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Abstract 

Nitrogen trifluoride (NF3) is an important gas used in electrical circuits etching, the manufacture 

of flat screen displays, hydrogen fluoride lasers and electrical deposits chamber cleaning, all of 

which require the gas at high purity (99.999 – 99.9999 %). The contaminant in this product is 

tetrafluoromethane (CF4) which enters with the fluorine during production. The two gases, CF4 

and NF3 have very similar physical characteristics making the separation via traditional 

technologies difficult. Cryogenic distillation at conditions of -100 to -192 oC is utilized 

conventionally for the separation of CF4 and NF3 while membrane technology and adsorption 

using zeolites and molecular sieves have been studied. These processes have a high energy 

demand and maintenance cost. Further difficulties relate to their batch-wise operation and low 

production flowrate.  

 

The aim of this research was to study an alternate separation route for purifying NF3. A detailed 

literature review of the advantages and disadvantages of existing technologies led to the selection 

of physical separation technology as a potential method to overcome the current industrial 

challenges. More than 300 solvents from different chemical families were considered in the 

solvent screening process. Several solvent screening methods were used, including the Robbins 

chart, the use of thermodynamic predictive methods, physical property method and phase 

equilibrium measurements to determine whether the solvents exhibited an affinity to dissolve the 

gases. The predictive methods included the predictive Soave-Redlich-Kwong (PSRK), Universal 

quasi chemical Functional-group Activity Coefficients (UNIFAC), and the Conductor-like 

Screening Model - Segment Activity Coefficient (COSMO-SAC) models. A final list of 6 

perfluorinated solvents was chosen for further investigation via experimental work. These 

solvents were selected based on the physical properties and trends observed in the literature. Other 

factors such as toxicity, price and availability of the solvents were also considered.  

 

High-pressure vapour liquid equilibrium (HPVLE) measurements were performed as the final 

screening process to identify the best solvent from the list of selected solvents. This was done 

using two different high-pressure apparatuses to fast track the measurements and validate the 

measured data. A considerable amount of time was spent on experimental work to validate the 

HPVLE measurement technique. A test system of CO2 + n-hexane was selected at 313.15 K, 

followed by binary HPVLE measurements for systems of CF4 + solvents at three temperatures 

between (283.15 to 303.15) K and pressures up to 20.00 MPa. To generate data for binary systems 

of NF3 with a solvent, a significant amount of time was invested in establishing the experimental 

method, and preparation of the equipment, since NF3 is a highly toxic gas with major health risks. 

The exposure limits set are 10 ppm for 8 hrs of working per 5 days of the week. The immediately 

dangerous for health and life (IDLH) threshold is 1000 ppm with no experimental HPVLE data 
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available for systems of NF3 + the listed solvents. A comprehensive fault tree analysis was 

performed prior to the experimental work using NF3. Major modifications were performed on the 

experimental apparatus to ensure safe operation. The apparatus was housed in a fume hood and 

the mixture was prepared in another fume hood. An electricity generator was purchased and 

installed as a backup power supply to ensure continuous extraction in the event of a power outage. 

A new experimental procedure was developed by improving the safety procedures of the previous 

method. New high-quality experimental data were generated for the NF3 systems within an 

acceptable range of uncertainties in the measured results. 

 

Overall, more than 10 novel HPVLE binary systems were measured and validated in this study. 

The experimental data were correlated using a combination of thermodynamic models, with the 

Peng-Robinson equation of state and Wong-Sandler mixing rule with non-random two-liquid 

activity coefficient model, yielding the best representation of the data. The least-square objective 

function was minimized (P and x) using the algorithm of Britt-Luecke to regress the binary 

interaction parameters. The absolute average relative deviation (AARD(P) %) analysis results 

showed a good representation of the measured data with the overall average errors of below 1 % 

and 3.9 % for composition and pressure of CF4 in the vapour phase, respectively. The results from 

the screening of new solvents showed promising trends for selected compounds to selectively 

absorb NF3. They indicated that tetrafluoroethyl tetrafluoropropropyl ether and perfluorodecalin 

were the better performing solvents from the list of selected solvents tested in this study.  

 

Preliminary physical absorption simulations were performed using the information from the 

HPVLE regressions to achieve ultra-high product purity of NF3. Results showed that the physical 

absorption process is not capable of producing high purity NF3. Therefore, the theoretical design 

with extractive distillation was attempted. The proposed extractive distillation process consists of 

an extractive distillation column, a stripping column and other auxiliary units such as mixers, 

pump and heat exchanger. The effects of several parameters such as solvent stage location (2 – 

5), gas feed stage location, feed composition (50 to 99 % of NF3), column pressure (0.10 to 2.50 

MPa), reflux ratio (58 - 100) as well as theoretical stage numbers of the extractive distillation 

column (20 to 100) and stripping column (3 – 6) were investigated during the sensitivity analysis 

to obtain the most suitable operating conditions that can produce high purity NF3. The results 

showed that extractive distillation can enrich NF3 to the significantly low impurity content of 

0.002 ppm (2 ppb). While over the duration of this study the price of the best-selected solvent has 

increased significantly, undermining the feasibility of the process, the solvent loss of the process 

is negligible and the costs are attributed to the initial solvent charge to the process. Further 

recommendations for simulation studies of a cheaper solvent along with intensive energy analysis 

will enhance the use of extractive distillation for the purification of NF3.   
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Nomenclature 

English letters 

 

 

 

Subscripts 

Symbol  Description 

C Critical 

calc Calculated 

calib Calibration  

cell Equilibrium cell 

equilib Equilibrium 

exp Experimental 

i and j Specie i and j 
o Degree  

 

 

 

Symbol  Description Unit  

C  Solvent capacity -- 
COSMO-SAC COnductor-like Screening method of MOdel-Segment 

Activity Coefficient model 

-- 

Eff Efficiency  -- 

EoS Equation of State  -- 
F Fugacity MPa 

G Gibbs free energy kJ 
kij Binary interaction parameter -- 
L Liquid -- 
N Number of moles mol 

NRTL Non-Random Two-Liquid model -- 
No. Number  -- 

P Pressure  MPa 

PFC Perfluorocarbon - 
PR Peng Robinson model -- 
PRSK Predictive-Soave-Redlich-Kwong model -- 
R Universal gas constant m3.Pa.mol-1.K-1 

ROLSITM 

S 

Rapid On-Line Sampler-Injector 

Solvent selectivity 

-- 

-- 
T Temperature  K 

UNIQUAC UNIversal QUAsi Chemical model -- 

UNIFAC UNIQUAC Functional-Group Activity Coefficients 

model 

-- 

V Volume  m3 

v  Vapour -- 
VdW Van der Waals mixing rule -- 
WS Wong-Sandler mixing rule -- 
x  Liquid phase composition -- 
y Vapour phase composition -- 
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Greek Letters 

Symbol  Description Unit  

𝛼 NRTL non-randomness parameter, relative volatility -- 

𝛾 Activity coefficient -- 

𝜇 Chemical potential, viscosity  J/mol, mPa-s 

𝜏 
η 

NRTL binary interaction parameters 

Efficiency 

-- 

-- 

 

Abbreviations 

Symbol  Description 

AAD Average Absolute Deviation 

AARD 

AC 

Average Absolute Relative Deviation 

Absorption Column 

ACGIH American Conference of Governmental Industrial Hygienists 

AF 

COLA 

DAU 

EDC 

Amorphous Fluoro-plastics 

Council of Labour Affairs 

Data Acquisition Unit 

Extractive Distillation Column 

FEI Fluorochemical Expansion Initiative  

FTA Fault Tree Analysis 

GWP Global Warming Potential 

HPVLE High Pressure Vapour Liquid Equilibrium 

IC Integrated Circuits  

IDLH 

MAC 

Immediate Dangerous to Life or Heath  

Maximum Allowable Concentration 

JSOH 

NA 

Japan Society for Occupational Health 

Not announced 

NECSA Nuclear Energy Corporation of South African  

NIOSH National Institute for Occupational Safety and Health 

NIST TDE National Institute of Standards and Technology ThermoData Engine 

OEL Occupational Exposure Limit 

OSHA Occupational Safety and Health Administration 

PCCC Post-Combustion Carbon Capture 

PCS Permissible Concentration Standard 

PDHIP Pulsed Discharge Helium Ionization Detector 

ppb Parts per billion  

ppm Parts per million  

PEL Permissible Exposure Limit 

REL 

SC 

Recommended Exposure Limit 

Stripping Column 

SS Stainless Steel 

TCD Thermal Conductivity Detector 

TLV Threshold Limit Value 

TRU Thermodynamics Research Unit 

ZIF Zeolite Imidazole Framework 

 

 

 

 



   
viii 

Table of Contents 

Declaration 1 .................................................................................................................................. i 

Declaration 2 ................................................................................................................................. ii 

Acknowledgements ...................................................................................................................... iii 

Abstract ........................................................................................................................................ iv 

Nomenclature ............................................................................................................................... vi 

List of Figures .............................................................................................................................. xi 

List of Tables ............................................................................................................................. xiv 

Chapter 1: Introduction ................................................................................................................. 1 

1.1 Background ......................................................................................................................... 1 

1.2 Aim and objectives .............................................................................................................. 3 

Chapter 2: Literature review ......................................................................................................... 5 

2.1 Chemical Properties ............................................................................................................ 5 

2.2 Technologies to purify NF3 from CF4 ................................................................................. 7 

2.2.1 Cryogenic distillation ................................................................................................... 8 

2.2.2 Adsorption .................................................................................................................... 9 

2.2.3 Membrane technology ................................................................................................ 11 

2.2.4 Extractive distillation ................................................................................................. 12 

2.2.5 Absorption .................................................................................................................. 13 

2.2.6 Summary of the review on technologies .................................................................... 15 

2.3 Phase equilibrium data in the literature ............................................................................. 16 

2.4 Solvent selection ............................................................................................................... 17 

2.4.1 Robbins chart on solvent selection ............................................................................. 17 

2.4.2 Group contribution methods ...................................................................................... 18 

2.4.3 COSMO-SAC predictions .......................................................................................... 18 

2.4.4 Physical properties ..................................................................................................... 19 

2.5 Experimental techniques ................................................................................................... 20 

2.6 VLE data and design process ............................................................................................ 22 

2.7 Modelling .......................................................................................................................... 23 

2.8 Simulation of the physical separation processes ............................................................... 23 

Chapter 3: Modelling .................................................................................................................. 26 

3.1 Theoretical background for modelling .............................................................................. 26 

3.2 Fugacity and Fugacity Coefficients .................................................................................. 28 

3.2.1 Fugacity coefficient with an EoS ............................................................................... 30 

3.3 The Peng-Robinson (PR) EoS ........................................................................................... 30 

3.3.1 Mixing rules of EoS ................................................................................................... 31 

3.4 NRTL (Non-Random Two Liquid) activity coefficient model ......................................... 32 



   
ix 

Chapter 4: Experimental methods ............................................................................................... 35 

4.1 The Static Analytic (SA) apparatus ................................................................................... 35 

4.2 The Static Synthetic (SS) apparatus .................................................................................. 39 

4.2.1 Modifications to the SS apparatus .............................................................................. 40 

4.3 Experimental procedure .................................................................................................... 41 

4.3.1 Temperature Calibration ............................................................................................ 41 

4.3.2 Pressure calibration .................................................................................................... 41 

4.4 Calibration of gas chromatograph detector ....................................................................... 42 

4.5 Equilibrium Measurements ............................................................................................... 43 

4.5.1 Preparation of the cell ................................................................................................ 43 

4.5.2 Leak testing ................................................................................................................ 43 

4.5.3 HPVLE measurements using the SA apparatus ......................................................... 43 

4.5.4 P-x measurements using the SS apparatus ................................................................. 45 

4.6 Shutdown procedure ......................................................................................................... 46 

Chapter 5: Results and discussions ............................................................................................. 48 

5.1 Solvent screening .............................................................................................................. 48 

5.2 Modelling approaches ....................................................................................................... 53 

5.3 Pressure and temperature calibrations ............................................................................... 53 

5.4 GC detector calibration ..................................................................................................... 54 

5.5 Experimental test system................................................................................................... 55 

5.6 Experimental data ............................................................................................................. 57 

5.6.1 CF4 + C6F14 (perfluorohexane) ................................................................................... 57 

5.6.2 CF4 + C7F16 (perfluoroheptane) .................................................................................. 61 

5.6.3 CF4 + C8F18 (perfluorooctane) .................................................................................... 64 

5.6.4 CF4 + C10F18 (perfluorodecalin) ................................................................................. 68 

5.6.5 CF4 + C5H4F8O (tetrafluoroethyl, tetrafluoropropyl ether) ........................................ 70 

5.6.6 CF4 + C4H3F7O (heptafluoro, 1-butanol) .................................................................... 73 

5.7 Phase equilibrium measurements for systems with NF3 ................................................... 75 

5.7.1 NF3 + C6F14 (perfluorohexane) ................................................................................... 76 

5.7.2 NF3 + C10F18 (perfluorodecalin) ................................................................................. 78 

5.7.3 NF3 + C5H4F8O (TFE–TFP ether) .............................................................................. 81 

5.7.4 NF3 + C4H3F7O (heptafluoro, 1-butanol) ................................................................... 83 

5.8 Summary of the experimental results ................................................................................ 85 

5.9 Design of the absorption process with C5H4F8O using Aspen Plus® ............................... 87 

5.10 Design of the extractive distillation with C5H4F8O using Aspen Plus® ......................... 91 

5.10.1 Sensitivity analysis on the extractive distillation column pressure ........................ 100 

5.10.2 Sensitivity analysis on the extractive distillation column stage number ................ 103 



   
x 

5.10.3 Sensitivity analysis on the solvent stage location .................................................. 106 

5.10.4 Sensitivity analysis on the gas feed stage location ................................................. 107 

5.10.5 Sensitivity analysis on the feed composition ......................................................... 108 

5.10.6 Sensitivity analysis on the reflux ratio ................................................................... 110 

5.11 O’Connell’s overall efficiency ...................................................................................... 112 

5.12 Evaluation of the proposed process compared to literature .......................................... 112 

Chapter 6: Conclusions ............................................................................................................. 119 

Chapter 7: Recommendations ................................................................................................... 121 

References ................................................................................................................................. 122 

Appendices ................................................................................................................................ 136 

Appendix A: A review of the literature data ............................................................................. 136 

A.1 Temperature – composition data .................................................................................... 136 

A.2 Pressure-composition data.............................................................................................. 137 

A.3 Bubble point data ........................................................................................................... 137 

Appendix B: Chemical compatibility table ............................................................................... 139 

Appendix C: Fault tree analysis ................................................................................................ 140 

C.1 Gate symbols .................................................................................................................. 140 

C.2 The gas release under the fume hood ............................................................................. 140 

C.3 Release of gas outside the fume hood ............................................................................ 143 

C.4 Exposure limits ............................................................................................................... 143 

C.4.1 NF3 Decomposition and reactivity .......................................................................... 144 

Appendix D: Uncertainty Estimation ........................................................................................ 148 

D.1 Temperature and pressure .............................................................................................. 148 

D.2 Uncertainty in composition ............................................................................................ 149 

D.2.1. SA apparatus .......................................................................................................... 149 

D.2.1. SS apparatus ........................................................................................................... 150 

 

  



   
xi 

List of Figures 

Figure 1-1. Overall costs of different technologies for the CO2 capture ...................................... 3 

Figure 2-1. Molecular structure and bond moment of NF3 .......................................................... 6 

Figure 2-2. Molecular structure and electron cloud of CF4 .......................................................... 6 

Figure 2-3. Schematic diagram of the cryogenic distillation ....................................................... 9 

Figure 2-4. Process flowsheet for the NF3 purification using commercialized 5A zeolites ....... 10 

Figure 2-5. The experimental setup used for pure and mixed gas permeation measurements ... 12 

Figure 2-6. Schematic diagram of the two-column extractive distillation process for separation 

of the binary mixture (A+B) using an entraining solvent (S) ..................................................... 12 

Figure 2-7. The structures of a) trifluoroethanol (C2H3F3O), b) hexafluorobenzene (C6F6), c) 

perfluorotributylamine (N(C4F9)3) .............................................................................................. 16 

Figure 2-8. P-x-y data of the binary system of n-hexane + tetrafluoromethane ......................... 19 

Figure 2-9.  Classification of the experimental techniques used in HPVLE .............................. 21 

Figure 2-10. How phase data fits into the design of a chemical process. ................................... 23 

Figure 2-11. A typical process flow diagram for absorption and desorption of PCCC ............. 24 

Figure 2-12. A typical process flow diagram for extractive distillation designed for the separation 

of acetone from methanol using the water as an entraining agent .............................................. 24 

Figure 4-1. Photograph of the equilibrium cell .......................................................................... 36 

Figure 4-2. Photograph of the stirring mechanism. .................................................................... 37 

Figure 4-3. Schematic diagram of the SA apparatus. ................................................................. 38 

Figure 4-4. Schematic of the SS apparatus incorporating a variable-volume sapphire cell. ...... 40 

Figure 5-1. HPVLE data for the carbon dioxide (1) + n-hexane (2) .......................................... 56 

Figure 5-2. HPVLE data for the tetrafluoromethane (1) + perfluorohexane (2) binary system. 58 

Figure 5-3. HPVLE data for the tetrafluoromethane (1) + perfluoroheptane (2) binary system.61 

Figure 5-4. HPVLE data for the tetrafluoromethane (1) + perfluorooctane (2) binary system. . 65 

Figure 5-5. P-x data for the tetrafluoromethane (1) + either , perfluorohexane (2) , 

perfluoroheptane (2) or , perfluorooctane (2) binary systems at the temperature of 283.15 K.

 ..................................................................................................................................................... 68 

Figure 5-6. P-x data for the tetrafluoromethane (1) + perfluorodecalin (2) binary system. ....... 69 

Figure 5-7. HPVLE data for the tetrafluoromethane (1) + 1,1,2,2-1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2) binary system. .................................................................................. 71 

Figure 5-8. P-x data for the tetrafluoromethane (1) + heptafluoro, 1-butanol (2) binary system.

 ..................................................................................................................................................... 74 

Figure 5-9. P-x data for the nitrogen trifluoride (1) + perfluorohexane (2) binary system. ....... 77 

Figure 5-10. Molecular structure of perfluorodecalin a) massive electron cloud around the 

molecule, b) single bounded cycles of C10F18. ............................................................................. 79 

Figure 5-11. P-x data for the nitrogen trifluoride (1) + perfluorodecalin (2) binary system. ..... 79 

Figure 5-12. P-x data for the binary system of nitrogen trifluoride (1) + 1,1,2,2-tetrafluoroethyl 

2,2,3,3-tetrafluoropropyl ether (2). ............................................................................................. 81 



   
xii 

Figure 5-13. P-x data for the nitrogen trifluoride (1) + heptafluoro-butanol (2) binary system. 84 

Figure 5-14. Selectivity of the solvents used in this work. ........................................................ 86 

Figure 5-15. Schematic diagram of the proposed NF3 purification process via physical absorption.

 ..................................................................................................................................................... 88 

Figure 5-16. Schematic diagram of the proposed NF3 purification process using extractive 

distillation.................................................................................................................................... 92 

Figure 5-17. Composition profile of ___ NF3, --- CF4 and ___ TFE-TFP ether in a) vapour phase 

and b) liquid phase of the 100-stage extractive distillation columns for the 50 % NF3 feed entering 

from 50th stage operating at 0.10 MPa with gas and solvent (entering stage of 3rd stage) flow rates 

of 100 and 500 kmol.hr-1. ............................................................................................................ 95 

Figure 5-18. The distribution of --- temperature and --- pressure at different stages of the 

extractive distillation column operating at 0.10 MPa using a 100-theoretical stage extractive 

distillation column with 100 kmol.hr-1 gas feed of 50 % NF3 entering from 50th stage and 500 

kmol.hr-1 solvent entering from 3rd stage. ................................................................................... 97 

Figure 5-19. Sensitivity analysis of extractive distillation column pressure for NF3 mole fraction 

obtained from columns with theoretical stage numbers of: ___ 100, --- 90, --- 80 with 100 kmol.hr-

1 gas feed of 50 % NF3 entering from the middle stage and 500 kmol.hr-1 solvent entering from 

3rd stage. .................................................................................................................................... 100 

Figure 5-20. Sensitivity analysis of the pressure on the temperature of: ___ bottom product and --

- distillate for a 100-theoretical stage extractive distillation column with 100 kmol.hr-1 gas feed 

of 50 % NF3 entering from 50th stage and 500 kmol.hr-1 solvent entering from 3rd stage. ........ 102 

Figure 5-21. Sensitivity analysis of the pressure on a) the CF4 fraction and b) CF4 flow rate 

obtained as the gaseous product of the extractive distillation column for theoretical stage numbers 

of: ___ 100, --- 90, --- 80 with 100 kmol.hr-1 gas feed of 50 % NF3 entering from the middle stage 

and 500 kmol.hr-1 solvent entering from 3rd stage. .................................................................... 103 

Figure 5-22. Sensitivity analysis of the theoretical stage number on the a) NF3 fraction and b) 

NF3 flow rate operating at 0.10 MPa with 100 kmol.hr-1 gas feed of 50 % NF3 entering from the 

middle stage and 500 kmol.hr-1 solvent entering from 3rd stage. .............................................. 104 

Figure 5-23. Sensitivity analysis of the theoretical stage number on the a) CF4 fraction and b) CF4 

flow rate for the extractive distillation column operating at 0.10 MPa with the 50 % NF3 gas feed 

of 100 kmol.hr-1 entering from the middle stage and solvent flow rate of 500 kmol.hr-1 entering 

from 3rd stage............................................................................................................................. 106 

Figure 5-24. Sensitivity analysis of the gas feed composition on the temperature and makeup 

flow for a 100-theoretical stage extractive distillation column operating at 0.10 MPa with the gas 

feed of 100 kmol.hr-1 entering from the 50th stage and solvent flow rate of 500 kmol.hr-1 entering 

from 3rd stage............................................................................................................................. 109 

Figure 5-25. Sensitivity analysis of the gas feed composition on the a) NF3 b) CF4 fraction in the 

product for a 100-theoretical stage extractive distillation column operating at 0.10 MPa with the 

gas feed of 100 kmol.hr-1 entering from the 50th stage and solvent flow rate of 500 kmol.hr-1 

entering from 3rd stage. ............................................................................................................. 110 

Figure 5-26. Sensitivity analysis of the reflux ratio on the makeup flow for the extractive 

distillation column with 100 theoretical stages, 100 kmol.hr-1 the gas feed composition of 50 % 

NF3 entering from 50th stage, the solvent flow rate of 500 kmol.hr-1 entering from 3rd stage and 

pressure of 0.10 MPa. ............................................................................................................... 111 

Figure 5-27. Sensitivity analysis of the reflux ratio on the a) NF3 b) CF4 fraction in the product 

streams for the extractive distillation column with 100 theoretical stages, 100 kmol.hr-1 the gas 



   
xiii 

feed composition of 50 % NF3 entering from 50th stage, the solvent flow rate of 500 kmol.hr-1 

entering from 3rd stage and pressure of 0.10 MPa. .................................................................... 111 

Figure A-1. The comparative T-x diagram for some of the published data of CF4 + solvents. 136 

Figure A-2. The comparative P-x-y diagram for some of the published data of CF4 + solvents

 ................................................................................................................................................... 137 

Figure A-3. The comparative P-T diagram for some of the published LLE data of CF4 + solvents.

 ................................................................................................................................................... 138 

Figure C-1. Fault tree analysis for the P-x measurements of NF3 + identified solvents (gas 

leakage). .................................................................................................................................... 142 

Figure C-2. Fault tree analysis for the case of weighing the cell out of the fume hood. .......... 143 

Figure C-3. Modelling results for the NF3 + C6F14 system using Peng Robinson EoS at 283.15 K 

with kij=0. .................................................................................................................................. 146 

Figure C-4. The maximum possible release of NF3 for each point. The red arrow shows the IDLH 

limit. .......................................................................................................................................... 147 

  



   
xiv 

List of Tables 

Table 2-1. List of physical properties for NF3 and CF4 ................................................................ 7 

Table 2-2. Summary of technologies available for NF3 purification. ........................................... 8 

Table 2-3. A summary of the NF3 purification methods using adsorption at 1 bar. ................... 11 

Table 2-4. A summary of the advantages and disadvantages of varying types of absorption 

columns ....................................................................................................................................... 14 

Table 2-5. List of physical properties for C2H3F3O, C6F6 and N(C4F9)3. ................................... 17 

Table 2-6.  List of perfluorinated solvents screened for measurements. .................................... 20 

Table 3-1. Summary of the modelling approaches used for systems including CF4. ................. 28 

Table 5-1.  List of the selected solvents for this study. .............................................................. 49 

Table 5-2. Critical properties of the materials used in this study. .............................................. 51 

Table 5-3. Supplier and purity analysis of the chemicals used in this work. ............................. 52 

Table 5-4. Standard uncertainty influences and estimates for the pressures reported in this study.

 ..................................................................................................................................................... 54 

Table 5-5. Pressure calibration data for the pressure transducers. ............................................. 54 

Table 5-6. Temperature calibration data for the four different probes. ...................................... 54 

Table 5-7. Calibration polynomial and associated error for GC detector calibrations. .............. 55 

Table 5-8. Experimental HPVLE data for the carbon dioxide (1) + n-hexane (2) ..................... 56 

Table 5-9. Experimental data for the carbon dioxide (1) + n-hexane (2) binary system ............ 57 

Table 5-10. Overview of the test and novel binary VLE systems measured in this work, 'l' and 'g' 

denotes whether the component is either a liquid or gas at ambient conditions. ........................ 57 

Table 5-11. HPVLE data for the tetrafluoromethane (1) + perfluorohexane a (2) binary system 

using the SA apparatus ................................................................................................................ 59 

Table 5-12. P-x data for the tetrafluoromethane (1) + perfluorohexane (2) binary system using 

the SS apparatus .......................................................................................................................... 59 

Table 5-13. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + perfluorohexane (2). 60 

Table 5-14. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + perfluorohexane (2). .......................... 61 

Table 5-15. HPVLE data measured for the tetrafluoromethane (1) + perfluoroheptane (2) ...... 62 

Table 5-16. Experimental P-x data of tetrafluoromethane (1) + perfluoroheptane (2) binary 

system ......................................................................................................................................... 63 

Table 5-17. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + perfluoroheptane (2).63 

Table 5-18. Regressed binary interaction parameter (kij) and statistical analysis of the PR (VdW) 

model, for the binary system of tetrafluoromethane (1) + perfluoroheptane (2) ........................ 64 

Table 5-19. HPVLE data measured for the tetrafluoromethane (1) + perfluorooctane (2) ........ 65 

Table 5-20. Experimental P-x data of tetrafluoromethane (1) + perfluorooctane (2) binary system

 ..................................................................................................................................................... 66 



   
xv 

Table 5-21. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + perfluorooctane (2) .. 67 

Table 5-22. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + perfluorooctane (2). .......................... 67 

Table 5-23. Experimental P-x data of tetrafluoromethane (1) + perfluorodecalin (2) binary system

 ..................................................................................................................................................... 69 

Table 5-24. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + perfluorodecalin (2). 70 

Table 5-25. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + perfluorodecalin (2). ......................... 70 

Table 5-26. HPVLE data measured for the tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 

2,2,3,3-tetrafluoropropyl ether (2) .............................................................................................. 71 

Table 5-27. Experimental P-x data of tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2) binary system ................................................................................... 72 

Table 5-28. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 

2,2,3,3-tetrafluoropropyl ether (2). ............................................................................................. 72 

Table 5-29. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2). .......................................................................................................... 73 

Table 5-30. Experimental P-x data of tetrafluoromethane (1) + heptafluoro, 1-butanol (2) ...... 74 

Table 5-31. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + heptafluoro, 1-butanol 

(2). ............................................................................................................................................... 75 

Table 5-32. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + heptafluoro, 1-butanol (2). ................ 75 

Table 5-33. Overview of the binary systems (NF3 + solvents) measured in this work, 'l' and 'g' 

denotes whether the component is either a liquid or gas at ambient conditions. ........................ 76 

Table 5-34. Experimental P-x data of nitrogen trifluoride (1) + perfluorohexane (2) binary system

 ..................................................................................................................................................... 77 

Table 5-35. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of nitrogen trifluoride (1) + perfluorohexane (2). 78 

Table 5-36. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + perfluorohexane (2). ......................... 78 

Table 5-37. Experimental P-x data of nitrogen trifluoride (1) + perfluorodecalin (2) ............... 80 

Table 5-38. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of nitrogen trifluoride (1) + perfluorodecalin (2). 80 

Table 5-39. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + perfluorodecalin (2). ......................... 80 

Table 5-40. Experimental data for the nitrogen trifluoride (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2) ........................................................................................................... 82 

Table 5-41. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of nitrogen trifluoride (1) + tetrafluoroethyl, 

tetrafluoropropyl ether (2). .......................................................................................................... 83 



   
xvi 

Table 5-42. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + tetrafluoroethyl, tetrafluoropropyl ether 

(2). ............................................................................................................................................... 83 

Table 5-43. Experimental data for the nitrogen trifluoride (1) + heptafluoro-butanol (2) binary 

system ......................................................................................................................................... 84 

Table 5-44. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of nitrogen trifluoride (1) + heptafluoro-butanol (2).

 ..................................................................................................................................................... 85 

Table 5-45. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + heptafluoro-butanol (2). .................... 85 

Table 5-46. Selectivity and capacity of the solvents tested in this study. .................................. 86 

Table 5-47. Stream table of the 30-stage absorption process for the 50 % NF3 feed operating at 

293.15 K and 2.50 MPa with gas and solvent flow rates of 500 and 1990 a. .............................. 90 

Table 5-48. Summary of the best product streams obtained from absorption column using 

different feed compositions at the column pressure of 2.50 MPa, temperature of 293.15 K, 

absorption column theoretical stage number of 30, stripping column theoretical stage number of 

2, solvent and gas feed flow rates of 1990 and 500 a for a 50 % NF3 feed. ................................. 90 

Table 5-49. Stream table of the extractive distillation process with a 100-theoretical stage 

extractive distillation column and 6 theoretical stages stripping column for the 50 % NF3 feed 

entering from 50th stage operating at 0.10 MPa with gas and solvent (entering from 3rd stage) flow 

rates of 100 and 500 kmol.hr-1. .................................................................................................... 94 

Table 5-50. NF3 compositions in both liquid and vapour phases on the respective stage of the 

extractive distillation column operating at 0.10 MPa using a 100-theoretical stage extractive 

distillation column with 100 kmol.hr-1 gas feed of 50 % NF3 entering from 50th stage and 500 

kmol.hr-1 solvent entering from 3rd stage. ................................................................................... 96 

Table 5-51. Summary of the product streams obtained from stripping column at the different 

number of theoretical stages for the extractive distillation process operating at 0.10 MPa using a 

100-theoretical stage extractive distillation column with 100 kmol.hr-1 gas feed of 50 % NF3 

entering from 50th stage and 500 kmol.hr-1 solvent entering from 3rd stage a. ............................. 99 

Table 5-52. Summary of the pressure sensitivity analysis for three different column stages, with 

100 kmol.hr-1 gas feed of 50 % NF3 entering from 50th stage and 500 kmol.hr-1 solvent entering 

from 3rd stage a. ......................................................................................................................... 101 

Table 5-53. Summary of the theoretical stage number sensitivity analysis for the extractive 

distillation column operating at 0.10 MPa with the 50 % NF3 gas feed of 100 kmol.hr-1 entering 

from the middle ......................................................................................................................... 105 

Table 5-54. Summary of the solvent stage location sensitivity analysis for the columns with 

different theoretical stage numbers at 0.10 MPa, 100 kmol.hr-1 feed composition of 50 % NF3 

entering from the middle stage and solvent flow rate of 500 .................................................... 107 

Table 5-55. Summary of the gas feed location sensitivity analysis for the columns with different 

theoretical stage numbers at 0.10 MPa, 100 kmol.hr-1 gas feed composition of 50 % NF3 and 

solvent flow rate of 500 a entering from 3rd stage. ..................................................................... 108 

Table 5-56. Summary of the feed composition sensitivity analysis for a 100-theoretical stage 

extractive distillation column operating at 0.10 MPa with the gas feed of 100 kmol.hr-1 entering 

from the 50th stage and solvent flow rate of 500 kmol.hr-1 entering from 3rd stage (flow rate unit is 

in kmol.hr-1)............................................................................................................................... 109 



   
xvii 

Table 5-57. Reflux ratio sensitivity analysis for the extractive distillation column with 100 

theoretical stages, 100 kmol.hr-1 the gas feed of 50 % NF3 entering from 50th stage, the solvent 

flow rate of 500 a entering from 3rd stage and pressure of 0.10 MPa. ....................................... 110 

Table 5-58. Summary of simulation comparison for purification of 60 % NF3 gas feed at 1.50 

MPa. .......................................................................................................................................... 114 

Table 5-59. Comparison of the simulation results for the feed of 99 % NF3 at the column pressure 

of 1.20 MPa. .............................................................................................................................. 116 

Table 5-60. Comparison of the simulation results for the feed of 99.1946 % NF3 at the column 

pressure of 1.50 MPa. ............................................................................................................... 117 

Table B-1. Chemical compatibility of the gas and liquids used in this work. .......................... 139 

Table C-1. Gate symbols and their meanings .......................................................................... 140 

Table C-2. NF3 target organs and limits. .................................................................................. 144 

Table C-3. Hazards and decomposition products of NF3 to health. ......................................... 144 

Table C-4. Occupational exposure limits/levels of NF3 and its probable decomposition products 

based on the time-weighted average (TWA) concentration for 8-h (or up to a 10-h) workday and 

a 40-h workweek. ...................................................................................................................... 145 

Table C-5. Maximum possible leakage of the NF3 from the equilibrium cell. ........................ 146 

Table D-1. Standard uncertainty influences and estimates for the variables reported in this study.

 ................................................................................................................................................... 151 



   
1 

Chapter 1: Introduction 

 

The global market of fluorochemicals was valued at approximately $2 billion in 2017. This is 

expected to have an increase of approximately 3.6 % per year, reaching $32 billion by 2026. South 

Africa supplies 10 % of the global raw fluorochemicals, and due to the crude exports of the 

fluorspar, it only earns below 0.5 % of its overall value (zionmarketresearch, 2018). The 

fluorochemical Expansion Initiative (FEI), funded by the South African government and 

established in 2009 aimed to develop scientific activities regarding the use of fluorine sources to 

expand their applications to gain financial benefits. FEI activities being integral to the 

development of the fluorochemicals industry in South Africa is directly linked to Pelchem, which 

is a subsidiary of the South African Nuclear Energy Corporation (NECSA) (Iannucci, 2009). The 

activities under the FEI programme are aimed at developing the technology and human capacity 

to drive the development and expansion of a fluorochemical cluster. Recently, two new fluorspar 

mines of Nokeng and Wallmannsthal were opened in South Africa, aiming to enter the fluorspar 

business aggressively. More mines are to be opened by 2026, enabling South Africa to be the 

world’s leading fluorspar provider (Solomons, 2018).  

