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Abstract 

 
Long-term food security and environmental quality are closely linked to maintaining soil 

quality. Therefore, the assessment of the effect of agricultural management practices on soil 

chemical, physical and biological parameters provide fundamental information about 

sustainability. An agricultural management practice which has received much attention in the 

last decade is tillage. The loss of topsoil due to erosion and a reduction of soil organic matter 

under conventional tillage practices, together with escalating fuel prices, have lead to the 

increased implementation of conservation tillage practices. However, the response of soil to a 

reduction in tillage is dependent on the inherent soil properties, environmental conditions, crop 

type and the land management practices. The successful implementation of conservation tillage 

practices is thus site specific. Furthermore, the effect of fertilizer application on soil quality is 

affected by tillage regime and therefore has important implications for recommendations of 

fertilizer application rates. The objectives of this study were to investigate the effect of tillage 

regime at three rates of nitrogen fertilization on soil microbial activity and selected soil physical 

properties in the Loskop area of KwaZulu-Natal, South Africa. Based on the outcomes of these 

investigations, recommendations regarding sustainable tillage practice and nitrogen fertilizer 

application rate are made. 

 

A field trial was initiated in 2003 on Gourton Farm in the Loskop area of KwaZulu-Natal on an 

area that was previously under annual conventional tillage and is currently planted to dry-land 

maize. The trial was arranged as a split plot experimental design with tillage regime (whole 

plots) replicated three times, and fertilizer type and application rate forming randomized sub-

plots within the whole plots. The trial was on a clay loam soil type (Hutton soil form). The 

effects of annual conventional tillage (CT1) and no-till (NT) at three rates of nitrogen (N) 

fertilizer (as limestone ammonium nitrate (LAN)) applied at rates of 0 kg N ha-1 annum-1 (0N), 

100 kg N ha-1 annum-1 (100N) and 200 kg N ha-1 annum-1 (200N) were evaluated for their 

effects on soil organic carbon (SOC), microbial activity, bulk density (ρb), water retention 

characteristics, saturated hydraulic conductivity (Ks), micro-aggregate stability and soil 

penetration resistance.  

 

Undisturbed soil cores were taken from three inter-rows in triplicate from each sub-plot for the 

A horizon (0 to 20 cm) and from three inter-rows in duplicate for the B horizon (20 to 40 cm). 

These undisturbed soil cores were used to determine the ρb, water retention characteristics and 
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Ks. Bulk soil samples were collected from three inter-rows in triplicate from each sub-plot for 

the A (0 to 20 cm) and B (20 to 40 cm) horizons. The bulk samples from each horizon in each 

sub-plot were thoroughly mixed and halved. One half was used to determine microbial activity 

as measured by the hydrolytic and cellulolytic activity and the other half was used to determine 

SOC content, particle size distribution and aggregate stability. Penetration resistance was taken 

in duplicate in three rows in each sub-plot at 1 cm increments to a depth of 50 cm or until an 

instrument limiting penetration resistance of 5000 kPa was reached. 

 

Tillage regime and N application rate considerably affected soil microbial and physical 

properties in the A horizon (0 to 20 cm). The SOC, hydrolytic activity and ρb are significantly 

greater (P < 0.05) under NT than under CT1. Cellulolytic activity, aggregate stability and 

penetration resistance show a similar trend. Water content at saturation and Ks were 

considerably lower under NT than under CT1 and greater plant available water was retained 

under NT. In the A horizon, the amount of SOC, the hydrolytic and cellulolytic activity, ρb and 

water retention for the 200N treatment are significantly lower than at the lower rates of N 

application, especially under NT. A similar trend exists for Ks and aggregate stability. In the B 

horizon, the effect of tillage had no significant (P > 0.05) effect on the soil microbial activity 

and physical properties except for Ks, where the Ks is significantly (P < 0.05) higher under NT 

than under CT1. Similarly, fertilizer rate had no significant effect (P > 0.05) in the B horizon on 

the measured soil microbial activity and physical properties except for the penetration 

resistance. Increasing levels of fertilizer resulted in increased penetration resistance throughout 

the soil profile under NT. Under CT1, this same trend is evident from below the plough layer.  

 

These results indicate that the microbial activity, as measured by hydrolytic and cellulolytic 

activity, is improved under NT compared to CT1. Furthermore, the soil under NT retains more 

plant available water (PAW) and although the ρb and penetration resistance are greater there was 

no obvious adverse effect on maize growth. In addition, a high rate of LAN fertilizer adversely 

affected soil microbial and physical properties, especially under NT. Therefore, it is proposed 

that NT is the preferred tillage practice in providing long-term sustainability and soil health 

without causing negative soil structural properties for crop productivity in the short-term. In 

addition, it is recommended that although increased levels of nitrogen fertilizer results in higher 

yielding maize plants it is unsustainable to apply high applications of LAN due to the negative 

effect on the soil microbial and physical properties and thus there is a need to re-evaluate the 

sustainability of using high rates of LAN to increase crop yields, especially under NT systems. 
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Chapter 1 
Introduction 

 

Global human population expansion and the associated increase in environmental degradation 

have led to the need for agricultural practices that promote food security and, at the same time, 

ensure that the quality of the environment does not deteriorate (Fowler and Rockstrom, 2001). 

Consequently, a large body of literature has accumulated on the sustainability of various 

agricultural practices and their long-term effects on soil and environmental quality (inter alia: 

Jackson et al., 2003; Spedding et al., 2004; Riley et al., 2008; Fuentes et al., 2009). Much of the 

published literature focuses on the role of different tillage systems, with the emphasis placed on 

conservation tillage in commercial farming systems in developed countries. However, there is a 

deficit of similar research on the African continent, where agro-ecological and socio-economic 

conditions differ markedly from those experienced in developed countries (Fowler and 

Rockstrom, 2001).  

 

The effects of tillage on soil physical, chemical and biological properties are a function of soil 

properties, environmental conditions and the type and intensity of the tillage system (Ishaq et 

al., 2002). Ishaq et al. (2002) state that the contradictory results of tillage effects on soil 

properties found in the literature “may be due to differences in crop species, soil properties, 

climatic characteristics and their complex interactions”. Therefore, it is necessary to examine 

the long-term effects of tillage at different locations and under various environmental and soil 

conditions so that more accurate generalizations can be made regarding the conditions required 

for sustainable tillage systems (Ishaq et al., 2002).   

 

Much of South Africa has a semi-arid climate, where approximately 60 % of the country 

receives less than 600 mm of rainfall per annum (Food and Agricultural Organization, 2009). 

Consequently, inadequate moisture is the major factor limiting crop growth. This, coupled with 

increasing soil degradation under conventional agricultural systems, has resulted in the 

recognition that agricultural practices which conserve water and promote soil quality need to be 

employed (Fowler, 1999). These practices include conservation tillage, residue retention, crop 

rotation, correct inorganic and organic fertilizer use and appropriate land-use (inter alia: 

Bescansa et al., 2006; Govaerts et al., 2007; Fuentes et al., 2009; Riley et al., 2008). 

 

Doctor J.B. Mallet initiated the first no-till research at Cedara in KwaZulu-Natal in the early 

1970’s and found that crop yield under no-till was greater than that under conventional tillage in 
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the seasons when soil moisture was limiting. His studies also showed that the production cost 

under no-till was lower than under conventional tillage. Despite these benefits, many farmers 

remained reluctant to adopt no-till as there was concern over the carry-over of diseases to the 

following seasons crop. After this initial research, escalating fuel prices encouraged further 

investigation of tillage practices and led to the establishment of the Conservation Farming 

Committee in the Western Cape and the No-Till Club in KwaZulu-Natal. With the help of the 

Department of Agriculture, universities, non-government organizations and some commercial 

companies, these two organizations are providing the information, through research, to promote 

sustainable agriculture in South Africa (African Conservation Tillage Network (ACT), 2001). 

 

The benefits of conservation agriculture have not only received attention in South Africa but 

there is increasing awareness in the whole of Africa for the need to adopt sustainable 

agricultural practices (Fowler and Rockstrom, 2001). In response to this need the ACT network 

was established in 1998 at the international workshop on “Conservation Tillage for Sustainable 

Agriculture” in Harare, Zimbabwe. This network aims to promote successful adoption of 

agricultural practices and principles in Africa which conserve water and soil, produce higher 

and more stable yields, promote food security and improve the livelihood of rural communities 

(ACT, 2001). To achieve these objectives, ACT recognizes the unique understanding that 

farmers have of their specific circumstances and works directly with farmers by conducting on-

farm research on the various agricultural management practices. In so doing, practices which are 

sustainable and acceptable can be implemented (Fowler and Rockstrom, 2001).  

 

In line with the aim of increasing the knowledge base of tillage effects on South African soils, a 

field based tillage trial was initiated on Gourton farm, in the Loskop area of KwaZulu-Natal in 

the 2003/2004 season. The Winterton/Bergville area, of which the Loskop area forms a part, is 

the most important annual cropping area in KwaZulu-Natal (Lamprecht et al., 2008). This trial 

is used by the Soil Fertility and Analytical Services Division (Department of Agriculture, 

Cedara) to assess the effects of tillage and nitrogen fertilizer application on soil fertility, maize 

productivity and quality, and crop diseases. However, no consideration has been given to the 

effects of tillage and nitrogen fertilizer application on the physical and biological properties of 

the soil. In view of this, an additional investigation was initiated that considers the effects of 

tillage practice and nitrogen fertilizer application on selected soil microbial and soil physical 

properties.  
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Thus, the specific objectives of this study are to assess the effects of no-till and annual 

conventional tillage at three difference application rates of nitrogen fertilizer, applied as 

limestone ammonium nitrate (LAN) on:  

• soil organic carbon content; 

• soil microbial activity assessed by hydrolytic and cellulolytic activity; and  

• soil bulk density, water retention characteristics, saturated hydraulic conductivity, 

aggregate stability and penetration resistance. 

 

Additional soil fertility parameters (such as soil fertility analyses) and plant growth measures 

for this trial will be obtained from the Soil Fertility and Analytical Services Division 

(Department of Agriculture, Cedara) and these data will be related to the properties measured in 

this study to develop a better overall understanding of the causes and consequences of the 

different management practices investigated in the trial. 

 

• The document is structured as follows: 

• Chapter 2 presents a review of current literature on the effect of tillage regime on soil 

quality as measured by soil physical and microbiological properties.  

• Chapter 3 gives an overall description of the methods and materials used.  

• Chapter 4 reports and discusses the effects of tillage and nitrogen fertilization on 

microbial activity as measured by hydrolytic and cellulolytic activity. 

• Chapter 5 reports and discusses the effects of tillage and nitrogen fertilization on 

selected soil physical properties which include bulk density, water retention 

characteristics, saturated hydraulic conductivity, aggregate stability and soil penetration 

resistance.  

• Chapter 6 presents a general discussion, draws overall conclusions and provides 

recommendations for future research. 
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Chapter 2 
The effect of tillage regime on soil physical and microbiological 

properties 
 

2.1 Introduction 

 

Soil quality, also commonly referred to as soil health, is linked to human health and 

environmental sustainability. As such, there is a need to evaluate the effect of agroecosystems, 

and the practices employed, on soil quality (Janke and Papendick, 1994). Soil quality is difficult 

to define and quantify as it is a function of physical, chemical and biological properties of the 

soil (Jackson et al., 2003; Fuentes et al., 2009), which are influenced by environmental 

conditions and soil management (So et al., 2009; Fuentes et al., 2009). It is important to assess 

soil quality by using an approach that is holistic and by determining soil properties which are 

easily measurable and sensitive to changes in management (Doran and Parkin, 1994). Govaerts 

et al. (2008)  define a healthy soil, which is able to support a sustainable production system, as 

“…the continued capacity of the soil to sustain biological productivity, maintain quality of air 

and water environments and promote plant, animal and human health”. 

 

Tillage alters the physical, chemical and biological properties of soil ecosystems (Doran, 1980) 

and thus it is an agricultural practice of particular interest in its effect on soil quality. The 

increasing cost of fossil fuel, loss of topsoil due to erosion, and increasing environmental 

pollution has led to the need for agricultural management to be more focused on less intensive 

and more sustainable soil-cultivation practices (Köller, 2003). The motivating factors 

encouraging farmers to convert from conventional tillage to conservation tillage include savings 

in time and fuel, reduced machinery and labour costs, and erosion mitigation (Throckmorton, 

1986; Beauchamp and Hume, 1997). Further benefits associated with conservation tillage are 

improved soil physical properties and consequent increases in crop productivity. Generally, the 

increased amount of crop residues remaining on the surface under conservation tillage improves 

the soil’s physical and biological characteristics which results in increased soil fertility and soil 

quality (Andrade et al., 2003; Köller, 2003).  
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2.2 Conventional and conservation tillage systems 

 

2.2.1 Conventional tillage 

 

Conventional tillage (CT) is the loosening of soil using a moldboard plough, followed by 

disking and harrowing for the final seedbed preparation (Beauchamp and Hume, 1997). 

Conventional tillage generally incorporates crop residues into the soil to a depth of between 10 

and 20 cm (Beauchamp and Hume, 1997) and typically results in less than 15 % of the crop 

residues being left on the soil surface (Hendrix et al., 1986). Conventional tillage allows the 

incorporation of lime and fertilizers into the soil, limits weed and pest infestations, alleviates 

compaction and loosens the soil structure for the promotion of crop growth (Throckmorton, 

1986). However, ploughing the soil continuously may lead to decreased soil quality as there is a 

loss of soil organic matter (SOM) and structural deterioration (Simmons and Coleman, 2008). 

This can lead to the formation of surface crusts and sealing, hoe or plough pans (Steiner, 2002), 

decreased biological activity, increased compaction (Atlas and Bartha, 1998), decreased 

porosity and reduced infiltration which promotes soil erosion (Hendrix et al., 1986; Köller, 

2003).  

 

2.2.2 Conservation tillage 

 

Conservation tillage is used to conserve soil and water (Sturz et al., 1997; Fowler and 

Rockstrom, 2001), and encompasses the concept of minimal or no disturbance to the soil. 

Minimum tillage (MT) and zero tillage (ZT; or no-till (NT)) are commonly practised forms of 

conservation tillage (Hendrix et al., 1986). In MT the intensity and depth of soil inversion for 

seedbed preparation is reduced, whereas in NT systems ploughing is completely eliminated and 

planting is done with direct-drill seeding machines (Beauchamp and Hume, 1997). Conservation 

tillage usually leaves between 15 and 30 % of crop residues on the soil surface as a mulch layer 

(Hendrix et al., 1986). Large amounts of crop residue on the soil surface protect the soil from 

wind and water erosion, decrease compaction susceptibility, increase aggregate stability 

(Griffith et al., 1986; Köller, 2003), increase infiltration, reduce evaporation losses, improve 

moisture retention (Bescansa et al., 2006), improve aeration (Griffith et al., 1986; Riley et al., 

2008) and regulate soil temperatures (Spedding et al., 2004). A greater quantity of plant 

residues on the soil surface increases the level of SOM and, consequently, conservation tillage 

results in better soil structure, fertility and biological activity (Andrade et al., 2003). 

 



6 

 

 

 

2.2.3 Role of residue retention 

 

In many parts of the world, a common agricultural practice is the removal of crop residues after 

harvest through burning, grazing or their utilization as fodder. This may result in the soil surface 

remaining exposed for up to six months each year during the fallow periods (Govaerts et al., 

2008). Many authors stress the importance of residue retention under NT as the major 

contributor that improves soil physical and biological properties. For example, Fuentes et al. 

(2009) report that residue retention increased aggregation, improved infiltration and reduced 

evaporation, which resulted in lower resistance to penetration, higher moisture retention and 

increased aggregate stability, regardless of tillage system or crop rotation. No-till, without 

residue retention, resulted in the poorest soil quality (low soil organic carbon (SOC) and 

moisture content, low aggregate stability, low pH and high salt concentrations), which led to the 

lowest wheat and maize yields. These results suggest that it is the greater retention of crop 

residues on the soil surface under NT as compared with CT which results in improved soil 

physical properties and not the reduction in soil disturbance. Govaerts et al. (2007) found that 

retaining residues from wheat and maize under both conventional and conservation tillage 

yielded higher microbial populations than when residues were removed. This was attributed to 

the residue providing a continued supply of carbon (C) as an energy source and the mulch cover 

improving the environment for microbial growth. They concluded that NT with residue 

retention was a sustainable practice as there is increased soil aeration, cooler conditions, 

increased soil moisture, smaller temperature and moisture fluctuations and higher organic-C 

content in the surface soil. 

 

2.2.4 Limitations of conservation tillage 

 

Although there are distinct benefits of conservation tillage over CT there is reluctance from 

many farmers to change to conservation tillage. This reluctance is due to the delay in soil 

response after the adoption of MT or NT practices, (Bescansa et al., 2006; Simmons and 

Coleman, 2008), and that conservation tillage systems usually increase the need for herbicides 

to control weeds and require higher applications of insecticides and fertilizers (Crosson, 1981; 

Huwe, 2003). One of the major limitations of NT is that the increased percentage of organic 

matter in the surface soil may promote pathogen survival due to an increased energy source and 

more favourable environmental conditions. However, Sturz et al. (1997) and Govaerts et al. 

(2008) have shown that increased organic matter under NT may result in decreased pathogen 

activity due to competition from non-pathogenic organisms. Furthermore, increased 
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macroporosity and pore connectivity under conservation tillage can lead to increased risk of 

groundwater pollution due to the increased leaching of herbicides, pesticides and fertilizers 

(Huwe, 2003). 

