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ABSTRACT 
 

Soil moisture is an important hydrological parameter, which is essential for a variety of 

applications, extending to numerous disciplines. Currently, there are three methods of 

estimating soil moisture. These include: (a) ground-based (in-situ) measurements, which are 

carried out using field instruments; (b) remote sensing based methods, which use specialized 

sensors on satellites and aircrafts and  (c) land surface models, which use meteorological data 

as inputs, at a predefined spatial resolution (Albergel et al. (2012); Mecklenburg et al., 2013). 

In recent years the cosmic ray probe (CRP), which is an in-situ technique, has been 

implemented in several countries across the globe. The CRP provides area-averaged soil 

moisture at an intermediate scale and thus bridges the gap between in-situ point 

measurements and satellite-based soil moisture estimates (Zreda et al., 2012). The aim of this 

study was to first evaluate the current techniques for soil moisture estimation, in order to 

identify the research gaps and limitations. The key objectives of this study were to test the 

suitability of the CRP to provide spatial estimates of soil moisture and use these estimates to 

validate satellite-based (remote sensing and modelled) soil moisture estimates in the 

Cathedral Peak Catchment VI. The CRP was set-up and calibrated in Cathedral Peak 

Catchment VI.  An in-situ soil moisture network was created in Catchment VI, which was 

used to validate the calibrated CRP soil moisture estimates. Once calibrated, the CRP was 

found to provide spatial estimates of soil moisture, which correlated well with the in-situ soil 

moisture network dataset and yielded a R2 value of 0.8445. The calibrated CRP was used to 

validate satellite-based soil moisture products. The remote sensing products used were the 

Level Three AMSR2 and SMOS products. The AMSR2 and SMOS products generally 

under-estimated soil moisture throughout, but followed the general trend of the CRP, with 

AMSR obtaining a R2 of 0.505 and SMOS obtaining a R2 of 0.4853, when compared against 

the CRP estimates. The CRP was used to validate modelled soil moisture products, which 

consisted of the SAHG product and the back-calculation of soil moisture, using equations by 

Su et al. (2003) and Scott et al. (2003), and products derived from the SEBS Model. The 

SAHG Model performed well, as it provided estimates that correlated well with the CRP 

dataset and yielded a R2 value of 0.624 compared to the CRP estimates. The SEBS back-

calculation technique performed very poorly, as it over-estimated in the wet periods and 

under-estimated in the dry periods.      
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1. INTRODUCTION 
 

There has been an incessant need to monitor and measure the various parameters in land 

surface hydrology, in order to deepen the understanding of hydrological processes, their 

importance in the hydrological cycle and their interactions between each other (Jackson et al., 

2010; Fang and Lakshmi, 2014). Soil moisture is an important parameter in the hydrological 

cycle and greatly impacts a variety of applications, including agricultural management, 

climate and weather applications, flood and drought prediction and groundwater recharge.  

 

Although soil moisture does not directly contribute to the land surface energy balance, the 

properties associated with soil moisture have a strong influence on net radiation, and the 

partitioning between latent and sensible heat fluxes (Wang and Li, 2011). Soil moisture is a 

significant variable in the earth’s water cycle, even though it holds a small percentage of the 

total global water budget (Guillem, 2010). Weather and climate applications rely greatly on 

soil moisture, consequently the predication accuracy of  global weather forecast models and 

climate applications may increase, with improved estimates of soil moisture data (Guillem, 

2010). Soil moisture is a key component in crop growth and is the prime regulator of a 

catchment’s response to rainfall, as it partitions rainfall into infiltration and surface runoff 

(Vischel et al., 2008; Zhao and Li, 2013). Due to the impacts of global change, numerous 

cycles, such as the hydrological cycle, have been pushed past their thresholds. Therefore, 

monitoring the soil moisture status of an area, such as a catchment, can assist in mitigating 

the negative effects of extreme environmental processes or phenomena, such as droughts and 

floods (Guillem, 2010). 

 

Soil moisture is a difficult parameter to continuously monitor and measure at a catchment 

scale due to its heterogeneous characteristics. It varies both spatially and temporally and is 

thus a dynamic resource, which never remains constant. Currently, there are three methods of 

estimating soil moisture. These include: (a) ground-based (in-situ) measurements, which are 

carried out using field instruments; (b) remote sensing based methods, which use specialised 

sensors on satellites and aircrafts and  (c) land surface models, which use meteorological data 

as inputs, at a predefined spatial resolution (Albergel et al., 2012; Mecklenburg et al., 2013). 

Inherently each of these methods possess their respective advantages and limitations, 

constraining their effectiveness for hydrological applications (Ni-Meister, 2005).  
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In-situ measurements of soil moisture are the conventional methods used by several 

disciplines. The point measurements obtained cannot adequately represent the spatial 

characteristics of soil moisture. However, these point measurements play a key role in a 

variety of large-scale applications and are invaluable as both calibration and validation data 

(Gruber et al., 2013). In the past few years, the Cosmic Ray Probe (CRP) method, which is an 

in-situ instrument, has been developed and implemented in numerous countries across the 

globe (Kohli et al., 2015). The CRP technique obtains the area-averaged soil moisture, at an 

intermediate scale,  by observing and measuring the cosmic ray neutrons above the soil 

surface (Zreda et al., 2012; Franz et al., 2013).  

 

Remote sensing can be described as the technique of obtaining information about an object or 

phenomena, with the use of special instrumentation from a distance, without making physical 

contact (Engman, 1991; Wagner, 2008; Mekonnen, 2009; Lakshmi, 2013). Remote sensing is 

extensively used today by several disciplines to observe and measure various environmental 

parameters. Hydrology is one such discipline, which uses remote sensing to measure 

parameters, such as rainfall, evaporation and surface temperature (Fang and Lakshmi, 2014).  

There are several remote sensing soil moisture estimating techniques, which use gamma, near 

infrared, microwave and thermal radiation. The passive microwave radiation technique is the 

most commonly used technique, as it has several advantages over other techniques. The 

passive microwave technique observes and measures the difference in dielectric constants of 

dry soil and water to estimate soil moisture (Jackson et al., 2010; Lakshmi, 2013). Currently, 

the microwave remote sensing soil moisture products are available on a global scale; 

however, these products are limited by their coarse spatial resolution, which is inadequate for 

hydrological applications (Shin and Mohanty, 2013; Song et al., 2013). Therefore, 

downscaling techniques have been researched and developed, to obtain soil moisture at a 

finer spatial resolution. (Lakshmi, 2013). 

 

Models have been used to obtain estimates of soil moisture at an intermediate scale. A model 

implies a simplification of reality and aims to promote understanding, whilst simplifying and 

mimicking the real system. Soil moisture is an important variable in both the land surface 

energy and water balance and can be estimated from surface energy balance models, such as 

the Surface Energy Balance System (SEBS) and land surface water models, such as the 

Topographic Kinematic Approximation and Integration Model in Python (PyTOPKAPI). 
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The objective of this study is to review literature pertaining to the current methods of soil 

moisture estimation, which include in-situ, remote sensing and modelling. This is required to 

broaden the understanding of this field of study. This will aid in identifying the 

commonalities and gaps in the literature, as well as the key methods used and their limitations 

in the estimation of soil moisture. The key focal aspects of the literature review are to 

evaluate the CRP for use as a validation method. In addition, the current methods of remote 

sensing soil moisture products will be reviewed and the modeled soil moisture estimates will 

be analysed. The aim of the study is to test and evaluate the suitability of the CRP to provide 

spatial estimates of soil moisture in Cathedral Peak Catchment VI and use these estimates to 

validate satellite-based soil moisture estimates. Satellite-based soil moisture products 

comprise of remote sensing soil moisture products and models, which use remote sensing 

data as inputs.      

 

The Research questions include:  

i. How suitable is the CRP method in providing spatial estimates of soil moisture in 

Cathedral Peak Catchment VI? 

ii. How well do remote sensing soil moisture products compare to the CRP estimates? 

iii. How well do modelled soil moisture products compare to the CRP estimates? 

  

The dissertation is divided into eight chapters, starting with the introduction in chapter one. 

The literature review is not a single chapter but is encompassed in chapters two, three, four 

and five. Chapter two outlines the in-situ methods of soil moisture measurement, which 

consists of conventional in-situ methods, as well as the CRP. Chapter three outlines the 

remote sensing of soil moisture and focuses on the current global soil moisture products. 

Chapter four outlines the use of modelling to obtain soil moisture estimates. Chapter five is 

the literature evaluation, which looks at the general themes in soil moisture measurements 

and evaluates the gaps in the literature reviewed. Chapter five is an important chapter, as it 

summarizes the evaluated literature and sets the foundation for the methodology, which is 

presented in chapter six. The methodology is presented in chapter six, which outlines the 

study area, as well as details the various procedures and techniques that were used in this 

research study. Chapter seven contains the results and discussion of the research study. The 

conclusions, limitations and recommendations of the study are discussed in chapter eight.        
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2. IN-SITU METHODS OF SOIL MOISTURE MEASUREMENT  
 

The following section is the first component of the literature review. The remaining 

components of the literature review will be covered in the third and fourth chapters. A 

literature evaluation will be presented in chapter five.  

 

In-situ soil moisture techniques are the conventional methods of soil moisture estimation. 

There are numerous in-situ techniques, both direct and indirect, which have been used to 

determine soil moisture. In recent years, the use of the CRP to measure soil moisture has 

gradually attracted attention and has been implemented in a number of countries across the 

world (Villarreyes et al., 2013). The ensuing section will provide an analysis of the 

conventional methods of soil moisture estimation, which will be followed by a detailed 

review of the CRP. 

 

2.1 Conventional Methods of Soil Moisture Estimation  

 

In-situ soil moisture measurements have played a key role for a variety of large-scale 

applications and have been invaluable as calibration and validation data for satellite-based 

products, sensors and models (Gruber et al., 2013). There are several conventional in-situ 

techniques used to estimate soil moisture, including the gravimetric method, neutron 

scattering and Time Domain Reflectance (TDR) (Walker et al., 2004). Brief descriptions of 

the aforementioned techniques are discussed below: 

 

i. The gravimetric method is a direct method of estimating the soil moisture content. 

This method consists of collecting soil samples at points at desired depths. The 

collected soil samples are then weighed, before being oven-dried for 24-72 hours at 

105 oC, until all the moisture has been driven out of the sample. The dry samples are 

then re-weighed. The gravimetric soil moisture is then calculated by dividing the mass 

of water by the mass of dry soil.  

 

This method is commonly used as it has the advantage of being accurate, is 

independent of soil type and is easily calculated (Hillel, 2008). However, it is a 

destructive technique that is time and labour-consuming (Zazueta and Xin, 1994). 



 

5 

Due to its destructive nature, it does not allow for repetitive sampling at the same 

point. The method also requires a laboratory equipped with an oven and the time of 

the sample collection to the time that the samples are weighed has to be minimal, to 

avoid the loss of moisture from the soil (Hillel, 2008).  

 

ii. The neutron scattering method is an indirect in-situ measurement, which has been 

used since the 1950’s (Jones et al., 2002). The neutron probe uses an active source of 

fast neutrons, which pass through the soil and collide with the soil media. These fast 

neutrons thus slow down with each collision and become slow neutrons. The majority 

of these fast neutrons collide with hydrogen in the form of water in the soil media. 

Thus, the more water present in the soil media, the more hydrogen and the more 

collisions occur. The measured slow neutrons are therefore proportional to the soil 

water.  

 

iii. According to Zazueta and Xin (1994), this method has the advantage of being 

accurate (once calibrated) and able to measure soil profiles, with the measurement 

being directly related to soil moisture. However, the method is limited because of its 

cost, radiation hazard, the skills required and the difficulty to obtain accurate 

measurements near the surface, because it is time-consuming and its invasive nature, 

as access tubes have to be placed vertically into the soil profile.  

 

iv. The TDR method is a common indirect in-situ method. According to Jones et al. 

(2002), there are different variations of TDR probes, but in general, the probe consists 

of two to three steel rods, which can be placed vertically or horizontally into the soil. 

The probe or logger sends out high frequency pulses in the Giga Hertz (GHz) range, 

which have a varying travel time along the wave guides(stainless steel rods), due to 

the dielectric constant of the medium in which the probe is placed. The dielectric 

constant is mostly dependent on the water content of the soil. The TDR probe is 

insensitive to soil composition and texture, due to the large disparity of dielectric 

constants, but needs calibration with soils with a high electrical conductivity (Jones et 

al., 2002).  

 

The TDR method is a commonly used and accurate method, due to its minimal 

calibration requirements, easily obtainable measurements, low cost compared to other 
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methods, and its ability to provide non-destructive continuous measurements (Jones et 

al., 2002; Walker et al., 2004). The TDR method is limited, as a calibration procedure 

is required, the depth measured is dependent on the length of the steel rod used and 

errors may occur from soil voids around the probes measurement area (Zazueta and 

Xin, 1994; Walker et al., 2004) .  

  

The major limitation of all conventional in-situ methods is that they provide point 

measurements, which do not account for the spatial characteristics of soil moisture (Qin et 

al., 2013). Therefore, no single point measurement can be entirely representative of larger 

areas, because of the heterogeneity that exists in soil properties, topography and weather 

(Gruber et al., 2013). In order to overcome this limitation, dense soil moisture networks can 

be set up. However, the high costs of operation and maintenance make the setup of the 

network financially unfeasible (Gruber et al., 2013). 

 

2.2 Cosmic Ray Probe  

 

Understanding the variability of soil moisture, is of great interest for various disciplines 

(Villarreyes et al., 2013). The CRP is a relatively new technique, which has the capability of 

providing soil moisture data for large-scale studies. It is the only in-situ technique that can 

obtain the average soil moisture content over hundreds of meters, something that would 

require a dense in-situ point measurement network (Zreda et al., 2012; Ochsner et al., 2013). 

The CRP method can play a vital role in the calibration and validation of satellite-based soil 

moisture retrievals and land surface models (Villarreyes et al., 2013).  

 

As shown in Figure 2.1, the CRP system comprises of neutron counters (moderated and bare 

tubes), a data logger which includes barometric pressure, humidity and temperature sensors, 

and a telemetry system with antenna to connect to an iridium satellite, and a battery and solar 

panel for powering the system. 
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Figure 2.1 CRP system in Cathedral Peak Catchment VI 

 

 Production of cosmic ray neutrons  

 

Cosmic ray neutrons originate in space, where they are produced by the blast waves of 

exploding stars. Shards of atoms are accelerated and energized, until they eventually reach a 

high enough speed to break away and escape to the galaxy. Some of these high energy 

particle flows in space reach the earth’s atmosphere, where they are affected by the earth’s 

magnetic field (Jiao et al., 2014). The high energy particles are captured into the earth’s 

atmosphere and collide with atmospheric nuclei to initiate a cascade of secondary cosmic 

rays (Ochsner et al., 2013). Fast neutrons are created, as these secondary cosmic rays pass 

through the atmosphere and then through the top few meters of the biosphere, hydrosphere 

and lithosphere, (Desilets et al., 2010).  

 

These fast neutrons undergo elastic collisions with nuclei present in the soil, thereby losing 

energy (Desilets et al., 2010). Some of the fast neutrons are adsorbed by the soil during the 

collision, whilst others will be scattered above the surface of the soil (Jiao et al., 2014). The 

cosmic ray neutrons lose energy with each collision, therefore high energy neutrons become 

fast neutrons (in the atmosphere), which further lose energy and become thermal neutrons (in 
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the soil). Due to fast neutrons being strongly moderated by hydrogen present in the 

environment, their measured intensities relate to changes in soil moisture, as well as other 

hydrogen sources at the earth’s surface (Zreda et al., 2008; Zreda et al., 2012; Franz et al., 

2013). 

 

 Moderation of neutrons 

 

According to Ochsner et al. (2013) and Jiao et al. (2014) the moderation process of cosmic 

ray neutrons depends on three factors: 

i. The scattering probability or the elemental scattering cross-section; 

ii. The logarithmic decrement of energy per collision; and 

iii. The number of atoms of an element per unit mass of material, which is proportional to 

the concentration of the element and to the inverse of its mass number.  

 

The combination of the abovementioned factors, defines the neutron stopping power of a 

material (Ochsner et al., 2013). Hydrogen, which is found mainly as water in the soil, plays 

the most significant role in moderating cosmic ray neutrons in the soil. Hydrogen has an 

extraordinary high stopping power, as the hydrogen atom has a high probability of scattering 

a neutron, due to its fairly large elastic scattering cross-section (Jiao et al., 2014). Hydrogen 

is the most efficient element, with regards to the decrement of energy per collision and has a 

low atomic mass and makes up a substantial portion of all the atoms in many soils, due to the 

presence of water in the soil (Jiao et al., 2014). The presence of water within the soil pores 

plays an important and central role in moderating the concentration of cosmic ray neutrons 

above the soil surface (Desilets and Zreda, 2013). 

 

 Cosmic ray probe measurements 

 

The fast neutrons that are produced in the air and soil travel in all directions between the air 

and soil, thus creating an equilibrium concentration of neutrons. This equilibrium 

concentration is shifted due to changes (addition or subtraction) in the hydrogen content of 

the media. The soil moisture content is estimated by the concentration of low energy cosmic 

ray neutrons, which are generated within the soil and moderated predominantly by hydrogen, 
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before being diffused back into the atmosphere (Zreda et al., 2008). The soil moisture content 

can therefore be inferred directly from these neutron fluxes (Desilets et al., 2010).  

Dry soils are highly emissive, so that neutrons are more efficiently removed from the soil 

(Zreda et al., 2008). This results in more neutrons escaping to the surface of a dry soil, which 

will result in a higher concentration of neutrons above the soil surface, see Figure 2.2 (Franz 

et al., 2012b). 

 

   

Figure 2.2 Difference in neutron concentration according to soil moisture content 

(Franz et al., 2012b). 

 

The CRP system consists of two sensors. The moderated sensor (encased in perspex) 

measures the fast neutrons, which are attributed to the soil moisture, whilst the bare tube 

measures the slow neutrons, which are attributed to the water above the soil surface (biomass 

and snow). The fast neutron intensity above the soil surface is inversely proportional to the 

amount of soil moisture in the soil surface (Kohli et al., 2015).  

 

 Measurement footprint and depth of the cosmic ray probe 

 

The CRP senses all hydrogen present within the distance that fast neutrons can travel in air, 

water, soil and other materials near the earth’s surface. Thus, the measurement distance varies 

according to the density and chemical composition of the material (Ochsner et al., 2013). The 

footprint (measurement area) of the CRP, is defined as the area around the probe from which 

86% of the counted neutrons arise (Jiao et al., 2014). The footprint is primarily associated 

Dry Soil Wet Soil 
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with the chemical and physical properties of the air and is inversely proportional to the air 

density (Jiao et al., 2014).  

The radial footprint of the CRP is reliant on the neutron’s ability to travel hundreds of meters 

from their source, due to the neutrons scattering in the air (Kohli et al., 2015). Hence the 

scattering properties of air significantly affect the diameter of the footprint (Jiao et al., 2014). 

When the CRP is placed in a static position a few meters above the ground, it has a radial 

footprint of 670 meters in diameter at sea level (Zreda et al., 2008). The radial footprint size 

is inversely proportional to the air density. At high altitudes, the air pressure is lower, which 

results in a larger footprint. The measurement diameter slightly decreases with increasing soil 

moisture and with increasing atmospheric water content (Jiao et al., 2014).  

  

The effective depth is the thickness at which 86% of counted neutrons arise, which depends 

strongly on the soil moisture content (Ochsner et al., 2013). The measurement depth is 

inversely proportional to the soil moisture content. A measurement depth of 0.72 m is 

obtained in dry soil and a depth of 0.12 m is obtained in wet soil, so that the effective 

measurement depth decreases with increasing hydrogen.  (Zreda et al., 2008). The decrease in 

measurement depth according to an increase in soil moisture is nonlinear and the 

measurement depth is independent of the air density.  

 

Due to the fact that neutrons react with any source of hydrogen near the earth’s surface, the 

measured neutron intensity represents the total reservoir of neutrons present within the 

probe’s sensing distance (Ochsner et al., 2013). This includes snow, lattice water, water in 

soil organic matter, water in vegetation and atmospheric water vapour (Ochsner et al., 2013). 

The measurement footprint and depth is shown in Figure 2.3. 

 

 

Figure 2.3 Measurement area and depth of CRP (Ochsner et al., 2013) 



 

11 

The CRP can be used either in a fixed position or in a moving vehicle. The fixed position is 

used to obtain continuous measurements of an area, whilst the roving method can be used for 

mapping large areas (Dutta and D'este, 2013). The technique functions, as the neutron fluxes 

are a great proxy for land surface water (Desilets et al., 2010). Along with the neutron count 

rate, the CRP also measures the internal temperature, relative humidity within the logger 

enclosure and external barometric pressure (Franz et al., 2013). 

 

 Advantages of the cosmic ray probe method  

 

The CRP method has several advantages (Zreda et al., 2008; Desilets et al., 2010; Franz et 

al., 2012b; Franz et al., 2012a; Zreda et al., 2012; Desilets and Zreda, 2013; Franz et al., 

2013; Jiao et al., 2014), including: 

 

Table 2.1 Advantages of the CRP 

Advantages  

The method is passive and non-contact (non-invasive)  

The system is easily automated 

The CRP is portable 

It has minimal power requirements 
Applications not limited to soil moisture (can be used to estimate above-ground biomass and 
snow depth) 

The measurement footprint is at an intermediate scale  

The measurement depth ranges from 0.12 m to 0.72 m 

The method allows for continuous measurements to be obtained  

The instrument is easily installed above-ground 

The CRP provides excellent data sets 

The CRP requires low data processing and transmission 

The method is less affected by the presence of vegetation 

The method is insensitive to soil texture, bulk density or surface roughness 
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The CRP is a fairly recent instrument used to obtain soil moisture estimates and seems to 

have no major limitation associated with it. However, the measurement depth and the 

calibration procedure could be potential limitations of the technique. The measurement depth 

is not set by the user, but is dependent on the soil moisture status of the measurement area. 

