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Abstract  

Digital image steganography has been made relevant by the rapid increase in media sharing 

over the Internet and has thus experienced a renaissance. This dissertation starts with a 

discussion of the role of modern digital image steganography and cell-based digital image 

stego-systems which are the focus of this work. Of particular interest is the fact that cell-based 

stego-systems have good security properties but relatively poor embedding capacity. The main 

research problem is stated as the development of an approach to improve embedding capacity 

in cell-based systems. 

The dissertation then tracks the development of digital image stego-systems from spatial and 

naïve to transform-based and complex, providing the context within which cell-based systems 

have emerged and re-states the research problem more specifically as the development of an 

approach to determine more efficient data embedding and error coding schemes in cell-based 

stego-systems to improve embedding capacity while maintaining security.  

The dissertation goes on to describe the traditional application of data handling procedures 

particularly relating to the likely eventuality of JPEG compression of the image containing the 

hidden information (i.e. stego-image) and proposes a new approach. The approach involves 

defining a different channel model, empirically determining channel characteristics and using 

them in conjunction with error coding systems and security selection criteria to find data 

handling parameters that optimise embedding capacity in each channel. Using these 

techniques and some reasoning regarding likely cover image size and content, image-global 

error coding is also determined in order to keep the image error rate below 1% while 

maximising embedding capacity. 

The performance of these new data handling schemes is tested within cell-based systems. 

Security of these systems is shown to be maintained with an up to 7 times improvement in 

embedding capacity. Additionally, up to 10% of embedding capacity can be achieved versus 

simple LSB embedding. The 1% image error rate is also confirmed to be upheld. 

The dissertation ends with a summary of the major points in each chapter and some 

suggestions of future work stemming from this research. 
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Chapter 1. Introduction 

If all of the users of Facebook formed a country, it would be the third most highly populated 

country in the world at over 800 million inhabitants (Facebook, 2011), trailing not very far 

behind India (1.2 billion population) and China (1.4 billion population) (Rosenberg, 2011). Each 

month, users share more than 30 billion pieces of content such as status posts, photo albums, 

web links etc. (Facebook, 2011). Consider then that Facebook is just one of thousands of 

websites created especially to allow users to share content and ideas, add the effect of blogs, 

email and instant messaging - and a picture of the scale of the booming media-sharing culture 

begins to form. This culture is changing the way relationships are built, business is conducted 

and even the way people evaluate their self-worth ((Naughton, 2010),  (Gordhamer, 2009)). 

The media-sharing culture also has a significant effect on data communications and in 

particular secret data exchanges. Neutralising the threat of an unwanted observer accessing 

secret information has always been a concern wherever data has been swapped, but now 

more than ever the amount of content that can be exchanged online makes this especially 

pertinent.  

This dissertation explores the topic of steganography, which has a role to play in hiding 

transactions within digital communications and which, although relatively new within the 

digital domain, is growing rapidly in relevance and complexity (Cole & Krutz, 2003). It involves 

hiding information in seemingly-innocent transactions so that no-one viewing the exchange 

suspects this. The rate and ease with which digital media objects can be accessed, created and 

exchanged over the Internet makes them perfect carriers of secret information. The goal of 

this research is to address a shortcoming within a particular type of steganographic system 

(stego-system) that hides data in online transactions. Before this stego-system is referred to 

specifically, the concept of steganography is introduced within the field of communication 

security and in modern times. 

We start by considering the following example from (Lin K. T., 2011) where a woman named 

Jane sends an email to her friend Kevin saying: 

I’m feeling really stuffy. Emily’s medicine wasn’t strong enough without 
another febrifuge. 

At first glance, Jane appears to be simply telling Kevin about her illness, however in reality Jane 

and Kevin are spies arranging a time to meet.  



2 
 

Upon receiving the email, Kevin follows a pre-arranged protocol and extracts the second letter 

from each word to reveal the following sentence: 

Meet me at nine. 

Using an innocent-looking and unrelated sentence, Jane has transmitted a secret message to 

Kevin. Since only Kevin knows to look at the second letter of the words, only he can access the 

hidden command. Assuming that the transmitted sentence is natural-looking within the 

context of the usual messages they exchange, anyone seeing the cover sentence would not 

suspect that it carries a secret message. This is the idea behind a successful stego-system. 

Traditionally, steganography is explained in more detail using the prisoners’ problem, first 

introduced by Gustavus Simmons in 1984 (Simmons, 1984): 

Consider Alice and Bob, who are both prisoners in separate cells and who wish to hatch a plan 

to escape. The two prisoners are allowed to communicate but their exchanged messages are 

monitored by a warden Eve. If Eve finds them communicating an escape plan she will put the 

prisoners into solitary confinement; so clearly the prisoners cannot speak openly about a plan 

nor can they communicate in a way that is obviously irregular. The solution is for Alice and Bob 

to hide messages in innocent-looking exchanges so that to Eve they appear innocuous. If Alice 

and Bob agree on a particular way of embedding information (i.e. a key), only they will know 

how to extract the hidden message from the innocent-looking exchange. If Eve detects or even 

suspects that a message has been concealed, the system fails and she will punish the 

prisoners. Note that it is not necessary for Eve to determine the content of the secret 

message; a reasonable suspicion of its existence is enough for the prisoners’ communication 

system to fail since the main goal of steganography is concealment of the communication 

itself. 

1.1 Definition of Steganography 

Formally, steganography is the science of hiding information in innocent objects with the 

objective of avoiding suspicion from anyone viewing these objects. The strength of a stego-

system comes from the extent to which a warden believes that objects containing embedded 

information are innocent. In other words, the system should make it impossible for an 

eavesdropper to distinguish between an ordinary object and one that contains secret data. 

The concept of steganography is often confused with cryptography but they are quite 

independent ideas. In cryptography, it is accepted that the warden be aware of the secret 

communication and there is no attempt to disguise it. The goal is to scramble the secret 
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message in such a way as to make it unintelligible to those who don’t possess the secret-key 

indicating how to unscramble it. The strength of a cryptographic system is indicated by how 

powerful the scrambling algorithm is in preventing an attacker from deciphering the message. 

Cryptography has the disadvantage that even if the warden is not able to decipher the 

message, he/she may delete it or even alter it. A good data hiding system will usually use 

cryptography as a first layer of security to scramble the secret data and then steganography as 

a second layer to hide the scrambled data in a cover object. 

Another concept similar to and often confused with steganography is watermarking. The 

difference between the concepts of steganography and watermarking lies in their purpose. In 

steganography, the cover object used to hide the secret message is not necessarily related to 

the secret message contents, while in watermarking the hidden message is directly related to 

the chosen cover object. There are two main types of watermarking, classified by the nature of 

the watermark (Yeung & Yeo, 1998). The first is for the purpose of detecting alteration of the 

cover object by an unauthorised person and is performed by embedding a fragile watermark 

that it is easily disturbed and so can be used to detect any illicit editing of the media. The 

second is used in branding to detect copying or fraudulent use and uses a robust watermark 

indicating ownership which cannot be removed without clearly damaging the object. 

1.2 History of Steganography 

The term steganography is derived from the Greek words meaning covered writing. Before 

analogue and digital technologies, communication required the physical transportation of 

objects between parties and stego-systems were focused on hiding information in these 

objects inconspicuously.  

Steganography is first recorded to have been practiced during the Golden Age in Greece using 

wax tablets (Herodotus, 1992). The wax would be melted away, the message would be carved 

into the underlying wood and then covered again using a fresh layer of wax giving the 

appearance of a new, unused wax tablet that could be innocently transported. In a similar 

manner, a Roman emperor Histiæus used slaves to transmit secret data by shaving their heads 

and tattooing messages into their scalp (Herodotus, 1992). Once the slave’s hair grew back, he 

would travel to the required recipient, and shave his head on arrival to reveal the message.  

Later during the 14th century, some poets encoded hidden messages into their work as a 

unique signature; for example the Italian poet and author Boccaccio encoded sonnets into his 

poetry as initial letters in the work (Wilkins, 1954). In the 16th century, an Italian Renaissance 

mathematician named Jérôme Cardin (Kahn, 1996) proposed a grid that allowed the letters of 
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a secret message to be extracted from seemingly-unrelated text by placing the grid over the 

text which would mask certain letters revealing the secret message.   

Steganography became especially useful during wartime; for example, Brewster (Brewster, 

1857) proposed the well-known technique of microdots used in many battles during the 19th 

and 20th centuries. The idea was to shrink the secret message to the size of a speck of dirt that 

could only be read under high magnification. The small objects were hidden in nostrils, ears or 

under fingertips and in the corners of postcards. Another, more recent stego-system used 

invisible inks (Kahn, 1996), the first of which were organic liquids such as milk, urine or vinegar 

diluted in a honey or sugar solution. The message written in this ink was invisible once the 

paper had dried, but the intended recipient could retrieve the message by heating the paper. 

As another example, (Brassil, Low, Maxemchuk, & O'Gorman, 1995) suggested a 

steganographic principle where data is hidden in text documents by slightly shifting the lines of 

text up or down by     ⁄   of an inch. These subtle changes aren’t visually perceptible but they 

survive photocopying, allowing the message to be extracted even if the documents have been 

copied.  

Until the early 1900s, steganography was used mainly by spies and the stego-systems were 

clever tricks like the ones discussed above, with little theoretical basis. With the transition of 

communication from analogue to digital, steganography has experienced a renaissance and is 

now highly technical and mathematical. In the late 1990s, digital watermarking dominated 

research (Fridrich J. , Introduction, 2010) due to numerous lucrative applications such as 

secure media distribution and authentication. With this interest, came further research into 

steganography, especially after concerns were raised that it may be used by criminals.  

More recently, the rapid growth of the Internet coupled with high bandwidth and low-cost 

computer hardware has led to the rapid development of a media-sharing culture, as 

introduced above. This increase in digital information sharing and transfer over the Internet, 

combined with the seemingly limitless volume of content that can be uploaded, has provided 

huge potential for covert communication. With regard to steganography in particular, data can 

be hidden in digital media such as text, images, video and audio. Since electronic 

communication is susceptible to eavesdropping, security and privacy are more significant 

today than ever. Stego-systems are also becoming increasingly compact and neat, with new 

interest in implementing them on mobile and embedded devices, especially cellular phones. In 

(Stanescu, Stangaciu, & Stratulat, 2010), the authors show results suggesting how 

steganography can be used in mobile phones and tablets. Given that digital media objects 
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could also be used to store malicious data such as viruses (Debattista, 2010) or that it is 

suspected to be used by terrorists to distribute information (McCullagh, 2001), research into 

steganography is important not only to develop more robust information-transferral 

techniques but also to increase the ability to detect techniques developed by the enemy.  

1.3 Steganalysis 

Referring back to the prisoners’ problem, (Anderson R. , 1996) defines three different roles 

that Eve can take on: 

 Passive warden 

Eve only inspects exchanges between Alice and Bob but does not interfere. 

 Active warden 

If Eve suspects that Alice and Bob are transmitting secret messages, she may preventatively 

distort the exchanged objects. Unless the stego-system caters for this, some part of the 

information carried by the object will be lost. 

 Malicious warden 

If Eve thinks an active approach will inform Alice and Bob that their transactions are under 

surveillance, she may instead attempt to guess the steganographic method and 

impersonate Alice or Bob to intervene and confuse the communications. 

Steganalysis refers to how successfully Eve can distinguish between innocent objects and those 

carrying secret data when she takes on the passive warden role. If she can perform this 

classification with some certainty greater than a random guess simply by observing and 

analysing the exchanges then the stego-system is considered broken. 

Any information that Eve knows about the steganographic system a- priori can help her attack. 

Steganalytic methods can be divided into two primary categories based on the amount of 

additional information known by the warden about the system: blind steganalysis methods 

and targeted steganalysis methods.  

Targeted steganalytic techniques are constructed from the knowledge of a particular stego-

system and are designed to only detect that system, but with a high success rate. For example, 

if Eve knows the way in which the object is altered to contain the secret data, then she can 

search objects for any artefacts that indicate this type of embedding. The advantage is that Eve 

is more likely to be successful since she knows which embedding artefacts to look for, but if 

the steganographer changes the scheme, then Eve’s analysis method will be useless. Another 
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difficulty is that Eve needs to know enough information about the embedding method to 

understand what embedding artefact to look for.  

Blind steganalytic techniques in contrast are not devised to detect any particular stego-system, 

but rather the analyser uses machine learning and self-calibration techniques to analyse 

selected features of objects and classify them. Eve would need to accept a model of innocent 

objects using a set of feature vectors. In contrast to the targeted approach where a single 

feature is deduced to be an accurate detector, the blind approach requires a lot of features 

because, theoretically, blind steganalysers need to capture all possible patterns followed by 

innocent objects assuming that any embedding disturbs some of the features making 

corrupted objects detectable. The primary difficulty in the development of blind steganalytic 

techniques is deducing which features to include in the determining set, since they need to be 

noticeably changed due to data hiding but invariant with object content.  

Generally, blind analysers detect a wider range of stego-systems but with less success than a 

targeted steganalyser for any individual stego-system. The primary advantage with blind 

analysers is that they may also, rather unintentionally, classify objects corrupted from stego-

systems not used during training if the new stego-system also happens to disturb some 

features in the chosen set. 

1.4 Digital Image Steganography 

As stated above, modern-day stego-systems exist primarily in the digital domain and involve 

hiding information in media transactions carried over the Internet meaning data is hidden in 

images, video, text or audio. Out of all digital media objects, digital image transactions are the 

most common on the Internet. On Facebook alone, 2.5 billion photos are uploaded every 

month ((ReadWrite Cloud, 2010),  (Answers.com, 2011)). If secret transactions are to occur as 

inconspicuously as possible, steganographers should use the most common form of exchanged 

media as cover objects for communication which are digital images. The predominance of the 

use of digital images as covers over other media in steganography applications, as of 2008 

(Johnson & Sallee, 2008), is shown in Figure 1-1.  
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Figure 1-1. Proportion of cover types used in digital stego-applications 

Given these statistics, it should be clear why it is appropriate that the research in this 

dissertation be concerned with digital image steganography - steganography focused on 

embedding secret messages within digital images. Unless otherwise noted, all stego-systems 

discussed in this document from hereon will refer to digital image stego-systems. 

Digital image steganography finds application across many fields, ranging from secret pledges 

of undying love between a pair of teenagers to the corporate, military and medical fields. A 

state secret, a command, trade secrets or perhaps private medical information may be 

transmitted discretely using steganography especially when the transaction occurs over a 

public channel.  

Digital images may be stored and transmitted in either uncompressed or compressed format 

but given the limited bandwidth of the Internet the uncompressed version is considered 

wasteful and clumsy. In particular, to provide high levels of compression, the Joint 

Photographic Experts Group (JPEG) developed the JPEG compression standard which has 

become extremely popular for digital image storage and transmission (Braga, 2010). It is thus 

evident that for any digital image stego-system to be effective, it should cater for this 

compression scheme.  

JPEG compression is lossy, causing corruption of image data, the extent of which is determined 

by the amount of compression performed. For stego-systems, this poses a threat when secret 
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data is embedded into the image prior to compression and thus requires implementation of 

error correcting codes to compensate for the inevitable data corruption. Unfortunately, this 

has a negative effect on embedding capacity because error correcting schemes require 

transmission of redundant overhead bits (that take up space in an image that could be used for 

secret data) that will be used at the receiver to detect and correct erroneous bits. 

A type of stego-system that embeds into digital images and tends to accommodate JPEG 

compression, called cell-based systems, has emerged as particularly secure. These systems 

confuse blind steganalysers by randomising the areas of the image into which data is 

embedded. However, as only select areas of the image are used when combined with the 

requirement for error coding means that the embedding capacity for these systems is 

comparatively low. However, the data embedding and error correcting schemes used in cell-

based systems have not been determined analytically in the literature thus far, and so this 

research addresses the extent to which these schemes can be chosen more methodically so 

that embedding capacity is improved while maintaining good security properties. 

1.5 Research Problem Statement 

With relevant background regarding digital image steganography explained, the main purpose 

of this research can now be stated. 

Given the relevance of cell-based systems in modern digital image steganography, the main 

issue addressed in this dissertation is how to develop an approach to analytically determine 

data handling (i.e. data embedding and error coding) schemes for cell-based stego-systems so 

that embedding capacity is improved and security properties are maintained. This approach 

should give rise to a set of data handling parameters that can then be implemented in the 

context of cell-based systems and tested for performance. 

1.6 Research Methodology 

In order to address the research problem statement, certain steps need to be taken. The 

research methodology refers to the logical sequence of actions required to gather sufficient 

knowledge to address the research problem statement and to test the results. The 

methodology can be broken down into the following four stages: 

1. The first stage requires background research to develop an understanding of the field of 

digital image steganography, including the general philosophies behind design, generic 

system models and terminology. In the process, an understanding of the context within 

which cell-based systems were developed and their purpose is acquired.  
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2. The second stage requires analysis of cell-based systems and identification of potential 

areas of improvement in terms of data embedding and error correction. 

3. The third stage requires implementation of a simulator to re-enact cell-based systems and 

to analyse the extent to which improvements can be made. This results in the proposition 

of new data embedding and error coding schemes. 

4. In the final stage, the new data handling schemes are placed back into context and are used 

within cell-based systems that are then tested for security and the extent to which 

embedding capacity has been improved. 

1.7 Dissertation Roadmap 

Chapter 2 presents a model of the digital image steganographic systems considered in this 

dissertation along with relevant terminology and system characteristics. The development of 

digital image stego-systems is then traced, which provides the context within which cell-based 

systems were developed. The operational steps of cell-based systems and their varieties are 

then presented. 

Chapter 3 introduces a new approach to embedding data and correcting errors in cell-based 

systems, based primarily on accommodating the effects of lossy JPEG compression. This 

approach is explored further and data handling parameters are derived. 

Chapter 4 tests the new data embedding and error coding systems with respect to security, 

embedding rate and error rate requirements. 

Chapter 5 summarises the main points of the dissertation and discusses the extent to which 

the original goals presented in this chapter are addressed. Some suggestions for future work 

that could build on this research are provided. 

1.8 Published Works 

The published works based on the research described in the dissertation are: 

1. Optimising the Error-Free Embedding Rate in Variable Cell-Size Steganographic Schemes 

at the Military Information and Communications Symposium of South Africa (MICSSA) 

2011 

2. Quantifying Steganographic Embedding Capacity in DCT-Based Embedding Schemes at the 

Southern African Telecommunication Networks and Applications Conference (SATNAC) 

2011 



10 
 

Chapter 2. Digital Image Steganographic Systems 

So far, the relevance of digital image steganography as a field of research given the 

predominance of digital image exchanges on the Internet has been discussed. These digital 

images can be stored in compressed or uncompressed formats but given bandwidth limitations 

on channels over the Internet plus the significant volume of storage required for the huge 

number of images, compressed formats are more useful and thus popular and in particular 

JPEG compression is extremely common. 

Within digital image steganographic systems, cell-based systems have emerged as particularly 

secure and are designed to cater for the likely application of JPEG compression but 

unfortunately display relatively low embedding capacity properties. However, data embedding 

and error coding systems have not been determined analytically in the literature thus far, and 

so there is an opportunity to improve embedding capacity of cell-based systems by 

determining more effective data handling procedures. This idea forms the foundation for this 

research which aims to develop an approach to doing this. 

Before this approach is developed specifically, this chapter formally defines the relevant 

properties of digital image steganographic systems, contextualises and motivates cell-based 

systems within digital image steganography and discusses cell-based systems as they are 

currently presented in the literature. 

2.1 Classification of Steganographic Systems 

Many varieties of stego-systems exist and the nature of the systems referred to in this 

dissertation is now clarified. Stego-systems may be broadly classified according to 

dependencies between the secret data and cover image, the role of the key and the behaviour 

of the warden. 

2.1.1 Relationship between Secret Message and Cover Image 

In the first broad category, stego-systems vary according to the relationship between the 

secret message and the image into which it is hidden. As presented by (Fridrich J. , 2010), there 

are three main types of stego-systems based on this: 

 Steganography by cover selection 

Alice has access to a fixed database of images, and she chooses the one that communicates 

the required message based on some features such as a certain sequence of colours. This 

has the disadvantage that Alice may have difficulty finding an appropriate image.  
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 Steganography by cover synthesis 

Alice creates a cover so that it conveys the required message. She can do this, for example, 

by placing certain objects in the frame of a photograph which she then uses as the cover 

image. However, this is clumsy and difficult for Alice, who needs to keep setting up frames 

and taking photos. 

 Steganography by cover modification 

Alice starts with any cover image and embeds data into it by modifying it according to some 

protocol. This type of stego-system is the most practical for communicating large amounts 

of data out of the three categories listed here because Alice can theoretically select any 

image as a cover. This is the most studied steganographic paradigm. 

Since steganography by cover modification is, by far, the most favoured by the research 

community, this form of steganography is assumed here.  

2.1.2 Key Type 

The concept of a key was mentioned in Chapter 1 as something shared between the sender 

and intended recipient only and which provides the specifics of the way in which data is 

embedded for a particular transaction. For example, in the case of Jane sending her friend 

Kevin an email arranging a meeting time as in Chapter 1, the stego-system is the embedding of 

one sentence into another but the key specifies which letters in the transmitted sentence 

should be extracted to reveal the message. In the example provided, the key for that specific 

transaction indicated to Kevin to extract the second letter of each word. 

In the prisoners’ problem, it is assumed that Eve knows the complete steganographic 

algorithm used by Alice and Bob with the exception of the transaction-specific key which was 

agreed upon by the prisoners before imprisonment. The expectation that the stego-algorithm 

but not the stego-key be known to Eve is called Kerckhoffs’ principle which states that security 

should be maintained not by the secrecy of the system but be based on the key. First 

articulated in 1883 (Kerckhoffs, 1883), it stems from experience through espionage where the 

stego-algorithm was usually discovered by the enemy. In this event, the security of the stego-

system should not be threatened. 

  



12 
 

The varying role and nature of the key was first used to classify stego-systems in (Anderson R. , 

1996). The given system categories are: 

 Pure systems 

No key is used. Once the stego-system itself is known, the hidden message can be 

extracted. This system does not follow Kerckhoffs’ principle and is considered poor. 

 Secret-key (Symmetric) systems 

The same key is used to both embed and extract the hidden information from the image 

and it is assumed that this key is secretly shared between the sender and intended 

recipient. 

 Public-key (Asymmetric) systems 

These systems use two keys – a public key that is openly published and a private key known 

only to the intended recipient. The information is embedded using a public key and 

extracted using the private key. Contrary to secret-key systems, these systems exhibit 

asymmetry in that the key used to embed information in the image is not the same one 

used to extract that secret information. 

Secret-key systems are the most popular in the literature, and this type of system will be 

assumed in this dissertation. 

2.1.3 Role of the Warden 

The possibilities of warden behaviour were already described in Chapter 1 as passive, active or 

malicious. Steganalysis was defined as the science of distinguishing between innocent and 

corrupt digital images in the case of the passive warden scenario which is by far the most 

common paradigm in the literature on digital image steganography and hence the passive 

warden scenario is the assumed model for this work. 

2.2 Stego-System Model 

A formal stego-system model is shown in Figure 2-1. Figure 2-1 and the terminology explained 

in this section were agreed upon at the first international workshop on information hiding 

((Anderson R. , 1996),  (Pfitzmann & Anderson, 1996)).  
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Figure 2-1. Overview of stego-system 

Steganography is used when there is a need to transmit a secret message which is achieved by 

hiding it in a cover image. It is important that the innocent cover image itself is not publicly 

available, as this would make steganalysis by the warden a trivial exercise of comparison 

between a suspect stego-image and its innocent version.  

The message is any data represented by a bit stream. In binary digital communications, all 

information is ultimately represented in bits so there is no requirement that the cover and 

message objects have the same original form (e.g. audio, video, text). The process with which 

the message is embedded in its cover is called the embedding algorithm, the result of which is 

called a stego-image. 

Mathematically, the embedding algorithm can be expressed as shown in Equation 2-1. 

             2-1 

where   is the stego-object,   is the cover object,   is the secret-key and   is the secret 

message. 

The stego-image is then transmitted across an unsecured, public channel which we assume is 

error-free (passive warden scenario). If the stego-image is compressed, the compressed 

version is sent over the channel and may undergo steganalysis. 
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At the receiver side, the secret message is retrieved using the stego-key and an extraction 

algorithm, shown in Equation 2-2.  

            

                        
2-2 

The embedding and extraction algorithms may be designed specifically so that the original 

cover image can be retrieved by the recipient in what is called a lossless data hiding scheme. 

This is not relevant here because the cover image itself is not considered to have any value. A 

lossless scheme would be more relevant in a watermarking application. 

2.3 Pertinent Properties of Stego-Systems 

Now that the structure and relevant terminology relating to stego-systems has been described, 

the next relevant concept is that of performance of stego-systems. The requirement for 

security against steganalysis has already been mentioned and this section describes two other 

important performance requirements. It also describes in more detail what is meant by 

security and resistance to steganalysis. 

