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1 

CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

D-xylose, the major constituent of the hemicellulose xylan, is the second most 

abundant renewable sugar after glucose (Jeffries, 1990). It can be fermented to ethanol 

by several yeasts (Jeffries, 1981a; Maleszka et al., 1982a; Schneider et al., 1981), but the 

ethanol yield is much lower than that of Saccharomyces cerevisiae using glucose. Most, 

if not all, S. cerevisiae strains used in commercial alcohol production are polyploid or 

aneuploid, suggesting that an increase in chromosome number may, in some way, be 

advantageous. 

Intergeneric hybrids between Pichia stipitis and Candida shehatae, the two most 

efficient D-xylose fermenters, were constructed using the technique of protoplast fusion 

in an attempt to obtain more efficient D-xylose fermenting strains (Gupthar and Garnett, 

1987). Although P. stipitis-resembling fusants were isolated, their hybrid nature was 

confirmed by cell volume estimation, cell DNA content, carbon utilisation and 

fermentation tests, nuclear DNA-DNA hybridisations as well as the isolation of 

recombinant phenotypes from spontaneous and induced mitotic and meiotic segregations. 

Preliminary tests indicated that some of the fusants fermented xylose more efficiently than 

their parental strains. 

Further characterisation of these fusants at the molecular and biochemical levels 

is required in order to ascertain their genetic constitution and perhaps relate this to their 
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fermentation abilities. 

1.1 D-XYLOSE 

Agricultural biomass is composed of three fractions: lignin, cellulose and 

hemicellulose and represents one of the most abundant renewable energy sources. It could 

potentially be fermented to ethanol for use as a fuel extender and octane enhancer in petrol 

(Skoog and Hahn-Hagerdahl, 1990). 

The hemicellulose component of some lignocellulosic materials can represent up 

to 35% of the dry biomass. The major constituent of the hemicellulose xylan is D-xylose 

which in some instances can constitute up to 25% of the dry biomass (Jeffries, 1990). 

This makes D-xylose the most abundant renewable sugar second to glucose. 

Hemicelluloses such as xylans have more branched, less crystalline structures than 

cellulose and the glycosidic linkages between anhydro-D-xylose residues in xylans are less 

stable and more readily hydrolysed by acid than the linkages between anhydro-D-glucose 

residues in cellulose (Harris, 1975 - cited by Jeffries, 1990). Xylose can therefore be 

recovered by dilute acid hydrolysis in yields exceeding 80 - 85%, whereas the yield of 

glucose from cellulose probably would not exceed 55 - 60%. 

In South Africa six million tons of D-xylose could be recovered from plant refuse 

like sugarcane bagasse and maize residues (Dekker and Lindnar, 1979 - cited by Prior et 

at., 1989). It could also be recovered from industrial wastes, e.g., spent sulphite liquors 

from pulp mills using hardwood feedstock, plants producing dissolving pulps, by autolysis 
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following steam treatment in the production of hardboard and fibreboard and other 

explosive decompression processes (Bungay et al., 1983 - cited by Jeffries et aI., 1985). 

Therefore, its exploitation for ethanol production has great economic potential. 

Traditionally, glucose-based substrates such as maize and molasses are fermented 

commercially to ethanol by S. cerevisiae . Although this yeast ferments glucose, it lacks 

.the ability to ferment xylose (Batt et al. , 1986) . 

1.2 D-XYLOSE FERMENTING YEASTS 

Originally it was thought that yeasts were incapable of fermenting xylose (Barnett, 

1976). In 1959, Karczewska was the first to report the conversion of xylose by strains 

of Candida tropicalis obtained from a sulphite liquor fermentation plant (Jeffries, 1990) . 

Several yeasts have been reported to ferment xylose (du Preez and Prior, 1985; Jeffries, 

1981a; Maleszka et ai, 1982a; and Schneider et al. , 1981; Toivola et al., 1984) and to 

date, at least eight species of yeasts are known to produce significant amounts of ethanol 

from xylose. 

Of these, three have been studied extensively: Pachysolen tannophilus, C. shehatae 

and P. stipitis. P. tannophilus is the best studied of all D-xylose fermenting yeasts 

(Dekker, 1982; James and Zahab, 1982, 1983; Jeffries , 1982; Jeffries et al. , 1985; 

Maleszka and Schneider, 1982; Schneider et al., 1981 ; Slininger et aI., 1982) . Its 

commercial exploitation, however, is constrained by its slow rate of fermentation, poor 
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ethanol yield and the production of significant amounts of xylitol. The next most studied 

yeast is C. shehatae (Alexander et al., J987; du Preez and van der Walt, 1983; du Preez 

et al., 1984; Jeffries, 1985a; Sreenath et al., 1986; Wayman and Parekh, 1985). P. 

stipitis CSIR -633 (= CBS 7126) has thus far been identified as the best xylose fermenter 

(du Preez and Prior, 1985; du Preez et al., 1989) . 

1.3 D-XYLOSE METABOLISM 

1.3.1 BIOCHEMICAL PATHWAY 

In yeasts the fermentation of D-xylose proceeds by the pentose phosphate pathway 

(Fig. 1.1) (Jeffries, 1990). D-xylose is first reduced to xylitol by D-xylose reductase 

which is subsequently oxidized to D-xylulose by xylitol dehydrogenase. D-xylulose is then 

phosphorylated by D-xylulokinase to form D-xylu1ose-5-phosphate. Non-oxidative 

rearrangements of D-xylulose-5-phosphate by ribulose phosphate-3 epimerase, ribose 

phosphate isomerase, trans aldolase and transketolase result in the formation of 

glyceraldehyde-3-phosphate and fructose-3-phosphate, which can then be converted to 

ethanol by the fermentative reactions of the Embden-Meyerhoff pathway. However, there 

is no direct evidence that this pathway functions in any D-xylose-fermenting yeast. 

Alternatively, D-xylu1ose-5-phosphate can be split into glyceraldehyde-3-phosphate 

and acetyl-phosphate by phosphoketolase. This enzyme is present in P. tannophilus where 

it may be involved in acetic acid formation under anoxic conditions (Lachke and Jeffries, 
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1986) or an oxidative pentose bypass may be present (Bruinenberg et aI., 1986). A 

portion of the fructose-6-phosphate is oxidized to ribulose-S-phosphate via 6-

phosphogluconate releasing CO2 and generating 2 molecules of NADPH for each molecule 

of CO2 released. 
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NADH] y-NADPH 

t--NADP 
NAD Xylitol 

~ Assimilative 

NADH~I I reactions 
Xy U ose 

ATP~-ADP ~ 
~ Xylulose- '/ 
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Fig. 1.1. Biochemical pathway of D-xylose metabolism by the xylose-fermenting yeasts (Jeffries, 

1990). 

The pathway or combination of pathways employed depends on the metabolic 

capacities of a particular yeast and the conditions under which it is grown. Fennentative 

yeasts generally possess both aerobic and anaerobic pathways along with adaptive 

regulatory mechanisms. Regardless of the carbon source employed, D-xylose fennenting 
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yeasts require riormally functioning mitochondria and O2 for growth, even if they can 

metabolize D-xylose anoxically (Malezska et al., 1982a). This need for O2 could indicate 

the use of a fermentation pathway that does not give rise to sufficient ATP by substrate­

level phosphorylation (Evans and Ratledge, 1984) . 

1.3.2 THERMODYNAMIC CONSIDERATIONS 

The conversion of D-xylose to D-xylulose is accompanied by an overall net positive 

free energy change ( GO = + 1.05 kcal/moI) . Xylitol is a symmetrical molecule that does 

not exist in ring form, and therefore should have more rotational degrees of freedom and 

a lower energy state. Hence, in a 2 step reduction-oxidation mechanism, the production 

of xylitol could be favoured. 

The equilibria for D-xylose reductase and xylitol dehydrogenase from P. 

tannophilus have been studied at pH 7.0. 

For D-xylose reductase, the equilibrium constant (KJ is as follows: 

Keq = {[NADPH]. [D-xylose]. [H+]}/{[NADP]. [xylitol]} 

= 10-10 

(Ditzelmiiller et al., 1984a), and for xylitol dehydrogenase: 

Keq = {[NADH]. [D-xylulose]. [H+]}/{[NAD] .[xylitol]} 

= 2.7 - 5.8 x 10-8 

(Ditzelmiiller et al., 1984b) 
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These reactions favour the fonnation of xylitol. The actual concentration of D-

xylose, D-xylulose and xylitol in vivo would depend on the intracellular NADPH/NADP 

ratio maintained by the oxidative phase of the pentose phosphate cycle and the 

NADH/NAD ratio obtained from respiration and/or fennentation. The NADH/NAD ratio 

will be lower during respiration than during fennentation. 

1.3.3 TRANSPORT OF D-XYLOSE 

For fennentation to occur, it is necessary to maintain a rate of sugar uptake in 

excess of that needed for growth. Also, as fennentation yields little energy, it is necessary 

to employ a transport system that uses very little"energy. 