The measurement depth of the CRP is generally between 0.12 and 0.72 meters, therefore the 

CRP technique is limited to measuring soil moisture between this depth range. The 

calibration procedure is time and labour consuming and it needs to be done correctly in order 

to provide reliable soil moisture estimates.  

    

The CRP calibration procedure is performed by obtaining corresponding measurements of 

area-averaged soil moisture and neutron intensity. The area-averaged soil moisture is 

obtained from many ground-based point measurements, by collecting several soil samples 

within the CRP measurement area and determining the average gravimetric soil moisture per 

calibration. The measured neutron intensities need to be adjusted and corrected for variations 

in location, incoming high-energy particles, atmospheric pressure, absolute humidity and 

changes in biomass (Franz et al., 2015).  

 

It is recommended that a calibration procedure is carried out for both the dry season and the 

wet season (Dutta and D'este, 2013). Representative soil samples of the measurement area are 

required to be analysed, to correct the calibration function for lattice water and water in 

organic matter (Ochsner et al., 2013). 

 

The potential applications of the CRP make it appealing to scientists in various fields, such as 

agricultural and ecological monitoring, streamflow forecasting, climate science, drought and 

flood forecasting, as well as slope stability (Desilets et al., 2010). It should also be noted that 

the discipline of remote sensing can benefit greatly from this innovative technology, by using 

CRP measurements for both the calibration and validation of sensors and data products, as it 

overcomes the spatial limitations of conventional in-situ soil moisture estimates (Desilets et 

al., 2010). The use of the CRP across different continents results in measurement technique 

consistency, which would reduce the uncertainties related to in-situ measurements that use a 

variety of probe types/methods (Kim et al., 2015). 

 

There have been a limited number of studies using the CRP, as the technique is fairly new. A 

summary of these studies is presented below: 
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i. Zreda et al. (2008) conducted a study in Arizona, USA, on the use of cosmic ray 

neutrons to estimate soil moisture at an intermediate spatial scale. The study 

concluded that the CRP permits high resolution long-term monitoring and the large 

radial measurement footprint makes the CRP method suitable for climate and weather 

applications, as well as for satellite sensor calibration.  

 

ii. Desilets et al. (2010) looked at implementing the CRP in two ways. The CRP was 

used to provide stationary measurements in south-eastern Arizona and was used to 

provide roving measurements in Hawaii. The study concluded that both methods can 

be implemented with confidence.  

 

iii. Desilets and Zreda (2013) investigated the lateral footprint of the CRP, using a 

combination of neutron transport simulations and the diffusion theory. The study 

concluded that the measurement footprint is linearly proportional to the sensor height 

above the ground and inversely proportional to the air density. 

 

iv. Hawdon et al. (2014) conducted a study, which looked at the set-up and field 

calibration of the CRP at nine locations across Australia.  The nine locations had 

contrasting soil types, land covers and climates. The results of the study indicated that 

the generalized calibration function is suitable for relating neutron counts to soil 

moisture and that it holds for all soil types, except for very sandy soils with lower 

water contents. 
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3. REMOTE SENSING OF SOIL MOISTURE 
 

Remote sensing is currently used to measure various parameters of the hydrological cycle, 

such as rainfall, evaporation and soil moisture. Remote sensing is seen as a promising 

technique for soil moisture estimation, as it aims to address the spatial and temporal 

variability of soil moisture (Zhao and Li, 2013). It has the advantages of being able to 

measure large scale soil moisture, the data obtained has periodic data updates, its ability to 

monitor soil moisture in remote areas, its usability and its cost (Sabins, 2007; Mekonnen, 

2009; Lakshmi, 2013). The major limitation to the implementation of remote sensing in 

critical hydrological application is its coarse resolution. The following section gives an 

overview of the common remote sensing of soil moisture products. This is followed by an 

analysis and evaluation of the current downscaling techniques that have been developed to 

obtain soil moisture at a finer spatial resolution.  

 
3.1 Overview of Remote Sensing of Soil Moisture 

 

There are several remote sensing techniques that have been developed and applied, which 

include gamma radiation, thermal infrared, near infrared and microwave radiation techniques 

(Albergel et al., 2012). Each technique measures a different land surface quantity, uses a 

different range of the electromagnetic spectrum and has its own unique advantages and 

limitations (Mekonnen, 2009). From past research studies, it is evident that the microwave 

radiation technique, which consists of both active and passive methods, can be considered as 

the most promising technique for the remote sensing of soil moisture. This is due to its 

advantages over the other techniques, such as its all-weather capability, large spatial 

coverage, temporal resolution, measurement depth and vegetative penetration (Wagner, 2008; 

Wang and Qu, 2009; Guillem, 2010). 

 

Microwave radiation remote sensing observes the large contrast in the dielectric properties of 

soil particles and water, as well as the dielectric constant increases, as the soil moisture 

increases (Mekonnen, 2009; Wang and Qu, 2009). Remote sensing does not measure the soil 

moisture content directly, therefore mathematical models that describe the association 

between the measured signal and the subsequent soil moisture need to be derived (Wang and 

Qu, 2009). Over the past few decades, active and passive microwave remote sensing has 

provided the unique ability to obtain estimates of soil moisture on a global scale (Brocca et 
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al., 2013). The L-band range (1 to 10 GHz) is preferably used, as higher frequencies are more 

affected by perturbation factors, such as vegetation cover and atmospheric effects (Albergel 

et al., 2012). There have been many research studies on microwave remote sensing products 

over the past few decades. These products include Soil Moisture and Ocean Salinity (SMOS), 

the Advanced Microwave Scanning Radiometer (AMSR2), European Remote Sensing 

Satellite (ERS-1/2) and Advanced Scatterometer (ASCAT) (Dorigo et al., 2011).   

 

The remote sensing of soil moisture has advanced and the product user’s trust in the remote 

sensing data has increased, as there has been continuous improvements to sensors and the 

algorithms used to estimate soil moisture (Brocca et al., 2013). The launch of the SMOS 

satellite, which was the first satellite radiometer dedicated to measure soil moisture over land, 

emphasized the increased need for the measurement of soil moisture. This is further 

highlighted by the anticipated launch of the Soil Moisture Active Passive (SMAP) satellite in 

2014 (Jackson et al., 2010; Lakshmi, 2013; Song et al., 2013; Fang and Lakshmi, 2014).  

 

Currently, there are several remote sensing soil moisture products. The two most frequently 

utilized products that appear in recent research literature, are the AMSR/AMSR-E 

(predecessors of the AMSR2)  and SMOS soil moisture products (Brocca et al., 2013). These 

two products will be detailed in the subsequent sections.  

 

3.2 AMSR2 

 

The global change observation mission (GCOM) is a project for the global long-term 

monitoring of the earth’s environment. The GCOM consists of two satellites, namely, the 

GCOM-W and GCOM-C. The GCOM-W1 satellite was launched on the 18th of May 2012 

and is equipped with the AMSR2 sensor (Kim et al., 2015). The AMSR2 sensor on the 

GCOM-W1 satellite, as seen in Figure 3.1, is the successor to the AMSR sensor on-board the 

ADEOS-II satellite, which has been operational from December 2002 to October 2003 and 

the AMSR-E sensor, on-board the AQUA satellite, which has been operational from May 

2002 to October 2011 (JAXA, 2013a). The basic performance of AMSR2 will be similar to 

that of AMSR-E, based on the minimum requirement of data continuity (Imaoka et al., 2010).  
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Figure 3.1 AMSR2 sensor on-board the GCOM-W1 satellite 

 

The AMSR2 sensor is a passive microwave scanning radiometer that makes observations at 

multiple polarizations (both horizontal and vertical) and seven frequency bands, ranging from 

6.9 GHz to 89 GHz (Kim et al., 2015). It obtains multi-band observations from the C, X and 

K bands (Lu et al., 2014). The waves observed are weak and are radiated from the 

atmosphere and the earth’s surface. It orbits 700 km above the earth’s surface and has a swath 

of 1450 km. Its antenna rotates once every one and a half seconds, which creates a conical 

scan pattern, with a scanning interval of 10 km. The scanning method is capable of making 

one day (ascending) and one night (descending) observation, covering more than 99% of the 

earth’s surface in two days (Lu et al., 2014).  

 

The AMSR2 sensor estimates several of the parameters, which are predominantly linked to 

the energy and water cycles, such as precipitation, water vapour, sea-surface temperature, soil 

moisture and snow depth. The AMSR2 sensor is more advanced than its predecessors 

(AMSR and AMSR-E). It has a larger main reflector with a 2.0 m antenna diameter, which 

results in a finer spatial resolution, the addition of a new 7.3 GHz channel to eliminate 

electro-magnetic wave interference, an upgraded calibration system and it has intensive 

sunlight shielding, to avoid calibration uncertainties (Imaoka et al., 2010; JAXA, 2013a; Kim 

et al., 2015)  
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According to JAXA (2013b), the AMSR2 Level Two soil moisture product uses auxiliary 

data in the form of global vegetation coverage ratios. It also uses AMSR2 Level One 

products, which include 10.6 GHz brightness temperatures (horizontal and vertical 

polarisations), 36.5 GHz brightness temperatures (horizontal polarization), latitude and 

longitude and observation date. 

   

The AMSR2 Level Two algorithm uses a simple radiative transfer model. The satellite 

observed brightness temperature (TB) at the 10.7 GHZ and 36.5 GHz channels, measures the 

natural microwave emissions from the land surface (Kim et al., 2015). The algorithm 

assumes that the soil temperature is equal to the vegetation canopy temperature and a 

constant value of 293 K is used throughout the year (Kim et al., 2015). The AMSR2 soil 

moisture algorithm assesses the vegetation effects on microwave emissions paths. This is 

important, as vegetation holds a large amount of moisture and thus needs to be evaluated in 

order to estimate soil moisture from satellite data. The soil moisture algorithm uses the 

polarization index and the index of soil wetness, obtained from TB, to simultaneously 

estimate soil moisture and vegetation moisture. With regards to vegetation, the algorithm uses 

a look-up table method, where a linear relationship between vegetation water content and 

optical depth is applied (Kim et al., 2015). A dielectric mixing model is used in the algorithm 

to convert the dielectric constant into soil moisture content (Kim et al., 2015). 

 

3.3 SMOS 

 

The  SMOS satellite system, which is illustrated in Figure 3.2, was launched in November 

2009 and consists of a space-borne passive microwave L-band (1.4 GHz) interferometric 

radiometer (Albergel et al., 2012). The overall aim of SMOS is to provide global surface soil 

moisture maps with an accuracy of 4% at a 35 – 50 km spatial resolution (Parrens et al., 

2012). The SMOS satellite has the ability to obtain measurements at multiple angles, which 

allows for the retrieval of additional parameters (Kerr et al., 2012). The SMOS system is a Y-

shaped instrument, which consists of 69 antennae. The antennae are equally spaced along 

three arms and view the surface of the earth either through full, or two polarized radiances, in 

order to provide a full image (Gruhier et al., 2011).  
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Figure 3.2 SMOS satellite 

 
SMOS operates by measuring the phase difference of radiation from various incident angles, 

so that the earth’s surface is frequently viewed at different angles and polarizations (Fang and 

Lakshmi, 2014). The SMOS soil moisture product has an average spatial resolution of 40 km; 

however, this varies from 30-50 km due to, the target area being viewed from multiple angles 

(Kerr et al., 2010). SMOS has a sun-synchronous orbit at an altitude of 757 km,  

consequently, the entire earth  is covered at least twice in three days, with orbit overpasses at 

6:00 (ascending) and 18:00 (descending) local standard time  (Leroux et al., 2013; Qin et al., 

2013). 

 

L-band radiometry has a high potential for the estimation of surface parameters and has been 

recognised as the most promising technique to monitor soil moisture over land surfaces and at 

a global scale (Kerr et al., 2012; Parrens et al., 2012). The L-band is the optimum wavelength 

range to observe soil moisture, as higher frequencies are more affected by perturbing factors, 

including atmospheric effects and vegetative cover (Parrens et al., 2012; Mecklenburg et al., 

2013). The microwave signal at L-band frequency is primarily driven by surface soil moisture 

(top 5 cm), effective surface temperature and vegetative opacity, with smaller effects from 

the atmosphere and surface characteristics, such as bulk density, soil texture and surface 

roughness (Kerr et al., 2012; Leroux et al., 2013). The soil moisture retrieval algorithm needs 

to account for all these effects (Kerr et al., 2012). 
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The SMOS Level Two retrieval algorithm is physically-based and complex. It uses the 

polarizations and multi-angular information derived by the SMOS satellite and involves the 

use of decision trees and direct model inversions (Parrens et al., 2012). The retrieval 

algorithm was designed to be easily improved and uses SMOS Level 1C data as input and 

uses two types of auxiliary data, namely, static data (soil texture) and dynamic data 

(temperature) (Kerr et al., 2012).  SMOS provides multi-angular microwave polarimetric 

brightness temperature (TB), from which a surface soil moisture product is derived (Parrens et 

al., 2012).  

 

The L-band microwave emission of the biosphere model, which simulates the microwave 

emission at L-Band range from the soil-vegetation layer is a key component of the retrieval 

algorithm (Parrens et al., 2012). This is important, as the major difficulty in the estimation of 

soil moisture, using microwave radiometry is due to the presence of dense overlying 

vegetation, which attenuates the soil emission and adds its own emission (Parrens et al., 

2012).  

 

The retrieval algorithm is based on an iterative approach. The aim of the algorithm is to 

reduce a cost function, the focal constituent of which is the sum of the squared weighted 

difference between measured TB and Modelled TB for a collection of incidence angles (Kerr 

et al., 2012). In order to reduce this cost function, the most suitable set of parameters needs to 

be determined and used to drive the TB model. 

 

Current remote sensing soil moisture products have a spatial pixel grid between 10 to 50 km. 

The major issues in the calibration and validation procedure, when using in-situ point 

measurements, are the vertical and horizontal scaling issues. The vertical scaling issues occur 

when remote sensing soil moisture (top 0.05 m) is calibrated and validated against in-situ soil 

moisture measurements (0.00 to 2.00 m) (Jackson et al., 2010). Therefore, the measurements 

are at different depths, which is a problem, as soil moisture varies with depth. The horizontal 

scaling issues occur when a point measurement is used to validate a remote sensing area-

averaged value. The assumption that the point is representative of a large area can be 

conceded to be incorrect, due to the spatial variability of soil moisture (Gruber et al., 2013). 

Therefore, there needs to be a shift to area-averaged in-situ methods, to validate and calibrate 

remote sensing data. 
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There have been numerous studies on passive microwave remote sensing for soil moisture 

estimation. The AMSR-E product is a frequently-used product in past studies. Research 

studies that have evaluated surface soil moisture derived from AMSR–E, have shown 

promising results (Koike et al., 2004; Draper et al., 2009; Zhang et al., 2011; Qin et al., 

2013). Previous literature has mentioned the launch of the SMOS satellite and how it 

emphasizes the value of soil moisture estimation in the science field. SMOS data have been 

used in studies which have shown its potential for accurately obtaining soil moisture 

measurements (Gruhier et al., 2011; Merlin et al., 2012; Wagner et al., 2012; Mecklenburg et 

al., 2013; Qin et al., 2013). Over the past few decades, there have been many studies 

involving both the calibration and validation of remote sensing soil moisture products to in-

situ soil moisture measurements (Jackson et al., 2010; Brocca et al., 2011; Fang and 

Lakshmi, 2014). The following are some of the remote sensing based soil moisture product 

studies: 

 

i. The AMSR2 soil moisture product has been used in a recent study by Lu et al. (2014), 

which presented a revised soil moisture retrieval algorithm of AMSR2 and aimed at 

improving the soil moisture estimates in dry regions. The study concluded that the 

revised algorithm is effective in overcoming the over-estimation of soil moisture in 

desert regions.  

 

ii. A recent study by Kim et al. (2015) assessed two versions of the AMSR2 soil 

moisture product. The AMSR2 product from the Japan Aerospace Exploration 

Agency (JAXA) and Land Parameter Retrieval Model (LPRM) from the VU 

University Amsterdam, were used and compared on a global scale against field 

measurements. The study used CRP measurements from the COSMOS. It concluded 

that the JAXA AMSR2 product has a relatively better performance under dry 

conditions; however, the JAXA algorithm generally under-estimates the ground soil 

moisture. It also indicated that there is a need to improve both the algorithms and that 

a combined product could provide better estimates of soil moisture. 

 

iii. A study by Leroux et al. (2013), compared the SMOS, AMSR-E and ASCAT soil 

moisture products over four watersheds in the United States for the year 2010. The 

study concluded that the SMOS product correlated the closest to ground 



 

21 

measurements, the AMSR-E product gives reasonable results in terms of correlation 

and the ASCAT product was unstable. 

 

iv. A study conducted by Albergel et al. (2012) evaluated the ASCAT and SMOS 

products against in-situ soil moisture observations from over 200 stations across the 

world for the year 2010. A similar study was conducted by Brocca et al. (2011), 

which evaluated the ASCAT and AMSR-E satellite-based soil moisture products 

around Europe. The main purpose was to evaluate the potential of different ASCAT 

and AMSR-E products in obtaining reliable estimates of soil moisture. The study 

concluded that the AMSR-E LPRM provided the best results.  

 

3.4 Downscaling Techniques  

 

Microwave remote sensing is extensively used to obtain regional soil moisture estimates, 

although its application is greatly restricted by its coarse resolution (Zhao and Li, 2013). 

There have been several research studies undertaken to downscale satellite-based soil 

moisture estimates for use in hydrological applications (Song et al., 2013). Downscaling is 

relevant, as the coarse resolution is at tens to hundreds of kilometres, whereas hydrological 

processes occur at spatial scales of centimetres to kilometres (Shin and Mohanty, 2013). 

 

Satellites have the capability to observe and monitor large areas. The subsequent 

observational spatial resolution is dependent on the microwave frequency used, the 

dimensions of the antenna and the height of the satellite above the earth’s surface (Piles et al., 

2011). There is a trade-off between the temporal and spatial satellite resolution; as the sensor 

height decreases, the spatial resolution increases and the temporal resolution decreases 

(Merlin et al., 2012).  

 

Over the past decade, a number of downscaling techniques, with varying degrees of 

complexity, have been researched and developed (Merlin et al., 2008). An extensive research 

paper by Lakshmi (2013) outlines the key publications on current methods used to downscale 

passive microwave remote sensing soil moisture products. These studies have reviewed 

downscaling procedures, with the use of MODIS sensor-derived parameters, including 

surface temperature, vegetation and other ground surface parameters.  
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The consistent theme, with regards to downscaling procedures, which is identified in these 

key publications, is the combined use of passive microwave data with fine-scale optical data 

(surface temperature and vegetative indexes). The overall aim of these downscaling 

techniques are to provide soil moisture estimates at the same accuracy as the input remote 

sensing soil moisture product, but at the spatial resolution of the optical data used. These key 

downscaling publications are evaluated and summarized in Table 3.1 below.  

 

 

Table 3.1 Evaluation of downscaling techniques 
Author  Merlin et al Piles et al Merlin et al Merlin et al 

Year  2012 2011 2010 2009 

Region  Yanco, South-eastern 

Australia (2010) 

Yanco, South-eastern 

Australia (2010) 

Yanco, South-eastern 

Australia (2006) 

Yanco, South-eastern 

Australia (2006) 

Input data MODIS (LST, 

emissivity, NDVI and 

Albedo) 

MODIS VIS/IR data ( 

LST and NDVI) 

MODIS (LST, red and 

infrared reflectance and 

NDVI) 

Wind speed, MODIS 

data (surface 

temperature, NDVI), 

ASTER (radiometric 

surface temperature) 

Product  SMOS SMOS SMOS Simulated SMOS 

Output 

resolution (km) 

1 10 and 1 4 0.5 

Methodology sequential model Build model between 

NDVI, LST and soil 

moisture 

Relationship between 

soil moisture and soil 

evaporative efficiency 

sequential model 

Results R2 = 0.70-0.85 in 

summer, however 

very poor results 

obtained in winter 

R2 of  0.14-0.21, RMSE 

is between 0.9-0.17 

Mean slope between 

simulated and observed 

is 0.94, with an error of 

0.012 

R2 of 0.68, RMSE of 

0.062, bias of 0.045 
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The evaluation of the abovementioned methods highlights significant limitations, which 

hinder the successful application of the various downscaling procedures that have been 

developed. These include (a) observational days have to be cloud-free, to avoid obscurities in 

data retrieval; (b) the presence of vegetation interferes with land surface temperature 

retrieval; (c) there is a difference in the input data sensing depth; and (d) the model 

assumptions may not be valid in heterogeneous areas (Merlin et al., 2008; 2009; 2010; Piles 

et al., 2011). 

  

From the evaluation of these downscaling techniques, several comparisons can be made. 

Firstly, all of the downscaling research studies were conducted in the same region; this 

simplifies the evaluation process between the different techniques used. It can be noted that 

the technique used by Piles et al. (2011) requires the least data input, while the technique 

used by Merlin et al. (2009) requires the most input data. All the techniques use SMOS data 

or a simulated SMOS data set, as the SMOS satellite is the most recent soil moisture satellite. 

The evaluation between the methods is enhanced due to the common aspects of the research 

studies.  

