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ABSTRACT

Transplants are produced and sold in South Africa for the planting of seedcane supply plots

(nurseries), commercial fields, and for gap filling. The most important factor constraining the use

of transplants is the low germination of single-budded setts (SBS) planted in polystyrene trays.

The main aims of this project were to develop practical methods for optimising germination and

to control pathogens without adversely affecting germination.

Seedcane quality, cane age, storage and treatments using heat, chemicals and fungicides affected

germination and growth. Germination of SBS from old seedcane was significantly higher when

taken from the top than from the middle and bottom of the stalk. Storage of seedcane for three

and eight days after harvest adversely affected germination and growth. Topping of stalks three

days before harvest increased germination potential, but results were variable, depending on cane

age, cane quality and further treatments. Treatment of SBS at both 50°C for 120 minutes and

52°C for 30 minutes controlled Clavibacter xyli subsp. xyli (C. x. xyli) (the causal organism of

ratoon stunting disease) more effectively than treatment of whole setts. After treatment of SBS

at 52°C for 30 minutes, germination was greater than that after treatment at 50°C for 120 minutes,

and C. x. xyli was eliminated from stalks of six out of seven varieties. Treatment of SBS at 52°C

for 10 minutes significantly improved both germination and plant growth. Treatment of SBS for

10 minutes after addition of ethephon to the hot water significantly increased germination

compared with the untreated control, but not compared with treatment with hot water alone. After

treatment of SBS with fungicides, germination was highest after treatment with Eria® (Novartis),

a chemical with two active ingredients, namely carbendazim and difenoconazole. Compared with

no treatment and the short hot water treatment, treatment with Eria® in hot water (52°C)

significantly improved germination and plant growth in both unsterilised and sterilised medium.

Treatment of SBS and drenching of trays with a solution of propamocarb-HCl and benomyl had

no effect on germination or growth, indicating the limited role of systemic infections and soilborne

pathogens in germination failure. However, germination and growth were significantly increased
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when the same SBS were also treated with Eria®, suggesting that germination was predominantly

increased by the plant growth regulator activities of its active ingredients. When used separately,

both difenoconazole and carbendazim significantly increased germination, and difenoconazole

significantly increased plant growth. The conclusion drawn from these results is that germination

failure of SBS in trays is mainly due to the inappropriate hormonal balance for germination within

.the SBS, rather than systemic infections or infection by soilborne pathogens. Therefore,

germination and growth can be optimised by using mature, good quality seedcane, and by

treatment of SBS with chemicals that adjust the hormonal balance in the bud region to one

appropriate for germination.
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INTRODUCTION

The South African sugar industry is one of the world's leading producers of high quality sugar.

In the 1995/96 season, 404 143 hectares of land were under sugarcane, 288 980 hectares of

which were harvested for milling. In this and the previous season, 1,667 million tons of sugar

were produced, generating a direct income of approximately R2, 95 million (Anon., 1996).

Over 20 million tons of sugarcane is produced by 47 000 sugarcane growers in 16 cane

producing areas, extending from Northern Pondoland in the Eastern Cape to the Mpumalanga

Lowveld (Figure 1). Approximately 13% of the total crop is produced by more than 45 000

small-scale growers with an average plot size of 2 to 25 hectares, and more than 70% is

produced by approximately 2 000 large-scale growers with an average farm size of 165

hectares. The remainder of the sugar is produced by milling companies, principally Illovo

Sugar Ltd. and Tongaat-Hulett Sugar Ltd., who own 12 of the 16 sugar mills (Anon., 1996).

Sugarcane was first planted in South Africa on the KwaZulu-Natal North Coast in 1847. The

South African Sugar Association Experiment Station (SASEX) was established in 1925, its

chief function being to introduce, quarantine, screen and release new varieties. SASEX now

serves as the centre for basic research, sugarcane breeding and advisory, development,

extension, education and training services.

The commercial sugarcane varieties grown today are complex hybrids derived from crosses

between two or more Saccharum species, including the noble canes Saccharum officinarum L.

and the wild canes S. spontaneum L. (Daniels & Roach, 1987). S. officinarum is high in

sucrose, but often susceptible to serious diseases such as mosaic, smut and red rot; whereas S.

spontaneum displays high resistance to moisture stress, low temperatures and many sugarcane

pests and diseases (Rao, 1989). In the past, many varieties were introduced to South Africa,

but lost favour because of their susceptibility to pests and diseases, or their low sucrose yields

(McMartin, 1948, 1958). Presently, varieties derived from local breeding programs are
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screened and only released to growers if they have a high measure of general resistance to

diseases and pests, as well as a high sucrose content and good agronomic qualities.
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Commercially, sugarcane is vegetatively propagated using setts, which are often referred to as

'seed', 'seedcane' or 'seed material'. These are sections of stalk containing three to six lateral

buds and are traditionally planted into furrows in the field. The buds on the stalk germinate to

produce primary shoots that form stools after development of secondary shoots from basal buds

(MienetaL, 1989).

A new planting technique using transplants was introduced into South Africa in the early

1980s. This involves the cutting of stalks into single-budded setts (SBS) which are planted into

polystyrene trays. Each bud and band of root initials is capable of producing a new plant that

can be planted into the field. A transplant nursery was established at SASEX in 1986 to

provide transplants for pathology trials, some plant breeding propagation plots and for bulking-

up of new varieties (Anon., 1988). Currently, in the South African sugar industry,

approximately ten million transplants are produced and sold annually by nurseries at four

Illovo Sugar mills at Pongola, Sezela, Umfolozi and Gledhow, and several private nurseries.

Seedcane and transplants used for commercial planting must be of the highest quality to ensure

profitable crop production. Ratoon stunting disease (RSD) is caused by the bacterium

Clavibacter xyli subsp. xyli (C. x. xyli). This is the most economically important and widely

distributed disease of sugarcane in South Africa, causing substantial losses in yields. Since this

disease is systemic, it is important that healthy seedcane or transplants are planted into

commercial fields to prevent further spread. Heat treatment of setts at 50°C for 120 minutes

has been used as part of an integrated plan to reduce the levels of C. x. xyli in the South

African sugar industry. Farmers are encouraged to establish their own seedcane nurseries with

transplants grown from heat-treated setts to provide healthy seed material for commercial

planting. In the Pongola mill area, transplants are occasionally used for planting of irrigated

commercial fields, but where commercial fields are rainfed and irrigation systems are not used,

the planting of transplants is not recommended because a drought period would inhibit or delay

growth.



Other advantages associated with the use of nursery-grown transplants are that they can be

used for rapid bulking up of healthy true-to-type seed material to provide good quality

seedcane for nurseries, and for filling gaps in rows of cane grown from setts. Since far fewer

transplants are required for field planting than seedcane required for the conventional planting

method, a smaller truck capable of carrying a one ton load and less labour is required for the

-planting operation. Additionally, inspection and roguing of transplants are quicker and easier

than that of conventionally planted seedcane (Thomas, 1984; Tucker, 1992; Mtshali, 1995).

The use of transplants is currently constrained by several factors. Firstly, SBS germination in

most nurseries is poor, particularly when setts are heat treated to control C. x. xyli. Low

germination rates increase production costs, discouraging sugarcane growers from buying and

planting sugarcane transplants. In addition, production of transplants is not always cost

effective because procedures such as tray preparation and hand placement of SBS into

individual cells are labour intensive (Anon., 1988; Ingamells, 1989). Furthermore, cane from

transplants may be initially less productive than cane grown from conventional sett planting,

although yields in subsequent ratoon crops are comparable, particularly under irrigated

conditions (Mclntyre, 1993).

The aim of this project was to investigate factors influencing the successful production of

sugarcane transplants. The emphasis was on developing practical methods of optimising

germination of SBS in trays on a commercial scale, to make production quicker, easier and

more economically viable, and to increase plant vigour so that stronger transplants can be

planted into the field. A further aim was to find treatments that control RSD without adversely

affecting germination. Transplant growers might then be more willing to heat treat setts

because production costs would not be adversely affected by low germination rates. '

A number of factors affecting transplants were examined in this study. These included

seedcane quality to determine the effect of original bud position, cane storage before planting,

and removal of the apical meristem a few days before harvesting, on germination of SBS in

trays and subsequent growth of the transplants. Hot water treatment of SBS and whole setts at
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50°, 52° and 54°C was examined to determine the effect of various treatments on germination,

plant growth and control of C. x. xyli. In addition, short heat treatments and plant growth

regulators were tested to determine which treatments could be used on a commercial scale to

stimulate germination of SBS. Furthermore, various fungicides were tested to determine their

control of sett and root pathogens, and their effect on germination and growth. Finally,

various planting media were tested to determine their effect on plant growth.

Since some of these factors affected germination and growth more than others, a more in depth

study was made in these areas. In most experiments, due to the large quantities of seedcane

required, the preliminary experiments consisted of several treatments tested against two

commercial sugarcane varieties. Since several commercial varieties are grown in transplant

nurseries it is important that germination and growth of all are positively affected by treatment.

Therefore, the best treatments from these experiments were subsequently tested against four to

six commercial varieties to determine whether results were repeatable, and to examine the

interaction between treatments and several commercial varieties.
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1. LITERATURE REVIEW

This literature review deals with all aspects of sugarcane transplant production. Sugarcane

anatomy and physiology are discussed because they are crucial to the germination process.

Pathogens inhibiting germination of sugarcane are discussed because they may adversely affect

germination and growth of transplants in the nursery. Procedures used to improve germination

of conventionally planted cane and ratoon cane are also discussed because they can also be

applied to single-budded setts (SBS) for the production of transplants.

1.1 Anatomy of Germination and Growth

The sugarcane plant shows sympodial vegetative growth and survival is ensured by

replacement adventitious buds emerging from the base of the plant (Rees, 1980). The stalk

consists of nodes, internodes and leaves attached to the node. A lateral (axillary) bud, a band

of root initials, a leaf scar and a wax band are present in the region of the node. Each lateral

bud is an embryonic shoot which has the potential for development, and the outgrowth of

which is referred to as 'germination'. Once the bud has germinated to produce a primary

shoot, secondary shoots then develop from basal buds that in turn give rise to tertiary shoots to

form the stool. Sett roots develop from primordia in the root band region under the influence

of auxins that are present in the setts. After two to three months, the sett roots are completely

replaced by shoot roots that develop from primordia on the lower portion of the developing

shoots (Barnes, 1964 & 1974; Mien et al, 1989). Buds may not germinate because of

inhibition by apical dominance, physical injury, drying of the stem, excess water, poor

nutritional status of the seedcane and infection of the setts by organisms that cause sett and root

decay (Barnes, 1974).



1.2 Physiology of Germination and Growth

1.2.1 Apical dominance

The apical meristem and the recently formed stem and leaf tissues above the uppermost

- unfolded leaf, constitutes the apical bud. Meristems are also found in the axils of the leaf

primordia giving rise to lateral buds, similar to the apical bud (Hillman, 1990). On an intact

sugarcane plant, the meristems of lateral buds remain inactive due to complete or partial

retardation of mitotic activity by the apical bud (Phillips, 1969). This is indirectly due to

auxin, which is produced at the apex of a growing shoot and is transported basipetally.

Secondary messengers such as ethylene and abscisic acid (ABA) are considered to transfer the

inhibiting message to the lateral buds (Cline, 1991). The degree of apical dominance is

determined by genetic and environmental factors, and by the physiological age of the plant

(Phillips, 1969). Apical dominance in sugarcane is strong, allowing the shoot to develop as a

single main axis (Moore, 1969, Julien et al, 1989).

Increased cell divisions have been detected in lateral buds that are relieved of inhibition by

removing the potential source of auxin in the shoot apex (Rubinstein & Nagao, 1976). An

increase in cell division was noted from about 24 hours after shoot decapitation in soybean

(Glycine max L. Merr.) (Ali & Fletcher, 1970), and one hour after decapitation of Cicer

(Guern & Usciati, 1972). In sugarcane, a complex sequence of physiological and biochemical

events is initiated, resulting in bud break. The complexity of this event is characterised by

changes in food metabolites and the activity of appropriate enzymes and plant hormones

(Anon, 1984).

1.2.2 Plant growth regulators

The five classes of hormones that control plant growth are naturally occurring in sugarcane.

There is a balance in the levels of the hormones in the apical tissues to control germination of
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lateral buds, cell division, elongation and maturation (Vlitos, 1974). Identifying the role of

individual hormones gives an indication of which plant growth regulators can be applied to

increase bud germination and subsequent growth. Experiments were carried out at the SASEX

to determine the factors limiting germination by studying the changes in concentration of IAA,

abscisic acid (ABA), gibberellins and cytokinins during germination and early growth (Anon.,

1981, 1982, 1983 & 1984). Single-budded setts were stored at unfavourable (20°C) and

favourable (30°C) temperatures for germination and harvested every second day to be analysed

for the presence of plant hormones. At both temperatures the buds were still dormant at day

three. However, when conditions were favourable for germination, bud burst and initial shoot

growth occurred at day five and shoot growth continued at day nine. Results obtained from

these experiments (discussed in the following sections) indicated that the activation of lateral

bud germination is directly related to the hormonal balance in the bud region (Anon., 1984).

Plant growth regulators have been applied to sugarcane setts to improve germination, to

stubble in the field after harvesting to improve sugar yields by stimulating even sprouting, and

to standing, intact stalks as a ripener to increase sucrose percentage and juice purity (Bhale &

Hunsigi, 1994).

1.2.2.1 Auxins

Auxins induce elongation in shoot cells, stimulate cell division and initiate root formation in

many plant species. Indole-3-acetic acid is the most important hormonal auxin produced by

plants (Weaver, 1972; Preece & Read, 1993). This hormone is synthesised in relatively large

amounts from the precursor tryptophan by enzymes which predominantly occur in regions of

intense metabolic activity, particularly the meristems (Moore, 1979).

Auxins have been isolated from the stem apical tissue and from roots of sugarcane (Brandes &

Van Overbeek, 1948; Cutler & Vlitos, 1962). In the experiments performed at SASEX, the

concentration of IAA was higher in the buds than in the nodes or internodes. When setts were
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kept at a low temperature (20°C), this level was maintained. However, at a favourable

temperature (30°C), the IAA was present at lower concentrations at bud swell, bud break and

growth. On the thirteenth day there was a considerable increase in IAA level, possibly

preventing the formation of tillers from lateral buds at a later stage. These results suggested

that levels of IAA must be lowered in the bud region to enhance germination and early growth

(Anon., 1984). However, Castro et al. (1975) observed that pretreating setts in 250 ppm IAA

increased germination and, in Brazil, soaking of setts in the synthetic auxin, indole-3-butyric

acid (IBA), at 10 ppm for one hour enhanced sprouting and root development (Verri et al,

1983).

1.2.2.2 Gibberellins

The function of gibberellins is in stimulating cell division and cell elongation (Moore, 1979).

Gibberellins have been detected in roots, stem apical tissue and in the inhibited and developing

lateral buds of sugarcane. The major gibberellin present in sugarcane, gibberellic acid (GA3),

occurs in large quantities in the sett in comparison with IAA, and takes precedence over IAA

in the control of cell expansion and stalk elongation (Most, 1967). High endogenous

concentrations of GA3 are required to activate lateral bud germination by stimulating the

production of enzymes necessary for the germination process (Preece & Read, 1993).

Exogenous applications of GA3 have been used commercially to promote internode elongation

in sugarcane to increase the concentration of sugar in the stalk (Weaver, 1972; Anon., 1980;

Preece & Read, 1993). Treatment of decapitated shoots or isolated nodal stem segments of

sugarcane with exogenous GA3 has promoted lateral bud growth (Kato, 1953; Wickson &

Thimann, 1958; Chang & Lin, 1962; Shiah & Pao, 1963; Bendigeri et al, 1986). In the

experiments at SASEX, the amount of free gibberellins increased considerably from day zero

to day three at both temperatures. The gibberellin concentration decreased in non-germinating

SBS at day five and decreased in the germinating SBS after initial shoot elongation. This
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decrease in concentration suggested that it was only required for bud swell and bud break and

not required in large quantities for the subsequent growth of the shoot and roots (Anon., 1982).

1.2.2.3 Cytokinins

Cytokinins are associated with rapidly growing tissue, causing cell division and differentiation

(Weaver, 1972). They are also involved in the movement of metabolites and other growth

substances (Anon., 1984). Kinetin and zeatin are naturally occurring cytokinins synthesised in

the roots and are transported acropetally in the vascular tissue to the shoots. They promote the

differentiation of the vascular tissues in the bud traces, releasing lateral buds from apical

dominance (Sachs & Thimann, 1964; Moore, 1969).

Cytokinins occur in dormant lateral buds of sugarcane (Most, 1969) and in higher

concentrations in the actively growing bud (Anon., 1984). Bendigeri et al. (1986) observed

that treatment of sugarcane setts with 100 ppm cytozyme for five minutes stimulated

germination and tillering, and Bull (1969) reported that kinetin induced rapid germination.

1.2.2.4 Ethylene

Ethylene is a simple hydrocarbon (C2H4) that releases buds from dormancy. It is also involved

in the induction of adventitious roots by inhibiting polar transport of IAA (Morgan &

Gausman, 1966; Weaver, 1972; Preece & Read, 1993) and stimulating metabolism of IAA

(Beyer & Morgan, 1970). The effect of ethylene on lateral buds resembles that of

decapitation. Ethylene stimulates peroxidase activity that destroys auxin (Hall & Morgan,

1964). As a result, main shoot growth is restricted (Prasad & Cline, 1986) and side shoots,

tillers and strut roots develop (Hall & Morgan, 1964).
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Ethephon (2-chloroethanephophonic acid; Ethrel®, Rhone-Poulenc) is a liquid, ethylene-

releasing compound that became available in South Africa in 1969 (Sterry, 1969). The main

use of ethephon in sugarcane production is as a ripener to increasing sucrose percentage and

juice purity by causing elongation of the internodes (Anon., 1980).

In South Africa, dipping of the setts in 2400 ppm ethephon improved bud germination of N17

in greenhouse trials (Anon., 1988b). In Cuba, Diaz et al. (1995) reported that ethephon

applied at 120, 240, 360 and 480 ppm for three minutes significantly improved germination of

four sugarcane varieties. In addition, stalk population and cane sugar yields in two poor-

germinating varieties were significantly increased by dipping the setts in 120 ppm ethephon

solution before planting into the field. Manoharan et al. (1992) also obtained high cane yields

when setts were soaked in ethephon, and in Louisiana, ethephon (250 ppm) applied as a whole-

stalk treatment for 30 minutes before planting increased the rate of sprouting of stalk buds and

usually increased tiller populations (Millhollon & Legendre, 1995).

Ethephon can also be sprayed onto the stubble in the field, resulting in sprouting (Yang & Ho,

1980). Ethephon (500 ppm) increased the number of tillers (Burg & Burg, 1968; Peng, 1984;

Bhale & Hunsigi, 1994) and significantly increased the cane yield of the ratoon crop compared

with the control by increasing weight of cane and number of internodes (Peng, 1984; Bhale &

Hunsigi, 1994). Additionally, Diaz et al. (1995) reported that germination, stalk population

and cane yield were significantly higher than that of the control when ethephon was sprayed

onto the leaves in the seedcane nursery 20 days before cutting.

1.2.2.5 Inhibitors

Inhibitors retard cell division and cell elongation in shoot tissues and thus physiologically

regulate plant height without causing malformation of leaves and stems (Weaver, 1972).

Abscisic acid (ABA) has a common intermediate with gibberellins, farnesyl pyrophosphate,

and inhibits lateral bud growth of sugarcane at high concentrations (Moore, 1969).
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Chlormequat chloride is an anti-auxin that restricts growth of apical buds, enhancing sprouting

of lower buds (Bhale & Hunsigi, 1994). Treatment of ratoon stubble of sugarcane with

chlormequat chloride significantly increased the number of tillers and cane yield of the ratoon

crop compared to the control (Peng & Twu, 1978; Bhale & Hunsigi, 1994).

Many triazoles shorten internodes and increase root development. Triazoles block the

gibberellin biosynthesis pathway by inhibiting the oxidation of ent-kaurene to e/tf-kaurenoic

acid. They have been used to prevent lodging in rape, to inhibit growth of ornamental plants

and lawns, to induce resistance to drought and chilling, and to stimulate generative growth

(Liirssen, 1987). Propiconazole (Tilt®, Novartis), when used simultaneously with a hot-water

treatment for 20 minutes at 52°C, has been reported to stimulate germination and growth of

lateral buds and root growth of sugarcane (Comstock et al., 1984). Paclobutrazol has been

used to enhance the production of numerous small shoots and shoot meristems at the basal part

of Spathiphyllwn floribundum Schott 'Petite' and Anthurium andreanum Schott, by promoting

the shoot-inducing effect of exogenous cytokinins and inhibiting gibberellic acid biosynthesis

(Werbrouck & Debergh, 1996; Werbrouck et al, 1996).

In summary, the activation of lateral bud germination is directly related to the hormonal

balance within the buds. Increased concentrations of auxins and ABA suppress germination

and growth, whereas increased concentrations of gibberellins, cytokinins and ethylene

stimulate germination and growth.
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1.3 Ratoon Stunting Disease

Ratoon stunting disease (RSD) is caused by the xylem-limited bacterium, Clavibacter xyli

subsp. xyli Davis et al. (C. x. xyli) (Davis et al., 1980, 1984). This disease is the most widely

distributed disease of sugarcane in South Africa, causing substantial losses in yields due to

shorter, thinner stalks and reduced stalk populations (Bailey & Bechet, 1986; Anon., 1996). In

a first ratoon crop of a trial conducted under rainfed conditions at Mount Edgecombe, RSD

infection caused severe yield reductions in varieties N17 (-36%), N14 (-24%), NCo376 (-24%)

and N21 (-20%), and intermediate yield reductions occurred in N12 (-14%) and N19 (-13%).

Large reductions in yields also occurred in an infected plant crop of a trial conducted under

irrigation at Pongola (Anon., 1996).

In field tests in 1996, C. x. xyli was most prevalent in the commercial (31%) and seedcane

(21%) fields in the Pongola and Umfolozi areas. The pathogen was also detected in fields

along the South Coast (6%), Mpumalanga (12%), KwaZulu-Natal Midlands (2%), the lower

South Coast (5%) and the along the North Coast (5%) (RA Bailey, 1997, pers. comm.1). The

low level of C. x. xyli in the latter areas was due to a SASEX programme initiated to promote

the consistent testing of seedcane for C. x. xyli and rejection of infected seedcane. The result

is that, in general, the industry is now planting healthy seedcane and the incidence of C. x.

xy//-infection in commercial cane fields and intended seedcane sources in most areas in South

Africa has declined significantly (Bailey & Tough, 1991).

Symptoms of C. x. xy//-infection are inconspicuous (Bailey & Bechet, 1986) and the pathogen

is detected at SASEX using direct immunofluorescence microscopy (IFM) or phase-contrast

microscopy (PCM). The first technique is more accurate, requiring only 3.1 x 103 cells.mt1 in

naturally-infected sugarcane sap for detection, compared with the concentration 2 x 106

cells.ml'1 required by the method of PCM (Guzman & Victoria, 1993).

Mr RA Bailey, SASEX, Private Bag X02, Mount Edgecombe, KwaZulu-Natal.
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Since none of the commercial varieties possess total resistance or tolerance to C. x. xyli, its

control depends on methods other than varietal resistance. The main spread of C. x. xyli is on

cutting tools that become contaminated by harvesting infected volunteers. Therefore, it is

important that C. x. xyli is prevented from entering nursery and commercial fields by planting

seedcane that is free of C. x. xyli. Thermotherapy is the only method used to eliminate C. x.

xyli from infected setts. All sett tissues must reach the required threshold of time and

temperature combination for the death of the pathogen (Benda & Ricaud, 1977; Anon., 1979).

Cane can be treated with hot water (HWT), hot air, moist air or aerated steam to eliminate C.

x. xyli from infected setts. Hot-water treatment at 50°C for 120-180 minutes is commonly

used worldwide (Steindl, 1961) and treatment at 50°C for 120 minutes is the only method used

in South Africa (Anon., 1994). The use of HWT will be discussed in Section 1.5.2.1.

1.4 Root and Sett Rots

The major causes of germination failure of sugarcane in the field are sett rots caused by

Fusarium spp. and Gibberella fujikuroi (Sawada) Wollenweber, red rot caused by Glomerella

tucumanensis (Speg.) V. Arx & E. Mtiller (Imp. Colletotrichum falcatum Went.), pineapple

disease caused by Ceratocystis paradoxa (Dade) C. Moreau, and root rots caused by Pythiwn

spp., Rhizoctonia spp. and Pachymetra chaunorhiza Croft & Dick (Barnes, 1974; Autrey et

al., 1995) (Table 1.1).

1.4.1 Ceratocystis paradoxa

Pineapple disease is an important rot of sugarcane setts (Wismer & Bailey, 1989) caused by the

ascomycetous, soilborne fungus, Ceratocystis paradoxa. Conidia and chlamydospores infect

the cut ends of the setts within the first week after planting in infested soil (Mitchell-Innes &

Thomson, 1973; Wismer & Bailey, 1989). The fungus spreads rapidly through the

parenchyma, reddening the infected tissue as the fungus produces toxic materials that produce
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an odour of overripe pineapples. Infected setts decay, becoming hollow and blackened and the

toxins inhibit or retard bud growth, kill young shoots shortly after emergence, and inhibit root

growth (Barnes, 1974). This may result in substantial losses in sugar yields (Mitchell-Innes &

Thomson, 1973; Wismer & Bailey, 1989).

-Pineapple disease is rarely a problem when setts are planted under conditions that favour rapid

germination. However, setts become susceptible when germination is delayed due to the use of

old seedcane or heat-treated setts, and the planting of setts when temperatures are low in soil

that is too wet or too dry. In South Africa, pineapple disease is most severe in crops planted in

autumn and winter, particularly when low temperatures coincide with seasonally low rainfall

(Wismer & Bailey, 1989).

Pineapple disease infection can be prevented using young seedcane, optimising conditions for

germination and by treating the seedcane with a registered fungicide.

Table 1.1. Sugarcane sett, stem and root diseases.

Causal agent

Ceratocystis paradoxa (Dade) C. Moreau
Glomerella tucumanensis Went

Fusarium moniliforme (Sheldon)
F. tricinctum Cda. Sacc.

Gibberellafujikuroi (Sawada) Wollenweber
Pachymetra chaunorhiza Croft & Dick

Pythium aphanidermatum (Edson) Fitzp.
P. arrhenomanes Drechsler

P. graminicola Subram.
P. tardicrescens Van.

Rhizoctonia spp.

Disease

Pineapple disease
Red rot

Fusarium sett or stem rot
Fusarium sett or stem rot
Fusarium sett or stem rot

Pachymetra root rot
Root rot
Root rot
Root rot
Root rot
Root rot

Countries

59*
74*
82*
1

31*
1
-

20*
-
1

11*

C indicates that the disease occurs in South Africa) (after Autrey etal., 1995)

16



1.4.2 Pythium spp. and Pachymetra chaunorhiza

Pythium spp. are the causal agents of a root rot of sugarcane and produce small, smooth walled

oogonia and lobulate sporangia on infected roots (Croft & Magarey, 1990). Pythium spp. are

involved in Poor Root Syndrome (PRS) in Australia (Egan et al., 1984), stubble decline in

Louisiana (Edgerton et al., 1929) and caused the failure of the variety Lahaina in Hawaii

(Carpenter, 1920).

During the 1920s, a combination of Pythium root rot, seed piece rots and sugarcane mosaic

virus caused severe damage to the sugarcane industry in Louisiana. The introduction of

interspecific hybrids increased resistance to these diseases (Edgerton, 1939; Lee & Hoy,

1992). However, Pythium root rot still causes significant reductions in growth and yields of

hybrid cultivars in Louisiana (Hoy & Schneider, 1988). Here, cane is harvested at the onset of

winter and the stubble buds are inactive over the winter months when temperatures are low and

soil aeration is poor. When temperatures are again favourable for germination, many buds fail

to germinate, resulting in few vigorous shoots (Edgerton, 1939; Hoy & Schneider, 1988).

In Louisiana, many Pythium spp. have been isolated from sugarcane roots and their

pathogenicity to local varieties has been tested. P. arrhenomanes (Edson) Fitzp. is the most

common species causing severe root rot symptoms and significant reductions in shoot and root

number and weight (Hoy & Schneider, 1988; Lee & Hoy, 1990, 1992). P. spinosum Sawada,

P. dissotocum Drechsler and P. graminicolum Subram. also cause root rot, but are not as

severe (Rands & Abbott, 1939; Hoy & Schneider, 1988; Lee & Hoy, 1992).

In Queensland, P. graminicola affects seedlings up to three months of age and incidence can

reach 30-70%, depending on cultivar. It causes reddening of roots and lesion development,

accompanied by a flaccid rot of the tertiary roots, a reduction in fine root growth, and a small

amount of primary root rot (Magarey, 1986; Croft & Magarey, 1984, 1990). Root

development has also been reduced by infection with P. myriotylum (Croft, 1988).
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P. arrhenomanes (Croft & Magarey, 1984; Magarey, 1986) and Pachymetra chaunorhiza

(Croft & Magarey, 1984; Dick et al., 1989) are the main pathogens, along with nematodes and

symphylids, in the disease complex known as PRS. They cause serious yield losses in the

tropical rainfall areas of northern Queensland in Australia (Croft & Magarey, 1984; Egan et

al, 1984; Croft & Magarey, 1990). In 1979 and 1980 there was a high incidence of root rot

and approximately 3 500 hectares showed moderate to heavy root rotting (Egan et al., 1984).