P. stipitis and C. shehatae both possess two transport systems: a high affinity 

(facilitated diffusion) and a low affinity (proton symport) system, the ~ for the fonner 

being ten times bigger than that of the latter (Kilian and van Uden, 1988; Lucas and van 

Uden, 1986). D-xylose uptake is completely inhibited at glucose concentrations of > 2 

gIl. 

1. 3.4 ASSIMILATIVE STEPS 

The best studied reaction in the D-xylose metabolic pathway is the conversion of 

D-xylose to xylulose. In bacteria this conversion is carried out by the enzyme D-xylose 
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isomerase, whereas in yeasts and fungi a sequential reduction and oxidation occurs. Most 

yeasts and filamentous fungi use NADPH for the reduction of xylose to xylitol and NADH 

for the oxidation of xylitol to xylulose. In Candida utilis it has been pointed out by 

Bruinenberg et al. (1983) that this mode of xylose metabolism is incompatible with 

anaerobic utilisation of this sugar, since it leads to a net production of NADH in the 

overall conversion of xylose to ethanol. Bruinenberg et al. (1984) have suggested that 

anaerobic fermentation in many yeasts is blocked by a buildup of NADH. Yeasts capable 

of anaerobic fermentation of xylose to ethanol also possess a unique NADH-linked xylose 

reductase activity. This activity apparently prevents an accumulation of extra­

mitochondrial NADH. 

P. stipitis and other yeasts (e.g. P. tannophilus) capable of anaerobic xylose 

fermentation were shown to possess a xylose reductase that uses both NADPH and 

NADH. NADPH for the reduction of D-xylose to xylitol is provided by the oxidative 

portion of the pentose phosphate pathway. NAD is required for the oxidation of xylitol 

to xylulose. In the Embden-Meyerhoff pathway, net NAD production occurs only as a 

result of respiration. In the absence of respiration, xylitol cannot be oxidized and 

metabolism stops. This requirement was first shown for Candida tropicalis (Jeffries, 

1981a) and later for C. uti/is (Bruinenberg et al., 1983). 

Respiration is not essential for D-xylose metabolism in all yeasts. P. tannophilus 

(Slininger et al., 1982), C. shehatae (du Preez and van der Walt, 1983) and P. stipitis 

(Toivola et aI., 1984) are capable of fermenting D-xylose to ethanol under anaerobic 

conditions. 
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1.3.4.1 D-Xylose Reductase 

D-xylose reductase is the first enzyme in the metabolic pathway of D-xylose in 

yeasts. Its activity and regulation are therefore critical for the fermentation of xylose. 

Smiley and Bolen (1982) have shown that under aerobic conditions, the conversion of D­

xylose to xylitol by P. tannophilus is accomplished primarily by an NADPH-dependant 

xylose reductase. Bolen et al. (1986 - cited by Bolen et al., 1986) later reported that 

purified xylose reductase from P. tannophilus could also use NADH as a cofactor. 

According to Ditzelmiiller et al. (1984a), the purified enzyme has also been shown to 

utilize other carbon compounds (e.g., galactose and arabinose) as substrates and has thus 

been characterized as an aldose reductase (EC 1.1.1.21) . The enzyme is also considered 

inducible since no significant aldose reductase activity is detected in cell free extracts of 

P. tannophilus prepared from cells grown on D-xylose (Smiley and Bolen, 1982). 

Ditzelmiiller et al. (1984a) reported their preparation of two P. tannophilus xylose 

reductases: one that possesses minimal NADH-linked activity « 0.5% of the NADPH­

linked activity), the other with little or no NADPH-linked activity (Ditzelmiiller et al., 

1985). Verduyn et al. (1985a) have also reported the isolation of two separate xylose 

reductases from P. tannophilus: one from cells grown under aerobic conditions found to 

be NADPH specific (enzyme B) and the other from cells grown under anaerobic conditions 

found to have both NADPH and NADH linked activities (enzyme A). 

The presence of an NADH-specific D-xylose reductase and its importance in the 

anoxic fermentation of D-xylose was first shown by Bruinenberg and co-workers (1984) 
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working with P. stipitis. P. stipitis, however, possesses one aldose reductase with a dual 

coenzyme specificity (Verduyn et al., 1985b) . 

Enzyme A of P. tannophilus resembles the aldose reductase of P. stipitis in its use 

of either NADPH/NADH. Their molecular weights are 41 000 and 65 000 Da, 

respectively, and exhibit up to 70% of their activity with NADPH as a cofactor as with 

NADH. The P. stipitis enzyme has a lower affinity for D-xylose than the P. tannophilus 

enzyme A. (Verduyn et al., 1985b). 

The ratio of NADH- to NADPH- linked activity shifts under the cultivation 

conditions employed. Under anaerobic conditions, xylose fermentation in vivo by P. 

stipitis must proceed via NADH-linked xylose reduction, although kinetic studies indicate 

that the in vitro NADPH is the preferred coenzyme. Not only the relative concentrations 

of NADPH andNADH, but also those of NADP+ and NAD+ are decisive for the choice 

between NADPH- or NADH- linked xylose reduction in vivo . 

1.3.4.2 Xylitol Dehydrogenase 

The conversion of xylitol to xylulose is catalyzed by xylitol dehydrogenase, the 

second enzyme in the D-xylose metabolic pathway. Like xylose reductase, it is inducible 

by D-xylose, D-galactose and L-arabinose. This suggests that the mechanism leading to 

expression of these two enzymes, either by new enzyme synthesis or activation of existing 

enzymes, is a common one for both enzymes. 
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Whereas xylose reductase catabolizes L-arabinose and D-galactose to L-arabitol and 

galactitol respectively, these products are not oxidized substrates for xylitol dehydrogenase 

which has an NADH-linked activity. Although it is present in L-arabinose and D­

galactose-grown cells, it may serve no metabolic function but occurs as a consequence of 

simultaneous induction with xylose reductase (Bolen and Detroy, 1985) . 

Xylitol dehydrogenase from P. tannophilus is reported to have a molecular weight 

of 172000 Da (Bolen et al., 1986) and consists of four subunits. In C. shehatae it has 

a molecular weight of 82 000 Da and comprises two subunits (Yang and Jeffries, 1990) 

and that of P. stipitis 63 000 Da, with 2 subunits (Rizzi et al., 1989 - cited by Yang and 

Jeffries, 1990). 

P. tannophilus accumulates more xylitol than P. stipitis or C. shehatae (du Preez 

and van der Walt, 1983; and Slininger et al., 1985). The Km for xylitol in C. shehatae 

is a quarter of that observed with the P. tannophilus enzyme, while the Km for xylulose 

is 1.7 times higher (Ditzelmiiller et al., 1984b). This would favour the forward reaction. 

A lower Km of xylitol dehydrogenase for xylitol may explain the higher ethanol yield for 

P. stipitis and C. shehatae (du Preez and van der Walt, 1983) . 

1.4 FACTORS AFFECTING D-XYLOSE FERMENTATION 

Many different culture parameters have been examined in an attempt to improve 

D-xylose fermentation. The nitrogen source and the aeration rate employed are the most 
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important factors, but sugar and ethanol concentrations can also be significant, especially 

at higher temperatures. The pH optimum is broad. 

1.4.1 NUTRITIONAL FACTORS 

Jeffries (1983) has reported thatP. tannophilus can grow well on either ammonium 

acetate or urea, but that a rich supplement such as 1% yeast extract facilitates anaerobic 

fermentation. Cells grown on nitrate show enhanced ethanol production under aerobic 

conditions. However, ethanol production is inhibited under anoxic conditions. 

In the case of C. shehatae, Palnitkar and Lachke (1992) have reported that when 

organic nitrogen sources are used, there is a rapid D-xylose metabolism as well as a 

higher ethanol yield as compared to inorganic nitrogen sources. They also found the ratio 

of NADH-/NADPH-linked xylose reductase activity to be higher in cells grown in media 

containing organic nitrogen sources. Organic nitrogen sources also increase the levels of 

xylitol dehydrogenase in contrast to inorganic nitrogen sources. C. shehatae does not use 

nitrate as a nitrogen source but can produce ethanol using inorganic nitrogen sources, 

although fermentation is stimulated by the addition of cas amino acids (Jeffries, 1985b). 

P. stipitis is also incapable of utilizing nitrate as a nitrogen source and, like C. shehatae, 

ethanol production is stimulated by yeast extract, peptone and cas amino acid (Tran and 

Chambers, 1986 - cited by Prior et al., 1989). P. stipitis has a lesser vitamin requirement 

than either C. shehatae or P. tannophilus . P. stipitis CBS 7126 can ferment D-xylose in 

the absence of any vitamins. C. shehatae CBS 2779 has a negligible fermentation in the 
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absence of biotin, thiamine or pyridoxine. Both ethanol productivity and ethanol yield of 

xylose fermenting yeasts are dramatically improved by the addition of biotin and thiamine 

(Prior et al., 1989). Other vitamins, e.g., pyridoxine, myo-inositol, nicotinic acid, 

panthotenic acid and p-aminobenzoic acid have a minor influence on the D-xylose 

fermentation of C. shehatae. In the absence of thiamine and biotin, pyridoxine is essential 

for the complete utilization of D-xylose. 