2.3.1 Primary Attributes 

(Smith & Comiskey, 1996) define three primary attributes for an information hiding system; 

imperceptibility, embedding capacity and robustness: 

 Imperceptibility  

The difficulty a warden has in detecting the presence of hidden information or, more 

specifically, the uncertainty with which a warden can classify corrupt stego-images from 

innocent cover images. This has already been mentioned under the description of 

steganalysis. 

 Embedding Capacity 

Sometimes referred to as effective payload or simply capacity, it is the amount of 

information (excluding any overhead or dummy bits) that can be hidden in a given cover 

image. The larger the capacity of a stego-system, the better the system. 

 Robustness 

The amount of modification the stego-image can undergo before the hidden information 

becomes irretrievably damaged. Depending on whether the stego-object is likely to 

undergo alteration this may or may not be a critical attribute. 
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There is general agreement in the literature that imperceptibility and capacity are the most 

important of the attributes (e.g. (Luo, Huang, & Huang, 2010), (Smith & Comiskey, 1996)). In 

other words, a good stego-system should embed as much data as possible and keep distortion 

as low as possible. It should only be robust when the application requires it. Furthermore, a 

system is effectively useless if it does not effectively combat steganalytic attacks, no matter 

how robust or how much capacity it has.  

The three properties contradict one another and thus it is impossible to achieve a system that 

has all three excellent qualities. For example, if the amount of hidden information is increased 

(i.e. increased capacity), the warden will have more chance of detecting it (i.e. lower 

imperceptibility) since inevitably more artefacts indicating embedding will be introduced into 

the cover.  

In order to maintain imperceptibility, the stego-system should firstly not introduce any obvious 

visual artefacts into the stego-image during embedding. The visual imperceptibility associated 

with a stego-image is often measured in the literature using the mean square error (MSE) or 

peak signal to noise ratio (PSNR) that is calculated as the average difference in colours 

between the innocent cover image and stego-image. However, these measures offer only a 

limited reflection of imperceptibility. To demonstrate this, consider the two images of Lena 

shown in Figure 2-2. 

 
Figure 2-2. Sample image with a clear visual distortion (a) and after JPEG compression (b) 

The photograph of Lena on the left is generated by introducing a square of black pixels in the 

centre of her face, while the photograph on the right has been generated by JPEG-compressing 

and -decompressing the original photograph of Lena. Even though the JPEG compressed image 

is more innocent-looking, it has a 20% higher MSE.  

(a) (b) 
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The main problem with the MSE is that it measures the average difference between the 

colours of the stego-image and cover image, and so localised distortion on a small scale, even 

if clearly visible, is not represented. Unfortunately, as it shall be seen, papers on the topic of 

digital image steganography still use the MSE as a measure of performance. A more useful 

measure of visual perceptibility would be the success of human suspects categorising innocent 

and corrupt images visually as done in (Dawoud, 2010). 

One additional property of a stego-system apart from the three discussed that merits 

mentioning is the computational demand in implementing it (Fan & Wediong, 2004). Generally 

the more complex the embedding scheme, the more secure the system. However, the 

processing power of modern, commercially-available computers more than suffices for any 

requirements, even in the most complex of schemes, especially since there are no 

requirements for ultra-fast real-time implementation. Restrictions in system complexity arise 

when the scheme is limited to embedded devices as seen in (Stanescu, Stangaciu, & Stratulat, 

2010). These types of limitations and applications are not assumed here, so simplicity in 

algorithm and execution time is not used as a measure of success of a system. 

2.3.2 Detectability versus Imperceptibility 

Given that most images transmitted over the Internet are displayed at some point if not 

directly uploaded to a public website, it would be foolish for a stego-system to introduce 

obvious visual distortion to a stego-image since this would immediately arouse suspicion. Over 

time the complexity of both steganographic and steganalytic techniques has increased, 

primarily in response to each other’s development in a spiral development pattern. The 

requirement of visual imperceptibility is no longer sufficient in itself and the combat between 

data hiding and the attack has moved to a more subtle, statistical level. Modern steganalytic 

techniques classify images based on changes and boundaries in statistics across an image 

rather than any visual artefacts (Fridrich & Goljan, 2002). No matter how imperceptible the 

embedding artefacts visually, appreciable statistical traces of embedding in an image may 

usually be determined.  

At this point an extra attribute is introduced - detectability which is used to refer to the extent 

to which steganalytic techniques detect stego-images through statistical means whereas 

perceptibility is now re-defined to be limited to the extent to which embedding artefacts are 

visually clear. Visual embedding artefacts will automatically introduce statistical anomalies 

(but not vice-versa) therefore a system that is undetectable will also be imperceptible but the 

opposite is not true. In this dissertation, the term naïve will be used to refer to old-fashioned 
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stego-systems that aim for imperceptibility only and complex will be used for modern stego-

schemes that aim to avoid detectability. 

Generally, the similarity between an innocent cover image and stego-image (visually or 

otherwise) may be expressed using a property called Transparency (where   is the cover 

object and   the stego-image): 

                                          2-3 

In the case of a secure system, Equation 2-3 can be re-written as shown in Equation 2-4. 

   (  (          ))    2-4 

A stego-system is secure if a warden can only guess whether an image is corrupt or innocent 

and equally determines stego-images as innocent and innocent images as stego-images. This 

can be stated differently as that the warden achieves a detection rate of 0.5. 

There are more formal definitions of security and one popular definition by Cahin (Cahin, 

2004) uses information theory to compare the distribution of innocent cover objects and 

stego-objects. His definition is given next. 

By first defining: 

 ... Set of cover object     

   ..Set of stego-object for   

    ... Set of stego-keys for   

     ... Set of all messages that can be communicated in  . 

Equations 2-1 and 2-2 can be rewritten as shown in Equations 2-5 and 2-6. 

                   2-5 

               2-6 

If we observe the transactions between Alice and Bob for long enough, the images chosen as 

covers would produce a probability distribution    in the space of all the covers   . The 

distribution represents legitimate communication between the two. If Alice and Bob now 
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embed secret information in the images (i.e. use the images to generate stego-images), if you 

again observe the transactions over a long enough period of time, the images will follow a 

different distribution    over  . Intuitively, the stego-system should be designed so that    is 

as close as possible to   . If    and    are similar, the warden will make erroneous decisions 

more often. The two distributions can be compared using the KL distance or relative entropy, 

which is a fundamental concept from information theory for measuring the difference 

between distributions, given in Equation 2-7. 

            ∑     

   

   
     

     
 2-7 

A completely secure stego-system is one where the distribution of the resultant stego-objects 

exactly follows that of innocent cover objects so that the warden cannot distinguish between 

the two distributions. In this case      , and the KL distance is zero. This means that no 

steganalytic scheme can perform better than a random guess. 

If we write: 

              2-8 

Then we say that the system is ε-secure. Through calculations not detailed here but available in 

(Fridrich J. , 2010), this translates to the fact that if we assume that the warden is not allowed 

to falsely accuse the prisoners, the smaller the value of ε, the lower the probability of 

detection. This motivates the use of the KL divergence as a measure of the security of the 

stego-system. 

It is convenient to use KL divergence for comparing two systems. For example, if you have two 

systems S(1) and S(2), we would say S(1) is more secure that S(2) if:  

   (      
   )     (      

   ) 2-9 

2.4 Taxonomy of Digital Image Steganography 

The development of digital image steganographic systems has been fuelled mainly by advances 

in steganalytic methods for detecting ever more subtle statistical embedding artefacts. Data 

hiding in the spatial, uncompressed representation of digital images came first followed by the 

idea of transform-based data hiding. The development of stego-systems from naïve to complex 

and the context within which cell-based systems were developed is explained in this section. 

Cell-based systems are then described as they are currently defined in the literature. 
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2.4.1 Spatial Domain Steganography 

The first naïve digital image stego-systems focused on embedding data bits in the spatial 

domain representation of images with the purpose of avoiding perceptible artefacts. Initially, 

the idea of transform representation and image compression were not known or referred to. 

This section explains the spatial domain representation of images and then how spatial stego-

systems were designed to operate. 

2.4.1.1 Spatial Domain Representation 

The spatial domain representation of an image deals with representing the colours of a real-

world scene in digital format. Visible light consists of the sum of electromagnetic waves with 

wavelengths between approximately 280nm and 750nm. A colour is defined by a combination 

of waves, each one of a particular wavelength and energy. Even though there are infinitely 

many different colours in the real world, the human eye is capable of distinguishing only a 

small subset of them.  

When digital cameras capture a scene, they must digitise the light information in the frame 

before storage, the result of which is the digital image. Spatially, a digital image may be 

defined as a discrete 2-dimensional function        where   and   are spatial coordinates and 

the value of   at point       is called the intensity of that point. Each point in the image is 

called a pixel.  

If an image is monochrome (grey scale), the intensity level refers to how light the pixel is, with 

the lowest intensity (0) representing black and the highest intensity (usually 255) representing 

white. Figure 2-3 shows a grey scale image (taken from (Rst, 2010)) and 5x5 pixel segment of 

this image. The corresponding intensity values for the segment are also shown based on an 

intensity range of 0-255. 
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Figure 2-3. Grey scale image and 5x5 pixel segment with corresponding pixel values 

A binary image is a specific type of grey scale image with only two intensities; 0 for black and 1 

for white. 

If the image is in colour then it would be sage to represent the colours in a way that is effective 

according to the characteristics of the human visual system. The human eye contains three 

receptors called cones that have peak sensitivities to red, green and blue light (Rockwell, 

2007). The electrical pulses from these cones are fed to the brain giving humans the ability to 

perceive colour. This idea led to the definition of the additive colour model where any colour in 

an image can be represented by a linear combination of red, blue and green. In RGB image 

representation each pixel is assigned three values corresponding to the red, green and blue 

(RGB) components. RGB images are represented by three 2-dimensional planes, one plane for 

each colour component.  

The values of   are not continuous but quantised. The more quantisation levels, the better the 

quality of the image but since there is an upper limit on the number of colours perceivable by 

the human eye the number needn’t be extremely high. It has already been stated that grey 

scale image intensities vary between 0 and 255 (represented in binary using 8 bits). Similarly, 

each of the three colour components in RGB images is commonly represented by the range 

[0,255] so 2563 = 16 777 216 different colours can be produced. 

Apart from being represented in the RGB space, colour digital images may also be described in 

other colour spaces such as YCbCr and HSV colour spaces. Effectively, colour spaces are just 

different ways of representing colours and different ones are useful depending on the 

application. Conversion between colour spaces is performed using linear equations, and all of 
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them can be derived from the RGB space. The conversion between RGB space and YCbCr (Y 

meaning luminance and (CbCr) meaning chrominance) space, for example, is given in Equation 

2-10 (Gonzalez & Woods, Image Types, 2002). 

[
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] 2-10 

Images represented in the manner explained so far are called intensity images.  

Images may also be represented as indexed images. In this format, the image is represented by 

a data matrix of integers and an associated colour map matrix. The values associated with each 

pixel act as pointers directly to colours in the map. Indexed images were used to save space by 

representing each RGB pixel by an 8 bit index into a colour table. The resultant images were of 

a lower quality than a full colour image and as storage space has become less critical, indexed 

images have lost favour and are very seldom used anymore. In this dissertation, only RGB and 

YCbCr images will be used. 

2.4.1.2 Naïve Spatial Domain Steganography 

The simplest and most-common spatial domain naïve stego-algorithm is Least Significant Bit 

(LSB) embedding. The idea is that changing the LSB in the binary representation of a particular 

pixel will change its intensity only slightly which is not perceptible, providing an element of 

redundancy where information can be stored. The process of extracting and embedding in the 

LSB of a particular pixel is shown in Figure 2-4 (adapted from (Beaullieu, Crissey, & Smith, 

2000)). 
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Figure 2-4. LSB embedding 

The simplest form of LSB embedding scans through an image column-by-column and changes 

the LSBs of the cover image to the secret data bits. Consider the secret image  (cat + blanket - 

created by cocor , 2010) and cover image (The President Elect’s Favorite Movies and Books, 

2008) shown in Figure 2-5. The cover image has the dimensions 480x640 (307 200 pixels), 

while the smaller secret (data) image has dimensions 110x130 pixels. Since each pixel of the 

data image is represented by 8 bits, it is described in total using 110x130x8 = 114 400 bits. 

 
Figure 2-5. Secret image (a) and cover image (b) 
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If each bit of the secret image is embedded into the LSB of a pixel in the cover image, the 

secret image fits into a small section of the cover image. If the image is traversed column-by-

column, the resultant stego-image is shown in Figure 2-6. 

 
Figure 2-6. Stego-image using LSB embedding with a small secret message 

The stego-image appears visually identical to the innocent cover image (making the system 

imperceptible), but there are clear embedding artefacts if the LSB planes of the images are 

compared as shown in Figure 2-7. The innocent LSB plane in Figure 2-7 (b) appears as a 

random variation of black and white dots as is common with natural images while the stego-

image plane (a) shows obvious distortion. The clear embedding artefacts in the statistical 

domain (the statistical distribution of LSBs) show the importance of steganalysis as a statistical 

analysis process (detectability) rather than a visual one (perceptibility). 

 
Figure 2-7. LSB plane of stego-image (a) and original cover image (b) 

Region of data embedding 
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Apart from its high detectability, performing LSB embedding column-by-column has the 

disadvantage that a key is not required in disagreement with Kerckhoffs’ principle, making it a 

poor system.  

An improvement would be to use a pseudo-random number generator (PRNG) to distribute 

the LSB changes throughout the image spreading the artefacts over the entire plane and 

making them less obvious. The system now also follows Kerckhoffs’ principle since the receiver 

would not know the path with which data was embedded without the key to the PRNG. 

However, even this type of LSB embedding has a significant effect on the histogram of the 

image and can be detected using a histogram attack, also known as a chi-squared attack 

(Westfeld & Pfitzmann, 1999). The effect of LSB embedding on the image histogram is shown 

in Figure 2-8. LSB embedding has the tendency of evening out adjacent bin heights. 

 
Figure 2-8. Portion of image histogram before (a) and after (b) LSB embedding 

One may ask about embedding in bits other than the LSB.  Apart from causing more noticeable 

statistical artefacts, aggressive embedding in higher order bits causes visual problems, namely 

the bleeding effect where the image appears shadow-like due to the obvious changes in pixel 

intensity. This is shown in Figure 2-9 where five least significant bits are used to carry secret 

data. 
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Figure 2-9. Original cover image (a) and ‘bleeding effect’ due to too aggressive embedding (b) 

Apart from LSB embedding, the second major segment of naïve digital image steganographic 

methods in the spatial domain involves embedding data while converting true-colour images 

into palette images using quantisation and dithering (Fridrich & Du, 1999). This concept is 

powerful but limited since palette images are generally used for computer-generated images 

where embedding changes can be easily perceived visually. For example, the plain colouring in 

the eye of Figure 2-10 (taken from (Fridrich & Du, 1999)) shows effects of simple embedding 

while dithering. Spots of grey and blue can be seen in the white part of the eye on the right. 

 
Figure 2-10. Original image (a) and non-adaptive dithering (b) 

While this topic has been extended to more adaptive methods in the papers quoted, it does 

not appear popular among the research community in recent literature. 

2.4.1.3 Complex Spatial Domain Steganography 

After naïve steganography became obsolete, the goal of stego-systems became to preserve 

the statistical distribution of cover images in line with the definition of security by Cahin 

(a) (b) 

(a) (b) 

Distortion 
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(Section 2.3.2). One of the first attempts to do this was to try to camouflage statistical data 

embedding artefacts by making them mimic the artefacts of some natural processing. The idea 

is that if the effects of embedding were identical to a natural process, the stego-images would 

have the same statistical distribution as cover images satisfying the requirement for a perfectly 

secure system.  

One popular example is a stego-system that tries to mimic the multiple noise sources that 

affect a digital image during acquisition by a camera and which vary from camera to camera 

(e.g. (Franz & Schneidewind, 2005), (Fridrich & Goljan, 2003)). In this case, it turns out that 

normally the noise is injected into the images before the analogue to digital converter of the 

camera. Adding noise to the final image does not have the same effect because the image 

would already have many complex dependencies among neighbouring pixels as a result of in-

camera processing (such as de-mosaicing, colour correction and filtering). These types of 

problems are common with these systems and are no longer commonly researched.  

To attempt to maintain some random statistical properties of a cover image, other popular 

spatial-domain stego-systems were developed that use secret matrices as keys to scramble 

and translate the pixels in the spatial domain (e.g. (Tseng, Chen, & Pan, 2002), (Lin & Delp, 

1999)). These papers also only measure performance in terms of MSE and are more just 

randomly-implemented scrambling methods rather than mathematically-justified systems. 

Instead of trying to camouflage overall statistical embedding artefacts, techniques emerged 

from LSB embedding that, rather than blindly inserting data into all pixels, attempted to 

address common specific statistical artefacts used by steganalysers. For example, one of the 

most blatant faults of simple LSB embedding used by steganalysers is the inherent asymmetry 

that shows in the image histogram because an even-valued pixel will always either keep its 

value or be incremented by one and never decremented, and the converse is true for an odd-

valued pixel. Examples of systems that aim to rectify this are presented in (Mielkainen, 2006); 

namely, LSB Matching (LSBM) which randomly adds +1 or -1 depending on the message 

stream, and LSB Matching Revisited (LSBMR) which uses a pair of pixels to carry information. 

Both systems provide only a slight to moderate increase in system security. Another system 

that built on the LSB matching algorithm is introduced in (Negrat, Smko, & Almarimi, 2010). 

Here, LSB replacement is performed in the YCbCr space rather than the RGB space stemming 

from the idea that the human eye is much more sensitive to luminance and so the secret 

message is only embedded in the chrominance portion. While this idea appears to have some 
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merit, the paper only measures the difference between the stego-image and cover image 

using the MSE and is thus presented as more naïve rather than realistic. 

LSB embedding has experienced renewed popularity as a research topic in adaptive systems 

(also known as statistics-aware or masking) that attempt to minimise statistical embedding 

artefacts in an optimised image-by-image manner (e.g. (Yang, Weng, Tso, & Wang, 2011), 

(Hsiao & Chang, 2011), (Luo, Huang, & Huang, 2010)). The idea is that a given image will have 

certain areas with a lot of detail and texture, such as those located along edges, with statistical 

properties similar to those of random data and hence provides redundancy for data 

embedding. Conversely, there will be image areas that are smooth with consistent statistical 

trends where embedding will easily disturb the statistics. As explained in (Luo, Huang, & 

Huang, 2010), simply performing general LSB embedding using a pseudo-random number 

generator does not consider the relationship between the embedding and the image content 

and so smooth regions in the cover image will certainly be contaminated after embedding, 

even at a low embedding rate. In an adaptive system the embedding can be performed 

optimally in sharp regions for a low to moderate payload, with edges being released adaptively 

for embedding if necessary. For a very high payload, adaptive systems will begin to use less 

favourable, smoother regions.  

In order to select appropriate regions in the image for embedding, a metric needs to be 

compiled that measures the favourability of a particular group of pixels. This property is 

measured against a particular threshold on both the transmitter and receiver side and should 

take into account correlation between neighbouring pixels and the contents of various lengths 

of secret data bits. A sizeable amount of literature has been written on the topic of this metric 

and popularly a measure of complexity (and thus favourability) of a region is taken as the 

number of different colours it contains, or the number of non-zero DCT coefficients (and hence 

the energy of the DCT coefficients) ((Solanki, Jacobsen, Madhow, Manjunath, & 

Chandrasekaran, 2004),  (Hedieh & Jamzad, 2010), (Velasco, Nakano, Perez, Martinez, & 

Yamaguchi, 2009)). Alternatively the idea of using edge detection to identify favourable areas 

has been presented substantially ((Solanki, Jacobsen, Madhow, Manjunath, & Chandrasekaran, 

2004),  (Luo, Huang, & Huang, 2010), (Sun, Qiu, Ma, Yan, & Dai, 2010), (Sajedi & Jamzad, 

2010)).  

One well-accepted adaptive system is called Bit Plane Complexity Steganography (BPCS) 

(Kawaguchi & Eason, 1998). In this technique, the cover image is divided into segments that 

are classified as informative or noise-like. Noise-like blocks are ones with a lot of variation 
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between pixels and are replaced by blocks of secret data. Leading on from this idea, (Kermani 

& Jamzad, 2005) replaced similar 4x4 blocks in the cover image with secret blocks. The 

problem with this simplistic approach is that it only analyses a particular block/region itself 

without looking at surrounding pixels. Therefore, by simply replacing the blocks, virtual edges 

and corners appear that present detectable global statistical irregularities. In (Sajedi & Jamzad, 

2008) this is addressed by considering block texture and neighbourhood information in the 

metric so that there is less distortion. The papers on these topics, however, tend to focus on 

minimising the visual distortion and do not test the system performance against steganalysers. 

One may wonder how the feature selection criterion for a particular adaptive system is 

transmitted to the intended receiver. One possibility is to assume that for a particular 

property, the value of that property compared to a set threshold is what decides whether or 

not some section of the image is appropriate for embedding. Both the sender and receiver 

could use this threshold as a test while embedding and extracting. However, it is not 

guaranteed that the property of the segment after embedding will still lie on the same side of 

the threshold. Systems assume that this will probably be the case. If not, then the embedded 

block is left as is, and the same data is embedded into the next block until the embedded 

segment lies on the same side of the threshold (Luo, Huang, & Huang, 2010). An alternative 

would be to use what is called wet paper codes, introduced in (Fridrich J. , Goljan, Lisoňek, & 

Soukal, 2004) and used in situations where the recipient is not aware of where data was 

embedded. In other words, we assume that that the selection rules used by the sender based 

on side information is not available to an attacker or the recipient. The metaphor of “writing 

on wet paper” is explained by imagining that some water drops have fallen onto a piece of 

paper. The sender can only modify the dry regions, but once the paper has dried, the recipient 

cannot tell which regions were used by the sender. These codes are valuable because they are 

more secure than systems where the selection rules are publicly available. Apart from adaptive 

systems, there may be certain areas of a cover image in, for example, sensitive medical or 

military applications, which cannot be edited. Wet paper codes use a principle from error-

correcting in digital communications called syndrome coding. The mathematical theory is for 

this is not explained here but may be read in (Fridrich J. , Goljan, Lisoňek, & Soukal, 2004). 

In addition to adapting the stego-algorithm according to the cover image, it may be useful to 

choose, within reason, the most appropriate cover images from a set. Images with low 

variation and a low number of colours are poor choices. For example, an image of a cloudless 

sky over a plain, snowy landscape would be a particularly poor choice as there is hardly any 

natural statistical variation and statistical anomalies due to embedding would be easily 
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introduced. Images that are commonly found on the Internet and other public sources are also 

not favourable as covers as the attacker will have the advantage of being able to compare the 

stego-object to the original cover object which will inevitably provide the most certain of 

steganalysis tests. (Hedieh & Jamzad, 2008) emphasise that the ability of steganographers to 

select an appropriate cover image is an advantage associated with steganography (versus 

watermarking for example). (Hedieh & Jamzad, 2010) suggest choosing cover images with 

maximum contrast from the database and even implementing image pre-processing such as 

sharpening and contrast-improvement on the cover image before data embedding to increase 

statistical variation. The paper finds that performing pre-processing has an acknowledgeable 

effect on security for the same level of embedding with security being measured as the 

resistance of stego-images to detection by a selected handful of blind steganalysers. 

2.4.2 Transform Domain Steganography 

With time, steganalysis tools became more intelligent and ensuring visual imperceptibility was 

no longer sufficient to maintain security. In addition to this, image compression became a 

likely eventuality for cover images especially if they are transmitted using the Internet. 

Transform domain stego-systems embed into the transform domain representation of images 

and take both of these factors in account and thus emerged as more relevant than spatial 

domain systems. This section describes transform domain image representation and, as a side 

note, covers JPEG compression preliminarily before reviewing transform-based stego-systems 

as they exist in the literature. The literature review provides a short history and context which 

then shows the motivation for the creation of cell-based systems. 

2.4.2.1 Transform Domain Representation 

Instead of representing digital images spatially, they may be represented in some transform 

domain, the most common of these being the frequency domain. This is analogous to a time 

domain signal being represented by its constituent frequencies using the Fourier transform. 

The most commonly-used image transformation between the spatial and frequency domains is 

the 2-dimensional Discrete Cosine Transform (DCT) which is computed over a rectangular 

group of pixels.  
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The transform is defined as follows: 

Let        denote an MxN image segment with   = 0, 1, 2, ..., M-1 and   = 0, 1, 2, ..., N-1. Then 

the 2-D DCT of  , denoted by  , is defined as: 

       ∑ ∑             
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For   = 0, 1, 2,..., M-1 and   = 0, 1, 2,..., N-1 and        . The frequency domain is simply a 

coordinate system spanned by        with   and   being the frequency variables, analogous 

to   and   being the spatial variables. 

The inverse DCT (IDCT) is defined as: 

       
 

  
∑ ∑            

  
 

 
  
 

 

   

   

   

   

 2-12 

The 5x5-pixel segment of Figure 2-3 and its DCT are shown in Figure 2-11. The DCT coefficients 

are rounded to the nearest integer. 