 

The differences in the evaluated techniques can be seen in their methodologies, output 

resolutions and results. Merlin et al. (2012) had an output resolution of 1 km and showed 

good results in summer; however, the technique performed very poorly in winter, when 

compared to in-situ soil moisture data. Piles et al. (2011) had an output resolution of 1 and 10 

km, but performed poorly, when compared to in-situ soil moisture data. The Merlin et al. 

(2010) resulted in the best correlation between observed and simulated soil moisture. Merlin 

et al. (2009) showed good correlation and had the finest resolution. 

 

The limitations of the downscaling process can be summarized as follows:  

 

i. The accuracy of the soil moisture product may decrease as the spatial resolution 

increases (there is a trade-off between obtaining accurate data and obtaining fine 

resolution products); 

ii. The process requires input data, which may not be freely or readily available; 

iii. The technique may be site-specific; 

iv. The complexity of the algorithms used; and 

v. Cloud-free images are required, if MODIS products are used.   
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In recent years, the need for fine resolution soil moisture products has resulted in numerous 

downscaling research studies being conducted. The main publications in this field have been 

studies conducted by Merlin et al. (2009; 2010; 2012) and Piles et al. (2011). In addition to 

these, more recent studies have been conducted, which are based on the same principles of 

the key techniques. However, there are slight variations, in order to improve and build upon 

these key approaches. The new studies include: 

 

i. A study conducted by Zhao and Li (2013) aimed to develop a downscaling method to 

improve the spatial resolution of the AMSR-E derived soil moisture product. The 

approach was based upon the conventional method of the microwave-optical 

synergistic technique, which uses LST, vegetative indexes and albedo. This approach 

replaces LST with two temperature temporal variation parameters. The study was 

conducted in the Iberian Peninsula for the year 2007. The results showed an 

improvement in the approach (R2 increased by 0.08), when the new approach was 

compared to the conventional method.  

 

ii. A recent study by Ruiz et al. (2014) was conducted on combining SMOS visible and 

near infrared satellite data for high resolution soil moisture over a two-year period in 

the REMEDHUS network in Spain. The study used a new downscaling algorithm, 

based on a relationship between LST, NDVI and brightness temperature. The study 

aimed to obtain a downscaled image with the same accuracy of SMOS, but at the 

spatial resolution of MODIS (500 m). The best result obtained was a correlation with 

the in-situ measurements of 0.72.  
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4. METHODS OF MODELLING SOIL MOISTURE  
 

Land surface water and surface energy balance models have been used to estimate soil 

moisture, as surface soil moisture plays a significant role in controlling the land-atmosphere 

water and energy fluxes (Walker and Houser, 2000). Several models have been used to obtain 

soil moisture estimates. These include the Variable infiltration capacity (VIC) hydrological 

model, the Decision support system for agro-technology transfer crop model (DSSAT), the 

climate water budget (CWB), the SEBS, PyTOPKAPI and the Surface Energy Balance 

Algorithm for Land (SEBAL) (Meng and Quiring, 2008; Mengistu et al., 2014). The VIC, 

DSSAT and CWB are complex models, which require a large amount of input data (Meng 

and Quiring, 2008). The SEBAL Model is not freely available to apply due to its intellectual 

property rights (Mengistu et al., 2014).  

 

The following section describes the use of the PyTOPKAPI Model soil moisture product and 

the SEBS Model to obtain soil moisture estimates. The PyTOPKAPI Model was selected, as 

it has been used in South Africa. It is able to provide estimates with a fine spatial and 

temporal resolution and the estimates are readily available. The SEBS Model was selected, as 

it is an open-source model, it is easy to use and has been validated in several studies 

internationally and in South Africa. 

 

4.1 Land Surface Model (PyTOPKAPI) 

 

Soil moisture is a significant parameter in the hydrological cycle and is the prime regulator in 

a catchment’s response to precipitation, as it partitions precipitation into infiltration and 

surface runoff (Vischel et al., 2008). The topographic kinematic approximation and 

integration (TOPKAPI) model was developed by Liu and Todini (2002). The model is fully 

distributed and physically-based, as it represents hydrological processes on grid cells, on the 

basis of soil physics and fluid mechanics (Vischel et al., 2008). The TOPKAPI Model has 

been adapted to perform simulations in land surface modelling mode and its model code has 

been adapted, so that it operates as a collection of cells (Sinclair and Pegram, 2010). Each 

cell is independent of its neighbours and has a plan area of 1 km x 1 km, with a 0.125o grid 

spacing (Sinclair and Pegram, 2010). Each grid cell comprises of three key reservoirs (soil, 

overland, channel), as seen in Figure 4.1, which are determined by combing the physically-
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based mass and continuity equations under the estimate of the kinematic wave model 

(Vischel et al., 2008).   

 

 

Figure 4.1 A schematic of the water transfer in a typical PyTOPKAPI model cell 

(Sinclair and Pegram, 2012) 

 

The model is forced by time varying estimates of total evaporation and rainfall for each 

model cell (Sinclair and Pegram, 2012). The total evaporation forcing is based on the 

modification of the FAO56 reference crop evaporation, whereas the rainfall forcing is applied 

in the TRMM 3B42RT product, which is automatically downloaded from the NASA server 

and processed locally (Sinclair and Pegram, 2010).   

 

There are six fundamental assumptions on which the TOPKAPI model is based on (Vischel et 

al., 2008): 

i. Precipitation is spatially and temporally constant over the integration domain; 

ii. Unless the soil is already saturated, all precipitation falling on the soil infiltrates;  

iii. The slope of the groundwater table corresponds with the slope of the ground; 

iv. The saturated hydraulic conductivity in the soil surface layer is constant with depth;  

v. Local transmissivity; and  

vi. During the transition phase, the variation in water content in time is constant in 

space.  
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The TOPKAPI Model has been adapted to South African conditions. A land surface model 

was developed, with the final product being the freely available open source software 

package, known as the PyTOPKAPI (Sinclair and Pegram, 2013). The PyTOPKAPI Model is 

rainfall-runoff model used to examine the soil moisture dynamics at different scales, ranging 

from catchment to national scale (Sinclair and Pegram, 2013b).  

 

The PyTOPKAPI Model uses three sets of input data, which consist of the meteorological, 

static and remote sensing data sets, as seen in Figure 4.2 (Sinclair and Pegram, 2010). The 

meteorological input data include the calculation of reference crop total evaporation and 

require parameters, such as relative humidity, temperature, solar radiation flux and wind 

speed (Sinclair and Pegram, 2010). The static input data required are the digital elevation 

models, land cover and soil properties. The input remote sensing data required are the rainfall 

and NDVI products on a three-hour temporal scale. In addition, the solar radiation flux from 

the meteorological input data is a satellite-based product and can be considered as a remote 

sensing product (Sinclair and Pegram, 2012).  

 

The PyTOPKAPI is an automated modelling system, which produces national estimates of 

total evaporation and soil moisture at a three-hour time step over South Africa on a 0.125o 

spatial grid (Sinclair and Pegram, 2010).    

 

 

Figure 4.2 Data-flow diagram showing sources of the dynamic and static data to 

produce the main information streams (Sinclair and Pegram, 2010). 
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The purpose of the computation is to obtain a Saturated Soil Index (SSI), which is defined as 

the percentage of the soil voids occupied by water. 

 

𝑆𝑆𝐼 = 100 ∗ (
Ɵ−Ɵ𝑟

Ɵ𝑠𝑎𝑡−Ɵ𝑟
)        (4.1) 

 

Where Ɵ is the volumetric soil moisture, Ɵr is the residual soil moisture and Ɵsat is the 

saturated soil moisture.  

 

In the original design, Liu and Todini (2002) created the model in such a manner, that 

whether the soil store was saturated or not, all rainfall during the computational interval was 

added to the soil store. At the end of the interval, an inventory was made and if the store was 

full, the excess was assigned to overland and channel stores. Then, based on the content of 

the soil store, the drainage was sent to the downslope store (Sinclair and Pegram, 2013a). 

This resulted in two effects: the soil store was always depleted at the end of the computation 

interval and surface runoff only occurred once the soil store was full, independent of rainfall 

intensity (Sinclair and Pegram 2013). 

 

In the adaption of the TOPKAPI Model to South African conditions, the first effect was 

cancelled by modifying the continuity equation, so that there was ponding in the overland 

store, which resulted in the soil store remaining full after computation (Sinclair and Pegram, 

2013a). The second effect was dealt with the introduction of the Green-Ampt infiltration 

model, which gave the PyTOPKAPI Model the ability to generate rapid overland flows in 

response to intense rainfall events (Sinclair and Pegram 2013).  

 

The benefits of using this model are that the soil moisture estimates obtained have a temporal 

resolution of three hours and a spatial resolution grid ≈ 12.5 km. This finer temporal and 

spatial resolution better accounts for the heterogeneity of soil moisture, compared to the 

current global remote sensing of soil moisture products.  

 

There have been research studies that reviewed the estimation of soil moisture through land 

surface modelling.  
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i. Sinclair and Pegram (2010) conducted a study, which aimed to compare soil moisture 

estimates from two independent sources over South Africa. The first soil moisture 

estimate was provided by automated real-time estimates from the TOPKAPI 

hydrological model. The second set of soil moisture estimates was from the ASCAT 

remote sensing product.  

 

ii. A similar study was conducted by Vischel et al. (2008) in the Liebenbergslvei 

Catchment in South Africa, which compared soil moisture estimates derived from the 

TOPKAPI Model with European remote sensing satellite-based soil moisture 

estimates. Both studies concluded that the modeled soil moisture measurements 

correlated well, when compared to remote sensing soil moisture measurements.  

 

iii. More recent studies, conducted by Sinclair and Pegram (2013), evaluated the 

sensitivity of the PyTOPKAPI Model to systematic bias in the variables of soil 

properties, evapotranspiration and rainfall. This was achieved by analysing 7200 sites 

within South Africa for a two-and-a-half year simulation period. The study concluded 

that the model is robust to errors in forcing parameters.  

 

iv. A study conducted by Mengistu et al. (2014) involved the validation of variables of 

the PyTOPKAPI Model. The aims of the study were to provide data for the soil 

moisture mapping of South Africa, using the PyTOPKAPI Model. The purpose was to 

provide accurate field and satellite estimates of total evaporation and soil moisture for 

the calibration of the model and to evaluate the spatial variability of soil moisture at a 

catchment scale. 

 

4.2 Surface Energy Balance System (SEBS) 

 

Over the past few decades, several methods of estimating evaporation have been developed 

and implemented (Ma et al., 2012). The SEBS Model was developed by Su (2002) for the 

estimation of atmospheric turbulent fluxes and surface evaporative fraction, using remote 

sensing data (Su et al., 2003). The SEBS Model is physically-based, has the advantage of 

being less site-specific, open-source, it has been applied extensively (especially as an 

academic tool for research purposes) and does not require subjective intervention by the 

model user (Gokman et al., 2012).  
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The model requires three sets of informational input data. The first set comprises of albedo, 

temperature, leaf area index and vegetation coverage (Su, 2002). In cases where this 

information is unavailable, the NDVI and the vegetation height are used instead. These 

informational inputs can be obtained from remote sensing data, in conjunction with additional 

land surface information. The second set of information comprises the reference boundary 

layer height (Su, 2002). The third set of input data required is the downward solar and long-

wave radiation, which are obtained either from direct measurement, parameterization or 

model output (Su, 2002). 

         

The SEBS Model consists of numerous individual components, to estimate the net radiation 

and soil heat flux and to partition the available energy into latent and sensible heat fluxes. 

The Surface Energy Balance is expressed as follows (Equation 4.2) (Wang and Li, 2011): 

 

Rn = G𝑜 + H+  λE         (4.2) 

 

Where Rn = net radiation, Go = soil heat flux, H = sensible heat flux and λE = latent heat flux.  

 

The considerations of the surface energy balance, at limiting cases, are used to determine the 

relative evaporation (Wang and Li, 2011). When the dry limit is considered, the latent heat is 

zero and the sensible heat flux is at its maximum (Wang and Li, 2011):   

 

 λEdry = Rn − Go − Hdry  ≡ 0  

Hdry = Rn − Go         (4.3) 

When the wet limit is considered, evaporation occurs at a maximum rate, whilst the sensible 

heat flux takes the minimum value (Wang and Li, 2011): 

 
λEwet = Rn − Go − Hwet            (4.4) 

 

The relative evaporation can be expressed as (Su et al., 2003): 
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Λr = 
λE

λEwet
= 1 − 

λEwet − λE

λEwet
            (4.5) 

 

By substituting Equations 4.2 – 4.4 in Equation 4.4 and rearranging (Su et al., 2003): 

 

Λr = 1 − 
H− Hwet

Hdry− Hwet
        (4.6) 

 

Applying the mass conservation principle and integrating with respect to depth and time 

increments (Su et al., 2003): 

 

∫ θ(z, t2)dz − ∫ θ(z, t1)dz = Q(z1) − Q(z2)
z2

z1

z2

z1
               (4.7) 

 

where θ is the volumetric soil moisture content, t is the time and z is the vertical distance. 

Applying Equation 4.7 with boundary conditions Q (z1) = Po + Io –E at the soil surface and Q 

(z2) = Ic at the bottom of the rooting zone. The change in soil water content can be expressed 

as (Su et al., 2003): 

 

Θ(t2) −  Θ(t1) = Po + Io + Ic − E       (4.8) 

where Θ is the volumetric soil water content in the rooting zone, Po is the precipitation, Io is 

the irrigation, Ic capillary flux and E is evaporation. The water balance is then considered at 

limiting cases. The wet limit is saturation, so that Θ (t1) = Θwet. At the dry limit Θ (t2) = Θdry, 

the evaporation is zero. From Equation 4.8 (Su et al., 2003): 

 

Θwet − Θdry = Icwet − Ewet        (4.9) 

 

For any time between the two boundary conditions: 

 

Θ − Θdry = Icwet − E        (4.10) 

 

Manipulating Equation 4.9 and Equation 4.10 (Su et al., 2003): 

 
Θ − Θdry

Θwet− Θdry
= 

E−Ic

Ewet−Icwet
           (4.11) 
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It is assumed that the capillary flux is linked to the soil texture and is less than that of the 

uptake of root water (Ic = Iwet). By defining Rθ = Θ/ Θwet as the relative soil water content and 

using Equation 4.11 (Su et al., 2003):  

 

Rθ = 
Θ

Θwet
= 

λE

λEwet
         (4.12) 

 

This inverse relationship is often used in hydrological modelling and can be expressed as: 

 

λE

λEwet
=  f (

SMactual

SMfield capacity
) = Ʌ       (4.13) 

 

The relative evaporation is therefore calculated as the relative soil moisture contained in the 

rooting zone. The term f is used as a linear relationship. The SM field capacity can be inferred 

from the soil texture.  

 

An alternative method, which uses an empirical relationship between the evaporative fraction 

and soil moisture, was developed by Bastiaanssen et al. (1997). The equation is based on two 

large-scale climate-hydrology studies, which investigated the interactions between soil 

moisture, evaporation and biomass (Scott et al., 2003; Bezerra et al., 2013). The empirical 

equation was modified by Scott et al. (2003), by standardizing soil moisture with saturated 

soil moisture, to create relative soil moisture content (Scott et al., 2003):  

 
θ

θsat
= exp[(ᴧ−1)/0.421]          (4.14) 

 

These methods of soil moisture estimation result in a finer spatial resolution than that of 

current remote sensing soil moisture products, as the remotely sensed data is observed at a 

finer spatial scale. In addition, the soil moisture being estimated is at a greater depth than that 

estimated by microwave remote sensing (Bezerra et al., 2013). The limitation of this method 

is that the observations and measurements are restricted to cloudless days, as retrieval is 

affected by atmospheric conditions. Therefore, only days which are cloud-free can be used, in 

order to reduce measurement errors.   
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The SEBS Model has been applied globally in several studies (Wang and Li, 2011; Gokman 

et al., 2012; Ma et al., 2012).  

 

i. A study conducted by Su et al. (2003) derived a measure for the quantification of 

drought severity. The study used the SEBS Model, meteorological data and NOAA 

satellite images to derive relative evaporation in North China. A drought severity 

index (DSI) was subsequently derived from the relative evaporation. The DSI gives 

an indication of the soil moisture status, so that a high relative evaporation is 

associated with a high soil moisture status. The study concluded that the DSI and 

actual soil moisture measurements show a good comparison.  

 

ii. Studies conducted by Scott et al. (2003) and Bezerra et al. (2013) evaluated the 

relationship to calculate soil moisture from remote sensing data. The study conducted 

by Bezerra et al. (2013) was carried out in the Apodi Plateau in Brazil. The study 

concluded that there was a close correlation between measured and estimated soil 

moisture value (R2=0.84).  
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5. SYNTHESIS OF LITERATURE   
 

The literature review detailed in-situ, remote sensing and modelled soil moisture 

measurement and estimation methods. Soil moisture is an important parameter, which has 

several implications for a number of applications. Conventional in-situ methods have been 

invaluable in providing validation and calibration data. The major limitation, however, is that 

the point measurements do not represent the spatial characteristics of soil moisture.  

 

In recent years, the CRP technique has been used to provide continuous measurements of 

area-averaged soil moisture at an intermediate scale, which bridges the gap between point 

measurements and large footprints obtained from remote sensing.  

 

Remote sensing of soil moisture is a promising technique, as it accounts for the spatial and 

temporal characteristics of soil moisture. It has numerous advantages; however, its 

application is limited, due to its coarse resolution. The product can be downscaled, in order to 

obtain a spatial resolution applicable for use in hydrological applications. There are several 

downscaling techniques that vary in complexity and the choice of the downscaling method 

used will depend on the intended output resolution, the input data available and the general 

ability of the researcher. Although a finer spatial resolution is favourable, the loss of remote 

sensing soil moisture product accuracy, due to downscaling, is a concern.  

 

Soil moisture is an important parameter in both the land surface water and land energy 

balance and can be estimated from modelling. The PyTOPKAPI rainfall-runoff model has 

been used with confidence to estimate soil moisture across South Africa.  

 

The SEBS Model can also be used to estimate soil moisture. Both models use remote sensing 

data as input data. The advantage of using models to estimate soil moisture is that the spatial 

resolution is greater than that of current global remote sensing products. 

 

There needs to be a shift from using point measurements, to using area-averaged soil 

moisture measurements, to calibrate and validate remote sensing and model products. This 

will aid in reducing the vertical and horizontal scaling issues. There have been no studies 
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conducted in South Africa on the comparison of soil moisture estimate methods, using the 

CRP as validation data for satellite-based soil moisture estimates. 

 

From the literature reviewed, the gaps in past research studies have become apparent. A 

major gap has been the use of point measurements for the calibration and validation of 

remote sensing and modelled soil moisture estimates. This has resulted in horizontal and 

vertical scaling issues, therefore there is a need for a shift towards the use of area-average 

calibration and validation data, in order to bridge the gap between scales.  

 

Downscaling procedures have not been used in South African case studies; however, they are 

essential in obtaining remote sensing soil moisture estimates at a fine spatial resolution, 

which can be used in hydrological applications. Where downscaling has been used, the 

downscaled estimates were compared to point measurements.  

 

The PyTOPKAPI Model has been implemented in South Africa with confidence; however, 

its estimates have not been evaluated against area-averaged soil moisture measurements. 

There have been no South African case studies on the CRP, therefore a comprehensive 

evaluation of the current methods of soil moisture against the area-averaged soil moisture 

measurements obtained from the CRP, need to be conducted in South Africa. 
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6. METHODOLOGY 
 

Several studies referred in the literature review component (chapters two, three and four) 

have suggested that the current methods of soil moisture estimation do not adequately 

provide measurements for critical hydrological applications, as each method has its 

limitations. Although the current methods can provide accurate estimates of soil moisture, the 

representativeness of these methods may vary at different spatial scales.  These methods need 

to be evaluated and improved, in order to obtain soil moisture data that can be used in critical 

hydrological applications. Further research is warranted. The following research questions 

have been formulated to address both the general and specific objectives of the study: 

 

 How suitable is the CRP technique in providing spatial estimates of soil moisture? 

 How accurate are the Level Three AMSR2 and SMOS soil moisture estimates?  

 How suitable are the PyTOPKAPI Model product and the back-calculation using the 

SEBS model in providing estimates of soil moisture?  

 What are the effects of seasonality on the different methods of soil moisture 

estimation? 

  

The general objectives of this study were to calibrate and validate the CRP and subsequently 

use the calibrated CRP soil moisture estimates to validate satellite-based soil moisture 

estimates. This involved setting up the CRP in Cathedral Peak Catchment VI. The CRP 

continuously monitored soil moisture at an hourly time-step. During this time, four 

calibrations were undertaken to determine the representative gravimetric water content of the 

study area on that calibration day. An in-situ soil moisture network was also set up that 

consisted of TDR and Echo probes. The aim of the in-situ soil moisture measurements was to 

provide data that could be used to create a representative soil moisture dataset of the study 

area, which could then be used to validate the CRP.  

Calibrated CRP estimates were then used to validate satellite-based soil moisture estimates. 

These consisted of remote sensing products, back-calculated soil moisture using outputs from 

the SEBS model and modelled soil moisture product from the PyTOPKAPI model.  Although 

the downscaling of remote sensing data was reviewed and evaluated in the literature, the 

procedure of downscaling remote sensing products did not fall within the scope of this study 

and therefore, was not applied.  



