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ABSTRACT 

 

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium species that commonly infect 

agricultural foods. DON exhibits multiple toxic effects in both animals and humans, binding to 

the A site of the 28S ribosome and inhibits peptidyl transferase and protein elongation. It 

induces cytotoxicity through oxidative stress and inhibition of protein synthesis. Liver cells 

possess the antioxidant signalling mediator - Nuclear erythroid-2-Related factor (NRF2) that 

is activated in response to oxidative stress. There is no sufficient work done to show if the 

HepG2cells have an ability to withstand the molecular modifications induced by DON.  The 

aim of the study was to investigate the cytotoxicity of DON and its effect on the NRF2 

antioxidant response in HepG2 cells. The MTT assay was used to determine a dose response 

of DON (72 hr) on cell viability and to generate an IC50 value to use in subsequent assays. The 

intracellular concentration of GSH and ATP was determined using Luminometry. Lipid 

peroxidation and membrane damage were assessed by TBARS and LDH cytotoxicity assays 

respectively. Protein expression of NRF2, phosphorylated (p-)NRF2, catalase (CAT), 

superoxide dismutase (SOD)2, and Sirtuin (Sirt)3 was quantified by Western Blotting. The 

mRNA expressions of GPx, CAT and SOD2 were quantified using qPCR. DON decreased cell 

viability in a dose-dependent manner with an IC50 value of 26.17 µM. DON caused a significant 

decrease in the intracellular GSH concentration (1.77-fold, p= 0.0005). There was a significant 

decrease in the intracellular ATP content (1.92-fold, p= 0.0002).The study shows an  induced 

lipid peroxidation and membrane damage in HepG2 cells by DON, as there was a significant 

increase in extracellular levels of both MDA (1.89-fold, p=0.0020) and LDH (1.35-fold, 

p=0.0207). DON reduced total NRF2 expression (0.30-fold, p= 0.0017), however activated p-

NRF2 was significantly up-regulated (3.54-fold, p= 0.0085). There was a downregulation in 

the NRF2 target antioxidant proteins: CAT (0.33-fold, p= 0.005) with a concomitant decrease 

in CAT mRNA levels (0.02-fold, p= 0.0003), SOD2 (0.02-fold, p= 0.0137), with a parallel trend 

in the levels of SOD2 mRNA (0.06-fold, p= 0.0020) by DON. This toxin also significantly 

decreased the mRNA expression of GPx levels (0.03-fold, p= 0.0006). The expression of a 

mitochondrial stress response Sirt3 was significantly decreased (0.14-fold, p= 0.0058). Taken 

together, the data shows that DON causes oxidative stress and downregulates the NRF2-

induced cytoprotection in HepG2 cells.  
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CHAPTER ONE 

GENERAL INTRODUCTION 

 

1.1 Background  

 

Mycotoxins are toxic substances, produced by fungal species as secondary metabolites. They 

are a family of mostly small molecular weight and structurally diverse compounds  (Marin et 

al., 2013a). Mycotoxins contaminate several agricultural foods, especially cereal grains 

(maize, wheat, rice and oats), but are also found to contaminate other agricultural food 

products. They are mainly produced by Aspergillus, Penicillium and Fusarium species during 

pre-harvest, harvest or storage. When ingested these compounds exhibit toxic effects, 

inducing significant health complications in both humans and animals post consumption 

(Shephard, 2008), depending on the dosage, period of exposure and the type of mycotoxin. 

These toxins are considered to be carcinogenic, mutagenic, teratogenic, oestrogenic, 

neurotoxic, hepatotoxic, nephrotoxic, cytotoxic and promote immunosuppression in humans 

and animals (Edite Bezerra da Rocha et al., 2014, Marin et al., 2013b).  

Mycotoxins are thus major food contaminants and present a global health concern. The 

African continent is described as the most susceptible continent to hazards of mycotoxins 

(Darwish et al., 2014). Acute mycotoxicosis (an illness triggered by a natural fungal produced 

toxin) outbreaks have been reported frequently in Africa (De Ruyck et al., 2015). It has been 

reported that a chronic exposure, to even low concentrations of various mycotoxins is a risk 

factor for human diseases such as cancer and childhood growth retardation (Kimanya, 2015, 

Katerere et al., 2008). In most developing countries, including South Africa, rural populations 

are heavily dependent on grains especially maize, as a staple source of nutrition. Many of 

these communities lack appropriate storage facilities for harvested grains, while hot and humid 

conditions promote fungal growth and subsequent mycotoxin production in these products 

(Misihairabgwi et al., 2017).  

Deoxynivalenol (DON) 12,13-epoxy-3α,7α,15-trihydroxytrichothec-9-en-8-on, (C15H20O6) is a 

mycotoxin produced mainly by Fusarium graminearum and Fusarium culmorum, classified 

under a family of type B trichothecenes (Rotter, 1996). DON’s high melting point (151 –153 

°C) enables it to withstand high temperatures and it is not deactivated/eliminated during 

processing and cooking (Turner et al., 2008) . This characteristic makes DON a persistent 

food contaminant. The 3 free hydroxy groups (-OH) and an epoxy group on C-12 and C-13 

are reported essential for its toxicity (Bonnet et al., 2012a, Pestka, 2010). The mechanism of 

action of DON is it’s binding ability to the A site of the 28S ribosomal subunit after entering the 
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cell membrane, this promotes the inhibition of the enzyme peptidyl transferase and elongation 

of the growing peptide (Pestka, 2010). DON exerts multiple effects in humans by affecting the 

liver, intestines, nervous system, reproductive system and immune system (Sobrova et al., 

2010). At a cellular and molecular level, DON has been reported to exhibit cellular toxicity such 

as DNA and/or RNA breakage, inhibition of protein synthesis, lipid peroxidation and membrane 

breakage and cellular morphology changes (Zhang et al., 2009, Pestka J.J., 2005, Peng et 

al., 2017).  

Studies have reported that DON causes oxidative stress, which is a consequence of high 

concentrations of reactive oxygen species (ROS), exceeding the antioxidant capacity of the 

cell (Mishra et al., 2014, Dinu D. et al., 2011, Zhang et al., 2009). The initial cellular defence 

against oxidative stress is the production and activation of the endogenous antioxidant 

molecules which neutralise these ROS. Glutathione (GSH) is a physiologically relevant 

endogenous antioxidant available in high intracellular concentrations and is the first line of 

defence against ROS. In its reduced form, GSH reacts with O2
− and H2O2 and neutralise these 

ROS by the activity of glutathione peroxidase (GPx), promoting its oxidation to GSSG (Hwang 

et al., 1992, Pastore and Piemonte, 2012). Enzymatic antioxidants, catalase (CAT) and 

superoxide dismutases (SOD) (Dao et al., 2011, Fukai and Ushio-Fukai, 2011) are also 

involved in primary antioxidant defence.  

This cytoprotective mechanism is driven by the transcription factor NRF2 cooperating 

dependently with a zinc thiol protein known as Kelch-like ECH-associated protein 1 (Keap1) 

and is referred to as NRF2- Keap1 (Nguyen et al., 2009, Nguyen et al., 2005, Kensler et al., 

2007). NRF2 translocates to the nucleus upon activation by ROS, where it binds to the 

antioxidant response element (ARE), promoting the transcription of the cytoprotective proteins 

such as CAT, SOD, GPx and glutathione S-transferase A2 (GSTA2). HepG2 cells are derived 

from the human liver of a male patient. The liver is the main organ mediating the detoxification 

processes of a variety of toxins in humans. It was hypothesised that DON causes oxidative 

stress and dysregulate the NRF-2 antioxidant response in HepG2 cells by inhibiting the 

antioxidant protein translation.   This study investigated the cytotoxicity of DON in HepG2 cells, 

and the induction of the NRF2 cytoprotective response.  

1.2 Problem statement 

South Africa (SA) is a developing country; the majority of the population in SA is dependent 

on agricultural foods, particularly maize (which is highly susceptible to DON contamination). 

Many studies have been conducted on DON but there is limited research on the molecular 

effects of DON on the NRF2 response in HepG2 cells. 
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1.3 Aims and objectives  

1.3.1 Aim 

➢ The aim of this study was to investigate the cytotoxicity of DON and the DON-NRF2-

induced response in HepG2 cells. 

 

1.3.2 Objectives  

The objectives of this study were as follows:  

 

➢ Determine the GSH antioxidant capacity of HepG2 cells following exposure to DON 

(GSH) and determine the antioxidant capacity of CAT and SOD post treatment. 

➢ Determine the oxidative damage and mitochondrial toxicity of DON in HepG2 cells post 

treatment through (TBARS, LDH, Sirt). 

➢ Assess the induction of NRF2 response in HepG2 cells treated with DON. 
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CHAPTER TWO  

LITERATURE REVIEW 

 

2.1 Introduction  

2.1.1 Mycotoxins 

 

Mycotoxins (secondary metabolites) are a structurally diverse group of mostly small molecular 

weight compounds that are produced by fungi that frequently contaminates of agricultural food 

destined for human and animal consumption. Exposure to mycotoxins results in adverse 

health effects in humans and animals; generally termed mycosis or mycotoxicosis (Pohland, 

1993, Marin et al., 2013b). This includes hepatotoxic, genotoxic, immunosuppressive, 

nephrotoxic, oestrogenic, teratogenic, as well as carcinogenic effects (Edite Bezerra da Rocha 

et al., 2014). The level of toxicity depends on the type of toxin(s), concentration, a period of 

exposure, and various other aspects such as species, age, hormonal status, nutrition and 

concurrent disease of an individual human being (Wild and Gong, 2010).  

Mycotoxins are found worldwide as natural contaminants in numerous agricultural foods, 

especially in cereal grains (maize, wheat, rice and oats). The most commonly occurring fungi 

associated with mycotoxin production in agricultural commodities are Aspergillus, Fusarium 

and Penicillium spp. (Figure 2.1).  

Mostly, humans are commonly exposed to mycotoxins directly through ingestion, but may also 

involve dermal, respiratory, and parenteral routes, the last being related to drugs (Nielsen et 

al., 2009). Animals are directly vulnerable to mycotoxins through consuming mouldy 

feedstuffs, contacting mould-infected substrates by the skin and inhaling the spore-borne 

toxins (Zain, 2011). Mycotoxins can therefore also be found in animal-derived foods (meat, 

eggs, milk and milk derivatives from animals often consuming contaminated feed. Mycotoxin 

contamination usually occurs in developing and underdeveloped countries and regularly 

remains unidentified by professionals, until it affects a lot of people (Peraica et al., 1999) . In 

developing countries, methods of managing and storing food are improper, hence mycotoxin 

exposure is more likely to occur. Mycotoxin contamination is shown to be a major problem in 

Africa (Wagacha and Muthomi, 2008), with implications that affect human and animal health 

and the economy. Furthermore, mycotoxins are incompletely eliminated during food 

processing procedures and can persist in commercial food products (Bullerman and Bianchini, 

2007).  
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Figure 2.1: An Illustration of the wheat affected by Fusarium species. (Salgado et al., 2011)  

Trichothecenes are one of the major classes of mycotoxins, causing a significant economic 

impact on cereal and grain crops each year (McCormick et al., 2011). Trichothecene are a 

group of tetracyclic sesquiterpenoid compounds mostly produced by Fusarium species consist 

of more than 200 compounds of diverse toxicity. These chemically related compounds exert 

toxicity through an epoxy group possessed at C-12 and C-13 and are (Qinghua et al., 2013). 

Trichothecenes are amphipathic and small molecules that are able to pass passively across 

cell membranes (Wanda and Haschek, 2009). These molecules are absorbed easily via the 

integumentary and gastrointestinal structures, into living cells where they cause various health 

complications (McCormick et al., 2011) (Luongo et al., 2010, Nielsen et al., 2009). 