 
Figure 2-11. 5x5 pixel block in spatial domain (a) and its DCT (b) 

The physical significance of the DCT is shown in Figure 2-12 (adapted from (JPEG, 2011)) using 

an 8x8 block. While in the case of the spatial domain the value in the matrix at each coordinate 

represents something about colour, in the frequency domain each element represents the 

extent to which there is variation in pixel intensity values at a particular frequency and 

direction.  

As shown in Figure 2-12, the horizontal and vertical frequencies increase in steps from the left 

to right and from the top to bottom, respectively. Each step is an increase in frequency by half 
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a cycle. The top left corner represents the average value of the entire block, commonly termed 

the DC coefficient, with the other coefficients termed the AC coefficients. The bottom right 

coefficient represents the energy in the highest horizontal and vertical frequencies.  

 
Figure 2-12. Illustration of physical significance of DCT 

Effectively, the higher frequency values represent the detail in a particular block, whereas the 

lower frequency values represent the larger-scale features of the block. 

This has two primary consequences: 

1. Since the larger-scale features are usually more prominent in an image segment, the lower 

frequency DCT coefficients tend to be larger in size than the higher frequency ones but this 

depends on the image segment content. 

2. Altering low frequency DCT coefficients is more noticeable visually and statistically than 

high frequency coefficients. Take as an example the three images in Figure 2-14 which 

shows versions of the earth in Figure 2-13 where DCT information has been altered. First, 

assuming the entire image to be one block, the DCT is taken. The size of the image is 

225x225. Taking the bottom right 80x80 block of DCT coefficients and setting them to 0 

corresponds to removing around 13% of the high frequency detail of the image and results 

in (a) which is visually indistinguishable from the original because the human eye is 

insensitive to the detail in the image. Image (b) results when the bottom right 200x200 

block of DCT coefficients is set to 0 which corresponds roughly to removing 80% of detail. 

The main effect is that the image becomes more blurry but is still relatively natural looking. 

In image (c), the top left 2x2 square of high frequency DCT coefficients are reduced by 10 

which results in a dramatic effect on the image colouring. 

DC Coefficient 

Highest AC Coefficient 
Increasing frequency 
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Figure 2-13. Original example image 

 
Figure 2-14. Example image Figure 2-13 with 13% of highest frequency DCT coefficients set to 0 (a), 80% of 

highest frequency DCT coefficients set to 0 (b) and 4 lowest frequency DCT coefficients reduced by 10 (c) 

Even relatively small changes in lower frequency coefficients are noticeable and the lower 

the frequency of coefficients being altered the more obvious the alterations. 

It is important that the reader understand that the DCT is an operation whose result 

represents the characteristics of a block as a whole. It is not in any way a mapping between a 

spatial intensity at a particular coordinate and a DCT coefficient and depends on the block over 

which the DCT is taken. For example, as illustrated in Figure 2-15, if the DCT of blocks A and B 

are taken individually, the DCT coefficients in the region of overlap will not be the same, 

because the transform does not associate a particular transform value to a spatial coordinate.  

 
Figure 2-15. Sample of an image with two overlapping blocks over which the DCT could be taken 

Similarly, changing a single coefficient in the transform domain representation will affect the 

entire block in the spatial domain. The idea that embedding in the transform domain spreads 

(a) (b) (c) 

A 
B 
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the embedding effects over an image spatially was one of the main reasons that lead to the 

development of transform-based data hiding. 

Finally, it should be noted that when there is any conversion between the spatial and 

transform domain of an image or image segment, if any decimal places occur (which they 

usually do) rounding has to take place because only integer values are accommodated 

resulting in the DCT and IDCT of an image not being exactly reversible processes.  

2.4.2.2 JPEG Compression 

The DCT has a direct connection to JPEG compression and a small detour is now made to 

explain the compression algorithm, required by the reader to follow the discussion on 

transform-based stego-systems.  

The human visual system is insensitive to changes in the detail of an image (as seen in Figure 

2-14) and the JPEG compression schemes takes advantage of this. It first uses the DCT to 

separate out the detail in an image from the macro visual characteristics. The use of the DCT 

then allows the JPEG scheme to remove detail from the image thus compressing it with 

minimal visual effect. 

The steps of JPEG compression are: 

1. Colour transformation 

If the image is grey scale, no colour transformation is performed. If the image is RGB, then it 

is converted to the YCbCr space using Equation 2-10.  

2. Division into blocks 

Recall that grey scale images have only one plane whereas YCbCr images will have three 

image planes. Each plane is compressed separately and first subdivided into non-

overlapping 8x8 pixel-size blocks as shown in Figure 2-16.  

 
Figure 2-16. Image showing 8x8 grid blocks used during JPEG compression 
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3. Scaling 

If   is the number of bits used to represent each pixel (usually 8), each pixel intensity value 

is shifted down by subtracting     . This reduces the average intensity of the block making 

the DC DCT coefficient smaller and assisting in compression.  

4. DCT Transform 

The 2-D DCT of each block is taken. The convention taken here is that the DCT coefficients 

are rounded to the nearest integer since an image is normally represented by only integers. 

5. Quantisation 

The DCT coefficients are quantised by dividing them by an integer and rounding the result. 

This is the step where data corruption occurs since loss due to rounding cannot be 

retrieved again. 

6. Encoding and lossless compression 

The elements in each 2-D 8x8 grid block are then reordered according to a zigzag pattern 

shown in Figure 2-17.  

1. 2. 6. 7. 15. 16. 28. 29. 

3. 5. 8. 14. 17. 27. 30. 43. 

4. 9. 13. 18. 26. 31. 42. 44. 

10. 12. 19. 25. 32. 41. 45. 54. 

11. 20. 24. 33. 40. 46. 53. 55. 

21. 23. 34. 39. 47. 52. 56. 61. 

22. 35. 38. 48. 51. 57. 60. 62. 

36. 37. 49. 50. 58. 59. 63. 64. 

Figure 2-17. Zigzag ordering used during JPEG 

The resultant 1-D array then undergoes run-length encoding and Huffman encoding. 

The integer value by which a DCT coefficient is divided in step (5.) above is given by an 8x8 

quantisation matrix        . The JPEG standard (JPEG, 2007) published an empirically-

determined standard 8x8 quantisation matrix shown in Figure 2-18. The quantisation matrix is 

shared by the transmitter and the receiver as part of the final compressed file. 
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16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 198 112 100 103 99 

Figure 2-18. Standard JPEG quantisation matrix (      ) 

The process of scaling and quantising is described in Equation 2-13. 

 ̂           (
      

      
* 2-13 

where         is an 8x8 integer matrix of the original DCT coefficients in the image block. The 

function          represents the operation of mapping   to its nearest integer.  ̂      is a 

matrix of the resultant coefficients at each location       within the block after scaling and 

rounding. Define        to be an element from       ,        to be an element from        

and  ̂      to be an element from   ̂     . 

In the case that the input image is colour, it is always transformed to the YCrCb colour space 

and the Y (luminance) plane is compressed using the above quantisation matrix while the Cb 

and Cr (chrominance) planes use a different quantisation matrix. Whereas in RGB images the 

human eye is equally sensitive to all three colour components, the human eye is much more 

sensitive to luminance than chrominance. Therefore, converting the image to YCbCr space 

allows more compression because the two chrominance planes can be compressed much 

more than the luminance plane. 

As discussed earlier in this section, it is expected that for higher frequency coefficients,        

will be smaller than for low frequency coefficients. Further, since        increases as 

frequency increases, high frequency  ̂      will tend to be small (usually 0) because in 

Equation 2-13 the numerator will be small while the denominator will be large. The reason for 

reordering the array in step (6.) is so that the resulting array is qualitatively ordered in 

increasing spatial frequency and thus it is expected that long runs of zeros will exist at the end 

of it.  Run-length encoding takes advantage of this because it does not store the 0’s. The result 
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after run-length encoding then also undergoes Huffman coding which provides further 

compression. 

To decompress the image, the operations described for compression are reversed with the 

exception of de-quantisation where Equation 2-14 is applied. 

         ̂             2-14 

where         is the matrix of retrieved estimates of the original DCT coefficients. The 

information lost during rounding in Equation 2-13 cannot be recovered, making JPEG 

compression lossy.  

A DCT coefficient        will be unchanged (i.e.               ) only if it is originally an 

integer multiple of        and therefore no rounding occurs for that coefficient.   

The amount of loss experienced by each DCT coefficient due to rounding is at most ⌊       

 ⌋, i.e.   

                 ⌊        ⌋ 2-15 

To illustrate this, consider the case of        being even e.g. 10. If the value of the DCT 

coefficient is divided by 10, the remainder will be in the range [1-9]. For remainders [1-4], the 

value of the DCT coefficient will be rounded down giving a rounding loss of up to 4. For 

remainders [5-9], the DCT coefficient value will be rounded up by up to 5 by the compression 

process. It is clear then, how the movement in the coefficient value is limited to the maximum 

amount by which it can be rounded up or down, which is half of number you are dividing by. If 

       is odd e.g. 11, for remainders [1-5], the coefficient will be rounded down, and for 

remainders [6-10], the coefficient will be rounded up. Overall, the maximum movement from 

the original value is limited by 5. The extent to which an image is compressed (which also 

corresponds to the extent to which the compression process is lossy) depends on the size 

of       .  Because        is larger for higher frequency DCT coefficients, these coefficients 

tend to undergo larger changes in value due to JPEG compression than lower frequency ones. 

The JPEG compression standard allows for a quality factor                     which 

corresponds to the amount of compression an image undergoes. The lower the quality factor, 

the higher the level of compression and the smaller the resultant file size, but the more 
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noticeable the visual artefacts after decompression. The level of compression is related to 

       and associated with each quality factor is a particular quantisation matrix.  

At        50, the quantisation matrix used is the standard one given in Figure 2-16. Apart 

from the quantisation matrix in Figure 2-16, the JPEG standard does not explicitly define the 

quantisation matrices for each quality factor; rather, this is left to the discretion of the 

designer and varies between image processing programs (Hass, 2008). The guidelines for 

designing the quantisation matrix are that the values in the matrix should be such that the 

required grade of compression is achieved with minimum visual distortion, which means that 

the higher frequency        should be larger so that those coefficients are reduced more 

ruthlessly. In this dissertation, the library used to provide quantisation matrices is taken from 

the commonly used (Sallee P. , 2003). To contrast with the standard quantisation matrix, two 

more at quality factors of 70 and 30 are shown in Figure 2-19. Notice that for a smaller quality 

factor        is larger at all frequencies. 

10 7 6 10 14 15 31 37  27 18 17 27 40 67 85 102 

7 7 8 11 16 35 36 33  20 20 23 32 43 97 100 92 

8 8 10 14 24 34 41 34  23 22 27 40 67 95 115 93 

8 10 13 17 31 52 48 37  23 28 37 48 85 145 133 103 

11 13 22 34 41 65 62 46  30 37 62 93 113 182 172 128 

14 21 33 38 49 62 68 55  40 58 92 107 135 173 188 153 

29 38 47 52 62 73 72 61  82 107 130 145 172 202 200 168 

43 55 57 59 67 60 62 59  120 153 158 163 187 167 172 165 

(a)  (b) 

Figure 2-19. JPEG quantisation      =70 (a) and      =30 (b) 

To illustrate the effectiveness of JPEG compression, consider the image of the cameraman 

given in Figure 2-20. If the image is compressed and subsequently decompressed for       = 

80, 10 and 5, the results are shown in Figure 2-21. The ratios of the size (in bytes of data) 

required to represent the decompressed image, to the size of the original image, are given in 

Table 2-1. 
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Figure 2-20. Sample image 

 
Figure 2-21. Decompressed images using JPEG compression with      = 80 (a), 10 (b), 5 (c) 

Table 2-1. Compression ratio corresponding to a JPEG quality factor 

                                                            

                                                    
 

80 0.1376 
10 0.0303 
5 0.0182 

Table 2-1 and Figure 2-21 show that even when compressing the image to less than one 

seventh of its original size as in the case of         , there is no recognisable visual 

distortion. 

Depending on the stage in which data is embedded in a JPEG image, error coding may or may 

not be required. If the data is hidden in the DCT coefficients after they are quantised during 

JPEG compression, then there will be no loss in the hidden message and no error coding 

requirement. If data is hidden in the image before lossy quantisation, error coding will be 

necessary.  

A more recent version of JPEG compression called JPEG2000 uses the discrete wavelet 

transform (DWT) instead of the DCT. As explained in (Su & Kuo, 2003) and (Cheddad, Condell, 

Curran, & McKevitt, 2010), this method of compression is more efficient and outperforms the 

DCT in many aspects. However, the papers introducing this concept date to before 2003 and 

no significant amount of research has since been output in this field. This may be credited to 

(a) (b) (c) 
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the fact that DCT-domain JPEG compression is well-established, suffices for many applications 

and is the predominant form of JPEG compression on the Internet. 

2.4.2.3 Complex Transform Domain Steganography 

Now that transform domain image representation and JPEG compression have been covered, a 

review of transform domain steganography can be performed. Although spatial domain digital 

image steganography is still being investigated in the literature, it is not as relevant anymore 

because spatial domain schemes do not cater for the likely event of an image undergoing JPEG 

compression. Since JPEG compression involves the generation and manipulation of DCT 

coefficients, transform-based stego-systems that embed in the DCT coefficients of an image 

lend themselves naturally to catering for possible JPEG compression and in fact the first 

transform-based systems were designed specifically to embed into JPEG images. 

The first stego-systems developed to embed into images during the JPEG compression process 

did so after quantisation so there was no error coding requirement. The first of this kind was 

Jsteg (Upham, 1993). Extending on LSB embedding, it hides information by performing LSB 

embedding in quantised DCT coefficients after step (5.) in Section 2.4.2.2, with the exception 

of embedding into 0’s, 1’s and DC coefficients as doing this introduces disturbing statistical 

artefacts used commonly by steganalysers. Editing the LSBs indiscriminately changes the 

marginal statistics (histograms) of the DCT coefficients in the same way as explained in Section 

2.4.1.2 for the spatial domain and is detected using the chi-squared attack. This is documented 

by (Chandramouli & Subbalakshmi, 2003).  

A method that was developed next to overcome this shortcoming is called F5 embedding 

(Westfeld, 2001). Instead of LSB flipping, the absolute value of the quantised DCT coefficient is 

decremented by one along a pseudo-random path through the cover image. By changing the 

absolute value of the image rather than blindly tweaking the LSB, the natural shape of the DCT 

histogram is preserved and the cover image appears, after embedding, simply as if it was 

initially compressed with a lower quality factor. In addition to this, F5 also uses matrix 

embedding which implements a block-code-type system to minimise the number of 

embedding changes made to the cover image with the trade-off that relative payload 

decreases. There exists a matrix embedding theorem that states how to transform any linear 

code into a matrix embedding scheme, the details of which are beyond the scope of this 

dissertation and are not explained here. This approach is more resistant to visual and first-

order statistical attacks as it preserves the natural distribution of the DCT coefficients, and 

allows higher capacity for the same security when compared to Jsteg. However, F5 still 
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changes the histogram in a detectable way as shown by (Fridrich, Goljan, & Hogea, 2003) and 

(Dabeer, Sullivan, Madhow, Chandrasekaran, & Manjunath, 2004) and can be detected by 

comparing the stego-image histogram to an estimate of the original histogram. The original 

histogram is estimated using a self-calibrating method: the JPEG stego-image is decompressed 

and cropped by a few pixel rows or columns in order to desynchronise it from the original JPEG 

grid. If this cropped image is then recompressed, the statistical properties of the resultant 

image are similar to those of the original cover image and can be compared to the suspicious 

stego-image (Fridrich, Goljan, & Hogea, 2003).  

Another system, OutGuess (Provos, 2000), was the first system whose goal was specifically to 

match the DCT histogram of the cover image. It embeds messages into the cover image by 

slightly changing the quantized DCT coefficients using two runs. Firstly, the message bits are 

embedded into a pseudo-random set of DCT coefficients. In the second run, corrections are 

made to other DCT coefficients in order to match the stego-image histogram with that of the 

cover image. So if a particular coefficient is changed from histogram bin A to B during 

embedding, the correction for this would be to move another coefficient from bin B to A. 

OutGuess uses about half of the coefficients for embedding and the other half for correcting 

statistical deviations. This technique is effective in maintaining the DCT coefficient histogram 

but reduces the effective capacity by half and can be broken by second order statistical 

analysis (Hetzl & Mutzel, 2005).  

Steghide, introduced in (Hetzl & Mutzel, 2005), also preserves global first-order statistics of 

DCT coefficients using a different mechanism to OutGuess. Coefficients are swapped rather 

than having their LSB modified.  

Another proposed system is called Model-Based Steganography (Sallee P. , 2004) which 

assumes a more abstract mathematical approach that edits coefficient values with the primary 

goal of maintaining the original statistical composition of the coefficients. (Fridrich J. , Goljan, 

Lisoňek, & Soukal, 2004) present an approach that uses perturbed quantisation where the way 

in which quantisation of the DCT coefficients occurs is slightly perturbed to embed secret 

message bits. (Solanki K. , Sullivan, Madhow, Manjunath, & Chandrasekaran, 2005) and 

(Solanki K. , Sullivan, Madhow, Manjunath, & Chandrasekaran, 2006) introduce mathematical 

schemes that match the DCT histogram of the stego-image to that of the cover image exactly, 

providing provable security only if the steganalyst uses properties of the DCT histogram for 

detection. 
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Adaptive embedding in the frequency domain developed from the discussed schemes is not a 

well-developed topic in contrast to the spatial domain. Typical examples include (Kumar, Raja, 

Chhotaray, & Pattnaik, 2010) where varying amounts of bits are embedded in coefficients 

depending on their size, and (Velasco, Nakano, Perez, Martinez, & Yamaguchi, 2009) which 

uses the energy of the DCT coefficients as a metric. 

Stego-systems may also use the compression process itself to embed information. For 

example, (Guo & Le, 2010) uses various quantisation tables for different regions of the JPEG-

compressed image to provide information that achieves satisfactory performance while 

simplifying the embedding process. 

2.4.2.4 Cell-Based Systems 

So far, the stego-systems have focused on hiding data with the purpose of camouflaging some 

statistical artefacts of embedding. In general, blind statistical steganalysis schemes have been 

very successful in detecting these types of stego-systems.  

As explained in (Solanki, Sarkar, & Manjunath, 2007), the elements that contribute to the 

success of blind steganalysers are: 

 Self-calibration mechanism 

With this mechanism, the blind steganalysers make an estimate of the original statistics of 

the cover image. In the case of JPEG images, the self-calibration technique of cropping and 

recompressing the image mentioned earlier is used. 

 Features capturing cover memory 

Some steganographic systems hide data symbols rather than individual bits and the blind 

steganalyser can use any known statistical properties of the symbol bits to detect trends in 

statistical changes. Cover memory has been shown to be an important feature (Sullivan, 

Madhow, Chandrasekaran, & Manjunath, 2006) and has been incorporated into the feature 

vector for training (e.g. (Fu, Shi, Zou, & Xuan, 2006), (Shi, Chen, & Chen, 2006)). 

 Powerful machine learning 

The existence of powerful machine learning techniques combined with training over several 

thousand images often ensures even slight statistical variations become learned by the 

analyser. 

The most prominent of the above elements is the ability of the blind analyser to use certain 

assumptions about the image to get a model of the innocent cover image despite not having 

access to it and even though no universal statistical model for images exists. 
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To address this, (Solanki, Sarkar, & Manjunath, 2007) suggest that instead of the approach 

used by stego-systems so far to try to maintain statistical features of the cover image, a 

steganographer can take the approach of attempting to distort the blind steganalyst’s estimate 

of the innocent cover image statistics in two ways: 

1. Hiding with high embedding strength 

Instead of minimising embedding artefacts, if embedding is performed so that the cover 

image is so distorted that cover image statistics can no longer be derived then detection 

will be more difficult for the blind steganalyser. (Kharrazi, Sencar, & Memon, 2006) show 

that this is possible. 

2. Randomised hiding 

If the embedding approach is randomised then the steganalyst cannot make any consistent 

assumptions regarding how data has been hidden even if the stego-algorithm is known as 

per Kerckhoffs’ principle. 

The danger of the first approach above is that the likelihood of embedding artefacts being 

visually perceptible is high and it’s possible the image can be detected by a steganalyst with a 

universal image model even if it is very rough. The second approach is more appealing and 

(Solanki, Sarkar, & Manjunath, 2007) explore the first simplest implementation of this by 

randomising the locations where data is hidden in an image. This implementation is called Yet 

Another Steganographic System (YASS) and is the earliest of the cell-based systems so called 

because embedding occurs in certain randomly-selected blocks/cells in an image.  

In addition to the randomised approach to embedding, cell-based systems embed into an 

image before the lossy stage of JPEG compression which further disguises embedding artefacts 

since the analyser would examine the stego-image after compression. This also means error 

coding is required to cater for lossy JPEG compression. (Huang, Huang, & Qing Shi, 2010) and 

(Fridrich & Kodovsky, 2008) say YASS is arguably one of the most promising transform domain-

based systems to date and the security of this method against advanced blind steganalysis 

systems has gained attention in the research community in the past two years (e.g. (Li, Huang, 

& Shi, 2009), (Huang, Huang, & Shi, 2010)). Only one other paper (Sajedi & Jamzad, 2010) was 

found that uses the philosophy of randomising where data is hidden but YASS has gained much 

more interest and is the focus here. 

The input image to YASS is grey scale or, if not, the Y plane is extracted and used to carry 

secret data since it is the least-aggressively compressed plane during JPEG compression 

resulting in lower errors. 
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An overview of the steps of YASS is: 

1. Error Coding of Secret Message 

The secret message bits are first encoded using a repeat-accumulate (RA) code. RA coding is 

explained further later. 

2. Blocking of the Image 

The image in the spatial domain is divided into blocks called B-blocks of size BxB, B>8. B is 

random across images but is fixed for any given image. B ranges typically from 9 to 14 but 

there are no limitations set explicitly by the literature. Within each B-block, an 8x8 E-block 

is chosen, the position of which is selected pseudo-randomly. The location of these sub-

blocks is transmitted in the key along with the value of B. Figure 2-22 shows this for an 

image segment where B=10. In this dissertation, this procedure will be called the BLOCKING 

phase. 

 
Figure 2-22. YASS grid 

3. DCT Transform 

The 2-D DCT of each E-block is performed. Any resultant DCT coefficients with decimal 

places are rounded. 

4. Embedding of Secret Message 

The encoded message bits are embedded in the DCT coefficients of the E-blocks using 

Quantisation Index Modulation (QIM). QIM is explained further later. Only the first 19 AC 

DCT coefficients (labelled in zigzag order) are candidates to carry data. All DCT coefficients 

that could become 0 as a result of embedding are skipped. 

5. IDCT Transform and Block Replacement 

Once the DCT coefficients have been altered to contain data bits, the 2-D IDCT of the E-

blocks is taken. Any resultant pixel intensities with decimal places are rounded. The E-

blocks are replaced back in the image. Steps (3.) to (5.) together form the EMBED phase. 

E-block 

B-block 
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The image is then expected to be compressed using JPEG with an advertised quality factor    

to obtain the stego-image. This will be referred to as the COMPRESSION phase. This 

expectation is not part of the steganography, it is merely an expectation that the embedding 

scheme anticipates and accommodates. 

Figure 2-23 shows again the steps of data embedding in E-blocks in YASS. 

 
Figure 2-23. BLOCKING and EMBED phases 

Further explanation regarding the details of data embedding and error correcting in steps (1.) 

and (4.) are given next. 

Error Coding of Secret Message 

In step (1.) above, RA coding is incorporated to cater for lossy JPEG compression. It is a simple 

coding scheme where the input message (a finite length bit stream) is repeated   times, 

scrambled in a pseudo-random way and then encoded using an accumulated sum.  

Original E-block pixel intensity 

DC DCT coefficient 

AC DCT coefficient 

DCT coefficient altered during embedding 

B-block 

DCT Embed 
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This means, if the repeated, scrambled bit stream is          the output accumulated bit 

stream   is  

      

         

           

2-16 

The code is normally decoded in what is known as a sum-product algorithm in a factor graph 

which is beyond the scope of this dissertation. The ratio of the number of data bits versus the 

total amount of bits being transmitted is known as the code rate and in the case of RA codes 

is   ⁄ . In (Solanki, Sarkar, & Manjunath, 2007), a repetition of between 10 and 40 is used for 

the image database on which testing for YASS was done. Errors are detected and corrected by 

analysing the bit values across the various iterations. 

Embedding of Secret Message 

In step (4.) above, QIM (Chen & Wornell, 2011) is used to embed data into the DCT 

coefficients. Mathematically, the value of the coefficient after QIM is given by Equation 2-17. 