The pathogens reduce vigour and cause water stress, leaf yellowing, poor tillering, uneven

stalk height and lodging (Croft & Magarey, 1984; Egan et al, 1984; Reghenzani, 1984).

Temperature affects the prevalence of these pathogens, with severe rotting of primary roots

occurring at low temperatures (15-20°C) and lateral pruning at high temperatures (26-30 °C)

(Rands & Dopp, 1938).

P. chaunorhiza is only known to occur in the Queensland and was initially referred to as the

'root rot fungus' (Croft & Magarey, 1984, Dick et al., 1989). P. chaunorhiza is an Oomycete

fungus which is distinguished from Pythium root rot by producing larger verrucose oogonia

and no sporangia on rotted roots (Croft & Magarey, 1984). It causes a soft and flaccid rot of

the primary and secondary roots, particularly at the root tips and does not affect fine root

growth or cause red root lesions (Magarey, 1986; Croft & Magarey, 1990).

The use of fungicides, soil fumigation and solarisation are not economically practical for large

scale control of root rots because they are expensive, may eliminate beneficial microorganisms

and have adverse effects on the environment. However, they have been useful in

investigations to determine the causes and effects of root and sett rots. In experiments in

Louisiana and Queensland, these treatments increased sugarcane growth and decreased the

severity of root rot (Croft et al, 1984; Egan et al, 1984; Reghenzani, 1984, 1988; Hoy &

Schneider, 1990).

In Queensland, pasteurisation of PRS-soil increased the top and root growth of plants by 100-

215% compared with the untreated controls, and almost eliminated root rot symptoms. In

another experiment, re-inoculation of sterilised soils with soil from an PRS affected area
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restricted top and root growth, PRS symptoms were visible and P. arrhenomanes was isolated

from the soil (Croft et al, 1984).

Fumigation of sugarcane field soil in pots with methyl bromide caused large increases in plant

growth compared with plants grown in either untreated field soil or metalaxyl-treated soil (Hoy

& Schneider, 1988, 1990). In two field plots in Australia, fumigation of soil with methyl

bromide increased shoot growth by 700% and 450%, root growth by 250% and 120%, and

eliminated PRS symptoms (Egan et al, 1984). Croft et al. (1984) also reported large

increases in top and root growth and complete pathogen control in field trials, and Muchow et

al. (1995) reported increases of stalk numbers by 24% and cane yields by 6-12%. Fumigation

of field soils with methyl bromide has also increased sugar yields of plant crops in South

Africa (Thompson, 1985).

Reghenzani (1988) investigated the effect of soil solarisation on sugarcane yields in North

Queensland and its effects on the two pathogens responsible for PRS using clear 150 um thick,

polyethylene film to raise soil temperatures. In field trials, there was an improvement in

growth of the cane when soil was solarised compared with the control. Yield was significantly

increased by 73.5% in the plant cane and by 16.9% in the first ratoon. In pot trials,

solarisation eliminated P. chaunorhiza but Pythium and nematodes recolonised the solarised

pots before harvest of the plant crop.

1.4.3 Rhizoctonia spp.

There are few reports of Rhizoctonia affecting sugarcane. R. solani Kiihn and R. palida Matz.

were isolated and identified as important root pathogens of sugarcane in Barbados (Matz,

1920; Bourne, 1922), causing serious root rotting in the glasshouse. However, these

pathogens did not affect roots of plants in the field (Edgerton et al, 1929).
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1.4.4 Fusarium spp.

Fusarium moniliforme (Sheldon), F. tricinctum Cda. Sacc. and Gibberella fujikuroi (Sawada)

Wollenweber cause stem and root rot of sugarcane (Autrey et al., 1995). F. moniliforme

causes a rapid purplish-red discoloration of the vascular bundles, surrounded by reddish-brown

discoloration in the parenchyma cells developing from the cut end of the sett inwards. The

young roots redden, turn purple and decay, or development is prohibited. Buds swell slightly

but fail to germinate causing reduced yield and quality of cane (Bourne, 1961; Mansour &

Hamdi, 1983; Ahmad & Malik, 1994).

1.4.5 Glomerella tucumanensis

Red rot caused by Glomerella tucumanensis (Speg.) Arx & Mueller affects all parts of the

sugarcane plant, particularly standing stalks and planted seed pieces. The infected stalk tissues

are red, interrupted by whitish patches. Mycelium develops in the pith cavities and

germination is inhibited, particularly in sub-tropical countries during cool or wet weather.

Infection of setts occurs from the use of diseased stalks and soilborne infection. Fungicides

have not been effective in the control of red rot but heat therapy of seedcane controls systemic

infection (Singh & Singh, 1989).

1.5 Methods of Optimising Germination Potential

Vigorous germination of cane setts and rapid early growth of the plant increases cane and

sugar yields. Environmental factors, variety, cane quality, cane age, original bud position on

the stalk, length of setts and treatments such as thermotherapy and fungicides affect

germination of SBS and subsequent growth of the plants. Assessing these factors to determine

where improvements can be made is necessary to improve the viability and vigour of the setts

and resultant plants.
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1.5.1 Quality ofseedcane

Seedcane should be healthy, vigorously growing cane, preferably from a field established with

cane that has been heat treated to control C. JC. xyli (Barnes, 1974). Sugarcane varieties differ

in the time they take to germinate and the ability of the setts to germinate, so the variety must

be adapted to the area in which it will be planted (Benda & Ricaud, 1977).

The youngest buds are those at the top of the sugarcane stalk and the oldest buds are those at

the bottom. Clements (1940) and Bellamy & Chinnery (1988) reported that germination time

of noble canes increased with bud age, whereas germination time of widely cultivated

interspecific hybrids in Barbados was not affected (Bellamy & Chinnery, 1988). Bellamy &

Chinnery (1988) also reported that the bud age of both commercial varieties and noble canes

did not affect the possibility of germination. However, Abayomi et al. (1990) and Sheets

(1988) reported that the top section of matured cane gave the fastest and highest germination,

compared with buds from the middle or basal parts of the stalk. Therefore, discarding the

lower nodes to achieve optimum germination might be necessary.

In Taiwan, stalks are often topped in spring to remove apical dominance so that lateral buds on

the stalk begin to germinate while still in the field. After one to two months, stalks containing

the plantlets are cut and planted (Peng, 1984).

A small volume of tissue and a single root primordium adhering to the bud (budchip) is enough

to ensure germination. However, in an experiment investigating the effect of thermotherapy at

50°C for 30 and 120 minutes on sett size (30 mm, 25 mm, 20 mm and 'bud chips'),

germination was higher and plant growth was more vigorous as sett size increased (De Thezy,

1986).
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1.5.2 Treatment of setts

1.5.2.1 Long hot water treatment

Hot water treatment (HWT) at 50 °C for 120 minutes is the only method currently used in

South Africa for the treatment of SBS and whole setts (WS) to eliminate C. x. xyli (Anon.,

1994). Varieties differ in their ability to withstand heat stress and in the minimum time

required to cure RSD. For a successful cure, all sett tissues must reach the required

temperature (Benda & Ricaud, 1977), but the rate of heat transfer depends on the length,

diameter and the heterogeneity in structure of the sett (Antoine, 1957; Benda, 1972). The

longer the treatment, the greater the mortality because fewer plant cells survive to produce

shoots and roots (Benda, 1972). The temperature and time combination required to kill RSD is

nearly lethal to cane. In South Africa, the varieties N12, N17, N19 and N21 are known to be

particularly sensitive to the standard heat treatment of 50°C for 120 minutes (Anon., 1990).

An experiment was carried out at SASEX to determine the efficacy of heat treatment of SBS at

50 °C in controlling C. x. xyli. It was found that treatments for 30 and 60 minutes provided

little control of C. x. xyli, and infection still occurred after treatment for 90 minutes. Only

treatment for 120 minutes completely controlled C. x. xyli (Anon., 1988a).

In Hawaii, treatment of infected seed-pieces at 52°C for 30 minutes resulted in 20.6%

infection remaining, whereas treatment at 50°C for 120 minutes completely controlled C. x.

xyli. Benda (1972) reported that treatments of setts at 52°C for 30 minutes for three

consecutive days provided adequate control of C. x. xyli (1.2% infection remaining) and better

growth than treatment of 50°C for 120 minutes.

Serial heat treatments are recommended when stalks of heat-sensitive varieties cannot be

treated at the maximum temperatures applicable. This involves the pre-treatment of cane at the

required temperature for a short period to adapt the cane to the high temperature. The cane is

then more resistant to subsequent treatments and can withstand longer treatments and higher
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temperatures than cane that has not been pre-treated (Benda & Ricaud, 1977). Young heat-

sensitive cane is often pre-treated at 50°C for 10-20 minutes 1-5 days before treatment at 50°C

for 120 minutes (Benda & Ricaud, 1977; Gillaspie & Teakle, 1989).

1.5.2.2 Short heat treatment

Short hot water treatments have been used to improve germination and early growth. When

heat doses are not lethal, the rate of germination of roots and shoots may increase, as well as

the proportion of buds that germinate (Benda & Ricaud, 1977). A short heat treatment causes

a number of physiological changes in sugarcane, including increased secretion of sugar (Benda

& Irvine, 1974) and loss of apical dominance by the establishment of an appropriate hormonal

balance in the bud region (Brandes & van Overbeek, 1948; Anon., 1984). In experiments at

SASEX, much of the ABA and IAA leached out of the setts into the water when two varieties,

NCo376 and J59/3, were heat treated for a short period of time, stimulating germination of the

setts (Anon., 1984).

Experiments in Pakistan and Taiwan showed that the soaking of sugarcane setts in water at

52 °C for 20 minutes caused rapid development of buds and growth of young cane stools

(Peng, 1984) and significantly increased the numbers of shoots at three months after planting

(Farid, 1990). Benda (1972) and Comstock et al. (1981) also reported an increased rate of

germination when SBS were treated at 52°C for 15 and 20 minutes. Treatment of seed-pieces

for 10 and 20 minutes in benomyl (Benlate®, Du Pont de Nemours) in hot water (52 °C)

improved germination by 10-90% compared with benomyl in cold water (Anon., 1975;

Comstock et al., 1981). When Sheets (1988) treated setts at temperatures from 35-60°C for 5,

10, 15 and 20 minutes, treatment at both 40°C and 45°C for five minutes provided highest

germination of three varieties.
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1.5.2.3 Chemical treatments

Many attempts have been made to improve germination by treating setts with plant growth

regulators and chemicals. In general, the use of chemicals, except the plant growth regulators

GA3 and ethylene, has not been beneficial and they are rarely used commercially.

Good germination, high plant populations and high sugar yields were obtained in a field trial in

India when setts were dipped in a solution containing 250 ppm carbendazim (Bavistin®,

BASF) and 0.05% urea (Jayabal & Chockalingam, 1991). Hardy (1973) also reported that the

addition of 0.3% urea to the hot water tank significantly improved the germination of NCo376

but did not affect germination of NCo334 and NCo310.

Germination of setts has also been increased, though often not by great margins of difference,

by soaking setts in ascorbic, ferulic, vanillic and caffeic acids (Mohandas & Naidu, 1984),

chlorogenic acid (Solomon & Srivastava, 1990), lime (Mohandas et al., 1983), magnesium

sulphate, saturated lime and calcium chloride (Mohandas et al., 1983; Peng, 1984), potassium

chloride (Jayabal & Chockalingam, 1990) and diammonium phosphate (Kathiresan, 1995).

In India, some sugarcane growers dip setts in a cow-dung slurry to act as an anti-dehydration

agent (Thirunavukkarasu & Narayanan, 1988), and the dipping of SBS and bud-chips in a 50%

solution of cows' urine has also increased sprouting and plant vigour (Kathiresan, 1995).

1.5.2.4 Fungicides

When temperatures are low or setts have been heat treated, fungicides must be applied to

protect setts. Otherwise, when adverse conditions prevail and germination is delayed, disease

microorganisms could infect the sett, resulting in root and sett rots and high bud mortality

(Barnes, 1974).
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Many fungicides have been reported to be effective against pineapple disease, including

benomyl (Wismer, 1968), guazatine (Steiner & Byther, 1973), carbendazim (Mitchell-Innes &

Thomson, 1974), thiophanate (Bechet, 1977), triadimefon (Comstock & Ferreira, 1978) and

propiconazole (Comstock et ah, 1984).

In South Africa, setts are usually treated with benomyl (250 ppm; Benlate®, du Pont de

Nemours) or guazatine (800 ppm; Panoctine®, Rhone Poulenc) before planting (Anon., 1993a)

and both fungicides can also be added to the heat treatment tank (Anon., 1994) (Table 1.2).

Benomyl, the first non-mercurial fungicide found to be effective when used as a sett treatment

(Wismer, 1968; Mitchell-Innes & Thomson, 1973 & 1974), has been shown to stimulate

germination (Eastwood, 1972) and to control C. paradoxa in in vitro tests and in inoculated

seed pieces (Liu et at, 1912).

Table 1.2 Fungicides registered in South Africa for treatment of cane setts and SBS.
(WP=wettable powder, SC=suspension concentrate, DS=powder for dry seed
treatment).

Active
ingredient

benomyl

guazatine

triadimefon

Trade
name

Benlate®
Spotless®
Fundazol®

Panoctine®

Bayleton®

Company

Du Pont
Unisun

Sanachem

Rhone Poulenc

Bayer

Fungicide
group

benzimidazole

quanidine

conazole, SDI

Form.

WP

sc

DS

Active
ingred. (g)

500 g/kg

400 g//

250 g/kg

Dosage

0.5 g./1

2.0 ml.t'

1.0 g.f

(from Krause et al, 1996)

Carbendazim, which is closely related to benomyl, (375 ppm; Bavistin®, BASF; 153 ppm;

Derosal®, AgrEvo) has also been found to be effective against both C. paradoxa (Bechet,

1977) and G. tucumanensis (Saharan & Satyavir, 1994).
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Propiconazole (12.5, 25 and 50 ppm; Tilt®, Novartis) is effective in controlling pineapple

disease in vitro and in setts (Comstock & Ferreira, 1981; Taylor & Ryan, 1984; Anon., 1985;

Raid, 1990; Raid et al., 1991). It has increased germination and stimulated growth when used

at concentrations of 6-125 ppm (Comstock, 1981; Comstock & Ferreira, 1981, 1982, 1983;

Weibelzahl, 1990) but this stimulation gradually decreased when the concentration was greater

than 12 ppm (Comstock & Ferreira, 1983). Propiconazole is phytotoxic at 100 ppm in hot

water and phytotoxic at 500 ppm in cold water (Comstock & Ferreira, 1981).

Fungicides shown to be effective against Pythium and Pachymetra root rots include thiram,

captan (Surendra & Kumar, 1989), mancozeb (Magarey & Bull, 1994; Magarey et al., 1995),

maneb, zineb (Magarey & Bull, 1994), captafol, fenaminosulf, etridiazole, propamocarb-HCl,

pyroxyfur (Croft et al., 1984), methoxyethylmercury chloride, quintozene, carboxin and

fosetyl-Al (Peshney et al, 1994).

Croft & Magarey (1984) and Magarey et al. (1995) reported that drenching the soil with

fungicides active against Oomycetes (metalaxyl, fosetyl-Al and propamocarb) did not affect top

and root growth. However, Hoy & Schneider (1988, 1990) reported that drenching of the soil

with metalaxyl significantly increased the number and weight of shoots and roots in greenhouse

and field experiments, and reduced root rot severity in Pythium-'mfestzd soil in pots.

1.6 Factors Affecting Growth

1.6.1 Growing medium and fertigation

Growth of transplants partly depends on the quality of the growing medium and fertigation.

There should be a balance between drainage, air-filled porosity (AFP) and water-holding

capacity (WHC) as well as adequate nutrient elements. The optimum AFP levels for plants

grown in media are usually 15-25%. A coarse media has a high AFP and poor WHC, and a

medium with a high proportion of fine particles has a low AFP and high WHC. A medium is
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often waterlogged when the AFP is 5-10% causing oxygen deficiency and algal growth

(Handreck & Black, 1984). Oxygen deficiency seriously impairs the root and nutrient uptake

of sugarcane, causing a sharp decline in root weight when the level at the soil surface drops to

3% (Banath & Monteith, 1966).

Composted bagasse, composted pine bark and filtercake are commonly used growing media for

transplant production. In experiments at SASEX, the overall germination and shoot

development was good when SBS were planted in composted bagasse mixtures and a sand and

filtercake mixture (Anon., 1992). Bagasse is the residue obtained by crushing cane stalks for

sucrose extraction. It consists mainly of cellulose with some mineral matter, sugars and

various other substances (pentosans, lignin, gums and ash). Bagasse initially exhibits good

physical and chemical properties for the propagation of transplants (Anon., 1993b). However,

it decomposes over time and its physical structure is degraded, with the result that AFP

decreases and WHC increases. Composted pine bark has a stable physical structure because

although the tannins and cellulose are degraded, the lignin is resistant to enzymatic degradation

(Handreck & Black, 1984).

Filtercake is paniculate matter separated from the juice by filtration during the clarification

process. It is a soft, spongy, amorphous, dark brown material and contains sugars, fibre and

coagulated proteins including wax, albuminoids and inorganic salts (Kale & Shinde, 1986).

In South Africa, application of commercial liquid fertilisers or granular formulations is

recommended twice weekly during summer and weekly during winter (Anon., 1993a). In

Hawaii, no fertiliser is applied for the first two weeks until the root system is active.

Thereafter, a weekly spray application is made of a IN: IP: IK formulation (Ingamells, 1989).
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1.6.2 Germination temperature

Ingamells (1989) reported that the optimum temperature range for germination, growth and

root development to prevent pathogen infection of the sett is 30°-35°C. In an investigation

carried out at SASEX to determine the effect of various temperatures (20°, 24° and 28°C) on

the germination and growth of transplants, the highest germination and growth of NCo376 and

N12 was at 28°C and lowest germination was at 20°C (De Thezy, 1986).
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2. SURVEY OF FOUR TRANSPLANT NURSERIES

Abstract

Problems were encountered when production systems of four sugarcane transplant nurseries were compared.
Germination of setts in trays was often low, increasing production costs. There was a number of contributing factors
reducing germination, including the use of old and poor quality seedcane. Pre-germination of setts and heat treatment
of whole setts at 50°C for 120 minutes weakened buds that were often subsequently damaged by handling. High
temperatures and humidity in the germination rooms increased yeast and bacterial growth on setts, inhibiting
germination. Root and shoot growth of transplants was also adversely affected by the use of poor quality media with
high water-holding capacities. It was concluded that the greatest problem was low germination, which can be
overcome by using good quality seedcane and by improving heat-treatment procedures, sett treatments and growing
medium. This would result in the requirement of less seedcane, labour and preparation time.

2.1 Introduction

Four sugarcane transplant nurseries were visited early in 1995 to compare their production

systems and to determine where improvements might be made. A table listing the factors of

Table 2.1 was drawn up beforehand and was used to evaluate and discuss the production

methods, including seedcane source and age, heat treatment temperature and duration, growing

medium, irrigation and fertilisation. The nurseries were located at Sezela (South Coast),

Malelane (Mpumalanga), Pongola and Gledhow (North Coast).

2.2 Results and Discussion

There was apparently little collaboration between the nurseries, as reflected by the differences

in the procedures and materials used. Table 2.1 summarises the production methods employed

at the four nurseries. By comparing the systems of each nursery, it was possible to determine

which were the most economical and effective procedures currently used for the production

of transplants.

The growing media commonly used in the nurseries included bagasse, composted bagasse,

filtercake and composted pinebark. Composted bagasse was a popular medium that was

readily available to be composted on the site at minimal cost. It is spongy, ensuring easy
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placement of the setts in the trays, and had sufficient air-filled porosity for vigorous plant

growth. Media containing raw uncomposted bagasse soon composted in the trays. This

resulted in nitrogen depletion by microorganisms that are involved in the decomposition

process. Additionally, the roots were fully exposed when plants were pulled out of the trays,

resulting in the supply of little organic matter and moisture when planted into the field,

delaying growth. Composted pine bark (CPB) was also a popular medium, but relatively

expensive because it had to be bought from commercial factories.

Frequent problems were encountered with composted filtercake. It had a high water-holding

capacity resulting in poor root growth and abundant algal growth on the surface of the

medium. It was sometimes mixed with sand to improve drainage, making the trays heavy to

transport. Furthermore, particles of composted filtercake were small, often falling through the

drainage holes at the bottom of the trays. Additionally, the wettability of filtercake was low

when dry, causing the water to run off the trays instead of penetrating the medium.

The optimum age of seedcane for good germination and growth was considered to be between

eight and ten months. When seedcane was older than 12-months, major germination problems

were encountered. It was also noted that germination was far better when seedcane was cut

and treated soon after harvesting than when these procedures were delayed.

Three of the nurseries hot water treated whole setts (WS) which were approximately 60 to 100

cm long. Treatment at 50°C for 120 minutes was considered less damaging to WS than to

single-budded setts (SBS). However, the buds that were weakened by the treatment were

subsequently damaged, resulting in poor germination. Heat treatment of WS also required a

large heat treatment tank that is expensive to run because it holds a larger quantity of water and

uses more electricity than a smaller tank required for treatment of SBS. Therefore, in the

experiments described in this dissertation, the emphasis was placed on the treatment of SBS

to improve germination.

Three of the nurseries pre-germinated the SBS or WS in a germination room before planting

into trays. However, this step was time consuming and growth did not always continue after
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planting. Buds were also often damaged when pre-germinated WS were cut into SBS,

resulting in reduced germination rates.

Most of the nurseries irrigated the trays excessively, resulting in waterlogging and slow plant

growth, particularly when filtercake was used. Vigorous plant growth was obtained when

trays were irrigated for seven minutes four times a day.

The temperatures in the germination rooms of all nurseries were extremely high, resulting in

germination problems. Additionally, the geyser elements in water baths created vast quantities

of steam, resulting in yeast and bacteria growing on the walls of the germination room and on

the setts, particularly when setts were placed in open trays. It was concluded that a

temperature of 28°-32°C was ample for good germination, and the use of heater-fans and

watering the setts daily to maintain high humidity may be effective in reducing such problems.

The average germination in the nurseries was 55-70%, with lower germination during winter

months. This resulted in the need for more seedcane, labour, preparation time, electricity,

space and growing medium. As a result, the selling price of the transplants was high (12-25

cents per transplant). The greatest potential for reducing production costs was evidently to

improve germination.

A number of problems were encountered at the nurseries surveyed, including poor medium,

over-watering, poor quality seedcane, and time-consuming procedures that could be avoided.

The ideal situation would be to use good quality seedcane as soon as it is harvested and to cut

the stalks into SBS that would be subsequently heat-treated or treated with a chemical or

fungicide to stimulate germination. The SBS should be planted directly into trays to avoid bud

damage due to unnecessary handling. An increase in germination in the commercial nurseries

would result in less time spent on bulking-up of trays, efficient use of nursery area and less

seedcane, growing medium, labour and time required for transplant production, thus reducing

production costs.
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Table 2.1 Production systems used at four commercial sugarcane transplant nurseries.

Factors

Trays

Growing medium

Root pruning agent

Varieties commonly
used

Age of seedcane

Preparation of setts

Fungicide

Germination room

Irrigation

Shade

Time in nursery

Sezela

98-cell polystyrene

Raw bagasse and composted
pine bark

Styroseal*

N12, N16, N21

9-month

a) WS treated at 50°C for 2 hr
b) WS cut into SBS
c) SBS planted into trays

Benlate" sprayed onto trays

35°C, 2 fans, steam bath with
bore valve in middle of room

2-3 cycles of 1 hour/day

No shade

8 - 12 weeks

Malelane

98-cell polystyrene

Composted bagasse and filtercake

Everdip*

N14, N19, N24, N22, N25, N17

N19 8- or 9-months
other varieties 10-months

a) WS heat treated at 50°C for 2hr
b) WS pre-germinated in lug-trays

in germination room
c) WS cut into SBS
d) SBS planted into trays

Panoctine* dip

32°C, 3 geyser elements

4 cycles of 20 minutes/day

Hail netting only

6 - 7 weeks

Pongola

98-cell polystyrene

Bagasse and composted pine
bark mixture

Styroseal"

N19, N22, N25, N14, N24

8-9 month

a) WS cut into SBS
b) SBS treated at 50°C for 2hr
c) SBS pre-germinated in lug-

trays in germination room
d) SBS planted into trays

Panoctine* dip

34°C, geyser element

4 cycles of 7 minutes/day

Hail netting only

6-9 weeks

Gledhow

98-cell polystyrene

50% composted bagasse
50% filtercake

None

NCo376

14-month

a) WS treated at 50°C for 2 hr
b) WS cut into SBS
c) SBS pre-germinated in lug-

trays in germination room
d) SBS planted into trays

Panoctine* dip

28-40°C, geyser element

1 cycle of 90 minutes/day

No shade, use plastic covered
tunnels in winter

6-7 weeks



3. GENERAL PROCEDURES

3.1 General Propagation Technique

All experiments were conducted in the Pathology Department at SASEX. The initial propagation

technique is described here, and the modifications are described in following chapters. Healthy

and Clavibacter xyli subsp. xyli (C. x. ry/O-infected seedcane was obtained from variety

propagation plots at SASEX. The growing point and leaves were removed before the stalks were

cut into SBS (25 mm in length) using a twin-bladed circular saw. The SBS were placed in either

cotton bags or wire baskets to be heat treated at 50°C for 120 minutes in a 40 / heat treatment

tank. After thermotherapy, the SBS were soaked in guazatine (800 ppm; Panoctine®, Rhone

Poulenc) for five minutes and planted in a growing medium of composted bagasse in 98-cell

polystyrene trays, which had been treated with a copper-based root pruning solution (Plasdip®;

Starke-Ayres). Each tray was divided into four sections, each of which was a treatment plot

containing 20 SBS. The trays were placed in a hot and humid germination room (28°C, relative

humidity 75-95%) for 3-7 days, and were then transferred to benches in the open. Here the trays

were irrigated four times a day for ten minutes during summer months and for three minutes a day

during the winter months.

Since most experiments were completed 28 days after planting, the nutrients in both the setts and

the medium were sufficient to last this period. A hydroponic fertiliser (3:1:3 (38), Gromor®) was

applied only when nutrient deficiencies were visible.

All transplants were harvested from each plot for data collection 28 days after planting.

Germination was determined by counting the healthy shoots that had emerged in each plot. Dry

mass was determined by cutting each transplant at medium level, placing all shoots from each plot

into a paper bag and drying them at 60°C until the mass was constant.

40



The leaves of transplants in experiments described in Sections 5.2 and 5.3 were trimmed two

weeks before transplanting into the field to reduce transpiration. The scissors were sterilised with

90% ethanol after trimming the leaves of each transplant to avoid the spread of C. x. xyli.

3.2 RSD Testing

3.2.1 Transplants

Transplants were examined for C. x. xyli when they were three months old using

immunofloresence microscopy (Harris & Gillaspie, 1978). Stems of the transplants were

harvested and the outer leaves were removed. A piece of tissue was aseptically cut from each

stem, placed into an eppendorf tube containing 35 \xl of distilled water and centrifuged at 8000

rpm for ten minutes. The tissue was removed, the pellet resuspended in water and 20 \il of the

suspension placed in a on a 10-welled microscope slide to air dry.

When the drops of suspension were dry, 14 yd of C. x. xy/i-antiserum (at a dilution of 50 \x.l in

1000 u/ of bicarbonate buffer) was added to each well and the slides were placed in a humid

chamber at 30°C for 45 minutes. The slides were washed twice with Vz phosphate buffered saline

(Vz PBS) and 14 \xl FITC-labelled antiserum (20 \xl in 1000 \xl of bicarbonate buffer) was added

to each well. The slides were incubated again for 45 minutes at 30°C at 100% humidity and

washed twice with Vz PBS. The slides were blot dried and a small drop of Citifluor was placed

in each well and the slide was covered with a large coverslip. The slides were then examined

under oil immersion to detect C. x. xyli as small fluorescent rods using immunoflorescence

microscopy (Appendix 1).
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3.2.2 Mature plants

Stalks from transplants in each row were harvested and the lowest, most undamaged internode of

cane was cut from the stalk using a sharp knife. Xylem sap was blown through the section using

low-pressure compressed air and a moulded resin adapter (Richardson, 1978; Croft &

.Witherspoon, 1982). A drop of the xylem sap from the end of the stalk piece was transferred by

pipette to a microscope slide. The procedures for detecting RSD using immunoflorescence

microscopy were the same as in Section 3.2.1.

3.3 Statistical Analysis

All experimental designs used are described in Sokal & Rohlf (1981). The data were analysed

using Statgraphics Version 5.0. In every experiment, data were analysed using analysis of

variance (ANOVA) to determine the effect of treatment on germination and dry mass. The F-ran'o

and the significance of the F-ratio were obtained from the ANOVA table to determine if there

were significant differences between treatments.

When more than one sugarcane variety was used in an experiment, two- or three-way ANOVA

was used to compare treatment means to determine the effect of two or more qualitative factors

(eg treatment and variety) on germination or plant growth and the interactions between these

factors.

When there were significant F-ratios in the ANOVA tables, the data were analysed using least

significant difference tests (LSD) to determine which treatments were significantly different from

one another (equation a). The t ^value was substituted by the value obtained from the t-

distribution tables using the error degrees of freedom taken from the ANOVA table.

(a) LSD = tdfi-MS^thm
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To compare all pairs of means, the upper and lower comparison limits were calculated for each

mean using equation (b). Two means were significantly different if their limits did not overlap.

