATMAN did not adequately address this problem.

6.5 Demographics of Student Groups

As discussed previously, a primary concern in experiments of this nature is the possibility

that some attribute of one or more of the student groups which is external to the

121

experimental process might account for the observed differences in the groups. Although it

was not possible to ensure that there were no such significant differences, it is possible to

ascertain whether any of the noted differences might be confounding variables in the

experimental process.

To accomplish this task, two multiple regression models were established for each student

group: one modelled [mal results and the other examination results. Each model

determined a set of predictors, from a possible set of 56, which could have influenced the

final or examination results of a student in any of the student groups. The set of predictors

were based on the students' background and psychological characteristics obtained from

Questionnaires 1 and 2 (see Appendix B). Appendix C contains a summary of student

background and psychological characteristics. The Tables in Appendix C also indicate, for

each characteristic, any statistical significant differences between the student groups, based

on Z-proportion tests or ANOVA and Scheff6's multiple comparison method.

For each model, the set of significant predictors chosen included no student characteristic

that was significantly different from the other student groups. A background characteristic

which one might have expected to influence the validity of the results obtained in this

experiment is the difference in mean matriculation points for the CONTROL '93 and

PATMAN groups. However in the CONTROL '93 and PATMAN regression models this

characteristic did not emerge as part of the set of significant predictors. This indicates that

although there is a significant difference between the two student groups, in terms of

matriculation points, this is not a factor which influenced the students' success in the

course. The results of the multiple regression analysis thus indicate that in this regard any

differences between the student groups' performance did not influence the experimental

process.

The anxiety and alienation measures were not found to be significant predictors of

students' success in the programming course, nonetheless this characteristic is of interest.

Of all characteristics evaluated, this is the only one that indicates that the PATMAN group

is significantly different from both control groups, and that there is no significant

122

difference between the control groups. As this characteristic was a summation of several

items from both questionnaires, it appears that the Patman support environment had a

beneficial side effect of reducing students' computer anxiety and alienation.

With all studies of this nature, it is necessary to ensure that the noted improvements in

performance are not due to external factors such as the Hawthorn effect, a psychological

phenomena which refers to the effect of the experimental process on subjects, or the

additional time experimental group students spent acquiring programming knowledge. In

the current context it is unlikely that the Hawthorn effect took place as all students were

part of the experiment and thus one would assume that all students would improve. Nor is

it likely that the additional time, on average 35 minutes per student per week, spent on

Patman had such a marked impact on student performance when one considers that the

mean time students spent on their programming assignments was more than five hours per

week. The noted improvements in student performance can more likely be attributed to the

pedagogical aspects of the support environment. However these considerations could be

the basis of further research

6.6 Students opinion of Patman

Finally the students opinion of the support environment is considered.

Students were requested to complete a questionnaire on Patman (see Appendix B). The

data presented here is a summary of the experimental groups' responses to the questions on

this questionnaire. The responses were rated on a 5-point Rating scale: (1) Strongly

Disagree, (2) Disagree, (3) Neither Agree nor Disagree, (4) Agree, (5) Strongly Agree.

Table 6.12 shows the average rating for the experimental group.

123

Table 6.12: Student responses to 5-point rating scale questions

I benefited from using Patman

The Patman programs/lessons were interesting

The Patman programs/lessons were enjoyable

I liked the fact that I could work at my own pace and decide which

lesson I was going to study and how often

I found the Patman tutorials more beneficial than the standard

tutorials

I would have preferred to have had access to Patman at anytime and

for any length of time

3.69

4.36

o
1

o

5

2

From these results it can be seen that students responded favourably to the Patman system.

All seven averages are positive. Most students appreciated the fact that they could work at

their own pace (mean =4.47, no negative responses) and believed that they benefited from

using the system (mean =4.17, one negative response). Only one student felt that he had

not benefited from using the system. The benefits of using the system as indicated by the

experimental group are noted in Table 6.12.

Table 6.13: Benefits of using Patman

Patman helped with the understanding of programs

Patman helped with the learning of programming constructs

Patman helped with the weekly program assignments

other benefits of Patman (specified by students)

learning new functions and reserved words

walk-through of programs

understanding computer output

learning at my pace ensures I understand the program before

continuing

29

26

7

2

2

1

1

124

As expected, students would have preferred to have made use of the Patman in their own

time via the undergraduate network and computer laboratories (4.36). This is reinforced by

comments and suggestions made by the students (see Table 6.12). Given this facility

students indicated that they would have like to have used Patman 2.2 (mean) days per week

and for 2.8 hours per week. It appears that students felt that more time on Patman was

needed to cover the lessons adequately. Twenty two students felt it was necessary to attend

all tutorials in order to keep up with the lessons. Twelve students felt there was adequate

time to complete the lessons.

Finally, students were asked to suggest any improvements or make any comments

regarding Patman. A selection of these are noted in Table 6.13.

125

Table 6.14: Students' comments and suggestions about Patman

But in my own time. Otherwise I had to rush from lunch to the extra tutorial

found Patman helpful

Given output and have to write a program or vice verse so that we can see our mistakes at that moment and get help

Have more programs available to work through with possible exam questions from past papers

I don't think we did enough work in the Patman tutorials More programs should be included

I would like to have access to Patman after finishing the course to help me with revision. Early tutorials of Patman did not help

much because I was not yet familiar with the course

I would like to see Patman testing the users knowledge after a lesson so as to ensure that the user understood what he was

doing.

It definitely reinforced the lectures and playing with the mouse was great too.

It is great and helpful

It might be helpful if there are programs very similar to those we do in lecturers

It would be better to write our own programs and be corrected if wrong then every time we are given a program and how to run

it only

Maybe give printout of the program in the lessons so can refer to them later as gained most from construction etc. of programs

None I can think of it's a good system

Obtain a printout out of programs in Patman for later reference

Other than having more access to the program, more loops Exercises and Text variables etc.

Patman Tutorials were very good & allowed one to see how programs work & taught me how to write out & understand

programs.

Put it on the LAN

Should be made easily accessible· people should be able to attend anytime should they want to

There must at-least be like after going on through programs be given one exercise to test our understanding and answers to

those exercises but they must have no contribution to our Tutorial marks

there wasn't anything on textfiles

Try to build it up into LAN, so that student can have more access to it

6.7 Chapter Summary

The Patman support environment was evaluated using the proportion of correct responses

for each worksheet question per student group, the final and examination results of the

students, and the proportion of occurrences of each misconception per student group. All

evaluations indicated a noticeably higher rate of success for the Patman students as

compared to the control group students. There was also found to be no confounding

experimental variables, hence the noted difference can be attributed to the Patman support

environment. Finally, the students who made use of the Patman support environment

reacted favourably towards the system.

7. CONCLUSIONS AND FURTHER RESEARCH

In learning to program students often formulate inaccurate or incomplete mental models of

the programming language environment. This may be attributed to both the nature of the

task and inadequate programming instruction. This thesis has examined documented

evidence of the misconceptions which commonly hamper the progress of novice

programmers. It has also investigated the role that support environments can play in

minimising the effects of these misconceptions.

Novice programmers are in a situation in which they have insufficient previous knowledge

of programming. As a result, they invariably rely on inappropriate knowledge and learning

strategies. Students misapply knowledge from other domains, and over apply analogies,

the most common being that of equating programming with conversing with a human. Pea

(1986) has called this the 'superbug'. Furthermore, most programming instruction

concentrates on the syntax of the programming language and many instructors may be

unaware of the way in which students acquire programming knowledge. Invariably

significant numbers of students develop inaccurate mental models which result in

misconceptions such as parallelism bugs, egocentrism bugs and intentionality bugs.

As documented in this thesis, a Pascal support environment, Patman, was developed with

the objective of reducing student misconceptions. The support environment interface was

based on the glass box approach which allows students to see programming language

constructs being executed at the transaction level. Each programming statement results in

some visible change to one or more of the following: the variable, input, display windows

or the flow of control display. The objective of this glass box approach is to assist

students in developing accurate mental models of the programming language. The Patman

support environment used this approach as a mechanism for showing students example

programs. The example programs were designed with the intention of providing examples

that would contradict inaccurate or incorrect mental models. Other design considerations

included the illustration of general algorithms or plans, the demonstration of good

programming principles and the use of particular programming constructs in appropriate

ways. The intention of these design considerations was to assist students in structuring

127

their programming knowledge in a manner similar to expert programmers. Comparative

studies of expert and novice programmers have shown that novice programmers structure

their knowledge based on surface characteristics of the syntax of the programming

constructs, whereas expert programmers structure their knowledge based on functional

characteristics of larger segments of code, called plans.

The Patman support environment was tested in an introductory programming course to

determine whether the support environment was capable of reducing student

misconceptions and improving the students' general programming ability. Three students

groups were used: CONTROL '92, CONTROL '93 and PATMAN. The PATMAN

student group made use of the support environment in addition to the conventional

teaching methods. The control groups were used to determine if there were any differences

between the students taught under conventional teaching methods and the students who

made use of the additional Patman learning resource. The CONTROL '92 student group

was used to investigate misconceptions, which assisted in the design of Patman, as well as

to determine the year to year variance. The main findings of this empirical work are listed

below:

• a smaller proportion of the PATMAN group were found to possess misconceptions

• a larger proportion of the PATMAN group correctly answered the worksheet questions

• the PATMAN students' examination and final results were noticeably higher than those

of both control groups

• fewer of the experimental group's students failed the examination or the course

compared to both control groups

• minimal differences were noted between the control groups

• most experimental group students reacted favourably to the Patman support

environment.

These findings provide strong evidence that the support environment was influential in

reducing student's programming misconceptions and that it was capable of assisting

students in acquiring programming knowledge in an introductory programming course.

On entry into South African Universities, students have vastly different computer

knowledge and experience, and thus it seems appropriate to determine whether support

128

environments of this nature are capable of assisting students to overcome disadvantageous

background characteristic. In the current research, when students were classified as either

coming from a disadvantageous background (i.e. no previous computer experience, no

home computer, disadvantaged schooling) or not, the largest benefit was noted in students

with disadvantageous backgrounds. Those students making use of the support environment

outperformed those who did not. Although, it could be an anomaly of the current research

it does provide an indication that support environments, of a similar nature to the one

discussed here, could address some of the problems facing South African University

students in learning to program.

In terms of the difficulties students experience while learning to program, more research

needs to be directed towards comparative studies of programming languages. Research in

the 1980's investigated BASIC versus FORTRAN versus Pascal as an initial programming

language, but as more universities move away from Pascal to C and C++ as their

introductory programming language, the impact of this shift needs to be investigated.

Another issue is the implications of teaching novices event-driven programming languages

such as Visual Basic or Delphi. What difficulties will novices experience when learning

these languages and how must programming instruction adapt? These issues are of

particular concern when one takes heed of predictions that programming is no longer going

to be restricted to the domain of computer science. People from all walks of life are going

to develop their own programs in order to solve their particular problems.

Several extensions to the support environment are possible. Firstly the system can be

developed into a Computer Assisted Tutoring System, by including testing mechanisms,

which would give students feedback about their knowledge acquisition. Such testing.

mechanisms could include the use of cloze tests (Robinson, 1981). Cloze procedures,

which have often been used as a measure of prose comprehension, have also been found to

be a simple method for measuring software comprehension. They are of particular interest

because the construction of a cloze test is easier than multiple choice type quizzes. They

only take a few hours to construct, require little skill and are potentially automatable. This

is significant in a context such as University, where programming instructors tend to be

under increasing pressure. Furthermore initial studies show they are reliable as a measure

of software comprehension (Hall & Zweben, 1986).