Trichothecenes are also documented to inhibit synthesis of the mitochondrial proteins and to 

react with protein sulfhydryl groups (Pace et al., 1988). Trichothecenes in cells, ultimately 

cause an increase in the levels of oxidative stress due to a production of free radicals (Nielsen 

et al., 2009). 

  

2.2 Deoxynivalenol 

2.2.1 Production and occurrence  

DON is classified as a type B trichothecene. This naturally existing mycotoxin and is a toxic 

and biologically active secondary metabolite produced by several Fusarium species mainly F. 

culmorum and F. graminearum (Casteel et al., 2010). DON is found mostly contaminating 

wheat, barley, and maize (Casteel et al., 2010). It is also referred to as vomitoxin because its 

effects induce vomiting post-consumption. DON produces adverse effects in both humans and 

animals (Sobrova et al., 2010, Wang et al., 2014) . 
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2.2.2 Chemistry of DON 

Deoxynivalenol (12, 13-epoxy-3α,7α, 15- trihydroxytrichothec-9-en-8-on) is a polar organic 

compound that contains 3 free hydroxy groups (-OH) (figure 2.2) that are associated with its 

toxicity (Sobrova et al., 2010). Physicochemical properties of DON include its capacity to 

endure higher temperatures and UV light, making it a health hazard. DON is reported to be 

stable to heat ranging from 170 to 350 °C, with no reduction of DON concentration after 30 

min at 170°C (Hazel and Patel, 2004, Sobrova et al., 2010). 

 

Figure 2.2: The chemical structure of Deoxynivalenol (Awad et al., 2013).  

 

2.2.3 DON absorption, metabolism and distribution 

Following the ingestion of DON, it is absorbed through the digestive system where it crosses 

the intestinal mucosa by the paracellular pathways through the tight junctions. DON is then 

absorbed into the blood stream and enters other cells through membrane diffusion using the 

transporters of the cell membrane. Once DON is inside the cell it is metabolised by the 

intracellular carboxyl-transferase (UDP-glucuronyl transferase) which converts DON to a 

glucuronide metabolite called glucuronide-DON (Warth et al., 2013). Following 

glucuronidation, the liver cells are activated to detoxify the DON metabolite (figure 2.3). The 

detoxification pathway is catalysed by Cytochrome P450, which catalyses the oxidation of DON. 
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This pathway promotes the cleavage of fresh hydroxyl groups of the DON metabolite, forming 

DON radicals which are more reactive and dangerous (Sobrova et al., 2012). These radicals 

can then be scavenged by GPx, SODs or CATs. Phase 1 can be followed by Phase 2 where 

DON is detoxified by Glutathione-S-transferase (SST) forming a conjugate with GSH in the 

process (Maresca, 2013).  

 

 

Figure 2.3: The illustration of DON absorption and metabolism. Prepared by Author. 
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2.2.4 Mechanism of action  

Protein synthesis is a process in a cell that enables it to produce proteins (a polypeptide chain), 

mainly with the help of DNA and RNA. This process is extremely important because the 

proteins produced are necessary to play roles in almost all the activities of the cell (Shaw et 

al., 2003). Peptidyl transferase is an essential enzyme located at the large ribosomal subunit. 

This enzyme catalyses the transfer of the peptide from the transfer RNA (tRNA) occupying the 

P site to the amino acid of the tRNA occupying the A site (figure 2.4A). A peptide bond (a 

covalent bond between two adjacent amino acids in a growing protein molecule) is formed 

and the polypeptide chain is elongated by one amino acid (Hansen et al., 2003). DON has an 

epoxide at position 12 and 13, that is critical for the action on ribosome (Pestka, 2007, Hassan 

et al., 2015).  DON binds to the 28S ribosomal subunit at the A site of the tRNA through the 

transpetide bond, this leads to inhibition of peptidyl transferase and subsequent protein 

elongation (figure 2.4B). 

An epoxide group possessed by DON enables it to bind to the ribosomes and react with the 

nucleotides establishing ribosomal (r)RNA. The DON epoxide moiety can react with 

nucleophilic groups found on the puric/pyrimidic structures of the nucleotides in both DNA and 

RNA. These nucleophiles include amine groups and/or the side chain of amino acids forming 

the proteins that are amine, hydroxyl and carboxyl in nature (Bonnet et al., 2012a). 
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Figure 2.4: The protein translation inhibition, (A) protein translation under normal conditions, 

(B) protein translation after exposure of cells to DON. DON leads protein translation inhibition. 

Prepared by Author. 

 

Once DON enters the cell, it binds to rRNA via the interaction of its epoxide group with 

nucleophile functions on the nucleotides and/or rRNA-linked proteins. This causes the 

cleavage of proteins and triggers the activation of several cellular signalling pathways 

eventually disturbing cell functioning and possibly leading to apoptosis (Figure 2.5) (He et al., 

2012b). DON activated signal pathways are parallel to the signalling pathways triggered by 

ribotoxic stress, such as the double-stranded RNA (dsRNA)-activated protein kinase (PKR) 

and the hematopoietic cell kinase (Hck), which are rRNA associated protein kinases, and the 

MAP kinases (p38, ERK1/2, JNK), affecting innate immunity and apoptosis involved protein 

expression (through p53) (He and Pestka, 2010, Pestka, 2007).  
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Firstly, it was established that DON binds to the rRNA and promotes their cleavage that ends 

up activating PKR and Hck, hence, the chain activation of MAP kinases, NFκB and apoptosis 

mechanism (Pestka, 2010). Recent work reported that the induction of apoptosis is not the 

result, but somewhat the source of the rRNA cleavage upon the activation of caspases and 

RNases (He et al., 2012a). It has been shown that low concentrations (nM) activate ERK, 

resulting in cell survival and expression of genes, while high concentrations (μM) trigger p38 

resulting in the rRNA cleavage inhibition of protein synthesis and apoptosis (figure 2.5). A 

long-term relationship of cells and DON triggers the phosphorylation of the MAPKs- Erk1/2, 

p38 and SAPK/JNK, as well as a decrease of the transepithelial resistance in cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: DON effects on cell signalling pathways in macrophages, (Bonnet et al., 2012a) 

 

2.2.4 Physiological effects of DON 

Deoxynivalenol generally exhibits the toxic effect on both animal and human cells. DON affects 

different organs including the liver, brain, heart, and intestine. It further affects the immune 

system and the nervous system. DON induces cellular effects by its capability to promote 

ribotoxic stress through targeting the ribosome (Zhou et al., 2005). 
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Usually, the primary target for DON after its consumption is the intestinal tract (figure 2.6). 

DON affects intestinal digestion and nutrient absorption. The activity of sodium-glucose 

dependent transporter (SGLT-1) found in the intestinal mucosa is sensitive to DON (Pinton 

and Oswald, 2014, Pierron et al., 2016). When DON passes through the intestinal epithelium, 

it attacks the immune system as the second organ system. For the immune system as the 

second organ system, DON modifies serum IgA concentrations, IgA-related nephropathy 

immune cells [counting macrophages, T and B lymphocytes and natural killer (NK) cells] are 

highly susceptible and sensitive to DON. Exposure to DON leads to either immunosuppressive 

or immunostimulatory/inflammatory effects (Bonnet et al., 2012a).  

DON has been shown to negatively affect the endocrine and the nervous systems (figure 2.6). 

It stimulates the activation of silencers of cytokine signalling (SOCS) which are capable of 

inhibiting the induction through the hepatocellular release of IGF-1 and IGF acid labile subunit 

(IGFALS) of growth hormone, ultimately causing growth retardation in growth (Amuzie and 

Pestka, 2010, Voss, 2010). In brain cells, DON causes perturbations as it can pass the blood-

brain barrier (BBB) and affects neurons and neuroglial cells in the brain (Pestka et al., 2008). 

Studies have shown that DON also affected the kidney and liver cells (Mishra et al., 2014). 

Figure 2.6: The physiological effect of DON, organs affected by the toxicity of DON in human. 

(Prepared by Author) 
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2.3 Liver  

2.3.1 Liver and Hepatocyte 

The liver is the biggest organ (1 500 g) in the body that performs more than 500 essential 

metabolic functions (Naruse et al., 2007). It plays a major role in the catabolism of glucose 

from glycogenesis, plasma proteins, coagulation factors and urea secretion; it also regulates 

amino acid blood levels (Saukkonen et al., 2006). The liver regulates several of chemical 

species in the blood, at any different concentration. It excretes a bile which aids in the fat 

breakdown, preparing them for further processes in digestion and absorption. The blood 

passing the stomach and intestines is processed by the liver, which chemically decomposes 

and parallel them for the production of nutrients for the body to utilise. Also, it metabolises 

drugs in the blood stream into forms that are easily utilised by the body. The fundamental role 

conducted by the liver in the acceptance and conversion of chemicals expose it to toxic injuries 

in either deactivating or detoxifying them. (Saukkonen et al., 2006). 

 

Liver constitutes approximately 80% of specialized epithelial cells called hepatocytes (figure 

2.7), which are highly metabolic and involved in many essential functions such as protein 

synthesis, detoxification and metabolism of lipids and carbohydrates (Guguen-Guillouzo and 

Guillouzo, 2010). The liver has a high concentration of mitochondria. Many chronic liver 

illnesses are related to the gradually damaged mitochondria, responsible for increased 

concentration of ROS, reduction/depletion of GSH, alkylation of protein, and respiratory 

complex alterations (Pérez-Carreras et al., 2003, Degli Esposti et al., 2012). Therefore, the 

huge number of mitochondria are essential for energy and ROS production, the latter being 

needed for cellular signalling, fine-tuning responses to stress and global adaptations to 

metabolism (Degli Esposti et al., 2012). 
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Figure 2.7: Schematic basic structure of the liver, consisting of the hepatocytes cells adjacent 

to sinusoids and Kupffer cells which are tissue macrophages, as well as the stellate cells in 

the space between hepatocytes and endothelial cells Prepared by Author.  

 

2.3.2 Detoxification in liver  

Liver cells have advanced mechanisms that have evolved to break down toxic substances. 

The main detoxifying mechanisms of the liver cells are categorised as the Phase 1 and Phase 

2 detoxification pathways. The first detoxification pathway (Phase 1) contains an oxidation-

reduction and hydrolysis. The enzymes called cytochrome P450 group catalyse enzyme 

following this pathway, and the enzymes are also referred to as mixed function oxidase (MFO) 

enzymes. (Anzenbacher and Anzenbacherová, 2001). The cytochrome P450 enzymes are 

located on the membrane system of the hepatocytes. Phase 2 detoxification is referred to as 

the conjugation pathway where the liver cells add a hydrophilic moiety such as glucuronide, 

sulphate or amino acids (e.g. cysteine, glycine or a sulphur molecule) to a toxic chemical or 

drug, to render it less harmful (Grant, 1991, Fukao et al., 2004). These reactions modify toxins 

and allow for their excretion from the body via bile, urine and faeces. 
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2.3.3 Hepatotoxicity 

Hepatotoxicity is damage or injury to the liver as a result of damaging or destructive agents 

such as drugs, herbal or industrial chemicals which are termed hepatotoxins (Jaeschke et al., 

2002). Hepatotoxins gradually damage the liver as the portal vein carries ingested material 

(which may contain toxins) to the liver in relatively large concentrations. This leads to the 

gradual injury of the liver by these toxins. Toxins are concentrated in the liver since most 

detoxification processes take place in this organ (Anita et al., 2011). Depending on the toxin 

type, toxin concentration and the frequency of exposure, the damage to hepatocytes can be 

cytotoxic (morphological changes), metabolic (affecting cell metabolism/mitochondria) or 

genotoxic (DNA damage). The failure of cell survival leads to necrotic hepatocyte death or 

carcinogenesis (Castell et al., 1997, Anita et al., 2011).  