(b) comparison limits = mean ± — LSD
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3.5 Appendix 1

V2 PBS (0.85% NaCI in 0,01 M phosphate) was made up by dissolving 0.96 g sodium di-hydrogen

orthophosphate, 1.4 g di-sodium hydrogen orthophosphate, 8.7 g sodium chloride and 0.2 g

sodium azide in 1000 ml deionized water. The pH was adjusted to 7.0 - 7.4.

0.1 M bicarbonate buffer was made up by dissolving 1.22 g sodium hydrogen carbonate in 146

ml deionized water (A). Sodium carbonate (0.57 g) was dissolved in 54 ml deionized water (B).

Solution A was added to solution B to make a final volume of 200 ml. Sodium azide (0.04 g)

was added to the final solution and the pH was adjusted to 9.6.
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4. SEEDCANE QUALITY

Abstract

Experiments were carried out to determine the effects of original bud position on the stalk on the germination and
growth of six commercial varieties. When seedcane was old, the germination of single-budded setts (SBS) from the
top of the stalk was significantly higher than germination of those from the middle and bottom of the stalk. Storage
of seedcane for three and eight days after harvest adversely affected the gennination and growth of varieties N16 and
N22, indicating that seedcane must be treated and planted when it is obtained from the field. In experiments to
determine the effect of topping seedcane three days before harvest of on the germination of SBS and plant growth,
topping did not affect the germination of Nil , N12, N16 and N17, and significantly improved the germination of
NCo376. In another experiment, topping slightly increased germination of NCo376, and significantly increased the
germination of N16. When topped stalks of N16 were subsequently heat treated at 50°C for 120 minutes,
germination was the same as that of SBS from untopped cane that had not been treated.

4.1 Bud Position

4.1.1 Introduction

Younger buds at the top of the stalk have a higher gennination ability and germinate faster

than the older buds at the middle or bottom of the stalk in both noble canes (Clements, 1940;

Bellamy & Chinnery, 1988) and commercial varieties in Hawaii and Nigeria (Sheets, 1988;

Abayomi et al., 1990). The influence of bud position on gennination can be affected by a

number of factors. Firstly, the inhibitory effect of the apical bud on the germination of lateral

buds decreases once the stalk is cut into single-budded setts (SBS). However, the

concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) relative to gibberellic

acid (GA3) may remain high in the SBS and delay or inhibit germination. Previous work at

SASEX showed that IAA and ABA leached out of SBS during heat treatment, increasing the

likelihood of germination (Anon., 1984). Therefore, germination is partly determined by the

initial hormone concentration in the bud, which may vary according to the original position

of the bud on the stalk.

Secondly, germination of SBS is partly dependent on the health of the buds. In South Africa,

larvae of Eldana saccharina Walker primarily attack the middle and base of mature stalks.

The most common penetration site is at the node, where feeding usually starts and extends into
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the internode (Atkinson, 1979). The larvae can survive and increase in numbers in cane

stacked for several weeks after harvest, and survive when seedcane is planted at depths of 4

to 10 cm, resulting in poor germination (Carnegie et al, 1976).

Additionally, besides mechanically damaging the stalk, the larvae facilitate infection by the red

rot pathogen, Glomerella tucumanensis (Edgerton, 1955; Sandhu et al., 1969; Trenor &

Bailey, 1989). Trenor & Bailey (1989) found that there was a high correlation between the

incidence of red rot and the number of stalks bored by E. saccharina larvae, and in Louisiana

the borer Diatreae saccharalis carried spores of red rot through tunnels it had made in the

interior of the stalk. Stalks free of the borer were often free of the disease (Edgerton, 1955).

In South Africa, red rot was mainly found in the lower third of the cane stalk (Trenor &

Bailey, 1989). G. tucumanensis often causes germination failure, particularly during periods

of cool and wet wetter (Singh & Singh, 1989).

Since germination can be improved by elimination of damaged buds, or buds with a low

germination ability, the aim of this experiment was to determine the effect of original bud

position on the germination of six South African commercial sugarcane varieties.

4.1.2 Materials and methods

Seventeen-month old stalks of varieties N12, N16, N17, N19, N22 and NCo376 were divided

into top, middle and bottom sections, which were subsequently cut into SBS. Each treatment

was represented by a total of 60 SBS, divided into three replications of 20 SBS each. Without

sorting to remove damaged buds, the SBS were planted into composted bagasse in trays and

germination was recorded at 28 days. Data for the percent germination for all six varieties

were pooled and evaluated using a two-way analysis of variance (ANOVA). Mean separation

was accomplished using least significant differences.
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4.1.3 Results and discussion

The overall germination in this study was low because the seedcane was old, conditions were

unfavourable for germination, and many SBS, particularly those from the lower section, were

damaged by E. saccharina. Statistical analysis of the data indicated that the original position

of the bud had a significant effect on germination (Table 4.1). The mean germination of the

six varieties was significantly higher when SBS were cut from the top than from the middle

of the stalk (P < 0.01), which in turn was significantly higher than that of SBS taken from the

bottom of the stalk (P<0.01) (Figure 4.1).

Table 4.1 Two-way ANOVA of the mean germination of varieties N12, N16, N17, N19,
N22 and NCo376.

Factor

Original bud position

Variety

Original bud position x variety

df

2

5

10

Variance-ratio

68.147

6.356

1.666

P-value

0.0000

0.0003

0.1298

Figure 4.1

Top Middle Bottom

Bud Position

Effect of original bud position on the stalk on the mean germination percentages
of six sugarcane varieties. Means whose 99% comparison intervals do not
overlap are significantly different.
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The results were consistent for all varieties as indicated by the lack of a significant interaction

between variety and original position of the bud (Table 4.1). Germination of SBS was

significantly higher when taken from the top than from the middle of the stalk in varieties

N12, N16 and NCo376 (P<0.01), and significantly higher than SBS taken from the bottom

of the stalk in varieties N12, N16, N17, N19 and NCo376 (P<0.01) (Figure 4.2). In all

varieties, the germination of the SBS from the bottom of the stalk was lower than germination

of those from the middle section of stalk, but not significantly. Germination of N22 also

decreased as age of the buds increased, but not significantly.
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Figure 4.2 Effect of original bud position on the stalk on germination of varieties N12,
N16, N17, N19, N22 and NCo376.

Therefore, in this experiment the youngest buds at the top of the stalk had the greatest potential

for germination, which could possibly be due to lower levels of IAA and IBA in this region.

However, this needs to be substantiated with biochemical studies of hormone levels in the

different stalk sections. The low germination of SBS from the older sections may be attributed

to the generally higher incidence of E. saccharina penetrating the lower section of the stalk

(Atkinson, 1979). The results strongly suggested that when the use of old seedcane cannot be

avoided, only SBS from the upper parts of the stalk should be used and must be sorted before

planting to discard all visibly infected and damaged buds.
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4.2 Seedcane Storage

4.2.1 Introduction

Storage of seedcane after harvest and before preparation of transplants can cause dehydration

of the stalks, further spread of systemic pathogens, further damage by E. saccharina and the

fermentation of sugars, resulting in poor germination. Transplant nurseries sometimes store

seedcane either outside in the sun or under cover for several days before they are able to plant.

When cane is stored at unfavourable conditions, the buds may swell but usually do not

germinate and roots do not develop from the primordia. The aim of this experiment was to

determine the effect of storage of cane before planting on germination of SBS and the

subsequent growth of two commercial sugarcane varieties.

4.2.2 Materials and methods

Stalks of N16 and N22 were collected from the field, one, three and eight days before planting

and stored in a well-ventilated shed. After this period the stalks were cut into SBS and planted

in composted bagasse in trays. Each treatment was represented by a total of 60 SBS, divided

into three replications of 20 SBS each. Germination and dry mass were recorded after 28

days. And the data for both varieties were pooled and evaluated using a two-way analysis of

variance (ANOVA). Mean separation was accomplished using least significant differences.

4.2.3 Results and discussion

Statistical analysis of the data indicated that storage of the seedcane had significant effects on

both germination and dry mass (Table 4.2). Both mean germination and dry mass of the two

varieties were significantly lower when seedcane was stored for three (P<0.05) and eight days

(P<0.01) than when stored for one day (Figure 4.3). Although levels of E. saccharina were

not quantified in this study, it was noted that seedcane stored for more than one day was
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severely damaged by E. saccharina larvae and G. tucumanensis, whereas few SBS were

damaged by borings of E. saccharina larvae when seedcane was stored for one day. The

seedcane stored for eight days was also dry and the sugars were fermenting, indicated by the

scent of ethanol.

Table 4.2 Two-way ANOVA of the mean germination and dry mass data of varieties N16
and N22 after storage for one, three and eight days before planting.

Factor

Storage period

Variety

Storage period x Variety

df

2

1

2

Germination %

Variance-ratio

22.646

5.0970

1.301

P-value

0.0001

0.0434

0.3081

Dry mass

Variance-ratio

55.605

2.632

30.816

P-value

0.0000

0.1307

0.0000

The germination results were consistent for both varieties as indicated by the lack of a

significant interaction between variety and storage period (Table 4.2). Storage of the

seedcane before planting had a significant effect on the germination of both N16 and N22.

Storage for three days decreased germination, particularly of N22, and storage for eight days

significantly decreased germination of both varieties (P<0.01) (Figure 4.4a). The adverse

effects that storage had on these two varieties may be due to the fact that N16 is susceptible

to E. saccharina and N22 is of intermediate resistance (MG Keeping, 1997, pers. comm.1).

The use of a variety such as N12 that is resistant to E. saccharina may result in less adverse

effects on germination, due to lower initial numbers of E. saccharina in the stalks.

Germination of both varieties stored for one day would be acceptable in a commercial nursery

(72 & 73% germination). However, the low germination rates obtained when seedcane was

stored for three days or longer (16-60%) would be unsatisfactory, increasing production costs.

1 Dr MG Keeping. SASEX, Private Bag X02, Mount Edgecombe, KwaZulu-Natal.
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Effect of seedcane storage on mean germination (a) and dry mass (b) of
varieties N16 and N22.

The dry mass results were not consistent for both varieties as showed by the significant

interaction between storage period and variety (P<0.01) (Table 4.2). Storage of seedcane for

three days had no effect on dry mass of N16 but significantly decreased dry mass of N22

(Figure 4.4b). Storage for eight days significantly decreased dry mass of both varieties.
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Figure 4.4 Effect of seedcane storage on the germination (a) and dry mass (b) of varieties
N16 and N22.

It can be concluded that storage of seedcane for a prolonged period causes significant decreases

in germination and plant growth. Plant growth of N22 was more severely affected by storage

than that of N16, suggesting that the response to storage may depend on variety. However,

the different responses were possibly due to the initial levels of systemic infection by E.
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saccharina and red rot, and this can depend on the resistance of varieties to these. These

results strongly indicate that it is essential for growers to cut, treat and plant seedcane as soon

as it is obtained from the field. Any delay in planting may result in dehydration of the stalk,

spread of pests and pathogens and fermentation of sugars, all of which adversely affect

germination and subsequent growth.
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4.3 Effect of Topping on Germination and Dry Mass

4.3.1 Introduction

Removal of the shoot apex ('topping') promotes germination of the lateral buds by removing

the source of apical dominance (Rubinstein & Nagao, 1976; Anon, 1984). This technique has

been successfully used in Taiwan where seedcane is topped one to two months before

harvesting to allow the lateral buds to germinate on the standing seedcane before they are

harvested for planting into the field (Peng, 1984). The aim of the following two experiments

was to determine the effect of topping the seedcane stalks three days before seedcane collection

on germination of SBS and plant growth. The effect of topping stalks of two commercial

varieties on germination of heat-treated and untreated SBS was determined in Experiment A,

and the effect of topping seedcane stalks of five sugarcane varieties on germination and plant

growth was determined in Experiment B.

4.3.2 Materials and methods

In Experiment A, 12 standing stalks of N16 and NCo376 were topped in the field by removing

the youngest stem and leaf tissues at the natural breaking point. These stalks were marked

with tape so that they could be easily identified in the field. Three days later the topped stalks

and 12 untopped stalks of each variety were collected, and each tied into a bundle. The stalks

of each bundle were cut into SBS (approximately six cm), half of which were heat treated at

50°C for 120 minutes. All SBS were then placed into cotton bags which were then placed in

open trays in a germination room (28 °C). The number of swollen buds and shoots was

recorded after seven days, the total of which will be referred to as 'germination'.

In Experiment B, six stalks each of varieties NCo376, N i l , N12, N16 and N17 were topped

in the field. Three days later the topped stalks and six untopped stalks (control) of each variety

were collected from the field and cut into SBS which were planted into composted bagasse in

polystyrene trays. The varieties NCo376, Ni l and N12 were planted during the middle of
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winter (19 July 1996) and N16 and N17 were planted while temperatures were still low (29

August 1996). Germination and dry mass were recorded 28 days after planting and the data

for all varieties in each experiment were pooled and evaluated using two- or three-way analysis

of variance (ANOVA). Mean separation was accomplished using least significant differences.

4.3.3 Results and discussion

Experiment A

Statistical analysis of the data indicated that both topping and heat treatment had a significant

effect on germination (Table 4.3). Topping significantly increased the mean germination

(+24%,P<0.01) (Figure 4.5a), and hot water treatment (HWT) significantly decreased the

mean germination of the two varieties (-24%, P<0.01) (Figure 4.5b).

Table 4.3 Three-way ANOVA of the mean germination of varieties N16 and NCo376
after topping and heat treatment (HWT) of single-budded setts.

Factor

Topping

HWT

Variety

Topping x HWT

Topping x variety

HWT x variety

Topping x HWT x variety

df

1

1

1

1

1

1

1

Variance-ratio

9.011

9.011

16.315

1.873

4.397

2.596

3.356

P-value

0.0062

0.0062

0.0005

0.1838

0.0467

0.1202

0.0794
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Figure 4.5 Effect of topping (a) and heat treatment (b) on the mean germination of

varieties N16 and NCo376.

The effect of topping on germination was not consistent for both varieties as indicated by the

significant interaction between variety and topping (P<0.05; Table 4.3). Topping increased

germination of NCo376, but not significantly so, and significantly increased germination of

N16(P<0.01) (Figure 4.6a).
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The interactions between HWT and both topping and variety was not significant (Table 4.3).

Heat treatment at 50 °C for 120 minutes slightly reduced germination of NCo376 and

significantly reduced germination of N16 (P<0.01) (Figure 4.6b). Topping increased

germination of both untreated and heat treated SBS. Germination of heat treated SBS from

untopped stalks was low. However, germination of heat treated SBS from topped stalks was

similar to that of untreated SBS from untopped stalks, indicating that topping possibly

increased the tolerance of SBS to heat treatment (Figure 4.6c).

To conclude, topping the seedcane stalks three days before harvest increased germination of

both varieties, particularly when seedcane was subsequently heat treated. The lack of a

significant improvement in germination of NCo376 after topping was probably due to the

already high germination of the untopped control, even after heat treatment. Therefore, little

improvement in germination could be expected.
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(a) NCo376 N16

Variety
Untopped|

Topped

NCO376 N16

Variety

(c) No HWT HWT
Heat treatment

Untopped

Topped

Figure 4.6 Effect of topping on the germination of heat-treated and untreated single-
budded setts of varieties NCo376 and N16. The interaction between topping
and variety was significant (a), but the interactions between heat treatment and
variety (b) and heat treatment and topping (c) were non-significant.
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Experiment B

Statistical analysis of the data indicated that topping increased the mean germination of the five

varieties ( + 16%), but not significantly so (P=0.05; Table 4.4; Figure 4.7). The effect of

topping on germination was consistent for all varieties, as indicated by the lack of a significant

interaction between topping and variety (Table 4.4). In contrast to the previous experiment,

topping significantly increased germination of NCo376 (Figure 4.8). This was probably

because germination of NCo376 in this experiment was low (57%) due to lower temperatures

and the use of older seedcane. Therefore, the effect of topping on germination depends on

factors such as seedcane quality and germination conditions, rather than on variety. Topping

decreased germination of Ni l and increased germination of N12, N16 and N17.

Table 4.4 Two-way ANOVA of the mean germination and dry mass data of varieties
Ni l , N12, N16, N17 and NCo376 after topping.

Factor

Topping

Variety

Topping x variety

df

1

4

4

Germination %

Variance-ratio

3.752

1.911

1.437

P-value

0.0670

0.1480

0.2584

Dry weight (g)

Variance-ratio

15.037

32.301

11.148

P-value

0.0011

0.0000

0.0001
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« 65
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60-

55 -
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Untopped Topped
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Figure 4.7 Effect of topping on the mean germination of varieties NCo376, N i l , N12,
N16 and N17.
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100

NCo376 Ni l N12 N16 N17

Variety

Figure 4.8 Effect of topping on the germination of five sugarcane varieties.

Statistical analysis of the data indicated that topping significantly increased the mean dry mass

of the five varieties (+43%, P<0.01) (Table 4.4; Figure 4.9). The results were not

consistent for all varieties as indicated by the significant interaction between variety and

topping (Table 4.4). Topping significantly increased dry mass of NCo376, increased dry mass

of N12, and had little effect on dry mass of Nl 1, N16 and N17 (Figure 4.10).

Figure 4.9

0.12T

^ 0.10

0.08

0.06

0.04

"n*

Untopped Topped

Treatment

Effect of topping on the mean dry mass of varieties NCo376, N i l , N12, N16
and N17. Means whose 95% comparison intervals do not overlap are
significantly different.
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0.25

NCo376 Ni l N12 N16 N17

Variety

Figure 4.10 Effect of topping on the dry mass of five sugarcane varieties.

To summarise, topping of seedcane stalks three days before collection significantly improved

germination and dry mass of NCo376 but had no significant effect on germination and dry

mass of varieties N i l , N12, N16 and N17. Therefore, topping three days before collection

is not recommended when SBS are not subsequently heat treated. Since topping prevented the

adverse effects of heat treatment on germination in Experiment A, further research is necessary

in this area.

To summarise this chapter, it is important that good quality seedcane is used for transplant

production to obtain good germination and plant growth. The age of the seedcane should be

8-10 months because the germination of SBS from senescent or immature seedcane is often

poor. All visibly damaged SBS and older nodes should be discarded. Additionally, topping

of seedcane in the field had no significant effect on germination of untreated SBS of Ni l ,

N12, N16 and N17, but significantly improved germination of NCo376 and heat-treated N16.

Therefore, topping of seedcane more than three days before collection, particularly before heat

treatment at 50°C for 120 minutes, may increase germination and warrants further research.
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5. HOT WATER TREATMENT

Abstract

Three experiments were carried out to determine the effect of various hot-water treatments of single-budded setts
(SBS) and whole setts (WS) on germination of buds and control of Clavibacter xyli subsp. xyli (C. x. xyli). In the
preliminary experiment, treatment of SBS at 52°C for 30 minutes controlled C. x. xyli in 15-week-old transplants and
significantly increased germination of N19 but not N14. The standard treatment of 50°C for 120 minutes reduced
germination of both N14 and N19. In the subsequent experiments, treatment of SBS of varieties N12, N14, N16,
N17, N19, N24 and N25 at 52°C for 30 minutes significantly decreased germination, but not to the same extent as
the standard treatment. Treatment of SBS at 52°C for 30 minutes controlled C. x. xyli in varieties N12, N16, N17,
N19, N24 and N25, but not in N14.

5.1 Preliminary Experiment

5.1.1. Introduction

Hot water treatment (HWT) of 50 °C for 120 minutes is the method commonly used in South

Africa for the treatment of whole setts (WS) and single-budded setts (SBS) to control

Clavibacter xyli subsp. xyli (C. x. xyli), the causal organism of ratoon stunting disease (RSD)

(Anon., 1994). Although this treatment does not achieve total elimination of C. x. xyli from

setts, a high level of control is achieved (Anon., 1979; Anon., 1988) and the use of this

practice has reduced levels of the pathogen in areas in South Africa (Bailey & Tough, 1991,

Bailey etal., 1994).

Varieties differ in their minimum treatment time required to kill C. x. xyli, depending on the

thickness of the stalk, growing conditions, cane quality and cane age. Treatment at 50°C for

120 minutes has adverse effects on the germination of the varieties N12, N17, N19 and N21,

whereas the varieties NCo376 and N14 are relatively tolerant (Anon., 1990). The common

practice in transplant nurseries is to heat treat whole stalks or WS that are approximately 60-

100 cm. However, subsequent handling can damage many buds. Due to high water and

electricity costs, and the expense of a large tank, heat treating SBS would be more economical

than that of WS. However, SBS are more sensitive to HWT than WS because the tissues of

SBS reach the required temperature quicker than those in the centre of WS, resulting in tissue

damage after prolonged treatment. Therefore, shortening the treatment time may be possible
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so that C. x. xyli is eliminated and germination is not unduly adversely affected. In previous

experiments at SASEX to determine the efficacy of various periods of HWT at 50 °C in

controlling C. x. xyli, treatment of SBS for less than 120 minutes did not completely control

C. x. xyli (Anon., 1988). In Hawaii, low levels of infection still occurred after WS were

treated at 52°C for 30 minute. However, treatment of infected SBS at 52°C for 30 minutes

may be effective in eliminating C. x. xyli.

The aim of this experiment was to determine the effect of HWT of SBS and WS at various

temperatures and periods on germination of SBS in trays and their control of C. x. xyli.

5.1.2 Materials and methods

Seventeen-month-old stalks of varieties N14, N19, N17 and NCo376 were obtained from a C.

x. xy/i-infected variety collection at SASEX. Single-budded setts of N14 and N19 were cut

using a twin-bladed circular saw and placed into cotton bags, and WS (approximately 50 cm)

of N17 and NCo376 were tied into bundles. The setts were then immersed in the water tank

at the required temperature for the required period (Table 5.1).

Table 5.1 Hot-water treatments used to treat single-budded setts (SBS) of the varieties
N14 and N19 and whole setts (WS) of the varieties N17 and NCo376.

Temperature

50°C

52 °C

54°C

Time (minutes)

SBS

60, 90, 105, 120 & 135

30, 60, 90 & 120

15, 30, 45 & 60

WS

60, 90, 120 & 135

30, 60, 90 & 120

30, 60, 90 & 120

The WS were subsequently cut into SBS. All SBS were then soaked in guazatine (800 ppm;

Panoctine®, Rhone Poulenc) for five minutes and pre-germinated in cotton bags in the

germination room. Each treatment was represented by a total of 50 SBS divided into two
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replications of 25 SBS each. After five days, SBS with swollen buds or shoots were planted

into composted bagasse in polystyrene trays. Germination was recorded 28 days after planting

and transplants of N14 and N17 were tested for the presence of C. x. xyli using

immunoflorescence microscopy (IFM), as described in Section 3.2.1 after 15 weeks. Data for

percent germination and plant dry mass for both SBS and WS were pooled and evaluated using

a two-way analysis of variance (ANOVA). Mean separation was accomplished using least

significant differences.

5.1.3 Results and discussion

5.1.3.1 Heat treatment of SBS

Examination of the xylem sap of N14 using IFM showed that all transplants grown from

untreated SBS were infected with C. x. xyli. Cells of C. x. xyli were also present in transplants

grown from SBS treated at both 50°C for 60 and 90 minutes and 54°C for 15 minutes. Cells

of C. x. xyli were not detected in transplants grown from SBS treated at 50°C (105, 120 and

135 minutes), 52°C (30-120 minutes), and 54°C (30-60 minutes). Since the presence of C.

x. xyli was reported in transplants treated at 50°C for 105 minutes in previous work at SASEX

(Anon., 1988), but not in this experiment, these results were not regarded as conclusive.

There remains a possibility that C. x. xyli was present in the young transplants, but at low

concentrations that could not be detected using IFM.

Statistical analysis of the data of N14 and N19 revealed that heat treatment had a significant

effect on germination (Table 5.2). The standard treatment decreased the mean germination

compared with the control. Treatment at 52°C for 30 minutes increased mean germination

compared with the standard treatment (P< 0.05) and the control (Figure 5.1). This treatment

possibly improved germination by controlling systemic fungal infections and by adjusting the

hormonal balance to one favourable for germination. Due to the uncertainty of control of C.

x. xyli using this treatment, further experiments were necessary to test for the presence of C.

x. xyli in xylem sap from mature plants. Treatment of SBS at 52°C for 60 minutes had no
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effect on mean germination compared with the standard treatment and decreased germination

compared with the control. The mean germination was also improved by treatment at 54°C

for 15 minutes, but this treatment did not control C. x. xyli (Figure 5.1).

Table 5.2 Two-way ANOVA of the mean germination of varieties N14 and N19 after heat
treatment of single-budded setts.

Factor

Heat treatment

Variety

Heat treatment x variety

df

13

1

13

Variance-ratio

17.424

24.933

1.747

P-value

0.0000

0.0000

0.1054

g 52/90

H 52/12

0 10 20 30 40 50

Germination %

Figure 5.1 Effect of heat treatment of single-budded setts on the mean germination of
varieties N14 and N19. Means whose 95 % comparison intervals do not overlap
are significantly different.
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Although N19 is considered to be more sensitive to HWT than N14, the results were consistent

for both varieties as indicated by the lack of a significant interaction between variety and HWT

(Table 5.2). There were highly significant differences between treatments of N14 and N19

(Table 5.3). Treatment of both varieties at 50°C for 135 minutes, 52°C for 90 and 120

minutes, and 54°C for 30-60 minutes adversely affected germination compared with the

control. The standard treatment of 50°C for 120 minutes controlled C. x. xyli and decreased

germination of N14 (-14%) and N19 (-16%). Treatment at 52°C for 30 minutes significantly

improved germination of N19 (P=0.05) and had little effect on the germination of N14

compared with the control and standard treatment. Treatment of SBS at 52°C for 60 had no

significant effect on germination of both N14 and N19 compared with the standard treatment.

Table 5.3 Effect of heat treatment of single-budded setts on germination of N14 and N19.

Treatment

Temperature

50°C

52°C

54°C

Time

60

90

105

120

135

30

60

90

120

15

30

45

60

Control

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

M 4

55 a

56 a

49abc

50 ab

49abc

57 a

42abc

32 cd

20 de

52 ab

36 bed

12 e

4e

58a

17.8
24.7

N19

60a

36 cd

36 cd

32cde

14 ef

60a

38 be

16def

4f

58 ab

12 ef

Of

Of

38 be

20.7
28.7

C. x.
xyli

control

NO

NO

YES

YES

YES

YES

YES

YES

YES

NO

YES

YES

YES

Means in a column with a letter in common are not significantly different at the 5% level
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5.1.3.2 Heat treatment of WS

Examination of the xylem sap of N17 using IFM showed that C. x. xyli was present in plants

grown from both untreated WS and WS treated at 50°C for 60 and 90 minutes. Cells of C.

x. xyli were not detected in plants grown from WS treated at 50°C (120 and 135 minutes),

52°C (30-120 minutes) and 54°C (30-120 minutes). As in the previous section, there is a

possibility that C. x. xyli was present, but was not detected due to the low concentrations of

the cells in the young plants.

Statistical analysis of the data indicated that heat treatment significantly affected the mean

germination of N17 and NCo376 (Table 5.4). The standard treatment of 50°C for 120

minutes controlled C. x. xyli but decreased the mean germination compared with the control.

Treatment at 52°C for 30 minutes significantly increased mean germination compared with the

standard treatment and the control (P=0.05) and appeared to control C. x. xyli. Treatment of

52 °C for 60 minutes had no effect on germination compared with the standard treatment

(Figure 5.2).

Table 5.4 Two-way ANOVA of the mean germination of varieties N17 and NCo376 after
heat treatment of whole setts.

Factor

Heat treatment

Variety

Heat treatment x variety^

df

12

1

12

Variance-ratio

20.477

47.200

2.133

P-value

0.0000

0.0000

0.0515

Although N17 is considered to be more heat sensitive than NCo376, the results were consistent

for both varieties as indicated by the lack of a significant interaction between HWT and variety

(Table 5.4). Prolonged treatment of both varieties at all temperatures (50°C for 135 minutes,

52°C for 90 and 120 minutes, and 54°C for 30-120 minutes) adversely affected germination

(Table 5.5). The standard treatment (50°C for 120 minutes) controlled C. x. xyli and

decreased germination of N17 (-5%) and NCo376 (-14%). Treatment of 52°C for 30 minutes
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significantly improved germination compared with both the control (N17; P=0.01) and the

standard treatment (N17; P=0.01 and NCo376; P=0.05). Treatment of WS at 52°C for 60

minutes slightly improved germination of both varieties compared with the standard treatment.

Control

20 40 60

Germination %

Figure 5.2 Effect of heat treatment of whole setts on the mean germination of varieties
N17 and NCo376. Means whose 95% comparison intervals do not overlap are
significantly different.

To conclude, WS cannot be treated at 50°C for periods less than 120 minutes because C. x.

xyli is not eliminated. Treatment at 52°C for 30 minutes was the only treatment that appeared

to control C. x. xyli and did not adversely affect germination to the same extent as the standard

treatment of WS.
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Table 5.5 Effect of heat treatment of whole setts on germination percentage of the
varieties N17 and NCo376.

Treatment

Temperature

50°C

52°C

54°C

Control

LSD (P=0.05)
LSD (P=0.01)

Time

60

90

120

135

30

60

90

120

30

60

90

120

N17

60 b

60b

42 cd

34 de

70 a

54 b

16 f

6gh

28 e

14 fg

Oh

Oh

44c

9.9
13.8

Germination (%)

NCo376

94 a

59 bed

49 bed

43bcde

72 ab

52 bede

35 bed

24def

36 cdef

18 f

13 ef

11 f

57abc

27.4
38.2

C. x. xyli
control

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

Means in a column with a letter in common are not significantly different at the 5 % level
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5.2 Heat Treatment of Single-Budded Setts and Whole Setts

5.2.1 Introduction

In the preliminary HWT experiment cells of C. x. xyli were not detected in 15-week old

transplants grown from SBS treated at 52°C for 30 minutes. Compared with the control, this

treatment significantly increased germination of N19 and had no effect on germination of N14.