Let        be the value of the E-block DCT coefficient,  

   (      )

 

{
 
 

 
   ⌊

        

  
⌋                  

  ⌊
      

  
⌋                     

  

 

2-17 

 

QIM is easier to understand visually. It involves creating overlapping quantisers as shown in 

Figure 2-24. Each quantiser represents a bit value (‘0’ or ‘1’). During embedding, the DCT 

coefficient is rounded to the nearest point from the quantiser of the bit to be embedded. The 

spacing between two points of the same lattice is delta ( ). A DCT coefficient value can be 

changed by up to delta during embedding and so qualitatively we can see that delta should be 

kept as small as possible to prevent large changes to DCT coefficients and embedding 

artefacts. 
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Figure 2-24. Lattices to embed one-bit data using QIM 

While the DCT coefficient values before embedding exist on a continuous scale, after 

embedding they exist at lattice points. During subsequent lossy JPEG compression and 

decompression it is expected that the DCT coefficient values will change from their embedded 

values as shown in Figure 2-25.  

The receiver makes a decision on the message bit hidden in a particular DCT coefficient by 

assuming that the DCT coefficient value changed such that out of all lattice points it still 

remains closest to its original embedded value. So it makes a decision based on the proximity 

of the retrieved coefficient value to a lattice point. For example, if it is closer to a lattice     

point, it is assumed that a     was embedded. Thus, the correct message bit is extracted from a 

coefficient provided that the coefficient has shifted during the JPEG 

compression/decompression by less than  ⁄   from its original value. Therefore, Δ must be 

chosen to be large enough so that movement is accommodated by the lattice spacing.  

 
Figure 2-25. QIM data embedding and retrieval 

Q1 Q1 Q0 

  

Q0 Q0 Q1 Q1 

-     -   

0    -   

‘0’ Quantiser 

‘1’ Quantiser 

 

DCT Coefficients on a Quantized Scale after QIM Embedding 

X1       X2       X3       X4       X5       X6       X7       X8       X9       X10       X11       X12 

∆ 

DCT Coefficients on a Continuous Scale 

   X1    X2           X3    X4   X5      X6         X7              X8     X9        X10      X11     X12 

DCT Coefficients at Receiver Displaced due to JPEG Compression 
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The change in data carrying E-block DCT coefficient value between QIM embedding and QIM 

de-embedding is caused by two things: 

1. Rounding after each conversion between the transform and spatial domains during the 

EMBED phase. This is because the image representation does not accommodate decimal 

places. 

2. The effects of JPEG compression during the COMPRESSION phase, namely the harsher 

treatment of higher frequency coefficients. 

Out of the two causes of change in value of the data carrying DCT coefficients, rounding can 

cause absolute value change of 1, while the effects of JPEG compression are much more 

profound. The exact extent to which JPEG compression causes the data carrying DCT 

coefficient value to change is required to determine an appropriate QIM system and is 

investigated in Chapter 3. 

Roughly speaking, since higher frequency coefficients experience more error (change in value) 

due to JPEG compression, it would make sense to use a larger delta for these coefficients than 

for low frequency ones. The values of delta used by YASS have purposefully not been explained 

here because some further knowledge is required before this is understood by the reader and 

therefore will be referred to in the next chapter where for now only the concept is important. 

It was stated that during the EMBED phase, not all of the 19 candidate AC DCT coefficients in 

an E-block are necessarily used to carry data. Specifically, candidate coefficients in the range 

       are at risk of being quantised to 0 during embedding and so are rejected.  This is to 

prevent the embedding scheme from changing the number and distribution of DCT coefficients 

of value 0 which has been used previously as a statistical artefact for detection by 

steganalysers. In this dissertation, the requirement that a candidate E-block DCT coefficient be 

outside the range        in order to be selected to carry data will be referred to as selection 

criteria.  

Embedding into the DC DCT coefficient is also forbidden to prevent statistical boundaries in 

variation of average colour that can be easily detected by analysers.  In Figure 2-26, the DC 

coefficient in a block was decreased by 10, and clear visual (and thus also statistical) 

boundaries exist, providing an obvious give-away embedding artefact that should be avoided.  
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Figure 2-26. Sample image with clear artefacts of alteration of DC DCT coefficient 

Even though it has many good properties, YASS has certain shortcomings: 

1. While YASS has good strength against blind steganalysers, it has since been cracked using a 

targeted approach ( (Li, Huang, & Shi, 2009), (Xiaoyi & Babaguchi, 2008)). This is because a 

steganalyser can calculate the possible positions of an E-block within its parent cell, 

especially if B is known. In addition to this, two blind steganalysers have been developed 

that can detect YASS ((Pevny & Fridrich, 2007),  (Pevny & Fridrich, 2006)). 

2. YASS has a low embedding capacity, firstly because a significantly smaller portion of the 

image is used for embedding (19 or less coefficients out of a possible 64 in each E-block) 

and secondly because using RA coding requires a high number of redundant bits. The 

purpose of YASS was not to address data embedding and error correcting schemes in detail 

but rather to present the idea of randomised embedding for increased security. 

As an improvement to YASS, (Sarkar, Solanki, & Manjunath, 2008) suggest changing 

embedding parameters and testing security assuming the JPEG decorrelation mode of attack 

iteratively until parameters are found that minimise error rate thus maximising embedding 

capacity. The success of this approach is studied in (Huang, Huang, & Shi, 2010) and it is found 

to provide only moderate improvement in security and embedding capacity. It is also clumsy 

and time-consuming for the steganographer. 

To further improve security, (Yu, Zhao, Ni, & Shi, 2010) present a YASS-like system with one 

extra degree of randomisation, namely where B can vary within an image thus introducing 

more uncertainty in E-block position which reduces the detection rate. (Dawoud, 2010) takes 

the idea of variable cell size even further by randomising the size of both the B-blocks and the 

Region of visual and statistical discrepancy 
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E-blocks as shown in Figure 2-27. At this point we define E-blocks to be of size ExE, and for this 

stego-system 8<E<12 and 9<B<14. 

 
Figure 2-27. MULTI grid 

(Dawoud, 2010) calls this the MULTI scheme and it is the most general and secure of the cell-

based systems. The complexity of steganalysis is increased by two orders over YASS because 

the large block size, B, is unknown. (Dawoud, 2010) shows that for conditions where YASS is 

detectable, the detection rate of MULTI is reduced to close to 0.5, making it highly secure even 

against the most advanced blind analysing system. The MULTI scheme has not yet been 

published formally or successfully attacked. 

2.5 Discussion of Cell-Based Systems 

Cell-based systems are distinguished from previous stego-systems by the concept of 

randomisation for security to confuse blind steganalysers rather than attempting to 

camouflage embedding artefacts. MULTI is more secure compared to YASS because the 

blocking scheme is more random, reducing the certainty with which a blind steganalyser 

makes assumptions regarding the embedding process. Even though MULTI addresses security 

requirements, it has not rigorously addressed the relatively low embedding capacity associated 

with all stego-systems in the cell-based system family. 

The two primary elements that detract from embedding capacity are: 

1. The entire image is not used for embedding, but only image areas in the E-blocks. Within an 

E-block, only the lowest 19 AC DCT coefficients that meet selection criteria are used to 

carry data. 

2. Due to lossy JPEG compression, the image data will be corrupted which could result in the 

retrieval of incorrect secret message bits. To cater for this, error correcting codes need to 

be applied which use redundant overhead bits to detect and correct erroneous bits. The 

B-block 

E-block 
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inclusion of these overhead bits further reduces the number of information bits that can be 

accommodated. 

The two data handling issues presented above have not been rigorously addressed in the 

literature so far. It should be noted that the focus of the literature around cell-based systems 

has not been on embedding capacity in particular and so no claims have been made that the 

used data handling systems are optimal. 

In particular, the values of delta using during QIM for YASS and MULTI have been estimated 

simplistically. Given the effect of JPEG compression, it is expected that as coefficients increase 

in frequency a larger delta for QIM would be required since they are likely to experience more 

error. YASS does use larger delta for higher frequency coefficients (the details will be referred 

to in Chapter 3) but the suitability of the delta values was not analysed.  

Regarding the number of DCT coefficients considered for embedding, there is no evidence that 

only the first 19 low frequency coefficients are appropriate, and it is viable to suspect more 

vulnerable higher frequency coefficients may provide increased embedding capacity if the 

correct error coding is used. (Sarkar, Nataraj, Manjunath, & Madhow, 2008) suggest analysing 

the potential of different E-block coefficients to carry data but do not take the idea further. 

There is no evidence that RA coding is the most efficient in terms of embedding capacity and 

to the contrary the code rates appear low compared to other possible coding schemes. The 

choice of code rates is also made based on characteristics of image segments or entire images 

which considering the effect of JPEG compression appears to be inefficient. To illustrate this, 

consider that within any image segment, different frequencies of DCT coefficients will be 

treated differently by JPEG compression. More specifically, higher frequency DCT coefficients 

will experience more change in value due to JPEG compression than lower frequency 

coefficients according to the principles of JPEG that state the visual integrity of the image 

should be preserved. Therefore, the likelihood and concentrations of errors in the DCT 

coefficients will vary across a segment. At first sight it seems inefficient to design one coding 

scheme to cater for the wide range of error in different parts of the image segment. These 

issues regarding effective data embedding and error coding are discussed in detail in the next 

chapter. 

2.6 Summary 

This chapter has described the assumed restrictions on stego-systems considered in this 

research and presented a system model with related terminology. In particular, a private-key 
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stego-system by cover modification with a passive warden is assumed. The characteristics of a 

successful stego-system, namely perceptibility, robustness and capacity are described. 

Although initially visual perceptibility was a pertinent characteristic, the field has developed 

such that the battle between steganography and steganalysis exists now on a more subtle, 

statistical level. The term detectability is defined to mean susceptibility of a scheme to 

statistical analysis whereas perceptibility is defined to be limited to the extent to which 

embedding artefacts are visible.  

The development of steganography and steganalysis can be traced from naïve and focused on 

perceptibility to more complex and focused on detectability. In particular, naïve stego-systems 

were based in the spatial domain and over time developed into more adaptive systems. With 

the advent of effective image compression techniques, digital images are seldom transmitted 

in the spatial domain anymore but in compressed versions where the image has been 

transformed into the frequency (transform) domain.  Within the field of transform-based 

stego-systems, cell-based systems distinguish themselves from previous JPEG stego-systems by 

embedding not with the purpose of maintaining cover image properties, but by randomising 

the embedding process so that blind steganalysers aren’t able to estimate original cover image 

properties. Cell-based systems are able to achieve high security by randomising embedding 

locations and by hiding data before lossy JPEG compression, with the disadvantage that 

embedding capacity is compromised. The lack of analytic reasoning in the selection of 

coefficients for embedding, delta for QIM and error coding provides opportunity for research. 
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Chapter 3. Formalising and Quantifying the Embedding Process 

Digital image steganographic systems have developed from naïve and spatially-based to 

complex and transform-based and the major milestones of this development have been 

reviewed in Chapter 2. Within transform domain steganography, cell-based systems have 

emerged and their relevance lies in their good security properties and the fact that they are 

designed to cater for the likely event that the stego-image undergoes JPEG compression, with 

the disadvantage that the embedding capacity is relatively low.  

By analysing some major elements of cell-based systems, it has become evident that a 

research opportunity exists in improving embedding capacity in cell-based systems by 

determining data embedding and error coding (i.e. data handling) schemes more analytically 

than in previous literature. In particular, the idea that JPEG compression affects E-block DCT 

coefficients of different frequencies in different ways can be used to implement more targeted 

data embedding and error coding. These ideas form the main thrust behind the research 

presented in this dissertation and this chapter discusses the steps of a new approach to 

determining better data handling schemes and the final results of this approach.  

3.1 The Channel Concept 

If the data embedding and error coding requirements for cell-based stego-systems are going to 

be deduced, first the specifics of what constitutes a data carrying channel in cell-based systems 

are required and then the nature of the channel must be understood. By nature it is meant the 

likelihood that an erroneous bit is retrieved at the recipient side of the channel (error rate) and 

the ability of the channel to carry data (embedding rate). A particular channel, when 

understood, can be assigned its own appropriate data handling schemes which are composed 

of a choice of delta for QIM (data embedding) and an error coding scheme. This section 

discusses what constitutes a channel in a stego-image traditionally in the literature and 

proposes a new channel model that allows more efficient data handling. 

Start by considering the case of time-based communication systems where the channel may be 

some physical medium such as wireless (air) and the channel characteristics are measured over 

a particular time period. For example, an error rate corresponds to the likelihood of an error 

being incurred at any particular time instance.  

In cell-based stego-systems, there is no time base and the channel is constituted by the data 

carrying E-block DCT coefficients strung together. The secret data bits are thus distributed 

spatially over an image and carried by the values of the relevant DCT coefficients, and so now 
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the error rate, for example, corresponds to the likelihood of an error being incurred in some 

DCT coefficient at some location spatially in the stego-image. We assume that we assign one 

data embedding scheme (delta value for QIM) and one error coding scheme per channel. 

According to the traditional model, all of the data carrying E-block DCT coefficients in an image 

are taken as one channel, so only one channel exists per stego-image. This is shown in Figure 

3-1. The block structure (E- and B- blocks) for YASS is shown. In this dissertation we are 

challenging the requirement that only the first 19 AC DCT coefficients of each E-block be 

considered for data embedding and so to maintain generality and for simplicity we start with a 

more inclusive model that assumes all of the DCT coefficients can be used. 

1 9 17 25 33 41 49 57

2 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

8 16 24 32 40 48 56 64

65 73 81 89 97 105

66 74 82 90 98 106

67 75 83 91 99 107

68 76 84 92 100 108

69 77 85 93 101 109

70 78 86 94 102 110

71 79 87 95 103 111

72 80 88 96 104 112

113 121

114 122

115 123

116 124

117 125

118 126

119 127

120 128

10

 
Figure 3-1. Traditional channel model in YASS 

The numbers in Figure 3-1 represent an arbitrary column wise order with which the E-block 

DCT coefficients are strung together. Reordering the DCT coefficients results in the 1-D channel 

array shown in Figure 3-2. 

1 2 3 4 5 6 7 8 9 ...
 

Figure 3-2. Traditional channel model in YASS reordered column-by-column 

Taking the example of error rate again, it is defined in cell-based systems as the likelihood of a 

data carrying DCT coefficient at any position in the channel in Figure 3-2 changing in value in 

such a way that during QIM de-embedding the incorrect bit would be retrieved from it.  

  

Channel (E-block DCT Coefficient) 

B-block 
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Reviewing the steps of cell-based stego-systems as explained in Chapter 2, the two factors that 

cause change in value of the data carrying DCT coefficients between data embedding and 

retrieval are: 

1. During the EMBED phase, each time an image segment is converted between the spatial 

and transform domains, the resultant pixel intensities or DCT coefficients are rounded 

because image representation doesn’t allow for decimal places.  

2. During the COMPRESSION phase, the image undergoes JPEG compression and subsequently 

JPEG decompression which is lossy causing corruption of image data. 

Rounding effects cause image data to vary only slightly (±1) and so the dominant factor in 

change in value of DCT coefficients is (2.) from the list above during the COMPRESSION phase. 

Recall from Chapter 2 that the JPEG compression process is trying to compress the image while 

maintaining visual quality of the image, therefore more error will be introduced in higher 

frequency DCT coefficients (detailed image regions) than in lower frequency ones. 

The problem with the traditional single channel model is that it does not consider the 

significantly different error rates that different frequency DCT coefficients in the stego-image 

are subject to in the COMPRESSION phase. For example, in Figure 3-2, the likely error in low 

frequency DCT coefficients (2, 3, 4) will be less than in high frequency coefficients (6, 7, 8).  

Attempting to design one delta value and one error coding system to cater for this wide 

variation in concentrations of error is inefficient and thus has a negative effect on embedding 

capacity. In the case that average error is catered for, DCT coefficients at higher frequencies 

will experience high concentrations of error that won’t be corrected. In the case that worst-

case error is catered for, the error correcting scheme will be devised to address the higher 

concentration of errors for high frequency components and will grossly overcompensate for 

more rare errors in low frequency coefficients. 

It would be better to group DCT coefficients that are likely to undergo similar effects together 

producing many separate channels with each channel having more focused characteristics, and 

deducing different data handling procedures that optimise embedding capacity for each of 

these channels. Because we know that the primary source of error in data carrying DCT 

coefficients is the COMPRESSION phase and that JPEG compression incurs different grades of 

error on different frequencies of DCT coefficients, a novel channel model is thus proposed 

where DCT coefficients in a particular position (frequency) in an E-block are grouped together 

to form one channel.  
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In this case, one image now has many channels with each channel containing all the DCT 

coefficients at a particular position (frequency) in the E-blocks. Each channel can now be given 

an appropriate delta value for QIM and an error coding system that are best adapted for the 

nature of the channel and which optimise embedding capacity. 

Figure 3-3 illustrates this new multi-channel model for the YASS system. All DCT coefficients at 

a particular matrix position (frequency) are considered to constitute a single channel, so one 

stego-image now contains many parallel channels. Five parallel channels are shown, each 

indicated by a different colour. 

The DC coefficient in each E-block is blacked out because it is definitely not used during 

embedding to prevent artefacts and each E-block contributes one candidate DCT coefficient to 

the channels. If the candidate DCT coefficient meets selection criteria based on the QIM delta 

for that channel it will be used in the channel to carry a secret data bit and if not it will not be 

used as part of the channel. Assuming for simplicity that all candidate DCT coefficients meet 

selection criteria in Figure 3-3, each channel is shown as the string of its DCT coefficients at the 

bottom of Figure 3-3. The secret message data would need to be broken up and distributed 

over each channel separately. 
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Figure 3-3. Proposed channel model in YASS 

B-block 
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The new channel model for the more general case of MULTI is the same as for YASS except 

that an image may now contain up to 144 channels (since E-blocks in MULTI are specified to be 

up to 12x12 in size). Some of the channels constituted by the string of E-block DCT coefficients 

are shown in Figure 3-4.  

The main difference in channel structure in MULTI from YASS is that not every E-block in 

MULTI contributes a candidate DCT coefficient to a channel. For example, the DCT coefficient 

shown in the position (frequency) marked in brown only exists when the generated E-block is 

9x9 or greater. Therefore, for a given number of E-blocks, the number of candidate coefficients 

in a channel is not the same as the number of E-blocks for those DCT coefficients that lie 

outside the top left 8x8 block. 
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Figure 3-4. Proposed channel model in MULTI 

Again, each channel has its own QIM delta and error coding (i.e. data handling) schemes. The 

new channel model will be assumed by default from now on. 

B-block 
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Now that the channel model has been defined, the specific characteristics of each channel 

need to be determined. The rest of the chapter will be concerned with how to determine 

relevant channel characteristics and how to use these characteristics to derive data handling 

schemes that improve embedding capacity in cell-based stego-systems. 

3.2 Coefficient Movement & Previous Delta Values 

Although so far the concept of the change in value of data carrying DCT coefficients between 

QIM data embedding and retrieval has been referred to, and it has been shown that JPEG 

compression is the main factor controlling this change, the exact effects of JPEG compression 

have not been discussed. For brevity, the change in value of E-block DCT coefficients between 

data embedding and retrieval will be referred to as DCT coefficient movement. When we speak 

about movement, we will refer to the absolute value of the change in DCT coefficient value. 

Understanding what causes DCT coefficient movement and quantifying how coefficients move 

is important in order to gain insight on how to select the best data handling parameters so that 

embedding capacity is improved.  

This section describes the causes of coefficient movement and presents an analysis of the 

characteristics of movement. It also digresses slightly to show a specific case where delta 

values have a profound effect on coefficient movement and how this case was used in the 

literature to provide delta parameters previously.  

3.2.1 Coefficient Movement  

So far, the concept that JPEG compression affects E-block DCT coefficients at different 

frequencies differently has been referred to, but the amount of error induced in the DCT 

coefficients as a result has not be described specifically. This section deals with coefficient 

movement more specifically for different cell-based systems. 

3.2.1.1 Movement in JPEG-GRID 

As a start consider a very extreme cell-based system where the B- and E-blocks coincide at a 

size of 8; i.e. B=E=8, shown in Figure 3-5. This is not a practical system but is useful for the 

purposes of explaining coefficient movement initially, and will be referred to in this 

dissertation as JPEG-GRID. As we will see, the movement in value that a DCT coefficient is likely 

to undergo between JPEG compression and de-compression is related to the JPEG quantisation 

matrix. 



58 
 

 
Figure 3-5. JPEG-GRID block grid 

In this specific case, the DCT coefficients of the E-blocks coincide with those of the 8x8 grid 

used during JPEG compression. The E-block DCT coefficients are altered twice in cell-based 

systems: firstly during the EMBED phase and then secondly in the COMPRESSION phase. These 

two phases are shown in Figure 3-6 and Figure 3-7. For the purposes of illustration, consider 

the top left E-block in an image as a sample E-block. 

During the EMBED phase, the E-block is translated from the spatial domain to the frequency 

domain using the DCT (shown in blue in Figure 3-6). The resultant DCT coefficients are then 

altered using QIM and the secret bit stream to produce a new E-block (shown in orange in 

Figure 3-6). This DCT E-block is converted back into the spatial domain and replaced in its 

original position. 

 
Figure 3-6. EMBED phase for JPEG-GRID 

During the COMPRESSION phase, the image is divided into 8x8 blocks and each block is 

operated upon in turn by the JPEG compression algorithm which involves taking the DCT 

(shown in orange in Figure 3-7), dividing by        and rounding. 

DCT Embed IDCT 
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Figure 3-7. Portion of COMPRESSION phase for JPEG-GRID 

As discussed in Chapter 2, the DCT is not an element-wise mapping but DCT coefficient values 

depend on the size of the area being converted to the transform domain. Taking the top left 

8x8 block as an example - because the grid block used during COMPRESSION exactly coincides 

with the E-block used during EMBED, when the DCT is taken during the COMPRESSION phase 

you recreate exactly the same 8x8 E-block that existed after embedding (shown in orange in 

Figure 3-7). The DCT coefficients (       in Equation 2-15 and Equation 3-1 below) in the block 

are exactly those that were manipulated using QIM during embedding and which will now be 

divided and rounded. In essence, replacing the E-block after embedding and then retrieving it 

again before compression are reverse operations. 

As explained in Chapter 2, the DCT coefficients in the 8x8 blocks during JPEG compression will 

be subject to an absolute change in value of  ⌊      ⁄  ⌋ over the course of lossy 

compression, i.e. 

                 ⌊        ⌋ 3-1 

Because the DCT coefficients        in the 8x8 grid blocks during JPEG compression are exactly 

those used during embedding we can say with certainty that the data carrying DCT coefficients 

will experience a movement of  ⌊      ⁄  ⌋. Recall that some small errors may be 

introduced by rounding during conversions between the spatial and transform domains but 

these are neglected since they are not significant compared to coefficient movement caused 

by JPEG compression. 

To get an overview for the limits on movements for each DCT coefficient in a block, a Matlab 

program was written to plot ⌊      ⁄  ⌋ in the case that an advertised JPEG compression 

quality factor    of 50 is used. Although the coefficient value may move in the positive or 

DCT 
Division & 
rounding 
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negative direction, the direction of movement is not important. For the purposes of QIM, we 

are only concerned with the absolute value of displacement from the original lattice point 

value after embedding. 

Plotting the absolute value of the maximum coefficient movement at each frequency moving 

column-by-column through an E-block results in the awkward plot shown in Figure 3-8. 

 
Figure 3-8. Upper limit on DCT coefficient movement using   =50 plotted column-by-column 

For the purposes of illustration, a more intuitive plot results if channels are labelled in a zigzag 

fashion as during JPEG compression, thus reordering them in qualitatively increasing spatial 

frequency. This is shown in Figure 3-9.  

 
Figure 3-9. Upper limit on DCT coefficient movement using   =50 plotted in a zigzag order 

By drawing graphs in this way, it is easier to see which coefficients appear more vulnerable to 

movement than others, and how they are ordered roughly in increasing risk of movement 

although there is not a smooth increase in DCT coefficient movement with spatial frequency 

because        was determined empirically in the original standard (JPEG, 2007). From this 

point onwards, channels will be labelled within an E-block according to the zigzag order. 
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3.2.1.2 Movement in YASS and MULTI 

While coefficient movement can be determined easily in JPEG-GRID, JPEG-GRID is too 

simplistic to be a useful stego-system and YASS and MULTI are the important cell-based 

systems. JPEG-GRID was discussed only to introduce zigzag channel numbering and to provide 

a build-up to the discussion regarding coefficient movement in YASS and MULTI which is 

performed in this section of the chapter. 

In the case of YASS and MULTI, the DCT coefficients of the E-blocks do not coincide with those 

of JPEG-GRID. The EMBED and COMPRESSION phases are shown in Figure 3-10 and Figure 3-11 

for the most general case of MULTI.  

 
Figure 3-10. EMBED phase for MULTI 

During the EMBED phase an E-block is extracted which may not be 8x8 or positioned in the 

extreme top left of an image. In Figure 3-10, the first E-block is 11x11 and positioned in the top 

left of the stego-image. The DCT of the E-block is taken and data is embedded into it before 

converting the E-block back into the spatial domain and replacing it in the image as previously 

described for JPEG-GRID.  

 
Figure 3-11. COMPRESSION phase for MULTI 

 

DCT Embed IDCT 

Division & 
rounding DCT 
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The main difference between the more general case of YASS and MULTI and that of JPEG-GRID 

is that generally the 8x8 grid block used during JPEG compression is not the same in location 

and size as the E-block used during the EMBED phase. In other words, the grid used during the 

COMPRESSION phase is not the same as the grid of E-blocks used during the EMBED phase. 