 

2.3.4 The use of HepG2 cell line 

The HepG2 cells are broadly used as an in vitro toxicity model, as they are derived from the 

liver. HepG2 cells show an inducible expression of phase I and phase II enzymes as well as 

the inducible expression of antioxidant mechanisms toward metabolising xenobiotics (Mersch-

Sundermann et al., 2004). This then implies that the HepG2 cells can be employed as an 

appropriate cell model to determine cellular stress responses. 
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2.4 Oxidative stress.  

 

ROS are very reactive chemical compounds consisting of several diverse chemical species 

such as superoxide anion radical (O2
−), hydroxyl radical (-OH), hydrogen peroxide (H2O2) and 

nitric oxide (NO) (Sharma et al., 2012). The regular cellular metabolism in a living organism 

leads to the generation of ROS, and various environmental factors also contribute to the 

production of ROS. ROS activity in biological cell processes can be enhanced at a low to 

average concentrations, but at higher concentrations, they have adverse cellular modifications 

to molecules including lipids, proteins, and DNA (figure 2.8), Further causing an impaired 

cellular respiration and ultimately, apoptosis (Valko et al., 2006, Marnett, 1999a). An 

imbalance in the production of free radicals and the cell’s capability to detoxify their detrimental 

effects through neutralization by antioxidants molecules is called oxidative stress (Cui et al., 

2012).  

Figure 2.8: ROS effects of on cellular functions. Prepared by Author. 
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2.4.1 Sources of ROS in a cell.  

 

Mitochondria are the chief sources of intracellular ROS generation in aerobic cells. The 

electron transport chain (ETC) of mitochondria are the main source of the generation of 

intracellular ROS (figure 2.9). Also, ETC is an essential target for the detrimental effects of 

ROS. Mitochondria produce ROS at different sites of ETC (Ott et al., 2007). In mammalian 

cells, oxygen is reduced to O2
− in the flavoprotein region of NADH dehydrogenase (complex 

I) of the respiratory chain (Turrens, 2003). In vitro studies on mammalian mitochondria have 

shown that ubiquinone, a substrate component of the respiratory chain in the mitochondria, 

linking Complex I with III, and II with III, plays a major role in the formation of O2
− by Complex 

III (Liu et al., 2002) . The ubiquinone oxidation occurs during a class of reactions known as 

the Q-cycle, with semiquinone (unstable) is accounting for O2
- formation.  

Inflammation is also the source of ROS generation. The ROS are the main signalling 

molecules playing a huge role in the inflammatory disorders progression. Cells like 

polymorphonuclear neutrophils (PMNs) are involved in the host-defence response and 

generate ROS, which trigger endothelial impairment by oxidation of important cell signalling 

proteins such as tyrosine phosphatases. The ROS play a role as either a signalling molecule 

or a mediator of inflammation (Mittal et al., 2014).  

ROS are also generated in the endoplasmic reticulum where NAD(P)H-dependent electron 

transport requiring Cytochrome P450 synthesise O2−. Organic substrate, RH, firstly reacts with 

Cytochrome P450 and reduce it to a radical intermediate (Cytochrome P450 R-) by flavoprotein. 

In that way, triplet oxygen molecule reacts with this newly formed radical intermediate as each 

has one unpaired electron. The resulting oxygenated complex (Cytochrome P450-ROO-) can 

be reduced by cytochrome b or the complexes may be broken down and release O2
−. (Mittler, 

2002). 

Peroxisomes were shown to be the major sites for the synthesis of H2O2, as a consequence 

of their oxidative type of metabolism (figure 2.9). In different types of peroxisomes, glycolate 

oxidase reaction, the fatty acid β-oxidation, the enzymatic reaction of flavin oxidases take 

place, and the disproportionation of O2− radicals are the main metabolic processes playing a 

role in the synthesis of H2O2 (del Río et al., 2006). 
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Figure 2.9: Schematic presentation of the various sources of ROS in a cell. (Holmstrom and 

Finkel, 2014).  

 

 

2.4.2 Oxidative stress damage in cellular components  

When the cell experiences oxidative stress, it strives towards hindering the oxidant effects and 

re-establish the balanced redox through stimulating or silencing the genes encoding protective 

enzymes and transcription factors. The ratio of oxidized to reduced glutathione protein 

(2GSH/GSSG) is the major indicator of oxidative stress (Timothy et al., 1999). The generation 

of ROS at a higher level in the living organism may modify DNA structure, promoting the 

alteration of proteins and lipids molecules, activation of numerous transcription factors induced 

by oxidative stress.  
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2.4.2.1 Oxidative stress mediated DNA damage. 

ROS promotes DNA alterations in numerous ways, which involves degradation of bases, 

fragmentation of single and/or double-stranded DNA, purine, pyrimidine or modification of 

sugar-bound, mutations, deletions or translocations, and cross-linking with proteins (Birben et 

al., 2012). DNA bases oxidation usually includes the addition of •OH to double bonds. The 

bases impairment is mostly caused by the abstraction of hydrogen from deoxyribose. The 

hydroxyl radicals are highly reactive towards deoxyribose backbone including its purine and 

pyrimidine bases (Bohr, 2002). It produces various several by-products from the reaction with 

DNA bases mostly including 8-oxo-7,8 dehydro-2′- deoxyguanosine from C-8 hydroxylation of 

guanine, hydroxymethyl urea, urea, thymine glycol, thymine and adenine ring-opened, and 

saturated products (Tsuboi et al., 1998). Usually, 8-Hydroxyguanine is the primary detected 

by-product.  

Mitochondrial DNA (mtDNA) is one of the important targets by ROS. The mtDNA is very 

vulnerable to ROS attack because it is adjacent to the respiratory chain, which is the major 

machine producing free radical, and also, mitochondria lack protecting histones. It has been 

shown that mitochondrial generated ROS can activate the formation of 8-

hydroxydeoxyguanosine, a by-product resulting from of oxidative DNA damage (Ott et al., 

2007). 

 

2.4.2.2 Oxidative stress mediated lipid peroxidation. 

Higher generation of ROS to above the threshold stimulates lipid peroxidation in either cell 

and organelle membranes. An increased production of ROS is directly proportional to the 

elevation of lipid peroxidation under oxidative stresses. The unsaturated fatty acids 

peroxidation in phospholipids results in the release of malondialdehyde (MDA). MDA is found 

responsible for the disruption of the cell membrane, and it is used to measure lipid peroxidation 

in cells (Marnett, 1999b). The development of ROS and activation of lipid peroxidation in 

mitochondria can result in downregulation of mitochondrial processes. Usually, On 

phospholipids molecules, ROS attack unstable bond among two carbon atoms and the ester 

bond between glycerol and a fatty acid. The polyunsaturated fatty acids (glutathione S-

transferase) in membrane phospholipids are highly sensitive to ROS attack. It takes a single 

•OH oxidant to cause the peroxidation of a several PUFAs since the reactions of this process 

make a cyclic chain reaction (Yin et al., 2011). 

Lipid peroxidation process is accomplished in three stages, being the initiation, progression, 

and termination steps (figure 2.10). The initial step has prooxidants like hydroxyl radical 
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abstracting the allylic hydrogen resulting in the carbon-centred lipid radical (L•). In the 

propagation phase, the reaction of the lipid radical L• is facilitated, an oxygen atom reacts with 

the newly formed lipid radical (L•) rapidly producing a lipid peroxy radical (LOO•), which 

extracts a hydrogen from another lipid molecule generating a new L• (that proceeds the chain 

reaction) and lipid hydroperoxide (LOOH) (Yin et al., 2011, Gaschler and Stockwell, 2017, 

Rådmark et al., 2015). The alkyl, peroxyl, and alkoxyl radicals are created and released in the 

free radical chain reaction. In the termination reaction, antioxidants like vitamin E donate a 

hydrogen atom to the LOO• species forming a corresponding vitamin E radical that reacts with 

another LOO• forming non-radical products.  

Under oxidative stress, the rate of the formation of a non-radical product is decreased, hence 

more radical products are produced (Yin et al., 2011, Ayala et al., 2014b). Peroxidation of poly 

unsaturated fatty acids (PUFAs) promotes a chain breakage and results in an increase in 

membrane fluidity and permeability.  

Figure 2.10: Lipid peroxidation process (Ayala et al., 2014b). 
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2.4.2.3 Oxidative damage to proteins  

ROS causes breakage of the polypeptide chain, modification of charges of proteins, cross-

linking of proteins, and oxidation of specific amino acids. These increase chances of 

proteolysis by specified proteases (Kelly and Mudway, 2003). There is a direct and indirect 

modification of proteins by ROS. The direct modification includes modification of a protein’s 

activity through nitrosylation, carbonylation, disulphide bond formation, and glutathionylation. 

The indirect modification involves the conjugation with the products, which resulted from 

peroxidation of fatty acids.  

Oxidative stress affected cells generally have a high concentration of carbonylated proteins 

which are protein oxidation marker. Each amino acid in a peptide varies in its vulnerability to 

ROS attack (England et al., 2003). ROS highly attack amino acids containing thiol groups and 

sulphur. Triggered oxygen atom can abstract an H atom from cysteine residues to produce a 

thiol radical that will cross-link to second thiol radical to form disulphide bridge (figure 2.11) 

(Davies, 2016). 

 

Figure 2.11: The oxidation of protein. The cysteine residue is oxidised by -O2. Prepared by 

Author.  
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2.5 Cytoprotective response.  

2.5.1 Glutathione (GHS)  

Antioxidants are nucleophilic molecules with an ability to radically react with oxidizing agents, 

which are usually electrophiles, donating a single or two electrons to them. GSH is known as 

a high-density antioxidant molecule among the cellular endogenous antioxidants. GSH is a 

peptide that is reduced comprising of three-residues (γ-L-glutamyl-L-cysteinyl glycine) and is 

able to give an electron to produce its antioxidant effect. This donation results in the oxidation 

of two-electron donating GSH molecules to form glutathione disulfide (GSSG) (Hwang et al., 

1992). GSH is almost exclusively found in a high concentration (1–10 mM) in human. This 

high concentration enables the easy neutralisation of ROS in either a direct or indirect 

pathway. It can directly react with O2
− and some other ROS. Also, it can present an indirect 

scavenging of ROS, by revitalizing other antioxidants, which are essential; e.g. it can reduce 

dehydroascorbic acid (Pastore and Piemonte, 2012). 

Antioxidant GSH is formed from its essential amino acids, creating a tripeptide thiol under a 

double ATP-dependent mechanism. The γ-glutamyl-cysteine ligase (GCL) catalyses the first 

step of the synthesis. GCL is a heterodimeric enzyme composed by a heavy subunit, GCLc 

(73 kDa) presenting catalytic activity and a smaller one, GCLm (33 kDa) that has a regulatory 

role on the other subunit (Lu, 2013). The second step is catalysed by GSH synthetase (GS) 

(figure 2.12). 

Cellular GSH is regulated by de novo synthesis, and different other aspects like the use, 

recycling and cellular export, known as the GSH cycle (figure 2.12). The activity of GSH 

molecule is induced under increased ROS condition, or aerobic respiration which promotes 

an increased production of H2O2 (Lu, 2009a). ROS are neutralised by glutathione peroxidase 

(GPx) through the conversion of double GSH molecules to GSSG, the oxidized form, this 

reaction occurs in an expense of Nicotinamide adenine dinucleotide phosphate (NADPH) (Lu, 

2009). 
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 Figure 2.12: Diagrammatic presentation of GSH synthesis and GSH cycle Prepared by 

Author.  