Treatment of WS at 52 °C for 30 minutes increased germination of N17 and NCo376. The aim

of this experiment was to determine the effect of various heat treatments of both SBS and WS

on the germination of N12 (a variety considered to be highly sensitive to HWT), and to test

for the presence of C. x. xyli in mature plants grown from the heat-treated setts.

5.2.2 Materials and methods

Single-budded setts and WS of the heat-sensitive variety N12 were heat treated according to

the methods described in Section 5.1.2 using the treatments listed in Table 5.6. Each

treatment was represented by a total of 100 SBS, divided into five replications of 20 SBS.

Germination was recorded 28 days after planting into trays. The plants were then transplanted

into the field to permit accurate testing for C. x. xyli in mature plants. Since germination was

poor, each row contained transplants from two replicates. Each of the two blocks in the field

consisted of seven rows spaced 1.2 m apart, each containing 15 transplants spaced 0.5 m apart.

Ten months after planting, one stalk from each transplant was measured for height and the

xylem sap was extracted from the lowest undamaged internode to test for the presence of C.

x. xyli using IFM. Data for the germination of N12 were pooled and evaluated using analysis

of variance (ANOVA). Mean separation was accomplished using least significant differences.

Table 5.6. Heat treatments of single-budded setts and whole setts of the variety N12.

Single-budded setts

50°C/105 minutes
50°C/120 minutes
52°C/30 minutes

Whole setts

50°C/120 minutes
52°C/30 minutes
52°C/60 minutes
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5.2.3 Results and discussion

Examination of the xylem sap of N12 using IFM showed that 29 of the 30 stalks sampled from

the rows planted with untreated transplants were infected with C. x. xyli (Table 5.7). None

of the stalks were found to be infected after treatment of SBS at temperatures of both 50°C

(105 and 120 minutes) and 52°C (30 minutes). Two of the 30 stalks sampled were infected

after treatment of WS at both 50°C for 120 minutes and 52°C for 60 minutes. Over half the

stalks were infected after treatment of WS at 52°C for 30 minutes.

Therefore, none of the treatments of WS completely eliminated C. x. xyli, including the

standard treatment of 50°C for 120 minutes. This result confirms previous experiments at

SASEX where C. x. xyli was detected in 1 % of plants grown from WS given this treatment

(Anon., 1979). Control of C. x. xyli was more effective when SBS were heat treated because

heat penetrated the cut ends and reached the centre of the SBS sooner than the centre of the

WS. As a result, the treatment time was not sufficient for complete pathogen control in WS

and the pathogen probably spread from infected stalks to healthy stalks during cutting.

Table 5.7 Incidence of C. x. xyli in plants after heat treatment of infected setts of N12.

Treatment

Untreated control

SBS at 50°C for 105 min

SBS at 50°C for 120 min

SBS at 52 °C for 30 min

WS at 50°C for 120 min

WS at 52°C for 30 min

WS at 52°C for 60 min

Number of stalks with C. x. xyli
(30 stalks tested)

29

0

0

0

2

18

2

Statistical analysis of the data indicated that HWT had a significant effect on germination and

plant height. Heat treatment of SBS at 50°C (105 and 120 minutes) and WS at 50°C (120

minutes) and 52 °C (60 minutes) significantly decreased germination compared with the
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control, (P<0.01) (Figure 5.3). Germination results were similar when both SBS and WS

were treated with the standard treatment and at 52°C for 30 minutes, indicating that treatment

of SBS was no more deleterious to germination than treatment of WS. Therefore, SBS of N12

can be heat treated instead of WS to save time, electricity and water, and to obtain better

control of C. x. xyli. Treatment of SBS and WS at 52°C for 30 minutes slightly decreased

germination compared with the control, but not significantly. The germination of SBS treated

at 52°C for 30 minutes was significantly higher than that of SBS treated with the standard

treatment (P=0.05).

20 40 60 80

Germination %

100

Figure 5.3 Effect of heat treatment of single-budded setts (SBS) and whole setts (WS) on
germination of N12. Means whose 99% comparison intervals do not overlap
are significantly different.

All treatments, except HWT at 50°C for 105 minutes, reduced stalk height at ten months,

indicating that these treatments reduced plant vigour and probably would reduce yields of the

plant crop. The height of the plants grown from WS treated at 50°C for 120 minutes was

significantly lower than that of the control (P=0.05), and less than that of plants grown from
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SBS treated similarly. Treatment of both SBS and WS at 52°C for 30 minutes did not reduce

height to the same extent as treatment at 50°C for 120 minutes (Figure 5.4).

-rSBS(50xlO5) • i ill lisiiiiii j±i!iit2ili*i*I7T

WS (52X60)

S
Control-1-

t » . H »' '!

40 60 80 100

Stalk height (cm)
120

Figure 5.4 Effect of heat treatment of single-budded setts (SBS) and whole setts (WS) of
the variety N12 on stalk height at 10 months. Means whose 95% comparison
intervals do not overlap are significantly different.

To conclude, treatment of both SBS and WS at 52°C for 30 minutes reduced germination and

height of N12, but not to the same extent as the standard treatment. In contrast, in Section

5.1, HWT of SBS and WS at 52°C for 30 minutes either improved or had no effect on

germination, indicating that N14, N17 and NCo376 may be more heat tolerant than N12.

However, these different responses probably not only depended on variety, but also on

thickness of the stalk, age of seedcane, growing conditions and seedcane quality. Therefore,

similar experiments comparing varieties of the same age and from the same plots were

necessary.
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5.3 Heat Treatment of Single-Budded Setts

5.3.1 Introduction

In previous experiments the standard heat treatment of SBS at 50 °C for 120 minutes reduced

the mean germination of varieties N12, N14 and N19 (Sections 5.1 and 5.2). In a

commercial nursery this would increase production costs due to increased labour, time, nursery

space, seedcane and medium. However, the mean germination obtained when SBS were

treated at 52°C for 30 minutes was not as low, and this treatment appeared to control C. x. xyli

when transplants and mature cane were tested. Since varieties differ in stalk width and in

tolerance of HWT, the aim of this trial was to determine the effect of treatment of SBS at both

50°C for 120 minutes and 52°C for 30 minutes on germination of seven commercial varieties,

and to test for the presence of C. x. xyli in mature cane grown from SBS treated at 52 °C for

30 minutes.

5.3.2 Materials and methods

Twenty-two month old stalks of varieties NCo376, N12, N14, N17, N19, N24 and N25 were

obtained from a C. x. xy//-infected variety collection at SASEX. Single-budded setts were

treated at either 50°C for 120 minutes or 52°C for 30 minutes. Each treatment was

represented by a total of 60 SBS, divided into three replicates of 20 SBS each. After heat

treatment the SBS were soaked in 800 ppm guazatine, planted in trays containing composted

bagasse and germination was recorded after 28 days. The untreated transplants were tested for

the presence of C. x. xyli three months after planting into trays and transplants grown from

SBS treated at 52°C for 30 minutes were planted in the field. Ten months after planting,

xylem sap was extracted from one stalk of each plant to test for the presence of C. x. xyli using

IFM. Data for the germination for all varieties were pooled and evaluated using two-way

analysis of variance (ANOVA). Mean separation was accomplished using least significant

differences.
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5.3.3 Results and discussion

Germination of untreated SBS of all varieties was high (70-92%) because conditions were

favourable for germination and apical dominance in the stalk had been reduced because the

cane was flowering. However, since in this experiment the buds were swollen and therefore

soft and vulnerable to heat damage, both heat treatments adversely affected the mean

germination compared with the control (P=0.01; Table 5.8). The mean germination of the

six varieties was significantly lower when SBS were treated at 50°C for 120 minutes than

when treated at 52°C for 30 minutes (P<0.01) (Figure 5.5).

Table 5.8 Two-way ANOVA of the mean germination of varieties Nl 1, N12, N14, N17,
N19, N24, N25 & NCo376 after heat treatment of single-budded setts.

Factor

Heat treatment

Variety

Heat treatment x variety

df

2

6

12

Variance-ratio

114.654

11.140

2.052

P-value

0.0000

0.0000

0.0430

100

Figure 5.5

50°C/120 52°C/30 Control

Treatment (Temp./Time)

Effect of heat treatment of single-budded setts on the mean germination of
varieties N i l , N12, N14, N17, N19, N24, N25 and NCo376. Means whose
99% comparison intervals do not overlap are significantly different.
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The results were not consistent for all varieties as indicated by the significant interaction

between variety and HWT (Table 5.8). There were significant differences between treatments

with varieties N12, N14, N17, N19 and N25, but not with N24 (Table 5.9). Treatment with

the standard treatment at 50°C for 120 minutes significantly reduced the germination of

varieties N12, N14, N17, N19 and N25 to 15-50% (P<0.01). Of all varieties, germination

of N12 and N14 was most adversely affected, indicating their sensitivity to the standard heat

treatment (Table 5.9, Figure 5.6).

Treatment at 52°C for 30 minutes also significantly reduced the germination of N12, N14,

N17, NI9 and N25 compared with the control. However, this treatment significantly

increased germination of N12 and increased germination of the other five varieties compared

with the standard heat treatment. Of all varieties, N14 was most sensitive to this treatment (-

68%; P<0.01). Treatment of the other varieties at 52°C for 30 minutes reduced germination

by 30-48% (Table 5.9, Figure 5.6).

Table 5.9 Effect of various heat treatments of single-budded setts on germination of seven
sugarcane varieties.

Treatment

50°C/120 min.

52°C/30 min.

Control

Mean

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

NCo376

43 b

53 b

82 a

59

19.1
29.0

N12

15 c

38 b

73 a

42

13.6
20.7

N14

23 b

25 b

79 a

42

11.7
17.8

N17

50 b

58 b

83 a

65

12.5
18.9

N19

38 b

47 b

70 a

52

21.3
18.9

N24

50

52

75

59

NS

N25

48 b

60b

92 a

67

20.5
31.2

Means in a column with a letter in common are not significantly different at the 5% level.
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100

Figure 5.6

50°C/120 min
^m S2°C/30min
CZi No HWT

NCo376N12 N14 N17 N19 N24 N25

Variety

Effect of heat treatment of single-budded setts on germination of seven
sugarcane varieties.

Examination of the xylem sap of untreated SBS showed that all varieties were infected with

C. x. xyli. Treatment of N12, N17, N19, N24 and NCo376 at 52°C for 30 minutes eliminated

C. x. xyli. However, C. x. xyli was present in 40% of transplants of the variety N14 treated

with this treatment, confirming the high susceptibility of N14 to C. x. xyli (Anon., 1996a,b).

These results also indicated that control of C. x. xyli in this variety may be difficult because

it often has a thick stalk (GR Bechet, 1996, pers. comm. i), requiring a longer treatment

period than most varieties for control of this pathogen. Therefore, control of C. x. xyli may

not have been effective in this variety because the HWT was not long enough to kill all the

bacterial cells, particularly those in the centre of the SBS. There is also a possibility that C.

x. xyli was present in the other varieties treated at 52°C for 30 minutes, but was not detected

due to low concentrations. However, since the seedcane was mature (10-months old), this is

unlikely because previous research at SASEX showed that when infected cane of the varieties

NCo376, N12 and N16 was planted, C. x. xyli was detected microscopically at eight months

and the numbers of bacteria observed increased rapidly up to the age of 10-months old.

Thereafter, there was no increase in concentration of bacteria (Anon., 1992).

1 Mr GR Bechet, SASEX, Private Bag X02, Mount Edgecombe, KwaZulu-Natal.
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The effect of HWT on germination depends on a number of factors, including variety, sett

length, sett width, cane age and cane quality. The seedcane used in Section 5.1 was 17-

months old, which is usually considered too old for use as seedcane, resulting in low

germination. However, buds of this cane were resistant to treatment at both 50°C for 120 and

52°C for 30 minutes.

In this experiment the seedcane was taken from the same plot five months later when the cane

was flowering. Flowering results in the release of lateral buds from correlative inhibition,

which in turn results in higher germination of untreated SBS. However, HWT of the swollen

buds had adverse effects on germination of NCo376, N12, N14, N17, N19 and N25 because

the swollen buds were soft and vulnerable to heat damage.

Therefore, seedcane that is older than the optimum age for planting can be tolerant of HWT,

but once correlative inhibition is reduced, the swollen buds are sensitive to heat treatment.

Therefore, seedcane used for transplant production should not be older than 10-12 months.

In view of the marked effects of seedcane quality, stalk width and variety on germination, the

results of this experiment need to be confirmed before recommendations can be made to the

transplant grower. This experiment needs to be repeated, treating SBS at 52°C for 30, 40, 50

and 60 minutes and at 50°C for 120 minutes. The average stalk width of seedcane of each

variety needs to be determined before planting to investigate its effect on control of C. x. xyli.

Recommendation of treatment at 52 °C for 30 minutes to growers is highly unlikely because

it did not control C. x. xyli in N14 in this experiment and may also be ineffective with other

varieties. Since treatment at 52°C for 60 minutes controlled C. x. xyli, and affected

germination similarly to treatment at 50°C for 120 minutes, treatment at 52°C for 40 to 60

minutes may be recommended for treatment of SBS in the future. This will result in more

adequate control of C. x. xyli than the standard treatment and the shorter treatment time speeds

up the transplant production process, decreasing labour, time and electricity costs. This in turn

decreases the selling price of transplants, making their use more attractive to sugarcane

growers.
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6. HEAT TREATMENT TO STIMULATE GERMINATION

Abstract

Various short hot-water treatments (SHWT) of single-budded setts (SBS) were tested. When good quality seedcane
of varieties N12 and N17 was used, treatment at both 50°C and 52°C for 10 and 20 minutes had no effect on
germination, but significantly improved the plant growth. However, when older seedcane from the same plot was
treated, treatment for 10 minutes at 48°C and 52°C significantly increased the mean germination and increased the
growth of varieties N12, N16 and NCo376. The increases in germination and growth were probably due to the
change in hormonal balance within the SBS and control of systemic fungal infections.

6.1 Short Hot Water Treatment

6.1.1 Introduction

Ratoon stunting disease (RSD) is the most economically important disease of sugarcane in

South Africa. An important factor in preventing Clavibacter xyli subsp. xyli (C. x. xyli)-

infected material from entering commercial and nursery fields is to plant C. x. xyli-free

seedcane or transplants. This is achieved by the use of thermotherapy. In transplant

production, the direct treatment of setts at 50 °C for 120 minutes is strongly recommended in

areas where C. x. xyli is prevalent, particularly the Pongola and Umfolozi areas. In areas

where C. x. xyli is not prevalent it may be possible to avoid thermotherapy by using seedcane

grown from heat treated cane that has been consistently tested and found free of C. x. xyli.

When single-budded setts (SBS) are not heat treated to eliminate C. JC. xyli they can be

subjected to a short hot water treatment (SHWT) before planting to stimulate germination and

early growth. Short heat treatment of setts at 52°C for 10-20 minutes before planting has

significantly improved germination and growth (Benda, 1972; Anon., 1975; Comstock et al.,

1981; Peng, 1984; Farid, 1990). The increase in germination has been ascribed to the

establishment of an appropriate hormonal balance for germination within the bud region

(Benda, 1972; Peng, 1984; Farid, 1990). Although these treatments have stimulated

germination when used alone or combined with fungicides, the increase in germination has not

been ascribed to the control of pathogens. The aim of this experiment was to determine the

effect of various SHWT on germination and growth of four commercial sugarcane varieties.
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6.1.2 Materials and methods

Experiment A was carried out in November 1995 using 19-month old seedcane stalks obtained

from a crop grown under hot, dry conditions, resulting in slow growth of the stalks and short

internodes. Single-budded setts of varieties with poor germination, N12 and N17, were heat

treated at 50°C and 52°C for 10 and 20 minutes by submerging the SBS in wire baskets into

the water.

Experiment B was carried out in February 1996 using 22-month old seedcane from the same

source as Experiment A. The varieties used were N16 which has rapid germination, NCo376

which has moderately rapid germination, and N12 which has unreliable germination. Single-

budded setts were heat treated at temperatures of 36°, 40°, 44°, 48°, 50°, 52°, 56° and 60°C

for 10 minutes before planting into trays. Each treatment in both experiments was represented

by a total of 60 SBS, divided into three replicates of 20 SBS each. The germination and shoot

dry mass were recorded after 28 days. For each experiment the data were pooled and

evaluated using two-way analysis of variance. Mean separation was accomplished using least

significant differences.

6.1.3 Results and discussion

Experiment A

Mean germination of both the control and the heat-treated SBS was high because although the

seedcane was old, it was of good quality. Additionally, the warm temperatures were

favourable for germination. Statistical analysis of the data indicated that SHWT had no

significant effect on mean germination (Table 6.1). Treatment at 50° and 52°C for 10 minutes

improved germination, and treatment 50° and 52 °C for 20 minutes decreased germination,

compared with the control. Therefore, germination after treatment at both 50° and 52°C was

higher after treatment for 10 minutes than after treatment for 20 minutes (Figure 6.1).
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Table 6.1 Two-way ANOVA of the mean germination and dry mass data of varieties N12
and N17 after short hot-water treatment (SHWT) of single-budded setts.

Factor

SHWT

Variety

SHWT x variety

df

4

1

4

Germination %

Variance-ratio

0.390

13.235

3.860

P-value

0.8135

0.0016

0.0175

Dry mass (g)

Variance-ratio

17.902

87.479

7.797

P-value

0.0000

0.0000

0.0006

84 87 90 93

Germination %

Figure 6.1 Effect of short heat treatment of single-budded setts on the mean germination
of varieties N12 and N17. Means whose 95% comparison intervals do not
overlap are significantly different.

The germination results were not consistent for both varieties as indicated by a significant

interaction between variety and SHWT (Table 6.1). Compared with the control, treatment of

N12 at both 50°C and 52°C for 10 minutes increased germination, whereas the treatment for

20 minutes decreased germination. Treatment of N17 at both 50° and 52°C for 10 minutes

decreased germination, treatment at 50 °C for 20 minutes had no effect on germination and

treatment at 52°C for 20 minutes increased germination (Figure 6.2).
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Figure 6.2

a
o
es
a

l

ioa

90

Control
M50°C/10min
CZJ 50°C/20 min
CZ3 52°C/10 min
M 52°C/20 min

N12 N17
Variety

Effect of short heat treatment of single-budded setts on the germination of
varieties N12 and N17.

Statistical analysis of the data indicated that SHWT had a significant effect on dry mass (Table

6.2). The mean dry mass was significantly improved by all treatments (P< 0.01), the SHWT

at 52°C for 10 and 20 minutes being the most effective (Figure 6.3).

•5 Control

0.10 0.15 0.20 0.25

Dry mass (g)
0.30 0.35

Figure 6.3 Effect of short heat treatment of single-budded setts on the mean dry mass of
varieties N12 and N17. Means whose 99% comparison intervals do not overlap
are significantly different.
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The dry mass results were not consistent for both varieties as indicated by a significant

interaction between SHWT and variety was significant (Table 6.1; P<0.01). Short heat

treatment had a significant effect on dry mass of both varieties (Figure 6.4). Dry mass of N12

was significantly improved by treatment at both 50°C for 10 (P<0.05) and 20 minutes

(P<0.01) and 52°C for 20 minutes (P<0.01). Dry mass of N17 was significantly improved

by SHWT at 50° and 52°C for 10 and 20 minutes (P<0.01).

0.5

Figure 6.4

0.4-|

8
S 0.3-

I 1 Control
^ M 50°C/10 min

50°C/20 min
52°C/10min
52°C/20 min

0.2-1

N12 N17
Variety

Effect of short heat treatment of single-budded setts on dry mass of varieties
N12 and N17.

In summary, none of the SHWT significantly affected mean germination when cane quality

was good and conditions were favourable for germination. However, all treatments

significantly improved plant growth of both N12 and N17.

Experiment B

Germination of the controls was low (28%), indicating that the cane was senescent and too old

for use as seedcane (Figure 6.5). Statistical analysis of the germination data indicated that

SHWT had a significant effect on the mean germination of N12, N16 and NCo376. All

treatments, except treatment at 56° and 60°C, improved the mean germination. Treatments
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at 48° and 52°C significantly improved germination compared with the control (P<0.01).

Treatment at 60°C had an adverse effect on germination (P<0.01).

Table 6.2 Two-way ANOVA of the mean germination and dry mass data of varieties
N12, N16 and NCo376 after short heat treatment of single-budded setts.

Factor

SHWT

Variety

SHWT x variety

df

8

2

16

Germination %

Variance-ratio

11.686

13.962

1.317

P-value

0.0000

0.0000

0.2211

Dry mass (g)

Variance-ratio

2.725

6.405

0.558

P-value

0.0134

0.0032

0.9011

Figure 6.5

36 40 44 48 50 52 56 60 Control

Temperature (°C)

Effect of short heat treatment of single-budded setts on the mean germination
of varieties N12, N16 and NCo376. Means whose 95% comparison intervals
do not overlap are significantly different.

Although the varieties differed in their ability to germinate, the germination results were

consistent for all varieties as indicated by the lack of a significant interaction between SHWT

and variety (Table 6.2). None of the treatments significantly improved germination of N12

or N16. However, treatment at 36°-56°C for 10 minutes improved germination of N12, and

treatments at 50° and 52°C improved germination of N16. Treatment of NCo376 at 36°,

50°C, 48° and 52°C improved germination, the latter two significantly so (P<0.05).

Treatment of all varieties at 60°C significantly reduced germination (Table 6.3).
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Table 6.3 Effect of short heat treatment of single-budded setts on the germination of
varieties N12, N16 and NCo376.

Treatment

36°C

40°C

44°C

48°C

50°C

52 °C

56°C

60°C

Control

Mean

LSD (P=0.05)
LSD(P=0.01)

Germination %

N12

28 a

33 a

25 a

33 a

28 a

25 a

35 a

Ob

23 a

26

13.6
18.6

N16

43 ab

37 b

40 ab

42 ab

45 ab

57 a

33 b

10 c

43 ab

39

17.0
23.3

NCo376

38 ab

28abc

28abc

43 a

33abc

43 a

17 cd

Od

20 be

28

19.7
27.0

Means in a column with a letter in common are not significantly different at the 5% level.

Statistical analysis of the data indicated that SHWT sigmficantly affected mean dry mass of the

three varieties (Table 6.2). Treatment at 36°, 48°, 52° and 56°C for 10 minutes improved

dry mass, and treatment at 60°C significantly decreased the mean dry mass (Figure 6.6).

The dry mass results were consistent for both varieties as indicated by a lack of a significant

interaction between SHWT and variety (Table 6.2). There were significant differences

between treatments with N12 and NCo376, but not with N16 (Table 6.4). Treatment of N12

at temperatures of 40°-52°C had no effect on dry mass, treatment at 36°C increased dry mass

and treatment at 60°C adversely affected dry mass (P<0.01). Treatment of N16 at 48°C

increased dry mass. Treatment of NCo376 at 36°, 48°, 50° and 56°C increased dry mass,

treatment at 52°C for 10 minutes significantly increased dry mass (P<0.05) and treatment at

60°C adversely affected dry mass (P<0.01).
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Figure 6.6 Effect of short heat treatment of single-budded setts on the mean dry mass of
varieties N12, N16 and NCo376. Means whose 95% comparison intervals do
not overlap are significantly different.

Table 6.4 Effect of short heat treatment of single-budded setts on the dry mass of varieties
N12, N16 and NCo376.

Treatment

36°C

40°C

44°C

48 °C

50°C

52°C

56°C

60°C

Control

Mean

LSD (P=0.05)
LSD (P=0.01)

Dry mass (g)

K12

0.34 a

0.27 ab

0.24 ab

0.24 ab

0.29 ab

0.29 ab

0.19 b

0c

0.31 ab

0.26

0.12
0.16

N16

0.47

0.31

0.38

0.58

0.26

0.46

0.35

0.28

0.46

0.43

NS

NCo376

0.28 ab

0.22 c

0.22 c

0.30 ab

0.33 ab

0.41 a

0.40 ab

Od

0.25 be

0.28

0.16
0.21

Means in a column with a letter in common are not significantly different at the 5% level.
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To summarise, when germination was low due to the use of poor quality seedcane in

Experiment B, the mean germination of N12, N16 and NCo376 was significantly improved

by heat treating the SBS at 48°C and 52°C for 10 minutes and both these treatments improved

plant growth. Thus, the hormone balance of the buds may have been adjusted to an

appropriate level for germination by the loss of indole-3-acetic acid (IAA) and indole-3-butyric

acid (IBA) during heat treatment, stimulating germination. Possible fungal infections within

the SBS may have also been reduced or eliminated by the SHWT, improving germination.

When good quality seedcane was used in Experiment A, treatment at 52°C had no effect on

germination. This is due to the fact that the hormonal balance was already appropriate for

germination, allowing the untreated buds to germinate rapidly, surviving possible infection by

systemic fungi. The significant increase in dry mass in Experiment A by treatments at 50° and

52°C for 10 and 20 minutes may have been a result of the reduction of IAA and IBA

concentrations during SHWT to a level such that the higher concentration of GA3 in the bud

resulted in increased cell division and growth of the shoots.

Heat treatment at 52 °C for 10 minutes can easily be implemented in the nursery to stimulate

germination and growth of transplants, particularly when conditions are unfavourable for

germination. Further experiments using SHWT at 52°C for 10 minutes are described in

Chapters Seven and Eight, where chemicals and fungicides were added to the hot water.
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7. PLANT GROWTH REGULATORS

Abstract

Single-budded setts (SBS) were treated with ethephon and gibberellic acid (GA3) to determine their effect on
germination and growth of four commercial sugarcane varieties. In the first part of the preliminary experiment, GA3

treatment decreased germination and had no effect on growth of N16, and had no effect on germination but increased
the growth of N22. Treatment with ethephon at 7.2, 14.4 and 120 ppm significantly increased the mean germination
of both varieties. In the second part of the preliminary experiment, ethephon at 14.4 ppm significantly increased the
mean germination and increased the growth of varieties NCo376, N12 and N16. In a subsequent experiment,
ethephon (14.4 ppm) in hot water (52°C; 10 minutes) significantly increased germination of NCo376, N12, N16,
N17, N19 and N21, and growth of NCo376, N12 and N19. However, germination after treatment with ethephon
in hot water was not significantly different from that of SBS treated with hot water alone.

7.1 Preliminary Experiments

7.1.1 Introduction

High germination of cane setts and rapid growth of plants has a significant effect on the

establishment of a good crop resulting in better sugar yields. The indole-3-acetic acid (IAA)

produced in the plant apex is inhibitory to the germination of lateral buds, and even when the

apex is removed, the ability of lateral buds to germinate largely depends on the concentration

of IAA within the bud relative to the concentrations of gibberellic acid (GA3) and cytokinins.

Many attempts have been made to improve germination by treatment of setts with water, plant

growth regulators, ripeners and other chemicals. The most effective treatments have involved

the use of hot water, GA3 and ethephon to establish an appropriate hormonal balance within

the bud region for germination. Treatment of setts with GA3 has been reported to stimulate

germination of lateral buds (Chang & Li, 1962; Shiah & Pao, 1963; Bendigeri et al, 1986),

as has treatment with ethephon, which inhibits polar transport of IAA and activates its

metabolism by the stimulation of peroxidase activity (Anon., 1988; Diaz et al., 1995;

Millhollon & Legendre, 1995). The aim of these experiments was to determine the effect of

treating single-budded setts (SBS) before planting with ethephon and GA3 on germination and

growth of four commercial sugarcane varieties.
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7.1.2 Materials and methods

In Experiment A, SBS of the varieties N16 and N22 were treated for ten minutes with either

GA3 (Gib Tablets®; Pazchem) at 1, 3, 5 and 7 ppm or ethephon (Ethrel®; Rhone-Poulenc) at

7.2, 14.4, 28.8, 57.6, 120, 240, 480 and 960 ppm, both dissolved in cold tap water. In

Experiment B, SBS of the varieties NCo376, N12 and N16 were treated for ten minutes with

3 ppm GA3 and 14.4 and 120 ppm ethephon, applied in cold tap water. Controls included

untreated SBS, and SBS soaked in tap water for ten minutes.

Each treatment was represented by 60 SBS, divided into three replications of 20 SBS each.

After treatment the SBS were planted into composted bagasse in polystyrene trays.

Germination and dry mass of the transplants were recorded after 28 days and the data were

pooled and evaluated using two-way analysis of variance (ANOVA). Mean separation was

accomplished using least significant differences.

7.1.3 Results and discussion

Experiment A - Gibberellic acid

Statistical analysis of the data indicated that GA3 treatment of SBS had a significant effect on

mean germination and dry mass (Table 7.1). All concentrations of GA3 decreased the mean

germination of N16 and N22, significantly so when SBS were treated with 7 ppm GA3 (Figure

7. la). All concentrations of GA3 treatment increased the mean dry mass, significantly so when

SBS were treated with 1 ppm (P<0.01) and 3 ppm GA3 (P<0.05) (Figure 7.1b).

The germination and dry mass results were not consistent for both varieties as indicated by the

significant interactions between GA3 treatment and variety (Table 7.1). Compared with the

control, treatment with GA3 had no effect on germination but most concentrations (1,3 and

5 ppm) significantly increased dry mass of N22. GA3 treatment decreased germination and

had no effect on dry mass of N16 (Table 7.2).
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Table 7.1 Two-way ANOVA of mean germination and dry mass of varieties N16 and
N22 after treatment of single-budded setts with gibberellic acid (GA3).