129

The current support environment has focused on misconceptions of the semantics of the

Pascal programming language. This was appropriate as this is prerequisite knowledge for

the design of programs. However, the system could be extended to provide assistance to

students for the design of programs, possibly providing algorithm animation, in a similar

vein to the Algorithm Animator and Programming Toolbox developed at the

Witwatersrand University (Sanders & Gopal, 1991).

Further extensions to the system could incorporate principles of intelligent tutoring

systems, such as student modelling, which provide an adaptive and flexible learning

environment. In the current context it would be essential for the student model to include

not only the knowledge of the student as a subset of an expert programmer, but also

knowledge of programming misconceptions. The design of an Intelligent Tutoring System,

which could accommodate varying learning styles of students, could also be beneficial as

the mismatch of teaching and learning styles has been found to have had a negative impact

on the acquisition of programming knowledge.

REFERENCES

ADELSON, B. (1981). Problem solving and the development of abstract categories in

programming languages. Memory and Cognition, Vol. 9, p. 422-433.

ADELSON, B. (1984). When novices surpass experts: the difficulty of a task may increase

with expertise. Journal ofExperimental Psychology: Learning, Memory, and

Cognition, Vol. 10, p. 483-495.

AHO, AV.; SETHI, R & ULLMAN, J.D. (1986). Compilers: Principles, Techniques,

and Tools, Addison-Wesley Publishing Company, Reading, Massachusetts.

ALLEN, RB. (1982). Cognitive Factors in Human Interaction with Computers. In

Directions in Human-Computer Interaction, Badre, A & Schneiderman, B. (eds.),

Ablex Publishing Corporation, Norwood, New Jersey, p. 1-26.

ALLWOOD, c.L. (1986). Novices on the Computer: a Review of the Literature.

International Journal ofMan-Machine Studies, 25, p. 633-658.

ALLWOOD, C.M. & BJORHAG, c.-G. (1990). Novices' debugging when programming

in Pascal. International Journal ofMan-Machine Studies, 33, p. 707-724.

ANDERSON, lR & SKWARECKI, E. (1986). The Automated Tutoring of Introductory

Computer Programming. Communications ofthe ACM, Vol. 29, No. 9, p. 842-849.

ANDERSON, RC. (1986). Some reflections on the acquisition of knowledge.

Educational Researcher, 13, p. 5-10.

ANDERSON, J.R; FARELLEL, R & SAVERS, R (1984). Learning to Program in LISP.

Cognitive Science, 8, p. 87-129.

APPELBAUM, S.H. & PRIMMER, B. (1990). An HRx for Computer Anxiety.

Personnel, September, p. 8-11.

BARR, A; BEARD, M. & ATKINSON, R (1976). The Computer as a Tutorial

Laboratory: the Stanford BIP Project. International Journal ofMan-Machine

Studies, 8, p. 567-596.

BAYMAN, P. & MAYER, RE. (1983) A Diagnosis of Beginning Programmer's

Misconceptions of BASIC Programming Statements. Communications ofthe ACM,

Vol. 26, p. 677-679.

131

BELL, D. (1976). Programmer Selection and Programming Errors. The Computer

Journal, Vol. 19, No. 3 ,p. 202-206.

BONAR, J.G. & CUNNINGHAM, R (1988). Bridge: Tutoring the Programming Process.

In Intelligent Tutoring Systems: Lessons Learned, Psotka, J.; Massey, D.L. & Mutter,

S.A (eds.), Erlbaum Associates, Hillsdale, New Jersey, p. 409-434.

BOYLE, T. (1990). The Core Approach to Developing Learning Environments for

Programming. Monitor, Vol. 1, No. 1, p. 7-10.

BRANSON, RK. (1989). Necessary Conditions for Success in Instructional Systems

Development Projects. Educational Technology, February, p. 46-47.

BROOKS, R (1977). Towards a Theory ofthe Cognitive Processes in Computer

Programming. International Journal ofMan-Machine Studies, 9, p. 737-751.

BROOKS, RE. (1980). Studying Programmer Behaviour Experimentally: The Problems

of Proper Methodology. Communications of the ACM, Vol. 23, No. 4, p. 207-213.

CALHOUN, M.; STALEY, D.; HUGHES, L. & MCLEAN, M. (1989). The Relationship

of Age, level of Formal Education, Duration of Employment Toward Attitudes in the

Workplace. Journal ofMedical Systems, Vol. 13, No. 1, p. 1-9.

CALITZ. AP. (1984). Evaluation of attitudes of prospective Computer Science Students

with a view to the Development of a Computer Aided Testing Program. M.Sc.

Thesis, University of Port Elizabeth.

CARDINALE, L.A & SMITH, C.M. (1994). The Effects of Computer-Assisted Learning­

Strategy Training on the Achievement of Learning Objectives. Journal of

Educational Computing Research, Vol. 10(2), p. 153-160.

CAVAIANI, T.P. (1989) Cognitive Style and Diagnostic Skills of Student Programmers.

Journal ofResearch on Computing in Education, Summer, p. 411-420.

CHEN, H.-G. & VECCHIO, RP. (1992). Nested IF-THEN-ELSE Constructs in End-User

Computing: Personality and Aptitude as Predictors of Programming Ability.

International Journal ofMan-Machine Studies, 36, p. 843-859.

CLARIANA, RB. (1993). The Motivational Effect of Advisement on Attendance and

Achievement in Computer-Based Instruction. Journal ofComputer-Based

Instruction, Vol. 20, No. 2, p. 47-51.

CLARKE, lA (1990). Producing that First CAL Program: Experiences of a Novice.

Interactive Learning International, Vol. 6, p. 143-151.

132

CLEMENTS, D.H. (1986). Developmental Differences in the Learning of Computer

Programming: Achievement and Relationships to Cognitive Abilities. Journal of

Applied Developmental Psychology, 7, p. 251-266.

COHEN, 1. (1984). The Interaction Between Methods ofInstruction and Individual

Learning Style. Educational Psychology, Vol. 4, No. 1, p. 51-60.

COOMBS, MJ.; GIBSON, R & ALTY, J.L. (1981). Acquiring a First Computer

Language: A Study of Individual Differences. In Computing Skills and the User

Interface, Coombs, M.J. & Alty, J.L. (eds.), Academic Press, London, p. 289-313.

COOMBS, MJ.; GIBSON, R & ALTY, J.L. (1982). Learning a First Computer

Language: Strategies for Making Sense. International Journal ofMan-Machine

Studies, 16, p. 449-486.

DALBEY, J. & LINN, M.C. (1985). The Demands and Requirements of Computer

Programming: A Literature Review. Journal ofEducational Computing Research,

Vol. 1(3), p. 253-274.

D' ARCY, J. (1985). Learning Pascal after BASIC. In Human-Computer Interaction­

INTERACT '84, Shackel, B. (ed.), Elsevier Science Publishers, North-Holland, p.

771-775.

DAVIS, E.A; LINN, M.C. & CLANCY, M.J. (1995). Students' Off-line and On-line

Experiences. Journal ofEducational Computing Research, Vol. 12 (2), p. 109-134.

DETIENNE, F. & SOLOWAY, E. (1990). An empirically-derived control structure for the

process of program understanding. International Journal ofMan-Machine Studies,

33, p. 323-342.

DISESSA, AA & ABELSON, H. (1986). Boxer: A Reconstructable Computational

Medium. Communications ofthe ACM, Vol. 29, No. 9, p. 859-868.

DOUKIDIS, G.I.; ROGERS, RA & ANGELIDES, M.C. (1989). Developing a Pascal

Tutoring Aid. Computers and Education, Vol. 13, No. 4, p. 367-378.

DU BOULAY, B & O'SHEA, T. (1981). Teaching Novices Programming. In Computing

Skills and the User Interface, Coombs, M. & Alty, J. (eds.), Academic Press,

London, p. 147-200.

DU BOULAY, B. & SOTHCOTT, C. (1987). Computers Teaching Programming: An

Introductory Survey of the Field. In Artificial Intelligence and Education: Learning

Environments and Intelligent Tutoring Systems, Lawler, R W. & Yazdani, M. (eds.),

Ablex Publishing, Norwood, New Jersey, p. 345-372.

133

DU BOULAY, B. (1986). Some Difficulties of Learning to Program. Journal of

Educational Computing Research, Vol. 2(1), p. 57-73.

FALZON, P. (1990). Human-Computer Interaction: Lessons from Human-Human

Communication. In Cognitive Ergonomics: Understanding, Learning and Designing

Human-Computer Interaction, Falzon, P. (ed.), Academic Press, London, p. 51-65.

FAY, A.L. & MAYER, R.E. (1994). Benefits of Teaching Design Skills Before Teaching

LOGO Computer Programming: Evidence for Syntax-Independent Learning.

Journal ofEducational Computing Research, Vol. 11(3), p. 187-210.

FRIEND, c.L. & COLE, c.L. (1990). Learner Control in Computer-Based Instruction: A

Current Literature Review. Educational Technology, November, p. 47-49.

GOFORTH, D. (1994). Learner Control =Decision Making + Information: A Model and

Meta-Analysis. Journal ofEducational Computing Research, Vol. 11(1), p. 1-26.

GOKTEPE, M.; OZGO~, B. & BARAY, M. (1989). Design and Implementation of a Tool

for Teaching Programming. Computers and Education, Vol. 13, No. 2, p. 167-178.

GOODWIN, L. & SANATI, M. (1986). Learning Computer Programming through

Dynamic representation of computer functioning: evaluation of a new learning

package for Pascal. International Journal ofMan-Machine Studies, 25, p. 327-341.

GOODWIN, L. & WILKES, I.M. (1986). The Psychological and Background

Characteristics Influencing Students' Success in Computer Programming. AEDS

Journal, Fall, p. 1-9.

GOULD, I.D. (1975). Some Psychological Evidence on How People Debug Computer

Programs. International Journal ofMan-Machine Studies, 7, p. 151-182.

HARRISON, C. (1990). CAL in the Teaching ofInitial Software Engineering. The CT/SS

File, September, p. 52-55.

HAZEN, M. (1992). Academic Computing: How to Address the Teaching and Learning

Challenge. New Directionsfor Teaching and Learning, No. 51, p. 43- 53.

HOC I.M. (1977). Role of Mental Representations in Learning a Programming Language.

International Journal ofMan-Machine Studies, Vol. 9, p. 87-105.

IONES, A. (1985). How Novices Learn to Program. In Human-Computer Interaction­

INTERACT '84, Shackel, B. (ed.), Elsevier Science Publishers, North-Holland, p.

777-783.

IONES, C. (1995). Gaps in Programming Education. Computer, April, p. 70-71.

134

JONI, S.-N.A. & SOLOWAY, E. (1986). But My Program Runs! Discourse Rules for

Novice Programmers. Journal ofEducational Computing Research, Vo!. 2(1), p.

95-125.

JORDAAN, WJ. & JORDAAN, J.J. (1984). Man in Context, McGraw-HilI Book

Company, Johannesburg.

KONVALINA, J.; WILEMAN, A. & STEPHENS, L.J. (1983). Math Proficiency: A Key

to Success for Computer Science Students. Communications of the ACM, Vo!. 26,

No. 5, p. 377-382.

LANZA, A. & ROSELLI, T. (1989). An Evaluation of a CBI System for Computer

Programming Language. Journal ofComputer-Based Instruction, Vo!. 16, No. 4, p.

126-128.

LEffiLUM, M.D. (1989). Implementing Computer-Aided Learning in a University

Environment: Some Practical advice to a CAL Agency. Educational Technology,

February, p. 27-31.

LEUTNER, D. (1993). Guided Discovery Learning with Computer-Based Simulation

Games: Effects of Adaptive and Non-Adaptive Instructional Support. Learning and

Instruction, Vo!. 3, p. 113-132.

LIEBERMAN, H. (1987). An Example-Based Environment for Beginning Programmers.