1.4.2 AERATION 

The effect of oxygen on the fermentation of D-xylose has been examined more 

extensively than any other culture variable. P. tannophilus and P. stipitis show no growth 

under anoxic conditions (du Preez et al., 1984; Skoog and Hahn-Hagerdal, 1990). In 

general, aeration enhances growth and ethanol productivity. C. shehatae maintains a 

higher ethanol production rate and yield over a wider range of aeration levels than other 

yeasts. No ethanol is produced under vigorous aeration by P. stipitis CBS 5773 and CBS 

7126 (Bruinenberg et aI., 1984; du Preez et al., 1989) and C. shehatae CBS 2779 (du 

Preez et aI., 1989). However, a finite (limited) O2 supply stimulates growth as well as 

ethanol production by P. stipitis and C. shehatae (du Preez and van der Walt, 1983; du 

Preez et aI., 1984) . 

In P. tannophilus, ethanol accumulation appears to be associated with a transition 

from respiration and growth to a state of low O2 consumption and fermentation (Schvester 

et al. , 1983). The dissolved O2 concentration of a batch culture decreases as cell density 
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increases until fermentation is initiated. 

The enhancement of xylose fermentation by limited aeration is believed to be due 

to the role of O2 as terminal electron acceptor, thus relieving the partial redox imbalance 

in the initial two steps of D-xylose metabolism. Aeration thus has a significant effect on 

the xylitol and ethanol yields. The ethanol yield decreases with increasing aeration as a 

result of concurrent ethanol consumption (Maleszka and Schneider, 1982). The xylitol 

yield decreases as the specific O2 uptake increases. This inverse relationship between the 

degree of aeration and xylitol production is also observed with C. shehatae and P. stipitis 

(du Preez et al., 1989), and is in agreement with the hypothesis that O2 relieves the 

partial redox imbalance in the initial two steps of D-xylose metabolism (Laplace et al. , 

1991). 

Laplace et al. (1991) studied the effect of O2 transfer rate (OTR) on the 

fermentation of P. stipitis, C. shehatae, S. cerevisiae and Zymomonas mobilis and 

discussed the fermentative behaviour of P. stipitis and C. shehatae as a function of OTR 

in three steps, viz., 

a) Under anaerobic conditions (very low OTR), the electron transfer 

system is unable to oxidize NADH completely. Consequently, 

intracellular NADH increases, and this imbalance between NADH 

and NAD+ concentration leads to xylitol excretion. 

b) Xylose fermentation is enhanced by increasing OTR. It is possible 

to determine an OTR for which xylitol yields are the lowest and 

ethanol yields the highest. It is reported that P. stipitis requires a 
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lower OTR than C. shehatae to relieve the NADH/NAD+ 

imbalance. 

c) When O2 is transferred in excess, a deviation in the pyruvate flow 

from the fermentative pathway to the TCA cycle is observed. This 

involves the production of cells at the expense of ethanol. 

Skoog and Hahn-Hagerdal (1990) reported that the O2 levels for maximum ethanol 

production are close to the detection limit (a dissolved O2 of :::: 0%) which corresponds to 

an OTR of 2 mmollllh. They also reported that xylose transport activity is dependant on 

the level of oxygenation during xylose assimilation and suggest that O2 induces/activates 

a transport system. 

1.4.3 nH 

The growth of P. tannophilus is obviously favoured by a low pH environment (2.5-

4.5). During fermentation maximum specific alcohol production and xylose consumption 

rates are attained at pH 2.5 (Slininger et al., 1982) . The rate of fermentation is optimal 

between pH 4 and 5.5 for both C. shehatae CBS 2779 and P. stipitis CBS 7126 whereas 

the ethanol yield is hardly affected by pH values of 2.5 and 6.5 (du Preez et al., 1986) . 

Jeffries (1985b) reported a maximum volumetric rate of ethanol production at pH 3.2 to 

3.4 for C. shehatae ATCC 22984. Slininger et al. (1990) reported a broad pH range (4 _ 

7) that allowed optimum growth rate, specific ethanol productivity and ethanol yields for 

P. stipitis NRRL Y124. 
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1.4.4 TEMPERATURE 

Slininger et al. (1982) reported an optimal temperature for both growth and ethanol 

production of 3ZOC for P. tannophilus. No xylose consumption or ethanol occurs at 40°C. 

Alexander (1985) suggests that the temperature used for growth affects the induction of 

the D-xylose reductase in this yeast. At 37°C, the activity of this enzyme is greatly 

diminished from that found in cells grown at 30°C. For C. shehatae CBS 2779 and P. 

stipitis CBS 7126, du Preez et al. (1986) reported a maximum rate of D-xylose 

fermentation and growth at 30°C. Temperatures above 30°C cause a sharp drop in ethanol 

production and yields as well as an increase in xylitol production while temperatures below 

30°C do not affect ethanol yields but decrease the rate of production of ethanol. They also 

reported that C. shehatae is more sensitive to temperature than P. stipitis. Slininger et al. 

(1990) found that P. stipitis CSIR 633 has a maximum ethanol yield at 25°C. This is 

explained by growth studies that suggest that ethanol tolerance decreases with increasing 

temperatures (du Preez et al., 1987). 

1.4 .. 5 SUBSTRATE CONCENTRATION 

Xylose concentrations of above 5% (w/v) inhibit growth of P. stipitis and increase 

its xylitol production (Slininger et aI., 1985). D-glucose is used in preference to D­

xylose/ D-xylulose by essentially all D-xylose fermenting yeasts studied (Hsiao et al., 

1982), but in P. tannophilus, D-glucose can have a stimulatory effect on D-xylose 

fermentation (Jeffries et aI., 1985). When D-xylose is added in small amounts to an 
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active fernientation of D-xylose by P. tannophilus, the efficiency of D-xylose utilization 

increases. Intennittent addition of a cellulose hydrolysate to a hemicellulose hydrolysate 

likewise increases the yield of ethanol, indicating that this approach may be useful for 

industrial applications (Beck, 1986). D-glucose addition also enhances the rate of D­

xylose utilization and the final ethanol concentration achieved with C. shehatae (Sreenath 

et al. , 1986). However, it has little effect on the apparent yield of ethanol from D-xylose 

by this organism. 

The growth of C. shehatae and P. stipitis shows much less sensitivity to D-xylose 

concentration compared to P. tannophilus. C. shehatae fennents D-xylose faster but D­

glucose slower than P. stipitis. This difference could result from different pathways or 

regulatory patterns used by these yeasts. D-xylose concentrations at which maximum 

ethanol concentration, rates of ethanol production and yields of ethanol and xylitol occur, 

are generally equivalent in P. stipitis and C. shehatae strains. The marked differences 

observed between strains of each species and in some instances, discrepancies in the 

kinetic data of the same strain, reported in independent studies, could be attributed to 

differences in growth conditions. Xylose concentrations of ;::: 100 gIl produced the highest 

ethanol concentration and volumetric rates of ethanol production. The highest specific rate 

of ethanol production occurs at D-xylose concentrations of 100 gIl and lower (Prior et al., 

1989) . 

Ethanol and xylitol yields are especially sensitive to substrate concentrations. In 

some studies the highest ethanol yields were recorded at D-xylose concentrations as low 

as 5 to 10 gIl (Dellweg et al. , 1984). 
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1.4.6 MIXED SUBSTRATES 

The hydrolysis of lignocellulosic material yields mainly sugars and lignin. The 

sugar component is comprised of hexoses, predominantly glucose, and small amounts of 

galactose, mannose as well as pentoses, predominantly xylose and small quantities of 

arabinose. Glucose is two to four times more abundant than xylose, although this ratio 

can vary depending on the wood type. Thus, for efficient fermentation of a cellulose 

hydrolysate to ethanol, a suitable microorganism should be capable of fermenting both 

glucose and xylose; overcome glucose repression of xylose utilization and be resistant to 

products of cellulose hydrolysis such as acetic acid and furfural. 

Under aerobic conditions P. tannophilus ferments xylose slower and with lower 

ethanol yields than it does glucose. Aerobically, the glucose fermentation rate is four 

times higher than xylose fermentation and anaerobically it is two times higher (Jeffries et 

al., 1985). Periodic addition of glucose (very low concentration) to aerobic fermentations 

of xylose enhanced the ethanol yield. However, the addition of the equivalent amounts 

of glucose at the beginning of fermentation has no effect. Similar additions to anaerobic 

fermentation also have no effect. 