Factor

GA,

Variety

GA, x variety

df

4

1

4

Germination %

Variance-ratio

3.939

39.953

3.576

P-value

0.0135

0.0000

0.0201

Dry mass (g)

Variance-ratio

3.990

35.398

6.621

P-value

0.0128

0.0000

0.0010

50
Control 1 ppm 3 ppm 5 ppm 7 ppm

GA, Concentration

(a)

0.28

0.12
Control 1 ppm 3 ppm 5 ppm 7 ppm

GA3 Concentration

(b)
Figure 7.1 Effect of gibberellic acid (GA3) treatment of single-budded setts on the mean

germination (a) and dry mass (b) of varieties N16 and N22. Means whose 95%
comparison intervals do not overlap are significantly different.
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Table 7.2 Effect of gibberellic acid (GA3) treatment of single-budded setts on germination
and dry mass of the varieties N16 and N22.

Treatment

Control

1 ppm GA^

3 ppm GA,

5 ppm GA,

7 ppm GA3

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

N16

78 a

63 a

55 ab

63 a

35 b

25.1
35.7

N22

80

85

90

83

79

NS

Dry mass (g)

N16

0.16

0.15

0.13

0.13

0.16

NS

, N22

0.14d

0.28 a

0.27 ab

0.21 be

0.19cd

0.06
0.08

Means in a column with a letter in common are not significantly different at the 5% level.

Ethephon

Statistical analysis of the data indicated that ethephon treatment had a significant effect on

mean germination and dry mass (Table 7.3). The mean germination was significantly

increased by treatment of SBS with 7.2, 14.4 and 120 ppm ethephon. Treatment at

concentrations higher than 120 ppm significantly decreased mean germination (Figure 7.2a).

Treatment with ethephon at 7.2-240 and 960 ppm increased the mean dry mass, but not

significantly. Treatment with 240 ppm ethephon decreased dry mass, and treatment with 480

ppm ethephon significantly decreased dry mass (Figure 7.2b).

Table 7.3 Two-way ANOVA of the mean germination percentages of varieties N16 and
N22 after treatment of single-budded setts with ethephon.

Factor

Ethephon treatment (ET)

Variety

ET x variety

df

8

1

8

Germination %

Variance-ratio

13.335

26.790

2.825

P-value

0.0000

0.0000

0.0108

Dry mass (g)

Variance-ratio

4.432

0.125

1.613

P-value

0.0004

0.7287

0.1429
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0
0 7.2 14.4 28.8 57.6 120 240 480 960

Ethephon Concentration (ppm)

0.30

0.05

(b)

Figure 7.2

0 7.2 14.4 28.8 57.6 120 240 480 960

Ethephon Concentration (ppm)

Effect of treatment of single-budded setts with ethephon on the mean
germination (a) and dry mass (b) of varieties N16 and N22. Means whose 95%
comparison intervals do not overlap are significantly different.

The germination results were not consistent for both varieties as indicated by a significant

interaction between ethephon treatment and variety (Table 7.3). Treatment of N22 with 7.2

ppm ethephon increased germination, and treatment with 14.4 ppm and 120 ppm ethephon

significantly increased germination by 46 and 37%, respectively (P<0.05; Table 7.4).

Treatment of N16 with concentrations of ethephon of 7.2-120 ppm increased germination, and

treatment at 28.8 ppm significantly increased germination by 58% (P<0.05). Treatment of

both varieties with concentrations of ethephon greater than 120 ppm decreased germination,

significantly so with N22, indicating phytotoxicity of ethephon at the higher concentrations.
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Table 7.4 Effect of ethephon treatment of single-budded setts on the germination and dry
mass of varieties N16 and N22.

" Ethephon

Control

7.2 ppm

14.4 ppm

28.8 ppm

57.6 ppm

120 ppm

240 ppm

480 ppm

960 ppm

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

N16

43 be

59 ab

54 abc

68 a

59 ab

63 ab

23 d

39 be

39 cd

19.9
27.0

N22

41 be

51 ab

60a

36 c

38 be

56 a

13 d

14 d

21 d

14.3
19.3

Dry mass (g)

N16

0.19 abc

0.25 a

0.21 ab

0.21 ab

0.23 a

0.20 abc

0.15 be

0.12 c

0.15 be

0.09
0.12

N22

0.17 bed

0.21 abc

0.20 abc

0.21 abc

0.26 ab

0.24 ab

O.lOcd

0.08 d

0.29 a

0.11
0.15

Means in a column with a letter in common are not significantly different at the 5% level.

The dry mass results were however consistent for varieties as indicated by the lack of a

significant interaction between ethephon treatment and variety (Table 7.3). Treatment of N16

with concentrations of 7.2-120 ppm slightly increased dry mass, and concentrations higher than

120 ppm decreased dry mass (Table 7.4). Similar results occurred after treatment of N22,

except that treatment with 960 ppm ethephon significantly increased dry mass (P<0.05)

although this treatment significantly decreased mean germination.

In summary, treatment of SBS with ethephon at lower concentrations (7.2, 14.4 and 120 ppm)

significantly increased the mean germination, and increased plant growth of both varieties.

Treatment of SBS with concentrations greater than 120 ppm reduced germination and growth.
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Experiment B

Statistical analysis of the data indicated that chemical treatment had a significant effect on

germination (Table 7.5). Treatment of SBS with water and 120 ppm ethephon slightly

increased the mean germination, and treatment with 14.4 ppm ethephon significantly increased

germination compared with the untreated control ( + 30%, P=0.01) (Figure 7.3).

Table 7.5 Two-way ANOVA of the mean germination and dry mass data of varieties
NCo376, N12 and N16 after treatment of single-budded setts with ethephon and
gibberellic acid.

Factor

Chemical treatment (CT)

Variety

CT x variety

df

4

2

8

Germination %

Variance-ratio

4.975

59.503

4.138

P-value

0.0035

0.0000

0.0022

Dry mass (g)

Variance-ratio

2.608

18.717

2.437

P-value

0.0561

0.0000

0.0377

Control Water GA3 (3) E (14.4) E (120)

Treatment (ppm)
Figure 7.3 Effect of treatment of single-budded setts with gibberellic acid (GA3) and

ethephon (E) on the mean germination of NCo376, N12 and N16. Means
whose 99% comparison intervals do not overlap are significantly different.
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The germination results were not consistent for both varieties as indicated by the significant

interaction between chemical treatment and variety (Table 7.5). The treatments had a

significant effect on the germination of N16 and NCo376 (Table 7.6). Treatment with

ethephon (14.4 ppm) significantly increased germination of NCo376 and N16, and treatment

with 3 ppm GA3 significantly increased germination of NCo376 (P<0.05) but decreased

germination of N16. Similar results for N16 were obtained in Experiment A.

Table 7.6 Effect of treatment of single-budded setts with ethephon and gibberellic acid
(GA3) on germination of the varieties NCo376, N12 and N16.

Treatment

Control

14.4 ppm ethephon

120 ppm ethephon

3 ppm GA,

Cold water

LSD (P=0.05)
LSD (P=0.01)

Germination %

NCo376

63 b

78 a

60b

77 a

65 b

11.51
16.37

N12

48

48

45

42

48

NS

N16

28 be

58 a

47 ab

23 c

42abc

19.3
27.7

Means in a column with a letter in common are not significantly different at the 5% level.

Statistical analysis of the data indicated that chemical treatment did not have a significant effect

on dry mass (Table 7.5). Compared with the control, mean dry mass was increased when SBS

were treated with 14.4 ppm ethephon (Figure 7.4). Ethephon at 120 ppm decreased dry mass,

and treatment with 3 ppm GA3 and the cold water treatment slightly increased dry mass.

The results were not consistent for varieties as indicated by the significant interaction between

treatment and variety (Table 7.5). The treatments had a significant effect on dry mass of

NCo376, but not N12 and N16. Treatment of NCo376 with 3 ppm GA3, 14.4 ppm ethephon

and cold water significantly increased dry mass (P=0.01). Compared with the cold water

control, treatment with 3 ppm GA3 had no effect on dry mass, and treatment with 14.4 ppm

ethephon significantly improved dry mass (P=0.01) (Table 7.7).
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0.45

Figure 7.4

0.20
Control Water GA3 (3) E (14.4) E (120)

Treatment (ppm)

Effect of single-budded sett treatment with gibberellic acid (GA3) and ethephon
(E) on the mean dry mass of varieties NCo376, N12 and N16. Means whose
99% comparison intervals do not overlap are significantly different.

Table 7.7 Effect of treatment of single-budded setts with gibberellic acid (GA3) and
ethephon on the dry mass (g) of the varieties NCo376, N12 and N16.

Treatment

Control

14.4 ppm ethephon

120 ppm ethephon

3 ppm GA,

Cold water

LSD (P=0.05)
LSD (P=0.01)

Dry mass (g)

NCo376

0.24 c

0.54 a

0.25 c

0.41b

0.41b

0.08
0.12

N12

0.44

0.43

0.37

0.35

0.44

NS

N16

0.23

0.20

0.20

0.25

0.23

NS

Means in a column with a letter in common are not significantly different at the 5% level.

The significant increases in germination and growth after treatment with 14.4 ppm ethephon

indicated that ethephon at a suitable concentration may be involved in the release of buds from

correlative inhibition. Although Diaz et al. (1995) reported that ethephon at concentrations

equal to and greater than 120 ppm significantly increased germination of Cuban varieties, these

higher concentrations decreased germination and were phytotoxic to the South African

commercial varieties tested in Experiments A and B.
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The use of GA3 at 3 ppm as a sett treatment was ineffective in the promotion of lateral bud

germination of N12 and N16, but significantly increased germination of NCo376. These

results indicated that the response to GA3 depended on variety and may have also depended on

the physiological status of the cane, which is affected by cane age, quality and growing

conditions. The reduced germination of N12 and N16 indicated that GA3 may be phytotoxic

or the levels of GA3 required to overcome apical dominance differs between varieties, making

the use of GA3 impractical. Due to these different varietal responses, no further research was

carried out using this plant growth regulator.

7.2 Ethephon

7.2.1 Introduction

Ethephon has been shown to significantly improve germination of setts in South Africa, Cuba

and Louisiana (Anon., 1988; Manoharan et al, 1992; Diaz et al, 1995; Milhollon &

Legendre, 1995) . In the previous experiments (Section 7.1), treatment of SBS with ethephon

at 14.4 ppm for ten minutes significantly improved germination of N22, NCo376 and N16,

all of which have a relatively good germination potential. Experiments in Chapter Six

indicated that short hot water treatment (SHWT) of SBS at 52°C for 10 minutes stimulated

germination by possibly affecting the hormonal balance. The aim of this experiment was to

determine whether the addition of ethephon to the hot water could further increase germination

and plant growth of six commercial varieties compared with treatment with hot water alone.

7.2.2 Materials and methods

Single-budded setts of six varieties differing in their ability to germinate (NCo376, N12, N16,

N17, N19 and N21) were soaked either in hot water (52°C) or in a hot solution (52°C) of

ethephon (14.4 ppm) for ten minutes. The treatments were carried out in wire baskets that

were submerged in the solutions. Each treatment was represented by a total of 60 SBS,

divided into three replications of 20 SBS each. After treatment, the SBS were planted into
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composted bagasse in polystyrene trays. Germination and dry mass of the transplants was

recorded after 28 days and pooled and evaluated using two-way analysis of variance

(ANOVA). Means separation was achieved using least significant differences.

7.2.3 Results and discussion

Germination of the controls was poor because temperatures at the time of planting were low

and unfavourable for germination. Furthermore, the heater fans in the germination room were

not functioning due to an electrical fault, resulting in the temperature remaining at

approximately 20°C, well below the optimum for germination.

Statistical analysis of the data indicated that SBS treatment had a significant effect on

germination and dry weight (Table 7.8). Treatment of SBS with the SHWT and ethephon in

hot water significantly increased the mean germination by 509 and 527% respectively

(P < 0.01; Figure 7.5a) and significantly increased dry mass (P < 0.01; Figure 7.5b). For both

germination and dry mass there was no significant difference between these treatments.

Table 7.8 Two-way ANOVA of the germination and dry mass data of varieties NCo376,
N12, N16, N17, N19 and N21 after treatment of single-budded setts with hot
water and ethephon.

Factor

Treatment

Variety

Treatment x variety

df

2

5

10

Germination %

Variance-ratio

249.738

8.050

2.685

P-value

0.0000

0.0000

0.0109

Dry mass (g)

Variance-ratio

20.831

11.961

0.966

P-value

0.0000

0.0000

0.4854
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(a)

(b)

Figure 7.5

0.150

0.050

Control SHWT 14.4 ppm ethep.

Treatment

Control SHWT Hot-Ethephon

Treatment

Effect of short heat treatment (SHWT) and hot-ethephon treatment on the mean
germination (a) and dry mass (b) of six sugarcane varieties. Means whose 99%
comparison intervals do not overlap are significantly different.

The germination results were not consistent for all varieties as indicated by the significant

interaction between treatment and variety (Table 7.8). It was interesting to note that although

the varieties NCo376, N16, N19 and N21 are considered to have rapid germination, the

germination of the untreated controls of these varieties was similar to that of the poor

germinating varieties N12 and N17. Both the SHWT and the hot-ethephon soak significantly
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improved germination of all the varieties compared with the control, and there was no

significant difference between these treatments (P<0.01) (Table 7.9; Figure 7.6).

Germination of N17, N19 and N21 was highest when SBS were treated with the SHWT, and

germination of NCo376 and N16 was highest after treatment with ethephon. Therefore, both

poor and good germinating varieties reacted favourably to both treatments.

Table 7.9 Effect of short heat treatment (SHWT) and hot-ethephon treatment of single-
budded setts on the germination of six varieties.

Treatment

Control

SHWT

Ethephon

Mean

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

NCo376

21b

70 a

79 a

57

18.6
28.2

N12

4b

62 a

62 a

43

15.0
22.2

N16

14 b

45 a

60 a

40

16.8
24.2

N17

8b

84 a

78 a

57

22.2
31.9

N19

12 b

82 a

78 a

57

10.1
15.0

N21

6b

68 a

59 a

43

14.7
21.3

Means in a column with a letter in common are not significantly different at the 1% level.

Figure 7.6

80-

5 60

©

.2 40
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Control
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Hot Ethephon I m
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NCo376 N12 N16 N17 N19 N21
Variety

Effect of short heat treatment (SHWT) and hot-ethephon treatment of single-
budded setts on the germination of six sugarcane varieties.
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The dry weight results were consistent for all varieties as indicated by the lack of a significant

interaction between treatment and variety (Table 7.8). There were significant differences

between treatments with NCo376, N12 and N19 where dry mass was significantly increased

with the hot-ethephon treatment (P<0.01). The SHWT also significantly increased dry mass

of NCo376 (P<0.01), N19 (P<0.01) and N12 (P<0.05) (Table 7.10, Figure 7.7). Dry

mass of N12 and NCo376 was highest when SBS were treated with ethephon, and dry mass

of N19 was highest when SBS were treated with the SHWT. There was no significant

difference between the SHWT and the ethephon treatment with these three varieties. Both

treatments also improved dry mass of N16, N17 and N21, but not significantly.

Table 7.10 Effect of short heat treatment (SHWT) and ethephon treatment of single-budded
setts on the dry mass (g) of varieties NCo376, N12, N16, N17, N19 and N21.

Treatment

Control

SHWT

Ethephon

Mean

LSD (P=0.05)
LSD (P=0.01)

Dry mass (g)

NCo376

0.08 b

0.15 a

0.18 a

0.14

0.06
0.09

N12

0.03 b

0.08 a

0.10 a

0.07

0.04
0.06

N16

0.07

0.08

0.09

0.08

NS

N17

0.06

0.12

0.10

0.10

NS

N19

0.06 b

0.17 a

0.14 a

0.12

0.17
0.02

N21

0.11

0.18

0.20

0.17

NS

Means in a column with a letter in common are not significantly different at the 5% level.

In summary, SHWT and the hot-ethephon treatment at 14.4 ppm significantly improved the

overall germination and dry mass of six sugarcane varieties (P<0.01) when conditions were

unfavourable for germination. However, there was no added benefit of adding ethephon to

the hot water because the SHWT alone significantly improved germination and growth.

Additionally, in some varieties germination and growth were higher when SBS were treated

with the SHWT than with the ethephon treatment. Therefore, the SHWT is highly

recommended for the treatment of SBS free of C. xyli subsp. xyli, but the addition of ethephon

to the hot water is not recommended for transplant production.
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Figure 7.7 Effect of short heat treatment (SHWT) and hot-ethephon treatment of single-
budded setts on dry mass of six sugarcane varieties.
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8. FUNGICIDE TREATMENT OF SINGLE-BUDDED SETTS

Abstract

Experiments were carried out to determine the effect of various fungicides on germination and plant growth.
Treatment of single-budded setts (SBS) with the fungicides propamocarb-HCl, guazatine, carbendazim+
difenoconazole, carbendazim+flusilazole and propiconazole improved germination, which was highest after treatment
with carbendazim+difenoconazole (Eria®; 0.5 md.lT1). Treatment of SBS planted in both unsterilised and sterilised
media with Eria® in hot water (52CC) for 10 minutes significantly increased germination and plant growth compared
with both the control and the short heat treatment (SHWT). These results indicated that the role of Eria® was not
entirely fungicidal. Treatment with a propamocarb-HCl/benomyl solution had little effect on germination and growth,
indicating the small role of systemic infections in germination failure. Therefore, germination and plant growth were
predominantly increased by the plant growth regulatory activities of the active ingredients, carbendazim and
difenoconazole. Used separately, both carbendazim and difenoconazole significantly increased germination, but only
difenoconazole caused significant increases in dry mass. These results provided some evidence that germination
failure is caused by the inappropriate hormonal balance within the SBS, rather than systemic infections or infection
of the SBS by soilborne pathogens.

8.1 Preliminary Fungicide Experiment

8.1.1 Introduction

Due to the monoculture of sugarcane over large areas for several years, pathogens such as

Ceratocystis paradoxa (Dade) C. Moreau, Glomerella tucwnanensis (Speg.) V. Arx & E.

Muller, Pythium spp., Rhizoctonia solani Kuhn and Fusarium spp. accumulate in the field.

When adverse conditions prevail, germination is delayed and these pathogens can cause sett

decay and germination failure. It is essential to apply fungicides as a sett treatment when

temperatures are low, the seedcane is old or the setts have been heat treated (Barnes, 1974).

In most transplant nurseries pathogens do not accumulate because growing media are usually

discarded after use. Therefore, setts are only treated in the winter months when germination

is delayed by low temperatures.

In South Africa, benomyl (Benlate®, Du Pont de Nemours; Fundazol®, Sanachem) and

guazatine (Panoctine®, Rhone-Poulenc) are registered as sett treatments against pineapple

disease (C. paradoxa) and sett decay caused by R. solani and Fusarium spp. (Krause et al.,

1996). However, there are problems associated with the use of these fungicides. The toxicity

of a fungicide must be taken into account when choosing a fungicide for the treatment of SBS
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because setts are always planted into trays by hands which are not usually protected by water

resistant gloves. Pesticides can be absorbed through the skin and accumulate in the body,

causing acute poison symptoms or death (Vermeulen et al., 1990). Guazatine is classified as

a Group II pesticide, indicating that it is poisonous and should not be handled without gloves.

At the time of this study guazatine was not available or imported into South Africa as it is only

registered for use on sugarcane and wheat. However, it has recently been re-introduced and

is now readily available.

Benomyl is relatively harmless (Group IV). This fungicide is available as a wettable powder

that is insoluble in water. Therefore, it tends to settle out of solution, resulting in poor coating

of the setts by the fungicide unless constantly stirred (Mitchell-Innes & Thomson, 1973).

The aim of this experiment was to determine the value of using fungicides in the nursery, and

to test which of eight fungicides were most efficacious in contributing to increased germination

and plant growth. All but one of the fungicides were less toxic than guazatine and most were

soluble in water. The fungicides tested and their toxicity rating were propamocarb-HCl

(Previcur N®, AgrEvo; IV), benomyl (Benlate®; IV), guazatine (Panoctine®; II),

carbendazim+ difenoconazole (Eria®, Novartis; III), carbendazim+flusilazole (Punch-Xtra®,

Du Pont de Nemours; III), propiconazole (Tilt®, Novartis; III), captab (Captab®, Agricura;

IV) and triadimefon (Bayleton®, Bayer; II).

Most of the fungicides tested are systemic and have a curative effect after penetrating plant

tissue. Guazatine was the only protective fungicide tested which inhibits fungal growth or

spore germination on the treated surface (Table 8.1).
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Table 8.1. Fungicides tested for treatment of single-budded setts (DS = powder for dry seed treatment; SL = soluble concentrate; WP =
wettable powder; EC = emulsifiable concentrate; SC = suspension concentrate; FC = fungicide; SDI = steroid demethylation
inhibitor) (Worthing & Hance, 1991; Krause et al, 1996).

Active ingredient

propamocarb-
hydrochloride SL 72.2%

benomyl WP 50%

guazatine SC 40%

carbendazim SC 12.5%
difenoconazole SC 6.25%

carbendazim SC 25%
flusilazole SC 12.5%

propiconazole EC 25%

captab WP 50%

triadimefonDS25%

Activity of a.i.

carbamate FC

benzimidazole FC

guanidine FC

benzimidazole FC/
conazole FC, SDI

benzimidazole FC
conazole FC, SDI

conazole FC, SDI

phthalimide FC

conazole FC, SDI

Trade
name

Previcur N*

Benlate*

Panoctine"

Eria*

Punch-Xtra*

Tilt*

Captab*

Bayleton*

Fungal class
controlled

Oomycetes

Asco-, Basidio-, &
Deuteromycetes

Asco-, Basidio-, &
Deuteromycetes

Asco-, Basidio-, &
Deuteromycetes

Asco-, Basidio-, &
Deuteromycetes

Asco-, Basidio-, &
Deuteromycetes

Asco-, Basidio-,
Deutero-, &
Oomycetes

Asco-, Basidio-, &
Deuteromycetes

Diseases controlled*

damping-off, seed decay & root rot.

black- & ring spot; blossom blight;
botrytis-, brown-, bulb-, root- &
sclerotinia rot; freckle; fruit spot; grey
leaf spot; pineapple disease; post-
harvest decay; powdery mildew; scab &
sett decay.

pineapple disease, sett decay & stinking
smut

grey leaf spot & leaf spot

eye spot, grey leaf spot, rust.

blossom blight; eye- & leaf spot; leaf
rust & powdery mildew.

anthracnose, black spot, dollar spot,
early blight, fairy ring & scab.

cob & tassel smut, pineapple disease,
sett decay.

Target organisms*

Phytophthora, Pythium, Peronospora,
Pseudoperonospora

Actinonema, Altemaria, Botrytis, Ceratocystis,
Cercospora, Colletotrichum, Diplodia, Fusarium,
Fusicladium, Guignardia, Hendersonia, Monilinia,
Mycosphaerella, Oidiopsis, Oidium, Penicillium,
Podosphaera, Pseudocercospora, Rhizoctonia,
Sclerotinia, Thielaviopsis, Venturia, Verticillium.

Ceratocystis, Fusarium, Rhizoctonia, Tilletia.

Cercospora, Phoma.

Cercospora, Puccinia, Pseudocercosporella.

Erysiphe, Monilinia, Oidium, Pseudocercospora,
Puccinia, Rhyncosporium.

Actinonema, Fusicladium, Helminthosporium,
Marasimus, Rhizoctonia, Sclerotinia, Sphaceloma,
Venturia.

Cercospora, Fusarium, Hemileia, Podosphaera,
Rhizoctonia, Rhynchosporium, Sphacelotheca.

= registered at the given concentration of active ingredient for the control of these diseases and pathogens in South Africa (Krause et al., 1996).



8.1.2 Materials and methods

Single-budded setts (SBS) of varieties N17 and NCo376 were hot water treated at 50 °C for

120 minutes and then soaked for five minutes in the relevant fungicides which were mixed

with tap water at the appropriate concentrations (Table 8.2). Two experiments were carried

out because of the large quantities of seedcane required for each treatment. Single-budded

setts were treated with captab, propamocarb-HCl, benomyl, guazatine and triadimefon in

Experiment A, and with carbendazim+difenoconazole (C+D), propiconazole, and

carbendazim+flusilazole (C+F) in Experiment B. The control consisted of untreated SBS.

Each treatment was represented by a total of 60 SBS, divided into three replications of 20 SBS

each. The SBS were planted into trays, left in a germination room (28°C) for seven days and

then placed into the nursery. The germination and dry mass were recorded after 30 days and

the data analysed using two-way analysis of variance (ANOVA). Separation of mean

differences was accomplished using least significant differences.

Table 8.2 Rates of fungicides used for the treatment of the varieties N17 and NCo376.

Commercial name
(active ingredient)

Previcur N*
(propamocarb-HCl)

Benlate*
(benomyl)

Panoctine*
(guazatine)

Eria*
(carbendazim+difenoconazole)

Punch-Xtra*
(carbendazim+flusilazole)

Tilt*
(propiconazole)

Rate

0.5 mfl.f'
1.0 mU 1

1.5mJ.f'
2 mil'1

0.5 g.r1*

2 m«.f'*

0.2 M.I'1

0.5 MA'1

1 mC.f1

1.5 mU"1

0.5 mC.f1

1 mU"1

1.5 M.I'1

2 mC.f'

0.02 M.i'1

0.2 MA'1

l.OmC.f1

2 MA'1

Concentration of active ingredient

360 ppm
722 ppm
1083 ppm
1444 ppm

250 ppm

800 ppm

25 ppm : 12.5 ppm
62.5 ppm : 31.25 ppm

125 ppm : 62.5 ppm
187.5 ppm : 94 ppm

125 ppm : 62.5 ppm
250 ppm : 125 ppm
375 ppm : 187.5 ppm
500 ppm : 250 ppm

5 ppm
50 ppm

250 ppm
500 ppm
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Commercial name
(active ingredient)

Captab*
(captab)

Bayleton*
(triadimefon)

Rate

0.5 gJ '
i g.r1

2 g.r1

3 g.r'

0.2 g.r'
0.5 g.r'
l g.r'*

Concentration of active ingredient

250 ppm
500 ppm
1000 ppm
1500 ppm

50 ppm
125 ppm
250 ppm

' = registered concentration for the control of pineapple disease and sett decay in South Africa.

8.1.3 Results and discussion

Experiment A

Statistical analysis of the data indicated that the mean germination of N17 and NCo376 was

significantly affected by fungicide treatment (P<0.05; Table 8.3). The germination of the

control was high (72.5%), suggesting that there was little SBS infection. None of the

fungicide treatments were significantly different from the control, but germination was

increased by treatment with guazatine (800 ppm) and propamocarb-HCl (722, 1083 and 1444

ppm), the latter indicating the possible presence of Pythium spp. (Figure 8.1).

Table 8.3 Two-way ANOVA of the mean germination and dry mass data of varieties N17
and NCo376 after fungicide treatment of single-budded setts.

Factor

Fungicide

Variety

Fungicide x variety

df

13

1

13

Germination %

Variance-ratio

2.318

73.9626

3.468

P-value

0.0153

0.0000

0.0006

Dry mass (g)

Variance-ratio

2.414

2.619

1.796

P-value

0.0116

0.1112

0.0664
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Fungicide Treatment

Control

360ppm P

722ppm P

1083ppmP-

1444ppmP-

65 70 75 80 85

Germination %
90

Figure 8.1 Effect of fungicide treatment on the mean germination of varieties N17 and
NCo376. Means whose 95% comparison intervals do not overlap are
significantly different. (P=propamocarb; B=benomyl; G=guazatine; C =
captab; T=triadimefon).

The results were not consistent for both varieties as indicated by the significant interaction

between fungicide and variety (Table 8.3). Although there were significant differences

between fungicide treatments for both varieties, none of the fungicides significantly increased

germination compared with the control (Table 8.4).
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All fungicides, except benomyl, increased germination of N17 and NCo376. Germination of

N17 was highest after treatment with 722 and 1083 ppm propamocarb-HCl (+15-18%) and

the germination of NCo376 was increased by 15-16% after treatment with 50 ppm triadimefon,

1444 ppm propamocarb-HCl and guazatine. The registered treatment with 800 ppm guazatine

increased germination of both varieties. However, the registered treatment with benomyl had

no effect on germination of N17 and decreased germination of NCo376 (Table 8.4).

Table 8.4 Effect of fungicide treatment of single-budded setts on the germination and dry
mass of varieties N17 and NCo376.

Treatment

Fungicide

triadimefon

captab

propamocarb-
HCl

benomyl

guazatine

control

Concentration

50 ppm

125 ppm

250 ppm

250 ppm

500 ppm

1000 ppm

1500 ppm

360 ppm

722 ppm

1083 ppm

1444 ppm

250 ppm

800 ppm

LSD (P=0.05)
LSD (P=0.01)

Germination %

N17

67 f

77def

83 abed

83 abede

78 cdef

85 abed

68 ef

82 abede

90abc

92abc

87 abed

77def

83 abed

78 bedef

14.58
19.76

NCo376

77 a

63 abed

62 abed

57 bed

65 abc

62 abed

72 ab

48 d

67 abc

63 abed

78 a

53 cd

77 a

67 abc

15.74
21.25

Dry mass (g)

N17

0.18

0.15

0.24

0.23

0.16

0.29

0.24

0.22

0.25

0.32

0.20

0.19

0.16

0.26

NS

NCo376

0.17

0.22

0.33

0.19

0.18

0.14

0.15

0.14

0.25

0.23

0.20

0.20

0.17

0.19

NS

Means in a column with a letter in common are not significantly different at the 5% level.