In Artificial Intelligence and Education: Learning Environments and Intelligent

Tutoring Systems, Lawler, R. W. & Yazdani, M. (eds.), Ablex Publishing, Norwood,

New Jersey, p. 135-151.

LIEBERMAN, H. (1984). Seeing what your programs are doing. International Journal of

Man-Machine Interaction, Vo!. 21, p. 311-331.

LINN, M. (1992). How can Hypermedia Tools Help Teach Programming? Learning and

Instruction, Vo!. 2, p. 119-139.

LINN, M.C. & CLANCY, M.J. (1992a). Can Expert's explanations help students develop

program design skills? International Journal ofMan-Machine Studies, 36, p. 511­

551.

LINN, M.C. & CLANCY, MJ. (1992b). The Case for Case Studies of Programming

Problems. ACM, Vo!. 35, No. 3, p. 121-132.

LINN, M.C. & DALBEY, J. (1985). Cognitive Consequences of Programming Instruction,

Access, and Ability. Educational Psychologist, Vo!. 20, No. 4, p. 191-206.

135

LUKEY, F.J. (1980). Understanding and Debugging programs. International Journal of

Man-Machine Studies, 12, p. 189-202.

MADDUX, C.D. (1989). The Harmful Effects of Excessive Optimism in Educational

Computing. Educational Technology, July, p. 23-29.

MARTIN, B. & HEARNE, lD. (1990). Transfer of Learning and Computer Programming.

Educational Technology, January, p. 41-44.

MATTA, K.F. & KERN, G.M. (1989). A Framework for Research in Computer-Aided

Instruction: Challenges and Opportunities. Computers in Education, Vol. 13, No 1,

p.77-84.

MAYER, RE. (1975). Different Problem-Solving Competencies Established in Learning

Computer Programming With and Without Meaningful Models. Journal of

Educational Psychology, Vol. 67, No. 6, p. 725-734.

MAYER, RE. (1976). Some Conditions of Meaningful Learning fQr Computer

Programming: Advance Organizers and Subject Control of Frame Order.

Educational Psychology, Vol. 68, No. 2, p. 143-150.

MAYER, RE. (1981). The Psychology of How Novices Learn Computer Programming.

Computing Surveys, Vol. 13, No. 1, p. 121-141.

MAYER, RE; DYCK, J.L. & VILBERG, W. (1986). Learning to Program and Learning

to Think: What's the Connection? Communications ofthe ACM, Vol. 29, No. 7, p.

605-610.

MAZLACK, L.J. (1980). Identifying Potential to Acquire Programming Skill.

Communications ofthe ACM, Vol. 23, No. 1, p. 14-17.

MERRILL, M.D. (1991). Constructivism and Instructional Design. Educational

Technology, May, p. 45-53.

MESSICK, S. (1984). The Nature of Cognitive Styles: Problems and Promise in

Educational Practice. Educational Psychologist, Vol. 19, No. 2, p. 59-74.

MILLER, L.A. (1974). Programming by Non-programmers. International Journal of

Man-Machine Studies, 6, p. 237-260.

MILLER, M. L. (1978). A Structured Planning and Debugging Environment for

Elementary Programming. International Journal ofMan-Machine Studies, 11, p.

79-95.

136

PAXTON, A.L. & TURNER, EJ. (1984). The application of human factors to the needs

of the novice computer user. International Journal ofMan-Machine Studies, 20, p.

137-156.

PEA, RD. (1986). Language-Independent Conceptual "Bugs" in Novice Programming.

Journal ofEducational Computing Research, Vol. 2(1), p. 25-35.

PENNINGTON, N. (1987). Stimulus Structures and Mental Representations in Expert

Comprehension of Computer Programs. Cognitive Psychology, 19, p. 295-341.

PERKINS, D.N. & MARTIN, F. (1986). Fragile Knowledge and Neglected Strategies in

Novice Programmers. In Empirical Studies of Programmers, Soloway, E. & Iyengar,

S. (eds.), Ablex Publishing Corporation, Norwood, New Jersey, p. 213-229.

PUTNAM, RT.; SLEEMAN, D.; BAXTER, J.A. & KUSPA, L.K. (1986) A Summary of

Misconceptions of High School BASIC Programmers. Journal ofEducational

Computing Research, Vol. 2(4), p. 459-473.

PYOTT, S. & SANDERS, I. (1991). ALEX: An Aid to Teaching Algorithms. SIGCSE

Bulletin, Vol. 23, No. 3, p. 36-44.

RAY, N.M. & MINCH, RP. (1990). Computer Anxiety and Alienation: Toward a

Definitive and Parsimonious Measure. Human Factors, 32(4), p. 477-491.

REEVES, T.C. (1993). Pseudoscience in Computer-Based Instruction: The Case of

Learner Control Research. Journal ofComputer-Based Instruction, Vol. 20, No. 2,

p.39-46.

RIPLEY, G.D. & DRUSEIKIS, F.C. (1978). A Statistical Analysis of Syntax Errors.

Computer Languages, Vol. 3, p. 227-240.

RIST, RS. (1986). Plans in programming: Definition, Demonstration, and development.

In Empirical Studies of Programmers, Soloway, E. & Iyengar, S. (eds.), Ablex

Publishing Corporation, Norwood, New Jersey, p. 28-47.

ROBERTSON, S.P. & YU, e.-e. (1990). Common Cognitive Representations of Program

Code Across Tasks and Languages. International Journal ofMan-Machine Studies,

33, p. 343-360.

ROBINSON, e.a. (1981). Cloze procedure: A Review. Educational Research, Vol. 23"

No. 2 p. 128-133.

ROBSON, e. (1990). Designing and Interpreting Psychological Experiments. In Human

Computer Interaction, Preece, J. & Keller, L. (eds.), Prentice Hall Press, New York,

p.257-367.

137

SALISBURY, D.F. (1990). Cognitive Psychology and its Implications for Designing Drill

and Practice Programs for Computers. Journal ofComputer-Based Instruction, Vo!.

17, No. 1, p. 23-30.

SAMURc;AY, R (1990). Understanding the Cognitive Difficulties of Novice

Programmers: A Didactic Approach. In Cognitive Ergonomics: Understanding,

Learning and Designing Human-Computer Interaction, Falzon, P. (ed.), Academic

Press, London, p. 187-198.

SANDERS, I. & GOOPAL, H. (1991). AAPT: Algorithm Animator and Programming

Toolbox. Technical Report, 1991-14, Computer Science Department, University of

the Witwatersrand.

SCHANK, P.K.; LINN, M. & CLANCY, M.l (1993). Supporting Pascal Programming

with an On-Line Template library and Case Studies. International Journal ofMan­

Machine Studies, 38, p. 1031-1048.

SCHNEIDER, M.L. (1982). Models for the Design of Static Software User Assistance. In

Directions in Human-Computer Interaction, Badre, A. & Schneiderman, B. (eds.),

Ab1ex Publishing Corporation, Norwood, New Jersey, p. 1-26.

SCHNEIDERMAN, B. (1976). Exploratory Experiments in Programmer Behaviour.

International Journal ofComputer and Information Sciences, Vo!. 5, No. 2, p. 123­

143.

SHACKELFORD, RL. & BADRE, A.N. (1993). Why Can't Smart Students Solve Simple

Programming Problems? International Journal ofMan-Machine Studies, 38, p. 985­

997.

SHElL, B.A. (1981). The Psychological Study of Programming. Computing Surveys, Vo!.

13, No. 1, p. 101-120.

SIME, M.E. (1981). The Empirical Study of Computer Language. In Man-Computer

Interaction: Human Factors Aspects of Computers & People, Shackel, B. (ed.),

Sijthoff & Noordhoff, Netherlands, p. 215-244.

SLEEMAN, D. (1986). The Challenges of Teaching Computer Programming.

Communications ofthe ACM, 29(9), p. 840-841.

SLEEMAN, D.; PUTNAM, RT.; BAXTER, J. & KUSPA, L. (1986) Pascal and High

School Students: A Study of Errors. Journal ofEducational Computing Research,

Vo!. 2(1), p. 5-23.

138

SOLOWAY, E. (1986). Learning to Program =Learning to Construct Mechanisms and

Explanations. Communications of the ACM, Vo!. 29, No. 9, p. 850-859.

SOLOWAY, E. (1993). Should We Teach Students to Program. Communications of the

ACM, Vo!. 36, No. 10, p. 21-24.

SOLOWAY, E.; EHRLICH, K.; BONAR, J. & GREENSPAN, J. (1982). What Do

Novices Know About Programming? In Directions in Human-Computer Interaction,

Badre, A. & Schneiderman, B. (eds.), Ablex Publishing Corporation, Norwood,INew

Jersey, p. 27-54.

SPOHRER, J.e. & SOLOWAY, E. (1986). Analyzing the High Frequency Bugs in Novice

Programs. In Empirical Studies of Programmers, Soloway, E. & Iyengar, S. (eds.),

Ablex Publishing Corporation, Norwood, New Jersey, p. 230-251.

SPOHRER, J.e. & SOLOWAY, E. (1986). Novice Mistakes: Are the Folk Wisdoms

Correct? Communications of the ACM, Vo!. 29, No. 7, p. 624-632.

STEINBERG, E.R. (1989). Cognition and Learner Control: A Literature Review. Journal

ofComputer-Based Instruction, Vo!. 16, No. 4, p. 117-121.

STEMLER, L. (1989). Effects of Instruction on the Misconceptions About Programming

in BASle. Journal ofResearch on Computing in Education, Fall, p. 26-35.

TENNYSON, R.D. (1993). MAIS: A computer-based integrated instructional system.

Behavior Research Methods, Instruments, & Computers, 25(2), p. 93-100.

VINEGRAD, M.D. (1989). Self Assessed Learning States and Computer Based

Instruction. Interactive Learning International, Vo!. 5, p. 117-119.

WEBB, G.!. (1988). A Knowledge-Based Approach to Computer-Aided Learning.

International Journal ofMan-Machine Studies, 29, p. 257-285.

WEBB, N.M. (1984). Microcomputer learning in small groups: cognitive requirements

and group processes. Journal ofEducational Psychology, Vo!. 76, No. 6, p. 1076­

1088.

WIEDENBECK, S. (1991). The Initial Stage of Program Comprehension. International

Journal ofMan-Machine Studies, 35, p. 517-540.

WILEMAN, S.; KONVALINA, J. & STEPHENS, L.J. (1981). Factors Influencing

Success in Beginning Computer Science Courses. Journal ofEducational Research,

Vo!. 74, No. 4, p. 223-226.

A. PATMAN SUPPORT ENVIRONMENT

PROGRAMS

A.I Basic concepts

A.I.I Trivial

program Trivial;
begin
end.

A.I.2 Wrtsome

program wrtsome;
begin

Writeln('This program');
Writeln('actually does something. ');

end.

A.I.3 Writesl

program Writesl;
begin

write('This program does nothing much! ');
end.

A.1.4 Writes2

program Writes2;
begin

write('This program ');
write('does nothing much! ');

end.

A.I.5 Writes3

program Writes3;
begin

writeln('This program ');
write('does nothing much! ');

end.

A.I.6 Wrtlines

program WrtLines;
begin

Write('This will ');
Write('all be ');
Writeln('on one line.');

end.

person 'I;
('can choose ');

('their own style');
can be 'I;

('very clear, or 'I;
('extremely messy');

style 'I;
('is a matter of ');

('personal choice');

A.I.7 Goodform

program Good_programming_Style;
begin

Write('Programming
write
Writeln
Wri te (,Each
write
Writeln
Write ('They
Write
Writeln

end.

A.I.8 Uglyform

program Ugly_Programming_Style;begin Write('Programming style ')
;Write ('is a matter of 'I;
Writeln('personal choice');Write('Each person 'I;
Write('can choose ');Writeln
('their own style');Write('They can be ');Write

('very clear, or 'I;
Writeln('extremely messy');end.