 

37 

6.1 Study Site 

 

The study site for this research was Cathedral Peak Research Catchment VI. Cathedral Peak 

was established in 1935, as the chief centre for forest hydrological research in the summer 

rainfall region (Scott et al., 2000). Its primary purpose was to examine the influences of 

various management practices on the vegetation and yield of the local mountainous 

catchments (Everson et al., 1998). Cathedral Peak lies within KwaZulu-Natal, in the Tugela 

Catchment, as shown in Figure 6.1. It comprises of fifteen gauged catchments that are 

situated on the little Berg, located below the Drakensberg escarpment, which creates a natural 

border between the north-eastern side of Lesotho and South Africa (Gush et al., 2002).  

 

 

Figure 6.1 Location of Cathedral Peak Catchment VI, within the Tugela catchment, 

within KwaZulu-Natal 

 

The Drakensberg mountain range is the highest mountain range in South Africa and gives rise 

to many of the rivers, which are of great economic importance to the country (Everson et al., 

1998). The fifteen research catchments (numbered I to XV) received different land 
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treatments, such as varying burning regimes, grazing, afforestation and protection from 

burning (Kuenene et al., 2009). 

 

Catchment VI is the focal catchment in this study. It has a catchment area of 0.68 km2 and is 

located by latitude of 28.99o S and longitude of 29.25o E. Catchment VI is moderately 

dissected by streams and has a stream density of 3.25 km/km2 (Everson et al., 1998). The 

altitude ranges from 1860 m at the weir (northern-most point of the catchment) to 2070 m at 

the highest point of the catchment (Kuenene et al., 2009). The average slope of the catchment 

is 19%. A topographic map of Catchment VI can be seen in Figure 6.2.    

 

 

Figure 6.2 Topographic map of Catchment VI 

 

The landcover of Catchment VI is Highland Sourveld grassland (Everson et al., 1998). The 

soils in the catchments are moderately weathered immature soils, which are primarily derived 

from basalt (Scott et al., 2000). The soils in the catchment are classified as lateritic yellow 

and red earths, with heavy black soils occurring in saturated zones and along stream banks 

(Jarmain et al., 2004). There is a contrast in soil properties among the soil layers. The topsoil 

has a friable consistency, which results in rapid infiltration, whilst the subsoil has a very high 

clay content, which results in poor infiltration. The topsoil has a high organic matter content 

(6-10%), which results in a high water-holding capacity (Kuenene et al., 2009). The region is 
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characterized climatically by its cold dry winters and hot wet summers. The mean annual 

precipitation is 1400 mm, with 85% falling between October to March (Gush et al., 2002). 

Catchment VI has a mean annual precipitation of 1299 mm (Jarmain et al., 2004). 

 

Catchment VI is one of the smallest research catchments in Cathedral Peak. It is 4.027 km 

south-east of the Mikes Pass weather station and is the most instrumented catchment. It 

contains the CRP, eddy covariance system, large aperture scintillometer, weather station, a 

compound V-notch weir and a tipping bucket rain gauge.  

 

6.2 Cosmic Ray Probe  

 

The CRP is a relatively new and innovative in-situ instrument used to obtain area-averaged 

soil moisture measurements.  

 

 Set up of the cosmic ray probe 

 

The CRP was installed on the 28th of February 2014 in Cathedral Peak research catchment VI 

(28.99o S and 29.25o E), as shown in Figure 6.3. The CRP was positioned towards the centre 

of the catchment and due to its measurement footprint, the soil moisture measurements 

obtained are assumed to be representative of the catchment area.  

 

 

Figure 6.3 CRP in Cathedral Peak Catchment VI 
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The CRP method requires calibration to obtain accurate soil moisture estimates. The 

calibration process involves obtaining an estimate of the area-averaged soil moisture content 

over the CRP measurement footprint by gravimetric sampling. Soil samples were taken at 

three radial rings, extending outwards from the CRP. The radial rings were situated at a 

distance of 25 m (A), 100 m (B) and 200 m (C) from the CRP, as shown in Figure 6.4. At 

each of the three rings, eight points were taken at an equal distance along the circumference 

of the ring. Therefore, points were taken at 0, 45, 90, 135, 180, 225, 270 and 315 degrees 

from the CRP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The location of these 24 points (3 rings x 8 points) were mapped, using GIS software and 

their coordinates were recorded (Table 6.1). These points are located within Catchment VI, as 

illustrated in Figure 6.5. 
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Figure 6.4 Diagram of sampling points  
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Table 6.1 Geographical coordinates of sample points 

Sample  Latitude Longitude Sample  Latitude Longitude Sample  Latitude Longitude 
A1 -28.9929 29.2519 B1 -28.9922 29.2519 C1 -28.9913 29.2519 
A2 -28.9929 29.2520 B2 -28.9924 29.2526 C2 -28.9918 29.2533 
A3 -28.9931 29.2521 B3 -28.9931 29.2529 C3 -28.9931 29.2539 
A4 -28.9932 29.2520 B4 -28.9937 29.2526 C4 -28.9944 29.2533 
A5 -28.9933 29.2519 B5 -28.9940 29.2519 C5 -28.9949 29.2519 
A6 -28.9932 29.2517 B6 -28.9937 29.2511 C6 -28.9944 29.2504 
A7 -28.9931 29.2516 B7 -28.9931 29.2508 C7 -28.9931 29.2498 
A8 -28.9929 29.2517 B8 -28.9924 29.2511 C8 -28.9918 29.2504 

 

 

Figure 6.5 Position of calibration sample points within Cathedral Peak Catchment VI  
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 Field sampling  

 

Each sample point was entered and saved in a hand-held GPS system, in order to pinpoint the 

location of the sample points that had been determined. Once each point was found, they 

were visually marked, by inserting a metal rod into the ground and tying a piece of hazard 

tape to the top of the rod. At each point, soil samples were taken and labelled X, Y and Z. At 

each of these three points, an auger and garden trowel were used to obtain soil samples at 

depths of 0.05, 0.10, 0.20 and 0.30 m and these were placed in separate plastic bags. The 

plastic bags were clearly labelled according to the ring (A, B, C), sample point in the ring (1, 

2, 3, 4, 5, 6, 7, 8), replicate (X, Y, Z) and depth (5, 10, 20, 30), as seen in Figure 6.6. The soil 

samples obtained were properly sealed, stored in a box and transported to the laboratory. 

 

 

Figure 6.6 Field samples contained in plastic bags 

 

 Gravimetric water content determination  

 

The determination of the gravimetric soil moisture content of each sample point was required 

to obtain a representative gravimetric soil moisture content of the study area, for the 

calibration of the CRP. The soil sample plastic bags were re-opened and a 20 g sub-sample of 

each sample was weighed, using a mass balance, its weight recorded to three decimal places 

and placed onto pre-weighed individual foil trays, which were labelled according to the 

sample (Figure 6.8). The samples were then placed in an oven at 105oC for 24 to 48 hours, 

after which, the samples were removed from the oven, weighed and recorded once more. The 
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gravimetric water content was then calculated on a wet basis, using the gravimetric water 

content: 

 

Gravimetric water content =  
Wet mass−Dry mass

Dry mass
 × 100  (6.1) 

 

   

Figure 6.7 Weighing the soil samples and placing them in the oven 

 

Four calibrations were carried out over a period of eight months. The calibration dates were 

the 9th of July 2014, the 28th of August 2014, the 2nd of December 2014, and on the 22nd of 

January 2015. 

 

 Creating a soil moisture network 

 

It was essential to create a soil moisture network comprising of in-situ soil moisture 

measurement instruments at several locations within the CRP measurement area. This was 

required in order to obtain data that could be used to validate the CRP measurements. There 

were three sets of measurement instruments installed between the 9th and 10th of July 2015. A 

soil pit was dug and TDR probes were inserted horizontally at depths of 0.05, 0.10, 0.15, 0.20 

and 0.30 m, as illustrated in Figure 6.7 (a). Five wireless TDR sensors (0.12 m) were inserted 

vertically into the soil surface at sample points A5, B5, C5, A7 and B7, as illustrated in 

Figure 6.7 (b). Shallow soil pits were dug at A1, B1, C1, A3, B3, C3, B7 and C7, and Echo 

probes were inserted horizontally at a depth of 0.10 m (Figure 6.7 (c)). The echo probes were 

buried and their data loggers were attached to the metal rod at the subsequent sample points 

(Figure 6.7 (d)). 
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 (a)  (b) 

 (c)  (d) 

Figure 6.8 (a) Setting up the TDR pit, (b) Wireless TDR, (c) Echo probe and (d) Data 

Hobo Onset logger for the Echo probe 

 

The wireless TDR sensors, which were placed on the 10th of July 2014 at points A7, A5, B5, 

B7 and C5, were removed on the 28th of August 2014 to check a problem with the data 

logging program.  

 

 Catchment burning  

 

Catchment VI is subjected to prescribed burning for fire protection and management 

purposes, as it reduces the amount of groundcover vegetation during the drier (cooler) months 

and decreases the risk of wildfires. These wildfires could cause greater damage later on in the 

season. Without fire, grasslands could transform into shrub-lands or forests. Prescribed 

burning is different to wildfires and has less of an environmental impact. Prescribed burning 

is undertaken by a team of skilled and equipped laborers, who use firebreaks to control the 

burning stretch. There are three main types of burning strategies used:  
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i. Back-burning is the technique of setting small fires along a fire-break and burning 

back to the main fire front. This burning type is usually against the ground-level 

winds and often downslope, which results in a lower intensity fire that moves at a 

slower speed, which makes the fire easier to control. 

ii. Head-burning is the technique of burning with the ground-level wind direction and is 

usually upslope. This burning type has a high intensity and moves at a faster rate, 

which makes it harder to control. 

iii. Flanking is the technique of setting a fire, which moves parallel to and into the wind. 

This burning type is used to supplement the other two burning techniques. 

        

The hydrological consequences of fire include the removal of vegetation cover and the direct 

effect of the fire heating the soil (Scott, 1994). The removal of the vegetation cover could 

have an impact on the soil moisture status, as the soil surface has greater exposure to 

atmospheric conditions. This could lead to increased soil evaporation, which could result in 

drier topsoils (Stoof et al., 2012). Conversely, there could be an increase in soil moisture in 

the subsoils, due to a reduction in transpiration (Stoof et al., 2012). The removal of 

vegetation may also result in increased erosion and sedimentation, due to an increased 

exposure of the soil surface to raindrop impact (Scott, 1994). There is a possibility of post-

fire pore-clogging by infiltrated ash, which leads to reduced infiltration rates and causes an 

increase in overland-flow (Stoof et al., 2012). There could also be the development of soil 

water repellency during and after the fire.  

 

Although these hydrological consequences have been reported, the effects of fire on 

hydrological responses at a catchment scale are minor, as these fires are generally prescribed 

burns and the issue of scale plays a significant role in the overall change detection of the 

hydrological system (Scott, 1994).   

 

On the 5th of September, a scheduled burning from an adjacent Catchment (VII) spread and 

caused the unscheduled burning of Catchment VI. As a result of the fire, the Echo probe soil 

moisture sensors were destroyed. However, the data from the hobo loggers were retrieved 

(Figure 6.9). The larger equipment in Catchment VI were not harmed due to the fire breaks, 

as seen in Figure 6.10. Due to the loss of the echo probe sensors, the wireless TDR sensors 

had to be placed, to best represent the catchment. This was done by identifying the wet, 
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intermediate and dry areas of the catchment, by using the soil moisture map obtained from 

the first calibration. 

   

     

Figure 6.9 Data retrieved from burned echo probe data loggers 

 

      

Figure 6.10 Protection of equipment by fire breaks in Catchment VI 

 

 Bulk density determination  

 

The gravimetric determination technique was used for the calibration of the CRP. The 

gravimetric soil moisture content is expressed, by weight, as the ratio of the mass of water 

present to the dry weight of the soil sample (g/g). The CRP, however, measures the 

volumetric soil moisture content, which is expressed, as the ratio of volume of water to the 

total volume of the soil sample (cm3/cm3). This is further expressed as volumetric water 

content in percentage.  
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The calibration of the CRP requires a representative bulk density value, to convert the 

gravimetric soil moisture content to volumetric water content. In order to convert gravimetric 

soil moisture into volumetric soil moisture, the gravimetric water content is multiplied by the 

bulk density. The bulk density determination was carried out on the 2nd of December 2014. 

Undisturbed soil cores were taken at three locations in the catchment, corresponding with 

three sample points (C1, CRP and C5) and at three depths (0.00 – 0.05 m, 0.05 – 0.10 m and 

0.10 – 0.15 m). These sites were selected to best represent the catchment. 

   

At each of the three sites, steel cylindrical cores were inserted vertically into the soil. Starting 

with the 0.00 – 0.05 m measurement, the steel core was placed on the surface of the soil. A 

wooden board was placed on the top of the core and the core was hammered down into the 

soil. The wooden board was used to distribute the force of the hammer on the steel core, so 

that the core moves down equally. Once the steel core had reached its intended depth, the soil 

around the core was loosened and removed carefully. The steel core was then removed, 

clearly labeled and its ends tightly sealed. The same procedure was then carried out at 0.05 – 

0.10 m and 0.10 – 0.15 m depths. 

  

The soil cores were then transported to the laboratory, where they were opened carefully. A 

knife was used to trim the excess soil of the ends of each side of the core, so that the volume 

of the soil equaled the volume of the core. The soil cores (steel core and soil) were oven-dried 

at 105oC for 48 hours. The mass of the soil cores were weighed and recorded after oven 

drying (refer to Figure 7.14). The mass of the cylindrical steel cores were recorded and 

subtracted from the soil core mass, to obtain the mass of dry soil. The volumes of the soil 

cores were determined by the dimensions of the cylindrical steel cores. The volume of the 

steel core is the volume of the soil.  

   

The bulk densities were calculated, using Equation 6.2: 

 

Bulk Density (g/cm3) =  
𝐷𝑟𝑦 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑖𝑙 (𝑔)

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑐𝑚3)
  (6.2)  

 

The calculated bulk densities of each sample point and depth along with the variables used to 

calculate them are illustrated in Table 6.2. 
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Table 6.2 Variables required in obtaining the bulk density  

Sample Depth (m) Ms (g) Volume (cm3) Bulk Density (g/cm3) 

C1 0.05 38.863 98.175 0.396 

C1 0.10 50.404 98.175 0.513 

C1 0.15 56.127 98.175 0.572 

CRP 0.05 55.45 98.175 0.565 

CRP 0.10 60.359 98.175 0.615 

CRP 0.15 65.143 98.175 0.664 

C5 0.05 60.253 98.175 0.614 

C5 0.10 65.194 98.175 0.664 

C5 0.15 71.86 98.175 0.732 

 

It can be seen that, as the depth increases, the bulk density increases. The calculated bulk 

density values were low. This can be attributed to the soil cover, organic matter content, soil 

structure, porosity and the lack of compaction, as the catchment is situated in an undisturbed 

area. Initially, the calibration involved a depth weighting soil moisture procedure. Therefore, 

the average bulk density per depth was required. The new and current calibration procedure 

does not involve a depth weighted soil moisture, thus one representative bulk density value 

was required and was calculated by averaging all the bulk density values. The average 

measured bulk density was thus 0.593 g/cm3.    

 

6.3 Calibration  

 

In total, four calibrations were completed. Two of the calibrations were completed in the 

“dry” period and two were completed in the “wet” period. Subsequently, one “full” 

calibration and one “partial” calibration were completed in each period. The partial 

calibrations were the result of limited field time. The calibrations, number of samples and 

depths obtained, are shown in Table 6.3. The full calibrations (1 and 3) have a large number 

of samples, due to all 24 points being covered. Furthermore, three replicate samples were 

obtained at each point, at each depth. The first calibration involved collecting samples from a 

depth of 0.30 m; however, the CRP did not measure the soil moisture at a depth greater than 

0.20 m, due to the relatively high soil moisture in the “dry” period. Therefore, this depth was 

discontinued for the subsequent calibrations. 
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Table 6.3 Information regarding the calibration sampling  

        Depth Measured (m) 

Calibration Date Period No. of samples 0.05 0.10 0.20 0.30 

1   (Full) July 9, 2014 Dry 288 x x x x 

2   (Partial) August 28, 2014 Dry 36 x x x - 

3   (Full) December 2, 2014 Wet 216 x x x - 

4   (Partial) January 22, 2015 Wet 36 x x x - 

 

For the purpose of the calibration of the CRP, an average (one single) soil moisture value per 

calibration is needed, thus a representative soil moisture value was determined for each 

calibration.  

 

Soil moisture maps of each calibration were created by averaging the depths of each sample 

point and using the kriging interpolation technique to create soil moisture maps between the 

sample points obtained. These maps were not required for the calibration procedure, but were 

created to show the spatial characteristics of soil moisture in the research area. The soil 

moisture map values are in percentage volumetric content.   

 

Calibrations one and three are more detailed, as they have more points. Calibrations one and 

two were done in the dry period (Figure 6.11 and Figure 6.12). Calibrations three and four 

where done in the wet period (Figure 6.13 and Figure 6.14). From these soil moisture maps, 

general trends can be seen. The soil moisture is lowest in the south (upslope) and the highest 

in the north (downslope). It can be seen that topography affects the soil moisture content, as 

the soil moisture content generally increases as the altitude decreases along the north-south 

transect. The change in soil moisture in the research area, illustrates the limitation of using in-

situ point measurements due to the spatial variability of soil moisture.   
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Figure 6.11 Soil moisture map of the first calibration (9th of July 2014) 

 

 

Figure 6.12 Soil moisture map of the second calibration (28th of August 2014) 
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Figure 6.13 Soil moisture map of the third calibration (2nd of December 2014) 

 

 

Figure 6.14 Soil moisture map of the fourth calibration (22nd of January 2015) 
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Soil moisture varies both spatially and temporally. With regards to its spatial variability, soil 

moisture varies horizontally, as well as vertically. The horizontal and vertical spatial 

variability can be due to several factors, such as topography, rainfall distribution, soil 

characteristics and vegetation. If calibration one is considered, for each site (A1, A2, A3, 

etc.), three auger points were taken, so that there are three replicate samples at each sample 

point. The data of sample point A1, from calibration one, is depicted in Figure 6.15. From 

Figure 6.15, it can be seen that soil moisture varies with depth. In general, the soil moisture 

increases with depth. It is also evident that, although the three auger points were not more 

than one meter apart from one another, there was a noticeable change in the soil moisture 

content. 

 

 

Figure 6.15 Volumetric water content against depth for each replicate at one sample 

point 

 

The averages of all 24 soil sample points, for calibration one, are plotted against depth on the 

same graph. In Figure 6.16, it is evident that the change in soil moisture content is not 

constant. In general, the soil moisture seemed to increase with depth. The 24 plotted points 

show the variability of soil moisture of the area. The graph also shows the variability of soil 

moisture with depth, as some curves show a noticeable change in soil moisture with depth, 

whilst others have a fairly constant soil moisture content down a profile.  
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Figure 6.16 Volumetric water content against depth for all 24 sample points 

 

The calibration procedure was carried out once all four calibrations had been completed. The 

aim of the calibration was to determine the average No value, by averaging the No value 

determined for each calibration. The data from the CRP is sent, via satellite link, to the 

COSMOS server: http://cosmos.hwr.arizona.edu/Probes/probemap.php. The data is available 

at three levels. Level one data comprises of raw counts of fast and thermal neutrons. Level 

two data is quality controlled, uses level one data and subsequently converts it into a suitable 

format to determine soil moisture. Level three data takes level two data and converts it 

directly to measurements of soil moisture. The calibration procedure outline that was 

followed is that of Franz (2014) and Franz et al. (2015). 

 

The first step in the calibration procedure was to correct the neutron counts. This involved 

determining the neutron correction factors, using the following equations (Franz, 2014):   

 

N = 
N′∗ CP ∗ CWV

CI ∗ CS
          (6.3) 

 

where N is the corrected neutron counts per hour, N’ is the raw moderated neutron counts, CP 

is the pressure correction factor, CWV is the water vapour correction factor, CI is the high-

energy intensity correction factor, and CS is the scaling factor for geomagnetic latitude 

(Franz, 2014). 
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CP = exp (
Pi− Po

130
)         (6.4) 

 

CI =  
N H

i  (t)

N H
 o           (6.5) 

 

CS = f(x, y, z, t)         (6.6) 

 

Where x, y, z, is location and elevation, and t is time. 

 

CWV = 1 + 0.0054 (ρv
i (T, P, RH) − ρv

o(T, P, RH))     (6.7) 

 

where rv
i  is the absolute humidity of the air (g/m3), rv

0  is the reference absolute humidity of 

the air (g/m3), T is air temperature in (oC), P is pressure (mb), and RH is relative humidity 

(%) (Franz, 2014). 

  

For the calibration procedure, the level two data was used, which has already been corrected 

for CP, CI and CS. If level one data were used, then the original equation and all the 

corrections are required. The revised neutron count correction equation: 

 

𝑁 = 𝑁′ ∗ 𝐶𝑊𝑉         (6.8) 

 

Therefore, when using level two neutron counts, only the correction for absolute water 

vapour (CWV) is required. The absolute water vapour calculation was obtained, using the 

following equations (Franz, 2014): 

 

eso = 611.2 ∗ exp (
17.67∗T

243.5+T
)         (6.9) 

 

Where eso is the saturated vapour pressure at surface (Pa) and  T is air temperature (oC) 

(Franz, 2014).  

 

eo = 
RH

100
∗  es𝑜         (6.10) 
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Where eo is actual vapour pressure at surface (Pa) and RH is the relative humidity (%) (Franz, 

2014). 

 

ρv = 
eo

Rvap∗(T+273.15)
∗ 1000        (6.11) 

 

Where rv  is the absolute humidity of air (g/m3), Rvap =
R

0.001Mvap

 is the gas constant for 

water vapour (J/K/kg), R is universal gas constant (= 8.31432 J/mol/K), Mvap is the molar 

mass of water vapour (= 18.01528 g/mol = 0.01801528 kg/mol ), and T is air temperature 

(oC). 