 

2.5.2 Keap1-NRF2  

The nuclear factor erythroid 2-related-factor 2 (NRF2) is a member of the cap ‘n’ collar (CNC) 

subfamily of basic region leucine zipper (bZip) transcription factors. NRF2 is a strong 

transcriptional activator and an essential regulator of the expression of cytoprotective genes 

for molecules that express antioxidant functions in response to oxidative and electrophilic 

stresses within the cell (Nguyen et al., 2009). The Keap1 is a cysteine-rich, cytoplasmic, actin 

cytoskeleton-associated adapter protein of the Cullin3- (Cul3) based E3-ligase complex 

(McMahon et al., 2003). It has a huge responsibility in the regulation of the activity of NRF2. 

The Keap1-NRF2 pathway is the major antioxidant signalling mechanism in a cell, induced to 

respond to ROS and electrophiles activated endogenous and exogenous stresses (Nguyen et 

al., 2009).  

Under homeostatic cell conditions, the NRF2 transcription factor is covalently bound to 

cysteine residues on its native repressor Keap1 in the cytoplasm. This results in the 

constitutive ubiquitination and proteosomal degradation of NRF2 causing an inhibition of the 

anti-oxidant response (McMahon et al., 2003). Under oxidative stress condition, cysteine 

residues on Keap1 are modified, resulting in the release, phosphorylation, stabilization and 
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shift of NRF2 into the nucleus, where it binds to the promoter region of the Antioxidant 

Response Elements (ARE) that possess structural and biological features that characterize its 

unique responsiveness to oxidative stress at the DNA and initiate the transcription of various 

cytoprotective enzymes (figure 2.13) (Nguyen et al., 2009, Nguyen et al., 2005). 

These enzymes function to promote cellular survival through a variety of mechanisms, 

including the upregulation of antioxidant function, inflammatory inhibition, and the transport of 

toxic metabolites. Binding of phosphorylated NRF2 to the ARE results in the recruitment of 

elements required for the transcriptional activation of a variety of genes such as glutathione 

S-transferase A2 (GSTA2), NADPH quinone oxidoreductase (NQO-1), superoxide dismutase 

(SOD) (figure 2.13), and heme oxygenase-1 (Ho-1) and catalase (CAT) (Kensler et al., 2007). 

 

Figure 2.13: The Keap1-NRF2 antioxidant signalling Mechanism. Prepared by Author 
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The closer biochemical and structural analyses of the Keap1–NRF2 complex shows that under 

the normal condition, two molecules of Keap1 form a homodimer through the N-terminal BTB 

domain, and the C-terminal globular domains, called the DC domains, positioned apart from 

each other (Ogura et al., 2010) (figure 2.14A). Two DC domains of the Keap1 homodimer link 

with one molecule of NRF2. The N-terminal region of NRF2, called the Neh2 domain, bridges 

the two DC domains at two separate binding sites, namely the ETGE and DLG motifs (figure 

2.14B) (Nioi and Nguyen, 2007, Mitsuishi et al., 2012). The lysine residues clustered in the 

Neh2 domain between the ETGE and DLG motifs serve as ubiquitination target sites. The two-

site binding between Keap1 and NRF2 appears to be favourable for the efficient ubiquitination 

of NRF2. The ubiquitination thus triggers the proteasomal degradation of NRF2 molecule.  

Figure 2.14: the closer illustration of Keap1-NRF2 complex (Mitsuishi et al., 2012) 

 

2.5.3 NRF2 antioxidant response.  

The protective response by NRF2 starts with the activation of ARE by phosphorylated NRF2. 

The consequence of the interaction of NRF2 and ARE is the synthesis of various enzymes 

that function to defend the cell against oxidative stress. There are three primary antioxidant 

proteins produced in mammalian cells that are considered necessary in all oxygen 

metabolizing cells (Weydert and Cullen, 2010). These include SOD, CAT, and a substrate 
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specific peroxidase and GPx which are produced upon the induction of the NRF2 antioxidant 

mechanism.  

SODs function to protect the cell by catalysing the dismutation of two superoxide anion 

radicals (plus two protons), converting them into O2 and H2O2, which can be eliminated by 

CAT and GPxs. Manganese superoxide dismutase (Mn-SOD)/(SOD2) is situated in 

mitochondria and its gene is located on chromosome 6q25. This enzyme plays a major role in 

defending the mitochondria from oxidative stress (Mikhak et al., 2008). A recent work reported 

that SOD2 activity is strongly regulated by its acetylation at several conserved lysine residues 

such as K68 and K122. Experiments identified a specific interaction between Sirt3 and SOD2 

in cell lines and liver (Qiu et al., 2010). Deacetylation of SOD2 lysine residues by Sirt3 triggers 

and increases SOD2 activity, decreasing cellular ROS (Qiu et al., 2010, Bause and Haigis, 

2013). Amazingly, overexpression of SOD2 by itself does not reduce cellular ROS to the same 

extent as co-expression with Sirt3 or overexpression of the specific lysine to arginine (KR) 

mutant that mimics the deacetylated state (Tao et al., 2010). This implies that deacetylation 

by Sirt3 is a highly important regulator of SOD2 activity and O2
− detoxification (Chen et al., 

2011).  

 CAT mainly functions in the subcellular organelles known as peroxisomes. It functions to 

reduce H2O2 to water and O2. Such antioxidant enzymes co-operate for optimum detoxification 

of oxidants, especially with respect to oxidative stress (Dao et al., 2011). The lack of or/and 

failure to produce antioxidant enzyme could end in mutations, carcinogenesis or cell death as 

a consequence of ROS interaction with cellular molecules. 

In summary, previous studies have showed that DON exerts adverse cytotoxic, genotoxic, and 

immunotoxic effects on experimental animal cell line. (Königs et al., 2008, Nielsen et al., 2009, 

Pestka, 2010, Sobrova et al., 2010). Studies on DON cytotoxicity, metabolism and cellular 

uptake tested in various human cell lines, including human hepatocellular carcinoma cells 

(HepG2) demonstrated that DON had a distinct cytotoxic effect on human cells, such as 

decreasing cell viability, inhibiting cell proliferation, inducing oxidative stress, causing 

mitochondria damage, and both necrotic and apoptotic cell death (Bensassi et al., 2009, 

Zhang et al., 2009, Warth et al., 2013) 

At cellular level, DON has high affinity to ribosomes and can activate mitogen-activated protein 

kinases (Pestka et al., 2004). By interacting with the peptidyltransferase at the 28S ribosomal 

subunit, DON inhibits protein synthesis and triggers a ribotoxic stress, which results in cell 

death (Bonnet et al., 2012a, Hassan et al., 2015). In addition, DON induces the production of 

free radical and reactive ROS, which causes oxidative damage of target tissues  (Sobrova et 

al., 2010, He and Pestka, 2010, Mishra et al., 2014). 
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The studies have shown that DON causes oxidative stress and causes both molecular and 

cellular modification in HepG2 cells (Zhang et al., 2009, Liu et al., 2016, Zhou et al., 2017). 

There is very limited study on how HepG2 cells respond to DON for survival at both acute and 

chronic exposure. This study focused on investigating NRF2 response triggered by DON in 

HepG2 cells, focusing on NRF2 cytoprotective response.  
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CHAPTER 3 

 MATERIALS AND METHODS 

 

3.1 Materials 

The HepG2 cell line was purchased from Highveld Biologicals (Johannesburg, SA). Cell 

culture equipment and reagents (cell culture flasks etc.) and reagents (Eagle’s Minimum 

Essentials Medium (EMEM), trypsin, trypan blue etc.) were purchased from Lonza 

Biotechnology (Basel, Switzerland). Western Blot equipment and reagents were purchased 

from Bio-Rad (Hercules, CA). Deoxynivalenol (DON) was purchase from Sigma-Aldrich (St 

Louis, MO). The other reagents were purchased from Merck (Darmstadt, Germany), unless 

otherwise stated. 

 

3.2 Methods  

3.2.1 Cell culture and exposure assessment 

HepG2 is a cell line comprising of human liver carcinoma cells, derived from the liver tissue of 

a 15-year-old Caucasian male with a well-differentiated hepatocellular carcinoma. These cells 

are adherent, non-tumorigenic and are epithelial in nature. This cell line is considered a good 

in-vitro model for the toxicity investigation since it has the ability to undergo detoxification 

responses as well as retaining many functions often lost by primary hepatocyte cultures 

(Knasmüller et al., 2004). The HepG2 cells were cultured in a monolayer, in a sterile 25 cm3 

culture flask. The cells were maintained in complete culture medium (CCM) consisting of 

EMEM supplemented with 10 % foetal calf serum, 1 % penicillin-streptomycin-fungizone, and 

1 % L-glutamine). The cells were incubated at 37 ˚C. 

 

3.2.2 Assessment 

For the determination of a half maximal inhibitory concentration (IC50), the Methyl Thiazol 

Tetrazolium (MTT) assay was performed (Denizot and Lang, 1986). Firstly, a stock solution of 

50mM DON was prepared in 100% Dimethyl Sulphoxide (DMSO) and serially diluted to 

produce a range of 0-100 µM DON concentration. HepG2 cells were seeded in a 96-well 

microtiter plate and allowed adhere to the well surface overnight. The cells were then treated 

with DON (0-100 µM) for 24, 48 and 72 hr, respectively. The chosen time periods allowed the 

study to either be for acute period or long-term exposure, based on the cell viability response 

to DON in respect to half maximal inhibitory concentration (IC50). In all other subsequent 

assays, cells were cultured to 70 % confluency in 25 cm3 tissue sterile flasks after treatment 

with DON at the IC50 as determined by the MTT assay. The time period of 72 hr was used 
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throughout subsequent experiments. This is a quantitative measure that determines how 

much of a drug or another substance (inhibitor) is needed to inhibit a given biological process 

(or component of a process, i.e. an enzyme, cell, cell receptor or microorganism) by 50 %.  

The negative control was used in all experimental assays and consisted of CCM only. The 

vehicle control (100% DMSO) was also used in all experiments. No significant difference was 

observed between vehicle control and untreated control; therefore, the vehicle was excluded 

from further analysis. 

 

3.3 Metabolic activity  

3.3.1 MTT assay 

3.3.1.1 Introduction  

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay is based on the 

conversion of MTT into formazan crystals by living cells, which determines mitochondrial 

activity in living cells (figure 3.1) (Denizot and Lang, 1986). Methylthiazol tetrazolium is a 

yellow water-soluble dye that is reduced in the mitochondria of metabolically active cells 

through the activity of a mitochondrial dehydrogenase enzymes. The principle of the MTT 

assay is that for most viable cells, mitochondrial activity is continuous and thereby an increase 

or decrease in the number of viable cells is directly proportional to mitochondrial activity 

(Denizot and Lang, 1986). The mitochondrial activity of the cells is shown by the conversion 

of the tetrazolium salt MTT into formazan crystals, which can be solubilised for homogenous 

measurement by spectrophotometry.  
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The mitochondrial activity in the active cells is dependent on the production of the reducing 

equivalents produced from flavin adenine dinucleotide (FADH2) and nicotinamide adenine 

dinucleotide (NADH) in the Krebs’s cycle (figure 3.2).  

Figure 3.1: The schematic representation of the mitochondrial conversion of MTT salt to 

formazan crystals in the metabolically active cells during MTT assay. Prepared by Author. 
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Figure 3.2: The Reducing equivalents produced by the Krebs cycle to accelerate the electron 

transport chain and maintain the ATP production in HepG2 cells (Fernie et al., 2004) 

 

3.3.1.2 Protocol  

HepG2 cells (15 000 cells) were seeded into a 96-well microtiter plate in 6 replicates. At 70% 

confluency, the cells were treated with DON concentrations (0, 2.5, 5, 10, 25, 50, and 100 µM) 

DON for 24, 48 and 72 hr. Following treatment, cells were washed with 0.1M Phosphate Buffer 

Saline (PBS) 3 times and incubated with MTT salt solution (5 mg/ml) in 0.1M PBS in CCM 4 

h, 37˚ C. After the 4 hr incubation, the MTT salt solution was discarded, DMSO (100 µl/well) 

added to the well, and incubated further for 1 hr. The formazan product’s optical density was 

measured using a spectrophotometer (Bio-Tek µQuant) at 570/690 nm. The IC50 was 

determined from the percentage cell viability vs the log concentration. The time period of 72 

hr was used throughout the subsequent experiments since it showed a better dose dependent 

response compared to a 24 and 48 hr period, was 26.17 µM at 72 hr. The IC50 value obtained 

was used in all subsequent experiments.  
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3.3.2 ATP assay  

3.3.2.1 Introduction  

ATP is a nucleotide consisting of an adenine attached to a ribose sugar, which is bound to 

three phosphate groups linked to each another by high-energy bonds called 

phosphoanhydride bonds. It is the primary source energy in the cell because of these high-

energy bonds. ATP acts as an allosteric effector of numerous biochemical cell processes. 