Since P. tannophilus consumes xylose and ethanol simultaneously, it is thought that 

because of the addition of glucose, the respiration of ethanol decreases, thus improving 

the yield. The addition of higher concentrations of glucose represses xylose utilization. 

Strains of C. shehatae and P. stipitis show varying degrees of glucose repression 
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of xylose uptake. The presence of ~ 2% glucose caused repression of xylose utilization 

by P. stipitis (2% glucose causes 20% repression) . 2% glucose has a negligible effect on 

xylose utilization by C. shehatae (3% glucose has only a 10% repression). Unlike P. 

tannophilus, addition of glucose causes xylose fermentation to stop immediately (Panchal 

et al., 1988). Sreenath et al. (1986) report that C. shehatae ferments a mixture of xylose 

and glucose at a rate much higher than that for either sugar alone. Grootjen et al. (1991) 

report a complete inhibition of xylose utilisation at a much lower glucose concentration 

(2.3 gil) for P. stipitis. 

1.4.7 ETHANOL CONCENTRATION 

Ethanol accumulation is toxic to the fermentation of D-xylose. The ethanol 

sensitivity of P. tannophilus varies with the carbon sourcelmedium employed. Slininger 

et al. (1982) report a decrease in the rate of D-xylose uptake when ethanol concentrations 

exceed 20 to 25 gil. Slininger and co-workers (1987) have applied Luong's model for 

inhibition of growth and ethanol production to data collected with P. tannophilus and 

concluded that growth of P. tannophilus is inhibited at 41 gil ethanol, but ethanol 

production continues at concentrations as high as 80 to 100 gil. Cell death is significant 

at the highest ethanol concentrations. 

Two principal hypotheses for the mechanism of ethanol toxicity are damage to cell 

membrane ,and end product inhibition of glycolytic enzymes (Ingram, 1986 - cited by 

Jeffries, 1990). It is also possible that ethanol inhibition results from an accumulation of 
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intracellular NAD(P)H. Ethanol accumulation limits growth and promotes formation of 

polyols (xylitol, ribitol, arabitol) and acetic acid by P. tannophilus (Schneider et aI., 

1985). These shifts are similar to the kinds of changes observed when P. tannophilus is 

grown under strictly anoxic conditions. They suggest that some kind of disruption of 

mitochondrial function might occur with increasing ethanol concentrations. Mitochondrial 

activity is known to be important in determining the ethanol tolerance of S. cerevisiae 

(Aguilera and Benitez, 1985). 

Ethanol concentrations and temperature are interactive variables in determining 

ethanol growth inhibition in yeast. Lower temperatures lead to higher ethanol 

concentrations with D-xylose fermentation (Lucas and van Uden, 1985) . C. shehatae has 

a maximum ethanol tolerance of 47 gil at a temperature plateau of 10 to 17.5°C. Ethanol 

production by P. stipitis CBS T126 ceases at 47 gIl whereas its ethanol tolerance limit in 

terms of externally added ethanol is only 33 gIl. This indicates that the toxicity of added 

and autogenously produced ethanol to growth of P. stipitis (and C. shehatae) is in contrast 

to that of S. cerevisiae where autogenously produced ethanol is more toxic than added 

ethanol (Casey et al., 1985 - cited by Prior et al., 1989; Jones and Greenfield, 1985; 

Novak et aI., 1981). 

1.5 TECHNOLOGY TO IMPROVE D-XYLOSE FERMENTATION 

A D-xylose fermenting yeast would need to produce 50 - 60 gil ethanol within 36 

h with a yield of at least 0.4 gIg before commercial application could be considered 
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(Jeffries, 1985a). To date, C. shehatae and P. stipitis are superior to all other yeast 

species in terms of rate and yield of ethanol production from D-xylose. However, 

fermentation times of > 36 h are required to achieve the desired ethanol concentrations in 

hydrolysates · (Yu et al., 1987) and pure D-xylose media (Slininger et aI., 1985). 

Several techniques have been employed in an effort to improve D-xylose 

fermentation. These include an improved fermentation technology, strain manipulation by 

molecular techniques and protoplast fusion to produce improved or new strains of C. 

shehatae and P. stipitis or even strains of S. cerevisiae capable of fermenting D-xylose. 

1.5.1 FERMENTATION TECHNOLOGY 

Fermentation techniques to improve D-xylose fermentation have employed cell 

immobilization/recycling to increase densities, continuous culture, ethanol removal and 

coculture. Each has been beneficial in some way, but none has provided a total solution 

to the problem. 

The relatively low fermentation rate requires either the use of large reactor 

volume/high cell densities. P. stipitis immobilized in either agar beads or on a fine nylon 

mesh attain ethanol concentrations of up to 40 g/l in eight days from 100 gil D-xylose 

(Linko et al., 1986). Dynamic cell immobilization in which cells are continuously 

recycled by the use of a membrane module has also proved successful. With this 

technique, up to 70 gIl (dry weight) of cells - or about 10 to 20 times the cell density 
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without recycle - can be attained. The volumetric fermentation rates increase up to 4.4 

g/lIh ethanol, but the specific rates drop dramatically (Sreenath and Jeffries, 1987) . 

Continuous fermentation without recycle has not been particularly successful. The 

principal problem in using continuous culture is that the biomass increases with aeration 

whereas ethanol yield decreases. Also, the need to produce new biomass reduces the 

ethanol yield that can be attained. Although single-stage continuous culture is not 

particularly useful for D-xylose fermentation, a multiple-stage continuous fermentation can 

enable C. shehatae to achieve considerably higher ethanol concentrations. The first stage 

reactor is operated at an oxygen-limited mode that will produce fermentative cells. A low 

dilution rate must be used because of the O2 limitation. In the second stage, the cells and 

fresh sugar are introduced. Minimal aeration is employed in this stage and ethanol 

concentration is appreciably higher, so growth stops but ethanol production continues 

vigorously. It is important to maintain an influx of viable cells (Alexander et al., 1988). 

In an: attempt to achieve the combined fermentation of the two sugars from 

lignocellulosic materials by sequential/coculture processes, Laplace et al. (1992) have 

determined the compatibility and typing of associated strains. They report the occurrence 

of the kill~r phenomenon in six Saccharomyces species and eleven xylose fermenting 

yeasts which precludes their utilization in a coculture process. However, five strains of 

C. shehatae tested did not show any inhibition on the growth of S. cerevisiae and a 

coculture process using these strains could be developed. 
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1.5.2 MOLECULAR TECHNIOUES 

Strain manipulation of C. shehatae and P. stipitis in order to improve fermentation 

efficiency has been hampered by a poor understanding of their biology. Some success has 

been achieved by selecting for mutants of C. shehatae ATCC 22984 on a medium 

containing L-xylose as a carbon source and NH4CI as nitrogen source (Jeffries, 1987 -

cited by Prior et al., 1989). These mutants fermented D-xylose more rapidly, possibly 

due to derepressed levels of assimilative enzymes. An alternative would be to manipulate 

S. cerevisiae to ferment D-xylose. 

S. cerevisiae is used in most industrial fermentations and ferments D-glucose at a 

specific rate at least four times that observed in C. shehatae and P. stipitis on D-xylose 

(Ligthelm et al., 1988). In E. coli the interconversion of D-xylose to D-xylulose is 

catalyzed by the enzyme xylose isomerase. Attempts have been made to clone the E. coli 

isomerase gene into S. cerevisiae (Sarthy et al., 1987) to evaluate direct D-xylose 

fermentation. The transformation of S. cerevisiae by a yeast expression plasmid bearing 

the E. coli isomerase gene leads to the production of the predicted amount of protein, but 

the enzyme is at least a thousand fold less active in S. cerevisiae than in E. coli. Improper 

folding of the protein was suggested as the main reason for the reduced activity. 

Recently, Kotter et al. (1990) and Takuma et al. (1991) reported the isolation of 

the xylitol dehydrogenase gene (XYL2) and the xylose reductase gene (XYL1) from P. 

stipitis, respectively, as well as the construction of S. cerevisiae transformants. Both 

genes are actively expressed in S. cerevisiae transformants. Takuma et al. (1991) reported 
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a considerable amount of enzyme activity constitutively, whereas translation and 

transcription in P. stipitis were inducible. The S. cerevisiae transform ant could not, 

however, grow on D-xylose medium and could not produce ethanol from xylose. Xylose 

uptake and accUmulation of xylitol to ethanol appeared to be limited. Kotter et al. (1990) 

successfully transformed S. cerevisiae with a plasmid carrying both the XYL1 and XYL2 

genes. These transform ants were able to grow on xylose as a sole carbon source but their 

rate of xylose consumption was very slow. One reason for this could be a limiting 

capacity of the pentose phosphate pathway. A second reason could lie in the xylose 

uptake. In general, monosaccharide transport in S. cerevisiae takes place by facilitated 

diffusion, whereas in P. stipitis xylose uptake is carried out by two proton symport 

systems (Kilian and van Uden, 1988) . 