 

According to the FEI 2020 strategic plan, this study of NF3 purification, one of the speciality 

fluoride projects, was identified under commercial research activities. This was classified under 

the subclass of the development of purification processes for fluorochemicals and electronic 

gases. The four groups of fluorinated electronic gases, namely, hydrofluorocarbons (CHF3, CH3F 

and CH2F2) (French et al., 2003), sulphur hexafluoride (SF6) (Cheng et al., 2013), 

perfluorocarbons (e.g., CF4, C2F6 and C3F8) (Tsai et al., 2002), and nitrogen trifluoride (NF3) 

(Tsai, 2008) are contaminated during production. Limited Electronics South Africa SOC Ltd 

(LESA) is the subsidiary of Pelchem which is responsible for the manufacture and distribution of 

NF3. Pelchem started a strategic relationship with the Linde group in 2008 to distribute NF3 

produced at the Pelindaba Linde plant. The plant was purchased by Pelchem in 2012.  LESA SOC 

Ltd saw a significant rise in net income from R7 731 000 loss in 2010 to R7 195 000 profit in 

2017 (NECSA, 2018, NECSA, 2012).  

 

1.1 Background 

NF3 is a colourless and odourless gas that is widely used in the electronics industry (Tsai, 2008). 

It is used in the production of phosphorus sulfide, the production of carbonaceous thin films, high 

energy lasers, plasma etching, plasma deposition chamber cleaners and in the production of 

plasma wafers (Tasaka, 2007). Previously, light perfluorocarbons were used to clean chemical 

deposition chambers, but due to the excellent performance of the free radicals generated, no 
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carbonaceous depositions, as well as its better rate of decomposition, the materials were replaced 

by NF3 (Wijmans et al., 2004, Singh et al., 2008, Miller et al., 2002). The concentration level of 

CF4 in the NF3 bulk gas has created one of the most important industrial concerns about the purity 

of this gas. Typically, for industrial applications, such as the semiconductor industry and mass 

production of integrated circuits (IC), electronic gases such as nitrogen trifluoride are required at 

ultra-high purities of 99.999 or greater (Flamm, 1993, Howe-Grant, 1993, Branken et al., 2014). 

There are several classification methods for electronic gases. In the process-based classification, 

NF3 gas falls within the categories of etching and sputtering (Woytek and Lileck, 1978). A 

concentration of more than 20 ppm CF4 impurity causes serious defects in electronic devices. The 

increase in impurity produces very low-quality plasma etching products together with undesired 

residues (Flamm et al., 1983). Commercially produced NF3 is contaminated by CF4 from the 

following sources (Aramaki et al., 1985, Woytek and Lileck, 1978, Tasaka, 2007):  

- Raw nitrogen carrier gas for NF3 synthesis contains carbon which interacts with the 

fluorine and produces CF4. 

- The fluorine is produced in electrolyte tanks equipped with carbon anodes where the 

interaction of fluorine with the carbon anodes produces CF4. Some CF4 traces are 

introduced with the fluorine. 

- Direct fluorination of the carbon present in the body of the vessel or apparatus. 

 

Separation of CF4 from the NF3 bulk gas presents difficulties due to the gases’ high similarities 

in physical and chemical properties. There are currently many commercial methods which are 

used to purify NF3, including the use of zeolites (Suenaga et al., 1991), molecular sieves such as 

carbosphere and 5A (Singh et al., 2008), and the use of conventional distillation methods that 

operate at cryogenic conditions (Miller et al., 2002). In general, the current methods demand very 

low operating temperatures down to -192 o C incurring exorbitant cooling and utility costs. In 

addition, adsorption methods function with very low production flow rates and require very high 

maintenance and replacement costs. This adds to the plant downtimes and necessitates batch-wise 

processing schemes. Therefore, operation at ambient temperatures with greater production flow 

rates is desirable. Figure 1-1 shows the economic evaluation of several techniques for the CO2 

capture which includes three types of absorption columns, membrane and cryogenic distillation 

(Tuinier et al., 2011). The total costs of cryogenic technology are almost 2.5 times more than 

those for absorption technology. Absorption is by far the cheapest technology in terms of capital 

investment, operating cost and maintenance (Cormos, 2015, Tuinier et al., 2011).  
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Figure 1-1. Overall costs of different technologies for the CO2 capture (extracted from (Tuinier 

et al., 2011)). 

 

1.2 Aim and objectives 

The aim of this study was to investigate a suitable technology for the purification of NF3. The 

objectives were to: 

i. Perform an exhaustive literature review to identify a suitable technology. 

ii. Perform a rigorous solvent screening process using the Robbins chart, predictive 

methods such as UNIFAC, PSRK and COSMO-SAC and the physical properties-

based methods. Several criteria such as toxicity, price, reactivity, boiling point, 

dielectric constant and availability were considered. 

iii. From a list of solvents selected, to measure high-pressure vapour-liquid equilibrium 

data for the selected solvents with NF3 and CF4. To validate the experimental method, 

test systems had to be measured first followed by novel measurements. 

iv. Perform a fault tree analysis on the handling of NF3 for experimental measurements. 

This was necessary to eliminate the exposure due to the highly toxic nature of NF3. 

v. Perform thermodynamic modelling and correlation of the measured HPVLE such that 

this could be incorporated in the simulation design work. 

vi. Upon selection of the best performing solvent from the list of components studied, to 

perform a preliminary separation by means of simulation work to achieve a 99.999 

% purity of NF3.   
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Overview of the thesis. 

This thesis is presented in 7 chapters. Chapter 1 provides a brief overview of the context of this 

study. Chapter 2 includes the literature review and expands on the discussion of the available 

industrial methods for NF3 purification. One of the essential factors in the physical separation 

process is the solvent selection which is presented in detail in Chapter 2. Additional insight is 

given into the process design methodology and thermodynamic modelling.  

  

Chapter 3 explains the thermodynamic phase equilibrium data treatment and modelling approach 

used to assess the quality of the data and its use in simulation designs. Several models have been 

tested in this work, and among them, the most appropriate combination of the models has been 

selected for data regression. Thereafter, the best performing solvent from the systems studied was 

selected for the preliminary absorption column design.  

 

Chapter 4 presents the experimental equipment used in this work. Two different apparatuses were 

utilised to measure vapour-liquid equilibrium data. These included the static analytic and static 

synthetic apparatuses. The necessary information about the apparatuses, calibration methods for 

the sensors, as well as the experimental procedures are explained in this chapter. 

 

Chapter 5 reports on the novel experimental data and modelling results. The results of the 

preliminary simulations for the process design is presented in this chapter. Chapter 6 summarises 

the conclusions from this investigation. Chapter 7 presents recommendations for future work.   
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Chapter 2: Literature review 

 

The type of separation method for purifying mixtures depends on various factors such as the 

material and mixture properties, quantity, concentration and the phase of the substance. In general, 

separation based on the driving force in the separation (such as pressure, electric field and 

concentration gradient) is divided into five general categories which are, (i) creating a new phase 

(distillation) (Kister et al., 1992); (ii) adding a new phase (absorption) (Zarzycki and Chacuk, 

2013); (iii) creation of a barrier (using membrane) (Lawson and Lloyd, 1997); (iv) using solid 

particles (adsorption) (Ruthven, 1984); (v) and separation by a magnetic or electric field 

(Bronkala, 2000). Hybrid technologies include a combination of some of the above. 

 

In this literature review chapter, the five technologies to purify NF3 are reviewed. These include 

conventional distillation at cryogenic conditions, extractive distillation, adsorption with the two 

adsorbents of zeolites and carbosphere, absorption technology and, membrane technology. The 

latter is still in the research phase. Thereafter, the solvent selection method used in identifying 

potential candidates for the physical separation processes (i.e. absorption and extractive 

distillation) is explained. Furthermore, the experimental techniques and type of equipment used 

to measure high-pressure thermodynamic data are presented in detail. The last part of this chapter 

discusses the modelling approaches for data treatment and process simulation design. 

 

2.1 Chemical Properties  

NF3 is a colourless and stable gas which exhibits oxidising properties at an elevated temperature. 

This is due to the low bond energy of 238.9 kJ/mol (Tsai, 2008). The trigonal pyramidal molecular 

structure and bond dipole moments of the NF3 molecule is presented in figure 2-1. The dense 

electron cloud of fluorine atoms and a free electron pair results in a dipole moment of 0.24 (Tro 

et al., 2011). It is hydrolysed in a basic water solution at 100 oC but does not react with water at 

ambient temperature (Tsai, 2008). The reaction of NF3 with metals at temperatures above 300 o 

C (stainless steel, Bi, and Cu) produces metal fluorides and N2F4 (Greenwood and Earnshaw, 

2012). Due to its oxidising ability, it generates methaemoglobin which, when inhaled, can result 

in anoxic death (Pohanish, 2017). Experiments on rats show a slight histolysis of kidneys and 

livers, together with darkening and enlargement of the spleen. The possibility of mutation is also 

suspected (Nakajima et al., 2000). The Threshold Limit Value (TLV) is 10 ppm (30 mg/m3), 

issued by ACGIH (Meshri, 2000). It has a global warming potential (GWP) of 17200 compared 

to CO2, which is equal to one (Forster et al., 2007).  
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Figure 2-1. Molecular structure and bond moment of NF3 (Tro et al., 2011). 

 

Tetrafluoromethane, CF4, is known as the simplest fluorocarbon with a very high bond strength 

(O'Hagan, 2008). Regarding the four carbon-fluorine bonds and the high electronegativity of 

fluorine, carbon has a significant positive charge in tetrafluoromethane, which enhances and 

shortens the carbon-fluorine bond by providing an additional ionic character. Figure 2-2 shows 

the tetrahedral structure of CF4 and the evenly distributed electron cloud around it (Molekuul.be). 

C-F is the most durable single bond among the organic materials which gains its strength from 

the electrostatic attraction resulting from polarised Cδ+ and Fδ– (O'Hagan, 2008). The strong C-F 

bond established PFCs (perfluorocarbons) as inert chemicals (Riess and Le Blanc, 1982). These 

class of chemicals remain intact in strong boiling acids and exhibit remarkable thermal stability 

(Lowe, 1987). Depending on the molecular volume, PFCs dissolve gases such as oxygen, nitrogen 

and carbon dioxide. This has significant importance in medical science and its applications (Krafft 

and Riess, 2007). The solubility of gases in PFCs is inversely related to temperature (Riess and 

Le Blanc, 1982). CF4 is classified as a greenhouse gas with a GWP of 6500 (Hurley et al., 2005). 

The chemical properties of CF4 and NF3 are listed in table 2-1. 

 

        

Figure 2-2. Molecular structure and electron cloud of CF4 (Molekuul.be, 2010). 
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Table 2-1. List of physical properties for NF3 and CF4 (Branken et al., 2013). 
Property NF3 CF4 

Boiling point (°C) a -129.0 -128.0 

Heat of vaporization (kJ/mol)  11.59 - 

Standard heat of formation (kJ/mol) b -131.5 - 

Heat capacity (J/mol.K)  53.39 61.27 

Critical Temperature (°C)  -39.25 -45.60 

Critical Pressure (kPa)  4530 3739 

Critical Volume (cm3/mol)  123.8 139.9 

Molecular size (Å)  4.500 4.800 

Dipole moment  0.24 0 
a At 101.325 kPa  
b At 25 °C, 101.325 kPa 

 

2.2 Technologies to purify NF3 from CF4 

Nitrogen trifluoride is among the top four selling inorganic fluorides due to its demand in 

industrial applications (e.g. electric circuit production and plasma etching).  For such applications, 

it is required in an extremely pure condition at 99.999 % (Nakajima et al., 2000). The presence of 

high CF4 content of above 20 ppm in the mixture significantly compromises the product quality 

(Flamm et al., 1983). This impurity is present in the NF3 bulk due to the following reasons 

(Aramaki et al., 1985): 

 Due to the interaction of the carbon content of raw nitrogen gas (used for NF3 production 

via direct fluorination) with fluorine  

 Fluorine is produced in electrolyte tanks equipped with carbon anodes. The fluorine 

supply would then include CF4 as a result of its interaction with the carbon anode. 

  CF4 is also produced through the interaction of fluorine with the process equipment and 

vessels.  

When NF3 is produced, in addition to CF4, traces of impurities such as N2F2, N2O, CO2 and H2O 

can be detected in the NF3 bulk flow.  N2F2 is removed through pyrolysis on the hot surface of 

metals (Harada et al., 1990) while N2O, CO2 and H2O are removed utilising zeolites (Nakajima 

et al., 2000). Due to very similar physical properties of NF3 and CF4, as well as their small 

tendency to react, their separation cost is considered exorbitant and the separation process is 

complicated (Pankratov, 1973). A summary of the technologies available for NF3 purification is 

presented in table 2-2.  
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Table 2-2. Summary of technologies available for NF3 purification. 

Technology  T /oC P /MPa Capacity 

(CF4 

content) 

/ppm 

References 

Cryogenic 

distillation 

 -192 0.3 10 to 50 (Jin and Fisher, 1996, 

Fisher and Jin, 1997, 

Fisher, 1998, 

Nagamura and 

Yamamoto, 1994, 

Hyakutake et al., 

1990, Fidkowski et 

al., 2001) 

Adsorption 

(zeolites, 

molecular 

sieves and 

carbosphere) 

 -196 to 600 -  1 to 40 (Suenaga et al., 1991, 

Harada et al., 1993, 

Igumnov and 

Kharitonov, 2006, 

Singh et al., 2008, 

Hart et al., 2006, 

Henderson and 

Underwood, 2016) 

Membrane 

(research 

phase) 

 35 – 160 0.02 3 (Branken et al., 2013) 

Extractive 

distillation 

 -120 0.6 to 

1.1 

20 to 200 (Miller, 1966, Shiflett 

and Yokozeki, 2014) 

 

2.2.1 Cryogenic distillation 

The most common method for separating NF3 from CF4 is via cryogenic distillation 

(refrigeration). In this process, the NF3 + CF4 mixture is liquefied at -129 oC, and it is purified to 

99.99 %. While this process can produce high-purity gas, it is a highly energy-intensive process 

due to the extremely low operating temperatures (Hyakutake et al., 1990). Cryogenic distillation 

for the purification of NF3 has been further developed by the addition of a washing liquid such as 

HCl (Jin and Fisher, 1996, Fisher and Jin, 1997, Fisher, 1998). This is used to wash the impurities 

other than CF4 (mostly fluorinated) from the gas mixture. The washing liquid is recovered for 

reuse via cryogenic distillation.  

 

A hybrid of a high-pressure and cryogenic distillation columns was proposed to eliminate 

principle moisture and CO2 from the feed gas mixture (Nagamura and Yamamoto, 1994). In this 

process, the feed gas mixture is pressurised to 0.9 MPa, cooled down to -166 oC, and passed 

through an absorber which is maintained at a low temperature to eliminate N2F2, N2F4, N2O, and 

CF4. The remaining mixture is liquefied in the re-boiler of a second distillation column. The 

principle of gas separation is the volatility differences of the components. The product mixture 

then flows through a distillation column operating at low pressure to provide ultra-high purity 

NF3 as a final product at the medium pressure level supplied by a re-boiler (Nagamura and 



   
9 

Yamamoto, 1994). The advantage of this process is the ultra-high purity NF3. However, the high 

energy demand due to the high-pressure requirement to supply NF3 as a feed stream at an even 

higher pressure is a major drawback. 

 

Figure 2-3 shows the schematic of a patented process for purifying NF3 from a gas mixture with 

different volatilities. This process uses two distillation columns for the raw feed. At first, the 

liquefied mixture (with NF3 content of 30 %) is fed into the first column. Thereafter, the cryogenic 

liquid is introduced to the first stage above the feeding site. The high volatility components are 

separated from the NF3 as a lean gas/liquid, and the heavy NF3 mixture is removed from the 

bottom. The heavy mixture is then fed to the second distillation column. The second distillation 

column produces the purified NF3. This process involves an extra step to remove the less volatile 

stream in the bottom product of the second distillation column (Fidkowski et al., 2001). This 

process operates at -192 o C and 0.3 MPa. The final concentration of the impurities in the product 

is less than 10 ppm.  

 

 

Figure 2-3. Schematic diagram of the cryogenic distillation (Fidkowski et al., 2001). 

 

2.2.2 Adsorption 

The main compounds used in physical adsorption of NF3 purification plants are zeolites, 

molecular sieves, and carbosphere (Suenaga et al., 1991, Harada et al., 1993, Igumnov and 

Kharitonov, 2006, Singh et al., 2008). Besides CF4, there are several other impurities in the NF3 

gaseous stream which needs to be separated. Zeolites were among the first adsorbents used for 

this purpose. N2F2 is one of the oxidizing and decomposing chemicals that are available in NF3. 

Using zeolites, this material is adsorbed initially, which decreases the adsorbent capacity 

significantly to remove other impurities (Harada et al., 1990). NF3 is also co-adsorbed onto the 

zeolite, which leads to loss of the gas. Furthermore, due to the accumulation of the N2F2, NF3 

decomposition can be initiated on the hot metal plates resulting in heat generation. In an extreme 



   
10 

case, an explosion may occur. Therefore, N2F2 needs to be removed before other impurities. 

Furthermore, nitrogen trifluoride is purified from N2F2 utilising a group of candidate adsorbents 

including metal fluorides of the first three groups of the periodic table, which do not melt at high 

temperatures. The temperature range of this method is between 150 – 600 oC (Harada et al., 1993). 

 

Some of the industrial methods focus on adsorbing NF3. For example, zeolites with sizes of 4.9 

oA can purify NF3 selectively in the temperature range, higher than 10 o C. An example of a 

process flowsheet for this separation using a molecular sieve is given in Figure 2-4. In this 

process, the NF3 mixture is released into a crystalline and porous synthetic zeolite environment. 

The adsorbent media produces NF3 with a final impurity of less than 40 ppm of CF4 (Suenaga et 

al., 1991).  

 

 

Figure 2-4. Process flowsheet for the NF3 purification using commercialized 5A zeolites 

(Suenaga et al., 1991). 

 

Molecular sieves have also been used to adsorb NF3 selectively at temperatures down to -196 o C. 

The commercially available methods using molecular sieves are capable of cleaning the mixture 

down to 1 ppm of CF4 (Igumnov and Kharitonov, 2006, Hart et al., 2006, Singh et al., 2008). The 

use of pressure swing methods demonstrated complete purification of NF3 by use of a packed 

column with Linde Type A® zeolites containing variable pore sizes of 3.6 to 4.6 o A (Henderson 

and Underwood, 2016). A summary of the available adsorption methods is provided in table 2-3.  

  

 

 



   
11 

Table 2-3. A summary of the NF3 purification methods using adsorption at 1 bar. 

Reference Adsorbent T/ oC CF4 final impurity 

(ppm) 

Mixture 

(Harada et al., 1993) Metal fluorides 150-600 40 NF3 – N2F2 

(Suenaga et al., 

1991) 

4.9 oA zeolite >10 40 NF3 - CF4 

(Igumnov and 

Kharitonov, 2006) 

Dehydrated 

erionite 

-50 to 30 10 NF3 - CF4 

(Hart et al., 2006) Molecular sieves -179 to -50 10 NF3 - CF4 – 

HF – F2 

(Singh et al., 2008) Polyacrylonitrile 

molecular sieve 

0 to 100 1 NF3 - CF4 

 

2.2.3 Membrane technology 

Membrane technology is highly efficient in the separation of the mixtures with low impurity 

contents (Reijerkerk et al., 2010). The ZIF-8 mixed matrix membrane has shown promising 

results in the separation of N2/NF3 (Park et al., 2015). NF3, the target gas, selectively permeates 

through the membrane due to the smaller size of the molecule in comparison with the contaminant 

(N2). 

 

For a mixture of NF3 – CF4, the Hyflon AD60 and amorphous glassy perfluoropolymer Teflon 

AF membranes showed good ability to reduce the impurity to 3 ppm. The driving force required 

for these processes is the particle size difference, which is similar to the filters. These membranes 

are designed for a small feed stream, which consequently purifies the target gas at very high 

concentrations (Branken et al., 2014). Figure 2-5 illustrates the separation of NF3 from CF4 

through the membrane. The membrane is held inside the convection oven to obtain better 

temperature control. A dual-channel gas chromatography method was used to measure the 

concentrations of NF3 and CF4 using PDHID and TCD detectors in series (Branken et al., 2013). 

The process described in this study is still in the research phase. 
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Figure 2-5. The experimental setup used for pure and mixed gas permeation measurements 

(Branken et al., 2014). 

 

2.2.4 Extractive distillation 

Extractive distillation is known as the distillation by the use of a solvent which alters the relative 

volatility of the component and consequently provides the possibility to separate components. 

This technique is generally used to separate the chemicals which form azeotrope or close boiling 

point mixtures. The separator agent or entraining agent changes the fugacity of the chemicals in 

the mixture which produces repelling force. The component which has the higher repulsive force 

leaves the liquid phase easily (Noll et al., 2013). A typical extractive process consists of two 

columns one for separation of the first component from the first mixture and the second column 

to recover the solvent from the bottom product (Fink, 2016). A simple extractive distillation 

process for the separation of the two components (A+B) consists of an extractive distillation 

column and a stripping column in which the gaseous products are obtained from the top of the 

columns and the solvent (S) is collected from the bottom of the second column (Lei et al., 2003). 

 

 
Figure 2-6. Schematic diagram of the two-column extractive distillation process for separation 

of the binary mixture (A+B) using an entraining solvent (S) (Lei et al., 2003). 
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The solvent selection for the extractive distillation column design is divided into two major stages 

of identification of functional groups as well as the comparison of individual candidates (Perry et 

al., 1997). The first extent includes the use of homologous series, Robbins chart, hydrogen 

bonding characteristics and polarity characteristics which basically includes the analysis of the 

molecular interaction. The second extent is based on the comparisons between the identified 

solvents considering the boiling point differences, infinite dilution selectivities and experimental 

measurements (Perry et al., 1997).  

 

With extractive distillation, the NF3 is purified from CF4 by introducing HCl as the extractive 

agent which forms an azeotrope. However, a list of 16 different entraining agents from different 

chemical families of PFCs, CFCs, HDs and refrigerants have been tested, the best results 

presented are for the case of using HCl as the entraining agent. The use of an extractive agent 

requires ultra-low temperatures (almost cryogenic conditions) for obtaining a desirable separation 

(Miller, 1966). Hydrogen chloride is an acid which poses significant problems from the point of 

view of its disposal. Hence, new energy-efficient and environmentally friendly methods are still 

required. The proposed method is not commercially justifiable due to the high number of 

equilibrium stages (120 – 244 stages) as well as massive reflux ratios of up to 1000000 required 

(Miller et al., 2002).  

 

Furthermore, the use of a long list of ionic liquids has been tested as the extractive agent (Shiflett 

and Yokozeki, 2014). In this method, depending on the extractive agent selected, either NF3 or 

CF4 can be selectively absorbed. This method is capable of decreasing the impurity level to just 

above 200 ppm at its best. Due to the oxidising property of nitrogen trifluoride and the probable 

interaction with ionic liquids (depending on the thermo-physical condition), there is a chance of 

initiation of explosion regimes. Besides, the ionic liquids listed are not produced on an industrial 

scale within a feasible price range.  

 

 2.2.5 Absorption 

Absorption includes simultaneous mass and heat transfer between liquid and gas with the 

diffusional mass transfer being the most important role (Zarzycki and Chacuk, 2013). It is 

regularly followed by desorption performed in the stripping column which has equal importance 

as the absorption process. This process is performed with the major aim of removing one or more 

components from a gaseous mixture, such as CO2 removal in ammonia production, and to obtain 

a specific gas in the liquid component with the aim to produce a new mixture or compound for 

the case of a chemical reaction (Zarzycki and Chacuk, 2013). 
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Absorption technology, where applicable, is by far the most widely used application for gas 

separation processes such as CO2 capture. This is due to its high efficiency, low capital 

investment, low operating and maintenance costs, and advanced development of the technology 

(Edenhofer, 2015). The absorption process is improved at elevated pressure and reduced 

temperature, as opposed to the stripping process which requires a heating and cooling medium as 

well as a compressor to pressurise the gas (Mofarahi et al., 2008). Absorption columns are 

classified according to their internal configurations which are packed, wetted wall, tray and spray 

columns. A summary of their advantages and disadvantages is presented in table 2-4 (McCabe et 

al., 1993). 

 

 

 

 

Table 2-4. A summary of the advantages and disadvantages of varying types of absorption 

columns (McCabe et al., 1993). 

Column type Advantages Disadvantages 

Packed  High mass transfer obtained from better 

interphase contact 

 Low capital, operating and 

maintenance costs 

 Channelling 

 Only for moderate flow rates 

Wetted wall  Neutralisation of corrosive gas 

 Multi-stage configurations 

 Complex design 

 High maintenance cost 

Tray  Cost-effective at different flow rates 

 Adjustable in terms of P and T 

 High-pressure drop 

 Slow reaction rate 

 Possibility of fouling and 

plugging  

Spray  Low pressure-drop 

 Suitable with high solubility  

 High pumping cost 

 Weak mass transfer 

 

Absorption technology has found applications in various industries such as pollution control and 

wastewater treatment (Ho, 1995), hydrogenation of oil (Bavetta and Deuel JR, 1942), coke plants 

(Eberly Jr et al., 1966) and in the petrochemical industry (Mehra, 1996). Several factors need to 

be considered and optimised for the absorption column design. While high operating pressure is 

recommended for the absorption process, it requires more power which is normally justified by 

cost-benefit analysis (Chakma, 1995). As the solvent flow rate increases, a reduced number of 

trays is needed in a tray column, but it poses higher solvent costs and a larger absorber diameter. 

The optimum flow rate is highly influenced by the balance between the number of trays and 

solvent cost. Low chemical absorption rate results in weak mass transfer, consequently requiring 

larger column sizes (Chakma, 1995).  

 

Phase equilibrium data is an essential requirement for the design of an absorption and stripping 

column. To the best of the author’s knowledge, there is no HPVLE data available for NF3 to date, 
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and the only available data comprises volumetric dissolution of the NF3 in a wide range of highly 

halogenated and perfluorinated solvents within the low-pressure range (Mukhortov et al., 2010). 

The authors presented in their article design of an absorption column at pressures up to 1.3 MPa. 

 

Furthermore, the name of the solvent(s) selected for the absorption experiment cited was not 

disclosed. The initial 2000 ppm concentration of CF4 in the feed was decreased to 8 ppm in the 

final product. The proposed design included eight equilibrium stages with a gas flow rate of 7775 

mole.hr -1 and the unknown absorbent flow rate of 1588 mole.hr -1 (Blinov et al., 2011). While the 

use of absorption in cleaning NF3 looks promising, the purification process falls within a narrow 

concentration range (from 99.967 to 99.999 %), and the authors suggested more investigations 

(Blinov et al., 2011).  

 

2.2.6 Summary of the review on technologies 

Cryogenic distillation, in addition to its complicated process which requires twice the capital 

investment of that of an absorption column in relative terms, operates at a very low-temperature 

condition (i.e. down to -192 o C). Membrane technology has drawbacks such as concentration 

polarization, clogging of membranes, short membrane life, selectivity, low flow of gas, and the 

high cost of construction. The maintenance cost is also considerable. The use of extractive 

distillation using ionic liquids (ILs) suffers from the possibility of ignition and explosion due to 

the oxidising property of NF3 and its interaction with ILs, in addition to their high prices and 

limited availability on a commercial scale. Furthermore, the use of HCl is not recommended as it 

could pose disposal problems to the environment due to its acidic nature. Adsorption units were 

mostly designed to operate at low flow rates and in the batch configuration which required plant 

downtime for cleaning. Among the different types of separation methods proposed for this 

particular system (NF3 – CF4), the main objective was to obtain a product with the purity grade 

of 99.999 % using the most efficient method. Looking at the literature at the available separation 

techniques, physical separation (i.e. absorption and extractive distillation) comes out as the best 

separation process for the following reasons: 

 Possibility of running the absorption column with the use of commercialised solvents.  

 There is no need to shut down the plant for the recovery of absorbent, as required in 

adsorption and membrane technology.   

 Other than membranes, absorbents do not deteriorate and only solvent recovery is 

required together with compensation for the solvent loss. 

 Absorption technology has the potential to produces NF3 at a high flow rate.  

 

More specifically, the absorption technology operates at a temperature close to ambient 

conditions, which overcomes the problem of low temperatures required in conventional 
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distillation and adsorption methods. This decreases the very high energy requirements for NF3 

production with industrial grades. Apart from the benefits of absorption technology, the 

possibility of corrosion due to the presence of a corrosive solvent, low biodegradation of the 

solvents as well as the high energy requirements for the solvent regeneration are among the 

disadvantages of this process (Ben-Mansour et al., 2016).  

 

2.3 Phase equilibrium data in the literature 

The number of available phase equilibria data for systems including NF3 is limited. However, 

there is a substantial amount of experimental data for CF4 with different families of chemicals. 

The data published in the literature are generally (except for a few sets) in the temperature range 

of 273.15 to 313.15 K. From the literature data, tetrafluoromethane has the highest solubility in 

the two fluorinated solvents of hexaflurobenzene (C6F6) (Evans and Battino, 1971) and 

perfluorotributylamine (C12F27N) (Powell, 1972), with the solubility of 0.005 and 0.015, 

respectively. It should be noted that the gas exhibits the highest solubility in the latter solvent. 

Given that the data is reported at ambient pressure, it will certainly show significant improvement 

with increased pressure. The summary of the experimental data available in the literature is 

presented in Appendix A.  

 

There are three highly fluorinated compounds among the literature data which are trifluoroethanol 

(C2H3F3O), hexafluorobenzene (C6F6), and perfluorotributylamine (N(C4F9)3) (Mainar et al., 

1996, Evans and Battino, 1971, Powell, 1972). Figure 2-7 shows the structures of these chemicals 

which are extracted from (SigmaAldrich). The chemical properties of trifluoroethanol (C2H3F3O), 

hexafluorobenzene (C6F6), and perfluorotributylamine (N(C4F9)3) are listed in table 2-5. 

 

\ 

 

  

a) b) c) 

Figure 2-7. The structures of a) trifluoroethanol (C2H3F3O), b) hexafluorobenzene (C6F6), c) 

perfluorotributylamine (N(C4F9)3) (SigmaAldrich). 
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Table 2-5. List of physical properties for C2H3F3O, C6F6 and N(C4F9)3. Literature data for the 

properties are taken from NIST TDE (Frenkel et al., 2005). 

Property C2H3F3O C6F6 N(C4F9)3 

Boiling point (°C) a 78 80.2 208.4 

Heat of vaporization (kJ/mol)  - 35.72 - 

Standard heat of formation (kJ/mol) b - - 937.22 - 

Heat capacity (J/mol.K) b 17.68 221.676 - 

Critical Temperature (°C)  225.42 243.27 287.94 

Critical Pressure (MPa)  48.08 3.28 1.10 

Vapour pressure (kPa) b  9.44 11.28 0.065 
a At 101.325 kPa  
b At 25 °C, 101.325 kPa 

 

The solubility of tetrafluoromethane in trifluoroethanol (0.0013) has an equivalent value to that 

of straight chain alkanes with C10+ (≈0.0017) (Hesse et al., 1996). Hexafluorobezene is a 

perfluorinated chemical with a symmetric shape and nonpolar structure (Pummer and Wall, 

1958). This is also a toxic chemical. The like-like interaction between molecules is prominent, 

and the solubility of CF4 is more substantial by far. Perfluorotributylamine consists of three chains 

of perfluorobutyl which are bonded to the same nitrogen molecule in the centre (Costello et al., 

2000). Except for the nitrogen, the structure of perfluorobutane is from the family of 

perfluoroalkanes, which shows a high potential for the absorption of the CF4. The available 

experimental data from the literature has indicated that the solubility of CF4 is high in 

perfluorinated chemicals. A detailed analysis of the available experimental data is provided in 

Appendix A. From the literature studies, the fluorinated solvents are deemed to be the most 

suitable chemicals to dissolve either NF3 or CF4.  

 

2.4 Solvent selection 

There are several solvent selection procedures which exist. The Robbins chart (Robbins, 1980), 

predictive tools such as group contribution methods, the use of the COSMO-SAC  prediction tool 

which allows the prediction of the solvent affinity (Mullins et al., 2006), the use of the primary 

screening method via phase equilibrium measurements, as well as the physical property method 

including hydrogen bonding, intermolecular forces, solvent selectivity and capacity via the 

infinite dilution activity coefficient are among the available techniques. The latter can be 

estimated by three methods of experimental measurements, correlation to the bubble point data 

and predicted using predictive models (Perry et al., 1997). Each method requires basic 

information and assumptions which are discussed in the sections which follow. 

 

2.4.1 Robbins chart on solvent selection 

The Robbins chart classifies chemicals into 12 general classes (Robbins, 1980). The main 

evaluation criteria are to consider the hydrogen bonding among the selected compounds. The 

Robbins chart studies the electron donor or acceptor property of the chemical, to give an 
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indication of the interactions of the chemicals in terms of their designated class. The method is 

capable of identifying the chemicals from the families with several active groups, such as highly 

active halogenated compounds, non-halogenated paraffin, etc. which is recommended for the 

liquid phase. For this study, CF4 falls into class 11 as multi-halo paraffin without active H. 

However, according to the guidelines of the Robbins chart, there is no group indicated for NF3, 

(Perry et al., 1997). Class 11 involves aromatic, olefin, halogen aromatic, multi-halo paraffin 

without active H and mono-halo paraffin. The reader is referred to (Perry et al., 1997) for more 

information. 

 

2.4.2 Group contribution methods 

The UNIFAC method uses the group contribution approach with functional group parameters, 

which are calculated from available experimental data. Due to the high number of experimental 

data used to fit the interaction parameters, in most of the cases, the results are of high quality 

(Fredenslund et al., 1975). Group surface area, group volume and the energy parameters are the 

inputs required for the UNIFAC model. There are no experimental high-pressure phase 

equilibrium data reported in the literature for the NF3 system which could provide the possibility 

to fit the parameters. Hence, the prediction of the phase behaviour for systems of NF3 is not 

possible. The same condition applies for the PSRK model, another predictive method with a 

predictive parameter dependent on experimental data.  

 

2.4.3 COSMO-SAC predictions  

The use of predictive methods, and in particular the quantum mechanics method, has been used 

to estimate the phase behaviour of solutions in the last two decades. Due to the lack of 

experimental data and availability of statistical analysis for the behaviour of molecules, these 

methods can produce thermodynamic equilibrium data only via modelling. However, these 

methods have high uncertainty, and in many cases, the accuracy of the results is controversial 

(Wang et al., 2009). The Conductor-like Screening Models - Segment Activity Coefficient Model 

(COSMO-SAC) is among the predictive methods which has shown an excellent ability to predict 

the activity coefficient without the need for experimental data (Borghi et al., 2015). In a set of 

COSMO-based methods, the first step is calculating the distribution coefficient to obtain the 

apparent charge density on the surface of the molecule, which is named the Sigma profile (Islam 

and Chen, 2015).  