Most intracellular ATPs are obtained from cytosolic glycolysis and mitochondrial oxidative 

phosphorylation in the electron transport chain (St-Pierre et al., 2000). The final process in the 

ETC couples the oxidation of reduced cofactors via the respiratory chain to ATP synthesis by 

mitochondrial ATP synthase (figure 3.3). The levels of intracellular ATP are indicative of 

respiratory capacity and mitochondrial function.  

Figure 3.3: The intracellular ATP production, namely glycolysis, the TCA cycle and the ETC. 

ATP synthesis in the ETC is propelled by an electron transfer via reducing equivalents. 

Prepared by Author. 
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3.3.2.2 Protocol  

CellTitre-Glo™ (Promega) assay was used for the assessment of intracellular levels of ATP. 

In this assay, the quantification of intracellular ATP in cells is based on bioluminescence 

emitted through a luciferase dependent reaction. Luciferin is mono-oxygenated to oxy-luciferin 

in the presence of Mg2+, molecular oxygen and ATP, resulting in the release of energy in the 

form of luminescence (figure 3.4). This luminescent signal is directly proportional to the 

intracellular levels of cellular ATP.  

 

Figure 3.4: Diagrammatic presentation of the CellTitre Glo™ used to quantify intracellular ATP 

concentration. Prepared by Author. 

 

For the CellTitre-GloTM assay, 50 μl of HepG2 cell suspension (20,000 cells/well in 0.1M PBS) 

was seeded into a white, opaque 96-well luminometer plate in triplicate. Following that, 20 μl 

CellTitre Glo™ reagent was added into each well followed by incubation of the plate in the 

dark for 30 minutes (min) at room temperature (RT) to let the luciferin-luciferase reaction 

occur. Luminescence, which is linearly related to the levels of intracellular ATP, was therefore 

detected using a Modulus™ microplate luminometer (Turner Biosystems, Sunnyvale, USA). 

The levels of ATP were presented as Relative Light Units (RLU) which is the measurement of 

ATP; in light, following the luminescence reaction. 
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3.4 Oxidative stress 

3.4.1 Glutathione assay  

3.4.1.1 Introduction  

Glutathione is a tripeptide consisting of amino acids- cysteine, glutamic acid and glycine. It is 

an essential antioxidant produced by the body. It prevents a cell from damage caused by free 

radicals, electrophiles and peroxides (Iwaoka and Tomoda, 1994). Its roles include antioxidant 

defence, detoxification of electrophilic xenobiotics, redox modulation regulated signal 

transduction, storage and transport of cysteine, synthesis of deoxyribonucleotide synthesis, 

regulation of cell proliferation, regulation of immune responses, and regulation of leukotriene 

and prostaglandin metabolism (Sen, 1999).  

Glutathione exists predominantly in its biologically active form as reduced glutathione (GSH). 

When the cellular environment experiences the presence of ROS, GSH acts as an electron 

donor and is oxidised to form GSSG. Oxidation of GSH results in a decreased ratio of GSH: 

GSSG (Iwaoka and Tomoda, 1994). The recycling of GSH and GSSG are carried out by 

glutathione-S-transferase (GST) and GSH peroxidase (GPx) (Figure 3.5). 

 

The GSH luminometric assay is also based on the reaction of luciferin-luciferase, in this case, 

Luciferin-NT is converted to Luciferin by GST. This reaction consumes GSH and gives off ATP 

and oxygen as by-products. Therefore, the conversion of Luciferin by Luciferase to emit light 

is detected using a luminometer.  

Figure 3.5: The antioxidant activity of GPx in ROS (H2O2) cause GSH to generate water and 

GSSG, while regeneration of GSH from GSSG by GST requires NADPH as a cofactor 

Prepared by Author. 
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3.4.2.1 Protocol.  

To assess the intracellular concentration of GSH in HepG2 cells, the GSH assay (Promega, 

Madison, USA) was used. The cells were treated with DON (26.17 µM, 72 hr). Cells were then 

transferred to a luminometry microtiter plate (50 µl of 20 000 cells in 0.1 M PBS per well, 6 

replicates. GSH standards (0, 3.125, 6.25, 12.5, 25, 50 µM) were made from a 5mM stock 

solution and used to generate the standard curve of a known GSH concentrations. The 2x 

GSH-GloTM reagents were prepared according to manufacturer’s instructions and added to the 

plated cells (50 µl/well). The luminometry plate was incubated at RT, 30 min, in darkness. 

Following incubation, Reconstituted Luciferin detection reagent (50 µl) was added to each well 

and incubated then further for RT, 15 min, in darkness. Luminescence emitted was then 

measured on a ModulusTM microplate luminometer (Turner Biosystems, Sunnyvale, CA). The 

concentration of GSH in HepG2 cells was determined using the standard curve generated 

using GSH standard concentration. The results are represented in a concentration (µM). 

 

3.4.2 Thiobarbituric acid reactive substances (TBARS) assay 

3.4.2.1 Introduction  

Lipid peroxidation is a process whereby oxidants such as free radicals, radically attack lipids 

having carbon-carbon double bond(s), particularly PUFAs in the lipid membrane. This results 

in the formation and production of a variety of aldehydes (Ayala et al., 2014a). These products 

are very reactive with other cellular components and the extracellular matrix; they are 

represented as biomarkers of lipid peroxidation. Among reactive aldehydes, malondialdehyde 

(MDA) is toxic and an end-product of lipid peroxidation.  

In the first step of lipid peroxidation (initiation), oxidizing agents extract a hydrogen atom 

forming a lipid radical thal radical can be stabilized by a rearrangement of a molecule to form 

a conjugated diene (Step 1) (figure 3.6). In step 2, the propagation phase, there is a reaction 

of oxygen with the fatty acid radical producing a fatty acid peroxyl radical, and because of its 

instability, it removes a hydrogen from another lipid molecule generating a new lipid radical. 

In the termination reaction (Step 3) the formation of the end-product of lipid peroxidation, 

malondialdehyde (MDA) is obtained (Fernández et al., 1997, Ayala et al., 2014a).  
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Figure 3.6: The diagrammatic presentation of the lipid peroxidation process. Step 1- Initiation, 

step 2 - propagation and finally termination on step 3. Prepared by Author.  

 

TBARS assay is carried out to establish the concentration of the end-product of lipid 

peroxidation, MDA (Asakawa and Matsushita, 1979). The principle behind this assay is based 

on the ability of two molecules of thiobarbituric acid (TBA) to condense with one molecule of 

MDA at a high temperature and low pH to form a pink pigment that absorbs light at 532 nm 

(figure 3.7). MDA reacts with the methylene group of TBA to form adducts. The colour intensity 

is directly proportional to the concentration of MDA, which is measured using a 

spectrophotometer (Fernández et al., 1997). 
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Figure 3.7: The schematic presentation of the TBARS assay principle. Prepared by Author.  

 

3.4.2.2 Protocol  

Thiobarbituric acid assay was perfomed to determine oxidative stress (lipid peroxidation). Cell 

culture supernatant (200 µl) from all treatments were added into the test tubes containing 2% 

H3PO4 (200 µl), 7% H3PO4 (200 µl) and TBA/butylated hydroxytoluene solution (400 µl) 

(Asakawa and Matsushita, 1979, Fernández et al., 1997). Subsequently, MDA (1 µl) was 

added to the positive control test tube and hydrochloric acid (HCl 400 µl) to the blank test tube. 

Individually, samples were vortexed and adjusted to pH 1.5, and were boiled for 15 min, then 

allowed to cool to RT prior to the addition of butanol (1.5 ml). Each tube was vortexed and 

allowed to separate into two separate phases. The upper phase (butanol) was transferred 
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from each sample to a sterile test tube and further centrifuged (2 500 x g, 24˚C, 6 min). 

Following centrifugation, the butanol phase of each sample was transferred to the microtiter 

plate in 4 replicates. The absorbance was measured on a spectrophotometer at 532 nm with 

a reference wavelength of 600 nm. The mean optical density of 4 replicates per treatment was 

calculated and divided by absorption coefficient (156 nm-1) and results expressed in 

concentration of MDA (µM). 

 

3.5 Cytotoxicity – Lactate Dehydrogenase (LDH) assay 

3.5.1 Introduction  

Lactate dehydrogenase (LDH) is a soluble cytoplasmic enzyme that is present in the 

cytoplasm of intact, healthy cells (Korzeniewski and Callewaert, 1983). An increased in LDH’s 

extracellular activity, is the consequence of disrupted cell membrane integrity. This disruption 

of the cell membrane integrity occurs during lipid peroxidation, under the influence of free 

radicals and in an oxidative stress environment.  

To investigate the leakage of LDH into cell culture medium, the activity of LDH is assessed 

via an enzymatic test where tetrazolium salt is used (Burd and Usategui-Gomez, 1973). The 

primary reaction, is production of reduced (NADH) by LDH when it catalyses the oxidation of 

lactate to pyruvate (figure 3.8). The secondary reaction, is a conversion of tetrazolium salt to 

a coloured formazan product using newly synthesized NADH in the presence of an electron 

acceptor.  

Figure 3.8: The principle of an LDH assay. Intracellular LDH is released into the extracellular 

matrix when cell membrane integrity is disrupted. Extracellular LDH is detected and measured 

by means of the oxidation of lactate which is associated to reduction of NAD to NADH which 

is then used to produce a coloured substrate iodonitroteformazan (INT formazan) quantifiable 

via colorimetric analysis. (Prepared by Author). 
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3.5.2 Protocol  

Extracellular levels of LDH were quantified using a Cytotoxicity Detection Kit (11644793001) 

(Roche, Mannheim, Germany). The supernatant (100 µl) from control or treated sample was 

added into a microtiter plate in 4 replicates. The substrate mixture (100 µl) consisting of a 

catalyst (diaphorase/NAD+) and a dye solution (INT/sodium lactate) was added to the 

supernatant (cell culture medium) and the mixture was allowed to react at RT for 25 min. 

Optical density was measured at 500 nm wavelength (Microplate reader -Bio-Teck µQuant) 

and results were presented as mean optical density. 

 

3.6 Protein expression - Western Blotting.  

3.6.1. Introduction  

Western Blot is a very important laboratory technique used in cellular and molecular biology. 

It is a technique followed to identify the expression of specific proteins from a complex mixture 

extracted from the cells. In this technique, proteins are separated through a gel based on their 

molecular weight (Burnette, 1981). Separated proteins are electro-transferred to a firm 

membrane which is probed by antibodies (Abs) that bind to the targeted specific proteins. The 

detection of the protein of interest is magnified in a membrane where the chemiluminescence 

is developed using a substrate that binds to an enzyme attached to the Ab. Proteins are 

represented in a membrane as bands and the band width is linearly related to the 

concentration of the respective protein.  