A.I.9 Comments

program Comments;
begin { This is the start of the main program }
(* This is a comment that is ignored by the Pascal compiler *)
{ This is also ignored }

Writeln('Hi - Mom and Dad');
Writeln('I am broke. 'I; {All students are!}

(*
Writeln('Send money');
Writeln('Send money');

*)
Writeln('Bye'); (writeln('this is the last line');}

end. (* This is the end of the main program *)

A.2 Input and Output Concepts

A.2.I StrINI

PROGRAM StrsIN1;
VAR firstname,surname:STRING;
BEGIN

WRITELN('Enter your first name: 'I;
READLN(firstname);
WRITELN('Enter your surname: 'I;
READLN(surname);
WRITELN('Your surname is ; ',surname);
WRITELN('Your first name is ',firstname);

END.

A.2.2 StrIN2

PROGRAM StrsIN2;
VAR firstname,surname:STRING;
BEGIN

WRITELN('Enter your first name: 'I;
READLN (surname) ;
WRITELN('Enter your surname: 'I;
READLN(firstname);
WRITELN('Your surname is : ',surname);
WRITELN('Your first name is ',firstname);

END.

A.2

Jl.2.3 StrsI~l

PROGRAM StrsIN1;
VAR firstname,surname:STRING;
BEGIN

WRITELN('Enter your first name: ');
READLN(firstname);
WRITELN('Enter your surname: ');
READLN (surname) ;
WRITELN('YOur surname is : ',surname);
WRITELN('Your first name is ',firstname);

END.

Jl.2.4 StrsI~2

PROGRAM StrsIN2;
VAR firstname,surname:STRING;
BEGIN

WRITELN('Enter your first name: ');
READLN(surname) ;
WRITELN('Enter your surname: ');
READLN(firstname);
WRITELN('Your surname is : ',surname);
WRITELN('Your first name is ',firstname);

END.

Jl.2.5 StrsI~3

PROGRAM StrsIN3;
VAR firstname,surname:STRING;
BEGIN

WRITELN('Enter your first name: ');
READLN (surname) ;
WRITELN('Enter your surname: ');
READLN(firstname) ;
WRITELN('Your surname is : ',firstname);
WRITELN('Your first name is ',surname);

END.

Jl.2.6 WrtRead

PROGRAM WrtRead;
VAR name:STRING;
BEGIN

WRITELN('Enter your name: ');
READLN (name) ;
WRITELN(name);
WRITELN('Your name is set to STUDENT');
WRITELN(name) ;

END.

Jl.2.7 MultRdl

PROGRAM MultiReadl;
VAR first,second:STRING;
BEGIN

WRITELN('Enter two words: ');
WRITELN(first) ;
WRITELN(second) ;

END.

Jl.2.8 MultRd2

PROGRAM MultiRead2;
VAR first,second,third:STRING;
BEGIN

WRITELN('Enter two words: ');
READLN(second,third,first);
WRITELN(first) ;
WRITELN(second);
WRITELN(third) ;

END.

A.3

A.2.9 MultRd3

PROGRAM MultiRead3;
VAR first,second:STRING;
BEGIN

WRITELN('Enter two words: ');
READLN(second,first);
WRITELN(first);
WRITELN(second) ;
READLN(first) ;
WRITELN(first) ;
WRITELN(second);

END.

A.2.10 Intlnl

Program Intinl;
var temp:integer;
begin

writeln('Please enter an integer');
readln (temp) ;
writeln('User entered:', temp);

end.

A.2.ll Multlntl

PROGRAM Multlntl;
VAR favourite,worst:INTEGER;
BEGIN

WRITELN('Enter some numbers: ');
READLN(favourite,worst);
WRITELN('Your favourite number is ',favourite);
WRITELN('Your worst number is ',worst);

END.

A.2.12 Multlnt2

PROGRAM Multlnt2;
VAR num_bigger_10,num_smaller_10:INTEGER;
BEGIN

WRITELN('Enter 4 numbers: ');
READLN(num_smaller_10,num_bigger_10);
WRITELN('Numbers greater than 10 are ',num_bigger_10);
WRITELN('Numbers less than 10 are ',num_smaller_10);

END.

A.2.13 Multlnt3

PROGRAM Multlnt3;
VAR first,second:INTEGER
BEGIN

WRITELN('Enter two numbers: ');
READLN(second,first);
WRITELN(first);
WRITELN (second) ;
READLN(first) ;
WRITELN(first) ;
WRITELN (second) ;

END.

AA

A.3 If then statements

A.3.1 IIThenl

PROGRAM ifthenl;
VAR number, lucky: INTEGER;
BEGIN

WRITELN('ENTER A LUCKY NUMBER');
READLN(lucky) ;
WRITELN ('ENTER ANOTHER NUMBER') ;
READLN (number) ;
If (number = lucky) then

WRITELN('You entered a lucky number! ');
END.

A.3.2 IfThen2

PROGRAM ifthen2;
VAR number:INTEGER;
BEGIN

WRITELN('ENTER A NUMBER');
READLN (number) ;
If number > 10 then

WRITELN('The number is greater than 10 and');
WRITELN(' the number is ',number);

END.

A.3.3 Ifelsel

PROGRAM ifelsel;
VAR number, lucky: INTEGER;
BEGIN

WRITELN ('ENTER A LUCKY NUMBER') ;
READLN(lucky) ;
WRITELN('ENTER ANOTHER NUMBER');
READLN (number) ;
IF (number = lucky) THEN

WRITELN('You entered a lucky number!')
ELSE WRITELN('You entered an unlucky number!');

END.

A.3.4 lfelse2

PROGRAM ifelse2;
VAR age:INTEGER;
BEGIN

WRITELN('Please enter your age: ');
WRITE ('Don' 't lie');
READLN (age) ;
IF (age> 40) or (age < 16) THEN
BEGIN

WRITELN ('You liar!')
WRITELN('I can" t trust you! ') ;

END
ELSE
BEGIN

WRITELN('You are an honest person! ');
WRITELN('You deserve my trust! ');

END;
END.

A.5

A.3.5 Ifdemol

program Demonstrate_Conditional_Branching1;
var One,Two,Three:integer;
begin

writeln('enter three numbers');
readln(one,two,three);
if Three = (One + Two) then

Writeln('three is equal to one plus two');
if Three = 3 then begin

Write('three is ');
Write('equal to ');
Write('one plus two');
Writeln;

end;
if Two = 2 then

Writeln('two is equal to 2 as expected')
else

Writeln('two is not equal to 2 ... rather strange');
end.

A.3.6 Ifdemo2

program Demonstrate_Conditional_Branching2;
var One, Two, Three: integer;
begin

writeln('Enter two numbers: ');
readln(one,two,three);
if Two = 2 then

if One = 1 then
Writeln('one is equal to one')

else
Writeln('one is not equal to one')

else
if Three = 3 then

Writeln('three is equal to three')
else

Writeln('three is not equal to three');
end.

A.4 Assignment statements'

A.4.l Assignl

PROGRAM assign1;
VAR num:INTEGER;
BEGIN

num:=3;
WRITELN(num) ;

END.

A.4.2 Assign2

PROGRAM assign2;
VAR input,num:INTEGER;
BEGIN

WRITELN('Enter a number: ');
READLN (input) ;
num:=input;

END.

A.6

A.4.3 Assign3

PROGRAM assign3;
VAR input,num:INTEGER;
BEGIN

WRITELN('Enter a number: ');
READLN (input) ;
num:=input;
WRITELN(num) ;
WRITELN('Enter a number: ');
READLN(num) ;
WRITELN(num) ;

END.

A.4.4 SWOp

PROGRAM swop;
VAR x,y,z:INTEGER;
BEGIN

WRITELN('Enter some numbers: ');
READLN(x,y,z) ;
x:=y;
y:=z;
Z:=X;
WRITELN(x, , ',y,' ',z);

END.

A.5 Looping constructs

A.5.1 Forloopl

PROGRAM forloopl;
VAR i,num:INTEGER;
BEGIN

WRITELN('Hello');
FOR i:= 1 TO 3 DO
BEGIN

WRITE('Enter a number: ');
READLN(num) ;

END;
WRITELN ('You entered number ',num);
WRITELN('Goodbye');

END.

A.5.2 Forloop2

PROGRAM forloop2;
VAR i,num:INTEGER;
BEGIN

WRITELN('Hello');
FOR i:= 1 TO 3 DO
BEGIN

WRITE('Enter a number: ');
READLN(num) ;
WRITELN ('You entered number ',num);

END;
WRITELN('Goodbye');

END.

A.7

A.5.3 EasyWhile

PROGRAM easywhile;
VAR j:INTEGER;
BEGIN

j:=3;
WHILE j < 7 DO
BEGIN

WRITELN('Smile! ');
j :=j+3;

END;
END.

A.5.4 While!

PROGRAM whilel;
VAR i,num:INTEGER;
BEGIN

WRITELN('Hello') ;
i:=l;
WHILE (i < 4) DO
BEGIN

WRITE('Enter a number: '};
READLN(num} ;
i:=i+l;

END;
WRITELN('You entered number ',num);
WRITELN('Goodbye');

END.

A.5.5 While2

PROGRAM while2;
VAR i,num:INTEGER;
BEGIN

WRITELN (,Hello') ;
i:=l;
WHILE (i < 4) DO
BEGIN

WRITE('Enter a number: '};
READLN(num} ;
i:=i+l;
WRITELN ('You entered number ',num);

END;
WRITELN('Goodbye'};

END.

A.5.6 EasyRepeat

PROGRAM easyrepeat;
VAR j:INTEGER;
BEGIN

j : =3;
REPEAT

WRITELN('Happy Birthday! '};
j : =j +3;

UNTIL (j > 7);
END.

A.5.7 Repeat!

PROGRAM repeatl;
VAR i,num:INTEGER;
BEGIN

WRITELN('Hello');
i:=l;
REPEAT

WRITE('Enter a number:'};
READLN (num) ;
i:=i+l;

UNTIL (i > 3);
WRITELN('You entered number ',num);
WRITELN('Goodbye');

END.

A.8

A.5.S Repeat2

PROGRAM repeat2;
VAR i, num: INTEGER;
BEGIN

WRITELN('Hello');
i:=l;
REPEAT

WRITE('Enter a number: '};
READLN (num) ;
i:=i+l;
WRITELN('You entered number ',num};

UNTIL (i > 3);
WRITELN('Goodbye');

END.

A.5.9 BigTest

PROGRAM BigTest;
VAR name:string;
BEGIN

BEGIN
WRITELN('What is your name?');
READLN (name) ;

END;
WRITELN('Your name is ',name};

END.

A.5.10 DataIn

PROGRAM data in;
VAR i,num:INTEGER;
BEGIN

WRITE('Enter some numbers: ');
READLN(i} ;
FOR i:= 1 TO 3 DO
BEGIN

WRITE('Enter a number: '};
READLN(num) ;

END;
WRITELN ('You entered number ',num);
WRITELN ('Goodbye') ;

END.

A.6 Looping Constructs (advanced)

A.6.1 For_Guess

PROGRAM for_guess;
VAR mynum,yournum, counter: INTEGER;
BEGIN

mynum:=l3;
WRITE('Guess the number I am thinking of! ');
READLN(yournum} ;
FOR counter:=9-TO 12 do BEGIN

IF (yournum > mynum) THEN
WRITE('Too High .. guess again: ');

IF (yournum < mynum) THEN
WRITE ('Too Low.. guess again: ');

READLN(yournum} ;
END;
IF (yournum = mynum) THEN

WRITELN('You guessed correctly the fourth time! '}
ELSE WRITELN('You failed to guess correctly even after four guesses! '};

END.