 

In ASPEN PLUS software V10, the Sigma profiles have been embedded for more than 1400 

compounds (Mullins et al., 2006), including the CF4 gas. Given that it was possible to measure 

the phase equilibrium data, the CF4 system data was measured with hexane solvent at 283.15 K 

in this study and measured data regressed using the Peng-Robinson equation of state (PR EoS) 
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(Peng and Robinson, 1976). It was then compared to the predictions of the COSMO-SAC model. 

Figure 2-8 shows the P-x-y plot for the binary system of n-hexane + CF4. The figure compares 

the experimental data (o) to the results of PR (VdW) model (___) and COSMO-SAC (---) model. 

It is clear that the COSMO-SAC prediction results provide large discrepancies. The experimental 

data shows that the composition of CF4 at a pressure of 4.00 MPa is approximately 0.12, compared 

to a 0.3 as predicted by the COSMO-SAC model. The limitations of COSMO-SAC cannot be 

generalised for the rest of non-polar systems, but it is clear that for the system including CF4 gas, 

the prediction is not reliable and it can be either correct or incorrect. It is evident from the results 

that for the systems studied, the use of COSMO-SAC for the solvent screening is not reliable. 

 
Figure 2-8. P-x-y data of the binary system of n-hexane + tetrafluoromethane at 283.15 K. , 

experimental VLE data of CF4+C6H14; --- COSMO-SAC prediction. ___ PR (VdW) model. 

 

2.4.4 Physical properties 

The physical properties of the solvents were also considered in the solvent screening procedure. 

From the results of the solubilities studied, 300 solvents from different chemical families were 

considered which were aromatic, aliphatic, alcohols, ethers, esters, ketones, glycol ether esters, 

aldehydes and halogenated hydrocarbon. In general, a few substances from different fluorinated 

families were also included because of their physical property of high absorption capacity. 

Thereafter, dielectric constant, hydrogen bonding, dipole moment, intermolecular forces, boiling 

points characteristics, relative volatility, the toxicity level of materials, reactivity, solvent prices, 

and availability were assessed. The large numerical values of dielectric constant denote highly 

polar solvents and improved dissolutions are expected for the components with the similar 

dielectric constants (Lide, 2005). Due to its zero dipole moment, CF4 represents improved 

dissolution in non-polar components. Table 2-6 shows the list of perfluorinated chemicals 

screened for the measurements. The chemicals are ranked in the order of non-polar to polar listing 

them from the most to the least appropriate solvents for CF4 absorption. The chemicals with the 

properties of lower toxicity as well as price are of interest.  
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Table 2-6.  List of perfluorinated solvents screened for measurements. 

Solvent Properties a Availability Price/ml 

(ZAR) b 

 D c Polar Toxicity 
d 

Boiling 

point 

(K) 

  

Perfluorodibutylester 1.74 - - - - - 

Perfluorooctane 1.79 - x 376.15 x 164.4 

Perfluoroheptane 1.82 - - 353.15 x 106.8 

Perfluorodecalin 1.86 - - 415.15 x 62 

Perfluorohexane 1.98 - x 329.15 x 37.5 

Heptafluoro,1-

butanol 

14.4 X x 368.15 x 272 

Tetrafluoroethyl-

tetrafluoropropyl 

ether 

26.8 X - 366.15 x 400e 

a Literature data for the properties from NIST TDE (Frenkel et al., 2005).  
b The prices were taken from the Sigma Aldrich website in February 2019. 
c Dielectric constant. 
d Dangerous for the respiratory system (spexcertiprep, 2017). 
e At the time that this project was started it was R15/L. 

 

To determine the list of suitable solvents for further investigations, several approaches were 

considered. Due to lack of experimental data for NF3 in the literature, the conventional screening 

methods such as Robbins’s chart and predictive tools were not powerful enough to help with 

identifying an affinity of the potential solvents in the dissolution of NF3 and CF4. The inclusion 

of the list of solvents with an affinity to absorb CF4 was selected from a long list of chemicals as 

reported in the literature (Borghi et al., 2015, Sousa et al., 2010, Evans and Battino, 1971, Field 

et al., 1974, Byrne et al., 1975, Sousa and Fonseca, 2014, Wilcock et al., 1977, Hesse et al., 1996, 

Cosgrove and Walkley, 1981, Gallardo et al., 1987, Powell, 1972, Mainar et al., 1996, Gibanel et 

al., 1988, Smits et al., 1997, Lobo et al., 1985, Liu et al., 2012). The screening process was 

continued based on the physical property of the chemicals. A final list containing 7 solvents was 

prepared for experimental investigations. 

 

2.5 Experimental techniques  

There are multiple experimental techniques that can be used to generate high-pressure VLE data 

which are selected depending on the chemical properties and target phenomenon to be measured. 

For these type of systems, the techniques in the literature are divided into two major categories of 

analytic and synthetic systems, depending on the type of composition determination. This 

classification is based on whether the phase composition is obtained utilising an analytical 

technique  or mixtures are synthesised with a known mixture composition (synthetic method) 

(Dohrn et al., 2010). With the analytical methods, the analysis is performed either via the 

withdrawn samples from the phases or implication of the physicochemical techniques without the 
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requirement to withdraw a sample. The synthetic method only requires either a change in the 

phase (visual or non-visual) or a material balance. A summary of the available experimental 

techniques is presented in figure 2-9 (Fonseca et al., 2011).  

 

 
Figure 2-9.  Classification of the experimental techniques used in HPVLE (Fonseca et al., 

2011). 
 

Sample withdrawal from a high-pressure cell, its handling and analysis is among the substantial 

source of errors added to maintain the system at the pressure after the sample (of vapour and/or 

liquid) is taken. The analytical methods without sampling are generally used to study the phase 

equilibria based on the reactive systems. The accurate analysis of the samples to obtain the phase 

composition is among other drawbacks of the analytic methods (Dohrn et al., 2010, Fonseca et 

al., 2011).  

 

The synthetic methods are preferred in the case of failure of the analytic techniques. For example, 

this may occur for mixtures of similar densities of the coexisting phases such as near-critical 

conditions (Dohrn et al., 2012). On the contrary, with testing the static analytic apparatus used in 

this work, we were able to measure data at the critical point (Nelson et al., 2017). The main source 

of error in synthetic methods arises from imprecise preparation of the mixture, inability to 

determine the correct thermophysical property for the phase change and limitations in obtaining 

further properties to evaluate the raw data. In contrast to the analytic method, the use of synthetic 

techniques to measure the solubility of extremely low volatile compounds in supercritical fluids 

does not produce reliable results. Due to the abovementioned reasons, over 63 % of the data 

published in the literature were obtained by the synthetic methods (Dohrn et al., 2010, Dohrn et 

al., 2012). Readers are referred to the review articles on the HPVLE techniques and experimental 
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results for more information (Knapp et al., 1981, Fornari et al., 1990, Dohrn and Brunner, 1995, 

Christov and Dohrn, 2002, Dohrn et al., 2010, Fonseca et al., 2011, Dohrn et al., 2012). 

 

The use of ROLSITM sampler connected to the GC has shown considerable improvement in the 

appropriate sampling from the cell, as well as handling and analysis of the samples withdrawn 

from the high-pressure mixtures (Duran-Valencia et al., 2001, Valtz et al., 2004). Furthermore, 

the volume of the samples withdrawn from the cell is adjustable to volumes as small as 100 – 500 

μl from a cell with an approximate volume of 50 ml. The small sample volumes do not interfere 

with the equilibrium conditions of the test chamber. According to the data published using such 

apparatus, the exact critical point is measurable (Nelson et al., 2017). The new advancements in 

the sampling devices provided a significant decrease in the uncertainties associated with the high-

pressure VLE measurements.  

 

From the literature review around the equipment and experimental procedure, it was found that 

the isothermal analytic apparatus equipped with the ROLSITM sampler is the best technique to 

measure HPVLE data for this type of system. From the research that has been done using this 

apparatus, good results with high reliability of the experimental data have been obtained 

(Ramjugernath et al., 2018, Nelson et al., 2017, Uusi-Kyyny et al., 2016). The thermodynamic 

consistency tests (point and direct tests) that have been done which gave very good confidence in 

the use of the thermodynamic data (Narasigadu et al., 2013). That is why this technique was 

selected to measure the HPVLE data in this work. In addition, a previously tested synthetic 

apparatus (Nelson and Ramjugernath, 2017) with the ability to track the phase change (both visual 

and non-visual) was utilised to confirm the data measured for all of the systems studied, giving a 

very high degree of confidence in the quality of the data measured. The experimental apparatuses 

and techniques used in this work will be explained in detail in chapter 4. 

 

2.6 VLE data and design process 

The diagram shown in figure 2-10 illustrates how phase data fits into the design process. After 

experimental phase equilibrium data is measured, the data is fitted to a model and the physical 

property is estimated. The model parameters are then used for the simulation of the chemical 

process which is normally performed via commercial simulation packages such as Aspen Plus®. 

Thereafter, the pilot plant studies are done. The preliminary design is performed based on the data 

gathered from the previous stage. Eventually, the process is designed. This illustrates the 

importance of phase data.  
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Figure 2-10. How phase data fits into the design of a chemical process. 

 

2.7 Modelling  

There are two general methods to interpret the high-pressure phase data, namely combined and 

direct methods (Mühlbauer and Raal, 1995). The combined method employs the activity 

coefficient for the liquid phase and the fugacity coefficient (using EoS) for the vapour phase. This 

method has given excellent data interpretation in low to medium pressure ranges since it has 

limitations once the pressure of the system tends to the critical pressure of the chemical. On the 

other hand, direct methods utilise only the fugacity coefficient to describe the phase behaviour of 

the mixture (Mühlbauer and Raal, 1995, Smith et al., 2005). Due to the empirical nature of the 

EoS model coefficients, the application of the direct method is not accurate enough for modelling 

of the highly polar systems and liquid phase (Mühlbauer and Raal, 1995).  

 

Due to the high-pressure range of the experiments, the direct method (∅ − ∅) was utilised to treat 

the data. This method has been used in the literature and is able to describe these types of systems 

very well. An extensive description of the modelling approaches used in this work along with 

their theoretical background will be explained in chapter 3. 

 

2.8 Simulation of the physical separation processes 

Process simulation provides the ability to model a plant in great detail without incurring exorbitant 

costs in the construction of a plant. This is usually implemented on the basis of the experimental 

data and phase properties during the study phase to obtain ideal operating conditions along with 

the pros and cons. The design can be in either steady-state or dynamic form depending on the 

stage of the project phase. Thereby, engineers can run a virtual process to ensure the safety and 

operation conditions of the factory. 

 

A typical absorption plant consists of an absorber followed by a stripping column to recover the 

solvent and separate the gas dissolved in it. The solvent then is combined with the make-up flow 

to compensate for the lost solvent and used again as the absorbent. An example of a physical 

VLE data measurements Data modelling Simulations

Pilot plant studies Preliminary design Process design
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absorption process designed for post-combustion carbon capture (PCCC) process is shown in 

figure 2-11 (Ahmad et al., 2017).  

 

 
Figure 2-11. A typical process flow diagram for absorption and desorption of PCCC (Ahmad et 

al., 2017). 

 

A typical extractive distillation plant consists of an extractive distillation column followed by a 

stripping column. Similar to the absorption process, the solvent then is combined with the make-

up flow to compensate for the lost solvent and used again as the separator agent. An example of 

the extractive distillation process designed for separation of acetone (distillate) and methanol 

(bottom) using the water as the separation agent is presented in figure 2-12 (Langston et al., 2005).  

 

 
Figure 2-12. A typical process flow diagram for extractive distillation designed for the 

separation of acetone from methanol using the water as an entraining agent (Langston et al., 

2005). 

 

The step by step methodology of Aspen Plus® design for the simulation of this work is explained 

below: 

a. The Aspen Plus® simulation models are developed including the essential units of the 

physical separation plants which are absorber, stripper and other main parts for absorption 
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plant. These are an extractive distillation column, a stripping column and other auxiliary 

units including heat exchanger and pump for the extractive distillation plant. 

b. The physical absorption option is selected from the navigation panel for the absorption 

column design and the best solvent from the experimental measurements was tested. 

c. After the model is analysed and validated, several parameters including gas flow rate, 

operating temperature and pressure, gas and solvent location stage, etc. were investigated 

through sensitivity studies with an aim to obtain the highest possible purity.  

 

In summary, the literature review was presented on the different available technologies for 

purifying NF3, together with their advantages and disadvantages. The solvent screening procedure 

and available experimental data in the literature were then explained. Thereafter, a background 

on the experimental apparatuses and techniques was discussed. A brief discussion on the 

modelling background and simulation methodology was presented in the final part of this chapter.  
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Chapter 3: Modelling 

 

This chapter illustrates the approaches followed in this work to model the measured HPVLE data. 

Experimental phase equilibria data is the foundation stone of separation process design in the 

chemical industry. Precise experimental data is required to achieve process safety and a better 

understanding of the process optimisation. The thermodynamics of the phase equilibrium data is 

highly influenced by pressure, temperature and volume by interfering with the density of the 

mixture, phase change, solubility promotion, and reaction in the gas phase (Peper et al., 2019).  

 

The binary phase equilibrium behaviour can be estimated depending on the measured data, 

including liquid-liquid and vapour-liquid equilibrium data to gain information on multi-

component behaviour (Mühlbauer and Raal, 1995). The experimental data for the binary systems 

should be treated theoretically for calculation of excess Gibbs energy, considering the 

uncertainties of the measurements in the laboratory condition. Chemical thermodynamics is the 

basic requirement to make it possible.  

 

This chapter studies the basics of chemical thermodynamic phase equilibrium data reduction or 

parameter fitting, as well as the basics of the modelling and calculations of the activity coefficient. 

The combined method (𝛾 − ∅) and direct method (∅ − ∅) are studied as the recognised methods 

to treat experimental data. Thereafter, the equations of state (EoS) and the activity coefficient 

models are included. More information on the fundamentals of the thermodynamic modelling 

approaches are presented in the related textbooks (Walas, 2013, Raal and Mühlbauer, 1998). 

 

3.1 Theoretical background for modelling 

The Van der Waals EoS (Van der Waals, 1873), was the first equation which could represent the 

coexistence of vapour and liquid phases. Redlich-Kwong EoS (Redlich and Kwong, 1949) was 

the inflexion point of the modification on the Van der Waals EoS which retained its hard-sphere 

term and included a new term that was temperature-dependent. Soave replaced the original 

temperature-dependent term with a new term which is known as Soave-Redlich-Kwong (SRK 

EoS) (Soave, 1972). The new EoS showed remarkable improvements in the data fit results.  

 

Peng-Robinson EoS (Peng and Robinson, 1976) provided a better prediction of the liquid 

volume’s critical compressibility factor. SRK and PR found widespread applications in the 

industry due to their capability in relating temperature, pressure and mixture composition with 

the requirement for only the acentric factor and critical properties of the component (Mühlbauer 

and Raal, 1995).  
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The EoS models and their mixing rules have been modified to improve their representation of 

data for the liquid phase and polar mixtures. The traditional VdW mixing rule is incapable of 

modelling excess Gibbs energy in a wide range of pressures. The Huron and Vidal local 

composition mixing rule was the first modification which related the EoS to an activity coefficient 

model via excess Gibbs energy. This mixing rule has a linear relationship, which does not satisfy 

requirements for the quadratic EoS in the low-density range (Mühlbauer and Raal, 1995). The 

Wong-Sander mixing rule replaces the excess Helmholtz energy with excess Gibbs energy which 

eliminates the requirement of applying the mixing rule to accommodate pressure. Hence, it 

satisfies the quadratic requirement for the second virial coefficient.  

 

The activity coefficient models are developed based on the excess Gibbs energy. Among the 

several activity coefficient models which have been developed based on the local composition 

concept, the Wilson, NRTL (Renon and Prausnitz, 1968) and UNIQUAC (Abrams and Prausnitz, 

1975) models provide expressions to estimate activity coefficient applied to the group 

contribution model of UNIFAC (Fredenslund et al., 1975). Due to the temperature-dependence 

of the model parameters for the local composition activity coefficient models, the NRTL model 

is more reliable for prediction purposes. The Wilson model was the first excess Gibbs energy 

model to use the local composition idea which is applicable to slightly polar mixtures. It has 

shortcomings when applied to highly polar mixtures and for the prediction of the immiscibility of 

two liquids (Smith et al., 2005).  

 

CF4 is a small nonpolar molecule with the tetrahedral structure which exhibits behaviours that can 

be justified by both Lenard-Jones potential (similar to CH4) and spherical shell models (similar 

to CCl4) in statistical thermodynamics (Rubio et al., 1985). While the phase equilibria data of the 

CH4 – CF4 mixture behaves strongly non-ideal due to difference in their intermolecular potential, 

its compressibility factor is justifiable by the corresponding states law (Holleran and Gerardi, 

1969).  

 

Among the binary mixtures studied, the phase data of the binary mixture of CF4 + CHF3, C2H6 

and CClF3 were measured in the pressure ranges up to 0.2 MPa and modelled using excess Gibbs 

energy where the satisfactory results were obtained by up to 4 % error (Croll and Scott, 1964). 

However the use of PR (VdW) model gave satisfactory results for the latter system (CF4 - CClF3) 

without regressing any parameter and errors of below 1 % (Kubic Jr and Stein, 1981). Among the 

models developed for prediction of phase behaviour as well as data regression, a new functional 

group, namely CF4, was introduced for the PSRK model in 2005 (Horstmann et al., 2005). A 

summary of the literature modelling approaches used for the binary system of CF4 with different 



   
28 

chemicals is listed in table 3-1. The study indicates that the data fit results of PR (VdW) model 

represents the least deviations among others used.  

 

Table 3-1. Summary of the modelling approaches used for systems including CF4. 

System  Model combination T/ K P/ MPa Deviations  Reference  

CH4  - Strobridge EoS with 

either least square or 

maximum likelihood 

(Strobridge, 1962)  

- Perturbation theory 

95 – 413 110 0.86 – 6 % (Rubio et al., 

1985) 

CClF3 

CHF3 

C2H6 

- Excess Gibbs energy 

with the least square 

objective function 

 

108 - 

150 

0.2 0.5 – 4 % (Croll and 

Scott, 1964) 

CClF3 - PR (VdW) model 200 - 

288 

0 - 7 < 1 % (Kubic Jr 

and Stein, 

1981) 

CHF3 - Martin-Huo equation 

(Martin and Hou, 1955) 

243 - 

363 

10 1.1 % (Lange and 

Stein, 1970) 

C8H16 - Scaled particle theory 

(Reiss et al., 1959) 

289 - 

313 

0.1 3 % (Wilcock et 

al., 1977) 

C8H24O4Si4 - Scaled particle theory 

(Reiss et al., 1959) 

292 - 

313  

0.1 3 % (Wilcock et 

al., 1978) 

HCl - Perturbation theory 159, 173 0.1 5 – 90 % (Lobo et al., 

1985) 

C3H8 - PR (VdW) model 142 - 

293 

0.02 -0.6 < 1 % (Liu et al., 

2012) 

C2H6 - PR (Huron−Vidal) model 179 - 

210 

0.01 -0.4 < 1 % (Zhu et al., 

2006) 

 

The HPVLE data treatment of this work was performed using the direct method (∅ − ∅), as it has 

a better representation of experimental data at elevated pressures. The PR EoS is selected to 

regress the data. The WS mixing rule was used due to its better ability in the use of local 

composition models and its independence from pressure. The NRTL model is used to satisfy the 

Gibbs free energy requirement of the mixing rule.  

  

3.2 Fugacity and Fugacity Coefficients 

According to (Smith et al., 2005), an equilibrium condition is obtained when there is no change 

in the macroscopic properties of a system over time. At equilibrium, the main rule is the stability 

of chemical potential throughout the system. The calculation of the chemical potential is not 

possible quantitatively, since the results from integration and an integration constant is unknown. 

Rather, the difference in the chemical potentials of the two conditions can be evaluated using the 

fugacity concept. Equation 3-1 shows the relationship between chemical potential and the 

fugacity coefficient. 
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Gi̅ = i(T) + RT𝑙𝑛𝑓𝑖 3-1 

 

i(T) denotes the integration constant at the respective temperature. The partial molar property 

of the Gibbs excess energy is defined as follows: 

 

𝐺𝑖̅ = [
𝜕(𝑛𝐺)

𝜕𝑛𝑖
]
𝑇,𝑃,𝑛𝑗

 
3-2 

 

Hence for the chemical potential in terms of fugacity: 

 

 

𝜇𝑖̅ = i(T)  + RT𝑙𝑛𝑓𝑖 3-3 

 

Equations 3-1 and 3-3 are simply the same. At equilibrium, the chemical potential in all phases 

at a constant temperature should be equal, all terms of equation 3-3 are cancelled and the 

equilibrium is only dependent on equality of the fugacity of all phases (the reader is referred to 

the textbook for a full derivation (Smith et al., 2005)):  

 

𝑓𝑖
𝛼 = 𝑓𝑖

𝛽
= ⋯ = 𝑓𝑖

𝜋 3-4 

 

Where β, α and π represent the phase. Hence, for the vapour-liquid equilibrium, equation 3-4 

reduces to: 

 

𝑓𝑖
𝑙 = 𝑓𝑖

𝑣 3-5 

 

Where 𝑙 is a liquid phase, and 𝑣 is the vapour phase (𝑖 ∈ natural numbers, indicating the 

component in solution). The fugacity of the liquid and vapour phases in the non-ideal solution is 

corrected by a factor named activity coefficient. Equations (3-6) and (3-7) are used for a binary 

VLE: 

 

𝑓𝑖
𝑣 = 𝑦𝑖∅̂𝑖𝑃 3-6 

𝑓𝑖
𝑙 = 𝑥𝑖𝛾𝑖𝑓𝑖

0
 3-7 

 

Where ∅ and 𝛾 are fugacity and activity coefficients, respectively. While the fugacity is equal to 

the product of partial pressure and the fugacity coefficient, activity is calculated from the product 
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of mole fraction and the activity coefficient. The activity is often used to represent the chemical 

potential in liquid. The ratio of the fugacity coefficient can be obtained using equation 3-8. 

 

i =
∅̂𝑖

∅𝑖
𝑠𝑎𝑡 𝑒𝑥𝑝 [

−𝑉𝑖
𝑠𝑎𝑡(𝑃 − 𝑃𝑖

𝑠𝑎𝑡)

𝑅𝑇
] 

3-8 

 

In the ideal solution, the vapour phase and liquid phase represent an ideal gas and liquid, 

respectively. Any system which has no deviation from Raoult’s law is considered the simplest 

VLE system known as the ideal system (Smith et al., 2005). In equation 3-8, the term in bracket 

is known as the Poynting factor, which is almost equal to unity (Smith et al., 2005). There is a 

negligible difference in Poynting factor at low and medium pressures, hence it is neglected. For 

non-polar components, elimination of this factor does not make a significant difference at low 

pressures, but for mixtures containing polar compounds, it will show a significant deviation 

(Prausnitz, 1980). 

 

3.2.1 Fugacity coefficient with an EoS 

The cubic equation of state (EoS) is utilised to determine the fugacity coefficients. The simplest 

EoS is Van der Waals, which is capable to exhibit the deviation from the ideal gas low (Van der 

Waals, 1873). The proposed EoS considers intermolecular interaction forces amongst available 

compounds in the mixtures. Van der Waals created a simple, comprehensive semi-experimental, 

semi-empirical EoS that satisfied the fluid behaviour above and below the critical point. With all 

the novelty that he proposed, the parameters were independent, which led to a limited version of 

this model. Several scientists tried to resolve the problems of the Van der Waals EoS and as the 

first highly successful method, (Redlich and Kwong, 1949) and (Soave, 1972) proposed a revision 

of this model. The later model of (Peng and Robinson, 1976) known as PR EoS, is one of the 

most successful models. Due to applicability and extensive use of the (Peng and Robinson, 1976) 

EoS, it will be explained in more detail. 

 

3.3 The Peng-Robinson (PR) EoS 

The PR EoS was proposed to overcome the inability of the other models to predict fluid density 

as well as modelling of experimental data close to the critical region (Peng and Robinson, 1976). 

Equation 3-9 shows the PR EoS: 

 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)

𝑉(𝑉 + 𝑏) + 𝑏(𝑉 − 𝑏)
 

3-9 
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Where a and b, are the attractive and co-volume parameters, respectively, which can be calculated 

as follows:  

 

𝑎𝑖(𝑇𝑐)𝑖 = 0.45724
𝑅2(𝑇𝑐)𝑖

2

(𝑃𝑐)𝑖
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𝑏𝑖(𝑇𝑐)𝑖 = 0.07780
𝑅(𝑇𝑐)𝑖
(𝑃𝑐)𝑖
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𝑘𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔𝑖
2 3-12 

 

The corresponding equation for the equation (3-9) is for the composite compression factor: 

 

𝑍3 − (1 − 𝐵𝑚)𝑍
2 + (𝐴𝑚 − 3𝐵𝑚

2 − 2𝐵𝑚)𝑍 − (𝐴𝑚𝐵𝑚 − 𝐵𝑚
2 −𝐵𝑚

3 ) = 0 3-13 

 

The expression of the fugacity (∅̂𝑖) in a mixture is: 

 

∅̂𝑖 = 𝑒𝑥𝑝

{
 
 

 
 (𝑍 − 1)

𝑏𝑖
𝑏𝑚

− 𝐿𝑛(𝑍 − 𝐵𝑚) −

𝐴𝑖

2√2𝐵𝑚
(
2∑ 𝑍𝑘𝑎𝑘𝑖𝑗

𝑎𝑚
−
𝑏𝑖
𝑏𝑚
)𝐿𝑛 [

𝑍 + (1 + √2)𝑏𝑚

𝑍 + (1 − √2)𝑏𝑚
]

 }
 
 

 
 

 

3-14 

 

Due to fewer calculations time required for the hydrocarbon systems and the need for only critical 

properties of the components, SRK and PR EoS gained popularity in the industry. However, the 

SRK and PR EoS exhibit poor ability in the estimation of liquid densities, polar fluid parameters, 

phase behaviour of the long-chain hydrocarbons (C10+), critical region behaviour, and phase 

behaviour of the systems with the pressures below 1.3 kPa. The reader is referred to textbooks for 

comprehensive information on the cubic EoSs (Abbott, 1979, Martin, 1979). 

 

A precise cubic EoS for the phase equilibrium calculations should estimate the vapour pressure 

of the pure components accurately (Twu et al., 1991). The α function, also known as 

temperature attraction term, plays an essential role in the estimation of the vapour pressure, 

while the mixing rule significantly affects the mixture properties.  

 

3.3.1 Mixing rules of EoS 

Mixing rules are utilised in the EoS to correctly display the phase behaviour of mixtures to fit the 

phase data, which is indicative of the molecular interactions in the mixtures. The mixing rules 

utilised by Soave and PR EoS are known as classical mixing rules (VdW mixing rule). The 

literature presents multiple mixing rules with various categories that have been developed and 
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improved over the decades. (Mühlbauer and Raal, 1995) provided a detailed examination of such 

mixing rules. 

 

According to (Hernández-Garduza et al., 2001), different mixing rules do not necessarily show 

similar deviations from the experimental data, especially when it comes to the diluted region. The 

attraction (a) and co-volume (b) parameters of PR EoS using the Van der Waals mixing rule are 

calculated as follows: 

 

𝑏 =∑𝑥𝑖𝑏𝑖
𝑖

 

𝑎 =∑∑𝑥𝑖𝑥𝑗(𝑎𝑖𝑎𝑗)
0.5
(1 − 𝑘𝑖𝑗)

𝑗𝑖

 

 

One of the mixing rules that is accurate for simple mixtures containing hydrocarbons and 

inorganic gases, and mixtures containing polar, aromatic and associating species over a wide 

range of pressures is the WS mixing rule, which is popular industrially (Wong and Sandler, 1992). 

The mixing parameters are calculated as follows: 

 

𝑎𝑚
𝑅𝑇

=
𝑄𝐷

(1 − 𝐷)
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𝑏𝑚 =
𝑄

(1 − 𝐷)
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𝑄 =∑∑𝑥𝑖𝑥𝑗 (𝑏 −
𝑎

𝑅𝑇
)
𝑖𝑗

𝑗𝑖
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𝐷 =∑𝑥𝑖
𝑎𝑖
𝑏𝑖𝑅𝑇

+
𝐴∞
𝐸

𝑐𝑅𝑇
𝑖
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Where 𝐴∞
𝐸  is the Helmholtz energy, which is calculated at infinite pressure. Also, the governing 

equation for the mixing rule is used considering partial molar derivatives with the mole numbers 

to assess the fugacity coefficients obtained from EoS. The reader is referred to the original paper 

for more information (Orbey et al., 1993). The Helmholtz free energy was used in WS mixing 

rule instead of Gibbs energy due to the smaller dependence on pressure. Consequently, the correct 

behaviour was achieved at both infinite dilution and low pressures (Wong and Sandler, 1992). To 

explain the Helmholtz energy at the infinite dilution activity coefficient (𝑙𝑛𝛾𝑖
∞) and low pressure, 

the NRTL activity coefficient model was used.  

 

3.4 NRTL (Non-Random Two Liquid) activity coefficient model 

The NRTL activity coefficient model (Renon and Prausnitz, 1968) was developed using the local 

composition model (Scott, 1956) and the non-random assumption similar to the one used by 



   
33 

(Wilson, 1964). The NRTL model is significantly advantageous over Wilson's general equation, 

in which both miscible and immiscible mixture can be regressed. Additionally, the NRTL model 

can be utilised to the highly unpredictable systems to provide a satisfactory representation of the 

phase behaviour (Raal and Mühlbauer, 1998). The NRTL equation for a binary system is as 

follows: 

 

𝐺𝐸

𝑅𝑇
= 𝑥1𝑥2 [

𝜏21𝐺21
𝑥1 + 𝐺21𝑥2

+
𝜏12𝐺12

𝑥2 + 𝐺12𝑥1
] 
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𝐺12 = 𝑒𝑥𝑝(−𝛼12𝜏12) 3-20 

𝐺21 = 𝑒𝑥𝑝(−𝛼21𝜏21) 3-21 

𝜏12 =
𝑔12 − 𝑔22

𝑅𝑇
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𝜏21 =
𝑔21 − 𝑔11

𝑅𝑇
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The binary interaction parameter for the NRTL model in Aspen Plus® is defined as follows: 

 

𝜏𝑖𝑗 = 𝐴𝑖𝑗 +
𝐵𝑖𝑗

𝑇
+ 𝐶𝑖𝑗 ln(𝑇) + 𝐷𝑖𝑗(𝑇) 

3-24 

 

Where A, B, C and D denote the asymmetric temperature (T)-dependant parameters. In this 

case, only B was used for this work. The activity coefficient is given by: 

 

𝑙𝑛𝛾1
𝐿 = 𝑥2

2 [𝜏21 (
𝐺21

𝑥1 + 𝑥2𝐺21
)
2

+
𝐺12𝜏12

𝑥2 + 𝑥1𝐺12
] 
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𝑙𝑛𝛾2
𝐿 = 𝑥1

2 [𝜏12 (
𝐺12

𝑥2 + 𝑥1𝐺12
)
2

+
𝐺21𝜏21

𝑥1 + 𝑥2𝐺21
] 

3-26 

 

The NRTL equation contains the following adjustable parameters: 𝜏21, 𝜏12, 𝛼12 and 𝛼21. The 

parameters 𝜏21 and 𝜏12 are the interaction between the two constituents. The parameter 𝛼 

represents the random characteristics of a mixture whose zero value indicates that the mixture is 

entirely random. Over the previous 50 years, numerous researchers have indicated that the 

instructions given by (Renon and Prausnitz, 1968) are too limited and other α values provide 

better representation for phase equilibrium. If an estimate is made for α, it should be 0.3 for non-

polar mixtures and 0.47 for the polar organic-aqueous mixture (Walas, 2013). In this work, the 

PR EoS was used with either VdW or WS mixing rules. The NRTL activity coefficient model 

was used to satisfy the WS mixing rule requirement. The kij, 𝜏21, and 𝜏12 were regressed to the 

experimental data. The non-randomness parameter of αij is set to 0.3 for non-polar mixtures and 
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0.47 for polar mixtures. The ordinary least squares objective function was used, which 

implemented the Britt-Luecke algorithm (Britt and Luecke, 1973) to minimise the pressure and 

composition of the vapour phase. For the case that the data were generated for the liquid phase 

(bubble point data), only the pressure of the liquid phase was minimised. The average absolute 

deviation (AAD) and average absolute relative deviation (AARD) were estimated to assess the 

quality of the data-fit statistically. 

𝐴𝐴𝐷(𝜃̅) =
1

𝑁𝑝
∑|𝜃̅𝑒𝑥𝑝 − 𝜃̅𝑐𝑎𝑙𝑐|

𝑁𝑝

1
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𝐴𝐴𝑅𝐷(𝜃̅) =
1

𝑁𝑝
∑

|𝜃̅𝑒𝑥𝑝 − 𝜃̅𝑐𝑎𝑙𝑐|

𝜃̅𝑒𝑥𝑝

𝑁𝑝

1
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where 𝜃̅𝑒𝑥𝑝and 𝜃̅𝑐𝑎𝑙𝑐 are the experimental and calculated quantities. Np is the total number of data 

points. The statistical assessments of each binary system will be presented in the results chapter. 
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Chapter 4: Experimental methods 

 

This chapter presents the two high-pressure apparatuses used for experimental measurements in 

this research study. These apparatuses were based on the “static-analytic (SA)” and “static-

synthetic (SS)” methods. The static analytic method involved measurement of P-x-y data for the 

CF4 + (perfluorohexane/perfluoroheptane/perfluorooctane/tetrafluoroethyl tetrafluoropropyl 

ether (TFE-TFP ether)) systems at isothermal conditions, with analyses of the withdrawn samples 

of both the liquid and vapour phases. The static synthetic method was selected mainly for systems 

of NF3 + solvents due to the safety hazards of NF3. These will be discussed further in this chapter. 

 

The pre-test safety consideration to start VLE data generation for NF3 system took just more than 

6 months. Prior to NF3 measurements, major modifications were implemented to the experimental 

technique and apparatus to avoid health risks associated with the release of NF3 to the 

environment.  