1.5.3 PROTOPLAST FUSION 

Most, if not all, strains of S. cerevisiae used in commercial alcohol production are 

polyploid or aneuploid, suggesting that an increase in chromosome number may be 

advantageous. Scheda (1963) [cited by Gupthar, 1987] reported a systematic increase in 

the rate of ethanol production from D-glucose with increasing ploidy in S. cerevisiae. The 

technique of protoplast fusion was used to construct series of P. tannophilus (Maleszka 

et aI. , 1983), C. shehatae (Johannsen et al. , 1985) and P. stipitis (Gupthar, 1987) with 

increased ploidy. Maleszka et al. (1983) reported systematic increases in rate and yields 

of ethanol production from D-xylose with increasing chromosome number in P. 

tannophilus. The isogenic fusant strains of C. shehatae and P. stipitis showed a very 
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slight increase in ethanol production and no relationship between ploidy and ethanol 

production. Since the P. tannophilus ploidy series was derived from hybridization 

between different strains (Maleszka et al., 1983) , it was thought that the ploidy series was 

due largely to heterosis. 

During the protoplast fusion process, the cytoplasms of both cells come into contact 

with each other and there is mixing of the organelles of both the cytoplasms. If there is 

no nuclear interaction, before destabilisation of the heterokaryon, the resultant cells are 

known as cybrids (Fig. 1.2a). However, if nuclear interaction occurs, the resultant cells 

would be true hybrids with a combination of nuclear and cytoplasmic characters of both 

the cells (Fig. 1.2b). Another possibility that exists, is that a heterokaryon may form and 

partial gene exchange may occur before the heterokaryon destabilises into two partial 

hybrids that possess the genome of one cell with a few characters of the other. 

Considering the presumed taxonomic relationship between C. shehatae and P. 

stipitis and their fermentative capacities ,. Gupthar and Garnett (1987) constructed 

intergeneric hybrids between these strains by protoplast fusion. Pichia-resembling fusants 

were isolated, and their hybrid nature confirmed by cell volume estimation, analysis of 

nuclear condition and the isolation of a variety of mutant recombinant phenotypic 

segregants by meiotic as well as induced and spontaneous mitotic segregation. Preliminary 

studies have indicated that several of the fusants ferment xylose rapidly as compared to 

the parental strains (Gupthar and Garnett, 1987) . 

Previously, classical genetic and biochemical techniques were used to differentiate 
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between parental strains and their hybrids or progeny, especially in the baking, brewing 

and wine industries. Most of the strains in the wine industry belong to the same species, 

1· S Ce""oVlS· l·ae The1·r 1·dentification cannot be carried out by conventional methods, v z., .'~ . 

and several techniques, based on molecular polymorphisms have been recently used for 

strain characterization. These techniques include electrophoretic fingerprinting of proteins 

and chromosomes, as well as restriction fragment length polymorphism (RFLP) analysis 

of mitochondrial DNA. 

1.5.3.1 Protein Electrophoresis 

Owing to its very high resolution, the separation of proteins on polyacrylamide gels 

has over the last two decades become the most commonly used technique for their 

characterization and analysis. The most widely employed variant of this is sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Proteins are exposed to the 

anionic detergent SDS before electrophoresis on a slab gel. The extensive binding which 

results swamps out the intrinsic charge of most proteins and the negative charge per unit 

mass is approximately constant for all protein-SDS complexes. These complexes can be 

sieved on the gel matrix according to molecular size. The utility of standard PAGE has 

been greatly enhanced by the development over the last decade of two-dimensional 

techniques (O'Farrel et at., 1977) and Western blotting (Burnette, 1981) . 

The first electrophoretic analyses were carried out on specific yeast enzymes in the 

early 1980's (Yamazaki and Komagata, 1981; Yamazaki et at., 1983) . van Vuuren and 
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van der Meer (1987) subjected the total soluble cell proteins of several wine and beer 

yeasts to PAGE found the fingerprints generated to be a reliable and useful tool in the 

identification of closely related yeast strains. The banding pattern of total soluble cell 

proteins of a micro-organism is a fingerprint of a large part of its genome. 

1.5.3.2 Electrophoretic Karyotypin& 

The development of pulsed field gel electrophoresis (PFGE) technology for the 

separation of intact chromosomal DNA molecules of lower eukaryotes, has provided a 

novel means of characterising the chromosome sets of these organisms. (Carle and Olson, 

1985; Schwartz and Cantor, 1984). Since its advent, this technique has been widely used 

to characterise fungal and yeast strains. The small sizes and poorly defined mitotic and 

meiotic morphologies of yeast chromosomes have precluded the development of a useful 

karyotype by light microscopy. In the case of S. cerevisiae, the ability to enumerate and 

distinguish between the chromosomes has rested almost entirely on linkage analysis. 

In conventional agarose gel electrophoresis, a constant electric field is applied 

uniformly across the gel width. Resolution extends from < 100 bp to an upper limit of 

20 kb, ideal for separating fragments produced by most restriction enzymes, but too low 

to examine intact chromosomes. In 1984, it was discovered that by applying a non­

uniform electric field at different angles to the plane of the gel, very large molecules could 

be induced to separate on a standard agarose gel (Schwartz and Cantor, 1984). Since the 

electric field is alternately switched from one or more sets of electrodes to another, the 
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general name for the technique is PFGE. Since its original description, a number of 

variants have arisen, each with its own acronym. Thus we now have orthogonal field 

alternating gel electrophoresis (OFAGE), field inversion gel electrophoresis (FIGE), 

rotational field electrophoresis (RFE) , contour-clamped homogenous electric field 

electrophoresis (CHEF) and transverse alternating field electrophoresis (T AFE) (Gardiner 

and Patterson, 1988; Hyde, 1990). 

In PFGE, the effect of the alternating field is to force the molecules to continually 

change the direction in which they are moving, while inducing a net motion down the gel. 

The rate at which the DNA molecule can re-orient is highly sensitive to molecular weight. 

The key to obtaining good resolution is to match approximately the pulse time with the re­

orientation time at a particular field strength (Smith and Cantor, 1989) . 

The introduction by Schwartz and Cantor (1984) of a technique for releasing DNA 

from yeast spheroplasts embedded in agarose, thereby preserving intact chromosomes, 

together with the pulsed field electrophoresis technique, permits the separation of 

chromosomes over their entire size range. 

Carle and Olson (1985) used OFAGE to resolve all 16 chromosomes of S. 

cerevisiae. Vezinhet et al. (1990) have reported 20 different TAFE karyotypes for 22 

wine yeast strains. Van der Westhuizen and Pretorius (1992) reported eight different 

CHEF karyotypes for 10 wine yeast strains. Miller et al. (1989), have identified 3 

chromosomes for P. stipitis using OFAGE, whereas Passoth et al. (1992) reported 6 

chromosomes each for P. stipitis and C. shehatae using OF AGE and T AFE. 
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1.5.3.3 Restriction Fragment Len~h Polymorph isms of 

Mitochondrial DNA 

Mitochondrial DNA (mtDNA) is an appealing molecule for evolutionary study 

because it is relatively small and can be studied in its entirety. The coding potential of 

mitochondrial genomes is highly conserved. Both fungal and animal mtDNAs carry nearly 

the same genes, coding for enzymes or their subunits involved in electron transport and 

phosphorylation to produce ATP, RNAs and proteins required for protein synthesis as well 

as a number of unidentified open reading frames (Grossman and Hudspeth, 1985-cited by 

Taylor, 1986) . 

In animals, evolution proceeds faster in the mitochondrial genome than in the 

.nuc1ear genome and the circular mtDNA is inherited maternally, i.e., without 

recombination (Wilson et at., 1985 - cited by Taylor, 1986). Fungal mitochondrial 

genomes are also usually circular, although a few linear genomes have been reported. 

However, fungal mitochondria are not always inherited uniparentally and recombination 

is known to occur. Animal mitochondrial genomes are usually 16 - 19 kb (Avise and 

Lansman, 1983 -cited by Taylor, 1986). Fungal mtDNAs are more variable (18.9 - 176 

kb). The difference between the size of animal and fungal mtDNAs is apparently due to 

deletions and insertions (length mutations). 

The highly conserved coding potential of mitochondrial genomes contrasts greatly 

with the large size variation observed among mtDNA molecules of different yeast species 

(Clark-Walker, 1985 - cited by Piskur, 1989) . This can be explained by 2 hypotheses. 
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The skeletal DNA hypothesis suggests that DNA possesses quantitative non-genic functions 

in addition to its qualitative genic functions. This proposes that the non-coding sequences 

of the yeast mitochondrial genome specifically participate in the genome organisation and 

metabolism (Bernardi, 1982 - cited by Piskur, 1989; Bernardi and Bernardi, 1986). 