 

These equations require hourly temperature and relative humidity data for the same time 

period as the level two neutron count data (hourly). The data set required covered the period 

of March 2014 to March 2015. Although the CRP system does measure temperature and 

pressure, the sensors are inside the data logger casing, which results in the measurement of 

the loggers conditions. The primary data set used was from the eddy covariance system; 

however, this only had data from the 12th of July 2014 and there were a few gaps in the data 

set, which are illustrated by the vertical red arrows, as seen in Figure 6.17. This data alone 

could not be used in the calibration, as the time period that it covers is not adequate and the 

gaps are problematic.  

 

 

Figure 6.17 Hourly temperature (The same data gaps present in the relative humidity 

dataset) 
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In order to calibrate the CRP, a complete and reliable temperature and relative humidity data 

set was required. Therefore, the data from the eddy covariance system was in-filled and 

patched with data from the nearby Mikes Pass weather station (refer to Figure 6.18). The 

Mikes Pass weather station had the hourly temperature and relative humidity for the period 

required.  

 

 

Figure 6.18 Complete daily air temperature data for Cathedral Peak Catchment VI 

 

Once the hourly CWV values were determined, the corrected neutron count rates were 

determined. The following calibration function was then used to determine the No value for 

each calibration (Franz et al., 2015): 

 

(θP + θLW + θSOC)ρbd = 
0.0808

N

No
−0.372

− 0.115       (6.12) 

  

 

Where q p is pore water content (g/g), qLW  is lattice water content (g/g), qSOCeq  is soil organic 

carbon water content (g/g), rbd  is dry soil bulk density (g/cm3), N is the corrected neutron 

counts per hour, and N0 is an instrument specific calibrated parameter that represents the 

count rate over dry silica soils.  

 

θSOC = (TC − 
12

44
 CO2)  0.5556       (6.13) 
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Where TC is the soil total carbon (g/g), CO2 is the soil CO2 (g/g), 12/44 represents the 

stoichiometric ratio of carbon to CO2, and 0.5556 is the stoichiometric ratio of H2O to 

organic carbon (assuming organic carbon is cellulose C6H10O5). 

θsoc was not determined, but was given a value of 0.01 g/g. 

θlw was determined to be 0.15433 g/g. A 50 gram representative soil sample was sent to 

Activation Laboratories in Canada for θlw determination. 

There is a need to correct for biomass (Franz et al., 2015)  

 

(θP + θLW + θSOC)ρbd = 
0.0808

N

No(BWE)
−0.372

− 0.115     (6.14) 

   

 

where BWE is the biomass water equivalent (mm). The biomass calculation is done for 

vegetation types, whose biomass changes with their growing stage. Due to the vegetation of 

Catchment VI being grassland, the biomass did not change much and the change in biomass 

was therefore insignificant and a biomass correction was not required. The burning of the 

catchment affected the biomass content greatly. This issue was resolved by performing a 

calibration before (calibration two) and a calibration after (calibration three) the burning.  

  

The neutron count (N) for each calibration was determined to be the average neutron count, 

during which the soil samples for that calibration were obtained (Table 6.4). For the “full” 

calibration, the duration was ≈ six hours. The duration of the “partial” calibration was ≈ three 

hours 

 

Table 6.4 The gravimetric soil moisture, bulk density and Neutron count  

Calibration 

Gravimetric Soil Moisture 

(g/cm3) 

Bulk density 

(g/cm3) 

Neutron Count 

(count/hr) 

1 0.490 0.593 1731.684 

2 0.438 0.593 1761.408 

3 0.647 0.593 1652.600 

4 0.741 0.593 1611.059 
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The CRP data prior to calibration (blue), with the calibration points (red), were plotted 

against time: 

 

Figure 6.19 CRP soil moisture estimates prior to calibration, with calibration points 

 

From Figure 6.19, it can be seen that the soil moisture calibration values correlate well with 

the soil moisture estimates of the CRP. This is the result of the uncalibrated No value being 

relatively close to the actual No value. The uncalibrated No value (3000) was set by the 

developers of the probe.  

  

The calibration equation (Equation 6.12) was used to determine the No value for each 

calibration, which are shown in Table 6.5. 

  

Table 6.5 Date and calculated No value for each calibration  

Calibration  Date No 

1 09 July 2014 3250.573 

2 28 August 2014 3242.507 

3 02 December 2014 3255.973 

4 22 January 2015 3248.243 

 

The average No value for the calibrations was calculated to be 3249.324. This calculated No 

value was then used in the calibration function equation (Equation 6.12), to determine the 

volumetric soil moisture content. 

0

10

20

30

40

50

60

70

80

90

3/1/2014 4/30/2014 6/29/2014 8/28/2014 10/27/2014 12/26/2014 2/24/2015

V
W

C
 (

%
)

Date



 

59 

The calibration function was used to determine an hourly (θp+θlw+θsoc)ρbd, by using a constant 

No and the hourly corrected N values. The lattice water and soil organic carbon water 

(θlw+θsoc) were subtracted from (θp+θlw+θsoc)ρbd  to determine the Volumetric Water Content 

(VWC) (calibrated CRP dataset). The hourly calibrated VWC from the CRP was plotted 

against time, as shown in Figure 6.20.  

 

 

Figure 6.20 Hourly soil moisture estimates of the calibrated CRP 

 

From Figure 6.20, it can be seen that the calibrated hourly CRP follows the same trend as the 

uncalibrated hourly CRP dataset (shown in Figure 6.24); however, there is a downward shift 

in the points. The neutron count was then plotted against the calibrated VWC. The 

exponential function from the graph (Figure 6.21) can be used to determine the VWC from 

the neutron count measured. 

 

 

Figure 6.21 Neutron count against volumetric water content  
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The hourly CRP data was converted into a daily dataset (Figure 6.22). From Figure 6.22, it 

can be seen that the conversion from hourly to daily data results in a smoother dataset, as the 

fluctuations are averaged. The soil moisture dataset generally shows that soil moisture is 

higher in the summer and lower in the winter, as expected in the summer rainfall region of 

South Africa.  

 

 

Figure 6.22 Daily calibrated CRP soil moisture measurements in Catchment VI 

 

6.4 Creating an In-situ Soil Moisture Dataset 

 

There were three types/sets of in-situ soil moisture instrumentation used: 

 

i. 5 TDR (pit) probes at one point placed horizontally at depths of 0.05, 010, 0.15, 0.20 

and 0.30 m. 

ii. 5 wireless TDR probes (0.12 m) placed vertically at different sites in the catchment.  

iii. 8 echo probes placed horizontally at a depth of 0.10 m at different sites.  

 

The TDR pit had the most complete data set out of all the in-situ instrument sets, as it has a 

continuous record from the 11th of July 2014 to March 2015. The wireless TDR probes have 

data from the 11th of July to March 2015; however, there are numerous gaps in the data set, 

due to the erratic operation of all five TDR probes. The echo probes have the shortest data 

record from the 9th of July 2014 to the 4th of September 2014. They were problematic and 

were destroyed in a catchment fire on the 5th of September 2014. 
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Although the study period of the research extends from March 2014 to March 2015, the 

validation of the CRP was for the period 11th of July 2014 to the 20th of March 2015, as this 

is the corresponding period for in-situ measurements.  

 

In order to validate the CRP, a representative in-situ soil moisture data set is required. The 

TDR pit, wireless TDR and ECHO probe datasets were converted from an hourly time-step to 

a daily time-step, as a daily time-step was used in this research project.  

 

The soil moisture from the TDR pit at five different depths in the profile is plotted against 

time, as shown in Figure 6.23. The soil moisture at different depths followed the same 

wetting and drying trends; however, the change in soil moisture, with depth was observed 

(Figure 6.23). In general, the soil moisture increased with depth. In the “dry” period, the soil 

moisture values were relatively constant. In the “wet” period, the temporal variation in soil 

moisture was a result of more rainfall (input) and higher rates of total evaporation (output). 

   

 

Figure 6.23 Daily TDR pit soil moisture measurements in Catchment VI  

 

If we consider the effective measurement depth of the CRP during the one year period 

between March 2014 and March 2015 (Figure 6.24), it can be seen that the effective 

measurement depth of the CRP for this period does not exceed 0.15 m, therefore the 0.20 and 

0.30 m TDR pit depth measurement data were excluded, when determining the average soil 

moisture of the TDR pit. The 0.05 m TDR pit depth was also excluded, as the effective depth 

of the CRP was closer to the 0.10 cm depth than the 0.05 m depth and the other two data 
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sources had measurements at 0.10 and 0.12 m depths (echo and wireless TDR). The mean 

effective depth for this period was 0.11 m. 

 

 

Figure 6.24 The CRP effective measurement depth 

 

The average (0.10 and 0.15 m) daily TDR pit soil moisture was plotted against time (Figure 

6.25). From Figure 6.25, it can be seen that the average TDR pit dataset covers the winter and 

summer period. 

 

 

Figure 6.25 The average TDR pit soil moisture measurements in Catchment VI 
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The daily wireless TDR data was plotted for the measurement period, as shown in Figure 

6.26. The wireless TDR data has gaps in the data set. This is due to errors in the data logging 

programme and faults in the sensors.  

   

 

Figure 6.26 Daily wireless TDR data in Catchment VI 

 

The Echo probe data was then plotted against time (Figure 6.27). The echo probe data only 

covered the dry period, as the fire that burnt Catchment VI, also destroyed the sensors, which 

could not be used again in this study.  

 

 

Figure 6.27 Daily echo probe data in Catchment VI  
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All three (TDR pit, wireless TDR and echo probe) sets of data were merged by weighting 

each point within the catchment equally, to create a representative in-situ soil moisture 

estimate (Figure 6.28), which shows the merged dataset. This dataset weighted each sensor, 

in each sample point equally.  

  

 

Figure 6.28 Representative soil moisture measurements 

 

6.5 Acquisition and Processing of the AMSR2 Soil Moisture Product 

 

This section describes the methodology adopted to obtain the AMSR2 remote sensing soil 

moisture product. The AMSR2 sensor estimates several parameters, which are predominately 

linked to the energy and water cycles, namely, precipitation, water vapour, sea-surface 

temperature, soil moisture and snow depth. The AMSR2 soil moisture product was obtained 

from the JAXA website: http://sharaku.eorc.jaxa.jp/. The data is freely available; however, a 

relatively short registration was required, in order to gain access into the GCOM-W1 Data 

Providing Service.  

 

Level Two and Level Three soil moisture data sets are available from July 2012 to present 

day. The Level Two data is available on a 25 km spatial resolution grid, whilst the Level 

Three data is available on both 10 km and 25 km spatial resolution grids. The Level Three 

soil moisture product uses Level 1B brightness temperature and Level Two soil moisture data 

and averages both of them spatially and temporally, with respect to predefined lattice grid 

points on the earth’s surface.  
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The 10 km and 25 km Level Three AMSR2 products are presented in Figure 6.29 and 

illustrates the significance of spatial resolution. The 10 km spatial resolution is much finer 

and therefore has a lot more detail, compared to the coarser 25 km resolution. The need for 

finer spatial resolution data is to capture spatial heterogeinity and accurately represent 

processes occuring at particular scales. The 10 km product results in a pixel area of 100 km2, 

whilst the 25 km product results in a pixel area of 625 km2. 

 

 

Figure 6.29 Comparison of spatial resolution of AMSR2 10 km and 25 km Level 

Three soil moisture products 

 

The Level Three soil moisture product at a 10 km spatial resolution was selected to be used in 

this study. Once the Level Three 10 km soil moisture product is selected, the data type and 

observation period needs to be specified, before specifying the search area. Once all the 

specifications have been made, the data can be searched for and subsequently downloaded. 

The data format is then specified and there is an option to leave the data in its original format 

or convert it to HDF5, Geotiff of NetCDF. The conversion to Geotiff was chosen, as this data 

format is compatible with ArcGis 9.3. 

 

AMSR2 Level Three, 10km AMSR2 Level Three, 25km 
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The data can now be ordered. Once ordered, an order acceptance email, which contains an ftp 

and URL site link to directly download the data. The data was then opened in ArcGis 9.3. 

The data was defined on the WGS 84 geographic coordinate system and no projection or 

transformation was required. There were two files per day, as each day had an ascending and 

descending orbit. 

 

Due to the nature of satellite orbits, on some days, the catchment area was covered by:  

i. An ascending orbit;  

ii. A descending orbit;  

iii. An ascending and descending orbit;  

iv. Neither.  

 

The catchment shape file was overlaid onto the AMSR2 soil moisture raster image, as seen in 

Figure 6.30. The pixel value that was covered by the catchment was determined. The pixel 

values ranged from 0 to 600. The pixel values were multiplied by a scaling factor of 0.001, to 

obtain the soil moisture in g/cm3. The density of water is assumed to be 1.0 g/cm3 and the 

volume of 1.0 g of water is 1.0 cm3. Therefore, the VWC in percentage was obtained by 

multiplying the scaled pixel value by 100. 

  

 

Figure 6.30 The Catchment VI shapefile overlaid over the AMSR2 soil moisture 

product to obtain the volumetric water content 

Catchment VI 

Pixel Value 
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6.6 Acquisition and Processing of the SMOS Soil Moisture Product 

 

This section describes the methodology adopted to obtain the SMOS remote sensing soil 

moisture product. Level Two and Level Three SMOS soil moisture products are available. 

The Level Two soil moisture products are at a 30-50 km spatial resolution and can be 

obtained from the ESA website: http://eopi.esa.int/. The data is freely available from the Eoli-

sa catalogue. The Eoli-sa catalogue gives users access to European Space Agency (ESA) 

Earth Observation data products. 

  

The Level Three SMOS soil moisture products are available from the national French and 

Spanish processing entities, namely, the CATDS (Centre Aval de Traitement des Donnees 

SMOS) and SMOS CP34-BEC (SMOS Barcelona Expert Centre). The BEC-34 was used, as 

it was more user-friendly and the site was a lot easier to navigate. The BEC is an ESA expert 

support laboratory committed to the ongoing analysis and development of new algorithms to 

improve the baseline SMOS Level Two products.  

 

The SMOS Level Three soil moisture products are computed from Level Two soil moisture 

user data products, which consist of geophysical parameters, a theoretical estimate of 

accuracy, flags and product descriptors. First, the Level Two soil moisture user data products 

are filtered and combined into maps with the same spatial resolution. Next, the quality flags 

and product descriptors are used to discard unreliable soil moisture values. The final soil 

moisture product is a global daily soil moisture map on a 25 km spatial resolution grid. 

    

The Level Three SMOS BEC-34 data was obtained from http://cp34-bec.cmima.csic.es/. This 

site is the SMOS-BEC data distribution and visualization service. A short registration 

procedure is required before the data can be accessed from the site’s THREDDS service, 

which provides netCDF data files. The SMOS soil moisture products fall under the Land 

category. The BEC land near real-time (0.25 x 0.25 degree resolution) was selected, as the 

other two options had fine resolution soil moisture, which only covered the Iberian Peninsula. 

The option selected was a global dataset. There are numerous soil moisture products at 

different intervals. The one-day global soil moisture product was chosen. For each day, there 

are two files, the ascending and descending orbits. Figure 6.31 shows the navigation through 

the THREDDS service. 

 

http://eopi.esa.int/
http://cp34-bec.cmima.csic.es/
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Figure 6.31 Navigation through the THREDDS service 

 

The soil moisture product files can either be directly downloaded or viewed, using one of the 

data viewers on the site. The viewers include NetCDF-Java ToolsUI, Integrated Data Viewer 

and the Godiva2 online tool. The Godiva2 online visualization tool was used to obtain the 

soil moisture data (Figure 7.32).  
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Figure 6.32 Layout of the Godiva2 online visualization tool 

 

The Godiva2 visualization tool is very user-friendly and the data was easily obtained. The 

required data set was viewed by selecting the necessary data requirements (1). The data 

requirements were selected as follows; the BEC research products land, near-real time global 

maps, daily one-day maps, choose between ascending and descending (both are required, but 

are obtained separately) and lastly soil moisture (SM). 

  

Next, the date was specified (2). The data for a specific day is viewed by clicking on the date 

on the calendar. The transition from day-to-day is quick.  

 

The global map was used to locate the co-ordinates of the area required. The correct pixel 

was located, which corresponded to the co-ordinates of the catchment. The pixel information, 

which consisted of its longitude, latitude and soil moisture value, was displayed (3).  

  

A check was done to determine if the catchment was contained in one pixel. This was done 

by opening the image in Google Earth (4). 
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Once it was determined that the catchment was completely contained in one pixel (Figure 

6.33), the soil moisture data could be obtained by changing the date and obtaining the data by 

clicking on the corresponding pixel (Figure 6.34).  

 

 

Figure 6.33 The position of the catchment in relation to a single pixel of the SMOS 

soil moisture product 
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Figure 6.34 Godiva2 visualization tool showing the pixel value for the Catchment VI 

 

This method of obtaining daily soil moisture data was efficient, as the data did not have to be 

downloaded, stored, opened with the appropriate software, spatially defined and projected, 

before overlaying the catchment shapefile and determining the soil moisture estimate. This 

online viewer was more than adequate to obtain the daily soil moisture data for both 

ascending and descending data sets for a one year period. The images obtained were near-real 

time, as the present day data was available the following day. The pixel values were in 

volumetric water content, so no conversion was required. 

 

6.7 Analysis of AMSR2 and SMOS Remote Sensing Data 

 

The AMSR2 and SMOS products are daily soil moisture products; however, there were days 

in which the study area was not covered by an ascending or descending orbit (missing data). 

Of the 365 day study period the various days in terms of coverage are presented in Figures 

6.35 and 6.36.   

 

From Figure 6.35, it can be seen that AMSR2 data was available for 343 days of the 365 

days. There were 22 days which had no data, resulting in a daily annual coverage of 94%. 

The days with missing data seemed to follow a general pattern throughout the year, as there 

were similar amounts of missing data each month of the observation period.  



 

72 

 

Figure 6.35 AMSR2 data availability for the observation period 

 

From Figure 6.36, it can be seen that of the 365 of days observed SMOS data, 129 days are 

missing, which results in a daily annual coverage of 65%. Of the total 236 days with data, 

only 103 of them were covered by both ascending and descending orbits, whilst 66 days had 

an ascending value only and 67 days had a descending value only. 

 

 

Figure 6.36 SMOS data availability for the observation period 

 

The 160 days for which ascending and descending AMSR2 data was available was plotted 

against time, as indicated in Figure 6.37. This was done to compare the ascending and 

descending values of the same day. From figure 6.37, there is very close correlation between 

the ascending and descending values during the dry period. There is less correlation during 

the wet periods. Both the ascending and descending datasets follow the same trend.  
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Figure 6.37 Time series analysis of days which have both ascending and descending 

AMSR2 values 

 

The 103 days for which ascending and descending SMOS data was available was plotted as a 

time series (Figure 6.38). From figure 6.38, it is evident that both the ascending and 

descending data follow the same trend. There are differences in values between the two 

datasets on the same day. These differences are larger in the wetter periods. The differences 

in ascending and descending values are greater for the SMOS dataset compared to the 

AMSR2 dataset. 

 

 

Figure 6.38 Time series analysis of days which have both ascending and descending 

SMOS values. 
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The differences observed between the ascending and descending values for the same day and 

over the time period can be attributed to the temporal variation in soil moisture. The 

ascending values are obtained at 06:00, whereas the descending values are obtained at 18:00. 

Therefore, the change in soil moisture during this 12-hour interval could be due to rainfall 

and total evaporation.  

 

This is further emphasized in the dry period, when rainfall and total evaporation is low. The 

ascending and descending values correlate well, as the VWC does not change much in the 

interval. However, in summer, the rainfall and total evaporation rates are high resulting in 

changes in the VWC between the ascending and descending measurements. 

    

There are expected differences between ascending and descending overpass soil moisture 

retrievals, due to the difference in geophysical conditions at day time and night time, with 

night time conditions being more favourable for soil moisture retrieval (Kim et al., 2015). 

Therefore, should soil moisture studies only use descending values, which would result in 

more missing data days, but better favourable soil moisture retrieval values.  

 

An alternative is to use only the days which have both ascending and descending values, as 

this will average the two retrieval values, however, there will also be a large number of 

missing data days. For this research study, all observation days with ascending, descending 

and days with both ascending and descending values were used.  

 

6.8 PyTOPKAPI Soil Moisture Product (SAHG) 

 

This section details the acquisition of the PyTOPKAPI modeled soil moisture estimates. The 

PyTOPKAPI soil moisture product was obtained from the Satellite Applications and 

Hydrology Group (SAHG) website: http://sahg.ukzn.ac.za/.  

 

The PyTOPKAPI modelled soil moisture product will be referred to as the SAHG soil 

moisture product. The soil moisture products are freely and readily available. The data has a 

temporal resolution of three hours and is on a spatial resolution grid ≈ 12.5 km. The data 

ranges from the year 2008 to the present. 

 

http://sahg.ukzn.ac.za/
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The data was obtained by downloading the SSI (soil saturation index) product in the ascii file 

format, which can be opened and processed in ArcGis 9, as seen in Figure 6.39. The soil 

moisture data for each day was available on a three-hour time-step. Therefore, eight files had 

to be downloaded for each day.  