 

4.1 The Static Analytic (SA) apparatus 

The equilibrium cell consists of a hollow tube made of cylindrical sapphire tubes (manufactured 

by Rayotek Scientific), sealed using two O-rings between the two flanges made of SS 316L 

(thickness 15 mm) (Nelson et al., 2017). The picture of the experimental apparatus is shown in 

figure 4-1. The excellent corrosion and thermal resistance of sapphire, while fully transparent, 

makes it perfectly suitable for the equilibrium cell. The sapphire tube is 70 mm high, with the 

outside diameter of 55 mm, and the inner diameter of 32 mm. The total volume of the cell is 

approximately 50 cm3.  
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Figure 4-1. Photograph of the equilibrium cell (Williams-Wynn, 2018). 

 

The design of 12 mm thickness SS 316L flanges, sapphire tube, Parker valves, pressure 

transmitter, and high-pressure Valco fittings allow the cell to withstand pressures up to 25.0 MPa. 

Sealing between the SS flanges and the sapphire cell was accomplished using Viton® (including 

FKM®), Vespel®, polyurethane or Teflon® O-rings depending on the material compatibility 

with the solvents studied. The chemical compatibility with the solvents used in this work is 

presented in Appendix B. 

 

Two holes in the top flange and a hole in the bottom flange were drilled and connected to Valco 

fittings with the sizes of 1/8”. The inlet holes of the bottom and top flanges were connected to 

two needle valves (Parker: 10V series; 1/8”; 103.4 MPa) each. The top valve stem was extended 

by 40 cm to provide the ability to discharge or fill the cell while it was inside the thermo-regulated 

bath. 

 

An impeller was situated in the cell to agitate the cell contents via a magnetic field introduced by 

the outside magnetic configuration. The outside configuration consisted of an overhead stirrer 

(Maxon: model A-max) to drive a Neodymium magnet (OD 28 mm; grade N40H; nickel-plated). 

The internal magnet (grade N40H; gold-plated) was placed in a ball bearing configuration via a 

closed cover to prevent friction. The magnet was covered with a stainless-steel cap attached to 

four blades to initiate turbulence while spinning. Figure 4-2 displays the photo of the stirring 

mechanism.  
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Figure 4-2. Photograph of the stirring mechanism. 

 

A ROLSI™ online sampler was fitted onto the top flange of the equilibrium cell. The autosampler 

was utilised to withdraw between 50 to 500 l of the vapour and liquid samples. The tip of the 3 

mm diameter capillary was movable to allow sampling of both phases. The withdrawn samples 

were then moved to the GC via a 1/16” SS 316L line. 

 

The equilibrium cell was placed in a SS 316L frame in a thermo-stated liquid bath with an 

approximate volume of 30 dm3. The bath inner dimensions were 30 × 33 × 41 cm. The bath was 

equipped with two viewing windows of 100 mm OD and thickness of 8 mm. The space between 

the internal and external walls of the bath was filled with compressed polyester foam and glass 

wool to provide insulation. The temperature of the bath was regulated using a programmable 

Grant immersion circulator (TX 150). A circular disc of compressed foam of diameter 10 mm 

was utilised to insulate the surface of the bath liquid. A cold finger chiller (Thermo Scientific 

EK20 Immersion Cooler) was employed to reach temperatures below ambient condition.  

 

A Valco fitting outlet was connected to a pressure transducer via a 1/8” SS line. The transducer 

was placed in a temperature-regulated block with two heating cartridges inserted in the block. A 

temperature sensor was placed in the block which was connected to a temperature controller to 

maintain the heater block at a set temperature of 313 K. The two Pt100 Ω platinum resistance 

probes were placed in the holes drilled in the top and bottom flanges. These were used to measure 

the temperature of the cell accurately while measuring the equilibrium phase composition. The 

feature of having two temperature probes allows recording the temperature at the bottom and top 
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of the cell to monitor the temperature fluctuations. In this case, the fluctuations were not 

significant, and the average temperature of the bottom and top probes was used. This was well 

within 0.01 K. 

 

A DAU (Agilent; HP34970A) was connected to the PC to log the pressure and temperature 

simultaneously every 2 seconds. A two-stage vacuum pump (Edwards; RV3) was utilised to 

evacuate the loading lines and equilibrium cell. Figure 4-3 shows the schematic diagram of the 

SA apparatus.  

 

 
Figure 4-3. Schematic diagram of the SA apparatus. VP: vacuum pump, OS: overhead stirrer, 

TR: temperature regulation, R: ROLSITM, PT: pressure transmitter, PP: platinum resistance 

temperature probe, GC: Gas chromatograph, LP: liquid venting port, LB: liquid bath, IC: 

immersion circulator, C: Gas cylinder (Nelson et al., 2017). 
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4.2 The Static Synthetic (SS) apparatus 

The main part of the equilibrium cell is a sapphire tube with an approximate volume of 10 cm3. 

Two SS 316L thick flanges enclose the transparent sapphire tube. The internal volume can be 

varied using a hydraulically movable SS 316L made piston which is sealed via either Viton or 

polyurethane (depending on the used solvent). Two Teflon O-rings located at the top and bottom 

of the piston were used to stabilise the piston. The piston was driven by pressurising the hydraulic 

fluid (typically water) using a high-pressure ISCO pump (model 100DM).  The two sides of the 

piston were equipped to two needle valves (Parker; 10V series; 1/8”) enabling the cell to operate 

up to 35 MPa. 

 

The two 1/8” Valco fittings were connected to the bottom flange to use in feeding/drainage and 

to connect to a pressure transducer, respectively. The stirring mechanism consisted of an internal 

mixer made of Teflon to agitate the contents of the cell. It was driven externally via a Maxon 

motor (Maxon; A-max).  

 

The cell was submerged into a thermo-stated bath. The temperature of the bath was maintained 

by an immersion circulator (Grant; TX 150). The top and bottom temperature of the cell is 

recorded via two Pt100 Ω platinum resistance thermometer (Pt100) probes (WIKA; 1/10 DIN). 

A 25 MPa pressure transducer (WIKA; P-10) was utilised to measure the pressure. The signals 

were recorded to a PC via a DAU (Agilent; HP34970A).  The schematic diagram of the 

experimental apparatus is shown in figure 4-4 (Nelson and Ramjugernath, 2017). 
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Figure 4-4. Schematic of the SS apparatus incorporating a variable-volume sapphire cell. IC: 

immersion circulator, LB: liquid bath, LP: loading port, PP: platinum resistance temperature 

probe, PT: a pressure transducer, SM: stirrer motor, SP: syringe pump, TR: temperature 

regulation (Nelson and Ramjugernath, 2017). 

 

4.2.1 Modifications to the SS apparatus 

The modification to the equipment included adding a stainless-steel chamber to the equilibrium 

cell to release the gas in two stages once the experiment was finished. The chamber inlet was 

connected to a 1/8” SS 316L valve, and the outlet port was connected to a tube and extended to 

the top side of the fume cabinet for better suction of the toxic gas. The weight of the cell was also 

decreased by machining some parts of the top and bottom flanges for ease of its moving and 

weighing. This also could decrease the hit impact in the case that the cell falls from the hand. 

Furthermore, another fume hood is utilised to be used for the mixture preparation which was done 

outside the fume cabinet originally. This eliminates the chance of exposure to NF3 in case of 

major gas leakage during the mixture preparation.  

 

Due to gravimetric preparation of the mixture, the balance is moved to a spot nearby the second 

fume hood and calibrated. As there was no access to the NF3 detector in the proximity of the 

experimental apparatus, extra precautions were taken, such as the use of an M3 6500 mask with 

a special filter and cartridge. An electricity generator was purchased and placed inside the mixture 

preparation fume hood for the case of a power outage. It can provide up to 30 to 45 minutes power 
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for the fume cabinet. A power source was added to the second fume hood to drive the overhead 

stirrer motor to replace the manual stirring required for the mixture preparation.  

 

4.3 Experimental procedure 

The experimental methods for the SA and SS apparatuses are explained in the sections which 

follow. The calibration of temperature and pressure sensors, calibration of gas chromatograph for 

the SA apparatus, evacuating and loading the equilibrium cell, measurement of vapour pressure 

in the SA unit followed by phase equilibrium measurements is discussed. Furthermore, degassing 

of the solvent is explained for the SA method. The safety procedures developed for the 

measurements with NF3 is also presented. 

 

4.3.1 Temperature Calibration 

The two Pt-100 probes were calibrated against a WIKA CTH 6500 thermometer probe for each 

method (4 probes). The WIKA CTH 6500 thermometer had been calibrated directly by the WIKA 

standard with the internal uncertainty of 0.02 K. The temperature probes were submerged into the 

temperature regulated bath to the same depth. The controller temperature of the thermo-stated 

bath was adjusted incrementally and then decreased. At any constant temperature, each 

temperature probe was measured for 3-4 minutes. The temperature of the Pt-100 probes was 

recorded through a data acquisition unit, while the measured values of the reference probe were 

read from the unit's display and recorded manually. 

 

The collected data was fitted to first and second-order polynomials with least squares regression. 

The Pt100 probe response should behave linearly, so the values calculated using a polynomial 

(first or second order) should be the same. If there is a big difference between the calculated 

values of each polynomial, the Pt100 probes are damaged. Temperature probes may need to be 

re-calibrated if the probe's internal resistance changes, such as a change in the length of the wire 

or probe bending. Calibration should be reviewed periodically to make sure the internal resistance 

of the probe is reliable. The standard probe, in this case, the WIKA CTH 6500 underwent annual 

calibration as per schedule. 

 

4.3.2 Pressure calibration 

Three pressure transducers were calibrated against a pressure transmitter WIKA CPT 6000 0-250 

mm (0.025% accuracy declared). The WIKA CPT 6000 pressure transducer was calibrated 

directly by WIKA Instruments (in ambient conditions) with the maximum internal uncertainty of 

0.022 kPa (0.00002 MPa).  
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The reference pressure transducer was connected to the liquid outlet of the equilibrium cell, and 

the equilibrium cell was pressurized under high-pressure nitrogen. Isothermal conditions were 

maintained during calibration by controlling both isothermal fluid baths and the temperature of 

the P10. Then the cell pressure was increased and steadily decreased throughout the range of work 

for each pressure transducer by 10 bar steps. At each pressure setting, an average pressure 

measurement was recorded over 2-3 minutes. The data were recorded from the pressure 

transducers through the data acquisition unit, while the values of the reference pressure transmitter 

were recorded manually. The collected data were fitted to first and second-order polynomials. 

The calibrations were to be confirmed periodically to record drifts. 

 

4.4 Calibration of gas chromatograph detector 

The GC detector calibration can be performed via either standard solution, direct injection or 

monomeric methods dependent on the available phases in the system at the ambient condition. In 

the standard solution method, multiple binary mixtures are prepared gravimetrically with varied 

compositions. Thereafter, the constant volume of each mixture is injected into the GC column. 

The mole numbers are calculated via multiplying the response factor to the peak area. The 

response ratio was calculated over a wide range of peaks using several synthesised mixtures. In 

this work, the standard solution method was used for the diluted mixtures of the gases to extend 

the calibration range. The uncertainties arising from the mixture preparation were considered in 

uncertainty calculations. 

 

The monomeric method is used for preparing the mixtures by the partial pressure of the gaseous 

compounds. The binary mixtures could be made of gas/gas systems or vaporised liquid/gas 

systems. The latter is applicable in theory. The ratio of the number of moles is then calculated at 

a constant temperature using ideal gas law (Nelson, 2012). Despite the accurate calibration results 

obtained from this method, it is limited to completely gaseous mixture preparation inside the 

equilibrium cell. This was not utilised in this work due to the presence of liquid components.   

 

In the direct injection technique, a specific volume of pure liquid or pure gas is injected into the 

chromatograph. Then, using the direct calculation, the relationship between the number of 

injected moles and the area under the curve is found, which is called the response ratio. For this 

calculation, ambient temperature and pressure are required. Since the selected volume is adjusted 

by hand, there is always a human error in volume selection, and there will be an inevitable 

difference between the volume of the injected and computed value. This difference should be 

considered in the uncertainty calculations. The uncertainty of liquid volume chosen can be due to 

the fixed point selection for each injection and sealing of the syringe.  
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Due to the low dependence of the volume of liquids on ambient temperature and pressure, the 

volume does not significantly affect these results. However, in the case of injected gas volumes, 

attention should be paid to the compressibility factor of gases, which is strongly influenced by 

pressure and temperature. As 5 subsequent repeated injections are required for the calibration of 

each selected volume, there is a probability for the syringe needle to get warmer from the previous 

injection, which will have a heat transfer effect. However, the effect of pressure changes will not 

be high. The GC detector calibration is highly sensitive, and one must pay careful attention to the 

technique to perfect the method since the human error will change the entire result.  

 

The effect of human accuracy or error can be due to the lack of consistency in the injection 

method, as well as the manual choice of the setpoint for volume on the syringe. Another factor 

that affects the precision and accuracy of the selected volume is that the accuracy is related to the 

characteristics of the injection gas. The larger the volume of the selected setpoint, the smaller the 

relative error on the set point. It indicates the difficulty of reproducibility and reliability of the 

data measured in the dilute ranges and at low volumes injected (i.e. below 100 μl for gases and 

below 0.1 μl for liquids). 

 

4.5 Equilibrium Measurements 

4.5.1 Preparation of the cell  

The equilibrium cell was initially opened and washed with acetone to remove any source of 

organic impurities as well as moisture. After the O-rings were changed, the cell was tested for 

any leaks.   

 

4.5.2 Leak testing 

The cell was pressurised with nitrogen gas to 16.0 MPa. Then, the leak detection fluid (Snoop®) 

was used to locate the possible leakage from fittings. As another approach, the cell was submerged 

to a water bath and waited for possible bubbles to emerge, which indicates the leakage. Thereafter, 

the cell pressure was recorded in the isothermal environment over a period of 24 hours to record 

the leak rate. In the case of no leakage, the test was finished and the cell was ready for 

experiments. The same leak test approaches were followed before every system measurement. If 

there were leaks present it was resolved and measurement was started. 

 

4.5.3 HPVLE measurements using the SA apparatus 

After the leak test, experiments were started by measuring the vapour pressure of solvents. The 

purpose of measuring the vapour pressure was to first confirm the calibration of temperature and 

pressure, and the purity of the materials used. At the same time, before the start of an experiment, 

the complete characterisation of the material was carried out by measuring the refractive index 
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(Bellingham & Stanley; Abbe 60LR; expanded uncertainty of 0.001) and density (Anton Paar; 

DMA 5000; expanded uncertainty of 0.001 g/ml). The cell was then flushed a few times to prepare 

for testing. The evacuation of the cell was carried out for 20 minutes. The pump was turned off, 

and the solvent was then introduced into the cell using a syringe.  

 

The minimum volume of the solvent used for measurements was 13 to 16 ml. Due to the height 

of the magnet and the mixer body, it is not possible for the capillary tip to reach the liquid to 

remove samples using smaller volumes. After transferring the solvent to the cell, the degassing 

was performed using a valve and a vacuum pump to remove dissolved gases from the solvent. 

Then the gas was introduced to the equilibrium cell, and the cell was submerged into the bath. 

The bath controller was set to the desired temperature to regulate the temperature of the cell. 

 

Once the temperature of the cell body and the contents had stabilised, the mixer was turned on to 

achieve the chemical equilibrium at the set temperature. The duration that the mixer was active 

depended on the solubility of the gas in the liquid. The greater the solubility of the gas, the less 

time is required. The mixer was then switched off to allow the liquid and vapour phases to settle 

and prepare the system for sampling. Sampling started at the vapour phase because, before starting 

the sampling, purging was carried out several times through the ROLSITM, so that the remaining 

fluids were evacuated from the capillary. During the experiment, the concentrations of liquid and 

gas phases were always measured at the same pressure. If the liquid phase was sampled before 

the gas phase, there is a probability of a difference in the pressures measured for the two phases.  

 

In each phase, at least 6 or more repeatable samples must be withdrawn until the GC composition 

analysis indicates comparable results. Samples were always adjusted to be within the calibration 

range so that the response ratio could be properly used to estimate the mole numbers and the 

composition of the solution. Therefore, after confirming the concentration of the vapour phase, 

the capillary tip was moved to the liquid phase to obtain its concentration in the same manner.  

 

The average pressure and temperature were recorded for each phase. After obtaining the 

corresponding temperature, pressure and concentration of liquid and vapour phases, the next point 

should be measured. The next composition could be prepared either by topping up the pressure 

or by discharging the pressure of the compartment, with the latter being due to higher pressures. 

At the same time, it was important to take care that the liquid level was not decreased too low to 

prevent sampling. The method described for measuring the concentration was similarly repeated 

for each pressure. 

 



   
45 

4.5.4 P-x measurements using the SS apparatus 

Before commencing with experiments, an extensive fault tree analysis was performed. The 

drafted safety document was based on the existing safety codes and was approved by all 

supervisors and the safety authorities within the department.  

 

During the course of NF3 measurements, a person had to be stationed outside the lab to monitor 

the procedure of the experiment from outside in case of emergency incidents. Two lab technicians 

were put in the access section during the test. The total lab area was clear of other students and 

staff members during the experiments. Due to the limitations of the possible working hours, only 

one mixture was prepared each day. There are no available experimental data for the phase 

equilibria of NF3 and each data point was generated carefully to maintain the safety and 

experimentation standards. Overall, the generation of the binary data for NF3 + solvents took 

almost a year from pre-test safety actions and equipment modifications to the final data modelling 

stage.  

 

The experimental procedure for the mixture preparation was modified in such a way that the cell 

was mostly kept inside the fume hood. The cell was only removed from the cabinet for weighing. 

One of the most important stages of the mixture preparation was to transfer the high-pressure NF3 

gas to the cell. The general procedure is to invert the cell and turn the mixer manually to obtain 

the better dissolution of the gas. While the measurements with NF3 is difficult, time-consuming 

and complex, a substantial amount of high-quality data was generated for the NF3 + solvents. 

  

To prepare the mixture inside the cell, the equilibrium cell must be separated from the water bath 

and the pressure pump. Due to the fact that the mixture preparation was based on the mass of the 

introduced material into the cell, it was necessary to ensure the absence of moisture on its body. 

At first, the cell was placed under vacuum and weighed to obtain the empty chamber weight. This 

manner was always followed because the water level of the other side of the piston was variable, 

and the weight could not be considered constant for the evacuated cell. Then, a small amount of 

gas was injected into the system (slightly above the barometric pressure), which, if the degassing 

process was prolonged, it was not likely to introduce the air to the cell under vacuum condition.  

 

The solvent was then degassed inside a Büchner flask attached to the vacuum pump to eliminate 

any dissolved gas and air of the solvent. It should be noted that in the case of the presence of air 

in the solvent, the measured bubble point will not be reliable. After carrying out the degassing 

process, the solvent was transferred to the compartment and then weighed. Due to the fact that 

the solvent was fed into a cell using a conventional syringe, there was a probability of the presence 
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of some solvent in the outer portion of the feed valve. This was dried by the vacuum pump and 

the use of a hairdryer.  

 

The cell was then inverted, and the mixer motor was switched on to agitate the content and help 

the full dissolution. After loading the cell with the gas, it was weighed again. At this stage, the 

concentration of the mixture introduced into the test chamber was calculated. Then the cell was 

again attached to the pump and immersed into the water bath. After ensuring the temperature 

equilibrium inside the compartment, the pressure of the compartment was increased with the flow 

of water to the upper part of the piston.  

 

It was important to increase the pressure of the test chamber by considering the water injection 

rate. If the pressure was increased with considerable speed and gradient, the bubble point 

measured did not have enough accuracy. The pressure gradient varied according to the type of 

mixture and solubility of the material. In the test series for this project, the injection speed was 

varied between (0.5 to 20 μl/s). In the region near the bubble point, small bubbles of the solution 

were visible. This step required a great deal of precision because, when the pressure was recorded, 

there was an adequate time to take readings and observe the formation of the bubbles.  

 

Given that the systems’ pressure was recorded every two seconds using the data acquisition unit, 

the process of variation of pressure was recorded as pressure versus time graph. When the system 

reached the bubble point, a discontinuity occurred in the P vs time plot and a jump in the slope of 

the pressure was observed on the recorded trend, indicating the bubble point. After reaching the 

bubble point, the pressure of the system was reduced using the pump, and this process was 

repeated twice to obtain the required precision for the bubble point pressure.  

 

4.6 Shutdown procedure 

Once the experimental phase equilibrium measurements were completed, the running auxiliary 

units of the equipment were turned off. These parts include the stirring mechanism, chilling unit, 

temperature controllers, and data acquisition unit. The discharge method of both apparatuses was 

the same except before draining the SS cell, the flow rate of the syringe pump was returned to 

decrease the level of the compression fluid (i.e. water) in the equilibrium cell. Thereafter, the cell 

contents were drained into a chamber. On all occasions, it was necessary to connect the chamber 

to the drain/feed valve of the equilibrium cell and discharge the cell directly to the chamber to 

avoid major toxic gas leakage. The gaseous components were then vented and directed to the top 

side of the fume cabinet using a tube to direct the flow of gas. The vacuum pump was used to 

discharge the contents of the cell. Eventually, the compartments were washed and cleaned to 



   
47 

prepare for the next run. For the discharge of the toxic gas (NF3), a carefully developed method 

was followed and is explained in Appendix C. 
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Chapter 5: Results and discussions 

 

This chapter presents the solvent selection procedure with the finalised list of the selected solvents 

identified for further investigations. The experimental VLE measurements for the test system 

along with new data measurements are presented along with the thermodynamic modelling. The 

experimental data measured following the static-analytic (SA) apparatus were validated following 

the static-synthetic (SS) apparatus.  

 

A significant amount of experimental time was spent on experimental apparatus and procedure 

validation which took just above 6 months. The test system measurements were carried out until 

confidence was obtained in the regeneration of the data for a system that was previously measured 

in the literature.  

 

The aim of this project was to find appropriate solvents for the purification of NF3 gas removing 

the CF4 impurity. Accordingly, binary data for the gas with the solvent were studied to determine 

the solvent capacity. The data is presented in two parts: results generated for binary systems of 

CF4 and 6 solvents, followed by binary data generated for NF3 and 4 solvents. Ultimately, the 

behaviour of the solvents is discussed and compared against these gases. 

 

An extensive review of the literature indicated that no vapour liquid equilibrium data have been 

published for NF3 to date. The experimental measurements for the systems including nitrogen 

trifluoride were only performed using the SS method due to the hazardous risks associated with 

the toxic nature of the chemical. From the experimental results, the best performing solvent was 

selected for the preliminary design of the physical separation processes (i.e. the absorption process 

and extractive distillation process). The results from the Aspen Plus® V10 simulation are 

presented and discussed.  

 

5.1 Solvent screening 

There are various methods proposed for solvent selection which were explained in chapter 3. 

Based on the results from the Robbins chart, tetrafluoromethane fits into group 11 while there is 

no designated group for nitrogen trifluoride. Based on the results from the group contribution 

methods, due to the lack of experimental data for NF3, the functional groups do not exist. As 

discussed in chapter 3, the prediction of the phase data for the CF4 + C6H14 has demonstrated that 

the use of COSMO-SAC is not reliable for solvent selection. The experimental data from the 

literature identifies that CF4 has a higher tendency to dissolve in fluorinated compounds. Before 

finalising the list of chemicals, some experimental test systems were measured to aid in the 
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screening process. The list of identified solvents is provided in table 5-1. These chemicals are 

fluorinated components some of which were also identified by (Mukhortov et al., 2010).  

 

Table 5-1.  List of the selected solvents for this study. 

Solvent Properties a Availability Price/ml 

(ZAR)b 

VLE 

datac 

 polar Toxicity d boiling 

point (K) 

   

Perfluorodibutylester x - - - - - 

Perfluorohexane - x 329.15 x 37.5  &  

Perfluoroheptane - -  353.15 x 106.8  
Perfluorooctane - x  376.15 x 164.4  
Perfluorodecalin - - 415.15 x 62  &  

Heptafluoro,1-butanol x x 368.15 x 272  &  

Tetrafluoroethyl-

tetrafluoropropyl ether 

x - 366.15 x 400  &  

a Literature data for the properties from NIST TDE (Frenkel et al., 2005).  
b The prices are adapted from Sigma Aldrich website in February 2019. 
c Systems measured in this work; : CF4 : NF3. 
d Dangerous for the respiratory system (spexcertiprep, 2017). 
 

Table 5-1 includes the properties of the solvents (polarity status, toxicity and boiling point), 

availability, price and the systems as published in the available literature (Frenkel et al., 2005, 

Williamson, 2013, González et al., 2010). As mentioned in chapter 3, the literature data has 

proven the higher capability of fluorinated compounds in CF4 intake and the selected compounds 

from several fluorinated families. The fluorinated chemicals are expensive (e.g. TFE-TFP ether 

and heptafluoro,1-butanol are R400 and R272 per ml according to Sigma Aldrich at February 

2019) which is affected by annual inflation rate added to the fluctuations in currency. 

Furthermore, some fluorinated chemicals such as perfluorodibutylester, identified by (Mukhortov 

et al., 2010), are not available. In addition, some of the available and cheaper PFCs are toxic if 

inhaled, including perfluorohexane with a lethal dose (LD50) Oral-Rat- > 5,000 mg/kg, and 

perfluorooctane with LD50 of 5628 mg/kg (spexcertiprep, 2017). The compounds selected have 

a wide range of polarity, enabling the study of chemical behaviour in both polar and non-polar 

mixtures.  

 

The supplier and critical properties of the chemicals used for experimental screening 

measurements, test systems and new systems are provided in table 5-2. The chemical purity 

analysis is presented in table 5-3. This purity analysis includes the purity provided by the supplier, 

the purity obtained by direct injection of the material into the gas chromatograph to obtain the GC 

peak area percentage, the refractive index and density measurements, and comparison to the 

literature data. In case of the inability to access literature data, results were compared to the 

manufacturer purity. The GC peak area percentage for the chemicals is reported in table 5-3. A 
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thermal conductivity detector (TCD) with either Porapak Q or Rtx-5ms columns, was used to test 

for the GC peak area.  

 

Two different grades of perfluorohexane were used from two different suppliers. The TCD 

detector with either the packed or capillary column at different GC conditions was unable to 

separate the impurity from the chemical. Due to the purity stated by Acros Organics with >97 %, 

further characterisations were performed. The TCD was used first for the GC peak area with 

various packed or capillary columns which were unable to separate the impurities at different 

speeds of carrier gas as well as column temperatures. Thereafter, a GC-MS was utilised with an 

Rtx-5ms column to detect the impurities and peak area percentage. The suggested impurities after 

analysis with the GC-MS were from heavier PFCs. C6F14 from SynQuest Laboratories had a GC 

peak area of 99.9 % while the C6F14 from Acros Organics had a GC peak area of 96.7 %. 

 

All experimental data of density and refractive index compared well with the literature data. Only 

one literature data was used to compare the densities measured for C6F14 from both suppliers. The 

refractive index data measured in this work compared well to the values stated by the suppliers.  
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Table 5-2. Critical properties of the materials used in this study. 

Component Formula Tc /K a  Pc /MPa a ω a 

Carbon dioxide CO2 
b
 304.2 7.38 0.224 

Tetrafluoromethane CF4  227.5 3.75 0.179 

Nitrogentrifluoride  NF3  234.0 4.46 0.120 

n-Hexane  C6H14
b  507.6 3.03 0.301 

Perfluorohexanec  C6F14  449.6 1.80 0.543 

Perfluorohexaned  C6F14  449.6 1.80 0.543 

Perfluoroheptane C7F16  475.7 1.61 0.508 

Perfluorooctane  C8F18  502.2 1.48 0.443 

Heptafluorobutanol C4H3F7O  506.0 2.75 0.656 

Tetrafluoroethyl-tetrafluoropropyl ether C5H4F8O  510.7 2.58 0.537 

Perfluorodecalin  C10F18  565.1 1.78 0.499 
a Literature data for the properties from NIST TDE (Frenkel et al., 2005). 
b The test system material. 
c Perfluorohexane purchased from SynQuest Laboratories 
d Perfluorohexane purchased from Acros Organics 
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Table 5-3. Supplier and purity analysis of the chemicals used in this work. 

Chemical  CAS number Supplier Supplier purity  

(wt. %) 

GC peak 

area a 

liquid density b refractive index c 

Experimental Literature Experimental  Literature  

CO2  124-38-9 Afrox 99.99 >99.9 -NA- -NA- -NA- -NA- 

CF4  75-73-0 Air liquid 99.99 >99.9 -NA- -NA- -NA- -NA- 

NF3  7783-54-2 Air liquid 99.99 none  -NA- -NA- -NA- -NA- 

C6H14  110-54-3 Sigma Aldrich 99.8 >99.9 0.659 0.659 1.375 1.375 

C6F14  355-42-0 SynQuest Labs 99.99 >99.9 1.670  1.670  1.251  1.251 

C6F14  355-42-0 Acros Organics >97 >96.7 d 1.701  1.670  1.252  1.253 

C7F16  335-57-9 SynQuest Labs 99.98 >99.9 1.724  1.720 1.265  1.265 

C8F18  307-34-6 SynQuest Labs 99.98 >99.9 1.768  1.777 1.268 1.268 

C4H3F7O  375-01-9 DLD Scientific 98 >98 1.599  1.600 1.294 1.294 

C5H4F8O  16627-68-2 DLD Scientific 99.95 >99.9 1.528  1.532 1.276 1.276 

C10F18  306-94-5 SynQuest Labs 99.5 >99.9 1.939  1.941 1.314 1.314 
a A thermal conductivity detector was used to identify the area percentage of the chemicals by gas chromatography. The Rtx-5ms column was used for liquid 

analysis and Porapak Q column for gases. 
b The liquid density (ρ/g.cm-3) (P = 101 kPa) data at T = 298.15 K; U(T) = 0.05 K; U(ρ) = 0.001 g.cm-3; U(P) = 1 kPa. 
c The refractive index data (P = 101 kPa) at T = 293.15 K; U(T) = 0.05 K; U(nD) = 0.001; U(P) = 1 kPa. 
d GS-MS with Rtx-5ms capillary column for perfluorohexane
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5.2 Modelling approaches 

Thermodynamic modelling enables design and property estimation when performing rigorous column 

sizing of extractive distillation and absorption columns. A detailed study of the modelling approach 

was provided in chapter 3.  

 

Regarding the fairly ideal nature of most of the binary systems of CF4 + n-perfluoroalkanes, the data 

measured were predicted using the PR EoS. The Wong-Sandler (WS) mixing rule was utilised 

together with the NRTL activity coefficient model to provide a better representation of the vapour 

phase composition. All models were utilised using ASPEN PLUS® V10 software. In several studies 

(Mühlbauer, 1997, Narasigadu, 2011), it has been pointed out that the direct method of vapour and 

liquid phase data modelling by utilising a single EoS model and mixing rule can describe the phase 

equilibrium data with high accuracy. In this study, the interaction parameter of WS mixing rule (kij) 

and two adjustable parameters of the NRTL model (τ2,1 and τ1,2) were regressed. The recommended 

value for the non-randomness parameter (α1,2) is between 0.2 and 0.47. It was set equal to 0.3 for the 

nonpolar systems and 0.47 for systems with hydrogen bonding (Marina and Tassios, 1973).  The 

modelling results of each system will be explained in the relevant section. For statistical analysis, the 

average absolute deviation (AAD) and average absolute relative deviation (AARD %) were used to 

determine the model fit. 

 

𝐴𝐴𝐷(𝜃̅) =
1

𝑁𝑝
∑|𝜃̅𝑒𝑥𝑝 − 𝜃̅𝑐𝑎𝑙𝑐|

𝑁𝑝

1

 5.1 

𝐴𝐴𝑅𝐷(𝜃̅) % =
1

𝑁𝑝
∑

|𝜃̅𝑒𝑥𝑝 − 𝜃̅𝑐𝑎𝑙𝑐|

𝜃̅𝑒𝑥𝑝

𝑁𝑝

1

× 100 

5.2 

 

Calc, exp, 𝜃̅ and Np are the calculated value, the experimental value, the corresponding property (i.e. 

vapour phase pressure or composition) and numbers of experimental data for each isotherm, 

respectively.  

 

5.3 Pressure and temperature calibrations 

A summary of the calibration results is provided in this section and detailed information on the 

method was explained in chapter 4. Table 5-4 presents the list of uncertainties associated with the 

pressure transmitters used in this study. 

 



   
54 

Table 5-4. Standard uncertainty influences and estimates for the pressures reported in this study. 

Uncertainty source Estimate a Distribution 

P reference/MPa; 25 MPa (gauge) b 0.01% normal 

P reference/MPa; 300 kPa c 0.01% normal 

Correlation for P/kPa (500 kPa) 0.1 rectangular 

Correlation for P/MPa (10 MPa(gauge)) 

 

0.001 rectangular 

Correlation for P/MPa (25 MPa(gauge)) 0.002 rectangular  
a Estimate treated as a type B distribution  
b Mensor CPC 8000 

c Mensor CPC 6000 
 

The overall uncertainty for the vapour pressure measurement was 1 kPa. For the phase data measured 

using the SS apparatus, the pressure uncertainty was 0.005 MPa. The pressure uncertainty for the 

SA apparatus was 0.007 MPa. Table 5-5 shows a summary of correlations and calculated 

uncertainties for the pressure transmitters. Refer to chapter 4 for detailed information on the pressure 

calibration. 

 

Table 5-5. Pressure calibration data for the pressure transducers. 

Range  Calibration range  U(P) Correlation / bar  

0-25 (MPa) 0-230 0.01 (MPa) Pcalc = 0.999 × P + 0.071 

0-10 (MPa) 0-90 0.007 (MPa) Pcalc = 1.001 × P + 0.005 

0-500 (kPa) 0.2-1 1 (kPa) Pcalc = 0.999 × P 

 

In total, four temperature probes were calibrated. Table 5-6 shows a summary of the correlations 

and calculated uncertainties for the temperature probes. The calibrations were checked every six 

months. 

 

Table 5-6. Temperature calibration data for the four different probes. 

Calibration 

range/K 

U(T) / K Correlation / K  

273.15 - 348.15 0.07 TCALC=1.001 × T -1.547 + 273.15 

273.15 - 348.15 0.06 TCALC=0.997 × T - 1.527 + 273.15 

273.15 - 353.15 0.04 TCALC=0.997= × T - 1.773 + 273.15 

273.15 - 353.15 0.03 TCALC= 0.998 × T - 1.480 + 273.15 

 

5.4 GC detector calibration 

Detailed information on the calibration method was presented in chapter 4. A summary of the GC 

detector calibrations is presented below. The gas chromatograph detector was calibrated for two gases 

and four solvents. The calibration polynomials and errors are listed in table 5-7. The error reported in 

the table is the difference between the experimental and calculated values of the moles injected to the 
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GC column. The calibration errors were within 3 % and only the calibration of diluted CF4 had 4 % 

error which is within acceptable range compared to the pure component. 

 

Table 5-7. Calibration polynomial and associated error for GC detector calibrations. 