Alternatively, an extension of the selfish DNA hypothesis proposes that much DNA in the 

yeast mitochondrial genome is a genetic symbiont which accumulates and is actively 

maintained by intracellular selection (Orgel et aI., 1980). 

The mode of transmission (from cell to cell and generation to generation) is an 

important aspect of mitochondrial inheritance. When 2 homoplasmic yeast cells with 

different mitochondrial genotypes fuse, a heteroplasmic state of mitochondrial pools 

occurs. Such a heteroplasmic diploid cell always gives rise to a mixed progeny composed 

of homoplasmic cells of different mitochondrial genotypes. However, due to its 

"aberrant" structure (Ehrlich et aI., 1972; Piskur, 1988) the yeast mtDNA is very prone 

to spontaneous deletions and rearrangements leading to mutant genomes characteristic of 

petite mutants. 

DeZamaroczy and Bernardi (1985) reported that intergenic regions represent about 

60% of the total genome and that these regions especially the ori/rep elements have a 

biological role in the mitochondrial genome. Piskur (1988) showed that mitochondrial 

intergenic sequences influence the transmission of nearby loci to progeny. 

The widespread presence of mitochondrial plasmids has also been reported. It can 

be speculated that such plasmids represent means by which sequences may transfer from 
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one cellular compartment to another, or even between species. Some of these plasmids 

are unrelated to mitochondrial genomic sequences, and in a few cases where the test has 

been performed, no relation to nuclear sequences has been found. 

RFLP analysis of mtDNA of yeast strains in the wine and brewing industry, 

together with electrophoretic karyotyping, has contributed enormously to the 

characterization of these strains. 

1.6 SCOPE OF THIS STUDY 

The objectives of the study were, firstly, to characterise and compare 

electrophoretic profiles of chromosomes, restricted mitochondrial and chromosomal DNA 

as well as proteins of the fusant and parental strains in order to determine the genetic 

contribution of the parental strains to the fusants . The second objective was to assess the 

fermentative ability of the fusants in relation to the parental strains and correlate this with 

the genetic constitution of the fusants to ascertain whether a relationship between ploidy 

or even gene copy number and ethanol production exists for these fusants. 

The use of molecular techniques such as PFGE, RFLP analysis of mtDNA and 

chromosomal DNA and PAGE were envisaged in order to establish the degree of nuclear 

and cytoplasmic inheritance of the fusant strains. Batch fermentations and calculation of 

fermentation parameters would enable the evaluation of fermentative ability of the parental 

and fusant strains. 
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CHAPTER TWO 

CHROMOSOMAL INHERITANCE OF THE FUSANTS 

OF Pichia stipitis AND Candida shehatae 

2.1 INTRODUCTION 

Improvement in product yield or process efficiency in industrial processes involving 

micro-organisms can be achieved by genetic manipulation of the production organisms. 

According to Oliver (1991), selection of desirable traits have been unintentionally/ 

unwittingly carried out by brewers and breadmakers over the millennia. Modem strain 

development has a wide range of techniques available for use with yeasts, including 

recombinant DNA technology, rare mating and protoplast fusion . 

Recombinant DNA technology involves cloning of specific genes of interest and 

transformation of the production organisms with these genes. The use of recombinant 

DNA technology to improve the range and efficiency of yeasts' activities in classical 

biotechnological processes has so far been limited to the recruitment of just one or two 

genes which specify novel activity, e.g., DEX1 and STA1 genes of Saccharomyces 

diastaticus encoding amylolytic enzymes cloned into S. cerevisiae (Meaden et at., 1985 

and Tamaki, 1978, respectively - cited by Oliver, 1991) . However, the technology 

currently available for yeasts should permit the wholesale genetic engineering of the 

organism by the addition of complete, novel metabolic pathways. According to Oliver . 

(1991), Nederberg et at. (1984) and Prasad et at. (1987) have assembled all the yeast 
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genes required for the complete tryptophan biosynthetic pathway on a single plasmid. 

This technique can only be successful if enough is known about the genes involved in the 

biosynthetic pathways of interest. If this information is not available then other techniques 

are explored. 

Most industrial yeast strains are incapable of mating since they have a polyploid 

genetic constitution. However, mass matings of laboratory haploids with these strains 

produce occasional hybrid organisms as a result of rare-mating events (Spencer and 

Spencer, 1977 - cited by Oliver, 1991) 

Protoplast fusion is a technique used to produce hybrids between strains that do not 

normally mate. A number of workers have employed protoplast fusion to confer 

amylolytic activity on either brewery or distillery yeasts: Hockney and Freeman (1980 -

cited by Oliver, 1991) hybridised S. distaticus and S. cerevisiae; Wilson et al. (1982) used 

complementation of auxotrophs between two haploid strains in a fusion of Schwanniomyces 

alluvius and S. uvarum; and Galembeck et al. (1982 - cited by Oliver, 1991) as well as 

Echeverrigaray (1983 - cited by Oliver, 1991) formed hybrids between Lipomyces 

konoenkoae and S. cerevisiae. While successful fusants capable of converting starch to 

ethanol were obtained in all cases, the instability of the hybrids in the absence of selection 

was a universal problem. Protoplast fusion of several D-xylose fermenting yeasts was also 

attempted. Intrageneric fusions of C. shehatae (Johanssen et al., 1985), P. tannophilus 

(James and Zahab, 1983) and P. stipitis (Gupthar, 1987), as well as intergeneric fusions 

between P. stipitis and C. shehatae (Gupthar and Garnett, 1987) and P. stipitis and S. 

cerevisiae (Gupthar, 1992) were performed. However, only slight improvements in 
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ethanol production were reported for the C. shehatae and P. tannophilus intrageneric 

fusants and one P. stipitis-C. shehatae intergeneric fusant. 

Although protoplast fusion has proved to be very useful for the construction of 

yeast strains with novel gene combinations, very little is known of the molecular events 

that occur during and after cell fusion. This is especially true in the case of intergeneric 

fusions where it is rarely possible to characterise the hybrids by classical genetic 

techniques. Even when meiotic segregation analysis can be realised, it only reveals the 

genetic arrangement of a few marker genes (Hoffman et al., 1987). 

Recently, several workers have resorted to electrophoretic karyotyping and DNA 

fingerprinting to study the genetic constitution of hybrids and to identify strains of 

industrial importance (Hoffman et al., 1987; Miller et al., 1989 and Smith et al., 1991). 

These techniques are also widely used in the identification and characterisation of 

oenological strains of S. cerevisiae (van der Westhuizen and Pretorius, 1992; Vezinhet et 

al., 1990) . 

Electrophoretic karyotyping is performed using the technique of PFGE developed 

by Schwartz and Cantor (1984). Conventional agarose gel electrophoresis techniques fail 

to resolve DNA molecules greater than 20 kb in size. The principle behind the technique 

of PFGE is that DNA molecules are subjected to an electric field which periodically 

changes its orientation. DNA molecules are therefore constantly changing the direction 

of their migration in the gel according to the changing electric field. According to 

Schwartz and Cantor (1984), the time taken for the reorientation of the DNA molecule is 
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proportional to its size. The larger the DNA molecule, the longer it takes to realign itself. 

Therefore, DNA can be separated by size. Several variations of this technique are widely 

used: FIGE, OF AGE, CHEF and most recently, T AFE. T AFE was developed by 

Gardiner and Patterson (1988) and is unique in that the gel is vertical and the two sets of 

electrodes force the DNA to move in a zig-zag fashion down the width of the gel rather 

than across the face of horizontal gels as for the other variants of PFGE. 

RFLP analysis of chromosomal DNA has been found to be another useful tool to 

characterise yeast strains. Morace et al. (1992) performed RFLP analysis of chromosomal 

DNA and showed that in the case of Pichia isolates, certain DNA molecules are species 

specific. It has also been reported to be a useful tool to differentiate hybrid and parental 

strains (van der Westhuizen and Pretorius, 1992). It was less successful in the 

characterisation of twenty two Bavarian lager and ale strains, since all of them displayed 

identical electrophoretic profiles when cleaved with EcoRI (Pederson, 1985 - cited by van 

der Westhuizen and Pretorius, 1992). However, Panchal et al. (1987) reported minor 

differences in the profiles of lager and ale strains restricted with Hpal. 