 

2.3 Effect of tillage on soil physical properties 

 

2.3.1 Aggregate stability 

  

Ploughing the soil increases the mineralisation rate and consequently, continuous tillage results 

in a loss of SOM which leads to a decrease in soil aggregation and structural stability (Simmons 

and Coleman, 2008). Conversely, NT allows the build-up of SOM which increases the soils’ 

ability to bind aggregates (So et al., 2009). In addition, SOM increases the microbiological and 

earthworm activity, which further acts to stabilize soil aggregates (Johnson-Maynard et al., 

2007; D’Haene et al., 2008; So et al., 2009). In a study by Fuentes et al. (2009) the aggregate 

stability of a soil rotated between maize and wheat in central Mexico was greater under NT 

when the residue was retained than under NT when residue was removed and greater than under 

CT when the residue was retained or removed (Table 2.1). 

 

Table 2.1 Aggregate stability (wet sieving) of soils under no-till (NT) or conventional tillage 

(CT), with residue retention (r+) or residue removal (r-) (modified from Fuentes et al., 2009) 

Treatment Aggregate stability, mean weight diameter (mm) 

NT +r 1.69 

NT -r 1.00 

CT +r 0.54 

CT -r 0.35 

 

In a similar study, So et al. (2009) found that in the upper 20 cm of the soil profile after 14 years 

of NT the amount of dispersible clay and silt was lower and the mean weight diameter was 

larger under NT than under CT, and that these results were consistent with an increase in SOM 

under NT. Conversely, Johnson-Maynard et al. (2007) report that micro-aggregate stability (0.5 

to 1 mm size fraction) under NT and CT was similar at a soil depth of between 0 and 20 cm and 

argued that this could be due to the short duration of their experiment (i.e. < 3 years). They 

suspected that measures of macro-aggregate stability would indicate higher stability under NT 

than under CT. Improved structural stability under NT reduces the formation of crusts and 

surface sealing and thus there is less surface run-off and erosion. It is important to note that the 
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time it takes for soil to rebuild its structure after the adoption of NT is dependent on soil texture 

and climate and thus it may take a number of years before the structural benefits of conservation 

tillage are seen (Steiner, 2002).  

 

2.3.2 Bulk density (ρb) 

 

Tillage influences the total porosity and pore size distribution of the soil by affecting the soil 

structure. This results in changes in soil hydraulic properties and soil strength, both of which are 

important determinants of soil quality. Due to its relationship with soil porosity, bulk density 

(ρb) is a useful measure for assessing tillage effects on the structural characteristics of the soil 

(Huwe, 2003; Simmons and Coleman, 2008) and the consequent effects on the water and 

aeration status of the soil (Linn and Doran, 1984), hydraulic conductivity, infiltration rate, water 

retention characteristics, and soil strength (Simmons and Coleman, 2008).  

 

Tillage loosens the soil structure and causes an immediate increase in the percentage of 

macropores, resulting in a lower ρb and greater total porosity (So et al., 2009) which can benefit 

seedling establishment and crop growth (Throckmorton, 1986; Sturz et al., 1997). Generally, 

converting from a CT system to a conservation tillage system results in a higher ρb and a lower 

total porosity (Linn and Doran, 1984; Fabrizzi et al., 2005; Johnson-Maynard et al., 2007) as 

macropores are not created as is the case during ploughing (Table 2.2) (Sturz et al., 1997; 

Bescansa et al., 2006).  

 

Table 2.2 Bulk density and total porosity (at soil depths of between 3 and 8 cm and between 13 

and 18 cm) after 2 years under minimum tillage (chisel plough to a depth of 10 cm followed by 

two disking operations to a depth of between 8 and 10 cm) and no-till (modified from Fabrizzi 

et al., 2005) 

Treatments Bulk density (g cm-3) Total porosity (%) 

Depth 3 to 8 cm 13 to 18 cm 3 to 8 cm 13 to 18 cm 

Minimum tillage 1.19 1.28 56 52 

No-tillage 1.26 1.32 53 50 

 

However, as a result of reduced aggregate stability in CT soils, the soil is more susceptible to 

compaction which, in the long-term, can result in reduced soil quality and lower crop yields (So 

et al., 2009). Osunbitan et al. (2005) compared the ρb in the surface 5 cm of a NT soil with soils 

ploughed at three different tillage intensities. They concluded that the ρb of the NT soil was 
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significantly higher than the other tillage treatments directly after tillage. However, the 

percentage increase in ρb eight weeks after tillage was lowest under NT as natural resettlement 

of particles into a more compact arrangement is greater for the more intensive tillage treatments 

(Figure 2.1).  

 

 
Figure 2.1 Change of mean bulk density (g cm−3) of soil surface (0 to 5 cm) with time after no-

till (NT), manual tillage (MAN T), plough-plough tillage (PP) and plough-harrow tillage (PH) 

(n = 2) (modified from Osunbitan et al., 2005). 

 

Similarly, the study by Fabrizzi et al. (2005) shows that under NT there was a significantly (p < 

0.05) lower total porosity and higher ρb than under CT up to a depth of 18 cm in the first two 

years after the conversion from CT to NT (Table 2.2). However, in the third year the ρb under 

NT had decreased and was attributed to the re-establishment of the inherent soil structure.  

 

Increased susceptibility to soil compaction under CT compared to NT can result in similar bulk 

densities between CT and NT. Azooz et al. (1996); Ishaq et al. (2002) and Bhattacharyya et al. 

(2006) found little difference in ρb between tillage treatments and attributed this to the long 

delay between the tillage event and sampling which allowed the CT soil sufficient time to 

naturally consolidate and compact. Over time the ρb under NT is lowered by the development of 

soil pores created by earthworm activity and root growth (Bescansa et al., 2006), while the 

decreased aggregate stability and increased susceptibility to compaction of CT soils (So et al., 

2009), often results in lower bulk densities under NT soils in the long-term. So et al. (2009) 

found that after 14 years of NT a weakly structured silty loam soil in New South Wales (NSW), 

Australia had a significantly lower ρb in the top 20 cm of the NT soil compared to the CT soil. 
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Similarly, D’Haene et al. (2008) report that silt loam soils in Belgium have a lower ρb in the top 

5 cm under NT compared to CT.  

 

2.3.3 Soil strength 

 

Soil strength can be measured indirectly by measuring the soil penetration resistance (Osunbitan 

et al., 2005). Soil penetration resistance is useful to determine the effects of tillage on soil 

strength and indicates the ability of roots to explore the soil volume. Values over 2000 kPa 

generally limit root exploration (So et al., 2009) and so restricts nutrient and water uptake by 

crops (Fabrizzi et al., 2005), thereby reducing yield (Chan, 1995). Ishaq et al. (2002) found that 

penetration resistance was negatively correlated to grain yield of wheat (r2 = -0.49, p = 0.01). 

Similarly, in the study by Materechera and Mloza-Banda (1996) the penetration resistance was 

negatively correlated to the root length density of maize (r2 = -0.66, p < 0.05) which affected 

overall plant growth. Ploughing loosens the soil and thus decreases soil strength within the 

plough layer. For instance, Fabrizzi et al. (2005) found that although penetration resistance in 

the top 30 cm of the soil profile is less than 2000 kPa under both MT and NT the soils under NT 

have a consistently higher penetration resistance to a depth of 30 cm than soils under MT 

(Figure 2.2). 

 
 Figure 2.2 The effect of minimum tillage (MT) and no-till (NT) on penetration resistance after 

wheat harvest, after two years of no-till (modified from Fabrizzi et al., 2005). 

 

A comparable study by Materechera and Mloza-Banda (1996) in Malawi showed that 

penetration resistance was greater when maize was planted on ridges made the previous season 

(MT) compared to newly constructed ridges (CT), and that root density was lower under MT. 

Ridges made the previous season were considered MT as there had been less soil disturbance 
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than on the newly constructed ridges during the last season. Although tillage may initially lower 

the penetration resistance, ploughing decreases the SOM. This increases the likelihood of 

slaking and dispersion of soil particles and thereby increases the soil’s susceptibility to become 

hardsetting. Upon drying, the soil compacts and hardens, which increases the soil strength and 

penetration resistance (Chan, 1995). Chan (1995) report that CT of a sandy loam soil in NSW, 

Australia led to greater soil strength in the top 30 cm of the soil upon drying, whereas the soil 

strength remained similar at all water contents under undisturbed pasture. Similarly, So et al. 

(2009) found that the upper 20 cm of the soil surface under CT had greater soil strength than NT 

and exceeded 2000 kPa at a matric potential of -1500 kPa (Table 2.3). 

 

Table 2.3 Soil strength under conventional tillage (CT) and no-till (NT) at a matric potential of 

-1500 kPa after 14 years of tillage treatments (modified from So et al., 2009) 

 Soil strength (kPa) 

Depth (cm) CT NT 

0 to 5 1874 1236 

5 to 10 2898 1927 

10 to 20 3709 2234 

Average 2827 1799 

 

The decrease in SOM under CT may result in compaction problems if the soil is not ploughed 

annually. Materechera and Mloza-Banda (1996) showed that by the third season of reduced 

tillage the soil had compacted sufficiently to adversely affect maize grain yield and  that the 

penetration resistance was significantly higher (p < 0.05) than the soil which is tilled annually.  

 

As with ρb, soil strength may be greater under CT than NT in the long-term. Osunbitan et al. 

(2005) found that eight weeks after tillage the penetration resistance in the 0 to 5 cm soil layer 

decreased for NT and increased in the soils which were ploughed (Figure 2.3). 
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Figure 2.3 Change of soil cone penetration resistance (kg cm−2) of soil surface (0 to 5 cm) with 

time under no-till (NT), manual tillage (MAN T), plough-plough tillage (PP) and plough-harrow 

tillage (PH) (n = 2) (modified from Osunbitan et al., 2005). 

 

Furthermore, a common occurrence under CT is the development of a dense, compacted layer of 

increased soil strength below the plough layer, referred to as a plough-pan (Materechera and 

Mloza-Banda, 1996; Munkholm et al., 2001). The penetration resistance results of Munkholm et 

al. (2001) show that non-inversion tillage was marginally less effective in loosening the top 15 

cm of the soil when compared to CT. However, under CT the penetration resistance increases 

below the plough layer, indicating the presence of a plough pan (Figure 2.4). 

 

 

Figure 2.4 Cone penetration measured shortly after tillage operations in spring 1997 (B3 field) 

and spring 1998 (B4 field). (–○–) non-inversion, (–•–) conventional. Horizontal bars indicate ±1 

standard error of mean (Munkholm et al., 2001). 
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2.3.4 Soil water retention 

 

The amount of water retained in the soil at a matric potential of between 0 and -1500 kPa is a 

function of a soil’s pore size distribution (Bhattacharyya et al., 2006) and is therefore influenced 

by the type and intensity of tillage. Under NT the improved aggregation and pore continuity 

allows the soil to receive more water due to better infiltration and higher hydraulic conductivity. 

In addition, NT soils lose less water through evaporation due to residue retention on the soil 

surface. Consequently, NT soils usually maintain a higher moisture content than soils which are 

ploughed (Fabrizzi et al., 2005; Bescansa et al., 2006). Furthermore, ploughing the soil 

increases the number of macropores and thus at saturation the volumetric water content, (or 

water-filled porosity; WFP), is greater than that under NT. However, macropores drain quickly 

and the greater number of micropores and mesopores under NT allow the soils to retain more 

moisture within the plant available range, thus the WFP at field capacity is greater under NT 

(Linn and Doran, 1984). This is confirmed in the study by Bescansa et al. (2006) who found 

that in the upper 15 cm of a soil in semi-arid northern Spain the water retention at saturation 

was 13 % greater under CT than NT but at -33 kPa the water retained was 11 % lower under CT 

than NT.  

 

As mentioned previously, soils which are continuously ploughed are more susceptible to 

compaction and may reach high bulk densities over time. If ploughed soils compact over time it 

is likely that micropores constitute the majority of the total porosity and water is therefore held 

at lower matric potentials making it less available to plants (Bescansa et al., 2006). When 

ploughed soils compact and are dominated by micropores they often hold less moisture than NT 

soils within the plant available range and at saturation. NT soils are able to retain more moisture 

than ploughed soils which have compacted as macropores are created by earthworm activity and 

mesopores are maintained due to better soil structure. The study by So et al. (2009) showed that 

in the top 10 cm of the soil, the water content at field capacity and saturation were greater under 

NT than CT. Similarly, D’Haene et al. (2008) investigated the top 5 cm of a silt loam soil in 

Belgium and report the water content at saturation to be higher under NT. However, there were 

no significant differences (p < 0.05) in water retention characteristics (measured by the amount 

of volumetric water content held at different matric potentials) found between NT and CT at the 

25 to 30 cm depth. These data suggest that the soil can store and transmit more water in the 

upper soil layer which benefits crop growth under NT. Increased water retention under reduced 

tillage is a result of improved infiltration, reduced evaporation and protection of the soil surface 

from mechanical impact of precipitation (Fabrizzi et al., 2005). This has particular relevance in 
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South Africa, where the semi-arid climate and water scarcity are limiting factors for crop 

production. Implementing conservation tillage practices can therefore improve yields and 

sustainability. Studies conducted in the semi-arid region of northern China found that crop 

yields were higher under NT than under CT in years when annual precipitation was low and was 

attributed to greater moisture retention under NT (Wang et al., 2007). 

 

Although initial conversion from CT to NT usually results in higher bulk densities it is unlikely 

that plant growth will suffer markedly as a consequence of insufficient moisture and poor 

aeration status. Improved aggregation and pore connectivity under NT allows the soil to 

maintain an adequate supply of moisture and air (Cavalieri et al., 2009).  

 

2.3.5 Saturated hydraulic conductivity (Ks) 

 

The number, continuity and stability of macropores influence the saturated hydraulic 

conductivity (Ks) of a soil and the percentage of total pores open to infiltration (Bhattacharyya 

et al., 2006). Under NT the increased percentage of SOM in the soil surface stimulates root 

growth and mesofaunal activity which leads to the creation of channels (Osunbitan et al., 2005) 

and the continuity of these channels are then maintained due to the lack of soil disturbance 

(Griffith et al., 1986; Angers et al., 1992). This results in higher saturated hydraulic 

conductivities than under CT (Bhattacharyya et al., 2006; So et al., 2009). Osunbitan et al. 

(2005) found that the surface soil had a higher Ks under NT compared with CT (Figure 2.5). 
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Figure 2.5 Change in time of mean saturated hydraulic conductivity (×10−3 cm s−1) at a depth of 

0 to 15 cm after no-till (NT), manual tillage (MAN T), plough-plough tillage (PP) and plough-

harrow tillage (PH) (n = 2) (modified from Osunbitan et al., 2005). 
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2.4 Effect of tillage on soil microbiological properties 

 

2.4.1 Introduction 

 

The microbial community in soil can contain up to 10 000 different species per gram (Turco et 

al., 1994) and is comprised of viruses, bacteria, fungi, algae and protozoa (Atlas and Bartha, 

1998). Microorganisms perform a number of roles in the soil which are essential for maintaining 

environmental quality and are necessary for sustaining life (Atlas and Bartha, 1998). Soil 

microorganisms are responsible for the decomposition of organic matter and the mineralisation 

of nutrients, converting organically bound nutrients into plant available forms as well as 

producing stable organic compounds (humus) (Zuberer, 2008). Soil microorganisms further 

stimulate plant growth by synthesising vitamins, amino acids, auxins, cytokinins and 

gibberellins, and by producing plant hormones such as indoleacetic acid (Atlas and Bartha, 

1998). Some soil bacteria, such as rhizobium, form symbiotic relationships with leguminous 

plants and promote nitrogen (N) assimilation and uptake as they are able to fix N gas (Zuberer, 

2008). Furthermore, many fungi and bacteria species contribute towards soil health by being 

antagonistic to potential plant pathogens (via competition and/or production of antibiotics) 

(Atlas and Bartha, 1998; Govaerts et al., 2007). Microorganisms are also important contributors 

to soil stability by producing polysaccharides and mucilages which promote the cementation of 

soil aggregates. The filamentous strands (hyphae) produced by fungi growing in the soil allows 

for the entanglement of soil particles (Zuberer, 2008). The roles carried out by soil microbes are 

fundamental in plant growth. However, soil microbes may also reduce productivity by causing a 

number of crop diseases (Andrade et al., 2003). Therefore, it is important to understand the 

relationship between soil management practices and microbial activity and community 

composition (Govaerts et al., 2007; Bausenwein et al., 2008).  

 

2.4.2 Tillage effects on the environment of soil microorganisms  

 

The number and activity of soil microorganisms are influenced by the macro and micro-climate, 

the plant species grown on the soil in terms of species composition, percentage plant cover, root 

penetration and litter properties, as well as soil management (e.g. fertilizer and lime 

application), and cultivation procedures (Schinner, 1996). For optimal growth and activity the 

majority of soil microorganisms require abundant organic substrates, adequate supplies of 

inorganic nutrients, sufficient air-filled and water-filled pore space, a near neutral pH and a soil 
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temperature of between 15 and 30 oC (Zuberer, 2008).  Soil tillage has a marked influence on all 

these properties. 

 

2.4.2.1 Organic matter 

 

Most microbes are organotrophs, meaning they require organic-C compounds as a food source. 

Only a few are autotrophs, which receive their C requirement from carbon dioxide (CO2) in the 

atmosphere. Therefore, the microbial biomass and activity is positively correlated to the amount 

of SOM (Hamel et al., 2006; Bausenwein et al., 2008; Nyamadzawo et al., 2009). Asuming-

Brempong et al. (2008) investigated the effect of SOC content on soil microbial biomass (SMB) 

and activity in Ghana, and found a positive correlation (r2 = 0.63, p = 0.05) between SOC and 

the microbial biomass carbon (MBC) (Figure 2.6). 

 

 
Figure 2.6 Relationship between the microbial biomass carbon and soil organic carbon of soils 

under different fallow management treatments (Asuming-Brempong et al., 2008). 