Chemical Correlation a Error % 

CO2 ncalc = 9.933 × 10-13 A - 5.320 × 10-8 1.5 

CF4 ncalc = 8.004 × 10-13 A + 8.332 × 10-8 2.5 

CF4 (diluted) ncalc = 7.842 × 10-13 A + 6.142 × 10-12 4.0 

C6H14 ncalc = 4.610 × 10-13 A - 1.133 × 10-8 3.0 

C6F14 ncalc = 3.278 × 10-13 A - 2.037 × 10-11 2.0 

C7H16 ncalc = 3.278 × 10-13 A - 2.037 ×10-11 2.0 

C5H4F8O ncalc = 3.653 × 10-13 A - 2.466 × 10-7 2.0 
a n = number of moles, A = GC peak area. 

 

5.5 Experimental test system 

The VLE data measurement for a previously presented system in the literature provides the ability to 

evaluate the technique and the device to generate novel data. Hence a mixture of n-hexane + carbon 

dioxide at 313.15 K was selected as the test system, since: 

- Both n-hexane and the target solvents present the same range of boiling point which is an 

important factor in the thermal conductivity detector (TCD). 

- The abundance of previously published thermodynamic data for this system which is an 

indicator of ability to perform a comparative study on the measured data and the predictive 

model. 

- The temperature of the system studied should be close to the temperature range considered 

for the main systems. 

 

The data measured using the SA method for the n-hexane + carbon dioxide system at 313.15 K is 

shown in figure 5.1. The uncertainties associated with the data measured are shown by error bars in 

the figure. The uncertainty is reported per data point and for each phase. These are presented in tables 

5-8 and 5-9. The uncertainty estimated at lower compositions for data measured using the SA 

apparatus is usually smaller and it expands as the composition of the liquid phase increases to the 

equimolar. Thereafter it decreases as the composition departs from the equimolar region. It is due to 

the similar contribution of each component to the uncertainty in the equimolar region and lower 

contribution of one of the components in either high or low compositions.  By contrast, as the 

composition increases (using the SS apparatus), the uncertainty constantly decreases, which is due to 

the rise in the mass of the gas filled. Hence, the relative uncertainty proportion for the mass loaded 

decreases.  
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Figure 5-1. HPVLE data for the carbon dioxide (1) + n-hexane (2) binary system at a 

temperature of 313.15 K, ; Experimental (This work - measured using a SA apparatus), ; 

Experimental (This work - measured using a SS apparatus) ; (Li et al., 1981), ; (Wagner and 

Wichterle, 1987) and ; (Chen and Chen, 1992). Solid lines, ―, PSRK model. 

 

The measured data compares well with the predictive PSRK model, as well as against the data of (Li 

et al., 1981). A notable point is the good correlation between the generated data and model prediction. 

The comparison between the data is better than some data provided in the literature. There is some 

discrepancy in the data reported in literature especially that of (Chen and Chen, 1992). Another point 

to mention is the ability of the equipment to generate data at high pressures, close to the critical region. 

Based on the measured data, it can be concluded that the measurement technique was accurate. The 

experimental data with the associated uncertainties are listed in tables 5-8 (SA method) and 5-9 (SS 

method).  

 

Table 5-8. Experimental HPVLE data for the carbon dioxide (1) + n-hexane (2) binary system at 

313.15 K including the vapour phase composition (y1), the liquid phase composition (x1), measured 

pressure (P) and the expanded uncertaintya.  

P/MPa x1 y1 U(x1) U(y1) 

0.925 0.094 0.9515 0.007 0.0008 

2.878 0.310 0.9786 0.009 0.0007 

3.704 0.405 0.9803 0.009 0.0004 

4.823 0.551 0.9817 0.011 0.0021 

5.762 0.687 0.9778 0.009 0.0013 

6.511 0.801 0.9807 0.009 0.0011 

7.150 0.887 0.9813 0.008 0.0004 

7.772 0.948 0.9823 0.007 0.0009 
a U(P) = 0.007 MPa; U(T) = 0.05 K. 
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Table 5-9. Experimental data for the carbon dioxide (1) + n-hexane (2) binary system at 313.17 K 

using the SS apparatus, including liquid phase composition (x1) and the pressure (P), listing the 

expanded uncertaintya. 

P/MPa x1 U(x1) 

3.00 0.330 0.008 

5.05 0.571 0.003 

5.57 0.649 0.003 

5.95 0.720 0.003 

6.63 0.817 0.003 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 

 

5.6 Experimental data 

The data is presented in two parts; results generated for CF4 with six solvents with the corresponding 

thermodynamic modelling, followed by data generated for NF3 with four solvents. An overview of 

the measured data is presented in table 5-10. 

 

Table 5-10. Overview of the test and novel binary VLE systems measured in this work, 'l' and 'g' 

denotes whether the component is either a liquid or gas at ambient conditions. 

Gas Liquid solvent T/ K P/ MPa Method No. points 

CO2 (g) C6H14 (l) 313.15 (test) 1-7.7 SA - SS 20 

CF4 (g) C6H14 (l) 283.15 1.2-6.4 SA 5 

CF4 (g) C6H12 (l) 283.15 1.3-5.8 SA 5 

CF4 (g) C6F14 (l) 283.15- 303.15 1.5-9.0 SA - SS 42 

CF4 (g) C7F16 (l) 283.15- 303.15 1.5-9.6 SA - SS 35 

CF4 (g) C8F18 (l) 283.15- 303.15 1.6-10.8 SA - SS 39 

CF4 (g) C10F18 (l) 283.15- 303.15 3.0-8.0 SA 23 

CF4 (g) C5H4F8O (l) 283.15- 303.15 1.6-20.0 SA-SS 36 

CF4 (g) C4H3F7O (l) 283.15- 303.15 2-11.5 SS 18 

NF3 (g) C6F14 (l) 283.15- 303.15 2.4-9.3 SS 18 

NF3 (g) C5H4F8O (l) 283.15- 303.15 3-24 SS 18 

NF3 (g) C10F18 (l) 283.15- 303.15 2-7.1 SS 18 

NF3 (g) C4H3F7O (l) 283.15- 303.15 3.5-8.7 SS 12 
 

 

5.6.1 CF4 + C6F14 (perfluorohexane) 

New HPVLE data were measured for the tetrafluoromethane + perfluorohexane binary system at 

three isotherms in the range of (283.15 to 303.15) K. The experimental data are listed in table 5-11 

(SA apparatus) and table 5-12 (SS apparatus) and are shown in figure 5-2. The results obtained from 

the two experimental apparatuses represent a good thermodynamic consistency. The phase 

equilibrium data measured with two different grades of perfluorohexane show very good overlap in 

the measured data. The model provides a satisfactory correlation of the experimental data. 
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On comparison of the CF4 solubility in perfluorohexane at constant pressure (e.g. 6.0 MPa), as the 

temperature of the mixture decreases from 303.15 K to 283.15, the solubility of the gas increases 

from 0.575 to 0.666 indicating better solubility at the lower temperature.  

 

 

Figure 5-2. HPVLE data for the tetrafluoromethane (1) + perfluorohexane (2) binary system. 

Experimental data generated by the SS apparatus (C6F14 purchased from SynQuest Laboratories); 

, at 283.16 K; , at 293.17 K; , at 303.17 K;  (C6F14 purchased from Acros Organics); , at 

283.17 K; ▲, at 293.15 K; , at 303.15 K.  Experimental data generated by the SA apparatus; , 

at 283.15 K; , at 293.15 K; , at 303.15 K. ― PRWS (NRTL) model. 
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Table 5-11. HPVLE data for the tetrafluoromethane (1) + perfluorohexane a (2) binary system using 

the SA apparatus, listing the measured pressure (P), temperature (T), liquid (x1) and vapour (y1) phase 

compositions, and the expanded uncertainty b. 

T/K P/MPa x1 y1 U(x1) U(y1) 

283.14 1.535 0.218 0.977 0.009 0.001 

283.15 2.147 0.293 0.987 0.011 0.001 

283.13 2.792 0.367 0.988 0.013 0.001 

283.15 3.343 0.425 0.980 0.013 0.001 

283.15 4.062 0.500 0.980 0.014 0.001 

283.15 4.709 0.557 0.976 0.013 0.002 

283.15 5.544 0.630 0.971 0.013 0.002 

283.15 7.060 0.760 0.970 0.010 0.002 

283.14 7.804 0.859 0.933 0.007 0.004 

293.16 2.026 0.255 0.979 0.010 0.001 

293.15 3.666 0.415 0.983 0.013 0.001 

293.14 5.207 0.556 0.980 0.013 0.001 

293.15 5.994 0.618 0.976 0.013 0.002 

293.16 6.978 0.701 0.968 0.011 0.002 

293.15 7.774 0.762 0.955 0.010 0.003 

293.15 8.449 0.850 0.915 0.007 0.005 

303.15 2.535 0.283 0.973 0.011 0.002 

303.15 3.632 0.388 0.976 0.013 0.002 

303.15 4.635 0.470 0.974 0.014 0.002 

303.15 5.753 0.560 0.970 0.013 0.002 

303.15 6.726 0.632 0.965 0.013 0.002 

303.15 7.840 0.716 0.950 0.011 0.003 

303.15 8.605 0.796 0.918 0.009 0.005 

303.16 8.776 0.823 0.901 0.008 0.006 
a Perfluorohexane purchased from Acros Organics.  
b U(P) = 0.007 MPa; U(T) = 0.05 K. 

 

Table 5-12. P-x data for the tetrafluoromethane (1) + perfluorohexane (2) binary system using the 

SS apparatus including the liquid phase composition (x1), pressure (P), temperature (T), and the 

expanded uncertaintya. 

T/K P/MPa x1 U(x1) 

Perfluorohexane b 

283.17 3.91 0.472 0.004 

283.17 5.48 0.617 0.003 

283.18 7.12 0.757 0.002 

293.15 4.35 0.472 0.004 

293.15 6.05 0.617 0.003 

293.16 7.78 0.757 0.002 

303.15 4.75 0.472 0.004 

303.15 6.55 0.617 0.003 

303.16 8.85 0.835 0.002 

Perfluorohexane c 

283.15 2.68 0.344 0.004 

283.17 5.58 0.624 0.002 
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Table 5-12 continued    
T/K P/MPa x1 U(x1) 

283.17 6.38 0.689 0.002 

293.16 2.97 0.344 0.004 

293.20 6.19 0.624 0.002 

293.14 7.02 0.689 0.002 

303.15 3.26 0.344 0.004 

303.17 6.67 0.624 0.002 

303.18 7.59 0.689 0.002 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 
b Perfluorohexane supplier: Acros Organics. 
c Perfluorohexane supplier: SynQuest Laboratories. 

 

The model parameters, as well as statistical analysis of the model results against experimental data, 

are listed in tables 5-13 (PRWS (NRTL) model) and 5-14 (PR (VdW) model). The binary interaction 

parameter of the PR (VdW) model shows the system deviates positively (weak deviation) from 

Raoult’s law with an average kij of 0.001. The magnitude of the interaction parameters shows that the 

system can be predicted with kij = 0 and the deviations are in the uncertainties estimated for 

composition and pressure. In addition, the PR (VdW) and PR (WS) models show the same average 

AAD(P) of 0.01 MPa. While the average uncertainty of the CF4 composition in the vapour phase is 

0.002, the deviation of the CF4 composition in the vapour phase is 0.004 (PRWS model).  

 

Table 5-13. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + perfluorohexane (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.526 0.535 0.540 

B12/ K 
b 52.8 35.2 4.8 

B21/ K 
b 5.1 -3.3 8.0 

AAD(P/MPa) 0.008 0.010 0.010 

AARD(P/MPa)/% 1.16 0.77 0.77 

AAD(y1) 0.003 0.004 0.005 

AARD(y1)/% 0.47 0.44 0.51 
a k12 is the interaction parameter of the WS mixing rule.  
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model and a non-

randomness factor of α12 set to 0.3.  
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Table 5-14. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + perfluorohexane (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.002 0.000 0.001 

AAD(P/MPa) 0.010 0.012 0.010 

AARD(P/MPa)/% 0.98 1.26 1.16 

AAD(y1) 0.005 0.002 0.002 

AARD(y1)/% 1.35 0.33 0.47 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

5.6.2 CF4 + C7F16 (perfluoroheptane) 

VLE data for the system of CF4 + C7F16 were measured at three temperatures between (283.15 to 

303.15) K. The experimental results are reported in tables 5-15 (SA method) and 5-16 (SS method). 

The graphical view is presented as a P-x-y plot in figure 5-3. The consistency between the measured 

experimental data from both methods is notable. The model gives a good representation of the 

experimental data. Two different models were utilised to regress the experimental data including the 

PR and PRWS (NRTL) model. The binary interaction parameter of kij for the temperatures of 283.15, 

293.15 and 303.15 K is 0.006. The magnitude of the interaction parameters shows that the system can 

be predicted with kij = 0. The pressure range was 1.5 to 10 MPa throughout the three isotherms. The 

system shows a slight deviation from ideality which is due to weak interactions between similar 

compounds.  

  

Figure 5-3. HPVLE data for the tetrafluoromethane (1) + perfluoroheptane (2) binary system. 

Experimental data generated by the SS apparatus; , at 283.17 K; ▲, at 293.15 K; , at 303.15 

K. Experimental data generated by the SA apparatus; , at 283.15 K; , at 293.15 K; , at 

303.15 K. ― PRWS (NRTL) model. 
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To confirm the experimental data for the SA method, six different mixtures were measured at 

temperatures between (283.15 to 303.15) K. The pressure range was 1.6 to 9.5 MPa throughout the 

three isotherms. As the pressure of the mixture was close to the critical region, the system was more 

unstable with a very small withdrawal of the sample. The cell pressure is controlled with the syringe 

pump by the flow rate of the compression fluid into it. At high flow rate, the bubble point is obtained 

at higher pressure compared to the real bubble point. Hence, the speed of the syringe pump was 

decreased to below 0.1 μl/min to reach the equilibrium slowly.  

 

Every filling was independent of the previous measurement to make sure that any chance of 

introducing an impurity into the cell was avoided and minimised. The results confirm the measured 

data for each isotherm as the minor differences between the measured data following both methods 

are within the uncertainties associated with both methods (0.003). 

 

Table 5-15. HPVLE data measured for the tetrafluoromethane (1) + perfluoroheptane (2) binary 

system using the SA apparatus, listing the measured pressure (P), temperature (T), liquid (x1) and 

vapour (y1) phase compositions, and the expanded uncertaintya. 

T/K P/MPa x1 y1 U(x1) U(y1) 
283.17 1.647 0.227 0.994 0.007 0.001 
283.16 2.706 0.363 0.995 0.009 0.002 
283.16 3.418 0.421 0.994 0.009 0.001 
283.18 4.594 0.524 0.993 0.011 0.001 
283.14 5.559 0.606 0.991 0.011 0.001 
283.16 6.678 0.694 0.987 0.010 0.001 
283.15 7.594 0.767 0.978 0.009 0.001 
283.13 8.495 0.845 0.955 0.008 0.001 
293.18 1.457 0.186 0.989 0.008 0.001 
293.17 2.356 0.285 0.990 0.009 0.001 
293.15 3.495 0.393 0.990 0.010 0.001 
293.15 4.494 0.483 0.990 0.012 0.001 
293.16 6.513 0.637 0.986 0.012 0.003 
293.14 7.582 0.708 0.979 0.010 0.001 
293.16 8.570 0.782 0.964 0.010 0.001 
293.15 9.194 0.841 0.937 0.007 0.003 
303.14 1.497 0.181 0.985 0.008 0.002 
303.13 2.535 0.279 0.988 0.009 0.001 
303.14 3.495 0.368 0.987 0.009 0.001 
303.16 4.594 0.453 0.987 0.011 0.001 
303.16 5.694 0.533 0.985 0.012 0.002 
303.17 6.544 0.591 0.982 0.011 0.004 
303.15 7.494 0.656 0.976 0.010 0.003 
303.15 8.594 0.730 0.964 0.008 0.004 
303.15 9.595 0.823 0.928 0.006 0.001 

a U(P) = 0.007 MPa; U(T) = 0.05 K. 
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Table 5-16. Experimental P-x data of tetrafluoromethane (1) + perfluoroheptane (2) binary system at 

temperatures between (283.15-303.15) K measured using the SS apparatus, and the expanded 

uncertaintya.  

T/K P/ MPa x1 U(x1) 

283.17 2.51 0.324 0.005 

283.17 4.78 0.542 0.002 

283.18 7.24 0.736 0.001 

293.15 2.84 0.324 0.005 

293.17 5.31 0.542 0.002 

293.16 7.97 0.736 0.001 

303.14 3.14 0.324 0.005 

303.16 5.87 0.542 0.002 

303.15 8.61 0.736 0.001 
 

a U(P) = 0.01 MPa; U(T) = 0.07 K. 

 

The regressed model parameters and results of the statistical analysis are provided in tables 5-17 

(PRWS (NRTL) model) and (PR (VdW) model) 5-18. Due to the ideal nature of the binary system, 

the PR (VdW) model gives good correlation results. Although, the PR (VdW) model gives a 

satisfactory result the statistical comparison between the associated errors for the vapour phase 

pressure and composition indicates that the PRWS (NRTL) model has a smaller error of below 0.1 

%, due to the addition of fitting parameters.  

 

By the increases in temperature, there is a decrease in concentration. For example, at 6 MPa and 

283.15 K, the concentration of the CF4 is 0.66, which decreases to 0.60 and 0.55 for temperatures of 

293.15 and 303.15 K, respectively.  

 

Table 5-17. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the PRWS 

(NRTL) model for the binary system of tetrafluoromethane (1) + perfluoroheptane (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.598 0.590 0.601 

B12/ K 
b 491.9 5634.6 586.3 

B21/ K 
b -318.3 -25.9 -371.1 

AAD (P/MPa) 0.003 0.002 0.007 

AARD (P/MPa)/% 1.41 0.52 0.76 

AAD (y1) 0.000 0.000 0.002 

AARD (y1)/% 0.13 0.25 0.23 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3.  
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Table 5-18. Regressed binary interaction parameter (kij) and statistical analysis of the PR (VdW) 

model, for the binary system of tetrafluoromethane (1) + perfluoroheptane (2) 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.006 0.006 0.006 

AAD (P/MPa) 0.015 0.013 0.043 

AARD (P/MPa)/% 1.85 1.14 2.24 

AAD (y1) 0.001 0.002 0.001 

AARD (y1)/% 0.13 0.27 0.22 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

5.6.3 CF4 + C8F18 (perfluorooctane) 

VLE data for the system of CF4 + C8F18 were measured at three temperatures between (283.15 to 

303.15) K and are reported in tables 5-19 (SA method) and 5-20 (SS method). The graphical view is 

presented as a P-x-y plot in figure 5-4. The consistency between the measured data from both methods 

confirms the quality of the data measured. Two different models were utilised to regress the 

experimental data which were the PR and PRWS (NRTL) model. The binary interaction parameter 

of kij for the temperatures of 283.15, 293.15 and 303.15 K is 0.016, 0.026 and 0.025, respectively. 

The regressed kij shows a higher deviation from ideality for perfluorooctane throughout the measured 

isotherms compared to C6 and C7 systems. This deviation is because of induced-dipole-induced-

dipole interactions associated with long-chain PFCs. A molecule with a temporary dipole is capable 

of inducing the nearby molecule which consequently creates the polarity in the mixture. As the chain 

length increases, the polarity also becomes stronger (Bruice, 2003). The pressure ranged from 1.6 to 

11 MPa throughout the three isotherms. The system shows a slight departure from ideality and small 

interaction between components.  

 



   
65 

 
Figure 5-4. HPVLE data for the tetrafluoromethane (1) + perfluorooctane (2) binary system. 

Experimental data generated by the SS apparatus; , at 283.17 K; ▲, at 293.15 K; , at 303.15 K. 

Experimental data generated by the SA apparatus; , at 283.15 K; , at 293.15 K; , at 303.15 K. 

― PRWS (NRTL) model. 

 

Table 5-19. HPVLE data measured for the tetrafluoromethane (1) + perfluorooctane (2) binary 

system using the SA apparatus, listing the measured pressure (P), temperature (T), liquid (x1) and 

vapour (y1) phase compositions, and the expanded uncertaintya. 

T/K P/MPa x1 y1 U(x1) U(y1) 

283.15 1.617 0.237 0.9977 0.010 0.0002 
283.15 2.456 0.320 0.9976 0.012 0.0002 

283.15 3.453 0.426 0.9977 0.013 0.0002 

283.15 5.508 0.588 0.9959 0.013 0.0003 

283.12 6.279 0.642 0.9940 0.012 0.0004 

283.15 7.364 0.710 0.9901 0.011 0.0006 

283.12 8.129 0.765 0.9853 0.010 0.0009 

283.15 9.006 0.827 0.9727 0.008 0.0017 

293.15 2.244 0.270 0.9964 0.011 0.0003 

293.16 3.271 0.367 0.9958 0.013 0.0003 

293.15 3.753 0.410 0.9956 0.013 0.0003 

293.15 4.867 0.504 0.9953 0.014 0.0003 

293.16 6.303 0.597 0.9928 0.013 0.0005 

293.15 7.941 0.701 0.9875 0.011 0.0008 

293.15 8.767 0.750 0.9810 0.010 0.0012 

293.16 9.345 0.786 0.9730 0.009 0.0017 

293.15 9.999 0.838 0.9561 0.007 0.0027 

303.15 1.874 0.216 0.9941 0.009 0.0004 

303.14 3.079 0.325 0.9941 0.012 0.0004 
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Table 5-19 continued 

T/K P/MPa x1 y1 U(x1) U(y1) 

303.15 3.990 0.412 0.9935 0.013 

 

 

 

 

 

0.0004 

303.16 5.044 0.476 0.9926 0.014 0.0005 

303.15 5.936 0.537 0.9914 0.014 0.0006 

303.16 7.032 0.600 0.9885 0.013 0.0007 

303.16 8.056 0.666 0.9843 0.012 0.0010 

303.16 9.151 0.733 0.9775 0.011 0.0014 

303.16 10.088 0.788 0.9636 0.009 0.0023 

303.16 10.780 0.857 0.9352 0.007 0.0039 
a U(P) = 0.007 MPa; U(T) = 0.05 K. 

 

Table 5-20. Experimental P-x data of tetrafluoromethane (1) + perfluorooctane (2) binary system at 

temperatures between (283.15-303.15) K measured using the SS apparatus, and the expanded 

uncertaintya. 

T/K P/MPa x1 U(x1) 

283.18 1.89 0.256 0.007 
283.16 4.30 0.503 0.004 

283.14 6.39 0.649 0.003 

283.17 9.28 0.850 0.001 

293.16 2.11 0.256 0.007 

293.14 4.82 0.503 0.004 

293.16 7.03 0.649 0.003 

293.19 10.10 0.850 0.001 

303.16 2.31 0.256 0.007 

303.15 5.26 0.503 0.004 

303.12 7.66 0.649 0.003 

303.14 10.75 0.850 0.001 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 

 

The regressed model parameters and results of the statistical analysis of the model fit are provided in 

tables 5-21 (PRWS (NRTL) model) and 5-22 (PR (VdW) model). A comparison of the statistical 

analysis from data regression using either the PRWS (NRTL) or PR (VdW) model, shows smaller 

errors with the former. With the PR (VdW) model, the AAD(P) and AARD(P) % magnitudes of the 

errors are higher for pressure and composition indicating the better data fit of PRWS (NRTL) model. 

The average AAD(P) and AARD(P) % of PRWS model are 0.007 MPa and 1.42. The highest 

discrepancy is obtained for the system at 283.15 K isotherm with AAD(P) and AARD(P) % of 0.005 

MPa and 2.31. The average AAD(y1) and AARD(y1)/% with PRWS model are 0.0007 and 0.13, 

respectively, and are 0.001 and 0.15 for their PR (VdW) model counterparts. It indicates that the 

PRWS model obtained a better fit to the experimental data.  
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Table 5-21. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + perfluorooctane (2) 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.667 0.663 0.660 

B12/ K 
b -112.8 422.2 544.7 

B21/ K 
b 106.6 -288.8 -351.0 

AAD(P/MPa) 0.005 0.008 0.010 

AARD(P/MPa)/% 2.31 0.72 1.23 

AAD(y1) 0.0004 0.0002 0.0015 

AARD(y1)/% 0.08 0.15 0.18 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3.  

 

Table 5-22. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + perfluorooctane (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.016 0.021 0.020 

AAD(P/MPa) 0.126 0.079 0.081 

AARD(P/MPa)/% 3.90 2.13 2.65 

AAD(y1) 0.001 0.001 0.002 

AARD(y1)/% 0.10 0.17 0.19 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

Summary of the data measured 

The three systems presented in sections 5.6.1 to 5.6.3 compare the solubility of tetrafluoromethane 

with straight-chain perfluoroalkanes (C6, C7 and C8) which is shown in figure 5-5 for the temperature 

of 283.15 K. Considering a constant composition of 𝑥𝐶𝐹4= 0.5 and temperature of 283.15 K, the 

isotherm with the lowest pressure is 4 MPa with the perfluorohexane solvent. The highest pressure is 

4.6 MPa with perfluorooctane solvent.  

 

As the length of the carbon chain decreases, the solubility improves and the solvent-solute interactions 

become ideal. As the C-chain increase, the molecular interactions show an increasing departure as 

evident in the kij values reported in tables 5-14, 5-18 and 5-22. The solubility of tetrafluoromethane 

in the three solvents is almost similar up to the equimolar condition though for compositions greater 

than 0.5, it is improved for the smaller chain perfluoroalkanes (C6).  
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Figure 5-5. P-x data for the tetrafluoromethane (1) + either , perfluorohexane (2) , 

perfluoroheptane (2) or , perfluorooctane (2) binary systems at the temperature of 283.15 K. 

 

5.6.4 CF4 + C10F18 (perfluorodecalin) 

New P-x data were measured for the tetrafluoromethane + perfluorodecalin binary system at three 

isotherms in the range of (283.15 to 303.15) K. The experimental data are listed in table 5-23 and are 

shown in figure 5-6. The experimental data were modelled using the PRWS (NRTL) model. The 

specified error bars on the figure are the uncertainties associated with the data points which were 

within 0.012. 

 

The pressure of the data measured is in the range between (2.1 to 7.1) MPa. As the data generated 

from both apparatuses were consistent and given the high price of perfluorodecalin, the experimental 

data were measured only via the SS apparatus. The amount of material required for every experiment 

following the SS method is at most 3.5 ml, and it can be recovered while venting the mixture. A 

minimum volume of 13 ml was required for measurements using the SA apparatus with several top 

up of solvent which is another important factor to consider. 
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Figure 5-6. P-x data for the tetrafluoromethane (1) + perfluorodecalin (2) binary system. 

Experimental data generated by the SS apparatus; , at 283.14 K; , at 293.15 K; , at 303.16 K. 

― PRWS (NRTL) model. 

 

Table 5-23. Experimental P-x data of tetrafluoromethane (1) + perfluorodecalin (2) binary system at 

temperatures between (283.15-303.15) K measured using the SS apparatus, and the expanded 

uncertaintya. 

T/K P/MPa x1 U(x1) 

283.15 2.12 0.196 0.012 
283.16 2.98 0.294 0.010 

283.15 3.52 0.340 0.009 

283.15 4.54 0.411 0.008 

283.14 5.01 0.444 0.008 

283.16 5.96 0.497 0.007 

293.17 2.37 0.196 0.012 

293.14 3.32 0.294 0.010 

293.15 3.93 0.340 0.009 

293.12 5.02 0.411 0.008 

293.16 5.61 0.444 0.008 

293.16 6.58 0.497 0.007 

303.14 2.54 0.196 0.012 

303.16 3.64 0.294 0.010 

303.13 4.30 0.340 0.009 

303.18 5.47 0.411 0.008 

303.18 6.13 0.444 0.008 

303.15 7.14 0.497 0.007 
a U(P) = 0.01 MPa; U(T) = 0.07 K.  
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The model parameters regressed and results of the statistical analysis are provided in tables 5-24 

(PRWS (NRTL) model) and (PR (VdW) model) 5-25. Only bubble point data were measured using 

the SS apparatus disabling the statistical analysis for the vapour phase composition. On comparison 

of the two model results, the PR (VdW) model shows greater errors (maximum AAD(P) of 0.037 

MPa and maximum AARD(P) % of 0.78) compared to that of the PRWS (NRTL) model (maximum 

AAD(P) of 0.019 MPa and maximum AARD(P) % of 0.32).  

 

Table 5-24. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + perfluorodecalin (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.728 0.718 0.714 

B12/ K 
b -1.215 -1.179 -1.220 

B21/ K 
b 2.060 1.925 2.034 

AAD(P/MPa) 0.013 0.011 0.019 

AARD(P/MPa)/% 0.30 0.20 0.32 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3. 

 

Table 5-25. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + perfluorodecalin (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.026 0.024 0.021 

AAD(P/MPa) 0.037 0.033 0.031 

AARD(P/MPa)/% 0.78 0.62 0.55 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

5.6.5 CF4 + C5H4F8O (tetrafluoroethyl, tetrafluoropropyl ether) 

New HPVLE data were measured for the tetrafluoromethane + tetrafluoroethyl, tetrafluoropropyl 

ether binary system at three isotherms in the range of (283.15 to 303.15) K. The experimental data 

are shown in tables 5-26 (SA apparatus), and 5-27 (SS apparatus) and are displayed in figure 5-7. The 

experimental data measured from two equipment display a satisfactory thermodynamic consistency. 

The model gives a good representation of the experimental data. Only at the pressures higher than 

20.00 MPa, slight departure is noticeable between experimental data and modelling results. For the 

measurements of the phase behaviour data following the SA method, it was observed that there was 

poor temperature dependency of the mixture at 293.15 and 303.15 K. Hence the data were measured 

at 303.15 K up to pressures of 10 MPa. The temperature of the bath was then decreased to 293.15 K 

to measure the remaining data points for the full isotherm. For measurements at pressures higher than 

20.00 MPa, the PTFE O-rings was not able to withstand the conditions and failed to seal the 
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equilibrium cell. The test was repeated with a new polyurethane O-ring which failed at pressures 

higher than 20 MPa once more.   

 
Figure 5-7. HPVLE data for the tetrafluoromethane (1) + 1,1,2,2-1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2) binary system. Experimental data generated by the SS apparatus; , at 

283.16 K; , at 293.19 K; , at 303.14 K. Experimental data generated by the SA apparatus; , at 

293.15 K; , at 303.16 K. ― PR (VdW) model. 

 

Table 5-26. HPVLE data measured for the tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2) binary system using the SA apparatus, listing the measured pressure (P), 

temperature (T), liquid (x1) and vapour (y1) phase compositions, and the expanded uncertaintya. 

T/K P/MPa x1 y1 U(x1) U(y1) 

293.15 1.559 0.068 0.9941 0.006 0.0006 

293.15 2.996 0.126 0.9963 0.007 0.0008 

293.15 4.778 0.195 0.9959 0.009 0.0007 

293.16 6.385 0.251 0.9941 0.011 0.0013 

293.16 8.010 0.299 0.9908 0.012 0.0008 

293.16 9.574 0.343 0.9857 0.012 0.0009 

293.16 11.242 0.393 0.9804 0.013 0.0008 

293.15 12.830 0.426 0.9741 0.013 0.0006 

293.15 14.582 0.463 0.9640 0.013 0.0017 

293.15 16.801 0.506 0.9504 0.015 0.0011 

293.14 19.978 0.577 0.9229 0.014 0.0009 

303.16 1.863 0.078 0.9923 0.012 0.0006 

303.15 3.171 0.129 0.9926 0.012 0.0005 

303.16 4.170 0.166 0.9937 0.010 0.0011 

303.16 5.394 0.204 0.9925 0.010 0.0006 

303.16 7.251 0.265 0.9898 0.018 0.0015 
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Table 5-26 continued. 

T/K P/MPa x1 y1 U(x1) U(y1) 

303.16 9.498 0.327 0.9835 0.007 0.0011 

303.16 11.095 0.370 0.9802 0.007 0.0007 
a U(P) = 0.007 MPa; U(T) = 0.05 K. 

 

Table 5-27. Experimental P-x data of tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2) binary system at temperatures between (283.15-303.15) K measured 

using the SS apparatus, and the expanded uncertaintya. 

T/K P/MPa x1 U(x1) 

283.16 2.28 0.117 0.007 

283.15 4.66 0.193 0.005 

283.15 5.69 0.231 0.004 

283.15 9.45 0.344 0.003 

293.14 2.40 0.117 0.007 

293.17 4.74 0.193 0.005 

293.17 5.87 0.231 0.004 

293.16 9.64 0.344 0.003 

303.15 2.53 0.117 0.007 

303.18 4.84 0.193 0.005 

303.18 6.08 0.231 0.004 

303.17 9.84 0.344 0.003 
a U(P) = 0.01 MPa; U(T) = 0.05 K. 

 

The regressed binary interaction parameters are listed in tables 5-28 (PRWS (NRTL) model) and 5-

29 (PR (VdW) model). The experimental results show a large deviation from ideality which can be 

justified due to the difference in intermolecular forces resulting from the mixing of a completely non-

polar gas with a hydrogen-bonding compound. The results of the modelling show that the deviation 

of the model from experimental data is less with the PRWS (NRTL) model compared to results 

obtained from PR (VdW) model. 

 

Table 5-28. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the PRWS 

(NRTL) model for the binary system of tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a --- 0.401 0.604 

B12/ K 
b --- 326.6 620.3 

B21/ K 
b --- 269.5 -126.6 

AAD(P/MPa) --- 0.080 0.002 

AARD(P/MPa)/% --- 9.198 0.531 

AAD(y1) --- 0.017 0.0001 

AARD(y1)/% --- 2.00 0.06 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and the non-

randomness factor of α12 set to 0.3. 
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Table 5-29. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a --- 0.112 0.125 

AAD(P/MPa) --- 0.15 0.05 

AARD(P/MPa)/% --- 6.16 2.21 

AAD(y1) --- 0.002 0.001 

AARD(y1)/% --- 0.27 0.07 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model.  

 

5.6.6 CF4 + C4H3F7O (heptafluoro, 1-butanol) 

New HPVLE data were measured for the tetrafluoromethane + heptafluoro, 1-butanol binary system 

at three isotherms in the range of (283.15 to 303.15) K. The experimental data are shown in table 5-

30 (SS method) and are displayed in figure 5-8. The HPVLE data were modelled using the PRWS 

(NRTL) and PR (VdW) models. Regressed binary interaction parameters are listed in tables 5-31 

(PRWS (NRTL) model) and 5-32 (PR (VdW) model).  

 

The uncertainties associated with the data points are shown in the figure by the error bars with a 

maximum uncertainty of  0.009. As mentioned previously, due to time constraints and limited 

chemicals, the measurements were performed following the SS method. The smaller liquid volume 

resulted in a low mass of gas loaded. As it was mentioned in chapter 4, the mixtures were prepared 

gravimetrically and the masses played an essential role in the uncertainty of the composition. Due to 

the low masses loaded into the equilibrium cell, the uncertainties associated with the experimental 

data are relatively high.  
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Figure 5-8. P-x data for the tetrafluoromethane (1) + heptafluoro, 1-butanol (2) binary system. 