In this study, three parental and ten fusant strains were investigated. The parental 

strains comprised a triauxotrophic P. stipitis strain and two diauxotrophic C. shehatae 

strains (Table 2.1). Fusants were hybrids constructed by the polyethylene glycol-induced 

protoplast fusion technique. These fusants resembled the P. stipitis parent 

morphologically. However, preliminary characterisation using induced and spontaneous 

mitotic and meiotic segregation analysis, DNA-DNA hybridisations, nuclear volume, 

assimilation and fermentation tests of different carbon sources as well as cell DNA content 
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confirmed the genetic constitution of these fusants as being at least partial hybrids and not 

p. stipitis parental dissociates (Gupthar and Garnett, 1987). In order to determine the 

genetic contribution of each parent to the fusants, the techniques of electrophoretic 

karyotyping and RFLP analysis were used in this study. The objective was to generate 

TAPE profiles and establish the karyotypes of parental and fusant strains and to compare 

the karyotypes of the fusants to those of the parental strains to determine chromosomal 

inheritance of the fusants as well as to ascertain if any chromosome length polymorphisms 

(CLPs) existed. In addition, electrophoretic profiles of proteins and RFLP profiles of 

chromosomal DNA of the parental and fusant strains were generated to provide a more 

detailed characterisation of the fusants. Finally, DNA probes of two genes involved in 

D-xylose metabolism viz., xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) , 

were hybridised against the TAPE and RFLP profiles of chromosomal DNA to determine 

copy number of these genes. This information could be linked to the fermentative abilities 

of these fusants, which was studied in a subsequent chapter, to determine whether there 

exists some correlation between gene copy number and fermentative ability. 

2.2 MATERIAlS AND METHODS 

2.2.1 YEAST AND BACTERIAL STRAINS 

Parental and fusant strains of P. stipitis and C. shehatae were obtained from Dr. 

A.S. Gupthar, Department of Biochemistry, University of Durban-Westville. The parental 

strains were a triauxotrophic strain of P. stipitis and two diauxotrophic strains of C. 
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shehatae. These strains as well as all other yeast and bacterial strains used in this study 

are listed in Table 2.1. The auxotrophic parental strains were the result of N-methyl-N-

nitro-N-nitrosoguanidine (NTG) mutagenesis of prototrophic strains that had been obtained 

from the Council for Scientific and Industrial Research in Pretoria, SA. 

TABLE 2.1. Yeast and bacterial strains used in this study 

StrainlDesignationa Characteristics/Sourceb 

Yeasts 
Parental 
P. stipitis Ps Y 633 leu lys ala mutant of Y633 : CSIR 
C. shehatae CsY 117 All cys met mutant of Yl17 All : CSIR 
C. shehatae CsY 492 met his mutant of Y 492 : CSIR 

Fusant PC1 - PCS prototrophic fusants of 
PsY 633 leu lys ala x CsY 492 met his 

PCA1 - PCAS prototrophic fusants of 
Ps Y 633 leu lys ala x 
CsY 117 All cys met 

. S. cerevisiae Sc UDW 
S. cerevisiae Y48 CSIR 

Bacteria 

a 

b 

Escherichia coli DHSaF' BRL 

leu rys ala : auxotrophic for the amino acids leucine, lysine and adenine; cys met : auxotrophic for 
the amino acids cysteine and methionine; met his : auxotrophic for the amino acids methionine and 
histidine 
CSIR : Council for Scientific and Industrial Research, Pretoria; BRL : Bethesda Research 
Laboratories, USA; UDW: Department of Microbiology, University of Durban-Westville. 
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2.2.2 GROWTH AND MAINTENANCE OF CULTURES 

Yeast strains were grown on YMA (yeast-malt extract agar: 3 g yeast extract, 3 g 

malt extract,S g glucose and 15 g agar per litre) plates at 30°C for two to three days. 

Working stocks were stored at 4°C and subcultured every four to six weeks. For long term 

stock cultures, yeasts were grown in YMB (yeast-malt extract broth) at 30°C in an orbital 

shaker (Certomat U, Braun, Germany) at 155 rpm and equal volumes of the broth culture 

and sterile 30% glycerol were mixed, snap frozen in liquid nitrogen and stored at -70°C 

and -20°C. The E. coli strain was grown on YT agar (8 g tryptone, 5 g yeast extract, 

5 g NaCI and 15 g agar per litre) plates at 37°C overnight (O/N), then stored at 4°C. 

Subculturing was performed every 4 weeks. Log phase broth (YT broth) cultures were 

used to prepare stock cultures as described for the yeast strains. 

2.2.3 PULSED FIELD GEL ELECTROPHORESIS 

2.2.3.1 Agarose Plug Preparation 

Agarose plugs were prepared using a modification of the method of Schwartz and 

Cantor (1984). 

SCE Buffer (PH 8.0) 1 M sorbitol 

0.1 M sodium citrate 

60 mM EDTA 



Solution I 

Solution II 

Solution III 

LGT agarose 

40 

0.2 M sorbitol 

20 mM sodium citrate 

12 mM EDTA 

1 % 2-mercaptoethanol 

2 mg/ml novozyme 

46 mM EDTA (pH 6.0) 

1 mM Tris.HCI (pH 8.0) 

8% 2-mercaptoethanol 

45 mM EDTA (pH 6.0) 

1 mM Tris.HCI (pH 8.0) 

1 % N-Iauroylsarcosine (Na salt) 

2 mg/ml novozyme 

1 % low gelling temperature agarose 

in 0.125 M EDTA (pH 7.5) 

Cells were grown to late log phase in YMB medium at 30°C with shaking (155 

rpm on an orbital shaker). The C. shehatae strains were grown to early log phase (12 h) 

since the cell wall of yeasts become more complex and difficult to lyse with age, and this 

was especially true for the C. shehatae strains. Cells were harvested by centrifugation at 

10 000 x g for 10 min followed by two washing steps in 50 mM EDT A (pH 7.5). The 

pellets were resuspended in SCE buffer (pH 7.0), cell density adjusted to 8 absorbance 

units at 600 nm (Ultrospec II, LKB, Sweden) and the cell suspension left to equilibrate in 

SCE buffer at room temperature (RT) . One ml of the suspension was mixed with 350 III 

solution I and 1.8 ml of molten (42°C) 1% LGT agarose (Sigma, Type VII, USA), 
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vortexed immediately, dispensed into a mould and allowed to solidify at 4°C. After 10 

min agarose plugs were removed from the mould and incubated with gentle agitation at 

37°C O/N in 5 ml solution II. During this step, the cell walls were digested by novozyme 

to form sphaeroplasts. Both the C. shehatae strains required double the enzyme 

concentration to achieve effective lysis of the cells, viz., 4 mg/ml novozyme. Solution 

II was replaced with 5 ml solution ill and incubated as above. Solution III contained a 

detergent that lysed the sphaeroplasts and novozyme was responsible for the degradation 

of cellular proteins. After lysis of the cells, plugs were stored at 4°C in 0.5 M EDTA 

(pH 9.0). Plugs could be used for up to 5 months with 1-2 changes of the storage buffer. 

2.2.3.2 Electrophoresis Conditions 

Tris-Borate-EDTA (TBE) Buffer (5 x) 45 mM Tris base 

45 mM boric acid 

1 mM EDTA 

Agarose plugs were equilibrated in 0.25 x TBE buffer for 2 h before being loaded 

into the wells of a 1 % low endosmosis (LE) agarose gel (Beckman, USA) in 0.25 x TBE. 

The wells were then sealed with 1 % LGT agarose. TAPE was performed with the 

Geneline II DNA Mapper (Beckman, USA). Run conditions were varied in an attempt to 

optimise the resolution of the yeast chromosomes. 
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Programme 1 (Run conditions for S. cerevisiae supplied by Beckman, USA) 

Stage 1 : 12 h; 350 rnA; 1 min 

Stage 2 : 12 h; 370 rnA; 2 min 

Programme 2 

Stage 1 : 5 h; 400 rnA; 45 s 

Stage 2 : 7 h; 350 rnA; 1 min 

Stage 3 : 9 h; 370 rnA; 2 min 

Stage 4 : 9 h; 390 rnA; 3 min 

Programme 3 (Run conditions for Schizosaccharomyces pombe supplied by 

Beckman, USA) 

Stage 1 : 12 h, 80 V; 60 min 

Stage 2 : 24 h; 80 V; 45 min 

Stage 3 : 24 h; 80 V; 30 min 

Programme 4 

Stage 1 : 12 h; 200 V; 200 min 

Stage 2 : 12 h; 80 V; 60 min 

Stage 3 : 24 h; 80 V; 45 min 

Stage 4 : 24 h; 80 V; 30 min 

Programme 5 (Passoth et aI., 1992) 

Stage 1 : 72 h; 200 V; 200 min 
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All runs were carried out at 15°C. At the end of each run, gels were stained for 

45 min in ethidium bromide (2,ug/ml) and destained in distilled water for 2 h. DNA 

bands were visualised using a UV transilluminator (UVP Inc. , USA) and photographed 

using a Minolta camera loaded with Ilford FP4 Plus film and fitted with a UV filter and 

a Vivitar number 25 (red) filter. 

2.2.3.3 Southern Blots 

Chromosomal DNA was transferred from the agarose gels to nylon membranes 

using a vacuum blotting unit (Omeg Scientific, South Africa). 