The wettable powders captab, benomyl and triadimefon had no effect on germination compared

with the control, indicating that the powders may have adhered poorly to the SBS after the five
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minute treatments due to settling out of solution. Germination of SBS after treatment with the

soluble concentrates guazatine and propamocarb-HCl (722, 1083 and 1444 ppm) was

significantly greater than after treatment with benomyl. These results indicated that guazatine

and propamocarb-HCl may have adhered to the SBS surface more efficiently than the wettable

powders, providing better disease control.

Statistical analysis of the data indicated that fungicide treatment had a significant effect on dry

mass (P<0.05; Table 8.3). However, none of the treatments significantly increased the mean

dry mass compared with the control. The dry mass was increased by treatment with

propamocarb-HCl (722 and 1083 ppm), and decreased by treatment with both benomyl (250

ppm) and guazatine (800 ppm) compared with the control (Figure 8.2).

The dry mass results were consistent for both varieties as indicated by the lack of a significant

interaction between variety and fungicide treatment (Table 8.3). The fungicide treatments had

no significant effects on the dry mass of N17 and NCo376 (Table 8.4). Most fungicide

treatments, except captab (1000 ppm) and propamocarb-HCl (1083 ppm), decreased dry mass

of N17. Dry mass of NCo376 was increased by treatment with triadimefon (250 ppm) and

propamocarb-HCl (722 and 1083 ppm).

Results from this experiment indicated that the most promising fungicide was propamocarb-

HCl at 722, 1083 and 1444 ppm. Since this fungicide only controls Oomycetes, its success

indicated that Pythium or Phytophthora may have been present in the growing medium,

causing sett mortality. Germination was also increased by treatment with guazatine indicating

the control of pathogenic fungi belonging to the Asco-, Basidio- or Deuteromycetes.
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Fungicide Treatment

0.15 0.20 0.25 0.30

Dry mass (g)
0.35

Figure 8.2 Effect of fungicide treatment of single-budded setts on the mean dry mass of
varieties N17 and NCo376. Means whose 95% comparison intervals do not
overlap are significantly different. (P=propamocarb; B=benomyl; G=
guazatine; C=captab; T=triadimefon).

Experiment B

The mean germination of the untreated controls of the two varieties was high (78%), indicating

that there was little SBS infection. Statistical analysis of the data indicated that fungicide

treatment did not have a significant effect on germination (P=0.05; Table 8.5). Most

concentrations of C + F and propiconazoie decreased germination (Figure 8.3).

112



Table 8.5 Two-way ANOVA of the mean germination and dry mass data of varieties N17
and NCo376 after fungicide treatment of single-budded setts.

Factor

Fungicide

Variety

Fungicide x variety

df

12

1

12

Germination %

Variance-ratio

1.937

47.9626

2.628

P-value

0.0543

0.0000

0.0092

Dry mass (g)

Variance-ratio

4.816

4.512

0.596

P-value

0.0000

0.0384

0.8351

Fungicide Treatment

60 65 70 75 80 85

Germination %
90

Figure 8.3 Effect of fungicide treatment of single-budded setts on the mean germination
of varieties N17 and NCo376. Means whose 95% comparison intervals do not
overlap are significantly different. (C+D=carbendazim+ difenoconazole;
C+F=carbendazim+flusilazole; Pr. = propiconazole).
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The germination results were consistent for both varieties as indicated by the significant

interaction between fungicide treatment and variety (Table 8.5). Treatment with C+D,

propiconazole and C+F at most concentrations improved germination of N17, the treatments

with 50 ppm propiconazole, C+F(1) and C+F(2) significantly so (+15-18 %, P < 0.05) (Table

8.6). Treatment with C+D at three concentrations slightly increased germination, and both

propiconazole and C+F decreased germination of NCo376. These results indicated that there

were differing varietal responses to treatment with both C + F and propiconazole, but not to

C+D(2).

Table 8.6 Effect of fungicide treatment on the germination and dry mass of varieties N17
and NCo376.

Treatment

Cone, of active ingredient

25 ppm C + 12.5 ppm D

62.5 ppm C + 31.25 ppm D

125 ppm C + 62.5 ppm D

187.5 ppm C + 94 ppm D

5 ppm propiconazole

50 ppm propiconazole

250 ppm propiconazole

500 ppm propiconazole

125 ppm C + 62.5 ppm F

250 ppm C + 125 ppm F

375 ppm C + 187.5 ppm F

500 ppm C + 250 ppm F

Control

Abbrev.

C+D(l)

C + D(2)

C + D(3)

C+D(4)

_

_

_

_

C + F(l)

C+F(2)

C+F(3)

C+F(4)

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

N17

78 be

85abc

75 c

82abc

82abc

90a

78 be

85abc

92 a

92 a

78 be

87 ab

78 be

10.88
14.72

NCo376

80abc

82 a

80abc

73 abed

63 bed

72 abed

57 d

66 abed

73 abed

55 d

63 cd

72 abed

78abc

16.28
22.13

Dry mass (g)

N17

0.34 a

0.24 abc

0.25 ab

0.26 ab

0.14 bed

0.12cd

0.12 cd

0.09 d

0.15 bed

0.19 bed

0.20 bed

0.19 bed

0.17 bed

0.12
0.16

NCo376

0.24

0.25

0.20

0.18

0.13

0.13

0.12

0.11

0.14

0.17

0.14

0.19

0.12

NS

Means in a column with a letter in common are not significantly different at the 5% level
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Eria® contains difenoconazole, which is a triazole. Triazoles are sterol biosynthesis inhibitors

that are highly systemic and have activity against all fungal groups except Oomycetes.

Difenoconazole provides a preventative and curative activity, increasing germination by the

prevention of both spore germination on the SBS surface and subsequent fungal penetration,

and the elimination of existing systemic infections. Eria® is registered in South Africa for the

control of the Deuteromycetes causing grey leaf spot of maize {Cercospora zeae-maydis), and

leaf spot (Cercospora arachidicola and C. personata) and web spot {Phoma arachidicola) of

groundnuts.

The increase in germination of both varieties after treatment with Eria® may not have been

purely fungicidal and could have been due to plant growth regulator properties of the triazole

difenoconazole. Triazoles block the gibberellin biosynthesis pathway of plants, promoting

growth of lateral buds (Werbrouck & Debergh, 1996; Werbrouck et al., 1996).

Germination was probably also improved by carbendazim, the second active ingredient in

Eria® which together with butyl isocyanate, is a breakdown product of benomyl, and is

registered to control pathogens in the Ascomycetes, Basidiomycetes and Deuteromycetes.

Bechet (1977) reported that both 375 ppm carbendazim (Bavistin®, BASF) and 500 ppm

benomyl gave good control of pineapple disease when infected SBS were treated with the

fungicides and planted into the field.

Carbendazim also has auxin-like properties which have been used for adventitious rooting and

callus formation in stem cuttings of Taxus baccata L. and other plant species (Nandi et al.,

1996). Mitchell-Innes & Thomson (1974) reported that 300 ppm carbendazim and benomyl

were both effective in promoting root and shoot growth of sugarcane. Therefore, the increase

in germination caused by treatment of SBS with Eria® was probably caused by the fungicidal

and plant growth regulator properties of both carbendazim and difenoconazole.

Statistical analysis of the data indicated that fungicide treatment had a significant effect on dry

mass (P<0.01; Table 8.5). The mean dry mass of N17 and NCo376 was significantly

increased by treatment with C+D(l), C+D(2) and C+D(3). This could have been due to the
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activity of both carbendazim and difenoconazole against Ascomycetes, Basidiomycetes and

Deuteromycetes, the plant growth regulator properties of both active ingredients, or both.

Plant growth was not affected by C+F, indicating that carbendazim was not responsible for

the increased dry mass caused by C+D treatment. Additionally, these results indicated that

the triazole active ingredient flusilazole in C+F was not as effective as difenoconazole. Dry

mass was slightly decreased by the propiconazole treatments, indicating that it was slightly

phytotoxic, particularly at the higher concentrations (Figure 8.4).

Fungicide Treatment

5 ppm Pr.

50 ppm Pr. -

250 ppm Pr. -

500 ppm Pr.

0.05 0.10 0.15 0.20 0.25

Dry mass (g)
0.30 0.35

Figure 8.4 Effect of fungicide treatment of single-budded setts on the mean dry mass of
varieties N17 and NCo376. Means whose 95% comparison intervals do not
overlap are significantly different. (C+D=carbendazim+ difenoconazole;
C+F=carbendazim+flusilazole; Pr. = propiconazole).
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The results were consistent for both varieties as indicated by the lack of a significant

interaction between fungicide treatment and variety (Table 8.5). Fungicide treatment

significantly affected dry mass of N17 but not NCo376 (Table 8.6). All treatments with C+D

increased dry mass of N17 (+41-100%) and NCo376 (+50-108%). Treatment of SBS with

all propiconazole concentrations decreased dry mass of N17 and had little effect on dry mass

of NCo376. Treatment of SBS with most concentrations of C+F slightly increased dry mass

of both varieties.

In summary, the fungicides propamocarb-HCl, guazatine, C+D, C+F and propiconazole

improved germination. Treatments with propamocarb-HCl (722, 1083 and 1444 ppm),

C + D(l) and C + D(2) were the most successful in improving both germination and growth.

In commercial nurseries, SBS are currently only treated with fungicides before planting, and

frequent irrigation rapidly leaches fungicides from the SBS and medium. Therefore, the

persistent systemic fungicides, Eria® and Previcur®, are ideal for treatment of SBS. Both the

non-persistent fungicides and protectants were not as effective. Germination of the untreated

controls in this experiment was high because temperatures were favourable for germination.

As a result, fungicide treatment caused only small increases in germination. However, even

when conditions were favourable for germination, the application of C+D significantly

increased plant growth.
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8.2 Treatment with Hot- and Cold-Fungicide Treatments

8.2.1 Introduction

Results from the first fungicide experiments (Section 8.1) indicated that when germination was

high under favourable germination conditions, treatment with certain fungicides further

improved germination and significantly improved plant growth. Since SBS are only treated

with a fungicide immediately before planting in the trays and frequent irrigation causes rapid

loss of fungicides from the SBS and medium, persistent systemic fungicides such as Eria® and

Previcur® would be most effective in improving plant growth.

The aim of this experiment was to compare the most effective fungicides from Experiments

A and B with the registered fungicides, guazatine and benomyl. The fungicides were tested

on six commercial sugarcane varieties. In order to determine the effect of cold- and hot-

fungicide treatments on germination and growth, two experiments were carried out. In the

first experiment the fungicides were applied as cold treatments, and in the second experiment,

the fungicides were applied in hot water at 52°C for 10. The effect of the hot-fungicide

treatments on root length and ratings of root disease was also determined. Additionally, fungi

were isolated from the SBS and roots of the controls, and from the growing medium, to

identify fungi that may adversely affect germination and growth of transplants.

8.2.2 Materials and methods

The fungicides were mixed in tap water at the appropriate concentrations (Table 8.7). For the

hot-fungicide treatments, tap water was heated to 52°C and transferred to buckets, where the

fungicides were added and mixed in thoroughly. Stalks of NCo376, N12, N14, N16, N17 and

N22 were obtained from a variety collection at SASEX and cut into SBS. The SBS of N16,

N17 and N22 were treated in cold-fungicide solutions for five minutes. The SBS of NCo376,

N12 and N14 were treated for 10 minutes either in hot water (SHWT) or with the fungicides

in hot water. The temperature of the hot water was initially 52°C, but when SBS were

submerged in the water, the temperature dropped to between 48-50°C.
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Each cold treatment was represented by a total of 80 SBS, divided into four replicates of 20

SBS each; and each hot fungicide treatment was represented by a total of 60 SBS, divided into

three replications of 20 SBS each. The SBS were planted into trays, left in a germination

room for seven days and then placed on benches outdoors. The germination and dry mass of

the transplants were recorded after 30 days and data for all varieties in each experiment were

pooled and evaluated using two-way analysis of variance (ANOVA). Mean results were

separated using least significant differences.

Table 8.7 Concentrations of the fungicides tested for treatment of single-budded setts.

Commercial name

Panoctine®

Benlate®

Preview®

Tilt®

Punch-Xtra®

Eria®

Rate

2.Om0.f'*

0.5 g.f'*

l.Oml.C1

0.2 mU1

0.5 mU"1

0.5 mf.r'

Concentration of active ingredient

800 ppm guazatine

250 ppm benomyl

722 ppm propamocarb-HCl

50 ppm propiconazole

125 ppm C + 62.5 ppm F [C+F(l)]

|_ 62.5 ppm C + 31.25 ppm D [C + D(2)]

* = registered at the given concentration for control of sett decay of sugarcane in South Africa (Krause et al., 1996).

After the shoots were harvested for dry mass recordings, transplants of NCo376, N12 and N14

were pulled out of the trays and any medium was washed off the roots. The mean length of

the sett roots on each SBS was determined and the extent of root infection was given a

numerical rating according to the following scale:

1 normal, healthy appearance

2 occasional lesions or slight discolouration

3 < 25 % of sett roots with lesions or discolouration

4 26-50% of sett roots with lesions or discolouration

5 51-80% of sett roots with lesions or discolouration

6 80-100% of sett roots with lesions or discolouration

7 most of the sett roots were absent

8 all sett roots were absent
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Selective media were used to isolate Pythium spp., Ceratocystis paradoxa and Fusarium spp.

from the untreated SBS (control). Pythium spp. were isolated from the sett roots by rinsing

the roots in tap water and then sterile water before blot drying on sterile paper towel and

plating onto P5ARP (Appendix 1). Pythium spp. were isolated from the composted bagasse

using the method of Stanghellini and Kronland (1985). A petri dish was half-filled with

composted bagasse, which was moistened with distilled water. Cubes of potato (10 mm x 10

mm x 2 mm) were washed under running tap water for five minutes, washed with distilled

water and placed onto the composted bagasse. Thin blocks of water agar (5 mm x 5 mm x 2

mm) were placed on top of the potato. After 24 hours, the agar pieces were removed and

plated on P5ARP.

A selective medium described by Rashid & Trujillo (1974) was used to isolate C. paradoxa

from SBS and composted bagasse. Inner tissues (1 cm3) of the SBS were surface sterilised in

0.1% sodium hypochlorite for five minutes and rinsed three times in sterile distilled water.

The outer tissues were cut away aseptically, and the 0.5 cm2 inner piece was sterilised in

sodium hypochlorite for one minute and then plated onto the C. paradoxa-se\ecti\e medium.

C. paradoxa and Fusarium spp. were isolated from the composted bagasse using the method

of Srinivasan (1969). Boiled pieces of sugarcane stems and roots were buried in the

composted bagasse. After three days the stem pieces were sterilised and plated onto the C.

paradoxa-selective medium, and the roots were sterilised and plated onto PDA containing 100

ppm streptomycin sulphate for the isolation of Fusarium spp.

Fusarium spp. were isolated from the sett roots by washing roots in deionised water. The

roots were then cut into 5 mm sections, surface sterilised for one minute in 0.1% sodium

hypochlorite, washed twice in sterile distilled water and then dried on sterile tissue paper. The

roots were then plated onto PDA containing 100 ppm streptomycin sulphate.
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8.2.3 Results and discussion

Cold-fungicide treatments

Statistical analysis of the germination data indicated that fungicide treatment had no sigmficant

effect on germination (Table 8.8). Compared with the control, germination was highest after

treatment with (C+D(2)) (+6%) and propiconazole (+5%) (Figure 8.5) and guazatine

decreased germination (-5%).

Table 8.8 Two-way ANOVA of the mean germination and dry mass of varieties N16,
N17 and N22 after cold-fungicide treatment of single-budded setts.

Factor

Fungicide treatment

Variety

Fungicide x variety

df

6

2

12

Germination %

Variance-ratio

0.917

5.020

0.676

P-value

0.4891

0.0095

0.7675

Dry mass (g)

Variance-ratio

1.702

79.9

1.928

P-value

0.1353

0.0000

0.0475

Although the germination of N16 and N22 is considered to be rapid and germination of N17

is considered to be slow, the results were consistent for all varieties as indicated by the lack

of a significant interaction between fungicide treatment and variety (Table 8.8). There were

no significant differences between treatments of all varieties (Table 8.9). Germination of the

untreated controls of N16 and N17 was high (83 and 86%) indicating that there was little

inhibition of germination by fungal infection. Germination of the untreated control of N22

was lower (69%), indicating that this variety has a low inherent germination ability, was

possibly more susceptible to fungal infection, or the SBS contained systemic infections before

planting. Most fungicide treatments increased germination of N22, indicating some pathogen

control. Guazatine had little effect on germination of this variety, indicating that the infection

was systemic, and could not be controlled by the protective action of guazatine. Germination

of N22 was highest when SBS were treated with 250 ppm benomyl, C+D(2) and C+F(l),

indicating the control of fungi belonging in the Asco-, Basidio- and Deuteromycetes.
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Fungicide Treatment

Control-

800ppm G-

250ppm B-

722ppm P-
•<•• ^ - - ' ^ "

75 80 85

Germination %
90

Figure 8.5 Effect of cold-fungicide treatment of SBS on the mean germination of varieties
N16, N17 and N22. Means whose 95% comparison intervals do not overlap
are significantly different. (G=guazatine; B=benomyl; P=propamocarb; Pr.=
propiconazole; C+F=carbendazim+flusilazole; C+D=carbendazim+ difenoconazole).

Table 8.13 Effect of cold-fungicide treatments of single-budded setts on the germination
and dry mass of varieties N16, N17 and N22.

Treatment

Control

800 ppm guazatine

250 ppm benomyl

722 ppm propamocarb HC1

50 ppm propiconazole

C+F(l)

C+D(2)

LSD

Germination (%)

N16

83

78

78

76

83

76

81

NS

N17

86

79

83

85

92

86

92

NS

N22

69

70

84

79

76

81

81

NS

Dry mass (g)

N16

0.24 a

0.06 c

0.19ab

0.20 ab

0.13 be

0.17 ab

0.16ab

0.09

N17

0.39

0.33

0.35

0.36

0.39

0.38

0.38

NS

N22

0.21

0.26

0.29

0.25

0.25

0.28

0.26

NS

Means in a column with a letter in common are not significantly different at the 5% level.
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Statistical analysis of the data indicated that fungicide treatment had little effect on mean dry

mass (Table 8.8). Treatment with benomyl, C+F, propiconazole, C+D and propamocarb-

HC1 had no effect on mean dry mass, whereas treatment with guazatine considerably decreased

dry mass indicating its phytotoxicity (Figure 8.9).

The dry mass results were not consistent for all varieties as indicated by the significant

interaction between fungicide treatment and variety (Table 8.8). There were significant

differences between treatments with N16, but not with N17 and N22 (Table 8.9). Treatment

of N16 with guazatine (P<0.01) and propiconazole (P<0.05) significantly decreased dry

mass, but these treatments had little effect on the dry mass of N17 and N22. Dry mass of N16

was also decreased by treatment with propamocarb-HCl, benomyl, C+F(l) and C+D(2).

Fungicide Treatment

0.15 0.20 0.25 0.30

Dry mass (g)
0.35

Figure 8.6 Effect of cold-fungicide treatment of single-budded setts on the mean dry mass
of varieties N16, N17 and N22. Means whose 95% comparison intervals do
not overlap are significantly different. (G=guazatine; B=benomyl;
P=propamocarb; Pr.= propiconazole; C+F=carbendazim+ flusilazole;
C -I- D=carbendazim+difenoconazole).
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Hot-fungicide treatments

Germination and dry mass

Statistical analysis of the data indicated that fungicide treatment had a significant effect on

mean germination and dry mass of varieties NCo376, N12 and N16, indicating that the

fungicides were more effective when applied in hot water than in cold water (Table 8.10). The

mean germination was significantly increased by treatment with C+D(2) (+44%), SHWT

(+29%), C+F(l) (+20%) (P=0.01), 250 ppm benomyl ( + 16%) and 800 ppm guazatine

( + 16%) (P=0.05) compared with the control (Figure 8.7a). Dry mass was significantly

increased by treatment with C+D(2) (+92%, P<0.01) and SHWT (+46%, P<0.05), and

increased byC + F(l)(+38%) compared with the control (Figure 8.7b).

Table 8.10 Two-way ANOVA of the mean germination of varieties NCo376, N12 and N14
after hot-fungicide treatment of single-budded setts.

Factor

Fungicide treatment

Variety

Fungicide x variety

df

7

2

14

Germination %

Variance-ratio

7.469

6.006

1.401

P-value

0.0000

0.0047

0.1896

Dry mass (g)

Variance-ratio

4.656

2.666

0.645

P-value

0.0005

0.0798

0.8140

Compared with the SHWT, treatment with guazatine, benomyl and C+F(l) decreased

germination and dry mass, and treatment with propamocarb-HCl and propiconazole

significantly decreased germination and decreased dry mass (P=0.01) (Figure 8.7). These

results indicated that these fungicides used in hot water were not as effective as heat treatment

alone. The SHWT may not only stimulate germination by adjusting the hormonal balance, but

may also eliminate systemic pathogenic fungi within the SBS.

Treatment of SBS with Eria® (0.5 mfl.f') in hot water significantly increased germination

(+12%, P=0.01) and dry mass (+32%, P=0.05) compared with the SHWT, indicating that

the ability of Eria® to control pathogenic fungi and to stimulate germination was enhanced

when applied in hot water. These results indicated that the fungicide treatments of SBS in cold
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water had no effect on plant growth. However, when fungicides were added to hot water

(52 °C), plant growth was greatest when SBS were treated for 10 minutes with both C+D(2)

(Eria® at 0.5 mfl.f1; 52°C) and hot water (52°C).

(a)

Fungicide Treatment

SO 6O 70 8O 90

Germination %>
1 0 0

Fungicide Treatment

o.io 0.15 0.20

Dry mass (g)
0.25 0.30

(b)
Figure 8.7 Effect of hot-fungicide treatment of single-budded setts on the mean

germination (a) and dry mass (b) of varieties NCo376, N12 and N14. Means
whose 99% comparison intervals do not overlap are significantly different.
(SHWT=short hot-water treatment; G=guazatine; B=benomyl; P=propamocarb; Pr.=
propiconazole; C+F=carbendazim+flusilazole; C+D= carbendazim+
difenoconazole).
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The germination results were consistent for all varieties as indicated by the lack of a significant

interaction between fungicide treatment and variety (Table 8.10). There were significant

differences between treatments of varieties NCo376, N12 and N14 (Table 8.11). Compared

with the control, the SHWT at 52°C for 10 minutes improved germination of NCo376 and

N12, and significantly improved germination of N14 (+55%, P < 0.01). Treatment with the

Eria in hot water significantly improved germination of NCo376 (+40%, P<0.05), N12

( + 34%, P<0.01) and N14 (+60%, P<0.01). Treatment of SBS with the C+F(l) in hot

water improved germination of NCo376 and N12, and significantly improved germination of

N14 (+33%, P<0.05). Addition of 50 ppm propiconazole to the hot water decreased

germination of NCo376 and N12, and significantly improved germination of N14 (+42%,

P<0.01). Germination of N14 was significantly improved after treatment with 250 ppm

benomyl and 800 ppm guazatine (P<0.01), and improved with 722 ppm propamocarb-HCl,

all of which had little effect on germination of NCo376 and N12.

Table 8.11 Effect of hot-fungicide treatments of single-budded setts on the germination and
dry mass of varieties NCo376, N12 and N14.

Treatment

Control

SHWT

800 ppm guazatine

250 ppm benomyl

722 ppm propamocarb-HCl

50 ppm propiconazole

C+F(l)

C+D(2)

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

NCo376

63 be

78 ab

62 be

62 be

63 be

53 c

72abc

88 a

18.5
25.5

N12

65 b

73 ab

68 b

68 b

62 b

61b

75 ab

87 a

15.2
21.1

N14

55 c

84 ab

83 ab

82 ab

70 be

78 ab

73 ab

88 a

15.8
21.8

Dry mass (g)

NCo376

0.13

0.19

0.16

0.12

0.15

0.13

0.15

0.22

NS

N12

0.13 c

0.17 be

0.13 c

0.19 be

0.17 be

0.17 be

0.23 ab

0.28 a

0.09
0.13

N14

0.14d

0.21 ab

0.17 cd

0.17cd

0.16 d

0.20 be

0.18 bed

0.25 a

0.04
0.06

Means in a column with a letter in common are not significantly different at the 5% level.
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The dry mass results were consistent for both varieties as indicated by the lack of a significant

interaction between variety and fungicide treatment (Table 8.10). There were significant

differences between treatments with N12 and N14, but not with NCo376 (Table 8.11).

Treatment of SBS with C+D(2) improved dry mass of NCo376 (+69%), and significantly

improved dry mass of N12 ( + 115%) and N14 (+79%) (P<0.01). Treatment with C+F(l)

had little effect on dry mass of NCo376, improved dry mass of N14 (+29%), and significantly

improved dry mass of N12 (+77%) (P<0.05). Dry mass of N14 was also significantly

improved after treatment with both 50 ppm propiconazole (+42%) and the SHWT (+50%).

The standard treatments with guazatine and benomyl had no significant effect on germination

of all varieties. Treatment with benomyl increased dry mass of N12 (+46%) and N14

(+21%), and guazatine increased dry mass of NCo376 (+23%) and N14 (+21%).

To summarise, analysis of the germination data of these experiments indicated that when

fungicides were applied in cold water, the best treatment was C+D(2), and when the

fungicides were applied in hot water, germination was highest after treatment with C+D(2)

and the SHWT at 52°C for 10 minutes. Addition of the other fungicides to the hot water was

not as effective as the SHWT alone.

Disease ratings and root length

Fungicide treatment had a significant effect on mean disease rating of NCo376, N12 and N14.

All fungicide treatments and the SHWT significantly decreased disease rating (P<0.05). The

disease rating was lowest after treatment with benomyl, propamocarb-HCl and propiconazole

and highest after treatment with guazatine (Figure 8.8). The mediocre disease control

provided by C+F(l) and C+D(2) is contrasted by their ability to increase germination and dry

mass, which shows their hormonal activities may be more important than disease control.
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Table 8.12 Two-way ANOVA of the mean disease ratings and root lengths of varieties
NCo376, N12 and N14 after hot-fungicide treatment of single-budded setts.

Factor

Fungicide treatment

Variety

Fungicide x variety

df

7

2

14

Disease rating

Variance-ratio

3.439

11.585

1.806

P-value

0.0046

0.0001

0.0653

Root length (mm)

Variance-ratio

0.838

1.818

0.652

P-value

0.5613

0.1736

0.8070

Fungicide Treatment

4.5 5.0 5.5

Disease rating
6.0 6.5

Figure 8.8 Effect of hot-fungicide treatment on the mean disease rating of varieties
NCo376, N12 and N14. Means whose 99% comparison intervals do not
overlap are significantly different. (SHWT=short hot-water treatment; G=guazatine;
B=benomyl; P=propamocarb; Pr.=propiconazole; C+F= carbendazim+flusilazole;
C+D=carbendazim+difenoconazole).

The disease rating results were consistent for all varieties as indicated by the lack of a

significant interaction between variety and fungicide (Table 8.12). There were significant

differences between treatments with N12, but not with NCo376 and N14 (Table 8.13).

Treatment of NCo376, N12 and N14 with all fungicides and the SHWT decreased the disease
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rating, suggesting fungal control by these treatments. The lowest disease ratings resulted from

treatment of NCo376 with the SHWT, N14 with 800 ppm guazatine and 50 ppm propiconazole

and N12 with 722 ppm propamocarb-HCl, 250 ppm benomyl and C+D(2).

Table 8.13 Effect of hot-fungicide treatments of single-budded setts on the disease ratings
of varieties NCo376, N12 and N14.

Treatment

Control

SHWT

800 ppm guazatine

250 ppm benomvl

722 ppm propamocarb-HCl

50 ppm propiconazole

C+F(l)

C + D(2)

LSD (P=0.05)
LSD (P=0.01)

Disease rating

NCo376

5.5

4.5

5.3

5.0

5.1

4.9

5.0

5.0

NS

N12

5.7 a

5.5 ab

5.6 ab

4.2 c

4.8 be

4.9 abc

5.1 ab

4.9 be

0.85
1.17

N14

6.1

5.5

5.3

5.7

5.3

5.4

5.6

5.8

NS

Root length (mm)

NCo376

71

61

52

54

54

62

52

67

NS

N12

55

62

48

64

65

49

60

70

NS

N14

57

61

63

74

71

67

64

69

NS

Means in a column with a letter in common are not significantly different at the 5% level.

Statistical analysis of the mean root length data of varieties NCo376, N12 and N14 indicated

that fungicide treatment had no effect on root length. The mean root length was greatest after

treatment with C+D(2) and shortest after treatment with 800 ppm guazatine (Figure 8.9).

The root length results were consistent for all varieties as indicated by the lack of a significant

interaction between fungicide treatment and variety (Table 8.12). Compared with the control,

all fungicide treatments decreased root length of NCo376 and increased root length of N14

(Table 8.13). Treatment of N12 with all fungicides except 800 ppm guazatine and 50 ppm

propiconazole increased root length.
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Fungicide Treatment

Control-

SHWT

800ppm G -

250ppm B -

722ppm P -

50ppm Pr. -

C+F (1)

C+D(2)-

40 SO 60 70

Root Length (mm)

Figure 8.9 Effect of hot-fungicide treatment of single-budded setts on the mean root length
of varieties NCo376, N12 and N14. Means whose 99% comparison intervals
do not overlap are significantly different. (SHWT=short hot-water treatment; G=
guazatine; B=benomyl; P=propamocarb; Pr. =propiconazole; C+F= carbendazim +flusilazole;
C+D=carbendazim+difenoconazole).