Experimental data generated by the SS apparatus; , at 283.14 K; , at 293.15 K; , at 303.16 K. ― 

PRWS (NRTL) model. 
 

Table 5-30. Experimental P-x data of tetrafluoromethane (1) + heptafluoro, 1-butanol (2) binary 

system at temperatures between (283.15-303.15) K measured using the SS apparatus, and the 

expanded uncertaintya. 

T/K P/MPa x1 U(x1) 

283.13 2.96 0.130 0.008 

283.13 4.00 0.198 0.009 

283.14 5.70 0.270 0.008 

283.13 7.32 0.333 0.005 

293.15 3.20 0.130 0.008 

293.18 4.41 0.198 0.009 

293.15 6.26 0.270 0.008 

293.15 8.07 0.333 0.005 

303.18 3.43 0.130 0.008 

303.18 4.73 0.198 0.009 

303.19 6.87 0.270 0.008 

303.17 8.68 0.333 0.005 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 
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Table 5-31. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of tetrafluoromethane (1) + heptafluoro, 1-butanol (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.980 1.001 1.022 

B12/ K 
b -457.9 -485.9 -512.8 

B21/ K 
b 1333.6 1421.6 1520.3 

AAD(P/MPa) 0.031 0.046 0.063 

AARD(P/MPa)/% 2.988 3.221 3.642 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3. 

 

Table 5-32. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of tetrafluoromethane (1) + heptafluoro, 1-butanol (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12
 a 0.071 0.074 0.078 

AAD(P/MPa) 0.044 0.026 0.008 

AARD(P/MPa)/% 6.00 5.51 4.74 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

Summary of the solubility of tetrafluoromethane in solvents. 

The solubility data of tetrafluoromethane in six different systems were presented. The system (CF4 + 

C6F14) presented in section 5.6.1 shows the highest solubility of tetrafluoromethane, while the system 

(CF4 + C5H4F8O) presented in section 5.6.6 displays the lowest solubility for tetrafluoromethane. For 

example, at the pressure of approximately 5.50 MPa and temperature of 283.15 K, the solubility of 

tetrafluoromethane was just above 0.61. This is well over twice as much of its solubility in 

heptafluoro, 1-butanol at 0.28 mole fraction. The phase data for CF4 + C6F14 confirms the like-like 

interactions, showing improved solubility as per classification of physical properties method. 

 

5.7 Phase equilibrium measurements for systems with NF3 

Due to the highly toxic nature of NF3, data for the NF3 systems were measured via the SS method. 

Hence, only the bubble point data was measured. Before starting the measurements, a meticulous safe 

operating method was designed and a test system of CO2 + C6H14 measured following the exact 

procedures. After the confirmation of the technique, four different binary systems of NF3 with liquid 

solvents, perfluorohexane, perfluorodecalin, perfluoroalcohol and perfluoroether were measured.  

 

The systems presented consisted of the same chemicals tested with tetrafluoromethane, however, due 

to the improved solubility in PFCs, only C6 (perfluorohexane) was tested from the straight-chain 

PFCs with NF3. An overview of the systems measured (NF3 + solvents) is presented in table 5-33. 
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Table 5-33. Overview of the binary systems (NF3 + solvents) measured in this work, 'l' and 'g' 

denotes whether the component is either a liquid or gas at ambient conditions. 

Gas  Liquid solvent Temperature/ K Pressure/ MPa No. of points 

NF3 (g) C6F14 (l) 283.15 – 303.15 2.4 – 9.3 18 

NF3 (g) C5H4F8O (l) 283.15 – 303.15 3 – 8.4 18 

NF3 (g) C10F18 (l) 283.15 – 303.15 2 – 7.1 18 

NF3 (g) C4H3F7O (l) 283.15 – 303.15 3.5 – 8.7 12 

 

5.7.1 NF3 + C6F14 (perfluorohexane) 

New HPVLE data were measured for the nitrogen trifluoride + perfluorohexane binary system at 

three isotherms in the range of (283.15 to 303.15) K and pressures ranging from (1.9 to 8.3) MPa. 

The experimental data are shown in table 5-34 (SS apparatus) and are displayed in figure 5-9. The 

experimental data were modelled using the PR (VdW) model. The maximum expanded uncertainty 

associated with the experimental data was  0.011 which is indicated for each data point by the error 

bars in figure 5-9. 

 

The solubility of NF3 in C6F14 is similar to that of CF4 with a minor improved solubility of NF3. Due 

to the helical structure of the perfluoroalkanes (C4 <), the solvent has a dipole moment (Fournier et 

al., 2011). Two free electrons exist in the structure of the NF3, which are delocalized in the presence 

of a polar component. The delocalised molecule interacts with the molecule (Bruice, 2003). The 

system of NF3 + C6F14 represents a gaseous molecule with a delocalised electron mixed with a slightly 

polar molecule. The interactions in the mixture increase the solubility of NF3.    
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Figure 5-9. P-x data for the nitrogen trifluoride (1) + perfluorohexane (2) binary system. 

Experimental data generated by the SS apparatus; , at 283.14 K; , at 293.15 K; , at 303.16 K. 

― PRWS (NRTL) model; --- tetrafluoromethane (1) + perfluorohexane (2) at 293.15 K. 

 

Table 5-34. Experimental P-x data of nitrogen trifluoride (1) + perfluorohexane (2) binary system at 

temperatures between (283.15-303.15) K measured using the SS apparatus, and the expanded 

uncertaintya. 

T/K P/MPa x1 U(x1) 

283.15 1.96 0.281 0.011 
283.16 2.56 0.343 0.009 

283.15 3.88 0.473 0.008 

283.15 5.01 0.580 0.006 

283.14 6.05 0.671 0.002 

283.16 6.93 0.747 0.003 

293.17 2.24 0.280 0.011 

293.14 2.83 0.337 0.009 

293.15 4.28 0.466 0.008 

293.12 5.59 0.577 0.006 

293.16 6.80 0.674 0.002 

293.16 2.24 0.282 0.003 

303.14 2.47 0.283 0.011 

303.16 3.10 0.341 0.009 

303.13 4.73 0.465 0.008 

303.18 6.03 0.583 0.006 

303.18 7.24 0.669 0.002 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 
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The regressed model parameters and results of the statistical analysis are provided in tables 5-35 

(PRWS (NRTL) model) and (PR (VdW) model) 5-36. In terms of model errors, the PR (VdW) model 

gives a better representation of experimental data (maximum AAD(P) of 0.171 MPa and maximum 

AARD(P) % of 3.93) compared to that of PRWS (NRTL) model (maximum AAD(P) of 0.188 MPa 

and maximum AARD(P) % of 7.04).  

 

Table 5-35. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the 

PRWS (NRTL) model for the binary system of nitrogen trifluoride (1) + perfluorohexane (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.637 0.666 0.667 

B12/ K 
b 175 192 233 

B21/ K 
b -191 -208 -260 

AAD(P/MPa) 0.107 0.143 0.188 

AARD(P/MPa)/% 5.40 5.03 7.04 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3. 

 

Table 5-36. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + perfluorohexane (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12
 a 0.013 0.022 0.022 

AAD(P/MPa) 0.171 0.106 0.115 

AARD(P/MPa)/% 3.93 3.06 2.82 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

5.7.2 NF3 + C10F18 (perfluorodecalin) 

New HPVLE data were measured for the nitrogen trifluoride + perfluorodecalin binary system at 

three isotherms in the range of (283.15 to 303.15) K and pressures ranging from (1.9 to 9.8) MPa. 

The experimental data are shown in table 5-37 (SS method) and are displayed in figure 5-11. The 

model shows large discrepancies at the low and high-pressure range.  

 

The solubility of NF3 in perfluorodecalin is more than that of CF4. The molecular structure of the 

perfluorodecalin consists of two attached single-bonded cycles of carbon covered with a massive 

electron cloud of fluorine atoms which is displayed in figure 5-10. Considering the delocalisation 

effect on the NF3 molecule, the positive part of the NF3 interacts with the perfluorodecalin molecule 

and improves the solubility compared to CF4.  
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a) 

 
b) 

Figure 5-10. Molecular structure of perfluorodecalin a) massive electron cloud around the molecule, 

b) single bounded cycles of C10F18.  

 

The greatest expanded uncertainty associated with the measured data was at the lowest composition 

measured with  0.17. A minimum volume of solvent of 3.5 ml was used to prepare the initial mixture. 

Due to the small volume of the gas dissolved, very small fluctuations in the mass balance causes 

higher uncertainties. The bubble point of this data point was measured 3 times by depressurising and 

pressurising the cell with the same mixture. The difference between the measured data was well 

within 0.01 MPa. It is clear that the uncertainty decreased as the composition increased. The minimum 

uncertainty of  0.003 was estimated at NF3 composition of 0.697. 

 
Figure 5-11. P-x data for the nitrogen trifluoride (1) + perfluorodecalin (2) binary system. 

Experimental data generated by the SS apparatus; , at 283.14 K; , at 293.15 K; , at 303.16 K. 

― PRWS (NRTL) model; --- tetrafluoromethane (1) + 1perfluorodecalin (2) at 293.15 K. 
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Table 5-37. Experimental P-x data of nitrogen trifluoride (1) + perfluorodecalin (2) binary system at 

temperatures between (283.15-303.15) K measured using the SS apparatus, and the expanded 

uncertaintya. 

T/K P/MPa x1 U(x1) 

283.15 1.79 0.168 0.017 

283.16 2.59 0.318 0.015 

283.15 3.58 0.415 0.009 

283.15 4.66 0.496 0.007 

283.14 6.45 0.613 0.006 

283.16 7.92 0.697 0.003 

293.17 1.98 0.168 0.017 

293.14 3.03 0.318 0.015 

293.15 3.93 0.415 0.009 

293.12 5.19 0.496 0.007 

293.16 7.16 0.613 0.006 

293.16 8.88 0.697 0.003 

303.14 2.16 0.168 0.017 

303.16 3.34 0.318 0.015 

303.13 4.33 0.415 0.009 

303.18 5.70 0.496 0.007 

303.18 7.90 0.613 0.006 

303.15 9.78 0.697 0.003 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 

 

The regressed model parameters and results of the statistical analysis are provided in tables 5-38 

(PRWS (NRTL) model) and 5-39 (PR (VdW) model). In terms of model errors, the PR (VdW) model 

gives a better representation of experimental data.  

 

Table 5-38. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the PRWS 

(NRTL) model for the binary system of nitrogen trifluoride (1) + perfluorodecalin (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.763 0.770 0.776 

B12/ K 
b -360 -372 -391 

B21/ K 
b 1282 1355 1423 

AAD(P/MPa) 0.117 0.204 0.284 

AARD(P/MPa)/% 5.20 5.67 5.85 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3.  

 

Table 5-39. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + perfluorodecalin (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 
a 

12k 0.007 0.007 0.006 

AAD(P/MPa) 0.188 0.175 0.166 

AARD(P/MPa)/% 7.15 6.84 6.63 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 
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5.7.3 NF3 + C5H4F8O (TFE–TFP ether) 

New HPVLE data were measured for the nitrogen trifluoride + tetrafluoroethyl, tetrafluoropropyl 

ether binary system at three temperatures between (283.15 to 303.15) K and pressures ranging from 

(2.1 to 10.26) MPa. The experimental data are shown in table 5-40 (SS apparatus) and are displayed 

in figure 5-12.   

 

The TFE-TFP ether is a polar asymmetric molecule. Nitrogen trifluoride is a slightly polar compound. 

Upon mixing of the pure components the Hmix is positive resulting in endothermic process. 

Considering the nonpolar structure of tetrafluoromethane, the presence of unlike interactions 

decreases the solubility of CF4. 

 

The maximum uncertainty of the measured data is 0.009 for the composition of 0.130. As the 

composition increases, the uncertainty reduced. The minimum uncertainty is 0.004 which is estimated 

at the composition of 0.452. The solubility of TFE-TFP ether in nitrogen fluoride is temperature 

dependent with improved solubility at a lower temperature, however, its solubility changes slightly 

with temperature.  

 

 
Figure 5-12. P-x data for the binary system of nitrogen trifluoride (1) + 1,1,2,2-tetrafluoroethyl 

2,2,3,3-tetrafluoropropyl ether (2). Experimental data generated by the SS apparatus;  , at 283.14 

K; , at 293.15 K; , at 303.16 K. ― PRWS (NRTL) model; --- tetrafluoromethane (1) + 1,1,2,2-

tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (2) at 293.15 K. 
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Table 5-40. Experimental data for the nitrogen trifluoride (1) + 1,1,2,2-tetrafluoroethyl 2,2,3,3-

tetrafluoropropyl ether (2) binary system using the SS apparatus listing the pressure (P), temperature 

(T), liquid phase composition (x1), and the expanded uncertaintya. 

T/K P/MPa x1 U(x1) 

283.15 1.89 0.130 0.009 

283.16 2.39 0.169 0.007 

283.15 3.46 0.238 0.007 

283.15 6.08 0.381 0.008 

283.14 7.53 0.452 0.004 

283.16 8.95 0.518 0.004 

293.17 2.11 0.130 0.009 

293.14 2.61 0.169 0.007 

293.15 3.86 0.238 0.007 

293.12 6.68 0.381 0.008 

293.16 8.11 0.452 0.004 

293.16 9.77 0.518 0.004 

303.14 2.34 0.130 0.009 

303.16 2.90 0.169 0.007 

303.13 4.31 0.238 0.007 

303.18 7.30 0.381 0.008 

303.18 8.87 0.452 0.004 

303.15 10.26 0.518 0.004 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 

 

The regressed model parameters and results of the statistical analysis are provided in table 5-41 

(PRWS (NRTL) model) and (PR (VdW) model) table 5-42. Statistically, the PR (VdW) model shows 

a better representation of the experimental data, though the difference in errors between the two 

models is not significant. The magnitude of the kij from PR (VdW) model at temperatures of 283.15, 

293.15, and 303.15 is 0.19, 0.15, and 0.08, respectively. This indicates the positive deviation from 

Raoult’s law. At the higher temperature, the PR (VdW) model is better.  

 

The AARD(P) % calculated for the PR (WS) model is 6 on average which is relatively high, while it 

is low for PR (VdW) model, but it is just below 4 on average. The highest AARD(P) % and AAD(P) 

errors were obtained at the low temperature for PR (VdW) with 4.19 % and 0.19 MPa, respectively 

while their PRWS (NRTL) model counterpart obtained at 303.15 K with 6.28 % and 0.16 MPa, 

respectively.  
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Table 5-41. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the PRWS 

(NRTL) model for the binary system of nitrogen trifluoride (1) + tetrafluoroethyl, tetrafluoropropyl 

ether (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.820 0.824 0.822 

B12/ K 
b -400 -421 -428 

B21/ K 
b 943 1012 1021 

AAD(P/MPa) 0.08 0.12 0.16 

AARD(P/MPa)/% 5.74 6.07 6.28 
a k12 is the interaction parameter of the WS mixing rule. 
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3. 

 

Table 5-42. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + tetrafluoroethyl, tetrafluoropropyl ether (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12
 a 0.080 0.082 0.087 

AAD(P/MPa) 0.19 0.15 0.08 

AARD(P/MPa)/% 4.19 3.54 4.07 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

5.7.4 NF3 + C4H3F7O (heptafluoro, 1-butanol) 

New HPVLE data were measured for the nitrogen trifluoride + heptafluoro, 1-butanol binary system 

at three temperatures between (283.15 to 303.15) K and pressures ranging from (2.5 to 8.8) MPa. The 

experimental data are shown in table 5-43 (SS method) and are displayed in figure 5-13. The error 

bars indicate the uncertainties associated with the measured experimental data. The error of the model 

is within the calculated uncertainty range (the maximum error is smaller than 0.008). As a polar gas, 

the solubility of NF3 in heptafluoro, 1-butanol is higher than that of CF4. It is due to the like-like 

interactions between NF3 and perfluorinated alcohol.  
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Figure 5-13. P-x data for the nitrogen trifluoride (1) + heptafluoro-butanol (2) binary system. 

Experimental data generated by the SS apparatus; , at 283.14 K; , at 293.15 K; , at 303.16 K. 

― Solid lines, PR (VdW) model; --- tetrafluoromethane (1) + heptafluoro butanol (2) at 293.15 K. 

 

Table 5-43. Experimental data for the nitrogen trifluoride (1) + heptafluoro-butanol (2) binary system 

using the SS apparatus, including the measured pressure (P), temperature (T), liquid phase 

composition (x1), and the expanded uncertaintya. 

T/K P/MPa x1 U(x1) 

283.15 2.41 0.129 0.008 
283.16 4.32 0.224 0.008 

283.15 6.09 0.308 0.008 

283.15 7.46 0.358 0.004 

293.17 2.56 0.129 0.008 

293.14 4.705 0.224 0.008 

293.15 6.751 0.308 0.008 

293.12 8.165 0.358 0.004 

303.14 2.713 0.129 0.008 

303.16 5.033 0.224 0.008 

303.13 7.245 0.308 0.008 

303.18 8.882 0.358 0.004 
a U(P) = 0.01 MPa; U(T) = 0.07 K. 

 

The regressed binary interaction parameter of the PR (VdW) model shows a positive deviation from 

Raoult’s law. Comparison of the data fit parameters, provided in tables 5-44 (PR (VdW) model) and 

5-45 (PRWS (NRTL) model), shows better AAD(P) errors associated with the data regression using 

the latter model as opposed to the AARD(P) errors calculated.  
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Table 5-44. Regressed binary interaction parameters (kij and Bij) and statistical analysis for the PRWS 

(NRTL) model for the binary system of nitrogen trifluoride (1) + heptafluoro-butanol (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12 
a 0.952 0.967 0.986 

B12/ K 
b -413 -445 -484 

B21/ K 
b 925 967 1052 

AAD(P/MPa) 0.04 0.05 0.07 

AARD(P/MPa)/% 3.47 3.94 3.71 
a k12 is the interaction parameter of the WS mixing rule.  
b B12 and B21 are the temperature-dependent adjustable parameters of the NRTL model, and a non-

randomness factor of α12 set to 0.3. 

 

Table 5-45. Regressed binary interaction parameters (kij) and statistical analysis for the PR (VdW) 

model for the binary system of nitrogen trifluoride (1) + heptafluoro-butanol (2). 

 T = 283.15 K T = 293.15 K T = 303.15 K 

k12
 a 0.101 0.104 0.107 

AAD(P/MPa) 0.10 0.10 0.10 

AARD(P/MPa)/% 2.93 2.32 1.75 
a k12 is the binary interaction parameter for the classical mixing rule in the PR (VdW) model. 

 

5.8 Summary of the experimental results 

The results from HPVLE data measurements showed the better selectivity of TFE-TFP ether 

compared to other solvents tested. The selectivity and capacity of the solvents were calculated to rank 

them based on their affinity to dissolve either NF3 or CF4. The selectivity is estimated as the ratio of 

the activity coefficients at infinite dilution (𝛾𝑖
∞) (Perry et al., 1997). The infinite dilution activity 

coefficients were correlated to the experimental bubble point data using Aspen Plus®. The solvent 

selectivity and capacity are then calculated as follows: 

𝑆 =
𝛾𝑖
∞

𝛾𝑗
∞ 

5.3 

𝐶 =
1

𝛾 
∞

 
5.4 

 

where i and j refer to the light and heavy constituents of the gaseous mixture. The following three 

conditions apply to the selectivity:  

- S>1: solvent has an affinity towards heavier solvent, 

- S<1: solvent has an affinity towards lighter component which will reverse the relative 

volatility of the mixture.  

-  S=1: solvent has no affinity. 

 



   
86 

The solvent capacity is defined as the ratio of one to the greater infinite dilution activity coefficient 

and indicates the recovery of the solvent from the bottom product (Perry et al., 1997). Table 5-46 

shows the selectivity of the solvents tested in this work. Figure 5-14 shows the selectivity of the 

solvents at the temperature of 283.15 K. While aa slight change is observed at higher temperatures, 

the overall proportion remains the same. It is clear that TFE-TFP ether has the greatest selectivity 

with an affinity upon NF3 among others tested. 

 
Figure 5-14. Selectivity of the solvents used in this work. 

 

Table 5-46. Selectivity and capacity of the solvents tested in this study.  

Solvent T/ K 
𝛾𝑖
∞ 

Selectivity Capacity 
CF4 NF3 

TFE-TFP ether 283.15 3.665 2.337 1.568 0.428 
 293.15 3.507 2.276 1.541 0.439 

  303.15 3.347 2.209 1.515 0.453 

Perfluorodecalin 283.15 1.582 1.276 1.240 0.784 
 293.15 1.584 1.279 1.239 0.782 

  303.15 1.578 1.275 1.237 0.784 

Heptafluorobutanol 283.15 3.437 3.003 1.144 0.333 
 293.15 3.315 2.888 1.148 0.346 

  303.15 3.186 2.770 1.150 0.361 

Perfluorohexane 283.15 1.227 1.176 1.044 0.851 
 293.15 1.216 1.157 1.051 0.865 

  303.15 1.197 1.131 1.058 0.884 

 

To design a preliminary separation process using Aspen Plus®, initially physical absorption was 

selected to purify the NF3 to the grades of higher than 99.999 %. Since the high-quality product was 

not obtained using the absorption technology, the extractive distillation was attempted to produce a 

high-grade product. The results from the extractive distillation obtained acceptable purities. The 

proposed absorption and extractive distillation processes are explained here. The purification results 

obtained from this work is compared to the literature data which is discussed as well. 
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5.9 Design of the absorption process with C5H4F8O using Aspen Plus® 

The absorption method was selected to purify NF3 from CF4 impurity. The process is designed using 

Aspen Plus® V10. The main goal was to dissolve the maximum amount of the NF3 in the promising 

solvent and to produce the high purity NF3 using a stripping column (SC). Figure 5-15 shows the 

schematics of the proposed process. The feed stream of CF4 – NF3 enters the absorption column (AC). 

Another column was placed after the absorption column for stripping purposes to purify NF3 and 

recover the valuable solvent. As shown in figure 5-15, the vapour product obtained from the stripping 

column is the NF3 product. The solvent is mixed with a make-up flow in the mixer to compensate for 

the loss of solvent via the gaseous product of the absorber and stripping column. Thereafter, the 

solvent flow is directed to a pump and heat exchanger to regulate its pressure and temperature. A 

mixer is added to the process in a way that the recovered solvent from the process is used as the 

solvent feed to the absorption column.    
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Figure 5-15. Schematic diagram of the proposed NF3 purification process via physical absorption.
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Process design 

An absorption column was designed and run using a feed of NF3 – CF4 with the solvent of TFE-TFP 

ether to obtain NF3 product with the purity of 99.999 %. The effect of several parameters was 

investigated on the product quality by varying operating temperature (223.15 – 323.15 K), pressure 

(0.20 – 2.50 MPa), theoretical stage numbers (10 – 100), solvent flow rate (1886 – 2200 kmol.hr-1) 

and feed composition (50 – 90 % NF3). From the simulation studies, a 30-stage column was obtained 

to be the most appropriate column which operates at 2.50 MPa and 293.15 K with the gas and solvent 

flow rates of 500 and 1990 kmol.hr-1, respectively. The stream table of the highest product quality 

obtained from the absorption process is presented in table 5-47. It is clear that the gas feed of 50 % 

NF3 is purified to 55.05 %. Several sensitivity studies were performed to obtain the highest product 

purity.  

 

Table 5-48 shows the results of the absorption process for different feed composition operating in the 

most suitable condition. According to the results presented in the table, the final purity of the NF3 

product obtained for the feeds of 70, 80 and 90 % NF3 are approximately 73, 78 and 86 %. This shows 

a decreasing percentage in the purity of NF3 for the feed streams of 80 % and above. Looking at the 

stream contents, it is clear that the major part of the impurity increase is because of TFE-TFP ether 

which is evaporated to the NF3 stream obtained from the stripping column. As the aim of this process 

design was to obtain a product with the purity of 99.999 %, the results show that the absorption 

column is incapable of producing a product with such grade. Therefore, extractive distillation is 

attempted to purify the NF3 to the desired level.  
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Table 5-47. Stream table of the 30-stage absorption process for the 50 % NF3 feed operating at 293.15 K and 2.50 MPa with gas and solvent flow 

rates of 500 and 1990 a.   
Gas 

feed 

Solvent 

stream 

CF4  

(AC-top) 

Bottom 

(AC) 

RE (SC-

bottom) 

NF3  

(SC- top) 

Makeup S9 

(mixer1) 

S1 

(pump) 

S2 

(heater) 

T/ K 293.15 293.15 296.51 295.06 306.82 292.03 293.15 306.71 308.76 293.15 

P/ MPa 2.50 2.50 2.50 2.50 0.10 0.10 2.50 0.10 2.50 2.50 

Mole flow 

Total  500 1542.5 258.4 1784.1 1530.0 254.1 12.5 1542.5 1542.5 1542.5 

CF4 250 2.7 147.0 105.6 2.7 103.0 0.0 2.7 2.7 2.7 

NF3 250 5.3 110.1 145.2 5.3 139.9 0.0 5.3 5.3 5.3 

Solvent  0 1534.5 1.2 1533.3 1522.0 11.3 12.5 1534.5 1534.5 1534.5 

Mole fraction  (%) 

CF4 50 0.17 56.91 5.92 0.17 40.51 0.00 0.17 0.17 0.17 

NF3 50 0.35 42.62 8.14 0.35 55.05 0.00 0.35 0.35 0.35 

Solvent  0 99.48 0.47 85.94 99.48 4.44 100.00 99.48 99.48 99.48 
a Flow rate units are in kmol.hr-1 

 
Table 5-48. Summary of the best product streams obtained from absorption column using different feed compositions at the column pressure of 2.50 

MPa, temperature of 293.15 K, absorption column theoretical stage number of 30, stripping column theoretical stage number of 2, solvent and gas 

feed flow rates of 1990 and 500 a for a 50 % NF3 feed. 

NF3 % in feed Component 
Mole fraction (%)  Re-solvent  

(SC-bottom) 
Make-up flow 

CF4 (AC-top) NF3 (SC-top) 

50 CF4 56.91 40.51 0.17 
12.5 

 
NF3 42.62 55.05 0.35 

TFE-TFP ether 0.47 4.44 99.48 

70 CF4 42.03 23.15 0.12 

13.3 

 

NF3 57.50 73.25 0.55 

TFE-TFP ether 0.47 3.60 99.33 

80 CF4 31.61 14.24 0.00 

30.9 

 

NF3 67.91 78.02 0.04 

TFE-TFP ether 0.48 7.74 99.95 

90 CF4 17.20 6.94 0.00 

31.0 

NF3 82.32 85.53 0.05 

TFE-TFP ether 0.48 7.53 99.95 
a Flow rate units are in kmol.hr-1 
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5.10 Design of the extractive distillation with C5H4F8O using Aspen Plus® 

Due to the inability of designed absorption process to purify the NF3 to the desired level, the two-

column extractive distillation process is attempted to purify NF3 from CF4 impurity. The process is 

designed using Aspen Plus® V10. The extractive distillation uses the solvent as an entraining agent 

to change the relative volatility of the gaseous components through interaction with them. The 

presence of the entraining agent changes the fugacity of the components in the mixture, generating a 

repelling force. Thereby, the component possessing the stronger repulsive force moves to the vapour 

phase (Noll et al., 2013).  

 

Process description 

Figure 5-16 shows the schematics of the proposed process. The feed stream of CF4 – NF3 enters the 

extractive distillation column (EDC), and the simulation studies assess the separation at the different 

pressures and feed stream compositions with the solvent and gas feeds entering the column at the 

different stage numbers. A stripping column (SC) is placed after the extractive distillation column to 

purify NF3 and recover the valuable solvent. Due to the price of the solvent used in this process (TFE-

TFP ether) stripping is an important factor. The bottom of the stripping column is directed to a mixer. 

The solvent is mixed with a make-up flow in the mixer to compensate for the loss of solvent via the 

gaseous product of the extractive distillation and stripping columns. Thereafter, the solvent flow is 

directed to a pump to regulate its pressure. The solvent then enters a heat exchanger to cool down to 

the required temperature. A mixer is added to the process in a way that the recovered solvent from 

the process is used as the solvent feed to the extractive distillation column.  

 

Design approach 

The removal efficiency of the extractive distillation column depends on the properties of the material, 

feed and solvent flow rates, operating pressure, number of theoretical stages, feed composition and 

solvent/gas stage location (Fink, 2016). Usually, a range of acceptable variations is applied to find 

the most suitable parameters affecting the separation efficiency. Hence, several variations were tested 

on the removal efficiency of the column including solvent flow rate, column pressure, column 

temperature, the actual number of stages and feed composition to obtain the most appropriate 

operating condition which aims to reach the NF3 product with a purity greater than 99.999 %.
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Figure 5-16. Schematic diagram of the proposed NF3 purification process using extractive distillation. 
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The stripping column design is affected by the several parameters including the degree of solvent and 

solute recovery, the operating conditions, number of theoretical stages and the heat effects. The 

operating conditions must be selected at the highest possible temperature and lowest possible pressure 

that the liquid solvent does not vaporise. The stripping column specifications targeted such that the 

solvent and gas recoveries are maximised. Different stage numbers between 3 to 6 were tested to find 

the most suitable number for the separation.  

 

Process design 

An extractive distillation column was designed and run using a feed of NF3 – CF4 with the solvent of 

TFE-TFP ether to obtain NF3 product with the grade of 99.9999 %. The sensitivity of the extractive 

distillation tower was analysed by varying operating pressure (0.10 – 2.50 MPa), theoretical stage 

numbers (20 – 100), feed composition (50 – 99.2 % NF3) and feed entrance stage number with the 

aim to obtain the highest purity. From the simulation studies, a 100- stage column was deemed to be 

the most suitable column operating at 0.10 MPa with the gas and solvent flow rates of 100 and 500 

kmol.hr-1, respectively. The results showed that the best entrance position for the gas and solvent 

feeds are at the 50th and 3rd stages, respectively with stage 1 being the top stage.  

 

Table 5-49 shows the stream table of the proposed extractive distillation process with a 100-

theoretical stage extractive distillation column and a 6-theoretical stage stripping column, operating 

at 0.10 MPa with the 100 kmol.hr-1 gas feed entering from 50th stage and 500 kmol.hr-1 solvent feed 

entering from 3rd stage. According to the table, the gaseous product of the extractive distillation 

column contains 99.99996 % CF4 (0.4 ppm NF3) obtained at 145.58 K. The bottom product of the 

extractive distillation column enters the 6-theoretical stage stripping column with the temperature of 

165.55 K. The gaseous product of the stripping column is the NF3 product with 99.99995 % purity 

(0.5 ppm CF4). The bottom product of the stripping column is obtained at 365.27 K and purity of 

99.9999996 % TFE-TFP ether and it is then combined with the makeup flow. The makeup flow is 

overall solvent loss through the gaseous products of the extractive distillation and stripping column 

which is 1.78×10-6 kmol.hr-1, indicating a negligible amount of solvent loss. The heat exchanger then 

regulated the temperature of the TFE-TFP ether to the solvent feed temperature of 144.46 K.  
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Table 5-49. Stream table of the extractive distillation process with a 100-theoretical stage extractive distillation column and 6 theoretical stages 

stripping column for the 50 % NF3 feed entering from 50th stage operating at 0.10 MPa with gas and solvent (entering from 3rd stage) flow rates of 

100 and 500 kmol.hr-1.    
Solvent feed 

(TFE-TFP 

ether) 

Gas feed 

(NF3-CF4) 

CF4 (EDC-

distillate) 

Bottom 

(EDC) 

NF3  

(SC-top) 

PFE  

(SC-bottom) 

Makeup S1  

(mixer1) 

S2 

(pump) 

S3 (Heat 

exchanger) 

 

T/ K 365.27 144.46 145.58 165.55 165.68 365.27 365.27 365.27 365.27 365.27 

P/ MPa 0.100 0.100 0.100 0.101 0.100 0.100 0.100 0.100 0.100 0.100 

Mole flows/  kmol.hr-1 

Total 500.0000018 100 50 550 50 500 1.78E-06 500.0000018 500.0000018 500.0000018 

NF3 1.78E-06 50 2E-05 49.999978 49.999976 1.8E-06 0 1.78E-06 1.78E-06 1.78E-06 

Solvent 500 0 0 500 2E-06 499.999998 1.78E-06 500 500 500 

CF4 1.30E-13 50 49.99998 2E-05 2.2E-05 0 0 1.29E-13 1.29E-13 1.29E-13 

Mole fractions/ % 

NF3 4E-07 4E-06 4E-05 9.0909051 99.99995a 4E-07 0 4E-07 4E-07 4E-07 

Solvent 99.9999996 99.9999996 0 90.9090909 4E-06 99.9999996 100 99.9999996 99.9999996 99.9999996 

CF4 0 0 99.99996 4E-06 1E-06 0 0 0 0 0 
a
  NF3 product mole fraction (%)
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A 100-theoretical stage extractive distillation column was used with a feed of 50 % NF3 at the pressure 

of 0.10 MPa. Figure 5-17 shows the composition profile of the vapour and liquid phases versus the 

stage number. It is clear from the composition distribution of the vapour phase (figure 5-17 (a)) that 

the NF3 composition decreases moving up the column; at the 72nd stage reaching the composition of 

98.98. Thereafter the composition profile changes with a sharp slope until it reaches to 0.0085 in the 

gaseous product at 38th stage and after that, the changes can be observed only in 4th decimal places 

and more. It is clear from the liquid composition graph (figure 5-17 (b)) that the NF3 composition is 

highest at the 100th stage and approaches zero above the 21st stage of the column. The trends show 

that the use of TFE-TFP ether increases the relative volatility of the CF4, escaping to the vapour phase 

which is expected from the results obtained from HPVLE measurements. Table 5-50 lists the NF3 

composition at each stage.  

 

  
(a) (b) 

Figure 5-17. Composition profile of ___ NF3, --- CF4 and ___ TFE-TFP ether in a) vapour phase and 

b) liquid phase of the 100-stage extractive distillation columns for the 50 % NF3 feed entering from 

50th stage operating at 0.10 MPa with gas and solvent (entering stage of 3rd stage) flow rates of 100 

and 500 kmol.hr-1. 
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Table 5-50. NF3 compositions in both liquid and vapour phases on the respective stage of the extractive distillation column operating at 0.10 MPa using a 

100-theoretical stage extractive distillation column with 100 kmol.hr-1 gas feed of 50 % NF3 entering from 50th stage and 500 kmol.hr-1 solvent entering from 

3rd stage. 

Stage 

no. 

𝒙𝑵𝑭𝟑 𝒚𝑵𝑭𝟑 Stage 

no. 

𝒙𝑵𝑭𝟑 𝒚𝑵𝑭𝟑 Stage 

no. 

𝒙𝑵𝑭𝟑 𝒚𝑵𝑭𝟑 Stage 

no. 