 

     
   

   
 

Figure 6.39 Navigation through the SAHG website to download SSI data 

 

The files were then opened in ArcGis 9.3 and the spatial referencing of the data was first 

checked. The data was defined in the correct spatial reference (WGS 84 geographic co-

ordinates) and no defining projections and transformations were required. The soil moisture 

products were on a three-hour time-step: (i) 00:00, (ii) 03:00, (iii) 06:00, (iv) 09:00, (v) 

12:00, (vi) 15:00, (vii) 18:00 and (viii) 21:00 (see Figure 6.40). These eight raster images per 

day had to be converted into a daily raster image. This was done by using the Mosaic to New 

Raster option under the Data Management Tools in ArcGIS 9.3.  
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Figure 6.40 One day of SSI data (eight images on a three hour interval) 

 

Once the daily image was created (Figure 6.41), the catchment shape file was overlaid onto it 

(Figure 6.42). The pixel value was then determined and recorded.       
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Figure 6.41 Daily SAHG soil moisture product 

 
Figure 6.42 Overlay of the Cathedral Peak Catchment VI onto the SAHG soil 

moisture product  
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The soil moisture data from the SAHG product is represented as a soil saturation index (SSI), 

which is expressed as a percentage. The SSI was then converted into a VWC, using the 

simplified equation.  

 

𝑆𝑆𝐼 =  
𝑉𝑊𝐶

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦
          (6.15) 

 

The SSI equation (Equation 6.15) can easily be rearranged to solve for VWC:  

   

𝑉𝑊𝐶 = 𝑆𝑆𝐼 × 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦         (6.16) 

 

The soil porosity can be determined by measurement or calculation. In order to calculate 

porosity, the following equation was used:  

 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 − 
𝑃𝑏

𝑃𝑠
           (6.17) 

 

where Pb is the bulk density and Ps is the particle density. The bulk density was determined 

to be 0.593 g/cm3 and a generic value of 2.65 g/cm3 was used for the particle density (Hillel, 

2008).  

 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 − 
0.593

2.65
          

 

The porosity was calculated to be 0.77. Therefore, from Equation 6.16, all the SSI values 

were multiplied by 0.77, to convert them to volumetric water content.  

 

The porosity was determined from the bulk density, which was valid for the top 0.15 m of the 

soil surface. The PyTOPKAPI soil moisture product is the SSI for the A and B horizon of the 

soil profile. Therefore, a porosity value that represents the A and B (one meter depth) 

horizon, needs to be determined. A study conducted by Everson et al. (1998), contains soil 

bulk density values for Catchment VI at depths of 0.20, 0.50, 0.75 and 1.00 m (Table 6.6). 

The bulk density values used in this study can be incorporated and used to obtain a 

representative porosity value that covers the A and B horizons. The porosity values should 

not have changed over the past 16 years, as the catchment is in a protected area.  
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Table 6.6 The bulk density of Catchment VI, as determined by Everson et al. (1998) 

Soil Depth (m) Dry Season Wet Season Mean  
0.20 0.660 0.786 0.868 0.886 0.800 
0.50 0.898 0.899 0.847 0.798 0.861 
0.75 0.803 0.757 0.662 0.784 0.752 
1.00 0.863 0.799 0.905 0.844 0.853 

 

These bulk density values were incorporated into the values that were obtained in this study 

and the mean bulk density of the soil profile (0 to 1.00 m) was determined (Table 6.7).  

 

Table 6.7 Mean bulk density according to depth 

Soil Depth (m) Mean Bulk density (g/cm3) 
0.05 0.525 
0.10 0.597 
0.15 0.656 
0.20 0.800 
0.50 0.861 
0.75 0.752 
1.00 0.853 
Average 0.720 

 

The average bulk density was 0.720 g/cm3. The average porosity was calculated, using the 

new bulk density value in Equation 6.12. 

 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 − 
0.720

2.65
         (6.12) 

 

The average porosity is 0.728. Therefore, the SSI pixel values obtained must be multiplied by 

0.728, in order to convert them into VWC (Equation 6.11). 
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6.9 Surface Energy Balance System (SEBS) 

 

The SEBS Model, developed by Su (2002), was run in the Integrated Land and Water 

Information System (ILWIS) 3.8.3 for the estimation of relative evaporation and evaporative 

fraction in Cathedral Peak Research Catchment VI for the period of March 2014 to March 

2015. The SEBS Model uses remote sensing and meteorological data sets to estimate heat 

fluxes.  

 

Landsat 8 images were used for the estimation of relative evaporation and evaporative 

fraction, using the SEBS Model. The Landsat 8 satellite, as seen in Figure 6.43, is the latest 

addition to the Landsat series and was launched on the 11th of February 2013 (Markham et 

al., 2015). Landsat satellites have continuously acquired information of the earth’s land 

surface since 1972, thus the continuation of data acquisition from the Landsat 8 satellite is 

essential (USGS, 2013). Landsat 8 orbits the earth at an altitude of 705 km, which results in 

14 full orbits being completed each day, with every point of the earth being covered once 

every 16 days. The satellite carries out north to south orbits and has an overpass time of 10:00 

(Markham et al., 2015). Landsat 8 carries two push-broom sensors, so that the reflective and 

thermal bands were split into two instruments (Markham et al., 2015). These two instruments 

are the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS).   

 

 

Figure 6.43 Landsat 8 satellite 
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Landsat 8 images were used in this study due to their spatial resolution. It has the ability to 

estimate relative evaporation and evaporative fraction at a spatial resolution of 30 m, 

however, it has a temporal resolution of 16 days. The Landsat 8 product consists of several 

bands (one to eleven), each band having its own spectral characteristics and wavelength range 

(Table 6.8).  

Table 6.8 Characteristics of the various landsat 8 bands (USGS, 2015).   

Spectral bands Wavelength (μm) Resolution (m) 
1- coastal/aerosol 0.43-0.45 30 
2- blue 0.45-0.51 30 
3- green 0.53-0.59 30 
4- red 0.64-0.67 30 
5- near IR 0.85-0.88 30 
6- SWIR 1 1.57-1.65 30 
7- SWIR-1 2.11-2.29 30 
8- panchromatic 0.50-0.68 15 
9- cirrus 1.36-1.38 30 
10- TIRS 1 10.60-11.19 100 
11- TIRS 2 11.50-12.51 100 

 

Landsat 8 satellite imagery was freely acquired from the Earth Explorer website: 

http://earthexplorer.usgs.gov. The area of interest and time period of the data required was 

specified. Next, the data set that the user requires can be selected from a list of all the 

available data sets. The data set selected was the L8 OLI/TIRS. The catchment study area fell 

within one Landsat 8 image. The Landsat 8 image footprint is very large, as seen in Figure 

6.44. Between March 2014 and March 2015, there were a total of 22 images.  

 

 

Figure 6.44 Landsat 8 image footprint 

http://earthexplorer.usgs.gov/
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Most of the images, which were acquired, were for clear sky conditions. Some images 

possessed variable cloud cover; however, the area of interest was cloud-free, therefore, the 

image could still be used. There were six images, which could not be used for the retrieval of 

the evaporative fraction and relative evaporation, as the image contained cloud cover, which 

blocked the area of interest. The different cloud-cover conditions are seen in Figure 6.45. 

 

    

    

Figure 6.45 Landsat images with different cloud-cover conditions 

 

Of the 22 images available for the study period, only 16 images could be used due to cloud-

cover. The 16 images that could be used were downloaded. The Level one Geotiff Data 

Product was the download option selected. Each Level One Geotiff product contains a 

Material Library (MTL) file, which contains all the necessary information (metadata) about 

the images and 12 images, which include images B1 to B11 and BQA, where B1 is band one 

and B11 is band eleven. 
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The ILWIS 3.8.3 software was downloaded from http://52north.org/downloads/ilwis/. The 

images (bands) were imported into ILWIS 3.8.3 as digital numbers (DN). The bands required 

were 2, 3, 4, 5, 6, 7, 10 and 11. These bands were rescaled to Top of Atmosphere (TOA) 

reflectance and/or radiance, using the radiometric rescaling coefficients provided in the 

metadata file. The procedure followed has been outlined by Allen et al. (2002) and the USGS 

(2015). The USGS (2015) provides the necessary equations for the conversion to TOA 

Radiance, conversion to TOA Reflectance and conversion to TOA brightness temperature. 

The equations to obtain the inputs into the SEBS Model, such as the albedo, NDVI, surface 

emissivity and land surface temperature maps are presented in Allen et al. (2002). Although 

the equations in Allen et al. (2002) were intended to be used in SEBAL, they can be used in 

other models, such as SEBS.    

 

Conversion to TOA Radiance 

 

Bands 10 and 11 (TIRS bands) were converted to TOA Radiance, using the radiance 

rescaling factors provided in the metadata file (USGS, 2015).  

   

Lλ = (𝑀𝐿 ∗ 𝑄𝑐𝑎𝑙) + 𝐴𝐿        (6.18) 

 

where, Lλ is the TOA spectral radiance (Watts/(m2*srad*µm)), ML is the band specific 

multiplicative rescaling factor (RADIANCE_MULT_BAND_X) from the metadata file 

(where X is the band number), Qcal is the quantized and calibrated standard product pixel 

value (DN) and AL is the band specific additive rescaling factor 

(RADIANCE_ADD_BAND_X) from the metadata (where X is the band number).  

 

Conversion to TOA Reflectance  

 

Bands 2, 3, 4, 5, 6 and 7 (OLI bands) were converted to TOA planetary reflectance, using 

reflectance rescaling coefficients provided in the metadata file (USGS, 2015). 

 

Pλ′ = (𝑀𝑃 ∗ 𝑄𝑐𝑎𝑙) + 𝐴𝑃        (6.19) 

 

http://52north.org/downloads/ilwis/ilwis-3-08-03/ilwis-3-08-03-package
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where Pλ′ is the TOA planetary reflectance (without solar angle correction), Mp is the band 

specific multiplicative reflectance factor (REFLECTANCE_MULT_BAND_X) from the 

metadata file (where X is the band number) and Ap is the band specific additive rescaling 

factor (REFLECTANCE_ADD_BAND_X) from the metadata (where X is the band number).  

 

The TOA reflectance was then corrected for the sun angle (USGS, 2015): 

 

Pλ =
Pλ′

sin (Θ𝑆𝐸)
          (6.20) 

 

where pλ is the TOA planetary reflectance and ΘSE is the local sun elevation 

(SUN_ELEVATION), which is obtained from the metadata file. 

 

The ESUN values were determined for bands 2, 3, 4, 5, 6 and 7, using the following 

equations (Allen et al., 2002): 

 

𝐸𝑆𝑈𝑁 = (𝜋 ∗ 𝑑2) ∗ (
𝑅𝐴𝐷_𝑀𝐴𝑋

𝑅𝐸𝐹_𝑀𝐴𝑋
)        (6.21) 

 

Where d is the earth-sun distance, RAD_MAX is the maximum radiance and REF_MAX is 

the maximum reflectance (all of which are found in the metadata file).  

 

The ESUN values (Table 6.9) are required to create an equation to determine albedo for the 

TOA (Allen et al., 2002).  

 

𝛼𝑇𝑂𝐴= ∑(𝜔λ ∗ Pλ)         (6.22) 

 

𝜔λ =
𝐸𝑆𝑈𝑁λ

∑𝐸𝑆𝑈𝑁λ
          (6.23) 

 

Table 6.9 Calculated ESUN values 

Band ωλ Band ωλ 
2 0.300 5 0.143 
3 0.277 6 0.036 
4 0.233 7 0.012 
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The ESUN band values change, due to changes in the earth-sun distance (d), maximum 

radiance and maximum reflectance of each data product. However, the 𝜔λ band value was 

determined to be the same for each image, as the ratio remains the same. 

 

Albedo is then calculated by correcting TOA albedo, using the following equation (Allen et 

al., 2002): 

 

∝=
𝛼𝑇𝑂𝐴−𝛼𝑃𝑎𝑡ℎ_𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝜏𝑠𝑤2         (6.24) 

 

where αPath_radiance is 0.03 and τsw is 0.774 (Allen et al., 2002).  

 

The generated albedo map is illustrated in Figure 6.46. Albedo ranges from 0.0 to 1.0 and is a 

measure of the reflectivity of the earth’s surface. As the reflectivity increases, the albedo 

value increases. Grasslands generally have an albedo of between 0.15 to 0.25. 

 

 

Figure 6.46 Albedo map generated in ILWIS 
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The normalized difference vegetation index (NDVI) was determined by Allen et al. (2002): 

 

𝑁𝐷𝑉𝐼 =
(𝑃5−𝑃4)

(𝑃5+𝑃4)
         (6.25) 

where P5 is the corrected reflectance band five and P4 is the corrected reflectance band four. 

The generated NDVI map is illustrated in Figure 6.47. The NDVI ranges from -1.0 to 1.0. 

The more vegetation present, the higher the NDVI value. Water bodies have a negative NDVI 

value. 

 

 

Figure 6.47 NDVI map generated in ILWIS 

 

The surface emissivity (εo) was determined using the following equation Allen et al. (2002): 

 

𝜀𝑜 = 1.009 + 0.047 ∗ ln (𝑁𝐷𝑉𝐼)       (6.26) 

       

The generated surface emissivity map is illustrated in Figure 6.48. The surface emissivity is 

0.999 for NDVI values less than 0. 
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Figure 6.48 Surface emissivity map generated in ILWIS  

The TIRS bands (bands 10 and 11) are converted from spectral radiance to at-satellite 

brightness temperature, using the following equation (USGS, 2015): 

 

𝑇𝑏𝑏 =  
𝐾2

𝑙𝑛[
𝐾1

𝐿λ
+1]

         (6.27) 

 

Where K1 and K2 are constants, which are found in the metadata file and Lλ is either band 

10 or band 11, according to high or low gain conditions. Band 11 was used in this study, as 

high gain is suited for grassland vegetation. 

 

The Land Surface Temperature (LST) can be determined by Allen et al. (2002):  

𝐿𝑆𝑇 =  
𝑇𝑏𝑏

𝜀𝑜0.25          (6.28) 

 

Figure 6.49 shows the generated land surface temperature map. The land surface temperature 

is expressed in degrees kelvin.  
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Figure 6.49 Land surface temperature map generated in ILWIS  

 

The SEBS Model requires a digital elevation model (DEM) (Figure 6.50), as input. The DEM 

of South Africa was obtained http://srtm.csi.cgiar.org. The DEM for each image had to be 

resampled before it could be used:  

 

 

Figure 6.50 DEM map used in ILWIS as an input in SEBS  

 

http://srtm.csi.cgiar.org/
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Once the input maps (albedo, NDVI, surface emissivity, land surface temperature and DEM) 

had been created, the SEBS Model was run in ILWIS. The meteorological data required to 

run the model was obtained from the eddy covariance weather data, which is located within 

Catchment VI. On the days where the eddy covariance weather data was not available, data 

from the nearby Mikes Pass weather station was used. The data required from the weather 

station were the instantaneous downward solar radiations, wind speed, air temperature, 

pressure, mean daily air temperature and sunshine hours. The downward solar radiation, wind 

speed, air temperature and pressure data were at the time of the satellite overpass (10:00 am). 

   

 

Figure 6.51 The SEBS model in ILWIS 

 

The SEBS Model was run (Figure 6.51) and many outputs were generated. These outputs 

included daily evaporation, relative evaporation, evaporative fraction, net radiation, soil heat 

flux, sensible heat flux dry, sensible heat flux wet, sensible heat flux index and leaf area 

index.  
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For the purpose of this research, the evaporative fraction (Figure 6.52) and relative 

evaporation (Figure 6.53) outputs were required. 

 

 

Figure 6.52 Evaporative fraction map generated as an output of the SEBS model in 

ILWIS 

 

 

Figure 6.53 Relative evaporation map generated as an output of the SEBS model in 

ILWIS 
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The relative evaporation output map (Figure 6.53) was exported as in ASCII format. The 

output ASCII file was opened in ArcGIS 9.3 (Figure 6.54). The spatial reference of the 

relative evaporation map was defined as WGS 1984 UTM Zone 35 N. The catchment 

shapefile was projected to WGS 1984 UTM Zone 35 N and overlaid onto the relative 

evaporation map (Figure 6.55).  

 

 

Figure 6.54 Catchment VI shapefile overlaid onto relative evaporation map  

  

 

Figure 6.55 The relative evaporation map of Catchment VI 

  

Catchment VI 

Catchment VI 
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The spatial analyst tool was then used in ArcGIS 9.3 data management tools, to calculate the 

zonal statistics of the area enclosed by the catchment shapefile. Table 6.10 shows the zonal 

statistics, it can be seen that the catchment encloses 686 pixels. The mean value is taken from 

the zonal statistics as the relative evaporation for that image. The same procedure was 

repeated to determine the evaporative fraction values. 

 

 

Table 6.10  Zonal statistics of relative evaporation enclosed by catchment VI 

 
 

Once the relative evaporation and evaporative fraction values had been determined, soil 

moisture was calculated, using two equations, one by Su et al. (2003) (Equation 4.13) and the 

other by Scott et al. (2003) (Equation 4.14). 

 

The SEBS process is depicted in the flow diagram (Figure 6.56). It illustrates the various 

procedures required to obtain relative evaporation and the evaporative fraction, using the 

SEBS model.            



 

93 

 

Figure 6.56 Processes used to obtain relative evaporation from Landsat 8 data 
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7. RESULTS AND DISCUSSION 
 

This chapter presents the results and discussion of the various aspects of the research project. 

The section will detail the following aspects: 

 

i. The validation of the CRP with a representative in-situ soil moisture data set; 

ii. The validation of remote sensing soil moisture products (AMSR2 and SMOS) with 

CRP soil moisture estimates; and   

iii. The validation of modelled soil moisture products (SAHG and SEBS) with CRP soil 

moisture estimates.  

 

The term validation is used in the sense of an assessment, rather than a strict justification to 

observations. The validation will therefore focus on the comparison of spatial pattern, 

temporal development and regularity (consistency of estimates produced) amongst the 

different data sources. The types of analyses implemented in this research study include: 

 

i. Time series analysis;  

ii. Correlation coefficient (R) and coefficient of determination (R2); 

a. The slope of the graph represents the change in y-units per change in x-units 

(the change of variable two to the change in variable one). The closer the slope 

value is to 1, the better the datasets correlate to one another;   

b. R2 is the coefficient of determination and denotes the strength of the linear 

association between variable x and variable y. R2 ranges from zero to one (0≤ 

R2 ≤ 1). The strength of the linear association increase as R2 becomes closer to 

one;     

iii. Residual analysis; and 

iv. Paired t-test.    

 

The statistical analyses selected for this study are amongst the most common analyses used in 

current satellite-based soil moisture studies. These analyses are considered appropriate to 

validate the various soil moisture products used in this study, in order to draw reliable 

conclusions. The above statistical analyses, will not all be used on each validation, but will be 

selected for use appropriately.   
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Soil moisture varies both spatially and temporally and fluxes in soil moisture content occur 

over short time periods. The key input to soil moisture content is rainfall. Therefore, rainfall 

data is necessary to describe and supplement changes in soil moisture. Rainfall data from a 

rain gauge situated within Catchment VI was obtained for the one year period from March 

2014 to March 2015 on an event basis. This data was then converted to a daily rainfall 

dataset, as shown in Figure 7.1. The rainfall distribution shows that the majority of the 

rainfall occurs in the summer months. During winter there are a few small rainfall events, 

whilst in summer there are several rainfall events, which vary in magnitude.  

    

 
 

Figure 7.1 Daily rainfall measured at Catchment VI 

 

7.1 Validating the CRP 

 

One of the key objectives of this research project is to test the suitability of the CRP for 

providing spatial estimates of soil moisture. In order to achieve this, the CRP is validated 

against a representative in-situ soil moisture data set.  

 

A time series analysis was plotted to visually interpret and compare the CRP dataset and the 

representative in-situ data set (Figure 7.2). Although the study period of the research project 

was from the 1st of March 2014 to the 28th of February 2015 (one year), the time period in 

which the representative data set was available (12th July 2014 to 28th February 2015) was 
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used. This time period is considered adequate for the validation procedure, as both the wet 

(summer) and dry (winter) periods are covered. 

 

As shown in Figure 7.2, the CRP estimates followed the same seasonal trend as the in-situ 

soil moisture data set. The CRP estimates correlated to the in-situ soil moisture data set better 

in the wetter periods, when the soil moisture values were higher (above 30%), compared to 

the drier periods. The CRP soil moisture estimates were higher than the in-situ estimates for 

the dry period with low VWC values. This could be due to the differences in the 

measurement depths between the CRP and the representative in-situ instruments. Overall, it 

can be seen that the CRP dataset followed the general trend of the in-situ soil moisture 

variations. The soil moisture fluctuations were dependent on the rainfall input and total 

evaporation rate, as there were smaller fluctuations in winter, due to less rainfall and a lower 

total evaporation rate. In summer, the fluctuations in soil moisture were greater, due to more 

rainfall and a higher rate of total evaporation. There were differences between the datasets, as 

the CRP dataset was generally slightly higher than the in-situ dataset. This difference was 

more noticable when the soil moisture content was low. Overall, the CRP data seemed to 

correlate well with the in-situ soil moisture dataset. 

 

 

Figure 7.2 Daily in-situ and CRP soil moisture estimates for Catchment VI 

 

A graph of correlation coefficients was then plotted with the representative in-situ data set on  

the x-axis and the CRP estimates on the y-axis (Figure 7.3). From Figure 7.3, it can be seen 
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that the majority of the points are above the 1:1 line (red), however they are in close 

proximity to the 1:1 line. There seems to be no extreme outliers. The positive y-intercept of 

12.024 indicates an over-estimation by the CRP of the lower values (when the soil is drier). 