Fungus isolations

Pythium spp., C. paradoxa and Trichoderma spp. were isolated from the untreated SBS;

Pythium spp. and Trichoderma spp. were isolated from the roots; and Pythium spp. and

Fusarium spp. were isolated from the composted bagasse (Table 8.13). These fungi may be

pathogenic to transplants, adversely affecting germination and growth, particularly when

germination is delayed by low temperatures or the use of old or heat-treated seedcane.

Table 8.14 Fungi isolated from sugarcane roots, setts and composted bagasse

Isolation method

Pythium baiting with potato
PDA+streptomycin

PDA
C. paradoxa-selective medium

P5ARP

Fungi isolated

4 Pythium spp.
7 Pythium spp, 2 Fusarium spp., 2 unknown

1 Pythium spp, 6 Trichoderma
1 C. paradoxa

1 Fusarium spp., 1 unknown
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Summary

The results of this section are summarized in Table 8.14, which shows the effect of each

fungicide treatment on germination and dry mass expressed as a percentage of the control. As

in Section 8.1, the best germination and growth was associated with C+D(2) (Eria® at 0.5

mif1) which, when compared with the control, improved the germination when used as a cold

treatment and significantly improved germination when used as a hot treatment (P<0.01).

Compared with the SHWT, treatment with C+D(2) in hot water significantly increased

germination (P<0.05), and this treatment significantly increased dry mass compared with the

control and the SHWT (P<0.01).

Table 8.15 Summary of the effects of hot- and cold-fungicide treatments on the mean
germination and dry mass of varieties NCo376, N12, N14, N16, N17 and N22
compared with the untreated control.

Fungicide

SHWT

guazatine

benomyl

propamocarb

propiconazole

C+F(l)

C+D(2)

Germination

Cold

_

-5%

+ 3%

+ 1%

+ 5%

+ 3%

+ 6%

Hot

+ 30%

+ 16%*

+ 16%*

+ 7%*

+ 5%

+ 20%"

+ 44%"

Mean

_

+ 4%

+ 8%

+ 3%

+ 6%

+ 10%*

+ 23%'*

Dry mass

Cold

_

-21%

0%

-4%

-7%

-4%

-4%

Hot

+ 36%

+ 15%

+ 23%

+ 23%

+ 31%

+ 38%'

+ 92%"

Mean

- 14%

+ 5%

+ 5%

0%

+ 10%

+ 24%"

* = significantly different from the untreated control at the 5% level
** = significantly different from the untreated control at the 1 % level

Good germination and plant growth were also associated with treatment with C+F(l) (Punch-

Xtra® at 0.5 mO"1), but it was not as effective as the SHWT alone. This treatment increased

germination when used as a cold treatment, and significantly improved germination (P<0.01)

and dry mass (P < 0.05) and when used as a hot treatment.
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The mean germination was slightly improved by treatment of the SBS with benomyl,

propiconazole, propamocarb-HCl and guazatine applied in cold and hot water. These results

indicate the presence of low levels of pathogenic fungi such as Pythium, C. paradoxa,

Trichoderma and Fusarium. The significant increase in mean germination after treatment with

C + D(2) (P<0.01) and C+F(l) (P<0.05) indicates that these fungicides probably had

fungicidal and plant growth regulatory effects on germination and growth. The registered

fungicides, benomyl and guazatine were far more effective when used in hot water than when

used in cold water, but they were not as effective as the SHWT alone.

In summary, treatment with the fungicides propamocarb-HCl, guazatine, C + D, C+F and

propiconazole improved germination when used in cold water. Additionally, the SHWT and

C+D(2) in hot water significantly improved germination and growth by controlling systemic

fungal infections, and probably by changing the hormonal balance within the bud to one

appropriate for germination. The inherent ability of a variety to germinate had no effect on

a variety's response to heat treatment and fungicide treatment.
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8.3 Heat Treatment with Eria®

8.3.1 Introduction

Results from Sections 8.1 and 8.2 indicated that Eria® (0.5 mU'1; C+D (2)) was the most

successful fungicide in improving germination and growth when used in cold water. In

addition, treatment of SBS with the Eria® in hot water (52°C) for ten minutes significantly

improved germination and dry mass compared with the control (P<0.01), and significantly

improved germination compared with the SHWT (P < 0.01). These results indicated that the

activity of Eria® were enhanced when added to hot water. Single-budded setts are often treated

at 50°C for 120 minutes or may be treated at 52 °C for 30 minutes to control Clavibacter xyli

subsp. xyli. The aim of this experiment was to determine the effect on germination and growth

of adding Eria® to the hot water when SBS were treated at 52°C for both 10 and 30 minutes,

and at 50°C for 120 minutes.

8.3.2 Materials and methods

Single-budded setts prepared from 10-month old stalks of the varieties N12 and N17 were

subjected to the following treatments in a 40 / heat treatment tank before planting into trays:

a) Control
b) 52°C for 10 minutes
c) 52°C for 30 minutes
d) 50 °C for 120 minutes
e) 52°C for 10 minutes + Eria® (0.5 mill1)
f) 52°C for 30 minutes + Eria® (0.5 mi.f')
g) 50°C for 120 minutes + Eria® (0.5 mJ.f')

The fungicide was mixed thoroughly with the hot water before SBS in wire baskets were

lowered into the water for the required treatment period before planting into trays. Each

treatment was represented by a total of 60 SBS, divided into three replications of 20 SBS each.

Trays were placed in the germination room. To allow fungal infection of the SBS to occur,

the temperature was kept at 20°C for five days and then raised to 32°C for four days before

trays were placed on benches in the nursery. Germination and dry mass of the transplants

were recorded after 35 days.
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8.3.3 Results and discussion

Statistical analysis of the data indicated that treatment did not have a significant effect on mean

germination of N12 and N17 (Table 8.16). All treatments increased germination compared

with the control. Compared with the control, the mean germination was increased by

treatments in hot water at 52 °C ( +19-21 %) and treatment with Eria® in hot water (52 °C) for

ten minutes (+30%). Treatment at 50°C for 120 minutes improved germination (+9%), as

did treatment with Eria® at 50°C for 120 minutes ( + 13%) (Figure 8.10).

Table 8.16 Two-way ANOVA of the mean germination of varieties N12 and N17 after
treatment of single-budded setts.

Factor

Treatment

Variety

Treatment x variety

df

6

1

6

Germination %

Variance-ratio

2.209

27.344

1.408

P-value

0.0720

0.0000

0.2466

Dry mass (g)

Variance-ratio

13.348

49.060

10.069

P-value

0.0000

0.0000

0.0000

Treatment: Temp. (°C)/Time (min.)

70 80 90 1OO
Germination °/o

Figure 8.10 Effect of hot-water treatment of single-budded setts with and without Eria® (E)
on the mean germination of varieties N12 and N17. Means whose 95%
comparison intervals do not overlap are significantly different.
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The results were consistent for both varieties as indicated by a lack of significant interaction

between treatment and variety (Table 8.16). The germination of the untreated SBS of N12 was

low, but there was a substantial increase in germination caused by all treatments ( + 18-49%;

Table 8.17). These results suggested that the heat treatments with and without Eria® possibly

controlled systemic infections in the SBS and altered the hormonal balance to one favourable

for germination. Treatment at 50°C for 120 minutes improved germination suggesting that

the seedcane was mature and more tolerant of treatment than the immature or senescent

seedcane used in previous heat treatment experiments. Addition of Eria® to the treatments

at 52°C for 10 and 30 minutes was more beneficial than the heat treatments alone. However,

addition of Eria® to water at 50°C for treatment for 120 minutes decreased germination

compared with heat treatment alone (-11%).

Germination of untreated SBS of N17 was relatively high (80%) and all treatments except

50°C for 120 minutes increased germination by 9-12% (Table 8.16). Contrary to the results

obtained with N12, addition of Eria® to the tank for treatment at 50°C for 120 minutes

improved germination (+21 %) but had little effect after treatments at 52°C.

Table 8.17 Effect of hot water treatment of single-budded setts with and without Eria® on
the germination and dry mass of varieties N12 and N17.

Treatment

Control

52°C/10 min

52°C/30 min

50°C/120 min

52°C/10 min + Eria®

52°C/3O min + Eria®

50°C/120min + Eria®

LSD (P=0.05)
LSD (P=0.01)

Germination (%)

N12

55

68

68

73

82

73

65

NS

N17

80

93

92

72

92

87

87

NS

Dry mass (g)

N12

0.13 be

0.22 a

0.15 b

0.15 b

0.23 a

0.24 a

0.10 c

0.049
0.068

N17

0.12d

0.21c

0.27 ab

0.23 be

0.28 ab

0.26 abc

0.30 a

0.054
0.075

Means in a column with a letter in common are not significantly different at the 5% level.
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Statistical analysis of the data indicated that the mean dry mass of the varieties N12 and N17

was significantly affected by treatment (Table 8.16). All treatments significantly improved

dry mass compared with the control. Addition of Eria® to the hot water significantly increased

dry mass compared with treatments at 52°C for 10 and 30 minutes alone (P<0.05), but had

little effect when added to the treatment at 50°C for 120 minutes (Figure 8.11).

Treatment: Temp.(°C)/Time (min.)

Control -

52/10 •

52/30 •

50/120 -

52/10 + E -

52/30 + E -

50/120+ E"

: , . » . . , .

BfiMMBtii;-;

" * • ; , • • . ' '

• K - i ' . • • = • • •

• ; . ; , . . . , -

" V '

•• f

0.05 0.10 0.15 0.20 0.25
Dry mass (g)

0.30

Figure 8.11 Effect of hot water treatment of single-budded setts, with and without Eria® (E)
on the mean dry mass of varieties N12 and N17. Means whose 95%
comparison intervals do not overlap are significantly different.

The results were not consistent for both varieties as indicated by a significant interaction

between treatment and variety (Table 8.16). Compared with the control, dry mass of N12 was

significantly increased by treatments at 52 °C for both 10 minutes (+69%) with and without

Eria® (+85 & 77%) and 30 minutes with Eria® (+85%) (P<0.01) (Table 8.17). Compared

with the control, treatment of N12 at 50°C for 120 minutes slightly increased dry mass, and

addition of Eria® slightly decreased dry mass. However, compared with the heat treatment

alone, the addition of Eria® significantly decreased dry mass (P=0.05). Dry mass of N12

treated at 52°C for 30 minutes with Eria® was significantly higher than treatment at 52°C for
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30 minutes (+60%, P<0.01), and addition of Eria® to the treatment at 52°C for 10 minutes

had no effect on dry mass. All treatments significantly increased dry mass of N17 (+75-

150%, P<0.01). Addition of Eria® to the tank significantly increased dry mass compared

with treatments at 52°C for 10 minutes (+33%, P=0.05) and 50°C for 120 minutes (+30%,

P=0.05).

To summarise, addition of Eria® to water at 50°C for 120 minutes had no effect on

germination and plant growth compared with treatment at 50°C for 120 minutes alone. When

SBS were treated with Eria® at 52°C for 10 and 30 minutes, germination and dry mass were

improved compared with treatment in hot water alone (P=0.05). The increases in germination

and growth after treatment with Eria® in hot water was probably due to the plant growth

regulatory effects of carbendazim and difenoconazole and their control of subsequent infections

by soil pathogens. These results indicated that Eria® can be safely added to the tank when SBS

are treated at 52°C for 10 and 30 minutes and has little effect on germination and plant growth

when SBS are treated at 50°C for 120 minutes.
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8.4 Fungicide Drench

8.4.1 Introduction

Treatment of SBS with a systemic fungicide before planting inhibits the development of

existing infections and prevents further infection by soil pathogens. The activity of some

systemic fungicides is short-lived, particularly when the fungicide is highly soluble, allowing

pathogens present in the medium to infect the SBS when the fungicide has washed off. It is

common practice in the vegetable and flower seedling industries to drench the medium in the

trays with a mixture of propamocarb-HCl (1083 ppm; Previcur®) and benomyl (250 ppm;

Benlate®) to control Pythium, Rhizoctonia, Phytophthora and Rhizoctonia, the causal

organisms of damping off, seed decay and root rots of many crops. Propamocarb-HCl and

benomyl are both systemic fungicides which, when used as soil treatments, are absorbed by

roots to give prolonged disease control. Benlate® is a wettable powder active against a wide

range of Asco-, Deutero- and some Basidiomycetes. Previcur® is a soluble concentrate active

against Oomycetes.

Since members of the above Classes infect sugarcane, the aim of these experiments was to

determine the effect of drenching the trays with propamocarb-HCl and benomyl on the

germination and growth of sugarcane transplants grown from untreated, Eria®- and Panoctine®-

treated SBS. In addition, propamocarb-HCl and benomyl were used together and separately

to determine which was the most effective active ingredient in order to determine which soil

pathogens may inhibit germination and plant growth.

8.4.2 Materials and methods

Experiment A

Single-budded setts of varieties N14 and NCo376 were treated as follows:

SBS treatment a. no SBS treatment
b. hot-guazatine treatment (52°C, 800 ppm, 10 minutes)
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Fungicide drench a. no fungicide drench
b. propamocarb-HCl (1083 ppm) and benomyl (250 ppm) (P/B) drench

Experiment B

Single-budded setts of varieties Ni l , N12, NCo376, N16 and N17 were treated as follows:

a. control (no treatment)
b. SHWT (52°C, 10 minutes)
c. hot-Eria® treatment (52°C, 0.5 mU"\ 10 minutes)
d. hot-Eria® treatment + P/B drench

Experiment C

Single-budded setts of NCo376 were treated as follows:

SBS treatment a. no SBS treatment
b. hot-Eria® treatment (52°C, 0.5 mU"\ 10 minutes)

Fungicide drench a. no fungicide drench
b. propamocarb-HCl (1083 ppm) drench
c. benomyl (250 ppm) drench
b. propamocarb-HCl (1083 ppm) and benomyl (250 ppm) drench

The propamocarb-HCl and benomyl were mixed into a paste, to which 10 / of cold water was

added and mixed thoroughly. After SBS treatment the SBS were planted into composted

bagasse in 24-celled (Experiment A) or 98-celled trays (Experiments B & C) which were

drenched with either the fungicide solution or water at a rate of 20 mH per cell. Each treatment

in Experiment A was represented by a total of 72 SBS which were divided into three

replications of 24 SBS each, and each treatment in Experiments B and C was represented by

a total of 60 SBS which were divided into three replications of 20 SBS each. The trays were

left in a germination room and transferred outdoors once most of the SBS had germinated.

Germination and plant dry mass were recorded after 28 days and the data for each experiment

were pooled and evaluated using two- or three-way analysis of variance (ANOVA). Mean

separation was accomplished using least significant difference.
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8.4.3 Results and discussion

Experiment A

Statistical analysis of the germination data of varieties NCo376 and N14 indicated that

germination was significantly affected by SBS treatment but not affected by the fungicide

drench. The mean germination was significantly increased by the guazatine in hot water

(+45%; P<0.0l) (Figure 8.12a) and was slightly improved after the fungicide drench

( + 10%) (Figure 8.12b).

Table 8.18 Three-way ANOVA of the mean germination and dry mass data of varieties
NCo376 and N14 after single-budded sett (SBS) treatment with guazatine, with
and without a fungicide drench with propamocarb-HCl/benomyl.

Factor

SBS treatment (T)

Fungicide drench (FD)

Variety (V)

T x F D

T x V

FT)iV

df

1

1

1

1

1

1

Germination %

Variance-ratio

47.908

3.457

8.093

1.630

24.065

n 841

P-value

0.0000

0.0815

0.0117

0.2199

0.0002

n 1R17

Dry mass (g)

Variance-ratio

21.5

7.267

128.198

3.360

0.291

P-value

0.0003

0.0159

0.0000

0.0855

0.6029

n mi

The results after drenching the trays were consistent for both guazatine-treated and untreated

SBS as indicated by the lack of a significant interaction between SBS treatment and fungicide

drench (Table 8.18). Drenching the medium with P/B slightly improved germination of both

untreated and guazatine-treated SBS (Figure 8.13a). Germination was highest when guazatine-

treated SBS were subsequently drenched with P/B. This treatment significantly increased

germination compared with the control (no SBS treatment or fungicide drench) (+59%,

P<0.01). The hot water probably adjusted the hormonal balance to one favourable for

germination and killed systemic pathogens, and guazatine controlled surface infections and soil
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pathogens infecting the SBS after planting. The benomyl and propamocarb-HCl remaining in

the medium would have subsequently been absorbed by developing roots, affording control of

late infections.

Fungicide drenching of untreated SBS with poor root growth only increased germination

slightly because there was little absorption of P/B, making the application of the fungicide

drench to untreated SBS ineffective.

(a)

(b)

No Treatment Hot-Guazatine

SBS Treatment

Water Drench P/B Drench

Fungicide Drench

Figure 8.12 Effect of single-budded sett treatment with guazatine (a), and drenching of
medium with propamocarb-HCl/benomyl (P/B) (b) on the mean germination of
varieties N14 and NCo376. Means whose 95% comparison intervals do not
overlap are significantly different.
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The reaction of both varieties to the drench was consistent, as indicated by the lack of a

significant interaction between fungicide drench and variety (Table 8.18). Drenching

improved germination of NCo376 and N14, but not significantly (Figure 8.13b).

However, the reaction of both varieties to the SBS treatment was not consistent, as indicated

by the significant interaction between variety and SBS treatment (Table 8.18). The guazatine

treatment significantly increased germination of both N14 (+104%, P<0.01) and NCo376

(+11%, P<0.05) compared with the untreated control (Figure 8.13c).

100
a©

a
E

O

80-

60-

40-

Water Drench
P/B Drench

(a) No Treatment Hot-Guazatine
SBS Treatment

100
Water Drench
P/B Drench

4oJ ^

V W

NCo376 N14
Variety

100
No Treatment
Hot-Guazatine

(c) NCo376 N14
Variety

Figure 8.13 Interaction between (SBS) treatment with guazatine and drenching of medium
with propamocarb-HCl/benomyl (P/B) (a) and their effect on the mean
germination of varieties NCo376 and N14 (b & c).
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Statistical analysis of the dry mass results indicated that both SBS treatment and fungicide

drench had a significant effect on mean dry mass of NCo376 and N14 (Table 8.18). The dry

mass was significantly increased by the hot-guazatine treatment (+29%, P<0.01) and the

propamocarb-HCl/benomyl drench ( + 16%,P<0.01) (Figure 8.14).

0.18

0.16-

0.14-
>>

0.12

0.10
(a) No Treatment Hot-Guazatine

SBS Treatment

0.18

Of)

0.10

(b)
Water Drench P/B Drench

Fungicide Drench

Figure 8.14 Effect of single-budded sett (SBS) treatment with guazatine (a), and drenching
of medium with propamocarb-HCl/benomyl (P/B) (b) on the mean dry mass of
varieties N14 and NCo376.

The dry mass results were consistent for both varieties and treatments as indicated by the lack

of significant interactions between variety and SBS treatment, variety and fungicide drench,

and SBS treatment and fungicide drench (Table 8.18). Drenching of trays with P/B improved

dry mass of both untreated and guazatine-treated SBS. Dry mass was greatest when

guazatine-treated SBS were subsequently drenched with P/B (Figure 8.15a). Compared with

the control (no SBS treatment or fungicide drench) this treatment significantly increased the
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mean dry mass (+48%;P<0.01). However, the use of guazatine or the drench alone only

slightly increased dry mass indicating that they had significant complementary effects when

combined.

Drenching of the trays with P/B improved dry mass of both varieties, significantly so for

NCo376 (P<0.05) (Figure 8.15b). The guazatine treatment significantly increased dry mass

of both N14 (P<0.05) and NCo376 (P<0.01) (Figure 8.15c).

0.05

(a)
No Treatment Hot-Guazatine

SBS Treatment
M0.25

Water Drench
P/B Drench

0.05

(b)
NCo376 N14

Variety

.0.25

No Treatment
Hot-Guazatine

0.05
(c) NCo376 N14

Variety
Figure 8.15 Interaction between single-budded sett (SBS) treatment with guazatine and

drenching of medium with propamocarb-HCl/benomyl and their effect on the
mean dry mass of varieties N14 and NCo376.
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To summarise, compared with the control, treatment of SBS with guazatine in hot water

significantly increased the mean germination and growth of both varieties. When pre-

germination infections were not controlled by treatment with guazatine, application of P/B had

little effect on germination and plant growth. However, after treatment with guazatine,

germination was increased by treatment with a mixture of the fungicides Previcur® and

Benlate®. Therefore, the significant increases in germination and plant growth were probably

due to the control of both pre-and post-germination infections.

Experiment B

The mean germination of the untreated SBS of the five varieties was poor (58%), indicating

that fungal pathogens possibly inhibited germination. Statistical analysis of the data indicated

that treatments had a significant effect on germination and dry mass (Table 8.19). Compared

with the control, the mean germination and dry mass were significantly increased by the heat

treatment (+28%, P=0.01; +43%, P=0.05). This treatment adjusted the hormone balance

and probably controlled systemic fungi, increasing the speed of germination and allowing

shoots to develop faster than those grown from untreated SBS, resulting in increased plant

growth.

Addition of Eria® to the hot water significantly increased both germination and growth

compared with the heat treatment alone (P=0.05), and compared with the control (+41%,

P=0.01; +114%,P=0.01). These increases were probably due to the persistent fungicidal

and plant growth regulatory activity of carbendazim and difenoconazole.

Drenching trays containing Eria®-treated SBS with a propamocarb-HCl/benomyl further

improved germination and significantly improved dry mass compared with the Eria® treatment,

and significantly improved germination and plant growth compared with the heat treatment

(P=0.01) and the untreated control (+48%, P=0.01; +157%, P=0.01) (Figure 8.16). Since

Eria® is a long-lasting systemic fungicide and both propamocarb-HCl and benomyl were

slowly absorbed by the developing roots, these treatments probably controlled diseases for a

long period after planting.
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Table 8.19 Two-way ANOVA of the mean germination and dry mass data of five
sugarcane varieties after single-budded sett treatment and drenching of the
medium with propamocarb-HCl/benomyl.

Factor

Treatment

Variety

Treatment x variety

df

3

4

12

Germination

F-variance

22.313

3.6840

2.783

P-value

0.0000

0.0120

0.0075

Dry mass

F-variance

52.370

26.110

2.092

P-value

0.0000

0.0000

0.0410

100

Control SHWT Eria Eria + Drench

Treatment

(a)

ftJD

0.06
Control SHWT Eria Eria + Drench

Treatment

(b)
Figure 8.16 Effect of single-budded sett treatments on the mean germination (a) and dry

mass (b) of varieties NCo376, Ni l , N12, N16 and N17. Means whose 99%
comparison intervals do not overlap are significantly different.
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The germination and dry mass results were not consistent for all varieties as indicated by a

significant interaction between variety and treatment (Table 8.19). There were significant

differences between treatments with NCo376, N i l , N12 and N17, but not with N16 (Table

8.20). Germination of SBS treated with the SHWT ranged from 55-92%. The SHWT

significantly increased germination of NCo376 and N17(P<0.01), increased germination of

N12 and N16 and had no effect on germination of Nl 1.

Germination of SBS treated with Eria® ranged from 65-93 %, and germination after treatment

with Eria® and the fungicide drench ranged from 77-93%. Compared with the control,

treatment with Eria® or the drenching of Eria®-treated SBS with the fungicide solution

significantly increased germination of Nil (+43-50%, P<0.05), NCo376 (+60%, P<0.01),

N12 (+47-51%, P<0.01) and N17 (+92-93%, P<0.01). Compared with the SHWT,

treatment of SBS with Eria®, and the drenching of Eria®-treated SBS with the P/B solution

significantly increased germination of Ni l , and increased germination of N12.

Table 8.20 Effect of fungicide treatments on germination of five varieties after treatment
of single-budded setts and drenching with propamocarb-HCl/benomyl.

Treatment

Control

Short hot water treatment

Eria®

Eria® + drench

LSD (P=0.05)
LSD (P=0.01)

Germination %

NCo376

58 b

85 a

83 a

87 a

18.8
27.4

Nil

58 b

55 b

93 a

93 a

24.8
37.6

N12

53 b

67 ab

78 a

80 a

16.3
23.7

N16

65

73

65

77

NS

N17

55 b

92 a

92 a

93 a

18.8
27.4

Means in a column with a letter in common are not significantly different at the 5 %

There were highly significant effects of treatment on dry mass with all varieties (Table 8.19).

Compared with the control, the SHWT increased dry mass of N12, N16 and N17, and the hot-

Eria® treatment significantly increased dry mass of NCo376 (+110%, P<0.01), N12

(+250%, P<0.05), N16 (+90%, P<0.01) and N17 (+120%, P<0.01) (Table 8.21).
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Drenching Eria®-treated SBS significantly increased dry mass of all the varieties (+90-400%,

P < 0.01). Compared with the SHWT, the hot-Eria® treatment significantly increased dry mass

of NCo376 (P<0.01) and Ni l (P<0.05) and increased dry mass of N12, N16 and N17.

Table 8.21 Effect of fungicides on the dry mass (g) of five varieties after treatment of
single-budded setts and drenching with propamocarb-HCl/benomyl.

Treatment

Control

Short hot water treatment

Eria®

Eria® + drench

LSD (P=0.05)
LSD (P=0.01)

Dry mass (e)

NCo376

0.10 b

0.12 b

0.21a

0.25 a

0.05
0.07

Nil

0.06 be

0.05 c

O.lOab

0.14 a

0.04
0.06

N12

0.04 b

0.08 ab

0.14 a

0.20 a

0.07
0.11

N16

0.10 b

O.Mab

0.19 a

0.19 a

0.05
0.08

N17

0.05 b

0.09 ab

0.11 a

0.12 a

0.04
0.06

Means in a column with a letter in common are not significantly different at the 5% level

Since the efficacy of Eria® was enhanced when augmented with hot water and the P/B drench,

this treatment would increase the number of transplants produced in a transplant nursery. This

in turn would lower the production costs and the selling price of transplants, and make the

transplant option more viable for farmers intending on establishing their own seedcane

nurseries. Therefore, the drenching of Eria®-treated SBS in trays with P/B is strongly

recommended for commercial transplant nurseries.

The use of Eria® instead of Panoctine® also reduces the risk of pesticide poisoning of labourers

because Eria® has a lower dermal toxicity than Panoctine®, and need only be treated with

caution and not as a poison. However, when using Eria®, Panoctine® or Benlate®, gloves

should always be worn. The use of Eria® is cheaper than Panoctine® as it is required in

smaller quantities. Using prices quoted in 1997, to make up a 100 1 fungicide solution it cost

R 4.40 for Benlate®, R 7.28 for Eria® and R 22.60 for Panoctine®. Therefore, in addition to

improving germination, Eria® is less hazardous and cheaper that the currently registered

fungicides Panoctine® and Benlate®.
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Experiment C

Statistical analysis of the data indicated that SBS treatment had a significant effect on

germination and dry mass, whereas the fungicide drench did not (Table 8.22). Treatment with

Eria® significantly increased germination (P=0.05; Figure 8.17a) and dry mass (P=0.01;

Figure 8.18a). Drenching trays with propamocarb-HCl and/or benomyl had no effect on

germination (Figure 8.17b) and significantly increased dry mass (P<0.05) when used

separately (Figure 8.18b).

Table 8.22 Two-way ANOVA of the mean germination and dry mass of NCo376 after
Eria®-treatment of single-budded setts (SBS) and drenching of medium with
propamocarb-HCl and benomyl.

Factor

SBS treatment

Fungicide drench

SBS treatment x drench

df

1

3

3

Germination

Variance-ratio

4.405

0.278

10.562

P-value

0.0422

0.8409

0.2137

Dry mass

Variance-ratio

99.995

2.548

0.202

P-value

0.0000

0.0694

0.8943
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(a) No Treatment Eria

SBS Treatment

(b) Control Propamocarb Benomyl P/B

Fungicide Drench

Figure 8.17 Effect of single-budded sett (SBS) treatment with Eria® (a), and drenching of
trays with propamocarb-HCl, benomyl and a mixture of both (P/B) (b) on the
mean germination of NCo376. Means whose 95% comparison intervals do not
overlap are significantly different.
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(a)
No Treatment Eria

SBS Treatment

W)

(b)
Control Propamocarb Benomyl p/B

Fungicide Drench

Figure 8.18 Effect of single-budded sett (SBS) treatment with Eria® (a), and drenching of
trays with propamocarb-HCl, benomyl and a mixture of both (P/B) (b) on the
mean dry mass of NCo376. Means whose 95% comparison intervals do not
overlap are significantly different.

The germination and dry mass results were consistent for Eria®-treated and untreated SBS as

indicated by the lack of a significant interaction between SBS treatment and fungicide drench

(Table 8.22). Compared with the untreated control, the drenches had no effect on germination

of untreated SBS and germination was increased when Eria®-treated SBS were drenched with

propamocarb-HCl and benomyl (Figure 8.19). Dry mass of both untreated SBS and Eria®-

treated SBS was increased by drenching the medium with propamocarb-HCl, benomyl and a

mixture of propamocarb-HCl/benomyl (Figure 8.20). The combination of propamocarb-HCl

and benomyl was less effective than when the fungicides were used separately.
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100

Control PropamocarbBenomyl P/B
Fungicide Drench

Figure 8.19 Effect of single-budded sett (SBS) treatment with Eria® and drenching of trays
with propamocarb-HCl and/or benomyl on the germination of NCo376.

Control PropamocarbBenomyl P/B

Fungicide Drench

Figure 8.20 Effect of single-budded sett treatment with Eria® and fungicide drenching of
trays with propamocarb-HCl and/or benomyl on dry mass of NCo376.

The efficacy of both propamocarb-HCl and benomyl indicated that reduced germination and

growth were partly due to infections by fungi belonging to all fungal groups. However, use

of propamocarb-HCl and benomyl only increased the mean germination by 5 and 3 %, and dry

mass by 13%, and Eria® significantly increased germination by 9% and dry mass by 46%.