𝒙𝑵𝑭𝟑 𝒚𝑵𝑭𝟑 Stage 

no. 

𝒙𝑵𝑭𝟑 𝒚𝑵𝑭𝟑 

1 1.00E-06 1.00E-06 21 5.80E-05 7.60E-05 41 0.0199 0.0263 61 0.480 0.772 81 0.579 0.9994 

2 1.00E-06 1.00E-06 22 7.80E-05 1.02E-04 42 0.0264 0.0349 62 0.502 0.818 82 0.58 0.9995 

3 1.00E-06 1.00E-06 23 1.05E-04 1.37E-04 43 0.0348 0.0462 63 0.520 0.858 83 0.58 0.99967 

4 0.0E+00 1.00E-06 24 1.41E-04 1.84E-04 44 0.0455 0.0608 64 0.534 0.891 84 0.58 0.99976 

5 0.0E+00 1.00E-06 25 1.89E-04 2.46E-04 45 0.0591 0.0796 65 0.545 0.917 85 0.58 0.99982 

6 1.00E-06 1.00E-06 26 2.53E-04 3.31E-04 46 0.0761 0.103 66 0.554 0.938 86 0.58 0.99987 

7 1.00E-06 1.00E-06 27 3.40E-04 4.43E-04 47 0.0969 0.133 67 0.561 0.953 87 0.58 0.99991 

8 1.00E-06 1.00E-06 28 4.56E-04 5.95E-04 48 0.122 0.169 68 0.565 0.965 88 0.58 0.99993 

9 2.00E-06 2.00E-06 29 6.11E-04 7.98E-04 49 0.150 0.212 69 0.569 0.974 89 0.58 0.99995 

10 2.00E-06 3.00E-06 30 8.19E-04 1.07E-03 50 0.193 0.261 70 0.572 0.981 90 0.58 0.99996 

11 3.00E-06 4.00E-06 31 1.10E-03 1.43E-03 51 0.207 0.283 71 0.574 0.986 91 0.58 0.99997 

12 4.00E-06 5.00E-06 32 1.47E-03 1.92E-03 52 0.224 0.309 72 0.576 0.990 92 0.58 0.99998 

13 5.00E-06 7.00E-06 33 1.97E-03 2.58E-03 53 0.245 0.342 73 0.577 0.992 93 0.58 0.999986 

14 7.00E-06 1.00E-05 34 2.64E-03 3.45E-03 54 0.270 0.382 74 0.577 0.995 94 0.58 0.999990 

15 1.00E-05 1.30E-05 35 3.54E-03 4.63E-03 55 0.298 0.428 75 0.578 0.996 95 0.58 0.999993 

16 1.30E-05 1.70E-05 36 4.74E-03 6.20E-03 56 0.329 0.481 76 0.578 0.997 96 0.58 0.999995 

17 1.80E-05 2.30E-05 37 6.34E-03 8.29E-03 57 0.362 0.539 77 0.579 0.998 97 0.58 0.999996 

18 2.40E-05 3.10E-05 38 8.46E-03 0.0111 58 0.394 0.599 78 0.579 0.998 98 0.58 0.999997 

19 3.20E-05 4.20E-05 39 0.0113 0.0148 59 0.426 0.660 79 0.579 0.999 99 0.56 0.999998 

20 4.30E-05 5.70E-05 40 0.015 0.0197 60 0.455 0.718 80 0.579 0.999 100 0.0909 0.999999 
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Figure 5-18 shows the pressure and temperature profile of the extractive distillation column for the 

above simulation. The pressure drop of 1 kPa was considered for each stage. The pressure profile 

indicates that the pressure changes fairly stable between (0.100 and 0.101) MPa throughout the 

column. The gas and solvent streams are set to enter as the liquid with zero vapour fraction, hence, 

the gas feed temperature at the entrance is 144 K and the temperature profile remains around that 

temperature over throughout the column. The solvent stream enters the column from the 3rd stage at 

365.27 K which causes a slight increase in the temperature of the top 4 stages. There is a rapid 

temperature change near the bottom of the column which is due to the heat duty of 9.29 × 106 kJ.hr-1 

on the re-boiler to meet the flow requirement of the extractive distillation column bottom product. 

This is due to the significant difference between the compositions of the last two stages.  

 

 
Figure 5-18. The distribution of --- temperature and --- pressure at different stages of the extractive 

distillation column operating at 0.10 MPa using a 100-theoretical stage extractive distillation 

column with 100 kmol.hr-1 gas feed of 50 % NF3 entering from 50th stage and 500 kmol.hr-1 solvent 

entering from 3rd stage. 

 

The 6-theoretical stage stripping column produces NF3 with the purity of 99.9999 % and CF4 content 

of below 1 ppm (0.45 ppm). Table 5-51 shows a summary of the product streams obtained from the 

stripping column with varying stage numbers. It is clear from the table that the best results were 

obtained using a stripping column with 6 theoretical stages. The number of theoretical stages affects 

the final CF4 content in the NF3 stream significantly. The minimum amount of NF3 and CF4 in the 

stripping stream is obtained using the 6-theoretical stage column with 1.78×10-6 and 9.33×10-14 

kmol.hr-1 which consequently leads to the highest NF3 grade of 99.9999 % at the gaseous stream 
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compared to the others. This means the reduction of CF4 content from 5000000 to 0.45 ppm in the 

gaseous stream.  

 

Looking at the make-up flow figures, while the makeup flow is not significant, the maximum flow 

rate (3-theoretical stage column) is approximately 1800 times more than the minimum flow rate (6-

theoretical stage column) with 3.31 × 10-3 and 1.78 × 10-6 kmol.hr-1, respectively. Furthermore, for 

the 6-theoretical stage column, NF3 is produced at 165.68 K with just 0.13-degree temperature 

elevation compared to the bottom product of the extractive distillation column whereas the NF3 

obtained from 3-theoretical stage column is at 212.93 K with just below 40 degrees increase. This 

indicates a significant energy loss through the gaseous stream for the column with a lower theoretical 

stage number. The results indicate the significance of the number of theoretical stages on the solvent 

recovery and NF3 grade. 
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Table 5-51. Summary of the product streams obtained from stripping column at the different number of theoretical stages for the extractive distillation 

process operating at 0.10 MPa using a 100-theoretical stage extractive distillation column with 100 kmol.hr-1 gas feed of 50 % NF3 entering from 

50th stage and 500 kmol.hr-1 solvent entering from 3rd stage a.  

stage 

number 

𝑻𝑵𝑭𝟑/ K  Component NF3 stream (SC – top) Recovered solvent (SC-bottom) Make-up flow/ 

kmol.hr-1 Mole flow/ kmol.hr-1 Mole fraction Mole flow/ kmol.hr-1 Mole fraction 

3 

 

212.93 

NF3 49.997 0.99993 3.31E-03 6.61E-06 

3.31E-03 TFE-TFP ether 3.31E-03 6.61E-05 499.997 0.999993 

CF4 2.19E-05 4.38E-07 5.53E-10 1.11E-12 

4 

 

187.06 

NF3 49.99989 0.999998 9.27E-05 1.85E-07 

9.27E-05 TFE-TFP ether 9.27E-05 1.85E-06 499.99991 0.9999998 

CF4 2.19E-05 4.38E-07 1.14E-11 2.27E-14 

5 

 

168.86 

NF3 49.99997 0.9999995 3.44E-06 6.89E-09 

3.4E-06 TFE-TFP ether 3.44E-06 6.89E-08 499.999997 0.999999993 

CF4 2.21E-05 4.42E-07 3.00E-13 6.00E-16 

6 b 

 

165.68 

NF3 49.99998 0.9999995 1.78E-06 3.55E-09 

1.78E-6 TFE-TFP ether 1.78E-06 3.55E-08 499.999998 0.999999996 

CF4 2.20E-05 4.40E-07 9.33E-14 1.87E-16 
a Temperature of the bottom product for all the cases is 365.27 K 
b The best operating condition 
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5.10.1 Sensitivity analysis on the extractive distillation column pressure 

The composition of 50 % NF3 was considered as a feed stream. Results were obtained by running the 

simulation at the constant solvent flow rate of 500 kmol.hr-1 and three theoretical stage numbers of 

80, 90 and 100 while varying the pressures between (0.10 – 2.50) MPa. Table 5-52 summaries the 

results of the pressure sensitivity analysis. Figure 5-19 shows the NF3 mole fraction in the product 

stream at different pressures for the column with different stage numbers. It is clear that as the 

pressure increases from 0.10 MPa, the NF3 composition in the product stream decreases at the 

constant stage number until it reaches the minimum composition at 2.50 MPa. The figure illustrates 

that as the pressure increases the further number of theoretical stages are required to reach the desired 

product quality.   

 

 
Figure 5-19. Sensitivity analysis of extractive distillation column pressure for NF3 mole fraction 

obtained from columns with theoretical stage numbers of: ___ 100, --- 90, --- 80 with 100 kmol.hr-1 

gas feed of 50 % NF3 entering from the middle stage and 500 kmol.hr-1 solvent entering from 3rd 

stage. 

 

The reflux ratio indicates the ratio of boil-off (amount returning to the column) to the take-off (amount 

collected as the distillate). The reflux ratio was adjusted in a way that the highest product grade is 

obtained. According to table 5-52, the reflux ratio figures increase as the pressure increases. This is 

58 for the column with the operating pressure of 0.10 MPa which increases by three times to 190 at 

the pressure of 2.50 MPa. The positive outcome from the increased pressure is the improved operating 

temperature from 145.58 to 214.34 K for CF4 product and from 165.55 to 220.41 K for the bottom 

product. However, it must be considered that the increase of the reflux ratio imposes a heavy heat 

duty.  

99.99580%

99.99640%

99.99700%

99.99760%

99.99820%

99.99880%

99.99940%

100.00000%

0 0.7 1.4 2.1 2.8

N
F

3
fr

ac
ti

o
n

 i
n

 t
h

e 
S

C
-t

o
p

 p
ro

d
u

ct

P/ MPa



   
101 

Table 5-52. Summary of the pressure sensitivity analysis for three different column stages, with 100 kmol.hr-1 gas feed of 50 % NF3 entering from 

50th stage and 500 kmol.hr-1 solvent entering from 3rd stage a. 

 

P / 

MPa 

 

T Bottom 

/ K 

 

𝑻𝑪𝑭𝟒/ 

K 

 

Reflux 

ratio 

Number of theoretical stages Number of theoretical stages Number of theoretical stages 

100 90 80 100 90 80 100 90 80 

Mole fraction CF4 (EDC-

distillate) 

Mole flow CF4 (EDC-distillate) Mole fraction of NF3 (SC-top) 

0.10 165.55 145.58 58 99.99996 99.99980 99.99911 49.99998 49.99901 49.99956 99.99995b 99.99980 99.99911 

0.50 220.41 173.21 78 99.99985 99.99936 99.99736 49.99992 49.99968 49.99868 99.99985 99.99936 99.99736 

1.50 300.29 197.52 115 99.99978 99.99907 99.99632 49.99987 49.99953 49.99816 99.99980 99.99907 99.99632 

2.00 367.71 207.56 140 99.99976 99.99910 99.99639 49.99988 49.99955 49.99820 99.99978 99.99910 99.99639 

2.50 429.44 214.34 190 99.99936 99.99929 99.99641 49.99968 49.99964 49.99820 99.99950 99.99890 99.99619 
a Flow rate units are in kmol.hr-1 

b The best operating condition 
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Figure 5-20 shows the effect of operating pressure on the temperature of the column. One of the major 

drawbacks of the conventional distillation methods is their operating temperature which can be down to 

81.15 K imposing the high operation costs (Hart et al., 2006, Suenaga et al., 1991). It is clear that as the 

operating pressure increases, the column temperature is improved. As the pressure increases from 0.10 to 

2.50 MPa, the temperature of the bottom product and distillate increases from 165.51 to 429.44 and from 

145.58 to 214.33 K respectively. The temperature change for the bottom product is significant and fairly 

steep as opposed to the temperature of the distillate product. 

 
Figure 5-20. Sensitivity analysis of the pressure on the temperature of: ___ bottom product and --- 

distillate for a 100-theoretical stage extractive distillation column with 100 kmol.hr-1 gas feed of 50 % 

NF3 entering from 50th stage and 500 kmol.hr-1 solvent entering from 3rd stage. 

 

NF3 and CF4 are valuable gases that both are required in an ultra-high purity of 99.99 – 99.9999 % in the 

industry (Miller et al., 2002). While the aim of this study is to obtain high purity NF3, it is possible to 

produce a high-quality CF4. Figure 5-21 shows the effect of operating pressure on a) the CF4 concentration 

and b) the CF4 flow rate obtained as the gaseous product from the top of the extractive distillation column. 

it is clear from the figure that as the pressure increases at the constant theoretical stage numbers of 90 and 

100, the impurity content of the CF4 stream changes between 9 and 2 ppm which indicates a product with 

a significant grade. However, the use of a column with 80 theoretical stages produces CF4 with the impurity 

content of 9 ppm at 0.10 bar which increases to almost 40 ppm at 2.50 MPa. As the product quality is high, 

the CF4 flow rate obtained from the column of 90 and 100 theoretical stages differ only at 4th decimal place 

which is 3rd decimal place for that of the 80 theoretical stage column.  
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(a) (b) 

Figure 5-21. Sensitivity analysis of the pressure on a) the CF4 fraction and b) CF4 flow rate obtained as 

the gaseous product of the extractive distillation column for theoretical stage numbers of: ___ 100, --- 90, -

-- 80 with 100 kmol.hr-1 gas feed of 50 % NF3 entering from the middle stage and 500 kmol.hr-1 solvent 

entering from 3rd stage. 

 
5.10.2 Sensitivity analysis on the extractive distillation column stage number  

Table 5-53 lists the summary of the results of the stage sensitivity analysis for the extractive distillation 

column operating at 0.10 MPa with the gas feed of 100 kmol.hr-1 entering from the middle stage and solvent 

feed of 500 kmol.hr-1 entering from 3rd stage. Figure 5-22 shows the effect of theoretical stage number on 

the a) flowrate and b) concentration of NF3 in the product streams at the different theoretical stage numbers 

between 20 and 100 stages. It is clear that as the number of theoretical stages increases, the product quality 

increases form 94.96 % for the column with 20 theoretical stages to 99.9999 % for the column with 100 

theoretical stages. According to the results listed in the table, the maximum purity for the column with 20 

theoretical stages is obtained using reflux ratio of 54 which is 56 for the column of 50 theoretical stages 

and 58 for the rest of the columns. Overall, the makeup flow is just below 2×10-6 kmol.hr-1, indicating a 

negligible solvent loss. 
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(a) 

 
(b) 

Figure 5-22. Sensitivity analysis of the theoretical stage number on the a) NF3 fraction and b) NF3 flow 

rate operating at 0.10 MPa with 100 kmol.hr-1 gas feed of 50 % NF3 entering from the middle stage and 

500 kmol.hr-1 solvent entering from 3rd stage. 
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Table 5-53. Summary of the theoretical stage number sensitivity analysis for the extractive distillation column operating at 0.10 MPa with the 50 % 

NF3 gas feed of 100 kmol.hr-1 entering from the middle stage and solvent flow rate of 500 kmol.hr-1 entering from 3rd stage a. 

No. of 

stages 

Reflux ratio NF3 mole fraction % 

(SC-top) 

Mole flow NF3 

(SC-top) 

CF4 mole fraction % 

(EDC-distillate) 

Mole flow CF4 (EDC-

distillate) 

Makeup flow 

20 54 94.96983 47.48491 94.96983 47.484915 1.55E-06 

50 56 99.94732 49,97366 99.94732 49.973662 1.77E-06 

80 58 99.99911 49.99955 99.99911 49.999557 1.78E-06 

90 58 99.99980 49.99989 99.99980 49.999901 1.78E-06 

98 58 99.99994 49,99997 99.99994 49.999973 1.78E-06 

100 b 58 99.99995 49.99998 99.99996 49.999978 1.78E-06 
a Flow rate unit is in kmol.hr-1 

b The best operating condition 
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Figure 5-23 shows the results of the theoretical stage number sensitivity analysis on the CF4 a) mole 

fraction and b) flow rate obtained from extractive distillation column as the distillate. Comparing the 

results illustrated in figures 5-23 and 5-23 shows that the same trend is observed for both NF3 in the 

bottom product and CF4 in the distillate. The minimum product quality of just below 92 % is obtained 

using 20 theoretical stage column whereas the CF4 with the impurities less than 1 ppm is obtained 

using the column with 100 theoretical stages. It is clear that the extra number of theoretical stages 

operate as the further mass transfer units which enhance the separation due to the improved mass 

transfer surface.  

 

  
(a) (b) 

Figure 5-23. Sensitivity analysis of the theoretical stage number on the a) CF4 fraction and b) CF4 

flow rate for the extractive distillation column operating at 0.10 MPa with the 50 % NF3 gas feed of 

100 kmol.hr-1 entering from the middle stage and solvent flow rate of 500 kmol.hr-1 entering from 

3rd stage. 

 

5.10.3 Sensitivity analysis on the solvent stage location 

Table 5-54 summaries the results of varying solvent stage location with different theoretical stage 

numbers. The NF3 and CF4 fractions reported in the table are obtained from the stripping and 

extractive distillation columns, respectively. The simulation was run at the pressure of 0.10 MPa and 

solvent flow rate of 500 kmol.hr-1
 varying the theoretical stages between (20 and 100) stages. Overall, 

the solvent stage number of 3 obtained the best results among others. The makeup flow is almost the 

same and only differs in 7th decimal place and more which the average figures are reported. According 

to the table, the minimum product concentration is obtained using the second stage as the solvent 

stage location. As the NF3 fraction obtained from the stripping column increases, the CF4 

concentration in the product increases and the makeup flow remains the same. This indicates that the 
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solvent simply acts as a powerful entraining agent with low volatility which poses major alteration 

on the fugacity of the CF4 to escape the liquid phase which could be separated via extractive 

distillation.  

Table 5-54. Summary of the solvent stage location sensitivity analysis for the columns with different 

theoretical stage numbers at 0.10 MPa, 100 kmol.hr-1 feed composition of 50 % NF3 entering from 

the middle stage and solvent flow rate of 500 a (NF3 and CF4 fractions are obtained from top of the 

stripping and extractive distillation columns, respectively). 

No. of 

stages 

Variable Stage no. of solvent Makeup 

flow 2 3 b 4 5 

20 NF3 fraction % 94.54 94.97 93.62 91.84 1.55E-06 

 

 

 

 
NF3 flow  47.27 47.48 46.81 45.92  
CF4 fraction % 94.62 94.97 93.62 91.84  
CF4 flow 47.31 47.48 46.81 45.92 

50 NF3 fraction % 99.94 99.95 99.93 99.92  

1.67E-06 

 

 

 
NF3 flow  49.970 49.974 49.965 49.960  
CF4 fraction % 99.94 99.95 99.93 99.92  
CF4 flow 49.970 49.974 49.965 49.960 

80 NF3 fraction % 99.9986 99.9991 99.9988 99.9984 1.78E-06  
NF3 flow  49.9993 49.9996 49.9994 49.9992  
CF4 fraction % 99.9984 99.9991 99.9988 99.9984  
CF4 flow 49.9993 49.9996 49.9994 49.9992 

90 NF3 fraction % 99.9997 99.9998 99.9997 99.9996 1.78E-06  
NF3 flow   49.9998   49.9999   49.9998   49.9998  
CF4 fraction %  99.9997   99.9998   99.9997   99.9996   
CF4 flow  49.9998   49.9999   49.9998   49.9998  

100 NF3 fraction %  99.99991   99.99995   99.99994   99.99992  1.78E-06  
NF3 flow   49.99996   49.99998   49.99997   49.99996   
CF4 fraction %  99.99992   99.99996   99.99994   99.99992   
CF4 flow   49.99996   49.99998   49.99997   49.99996  

a Flow rate unit is in kmol.hr-1 

b The best operating condition 

 

5.10.4 Sensitivity analysis on the gas feed stage location 

Table 5-55 summaries the results of varying gas feed stage location with different stage numbers. The 

NF3 and CF4 fractions are obtained from stripping and extractive distillation columns, respectively. 

The simulation was run at the pressure of 0.10 MPa and solvent flow rate of 500 kmol.hr-1
 varying 

the theoretical stages between (20 and 100) stages. According to the table, the gas feed stage location 

is more efficient when it is just in the middle of the tower, obtaining the best product purity. The 

makeup flow is almost the same for the different gas feed stage location and only differs in 7th decimal 

place and more. The trends show a lower solvent loss at lees number of stages which is due to the 

less efficient separation of CF4 – NF3 mixture and it is not attributed to the number of stages. Here, 

only the average figures are reported. According to the table, moving up the tower for the gas feed 

stage location has a more negative effect as compared to the case that the gas feed stage is placed 
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below the middle of the column. This is due to the less number of mass transfer stages for the case 

with a gas stage located above the middle. Therefore, the lower CF4 concentration is collected as a 

distillate. 

 

Table 5-55. Summary of the gas feed location sensitivity analysis for the columns with different 

theoretical stage numbers at 0.10 MPa, 100 kmol.hr-1 gas feed composition of 50 % NF3 and solvent 

flow rate of 500 a entering from 3rd stage. 

No. 

of 

stage 

Gas feed 

stage 

SC – top  EDC – distillate  Makeup 

NF3 mole 

fraction % 

NF3 mole 

flow  

CF4 mole 

fraction % 

CF4 mole 

flow  

20 7 92.52 46.26 92.52 46.26 1.55E-06  
10 b 94.97 47.48 94.97 47.48  
14 94.78 47.39 94.78 47.39 

50 15 99.44 49.72 99.44 49.72 1.77E-06  
25 b 99.94 49.97 99.95 49.97  
35 99.82 49.91 99.83 49.91 

80 30 99.992 49.9960 99.992 49.9960 1.77E-06  
40 b 99.999 49.9996 99.999 49.9996  
50 99.998 49.9991 99.998 49.9992 

90 43 99.9997 49.99987 99.9997 49.99987 1.77E-06  
45 b 99.9998 49.99989 99.9998 49.99990  
55 99.9996 49.99983 99.9996 49.99983 

100 49 99.99994 49.999974 99.99995 49.999975 1.77E-06  
50 b 99.99995 49.999976 99.99996 49.999978  
56 99.99989 49.999947 99.99990 49.999949 

a Flow rate unit is in kmol.hr-1 

b The best operating condition 

 

5.10.5 Sensitivity analysis on the feed composition  

Table 5-56 lists the summary of the sensitivity analysis on the feed composition for an extractive 

distillation column with 100 theoretical stages operating at the pressure of 0.10 MPa and solvent flow 

rate of 500 kmol.hr-1. Figure 5-24 shows the sensitivity analysis results on the temperature and 

makeup flow. It is clear that as the NF3 content of the feed increases the bottom product temperature 

decreases from 165.68 to 154.57 K which is not a significant change. A similar trend is observed for 

the makeup flow which decreases by approximately ten times form 1.78×10-6 to 2.67×10-7 kmol.hr-1, 

however, the values are insignificant.  
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Table 5-56. Summary of the feed composition sensitivity analysis for a 100-theoretical stage 

extractive distillation column operating at 0.10 MPa with the gas feed of 100 kmol.hr-1 entering from 

the 50th stage and solvent flow rate of 500 kmol.hr-1 entering from 3rd stage (flow rate unit is in 

kmol.hr-1). 

Feed  

(NF3 %) 

SC – top   EDC – distillate Makeup 

𝑻𝑵𝑭𝟑/ K NF3 mole 

fraction % 

NF3
 mole 

flow  

CF4 mole 

fraction % 

CF4 mole 

flow  

50 165.68 99.999953 49.999976 99.999956 49.99998 1.78E-06 

60 162.21 99.999955 59.999992 99.999958 39.99999 9.98E-07 

70 159.58 99.999957 69.999957 99.999960 29.99996 6.38E-07 

80 157.51 99.999960 79.999965 99.999963 19.99997 4.46E-07 

90 155.83 99.999971 89.999974 99.999975 9.999998 3.33E-07 

99 154.57 99.9999999 99 99.9999999 1 2.67E-07 

 

 
Figure 5-24. Sensitivity analysis of the gas feed composition on the temperature and makeup flow 

for a 100-theoretical stage extractive distillation column operating at 0.10 MPa with the gas feed of 

100 kmol.hr-1 entering from the 50th stage and solvent flow rate of 500 kmol.hr-1 entering from 3rd 

stage. 

 

Figure 5-25 shows the feed composition sensitivity analysis for the NF3 and CF4 composition obtained 

from the stripping column and distillate, respectively. It is clear that as the feed composition increases 

at the constant pressure and stage number, the product quality increases from 99.99995 at 50 % NF3 

feed to 99.99999 at 99 % NF3 feed. The trends from both of the gases prove the fact that there is a 

negligible amount of solvent present in the product streams. This indicates that the TFE-TFP ether is 

a good separator agent with a low solvent capacity which can be recovered with a trivial loss.  
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(a) (b) 

Figure 5-25. Sensitivity analysis of the gas feed composition on the a) NF3 b) CF4 fraction in the 

product for a 100-theoretical stage extractive distillation column operating at 0.10 MPa with the gas 

feed of 100 kmol.hr-1 entering from the 50th stage and solvent flow rate of 500 kmol.hr-1 entering 

from 3rd stage.  

 

5.10.6 Sensitivity analysis on the reflux ratio  

Table 5-57 shows the summary of the reflux ratio sensitivity analysis for the extractive distillation 

column with 100 theoretical stages, 100 kmol.hr-1 the gas feed composition of 50 % NF3 entering 

from 50th stage, the solvent flow rate of 500 kmol.hr-1 entering from 3rd stage and pressure of 0.10 

MPa. Figure 5-26 shows the reflux ratio sensitivity analysis results for the makeup flow. It is clear 

that as the reflux ratio increases from 58 to 100 the makeup flow decreases from 1.78×10-6 to 1.50×10-

6 kmol.hr-1. While it shows that as the reflux ratio increases the solvent loss through distillate 

decreases, the high reflux ratio requires more energy for boiling off.  

 

Table 5-57. Reflux ratio sensitivity analysis for the extractive distillation column with 100 theoretical 

stages, 100 kmol.hr-1 the gas feed of 50 % NF3 entering from 50th stage, the solvent flow rate of 500 
a entering from 3rd stage and pressure of 0.10 MPa. 

Reflux ratio SC – top  EDC – distillate Makeup 

NF3 content % NF3 mole flow  CF4 content % CF4 mole flow 

58 99.99995 49.99998 99.99996 49.99998 1.78E-06 

60 99.99987 49.99994 99.99988 49.99994 1.78E-06 

65 99.9985 49.9993 99.9986 49.9993 1.78E-06 

70 99.989 49.994 99.989 49.995 1.77E-06 

75 99.947 49.97 99.94 49.97 1.77E-06 

80 99.8 49.9 99.8 49.90 1.77E-06 

85 99.4 49.7 99.4 49.7 1.74E-06 

90 98.6 49.3 98.6 49.3 1.70E-06 

95 97.1 48.6 97.1 48.6 1.62E-06 

100 94.8 47.4 94.8 47.4 1.50E-06 
a Flow rate unit is in kmol.hr-1 
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Figure 5-26. Sensitivity analysis of the reflux ratio on the makeup flow for the extractive 

distillation column with 100 theoretical stages, 100 kmol.hr-1 the gas feed composition of 50 % NF3 

entering from 50th stage, the solvent flow rate of 500 kmol.hr-1 entering from 3rd stage and pressure 

of 0.10 MPa. 

 

Figure 5-27 shows the sensitivity analysis of the reflux ratio on the CF4 and NF3 mole fractions in the 

product streams obtained from the extractive distillation and stripping column, respectively. It is clear 

that as the reflux ratio increases from 58 to 100 the NF3 fraction decreases from 99.9999 to 94.83, 

respectively which is a similar trend obtained for CF4. Given the makeup flow reduction versus the 

increase of the reflux ratio and looking at the impurity content in the product streams, it can be 

concluded that the decrease in product quality is only attributed to the smaller alteration of the relative 

volatility of the gaseous mixture at higher reflux ratios than the best value. It must be born in mind 

that the best operating value is obtained considering only the final NF3 purity.  

  
(a) (b) 

Figure 5-27. Sensitivity analysis of the reflux ratio on the a) NF3 b) CF4 fraction in the product 

streams for the extractive distillation column with 100 theoretical stages, 100 kmol.hr-1 the gas feed 

composition of 50 % NF3 entering from 50th stage, the solvent flow rate of 500 kmol.hr-1 entering 

from 3rd stage and pressure of 0.10 MPa. 
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5.11 O’Connell’s overall efficiency  

The number of stages that have been used so far are the theoretical number of stages. The efficiency 

of a specific section of the extractive distillation column is used to translate the number of theoretical 

stages to the actual number of trays. The efficiency is calculated as follows (Duss and Tylor, 2018): 

 

𝜂𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑛𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
𝑛𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑦𝑠

 
5.5 

 

The empirical correlation proposed by O’Connell to calculate the section efficiencies of bubble cap 

trays for the hydrocarbons (O’Connell, 1964). Among the other efforts to develop the theoretical 

based rigorous models, the O’Connell’s efficiency is still in use, however, it lacks a theoretical 

explanation (Duss and Tylor, 2018). The correlation is as follows (O’Connell, 1964): 

 

𝜂𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 0.503 × (𝑙 × 𝛼)
−0.226

 5.6 

 

where  and α denote the liquid viscosity in mPa-s and relative volatility, respectively. The viscosity 

of the TFE-TFP ether was measured to be 1.27 mPa-s at 298.15 K. Due to the limitations in the 

experimental apparatus (Anton Paar; DMA 5000; expanded uncertainty of 0.001 g/ml) it is not 

possible to measure the viscosity at 140 K and it is assumed constant with no temperature dependence. 

The O’Connell’s correlation is proposed for hydrocarbons and it is assumed that it can be used for 

TFE-TFP ether, reducing its reliability. The below section presents the comparisons between the 

results of the literature and these simulations. The stages are presented in actual tray numbers 

considering the efficiency of each process for the comparison purposes.  

 

5.12 Evaluation of the proposed process compared to literature 

Due to the industrial importance of the high-grade NF3, there have been several attempts to produce 

NF3 with 6-nine grades which were mentioned in chapter 2.2. The use of extractive distillation has 

been reported by the use of 16 different ionic liquids (Shiflett and Yokozeki, 2014) as well as a long 

list of entraining agents such as HCl and several refrigerates (Miller et al., 2002). While the use of 

ionic liquids has shown the potential to produce NF3 with impurity content of just above 200 ppm at 

best, the use of HCl obtains an excellent product with below 10 ppm impurity.  

 

The infinite dilution activity coefficient is a crucial factor in the design of the extractive distillation 

column which indicates the solvent selectivity and affinity upon the selection of the gases and 
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consequently the solvent capacity for its recovery. The work done by (Shiflett and Yokozeki, 2014) 

focuses on reporting a long list of the ionic liquids based on their infinite dilution correlated from the 

experimental phase equilibrium data. The actual phase equilibria are only reported for the 

[bmim][PF6] binary data with either CF4 or NF3 along with the infinite dilution activity coefficients 

at the 5 different temperatures. The maximum selectivity is obtained at 283.15 K with 5.53 which is 

significantly high whereas the best selectivity obtained from current work is approximately 1.57 for 

TFE-TFP ether at 283.15 K. While there is a remarkable difference between the selectivities obtained, 

it is clear that due to the electrolyte nature of the ionic liquids there is an improved interaction force 

between [bmim][PF6] and the target gaseous mixture. Due to the oxidising property of nitrogen 

trifluoride and the probable interaction with ionic liquids (depending on the thermo-physical 

condition), there is a chance of initiation of explosion regimes. Besides, the ionic liquids listed are 

not produced on an industrial scale within a feasible price range. Due to the specifications of the ionic 

liquids, it has been noted in the patent manuscript that the best quality product obtained from this 

mixture is a NF3 stream with an impurity of just above 200 ppm (Shiflett and Yokozeki, 2014). 

 

The use of strong acids is controversial in the disposal point of view, environmental issues and their 

corrosive properties. It is worth to mention that except for one case, the product grades reported in 

(Miller et al., 2002) exclude the solvent traces available in the product. While it has not been 

mentioned in the patent manuscript, according to the experimental phase data presented, HCl forms 

an azeotrope with both gases which turns the proposed process into an azeotropic distillation rather 

than an extractive distillation process. The extractive distillation is advantageous over the azeotropic 

distillation due to its considerably improved mass transfer (Noll et al., 2013).  

 

Here the feed stream composition and operation condition of the abovementioned systems are 

considered for the simulation studies with the aim to gauge the proposed process. The first two cases 

refer to the use of HCl as the separator agent for the separation of 60 % NF3 feed in the extractive 

distillation column with two different tray numbers of 122 (gas feed tray of 61) and 244 trays (gas 

feed tray of 122). Table 5-58 lists the summary of the results for the two cases and the results obtained 

from this work. According to the table for the case of 122 tray column, the reflux ratio of 70 and 

operating pressure of 1.50 MPa, the product purity of 58.3084 is obtained which is reported excluding 

the solvent traces. The increase of reflux ratio and tray number to 700 and 244, respectively led to the 

lower product quality of 57.4897. The results from simulations performed in the current work showed 

that it is possible to obtain NF3 with an impurity traces of 0.4 ppm which includes both CF4 and 

solvent traces. This was achieved using a 100-theoretical stage column with 50th and 3rd stages as the 
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solvent and gas feed stage locations, respectively as well as the reflux ratio of 110. The O’Connell 

efficiency of the column is 43.5 % obtaining 230 trays numbers. The results showed that there is a 

temperature enhancement of approximately 116 and 6 degrees for the bottom product and distillate, 

respectively obtained from this work.  

 

Table 5-58. Summary of simulation comparison for purification of 60 % NF3 gas feed at 1.50 MPa. 

No. of 

trays 

Gas feed 

stage  

Solvent 

feed stage 

Reflux 

ratio 

Product 

purity 

Tdistillate/ 

K 

Tbottom/ 

K 

Source 

122 61 -NA 70 58.3084 193.15 193.15 (Miller et al., 

2002) 244 122 -NA 700 57.4897 193.15 193.15 

230 50 3 110 99.99996 199.11 309.97 This work 

 

In addition to HCl, (Miller et al., 2002) reported using 15 other solvents which include some PFCs, 

HFCs, CFCs, refrigerants and hydrocarbons. Table 5-59 shows the summary of the results for 

purification of 99 % NF3 feed in a 120-tray extractive distillation column (gas and solvent tray 

locations of 20 and 10, respectively) with a reflux ratio of 2000, operating pressure of 1.20 MPa and 

a product temperature of 193.15 K (bottom and distillate). According to the table, the use of C3F8 and 

C2F6 is inefficient as the product quality remains almost similar to the feed composition. The impurity 

level of 1.3 and 0.3 ppm was obtained using CH2FCF3 and CHF3 as the entraining agent. Very good 

product grade of 0.1 ppm was achieved using N2O, C2H6, CH3F, HCl, CH3Cl, CHClF2, CH2F2 and 

C2H5F. It is necessary to note that the impurity results were reported without considering the solvent 

traces which would have compromised the product quality due to the high L/V ratios of the extractive 

distillation column. Most of the separating agents reported in this work (HFCs and CFCs) are banned 

by the Kyoto and Montreal protocols and are to be phased out. 