A.9

A.6.2 Rep_Guess

PROGRAM repeat_guess;
VAR mynum,yournum, try: INTEGER;
BEGIN

mynum:=5; try:=l;
WRITE('Guess the number I am thinking of! ');
READLN (yournum) ;
REPEAT

IF (yournum > mynum) THEN
WRITE('Too High .. guess again: ');

IF (yournum < mynum) THEN
WRITE ('Too Low.. guess again: ');

IF yournum <> mynum THEN BEGIN
try:=try+1;
READLN (yournum) ;

END;
UNTIL (yournum = mynum);
WRITE ('You guessed my number in ',try,' guesses.');

END.

A.6.3 WhCGuess

PROGRAM While_guess;
VAR mynum,yournum, try: INTEGER;
BEGIN

mynum:=18; try:=l;
WRITE('Guess the number I am thinking of! ');
READLN (yournum) ;
WHILE (yournum <> mynum) DO
BEGIN

IF (yournum > mynum) THEN
WRITE ('Too High.. guess again: ')

ELSE
WRITE ('Too Low.. gues s again: ');

try:=try+1;
READLN (yournum) ;

END;
WRITELN('You guessed my number in ',try,' guesses');

END.

PROGRAM while_test;
VAR result:INTEGER;
BEGIN

WRITE('Enter your test result (%): ');
READLN (resul t) ;
WHILE (result < 0) or (result >100) DO
BEGIN

WRITE('Please re-enter your result (0 .. 100): ');
READLN(result) ;

END;
IF result> 75 then
WRITELN('Well done !')

ELSE IF result > 50 THEN
WRITELN (,Good! ')

ELSE WRITELN('Better luck next time! ');
END.

PROGRAM repeatage;
VAR age:INTEGER;
BEGIN

REPEAT
WRITE('Please enter your age: ');
READLN(age);
IF (age >= 30) or (age <=16) THEN

WRITELN ('You liar!');
UNTIL (age> 16) and (age < 30);
WRITELN('You are ',age,' years old');

END.

A. 10

A.6.6 Square

PROGRAM square;
VAR size,i,j:INTEGER;
BEGIN

WRITE('Enter the size of the square: ');
READLN(size) ;
FOR i:=l TO size DO
BEGIN

FOR j:=1 TO size DO
WRITE (, * ,) ;

WRITELN;
END;

END.

A.6.7 Rectangle

PROGRAM rectangle;
VAR width,height,col,row:INTEGER;
BEGIN

WRITE('Enter the width of the rectangle: ');
READLN(width);
WRITE('Enter the height of the rectangle: ');
READLN(height) ;
FOR col:=l TO height DO
BEGIN

FOR row:=l TO width DO
WRITE ('X');

WRITELN;
END;

END.

A.6.S Rep_Result

PROGRAM repeat_results;
VAR num,nostudents,result:INTEGER;
BEGIN

WRITE('How many student' 's marks would you like to enter? ');
READLN(nostudents) ;
num:=l;
REPEAT

REPEAT
WRITE('Enter mark for student ',num,' : ');
READLN(result) ;

UNTIL (result >= 0) and (result <=100);
num:=num+l;

UNTIL (num> nostudents);
WRITELN('Data entry is complete!');

END.

A.6.9 WhCResult

PROGRAM while_results;
VAR num, nostudents, result: INTEGER;
BEGIN

WRITE('How many student' 's marks would you like to enter? ');
READLN(nostudents);
num:=l;
WHILE (num < nostudents) DO
BEGIN

REPEAT
WRITE('Enter mark for student ',num,' :');
READLN(result) ;

UNTIL (result >= 0) and (result <=100);
num:=num+1;

END;
WRITELN('Data entry is complete! ');

END.

A.ll

A.6.10 For_Result

PROGRAM for_results;
VAR num, nostudents , result: INTEGER;
BEGIN

WRITE{'How many student' 's marks would you like to enter? ');
READLN{nostudents);
FOR num:=l to nostudents DO
BEGIN

REPEAT
WRITE{'Enter mark for student ',num,' : ');
READLN{result) ;

UNTIL (result >= 0) and (result <=100);
END;
WRITELN{'Data entry is complete! ');

END.

A.7 Data Types

A.7.1 Arraysl

PROGRAM arrays1;
VAR nums:ARRAY [1 .. 3] OF INTEGER;
BEGIN

nums [1] :=1;
nums[2] :=nums[1]+1;
nums[3] :=nums[1]+nums[2];
nums[1] :=4;
nums[2]:=nums[1]-nums[3];
WRITELN{nums[1]);
WRITELN{nums[2]);
WRITELN{nums[3]);

END.

A.7.2 Arrays2

PROGRAM arrays2;
VAR nums:ARRAY [1 .. 3] OF INTEGER;

i:INTEGER;
BEGIN

nums[l] :=1;
nums[2]:=nums[1]+1;
nums[3]:=nums[1]+nums[2];
nums[l] :=10;
nums[2]:=nums[1]-nums[3];
FOR i:=1 TO 3 DO

WRITELN(nums[i]);
END.

A.7.3 StuMarks

PROGRAM stumarks;
VAR marks:ARRAY [0 .. 2] OF INTEGER;

j:INTEGER;
BEGIN

FOR j:=O TO 2 DO BEGIN
WRITE{'Enter mark for student ',j, ': ');
READLN{marks[j]);

END;
marks [2] :=marks[2]-1;
FOR j:=O TO 2 DO

WRITELN(marks[j]);
END.

A.12

A.8 Procedures and Functions

ProBasic
PROGRAM probasic;

PROCEDURE message;
BEGIN

WRITELN('HELLO');
END;

BEGIN
message;
message;

END.

A.S.I FunBasic

PROGRAM funbasic;
VAR count:INTEGER;

FUNCTION first:INTEGER;
BEGIN

first:=count+l;
END;

BEGIN
count:=l;
IF (first>l) THEN

WRITELN('First Hello')
ELSE WRITELN('Goodbye');

END.

A.S.2 Greeting

PROGRAM greeting;
VAR character:CHAR;

PROCEDURE message(ch:CHAR);
BEGIN

IF ch IN ['g', 'G'] then WRITELN('Good Luck')
ELSE IF ch IN ['h', 'H'] then WRITELN('Hello')

ELSE WRITELN('No message selected');
END;

BEGIN
WRITE('Entera character: ');
READLN(character);
message(character);

END.

A.S.3 Greet2

PROGRAM greet2;
VAR character:CHAR;

FUNCTION valid (ch: CHAR) : BOOLEAN;
BEGIN

IF ch IN ['g', 'G', 'h', 'H'] THEN valid:=TRUE
ELSE BEGIN

valid:=FALSE;
WRITELN('Not a valid character! ');

END;
END;

PROCEDURE message(ch:CHAR);
BEGIN

IF ch IN [' g' , 'G'] then WRITELN ('Good Luck')
ELSE IF ch IN [' h' , 'H'] then WRITELN ('Hello') ;

END;

BEGIN
WRITE('Enter a character: ');
READLN(character);
IF valid (character) THEN

message(character);
END.

A.l3

A.8.4 Adding!

PROGRAM addingl;
VAR total,number,i,n:INTEGER;

PROCEDURE calctotal; {Calcultates the sum of all numbers inputted}
BEGIN

total:=O;
FOR i:=l TO 4 DO BEGIN

WRITE('Enter number ',i,': ');
READLN (number) ;
total:=total+number;

END; {for-loop}
END; {findhighest}

BEGIN {main program}
calctotal;
WRITELN('The sum of the 4 numbers was ',total);

END.

A.8.S Average

PROGRAM average;
VAR ave,number,i:INTEGER;

FUNCTION total:INTEGER; {Returns the sum of all numbers inputted}
VAR sum: INTEGER;
BEGIN

sum:=O;
FOR i:=l TO 4 DO BEGIN

WRITE('Enter number ',i, ': ');
READLN (number) ;
sum: =sum+number;

END; {for-loop}
total:=sum;

END; {findhighest}

BEGIN {main program}
ave:=total DIV 4;
WRITELN('The average of the nubers is', ave);

END.

A.8.6 Inorderl

PROGRAM testordl;
VAR numl,num2,num3:INTEGER;

FUNCTION inorder:BOOLEAN;
BEGIN

IF numl <= num2 THEN
inorder:=(num2<=num3)

ELSE inorder:=FALSE;
END;

BEGIN
WRITE('Enter 3 values: ');
READLN (numl , num2 ,num3) ;
IF inorder THEN

WRITELN('Numbers are in order')
ELSE WRITELN('Numbers are not in order');

END.

A.14

A.8.7 Inorder2

PROGRAM testord2;
VAR numl,num2,num3:INTEGER;

FUNCTION inorder(xl,x2,x3:INTEGER) : BOOLEAN;
BEGIN

IF xl <= x2 THEN
inorder:=(x2<=x3)

ELSE inorder:=FALSE;
END;

BEGIN
WRITE('Enter 3 values: ');
READLN(numl,num2,num3);
IF inorder(numl,num2,num3) THEN

WRITELN('Numbers are in order')
ELSE

IF inorder (num3 ,num2,numl) THEN
WRITELN('Numbers are in reverse order')

ELSE WRITELN('Numbers are not in order');
END.

A.8.8 Add2

PROGRAM add2;
VAR i,thetotal:INTEGER; {Global Variables}

FUNCTION total (num:INTEGER) : INTEGER;
VAR sum,i,number:INTEGER; {Local Variables}
BEGIN
sum:=O;
FOR i:=l TO num DO BEGIN
WRITE ('Enter number ',i,': ');
READLN(number) ;
sum: =sum+number;
END; {for-loop}
total:=sum;
END; {calc total}

BEGIN {main program}
WRITE('How many numbers would you like to add: ');
READLN(i);
Thetotal:=total(i);
WRITELN('The total of the ',i,' numbers is' TheTotal);
END.

A.8.9 Confusel

PROGRAM confusel;
VAR i,j,k:INTEGER; {global}

PROCEDURE Change (i : INTEGER; VAR j: INTEGER) ;
VAR k:INTEGER; {local)
BEGIN

k:=2;
i:=i+k;
j:=j+l;
WRITELN (i,' ',j,' " k) ;

END;

BEGIN
i:=l; j:=2; k:=3;
change(i,j); {passing parameters}
WRITELN(i,' ',j,' ',k);

END.

A.15

A.S.IO Confuse2

PROGRAM confuse2;
VAR x,y,z:INTEGER;

PROCEDURE Change(VAR x:INTEGER;y:INTEGER);
VAR z:INTEGER;
BEGIN

z:=13;
WRITELN (x,' " y,' ',z);
x:=ll;
y:=12;

END;

BEGIN
x:=l; y:=2; z:=3;
change (x,y) ;
WRITELN(x,' ',y,' ',z);

END.

A.9 For the BRAVE

A.9.1 Printing

PROGRAM printing;

PROCEDURE print(ch:CHAR;tot:INTEGER);
VAR i: INTEGER;
BEGIN

FOR i:= 1 to tot DO
WRITE (ch, " ');

END;

BEGIN
print (, * , ,2) ;
print('$',6 DIV 2);
WRITELN;
print (, @' ,1) ;

END.

A.9.2 MyAbsolute

PROGRAM myabsolute;
VAR numl,num2:REAL;

FUNCTION myabs(num:REAL):REAL;
BEGIN

IF (num < 0) THEN myabs:= 0 - num
ELSE myabs:=num;

END;

BEGIN
WRITE('Enter 2 numbers');
READLN (numl, num2) ;
WRITELN('The absolute value of ',numl,' is ',myabs(numl»;
WRITELN('The absolute value of ',num2,' is ',myabs(num2»;
WRITELN('The absolute value of ',num2:2:2,' is " myabs(num2) :2:2);

END.