 

Due to a higher percentage of crop residues remaining on the soil surface under NT when 

compared to CT, there is greater organic matter build-up in the surface layers of the soil under 

NT (Spedding et al., 2004; Nyamadzawo et al., 2009), whereas CT results in a more even 

distribution of organic matter within the plough layer (Spedding et al., 2004). Fuentes et al. 

(2009) report that the 0 to 5 cm depth of soil had higher total N and SOC content under NT 

when residues were retained as compared with CT (Table 2.4). 
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Table 2.4 Total nitrogen and organic carbon (0 to 5 cm depth) under zero tillage (ZT) or 

conventional tillage (CT), with rotation (R) or monoculture (M), and with residue retention (+r) 

or without residue retention (-r) (modified from Fuentes et al., 2009) 

Treatment Total nitrogen content (g kg-1) Soil organic carbon content (g kg-1) 

 Maize Wheat Maize Wheat 

ZTM + r 1.60 1.40 23.20 21.90 

ZTR + r 1.60 1.45 22.75 22.95 

CTM + r 1.25 1.10 16.55 15.50 

CTR + r 1.20 1.24 15.85 16.70 

ZTM - r 1.00 1.30 13.80 19.30 

ZTR - r 1.20 1.15 15.80 13.95 

CTM + r 1.00 1.10 12.55 14.60 

CTR + r 1.10 1.00 14.00 12.90 

LSD* 0.21 0.44 2.04 1.97 

*p < 0.05 level based on least square difference grouping (LSD). 
 
As soil microorganisms are closely related to the SOM, the effect of the tillage system on their 

distribution within the soil profile follows the same pattern as that for SOM. Blume et al. (2002) 

found that SMB decreased with soil depth and attributed this to the higher quantities of 

available C closer to the soil surface. Carter (1986) found little difference between CT and NT 

for the MBC, microbial biomass nitrogen (MBN) and microbial activity in the upper 10 cm of 

the soil, however in the top 5 cm of soil the MBC, MBN and microbial activity under NT was 

greater than under CT, whereas in the 5 to 10 cm depth the MBC, MBN and activity were 

greater under conventional tillage due to the ploughing-in of residues to a greater depth (Table 

2.5). 

 

Table 2.5 Changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) 

and activity (CO2 – C respired) under conventional tillage and zero tillage practices for a cereal 

grain crop at two soil depths on Prince Edward Island (Carter, 1986) 

 Conventional tillage Zero tillage 

Soil 

depth 

(cm) 

Activity 

(CO2 – C 

respired) 

MBC 

(kg ha-1) 

MBN 

(kg ha-1) 

Activity 

(CO2 – C 

respired) 

MBC 

(kg ha-1) 

MBN 

(kg ha-1) 

0 to 5 35 111 23 68 182 35 

5 to 10 41 247 46 20 164 32 
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Similarly, Spedding et al. (2004) showed higher MBC and MBN in the 0 to 10 cm of soil under 

NT than under CT. Angers et al. (1992) report that ploughing reduced the SOC and the MBC by 

an average of 40 to 50 % between the 0 and 6 cm soil depth but when the entire depth (0 to 24 

cm) was considered there was little difference in SOC and MBC (Table 2.6). 

 

Table 2.6 Soil organic carbon (SOC) and microbial biomass carbon (MBC) as affected by 

tillage treatment at different soil depths (modified from Angers et al., 1992) 

 SOC (kg ha-1) MBC (kg ha-1) 

Depth 

(cm) 

Meadow 

(undisturbed) 
Ploughed

Meadow 

(undisturbed) 
Ploughed 

0 to 6 22.3 13.8 484 245 

6 to 12 15.0 18.7 279 414 

12 to 18 12.2 13.7 177 275 

18 to 24 9.8 7.1 212 133 

0 to 24 59.2 53.3 1152 1067 

 

Although NT systems generally have more organic-N in the surface soil, many studies have 

found that the initial conversion from a CT to a NT system leads to a reduction in the amount of 

N available to plants. This can be attributed to NT soils having more organic matter, cooler 

temperatures, higher moisture contents, and greater Ks due to improved pore connectivity. The 

higher percentage of SOM increases the soils cation exchange capacity which may cause 

temporary immobilisation of nutrients. The cooler temperatures and higher moisture content of 

NT soils may provide a more optimal environment for soil microbes and thus the rate of 

denitrification increases, facilitating N loss as N2 gas and as NO3-N leaching. Leaching is 

further facilitated by the increased pore connectivity (Andrade et al., 2003). Generally, under 

CT, N mineralisation increases as the previously protected SOM becomes available to microbial 

attack (Beauchamp and Hume, 1997; Jackson et al., 2003). However, this may be dependent on 

the soil texture rather than tillage effects. Spedding et al. (2004) found that tillage had little 

effect on the soil microbial dynamics and attributed similar SMB between tillage treatments to 

the sandy texture of the soil used in their study. Spedding et al. (2004) and Melero et al. (2009) 

suggested that soils with higher clay content would contain a larger amount of protected SOM 

which is released during tillage and therefore tillage on clay soils will have a more marked 

effect. Although there may be more N lost through denitrification processes and leaching under 

NT when compared to CT, there is less N lost due to erosion. Once the NT system has reached 

equilibrium, the larger organic-N pool provides sufficient N to the plant despite slower 
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mineralisation rates (Fox and Bandel, 1986). Over time, ploughing the soil reduces the 

percentage of organic matter in the soil until the level of mineralisation achieves a balance with 

the amount of organic matter being added to the soil. This is typically much less than in a NT 

system (Beauchamp and Hume, 1997).  

 

2.4.2.2 Soil pH 

 

Due to slower rates of mineralisation, potentially more denitrification and leaching, and greater 

temporary immobilisation at the soil surface in NT soils (Spedding et al., 2004) there is often a 

greater requirement for N fertilization (Fox and Bandel, 1986). The addition of fertilizer may 

increase the SMB and activity due to increased crop yields and root biomass (i.e. greater organic 

matter returns to soil) (Beauchamp and Hume, 1997; Spedding et al., 2004). However, the 

addition of fertilizer in NT systems can be problematic. Under NT the fertilizer that is applied is 

not incorporated into the soil and therefore remains on the soil surface for longer. This is a 

particular problem when fertilizers containing NH4
+ are used as there is greater NH3 loss due to 

volatilization. Another problem associated with the use of NH4
+ fertilizers under NT is the 

potential for the surface soil to acidify (Fox and Bandel, 1986). The nitrification of the greater 

quantity of applied NH4
+ fertilizers results in a release of H+ ions which are not mechanically 

incorporated into the soil by way of ploughing, thereby causing surface acidity (Fox and 

Bandel, 1986). Generally, microbes are intolerant of extreme pH values. Under highly acidic or 

alkaline conditions, some microbial cell components may be hydrolysed or enzymes denatured. 

The pH also affects microorganisms indirectly as it affects the solubility and bioavailability of 

many nutrients that influence microorganism activity and function (Atlas and Bartha, 1998). It 

is important to note that in a well established NT soil which has a high biologically activity, the 

fertilizer may be incorporated by the soil organisms, as well as by rain and irrigation water 

which wash the fertilizer granules deeper into the profile due to better pore connectivity and 

continuity. 

 

The addition of chemical fertilizers may harm microorganisms temporarily in the vicinity of the 

fertilizer granule due to changing pH levels, increasing nitrite concentrations and by causing an 

imbalance of nutrients (Beauchamp and Hume, 1997). However, these adverse conditions 

eventually dissipate through chemical and biochemical reactions, transformations and diffusion 

and there is no reported evidence that chemical fertilizers permanently harm the soil microbial 

population or community structure (Beauchamp and Hume, 1997).  
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2.4.2.3 Temperature 

 

Temperature affects survival, growth and metabolic activities of microorganisms. Generally, a 

higher temperature results in an increased activity, where for every 10 oC increase in 

temperature, there is a doubling in microbial activity up to an optimum level (Atlas and Bartha, 

1998). This increase in activity causes an increase in C mineralisation (Jackson et al., 2003). 

Under reduced tillage the residue remaining on the soil surface decreases the soil temperature 

due to the absorption of less heat (due to higher reflectance of insolation) and lower thermal 

conductivity of the residue (Fabrizzi et al., 2005) as the residue is generally a lighter colour than 

the soil, and is filled with air (Thomas, 1986). 

 

2.4.2.4 Aeration and water content 

 

Soil water content significantly affects soil microbial numbers and activity (Zuberer, 2008). As 

the percentage of water-filled pores increases, the activity of aerobic microorganisms 

(respiration, nitrification and mineralisation) increases until the amount of oxygen (air-filled 

porosity) becomes limiting. The air-filled porosity becomes limiting at approximately 60 % of 

the soil’s water holding capacity, at which point the respiration rate decreases and denitrification 

increases (Linn and Doran, 1984; Figure 2.7).  

 

 
Figure 2.7 The relationship between water-filled pore space in soil and relative microbial 

activity with respect to nitrification, denitrification, and respiration (O2 uptake and CO2 

production) (Linn and Doran, 1984). 
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The soil water content determines the composition of the microbial community as under 

waterlogged conditions the microbial community will shift from aerobic to anaerobic species 

(Atlas and Bartha, 1998). Linn and Doran (1984) found that in the top 7.5 cm of four soils in the 

United States of America (USA) WFP (i.e. volumetric water content) under NT averaged 62 % 

whereas under CT the WFP averaged 44 %. These results suggest that the topsoil under NT 

favours aerobic microbial activity and this was confirmed by greater N2O (nitrous oxide) and 

CO2 production from the NT soils as compared to the ploughed soils. At a depth of between 7.5 

and 15 cm the ploughed soil had a WFP nearer 60 % whereas the NT soils had a WFP of about 

70 %. This suggests that there will be more aerobic microorganism activity in ploughed soils at 

this depth and this is indicated by higher levels of CO2 production (Table 2.7). The greater WFP 

of NT soils is a reflection of a greater soil water holding capacity and higher bulk densities 

when compared to ploughed soils (Linn and Doran, 1984).  

 

Table 2.7 Soil bulk density, water-filled porosity (WFP), carbon dioxide (CO2) and nitrous 

oxide (N2O) production, with the addition of nitrogen fertilizer, under no-till and ploughed soils 

at four locations in America (modified from Linn and Doran, 1984) 

Depth, 
location 

Tillage 
treatment 

Bulk density  
(g cm-3) 

WFP 
(%) CO2 (mg L-1) N2O (µg L-1) 

 
0 to 7.5 cm          

no-till 1.46 65.4 33.2 35.0 
Illinois 

plough 1.35 36.5 6.9 1.1 
no-till 1.26 66.4 27.3 27.3 

Kentucky 
plough 1.36 54.6 21.4 61.4 
no-till 1.26 57.1 14.5 79.6 

Nebraska 
plough 1.04 40.9 3.7 7.1 
no-till 1.00 56.6 15.3 72.7 

Minnesota 
plough 0.89 49.2 8.3 14.9 

7.5 to 15 cm          
no-till 1.50 69.2 15.7 9.0 

Illinois 
plough 1.39 50.6 18.5 12.1 
no-till 1.42 68.2 20.2 41.1 

Kentucky 
plough 1.33 51.2 23.4 5.4 
no-till 1.31 60.3 5.1 73.4 

Nebraska 
plough 1.18 53.6 5.3 39.3 
no-till 1.19 70.7 8.3 70.0 

Minnesota 
plough 0.99 60.3 12.2 49.8 
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2.4.3 Tillage effects on the composition of the soil microbial community 

 

Many studies indicate that NT results in a greater microbial diversity and fungi-dominated soil, 

whereas CT leads to bacteria-dominated soil (Spedding et al., 2004; Govaerts et al., 2007; 

Simmons and Coleman, 2008). This is due to fungi, especially arbuscular mycorrhizal fungi 

(AMF), being sensitive to tillage (Simmons and Coleman, 2008), as well as the incorporation of 

residues into the plough layer of the soil which usually promotes bacterial growth (Govaerts et 

al., 2007). Where the crop residue is buried or labile substrates are abundant, bacteria dominate 

due to their ability to break down labile carbon sources more efficiently than saprophytic fungi. 

This results in faster rates of decomposition and N mineralisation. Where crop residue is left on 

the surface and the C/N ratio is high, saprophytic fungi tend to dominate, slowly breaking down 

the more resistant substrates (Simmons and Coleman, 2008). Another reason for the dominance 

of fungi in NT soils is the increase in acidity under NT as fungi generally perform better under 

acidic conditions when compared to bacteria (Schinner, 1996). Ploughing the soil damages the 

mycorrhizal hyphae of fungi and therefore decreases the surface area in contact with the soil 

which reduces nutrient uptake. In undisturbed soil, the network of hyphae in soil remains intact 

and therefore nutrient uptake by fungi is increased (Beauchamp and Hume, 1997).  

 

Damage caused by tillage to fungal hyphae can significantly reduce the microbial biomass of 

the soil and/or change the community composition as mycorrhizal fungi make up approximately 

25% of the SMB (Spedding et al., 2004). The consequential change in the number and 

composition of soil fauna further influences the physical and chemical properties of the soil 

through organic matter decomposition, nutrient cycling, influence of soil structure, etc. 

(Govaerts et al., 2007). Jackson et al. (2003) evaluated the effect of tillage on microbial biomass 

and community structure. They concluded that tillage causes immediate changes to the 

community composition but little change to the overall SMB. This change in the community 

composition leads to a reduced soil quality due to an increase in the amount of greenhouse gases 

emitted and the increased potential for nitrate leaching. Tillage causes temporary stress 

conditions for soil microbes and alters their community structure. This weakens their ability to 

assimilate nutrients and the potential for C and N loss from the soil increases (Jackson et al., 

2003). 
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2.5 Conclusion 

 

Soil tillage has been a popular agricultural practise throughout the world due to the initial 

improvement of crop productivity, control of weeds and ease with which crops can be planted. 

However, it has been recognised in many regions that this improved productivity is temporary 

and overall, SOM content decreases under CT. This decrease in SOM results in a decline of soil 

quality as SOM plays a major role in the soils structural and pore characteristics by influencing 

aggregate stability. Although many authors report greater porosity, lower ρb and reduced soil 

strength under CT than under NT due to the creation of macropores during ploughing, less 

structural stability under CT can lead to lower porosity, higher bulk densities and greater soil 

strength with time, as tillage-induced pores readily collapse. In turn, lower porosity, greater soil 

strength and increased ρb influence the soils’ ability to retain and transmit water. Under NT the 

pore continuity and pore size distribution are improved due to greater structural stability and 

biological activity and thus saturated hydraulic conductivity and the plant available water are 

greater under NT than under CT. Soil organic matter has important effects on the biological 

component of agricultural soils. As SOM levels decline in continuously ploughed systems the 

available substrate for soil faunal activity decreases and the beneficial roles carried out by these 

organisms are greatly reduced. Many authors report lower SMB, MBC, MBN, functional 

diversity and microbial activity under CT compared to NT. It is important to note the link 

between soil physical properties and soil biological properties. A change in the soil physical 

environment impacts on the biological activity as it influences the water and aeration status, 

temperature and available substrate in the soil. Likewise, changes in the soil biological 

component affect the soils’ porosity, pore size distribution and aggregate stability (Melero et al., 

2009) and thus both parameters are important measures in determining the sustainability of 

agricultural management practices. Converting to a conservation tillage system ensures that 

SOM is maintained and therefore soil physical and biological properties are improved. This 

ensures long-term productivity of the soils and thus a more sustainable system. As conservation 

tillage practices become more popular and more necessary, the technology for overcoming 

planting through residues without seedbed preparation and combating weed and pest 

infestations without tillage is improving, and the limitations of conservation tillage are slowly 

being overcome.     

 

It is important to recognise that although conservation tillage is becoming more feasible and is 

beneficial to soil and overall environmental health, its feasibility is dependent on a number of 

factors. The effects of tillage on soil properties is site specific and depends on soil texture, 
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cropping systems, climate, fertilizer applications and management practices (Ishaq et al., 2002). 

More research is needed into how best to promote sustainable agricultural under all soil, 

environmental and agricultural management conditions to ensure global food security and long-

term soil and environmental quality. There is a particular need to carry out this research in 

South Africa, where socio-economic conditions, soil management and environmental conditions 

differ markedly from other parts of the world where much of the research carried out has been 

done. 
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Chapter 3 
Methods and materials 

 

3.1 Site description 

 

A field experiment was established by the Soil Fertility and Analytical Services Division 

(Department of Agriculture, Cedara) to investigate the combined effects of cultivation methods 

(no-till vs. conventional till) and nitrogen application (urea and limestone ammonium nitrate 

(LAN)) on maize yield and soil fertility. The trial was established in the 2003/2004 season on 

Gourton Farm (28°55'26.83"S, 29°33'38.64"E), near Loskop (KwaZulu-Natal Province, South 

Africa). The site had previously been planted to dry-land maize and soyabeans in rotation and 

had been managed under no-till since 1990 (pers. comm., G. Thibaud1). The soil is classified as 

a Hutton with a clay-loam texture (Soil Classification Working Group, 1991) (Appendix 1). The 

soil was assumed to be non-swelling as no visible signs of swelling were apparent. Selected 

physical and chemical properties of selected plots are presented in Appendix 2. The area 

receives approximately 643 mm of rainfall per annum which occurs mostly during summer and 

has a mean average midday temperature ranging between 19.3 oC in June and 27.9 oC in January 

(SA Explorer, 2009). The trial is cropped to dry-land maize in the summer and stands fallow in 

the winter.  