The slope is 0.709, which represents the relationship between the variables, with respect to 

their increases and decreases. This indicates that there is a good correlation between both data 

sets, as the value is close to 1. The R2 is 0.845. It is a measure of the strength of the linear 

association between the datasets. 

 

 

Figure 7.3 Scatterplot of In-situ soil moisture estimates against CRP estimates  

 

A graph of the residuals was then plotted (Figure 7.4). The ∆ VWC (%) was the difference 

between the in-situ (independent) and CRP (dependent) datasets. This graph is plotted to 

illustrate how the difference in variables change over time. From Figure 7.4, it can be seen 

that the majority of the residuals are negative, which indicates that the CRP soil moisture 

values are higher than those of the subsequent representative in-situ values. When the soil 

moisture content is high in the wet period, the residuals are lower in absolute value, which 

indicates less of a difference between the data sets. The residuals are negative in the dry 

periods and they also have the highest absolute value. In the wet periods, the residuals are 

lower and are mostly negative; however, there are some positive values.  
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Figure 7.4 Residual graph of In-situ against CRP soil moisture estimates 

 

A paired T-test was then conducted on the two data sets (Table 7.1). This analysis indicates 

whether the datasets were significantly different to each other. From Table 7.1, it can be seen 

that the mean of the CRP is greater than that of the in-situ dataset, which results in the t-stat 

value being negative. The variance, which is the average of the squared differences from the 

mean, is the standard deviation squared. There are 436 degrees of freedom (df). The absolute 

value of the t-stat (4.827) is greater than the critical two-tail value (1.965) and the P value 

(1.919x10-6) is less than the alpha value (0.05). Therefore, there is a significant difference 

between the datasets. 

 

Table 7.1 T-test of In-situ against CRP estimates 

  In-situ CRP 
Mean 29.557 33.005 
Variance 74.464 44.433 
Observations 233 233 
Hypothesized Mean Difference 0   
df 436   
t Stat -4.827   
P(T<=t) two-tail 1.919x10-6   
t Critical two-tail 1.965   
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The inconsistencies seen in the data comparison could be due to the following. The 

calibration and validation of the CRP is not a straight-forward task. The calibration of the 

CRP could contain bias errors, due to the sampling points selected. If different sampling 

points were chosen, the soil moisture estimates could be different.  

 

The in-situ dataset that was used to validate the CRP was not the actual average of the 

catchment, but the average of the sensors in the catchment. If the sensors were placed in 

different locations in the catchment, the in-situ dataset could be different. The area covered 

by the in-situ sensors was far smaller than that covered by the CRP. The in-situ soil moisture 

sensors were a maximum of 200 m away from the CRP, however, the CRP has a 

measurement footprint that exceeds 200 m in radius. In addition, the representative data set 

was biased towards the TDR pit as it was the only continous dataset, which resulted in one 

single point weighing more than any other point.  

 

The CRP was not measuring soil moisture at a constant depth. The CRP measurement depth 

was dependent on the soil moisture content. Thus, when the soil was dry, the CRP probe was 

measuring at a deeper depth than when the soil was wet. The representative in-situ data set 

was meassuring constantly at an average depth of about 12 cm, whilst the CRP was 

measuring at around 14 cm when the soil is dry and 11 cm when the soil was wet. Therefore, 

the dry periods did not correlate as well as the wet periods, as the measurement depths were 

different. Overall, it can be seen that the CRP was suitable to provide spatial estimates of soil 

moisture. The CRP probe data set will then be used to validate the satellite-based estimates of 

soil moisture.      

 

7.2 AMSR2 Soil Moisture Product Validation  

 

The AMSR2 Level Three soil moisture product is on a 10 km spatial resolution grid. 

Although this grid is relatively small in comparison to other remote sensing soil moisture 

products, it is still very large in comparison to the catchment area. The catchment area is 0.68 

km2, whilst the pixel area is 100 km2. Therefore the pixel is 147 times larger than the study 

area. However, validating remote sensing soil moisture products, such as the AMSR2 

product, with CRP estimates is an improvement from validating remote sensing soil moisture 

products with in-situ point measurements. For this analysis, the one-year study period of the 

1st of March 2014 to the 28th of February 2015 was used. A time series analysis graph was 
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plotted to illustrate the characteristics of the AMSR2, CRP and rainfall data over time (Figure 

7.5).  

 

From Figure 7.5, it can be seen that the AMSR2 soil moisture product underestimated soil 

moisture throughout the study period, when compared to the CRP. The AMSR2 soil moisture 

product followed the seasonal trend of the CRP estimates.  The discontinuation in the 

AMSR2 line was due to missing data. The AMSR2 dataset fluctuated more in the wet 

periods, whilst it fluctuated less in the dry periods. Although the AMSR2 data set 

underestimated soil moisture, it followed a similar trend in daily soil moisture fluctuation and 

seemed to correlate well with the CRP data set.   

 

 

Figure 7.5 Time series analysis of CRP and AMSR2 soil moisture estimates 

 

A day in summer and winter that had both an ascending and descending value, are shown in 

Figure 7.6. In summer, the spatial and temporal variation of the pixel values varied more than 

in winter. This was seen by the changes in the pixel values between the ascending and 

descending values. The differences between summer ascending and descending pixel values 

were greater than the differences between winter ascending and descending values. This 

showed the heterogenous nature of soil moisture, as well as the difference in soil moisture 

dynamics due to seasonality. 
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Figure 7.6 Comparison between summer and winter images of AMSR2 soil moisture 

estimates  
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A scattergraph of CRP (x-axis ) against AMSR2 (y-axis) was then plotted (Figure 7.7). From 

Figure 7.7, all the data points are below the 1:1 line (red), which shows that the AMSR2 

dataset is always under-estimating soil moisture in comparison to the CRP. The slope of the 

graph is 0.649, which is good. There is a positive correlation and the R2 is 0.505, which 

indicates a good fit. There are some outliers above and below the line of best fit. 

 

 

Figure 7.7 Scatterplot of CRP against AMSR2 soil moisture estimates 

 

A residual graph of the CRP against AMSR2 soil moisture was then plotted against time 

(Figure 7.8). The ∆ VWC (%) was the difference between the CRP and AMSR2 datasets. 

From the residual graph (Figure 7.8), it can be seen that the AMSR2 dataset was under-

estimating soil moisture throughout the study period. In the dry period, the residuals were 

fairly constant, whilst in the wet periods, the residuals fluctuated more. The mean residual 

was 22.81. The residuals were constantly lower in the dry period, compared to the wet period, 

which indicates that there was less underestimation of the AMSR2 data in the dry period.  
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Figure 7.8 Residual graph of CRP against AMSR2 soil moisture estimates 

 

A paired t-test was then conducted (Table 7.2). In order to properly perform a t-test, paired 

values were required. Therefore, the CRP values corresponding to the AMSR2 days, which 

had no data, were removed. From Table 7.2, it can be seen that the means are very different, 

as the mean of the CRP is 33.326 and AMSR2 is 10.511. The variance values are similar, as 

the variance of the CRP is 50.010 and the AMSR2 is 41.737. There are 669 degrees of 

freedom. The t-stat value (43.791) exceeds the t critical value (1.964) and the P value 

(1.3x10-198) is less than alpha (0.05). Therefore, there is a significant difference between the 

datasets.   

 

Table 7.2 T-test of CRP against AMSR2 estimates 

  CRP AMSR2 
Mean 33.326 10.511 
Variance 50.010 41.737 
Observations 338 338 
Hypothesized Mean Difference 0   
df 669   
t Stat 43.791   
P(T<=t) two-tail 1.3x10-198   
t Critical two-tail 1.964   

 

When the AMSR2 product data was processed and the pixel values obtained, it was found 

that the daily data values corresponded to four different situations. There were days when 

only a descending pixel value was available (10th of December 2014) and there were days 

when only an ascending pixel value was available (11th of December 2014) (Figure 7.9). 
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There were days when both an ascending and descending pixel value was available (14th of 

December 2014) and there were days when no pixel data was available for the catchment area 

(15th of December 2014) (Figure 7.10). 

 

Figure 7.9 A day with a descending and a day with an ascending value for the AMSR2 

soil moisture product 
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Figure 7.10 A day with both an ascending and descending value, and a day with no 

value for the AMSR2 soil moisture product 

 

 

 



 

106 

7.3 SMOS Soil Moisture Product Validation  

 

The SMOS Level Three soil moisture product is on a 25 km spatial grid. Although this grid is 

smaller than that of the Level Two product (40 km), it is still very large in comparison to the 

catchment area. The catchment area is 0.68km2, whereas the pixel area is 625km2. Therefore, 

the pixel is 920 times larger than the study area.  

 

A graph of the time series analysis of the daily CRP and SMOS datasets were plotted (Figure 

7.11). The time period used, was a one year period from the 1st of March 2014 to the 28th of 

February 2015. The SMOS soil moisture product is a daily product; however, the satellite 

coverage does not scan the entire earth’s surface in one-day. The data set has a lot of gaps, as 

only 236 images during the study period have data for the study area.  Due to the numerous 

gaps in the SMOS dataset, the data was plotted as points to improve the representation of the 

data. From Figure 7.11, it can be seen that the SMOS soil moisture estimates follow the same 

general trend of the CRP. The SMOS dataset underestimates soil moisture the majority of the 

time, when compared to the CRP. There are times in the wet periods, when the SMOS 

product over-estimates soil moisture. In the wet periods, the fluctuation in soil moisture 

estimates of SMOS is great. This fluctuation is less in the dry periods, due to greater fluxes in 

soil moisture during summer when compared to winter.   

 

 

Figure 7.11 Time series analysis of CRP and SMOS soil moisture estimates for 

Catchment VI  
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A day in summer and winter with both ascending and descending SMOS data, are shown in 

Figures 7.12, 7.13, 7.14 and 7.15. The summer day image showed that the soil moisture was 

relatively higher on the east coast of South Africa and that soil moisture was high in the 

mountainous areas (Figures 7.12 and 7.13).  

 

 

Figure 7.12 Ascending SMOS image in summer (17 December 2014) 

 

 

Figure 7.13 Descending SMOS image in summer (17 December 2014) 

 

The day in winter shows that soil moisture is generally low in South Africa (Figures 7.14 and 

7.15). The areas with the higher soil moisture values are also the areas that receive the most 

rainfall throughout the year. 
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Figure 7.14 Ascending SMOS image in winter (15 August 2014) 

 

 

Figure 7.15 Descending SMOS image in winter (15 August 2014) 

 

A graph of CRP (x-axis) was plotted against SMOS (y-axis) (Figure 7.16). From Figure 7.16, 

it can be seen that the majority of the points lie below the 1:1 line (red). This indicates that 

the SMOS data set generally under-estimates soil moisture. There are some points on the 1:1 

line and several points above the 1:1 line. The R2 value is 0.485, which indicates a good 

correlation. The slope of the graph is 1.2797.  
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Figure 7.16 Scatterplot of CRP against SMOS soil moisture estimates 

 

A graph of the residuals against time was plotted (Figure 7.17). The ∆ VWC (%) is the 

difference between the CRP and SMOS datasets. The spaces between the columns are where 

there is missing SMOS data. From the Figure 7.17, it is seen that the residuals range from -23 

to +30. The residuals are positive, except for a few instances in the wet periods, when the 

SMOS estimates are higher than the CRP measurements. The residuals fluctuate more than 

the AMSR2 soil moisture residuals.   

 

 

Figure 7.17 Residual graph of CRP against SMOS soil moisture estimates 
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A paired t-test was conducted (see Table 7.3). The t-test requires pairs of x and y values, thus 

the CRP data, which had no subsequent SMOS data, had to be removed. From table 7.3, it 

can be seen that the mean of the CRP dataset (33.396) is higher than that of the SMOS 

dataset (22.231). The variance of the SMOS dataset is very large (166.267), compared to that 

of the CRP dataset (49.276). There are 363 degrees of freedom. The t stat value is 11.683, 

which is larger than the critical two-tail value of 1.967 and the p value is 5.49x10-27, which is 

smaller than the alpha value (0.05). Therefore, there is a significant difference between the 

datasets.  

 

Table 7.3 T-test of CRP against SMOS estimates 

  CRP SMOS 
Mean 33.396 22.231 
Variance 49.276 166.267 
Observations 236 236 
Hypothesized Mean Difference 0   
df 363   
t Stat 11.683   
P(T<=t) two-tail 5.49x10-27   
t Critical two-tail 1.967   

 

Like the AMSR2 dataset, there were four different situations of days processed. These 

included ascending only, descending only, both (ascending and descending) and neither.  

The SMOS data set had cases where there was an ascending and/or descending band covering 

the area; however, there were pixels missing within the band itself, which resulted in the area 

having no pixel value (Figure 7.18). 

 

 

Figure 7.18 SMOS missing data within band 
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7.4 Comparing Remote Sensing Soil Moisture Products 

 

In order to compare the two remote sensing soil moisture products, both were plotted on a 

time series graph along with CRP estimates (Figure 7.19). The AMSR2 and CRP were 

plotted on a line graph, whilst the SMOS data was plotted on scatter points due to the large 

number of missing data. It is difficult to compare the remote sensing products on a daily 

time-step due to the daily fluctuations.  

 

 

Figure 7.19 AMSR2, SMOS and CRP soil moisture estimates against time 

 

If the daily remote sensing and CRP datasets (Figure 7.19) are converted to a three-day 

average (Figure 7.20) this allows the smallest averaging interval, without any gaps in the 

dataset. The dataset becomes smoother, as the fluctuations are averaged. This is useful when 

comparing the two remote sensing datasets. If the data were averaged over a longer time 

interval, the graphs would become smoother. 

 

From Figure 7.20, it can be seen that the remote sensing soil moisture products followed the 

general trend of the CRP soil moisture estimates. However, there are still discrepancies in the 

validation of the remote sensing products with CRP data, which are due to the horizontal and 

vertical scaling. 
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Figure 7.20 Three-day averaged soil moisture estimates 

 

The vertical scaling errors occur, due to the CRP measuring soil moisture at a different depth, 

as compared to the remote sensing sensors. The CRP can theoretically measure soil moisture 

between depths of 0.12 to 0.72 m, depending on the soil moisture status. The remote sensing 

products are a measure of soil moisture at shallow depths (0.00 – 0.05 m).  

 

The horizontal scaling issues occur, as the remote sensing products are at a very coarse 

resolution, which greatly exceed the measurement area of the CRP. This is a common 

limitation in the validation of remote sensing soil moisture products. However, using the CRP 

instead of traditional in-situ techniques, results in an area-averaged estimate instead of a 

series of point measurements, which is a great improvement. It is impractical and near 

impossible to validate current remote sensing soil moisture products with a traditional in-situ 

dataset at the same spatial resolution, due to the heterogeneity of soil moisture.  

 

This limitation cannot currently be overcome in an applied manner, therefore remote sensing 

validation has been, and is currently, carried out by validating a “big” area (coarse pixel 

value), with a “smaller” area. This will make the coarse pixel area that is not covered by the 

validation dataset footprint to be neglected. Thus, true validation cannot be achieved unless 

both the remote sensing and validation data are on the same-scale. The term same-scale refers 

to an area-averaged soil moisture value and not an in-situ soil moisture network, which 

obtains an area-average value by averaging the various in-situ sensors in the network.             
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The SMOS soil moisture dataset seems to have provided better estimates of soil moisture 

than the AMSR2 dataset, when compared to the CRP. The SMOS Level Three product has a 

coarser resolution (25 km) than the AMSR2 Level Three product (10 km). However, it 

provided better estimates of soil moisture. This could be due to the SMOS satellite instrument 

using the more recent technology of the L-band wavelength to observe and measure. The 

SMOS satellite was launched in 2009 and although the AMSR2 sensor on-board the GCOM-

W1 satellite was launched in 2012, the AMSR2 sensor implements similar instruments and 

methods to the previous AMSR on-board the AQUA satellite, for the purpose of data 

continuation. Soil moisture retrievals using lower microwave frequencies are expected to be 

more accurate (Kim et al., 2015). Thus, although the SMOS satellite was launched before the 

GCOM-W1, the SMOS satellite operates at a 1.4 GHz, whilst the AMSR2 sensor operates on 

10.7 GHz. The underestimation of soil moisture estimates by the AMSR2 soil moisture 

product was also observed in a study by Kim et al. (2015). 

 

The AMSR2 dataset is a more reliable dataset in terms of providing a more complete dataset, 

as there are fewer missing days. The daily fluctuations in soil moisture matched the CRP 

more than the SMOS, and this is seen by the large variance in the SMOS dataset. In the dry 

periods, the AMSR2 dataset did not fluctuate nearly as much as the SMOS dataset.  

 

7.5 SAHG Soil Moisture Product Validation   

 

The SAHG soil moisture product is on a 12.5 x 12.5 km (roughly) spatial grid, which results 

in a pixel area of 156.25 km2.  In order to obtain a year-long dataset, 2920 images were 

downloaded and used to create 365 daily images. The SAHG dataset is continuous and 

possesses no gaps in the dataset. The SAHG soil moisture was obtained in SSI and converted 

to VWC by using a representative porosity value, which was calculated from the bulk density 

values. A time series analysis graph of the SAHG and CRP soil moisture estimates were 

plotted (Figure 7.21).  

 

From Figure 7.21, it can be seen that the SAHG product followed the same seasonal trend as 

the CRP. There seems to be a close correlation between the datasets, in terms of general 

increases and decreases in soil moisture content. The CRP has more variation in soil moisture 

from day-to-day. The SAHG product has gradual changes in soil moisture and does not 

exhibit the same degree of temporal fluctuation, as seen by the CRP. This difference between 
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the datasets is easily observed. The SAHG product does fluctuate, but the occurrence of these 

fluctuations is less than that presented by the CRP dataset. The first nine months (march 2014 

to November 2014) of the twelve month time series analysis shows a close correlation 

between the CRP and SAHG soil moisture estimates. The last three months (December 2014 

to February 2015) shows less of a correlation, as the fluctuations of the CRP soil moisture 

estimates do not correspond to the fluctuations of the SAHG soil moisture estimates. This 

could be due to an error in the PyTOPKAPI model, such as an error in the input data.  

 

 

Figure 7.21 Time series analysis of SAHG and CRP soil moisture estimation 

 

A day in summer (7 March 2014) and a day in winter (18 August 2014) are illustrated in 

Figures 7.22 and 7.23 respectively. The day in summer showed that the eastern side of South 

Africa generally had a higher soil moisture content than the western side, due to eastern side 

experiencing most of its rainfall in summer and having a higher mean annual precipitation. 

The soil moisture below is expressed as a SSI (%). The study area is adjacent to Lesotho, 

which is not covered by this product and therefore has no soil moisture values. In the winter 

period, the western side of South Africa increased in soil moisture, whilst the eastern side 

decreased, due to the seasonal rainfall patterns. There are still areas in the eastern side of 

South Africa that have a high soil moisture content.  
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Figure 7.22 SAHG daily soil moisture (summer) 
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Figure 7.23 SAHG daily soil moisture (winter) 
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A scatter graph of the CRP (x-axis) was plotted against the SAHG product (y-axis) (Figure 

7.24). From Figure 7.24, it can be seen that there is a positive and good correlation between 

the datasets. The points are clustered around the 1:1 line (red) and there are no extreme 

outliers. There are points below and above the 1:1 line, with the majority of the points being 

just below the 1:1 line. The R2 is 0.624, which indicates a close linear relationship between 

the datasets. The slope is 1.049, which is close to 1. The points, which are noticeably above 

and below the 1:1 line can be attributed to the last three months of the datasets, where there 

was less of a correlation between the CRP and SAHG soil moisture estimates. Overall, the 

close correlation corresponds to the visual inspection of the data. 

 

 

Figure 7.24 Scatter graph of CRP against SAHG soil moisture estimates  

 

A graph of the residuals was then plotted against time (Figure 7.25). The ∆ VWC (%) is the 

difference between the CRP and SAHG datasets. From Figure 7.25, it is evident that the 

majority of the residuals are positive, which indicates that the SAHG soil moisture product 

underestimates soil moisture for the majority of the study period. In the dry periods, the 

residuals are positive, whilst in the wet periods, there are both positive and negative residuals. 

The residuals are generally lower in absolute value in the dry periods, compared to the wet 

periods. Once more, the decline in the correlation between the datasets is noticeable between 

the first nine months of the study period and the last three months of the study period, which 

has the highest residuals with regards to the absolute value of the residuals.  

y = 1.0487x - 4.2147
R² = 0.6242

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

SA
H

G
 V

W
C

 (
%

)

CRP VWC (%)



 

118 

 

Figure 7.25 A residual graph of CRP against SAHG was plotted against time 

 

A T-test was conducted. The CRP was variable one and the SAHG product was variable two 

(see Table 7.4). From Table 7.4, it can be seen that the means of both variables are similar, 

with the CRP mean (33.333) being slightly higher than the SAHG mean (30.742). The 

variance of the CRP is 50.292, which is lower than that of the SAHG product (88.607). There 

are 677 degrees of freedom. The t stat value is 4.201, which is larger than the t critical two-

tail value of 1.964 and the p value is 3x10-05, which is larger than the alpha value (0.05). 

Therefore, according to the T-test, there is a significant difference between the data sets.  

 

Table 7.4 T-test of CRP against SAHG estimates  

  CRP SAHG 
Mean 33.333 30.742 
Variance 50.292 88.607 
Observations 365 365 
Hypothesized Mean Difference 0   
df 677   
t Stat 4.201   
P(T<=t) two-tail 3x10-05   
t Critical two-tail 1.964   

 

The SAHG soil moisture product provided good estimates of soil moisture, which correlated 

well with the CRP estimates. The SAHG soil moisture product measures the SSI (%) in the A 

and B soil horizons. In this case, the SSI was obtained at an average depth of one meter. 