A.16

A.9.3 Judges

PROGRAM Judges;
VARscore: ARRAY[l .. 4] OF INTEGER;

max:INTEGER;

PROCEDURE getscores;
VAR i: INTEGER;
BEGIN

FOR i:=l TO 4 DO BEGIN
WRITE('Enter mark for judge number ',i,' :');
READLN(score[i);

END;
END; {getscores}

FUNCTION findmax:INTEGER;
VAR tempmax,i:INTEGER;
BEGIN

tempmax:=score[l];
FOR i:= 2 TO 4 DO BEGIN

IF score[i) > tempmax THEN
tempmax:=score[i];

END;
findmax:=tempmax;

END; {findmax}

BEGIN
getscores;
max:=findmax;
WRITELN ('The maximum score was ',max);

END.

A.9.4 Sorting

PROGRAM sorting;
VAR score: ARRAY[l .. 3) OF INTEGER;

PROCEDURE getscores;{gets judges' scores from user}
VAR i: INTEGER;
BEGIN

FOR i:=l TO 3 DO BEGIN
WRITE('Enter mark for judge number ',i,' :');
READLN(score[i);

END;
END; {getscores}

PROCEDURE swopscores(VAR m,n:INTEGER); {swops elements m and n}
VAR temp: INTEGER;
BEGIN

temp:=m;
m:=ni
n: =temp;

END; {swopscores}

PROCEDURE sortscores; {sorts the scores into ascending order}
VAR i: INTEGER;

swop: BOOLEAN;
BEGIN

REPEAT
swop:=FALSE
FOR i:= 1 TO 2 DO BEGIN

IF score[i) > score[i+l] THEN BEGIN
swopscores(score[i],score[i+l]);
swop:=TRUE;

END;
END;

UNTIL not swop;
END; {sortscores}

BEGIN
getscores;
sortscores;
WRITELN('The scores in order are: ',score[l],score[2],score[3]);

END.

A.17

A.9.S Telephone

PROGRAM teledirectory;
VAR phone:ARRAY [1 .. 3] OF REAL;

name:ARRAY[1 .. 3] OF string;
continue: CHAR;

PROCEDURE makedirectory;
VAR i: INTEGER;
BEGIN

FOR i:=l TO 3 DO
BEGIN

WRITE('Enter name ',i,' : ');
READLN(name[i]);
WRITE('Enter telephone number for ',name[i],' : ');
READLN(phone[i]);

END;
END; {makedirectory}

PROCEDURE searchnumber;
VAR i: INTEGER;

person: STRING;
BEGIN

WRITE('Enter name: ');
READLN (person) ;
i:=O;
REPEAT

inc (i);
UNTIL (i > 3) OR (name[i] = person);
IF i > 3 THEN WRITELN('Sorry selected person not listed! ')
ELSE WRITELN('Telephone number: ',phone[il :8:0);

END;

BEGIN
makedirectory;
REPEAT

searchnumber;
WRITE('Do you want to continue (y/n): ');
READLN(continue);

UNTIL (continue IN ['n','N']);
END.

A.18

B. QUESTIONNAIRES 1, 2 AND PATMAN

EVALUATION QUESTIONNAIRE

Please note
1.
2.

Intro. to Programming
Questionnaire 1

Student Number: ---

All information collected from this questionnaire will be treated as confidential.
The information will be used for research only. It will not effect your final result.

B.2

B.3

Intro. to Programming: Questionnaire 1

Examples
a. Red is my favourite colour (YIN): _

Answer either Y (for Yes) or N (for N).

£ rh b d Obhevery statement, place a cross m t e co umn t at est escn es your ee mgs.

Colour preference Strongly Disagree Neither Agree Strongly
disagree Agree nor Agree

Disagree

I like the colour red

I like the colour green

b. For

c. Circle the letter of the statement that best describes your personal preference.

a. I prefer the colour red to green
b. I prefer the colour green to red

Questions
1. Home language: _

2. Parent's occupations
Father: _
Mother: _

3. Number of years at University: years

4. Number of computer courses completed? (Excluding Computer Science at school)

Spread Sheets
Games
Other (Specify)

5. Have you worked with a computer before this term? (YIN) _
If you answered yes, what did you use it for?

Word processing _
Programming
Data Base

6. Do you (or your family) have a personal computer at home? (YIN) _

7. Matric Subjects and Results
Subject

1.
2.
3.
4.

Examining Department _
Result Subject

5.
6.
7.
8.

Result

Signature: _ (You make look at my varsity records to obtain results.)

BA
8. Circle the letter next to the statement that best describes your personal preference.

a. Most of the time I like to learn alone.
b. Most of the time I prefer learning in pairs to learning alone.
c. Most of the time I prefer to be taught than to learn by myself.

9. Circle the letter next to the statement that best describes your personal preference.

a. A well-defined problem with several possible solutions based on one's approach.
b. A well-defined problem with a single unique solution, which can be proven to be correct or incorrect.

th h£ r"bk th bl k hi h b dhor eac statement, mar e oc w c est escn es your ee mgs or ougl ts.

Statements Strongly Disagree Neither Agree Strongly
Disagree Agree or Agree

Disagree

I expect the present course (i.e. JP) to be
difficult for me.

I hesitate to use a computer for fear of
making mistakes that I cannot correct.

I am confident that I could learn computer
skills.

Our country relies too much on computers.

Computers are changing the world too
rapidly.

The computer interferes with professional
relationships among people.

The best computer programmers are
creative.

The best computer programmers plan work
carefully to spend as little time as possible
at the terminal.

The best computer programmers prefer to
write simple, specific programs to solve
particular tasks.

10. F

11. The figure below shows four light bulbs (labelled 1,2,3,4). Four switches are
connected so that each switch controls the light bulb with the corresponding
number.

General Procedure

1. Turn on the light bulb that is directly across from the single light bulb that is on.
2. If any odd-numbered light bulb is on, go to step 4.
3. Turn off the lowest numbered light bulb, and go to step 5.
4. Turn off the highest numbered light bulb.
5. Turn on the bulb next to the highest numbered bulb that is on, in the clockwise

direction.
6. Turn off any even-numbered bulbs which might be on, and stop.

Answer the following guestions.

i. Assume only light bulb #1 is on. Perform the procedure, starting with step 1.
When you stop in step 6, which is/are correct. (Circle the letter next to the correct statement/s.)

a. Light bulbs #3 and #4 are on.
b. No light bulbs are on.
c. Only light bulb #1 is on.
d. Only light bulb #2 is on.
e. None of the above.

ii. Perform the procedure again. This time assume only light bulb #2 is on in the
beginning. When you stop in step 6, which is/are correct. (Circle the letter
next to the correct statement/s.)

a. Only light bulb #1 is on.
b. Light bulbs #2 and #3 are on.
c. At least three light bulbs are on.
d. Only two light bulbs are on.
e. None of the above.

B.5

iii. Again perform the procedure, this time assuming only light bulb #3 is on initially. When you stop in
step 6, which is/are correct. (Circle the letter next to the correct statement/s.)

a. Only light bulb #2 is on.
b. Only light bulb #3 is on.
c. Only light bulb #4 is on.
d. All light bulbs will be on.
e. None of the above.

iv. Finally, perform the procedure assuming only light bulb #4 was initially on.
When you stop in step 6, which is/are correct. (Circle the letter next to the
correct statement/s.)

a. Light bulbs #2 and #4 are on.
b. Light bulbs #1 and #3 are on.
c. At least one even-numbered bulb will be on.
d. At least one odd-numbered bulb will be on.
e. None of the above.

v. Based on your experience in performing this procedure, which is/are correct.
(Circle the letter next to the correct statement/s.)

a. The instructions can be applied regardless of the number of light bulbs
initially turned on.

b. Regardless of which light bulb was initially on, when we stop in step 6
all light bulbs will be off.

c. Regardless of which light bulb was initially on, when we stop in step 6
only light bulb #1 will be on.

d. When an even-numbered bulb is initially turned on, then when we stop
in step 6 only light bulb #3 will be on.

e. None of the above.

If you have had no prior programming experience STOP HERE !

B.6

12. Have you attended Introduction to Programming lectures prior to this year? __

If yes, when: _

Did you complete the course, but failed? (YIN) _
If you did not complete the course, for how long did you attend
the lectures? weeks/months

13. How knowledgeable are you of the following computer languages?
(For each row, mark the block which best describes your knowledge)

Programming Language No Little Average Expert
Knowledge Knowledge Knowledge Knowledge

Basic

FORTRAN
"-

Pascal

C

Other (specify)

14. Circle the statement(s) that is (which are) not a Pascal programming statement.

B.7

a. writeln b. y:=y DIV3 c. readln(sum) d. while e.go

15. After the following program is executed, what is the final value stored in variable
x? (Circle the letter next to the correct value.)

PROGRAM xtest;
VAR i,x:INTEGER;
BEGIN

x:=400;
FOR i:=1 TO 3 DO
BEGIN
x:= x + i;
WRlTE(x);

END;
END;

a. 403 b. 400 c. 6 d. 406. e. 3

Intro. to Programming
Questionnaire 2

Student Number: _

Please note
1. All information collected from this questionnaire will be treated as confidential.
2. The information will be used for research only. It will not effect your final result.

Intro. to Programming: Questionnaire 2

Please answer all questions in the stipulated format.

1. What is your (intended)Major : _
Faculty: _

B.8

(E.g. Arts, Agric., Commerce, Social Science, Science)

2. Have you previously attempted a university programming course? (YIN) __

If yes, please complete the following:
course name(s): _----'- _
year(s): _

final grade(s): _

If you did not complete the course, approximately how long did you attend the course?__

3. I have at times thought seriously of dropping this course. (YIN) __

4. Do you intend using the knowledge you have gained in this course? (YIN) _

If yes, where or when:(e.g. work/personal projects) _

5. Mark the answers which best describe your response to both statements.

The lecturer for this course was helpful.
Strongly Disagree
Disagree
Agree
Strongly Agree

The tutor (Mr McKenzielMr Tooke) for this course was helpful.
Strongly Disagree
Disagree
Agree
Strongly Agree

6. The homework assignments have been more beneficial than the classroom presentations. (YIN) _

B.9

B.1O
ftdk' th bl k h' h b dace a mar In e oc w IC est escn es your at I u e or res onse.

The program assignments Strongly Disagree Neither Agree Strongly
Disagree Agree nor Agree

Disagree

have been more difficult than I expected

have been more time consuming than I
expected

have been more frustrating than I expected

were easy to do

went smoothly

7 PI

ar t e QC w IC st escn es your response to every statement.

Statements Strongly Disagree Neither Agree Strongly
Disagree Agree nor Agree

Disagree

I clearly understand what input computers
want.

I don't feel helpless when using the
computer.

I am sure of my ability to interpret a
computer output.

I don't understand computer output.

Working with computers is so complicated
it is difficult to understand what is going
on.

I like to use computers.

I don't care what other people say,
computers are not for me.

The computer interferes with my work.

The computer doesn't interfere with my
personal relationships with people.

8 M k h bl k h" h be d 'b

B.Il

PATMAN Tutorial Questionnaire

1. Do you think that you have benefited from using PATMAN?

Strongly Disagree Neither Agree Agree Strongly Agree

Disagree nor Disagree

Indicate in WhICh way/ways PATMAN helped you (If any)

understanding programs _

learning programming constructs __

2. Did you find the PATMAN programs/lessons

with the weekly program assignments _

OTHER(specify) _

Strongly Disagree Neither Agree Agree Strongly Agree

Disagree nor Disagree

interesting

enjoyable

3. Did you like the fact that you could work at your own pace and determine which lessons you were going to

study when and how often?