 

The field trial includes three tillage treatments, namely; no-till (NT; which consists of direct 

seeding into undisturbed soil), annual conventional tillage (CT1; which consists of annual 

ploughing with a moldboard plough to a depth of 30 cm, followed by disking to a depth of 10 

cm) and conventional tillage (CT5; which consists of conventional tillage after every four 

seasons of no-till). Nitrogen (N) is applied at five rates to each tillage treatment as either urea or 

LAN. Sampling was done in the 2008/2009 season approximately 12 weeks after planting. Prior 

to the 2008/2009 season the N was applied at rates of 0, 40, 80, 120, and 160 kg ha-1. In the 

2008/2009 season N was applied at application rates of 0, 50, 100, 150, and 200 kg ha-1 due to a 

linear response in maize production to the fertilizer application rate used in the 2007/2008 

season (pers. comm., G. Thibaud1). Lime is applied at a rate of 2 Mg ha-1 every second season to 

the entire trial. Lime is surface applied to the NT plots and incorporated during ploughing in the 

CT plots. The trial is arranged as a split plot design; with randomized tillage strips forming 

whole plots and N source and rate of application forming sub-plots which are randomized 

within the whole plots (Appendix 3). Each treatment is replicated three times (three blocks). 
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Each sub-plot has 12 rows by 9.5 m of maize at a density of 70 000 plants per hectare. Wheels 

from mechanized equipment were restricted to the inter-rows 1, 3, 5, 7, 9 and 11. The inter-rows 

2, 4, 6, 8 and 10 did not have any traffic and it was assumed that these inter-rows were not 

artificially compacted (Appendix 4). To avoid possible compounding effects of mechanically 

induced soil compaction on the soil physical and microbial properties, all samples and 

measurements were taken from inter-rows 4, 8 and 10. 

 

Due to equipment and logistical constraints, only the plots under no-till (NT) and annual 

conventional tillage (CT) were investigated with LAN fertilizer rates of 0 kg N ha-1  (0N), 100 

kg N ha-1 (100N) and 200 kg N ha-1 (200N) (6 treatments) (Appendix 3). A randomly chosen 

plot for annual conventional tillage and no-till is shown in Plate 3.1. 

 

 

 
Plate 3.1 A plot from the tillage trial on Gourton Farm representing a) annual conventional 

tillage and b) no-till. 

a 

b 
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3.2 Field sampling 

 

3.2.1 Bulk soil samples 

 

Bulk soil samples were collected from each plot at a depth of between 0 to 20 cm (A horizon) 

and 20 to 40 cm (B horizon). A spade was used to collect the soil samples to minimize the 

shearing effects of a soil auger. To account for plot variability a sample was collected from each 

of the three inter-rows, bulked and thoroughly mixed. The sample was then split in two, with 

half being placed into plastic bags and stored at 4 oC for microbial activity analysis. The other 

half of the bulk soil samples were air-dried, gently milled by mortar and pestle and passed 

through a 2 mm sieve for the analysis of soil organic carbon (SOC) content, particle size and 

micro-aggregate stability.   

 

3.2.2 Soil cores 

 

Undisturbed soil cores were taken by inserting the labeled stainless steel core (50 mm in height 

and 75 mm in diameter) into the soil using the core sleeve guide. A hammer is used to insert the 

core to the correct depth. Three undisturbed soil cores were collected from the topsoil in each 

plot, where a single core was collected from inter-rows 4, 8 and 10 at a depth of 0 to 5 cm. 

Undisturbed soil cores were collected in the subsoil after excavating a pit to a depth of 30 cm in 

inter-row 8 of each plot. Two cores were collected from each pit at a depth of 30 to 35 cm. Only 

two cores were collected from the subsoil due to practical difficulties in excavating pits and 

collecting cores. The high clay content of the subsoil limited the number of pits that could be 

opened for the more comprehensive approach used to sample the topsoil.    

 

3.2.3 Soil penetration resistance 

 

Soil penetration resistance was measured in every plot using a Geotron P5 penetrometer 

(Geotron Systems, Potchefstroom). All readings were taken within the same day at the same 

antecedent rainfall so that differences in penetration resistance would not be a result of soil 

moisture differences resulting from differences in the amount of rainfall received. The 

instrument was set to measure the penetration resistance at 1 cm increments to a depth of 50 cm. 

The penetrometer was equipped with a load cell capable of detecting pressure up to 5000 kPa. 

Six penetrometer profiles were taken in each plot, with two readings from inter-rows 4, 8 and 

10. 
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3.3 Laboratory analysis 

 

3.3.1 Microbial activity 

 

3.3.1.1 Hydrolytic activity 

 

Bulk soil samples collected from the field and stored at 4 oC were sieved through a 2 mm sieve 

prior to analysis.  The analyses were conducted within 72 hours of collecting the samples from 

the field. Each sample was then analysed in duplicate for hydrolytic activity using the 

fluorescein diacetate (FDA) method (Alef, 1995). 

 

3.3.1.2 Cellulolytic activity  

 

The same bulk soil samples as used for hydrolytic activity were analysed in duplicate for 

cellulolytic using the method of Smith and Hughes (2001). In brief, a pre-weighed circular sheet 

of Whatman 1 filter paper was placed in a petri-dish between two layers of 2 mm nylon gauze 

and covered on both sides by approximately 20 grams of soil. Distilled water was added to bring 

the soil to approximate field capacity as determined visually (i.e. until soil was moist). The petri 

dish was placed in an incubator at 30 oC for 14 days. After 14 days the petri dish was taken from 

the incubator and the filter paper was removed, rinsed of adhering soil, dried at 105 oC for 12 

hours, cooled in a desiccator and weighed. The difference in the mass of the filter paper from 

before and after incubation was used to estimate the mass of microbially degraded cellulose, 

where cellulolytic activity is expressed as a percentage of the cellulose degraded after 14 days.  

 

3.3.2 Soil organic carbon, particle size analysis and aggregate stability 

 

Bulk soil samples were air-dried, milled and passed through a 2 mm sieve for further analysis. 

Soil organic carbon content was determined in duplicate for each plot for both the A and B 

horizon by dichromate oxidation (Walkley, 1947). Particle size distribution (dispersed) was 

determined by the pipette method (Gee and Bauder, 1986) on six randomly chosen plots 

representing each treatment being investigated for both the A and B horizon. The unbound silt 

and clay (undispersed) was also measured using the pipette method and was determined for each 

plot in both the A and B horizon. From the results of dispersed and undispersed particle size 

distribution the micro-aggregate stability could be determined as follows (Richards, 1954):  
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[(Total silt + clay after complete dispersion) – (unbound silt + clay)] x 100 

Total silt + clay after complete dispersion    (%) (equation 1) 

 

3.3.3 Water retention characteristic, saturated hydraulic conductivity and bulk density 

 

Soil cores collected in the field were prepared and analysed for water retentivity characteristics, 

saturated hydraulic conductivity (Ks) and bulk density (ρb) using the method of Moodley et al. 

(2004). In brief, the method involves placing a pre-weighed piece of nylon cloth and elastic 

band onto the lower end of a soil core that has been trimmed level with the upper and lower 

surface of the ring. The core is then slowly saturated by capillary water movement to saturate 

the micropores and then by flooding to saturate the larger pores. Immediately after complete 

saturation the cores are weighed for saturated water content. The cores were then placed on a 

tension table (sand bath construction; Avery and Bascomb, 1974) using a hanging water column 

to achieve a matric potential of -1.0 kPa. The cores were allowed to equilibrate to constant mass 

before being reweighed and returned to the tension table. The hanging water column was then 

lowered to achieve a matric potential of -2 kPa. This process was repeated for matric potentials 

of -4, -6 and -8 kPa. The cores were then transferred to ceramic pressure plates in a pressure 

chamber apparatus. The cores were equilibrated at matric pressures equivalent to -33 and -100 

kPa and weighed at each respective pressure once constant mass was reached. The moisture 

content at -33 kPa was used to represent field capacity (Givi et al., 2004). The cores were then 

oven-dried at 105 oC for 48 hours and this was used to determine ρb and mass moisture content 

of the soil for each respective matric potential. The mass moisture content was converted to 

volumetric water content as follows: 

 

Gravimetric water content x Bulk density           

                       Water density                                   (m3 m-3) (equation 2) 

 

where the density of water is taken as 998 kg m-3. 

 

Wilting point moisture content was determined at -1500 kPa in a high pressure chamber 

apparatus. Rings (10 mm height x 50 mm diameter) were filled with loosely packed soil (< 2 

mm) and saturated by capillary wetting overnight. The rings were then placed in the pressure 

chamber and allowed to equilibrate for about 2 weeks constant mass was reached. After removal 

from the pressure chamber the mass moisture content of the soil was determined by oven drying 
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at 105 oC for 24 hours. The mass moisture content of the soil was converted to volumetric water 

content using equation 2, where bulk density used was calculated from repacked rings. 

 

Prior to oven-drying the soil cores (and directly after the soil retentivity measurements), the Ks 

was determined using the method of Moodley et al. (2004). This required taping a second empty 

core to the soil core to increase the length and re-saturating the core. The core was then placed 

on a steel mesh held inside a funnel and Ks was measured by the constant head method (Klute 

and Dirksen, 1986). The Ks was calculated using Darcy’s equation for saturated flow under 

constant head conditions as follows:  

 

   Ks = ((V / (A x t)) x (L / ∆H)) x 10 (mm hr-1)  (equation 3) 

 

where  

V = Volume of water in cm3 collected for a time period of t (hours) 

A = cross sectional area of the core (cm2) 

L = Length of soil column (cm) 

∆H = total hydraulic head (cm) 

 

3.4 Statistical Analysis 

 
Correlation matrices were produced, using Microsoft Excel, between air-dried soil moisture 

content, field soil moisture content, hydrolytic activity, cellulolytic activity, ρb, SOC content, 

Ks, and the volumetric water content at 0 kPa (assumed to be total porosity), at -33 kPa (field 

capacity) and at -1500 kPa (wilting point). The replicates within a plot were averaged and 

correlations were carried out between the measured plots (n = 3).  

 
Overall differences between treatment means were assessed using analysis of variance 

(ANOVA) for a split plot experimental design. This was done for SOC content (%), hydrolytic 

activity (µg fluorescein g-1 h-1), cellulolytic activity (% cellulose degraded over 14 days), ρb (g 

cm-3), Ks (mm hr-1), and the volumetric water content at 0 kPa (i.e. total porosity), -33 kPa (field 

capacity) and -1500 kPa (wilting point) using GENSTAT, (12th edition). Where overall 

significant differences between treatment means were found, treatment means were compared 

by least square difference (LSD) comparisons at the 5 % level of significance (GENSTAT). 
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Chapter 4 
The effect of tillage and nitrogen fertilizer on soil organic carbon and 

microbial activity 
 

4.1 Introduction 

 

Soil organic matter (SOM) is a key indicator of soil quality as it affects soil structure which 

influences soil stability, friability and moisture retention (Riley et al., 2008). In addition, SOM 

has an effect on nutrient storage, biological activity (Melero et al., 2009), and filtration and 

buffer capacity of soil. Soil organic matter has no definite composition and therefore total soil 

organic carbon (SOC), which is the main component of SOM, is usually determined (Melero et 

al., 2009). Fuentes et al. (2009) propose that SOC is the most sensitive chemical property in 

determining sustainability due to its positive relationship with crop productivity and thus 

maintaining SOM is an important objective of soil management practices (Bausenwein et al., 

2008). 

  

Soil microbial activity is responsible for nutrient cycling and organic matter decomposition 

(Turco et al., 1994) where approximately 90 % of energy in the soil environment flows through 

microbial decomposers (Adam and Duncan, 2001; Green et al., 2006). The enzymes responsible 

for the metabolic activity in soils are responsive to changes in the soil chemical and physical 

environment, such as changes in organic substrates, pH, temperature, and moisture status 

(Schinner et al., 1996) and are therefore affected by land management practices such as tillage 

and fertilizer application. As such, measuring the metabolic activity of the soil gives an 

indication of soil health and acts as a sensitive parameter in monitoring the effects of land 

management on the sustainability of soil as a resource (Melero et al., 2009). 

 

A common method of measuring total soil microbial activity involves determining the 

hydrolytic activity of a soil using the fluorescein diacetate (FDA) method. Schnürer and 

Rosswall (1982) found a positive correlation between soil basal respiration and FDA hydrolytic 

activity. Similarly, Swisher and Carroll (1980) found that microbial biomass was directly 

proportional to FDA hydrolytic activity. Fluorescein diacetate is a colourless substrate which is 

hydrolysed by both exo-enzymes (free) and membrane bound enzymes in the soil environment 

(Adam and Duncan, 2001), including proteases, lipases and esterases (Green et al., 2006). The 
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by-product of enzymatic decomposition of FDA is fluorescein, a yellow-green substance which 

can be detected spectrophotometrically or by fluorescence microscopy (Green et al., 2006). 

  

Another measure of microbial activity is cellulase activity. Cellulose is a structural 

polysaccharide of the plant cell wall and thus its degradation by cellulases is important in 

breaking down plant debris.  Cellulases found in the soil are  produced mainly by fungi and thus 

determination of cellulolytic activity is a good measure of fungal activity in soils. Cellulase 

activity is affected by type of litter, amount of substrate, pH, temperature and water content 

(Alef and Nannipieri, 1995), all of which are influenced by agricultural management practices.  

 

In order to promote the most sustainable agricultural mangement practices in terms of nitrogen 

(N) fertilizer application and tillage regime on the clay-loam soils of the Loskop area; this 

chapter aims at identifying the effects that annual conventional tillage (CT1) and no-till (NT, i.e. 

direct seeding) have on SOC, hydrolytic activity and cellulolytic activity at three rates of 

limestone ammonuim nitrate (LAN) fertilizer application.  

 

4.2 Results and discussion 

 

4.2.1 Soil organic carbon 

 

The effect of tillage by fertilizer on SOC is highly significant (p < 0.001) in the A horizon but 

not significant (p = 0.24) in the B horizon (Appendix 5). Comparisons by least squares 

differences at the 5 % level of significance (LSD5%) indicate that this difference in the A 

horizon is due to the NT 0N treatment being significantly higher than the other treatments and 

NT 100N and NT 200N being significantly higher than the SOC content at all N fertilizer 

application rates under CT (Appendix 6). There is a highly significant (p < 0.001) tillage effect, 

averaged across fertilizer treatments, on SOC in the A horizon but not in the B horizon (p = 

0.076) (Appendix 5). At each N fertilizer application rate the SOC is higher under NT than 

under CT1 in the A horizon, whereas in the B horizon the SOC is higher under CT1 than under 

NT (Figure 4.1).  
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Figure 4.1 The effect of no-till (NT) and annual conventional till (CT1) at N application rates of 

0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, respectively), on soil organic carbon in 

the A horizon (0 to 20 cm) and the B horizon (20 to 40 cm) (n = 3, +SE). 

 

These results confirm the study by Bescansa et al. (2006) who found that conservation tillage 

systems resulted in 13 % more organic matter than CT systems in the 0 to 15 cm soil depth. 

Under NT organic matter builds up on the soil surface, whereas under CT organic matter is 

incorporated within the plough layer and mineralisation rates are promoted. Incorporation of 

crop residues into the soil accelerates microbial decomposition by providing more direct contact 

between the residues and the soil decomposers (Fuentes et al., 2009; Melero et al., 2009). 

Furthermore, the ploughing action mechanically reduces the size of organic residue fragments, 

increasing their specific surface area which increases microbial activity. Consequently, there is 

generally a lower amount of SOC under CT than under NT in the soil surface. The higher SOC 

in the B horizon under CT1 is attributed to soil samples that were collected from the B horizon 

including the lower portion of the plough layer and thus surface incorporated residues 

contributed to the higher SOC. This was not the case for NT as residues remain on the soil 

surface.  

 

There is a highly significant (p < 0.001) difference in SOC content between the fertilizer 

treatments (averaged over tillage treatments) for the A horizon but no significant (p = 0.261) 

difference was found for the B horizon (Appendix 5). Comparions by least squares differences 

at the 5 % level of significance (LSD5%) indicate that the SOC content at each N application rate 

in the A horizon is significantly different (Appendix 6).  
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It is expected that a higher rate of fertilizer would increase the amount of plant biomass and thus 

increase the amount of SOC. It is proposed that the lower SOC with increasing nitrogen is a 

function of  the C:N ratio. As the amount of nitrogen increases more residues are decomposed 

due to an increase in the microbial activity and thus the SOC percentage decreases (i.e. 

microbial activity is not nutrient limited). Given that the method used to determine SOC 

(dichromate oxidation) only extracts readily oxidisable carbon, any carbon assimilated (i.e. 

incoporated into microbial cellular strucutures) or respired (i.e. lost as CO2) by microorganisms 

would not be included in the estimate of SOC. Sarathchandra et al. (2001) report similar results, 

where the organic carbon content is lower in fertilized plots than in unfertilized plots. In the A 

horizon under CT1 the highest SOC content was found at a N application rate of 100N. It is 

suspected that this result is a function of variability due to the ploughing in of residues.  

 

There is a marked difference in SOC content between the A and B horizon under NT, though 

this difference is less marked between the A and B horizon under CT1. Regardless of treatment 

the SOC is higher in the A horizon than in the B horizon (Figure 4.1). This is in agreement with 

Angers et al. (1992), who found that SOC decreased with depth in two loamy soils and that 

repeated cultivation resulted in homogenisation of SOC within the plough layer. Under NT the 

organic matter builds-up and remains on the soil surface and thus stratification of SOC within 

the soil profile occurs (Cavalieri et al., 2009; Melero et al., 2009).  