 

Simulation studies related to this part were performed at the pressure of 1.20 MPa and the feed 

composition of 99 % NF3 to compare the results between the two processes. In the first case scenario, 

given the O’Connell efficiency of 44 %, 52 theoretical stage column was attempted with gas feed 

stage of 26 and solvent feed stage of 3 to test the use of 120 trays. The results showed that with the 

reflux ratio of 95 the product with 4.251 ppm impurity is obtained. While the reflux ratio of (Miller 

et al., 2002) is significantly high, better product quality of 0.1 ppm impurity is obtained for some of 

the proposed solvents. In the second case, it was aimed to obtain a product with an impurity of below 

1 ppm. The results showed that a column of only 68 theoretical stages (gas feed stage of 34 and 

solvent stage of 3) and reflux ratio of 100 is required to obtain an ultra-pure product with impurity 

content of 0.199 ppm. The O’Connell efficiency is 43.95 % obtaining 155 actual tray numbers. The 

third simulation results showed that a column with only 96 theoretical stages (gas feed stage of 48 
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and solvent stage of 3) is required to obtain an extremely pure product with 0.012 ppm (12 ppb) 

impurity. The O’Connell efficiency is 44.48 % obtaining 216 actual tray numbers. In addition to the 

improved NF3 product quality counting the solvent traces, an extremely pure CF4 can also be 

produced. The temperature of the bottom product is approximately 90 degrees warmer than that of 

miller’s work in a lower number of stages.  
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Table 5-59. Comparison of the simulation results for the feed of 99 % NF3 at the column pressure of 1.20 MPa. 

Solvent No. of trays Gas stage Solvent stage Reflux ratio Impurity /ppm Tdistillate/ K Tbottom/ K Source   

C3F8 120 20 10 2000 9110 

193.15 193.15 
(Miller et 

al., 2002) 

C2F6 120 20 10 2000 10100 

CClF3 120 20 10 2000 1820 

C2ClF5 120 20 10 2000 1650 

C2HF5 120 20 10 2000 1150 

CO2 120 70 10 2000 50.7 

CH2FCF3 120 20 10 2000 1.3 

CHF3 120 20 10 2000 0.3 

N2O 120 20 10 2000 0.1 

C2H6 120 20 10 2000 0.1 

CH3F 120 20 10 2000 0.1 

HCl 120 20 10 2000 0.1 

CH3Cl 120 60 10 2000 0.1 

CHClF2 120 20 10 2000 0.1 

CH2F2 120 20 10 2000 0.1 

C2H5F 120 20 10 2000 0.1 

TFE-TFP 

ether 

119 26 3 95 4.251 192.36 282.10 This 

work 155 38 3 100 0.199 192.36 282.10 

216 44 3 110 0.012 192.36 282.10 
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The last case is the purification of 99.1946 % NF3 using a 200-stage column with the reflux ratio of 

5000 and operating pressure of 1.50 MPa. Table 5-60 shows a summary of the results obtained for 

this case. According to the table, HCl is capable of decreasing the impurity from 8054 to 170 ppm 

(excluding solvent traces) using 200 stages and the reflux ratio of 5000. The results from simulations 

showed that the NF3 with an impurity of 0.05 ppm (52 ppb) is achieved in an extractive distillation 

column with only 72 theoretical stages and a reflux ratio of 110. Considering the O’Connell’s 

efficiency of 43.83 %, 164 actual trays obtained for this case.  In addition, it is possible to obtain an 

extremely pure product with an impurity of 0.013 ppm (13 ppb) in a column with 87 theoretical stages 

and a reflux ratio of 110. The O’Connell’s efficiency for this case is 43.82 %, obtaining 199 actual 

trays. Furthermore, the bottom product temperature is improved by approximately 111 degrees.  

  

Table 5-60. Comparison of the simulation results for the feed of 99.1946 % NF3 at the column 

pressure of 1.50 MPa. 

No. of 

trays 

Gas feed 

stage 

Solvent 

feed stage 

Reflux 

ratio 

Impurity/ 

ppm 

Tdistillate/ 

K 

Tbottom/ 

K 

Source  

200 100 -NA 5000 170 198.15 198.15 (Miller et al., 

2002) 

164 34 3 110 0.05 198.44 309.97 This work 

199 44 3 110 0.01 198.44 309.97 This work 

 

In summary, the experimental phase equilibrium data for the binary mixtures of several solvents with 

the two gases of NF3 and CF4 were presented in this chapter. The solvents were characterised prior to 

measurements via density, refractive index and GC peak area. The experimental data were fitted to 

PR (VdW) and PRWS (NRTL) models. The PR (VdW) model was used to design the absorption and 

extractive distillation processes. Ternary measurements of NF3 + CF4 + solvents were not possible 

due to the lack of analytical devices to analyse the samples in the SA apparatus. It is one of the future 

tasks that is recommended. Moreover, it was not possible to generate binary data for NF3 – CF4 

mixture and due to the lack of this type of data in the literature, for the sake of process design, it was 

assumed that the NF3 – CF4 mixture does not form an azeotrope.  

  

The extractive distillation process proposed in this study operates at a more desirable temperature 

(144 – 440 K) than current industrial-scale operations. This includes the cryogenic distillation process 

proposed by (Fidkowski, et al., 2001) operating at 81.5 K and 0.30 MPa and the process proposed by 

(Nagamura et al., 1994) operating at 107.15 K and 0.9 MPa with the final product of 10 ppm for both 

processes. However the process proposed by (Hyakutake et al., 1990) operates almost at the same 

temperature and pressure of 144.15 K and 0.10 MPa, respectively compared to the current work, it 
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obtains product purity of 100 ppm. Due to the change in relative volatility, the number of stages in 

the extractive distillation is reduced compared to cryogenic, whereas the wider column diameter is 

required in the extractive distillation demanding more material.  

 

Membrane and adsorption separations are reported to operate at operating temperatures in the ranges 

of 323.15 < T < 433.15 K and 77.15 < T < 873.15 K, respectively (Branken et al., 2014, Hart et al., 

2006, Igumnov and Kharitonov, 2006, Singh et al., 2008, Jin and Fisher, 1996, Fisher and Jin, 1997, 

Fisher, 1998, Nagamura and Yamamoto, 1994). The results from simulations showed that it is 

possible to the recovery of up to 100 % of the NF3 from the feed of 100 kmol.hr-1
 flow rate with the 

product purity of greater than 99.9999 % (CF4 content of 0.002 ppb). Membrane and adsorption 

technologies are unable to handle this scale of production which is added to the other disadvantages 

of maintenance and cleaning costs associated with adsorbents and membranes.  

 

Additional to their high prices, the GWP of CF4 and NF3 are 6500 (Hurley et al., 2005) and 17200 

(Forster et al., 2007) compared to that of CO2 which is 1, making it necessary to recover the maximum 

possible amount of those gases. Results from this process show almost the total recovery of both 

gases with high purity from the mixture which has not been reported in any of the available 

technologies in the literature. The L/V ratio in extractive distillation is regularly high and between 5-

8 which is 5 for this study indicating another advantage to the proposed extractive distillation process 

using TFE-TFP ether.  

 

Results obtained from absorption column simulations runs showed that it was not possible to achieve 

the product purity of 99.999 %. While the results obtained from extractive distillation runs showed 

that it is possible to achieve extremely high purity NF3 with 0.002 ppm (2 ppb), the cost analysis and 

optimisation has not been performed and more efforts need to be done in that regard. Over the duration 

of the study, the price of the solvent has increased dramatically also weakening the feasibility of the 

proposed process, however, the solvent loss is very negligible and the major cost is attributed to the 

initial solvent charge to the process. Perfluorodecalin is the second best solvents after TFE-TFP ether 

with lower selectivity towards NF3 which do not exhibit the ability to purify NF3.  

 

 

 

 



   
119 

Chapter 6: Conclusions 

 

From a thorough literature review and solvent screening procedure, physical separation technology 

was selected for the separation of CF4 and NF3 because of the advantages over other techniques such 

as cryogenic, adsorption and membrane separation. 

From solvent screening, 6 suitable solvents were selected for further investigations. 

The thermodynamic HPVLE data were generated for the binary system of: CF4 + (perfluorohexane, 

perfluoroheptane, perfluorooctane, perfluorodecalin, heptafluoro butanol, tetrafluoroethyl-

tetrafluoropropyl ether) and NF3 + (perfluorohexane, heptafluoro butanol, perfluorodecalin and 

tetrafluoroethyl-tetrafluoropropyl ether). 

The optimal solvent (tetrafluoroethyl-tetrafluoropropyl ether) based on the pre-screening process was 

determined based on the pricing. The cost of this solvent was R15/ml in 2016 however the recent 

price for this solvent is R400/ml as of April 2019. 

Successful HPVLE experiments were performed for the NF3 system generating the first HPVLE data.  

While the solvents were screened on the basis of absorbing CF4, experimental results showed the 

affinity of the solvents to dissolve NF3.  

Based on the results obtained, tetrafluoroethyl-tetrafluoropropyl ether was the best performing 

chemical among the selected solvents, followed by perfluorodecalin and heptafluoro butanol. 

Preliminary absorption process simulation studies were performed using Aspen Plus® V10 using a 

column temperature in the range of (233.15 – 333.15) K, a pressure range of (0.20 – 2.50) MPa, 

solvent flow rate range of (1880 – 2200) kmol.hr-1, a feed composition range of (50 – 90) % of NF3 

and theoretical stage number of (10 – 100) stages.  

The absorption process designed is not capable of purifying NF3 up to 99.99 mole % in several case 

scenarios of pressure, temperature, solvent flow rate, theoretical stage numbers and feed composition, 

hence, the extractive distillation was attempted.  

The extractive distillation simulation runs using Aspen Plus® V10 showed the ability of the proposed 

process in producing ultra-high purity CF4 and NF3 streams with impurity contents of below 1 ppm. 

The most appropriate conditions to obtain high purity NF3 are the pressure of 0.10 MPa, column 

number of theoretical stages of 100, gas stage location of 50, solvent stage location of 3, stripping 

column with 6 theoretical stages and reflux ratio of 58. The average O’Connell’s efficiency of 44 % 

was obtained for different case scenarios.  

A comparison between the results obtained from this study and the literature data showed an improved 

product quality in a higher temperature range and significantly lower reflux ratio.  
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The benefit of this process is the high solvent, CF4 and NF3 recovery which is considered important 

due to their price as well as high GWP of the gases.  

While the price of the solvent increased dramatically over the duration of the study, weakening the 

feasibility of the process, the solvent loss through the gaseous products of the proposed process is 

negligible and only the initial solvent charge is required.  

The main conclusions obtained from this work are as follows: 

• Absorption is not a feasible method to purify NF3  

• The results from the theoretical simulation design showed that purification of the feed 

mixture to an NF3 product quality of 6-nine grades and impurity below 1 ppm CF4 is theoretically 

possible via extractive distillation.   
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Chapter 7: Recommendations 

 

In terms of the detailed simulation point of view, binary data may not be sufficient. The ternary phase 

equilibrium data combination between major and minor constituents (NF3 + CF4) + solvent systems 

is required, in order to develop a more detailed design to achieve the proposed separation. 

 

For the purpose of validating the design and getting information on the operation of an extractive 

distillation column, pilot plant trials for this separation should be conducted. A prototype of an 

extractive distillation column will provide the opportunity to study the effect of pressure, temperature, 

liquid flow rate as well as the time required to attain equilibrium and separation.  

 

It is recommended to investigate the possibility of using a cheaper solvent and performing an 

intensive energy analysis which could help to develop a process overcoming the current industrial 

issues. 

 

To complement the experimental work, it is necessary to establish a functional group for the UNIFAC 

group contribution method specific for NF3. Due to the toxic nature of the fluorinated chemicals, 

measurements are dangerous, hence the development of a predictive tool is essential.  
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Appendices 

Appendix A: A review of the literature data 

 

As a part of the solvent selection process, it is essential to consider the thermodynamic data 

presented in the literature. In the following appendix, more than 117 systems presented in the 

literature and their results were studied and classified into three groups of T-x, P-x-y, and P-x data 

sets. 

 

A.1 Temperature – composition data 

In the literature, a wide range of T-x data is presented at 0.1 MPa for the systems, including 

tetrafluoromethane and various solvents. The published data are generally (except for a few sets) 

in the range of 273.15 to 313.15 K. Tetrafluoromethane exhibited the highest solubility in two 

solvents, namely hexaflurobenzene (C6F6) and perfluorotributalamine (C12F27N). Given that the 

data were measured at 0.1 MPa, it will certainly show significant growth in the case of increased 

pressure. The comparative T-x diagram of the CF4 solubility is shown in figure A-1. 

 

 
Figure A-1. The comparative T-x diagram for some of the published data of CF4 + 

solvents. The solvents include;  methanol (Borghi et al., 2015), ethanol (Sousa et al., 

2010), propanol (Sousa et al., 2010), butanol (Sousa et al., 2010), benzene (Evans and 

Battino, 1971),  toluene (Field et al., 1974),  m-xylene (Byrne et al., 1975), mesitylene 

(Byrne et al., 1975), 2-butanol (Borghi et al., 2015), bromobenzene (Sousa and 

Fonseca, 2014), 2-methylcyclohexane (Field et al., 1974), dodecane (Wilcock et al., 

1977), decane (Hesse et al., 1996), tetradecane (Wilcock et al., 1977), water 

(Cosgrove and Walkley, 1981), cyclohexanone (Gallardo et al., 1987), 

hexafluorobenzane (Evans and Battino, 1971), perfluorotributalamine (Powell, 1972),  

2,2,2-trifluoroethanol (Mainar et al., 1996), hexamethylenoxide (Gibanel et al., 1988). 
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A.2 Pressure-composition data 

The number of P-x-y data sets in the literature for the CF4 systems is limited, which were in most 

of the cases published for the vapour phase. The P-x-y data published in the literature did not 

introduce a solvent with a significant ability to absorb CF4. The P-x-y plot is shown in figure A-

2. 

 
Figure A-2. The comparative P-x-y diagram for some of the published data of CF4 + 

solvents. The solvents include HCl ( 173.1 and 159 K) (Lobo et al., 1985), propane (

142.96,  163.07,  183.1,  203.16,  223.17,  243.12,  263.15,  283.01 and  

293.23 K) (Liu et al., 2012) and cyclooctane (Wilcock et al., 1977). 

 

A.3 Bubble point data 

There are some bubble point data published for the CF4 systems using the static-synthetic 

apparatus. The higher absorption capacity was observed at remarkably elevated pressures, 

however, the above-mentioned solvents were among the systems measured and published. There 

is not a distinguished solvent among the systems published.  The liquid-liquid equilibrium results 

are presented in figure A-3. 
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Figure A-3. The comparative P-T diagram for some of the published LLE data of CF4 + 

solvents. The solvents include butane (De Loos et al., 1989), dodecane (Hesse et al., 

1996), heptane (Wirths and Schneider, 1985), tetralin (Wirths and Schneider, 1985), 

water (Smits et al., 1997), propane (Jeschke and Schneider, 1982), cis-decalin (Wirths and 

Schneider, 1985), and methylpropane (Reisig et al., 1989). 

 

In summary, the overall review of the data presented in the literature showed that the chemicals 

from perfluorinated families exhibited improved solubility for CF4. The perfluorotributylamine 

(CAS no. 311-89-7) and hexafluorobenzene (CAS no. 392-56-3) are the solvents which CF4 

showed the highest solubility. 
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Appendix B: Chemical compatibility table 

 

The chemical compatibility of the material used in this work with the O-rings is presented in 

table B-1. 

 

Table B-1. Chemical compatibility of the gas and liquids used in this work. 

Chemical  Teflon PTFE Viton Polyurethane 

Carbon dioxide 1 1 2 1 

Tetrafluoromethane 1 1 1 1 

Nitrogen trifluoride 1 1 1 1 

Hexane  1 1 1 1 

Perfluorohexane 1 1 3 1 

Perfluoroheptane 1 1 3 1 

Perfluorooctane  1 1 3 1 

Perfluorodecalin 1 1 3 1 

Perfluoroalcohol 3 1 3 1 

Perfluoroether  3 1 3 1 
1 Compatible 
2 Compatible in low pressures 
3 Non-compatible  
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Appendix C: Fault tree analysis 

 

The fault tree analysis (FTA) was based on the potential hazards for the phase equilibrium 

measurements of the nitrogen trifluoride systems. At first, potential risks were identified, and the 

degree of importance and hazard degree was indicated. After assigning the hazard code, an FTA 

was drawn up, and the gates for each hazard were linked in place to the previous source. Table 

C-1 lists each of the gate icons.  

 

C.1 Gate symbols 

For each gate symbol, a specific definition states the relation of each input and output based on 

their degree of influence on each other.  

 OR gate - the output occurs if any input occurs. 

 AND gate - the output occurs only if all inputs occur (inputs are independent). 

 Exclusive OR gate - the output occurs if exactly one input occurs. 

 Priority AND gate - the output occurs if the inputs occur in a specific sequence specified by 

a conditioning event. 

 Inhibit gate - the output occurs if the input occurs under an enabling condition specified by a 

conditioning event. 

 

Table C-1. Gate symbols and their meanings  

 

     

OR gate And gate Exclusive OR gate Priority AND gate Inhibit gate 

The Hazards are classified into three groups of: 

 The gas release under the fume hood 

 The potential release of gas by dropping the cell outside the fume hood 

 

C.2 The gas release under the fume hood 

The chance of occurrence of this set of gas release is due to human mistakes including negligence, 

fatigue, or lack of attention to possible gas leakage signs. The human errors may include a fault 

in the fitting connected to the apparatus, filling the cell up to a pressure higher than the permissible 

pressure leakage of the NF3 cylinder or leakage during the process of filling the vapour-liquid 

mixture. 
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In the event that the equilibrium cell exceeds the pressure limit (10.00 MPa for the transducer and 

17.50 MPa for the Swagelok valve), there is a likelihood of failure in the respective compartment, 

which will lead to gas leakage. All of the above release gas to the environment only if there is a 

problem in the fume hood suction, with the most important factor being the failure of the power 

supply. According to the calculations performed for the concentration of gas in the fume hood, in 

the event of a power failure and simultaneously releasing the total gas from the equilibrium cell 

(a completely unlikely event), the impurity concentration does not exceed IDLH. Due to the use 

of special masks and cartridges, the gas concentration is below the PEL (100 ppm) that does not 

threaten the user's risk. 

 

In the event of such an accident, the laboratory area should be evacuated immediately so that 

other laboratory members are not exposed to the gas leaked. The fault tree analysis of the gas 

leakage is shown in figure C-1. 

 

Given that the molecular mass of nitrous trifluoride (71 g/mole) is higher than air (29 g/mole), if 

there is a major leakage, it will direct to the floor and until the full evacuation of the laboratory 

area, there is the low possibility of a large inhalation of this gas. It should be noted that the lab 

should be evacuated immediately after the electricity tripping.
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Figure C-1. Fault tree analysis for the P-x measurements of NF3 + identified solvents (gas leakage). 
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C.3 Release of gas outside the fume hood 

The cell weighing is required to prepare the vapour-liquid mixture. The corresponding balance is 

located outside the fume hood, and the cell is weighed three times while carrying the gas (four 

times in total). The weighing requires manual handover of the cell. There must be sufficient 

precaution during the cell transfer to prevent it from dropping. Due to the fact that the Sapphire 

tube is protected by two flanges made of SSL 316, there is a low possibility of sapphire tube 

breakage as it is enclosed by two thick flanges from top and bottom, respectively. In the event of 

cell breakage or fracturing, the concentration of gas in the laboratory environment reaches less 

than 10 ppm. In any case, the lab environment should be evacuated quickly to prevent any risk. 

The FTA for this case of leakage is shown in figure C-2. 

 

 
Figure C-2. Fault tree analysis for the case of weighing the cell out of the fume hood. 

 

C.4 Exposure limits 

The maximum allowed limit for working with nitrogen trifluoride has been presented in various 

work environments by different organisations. In different exposure limits including threshold 

limit value (TLV) by the ACGIH 2001, permissible exposure limit (PEL) by the OSHA 2003, 

recommended exposure limit (REL) by the NIOSH 2004, and permissible concentration standard 

by the COLA 2003 the limits are set to be 10 ppm for 8 hrs of working per 5 days of week. 

Immediately dangerous to life or health (IDLH) limit is set to be 1000 ppm, which can severely 

affect vital organs such as blood system, liver, and kidneys. With the use of a 3 M, 6500 masks 

with a fluorinated gas specified cartridge and filter; the IDLH limit is multiplied by 10, reaching 

10000 ppm (OSHA). The affected organs and exposure routes of the NF3 are listed in table C-2.  
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Table C-2. NF3 target organs and limits. 

Material Exposure route Critical effect 

Nitrogen trifluoride Inhalation, blood Blood, liver and kidneys 

  

C.4.1 NF3 Decomposition and reactivity 

The NF3 decomposes at temperatures higher than 100 o C as well as the presence of sparks, even 

if they are not visible. Rogers (1961) investigated the reactivity of NF3 with water at 373 K for 

seven days, resulting in HF formation:  

 

NF3 +2H2O → 3HF + HNO2  

C.1 

 

Klapotke (2006) ignited the gaseous mixture containing NF3 and water vapour by sparking and 

then reacted according to the following equation:  

 

2NF3 +3H2O → 6HF + NO + NO2  

C.2 

 

Sinke (1965), studied the reaction of hydrogen and NF3:  

 

2NF3 +3H2→ N2 +6HF  C.3 

 

The NF3 decomposition and reactions lead to the production of different material including NF3O, 

F2, HF, NO2, NO, N2O, HNO2, and HNO3. The health issues (NIOSH 2004 and ACGIH 2012) 

and toxicity information of the decomposed material are listed in the tables C-3 and C-4. 

 

Table C-3. Hazards and decomposition products of NF3 to health. 

Material  Exposure routes  Target organs  TLV basis-critical effect  

Fluorides  Inhalation  Blood, liver, kidneys  Anoxia, Irritation, bone; 

fluorosis  

Fluorine (F2)  Inhalation, skin and 

eye contact  

Eyes, skin, 

respiratory system, 

liver,  

kidneys  

Irritation  

Nitric acid 

(HNO3)  

Inhalation, ingestion, 

skin and eye  

contact  

Eyes, skin, 

respiratory system, 

central  

nervous system  

Irritation; corrosion; 

pulmonary  

oedema  

Nitric oxide 

(NO)  

Inhalation  Blood, liver, kidneys  Anoxia; irritation; cyanosis  

Nitrogen 

dioxide (NO2)  

Inhalation, skin and 

eye contact  

Eyes, respiratory 

system, central  

nervous system  

Irritation; pulmonary oedema  

Nitrous oxide 

(N2O)  

Inhalation, skin and 

eye contact  

Eyes, skin, 

respiratory system  

Reproduction; blood; CNS  

Hydrogen 

fluoride (HF)  

Inhalation, skin 

absorption (liquid),  

ingestion (solution), 

skin and/or eye  

contact  

Eyes, skin, 

respiratory system, 

bones  

Irritation; bone; teeth; 

fluorosis  
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Table C-4. Occupational exposure limits/levels of NF3 and its probable decomposition products 

based on the time-weighted average (TWA) concentration for 8-h (or up to a 10-h) workday and 

a 40-h workweek. 

MATERIAL  TLV  PEL  REL  OEL  MAC  PCS  IDLH  

Fluorine (F2)  1 ppm  0.1 

ppm  

_____ _____ 0.1 ppm  1 ppm  25 ppm  

Nitric acid 

(HNO3)  

2 ppm  2 ppm  2 ppm  2 ppm  2 ppm  2 ppm  25 ppm  

Nitric oxide 

(NO)  

25 ppm  25 ppm  _____ _____ 25 ppm  25 ppm  100 ppm  

Nitrogen 

dioxide (NO2)  

3 ppm  1 ppm  1 ppm  _____ 5 ppm  5 ppm  1000 ppm  

Nitrous oxide 

(N2O)  

50 ppm  _____ 25 ppm  _____ 100 ppm  _____ _____ 

Hydrogen 

fluoride (HF)  

3 ppm  3 ppm  3 ppm  _____ _____ _____ 40 ppm  

TLV: Threshold limit value, American Conference of Governmental Industrial Hygienists (ACGIH 2002). 

PEL: Permissible Exposure Limit, Occupational Safety and Health Administration (OSHA 2003). 

REL: Recommended Exposure Limit, National Institute for Occupational Safety and Health (NIOSH 

2004). 

OEL: Occupational Exposure Limit, Japan Society for Occupational Health (JSOH 2006). 

MAC: Maximum Allowable Concentration, Deutsche Forschungsgemeinschaft (DFG 2002). 

PCS: Permissible Concentration Standard, Council of Labor Affairs (COLA 2003). 

IDLH: Immediately Dangerous to Life or Health (NIOSH 2004). 

 

The hydrogen fluoride and nitric acid among the decomposed material are highly soluble in water. 

The fluorine forms HF in water. The nitrous oxide and nitric oxide are slightly soluble and 

nitrogen dioxide react with water (Dean, 1999 and Lewis 2004). Considering the systems 

measured and the molecular structure of nitrogen fluoride, and taking into account the structural 

characteristics of the considered solvents, the probability of solubility of this gas in the 

perfluorohexane substance is anticipated to be larger than the rest of the solvents. Therefore, the 

system is modelled with by Peng Robinson equation of state and kij = 0. Using the static-synthetic 

apparatus, the composition of various percentages was calculated. Figure C-3 shows the phase 

equilibrium prediction of the NF3 + C6F14 system at 283.15 K.  
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Figure C-3. Modelling results for the NF3 + C6F14 system using Peng Robinson EoS at 

283.15 K with kij=0. 

 

At least 3 ml of the solution is required to start the experiment via a static synthetic apparatus. 

With this in mind and the densities of the solvent and gas, the compositions were calculated to 

provide the minimum and maximum amount of materials needed for each data point. 

 

The fume hood volume is calculated to be 2 m3 (2106 ml). The worst-case for the measurement 

is the situation in which there is an electricity trip together with the total release of the gas from 

the equilibrium cell. The concentration of the NF3 inside the fume is presented in table C-5 for 

the worst possible case.  

 

Table C-5. Maximum possible leakage of the NF3 from the equilibrium cell. 

Z P (MPa) NF3 volume (ml) NF3 concentration (ppm) 

0.229 1.5 333 167 

0.405 2.9 333 167 

0.576 4.5 667 334 

0.671 5.6 1000 500 

0.731 6.4 1333 667 

0.773 6.9 1667 834 
 

 

Figure C-4 shows the IDLH and the maximum possible gas leakage from the equilibrium cell. 

The red arrow is the exposure limit.  
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Figure C-4. The maximum possible release of NF3 for each point. The red arrow shows the 

IDLH limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900

C
o

n
ce

n
tr

at
io

n
 (

P
P

M
)

Volume (ml)



 
148 

Appendix D: Uncertainty Estimation 

 

It is very important to report all possible sources of uncertainty while providing the main 

measurement data. When there is more than one source of uncertainty, overall uncertainty is 

combined as standard uncertainty. The reader is referred to the works of (Soo et al., 2010) and 

(Nelson, 2012) for a detailed discussion of the procedures used in computing compositional 

uncertainty. In this report, the uncertainty was evaluated per the NIST guidelines for uncertainty 

reporting. The basic equation used for the uncertainty evaluation is as follows: 

𝑢𝑐
2(𝑦) =∑(

𝜕𝑓

𝜕𝑥𝑖
)
2

𝑢2(𝑥𝑖)

𝑁

𝑖=1

+ 2∑ ∑
𝜕𝑓

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗
𝑢(𝑥𝑖, 𝑥𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

D.1 

 

Where 𝑢𝑐(𝜃) is defined as the standard uncertainty of (𝜃). The uncertainty components of the 

equation (D.1) can be carried out using types A and B:  

Type A            𝑢𝑖(𝜃) =
𝜎

√𝑁𝑟𝑝
 D.2 

Type B           𝑢𝑖(𝜃) =
𝑏

√3
 D.3 

Where Nrp, 𝜎 and b are the number of data points repeated, standard deviation and the maximum 

error of the calibration polynomial. The combined expanded standard uncertainty is calculated 

with the coverage factor (K) of 2, giving a confidence level of 95 %.  

𝑈(𝜃) = 𝐾𝑢𝑐(𝜃) D.4 

D.1 Temperature and pressure 

The combined standard uncertainty in temperature is calculated as follows: 

𝑢𝑐(𝑇) = √𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛(𝑥)
2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)

2 
D.5 

The repeatability component is calculated through equation D.2. However, the calibration 

component is classified as Type B and is evaluated as follows: 

 

𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛(𝑇) = √𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑇)
2 + 𝑢𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑇)

2 D.6 
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Where the correlation component is obtained from calibration polynomial and standard 

component is the manufacturer uncertainty of the temperature sensor.  

The pressure standard uncertainty is calculated following the same concept which is as follows: 

𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛(𝑃)

= √𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃)
2 + 𝑢𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑃)

2 + 𝑢𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒(𝑃)
2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑃)

2 

D.7 

Where correlation, standard, atmosphere and repeatability components denote the uncertainties 

of calibration polynomial, pressure transmitted manufacturer, barometer and repeatability. The 

repeatability standard uncertainty is evaluated as type A and the other three components estimated 

using type B equation. 

D.2 Uncertainty in composition 

The experimental measurements of this work were done using two different high-pressure 

apparatuses following the SA and SS methods to fast track the measurements and validate the 

measured data. The compositional uncertainties are estimated differently for each method.  

D.2.1. SA apparatus  

The composition uncertainty of this apparatus is attributed to the measurements repeatability and 

the GC detector calibration. 

𝑢𝑐(𝑥𝑖) = √𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑖)
2 + 𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛(𝑥𝑖)

2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑖)
2 

D.8 

As the calibration is performed via direct injection of the chemical, the standard calibration 

uncertainty is obtained from the standard uncertainty in the number of moles of both components 

in the mixture and its mole fraction: 

𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛(𝑥𝑖) = √(
𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑢(𝑛𝑖))

2

+ (
𝑛𝑖

𝑛𝑖 + 𝑛𝑗
𝑢(𝑛𝑗))

2

 

D.9 

Where the standard uncertainty in the number of moles of the gas and liquid components injected 

to the GC are calculated as follows: 

 Gas            𝑢 (𝑛𝑖) = √𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑛𝑖)
2 + 𝑢𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠(𝑛𝑖)

2 
D.10 

Liquid         𝑢 (𝑛𝑖) = √𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑛𝑖)
2 + 𝑢𝑖𝑑𝑒𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑛𝑖)

2 
D.11 
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Where 𝑢𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠 and 𝑢𝑖𝑑𝑒𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 denote the standard uncertainty in the number of moles of 

injected gas and liquid, respectively. These can be evaluated using the law of propagation of the 

errors which are as follows: 

𝑢𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠(𝑥𝑖) = √
𝑢(𝑃)

𝑃

2

+
𝑢(𝑉𝑔)

𝑉

2

+
𝑢(𝑇)

𝑇

2

 

D.12 

𝑢𝑖𝑑𝑒𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖) = √
𝑢(𝑃)

𝑃

2

+
𝑢(𝑉𝑙)

𝑉

2

 

D.13 

Where the components required for evaluation of the standard uncertainties are presented in table 

C-1. Another component for the evaluation of standard uncertainty in the number of moles is 

polynomial of the calibration which is calculated as follows: 

𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑛𝑖) = ni

(|
𝑛𝑖,𝑡𝑟𝑢𝑒 − 𝑛𝑖𝑖,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑛𝑖,𝑡𝑟𝑢𝑒
|)

√3
 

D.14 

D.2.1. SS apparatus  

The standard uncertainty of composition measured using this type of experimental equipment is 

dependent on the standard uncertainties of the mass balance, masses of the components loaded to 

the cell as well as their mole fraction. This is calculated as follows: 

𝑢(𝑥𝑖) = 𝑥𝑖𝑥𝑗√
𝑢(𝑚1)

𝑚𝑖

2

+
𝑢(𝑚1)

𝑚𝑗

2

 

D.15 

Where 𝑢(𝑚1) is the standard uncertainty of the mass balance.  
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Table D-1. Standard uncertainty influences and estimates for the variables reported in this study. 

Source of uncertainty Estimate Distribution 

Pressure (P) 

P reference/MPa: Mensor CPC 8000 (25 MPag) 0.01% normal 
P reference/MPa: Mensor CPC 6000 (300 kPa) 0.01% normal 

Correlation for P/MPa (25 MPag) 0.002 rectangular 

Correlation for P/MPa (12 MPag) 0.001 rectangular 

Correlation for P/kPa (500 kPa) 0.1 rectangular 

Repeatability (average) of bubble-point P/MPa 0.01 rectangular 

Temperature (T) 

T reference /K: CTH 6500 0.03 rectangular 

Correlation for T/K 0.05 

 

rectangular 

Composition SA apparatus (xi, yi) 

Correlation for ni of CF4 2.5% rectangular 

Correlation for ni of CF4 (dilute mixtures) 4.0% rectangular 

Correlation for ni of C6F14, C7F16, C5H4F8O 2.0% rectangular 

Correlation for ni of CO2 1.5% rectangular 

Correlation for ni of C6H14 3.0% rectangular 

V of injected gas/liquid from syringea 2.0% rectangular 

T of injected gas from syringe/Ka 2 rectangular 

P of injected gas from syringe/kPaa 1 rectangular 

Liquid density of the solvents used for TCD calibration 1.5% rectangular 

Repeatability (average of max-min) of xi C6H14 + CO2 0.001 rectangular 

Repeatability (average of max-min) of xi C6F14 + CF4 0.001 rectangular 

Repeatability (average of max-min) of xi C7F16 + CF4 0.003 rectangular 

Repeatability (average of max-min) of xi C8F18 + CF4 0.001 rectangular 

Repeatability (average of max-min) of xi C5H4F8O + CF4 0.005 rectangular 

Repeatability (average of max-min) of yi C6H14 + CO2 0.0001 rectangular 

Repeatability (average of max-min) of yi C6F14 + CF4 0.0001 rectangular 

Repeatability (average of max-min) of yi C7F16 + CF4 0.0004 rectangular 

Repeatability (average of max-min) of yi C8H18 + CF4 0.0001 rectangular 

Repeatability (average of max-min) of yi C5H4F8O + CF4 0.0009 rectangular 

Composition SS apparatus (xi) 

Mass balance uncertainty/g 0.03 rectangular 
a Uncertainties inherent to the direct injection method 