Therefore, there is a vertical scaling issue, due to the CRP measuring at a depth of around 
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0.12 m, which falls in the range of the SAHG estimate. However, the SAHG product 

measures above (0.0 to 0.12 m) and below (0.12 to 1.00 m) and provides an average estimate 

of soil moisture. There is a horizontal scaling issue, as the SAHG product is on a 12.5 x 12.5 

km spatial grid, which greatly exceeds the measurement footprint of the CRP. For this 

research project, all the soil moisture products were converted to volumetric water content 

(%), if they were not in volumetric water content (%) already. The SAHG product was in a 

SSI and the conversion required an accurate representative porosity value of the study area. 

The value determined may not have been the most representative of the study area, but rather 

an average of the points selected. This value would result in a constant error throughout the 

SAHG volumetric water content dataset. 

  

7.6 SEBS Soil Moisture Validation  

In total, 16 relative evaporation and 16 evaporative fraction maps were generated, using the 

SEBS Model in ILWIS 3.8.3. These maps were exported, opened and analyzed in ArcGIS 

9.3, where the relative evaporation and evaporative fraction of the area within Catchment VI 

was determined. The relative evaporation and evaporative fraction values, which were 

obtained from the SEBS Model are shown in Table 7.5.  

 

From Table 7.5, it can be seen that the relative evaporation and evaporative fraction results 

follow a seasonal trend, as the values are high in summer (wet period) and very low in winter 

(dry period), with the intermediate values between the wet and dry periods. Of the 16 

estimated relative evaporation and evaporative fraction values, six have high relative 

evaporation values (above 0.7), two have intermediate relative evaporation values and eight 

have very low relative evaporation values (close to 0).  

 

Catchment VI was burnt on the 5th of September 2014, which could be the reason for the zero 

values of the relative evaporation and evaporative fraction being estimated by the SEBS 

Model on the 6th of September 2014, 22nd of September 2014 and the 8th of October 2014. 

The fire would have resulted in an increase in albedo and a decrease in NDVI, which could 

have resulted in these low values. NDVI and albedo are amongst the parameters that the 

SEBS Model is most sensitive to (Gibson et al., 2013). A range (high, intermediate and low) 

of relative evaporation and evaporative fraction are illustrated in Figure 7.26 and Figure 2.27 

respectively.   
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Table 7.5 Relative evaporation and evaporative fraction calculated using the SEBS 

model for Catchment VI  

Date Relative Evaporation Evaporative Fraction 
14-Mar-14 0.73396 0.91684 
30-Mar-14 0.94717 0.76871 
15-Apr-14 0.87145 0.78335 
1-May-14 0.29912 0.50633 
17-May-14 Cloud  Cloud 
2-Jun-14 0.00000 0.00000 
18-Jun-14 0.00143 0.00367 
4-Jul-14 0.02200 0.04683 
20-Jul-14 0.00902 0.01190 
5-Aug-14 0.00067 0.00016 
21-Aug-14 Cloud  Cloud 
6-Sep-14 0.00000 0.00000 
22-Sep-14 0.00000 0.00000 
8-Oct-14 0.00000 0.00000 
24-Oct-14 0.11804 0.17727 
9-Nov-14 0.93836 0.83581 
25-Nov-14 Cloud  Cloud 
11-Dec-14 0.85773 0.87569 
27-Dec-14 Cloud Cloud 
12-Jan-15 0.930481 0.94974 
28-Jan-15 Cloud Cloud 
13-Feb-15 Cloud Cloud  

 

From Figure 7.26, it can be seen that the estimated relative evaporation varies over time. The 

30th of March 2014 represents a day when the relative evaporation was very high (0.9471), 

the 01st of May represents a day when the relative evaporation was intermediate 0.2991 and 

the 05th of August represents a day when the relative evaporation was very low 0.0067.  
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Figure 7.26 A range of different relative evaporation images for Catchment VI 

    

From Figure 7.27, it can be seen that the estimated evaporative fraction varies over time. The 

30th of March 2014 represents a day when the evaporative fraction was high (0.7687), the 01st 

of May represents a day when the evaporative fraction was intermediate 0.5063 and the 05th 

of August represents a day when the evaporative fraction was very low 0.0002.  

 

Catchment VI 
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Figure 7.27 A range of different evaporative fraction images    

 

Total evaporation consists of water that is evaporated from the land surface and water that is 

transpired from the vegetation. In order to estimate the actual soil moisture, the saturated soil 

moisture content is required, which can be inferred from the porosity. The porosity can be 

estimated from the bulk density.  

 

The calculation of soil moisture from relative evaporation and evaporative fraction, estimates 

the soil moisture in the root zone, from which the evaporated water (soil evaporation, 

transpiration and interception) is sourced. The rooting zone of the grassland vegetation is 0.5 

Catchment VI 
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m. Therefore, the average bulk density of the soil from 0.0 to 0.5 m is required to obtain the 

porosity of the rooting zone. The bulk density was estimated to be 0.688 g/cm3, therefore the 

porosity was calculated to be 0.74. This porosity would be used as the saturated soil moisture 

content in the rooting zone.    

 

Two methods for soil moisture estimation were investigated in this component of the research 

study. The first was developed by Su et al. (2003) and requires the relative evaporation 

(Equation 4.12). The second equation was developed by Scott et al. (2003) and requires the 

evaporative fraction (Equation 4.13). The estimated soil moisture was plotted against the 

corresponding CRP estimates, which were changed to match the 16-day time-step (Figure 

7.28).  

 

From Figure 7.28, it can be seen that both methods follow the same trend, as both methods 

generally over-estimate soil moisture in the wet period and generally under-estimate soil 

moisture in the dry period. Both methods follow a seasonal trend. The Scott et al. (2003) 

method seems to perform better, as it over-estimates less in the wet periods, when compared 

to the CRP and under-estimates less in the dry period, compared to the CRP, in comparison to 

the Su et al. (2003) method. 

   

 

Figure 7.28 Time series of CRP estimates and soil moisture back-calculated from the 

SEBS model 
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Scatter graphs of the CRP against Su et al. (2003) and CRP against Scott et al. (2003) were 

then plotted (Figure 7.29). From the scatter graphs in Figure 7.29, it can be seen that both 

have positive correlations with points above and below the 1:1 line. The points do not cluster 

around the 1:1 line. The points above and below the 1:1 indicate over-estimation and under-

estimation of the methods, when compared with the CRP. Both methods have a similar R2 

value but different slopes. The (Scott et al., 2003) method has a R2 value of 0.724 and a slope 

of 2.819. The (Su et al., 2003) method has a R2 of 0.722 and a slope of 3.862.  

 

    

Figure 7.29 Scatter graphs of CRP against the SEBS Model estimates a) CRP against 

Su et al. (2003) and b) CRP against Scott et al. (2003). 

            

A graph of the residuals for both the CRP against the Scott et al. (2003) method and the CRP 

against the Su et al. (2003) method are illustrated in Figure 7.30. From Figure 7.30, both 

residuals follow the same trend. The Su et al. (2003) method has greater residuals as it over-

estimates and under-estimates the most in the respective periods, when compared to the CRP 

measurements. The Scott et al. (2003) method, resulted in lower absolute valued residuals 

than that of Su et al. (2003).  
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Figure 7.30 Residual graph of CRP against Su et al. (2003) and Scott et al. (2003). 

 

The results show that the method of back-calculating soil moisture, using both equations, 

resulted in an over-estimation of soil moisture in the wet periods and an under-estimation of 

soil moisture in the dry period. This could be due to either the estimation of the relative 

evaporative and the evaporative fraction in the SEBS Model, or the equations used to 

calculate soil moisture from the relative evaporative and the evaporative fraction.  

 

The evaporative fraction estimated using the SEBS Model can be validated with an 

evaporative fraction calculated from the eddy covariance system, which is situated in 

Catchment VI. The relative evaporation cannot be calculated using the eddy covariance 

system, as the relative evaporation requires the determination of Hwet (refer to Equations 4.4 

and 4.6), which can only be reliably determined through field experiments to determine wet 

and dry bulb temperatures. Thus, the following will only look at determining soil moisture 

using the Scott et al. (2003) method, as only the evaporative fraction can be determined from 

the eddy covariance system. 

 

The eddy covariance with infrared gas analyser measures latent and sensible heat directly. 

The eddy covariance system was operational from the 12th of July 2014 to present. The 

evaporative fraction was calculated for the same days as the SEBS estimates, using Equation 

8.4 (Bastiaanssen et al., 1997): 
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ᴧ =  
𝐿𝐸

𝐿𝐸+𝐻
            (8.4) 

where LE is the latent-heat flux and H is the sensible-heat flux. The eddy covariance system 

is on a half-hourly time-step. Therefore, a daily relative evaporation value had to be 

determined.  The evaporative fraction values determined from the SEBS Model and the eddy 

covariance system are seen in Table 7.6 below. 

Table 7.6 Evaporative fraction estimates from the SEBS Model and eddy covariance 

technique 

Date SEBS ᴧ EC ᴧ 

14-Mar-14 0.91684 - 

30-Mar-14 0.76871 - 

15-Apr-14 0.78335 - 

1-May-14 0.50633 - 

2-Jun-14 0.00000 - 

18-Jun-14 0.00367 - 

4-Jul-14 0.04683 - 

20-Jul-14 0.01190 0.17041 

5-Aug-14 0.00016 0.21135 

6-Sep-14 0.00000 0.14494 

22-Sep-14 0.00000 0.26370 

8-Oct-14 0.00000 0.46655 

24-Oct-14 0.17727 0.62393 

9-Nov-14 0.83581 0.73935 

11-Dec-14 0.87569 0.70615 

12-Jan-15 0.94974 0.75000 

 

The SEBS Model is under-estimating the evaporative fraction in the dry periods and over-

estimating evaporative fraction in the wet periods, as shown in Table 7.6. It is likely that the 

SEBS model was the cause of the poor soil moisture results, rather than the two equations 

used. The soil moisture was then estimated by using the calculated eddy covariance derived 

evaporative fraction in the (Scott et al., 2003) method and plotted with the CRP 

measurements against time (see Figure 7.31).  

From Figure 7.31, it can be seen that using the evaporative fraction data from the eddy 

covariance system, yielded better results of soil moisture, when compared to the CRP 

measurements. Using the eddy covariance data in the Scott et al. (2003) method resulted in 

an under-estimation of soil moisture in the dry period, but in the wet period, promising soil 

moisture estimates were obtained.  



 

127 

 

Figure 7.31 Time series of the CRP soil moisture estimates and soil moisture from the 

Scott et al. (2003) method using the evaporative fraction from SEBS and 

the eddy covariance method.  

 

When the evaporative fraction of the SEBS Model is compared to the eddy covariance 

estimates of evaporative fraction, it is seen that the SEBS model overestimates evaporative 

fraction in the wet period, but under-estimates in the dry period. This indicates the limitations 

of the SEBS model. The SEBS model was originally created for agriculture, therefore some 

model parameterization is not appropriate for non-agricultural land-covers (Gibson et al., 

2013). 

 

The method proposed by Scott et al. (2003) provided better soil moisture results than the 

method proposed by Su et al. (2003). This is mainly due to the Su et al. (2003) equation 

linking relative soil moisture to relative evaporation by a linear relationship. The use of the 

eddy covariance evaporative fraction estimates in the Scott et al. (2003) method, yielded 

good results in the wet period. This technique seems promising due to its spatial resolution. 

The technique is not limited temporally, but the choice of satellite (Landsat 8) data, 

introduces a temporal limitation. This temporal resolution made this method impractical as a 

means to monitor soil moisture, as soil moisture is highly variable over time. 
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7.7 Evaluating the Satellite-Based Soil Moisture Products 

 

The satellite-based soil moisture products used in this study all have different spatial 

resolutions, as seen in Table 7.7. The SEBS back-calculated estimate, obtains soil moisture 

on a 0.09 km2 spatial resolution. This resolution is exceptionally small, compared to the other 

products and is the only product that has a spatial resolution smaller than the catchment area. 

The AMSR2 soil moisture product has the next best spatial resolution, followed by the 

SAHG product. The SMOS product has the largest spatial resolution. 

 
 
Table 7.7 Spatial resolution of soil moisture products 

Product Grid (km) Spatial Resolution (km2) 
AMSR2 10 x 10 100 
SMOS 25 x 25 625 
SAHG 12.5 x 12.5 156 
SEBS 0.3 x 0.3 0.09 

 
 
The spatial resolution is a key factor in remote sensing, as there is a need to obtain parameter 

data on the finest resolution possible. The temporal resolution is just as important, as the need 

to continuously monitor parameters is essential. Thus, smaller temporal resolutions are 

required. If the observational days of the satellite-based soil moisture products used in this 

study are considered, all the products, except for the SAHG product, have days with no data. 

The various soil moisture datasets were then compared on their temporal characteristics, over 

the one year study period (Figure 7.32).  

 

From Figure 8.32, it can be seen that the SAHG product has a continuous dataset. The 

AMSR2 product is a “daily” product, but consists of a few missing days each month, as the 

product does not cover the entire surface of the earth each day. The SMOS data, which had 

the largest spatial resolution, also had a lot of missing days each month. This was due to the 

product not covering the entire earth’s surface each day, as well as missing pixel values 

within the covering bands. The SEBS back-calculated product had the fewest observational 

days, as it uses Landsat 8 data, which works on a 16-day interval. This results in a maximum 

of two images per month. There was a problem with the sensor, which resulted in no 

observations in the months of January and February.     



 

129 

 

Figure 7.32 Number of observation days per month that data was available for each 

product 

 
*  *  *  *  * 

 

This section detailed the results of the various validations undertaken in the study. The 

calibrated CRP soil moisture data set was validated with the representative in-situ soil 

moisture data set. The results indicated a close correlation between the data sets and thus 

indicated that the CRP is suitable in providing spatial estimates of soil moisture in Cathedral 

Peak Catchment VI. The validated CRP soil moisture data set was then used to validate 

remote sensing and modelled soil moisture products. The validation of the AMSR2 and 

SMOS soil moisture products with the CRP estimates indicated that the AMSR2 and SMOS 

products generally underestimated soil moisture but followed the seasonal trend in soil 

moisture fluctuation. The SAHG soil moisture product showed the closest correlation when 

validated against the CRP estimates. The back-calculation of soil moisture using the relative 

evaporation and evaporative fraction, from the SEBS model did not correlate well with the 

CRP estimates. There was a general underestimation in winter and overestimation in summer 

when the back-calculated soil moisture estimates were compared to the CRP estimates. The 

use of the evaporative fraction from the eddy covariance in the method proposed by Scott et 

al. (2003), resulted in less of an underestimation in winter and a close correlation in summer 

when compared to the CRP estimates. The conclusions drawn from the results and discussion 

are detailed in the ensuing chapter.   
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8. CONCLUSIONS AND RECOMMENDATIONS  
 

The conclusions and recommendations of the research study are detailed in this chapter.  

 

8.1 Conclusions   

 

Understanding the spatial and temporal variability of soil moisture at different scales is of 

great importance in many land surface disciplines, such as hydrology. Soil moisture is a key 

hydrological variable, as it impacts the water and energy balance at the land surface-

atmosphere interface and is the main water source for natural vegetation and agriculture. It is 

difficult to quantify and assess the soil moisture content at an intermediate scale, due to the 

heterogeneity in soil and land cover properties, climate drivers and topography. 

     

The objective of this research study was to compare CRP and satellite-based soil moisture 

estimates within Catchment VI of the Cathedral Peak Research Catchments. The three current 

methods used to estimate soil moisture were evaluated in this study. These three methods are 

in-situ, remote sensing and modelling. Although each method has its own advantages in 

measuring soil moisture, they are also greatly limited, as they do not provide soil moisture at 

an intermediate scale, which is required for hydrological applications.  

 

The CRP is a new and innovative in-situ instrument that is capable of measuring soil 

moisture at an intermediate scale. The CRP, once properly calibrated, is suitable for 

providing spatial estimates of soil moisture, as the measurements correlated well with the 

representative in-situ soil moisture dataset. The CRP calibration procedure is adequate, 

however potential errors can be introduced throughout the procedure, which range from 

selecting the sample points, to determining a representative bulk density, to determining the 

average neutron count (No) value. Therefore, proper procedure must be adhered to, in order to 

minimize potential errors.  

 

The validation of the CRP with a representative catchment soil moisture dataset, from the in-

situ soil moisture network, showed that the CRP is suitable in providing continuous spatial 

soil moisture estimates. The in-situ soil moisture dataset could have been more representative 
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of the area, if the echo probes were not destroyed in the fire, however, the remaining in-situ 

sensors did create a valuable dataset for the CRP validation.    

The calibrated CRP measurements were then used to validate the AMSR2 and SMOS Level 

Three soil moisture products. The AMSR2 dataset followed the trend of the CRP and 

correlated fairly well, but underestimated soil moisture throughout the study period. The 

dataset did have a few missing days. The AMSR2 product was analysed and it was found that 

the ascending and descending values correlated well in the dry periods, whilst greater 

differences were observed between ascending and descending values in the wet periods.  

 

The SMOS dataset generally under-estimated soil moisture. The dataset did correlate well 

and follow the same trend of the CRP. The SMOS dataset had a larger variance and therefore 

its values fluctuated more. The dataset had many missing days of data. The SMOS product 

was analysed and it was seen that the ascending and descending values were different 

throughout. The key issue in the validation of the AMSR2 and SMOS soil moisture products 

with the CRP measurements, is the vertical and horizontal scaling issue. Although the CRP is 

an improvement from validating remote sensing products with in-situ point measurements, 

the difference in measurement depths and the footprint of the CRP and current remote soil 

moisture products still remain a limitation. 

  

The AMSR2 and SMOS products consist of ascending and descending values. It has been 

shown that there were differences in these values, which could be attributed to changes in soil 

moisture in the 12-hour interval between ascending and descending acquisition. It was noted 

that there were also differences in day and night geo-physical conditions, with nocturnal 

conditions being more favourable for soil moisture retrieval from AMSR2 and SMOS 

products. 

  

The CRP was then used to validate modeled soil moisture estimates. These included the 

SAHG soil moisture product and the back-calculation of soil moisture from relative 

evaporation estimated from the SEBS Model.  

  

The SAHG soil moisture product was validated with the CRP.  There was a close correlation 

between the SAHG and CRP datasets. The SAHG soil moisture followed the same seasonal 

trend as the CRP and had a continuous dataset (no missing values). The SAHG product 

generally had a slight underestimation of soil moisture. Although the SAHG product 
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performed well, there was still the presence of vertical and horizontal scaling issues, due to 

differences in the measurement depth and footprint of the two datasets. There is also the issue 

of the conversion of the SSI to VWC, which required a representative porosity of the study 

area to be determined.  

  

The back-calculation of soil moisture from relative evaporation and evaporative fraction, 

estimated using the SEBS model, looked like a promising technique. The spatial resolution 

was less than the catchment area and the measurement depth was representative of the root 

zone of the vegetation (0.50 m). Therefore, this product would have the least horizontal and 

vertical scaling issues, when validated against the CRP. The SEBS model did not provide 

accurate estimates of relative evaporation and evaporative fraction compared to the 

evaporative fraction estimates from the eddy covariance system. The SEBS Model over-

estimated the evaporative fraction in the wet period, whilst under-estimating the evaporative 

fraction in the dry periods, which resulted in soil moisture over-estimation in the wet periods 

and under-estimation in the dry periods. When the evaporative fraction derived from the eddy 

covariance system was used in the (Scott et al., 2003) method, the resultant soil moisture 

estimates, under-estimated in the dry period, however promising estimates were obtained in 

the wet period, which correlated well with the CRP estimates. Although the back-calculation 

method results in soil moisture estimates on a 30 m spatial grid, the temporal resolution of the 

imagery used is 16 days, which is very impractical for continuous soil moisture monitoring.   

 

8.2 Recommendations 

 

The following recommendations can be used to address the main limitations that were 

experienced in this research study. This will provide assistance for future research studies. 

 

i. The calibration of the CRP is both time and labour intensive, as calibrations over 

different periods are required. There are a variety of errors that could emerge 

throughout the calibration procedure. Therefore, the proper techniques and 

equipment must be used to minimize the occurrence of errors, in order to obtain 

reliable soil moisture measurements. The use of a TDR HydroSense probe, which 

obtains instantaneous measurements of soil moisture, when inserted into the soil, can 

potentially be used to obtain the necessary soil moisture measurements for the 

calibration. Thus, it would greatly reduce the time and labour required.  
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ii. The validation of the CRP needs to be done with in-situ soil moisture sensors at a 

variety of depths. Ideally several TDR pits, in the CRP measurement volume could 

be used. This would improve the validation, as the CRP doesn’t measure at a constant 

depth and therefore, shouldn’t be validated with in-situ measurements at a constant 

depth. However, this would be very capital, time and labour intensive. 

iii. The potential for using temporal stability analysis to find a more representative 

sensor location would be useful to upscale the in-situ observations to the entire 

catchment. 

iv. Current remote sensing soil moisture products are still too coarse to be validated with 

CRP measurements. Although the use of the CRP for the validation of remote 

sensing soil moisture products is an improvement, the vertical and horizontal scaling 

issues still remain as major limitations. This limitation could potentially be addressed 

through the downscaling of remote sensing soil moisture products, in order to obtain 

finer spatial scale soil moisture estimates. 

 

v. The back-calculation of soil moisture using relative evaporation and evaporated 

fraction, from the SEBS Model, indicated that the use of the SEBS Model is not 

suitable in the study area for the estimation of these parameters. Future research 

should limit the use the SEBS model to agricultural landscapes.  
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