 

3.6.1.1 Protein quantification - Bicinchoninic Acid (BCA) Assay 

 

The Bicinchoninic Acid (BCA) assay was used to quantify the crude protein in samples. The 

BCA assay allows for the measurement of Cu+ production which result when peptide bond in 

a sample react with Cu2+ under alkaline conditions (figure 3.9) (Hill and Straka, 1988). Two 

BCA molecules react with the Cu+ chromophore to produce a purple chromophore, which can 

be measured at 562 nm. The interaction between BCA, Cu2+ with the amino acid residues 

(Tryptophan, Tyrosine and Cysteine) in the protein sample result in the production of the 

purple colour and can be measured in a spectrophotometer (Bainor et al., 2011). The intensity 

of the colour is directly proportional to the concentration of the proteins.  
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Figure 3.9: The principle of the BCA assay used to quantify protein concentration. Prepared 

by Author. 

 

 

3.6.1.2 SDS – Protein Denaturing  

This technique allows for the separation of macromolecules in an electric field via 

electrophoresis. The separation of proteins by electrophoresis uses an immobile 

polyacrylamide gel as a medium and sodium dodecyl sulphate (SDS) which binds to the 

polypeptide to denature the proteins by disturbing the non-covalent bonds (figure 3.10) 

(Mahmood and Yang, 2012, Burnette, 1981). The negative charge of SDS causes the proteins 

to be strongly attracted towards the anode (positively charged) in an electric field.  
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Figure 3.10: The denaturing of proteins by SDS, producing the negatively charged unfolded 

protein version (Laemmli, 1970).  

 

3.6.1.3 Protein Separation 

PAGE (Polyacrylamide Gel Electrophoresis), is an analytical technique used to separate 

components of a protein mixture according to their sizes in a gel. For the formation of the gel, 

there is a polymerization of reaction, based on bis-acrylamide, which forms cross-links 

between two acrylamide molecules. The concentration of bis-acrylamide is inversely 

proportional to the pore sizes in the gel. PAGE is made of 2 gels: stacking and separating gel 

(Mahmood and Yang, 2012). Above, is a slightly acidic (pH 6.8) stacking gel which contains a 

lower concentration of acrylamide making a porous gel, that separates protein poorly yet 

allows them to form sharply, thin clear bands (Kurien and Scofield, 2006). The lower gel is 

called the resolving gel. This one is basic (pH 8.8) and has a higher concentration of 

polyacrylamide, making the gel's pores thinner (figure 3.11). Proteins are therefore separated 

by their sizes this in gel with the smaller proteins allowed to travel more easily, and rapidly 

than larger proteins. 
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Figure 3.11: The migration of proteins in the polyacrylamide gels. Smaller proteins (bands) 

migrate faster towards the anode than larger proterns. Prepared by Author.  

 

3.6.1.4 Protein transfer  

Following the separating the protein mixture, the transfer of proteins to a membrane protein 

takes place. The proteins are electrically transferred from the resolving gel to the nitrocellulose 

membrane (figure 3.12). Negatively charged proteins to migrate out of the gel and onto the 

nitrocellulose membrane. The proteins that are transferred from the gels become stationary at 

their corresponding migratory positions at a time point when the electric current on the gel run 

is stopped.  
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Figure 3.12: Transfer of proteins from resolving gel to nitrocellulose membrane. Proteins are 

transferred from the gel to the membrane in contact with the gel. Prepared by Author.  

 

3.1.1.5 Immuno-Blotting 

Upon completion of protein transfer to a membrane, the target protein is immunoprobed using 

specific Abs. Prior to immune-probing, it is required to block the membranes where the protein 

did not bind to prevent non-specific binding of antibodies. An unlabelled primary antibody is 

applied to the membrane for the protein of interest and a species specific, and labelled 

secondary antibody is directed against the primary anti-body (Mahmood and Yang, 2012, 

Kurien and Scofield, 2006). The secondary antibody is conjugated with horseradish 

peroxidase (HRP) (figure 3.13), which oxidises luminol to generate light and serve as a carrier 

of the label and is involved in signal amplification, since in theory, many secondary antibodies 

can simultaneously bind to a single primary antibody.  
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 Figure 3.13: The chemiluminescence detection of the target specific protein through the 

primary and secondary antibodies. Prepared by Author.  

  

3.6.2 Protocol  

3.6.2.1 Protein Isolation  

Firstly, total protein was isolated from the previously cultured HepG2 cell lysates, Cytobuster™ 

reagent (catalogue no. 710093, Novagen, San Diego, CA, USA), supplemented with protease 

(0589279100) and phosphatase inhibitor (04906837001) Roche, Germany, as per 

manufacturer’s instructions. Cytobuster reagent (200 μl) was added to cells in a 25 cm3 flask 

and left on ice for 30 min. The cells were lysed mechanically, scrapped out of the flask, and 

centrifuged (4°C, 10 min, 10,000 x g) to isolate the crude protein extract from the HepG2 cells.  

 

The supernatant containing the crude protein was aspirated into a fresh 1.5 ml microcentrifuge 

tubes and kept at -80˚C overnight. Samples were left at RT and  allowed thaw and used for 

protein quantification using a Bicinchoninic Acid (BCA) assay (Sigma, Germany) (Bainor et 

al., 2011). Bovine serum albumin (BSA) was used to prepare protein standards (0, 0.2, 0.4, 

0.6, 0.8, 1 mg/ml) to measure the generate the calibration curve. Both the standards and 

samples were incubated with a working solution (BCA and CuSO4) at 37°C for 30 min and the 

OD was measured using a μQuant Biotek ELISA plate reader set at a wavlenght of 562 nm. 

The OD values obtained for the standard were used to generate the standard curve used to 
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determine the concentration of the total protein in samples. The samples were subsequently 

standardised to a concentration of 1.5 mg/ml.  

Samples were prepared in Laemmli buffer (dH2O, 0.5M Tris-HCl (pH 6.8), glycerol, 10% SDS, 

β-mercaptoethanol, 1% bromophenol blue]) and electrophoresed (150V, 1 hr) in sodium-

dodecyl-sulphate polyacrylamide gels (4% stacking, 10% resolving) using BioRad compact 

power supply. Denatured protein samples were then separated via SDS-PAGE; firstly, 7.5% 

resolving gel was prepared [dH2O, 1.5 M Tris, 10% SDS, Bis/acrylamide, 10% ammonium 

persulphate (APS), tetramethylene diamine (TEMED)] and allowed to polymerise (1 hr). 

Thereafter, 4% stacking gel was prepared (dH2O, 0.5 M Tris, 10% SDS, Bis/acrylamide, 10% 

APS, TEMED) and added on top of the resolving gel (1 hr). Protein samples were then 

subjected to an electric field (150 V, 1 hr) using a Bio-Rad compact power supply. To facilitate 

the electric field by providing conducting ions, 1 x running (electrode) buffer (dH2O, Tris, 

glycine, SDS, 4°C) was used during electrophoresis.  

Electrophoresed protein bands were then electro-transferred from the resolving gel to a 

nitrocellulose membrane. Prior to that, there was an equilibration of the membranes, fibre pads 

and gels in transfer buffer (dH2O, Tris, glycine, methanol, pH 8.3, 4°C) for 10 min. Following 

transfer, of the protein to the nitrocellulose membrane, the membranes were blocked in 

blocking buffer consisting of 5 % BSA (phosphorylated proteins) or 5% non-fat dry milk 

(NFDM) in TTBS [TTBS; 150 mM NaCl, 3 mM KCl, 25 mM Tris, 0.05% Tween 20, dH2O, pH 

7.5]; for 1 hr at RT with gentle shaking probed with primary antibody against p-NRF2 and total 

NRF2 [(ab76026, Abcam and ab31163, Abcam respectively); 1:5000 dilution in 1% BSA] and 

against SOD2, CAT and Sirt3 [(HPA001814, Sigma-Aldrich; C0979, Sigma-Aldrich and 

ab86671, Abcam1)] :1000 in 5% NFDM then overnight at 4oC. Membranes were washed with 

TTBS (5 x, 10 minutes) and then incubated with secondary antibody conjugated to HRP [goat 

anti-mouse (31800): 1:10 000 dillution in 5% NFDM, goat anti-rabbit (ab6112) 1:10 000 

dillution in 1% BSA and 5% NFDM] for 1 h RT on shaker. 

The membranes were then washed with 10 ml TTBS, (5 x, 10 minutes). The Clarity Western 

Enhanced Chemiluminescence (ECL) substrate (Catalogue no. 1705061, Bio-Rad) was used 

to detect the reaction in the Biorad ChemiDoc. Protein expression (bands) was analysed in a 

BioRad ChemiDoc. Membranes were stripped with 5% H2O2 for 30 min, 37 ˚C, incubated in 

blocking solution (5% NFDM; 1 h; RT), rinsed thrice in TTBS and probed with HP-conjugated 

antibody for the house-keeping protein, β-actin (Sigma). The relative band intensity was 

normalised against β-Actin. Results were expressed as Relative band density (RBD) which is 

he ratio of the band density of a protein sample to that of a standard protein. 
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3.7 Gene expression – Quantitative polymerase chain reaction 

3.7.1 Introduction  

Quantitative polymerase chain reaction (qPCR) is used to simultaneously detect a specific 

target DNA sequence in a sample and determine the absolute copy number of this sequence 

relative to that of a standard. qPCR use the linearity of DNA amplification to determine actual 

or quantities of a known sequence in a sample. In qPCR, DNA strand is generated as the DNA 

polymerase stretches primers of DNA and initiate the PCR reaction (Ramakers et al., 2003). 

 

PCR consists of a process of heating and cooling named thermal cycling which is done by 

machine. Here are the three main stages of qPCR (figure 3.14). 

1. Denaturing – The two-stranded DNA template is heated (90 ˚C) to divide it into two 

single strands. 

2. Annealing – The temperature is optimized to the specificity of the primer, allowing the 

complementary primers to bind to the target sequence of the template DNA. 

3. Extension – The temperature is elevated to 72 ˚C and the new strand of DNA is 

synthesised from the annealed primers by the enzyme DNA polymerase. The DNA 

copy of interest is amplified in each cycle, resulting in an exponential amplification of 

the original DNA fragment. 
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Figure 3.14: The Illustration showing the main steps in the qPCR. Prepared by Author.   

 

Firstly, the RNA is extracted from the cells and used to generate single stranded (ss) 

complementary DNA strand (cDNA). This strand is used in the amplification of DNA (figure 

3.15). Following the amplification of DNA, SYBR Green, dsDNA-binding dye is used for the 

quantification of the DNS. SYBR green is believed to bind to the minor groove of dsDNA and 

upon binding, it increases its fluorescence by over a hundred folds (Maeda et al., 2003). This 

allows the measurement of the targeted gene expression. qPCR differs from conventional 

PCR in that by using this fluorescent probe (SYBR green) it allows one to not only amplify the 

PCR product, but quantify it as well. 
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Figure 3.15: Florescence detection of dsDNA. Prepared by Auther  

 

 

3.7.2 Protocol 

3.7.2.1 RNA extraction  

RNA was isolated from treated HepG2 cells using an in-house protocol. Qiaizol (Qiagen, 

Hilden, Germany) reagent (500 µl) was added to each flask and incubated for 15 min, RT. 

Cells were scrapped out of the flask and transferred to a 1.5 ml microcentrifuge tubes, and 

stored in stored in Qiazol at -80˚C overnight. In the phase separation step, samples were 

thawed down at RT prior to addition of chloroform (100 µl) to each sample. Samples were then 

shaken vigorously for 15 sec, incubated at RT (3 min) and centrifuged (15 min, 12 000 x g, 

4˚C).  

 

The aqueous phase containing RNA was carefully transferred to a new 1.5 ml microcentrifuge 

tubes. RNA precipitation step: Isopropanol (250 µl) was added to each sample and incubated 

of samples at -80˚C overnight. This was followed by the RNA washing step, wherein samples 

were thawed at TR samples and centrifuged 12 000 x g, 4˚C for 20min. The supernatant was 

discarded, pellet washed with 75% ethanol (500 µl) and centrifuged 7 400 x g, 15 min, 4˚C. 