Therefore, when the DCT of the top left 8x8 block is taken during JPEG compression, the data 

carrying DCT coefficients are not retrieved (i.e. they are not       ).  

In Figure 3-11, the retrieved 8x8 DCT block is shown in a different shade of orange to the E-

block after embedding in Figure 3-10. The 8x8 block will have similar frequency characteristics 

since it lies in the same area as the E-block spatially but division and rounding operations 

during JPEG compression will not act directly on the values of the data carrying E-block DCT 

coefficients because they are not retrieved as       .  

The general frequency characteristics of the image area will be altered with higher frequency 

coefficients likely to undergo more movement than lower frequency coefficients but the exact 

effect on the data carrying DCT coefficients of the E-block cannot be directly derived 

from       . 

To further clarify this point, consider the matrices below. Let’s say after embedding the 

example 11x11 E-block in Figure 3-10 appears as shown in Figure 3-12. Once it is converted 

back to the spatial domain, it has the appearance of Figure 3-13. This 11x11 matrix would then 

be replaced back in the stego-image. The E-block doesn’t coincide exactly with an 8x8 block 

during the COMPRESSION phase and in fact covers three adjacent 8x8 blocks. For the first 8x8 

block, only the top left 8x8 pixel intensities are taken (indicated by the black square) and when 

the DCT is performed on this block the result        is shown in Figure 3-14. The DCT 

coefficient values (       in Equation 3-1) are not the same as the embedded ones (the top 

8x8 coefficient values in Figure 3-12) and the net effect on E-block DCT coefficients is not 

obvious (not dictated by Equation 3-1) although we know that some detail in that image area 

will be removed by JPEG compression. 
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1409 -12 -14 -10 -2 4 -4 -2 0 -1 -4 

31 11 -8 3 -1 4 0 1 -3 1 1 

10 -5 3 -3 4 -6 5 -1 -1 0 1 

1 3 -2 2 -3 3 -4 1 1 1 -1 

-2 1 0 0 -1 0 0 0 0 1 0 

2 2 0 -1 1 -1 1 -1 -1 1 1 

1 1 0 -1 0 0 1 0 -1 0 1 

-1 0 0 1 0 0 -1 0 0 0 -1 

-1 0 0 1 -1 1 -1 0 0 0 0 

1 0 0 0 0 0 0 0 -1 0 0 

1 0 0 0 1 -1 1 0 -1 1 1 

Figure 3-12. Example 11x11 DCT Coefficients of E-block 

130 132 133 136 138 136 134 134 132 132 130 

128 130 131 135 136 135 133 133 132 132 130 

127 129 129 133 134 134 132 132 132 132 130 

126 128 128 132 133 132 130 130 130 130 128 

125 127 128 131 133 130 128 129 128 128 127 

122 125 126 128 128 131 124 126 130 128 121 

121 124 125 127 127 130 124 126 129 128 122 

121 124 125 127 27 129 124 126 129 128 125 

120 123 124 126 126 128 125 126 127 128 129 

119 122 123 125 125 127 125 126 126 128 133 

118 121 122 125 124 125 125 126 125 128 136 

Figure 3-13. Spatial representation of 11x11 E-block 

1034 -11 -14 1 1 -4 1 -4 

25 -1 0 0 2 1 -3 2 

1 0 0 0 -1 0 1 -1 

1 1 -1 0 0 -1 1 0 

3 1 0 -1 1 0 -1 2 

-1 0 1 1 -1 0 0 -1 

0 0 0 0 -1 0 1 -1 

1 0 0 0 1 0 -1 1 

Figure 3-14. DCT of top left 8x8 segment of E-block 
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The main consequence is that change in the data-carrying E-block DCT coefficients due to lossy 

compression can no longer be accurately predicted as  ⌊      ⁄  ⌋ as was the case for JPEG-

GRID.  

However, it can be argued that a good estimate of the movement of the coefficients in a 

particular channel (and channel characteristics in general) can be made by taking 

measurements over a sufficiently large and varied image data set so that the characteristics 

converge. This will be the main idea behind characterising the channels in the more general 

YASS and MULTI systems later in this chapter. Before these measurements are performed, the 

theories stated here regarding coefficient movement are tested practically in Matlab over a 

few images. 

3.2.1.3 Matlab Simulation & Image Database 

To demonstrate the extent to which DCT coefficient values in each channel change, a simple 

experiment was implemented in Matlab. Code which maps out E- and B-blocks for the MULTI 

and YASS schemes was provided by (Dawoud, 2010), and additional code was written to record 

the changes in value of the E-block DCT coefficients in each channel as the images were passed 

through a JPEG compression/decompression process. This was done by saving coefficient 

values for each channel before and after JPEG compression and recording the difference for all 

the coefficients in each channel.  

In-built JPEG compression provided by Matlab is not accompanied by any documentation 

regarding the quantisation matrices used for each quality factor. Because the specifics of the 

quantisation matrices        are important in this research, instead of using in-built Matlab 

JPEG compression functions, code from (Gonzalez & Woods, JPEG, 2002) that manually 

performs the compression and decompression was edited to use the quantisation matrices 

defined in the toolbox by (Sallee P. , 2003). 

Since this is the first time the simulator has been mentioned in this dissertation, it is an 

appropriate point to briefly introduce the reader to the image database that will be used for all 

simulations. The image database chosen in this research is from (Schaefer & Stich, 2004) and 

contains 1338 TIFF images in their uncompressed forms which can be resized as required. To 

give the reader an idea of the variety of the images in the database, a random sample of 

sixteen images is shown in Figure 3-15. This database was chosen because the images contain 

a wide combination of organic and manmade objects, highly textured and plain, taken at 

various angles and zoomed to several degrees. The colours of the images are diverse, as are 

the textures of the elements in the pictures. 
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Figure 3-15. Random sample of 16 images taken from image database 

Returning to the simulation, the movement in coefficient value for the channels was recorded 

over five images randomly sampled from the database, shown in Figure 3-16. 
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Figure 3-16. Images used to produce results in Figure 3-18 and Figure 3-19 

For these five images, a JPEG quality factor of 80 was used for compression. The corresponding 

quantisation matrix from (Sallee P. , 2003) is given in Figure 3-17.  

 6 4 4 6 10 16 20 24 

5 5 6 8 10 23 24 22 

6 5 6 10 16 23 28 22 

6 7 9 12 20 35 32 25 

7 9 15 22 27 44 41 31 

10 14 22 26 32 42 45 37 

20 26 31 35 41 48 48 40 

29 37 38 39 45 40 41 40 

Figure 3-17. Quantisation matrix for a quality factor of 80 

Using these images, the histograms of DCT coefficient movement for channels 2 and 15 were 

plotted (with channels labelled in a zigzag order as explained previously) for JPEG-GRID and 

MULTI.        for the two channels is highlighted in blue in Figure 3-17. Across the five 

images, a total of 7220 E-blocks are created. 

The histograms in Figure 3-18 show that the coefficient values for JPEG-GRID in position 2 are 

more stable than those in position 15 as expected. In the case of JPEG-GRID, the movement is 

also limited to  ⌊      ⁄  ⌋  (2 and 5 for channels 2 and 15 respectively). Rarely, movement 

of the coefficient is measured as beyond ⌊      ⁄  ⌋ due to rounding errors while converting 

between the spatial and transform domains in the EMBED phase but as the histograms show 

this is a minor effect. 



67 
 

 
Figure 3-18. Histograms of coefficient movement for channels 2 (a) and 15 (b) for   =80 for JPEG-GRID 

Figure 3-19 shows the movement of coefficients for MULTI for the same channels over the 

same five images where now 3120 E-blocks are generated. The trend that higher frequency 

channels experience more widespread movement is shown to still hold true however the limits 

on movement can no longer be predicted using        . 

 
Figure 3-19. Histograms of coefficient movement for channels 2 (a) and 15 (b) for    =80 for MULTI 

Thus far we have seen that in the case of YASS and MULTI, the coefficient movement for each 

channel cannot be determined analytically but must be deduced using extensive 

measurements. The channel characteristics regarding coefficient movement will be useful 

when determining data handling procedures and will be referred to again later in the chapter. 

For now the concept of relative coefficient movement in the channels is important. 

3.2.2 Delta Values used in YASS/MULTI 

Given the newly acquired knowledge about DCT coefficient movement in cell-based systems, 

the reader is now sufficiently informed to understand how data embedding parameters have 

been determined in cell-based systems thus far and this section describes this. 
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With regard to the statistical distribution of the movement in DCT coefficient values for the 

channels, embedding should not alter any significant properties of the distribution and thus 

embedding hasn’t been mentioned so far. 

There is, however, one special case where embedding has a significant effect on coefficient 

movement and this is now discussed because it explains what delta values cell-based systems 

have used up until now and why. Recall that delta is the value with which the DCT coefficient is 

quantised by during the QIM process. 

In the case of JPEG-GRID, let’s assume that the delta value used during QIM is the same as the 

corresponding        during JPEG compression for a channel. 

Recall        was defined to be the JPEG quantisation matrix used during compression, and 

       to be an element from       . 

Define: 

         3-2 

where   is an integer from position       in       . 

In the QIM system for this channel, define: 

     3-3 

Recall        was defined to be an 8x8 matrix of the DCT coefficients in the E-block after 

embedding using QIM before lossy JPEG compression and        is an element of        . 

After QIM embedding, the resultant value of the DCT coefficient is shown in Equation 3-4. 

           3-4 

where   is a random integer correlated to the lattice point to which the DCT coefficient is 

moved during embedding. 

Recall  ̂      was defined to be an 8x8 matrix of the data carrying DCT coefficients after 

quantisation during JPEG compression and  ̂      are elements from  ̂     . The operation of 

quantisation during JPEG compression is shown in Equation 3-5. Recall that Equation 3-5 was 

previously given as Equation 2-13. 
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 ̂           (
      

      
* 

3-5 

 

Element-wise, Equation 3-5 can be rewritten as Equation 3-6. 

 ̂           (
      

      
*  3-6 

By substituting Equation 3-4 in Equation 3-6, you get Equation 3-7. 

 ̂           (
      

      
*  

   

 
   3-7 

Because the quotient in Equation 3-7 is an integer, there is no rounding and JPEG compression 

is no longer lossy.  

To see this, consider the step of retrieving the DCT coefficient value during de-compression in 

Equation 3-8 where         is the recovered DCT coefficient. 

         ̂                        3-8 

The final effect is: 

               3-9 

This means that if the delta value for a channel is the same as        for that channel, then 

there should be no errors in the data retrieved since JPEG compression has been made lossless. 

The cell-based systems thus far have used JPEG quantisation matrices        at different 

quality factors as values of delta during QIM. The reasons for this choice are not specified in 

the original literature but it is suggested that it was a basic extension of the optimal case just 

explained.  

As a rough estimate, the delta matrix has a correct look since delta values would be expected 

to be larger for higher frequency channels to tolerate more coefficient movement, and as we 

have just seen more movement does occur in higher frequency channels. However, there is no 

justification for why these values specifically would work well during YASS or MULTI where E-

blocks do not align with grid blocks. MULTI (Dawoud, 2010) crudely extends the JPEG 

quantisation matrix to make a 12x12 matrix to accommodate the larger E-block sizes. 
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While using different deltas for DCT coefficients at different frequencies suggests a channel 

model as explained earlier in Section 3.1, the literature thus far has not been close to defining 

it and error coding has been used across blocks, which has been explained to be inefficient. 

In Chapter 2, the term advertised quality factor    was used to refer to the factor with which 

the quantisation matrix used during JPEG compression is chosen. We now define a second 

quality factor - a hiding quality factor    as the factor to choose the JPEG quantisation matrix 

used to provide delta values for embedding during QIM in YASS and MULTI literature so far. 

This chapter will present an approach to choosing delta and error coding schemes more 

analytically than done previously.  

3.3 Determining Channel Data Handling Parameters Graphically 

So far, a new channel model has been deduced and the reasoning for the new channel model 

has been validated by exploring more specifically the properties of coefficient movement. It 

was stated that the coefficient movement in the more general cases of YASS and MULTI cannot 

be derived analytically as in the case of JPEG-GRID, but that through extensive measurements 

can be characterised. 

We know that we will need to use the channel characteristics somehow with data embedding 

and error coding procedures to optimise embedding capacity in each channel but the exact 

nature of how to do this has not been explored. Therefore, before acquiring the channel 

characteristics, it is worth taking a step back and getting an overview of how we will be able to 

combine channel characteristics with our understanding of data handling procedures to derive 

better data handling parameters that will hopefully address the relatively low embedding 

capacity of cell-based systems (in effect the main research problem statement in this 

dissertation).  

The main players in embedding capacity are selection criteria and error coding which are both 

connected to the value of QIM delta. This section discusses these broad issues. 

If error coding is ignored for the moment, the effect of the choice of delta on error in a channel 

can be explained. Consider the histogram of movement in channel 15 in JPEG-GRID for a JPEG 

quality factor of 80 taken from Figure 3-18(b), repeated in Figure 3-20. Assuming as an 

example the use of a delta of 10 for this channel, tolerance boundaries representing the limit 

on coefficient movement for correct data retrieval ( ⁄  ) can be superimposed on this 

histogram as shown. 
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Figure 3-20. Histogram of channel 15 movement for   =80 for JPEG-GRID  

From this, the probability of error can be calculated as the ratio of the sum of the heights of 

the bins outside the boundaries to the total number of coefficients for that channel. Therefore, 

as delta is increased one can imagine the tolerance lines moving outwards and the likelihood 

of error decreasing. 

In Chapter 1, the basic idea of error correcting was introduced which is the inclusion of 

overhead bits in the transmitted bit stream that are then used at the receiver to detect and 

correct erroneous bits. Generally speaking, the higher the error rate required to be corrected 

for the more overhead bits required. Therefore, delta will have an indirect effect on 

embedding capacity through the error rate due to the associated overhead bits. As delta 

decreases, the error rate will increase and more overhead bits will be required reducing 

embedding capacity.  

The question of the appropriate value for delta then arises. So far, the value of delta has been 

related to embedding capacity in two ways: 

1. It has just been shown that an increase in delta corresponds to reduction in error in a 

channel which requires fewer overhead bits. For small delta more overhead bits are 

required. 

2. In Chapter 2, a selection criterion was explained. In order not to risk changing the number 

and distribution of zero-valued DCT coefficients in an image, no DCT coefficient in the range 

       is used to carry data. Therefore, as delta increases, so does the number of DCT 

coefficients that will not be used for embedding. 

Overall, it can be said that for smaller delta there is a large error rate, more aggressive error 

correcting is required and the embedding capacity is reduced by the amount of overhead bits, 
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whereas for larger delta less aggressive error correction is required but now fewer coefficients 

outside the range        are selected for embedding and capacity is again reduced.  

The two effects of delta on embedding capacity for a channel are summarised in Figure 3-21. 

The factor that reduces embedding capacity is printed in red whereas the factor the increases 

embedding capacity is printed in green. 

 
Figure 3-21. Overview of effects on embedding capacity versus delta 

Because there are two separate factors influencing embedding capacity over opposite ranges 

of delta, Figure 3-21 suggests that if net embedding capacity is plotted for a range of delta, 

there should be some moderate delta where the effects of error-coding and selection criteria 

are such that embedding capacity is optimal in the channel.  

For a particular delta, the error rate and embedding rate (i.e. effect of selection criteria) for a 

channel in YASS and MULTI cannot be determined analytically but can be deduced through 

extensive measurements as explained earlier. These two properties will be referred to as 

channel characteristics. Given that the channel characteristics are known, the plot of net 

embedding capacity can be generated in the following way: 

1. At each delta, if the error rate is known (from channel characteristics), then the amount of 

overhead required to correct for it can be determined.  

2. At each delta, if the effects of selection criteria on the proportion of coefficients used are 

also known (from channel characteristics), then the effect of embedding capacity reduction 

due to selection could be factored in with the embedding capacity reduction due to error 

coding overhead (which you would know from the choice of error code in (1.) above) and 

for each delta a net embedding capacity value would be calculated.  

3. By doing this over all delta values a plot of net embedding capacity would be acquired. This 

would have to be repeated for each channel. 

Recall that data handling refers to data embedding (QIM which is characterised by delta) and 

error coding schemes. Once the embedding capacity plot is drawn for a channel and the 

maximum embedding capacity point is found, the data handling schemes for that point could 

Δ Large Small 

 More errors → more overhead 
 More coefficients selected for data 

carrying 

 Fewer errors → less overhead 
 Fewer coefficients selected for data 

carrying 
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be deduced by reading the QIM delta value off of the x-axis and determining the error coding 

scheme that was implemented at the maximum capacity point. 

It can now be seen that this type of plot holds the key to deriving optimal data handling 

schemes for a channel and the focus of this work now shifts to determining this type of plot for 

the defined channels. 

One final factor related to delta not yet mentioned but worth consideration is that the larger 

the delta, the greater the embedding artefacts which may increase detectability. In cell-based 

systems, the random nature of embedding is the most important aspect in ensuring security 

therefore it is assumed for now that the random nature of embedding should guarantee 

adequate resistance against steganalysis even if the delta values for the channels deduced 

here are higher than those in the literature previously. It is expected, however, that the delta 

values derived here will be similar to existing ones. This assumption will be tested in Chapter 4. 

Now that we have a global view of what is required to find data handling parameters for each 

channel, the rest of this chapter deals with deducing channel characteristics and consolidating 

them with error coding systems to give this net embedding capacity plot and hence deriving 

data handling schemes. 

3.4 Channel Characterisation 

In order to plot the net embedding capacity curve, first the channels in YASS and MULTI need 

to be characterised which can only be done empirically through extensive measurements. 

Specifically, the error rate and effects of selection criteria (embedding rate) for each delta for 

each channel need to be determined. This section formally defines the channel characteristics 

of interest and how the measurements are conducted, as well as presents some final channel 

characteristics and comments. 

3.4.1 Determining Channel Characteristics Empirically 

In order to plot net embedding capacity versus delta, the characteristics of the channels need 

to be known first. The idea here is to gather statistics of the channel for each delta regarding 

the proportion of channel coefficients that meet selection criteria and the error rate a 

correction code would be required to cater for. For the moment, we ignore error coding 

requirements. 

It has already been seen that the DCT coefficients in the E-blocks of MULTI and YASS are not 

directly correlated to the JPEG quantisation matrix values        as in the case of JPEG-GRID. 

To solve this problem, an assumption is made that if channel characteristics are measured over 
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a sufficiently large and variable set of images for the most general case of MULTI until the 

characteristics converge, the characteristics will be a good representation of the channel 

properties in any image likely to be used as a cover image.  

The channel characteristics deduced in this section will be for the 144 channels in the MULTI 

system. These characteristics will be representative of all cell-based systems since they all 

generate E-blocks randomly in an image. Statistically speaking, the only real difference then 

between YASS and MULTI is the number of channels, but the channels in the top left 8x8 

segment of the MULTI E-blocks will have the same statistical properties as those of YASS E-

blocks.  All of the AC channels are considered for data carrying and not only the first 19 as 

originally presented in the literature. 

In order to plot the embedding capacity against delta, for each value of delta the proportion of 

DCT coefficients in the channel that meet selection criteria needs to be known, and the error 

rate needs to be known so that the amount of overhead related to coding can be found. 

Although already introduced, these two critical characterising factors for a channel are defined 

formally next. 

i. Embedding Rate 

The average embedding rate for a block of data bits is defined in Equation 3-10. 

               
                                             

                                          
 3-10 

 

The embedding rate represents the proportion of the candidate coefficients in each channel 

that are deemed acceptable to carry information by selection criteria. Taken as an average 

over a channel, it also represents how appropriate a particular channel is to carry data with 

regard to the security of the system. 

ii. Error Rate 

The average error rate for a block of data bits is defined in Equation 3-11. 

           
                                  

                                  
 3-11 

 

The error rate represents the likelihood of error in a particular group of embedded message 

bits, based on some observed input and output bit stream. More specifically, given the 

selection criteria, the error rate indicates the extent to which the surviving coefficients are 
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appropriate for data embedding for a given delta and advertised quality factor    used for 

JPEG compression of the stego-image. 

To measure these rates, a large image database and simulator are required. The simulator 

should, for each image, and for each delta for each channel, determine the embedding rate 

and error rate using the MULTI system. 

The image database has already been introduced in Section 3.2.1.3 and the simulator was 

implemented in Matlab. While the code received from (Dawoud, 2010) generated the E- and 

B- blocks in an image for YASS and MULTI, there was no functionality accommodating a 

channel model such as the one presented here since this is original to this dissertation. Recall 

that the module recording movement in E-block DCT coefficient values between before and 

after JPEG compression was added on previously. Some pertinent elements of the simulator 

and further modules added onto it at this point are: 

 The original code of (Dawoud, 2010) allowed for pseudo-random data bits to be embedded 

into the E-block DCT coefficients. This is a good approximation for the nature of the data a 

steganographer would embed since the data is likely to have undergone cryptographic 

scrambling and error correcting coding.  

 The number of bits embedded into each channel corresponds to the number of DCT 

coefficients used for data carrying in a channel after selection criteria and the required 

number of data bits can only be determined once the embedding rate is known. To 

determine this number, an image undergoes a preliminary stage of processing before data 

generation and embedding. 

 The code of (Dawoud, 2010) only implemented LSB embedding. The code was extended to 

perform QIM embedding at the transmitter side and QIM de-embedding at the receiver 

side with a different delta specified for each channel. 

 The code of (Dawoud, 2010) embedded data for the purposes of generating stego-images 

that could be visually and statistically analysed. Modules were added to record the input 

and retrieved secret message bit streams for each channel used to analyse the error rate 

and distribution of errors in a channel. 
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Before acquiring channel characteristics, the advertised JPEG compression quality factor    

must be decided upon for 2 reasons: 

 The greater the amount of compression, the more likely the movement in the E-block DCT 

coefficient due to the compression process and this effects all of the parameters for data 

embedding and error correcting. 

 In the eyes of a steganalyser, it cannot distinguish between distortion due to the 

embedding process or due to heavy quantisation of the JPEG compression process. 

Therefore, a more heavily compressed image containing data will be more resistant to 

steganalysis than a stego-image that is more lightly compressed. 

All other literature on cell-based systems uses   =75 and to conform to this 75 is also used 

here. 

There is also a more subtle point to be made regarding measurement of the error and 

embedding rates. In communication channels, the characteristics of a channel can be 

measured over some time in batches. Given a time segment, there will be certain statistics 

regarding the behaviour of the channel determined from previous observations. In 

characterising the channels in cell-based stego-systems, it has already been explained that a 

time base is not used, but rather the bits are embedded spatially. In the same way that a signal 

can be analysed over a specific time segment, we need to examine the channel over a certain 

number (batch) of coefficients (each coefficient retrieved from an E-block in sequence as 

shown in Figure 3-4).  

The number of coefficients in a batch depends on the accuracy with which the embedding and 

error rates are required to be measured. If we take the batch to be one coefficient, then at any 

time the channel can have either 0% or 100% embedding or error rates which is not a realistic 

measurement because this case is so limited. As the number of coefficients in a batch is 

increased, the accuracy with which we can record the rates increases. Using a batch of 100 

coefficients, we can get accuracy in rates of up to 1% which suffices for this application. 

To summarise then, the specifics of acquiring error and embedding rate statistics with regard 

to these batches (accommodated by the above-stated simulator properties) are: 

1. Divide the channel coefficients into batches of 100 (ignore any residual coefficients after 

batching). 

2. For each batch: Check how many meet selection criteria based on the delta value for that 

channel. This proportion is noted as an embedding rate measurement. 
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3. For each batch: For those coefficients that meet selection criteria, embed data into them 

and, after the JPEG compression/decompression process, retrieve data from them. How 

many correct data bits were retrieved? This fraction is noted as an error rate measurement. 

As an example of the resultant plots, the embedding and error rates for these batches in 

channel 3 for delta values from 1 to 40 are plotted in a scatter diagram as shown in Figure 3-22 

and Figure 3-23. Figure 3-22 shows the scatter of the rates within one image, whereas Figure 

3-23 shows the scatter of the rates over twenty images. 

As the number of batches increases the scatter plots become more occupied and trends begin 

to show. In particular, a concentrated cloud of error rates form that represents the general 

trend. As the number of batches seen increases further, the shape of the cloud does not 

change and only scattered outliers appear. For the purposes of determining channel 

characteristics, our concern is to use as many images as required to gather the statistics from 

an increasing number of batches until the trend in the scatter plots become sufficiently static 

and converged so that using any more batches does not make any substantial difference to the 

channel characteristics. 

 

Figure 3-22. Scatter plot for channel 3 error rate and embedding rate over 1334 E-blocks 
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Figure 3-23. Scatter plot for channel 3 error rate and embedding rate over 26680 E-blocks 

From Figure 3-23, the embedding capacity of the batches is spread evenly for a given range for 

each delta and no thick cloud of scatter points is visible. Over a batch, the embedding rate for 

that batch depends on the segment of image from which those coefficients are taken. This is 

because embedding rate represents the extent to which the batch coefficients are large 

enough to be acceptable to carry data. Over a batch, the image area covered can be infinitely 

variable from plain sky to textured shrubbery and there is an even spread overall of good and 

bad image areas. Interestingly, Figure 3-23 shows that from a delta of 5 onwards batches may 

be observed that provide no usable DCT coefficients for data carrying (embedding rate = 0). 