 

4.2.2 Hydrolytic activity 

 

No significant interactive effect of tillage and fertilizer were found for the A or B horizons (P > 

0.05), however there were significant (p = 0.002) differences between means of tillage treatment 

when averaged across fertilizer treatment in the A horizon, though no significant (P = 0.420) 

differences were found in the B horizon (Appendix 7). For each N application rate the microbial 

activity is higher under NT than under CT1 in both the A and B horizons (Figure 4.2) 
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Figure 4.2 The effect of no-till (NT) and annual conventional till (CT1) at N application rates of 

0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, respectively), on soil hydrolytic activity in 

the A horizon (0 to 20 cm) and the B horizon (20 to 40 cm) as measured by the fluorescein 

diacetate (FDA) method (n = 3, +SE). 

 

These results suggest that NT provides a more favourable environment for increased microbial 

activity. Carter (1986) also found that microbial biomass carbon (MBC) and microbial biomass 

nitrogen (MBN) are closely related to microbial activity (r2 = 0.84 and 0.86, respectively) and 

that MBC and MBN increased by between 10 and 23 % under NT when compared to shallow 

tillage over a four year period in the 0 to 5 cm soil depth. Similarly, Melero et al. (2009) found 

higher MBC and enzyme activity in the top 20 cm of soil under NT when compared to CT. This 

concurs with Govaerts et al. (2007) who found greater microbial activity and functional 

diversity in soils under NT when compared to CT and attributed these findings to improved 

aeration, a cooler and more moist soil environment, less temperature fluctuations and higher 

SOC content under NT. While ploughing promotes microbial activity immediately after soil 

tillage (mineralisation “flush”) (Spedding et al., 2004), long-term tillage reduces the amount of 

organic matter in the soil due to increased mineralisation (Acosta-Martínez et al., 2008). Angers 

et al. (1992) found that MBC decreased by 6 % in the top 6 cm of soil due to ploughing. Under 

NT the accumulation of crop residues promote the microbial and enzyme activity, particularly at 

the soil surface (Martens et al., 1992). Melero et al. (2009) found that microbial activity 

increased with increased organic matter. Acosta-Martínez et al. (2008) found a significant 

relationship between dehydrogenase activity and SOC (r2 = 0.683), and that intensive tillage 

caused a 30 to 50 % reduction in C content compared to undisturbed pastures. This resulted in a 

community structure with fewer fungal populations and lower enzyme activity in < 10 years 
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after conversion to ploughing. The lack of a positive correlation (r = 0.499) between SOC and 

hydrolytic activity (Appendix 8) is possibly a function of sample depth and the high variability 

in hydrolytic activity measurements in the A horizon under NT (Figure 4.2). It is expected that 

microbial activity and SOC under NT would be greatest in the 0 to 5 cm depth, and decrease 

with increasing depth. In this study the soil was sampled at 0 to 20 cm leading to a dilution 

effect of organic matter and microbial activity and thus the relationship between the two 

parameters is less marked. It is expected that the correlation would be stronger if the soil was 

sampled at a higher resolution (i.e. smaller depth increments). Carter (1986) and Angers et al. 

(1992) found that MBC under NT was higher in the top 5 cm compared to CT but when the 

entire plough layer (0 to 30 cm) is considered there was no difference in MBC between tillage 

treatments. Furthermore, the lack of homogenisation of the SOC into the soil under NT is likely 

to create localised areas of high microbial activity, leading to high variability in measures of 

microbial activity.   

 

There are no significant differences in the A horizon (p = 0.474) or B horizon (p = 0.707) 

between fertilizer application rate treatment means (Appendix 7). However, in the A horizon 

under both NT and CT1 there is higher hydrolytic activity for the 100N treatment compared to 

the 0N and 200N treatments. This suggests that an intermediate N rate is preferable for 

microbial activity. Increased N fertilizer application results in increased grain yield (Appendix 

9), suggesting higher plant biomass and consequently greater SOM content which increases 

microbial activity. Linn and Doran (1984) found that plots fertilized under both NT and CT had 

greater N2O production. However, fertilizer affects soil chemical properties and at high rates of 

application may act as an irritant to soil microorganisms (Fuentes et al., 2009). Tanyolac et al. 

(2001) cite a number of studies which indicate that the high levels of the ammonium ion has an 

adverse effect on microbial activity (inter alia: Krylova et al., 1997; Lay et al., 1997; Lay et al., 

1998; Princic et al., 1998).  
 

At all rates of N fertilizer the hydrolytic activity under NT in the A horizon is notably higher 

than the B horizon, whereas under CT1 the hydrolytic activity is only slightly higher in the B 

horizon as compared to the A horizon (Figure 4.2). Many studies indicate that with increasing 

soil depth there is a decrease in SOC and microbial activity (Bausenwein et al., 2008; 

Nyamadzawo et al., 2009; Melero et al., 2009). However, ploughing of the soil results in a more 

even distribution of plant residues within the plough layer and thus the stratification of SOC and 

microbial activity that exists in NT soils is not present in CT soils. Doran (1980) found higher 

phosphatase and dehydrogenase enzyme activities, and greater aerobic microbial numbers under 



37 

 

NT in the 0 to 7.5 cm soil depth, whereas at the 7.5 to 15 cm soil depth the aerobic microbial 

activity was higher under CT. This was attributed to a higher percentage of mineralisable N in 

the surface soil under NT and to NT soils retaining more water. At depth, NT soils experience a 

less oxidative environment and as such the biomass and activity of aerobic soil microbes 

decrease as the community structure changes. In a related study, Linn and Doran (1984) found 

higher CO2 and N2O production in the CT soils compared to NT soils at a depth of 7.5 to 15 cm. 

They attribute a decline in microbial respiration, nitrification and mineralisation at this depth to 

NT soils containing more than the optimal WFP (i.e. 60 %) for aerobic microbial activity. These 

results suggest that soil microbial biomass and activity is strongly influenced by both SOM and 

soil moisture content. However, a weak correlation (r = 0.182) was found between hydrolytic 

activity and field moisture water content, (Appendix 8) suggesting that moisture was not a 

limiting factor to microorganisms. This result may be a function of sampling time, as at the time 

of sampling, the WFP of the A horizon averaged 19.66 % whereas the B horizon averaged 18.76 

%. Thus samples were taken at a time when moisture content between the A and B horizons 

were similar. However, variations in moisture content over time are likely to play a more 

prominent role. However, at the time of sampling it appears that SOM content had a stronger 

influence on microbial activity. Under CT1 the crop residues are incorporated into the soil and 

distributed throughout the plough layer which results in a more readily available food source for 

microorganisms in the 20 to 40 cm soil depth and thus the microbial activity in the B horizon is 

greater under CT than NT.  

 

4.2.3 Cellulolytic activity 

 

There is higher cellulolytic activity in the A horizon under NT compared to CT1, except for the 

CT1 0N treatment (Figure 4.3). Although there are no significant differences in cellulolytic 

activity in the A horizon (p = 0.897) or B horizon (p = 0.065) between tillage treatment means 

(Appendix 10).  
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Figure 4.3 The effect of no-till (NT) and annual conventional till (CT1) at N application rates of 

0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, respectively), on soil cellulolytic activity 

in the A horizon (0 to 20 cm) and the B horizon (20 to 40 cm) as measured by amount of 

cellulose degraded over 14 days (n = 3, +SE). 

 

The generally higher cellulolytic activity in the A horizon is attributed to more residue on the 

soil surface under NT which provides more substrate for cellulose degraders. In addition, fungal 

hyphae remain intact under NT while under CT1 fungal hyphae are damaged by ploughing. 

Smith and Hughes (2004) found that frequent turning of compost lowered the cellulolytic 

activity. They suggested that turning the compost resulted in the disruption of fungal hyphae, 

the major contributor to cellulose degradation, and thus the cellulolytic activity was reduced. 

Spedding et al. (2004) also suggested that tillage disrupts fungal mycelium. There is no 

apparent reason for the higher cellulolytic activity under CT1 0N compared to NT 0N in the A 

horizon and is possibly due to the high variability of the NT 0N treatment (Figure 4.3).  

 

There is no significant difference in the A horizon or B horizon (p = 0.071 and 0.896, 

respectively) between fertilizer application rate treatment means (Appendix 10). However, in 

the A horizon under both NT and CT1 there is a strong trend indicating higher cellulolytic 

activity for the 100N treatment compared to the 0N and 200N treatments (Figure 4.3). This 

corresponds with the trend seen for hydrolytic activity. 

 

For all treatments the amount of cellulose degraded in the A horizon is higher than the B 

horizon, except for the CT1 0N treatment. This was attributed to more residues on the soil 

surface under NT and thus a greater food supply for microorganisms in the topsoil. Under CT1 
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this effect is less marked as residues are incorportaed into the soil resulting in a more 

homogenised food supply in the plough layer. The likely reason of the slightly higher 

cellulolytic activity in the B horizon campared to the A horizon under CT1 at 0N is variability. 

A high level of variability in measured cellulolytic activity may be due to the method used. 

After incubation of the filter paper a washing procedure is required. This required very careful 

removal of the partially decomposed filter paper from the soil and then washing of this filter 

paper to remove adhering soil particles. It is likely that small errors during these steps are a 

source of error that may lead to high variability in the estimation of cellulytic activity. It is 

suspected that this, along with heterogeneity in microbial populations and depth of sampling, 

are the causes of the high variability and some of the anomalous trends found. 

 

 4.3 Conclusions 

 

The amount of SOC in the upper 20 cm of the soil is higher under NT compared to CT1 due to 

the build-up of organic matter on the soil surface and the slower mineralisation rate which 

allows SOM to accumulate. Under both tillage regimes the amount of SOC decreases with 

depth, though this is more marked under NT than under CT1. This is attributed to the 

statification of SOM under NT, whereas under CT1 the SOM is incorporated into the plough 

layer. The close relationship between SOC and microbial activity is illustrated by measures of 

both hydrolytic activity and cellulolytic activity. In both measures the microbial activity in the 

A horizon is higher under NT compared to CT1 and is attributed to more SOM which provides 

more substrates for microbes. Similarly to SOC content, the hydrolytic and cellulolytic activity 

is higher in the A horizon than in the B horizon and this difference is more marked under NT 

than under CT1.  

 

In terms of nitrogen fertilizer, the effects on SOC and microbial activity appear contradictory. 

Increasing N application under NT in the A horizon results in a lower percentage of SOC. It is 

presumed that increasing levels of nitrogen increase the rate of SOM decomposition due to a 

more favourable C:N ratio coinciding with greater plant biomass. However, under both NT and 

CT1 the hydrolytic and cellulolytic activity increases from 0N to 100N but is lowest at a 

fertilizer application rate of 200N. This suggests that microbes preform at an optimal nitrogen 

level and that 200N negatively affects their activity. The lower SOC at 200N suggests increased 

microbial activity resulting in faster decomposition of SOM. These contradictory results may be 

due to dehydrogenase and cellulase activity contributing only a small proportion of the total 

enzymes responsible for degradation. In the study by Sarathchandra et al. (2001) the soil 
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functional diversity decreased with increased N application although the microbial community 

remained similar. These results suggest that N application affects the soil microbial community 

structure. Therefore, a high application of N may have adverse affects on some soil microbes 

while others are promoted. Consequently, SOM is still decomposed although the soils 

functionality is reduced.  

 

Overall, it is proposed that NT is the preferred tillage practice in providing long-term 

sustainability and soil health by promoting increased leves of SOM and greater enzyme activity. 

Furthermore, it is recommended that, although increased levels of N fertilizer results in higher 

yielding maize plants, it is unsustainable to apply high applications of N due to the negative 

effect on measured microbial activity. 
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Chapter 5 
The effect of tillage and nitrogen fertilizer on soil physical properties 

 

5.1 Introduction 

 

Agricultural management practices, such as fertilizer application and tillage, impact on soil 

physical properties by influencing the quantity and quality of soil organic matter (SOM) and 

mechanically altering soil physical properties. Fertilization generally increases plant biomass 

and results in more SOM, whereas continuous ploughing of soil results in a net loss of SOM due 

to increased mineralisation (Ishaq et al., 2002). Changes in SOM influence the soil structural 

properties and impact on bulk density (ρb), water retention, saturated hydraulic conductivity 

(Ks), aggregate stability and soil penetration resistance, as well as other soil chemical, physical 

and biological properties. Tillage also directly influences soil physical properties by creating 

temporary unstable macropores and altering overall soil porosity (Osunbitan et al., 2005).   

 

Bulk density is directly related to soil porosity and indicates the degree of soil compaction 

(Assouline, 2006). Consequently, ρb is considered a good measure of soil quality as it affects 

other soil physical parameters such as water retentivity, Ks and ease at which roots can penetrate 

the soil. Other important physical measures of soil quality include the soil water retention 

characteristics and Ks, both of which are a function of soil pore characteristics (shape, volume 

and continuity) and are important determinants of the water and aeration status of the soil. When 

all soil pores are saturated with water the soil matric potential is considered to be 0 kPa and the 

volumetric water content represents the total soil porosity (Linn and Doran, 1984). Between -10 

kPa and -33 kPa the soil water is held at field capacity, which represents the amount of water 

remaining in the soil pores after readily available water has drained under the influence of 

gravity. The water available for plant use is usually retained by the soils mesopores at a matric 

potential of between -10 kPa and -1500 kPa, whereas the wilting point of the plant is taken as 

the moisture content at -1500 kPa and represents the water that is strongly adsorbed to pore 

surfaces and is generally not available for plant uptake (Schulze et al., 1985).  In addition to the 

water and aeration status of the soil, crop productivity is also affected by the ease at which roots 

can penetrate the soil (i.e. soil strength), which is frequently estimated by determining the soil 

penetration resistance (Osunbitan et al., 2005). 

 



42 

 

The aim of this chapter is to identify the effects that annual conventional tillage (CT1) and no-

till (NT, i.e. direct seeding) have on soil ρb, water retentivity, Ks, aggregate stability and soil 

penetration resistance at three rates of nitrogen (N) fertilizer applied as limestone ammonuim 

nitrate (LAN). In so doing, more sustainable agricultural mangement practices, in terms of 

fertilizer application and tillage regime, on the clay-loam soils of the Loskop area can be 

proposed.  

 

5.2 Results and discussion 

 

5.2.1 Bulk density (ρb) 

 

There was no significant difference found for the tillage by fertilizer effect on ρb in the A or B 

horizons (p = 0.79 and p = 0.178, respectively) (Appendix 11). In the A horizon there is a 

significantly (p = 0.015) higher ρb under NT compared to CT1, though no significant (p = 

0.246) difference between tillage means was found in the B horizon (Appendix 11), (Figure 

5.1).  

 
Figure 5.1 The effect of no-till (NT) and annual conventional tillage (CT1) at N application 

rates of  0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, respectively), on soil bulk density 

in the A horizon (0 to 20 cm) and the B horizon (20 to 40 cm) (n = 3, +SE). 

 

Under CT the ρb in the plough layer is lowered by the mechanical inversion of the soil during 

tillage which creates macropores and increases the porosity of the soil. A strong negative 

correlation (r = -0.917) was found between the ρb and total porosity (Appendix 8). Many authors 
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(e.g. Osunbitan et al., 2005; Bescansa et al., 2006) have found that ρb in the top 5 to 20 cm of 

soil is greater under conservation tillage compared to CT up to 10 years after conversion to 

conservation tillage. However, in the long-term (> 10 years) the higher ρb under NT has been 

found to be temporary and is reduced as SOM content and biological activity increases 

(Bescansa et al., 2006). This results in similar ρb between tillage systems (Angers et al., 1992; 

Johnson-Maynard et al., 2007) or a slightly lower ρb under conservation tillage systems 

(D’Haene et al., 2008; Riley et al., 2008). Soils which are continuously ploughed lose SOM 

which leads to the degradation of soil aggregation. As a result, pores created during ploughing 

are unstable and readily collapse (Osunbitan et al., 2005) due to greater slaking and dispersion 

of soil aggregates and consequently ρb increases (So et al., 2009). Osunbitan et al. (2005) found 

that although ρb in the top 5 cm was greater under NT than CT, the increase in ρb over eight 

weeks since the tillage event was greater under CT. This was attributed to the soil particles 

under CT settling into a more compact arrangement compared to NT. The loss of SOM under 

CT also leads to a reduction in the soils mesoflora. Earthworms are important for improving and 

maintaining soil structure and aggregate stability (Riley et al., 2008). Tillage adversely affects 

earthworm populations by impacting on the SOM and moisture retention and also, increasing 

the exposure of earthworms to predators and adverse climatic conditions by bringing them to 

the soil surface (Smith et al., 2008). Since NT has a positive effect on earthworm populations 

(Kladivko et al., 1997; Johnson-Maynard et al., 2007; Riley et al., 2008; Smith et al., 2008) the 

soil structural characteristics under NT are gradually improved which leads to better pore size 

distribution (i.e. a larger range of pore sizes) and a lower ρb with time (Kladivko et al., 1997; 

D’Haene et al., 2008). It is important to note that ρb under CT is strongly affected by sampling 

time. If ρb is measured directly after ploughing then ρb under CT is much lower than under NT. 

However, if measurement of ρb is taken well into the growing season and the CT soil has 

consolidated due to a loss of structure and structural stability then the ρb between tillage regimes 

is likely to be similar or greater under CT. In the current study samples were taken near the end 

of the growing season and while significant differences were found between treatments, these 

were less marked than they may have been if samples were taken earlier in the season. 

 

There is a highly significant (p < 0.001) difference in bulk densities between fertilizer 

application rate in the A horizon but no significant (p = 0.604) difference in the B horizon, 

across the mean of tillage treatments (Appendix 11). Comparisons by least squares differences 

at the 5 % level of significance (LSD5%) indicate that the 200N treatment is significantly higher 

than the other treatments in the A horizon (Appendix 6). It was found that the high N 

application rate had a negative impact on microbial activity (Section 4.2.1 and 4.2.2) and it was 
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suspected that earthworm populations were also negatively impacted. This would adversely 

affect aggregation and soil pore formation, leading to higher ρb. Although increased fertilizer 

may increase the level of plant biomass and provide more food for earthworms, the addition of a 

high quantity of ammonium containing inorganic fertilizers can negatively affect the earthworm 

population due to acidifying conditions and changing the availability of nutrients such as Ca2+ 

(Riley et al., 2008; Smith et al., 2008). This effect was not observed in the CT1 treatment at 

200N as the effect of tillage would dominate, where macropores are created by the mechanical 

inversion of the soil during ploughing.  