Ethanol was removed and the samples were allowed to air dry under the hood. The pellets 

were then resuspended in nuclease free water (15 µl) and incubated at -80˚C overnight. The 
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RNA was quantified using the Nanodrop2000 spectrophotometer (Thermo-Scientific) and the 

A260/A280 nm ratio was used to standardize the RNA concentration to 1000 ng/ml.  

 

Standardized RNA samples were used to synthesize complementary DNA (cDNA) using a 

commercially available kit (iScript™ cDNA Synthesis kit, BioRad; catalogue no 107-8890). A 

20 µl reaction volume containing 1 µl RNA template, 4 ml 5X iScript™ reaction mix, 1 µl iScript 

reverse transcriptase and nuclease-free water was made up. Thermocycler conditions were 

25˚C for 5 min, 42˚C for 45 min, 85˚C for 5 min and a final hold at 4˚C.  

 

3.7.2.2 cDNA Synthesis  

Gene expression of NRF2 [ sense 5’-AGTGGATCTGCCAACTACTC-3’; antisense 5’-

CATCTACAAACGGGAATGTCTG-3’) (58 ˚C)], SOD2 [Sense 

5’GAGATGTTACACGCCCAGATAGC-3’; Antisense 5’AATCCCCAGCAGTGGAATAAGG-

3’(57 ˚C)], CAT [Sense5’-TAAGACTGACCAGGGCATC-3’; Antisense 

5’CAACCTTGGTGAGATCGAA-3’ (58 ˚C)], and GPx [Sense 

5’GACTACACCCAGATGAACGAGC- 3’; Antisense 5'CCCACCAGGAA CTTCTCAAAG-3’(58 

˚C)] were evaluated using the iQ™ SYBR® Green PCR kit (BioRad; 170-880). 

 

3.7.2.3 Quantitative PCR  

The following thermocycler profile was used to initiate PCR: An initial denaturation for 8 min 

at 95 ˚C followed by 39 cycles of 95 ˚C denaturations for 15 sec and annealing for 40 sec at 

57˚C for SOD2 and 58˚C for both CAT and GPx. Denaturing was followed by the extension at 

72 ˚C for 30 sec. At 70ºC, the final extension was performed for 30 sec. Each measurement 

was performed in triplicates and then normalized against β-actin, which was assessed under 

similar conditions and used as a housekeeping gene. Data was analysed and presented as 

fold change relative to the housekeeping gene, β-actin (Sense5‟-

TGACGGGTCACCCACACTGTGCCCAT-3‟, Anti sense5 

‟CTAGAAGCATTTGCGGTGGACGATGGAGGG-3‟). 

 

3.8. Statistical analysis  

For data analysis,GraphPad prism V5.0 software (GraphPad Software Inc., La Jolla, USA.) 

was used. Data was considered to be statistically significant with a p value < 0.05. Unpaired 

t-test with Welch correction (data reported as mean ± standard deviation) or the one-way 

analysis of variance (ANOVA) followed by a Bonferroni test for multiple group comparison 

(data is presented as 95% CI) was used to determine statistical significance. 
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CHAPTER FOUR 

RESULTS  

 

4.1 Mitochondrial output 

Cell viability and intracellular ATP levels were assessed to examine the effect of DON on the 

mitochondrial productivity. 

4.1.1: Cell Viability Assay 

A serial dilution of DON (0, 2.5, 5, 10, 25, 50, and 100 µM) was used to determine a dose-

response (MTT assay) in HepG2 cells. The analysis of the dose-response curve revealed that 

DON caused a 50% metabolic activity inhibition (IC50) at 26.17 µM, over 72 hr (figure 4.1). 

This IC50 value was selected for the subsequent experiments because it showed a better 

response of the cell viability compared to the 24 hr and 48 hr.  
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Figure 4.1: The induction of a dose-dependent decline in HepG2 cell viability was observed. 

HepG2 cells were treated with various concentrations of DON (0-100µM) over 72 hr.  
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4.1.2 ATP assay 

The intracellular concentration of ATP in HepG2 cells exposed to DON (26.17µM, 72 hr) was 

assessed by using luminometry. DON significantly reduced the ATP levels in HepG2 cells with 

a 1.92-fold decrease, (4890130 ± 4449970 RLU) compared to the control (1.00x107 ± 9586910 

RLU) (figure 4.2) 
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Figure 4.2: The exposure of HepG2 cells to DON (26.17 µM, 72 hr) caused a significant 

decrease in the intracellular concentration of ATP, ***p =0.0002.  

 

4.2 Cellular redox status 

The effect of DON in HepG2 cells on oxidative stress was assessed by measuring a by-

product of lipid peroxidation (MDA) and the main endogenous antioxidant, GSH. 

4.2.1 Lipid peroxidation  

Extracellular levels of MDA were measured using the TBARS assay. There was membrane 

damage following the exposure of HepG2 cells to DON (26.17 µM; 72 hr). DON significantly 

increased the extracellular levels of MDA in DON-treated HepG2 cells compared to the control 

by 1.89-fold, (0.6538 ± 0.1678 mM vs 0.1423 ± 0.0588 mM) (figure 4.3).  
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Figure 4.3: DON significantly increased the extracellular levels of MDA in HepG2 cells after a 

72-hr period, *p= 0.0104 

 

 

4.2.2 Intracellular GSH 

Intracellular concentration of GSH was measured using luminometry. DON significantly 

decreased the intracellular concentration of GSH in HepG2 cells as compared to the controls 

over a period of 72 hr (figure 4.4; 27.724 ± 26.372 M vs 14.023 ± 12.234 M) with a 1.77-

fold decrease.  
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Figure 4.4: DON significantly reduced the intracellular concentration of GSH in HepG2 cells 

over a 72-hr period, ***p =0.0005. 

 

4.3 Cytotoxicity  

4.3.1: Cell membrane integrity and Cell death  

Exposure of HepG2 cells to DON led to the induction of membrane damage and the leakage 

of LDH (and an indicator of cell membrane damage). DON significantly increased extracellular 

levels of LDH compared to the control by 1.35-fold, treatment (3.567 ± 3.990 OD), control 

(2.715 ± 2.825 OD); (figure 4.5).  The increased extracellular levels of MDA assessed also 

reveal that DON causes the disruption of the membrane integrity. 
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Figure 4.5: DON significantly increased the extracellular levels of LDH in HepG2 cells after 72 

hr exposure, *p =0.0207. 
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4.4 Mitochondrial stress response – Sirtuin 3 

Sirt3 is a primarily mitochondrial NAD+-dependent acetyl-lysine deacetylase that modulates 

various proteins involved in mitochondrial function and antioxidant defence (Kim et al., 2010, 

Verdin et al., 2010a). Western blotting analysis showed a significant decrease in Sirt3 protein 

expression with a 0.14-fold treatment (0.1541 ± 0.1308 RBD) compared to control (0.2664 ± 

RBD) (figure 4.6; p =0.0058). 

 

 

 

 

 

 

 

 

 

Figure 4.6: A significant decrease of Sirt3 expression in HepG2 cells after exposure to DON 

over 72-hour period was observed (**p= 0.0058). 

  

4.5 Endogenous antioxidant response 

4.5.1 NRF2 

NRF2 is considered the master regulator of the antioxidant response. Phosphorylated NRF2 

(p-NRF2) is marked for dissociation from its cytosolic inhibitor Keap1, allowing NRF2 to 

translocate to the nucleus and bind to the ARE; thus, allowing the transcription of several 

antioxidant genes. We assessed protein expression of p-NRF2 and NRF2, as well as 

downstream antioxidants regulated by this pathway. 

Phosphorylated-NRF2 (active) was significantly decreased by 0.74-fold, (DON 0,7403 ± 

0,05104 vs control 1,509 ± 0,1807 RBD, p =0.0193,) (figure 4.7A), and total NRF2 protein 

levels were significantly decreased by 0.30-fold (0.3132 ± 0.2858 RBD; p =0.0017) in DON 

treated HepG2 cells compared to control cells (0.9358 ± 0.8673 RBD; figure 4.7B). The p-

NRF2 normalised against the total NRF2, was significantly increased by a 3.54-fold (DON: 

3.9228 ± 3.1953 vs Control: .2625 ± 0.9991 RBD; p =0.0085; figure 4.7C). 
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Figure 4.7: DON significantly reduced p-NRF2 (A) expression in HepG2 cells over a 72-hr 

period of exposure (*p= 0.0193). DON significantly reduced the total NRF2 (B) expression in 

HepG2 cells over a 72-hr period of exposure (**p =0.0017). The Comparison of pNRF2 to total 

NRF2 (C) showed that DON significantly increased the expression of p-NRF2 in HepG2 cells 

(**p= 0.0085).  
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4.5.2. NRF2 target genes 

The first enzymatic response to detoxifying superoxide in the mitochondrion is SOD2. 

Quantitative PCR results showed DON significantly decreased SOD2 mRNA levels by (2-Ct 

= 0.063-fold; p =0.0020; figure 4.8 B); while Western blot data showed a similar trend in SOD2 

protein levels (DON: 1.2886 ± 1.1942 vs Control = 0.0937 ± 0.0843; 0.02-fold, p= 0.0137 figure 

4.80A)  

 

 

 

 

 

 

Figure 4.8: A significant decrease in SOD2 protein expression (A) and SOD2 mRNA levels (B) 

in HepG2 cells after exposure to DON over 72 hr period (*p=0.0137; **p= 0.0020) 

 

Detoxification of H2O2 is mediated by CAT. Protein levels of CAT were reduced significantly 

by DON (DON 0,3304 ± 0,06479 vs control 1,249 ± 0,04895, 0.33-fold, p =0.0003; figure 4.9A) 

with a concomitant reduction in CAT mRNA levels (2-Ct = 0.021-fold; p =0.0050; figure 4.9B). 
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Figure 4.9: DON significantly reduced the protein expression (A) and mRNA levels (B) of 

catalase in HepG2 cells over a 72-hr period of exposure (**p=0.005; ***p = 0.0003). 

 

The mRNA expression of GPx, which regulates GSH functioning and detoxification of H2O2 

was assessed using qPCR. There was a significant decreased in GPx mRNA after the 

treatment of HepG2 cells (2-Ct = 0.036-fold; p =0.0006 (figure 4.10). 
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Figure 4.10: DON significantly reduced the expression of GPx in HepG2 cells, (***p =0.0006). 
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CHAPTER 5 

DISCUSSION 

 

DON is a common contaminant of food and feed and has severe consequences in both human 

and animal health. DON is produced by Fusarium species and it affects agricultural foods 

(Bennett and Klich, 2003). The majority of studies evaluating DON toxicity has focussed on 

the immune system (Pestka et al., 2004, Bracarense et al., 2017), kidney (Liang et al., 2015) 

and brain cells (Bonnet et al., 2012a, Pinton and Oswald, 2014) as well as intestinal cells 

(Flannery et al., 2012). Known molecular outcomes of DON exposure include oxidative stress 

and the inhibition of protein translation synthesis (Mishra et al., 2014, Zhang et al., 2009). 

The MTT assay measures cell viability based on the cell’s ability to reduce yellow MTT salt to 

purple formazan using mitochondrial NADPH-dependent oxidoreductase (Mosmann, 1983). 

Our studies show that DON decreases cell viability in a dose-dependent manner, with a strong 

decrease between 8 to 30 µM (figure 4.1). The decrease in metabolic activity in DON exposed 

HepG2 cells may be caused by the impaired mitochondria and the reduced functioning of the 

Kreb’s cycle. This leads to decreased products of reducing equivalents required for MTT salt 

reduction to produce the purple formazan products.  