The scatter plots for channel 20 are shown in Figure 3-24. Compared to the plot for channel 3 

in Figure 3-23, at any given delta the error rate is higher and the embedding rate is lower, 

implying that generally DCT coefficient values are smaller and more prone to movement as a 

result of lossy JPEG compression. There are also more extreme error rate outliers than in 

channels of lower frequency indicating the volatility of the channel.  
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Figure 3-24. Scatter plot for channel 20 error rate and embedding rate over 26680 E-blocks 

In order to monitor the convergence of the channel characteristics, trend lines can be derived 

from the scatter plots. In particular, trend lines can be drawn that link values of rates below 

which a certain fraction of observed values exist. In this report, these will be referred to as 
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3 are shown in Figure 3-25. 
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Figure 3-25. Error rate tolerance lines for channel 3 

In order for the channel characteristics to converge, the number of images over which batch 

measurements were taken was increased and the tolerance lines were analysed for 

movement. The average rates and 98% tolerance lines for error rate in channel 3 are shown in 

Figure 3-26 and Figure 3-27 for 1, 10, 20 and 30 images respectively. 

 
Figure 3-26. Channel 3 characteristics for one image (1334 E-blocks) (a) and for ten images (13340 E-blocks) (b) 

 
Figure 3-27. Channel 3 characteristics for twenty images (26680 E-blocks) (a) and for thirty images (40020 E-

blocks) (b) 
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As the number of images is increased, the channel characteristic tolerance lines become 

smoother. It can be seen that after 20 images, the shape of the tolerance line does not change 

visibly, with all values in tolerance lines agreeing in the case of twenty and thirty images to 

within 0.05%. 

The channel characteristics for channel 20 and 60 after convergence are shown in Figure 3-28 

and Figure 3-29. The 98% tolerance line is also shown for embedding capacity just to give the 

reader an idea of shape of the trend. As the frequency of the channel increases, the tolerance 

lines for error rate become more erratic and sit higher overall. In Figure 3-29, the tolerance 

line shows an error rate consistently very close to 100% starting from moderate delta. The 

error rate tolerance lines are less smooth than those of lower frequency channels because, as 

explained, higher frequency coefficients tend to be smaller in value and so fewer are selected 

for embedding. Since error rate is calculated as a fraction of a smaller number of coefficients 

the trend lines are not as smooth.  

 
Figure 3-28. Channel 20 characteristics for thirty images (40020 E-blocks) 

 
Figure 3-29. Channel 60 characteristics for thirty images (40020 E-blocks) 
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In Figure 3-29, the channel characteristics ‘end’ at a delta value of 37. This is because at larger 

delta, of the 40 020 actual E-blocks, after the selection criteria no usable coefficients were 

retrieved from the channel and the channel is not considered usable after this point.  

3.5 Per Channel Determination of Optimal Delta 

Now that the channel characteristics have been determined, the next step towards plotting 

net embedding capacity curves is the inclusion of error coding parameters. We anticipate that 

this net embedding capacity plot will have a maximum embedding capacity point at which 

security and error correcting effects combine optimally.  

Before deciding on the specific error coding systems, this section tests the hypothesis that 

error coding when combined with the channel characteristics just derived does indeed provide 

a point of optimal embedding capacity. 

To recap how the net embedding capacity plot is drawn, the inclusion of the effect of coding is 

done, for each delta, by finding the specific error correction code that corrects (or just 

overcorrects) for the corresponding error rate and by simultaneously finding the new net 

payload by including the proportional reduction in effective embedding capacity due to the 

inclusion of overhead bits. In this way, the embedding rate graph is altered by multiplying by 

the proportional loss due to error coding at each delta.  

Since the channel characteristics are scatter plots with not one rate value per delta, the error 

rate for which the coding system would cater can be read off of a particular tolerance line. The 

choice of tolerance limit depends on the degree to which error is acceptable in the system. For 

example, if we correct for the noted error rate at the 98% tolerance line then 98% of the 

batches should end up error free. The embedding rate used in the calculation of the net 

embedding rate can also be read off of a particular tolerance line. Given the close to uniform 

distribution of embedding rate scatter plots, it doesn’t matter which embedding rate tolerance 

line is used as they are all very close to integer multiples of each other and so when multiplied 

by the error coding overhead effect will all provide the same optimal point. Here and for the 

rest of this dissertation the 98% tolerance line for embedding capacity is chosen. 

The repercussions of a particular choice of error rate tolerance line are discussed later in 

Section 3.6. For now, only the concept of generating the net embedding capacity plot is 

important. 

For the moment the specifics of the error correcting scheme is not crucial since they all have 

similar characteristics, we just wish to confirm that the net embedding capacity plots will have 
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the maximum embedding capacity points as expected. Using a simple error block code, three 

net embedding capacity plots are generated for channels 2, 5 and 11 taking the 98% error rate 

tolerance and are shown in Figure 3-30. As expected, points of maximum net embedding 

capacity emerge. 

 
Figure 3-30. Net payload including BCH coding for various channels 

These plots provide the following information relevant to the maximum embedding capacity 
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for data carrying in terms of the amount of data they can carry provided that the value of delta 

isn’t so large that a steganalyser can detect the embedding artefacts. 

It is assumed that the random nature of embedding in itself will secure resistance to 

steganalysis even if the values of delta for lower frequency channels are determined to be 

slightly higher than those used in the quantisation matrix for hiding quality factor   . This will 

be assumed for now and checked in Chapter 4 where performance of the determined system 

is examined. 

3.6 Compensation for Errors 

Now that channel characteristics have been determined and that it has been confirmed that 

consolidating channel characteristics with error coding parameters does provide data 

embedding and error coding parameters that give optimal embedding capacity, the exact 

nature of the error coding scheme to be implemented needs to be discussed and once this has 

been decided, similar plots as shown in Figure 3-30 can be deduced which, with some 

reasoning, should provide a solution. 

Previous literature on cell-based systems has used RA coding. In terms of embedding capacity 

RA coding is inefficient because of the high number of redundant bits. This section works on 

the premise that a better coding system can be found. A comparison between the 

performances of the new system versus the old one is then provided in Chapter 4. 

It should be mentioned that, depending on the application, errors may be allowed in a secret 

message. For example, if the message is text or voice, then corruption of some letters or 

distortion in the voice probably won’t prevent the receiver from understanding what was 

meant. However, if the secret message data is a bank balance, then the movement of a 

decimal place will have a dramatic impact on how the retrieved message is interpreted by the 

intended recipient. In this dissertation, no strict limitations are placed on application and it is 

assumed that the designer would want as close to error-free transmission as possible to satisfy 

the more strict case. Also, should an error occur, there should be a mechanism in place so that 

the recipient will realise this and request a re-transmission if desired and possible. 

3.6.1 Error Correction Selection 

Given a channel subject to errors, error coding can be approached in a few ways. The one way 

is to not perform error correction but only perform the significantly simpler task of error 

detection. Should an error be detected at the receiver, a request is sent using a feedback 

channel to the transmitter to re-transmit the data in a different cover image. This is not 
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practical in stego-systems because there is no intuitive feedback channel and the requirement 

that the transmitter regularly re-transmit messages could arouse suspicion from a warden.  

A more practical approach is the use of forward error correcting (FEC) codes. In this scheme, 

redundancy is introduced by interleaving the data to be transmitted with check bits (overhead) 

that are used at the receiver to correct errors. Initially, FEC codes were unpopular due to their 

high complexity, but since this is now less of a problem following the development of many 

powerful electronic systems, the effectiveness often outweighs other schemes. 

The choice of FEC code is governed by three factors: 

 The nature of the errors (i.e. random or burst). 

 The degree to which the errors occur.  

In the case of random errors, it is assumed that each bit has the same likelihood of error, 

independent of any other bits, and so the average error rate represents the likelihood of 

any bit being in error at any time. In the case of burst errors, the longest burst expected in 

the channel needs to be quantised. 

 Whether the length of data to be transmitted is known in advance and can be broken down 

into blocks, or whether a continuous stream of data of unknown length needs to be 

accommodated. 

A reasonable cover image will contain regions of varying texture and suitability to carry data. 

Consider the simple case where a message is hidden in channel coefficients sequentially in 

adjacent E-blocks as shown in Figure 3-3 and Figure 3-4; if there happens to be an image 

region that is particularly error-prone then a substantial burst of error will occur. Due to the 

massive variety in image content, it would be difficult to predict the extent of the error 

burstiness. This problem can be avoided by embedding data in a pseudo-random order around 

an image rather than sequentially in adjacent E-blocks. By doing this, the probabilities of 

adjacent data bits being in error are decorrelated and the nature of the error becomes random 

(Vaudenay, 2002). The statistics relating to this type of error can be derived directly from the 

error rate tolerance lines of the channel error characteristics. The scattering of data around 

the image can be done simply using a pseudo-random number generator, the key to which can 

be shared in the stego-key. 

Given that the purpose of this work is to improve embedding capacity, we will narrow our 

focus of error correcting schemes to moderate ones that correct for small to moderate 

amounts of error and which have minimal overhead. Correcting for channels and delta values 
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with very high error rates is possible with aggressive coding schemes, but goes against the 

main goal of this work since the heavy overhead requirements would offset any benefit of 

using the channel to contribute substantially to net embedding capacity.  

Within the field of light random error correcting coding, the two primary candidates are 

convolutional codes and Bose, Chaudhuri and Hocquenghem (BCH) codes (Lin & Costello, 

1983). BCH codes are a type of block code that divide the input bit stream into blocks of fixed 

size that are then padded with overhead parity bits mapping an input block into a code word. 

Convolutional codes also convert the input message stream into code words, but do not divide 

the stream into blocks. Rather, it outputs a code word based on a set of current input bits and 

previous input bits stored in memory. Convolutional codes are used in real-time applications 

when the length of the input stream is not known prior to encoding. With regard to stego-

systems, there is no reason why the cover image and input bit streams would not be known in 

advance, making the system more suitable for BCH codes. 

BCH codes are a popular generalisation of the well-known Hamming codes. They are highly 

flexible, allowing variation in block size and overhead within certain error thresholds and 

mathematical constraints.  

As defined in (Lin & Costello, 1983): 

Given any positive integers   and  , with       and         , there exists a binary BCH 

code with the following parameters: 

       3-12 

       
3-13 

          
3-14 

where   represents the number of errors that can be corrected,   represents the length of the 

final codeword and   represents the size of the input block of message bits. A table 

documenting values of         that exist can be found in (Proakis & Salehi, 2002). The possible 

values of   are 7, 15, 31, 63, 127, 255, 511 and 1023. For a given error rate, a BCH code with 

smaller block length has a better code rate (  ⁄ ). BCH codes can correct for errors up to 

approximately 25% of the entire block (including overhead bits). 
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A disadvantage in using BCH codes is that some bits may need to be rejected after blocking if 

the number of coefficients in a channel is not an integer multiple of  , with an average   ⁄  

bits being lost per channel. However, the simplicity and effectiveness of the codes combined 

with the likelihood that proportionally only a small number of bits will be lost makes BCH 

codes a good choice. 

With regard to the simulator, further modules were added at the front and back ends to 

provide BCH encoding before embedding and decoding after retrieval. The front end is shown 

in Figure 3-31. Given an initial secret message bit stream (110010100001101…), each channel 

has capacity to carry     bits after selection criteria (determined using a preliminary stage in 

the Matlab simulator as explained in Section 3.4.1). Recall channel 1 is not used because it 

consists of all the E-block DC DCT coefficients.     is the total number of bits (information bits 

and overhead) that can be accommodated into a channel and it is expected that         

since as the frequency of the channel increases it will tend to have a greater number of smaller 

DCT coefficients that do not meet selection criteria. This is shown in step (1.) in Figure 3-31 for 

channels 2 and 3. Once      is known, at the receiver side: 

1. Taking the example of channel 2 further,    is divided into    blocks according to the 

chosen BCH block size    . Any residual bits after blocking (          ) are filled with 

dummy random bits (not information bits). This is shown in step (2.).  

2. Each block is then filled with (        ) secret message bits and    overhead bits are 

appending to form a complete block. BCH coding is performed using the function bchenc 

(MathWorks, 2011).This is shown for one block in step (3.).  

3. The    blocks of encoded secret message data with the random dummy bits form the 

complete   -bit data block which can then be embedded into channel 2. Before 

embedding, the block shown in step (4.) is scrambled using a PRNG to remove burst errors 

(the key to which is transported using the stego-key) and saved in the channel using QIM.  



88 
 

...

...

...

(1)

(2)

(3)

(4)

n2 n2 X2-(m2*n2)

X2

X2

k2

X3

 
Figure 3-31. Channel-wise BCH encoding 

The stego-image then undergoes JPEG compression and decompression. 

At the receiver side: 

1. The bits are retrieved from each channel using QIM de-embedding and descrambled using a 

key to a PRNG that is transported in the stego-key. 

2. The dummy bits in the residual channel spaces after blocking are rejected and the 

remaining bits undergo BCH decoding to remove overhead and correct any corrupted data. 

This is facilitated by function bchdec (MathWorks, 2011). 

Now that the specifics with regard to the channel error correcting have been decided upon, it 

is possible to compose an expression for the embedding capacity. At this point it should be 

reiterated that the term embedding capacity refers to the number of secret message bits 

excluding overhead or dummy bits that can be transported using an image. 

Let’s define     as the proportion of the total number of DCT coefficients in a channel that 

meet selection criteria.  

Thus, if     is the raw number of DCT coefficients in a channel,     can be expressed as in 

Equation 3-15. 

            3-15 

    cannot be derived analytically but is represented by the embedding rate channel 

characteristics. 

BCH code block 

Dummy data BCH code overhead 

Secret data bits 
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If     is the BCH code block length used for a particular channel, the number of blocks in a 

channel corresponds to the number of batches of     that fit completely into    . This is 

shown in Equation 3-16. 

               (
       

   
* 3-16 

where          maps   to the largest integer that does not exceed  . 

In each block there are     secret message bits. Therefore, the number of secret message bits 

(not overhead bits or dummy bits) in a channel is given in Equation 3-17. 

                        (
       

   
*       

 

3-17 

 

The total number of secret message bits that can be accommodated in the image across all 

channels, which we call embedding capacity, is given in Equation 3-18. 

        ∑      (
       

   
*     
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3.6.2 Usable Channels & Per Channel Error Correction 

So far, it has been confirmed that using channel characteristics and error code properties, data 

handling parameters that give best embedding capacity for a channel can be derived. Now that 

BCH coding has been decided upon and the embedding capacity can be derived,     and     

need to be considered more carefully and selected to maximise embedding capacity in each 

channel. 

First, a tolerance line needs to be selected to represent the error rate at each delta for which 

error correcting will cater. Theoretically, if the values of delta and error correcting parameters 

are derived according to 100% error rate tolerance lines then no errors should ever be 

observed and error coding would not be required. In reality, it is possible that an outlier was 

not characterised and rare errors may occur. Using a tolerance limit less than 100% would 

certainly require error coding. Recall the 98% tolerance line for embedding rate was already 

selected in Section 3.5. 
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The tolerance line for which error is corrected can be chosen at the discretion of the designer 

and will depend on the amount of allowable error in a given channel. Before making the final 

decision on what tolerance line to use, we can say that the 95% error rate tolerance line is a 

reasonable boundary for the lowest tolerance percentage a moderate channel error correcting 

scheme would cater for. Recall the 95% tolerance level for error rate represents the value of 

error rate below which 95% of observable batch error rates have occurred. 

Having defined a lower limit on what error rate tolerance limit to use, we can now consider 

which channels are usable and which are not. We know that channels where the error rate is 

consistently above  25% cannot be corrected for using BCH codes and correcting for high 

error rates would go against the principle of attempting to increase embedding capacity since 

a strong coding scheme and significant overhead would be required compromising embedding 

capacity, bringing into doubt whether the channel should be used at all. 

Not all channels have 95% tolerance lines indicating an error rate below 25%, and those that 

do not are rejected for embedding according to the condition that only moderate error 

correction is worthwhile. The channels that are deemed usable are highlighted in blue in 

Figure 3-32.  

The 12x12 matrix contains the channel numbers taken in zigzag order in MULTI. It is evident 

now that 30 channels are usable in an E-block in conjunction with moderate error correction 

contradicting the assumptions made in the literature previously that only the first 19 are 

usable. Recall that the corresponding matrix for any E-block smaller than 12x12 can be 

extracted by taking the required square from the top left hand corner of the matrix in Figure 

3-32. All of the channels but one lie in the top left 8x8 segment of the E-blocks and so each E-

block will contribute one candidate coefficient towards these channels. 
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1 2 6 7 15 16 28 29 45 46 66 67 

3 5 8 14 17 27 30 44 47 65 68 89 

4 9 13 18 26 31 43 48 64 69 88 90 

10 12 19 25 32 42 49 63 70 87 91 108 

11 20 24 33 41 50 62 71 86 92 107 109 

21 23 34 40 51 61 72 85 93 106 110 123 

22 35 39 52 60 73 84 94 105 111 122 124 

36 38 53 59 74 83 95 104 112 121 125 134 

37 54 58 75 82 96 103 113 120 126 133 135 

55 57 76 81 97 102 114 119 127 132 136 141 

56 77 80 98 101 115 118 128 131 137 140 142 

78 79 99 100 116 117 129 130 138 139 143 144 

Figure 3-32. 12x12 matrix showing channels appropriate for data carrying 

Now that we understand which channels are usable, the embedding capacity plot versus delta 

can be drawn and the best data handling schemes derived. At this point, we review the 

sequence of events required to determine these schemes: 

Firstly, the tolerance level of error rate and     are selected for the channel. Then for each 

delta, the required     for the BCH code is chosen to correct the error rate and 

correspondingly the embedding rate is consolidated with the reduction in embedding capacity 

due to coding overhead bits to produce a net embedding capacity value for that delta. Done 

for all deltas, this generates the net embedding capacity plot for the channel which provides a 

maximum point from which delta (   ) can be read off of the x-axis and     can be read as 

explained in Section 3.5. 

The first step in determining data handling parameters is deciding on the error rate tolerance 

level and the    . We are assuming we use one tolerance level across all channels. Once the 

   ,     and   ̅   have been determined for all the channels, we can summarise them in 12x12 

matrices  ̅  ,  ̅   and  ̅   with each element representing the respective parameters for each 

channel. For example,  ̅   is populated with     for all channels situated in their respective 

positions (frequencies) within the 12x12 E-block.  For an E-block smaller than 12x12, the 

matrices    ,     and   ̅   are determined by taking the top left block of size ExE from the 

12x12 matrix. 
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The data embedding and error coding requirements for any one scenario can be summarised 

by the notation        ̅    ̅    ̅   .      represents the error rate tolerance line chosen. 

As a start, the choice of     for each channel is not obvious. If two plots for channel   are 

performed with        and          in Figure 3-33, there is an apparent slight benefit in 

using a larger    . 

 
Figure 3-33. Net payload for channel 3 given BCH codes at   =63 and   =255  

This increase is due to a fundamental property of BCH codes. As the error rate that can be 

corrected ( ⁄  ) goes down, the data rate ( ⁄  ) goes up. Codes of higher   can correct down 

to much smaller error rates, as shown in a sample of the BCH codes table in Table 3-1. 

Table 3-1. Six BCH code combinations 

       ⁄    ⁄   
               

             
             

                 
              
              

Therefore, when the channel characteristics become such that the error rate is very small 

(which is the case in Figure 3-33 after delta of 15) then using a code with a larger   continues 

to follow the error rate more closely where the code with a smaller   will hit a floor in 

minimum error correcting capabilities. So for very small error rates, the larger block length 

code won’t overcompensate for error rate like the smaller block length code, and will continue 

to offer small improvements in embedding capacity whereas the smaller block length code will 

have hit a ceiling.  
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Whether this minor advantage can compensate for the larger average  ⁄    bits lost at the 

end of the channel due to blocking will be seen shortly. Nevertheless, this result suggests that 

where very small amounts of error correction are required, it is better to use schemes with 

higher block lengths whereas at levels where both codes operate comfortably it is better to 

use more efficient smaller block length codes. Also visible in Figure 3-33 is that        gives 

better embedding capacity for larger deltas whereas         results in better embedding 

capacity for smaller deltas.  

With regard to choosing error rate tolerance limits, we defined a reasonable lower boundary 

for moderate error correction as 95% in this section thus already accepting a significant 

likelihood of error in each channel. The more error allowed in the system, the less the 

embedding capacity is compromised and so we can see using the 100% tolerance line probably 

won’t be a good choice. 

At this point, we could ignore the fact that errors may be inevitable and delve further into the 

question of selecting delta values and an error rate tolerance limit but the fact that some error 

will probably need to be accepted in the system should be addressed first. With channel error 

correcting alone, it is not possible to guarantee a low image error rate (i.e. the percentage of 

stego-images that will provide erroneous data during QIM de-embedding) because we have no 

control on when errors occur simultaneously in different channels. 

In particular, this work is trying to keep error to an absolute minimum and since channel-wise 

error correcting alone has limitations, this leads to the idea of implementing another layer of 

error correction that can catch any errors that may occur in the channels and further minimise 

error.  This idea is discussed in the next section. 

3.6.3 Image-Global Error Coding 

It has already been discussed that a particular tolerance level of error rate under 100% would 

probably need to be selected for the purposes of error correcting on a per channel basis. The 

implication is then that with only the scheme described some degree of error is inevitable, and 

we don’t have control over when channel errors occur simultaneously in an image. The 

steganographer would require some guarantee that a certain high proportion of the images 

he/she embeds into will provide error-free secret data to the recipient which cannot be 

guaranteed with channel-wise error correcting alone.  

Depending on the application, occasional errors in retrieved data may be acceptable. However, 

this work is trying to cater for the more restricted case that error rate should be kept to a 
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minimum. Therefore we postpone deducing the channel-wise data handling schemes in order 

to investigate a second layer of error coding on an image-global basis across all channels. In 

this dissertation, when the term global is used to refer to error coding, image-global (across all 

channels) error coding is implied. Should any errors not be corrected by the channel-wise error 

correcting it will be caught be the global error correcting scheme. The global error coding will 

compromise embedding capacity further as a trade-off for providing improved protection 

against errors and for guaranteeing a low image error rate. 

This section describes the implementation of a second layer of BCH code for error correction 

as well as image-global error detection should the application require strict monitoring of 

errors in retrieved secret data. 

3.6.3.1 Image-Global Error Correction 

Firstly, there is a relationship between the channel-wise and image-global BCH codes. If less 

error correcting is performed on a channel-wise level then more errors in the channels will 

occur and the global error correcting system will need to be more powerful and vice-versa. 

Both levels of BCH coding introduce overhead bits, and it is not obvious whether using more 

overhead per channel or more overhead globally gives better embedding capacity and this is 

one of the questions addressed Section 3.7. 

The additional functionality required in the simulator to accommodate image-global error 

correction is shown in Figure 3-34.                 is the total number of bits that can 

be embedded in all the channels. The        bits are divided into        blocks of        . Any 

(                       residual bits are padded with dummy random bits. 

Within each block of        bits        bits are filled with the secret message bits and have FEC 

code overhead appended to them. 

...

XTotal

XTotal-(mTotal*nTotal)nTotal

kTotal
...

(1)

(2)

(3)

 
Figure 3-34. Global BCH encoding 

Dummy data 

BCH code block BCH code overhead 

Secret data bits 
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These        bits that include the message bits, overhead bits and dummy bits are then used 

to populate the channels as shown in Figure 3-31. 

The embedding capacity will now be further affected by the blocking operation during the 

global BCH encoding and Equation 3-18 can be rewritten to include this. If we call the 

embedding capacity from Equation 3-18 the local embedding capacity, the number of global 

coding block is given in Equation 3-19 and the new expression for embedding capacity is given 

in Equation 3-20.  

                      (
             

       
) 3-19 

 

              (
             

       
)          

3-20 

 

By substituting Equation 3-18 in Equation 3-20, the full expression for embedding capacity is as 

in Equation 3-21. 

              (
∑      (

       
   

)            

       
)          3-21 

In effect, by using the channel characteristics, net embedding capacity plots and coding 

characteristics we are attempting to optimise Equation 3-21 using code characteristics and 

graphical methods.  

Related to each        ̅    ̅    ̅    is a global error-correcting code                  . The 

parameters for global error correction depend on the likelihood that errors occur 

simultaneously in different channels thus contributing to the overall image error rate. The 

effect of a bit error in a channel on the overall error rate depends on the size of the image.  