 

For all treatments, except NT 200N, the ρb is higher in the B horizon compared to the A horizon 

(Figure 5.1). Under CT1 the ρb is expected to be relatively higher in the B horizon than the A 

horizon due to a reduction in topsoil ρb as a consequence of ploughing. Under NT, ρb in the A 

horizon is reduced due to the build-up of organic matter on the soil surface which helps in 

building and preserving soil structure, and increasing biological activity. Cavalieri et al. (2009) 

found that under NT, SOC decreased with increasing depth and ρb increased with decreasing 

SOC. The high ρb value in the A horizon for the NT 200N treatment is possibly due to a high 

amount of LAN remaining on the soil surface and acting as an irritant to the soils micro and 

mesofauna. In the B horizon of the NT 200N treatment soil biota are limited by available 

substrate though they are not exposed to the surface applied fertilizer and thus there may be a 

small amount of activity which helps to reduce ρb in the B horizon.  

 

5.2.2 Water retentivity 

 

There was a significantly (p = 0.008) higher (Appendix 12) volumetric water content at 

saturation under CT1 compared to NT across fertilizer treatment means in the A horizon (Figure 

5.2). This is the result of greater macroporosity under CT created by the mechanical inversion of 

the plough layer during tillage (Lampurlanés and Cantero-Martínez, 2006). The volumetric 

water content of the CT1 soil remained higher than the NT soil up to a matric potential of -6 

kPa, while the water contents were similar between -6 and -10 kPa (Figure 5.2). This was 

attributed to the lower ρb (therefore higher porosity) of the CT1 treatments (Section 5.2.1). 
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Figure 5.2 The effect of no-till (NT) and annual conventional tillage (CT1) averaged across 

fertilizer treatments (n = 9) on the water retention characteristics for the A horizon (0 to 20 cm).  

 

The volumetric water content is greater under NT compared to CT1 at matric potentials between 

-10 and -1500 kPa in the A horizon (Figure 5.2) and there is a significantly (p = 0.024) higher 

volumetric water content for the NT treatments at -33 kPa matric potential (i.e. field capacity) 

(Appendix 13). These results are consistent with So et al. (2009) who report greater plant 

available water (PAW) under NT than CT in the top 10 cm of weakly structured silt loam soil. 

Although tillage increases the proportion of macropores, the poor aggregation and weak 

structure associated with continuously ploughed soils results in a loss of mesoporosity 

(Osunbitan et al., 2005). Conversely, the meso and microporosity of soil under NT increases as 

greater SOM improves soil aggregation and biological activity and thus NT soils are able to 

hold more PAW (i.e. -10kPa - wilting point) (Osunbitan et al., 2005; Saxton and Rawls, 2006). 

 

In the A horizon, there is a highly significant (p < 0.001) effect of N fertilizer on the water 

content at saturation and -33 kPa (Appendix 12 and 13, respectively). Comparisons by LSD5% at 

both 0 kPa and -33 kPa show that the 200N treatment is significantly lower than at 0N and 

100N treatments (Appendix 6) (Figure 5.3). 
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Figure 5.3 The effect of N application rates at 0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 

200N, respectively) averaged across tillage treatments (n = 6) on the water retention 

characteristics for the A horizon (0 to 20 cm). 

 

These results show that at 200N the water retained at every matric potential is lower compared 

to 0N and 100N. These results are in agreement with the findings for ρb (Section 5.1), where the 

200N treatment had the highest ρb in the A horizon (Figure 5.1). As proposed earlier, it is 

suspected that the high fertilizer rate acts as an irritant to the soil biota, decreasing microbial and 

mesofauna activity, leading to reduced porosity. In the case of microbial activity, these findings 

correspond to the results found for both hydrolytic and cellulolytic activity (Section 4.2.1 and 

4.2.2). A reduction in microorganisms leads to a decrease in soil structural stability and 

mesoporosity is not maintained (Bossuyt et al., 2001).  

 

It is important to note that there is a significant (p = 0.009) tillage by fertilizer effect at 

saturation in the A horizon (Appendix 12). Comparisons by LSD5% indicate that the lower 

volumetric water content under NT compared to CT1 when averaged across fertilizer treatments 

is due to the NT 200N treatment being significantly lower than all other treatments (Appendix 

6). The NT 0N and NT 100N treatments have similar volumetric water contents at saturation to 

all the CT1 treatments (Appendix 14). More organic material in the A horizon under NT can 

increase the soil mesofauna which results in increased macroporosity (Joschko et al., 2009), 

while macroporosity is maintained by ploughing in the CT treatments. This is not seen for the 

NT 200N treatment due to the adverse effect fertilizer has on soil organisms. Concurrently, 

there is a highly significant (p < 0.001) tillage by fertilizer effect at -33 kPa (Appendix 13). The 
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highest PAW was measured for the NT 0N treatment in the A horizon, which was almost 2.5 

fold higher than the CT 0N treatment. However, this marked difference was not evident for the 

100N and 200N treatments in the A horizon, where NT and CT1 had similar PAW contents 

(Table 5.1).  

 

Table 5.1 The effect of no-till (NT) and annual conventional tillage (CT1) at N application rates 

of 0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, respectively), on plant available water 

in the A horizon (0 to 20 cm) (n = 3). 

   Plant available water (m3 m-3) 
  NT CT1 
0N 0.13 0.05 
100N 0.09 0.08 
200N 0.05 0.06 
Average 0.09 0.06 

 

Comparisons by LSD5% show that the NT 200N has a significantly lower moisture content than 

the other NT treatments and a similar moisture content to the CT 0N and CT 200N treatments 

(Appendix 6). Again, this is most likely due to the irritant effect of a high application rate of N 

on soil organisms, especially under NT where the fertilizer remains on the soil surface and is not 

diluted through mixing within the plough layer. Slightly higher PAW for CT1 100N compared 

to other CT1 treatments in the A horizon (Table 5.1) could be a result of (i) increased SOM due 

to greater plant biomass as compared to the CT1 0N and (ii) that the irritant effect of the N 

fertilizer on soil biota is not occurring at CT1 100N as it is at CT1 200N. Consequently, 

mesoporosity created by mesofauna is limited by the amount of available substrate.   

 

In the B horizon, there is no significant (P < 0.05) tillage by fertilizer effect at a matric potential 

of 0 kPa or -33 kPa (Appendix 12 and 13, respectively). There is no significant difference at 

saturation between tillage means or fertilizer means (p = 0.063 and p = 0.180, respectively) and 

only a marginally significant difference between tillage means and fertilizer means (p = 0.033 

and p = 0.036, respectively) at a matric potential of -33 kPa (Appendix 12 and 13, respectively). 

At all matric potentials the moisture content is similar between tillage regimes (Figure 5.4) and 

between fertilizer application rates (Figure 5.5) 
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Figure 5.4 The effect of no-till (NT) and annual conventional tillage (CT1) averaged across 

fertilizer treatments (n = 9) on the water retention characteristics for the B horizon (20 to 40 

cm). 

 

 
Figure 5.5 The effect of N application rates at 0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 

200N, respectively) averaged across tillage treatments (n = 6) on the water retention 

characteristics for the B horizon (20 to 40 cm). 

 

At -1500 kPa there was no significant difference in the A or B horizons (p = 0.089 and p = 

0.518, respectively) between tillage means averaged over fertilizer treatments (Figure 5.2 and 

5.4; Appendix 15). Soil organic matter and the degree of aggregation have a minimal effect on 
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the water retained at -1500 kPa and soil texture is the dominant factor affecting water retention 

at very low matric potentials (Saxton and Rawls, 2006). Apart from an anomaly for the CT1 

100N treatment, water contents for both the A and B horizon at wilting point are similar across 

all treatments (Appendix 14). Although significant differences between fertilizer treatments (p < 

0.001) averaged across tillage regimes were found in the A horizon (Appendix 15), the 

difference in water contents at wilting point were very small, (Figure 5.3) and unlikely to have a 

marked impact on plant growth under favourable growing conditions.  

 

5.2.3 Saturated hydraulic conductivity 

 

Tillage has a significant (p = 0.002) effect on the Ks averaged across all fertilizer application 

rates in the A horizon and a significant (p = 0.011) effect in the B horizon (Appendix 16). In 

both the A and B horizon the Ks is notably higher under CT1 compared to NT at all fertilizer 

application rates (Figure 5.6). 

 

 
Figure 5.6 The effect of no-till (NT) and annual conventional tillage (CT1) at N application 

rates of 0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, respectively), on saturated 

hydraulic conductivity in the A horizon (0 to 20 cm) and the B horizon (20 to 40 cm) (n = 3, 

+SE). 

 

Saturated hydraulic conductivity is a function of the soils macroporosity and pore connectivity 

(Osunbitan et al., 2005). Although tillage results in an immediate increase in macroporosity 



50 

 

(Section 5.2.2), CT is likely to decrease pore continuity (Bhattacharyya et al., 2006). In contrast, 

the build-up of organic matter on the soil surface under NT improves structural stability and 

leads to increased soil faunal activity and increased growth of plant roots. Consequently, more 

stable channels are created which leads to better pore connectivity (Saxton and Rawls, 2006) 

and can also lead to greater macroporosity with time. Accordingly, Ks has been found to be 

considerably lower under CT than under NT in the soil surface by a number of authors 

(Osunbitan et al., 2005; Bhattacharyya et al., 2006; So et al., 2009; Cavalieri et al., 2009). In 

this study the higher Ks measured under CT1 is probably due to the lower ρb of the CT1 soils 

(Section 5.2.1) and is also reflected in the higher saturated water content of CT1 soils (Section 

5.2.2).  The time it takes for organic matter to build-]up and for a new biological equilibrium to 

be reached in NT soils is dependent on soil management, soil properties and environmental 

conditions and therefore differs between locations (Cavalieri et al., 2009). Johnson-Maynard et 

al. (2007) found similar Ks between NT and CT, suggesting that the NT soil macroporosity and 

pore connectivity had improved over time but had not yet improved to a level that exceeded the 

soil water transmission under CT. It is suspected that this is the case in this study and the long-

term improvements in macroporosity are not yet evident in the NT soils. 

 

There is no significant difference in the Ks for the A or B horizons (p = 0.066 and p = 0.422, 

respectively) between fertilizer application rates averaged across the tillage treatments 

(Appendix 16). However, there is a slightly lower Ks for the 200N treatment in the A horizon 

under both NT and CT1. This may be a consequence of fewer macropores being created by the 

soil biota as the high rate of fertilizer negatively affects the soils mesofauna, which concurs with 

the results for ρb and water retentivity (Section 5.2.1 and 5.2.2). 

 

Comparisons of Ks by LSD5% indicates that the significant (p = 0.028) effect of the tillage by 

fertilizer treatment in the B horizon (Appendix 16) is a result of the CT1 0N treatment 

(Appendix 6). The Ks for CT1 0N is considerably higher than all other treatments in the B 

horizon (Figure 5.6). There is no clear reason for this result and is suspected that boundary flow 

in the soil core during Ks measurement or a continuous open channel in one of the cores resulted 

in a skewing of the data, this reflected in the high error terms.  

 

The Ks is substantially higher in the A horizon than the B horizon under both NT and CT1 at all 

fertilizer application rates (Figure 5.6). This is expected as under NT the increased SOM in the 

surface horizon allows for more biological activity and improved soil aggregation and thus 

water conductivity is improved in the soil surface and decreases with depth. Under CT, large 
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connected pores are a result of tillage and thus below the plough layer the Ks decreases. In this 

study the B horizon samples were taken partially from the ploughed layer although it is 

expected that if samples had being taken completely below the plough layer the difference 

between Ks in the A and B horizon would be more marked under CT1.  

 

5.2.4 Aggregate stability 

 

There was higher micro-aggregate stability under NT than under CT1 in the A horizon and a 

small difference between the B horizon when averaged over fertilizer treatment means (Figure 

5.7).   

 
Figure 5.7 The effect of no-till (NT) and annual conventional tillage (CT1) averaged across N 

application rates on micro-aggregate stability for the A (0 to 20 cm) and B (20 to 40 cm) 

horizons (n = 3). 

 

There is a strong correlation between SOM, SOC and the structural stability of micro and 

macro-aggregates (Fuentes et al., 2009). It is important to note that this study measured micro-

aggregation rather than macro-aggregation. However, it is presumed that as micro-aggregates 

are the building blocks for macro-aggregates (Bossuyt et al., 2001) both are affected by 

management practices in the same way. Riley et al. (2008) found that soil management practices 

which promoted the accumulation of SOM had higher aggregate stability than soils which are 

ploughed annually. Nyamadzawo et al. (2009) found greater SOM levels and aggregate stability 

under NT than under CT in the soil surface. Under CT the aggregates are more susceptible to 

disruptive forces of wetting and drying cycles and raindrop impact as they are not protected by 
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organic matter or held together by organic colloids. Therefore, under CT the macro-aggregation 

is destroyed due to mechanical disruption (Nyamadzawo et al., 2009). In the B horizon the 

difference in aggregate stability is smaller between NT and CT1 as there is less SOM under NT 

with increasing depth, whereas under CT1 the amount of SOM is more evenly distributed within 

the plough layer (Section 4.2.1). 

  

The micro-aggregate stability in the A horizon was considerably lower at 200N than the other N 

application rates under NT (Figure 5.8), whereas in the B horizon the aggregate stability 

between fertilizer treatments is not markedly different (Figure 5.8).  
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Figure 5.8 The effect of N application rates at 0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 

200N, respectively) averaged across tillage treatments on micro-aggregate stability for the A (0 

to 20 cm) and B (20 to 40 cm) horizons (n = 2).  

 

The lower aggregate stability of the 200N treatment may be attributed to the adverse effect of 

the high fertilizer application rate on soil microorganisms (Section 4.2.2 and 4.2.3). Given that 

soil microorganisms provide polysaccharides, gels and hyphae which bind soil particles 

(Bossuyt et al., 2001); a decrease in their activity may lead to a lower production of these 

binding agents and a subsequent reduction in aggregation. 

 

The similarity in aggregate stability between fertilizer treatments in the B horizon may be a 

consequence of similar soil microbial activity (Section 4.2.2 and 4.2.3) and similar SOC content 

(Section 4.2.1) between fertilizer treatments in the B horizon. Under NT the fertilizer remains 
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on the soil surface and thus has minimal influence with increasing soil depth. Under CT the 

fertilizer is ploughed into the soil and thus although it is likely to influence aggregate stability, 

its effect is diluted within the plough layer. It is important to note that the aggregate stability for 

all treatments ranges between approximately 93 and 96 % and therefore, although reasons are 

given for these slight differences, the difference is negligible in terms of soil management. It is 

proposed that if aggregate stability had been measured on samples from 0 to 5 or 0 to 10 cm soil 

depth, as opposed to 0 to 20 cm soil depth used in this study, the difference in aggregate 

stability would have been more pronounced.   

 

5.2.5 Soil Strength 

 

The penetration resistance, averaged across fertilizer treatments, is greater under NT than under 

CT1 between a soil depth of 5 and 35 cm (Figure 5.9), indicating greater soil strength at a soil 

depth of between 0 and 30 cm under NT than under CT1. Below the plough layer the 

penetration resistance is similar between tillage regimes (Figure 5.9). This corresponds to the 

results found for ρb which showed higher ρb in the A horizon (0 to 20 cm) under NT and similar 

bulk densities between tillage regimes in the B horizon (30 to 40 cm) (Section 5.2.1).  

 
Figure 5.9 The effect of no-till (NT) and annual conventional tillage (CT1) on soil penetration 

resistance with depth, averaged over N application rate means (n = 9). The line at 2000 kPa 

represents the accepted soil strength at which root growth is limited (So et al., 2009). 
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Soil tillage involves the mechanical loosening of the soil, which in the short-term reduces soil 

strength. However, the build-up of organic matter on the soil surface under NT results in a 

decrease in penetration resistance as the mulch layer increases the moisture content of the soil 

surface and the accumulation of residues promotes the development of macroporosity by 

improving soil structure and enhancing soil biological activity. For this reason, there was a 

similar penetration resistance in the top 5 cm of the soil surface in both tillage treatments in this 

study. A comparable study by Osunbitan et al. (2005) found that penetration resistance under 

NT was greater than under CT up to a depth of 30 cm. However, eight weeks after the tillage 

event the 0 to 5 cm soil layer under NT and CT had similar bulk densities.  

 

The highest penetration resistance under NT and CT1 occurs at a soil depth of approximately 30 

to 35 cm (Figure 5.9). As the penetrometer readings were taken from the inter-rows which are 

not exposed to vehicular traffic the presence of this layer of increased soil strength under both 

NT and CT1 may be a residual plough pan created before the initiation of this experiment. 

Cavalieri et al. (2009), working in Brazil on a sandy clay, non-expansive soil, found after 14 

years of NT the 20 to 30 cm soil depth had an increased ρb, lower total porosity and less 

macroporosity than the 10 to 20 cm and 30 to 40 cm soil depth, indicating the remains of a 

plough pan created during CT. After conversion from CT to NT soil compaction occurs as a 

result of natural reconsolidation of poorly structured aggregates with low stability. Biotic 

activity, shrink and swell due to wet and dry cycles and channels left by decaying plant roots are 

more prevalent in the surface soil and thus the compaction in the 0 to 10 cm layer is alleviated 

faster than the compacted layer at the 20 to 30 cm soil depth (Cavalieri et al., 2009). Plant roots 

may be denser and more abundant at approximately 30 cm and thus more water is being 

extracted from this layer which results in increased soil strength.  