Strongly Disagree Neither Agree Agree Strongly Agree
Disagree nor Disagree

4. Did you fmd the PATMAN tutorials more beneficial than the standard tutorials?

Strongly Disagree Neither Agree Agree Strongly Agree
Disagree nor Disagree

5. Would you have preferred to have had access to PATMAN so you could use it anytime (i.e. possibly in the

STUDEN LAN room) and for any length of time?

Strongly Disagree Neither Agree Agree Strongly Agree
Disagree nor Disagree

IndIcate how frequently you would have lIked to have used PATMAN _

& how many hours a week you would have liked to have used PATMAN

6. Did you find it necessary to attend all PATMAN tutorial to enable you to keep up? YIN _

7. Pleases suggest any improvements that you would have like to have seen in PATMAN (or any other

comments you would like to make regarding PATMAN [good or bad])

C. STUDENT BACKGROUND AND

PSYCHOLOGICAL CHARACTERSTICS

C.I Background Characteristics

005355324348T1Mat Po t (Mean)

Background Time Control Control PATMAN 92 vs 92 vs 93 vs

Characteristics '92 '93 93 PAT PAT

nc In s · -
Number of years at University (Mean)

-
T1 1.9 2.2 1.7 · - -

Number of computer courses completed. (Mean) T1 0.3 0.3 0.2 - - -
Previous computer experience (none=O. max. =5). T1 2.0 1.5 1.8 · - -
(Mean)

Previous programming experience. (%~) T1 21.31 24.24 10.00 · - ·
Agricultural faculty students (%) T1 8.20 6.06 5.00 · - -
Science Faculty students (%) T1 86.89 90.91 87.50 - - -
English home language students (%) T1 68.85 ·57.58 55.00 · - ·
Black students (%) T1 -19.67 42.42 40.00 - 0.05 ·
Indian students (%) T1 19.67 6.06 5.00 · 0.05 -
White students(%) T1 60.66 51.52 55 - - ·
Female students (%) T1 49.18 60.61 40.00 · - -
Family has personal compu1er (%) (#") T1 47.54 42.42 45.00 - - ·
Father: post school education (%) T1 39.34 42.42 3o.00l · - -
Mother: post school education (%) T1 16.39 27.27 25.00 - - -

1 Mean score/rating for student group.
2 Percentage of student group.

3 Goodwin and Sanati (1986).

C.2 Attitudinal and Psychological Characteristics

C.2

Attitude and Psychological Time Control Control PATMAN 92 vs 92 vs 93 vs

Characteristics '92 '93 93 PAT PAT

Problem Type: prefer a well-defined problem with T1 49.18 57.58 62.50 - - -
several possible solutions based on one's

approach.(%)

Problem Type: prefer a problem with a single unique T1 50.82 42.42 37.50 - - -
solution, which can be proven to be correct or

incorrect. (%)

Learning Style: I like to learn alone. (%) T1 67.21 63.64 77.50 - - -

Learning Style: I prefer learning in pairs to learning T1 22.95 24.24 17.5 - . -
alone. (%)

Learning Style: I prefer to be taught than to learn by T1 9.84 12.12 5.00 - - -
myself. (%)

I intend using the knowledge I have gained in this T2 55.74 75.76 75.00 - 0.05 -
course. (%)

I expect the present course to be difficult for me. T1 3.2 2.8 2.9 . - -
(Mean) (5-point4) (#)

Algorithmic ability Le. light bulb questionnaire item T1 3.7 4.0 3.6 - - -
(Min. =0, Max. =5) (Mean)

The lecturer for this course was helpful. (Mean) (4- T2 2.3 3.3 3.4 0.01 0.05 -
pointS) (#)

The tutor for this course was helpful. (Mean) (4-point) T2 2.6 3.1 3.0 - - -
(#)

The best computer programmers are creative. (Mean) T1 3.5 3.5 3.6 - - .
(5-point) (#)

The best computer programmers plan work carefully to T1 3.4 3.2 3.3 - - -
spend as little time as possible at the terminal. (Mean)

(5-point) (#)

The best computer programmers prefer to write T1 3.5 3.6 3.6 - - -
simple, specific programs to solve particular tasks.

(Mean) (5-point) (#)

I have at times thought seriously of dropping this T2 54.10 27.27 12.50 0.05 0.05 -
course. (%) (#)

The homework assignments have been more T2 77.05 57.58
-

67.50 0.05 - -
beneficial than the classroom presentations. (%) (#)

4 Rated on a 5-point Strongly Agree, Agree, Neither Agree nor Disagree, Disagree,

Strongly Disagree scale.

5 Rated on a 4-point Strongly Agree, Agree, Disagree, Strongly Disagree scale.

C.3

C.3 Computer Anxiety and Alienation

These questionnaire items are the 14 Revised Anxiety and Alienation scale items proposed

by Ray and Minch (1990). The mean results reflected below are the mean results obtained

for each statement based on a five point rating scale. Responses were originally scored on

a scale of 1 to 5 as follows: (1) strongly agree, (2) agree, (3) neither agree nor disagree, (4)

disagree, (5) strongly disagree. The overall Anxiety and Alienation measure is the

summation of all 14 items scores. The mean results for each student group are reflected in

the final row of the table. High scores indicate a high computer anxiety and alienation

measure.

Statement Time Control Control PATMA 92 vs 92 vs 93 vs

'92 '93 N 93 PAT PAT

I clearly understand what input computers want. T2 3.2 2.9 2.5 - 0.Q1 -
I don't feel helpless when using the computer. T2 2.7 2.8 2.3 · - -
I am sure of my ability to interpret a computer output. T2 3.3 3.0 2.7 - 0.01 -
I don't understand computer output. *0 T2 2.8 2.6 2.3 - 0.01 -
Working with computers is so complicated it is difficult to T2 2.8 2.6 2.1 - 0.01 -
understand what is going on. *

I hesitate to use a computer for fear of making mistakes I T1 2.2 2.5 2.1 · - -
cannot correct. *

I am confident that I could learn computer skills. T1 1.6 1.7 1.6 - . -
I like to use computers. T2 2.5 2.2 2.0 · 0.05 .
I don't care what other people say, computers are not for me. * T2 2.5 2.6 2.1 · - -
The computer interferes with my work. * T2 2.7 2.4 2.1 - 0.05 -
Our country relies too much on computers. * T1 2.7 3.0 2.8 · - .
Computers are changing the world too rapidly.• T1 2.9 3.5 3.0 · - -
The computer interferes with professional relationships among T1 2.8 2.7 2.6 · - -
people. *.

The computer doesn't interfere with my personal relationships T2 2.2 2.2 2.3 - - -
with people.

Anxiety & Alienation T112 36.9 36.5 32.4 - 0.01 0.05

6 Asterisked items are reverse scored.

C.4 Programming assignments

CA

The program assignments Time Control Control PATMAN 92 vs 92 vs 93 vs

'92 '93 93 PAT PAT

have been more difficult than I expected. * T2 2.0 2.4 2.6 - 0.05 -
have been more time consuming than I expected. * T2 1.8 2.2 2.1 - - -
have been more frustrating than I expected. * T2 1.9 2.4 2.5 - 0.05 -
were easy to do. T2 1.9 2.0 2.2 - - -
went smoothly. T2 1.9 2.2 2.4 - 0.05 -
Easy Assignments 12 1.9 2.2 2.4 - 0.05 .

D. WORKSHEETS 1, 2 AND 3

D.2

Intro. to Programming: Worksheet 1

Student Number: _

Please answer all questions in the stipulated format. Assume the user enters all the

numbers in the input sequence at one time.

1. Given the following program code and input, what will be the value of the variables,

after line 5 of the program has been executed.

PROGRAM one;

VAR Even, Odd

BEGJ:N

J:NTEGER;

WRJ:TELN (' Enter four numbers: ');

READLN (Even, Odd) ;

END.

Input: 3 2 10 5 Variable Values Even:__ Odd:

How difficult did you find this question? (Circle the number which best describes your

difficulty rating .) 1 2 3 4 5

Very Easy Easy Average Difficult Very Difficult

2. Given the following program code and input, what will be the value of the variables,

after line 5 of the program has been executed.

PROGRAM two;

VAR b, c, a : J:NTEGER;

BEGJ:N

WRJ:TELN ('Enter three numbers:');

READLN (c, b, a);

END.

Input: 15 25 20 Variable Values a:__ b:__ c:

How difficult did you find this question? (Circle the number which best describes your

difficulty rating .) 1 2 3 4 5

Very Easy Easy Average Difficult Very Difficult

D.3

3. Given the following program code and input, write the output in the block provided.

PROGRAM three;

VAR x: INTEGER;

BEGIN

WRI'1'ELN (' Enter a number.');

READLN (x);

WRI'1'ELN (x);

WRI'1'ELN (''!'he value of x is 5');

WRI'1'ELN (x);

END.

Input: 6 3 4 2 4 1 8 Output

How difficult did you find this question? (Circle the number which best describes your

difficulty rating .) 1 2 3 4 5

Very Easy Easy Average Difficult Very Difficult

4. Given the following program code and input, write the output in the block provided.

PROGRAM four;

VAR max, min, first, last: INTEGER;

BEGIN

WRI'1'ELN('Enter a list of numbers');

READLN (max, min, first, last);

WRI'1'ELN('Largest Number:', max);

WRI'1'ELN('smallest Number:',min};

WRI'1'ELN('Last Number:', last);

WRI'1'ELN('First Number:', first};

END.

Input: 5 13 1 6 Output

How difficult did you find this question? (Circle the number which best describes your

difficulty rating .) 1 2 3 4 5

Very Easy Easy Average Difficult Very Difficult

Please note: Your answers to this worksheet will be used for research only and in no way

will it effect your final result.

D.4

Intra. to Programming: Worksheet 2

Student Number: _

1. For each program, examine the given program code and the input and then write the output in the block

provided. Assume the user enters all elements in an input sequence at one time.

2. Also indicate how difficult you found the question. Circle the number which best describes your difficulty

rating.

Please note: Your answers to this worksheet will be used for research only and in no way will it effect your

final result.

PROGRAM One;
VAR a,b,c:INTEGER;
BEGIN

WRITELN{'Enter two numbers: ');
READLN{a,b);
WRITELN{a);
WRITELN{b) ;
b:=a;
a:=a+1;
c:=a+b;
WRITELN{a);
WRITELN (b) ;
WRITELN{c);

END.

Input: [234][1 0]

1 2 3 4 5

Output

Very Easy Easy Average Difficult Very Difficult

PROGRAM Two;
VAR i,x:INTEGER;
BEGIN

FOR i:=l TO 3 DO
BEGIN

WRITELN{'Enter a number: ');
READLN{x) ;
WRITELN (x) ;

END;
END.

Input:[6 3][3 4 5][2 1][8] Output

1 2 3 4 5
Very Easy Easy Average Difficult Very Difficult

PROGRAM Three;
VAR letter:CHAR;
BEGIN

WRITE(IEnter a character: I);
READLN(letter) ;
REPEAT

WRITELN(lyou entered letter:l,letter);
WRITE(IEnter a character: I);
READLN (letter) ;

UNTIL (letter = 1N l) or (letter = 1n l);
WRITELN(letter);

END.

Input: [h][Q][n] [N][r] Output

D.5

2

Very Easy Easy

3 4 5

Average Difficult Very Difficult

PROGRAM Four;
VAR p,q:INTEGER;
BEGIN

q:=O;
WRITE(IEnter a number: I);

READLN(p) ;
WHILE P <> 0 DO

BEGIN
IF P > 0 THEN

q:=q + 1;
WRITE(IEnter a number: I):
READLN(p) ;

END;
WRITELN(q);

END.