Assumed sizes of cover images are important because the effect of an individual channel error 

on the global error rate depends on how many bits were embedded in total across all 

channels. The size of likely cover images can be deduced by looking at two very popular media-

sharing sites, Flickr and Facebook. Flickr is popular for users to share images but is also widely 

used to host images for social media and blogs (Statsr.net, 2011). In August 2011, the site was 

reported to host more than 6 billion images with the number growing (Statsr.net, 2011). 
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Facebook has already been introduced in Chapter 1. Since the beginning of 2011, Facebook has 

ranked as the most used social networking service worldwide (Facebook, 2011). Given these 

statistics, the size of images used on these websites provides a good indication for general 

trends in digital image sharing.  

On Facebook, a standard image may be up to 960x960 (Facebook, 2011), while on Flickr a 

small image is categorised as 180x240 and a medium image 375x500 (Statsr.net, 2011). The 

trend is that the size and quality of the images hosted by these websites is gradually 

increasing. Therefore, in this dissertation, the categories of image sizes are taken as: 

 Small – around 180x240, these images provide roughly 300 E-blocks using MULTI  

 Medium - around 375x600, these images provide roughly 1500 E-blocks using MULTI 

 Large – any image 50% or more greater in number of pixels than medium-sized images 

Given the infinite variability in image content, it is impossible to analytically determine 

dependencies between channels but an estimate can be made using a random set of 200 

images not including those used to deduce the channel characteristics. By monitoring the 

global error in each of these images,                   can be deduced for each possibility of 

       ̅    ̅    ̅     according to the maximum observed error.  

The acceptable image error rate depends on the nature of the data being transmitted and the 

patience of the steganographer! For example, some distortion in a video recording will not 

have the same effect as a shifted decimal place on a bank balance. If the steganographer 

wishes to check that an image is in error before transmission, he/she can JPEG compress and 

decompress the stego-image as if it were going through the channel and retrieve the data. 

Comparing it to the intended secret message would reveal an error and if erroneous the 

process of embedding and checking could continue until the secret message is found to be 

transmitted perfectly. However, a steganographer may not like to do this or may become 

frustrated if many images are in error. 

We now deal with setting an image-global error rate (which from now on will be referred to as 

a global error rate) at a particular level and by using tests deduce global error coding 

parameters required to meet this. 

In this dissertation, an arbitrary though reasonable requirement that less than 1% of observed 

images have error is insisted upon. Although previously it was said that related to each 

       ̅    ̅    ̅    is a global error-correcting code                  , for the purposes of 
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deducing global error correcting requirements, the value of  ̅    (and thus  ̅    ̅  ) does not 

actually matter since we are not concerned with embedding capacity. Therefore, only the error 

rate tolerance level      is required since this sets the likelihood of a certain amount of error 

occurring in different channels at the same time.  

A value of     was randomly chosen as 63 for all channels and                   were deduced 

for various error rate tolerance lines. For small- and medium-sized images, the required global 

error correcting code along with the corresponding tolerance level is presented in Table 3-2.  

Since low image error rate is required, only 95%, 98% and 100% tolerance limits for error are 

considered. In the case of 100% tolerance, a light global code is used to cater for any outliers 

missed during channel characterisation. 

Table 3-2. Global error correcting parameters for small and medium images at different tolerance levels 

Image Size Tol. X%                          ⁄                 ⁄          

Small                    
                     
                     

Medium                      
                      
                         

Table 3-2 shows how larger images require global block codes with larger  . This is because 

any individual error in a channel gives a much smaller global error rate than for small images. 

As stated previously, for small error rates larger codes are better suited. This is not to say that 

smaller block length codes will not work for larger images, but they will not be optimal. While 

the global error correcting parameters for small images may be applied to larger images, the 

reverse is not true. Since this work aims to produce a solution that can be applied to any likely 

size of cover image, it suffices to analyse requirements for small and medium images which are 

more limiting and which can then be used effectively (though not optimally) in larger images.  

Although a second layer of error correction reduces error further, depending on the 

application it may still be useful to detect the 1% if images that are in error, making the 

recipient aware of it. Before consolidating global and channel-wise error correction, the final 

element of global error detection is discussed next. 

3.6.3.2 Image-Global Error Detection 

Since it is impossible to always guarantee no errors in retrieved data even with two layers of 

error correction, it seems useful to implement some sort of global error detection code so that 

the 1% of images that are in error does not go unnoticed by the receiver. In an application 
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where perfect data recovery is important, on the rare occasion that an error is detected the 

receiver can request the sender to retransmit the secret message using a different cover 

image. Again, there is no natural mechanism for feedback but requests for retransmission over 

some sort of a feedback channel 1% of the time are not substantially suspicious. This section 

describes implementation of global error detection for this purpose. 

The simplest form of error detection is the use of the parity bit. The bit is designated to 

represent whether there are an odd or even number of 1’s in a given bit stream. If the values 

of the parity bit and data stream are not in agreement, an error has occurred. The parity bit is 

a special case of what are known as cycle redundancy check (CRC) codes (Kuo, Lee, & Tian, 

2006). A CRC code is based on polynomial arithmetic. It is calculated by treating the input data 

message as a polynomial, e.g. the message 11001001 would be treated as           . 

This polynomial is then divided by a fixed polynomial agreed upon by the sender and receiver. 

The resultant remainder is appended to the input data and the receiver can then detect errors.  

The fixed polynomial is called a generator polynomial      related to the CRC code. There are 

many possible generator polynomials that can be chosen and selecting the correct one is an 

important part of successfully implementing error detection. The polynomial depends on the 

amount of data to be protected, the required error protection and performance. 

Some common characteristics of performance include: 

(a) If      contains two or more terms then all single-bit errors are detected. 

(b) If x+1 is a factor (i.e. if      has an even number of non-zero coefficients) of      then all 

odd number of erroneous bits are detected. 

(c) A CRC checksum of order r can detect burst errors of length less than or equal to  . 

Table 3-3 shows the generator polynomials according to some common standards 

(Hackersdelight.org, 2009). 

Table 3-3. Generator polynomials of some common standards in CRC codes 

Code Generator Polynomial g(x) 

CRC-8                  

CRC-12                   

CRC-16              

To cater for small errors, a light CRC-8 code is implemented decreasing payload by only 8 bits. 

The CRC code is implemented using in-built functions and the corresponding generator 

polynomial (MathWorks, 2011).  
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3.7 Selecting Error Coding Parameters for YASS2/MULTI2 

Now that channel-wise and global error correcting and global error detection have been 

discussed, all of the elements of error coding have been covered and we now return to 

determining the the final data handling schemes. 

Up until now the specifics regarding local error correcting have been discussed and, using net 

embedding capacity plots for each block size     of BCH codes, the data handling procedures 

that give best embedding capacity for a channel have been derived. In the process we have 

discovered that a second layer of global image error correction across channels in an image is 

required to keep the image error rate sufficiently low and the global error correcting 

parameters have been deduced for different error rate tolerance lines from the channel 

characteristics. In the case that an image does provide erroneous data at the receiver, a light 

CRC error detection code is implemented should the application require strict monitoring of 

errors. 

All together the local and global data embedding and error correcting parameters can be 

described as        ̅    ̅    ̅                   . So far the dissertation has addressed how to 

determine best embedding capacity points for each channel for     and     . Associated with 

each (      ̅    ̅    ̅  ) is a global (               ) which was determined in Table 3-2 using 

tests for each error rate tolerance level. 

Now that these possibilities have been deduced, we are required to determine which 

possibility gives best embedding capacity generally across stego-images.  

First, in order to determine which error rate tolerance line to use, a random set of 200 images 

was selected from the database. Each scenario of global error correction in Table 3-2 was 

implemented in turn for both image sizes with  ̅   set to be uniform across channels and for 

the situations that      31, 63, 127, 255. For each   ̅  , using the 98% error rate tolerance 

case resulted in the best embedding capacity for 60-70% of the images for all sizes and so was 

chosen.  

Now that the 98% error rate tolerance limit has been chosen to give the best trade-off 

between local and global error correction,     needs to be chosen. In the 98% case, the 

statistics gathered for small and medium images is shown in Table 3-4 and Table 3-5 when 

using one     for all channels.  
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It can be seen that     31 gives the best embedding capacity properties for both small and 

medium images as highlighted in blue in Table 3-4 and Table 3-5. This proves that the 

advantages in using small     outweigh any benefit seen in Figure 3-33. 

For small images, in the best case scenario of     31 MULTI embeds on average 3.3 bit per E-

block but up to 10 bits per E-block (taking 300 E-blocks per image).  

Table 3-4. Characteristics of embedding capacity for small images using a tolerance limit of 98% for several     

                    
                
                
                
                

For medium images, MULTI generates roughly 1500 E-blocks and in the best case scenario of 

    31, on average 3.6 bits are carried per E-block with up to 11 bits per E-block. 

Table 3-5. Characteristics of embedding capacity for medium images using a tolerance limit of 98% for several     

                    
                   
                  
                   
                   

Even in the best case scenario, the embedding capacity when regarded as the number of bits 

embedded per E-block appears low. This represents the consequence of including error coding 

and selection criteria. The embedding capacity is still higher than what can be achieved using 

YASS and MULTI previously which is explained in Chapter 4. 

It is not obvious that a uniform     (as used so far) works best and there are many 

combinations of coding block size for different channels that could be investigated. Given that 

       and        have worked the best thus far, a combination of these block lengths in 

 ̅    is worth investigating. Since lower frequency channels on average have more data 

embedding capacity, 63 is used for lower frequency coefficients to different extents. The 

following two  ̅   matrices are are proposed: 
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 ̅     :  

x 63 63 31 31 31 31 x x x x x  

63 63 31 31 31 31 x x x x x x  

63 31 31 31 31 x x x x x x x  

31 31 31 31 x x x x x x x x  

31 31 31 x x x x x x x x x  

31 31 31 x x x x x x x x x  

31 x x x x x x x x x x x  

31 x x x x x x x x x x x  

31 x x x x x x x x x x x  

x x x x x x x x x x x x  

x x x x x x x x x x x x  

x x x x x x x x x x x x  

Figure 3-35.  ̅   with mixed    =64 and 31 

 ̅     : 

x 63 63 63 63 63 31 x x x x x 

63 63 63 63 63 31 x x x x x x 

63 63 63 63 31 x x x x x x x 

63 63 63 31 x x x x x x x x 

63 63 31 x x x x x x x x x 

63 31 31 x x x x x x x x x 

31 x x x x x x x x x x x 

31 x x x x x x x x x x x 

31 x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

Figure 3-36.  ̅   with mixed    =64 and 31 

The results in embedding capacity for small and medium images at an error rate tolerance 

level of 98% are shown in Table 3-6 and Table 3-7. 
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Table 3-6. Characteristics of embedding capacity for small images using a tolerance limit of 98% for two     

                    

 ̅                   

 ̅                  

Table 3-7. Characteristics of embedding capacity for medium images using a tolerance limit of 98% for two     

                    

 ̅                      
 ̅                     

The case of        is still observed to result in the best embedding capacity. It should be 

noted that for the tests thus far image error rate was observed and noted to be less than 1% 

for all cases. 

With the case of 98% error rate tolerance and        chosen for all channels, the final 

conditions of data embedding and correction for cases of medium to small images can be 

stated as: 

(               )            for medium/large images and         for small images. 

 ̅  : 

x 15 17 22 29 39 37 x x x x x  

16 17 19 23 35 35 x x x x x x  

17 19 23 32 26 x x x x x x x  

18 24 26 40 x x x x x x x x  

24 32 37 x x x x x x x x x  

27 34 33 x x x x x x x x x  

35 x x x x x x x x x x x  

34 x x x x x x x x x x x  

40 x x x x x x x x x x x  

x x x x x x x x x x x x  

x x x x x x x x x x x x  

x x x x x x x x x x x x  

Figure 3-37. Final proposed  ̅   
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 ̅  : 

x 26 26 26 26 26 11 x x x x x  

26 26 26 21 26 11 x x x x x x  

26 26 26 21 6 x x x x x x x  

   26 21 26 x x x x x x x x  

26       x x x x x x x x x  

21 6 6 x x x x x x x x x  

11 x x x x x x x x x x x  

6 x x x x x x x x x x x  

6 x x x x x x x x x x x  

x x x x x x x x x x x x  

x x x x x x x x x x x x  

x x x x x x x x x x x x  

Figure 3-38. Final proposed  ̅   

In the case where E-blocks are less than 12x12, the top left segment of the matrices of the 

required size are used. For YASS, the matrices used would be the 8x8 matrix in the top left of 

the matrices presented. 

Two additional terms will now be introduced to discriminate between YASS and MULTI 

implemented with the data handling systems given in the literature thus far, and the cell-based 

systems implemented using the data handling systems just derived. YASS2 and MULTI2 will be 

used to indicate that the new channel model and data handling parameters are used in 

conjunction with the blocking structure of the stated cell-based stego-system. 

3.8 Summary 

This chapter presents the concept of grouping E-block DCT coefficients of the same frequency 

together to form a channel for which more targeted error correcting and data embedding can 

be performed. This is to accommodate the effects of lossy JPEG compression that any image is 

likely to be subjected to at some stage of transmission or storage. For a given channel, there 

are effects that compromise embedding capacity for both small and large delta values, and so 

there is a value of delta for which these effects combine optimally to provide maximum 

embedding capacity. In order to plot net embedding capacity versus delta for each channel, 

the channel characteristics need to be determined. Since they cannot be deduced theoretically 

for YASS and MULTI, the error rate and embedding rate characteristics of the channels are 
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deduced over a sufficiently varying image database until they converge. The resultant channel 

characteristic plots are scatter plots from which tolerance lines can be derived that link error 

and embedding rate values at a particular delta below which a certain percentage of rate 

measurements have occurred. 

Specifically, BCH codes are appropriate for this application and allow moderate error 

correction with relatively low overhead. By consolidating the properties of BCH codes with the 

channel characteristics of 30 usable channels, data embedding and error correcting 

parameters were found that maximise embedding capacity. Corresponding to a particular set 

of channel embedding and correcting schemes is an image-global error correcting scheme that 

aims to correct any residual errors and finally, the implementation of a CRC error detection 

code to catch any errors that may creep through. The global error correction was set so that 

1% of images may show error.   It was finally shown that from a reasonable set of possibilities, 

using an error rate tolerance line of 98% with BCH code block size     being 31 for all channels 

should give good embedding capacity across all stego-image sizes. The derived data handling 

systems used in conjunction with block structure of existing cell-based systems are indicated 

by 2, as in for example YASS2. 
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Chapter 4. Analysis of the Scheme 

Cell-based systems are relevant given their good security properties and the fact that they 

cater for the likely eventuality that a stego-image will undergo JPEG compression at some 

stage in its transmission and storage. In Chapter 3, the idea was presented of improving data 

embedding and error correcting schemes in cell-based systems using a channel model that 

connects E-block DCT coefficients of the same frequency together so that one image contains 

up to 144 channels depending on the cell-based system used. Following on from this, channel 

characteristics were determined which, combined with error coding requirements and general 

limits on stego-image size, lead to the proposal of channel-wise and image-global data 

handling parameters that give good embedding capacity properties. 

This chapter tests these parameters further by placing them back into context and testing 

YASS2 and MULTI2 for security. The self-imposed boundary on image error rate of 1% is also 

further verified and some final comments regarding embedding capacity improvements are 

made. 

4.1 Steganalysis 

The data embedding and error coding parameters have been determined without specific 

mention of testing security against blind steganalysers. This is because it was assumed that the 

random nature of embedding would ensure security even if delta values were altered. In this 

section, the performance of YASS2 and MULTI2 are tested against a prominent steganalyser to 

analyse this assumption and to check that good security properties have been maintained. 

4.1.1 Detection Rate 

With regard to resistance of a stego-system against steganalysis, the result that determines 

security of a particular system is detection rate   , which represents the likelihood of a 

steganalyser correctly identifying a stego-image. More mathematically, it can be represented 

as shown in Equation 4-1. 

            4-1 

where        is the likelihood of the steganalyser making a mistake in classifying a given image 

as innocent or corrupt. A steganalyser is in error if it falsely categorises an innocent cover-

image as corrupt, or a corrupt stego-image as innocent. Let    be the event that an innocent 

image is analysed and    be the event that a corrupt stego-image is analysed. Let    be the 

event that the steganalyser detects an innocent image and    be the event that the 
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steganalyser detects a data carrying stego-image. Then        can be written as in Equation 

4-2. 

                                    4-2 

Define          and          as false negative and false positive rates     and     respectively, 

then Equation 4-2 may be written as Equation 4-3. 

                          4-3 

Assuming that the same number of innocent and corrupt images are presented to the 

steganalyser,                 ⁄ . Therefore, Equation 4-1 can be rewritten as Equation 4-4. 

      
 ⁄      

 ⁄     4-4 

Let’s assume the most primitive of steganalysers where it classifies all images as always either 

innocent or corrupt. Given an equal likelihood of either type of image            ⁄  

and      ⁄ . 

Therefore, we consider a stego-system secure if a blind steganalyser has a detection rate of 0.5 

implying it is taking a guess with each classification, with a detection rate of under 0.6 

considered to be adequately secure (Dawoud, 2010). 

4.1.2 Resistance against PF-274 

Among blind steganalysers that exist in the literature, (Pevny & Fridrich, 2006) and (Pevny & 

Fridrich, 2007) are considered the most effective and are used to test security in the cell-based 

system literature. In this thesis, the scheme will be referred to as PF-274. 

The functionality of a blind steganalyser has been referred to throughout this dissertation. 

Blind steganalysers do not assume any particular stego-system, but aim to determine features 

of an image that tend to distinguish corrupt stego-images from innocent cover images and 

which they can use in conjunction with a large number of images to train a classifier. In 

particular, finding the correct features that vary with embedding but not with natural variation 

between image content is the most challenging element of implementation. The feature set is 

usually large and is derived from many statistical characteristics of an image. 
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(Pevny & Fridrich, 2006) describe that traditionally classifiers have used two types of features: 

DCT features and Markov features. DCT features are a set of parameters derived from the 

distribution of DCT coefficients in both the RGB and YCbCr colour spaces, statistics regarding 

change in DCT coefficients in different directions and the inter-block dependencies between 

DCT coefficients. The Markov feature set produces a model of the absolute difference of 

neighbouring DCT coefficients. As the name implies, it produces a Markov model which is 

effectively a statistical process where each future state is only conditionally dependent on the 

directly-preceding state (Weisstein, 2011).  The specifics of the mathematics are beyond the 

scope of this dissertation and may be found in the quoted papers, but the gist of (Pevny & 

Fridrich, 2006) is the idea that Markov features capture intra-block dependency among DCT 

coefficients of similar spatial frequencies within the same 8x8 block whereas DCT features 

model inter-block dependencies.  In this way the two features used together complement each 

other and, as the paper shows, they enhance performance when used together with the 

disadvantage that more images need to be used for training given a larger training feature set. 

Contact was made with the authors of (Pevny & Fridrich, 2006) and (Pevny & Fridrich, 2007), 

and code was received that extracted 274 features from images. However, there was no code 

to train a classifier with these features. Therefore, modules were written in Matlab that took 

images from the image database (Schaefer & Stich, 2004) and which, in conjunction with the 

received code, was used to extract the 274-element vector from each image and to insert it 

into a matrix with as many columns as images. The features were then used to train an 

analyser using 2000 images – 1000 innocent and 1000 corrupt images, giving two [274 1000] 

matrices (with each row corresponding to a particular extracted feature).  The corrupt images 

were generated using the cell-based systems with embedding at full capacity. The images were 

medium-size images, 375x500. 

Using these matrices, the Neural Network Toolbox (MathWorks, 2011) was used to train the 

neural network with a mixture of the innocent and corrupt features. Neural networks operate 

in 3 steps: 

1. By training themselves through recognising and grouping patterns or trends in a given 

feature set.  

2. The resultant neural network then undergoes validation where the generalisation of the 

network is measured and where training is stopped to prevent the neural network from 

becoming too fitted to the training images.  
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3. Finally the neural network undergoes testing where the network determined using training 

and validation is implemented to categorise another set of images. 

The ratio of the input images used was 70% for training, 15% for validation and 15% for testing 

i.e. 1400 images for training, 300 for validation and 300 for testing. These are the default 

parameters recommended in general by the Matlab toolbox. 

Statistics regarding security of YASS (Solanki, Sarkar, & Manjunath, 2007) and MULTI (Dawoud, 

2010) are taken from the respective papers and given in Table 4-1 and Table 4-2.  

Table 4-1 shows the case where PF-274 is most effective in detecting YASS when the hiding 

quality factor   =50. B represents the width of the B-block. Recall that   represents the 

advertised quality factor used during the JPEG compression process after data embedding. 

The values in the tables were confirmed using the steganalysis module written in code, 

confirming it to be a legitimate implementation of the system. 

Table 4-1. Performance of YASS against PF-274 

      Steganalytic Method Detection rate: B=9 Detection rate: B=14 
      PF-274           
      PF-274           

Table 4-2. Performance of MULTI against PF-274 

   Steganalytic Method Detection rate: B=9-14 

   PF-274      

Where YASS has a worst case performance, MULTI has achieved much better security. 

The corresponding average detection rate for YASS2 and MULTI2 are shown in Table 4-3 and 

Table 4-4. 

Table 4-3. Performance of YASS2 against PF-274 

   Steganalytic Method Detection rate: B=9 Detection rate: B=14 
   PF-274 0.73      

Table 4-4. Performance of MULTI2 against PF-274 

   Steganalytic Method Detection rate: B=9-14 
   PF-274      

Table 4-3 and Table 4-4 show that the security levels of the schemes have been maintained 

even when using the new parameters for data embedding.  
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The slight elevation in detection rate of 0.01 is probably due to the fact that the derived delta 

values for QIM are slightly higher than the ones used previously. A side-by-side comparison of 

the delta values used in YASS with   =50 and YASS2 are shown in Figure 4-1. 

x 11 10 16 24 40 x x  x 15 17 22 29 39 37 x 

12 12 14 19 26 x x x  16 17 19 23 35 35 x x 

14 13 16 24 x x x x  17 19 23 32 26 x x x 

14 17 22 x x x x x  18 24 26 40 x x x x 

18 22 x x x x x x  24 32 37 x x x x x 

x x x x x x x x  27 34 33 x x x x x 

x x x x x x x x  35 x x x x x x x 

x x x x x x x x  34 x x x x x x x 

(a)  (b) 

Figure 4-1. Delta values used in YASS with   =50 (a) and from Chapter 3 (b) 

Specifically, the increase in the low frequency delta values would contribute to increases in 

detectability, as described in Chapter 2. However these results show that the random nature 

of embedding sufficiently overcomes this. 

4.2 Image Error Rate 

The image error rate relates to the extent to which an application allows for errors and how 

they affect the way in which the retrieved message is understood by the recipient. For 

example, the requirements on error for voice data over those representing a bank balance are 

significantly different. 

For the purposes of this dissertation, the more restrictive case is assumed and the data 

embedding and error coding systems were selected so that image error rate is kept to a 

minimum of 1%. By this, it is meant that less than 1% of images transmitted using cell-based 

systems with the new data handling systems will provide erroneous message data to the 

recipient when retrieved. So that image errors are noticed in this case and so that the sender 

does not need to keep testing a stego-image for errors before transmission, a light CRC error 

detecting code was implemented that, while introducing almost negligible reduction in 

embedding capacity, could prove crucial to the success of transmission. 

In this section, the deduced data embedding and error coding parameters are implemented 

over 400 images taken from the image database (Schaefer & Stich, 2004). The images are also 

made to vary in size with about a third of medium size, a third small and a third large. The 
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purpose of these experiments was to verify that image error rate was below the 1% target set 

and that CRC error detection code does detect all errors. 

The steps for determining image error rate were: 

1. The 400 images were embedded into using all available capacity in all of the channels using 

the MULTI blocking systems and        ̅    ̅    ̅                    determined from 

Chapter 3. All of the error correcting and detecting mechanisms were in place. 

2. The input messages to the images were stored separately. 

3. The images underwent JPEG compression and decompression using an advertised quality 

factor    of 75. 

4. The data was then retrieved from the image using the data de-embedding and error 

correcting systems. CRC error detection was also performed on the images, which showed 

which images were detected to be in error. 

5. The retrieved messages from the images were compared to the original input messages to 

identify which images were actually in error. 

The detected and actual errors were then compared. The CRC code detected all errors and out 

of 400 images only 3 were found to be in error, with 0.2% of bits in error average across the 3 

images. Two of the images in error were medium-sized and one was large-sized. This confirms 

that an image error rate of 1% has been maintained and that the CRC code has operated 

correctly in detecting cases of error. 

4.3 Embedding Capacity 

In Chapter 3, the process of identifying data embedding and error coding systems could be 

divided into two parts. The first was the determination of different possibilities of 

       ̅    ̅    ̅                    that met security, error rate and embedding capacity 

requirements which stemmed from the new definition of a channel. The second part involved 

selecting a case from the possibilities such that the requirements would be met across all 

image sizes and contents. Since the derivation of the parameters themselves demonstrated 

that good properties can be produced, these tests will not be repeated here. Rather, this 

section concentrates on comparing relative performance between YASS2/MULTI2 and 

YASS/MULTI and on stating embedding capacity as a proportion of image size. 