 

Under NT the fertilizer application rate is influencing the soil penetration resistance. The soil 

penetration resistance for the 0N and 100N treatments are similar up to a depth of 

approximately 10 cm but lower than the penetration resistance of the 200N treatment. At a soil 

depth of between 10 and 60 cm the 200N treatment has the greatest penetration resistance, 

followed by the 100N and then by the 0N treatments (Figure 5.10). 
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Figure 5.10 The effect of N application at 0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, 

respectively) under NT, on soil penetration resistance (n = 3) The line at 2000 kPa represents 

the accepted soil strength at which root growth is limited  (So et al., 2009).  

 

The rate of N application to soils is directly related to above ground plant biomass (Appendix 9) 

and can be correlated with the size of the maize plant. Higher applications of N fertilizer result 

in bigger plants which will have higher transpiration rates, which will dry the soil. 

Consequently, soils which receive higher application rates of N are likely to have lower soil 

moisture contents. This result is similar to Ishaq et al. (2002) who found that the penetration 

resistance of a sandy clay loam soil under reduced tillage was greater in soil which received a 

high application of NPK fertilizer compared to soil which received a medium and low 

application. Similarly, Fabrizzi et al. (2005) found that 150 kg N ha-1 resulted in a significantly 

higher penetration resistance than 0 kg N ha-1.  Fabrizzi et al. (2005) attribute higher penetration 

in the fertilized plot compared to the unfertilized plot to the higher moisture content in the 

unfertilized plot. 

 

Under CT the penetration resistance for all fertilizer application rates is similar up to a depth of 

approximately 5 cm. Below 5 cm the penetration resistance is consistently lower at an 

application rate of 0N compared to the higher application rates. At a soil depth between 5 and 

20 cm the 100N treatment has the highest penetration resistance, whereas between 20 and 60 cm 

the soil which received 200N has the highest penetration resistance (Figure 5.11). 
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Figure 5.11 The effect of N application at 0, 100 and 200 kg ha-1 annum-1 (0N, 100N and 200N, 

respectively) under CT, on soil penetration resistance (n = 3) The line at 2000 kPa represents the 

accepted soil strength at which root growth is limited (So et al., 2009). 

 

Under CT1 the effect of fertilizer on penetration resistance is not as clearly seen as under NT. 

This result may be due to the disturbance caused by the tillage, especially in the upper layers. At 

depth, the trend seen for N application rate under NT is similar to that seen under CT1. Under 

deep tillage, Ishaq et al. (2002) also found that the penetration resistance was similar at all 

fertilizer application rates.  

 

Although the soil strength was found to be above 2000 kPa at most depths under NT and CT1 

the maize growth did not show any visual signs of being adversely affected. This may be due to 

the relationship between penetration resistance and soil moisture content. As the soil dries, the 

cohesion increases between soil particles and soil strength increases (Materchera and Mloza-

Banda, 1996). Thus, the penetration resistance measured at the time of sampling may be higher 

than what is experienced by the crop for the majority of the growing season if measurements 

were taken at a drier than usual period.  

 

5.3 Conclusions 

 

Tillage has a considerable impact on the soil physical properties in the upper 20 cm of the soil 

profile (A horizon). Bulk density is greater under NT than under CT1 which indicates that the 
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porosity created by soil tillage is still greater than NT at the time of sampling. This suggests that 

after 5 years of annual conventional tillage there is still sufficient SOM to maintain soil 

structure and structural stability, which allows a lower ρb under CT throughout the season or at 

least up to the time of sampling. Furthermore, the time elapsed between the tillage event and 

sampling was insufficient to allow for the pores created by the tillage to collapse and result in a 

higher ρb under CT1 than under NT. Higher ρb under NT corresponds to the lower saturated 

water content and Ks under NT compared to CT1. These results also correspond to a greater 

penetration resistance under NT compared to CT1 at a depth of between 5 and 35 cm. Tillage 

induced macropores allow more water to be held at saturation. However, PAW is greater under 

NT than under CT1 due to a higher proportion of micropores and mesopores. A higher 

percentage of smaller pores under NT is a consequence of increased aggregate stability, which 

allows for the maintenance of soil structure. 

 

The application of fertilizer also has a considerable effect on the soil physical properties in the 

upper 20 cm of the soil profile. An application rate of 200 kg N  ha-1 was found to significantly 

increase ρb and lower the water retention at all matric potentials in the A horizon, especially 

under NT. Concurrently, there is a trend for lower Ks and aggregate stability for the 200N 

treatment under both NT and CT1 compared to the lower rates of N fertilization. It was 

proposed that the accumulation of a high concentration of fertilizer on the soil surface is an 

irritant to the soil fauna and thus pore formation and aggregate stability is reduced leading to 

higher ρb and an overall reduction in water retention. Under CT1 the negative effect of 200N is 

less marked as the fertilizer is ploughed into the soil and the concentration is diluted throughout 

the plough layer. 

 

In the B horizon (20 to 40 cm) the effect of tillage and nitrogen fertilizer on the soil physical 

properties is reduced. Bulk densities, water retention characteristics and aggregate stability 

between treatments are similar. Furthermore, the penetration resistance below a soil depth of 35 

cm is similar between tillage regimes. Below the plough layer there is less direct structural 

change caused by tillage implements and the amount of organic matter under NT and CT1 is 

similar and thus comparable levels of aggregation and biological activity are promoted. 

Consequently, soil physical properties remain alike regardless of treatment.  

 

The results for penetration resistance indicate a substantial effect of fertilizer application rate on 

soil strength. Under NT, increasing rates of N application result in increased soil strength 

throughout the profile. This was attributed to greater plant biomass with increased fertilization 
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leading to great utilization of soil water and consequently penetration resistant increased. The 

same trend is seen under CT1 from a soil depth of approximately 35 cm. Above 35 cm the soil 

is disturbed through tillage and the penetration resistance response to fertilizer is disrupted. A 

further effect of moisture content of the soil on penetration resistance is found under both NT 

and CT1 at a soil depth of between 30 and 35 cm. The high penetration resistance at this depth 

is presumed to be a consequence of plant roots at this depth being more abundant and thus 

utilizing more moisture.  

 

Although soils under CT1 have greater saturated water content, lower ρb and lower soil strength 

compared to NT soils, the water retention within the plant available range is greater under NT. 

Furthermore, plant growth under NT does not show any adverse effect to reduced porosity and 

it is proposed that root growth is not restricted and the soil water and aeration status under NT is 

satisfactory for crop growth. Therefore, NT is the preferred tillage practice in providing long-

term sustainability and soil quality without causing negative soil structural properties for crop 

productivity in the short-term. In addition, it is recommended that although increased levels of 

nitrogen fertilizer results in higher yielding maize plants it is unsustainable to apply high 

applications of LAN due to the negative effect on the soil physical properties. 
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Chapter 6 
General conclusions and recommendations 

 

The results from this study show that five years after the initiation of a tillage trial in the Loskop 

area of KwaZulu-Natal, South Africa, the effects of NT practices resulted in higher bulk density 

and penetration resistance and lower saturated water content and saturated hydraulic 

conductivity. However, greater soil organic carbon content, microbial activity and aggregate 

stability under NT help maintain soil structure and therefore there is greater moisture retention 

within the plant available range compared to CT1. These results suggest that although NT may 

negatively impact some soil physical properties, soil functionality is maintained due to 

improved structural properties.  

 

The application of N fertilizer was also found to impact on the soil microbiological and physical 

properties, thus affecting overall soil quality. Although increased application rates of LAN have 

resulted in a linear growth and yield response of maize, it was found that at 200 kg N ha-1 

annum-1 the microbial activity (as measured by hydrolytic and cellulolytic activity) was 

negatively affected, especially under NT. In addition, the 200N treatment also resulted in higher 

bulk densities and penetration resistance and lower saturated water content, saturated hydraulic 

conductivity and aggregate stability. The negative effect of the 200N treatment on soil microbial 

and physical properties is more pronounced under NT than under CT1 due to fertilizer being 

concentrated at the soil surface. It is proposed that the negative effect of high N application rates 

on microbial activity also implies a general negative effect on other soil biota (most likely 

earthworms). Consequently, aggregate stability and pore formation are reduced and the soil 

quality deteriorates. This suggests that in the long-term, applying higher rates of N fertilizer will 

lead to reduced crop productivity due to degradation of soil quality and thus is unsustainable. 

 

Although soils under CT1 have greater saturated water content and lower bulk density, the 

water retained within the plant available range (-33 to -1500 kPa) is greater under NT compared 

to CT1 at 0N and similar at 100N and 200N. Furthermore, plant growth under NT is not 

adversely affected by reduced porosity and therefore NT is the preferred tillage practice to 

provide long-term sustainability and soil quality without causing negative soil structural 

properties for crop productivity in the short-term.  
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Time  and logistical constraints limited intensive sampling and so there may be concerns about 

the sampling approach used here. As such recommendations for future research are given. 

Sampling at a higher resolution by taking soil cores and soil bulk samples from smaller depth 

increments is needed (i.e. 5 cm increments). The build-up of residues on the soil surface under 

NT means that the beneficial effects of SOM on soil microbiological and physical properties are 

more pronounced in the surface layers of the soil and by taking samples at smaller depth 

increments it is possible to assess how deep these beneficial effects are present. It is likely that 

the sampling at a soil depth of between 0 to 20 and 20 to 40 cm in this study resulted in a 

dilution effect of measured properties under NT. 

 

Sampling time must also be considered in future research and data collection. Soil microbes and 

other soil fauna (i.e. earthworms) are sensitive to environmental conditions and are therefore 

affected by season and time of sampling. Furthermore, sampling directly after ploughing will 

yield different results to sampling near the end of the growing season. It is suggested that the 

effect of tillage and fertilizer on soil microbes should be determined in different seasons and 

that all sampling should be taken near the end of the growing season. 

 

Other  measures useful in determining the effect of tillage at different rates of N fertilzation on 

soil microbiological and physical properties that should be included in further studies is the 

measurement of earthworm populations and more microbial measurements such as other 

enzyme activities, microbial biomass nitrogen and carbon, community composition and 

functional diversity. Measuring in situ saturated hydraulic conductivity and unsaturated 

hydraulic conductivity may also be useful in determing macropore water flow and the water 

movements through meso and micropores, respectiviely. Including these measurements may 

further help in understanding the effect of soil agricultural management practices on soil quality, 

especially where effects may be small or subtle. 

 

In addition to the above recommendations, it is necessary to study the effects of tillage and 

fertilizer application on soil quality at other locations, under different environmental and soil 

conditions. The soil in this study is considered a stable soil and thus less stable soils (i.e. a soil 

with greater shrink/swell capacity) may behave differently under the same soil management 

practices.  Tillage regime and fertilizer application rate have considerable effects on soil quality 

by impacting on the soil microbial and physical properties and therefore the evaluation of these 

agricultural management practises is needed to sustain productivity. This study indicates a need 

to re-evaluate recommended fertilizer rates, especially under NT. In addition, long-term 
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experiments are needed in different locations throughout the farming regions of South Africa to 

study the site-specific impacts of tillage and fertilizer rates on productivity and environmental 

quality. 
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Appendices 

 

Appendix 1 Particle size analysis using the double pipette method (Gee and Bauder, 1986) on a randomly chosen plot which represents no-till (NT) and 

annual conventional tillage (CT1) at nitrogen fertilizer rates (applied as limestone ammonium nitrate) of 0, 100 and 200 kg N ha-1 (0N, 100N and 200N 

respectively). 

 

Plot Treatment Coarse sand (%) Medium sand (%) Fine sand (%) Very fine sand (%) Coarse silt (%) Fine silt (%) Clay (%) 

1A NT 0N 3 4 18 16 10 10 38 

8A NT 100N 3 3 18 17 8 12 39 

10A NT 200N 3 3 17 17 11 9 39 

27A CT1 0N 1 3 18 20 9 10 39 

38A CT1 100N 1 2 18 20 9 10 40 

29A CT1 200N 1 2 18 18 11 10 40 

1B NT 0N 0 2 18 16 9 12 43 

8B NT 100N 1 3 18 20 6 13 39 

10B NT 200N 1 2 16 21 10 10 40 

27B CT1 0N 1 2 18 20 9 10 41 

38B CT1 100N 1 3 18 18 10 10 42 

29B CT1 200N 1 2 19 18 11 9 39 

Average 1 3 18 18 9 10 40 

Total 40 20 40 
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Appendix 2 Selected soil physical and chemical properties of annual conventional tillage (CT1) and no-till (NT) plots at a nitrogen fertilizer application rate 

(applied as limestone ammonium nitrate) of 0, 100 and 200 kg ha-1 (0N, 100N and 200N respectively). 

 

Plot Rep Treatment 
P (mg 
kg-1) 

K 
(cmolc 
kg-1) 

Ca 
(cmolc 
kg-1) 

Mg 
(cmolc 
kg-1) 

Exchangeable 
acidity (cmol 

L-1) ECEC 

Acid 
sat. 
(%) 

pH 
(KCl)

Zn 
(mg 
kg-1) 

Mn 
(mg 
kg-1) 

Cu 
(mg 
kg-1) 

MIR 
N 

(%) 
1 1 NT 0N 69.80 0.39 2.15 0.51 0.14 10.29 1 5.62 6.54 11.99 3.92 0.19 

35 2 NT 0N 115.30 0.35 2.42 0.45 0.02 10.51 0 6.20 11.64 11.30 4.63 0.18 
50 3 NT 0N 34.50 0.31 2.46 0.59 0.03 10.54 0 5.58 4.40 9.52 2.14 0.18 
8 1 NT 100N 127.70 0.36 2.23 0.57 0.05 10.28 0 6.13 11.19 11.30 4.29 0.19 

14 2 NT 100N 57.00 0.35 2.32 0.58 0.06 10.54 1 5.83 6.27 15.96 4.45 0.20 
19 3 NT 100N 66.00 0.42 2.27 0.58 0.08 10.85 1 6.00 5.72 15.40 4.18 0.19 
10 1 NT 200N 65.90 0.43 2.01 0.52 0.09 9.83 1 5.58 6.80 16.20 3.89 0.20 
71 2 NT 200N 64.40 0.30 2.51 0.56 0.03 10.98 0 5.76 7.59 12.65 4.26 0.18 
77 3 NT 200N 66.70 0.39 2.19 0.51 0.02 9.77 0 5.51 7.02 12.65 3.11 0.17 
27 1 CT1 0N 19.60 0.37 2.00 0.48 0.08 9.02 1 5.56 3.22 11.50 4.26 0.13 
56 2 CT1 0N 20.40 0.53 2.02 0.45 0.04 8.70 0 5.23 4.44 24.00 5.28 0.17 
76 3 CT1 0N 20.40 0.42 2.00 0.52 0.03 8.77 0 5.43 3.24 12.00 4.08 0.15 
13 1 CT1 100N 24.20 0.43 1.87 0.51 0.10 8.75 1 5.35 3.91 20.70 4.37 0.14 
38 2 CT1 100N 18.90 0.49 2.07 0.44 0.05 8.96 0 5.59 3.30 18.88 4.96 0.16 
45 3 CT1 100N 18.70 0.28 1.97 0.46 0.04 8.59 0 5.38 3.28 18.72 5.15 0.14 
29 1 CT1 200N 19.60 0.44 1.97 0.49 0.09 9.03 1 5.54 3.22 17.25 4.37 0.15 
40 2 CT1 200N 25.80 0.35 1.94 0.43 0.06 8.04 1 5.30 5.17 17.22 5.17 0.14 
63 3 CT1 200N 20.10 0.27 1.84 0.47 0.05 8.10 1 5.17 3.19 16.52 4.72 0.15 

 

*Analysis done by the Soil Fertility and Analytical Services Division (Department of Agriculture, Cedara) 



Appendix 3 Field trial layout.  Tillage regime (i.e. no-till (NT), annual conventional tillage (CT1), and conventional tillage every five years 

(CT5)) form whole plots with three replicates. Nitrogen fertilizer source (i.e. urea and limestone ammonium nitrate (LAN)) and rate of 

nitrogen application (i.e. 0, 50, 100,150 and 200 kg N ha-1 annum-1 (0N, 50N, 100N, 150N and 200N respectively) form random subplots 

within the whole plots. Coloured blocks represent sampled treatments. 

 

Rep 1 Rep 2 Rep 3  
NT CT1 CT5 CT1 NT CT5 CT5 NT CT1 

50 UREA 50 UREA 200 LAN 0 N 200 LAN 150 UREA 150 UREA 200 UREA 50 LAN 
73 74 75 76 77 78 79 80 81

100 UREA 150 UREA 50 UREA 150 UREA 200 UREA 0 N 150 LAN 200 LAN 50 UREA 
64 65 66 67 68 69 70 71 72

150 LAN 0 N 200 UREA 100 UREA 50 LAN 100 LAN 200 LAN 50 LAN 200 LAN 
55 56 57 58 59 60 61 62 63

50 LAN 100 UREA 50 LAN 50 LAN 0 N 200 LAN 50 LAN 50 UREA 200 UREA 
46 47 48 49 50 51 52 53 54

200 UREA 100 LAN 100 LAN 200 LAN 150 LAN 100 UREA 100 LAN 100 UREA 100 LAN 
37 38 39 40 41 42 43 44 45

150 UREA 200 LAN 150 UREA 50 UREA 100 UREA 150 LAN 50 UREA 0 N 150 LAN 
28 29 30 31 32 33 34 35 36

100 LAN 200 UREA 150 LAN 200 UREA 150 UREA 50 UREA 100 UREA 150 LAN 0 N 
19 20 21 22 23 24 25 26 27

200 LAN 50 LAN 100 UREA 100 LAN 100 LAN 200 UREA 200 UREA 150 UREA 100 UREA 
10 11 12 13 14 15 16 17 18

0 N 150 LAN 0 N 150 LAN 50 UREA 50 LAN 0 N 100 LAN 150 UREA 
1 2 3 4 5 6 7 8 9

74 



Appendix 4 Layout of maize rows and inter-rows exposed to vehicular traffic and inter-rows not exposed to vehicular traffic. 
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Appendix 5 Analysis of variance tables for soil organic carbon (%) from the (a) A horizon (0 to 

20 cm), (b) B horizon (20 to 40 cm) in a Hutton soil under either annual conventional tillage or 

no-till and treated with nitrogen fertilizer (applied as limestone ammonium nitrate) at rates of 0, 

100 and 200 kg N ha-1. 