Input: [1][-1][-3][4][0] Output

1 2 3 4 5

Very Easy Easy Average Difficult Very Difficult

PROGRAM Five;

VAR num,val:INTEGER;
BEGIN

FOR num:=l TO 3 DO
BEGIN

WRITELN(IEnter a number: I);
READLN(val) ;

END;
WRITELN(val);

END.

Input: [6][3][2][8] Output

1 2 3 4 5

Very Easy Easy Average Difficult Very Difficult

D.6

Intro to Programming: Worksheet 3

Student~urnber: _

1. For each program, examine the given program code and the input and then write the output in the block

provided. Assume the user enters all elements in an input sequence at one time.

2. Also indicate how difficult you found the question. Circle the number which best describes your difficulty

rating.

Please note: Your answers to this worksheet will be used for research only. They will have no effect on your

final result.

PROGRAM One;
VAR number:INTEGER;
BEGIN

FOR number:=l TO 3 DO BEGIN
WRITELN(number*2};

END;
END.

1
Very Easy

2
Easy

Output
3 4 5

Average Difficult Very Difficult

3 4 5
Average Difficult Very Difficult

PROGRAM Two;
VAR x,y:INTEGER;
BEGIN

WRITELN('Enter a number: '};
READLN(x,y} ;
IF x = 4 THEN

WRITELN(x}
ELSE WRITELN(y};

END.

Input:[35]
1 2

Very Easy Easy

Output

3 4 5
Average Difficult Very Difficult

PROGRAM Three;
VAR number:INTEGER;
BEGIN

WRITE('Enter a number: '};
READLN (number) ;
:IF number = 7 THEN

WR:ITELN ('Unlucky number');
:IF number = 10 THEN

WRITELN('Lucky number'};
WR:ITELN ('The number was', number) ;

END.

Input: [4][10][7]
1 2

Very Easy Easy

Output

D.?

PROGRAM Four;
VAR number:INTEGER;

PROCEDURE Letters;
BEGIN

WRITELN('ijkl');
WRITELN('mnop');

END;

BEGIN
WRITE ('qrst ') ;
Letters;
Letters;

END.

Output

1 2 3 4 5

Very Easy Easy Average Difficult Very Difficult

The following program should read a list of five test scores and report the number of

failing scores (failing score is less than 50). The program, however produces the output

listed below. Correct the program, marking the changes in the program code.

PROGRAM Failing;
VAR count,score,i:INTEGER;
BEGIN

count:=O;
FOR i:=l TO 5 DO
BEGIN

WRITE('Enter a score: ');
READLN (score) ;
IF score < 50 THEN

i:=i+l;
END;
WRITELN('Number of failing scores: ',count);

END.

Input: [45][100] [55] [35][60]

Enter a score: 45

Enter a score: 100

Enter a score: 55

Enter a score: 35

Enter a score: 60

Number of failing scores:O

Faulty Output

2 3 4 5

Very Easy Easy Average Difficult Very Difficult
~·_"~""""m.,_.·.·.·.__."_~.·.~.._.w._w..~ ,-m_.w" '_""_'_N_'W"'__~_,w~,m_•.wm_._wu_'""'"_

	Stewart_Rosanne_1996.front.p001
	Stewart_Rosanne_1996.front.p002
	Stewart_Rosanne_1996.front.p003
	Stewart_Rosanne_1996.front.p004
	Stewart_Rosanne_1996.front.p005
	Stewart_Rosanne_1996.front.p006
	Stewart_Rosanne_1996.front.p007
	Stewart_Rosanne_1996.front.p008
	Stewart_Rosanne_1996.front.p009
	Stewart_Rosanne_1996.p001
	Stewart_Rosanne_1996.p002
	Stewart_Rosanne_1996.p003
	Stewart_Rosanne_1996.p004
	Stewart_Rosanne_1996.p005
	Stewart_Rosanne_1996.p006
	Stewart_Rosanne_1996.p007
	Stewart_Rosanne_1996.p008
	Stewart_Rosanne_1996.p009
	Stewart_Rosanne_1996.p010
	Stewart_Rosanne_1996.p011
	Stewart_Rosanne_1996.p012
	Stewart_Rosanne_1996.p013
	Stewart_Rosanne_1996.p014
	Stewart_Rosanne_1996.p015
	Stewart_Rosanne_1996.p016
	Stewart_Rosanne_1996.p017
	Stewart_Rosanne_1996.p018
	Stewart_Rosanne_1996.p019
	Stewart_Rosanne_1996.p020
	Stewart_Rosanne_1996.p021
	Stewart_Rosanne_1996.p022
	Stewart_Rosanne_1996.p023
	Stewart_Rosanne_1996.p024
	Stewart_Rosanne_1996.p025
	Stewart_Rosanne_1996.p026
	Stewart_Rosanne_1996.p027
	Stewart_Rosanne_1996.p028
	Stewart_Rosanne_1996.p029
	Stewart_Rosanne_1996.p030
	Stewart_Rosanne_1996.p031
	Stewart_Rosanne_1996.p032
	Stewart_Rosanne_1996.p033
	Stewart_Rosanne_1996.p034
	Stewart_Rosanne_1996.p035
	Stewart_Rosanne_1996.p036
	Stewart_Rosanne_1996.p037
	Stewart_Rosanne_1996.p038
	Stewart_Rosanne_1996.p039
	Stewart_Rosanne_1996.p040
	Stewart_Rosanne_1996.p041
	Stewart_Rosanne_1996.p042
	Stewart_Rosanne_1996.p043
	Stewart_Rosanne_1996.p044
	Stewart_Rosanne_1996.p045
	Stewart_Rosanne_1996.p046
	Stewart_Rosanne_1996.p047
	Stewart_Rosanne_1996.p048
	Stewart_Rosanne_1996.p049
	Stewart_Rosanne_1996.p050
	Stewart_Rosanne_1996.p051
	Stewart_Rosanne_1996.p052
	Stewart_Rosanne_1996.p053
	Stewart_Rosanne_1996.p054
	Stewart_Rosanne_1996.p055
	Stewart_Rosanne_1996.p056
	Stewart_Rosanne_1996.p057
	Stewart_Rosanne_1996.p058
	Stewart_Rosanne_1996.p059
	Stewart_Rosanne_1996.p060
	Stewart_Rosanne_1996.p061
	Stewart_Rosanne_1996.p062
	Stewart_Rosanne_1996.p063
	Stewart_Rosanne_1996.p064
	Stewart_Rosanne_1996.p065
	Stewart_Rosanne_1996.p066
	Stewart_Rosanne_1996.p067
	Stewart_Rosanne_1996.p068
	Stewart_Rosanne_1996.p069
	Stewart_Rosanne_1996.p070
	Stewart_Rosanne_1996.p071
	Stewart_Rosanne_1996.p072
	Stewart_Rosanne_1996.p073
	Stewart_Rosanne_1996.p074
	Stewart_Rosanne_1996.p075
	Stewart_Rosanne_1996.p076
	Stewart_Rosanne_1996.p077
	Stewart_Rosanne_1996.p078
	Stewart_Rosanne_1996.p079
	Stewart_Rosanne_1996.p080
	Stewart_Rosanne_1996.p081
	Stewart_Rosanne_1996.p082
	Stewart_Rosanne_1996.p083
	Stewart_Rosanne_1996.p084
	Stewart_Rosanne_1996.p085
	Stewart_Rosanne_1996.p086
	Stewart_Rosanne_1996.p087
	Stewart_Rosanne_1996.p088
	Stewart_Rosanne_1996.p089
	Stewart_Rosanne_1996.p090
	Stewart_Rosanne_1996.p091
	Stewart_Rosanne_1996.p092
	Stewart_Rosanne_1996.p093
	Stewart_Rosanne_1996.p094
	Stewart_Rosanne_1996.p095
	Stewart_Rosanne_1996.p096
	Stewart_Rosanne_1996.p097
	Stewart_Rosanne_1996.p098
	Stewart_Rosanne_1996.p099
	Stewart_Rosanne_1996.p100
	Stewart_Rosanne_1996.p101
	Stewart_Rosanne_1996.p102
	Stewart_Rosanne_1996.p103
	Stewart_Rosanne_1996.p104
	Stewart_Rosanne_1996.p105
	Stewart_Rosanne_1996.p106
	Stewart_Rosanne_1996.p107
	Stewart_Rosanne_1996.p108
	Stewart_Rosanne_1996.p109
	Stewart_Rosanne_1996.p110
	Stewart_Rosanne_1996.p111
	Stewart_Rosanne_1996.p112
	Stewart_Rosanne_1996.p113
	Stewart_Rosanne_1996.p114
	Stewart_Rosanne_1996.p115
	Stewart_Rosanne_1996.p116
	Stewart_Rosanne_1996.p117
	Stewart_Rosanne_1996.p118
	Stewart_Rosanne_1996.p119
	Stewart_Rosanne_1996.p120
	Stewart_Rosanne_1996.p121
	Stewart_Rosanne_1996.p122
	Stewart_Rosanne_1996.p123
	Stewart_Rosanne_1996.p124
	Stewart_Rosanne_1996.p125
	Stewart_Rosanne_1996.p126
	Stewart_Rosanne_1996.p127
	Stewart_Rosanne_1996.p128
	Stewart_Rosanne_1996.p129
	Stewart_Rosanne_1996.p130
	Stewart_Rosanne_1996.p131
	Stewart_Rosanne_1996.p132
	Stewart_Rosanne_1996.p133
	Stewart_Rosanne_1996.p134
	Stewart_Rosanne_1996.p135
	Stewart_Rosanne_1996.p136
	Stewart_Rosanne_1996.p137
	Stewart_Rosanne_1996.p138
	Stewart_Rosanne_1996.p139_Appendice
	Stewart_Rosanne_1996.p140_Appendice
	Stewart_Rosanne_1996.p141_Appendice
	Stewart_Rosanne_1996.p142_Appendice
	Stewart_Rosanne_1996.p143_Appendice
	Stewart_Rosanne_1996.p144_Appendice
	Stewart_Rosanne_1996.p145_Appendice
	Stewart_Rosanne_1996.p146_Appendice
	Stewart_Rosanne_1996.p147_Appendice
	Stewart_Rosanne_1996.p148_Appendice
	Stewart_Rosanne_1996.p149_Appendice
	Stewart_Rosanne_1996.p150_Appendice
	Stewart_Rosanne_1996.p151_Appendice
	Stewart_Rosanne_1996.p152_Appendice
	Stewart_Rosanne_1996.p153_Appendice
	Stewart_Rosanne_1996.p154_Appendice
	Stewart_Rosanne_1996.p155_Appendice
	Stewart_Rosanne_1996.p156_Appendice
	Stewart_Rosanne_1996.p157_Appendice
	Stewart_Rosanne_1996.p158_Appendice
	Stewart_Rosanne_1996.p159_Appendice
	Stewart_Rosanne_1996.p160_Appendice
	Stewart_Rosanne_1996.p161_Appendice
	Stewart_Rosanne_1996.p162_Appendice
	Stewart_Rosanne_1996.p163_Appendice
	Stewart_Rosanne_1996.p164_Appendice
	Stewart_Rosanne_1996.p165_Appendice
	Stewart_Rosanne_1996.p166_Appendice
	Stewart_Rosanne_1996.p167_Appendice
	Stewart_Rosanne_1996.p168_Appendice
	Stewart_Rosanne_1996.p169_Appendice
	Stewart_Rosanne_1996.p170_Appendice
	Stewart_Rosanne_1996.p171_Appendice
	Stewart_Rosanne_1996.p172_Appendice
	Stewart_Rosanne_1996.p173_Appendice
	Stewart_Rosanne_1996.p174_Appendice
	Stewart_Rosanne_1996.p175_Appendice
	Stewart_Rosanne_1996.p176_Appendice
	Stewart_Rosanne_1996.p177_Appendice
	Stewart_Rosanne_1996.p178_Appendice