4.3.1.1 Comparison to YASS and MULTI 

It should be highlighted again that the focus of existing cell-based systems literature has not 

been to address particulars regarding appropriateness of data embedding and error coding 
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parameters. Therefore, a direct comparison between embedding capacities achieved using 

YASS or MULTI data embedding parameters and those using YASS2 or MULTI2 would not be 

particularly fair or relevant as the original papers were not attempting to maximise capacity. 

However, making a comparison can serve 2 purposes: 

 The comparison is required to confirm that in fact some improvement was made over the 

original system, and that versus original rough propositions on data handling, a 

steganographer using YASS2 or MULTI2 would indeed be able to transmit more data per 

image than previously. 

 One of the goals of this research was to determine the extent to which channels more 

volatile than the first 19 could be used in combination with error coding to produce a 

substantial increase in embedding capacity. By comparing the embedding capacities 

achieved, an overview of the extent to which the use of these channels benefits embedding 

capacity can be found. 

The comparisons were made by taking two identical images, and by determining the amount 

of space for data in YASS using only the first 19 coefficients, with selection criteria using the 

delta values given the JPEG quantisation matrix dictated by a hiding factor    and using a RA 

code with a factor of 10. Using a code rate of      is a very optimistic estimate because 

(Solanki, Sarkar, & Manjunath, 2007) recorded using a repeat rate of between 10 and 40, 

meaning the best case scenario has been taken here.  

YASS2 was then implemented and the embedding capacity was measured. It is not informative 

to perform the comparison for MULTI too because YASS and MULTI only really differ in E-block 

sizes and since the usable channels (apart from one) are contained in the first top left 8x8 cell 

in each E-block there is no real benefit in performing the comparison for MULTI again. For each 

image, the ratio of the two embedding capacity values were taken, with the embedding 

capacity using YASS2 as the numerator. For these tests, 100 small and medium –sized images 

were used. 

Since (Solanki, Sarkar, & Manjunath, 2007) performed tests using    50 and 75, a 

comparison to YASS is made at both of the hiding factors and a histogram of gain in embedding 

capacity is shown in Figure 4-2.  
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Figure 4-2. Histogram of the number of times increase in embedding capacity over a YASS system with   =75 and 

  =50 (a) and   =75 (b) 

In the case of     75, the improvement in embedding capacity is lower compared to     50 

because the delta values associated with a higher hiding factor are smaller and so more 

candidate DCT coefficients meet the selection criterion improving embedding capacity and 

providing a great advantage. The smaller delta values imply that a more powerful RA code 

would need to be used but the optimistic case of repetition of 10 is assumed as a worse case. 

A side-by-side comparison of the delta values used in YASS with   =75 and those in YASS2 are 

shown in Figure 4-3. 

x 6 5 8 12 20 x x  x 15 17 22 29 39 37 x 

6 6 7 10 13 x x x  16 17 19 23 35 35 x x 

7 7 8 12 x x x x  17 19 23 32 26 x x x 

7 9 11 x x x x x  18 24 26 40 x x x x 

9 11 x x x x x x  24 32 37 x x x x x 

x x x x x x x x  27    33 x x x x x 

x x x x x x x x  35 x x x x x x x 

x x x x x x x x  34 x x x x x x x 

(a)  (b) 

Figure 4-3. Delta values used in YASS with   =75 (a) and in YASS2 (b) 

The extent to which more vulnerable channels are used in combination with more careful data 

embedding and error correcting schemes to increase embedding capacity is clear when the 

images for which the best and worst improvements are made are examined. An image that 

gave only twice the improvement in embedding capacity with some enlarged segments is 

shown in Figure 4-4. There is little texture in the skin and sky areas, so regardless of the 

scheme it has limited capacity to carry data. 
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Figure 4-4. Example image where least improvement in embedding capacity is made 

An image where 7 times the embedding capacity can be achieved with the new scheme is 

shown in Figure 4-5. Compared to Figure 4-4, this image is dominated by high texture and so 

higher frequency channels would be usable. Assuming that the channel characterisation 

process has a good mix of relatively textured and un-textured images for training, the potential 

in higher frequency channels was captured and is used. 

 
Figure 4-5. Example image where most improvement in embedding capacity is made 

Recall that the data embedding and error coding parameters were designed to cater for the 

more limited cases of medium and small images. In particular, better global error correcting 

parameters could be chosen for larger images but a global solution rather than an optimal one 

was preferred. 
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However, to show that data embedding and error correcting schemes are also effective on 

large images, a set of 100 images twice the size of medium ones were used to test the increase 

in embedding capacity over YASS the same way to what was done previously. The increases in 

embedding capacity versus an equivalent YASS system are shown in Figure 4-6. 

 
Figure 4-6. Histogram of the number of times increase in embedding capacity over a YASS system for large images 

with   =75 and   =50 (a) and   =75 (b) 

From these histograms, there is an indication that overall for large images, there is less gain in 

embedding capacity using YASS2 with the recommended parameters than there is for small 

and medium size images. This is in line with the expectation that the derived parameters could 

be improved for larger images. The result does still show significant improvement, however. 

4.3.2 Capacity as a Proportion of Image Size 

The number of bits that can be embedded into small- and medium-sized images for MULTI2 

was shown in Chapter 3 as part of the process of determining the improved data handling 

parameters. In this section, this is done again using the 400 images from above. The number of 

data bits that could be embedding into the images using MULTI2 and YASS2 were recorded.  

Since LSB embedding is such a commonly-referenced stego-system which embeds one bit per 

pixel, it seems intuitive to state the embedding capacity as the number of information bits that 

can be embedded versus the number of pixels in the image. Equivalently, the embedding 

capacity is stated as the proportion of the embedding capacity achieved using LSB embedding 

that can be achieved using YASS2 and MULTI2. Table 4-5 shows these results. 
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Table 4-5. Embedding Capacity for MULTI2 and YASS2 as a percentage of number of image pixels 

Cell-Based System 
Percentage Embedding Capacity 

Min Average Max 
MULTI2 1.7% 4.4% 9.8% 

YASS2 with B = 9 2% 6.4% 15% 
YASS2 with B = 14 0.8% 2.6% 6.6% 

Since data carrying DCT coefficients (all apart from one) lie in the top 8x8 of each E-block 

(according to the deduced data handling system in Chapter 3) the main factor influencing 

embedding capacity is B-block size which determines how spread out the E-blocks in the stego-

image are. As expected, YASS2 with the small B-block has the highest embedding capacity 

followed by MULTI2 which has a variety of B-block sizes and lastly YASS2 with the largest B-

block has the smallest embedding capacity because E-blocks are the most spread out. 

Generally, embedding capacity is low for cell-based systems as a consequence of the highly 

randomised embedding processes and is the sacrifice made for good security properties. As we 

have seen, the better the embedding capacity properties, the worse the performance of the 

cell-based systems against blind steganalysers. It is perhaps worth noting that a 4.4% 

embedding ratio for a 375*500 medium image allows approximately 1000 bytes of embedded 

data; about the content of this and the previous paragraph. 

4.4 Summary 

This chapter has placed the data embedding and error coding parameters deduced in Chapter 

3 back into context and tested the resilience of YASS2 and MULTI2 against steganalysis. In 

particular, PF-274 is a very strong blind steganalyser that uses merged DCT and Markov 

features together. The features from 2000 images were used to train, validate and test the 

steganalyser against YASS2 and MULTI2. It was shown that the security levels have been 

maintained. The image error rate is found to be less than 1% over a new random set of 400 

images made to vary over likely ranges of image size and randomly in content. The embedding 

capacity was addressed in the process of determining parameters in Chapter 3, but in this 

chapter the relative increase in embedding capacity over YASS is presented to show the extent 

to which the new data handling parameters take advantage of images with texture whereas 

the previous schemes would have not. Relatively, the increase in embedding capacity is also 

shown to exist for large images even though global error correcting parameters would not be 

optimal in this case. As a proportion of the number of pixels in an image, MULTI2 embeds up 

to 9.8% information bits, YASS2 with B=9 up to 15% and YASS2 with B=14 up to 6.6%. The low 

embedding capacity relative to other simpler stego-systems such as LSB embedding is a 

sacrifice made for good security properties.  
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Chapter 5. Conclusion  

Cell-based systems have been shown to have good security properties at the cost of relatively 

low embedding capacity. As part of the remedy for this, the data embedding and error coding 

parameters for cell-based systems have been derived more analytically than in previous 

literature, with the result that embedding capacity has indeed been improved. 

Now that the main results of this research have been presented, this chapter gives an 

overview of the flow of the dissertation and the most relevant points in each chapter. It is 

intended to give the reader a terminating global view of the breadth and depth of work 

explored in this dissertation. The extent to which the original research problem statement has 

been addressed is also explained. 

The chapter terminates with ideas for future research. The suggestions are concerned with 

improving the results found here and addressing some assumed limitations on the stego-

systems. 

5.1 Summary of Dissertation 

5.1.1 Chapter 1 

Chapter 1 starts by presenting an overview of the amount of media that is shared over the 

Internet using facilities such as social media websites, blogs and emails. The sheer scale of the 

online media-sharing culture and the ease with which content can be shared by almost anyone 

has made security of transactions pertinent. In particular, steganography is introduced as a 

mechanism for ensuring security and the prisoner’s problem is used to explain the main 

elements of a stego-system. Steganography is defined as the science of hiding information in 

innocent objects with the objective of avoiding suspicion from anyone viewing these objects. 

The definition of steganography is further clarified by contrasting it with its sister concepts of 

cryptography and watermarking. 

Although relatively new in the digital domain, steganography can be traced back to the Golden 

Age in Greece where it was used in conjunction with wax tablets to transmit secret 

information. Since then, it was widely used in the 1900s during the wars. Some of the popular 

examples of this are invisible inks and microdots. Until the 1900s, steganography was used 

mainly by spies and involved clever tricks with little theoretical basis but given the transition of 

communication to the digital domain it has experienced a renaissance to become a highly 

technical and mathematical field. Since electronic communication is susceptible to 

eavesdropping, security and privacy are more important than ever. Also given that digital 
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steganography may be used by criminals or terrorists or to carry malicious data such as viruses, 

research into steganography is important also to be able to counteract this. 

Steganography’s nemesis is steganalysis, which is the operation performed by the warden in 

the passive situation where transactions are not tampered with. Within steganalysis, blind and 

targeted approaches are possible. They differ according to the amount of information known 

about the observed stego-system transactions a-priori and the extent to which the analyser 

caters for a number of systems. 

Steganography that uses digital images as covers (digital image steganography) is especially 

relevant because digital images are the most popular form of media online.  Digital images can 

be represented in either compressed or uncompressed forms. Given the bandwidth limitations 

on Internet connections, the compressed versions are more practical. In particular, JPEG 

compression is the most popular form of compression online and therefore digital image 

stego-systems should be designed to cater for this. A vital consideration is that JPEG 

compression is lossy meaning the image data is corrupted during the compression process. If 

data is embedded into an image before it undergoes compression then the compression 

process tends to disguise embedding artefacts but error coding needs to be implemented to 

correct for data corruption.  

Within digital image steganography, cell-based systems cater for JPEG compression and have 

very good security properties due to the random nature of embedding and the fact that 

embedding is performed before compression. However, because the entire cover image is not 

used to carry data and because error coding is required, cell-based systems have a particularly 

low embedding capacity. Data embedding and error coding schemes in cell-based systems 

have not been determined analytically in the literature previously and it is believed that these 

schemes could be chosen more methodically with the consequence of improving embedding 

capacity. This is presented as the primary research goal of this dissertation. 

An overview of the research methodology is then given in steps – from first investigating the 

field around cell-based systems and the context within which they were created, to defining  a 

new approach to determining data embedding and error coding schemes, to finally deducing 

the schemes and testing them in the context of cell-based systems. The chapter ends with a 

brief overview of the chapter contents. 
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5.1.2 Chapter 2 

Chapter 2 focuses on digital image steganography specifically and starts by explaining the most 

pertinent characteristics assumed for the stego-systems in this dissertation. In particular, a 

public key, passive warden stego-system by cover modification is assumed because these 

characteristics are the most popular in current literature. Following this, a formal flow chart of 

the stego-system model is given along with relevant terminology.  

The measures of success of stego-systems are defined- imperceptibility, capacity and 

robustness. The three characteristics tend to counteract each other so no system can be found 

that has all three excellent qualities. Out of them, imperceptibility is the most important. The 

concept of visual imperceptibility is discussed, and the failings of the mean square error 

measurement are shown. Given that media objects transmitted over the Internet are likely to 

be displayed and seen, it would be foolish for any stego-system to introduce clear visual 

artefacts. As a result, the battle between steganography and steganalysis has moved to the 

more subtle statistical level. Embedding artefacts are determined by detecting statistical 

discrepancies rather than visual ones. Given this transition from naïve to complex systems, the 

term detectability is introduced to refer to the resistance of a system to statistical analysis 

whereas imperceptibility is re-defined to be limited to the extent to which a stego-system does 

not introduce visual embedding artefacts. Statistical properties regarding security are then 

presented, including Cahin’s definition of security and the concept of a Ɛ-secure system. 

The taxonomy of digital image steganography is then explained starting with naïve spatial 

domain techniques. At this point in the report, the spatial representation of images is 

explained and in particular intensity images are of interest. The concept of colour spaces and is 

also described.  

Within naïve digital steganography, two primary fields exist. The first is LSB embedding where 

the LSB of the binary representation of the intensity of the pixels in an image are changed to 

the secret message bits. While this does not cause any visual artefacts, analysis of the 

statistical distribution of the LSB plane of the stego-image shows clear traces of tampering. If 

bits other than the LSB are used for data hiding then visual defects may appear, known as the 

bleeding effect. The second form of naïve steganography uses quantisation and dithering in 

palette images but this usually results in visual artefacts and due to its limited applications is 

not a popular research topic. 

With regard to complex spatial domain stego-systems, the goal is generally to camouflage data 

within an image so that natural statistical distributions are maintained. One example is to 
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attempt to mimic natural noise inserted into an image during image acquisition with a digital 

camera. Another example is to aim to preserve some specific statistical property such as the 

shape of an image histogram used usually by steganalysers. In particular, LSB embedding has 

become popular as an adaptive scheme where data is hidden in select regions with more 

texture and where more statistical redundancy exists. The topic of adaptive schemes is 

discussed to some detail. 

Although spatial domain techniques are still being investigated, the chapter describes how 

they are not very useful because they do not cater for the likely possibility of an image being 

JPEG compressed. The transform representation (DCT) and JPEG compression are then 

described. The physical significance of the DCT and the properties of low and high frequency 

components are given. In particular, it is shown that low frequency components are the most 

significant part of an image visually and that high frequency components represent the detail 

in an image. JPEG compression operates on the premise that the human visual system is 

insensitive to detail in an image and thus works to remove high frequency DCT coefficients. 

The lossy part of JPEG compression occurs with rounding after division by the corresponding 

element from the quantisation matrix. Transform domain digital image stego-systems lend 

themselves to accommodating lossy JPEG compression because JPEG involves generation and 

manipulation of transform coefficients of an image. JPEG stego-systems such as Jsteg, F5 and 

Outguess are then described. 

The JPEG stego-systems explained up to this point embed data into images after the lossy 

stage of compression and thus have not implemented error coding. The dissertation explains 

that cell-based system has emerged as a transform-based system that embeds into the DCT 

coefficients of an image before lossy JPEG compression. Instead of trying to camouflage 

statistical artefacts of embedding, it attempts to disable a blind steganalyser’s ability to 

estimate original cover image statistics by randomising data embedding. In particular, the 

areas of the image used for data carrying are varied randomly. 

The steps of YASS, the first cell-based system to appear in the literature, are then presented. 

The concepts of blocking, RA coding and QIM are explained. YASS is also explained to embed 

into the first 19 DCT coefficients of an E-block. In particular, the description of the delta values 

using QIM in the literature is deferred to Chapter 4. Selection criteria and the rejection of the 

DC coefficients from embedding are elaborated upon as requirements to prevent clear 

statistical embedding artefacts. Extending on the ideas of YASS, the MULTI scheme was 

presented which introduces two orders of increase in complexity of steganalysis over the 
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original YASS scheme by allowing variation of B-block and E-block sizes in an image. While the 

cell-based systems have rigorously addressed security, the parameters of error coding, QIM 

and the use of only the first 19 AC DCT coefficients in an E-block have not been analytically 

determined. 

Seeing the effect of JPEG compression on various coefficients, it becomes clear that correcting 

for error across image blocks is not necessarily optimal since the data handling procedure 

would be required to cater for a very wide range of error characteristics whereas a more 

targeted approach would perform better. This idea plants the seed for the channel model 

presented in the next chapter. 

5.1.3 Chapter 3 

Chapter 3 starts by explaining the main shortcomings of the traditional model of a channel as a 

string of all of the DCT coefficients in all E-blocks sequentially. In particular, the range of errors 

likely to be incurred will vary dramatically between low and high frequency DCT coefficients so 

the data handling schemes would not be focused and efficient – they would either greatly 

overcompensate in some places or undercompensate in others. A new channel model is 

presented where an image is defined to contain many channels in parallel and where a 

channel constitutes a string of all DCT coefficients from all E-blocks at a particular position 

(frequency) in the E-Block. The idea behind this is that JPEG compression introduces a 

particular grade of error to DCT coefficients of a particular frequency and so using the new 

channel model, more targeted data handling procedures can be derived which are anticipated 

to have a positive effect on embedding capacity. 

The exact effects of JPEG compression on coefficient movement are then investigated. In the 

case of JPEG-GRID the E-blocks and grid blocks used during JPEG compression are exactly 

aligned and limits on the change in coefficient value due to JPEG compression can be 

predicated precisely using the JPEG quantisation matrix. In the case of MULTI and YASS, this 

cannot be done so precisely because E-blocks and JPEG compression grid blocks do not align, 

although using a random sample of images the trend of increasing movement for higher 

frequency channels is shown to still hold true. 

Given the newly acquired knowledge regarding DCT coefficient movement, an explanation is 

now given as to how data embedding parameters have been determined in cell-based systems 

thus far. In the case of JPEG-GRID, the JPEG compression process can be rendered lossless by 

using delta values corresponding to the JPEG quantisation matrix implemented during 

compression and so JPEG quantisation matrices are used to provide delta values in YASS and 
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MULTI literature as a rough extension. Generally speaking, the delta matrix has a correct look 

since delta values would be expected to be larger for higher frequency channels but in the case 

of YASS or MULTI there is no obvious reason why this collection of delta values would be 

optimal. 

The concept of how delta relates to embedding capacity is then investigated. In particular, at 

low delta, effects of higher error rate impact negatively on capacity whereas at high delta, 

selection criteria impact negatively on embedding capacity. This leads to the idea that there 

should be a moderate delta at which these factors combine optimally to produce maximum 

embedding capacity. The target of the research is then defined to be the determination of the 

plot of net embedding capacity versus delta for each channel from which data handling 

parameters can be derived. 

In order to plot embedding capacity versus delta, channel characteristics need to first be 

determined. The most crucial of the characteristics are embedding rate (which represents the 

proportion reduction in embedding capacity due to selection criteria) and error rate (which 

represents the amount of error in the data carrying DCT coefficients that survive selection 

criteria).  

Since the characteristics regarding movement of YASS and MULTI cannot be determined 

decisively as in the case of JPEG-GRID, the assumption is made that if measurements of 

channel characteristics are made over a large enough number of images, eventually the 

characteristics will converge and provide a good global representation. Deriving characteristics 

in the most general case of MULTI will make characteristics applicable to all cell-based systems 

since they all commonly involve simply generating random positions for DCT coefficients for 

data carrying. 

The main modules of the simulator are then expressed, and the assumption of   =75 is 

justified as the most commonly advertised JPEG quality factor in the literature. Using batches 

of 100 coefficients, the channel characteristics are then determined as scatter plots of the 

measurements. 

To get an overview of the shape and trends in the scatter plots in order to detect convergence, 

tolerance lines linking points below which a certain percentage of measurements exist are 

drawn. These lines are analysed for movement over an ever-increasing number of images until 

they stop moving. 
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Given the channel characteristics, if the effects of error coding are consolidated with them, 

then the plot of embedding capacity versus delta can be generated and the point of maximum 

embedding capacity can be read which provides the data embedding and error coding 

parameters for optimal embedding capacity. 

The exact nature of the error coding is then explored. In particular, if embedding is done in a 

scattered fashion then random error correcting is appropriate. Additionally, the application 

lends itself to block coding and BCH codes, which are particularly effective and flexible. Coding 

should also be light since correcting for large amounts of error requires a high number of 

overhead bits which doesn’t provide much benefit in terms of embedding capacity. The 

simulator is edited appropriately to provide for channel-wise BCH coding scheme. 

As a first step, channels with high error correcting requirements are rejected and from those 

that remain plots of embedding capacity versus delta can be produced. It was found that 30 

channels are usable per 12x12 E-block contradicting the assumption in previous literature that 

only the first 19 channels are usable.  

Since the error rate is required to be kept as low as possible, determination of the final 

channel characteristics is delayed to consider further reducing image error rate. To cater for 

any residual errors in the channels, this work designs for a global BCH code to keep image 

error rate below the decided limit of 1%. In order to detect image errors, a light CRC code is 

implemented. The global BCH code parameters are then matched for each possibility of error 

rate tolerance level and the corresponding case of data handling parameters are generated. As 

a result, there are now many possibilities of        ̅    ̅    ̅                   . 

The choice between these parameters is made based on measurements of which combinations 

of elements produced the best embedding capacity in small and medium images. This estimate 

of likely size of cover images is made by analysing the popular image-sharing websites Flickr 

and Facebook. Finally it was found that using an error tolerance of 98% with     being 31 for 

all channels gives the best embedding capacity and since it was derived for small- and 

medium-sized images it would also apply for large images. A cell-based system that uses the 

derived data handling systems is defined to be represented by a 2, as in YASS2 or MULTI2. 

5.1.4 Chapter 4 

Chapter 4 places the data handling parameters derived in Chapter 3 into context and measures 

resistance of YASS2 and MULTI2 against steganalysis and image error rate requirements. 
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An explanation of detection rate and the operation of a powerful blind steganalysis scheme, 

PF-274, is given. Out of all blind steganalysers, PF-274 has been found to be the most effective 

in detecting YASS and combines DCT and Markov measurements as features used to train a 

neural network. The results show that security requirements continue to be met. There is an 

elevation in detection rate in 1% for YASS and MULTI with the new data handling parameters 

but this is probably due to slightly elevated delta values for low frequency channels. 

Image error rate is then tested by embedding data into 400 images of varying size and 

checking the number of images in error manually and using the CRC code. The image error rate 

was found to be 0.75% meeting the original requirements of 1%. In addition, the CRC code 

correctly identified the erroneous image. 

Since cell-based parameters originally didn’t attempt to address data handling systems 

rigorously, directly comparing the new parameters with the old ones does not make a 

powerful point but it does show that a steganographer can achieve better embedding capacity 

using the new data handling systems than previously. Using an optimistic RA coding rate of 10, 

the two systems are compared in the case of YASS for small and medium –sized images and 

significant improvement is shown. The images for which the worst (2x) and best (7x) 

improvement is made are analysed and it is found that the best improvement is made where 

an image is highly textured and the worse for where the image is lightly textured. This shows 

that there is benefit in using more vulnerable channels than just the first 19 as used by YASS 

originally. The same experiment is repeated for large images and while improvements are not 

as large due to the global error correcting parameters not being optimal, there is still 

significant benefit.  

As a proportion of the number of pixels in an image, MULTI2 embeds up to 9.8% information 

bits, YASS2 with B=9 up to 15% and YASS2 with B=14 up to 6.6%. The low embedding capacity 

relative to other simpler stego-systems such as LSB embedding is a sacrifice made for good 

security properties.  

5.2 Concluding Comments 

The original goal for this research was to investigate an approach to determining data 

embedding and error correcting schemes more analytically than has been done before in the 

literature with the aim of increasing embedding capacity in cell-based systems while 

maintaining good security properties. This dissertation has presented such an approach and 

deduced data handling schemes such that a low image error rate and good embedding 



124 
 

capacity can be achieved over all expected image contents and sizes. It can be concluded then 

that the original goals were met in their entirety. 

5.3 Future Work 

Any future work will address limitations in the results of this research to provide further 

improvement in embedding capacity and security. Some suggestions are: 

1. Generate a technique that selects the parameters for data embedding and local and 

global error correcting adaptively based on a given cover-image so that these processes 

are optimised. This would also require the adaptive parameters to be somehow 

communicated to the intended recipient which could be performed by embedding them 

in a standard way in more reliable areas of an image. 

2. Address the scenario where not of all of the space in a cover image is used for data 

carrying, i.e. where embedding capacity is less than 100%. This work would address the 

best way to distribute data around the image to ensure security, and would provide 

provision for some sort of aggression level for embedding. 

3. QIM could be used to embed symbols rather than individual bits to increase embedding 

capacity. The details of how to do this would still need to be addressed. 

4. By taking the approach presented here, comparing the effectiveness and suitability of 

various error correcting schemes (versus only using BCH codes) could be analysed. 

5. Instead of accepting the elevated delta values for low frequency channels as in Chapter 4, 

the extent to which lowering them to sub-optimal points for security purposes could be 

explored. 
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