 

a) 

Source of variation df SS MS VR F Probability 
Block (replicate) 5 1.79 0.36 1.56  
Tillage 1 24.31 24.31 105.52 < 0.001 
Residual 5 1.15 0.23 3.84  
Fertilizer 2 3.04 1.52 25.32 < 0.001 
Tillage.Fertilizer 2 3.30 1.65 27.49 < 0.001 
Residual 14 0.84 0.06   
Total 29 16.91    
Coefficient of variation (%) 10.9         

 

b) 

Source of variation df SS MS VR F Probability 
Block (replicate) 5 0.84 0.17 1.51  
Tillage 1 0.56 0.56 5.00 0.076 
Residual 5 0.56 0.11 0.19  
Fertilizer 2 1.83 0.92 1.54 0.261 
Tillage.Fertilizer 2 1.97 0.98 1.65 0.240 
Residual 10 5.95 0.59   
Total 25 10.46    
Coefficient of variation (%) 16.9         

 

df    degrees of freedom .   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 
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Appendix 6 Comparisons by least significant difference (LSD) at the 5 % level of significance 

for the a) tillage by fertilizer application rate on soil organic carbon in the A horizon b) fertilizer 

application rate on soil organic carbon in the A horizon c) fertilizer application rate on soil bulk 

density in the A horizon d) fertilizer application rate on the soil moisture retention at 0 kPa in 

the A horizon e) fertilizer application rate on the soil moisture retention at -33 kPa in the A 

horizon f) tillage by fertilizer application rate on soil moisture retention at 0 kPa in the A 

horizon g) tillage by fertilizer application rate on soil moisture retention at -33 kPa in the A 

horizon h) tillage by fertilizer application rate on saturated hydraulic conductivity in the B 

horizon.  

 

a)  

P < 0.001, LSD = 0.4366 

Treatment Tillage by fertilizer mean for average organic carbon content (%) in the A horizon  

NT 0N 3.868 a

NT 100N 2.706 b

NT 200N 2.606 b

CT 100N 1.621 c

CT 0N 1.383 c

CT 200N 1.246 c

 

b) 

P = < 0.001, LSD = 0.2145 

Fertilizer application rate Fertilizer mean averaged across tillage regimes for average organic 

carbon content (%) in the A horizon 

 

0N 2.626 a 

100N 2.163 b

200N 1.926 c 
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c) 

P = < 0.001, LSD = 0.0503 

Fertilizer application 

rate 

Fertilizer mean averaged across tillage regimes for bulk density (g cm-3) 

in the A horizon 

 

200N 1.455 a 

0N 1.368 a 

100N 1.344 b

 

d) 

P = < 0.001, LSD = 0.02294 

Fertilizer application 

rate 

Fertilizer mean averaged across tillage regimes for soil moisture content 

at 0 kPa (m3 m-3) in the A horizon 

 

100N 0.5018 a 

0N 0.4871 a 

200N 0.4410 b

 

e) 

P = < 0.001, LSD = 0.02235 

Fertilizer application 

rate 

Fertilizer mean averaged across tillage regimes for soil moisture content 

at -33 kPa (m3 m-3) in the A horizon 

 

100N 0.2782 a 

0N 0.2589 a 

200N 0.2223 b

 

f) 

P = 0.009, LSD = 0.03734 

Treatment Tillage by fertilizer mean for soil moisture content at 0 kPa (m3 m-3) in the A 

horizon 

 

CT 100N 0.5175 a 

CT 0N 0.4946 ab

NT 100N 0.4861 ab

CT 200N 0.4843 ab

NT 0N 0.4795 b 

NT 200N 0.3977 c 
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g) 

P = 0.009, LSD = 0.03564 

Treatment Tillage by fertilizer mean for soil moisture content at -33 kPa (m3 m-3) in the A 

horizon 

 

NT 0N 0.2988 a 

NT 100N 0.2963 a 

CT 100N 0.2602 b 

CT 200N 0.2305 bc

CT 0N 0.2190 c 

NT 200N 0.2141 c 

 

h) 

P = 0.028, LSD = 104.1 

Treatment Tillage by fertilizer mean for saturated hydraulic conductivity (mm hr-1) in the B 

horizon 

 

CT 0N 271 a 

CT 100N 141 b 

CT 200N 138 b 

NT 100N 118 b 

NT 200N 77 b 

NT 0N 44 b 
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Appendix 7 Analysis of variance tables for soil microbial activity as measured by hydrolytic 

activity (fluorescein diacetate analysis (FDA)) from the (a) A horizon (0 to 20 cm), (b) B 

horizon (20 to 40 cm) in a Hutton soil under either annual conventional tillage or no tillage and 

treated with nitrogen fertilizer (applied as limestone ammonium nitrate) at rates of 0, 100 

and 200 kg N ha-1. 

 

(a) 

Source of variation df SS MS VR F Probability 
Block (replicate) 2 0.02 0.01 2.57  
Tillage 1 2.52 2.52 594.97 0.002 
Residual 2 0.01 0.00 0.05  
Fertilizer 2 0.14 0.07 0.85 0.474 
Tillage.Fertilizer 2 0.20 0.10 1.18 0.369 
Residual 6 0.50 0.08   
Total 15 3.03    
Coefficient of variation 
(%) 4.6         

 

(b) 

Source of variation df SS MS VR F Probability 

Block (replicate) 2 40.60 20.3 0.67  

Tillage 1 30.54 30.54 1.01 0.420 

Residual 2 60.35 30.17 1.95  

Fertilizer 2 11.33 5.66 0.37 0.707 

Tillage.Fertilizer 2 5.47 2.73 0.18 0.842 

Residual 7 108.57 15.51   

Total 16 254.60    

Coefficient of variation 

(%) 17.4     

 

df    degrees of freedom.   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 

 



Appendix 8 Correlation matrix of selected soil physical and microbial properties. 
 

  

Air 
dried 

moisture 
content 

(%) 

Field 
moisture 
content 

(%) 

Hydrolytic 
activity 

(µg 
fluorescein 

g-1 h-1) 

Cellulolytic 
activity (% 

cellulose 
degraded 

over 10 days) 

Bulk 
density 
(g cm-3) 

Organic 
carbon 

(%) 
Ks (mm 

hr-1) 

Moisture 
content at 
0 Kpa (m3 

m-3) 

Moisture 
content at 
-33 kPa 
(m3 m-3) 

Moisture 
content at 
1500 kPa 
(m3 m-3) 

Air dried moisture 
content (%) 1                  

Field moisture content 
(%) 0.137 1                

Hydrolytic activity 
(µg fluorescein g-1 h-1) 0.058 0.182 1              

Cellulolytic activity 
(% cellulose degraded 

over 10 days) -0.074 -0.159 0.1 1            

Bulk density (g cm-3) 0.077 -0.173 0.101 -0.416 1          
Organic carbon (%) 0.348 -0.026 0.499 0.546 -0.083 1        

Ks (mm hr-1) -0.068 0.249 -0.044 0.394 -0.66 0.147 1      

Moisture content at 0 
Kpa (m3 m-3) -0.075 0.175 -0.101 0.39 -0.917 0.042 0.571 1    

Moisture content at -
33 kPa (m3 m-3) -0.155 -0.073 0.173 0.147 -0.3 0.252 -0.075 0.501 1  

Moisture content at -
1500 kPa (m3 m-3) -0.141 -0.129 0.304 0.459 -0.148 0.208 0.15 0.226 0.504 1 
 

81 
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Appendix 9 Total above-ground biomass of maize under a nitrogen fertilizer application rate 

(applied as limestone ammonium nitrate) of 0, 100 and 200 kg N ha-1 annum-1 for both no-till 

(NT) and conventional tillage (CT). 

 

Plot no. Tillage Nitrogen (kg ha-1 annum-1) Yield (tons ha-1) 

1 NT 0 5.35 

50 NT 0 4.05 

35 NT 0 4.60 

Average NT 0 4.67 

19 NT 100 9.40 

14 NT 100 8.30 

8 NT 100 9.70 

Average     9.13 

10 NT 200 9.60 

77 NT 200 11.60 

71 NT 200 10.00 

Average     10.40 

56 CT 0 6.55 

76 CT 0 6.20 

27 CT 0 4.55 

Average     5.77 

38 CT 100 9.65 

13 CT 100 8.05 

45 CT 100 8.05 

Average     8.58 

29 CT 200 9.15 

40 CT 200 9.60 

63 CT 200 8.80 

Average     9.18 

 

 

*Analysis done by the Soil Fertility and Analytical Services Division (Department of 

Agriculture, Cedara) 
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Appendix 10 Analysis of variance tables for soil microbial activity as measured by cellulolytic 

activity from the (a) A horizon (0 to 20 cm), (b) B horizon (20 to 40 cm) in a Hutton soil 

under either annual conventional tillage or no tillage and treated with nitrogen fertilizer 

(applied as limestone ammonium nitrate) at rates of 0, 100 and 200 kg N ha-1. 

 

(a) 

Source of variation df SS MS VR F Probability 

Block (replicate) 2 236.46 118.23 8.12  

Tillage 1 0.31 0.31 0.02 0.897 

Residual 2 29.10 14.55 0.19  

Fertilizer 2 638.70 319.35 4.25 0.071  

Tillage.Fertlizer 2 274.48 137.24 1.83 0.240  

Residual 6 450.35 75.06   

Total 15 1497.86    

Coefficient of variation 

(%) 17.0     

 

 (b) 

Source of variation df SS MS VR F Probability 

Block (replicate) 2 165.03 82.51 6.31  

Tillage 1 182.45 182.45 13.96 0.065 

Residual 2 26.14 13.07 0.85  

Fertilizer 2 3.46 1.73 0.11 0.896 

Tillage.Fertlizer 2 333.57 166.78 10.80 0.007 

Residual 7 108.06 15.44   

Total 16 818.70    

Coefficient of variation 

(%) 19.9     

 

df    degrees of freedom .   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 
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Appendix 11 Analysis of variance tables for soil bulk density from the (a) A horizon (0 to 20 cm), 

(b) B horizon (20 to 40 cm) in a Hutton soil under either annual conventional tillage or no tillage 

and treated with nitrogen fertilizer (applied as limestone ammonium nitrate) at rates of 0, 100 and 

200 kg N ha-1. 

 

(a) 

Source of variation df SS MS VR F Probability 
Block (replicate) 8 0.05 0.01 0.61  
Tillage 1 0.09 0.09 9.40 0.015 
Residual 8 0.08 0.01 1.82  
Fertilizer 2 0.12 0.06 11.19 < 0.001 
Tillage.Fertlizer 2 0.03 0.02 2.77 0.079 
Residual 29 0.16 0.01   
Total 50 0.52    
Coefficient of variation (%) 2.3         

 

 (b) 

Source of variation df SS MS VR F Probability 
Block (replicate) 5 0.02 0.00 0.90  
Tillage 1 0.01 0.01 1.73 0.246 
Residual 5 0.02 0.00 0.63  
Fertilizer 2 0.01 0.00 0.52 0.604 
Tillage.Fertlizer 2 0.02 0.01 1.89 0.178 
Residual 19 0.12 0.01   
Total 34 0.19    
Coefficient of variation (%) 1.6         

 

df    degrees of freedom.   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 
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Appendix 12 Analysis of variance tables for soil moisture retention at 0 kPa from the (a) A 

horizon (0 to 20 cm), (b) B horizon (20 to 40 cm) in a Hutton soil under either annual 

conventional tillage or no tillage and treated with nitrogen fertilizer (applied as limestone 

ammonium nitrate) at rates of 0, 100 and 200 kg N ha-1. 

 

(a)  

Source of variation df SS MS VR F Probability 
Block (replicate) 8 0.02 0.00 1.07  

Tillage 1 0.03 0.03 12.15 0.008 

Residual 8 0.02 0.00 1.93  
Fertilizer 2 0.04 0.02 15.99 < 0.001 
Tillage.Fertilizer 2 0.01 0.01 5.57 0.009 

Residual 29 0.03 0.00 29.00  

Total 50 0.14      

Coefficient of variation (%) 4.1         
 

 (b)  

Source of variation df SS MS VR F Probability 
Block (replicate) 5 0.01 0.00 1.57  
Tillage 1 0.01 0.01 5.66 0.063 

Residual 5 0.01 0.00 0.87  
Fertilizer 2 0.01 0.00 1.88 0.180 
Tillage.Fertlizer 2 0.00 0.00 1.21 0.321 

Residual 19 0.03 0.00   
Total 34 0.06    
Coefficient of variation (%) 4.0         

 

df    degrees of freedom.   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 
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Appendix 13 Analysis of variance tables for soil moisture retention at -33 kPa from the (a) A 

horizon (0 to 20 cm), (b) B horizon (20 to 40 cm) in a Hutton soil under either annual 

conventional tillage or no tillage and treated with nitrogen fertilizer (applied as limestone 

ammonium nitrate) at rates of 0, 100 and 200 kg N ha-1. 

(a)  

Source of variation df SS MS VR F Probability 
Block (replicate) 8 0.01 0.00 0.37  

Tillage 1 0.01 0.01 7.68 0.024 

Residual 8 0.02 0.00 1.82  
Fertilizer 2 0.03 0.01 13.70 < 0.001 
Tillage.Fertlizer 2 0.02 0.01 9.87 < 0.001 

Residual 25 0.03 0.00   

Total 46 0.11    
Coefficient of variation (%) 4.3         

 

 (b) 

Source of variation df SS MS VR F Probability 
Block (replicate) 5 0.00 0.00 2.79  
Tillage 1 0.00 0.00 8.54 0.033 

Residual 5 0.00 0.00 0.24  
Fertilizer 2 0.00 0.00 3.99 0.036 
Tillage.Fertlizer 2 0.00 0.00 1.41 0.268 

Residual 19 0.01 0.00   
Total 34 0.22    
Coefficient of variation (%) 3.2         

 

df    degrees of freedom.   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 
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Appendix 14 Effect of no-till (NT) and annual conventional tillage (CT1) at nitrogen 

application rates (applied as limestone ammonium nitrate) of 0, 100 and 200 kg ha-1 annum-1 

(0N, 100N and 200N, respectively) on the water retention curves for a)  A horizon and b) B 

horizon (n = 6). 

 

a)  

 

 

b)  
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Appendix 15 Analysis of variance tables for soil moisture retention at -1500 kPa from the (a) A 

horizon (0 to 20 cm), (b) B horizon (20 to 40 cm) in a Hutton soil under either annual 

conventional tillage or no tillage and treated with nitrogen fertilizer (applied as limestone 

ammonium nitrate) at rates of 0, 100 and 200 kg N ha-1. 

(a)  

Source of variation df SS MS VR F Probability 

Block (replicate) 8 0.002 0.000 0.730  

Tillage 1 0.001 0.001 3.730 0.089 

Residual 8 0.003 0.000 2.350  

Fertilizer 2 0.009 0.005 29.620 < 0.001 

Tillage.Fertilizer 2 0.003 0.001 8.190 0.002 

Residual 23 0.004 0.000   

Total 44 0.017    

Coefficient of variation (%) 3.8         

 

 

 

 (b) 

Source of variation df SS MS VR F Probability 

Block (replicate) 5 0.002 0.000 2.290  

Tillage 1 0.000 0.000 0.480 0.518 

Residual 5 0.001 0.000 0.870  

Fertilizer 2 0.001 0.001 3.880 0.05 

Tillage.Fertlizer 2 0.001 0.000 1.500 0.263 

Residual 12 0.002 0.000   

Total 27 0.006    

Coefficient of variation (%) 4.7         

 

df    degrees of freedom.   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 
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Appendix 16 Analysis of variance tables for saturated hydraulic conductivity from the (a) A 

horizon (0 to 20 cm), (b) B horizon (20 to 40 cm) in a Hutton soil under either annual 

conventional tillage or no tillage and treated with nitrogen fertilizer (applied as limestone 

ammonium nitrate) at rates of 0, 100 and 200 kg N ha-1. 

 

(a)      

Source of variation df SS MS VR F Probability 

Block (replicate) 8 229564 28695 1.24  

Tillage 1 456154 456154 19.76 0.002 

Residual 8 184686 23086 0.85  

Fertilizer 2 162387 81193 2.99 0.066  

Tillage.Fertilizer 2 8175 4087 0.15 0.861  

Residual 30 815636 27188   

Total 51 0.18    

Coefficient of variation 

(%) 25.5     

 

 (b) 

Source of variation df SS MS VR F Probability 
Block (replicate) 5 15880 3176 0.51  

Tillage 1 95997 95997 15.27 0.011 

Residual 5 31432 6286 0.76  

Fertilizer 2 14975 7487 0.90 0.422 

Tillage.Fertlizer 2 71453 35727 4.30 0.028 

Residual 20 166342 8317   

Total 35 166342    

Coefficient of variation 

(%) 17.5     

 

df    degrees of freedom.   SS    sum of squares. 

MS  mean sum of squares.   VR   variance ratio. 

 

 

 