 

DON, like T-2 toxin, is a trichothecene. Both toxins share similar basic structures and DON 

might mimic the binding of T-2 toxin and inhibit the succinate dehydrogenase in the Krebs 

cycle by influencing the mitochondrial proton gradient. T-2 toxin inhibits mitochondrial electron 

transport system by inhibiting the functioning of mitochondrial succinate dehydrogenase 

activity and complex (II) leading to an increase mitochondrial NADH dehydrogenase activity 

(Pace, 1983, Koshinsky et al., 1988). The chemical structure of DON contains 3 hydroxyl 

groups (-OH), which are linked to its toxicity (Sobrova et al., 2010). These hydroxyl groups 

may also be responsible for the impairment of the mitochondrial function.  

 

DON is a weak acid under physiological conditions, causing change in pH leading to increase 

in ion pump into the electron transport chain, therefore increasing mitochondrial ROS 

production. The results in this study show a significant increase of extracellular MDA, a by-

product of lipid peroxidation and a biomarker of oxidative stress (figure 4.3). The common 

target of Fusarium-derived toxins is the mitochondria (Kouadio et al., 2005), which is one of 

the most important cellular sources of ROS production and particularly susceptible to oxidative 

stress (Cadenas and Davies, 2000). A strong ROS production leads to oxidative modification 

of lipids in cellular membranes. This type of interaction yields lipid peroxides. DON increased 
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extracellular MDA levels in HepG2 cells, indicating oxidative damage to lipid membranes. This 

study is in agreement with the study done by (Zhang et al., 2009) who showed a significant 

increase of extracellular MDA in HepG2 cells treated with DON.  

 

The current study showed a significant decrease in intracellular ATP concentrations in DON 

exposed HepG2 cells (figure 4.2). DON, through its methanol group, may decrease the 

availability of all oxidative phosphorylation complexes, contributing to the decline in the 

functioning of the oxidative phosphorylation system and suppressed rates of ATP synthesis. 

This study is in agreement with the study that displays that the reduced activity of the electron 

transport chain is linked to the decrease in ATP-production in an electron transport chain. The 

similar study was done in IPEC-J2 cell line, where ATP was reduced after a 48 hr exposure to 

DON  (Awad et al., 2012). 

 

In the present study, HepG2 cells responded to DON with an increase in the release of LDH 

into the culture medium (figure 4.5). LDH is an enzyme found in the cytoplasm of healthy cells 

with intact cell membranes, catalysing the conversion of lactate to pyruvic acid and vice versa 

(Bagchi et al., 1995). An increase in extracellular LDH levels indicates cell membrane damage 

caused by lipid peroxidation. DON causes lipid peroxidation through increasing the levels of 

ROS. The study on HepG2 and IPEC-J2 cell lines is in agreement with these results (Königs 

et al., 2008, Awad et al., 2012). 

GSH is the main non-enzymatic antioxidant defence in HepG2 cells and plays a crucial role in 

protecting cells against oxidative stress (Scharf et al., 2003). It is a substrate in GPx-catalysed 

detoxification of organic peroxides (Scharf et al., 2003, Alía et al., 2005), reacting with free 

radicals and repairing free radicals-induced damage through electron transfer reaction. GSH 

reduction or depletion reflects intracellular oxidative stress (Alía et al., 2006). In this 

experimental study, treatment of HepG2 cells with DON led to the generation of ROS with a 

significant decrease in intracellular GSH concentrations observed (figure 4.4), strongly 

supporting that DON causes oxidative stress. 

 

Glutathione peroxidase (GPx) converts GSH into oxidized glutathione (also called glutathione 

disulphide, GSSG) and during this process, reduces H2O2 to H2O and lipid hydroperoxides 

(ROOH) to corresponding stable alcohols (Bhattacharyya et al., 2014), leading to a reduction 

in oxidative stress (Miyamoto et al., 2003). Our study showed a significant decrease in the 

gene expression of GPx (figure 4.10). This GPx reduction is concomitant with the GSH 

reduction, which implies that cells experienced an increase in intracellular ROS hence 

oxidative stress. The reduction of GPx is accompanied by an increase of oxidative stress 
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(Yildirim et al., 2011). These data display that DON reduced the antioxidant defence in HepG2 

cells.  

 

The ability of HepG2 cells to induce NRF2 mediated antioxidant response against oxidative 

stress was downregulated. DON significantly decreased the expression of NRF2 (figure 4.7B). 

It exerts its toxicity by binding to the A site of the 28S ribosomal subunit and inhibits peptidyl 

transferase, leading to an inhibition of protein elongation [(Pestka, 2010, Bonnet et al., 2012b, 

Zhang et al., 2016)]. The observed reduction may be due to the inhibition of protein translation. 

Although NRF2 protein levels were significantly downregulated; it was found that active p-

NRF2 expression was significantly higher in DON-treated HepG2 cells (figure 4.7A). This 

implies that a higher level of NRF2 is present in the activated form due to oxidative stress. 

NRF2 is phosphorylated when free radicals interact with cysteine residues, binding NRF2 to 

Keap1 in the cytoplasm. This NRF2 translocates to the nucleus and binds to ARE in the 

promoter region in DNA, and transcribes the synthesis of the cytoprotective enzymes, 

including SOD and CAT (Tang et al., 2014). There was a significant decrease in the 

expression of NRF2 targets: CAT and SOD2 at both protein and mRNA levels (figure 4.9 and 

4.8) respectively. The reduction of these cytoprotective enzymes supports downregulation of 

an NRF2 response mechanism. 

 

SOD2 plays an important role in protecting against cellular damage by ionising radiation. The 

decrease of SOD2 also supports that DON does affect the cell via the mitochondrial pathway. 

This is in agreement with the decrease of Sirt3 expression noted in this study. Sirt3 controls 

NAD+ dependent mitochondrial substrate deacetylation and attenuates ROS by deacetylating 

and activating SOD2 and CAT ultimately supplementing the synthesis of these enzymes in 

response to oxidative stress (Verdin et al., 2010b, Zhong and Mostoslavsky, 2011). The 

decrease in the expression of Sirt3 might also contribute to the downregulated production of 

SOD2 and CAT.  

 

Sirt3 is a NAD+-dependent acetyl-lysine deacetylase primarily located in the mitochondrion. 

Sirt3 modulates mitochondrial biogenesis, antioxidant and unfolded protein response via its 

deacetylase activity (Kim et al., 2010, Verdin et al., 2010a). Our study shows a significant 

decrease in the protein expression of Sirt3 in HepG2 cells exposed to DON (figure 4.6). This 

offers further support that DON has mitochondrial-linked effects in HepG2 cells. Also, it 

supports that DON does downregulate the stress response protein expression, through the 

inhibition of protein translation. 
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Figure 5.1: The schematic summary of the biochemical effect of DON on HepG2 cells. An 

induction of oxidative stress, protein translation synthesis inhibition, mitochondrial dysfunction, 

downregulation of the NRF2-induced cytoprotective response and membrane integrity 

disruption. Prepared by Author  
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CHAPTER 6 

CONCLUSION 

 

Mycotoxin contamination is a serious problem for agricultural commodities globally, due to 

their adverse health effects on humans and animals which ultimately compromise food safety 

and security. The eradication of mycotoxins during food processing is not entirely achieved 

due to factors such as the lack of proper equipment and nature of mycotoxin. Developing 

countries like South Africa are prone to mycotoxin contamination, as a result of inadequate 

facilities to reduce the contamination of mycotoxins. The population in rural areas is highly 

dependent on maize (which is prone to DON contamination), making the population highly 

susceptible to mycotoxin exposure. 

 

DON is documented to have negative effects on human health. DON exerts toxic effects on 

micromolecular synthesis, cell signalling, and silencing of genes promoting programmed cell 

death. DON acts on cellular cytoplasm, it targets the A site of 28S ribosomal subunit and 

inhibits the functioning of the peptidyl transferase, hence the peptide elongation. DON is 

reported to exert its toxicity mostly through the induction of oxidative stress (Pestka et al., 

2004, Bracarense et al., 2017).  

For the first time, the NRF2 induced cytoprotective response to DON in HepG2 cells is 

revealed. DON reduced the primary antioxidant GSH and affected mitochondrial functioning, 

and as a result, triggered the elevation of ROS and concomitantly the impairment of 

intracellular ATP production. This study also revealed that DON induced lipid peroxidation and 

membrane damage which is primarily a consequence of oxidative stress.  

The study also revealed that DON affects phase (ll) endogenous antioxidant response to 

oxidative stress. The results indicated that DON suppresses the NRF2 expression, however, 

the increased presence of p-NRF2 indicates a response to oxidative stress. The 

downregulation of cytoprotective enzymes expression CAT and SOD2 in HepG2 cells was 

observed, and this downregulation is associated with the mechanism of DON in inhibiting 

protein synthesis. This indicates that DON-induced NRF2 protein expression depletion 

resulted in reduced expression of NRF2 target genes. 

Collectively, this study demonstrated that DON induced oxidative stress, promoting 

cytotoxicity, but most importantly, the study revealed that DON downregulates the NRF2-

induced cytoprotective response in HepG2 cells. The study might be limited by the period of 
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exposure (72 hr). Further studies on in vivo studies are required using laboratory animal model 

to further investigate the effect of DON in brain, kidney liver and lungs.   
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APPENDICES 

Appendix A 

Cell Viability Raw Data 

HepG2 cells were treated with serial dilution of DON (0-100 µM) over 24, 48 and 72 hr for the 

determination of an IC50 value 

 

Table 1: Effect of DON concentration on HepG2 cell viability after 24hr of exposure. 

DON concentration 

(µM) 

Log (DON) Average 

Absorbance  

% Cell Viability  

0 0 0,6595 100 

2.5 0,399 0,59975 90,94011 

5 0,699 0,6475 98,18044 

10 1 0,6055 91,81198 

25 1,399 0,4025 61,03108 

50 1,699 0,3845 58,30174 

100 2 0,1355 20,54587 
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Figure 1: DON dose dependent effect on HepG2 cell viability by DON, over 24-hr exposure  
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Table 2: Effect of DON concentration on HepG2 cell viability after 48hr of exposure. 

DON concentration 

(µM) 

Log (DON) Average 

Absorbance  

% Cell Viability  

0 0 0,8655 100 

2.5 0,399 0,72825 84,14211 

5 0,699 0.9 103,9861 

10 1 0,62475 72,18371 

25 1,399 0,27275 43,65746 

50 1,699 0,308 35,58637 

100 2 0,0176 
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Figure 2: DON dose dependent effect on HepG2 cell viability by DON, over 48-hr exposure  
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Table 3: Effect of DON concentration on HepG2 cell viability after 72 hr of exposure. 

 

DON concentration 

(µM) 

Log (DON) Average 

Absorbance  

% Cell Viability  

0 0 0,9844 100 

2.5 0,399 0,8888 90,2885 

5 0,699 0,9384 95,3271 

10 1 0,732 74,36002 

25 1,399 0,5904 59,97562 

50 1,699 0,4412 44,81918 

100 2 0,0264 2,681837 
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Figure 3: DON dose dependent effect on HepG2 cell viability by DON, over 72-hr exposure 
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Appendix B 

GHS Assay Raw Data 

Table 1: The serially diluted GSH used as standards absorbance values (RLU) 

GSH STANDARDS (µM) AVERAGE RLU 

0 870700 

3,125 1774005 

6,25 2348415 

12.5 3452800 

25 4769320 

50 6643900 

 

 

 

Figure 1: GSH concentrations standard curve representing average absorbance values 

(RLU). 
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Table 2: Absorbance values (RLU) of samples.  

SAMPLE  AVERAGE RLU 

CONTROL  4679123 

DON 2936870 

 

 

Appendix C 

Standard curve for protein isolation 

Known concentrations of Bovine Serum Albumin (BSA) were used to determine the 

concentration of the samples using the Bicinchoninic Acid (BCA).  

 

Figure 1: The standard curve of known concentration of BSA 
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