Therefore, treatment with Eria® was more effective than the fungicide drenches, suggesting

that the increase in germination and growth after Eria®-treatment was caused by the plant

growth regulatory activity of both difenoconazole and carbendazim.
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8.5 Mode of Action of Eria®

8.5.1 Introduction

In the previous experiments treatment with Eria® significantly increased germination and plant

growth when used as a hot treatment and was more effective than the other fungicides tested

in Section 8.2 when used as a cold-treatment. The high efficacy of Eria® suggests that fungi

belonging to the Ascomycetes, Basidiomycetes or Deuteromycetes were involved in

germination failure and poor growth. These fungi might include Fusarium spp. and C.

paradoxa that were isolated from untreated SBS tissues, roots and growing media (Section

8.2). The systemic fungicides Eria® and Punch-Xtra® were more effective than the protectant

fungicide guazatine, indicating that systemic infections may have been the major cause of

germination failure. Further increases in germination after drenching of trays containing the

fungicide-treated SBS with the P/B solution indicated control of soil-pathogens such as Pythium

spp. and Fusarium spp. The results indicated that the promotive effect of Eria® treatment on

germination and growth could not be ascribed only to protection against fungi, but may have

also been due to the plant growth regulatory effects of both difenoconazole and carbendazim.

The aim of this experiment was to determine the extent to which the large increases in

germination and growth after treatment with Eria® were due to fungicidal activity and to plant

growth regulator properties. In these experiments SBS were treated with the systemic

fungicides propamocarb-HCl and benomyl before Eria® treatment and after planting. Together

with these treatments, further increases in germination or growth afforded by Eria® treatment

could be ascribed to the plant growth regulatory activity of Eria® or the control of fungi not

controlled by Benlate® or Previcur®. Single-budded setts were also treated with carbendazim

(62.5 ppm; Bavistin®, BASF), difenoconazole (31.25 ppm; Score®, Novartis) and

carbendazim+difenoconazole (62.5 ppm, 31.25 ppm; Eria®, Novartis) to determine which

active ingredient of Eria® was implicated in the stimulation of germination and growth. In

addition, SBS were planted either in steam-sterilised or unsterilised composted bagasse to

determine whether germination failure was principally due to systemic fungi within the SBS

or pathogens in the growing medium.
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8.5.2 Materials and methods

Experiment A

Single-budded setts of variety NCo376 were treated as follows:

a. Control
b. SHWT (52°C for 10 minutes)
c. Eria® (0.5 mU"\ 52°C, 10 minutes)
d. Eria® (0.5 mU"1; 52°C, 10 minutes) + propamocarb-HCl (1083 ppm) and benomyl

(250 ppm) drench.

The SBS were planted into trays containing either steam-sterilised or unsterilised composted

bagasse. Each treatment was represented by a total of 60 SBS, divided into three replications

of 20 SBS each. Trays were left in a germination room and transferred to the nursery once

most SBS had germinated.

Experiment B

Single-budded setts of varieties NCo376 and N12 were dipped in either water or a

propamocarb-HCl (1083 ppm) and benomyl (250 ppm) solution before a five minute treatment

in the following fungicides:

a. Control
b. Eria® at 0.5 mH J' (62.5 ppm carbendazim and 31.25 ppm difenoconazole)
c. Bavistin® at 125 fiLt'1 (62.5 ppm carbendazim)
d. Score® at 125 /*«.«•' (31.25 ppm difenoconazole)

The SBS were then planted into trays and those previously dipped in the P/B solution were

drenched with the same solution. Each treatment was represented by a total of 60 SBS divided

into three replications of 20 SBS each. The trays were initially placed at 20°C and 55-95%

relative humidity for five days to delay germination, then four days at 32°C (75-95% relative

humidity) and then on benches outdoors. The germination and dry mass of the transplants

from both experiments were recorded after 35 days and the data pooled and evaluated using

either two- or three-way analysis of variance (ANOVA). The means were separated using

least significant differences.
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8.5.3 Results and discussion

Experiment A

Statistical analysis of the data indicated that SBS treatment and steam sterilisation of the

growing medium had no significant effect on the mean germination of NCo376 (Table 8.23,

Figure 8.21). These results indicated that systemic infections and soil pathogens did not affect

germination.

Table 8.23 Two-way ANOVA of the mean germination and dry mass of NCo376 after
treatment of single-budded setts (SBS).

Factor

SBS treatment

Steam sterilisation

SBS treatment x steam sterilisation

df

3

1

3

Germination

Variance-ratio

0.326

0.018

2.439

P-value

0.8065

0.8972

0.1021

Dry mass

Variance-ratio

13.697

0.0000

1.333

P-value

0.0001

1.0000

0.2985

The germination results were consistent for SBS planted in both steam-sterilised and

unsterilised composted bagasse as indicated by the lack of a significant interaction between

SBS treatment and steam sterilisation (Table 8.23). Germination of the controls was high (73

and 89%) and treatment of SBS with both the SHWT and Eria® before planting into either

medium had no significant effect on germination (Figure 8.22).
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(a) Control SHWT Eria Eria x Drench
SBS Treatment
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(b ) Unsterilised Sterilised
Steam Sterilisation

Figure 8.21 Effect of single-budded sett (SBS) treatment (a) and steam sterilisation of
medium (b) on germination of NCo376. Means whose 95% comparison
intervals do not overlap are significantly different.
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Figure 8.22 Effect of fungicide treatment and steam-sterilisation of medium on germination
ofNCo376.
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Statistical analysis of the data indicated that the mean dry mass of NCo376 was significantly

affected by SBS treatment but not by steam sterilisation of growing medium (Table 8.23).

Compared with the control, mean dry mass was significantly increased by the SHWT (+23%,

P<0.05), Eria® (+46%, P<0.01) and drenching Eria®-treated SBS with the P/B solution

(+54%, P<0.01). Dry mass of transplants of the latter two treatments was significantly

higher than that of the transplants treated with hot water only (+19-25%, P<0.05) (Figure

8.23 a). Sterilisation of the growing medium had no effect on dry mass, indicating that the

unsterilised medium did not contain pathogens inhibiting germination (Figure 8.23b).

(a)

0.5

OX)
w
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s

0.4 -I

0.2

(b)

Control SHWT Eria Eria x Drench

SBS Treatment

Unsterilised Sterilised

Steam sterilisation

Figure 8.23 Effect of single-budded sett (SBS) treatment (a), and steam sterilisation of
medium (b) on the mean dry mass of NCo376. Means whose 95% comparison
intervals do not overlap are significantly different.
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The dry mass results were consistent for SBS planted in both steam-sterilised and unsterilised

composted bagasse as indicated by the lack of a significant interaction between SBS treatment

and steam sterilisation (Table 8.23). Dry mass of the controls was similar in both unsterilised

and sterilised medium. Compared with the control, the SHWT increased dry mass of

transplants in both unsterilised ( + 15%) and sterilised (+32%) media. The Eria® treatment

in hot water significantly increased dry mass of the transplants in both the unsterilised (+33%,

P<0.01) and sterilised (+60%, P<0.05) media. The increase in dry mass of transplants in

sterilised media after Eria® treatment indicated that systemic pathogens within the SBS were

eliminated or the hormonal balance was affected. Drenching the Eria®-treated SBS with P/B

significantly increased dry mass of transplants in both unsterilised (+56%, P<0.01) and

sterilised (+52%, P<0.05) media compared with the controls, but not compared with Eria®

treatment of SBS without a drench, indicating that soil pathogens did not affect plant growth

(Figure 8.24).

Unsterilised Sterilised

Steam sterilisation

Figure 8.24 Effect of single-budded sett treatment and steam sterilisation of growing media
on dry mass of NCo376.

Experiment B

Statistical analysis of the data indicated that the mean germination of NCo376 and N12 was

significantly affected by SBS treatment but not by P/B treatment (Table 8.24). Compared with

the control, mean germination was significantly increased by 24-25% when SBS were treated
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with carbendazim, difenoconazole and carbendazim+difenoconazole (P < 0.01) (Figure 8.25a).

Therefore, both active ingredients controlled the same fungi or had similar plant growth

regulator properties. When trays were removed from the germination room, definite increases

in germination after treatment with carbendazim and difenoconazole were observed compared

with the control. This observation suggests that the increased germination recorded 28 days

after planting was not due to control of late infections).

Treatment of SBS and drenching of trays with P/B had no effect on germination (Table 8.24).

Propamocarb-HCl is a persistent fungicide that usually remains active against Pythium spp. for

30-45 days (Laing, 1996, unpublished1). However, benomyl only remains active against a

broad range of pathogens for 8-10 days. Since both active ingredients had no effect on

germination when applied as an SBS treatment and as a drench, Pythium spp. and other

pathogenic fungi may have not been present in the medium or in the SBS. If this is the case,

unless carbendazim and difenoconazole control fungi which are not controlled by

propamocarb-HCl and benomyl, the increase in germination of SBS given this treatment was

due to the plant growth regulatory properties of both carbendazim and difenoconazole.

Table 8.24 Three-way ANOVA of the mean germination and dry mass of varieties NCo376
and N12 after single-budded sett (SBS) treatment and propamocarb-
HCl/benomyl (P/B) treatment.

Factor

SBS treatment

P/B treatment

Variety

SBS treatment x P/B treatment

P/B treatment x variety

SBS treatment x variety

df

3

1

1

3

1

3

Germination

Variance-ratio

11.105

0.006

64.103

0.892

4.046

0.463

P-value

0.0000

0.9375

0.0000

0.4558

0.0151

0.5083

Dry mass

Variance-ratio

4.307

0.238

17.190

0.565

1.458

0.729

P-value

0.0116

0.6342

0.0002

0.6420

0.2447

0.4087
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Figure 8.25 Effect of single-budded sett (SBS) treatment (a), and propamocarb-HCl/
benomyl (P/B) treatment (b), on the mean germination of the varieties NCo376
and N12. Means whose 99% comparison intervals do not overlap are
significantly different.

The germination results were consistent for both varieties and treatments as indicated by the

lack of significant interactions between SBS treatment and P/B treatment, SBS treatment and

variety, and P/B treatment and variety (Table 8.24). Combined with the P/B treatment,

germination was improved by treatment with carbendazim (+24%), difenoconazole (+28%)

and carbendazim+difenoconazole ( + 17%), but not significantly. Therefore, although

systemic infections and soil pathogens should have been eliminated by treatment with P/B,

germination was further increased by treatment with both carbendazim and difenoconazole

suggesting that these active ingredients had plant growth regulatory activity (Figure 8.26a).

Germination of SBS not treated with P/B was increased by treatment with difenoconazole

(+20%) and significantly increased by treatment with carbendazim (+26%, P<0.05) and

carbendazim+difenoconazole (+31%, P<0.01).
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Germination of N12 was not significantly affected by SBS treatment but was increased by

treatment with carbendazim (+35%), difenoconazole (+26%) and carbendazim+

difenoconazole ( + 15%). Germination of NCo376 was increased by treatment with

carbendazim (17%) and significantly increased by treatment with difenoconazole (+23%,

P<0.05) and carbendazim+difenoconazole (31%,P<0.01) (Figure 8.26b). Treatment with

P/B did not affect germination of both varieties (Figure 8.26c).
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Figure 8.26 Effect of single-budded sett (SBS) treatment and propamocarb-HCl/benomyl
(P/B) treatment on germination of the varieties NCo376 and N12. The
interactions between SBS treatment and P/B treatment (a), SBS treatment and
variety (b), and P/B treatment and variety (c) were non-significant.
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Statistical analysis of the data indicated that the mean dry mass of NCo376 and N12 was

significantly affected by SBS treatment, but not by the P/B treatment (Table 8.24). Compared

with the control,.the mean dry mass was significantly increased when SBS were treated with

carbendazim+difenoconazole ( + 83%, P=0.01) and difenoconazole (+72%, P=0.01), and

increased after treatment with carbendazim (+28%) (Figure 8.27a). These results indicated

that the growth stimulation after treatment of SBS with carbendazim+difenoconazole was

mainly due to the activity of difenoconazole. The P/B treatment had no effect on dry mass

(Figure 8.27b).
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Figure 8.27 Effect of single-budded sett (SBS) treatment (a) and propamocarb-HCl/benomyl
(P/B) treatment (b) on dry mass of the varieties NCo376 and N12. Means
whose 95% comparison intervals do not overlap are significantly different.
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The dry mass results were consistent for all varieties and SBS treatments as indicated by the

lack of significant interactions between SBS treatment and P/B treatment, and SBS treatment

and variety (Table 8.24). Although fungicide treatment did not significantly affect germination

of P/B treated SBS, all fungicides increased dry mass, difenoconazole (+71%) and

carbendazim+difenoconazole being most effective (Figure 8.28a). Treatment of untreated

SBS with carbendazim+difenoconazole and difenoconazole significantly increased dry mass

(+94%, P<0.01) and treatment of both P/B-treated and untreated SBS with carbendazim

slightly increased dry mass.

Dry mass of both varieties was significantly affected by all SBS treatments. Dry mass of N12

was significantly increased by treatments with carbendazim (+50%, P<0.05), difenoconazole

(+58%, P<0.01) and carbendazim+difenoconazole (75%, P<0.01). Dry mass of NCo376

was increased by treatment with carbendazim (+17%), and significantly increased by

treatment with difenoconazole (+104%, P<0.01) and carbendazim+difenoconazole (+74%,

P<0.01) (Figure 8.28b).

To summarise, both carbendazim and difenoconazole significantly increased germination, and

difenoconazole significantly increased plant growth. Treatment of the SBS with the P/B

solution before and after the fungicide treatment had no effect on the mean germination or

plant growth, indicating the minor role of systemic infections and soil pathogens in

germination failure. Therefore, the significant responses induced by carbendazim+

difenoconazole were due to either plant growth regulator activities or control of late infections.

However, the increase in germination after treatment with these fungicides was observed soon

after planting, indicating that germination failure was not caused by late infections, but by the

plant growth regulator activities of carbendazim and difenoconazole, and a lesser extent to

their fungicidal activity.

These results provide evidence that germination failure was mainly brought about by an

inappropriate hormonal balance within the SBS. Therefore, increases in germination and plant

growth can be obtained by treatments that affect the hormonal balance in the SBS, and by the

use of good quality seedcane.
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Figure 8.28 Effect of single-budded sett (SBS) treatment and propamocarb-HCl/benomyl
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8.7 Appendix 1

P5ARP

The antibiotics (5 mg pimaricin, 250 mg ampicillin, 10 mg rifampicin and 100 mg PCNB) were added to autoclaved
cornmeal agar (17 gJ"') when it had cooled to 50°C in a water bath.
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9. GROWING MEDIA

Abstract

Germination and growth of the varieties N12, N17, N19 and NCo376 were affected equally when single-budded setts
were planted in composted bagasse, composted pinebark and mixtures of the two.

9.1 Effect of Growing Media on Germination and Growth

9.1.1 Introduction

A medium with good drainage, adequate air-filled porosity and sufficient water-holding

capacity must be used in the transplant nursery because quality of the medium greatly

influences plant growth. The growing media commonly used in nurseries for the production

of sugarcane transplants include mixtures of composted bagasse (CB), composted pinebark

(CPB), composted filtercake (FC), sand and vermiculite. Commercial CPB mixtures,

available from local compost factories, are stable, well-drained and aerated. Both filtercake

and bagasse, available from sugar mills, can be composted at the planting site using the turned-

pile method. Previous experiments at SASEX showed that germination and shoot development

were good when transplants were grown in CB mixtures (Anon., 1992). Frequent problems

have been encountered with the use of FC because it is saline and can be phytotoxic.

Furthermore, FC must be mixed with vermiculite or sand to aid drainage and strict water

management must be employed because it has a high water-holding capacity. The aim of this

experiment was to determine the effect of CB, CPB and two mixtures of these media on

germination and plant growth of sugarcane transplants. The CPB was kindly donated by

Gromed® at Cramond and the FC and CB were composted at SASEX.

9.1.2 Materials and methods

Single-budded setts of varieties N12, N17, N19 and NCo376 were heat treated at 50°C for 120

minutes, soaked in 800 ppm guazatine for five minutes and planted into trays containing the
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following media:

a. Coarse screened CPB with < 12 mm particle size
b. CB
c. 1CPB:1CB
d. 1CPB:3CB

Each treatment was represented by a total of 60 SBS, divided into three replicates of 20 SBS

each. Germination and dry mass results were recorded 28 days after planting, pooled and

evaluated using two-way analysis of variance (ANOVA). Means were separated using least

significant differences.

9.1.3 Results and discussion

Statistical analysis of the data indicated that growing medium had no significant effect on the

mean germination and dry mass of the four varieties (Table 9.1). Therefore, germination and

growth were affected equally when SBS were planted in CB, CPB and mixtures of the two

(Figure 9.1). Costing exercises comparing the use of CB with CPB need to be conducted.

Currently, CB appears to be the more economically viable medium because bagasse is

relatively inexpensive and easy to compost. However, costs such as transport, machinery and

labour to turn the compost need to be taken into account.

The germination results were not consistent for all varieties as indicated by the significant

interaction between medium and variety (Table 9.1). The germination of N19 and NCo376

was not significantly affected by the growing medium. However, germination of N12 was

significantly higher in CB than in the other media (P<0.01), and germination of N17 was

significantly higher in a mixture of 1CPB:1CB than in CPB or CB alone (P<0.05) (Table

9.2).

167



Table 9.1 Two-way ANOVA of the mean germination and dry mass of varieties N12,
N17, N19 and NCo376.

Factor

Medium

Variety

Medium x variety

df

3

3

9

Germination

Variance-ratio

0.568

228.418

5.471

P-value

0.6402

0.0000

0.00001

Dry mass

Variance-ratio

0.250

30.577

1.094

P-value

0.8609

0.0000

0.3940

(a)

0.40

CPB 1CPB:1CB 1CPB:3CB CB

Growing Medium

CPB 1CPB:1CB 1CPB:3CB CB

Growing Medium

(b)
Figure 9.1 Effect of growing medium on the mean germination and dry mass of N12,

N17, N19 and NCo376. Means whose 95% comparison intervals do not
overlap are significantly different (CPB=composted pinebark, CB=composted
bagasse).
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The dry mass results were consistent for all varieties as indicated by the lack of a significant

interaction between medium and variety (Table 9.1). The type of medium used had no effect

on the dry mass of all varieties (Table 9.2). These results suggested that both CB and CPB

are good growing media that have little effect on overall germination and growth. Therefore,

the use of either medium is recommended for transplant production.

Table 9.2 Effect of growing medium on the germination and dry mass of varieties N12,
N17, N19 and NCo376.

Medium

CPB

1 CPB: 1 CB

1 CPB:3 CB

CB

LSD (P=0.05)
LSD (P=0.01)

Germination %

N12

39 b

33 b

34 b

50 a

7.50
10.90

N17

80 b

93 a

87 ab

81b

9.08
13.21

N19

75

85

70

75

NS

NCo376

45

30

42

36

NS

Dry mass (g)

N12

0.20

0.34

0.27

0.30

NS

N17

0.30

0.32

0.33

0.32

NS

N19

0.20

0.16

0.16

0.22

NS

NCo376

0.52

0.50

0.47

0.42

NS

Means in a column with a letter in common are not significantly different at the 5% level.

9.1.4 Literature Cited

Anon., 1992. Bagasse: the ideal potting medium for cane transplants. Ann. Rep. S. Afr. Sug. Ass. Exp. Stn. 1991-
92. p. 15.
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GENERAL DISCUSSION AND RECOMMENDATIONS

This study has been successful in that practical methods have been found to improve

germination of single-budded setts (SBS) planted in trays. As a result, the transplant

production process is quicker, easier and more economically viable. Firm recommendations

cannot be given with respect to control of Clavibacter xyli subsp. xyli, but the results gave an

indication of the research required in this area.

Bud position on the stalk and length of seedcane storage strongly influenced germination. The

lower buds on old seedcane germinated poorly, indicating the importance of using young

seedcane (8-10 months) of good quality for transplant production. When old seedcane must

be used, more seedcane will be required, the lower internodes should be discarded, and the

SBS sorted to remove those damaged or visibly infected with Eldana sacchanna or the red rot

pathogen Glomerella tucumanensis.

Seedcane storage for three and eight days between collection and transplant preparation

adversely affected germination and growth. E. sacchanna larvae already present in the stalks

had bored into adjacent internodes, damaging buds and infecting the cane with G.

tucumanensis. Furthermore, the sugars in seedcane stored for eight days fermented and the

stalks became dehydrated. Therefore, to obtain optimum germination, seedcane stalks used

for transplant production should not be stored for three days or longer after collection, and

should preferably be cut and planted the same day they are collected.

Topping the seedcane stalks three days before collection slightly improved germination and

growth, particularly when seedcane was subsequently heat treated. However, this practice is

not recommended because results were not conclusive and further experiments are necessary

to determine the effect of topping stalks more than three days before seedcane collection. This

longer standing period before collection would allow lateral buds to germinate while still on

standing stalks because of the removal of apical dominance. Planting of SBS that already have

swollen buds should stimulate faster germination and reduce infection by soil pathogens when

the SBS are planted in growing medium.
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The major problem encountered in most commercial sugarcane transplant nurseries was poor

germination of SBS after heat treatment of seedcane stalks or SBS at 50°C for 120 minutes.

Low germination leads to high production costs, increasing labour, preparation time, nursery

space and seedcane requirements. Since most farmers require C. x. xy/i-free transplants for

their nursery fields, this treatment cannot be avoided. However, steps can be taken to alleviate

this problem. Germination results were comparable when both whole setts (WS) and SBS

were heat-treated at 50°C for 120 minutes and control of C. x. xyli was more effective after

heat treatment of SBS than that of WS. Therefore, treatment of SBS is recommended as it

increases the quantity of material that can be treated in a single-batch tank, reducing

preparation time and electricity costs. Nurseries that presently have the capacity to heat treat

WS may continue to do so, but should avoid rough handling after heat treatment. These

nurseries should also store the heat treated WS for a few hours in the germination room until

the buds have hardened, making them more resistant to mechanical damage that often occurs

during the cutting process.

The heat treatment period could possibly be shortened for SBS, because their small size

enables more efficient penetration of the tissues by heat. In the first experiment with heat

treatment, treatment of SBS at 52°C for 30 minutes either significantly increased or did not

affect germination compared with the control. However, in subsequent experiments, the same

treatment had adverse effects on germination. Results showed that the response to heat

treatment not only depended on variety, but also on stalk width, cane quality, cane age and

growing conditions. Treatment of SBS at both 50°C for 120 minutes and 52°C for 30 minutes

adversely affected germination although germination was significantly lower after treatment

at 50°C than after treatment at 52°C. Treatment of SBS at 52°C for 30 minutes controlled

C. x. xyli in six commercial varieties but not in the variety N14. Therefore, the effects of

treatment of SBS at 52°C for 30-60 minutes on germination and control of C. x. xyli requires

further investigation.

Results showed that germination of SBS treated at 52°C for 60 minutes and 50°C for 120

minutes was comparable. Although both treatments adversely affected germination, the former

may be useful since it shortens the treatment time and increases the number of batches of cane
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that can be heat treated in a single-batch tank. This would expedite the production process,

enabling the grower to produce more transplants when higher demands are placed on the

nursery. Moreover, labourers would not be required to work overtime, and the nursery

manager would have greater control over the heat treatment process, through regular checks

of the water temperature, preventing overheating with consequent total germination failure.

When long hot-water treatment to control C. x. xyli is not required, short heat treatments can

be used to increase both germination and plant growth. These treatments do not control C. x.

xyli, but change the hormonal balance of the buds to one favourable for germination and

probably control systemic fungi in the SBS. Treatment at 52°C for 10 minutes significantly

improved the germination of SBS prepared from poor quality seedcane and the growth of

plants prepared from good quality seedcane. This treatment is highly recommended and would

be easy to carry out in nurseries that already have heat-treatment tanks; it can also be used to

promote the activity of most fungicide treatments. Where heat treatment tanks are not

available, the use of hot tap water in large plastic containers is possible. During the present

study, treatment of SBS in 10 / buckets in hot tap water that was initially 50° to 52°C and

dropped to 45° to 48°C after 10 minutes induced significant increases in germination of

commercial varieties. The use of the SHWT has been used successfully by other departments

at SASEX for both commercial and unreleased varieties. Some unreleased varieties were

sensitive to the treatment, indicating that all new varieties must be tested before large-scale

treatments are carried out on new varieties (MG Keeping, 1997, pers. comm.1)

Fungicide treatments had a marked effect on germination and growth, particularly the

fungicide Eria® (carbendazim+difenoconazole, Novartis). Eria® improved germination and

plant growth when used as a hot treatment at 52°C for 10 and 30 minutes, and was more

effective than the other fungicides when used as a cold treatment. Eria® can also be

successfully used as a treatment in cold water after heat treatment at 50°C for 120 minutes.

Eria®-treatment increased germination soon after planting, indicating that the increase in

germination was due either to its plant growth regulator activity or control of early infections.

1 Dr MG Keeping, SASEX, Private Bag X02, Mount Edgecombe, KwaZulu-Natal
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Plant dry mass was significantly higher when SBS were treated with difenoconazole than when

treated with carbendazim. Therefore, it was the activity of difenoconazole, rather than that

of carbendazim, that contributed towards improved germination and plant growth after

treatment with Eria®.

The use of Eria® for transplant production is presently not recommended as it is not registered

for use on sugarcane; registration trials have been planted for this purpose. However, since

Eria® is readily available, some growers have already started using it, and report considerable

increases in germination and plant vigour compared with the use of other registered fungicides,

particularly when used as a cold treatment after setts have been heat treated at 50°C for 120

minutes. The positive response has lead to many enquiries about the product and a number

of farmers are testing Eria® for commercial plantings.

The cost of using Eria® works out to be nearly double that of Benlate® and a third of that of

Panoctine®. However, its positive effects on germination and plant growth will probably make

it the most commonly used fungicide in sugarcane transplant nurseries in the future.

Treatment of both SBS and medium in trays with a solution of propamocarb-HCl and benomyl

alone or before Eria®-treatment did not affect germination and growth, although benomyl is

active against a wide range of fungi and propamocarb-HCl is active against Oomycetes. Thus,

systemic infections and soil pathogens appeared to play a small role in germination failure and

growth inhibition, suggesting that germination after treatment with Eria® was increased by the

plant growth regulator activity of difenoconazole. To confirm these results, further

experiments must be carried out in a pathogen-free environment, using sterilised trays,

vermiculite and water to prevent fungal infection of the medium and SBS after planting. To

clarify the role of both active ingredients, their activity needs to be compared with that of

uniconazole and paclobutrazol, both triazoles with strong plant growth regulatory activity and

little fungicidal activity.

The success of Eria® in transplant nursery trials requires confirmation through field trials to

investigate the effect on germination and plant growth after treatment of seedcane with Eria®,
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Score® (difenoconazole), Panoctine® and Benlate®. In these trials, four-budded setts should

be treated before planting, and emerged shoot numbers and sugarcane yields determined.

Since Eria®-treatment produced vigorous plant growth in transplants, it may also cause

significant increases in yields of mature cane. Soil pathogens probably affect germination and

growth of seedcane in the field more than that of SBS in growing medium in trays, therefore,

pot experiments should also be carried out using field soil and various drenches to provide

information on the presence of pathogenic soil microorganisms in field soils and their effect

on germination and plant growth.

When SBS were planted in media containing composted bagasse or composted pinebark,

germination and growth were similar, showing that both media can be used successfully in the

nursery. Costing exercises comparing the use of composted bagasse with that of composted

pinebark are necessary to determine which is the most economically viable medium for

transplant production. At SASEX, it has taken up to a year to compost bagasse and each heap

to be turned often before it is ready for use. Adjustments to the carbon:nitrogen ratio of the

bagasse will expedite the composting process, making the use of composted bagasse more

beneficial.

Results of all experiments strongly suggested that to obtain optimum germination and control

of C. x. xyli, seedcane must be of the highest quality and free of E. saccharina and G.

tucumanensis. The seedcane must be cut, treated and planted soon after harvest to prevent the

spread of larvae and pathogens, the fermentation of sugars and dehydration of the stalks.

Although less mechanical damage occurs to SBS than WS when heat treated, either can be used

and treated, depending on the tank capacity and demands of the nursery. Recommendations

cannot be made with respect to shortening the treatment period. However, results showed that

treatment of SBS at 52 °C for periods greater than 30 minutes may provide more effective C.

x. xyli control than the standard treatment of 50°C for 120 minutes.

The costs of transplant production using these procedures need to be determined, and the costs

of planting transplants must be compared with of the conventional planting method. Currently,

some commercial nurseries are not profiting because of the inefficient use of seedcane.
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However, production costs can be decreased and germination increased by using good quality

seedcane, Eria® and the short hot water treatment. In areas where C. x. xyli is not prevalent,

nurseries could establish their own seedcane plots or obtain certified C. x. xy/z-free seedcane,

that is frequently tested for the presence of C. x. xyli, from contracted growers. The long hot

water treatment could then be avoided, alleviating germination problems and decreasing

preparation time and labour requirements.

Transplant producers should ensure that mature, good quality, healthy seedcane is always

available to promote good germination and vigorous plant growth. They could then provide

sugarcane growers with good quality, disease-free, vigorously growing transplants at a price

comparable with that of whole stalk seedcane used in conventional planting. Sugarcane

growers would then be more willing to use transplants to establish their own first and second-

stage nurseries, thereby ensuring that their subsequent crops are healthy, provide optimum

sugar yields, and form part of an integrated plan to fight C. x. xyli.
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