Transfer solution 

Depurination solution 

0.4 M NaOH 

0.6 M NaCI 

0.25 M HCI 

Two pieces of filter paper (Whatman 4MM) were cut to exactly the size of the 

agarose gel and the nylon membrane (Hybond-N Nylon 0.45 ,um, Amersham, USA) was 

cut 4 - 5mm bigger than the gel. The filter paper and nylon membrane were pre-wet in 

deionised water for 15 - 20 min. After placing the filter paper on the porous support of 

the vacuum blotter, the nylon membrane was centred on the filter paper. The gel was 

carefully placed on the membrane and a pre-cut mask was placed around the gel ensuring 

that at least 2 mm of the membrane was under the mask on all sides which contributed to 

a good vacuum seal. Blotting was carried out at a vacuum of 15 cm Hg. Approximately 
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15 - 25 ml of depurination solution was poured over the gel and left on for 20 - 30 min. 

This solution breaks the chromosomal DNA into fragments thus enhancing the transfer 

process. The excess depurination solution was removed and transfer solution poured onto 

the gel and left on for 60 - 90 min. Both the depurination and transfer solutions were 

regularly topped up to prevent the gel from drying up. At the end of the procedure, the 

vacuum pump was turned off and the gel and filter paper were removed. The position of 

the wells were marked onto their corresponding positions on the nylon membrane which 

was then air-dried. The DNA was cross-linked onto the membrane by exposure to UV 

light for 3 min, the membrane sealed in a plastic bag and stored at 4°C. 

2.2.4 PLASMID DNA PROBES 

Plasmids carrying theXYL1 andXYL2 genes coding for xylose reductase and xylitol 

dehydrogenase, respectively, were obtained from Dr. Peter Kotter of the Institut fiir 

Mikrobiologie der Johann Wolfgang Goethe-Universitat, Frankfurt, Germany. Plasmids, 

pT7T3-X/B and pCT1, are based on the E. coli vector pT7T3-18V (Pharmacia, Sweden). 

Plasmid pTIT3-X/B contains a 1.95 kb XbaIlBamHI fragment from P. stipitis which 

includes the XYL2 gene. Plasmid pCT1 contains the XYL1 gene of P. stipitis in a 2 kb 

BamHI fragment. Both plasmids can be selected by growth in the presence of ampicillin. 

Restriction maps of these plasmids are shown in Fig 2.1. 
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Fig. 2.1. Restriction maps of the plasmids pTIT3-XlB and peT! which harbour the XYL2 and XYL 1 

genes, respectively (Pharmacia). 

2.2.4.1 Transformation 

CaCl2 solution 50 mM CaCl2 

10 mM Tris.HCl (pH 8.0) 

CaCl2-~lycerol solution 50 mM CaCl2 

10 mM Tris.HCl (pH 8.0) 

15% glycerol 

TE (pH 8.0) 10 mM Tris.HCI 

1 mM EDTA 

-
&"'1 . 1316 
5m&1.1321 
Kpnl . 1325 
S.C 1. 1331 
EcQRI . 1337 

Pvull . 1539 
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2.2.4.1.1 Preparation of Competent Cells for 

Transformation 

One ml of an overnight culture of E. coli DH5aF' was added to 29 ml of YT 

medium and incubated with shaking at 37°C until the cell density was 0.375 absorbance 

units at 590 nm. The cells were at an optimal age for transformation at this optical 

density. Therefore the culture was immediately placed on ice to stop further growth. 

Cells were pelleted by centrifugion for 10 min at 10 000 x g at 4°C. The pellet was 

gently resuspended in 10 ml cold CaCl2 solution, centrifuged as above, resuspended in 10 

m1 cold CaCl2 solution incubated on ice for 20 min to become competent and centrifuged 

as above. Exposure to Ca2
+ ions lets the cell take up DNA (become competent) . The 

pellet was finally resuspended in 2.5 m1 cold CaCl2-glycerol solution. 100 III aliquots 

were dispensed into Eppendorf tubes and stored at 4°C for 24 h. Following this 

incubation step which increases the competency of the cells (Ausubel et al., 1989), they 

were stored at -70°C. 

2.2.4.1.2 Transformation of Competent Cells 

One III (1 - 2 ng) of plasmid DNA was added to 100 III of competent cells, gently 

mixed and incubated for 30 min on ice to allow the DNA to bind to the cells. The 

mixture was then placed at 42°C for 2 min. This heat shock treatment permits the entry 

of naked plasmid DNA into the cells. The mixture was immediately placed on ice for 15 

min after heat shock, followed by the addition of 900 III of YT medium and incubation 
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with shaking at 37°C for 1 h to allow expression of the ampicillin resistance genes. 100 

.ul of this mixture was plated onto YT agar plates supplemented with ampicillin (50 .ug/mI) 

and incubated O/N at 37°C. 

2.2.4.1.3 Screening of Transformants 

Numerous transformants were obtained on YT-ampicillin plates. Three colonies 

for each of the plasmids transformed were grown in YT broth containing ampicillin (50 

.ug/mI). Plasmid DNA was isolated using a modified version of the alkaline lysis method 

of Bimboim and Doly (1979) to verify the presence of plasmids. 

Solution A · 

Solution B 

25 mM Tris.HCI (pH 8.0) 

50 mM glucose 

10 mM EDTA 

Just before use add: RNase (100 .ug/mI) 

Lysozyme (5 mg/mI) 

0.2 M NaOH 

1% SDS 

(prepared fresh) 

Solution C 3 M sodium acetate (pH 4.8) 

Phenol equilibrated with 0.1 M Tris.HCI (pH 6.8), final pH 7.6 

Phenol/chloroform (1: 1) 

Chloroform (Chloroform:isoamyl alcohol, 24: 1) 



Ethanol 100%, 70% 

TE (pH 8.0) 
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Selected colonies were grown overnight at 37°C in 5 ml YT broth supplemented 

with ampicillin, with vigorous aeration. A 1.5 ml aliquot of the bacterial culture was 

pelleted in an Eppendorf tube by centrifugation at 15 800 x g for 1 min in a 

microcentrifuge (Microfuge II, Beckman, USA). The pellets were resuspended in 100/11 

solution A and incubated for 5 min at RT. During this incubation step, the cell wall was 

degraded by lysozyme. Protoplasts that formed were lysed by the addition of 200 /11 of 

solution B and incubation for 5 min at RT. The RNA liberated when cell lysis occured 

was degraded by RNase. Denatured chromosomal DNA and proteins were precipitated 

by the addition of 150/11 of cold solution C and incubation on ice for 5 min. Cell debris 

was pelleted by centrifugation for 10 min at 15 800 x g at 4°C. The supernatant 

containing the plasmid DNA was extracted once with an equal volume of 

phenol/chloroform in order to remove residual proteins. Eppendorf tubes were repeatedly 

inverted to ensure maximum extraction, then centrifuged for 3 min as above to separate 

the aqueous and organic phases. The upper aqueous phase was collected carefully, 

without disturbing the protein layer that forms between the organic and aqueous phases. 

The aqueous phase was then extracted with an equal volume of chloroform to remove all 

traces of phenol. Plasmid DNA was precipitated by the addition of 0.1 volume of cold 

solution C and two volumes 100% ethanol and incubation at -70°C for 30 min. Plasmid 

DNA was pelleted by centrifugation at 15 800 x g for 15 min at 4°C. The pellet was 

washed with 70% ethanol, vacuum dried, resuspended in 20/11 TE and stored at -20°C. 



2.2.4.2 
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Isolation of DNA Probes 

The entire XYLI and XYL2 genes were chosen as probes for further work. In order 

to obtain these . probes, plasmid DNA isolated in section 2.2.4.1 was cleaved with 

appropriate restriction endonucleases and electrophoresed on LGT agarose gels. DNA 

bands representing the XYL 1 and XYL2 genes were excised from the gel and purified using 

the Geneclean kit (Bio 101, USA) . The physical maps of the plasmids indicate that 

cleavage of pCTl with Neal and Pstl and pT7T3-X/B with HindIII produces three and two 

fragments, respectively. The 1 160 bp Neal-Pstl fragment contains the XYLI gene and 

the 1 895 bp HindIII fragment contains the XYL2 gene. 

2.2.4.2.1 Restriction and Electrophoresis of Plasmid DNA 

Tris Acetate EDT A (T AE) Buffer (50 x) 

Gel loadin~ buffer (6 x) 

40 mM Tris base 

20 mM glacial acetic acid 

2 mM EDTA 

40% sucrose 

0.25% bromophenol blue 

All restriction endonucleases and their corresponding buffers were obtained from 

Boehringer Mannheim, Germany. A typical restriction reaction contained the following 

components in a total volume of 15 .ul: "'" 500 ng DNA, 1 x restriction buffer and 4-5 U 

restriction endonuclease. Following incubation for 1.5 h at 37°C, the restricted DNA was 
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run on a1 % LGT agarose gel in 1 x T AE electrophoresis buffer at 80 V for 3 h. The 

gel was stained for 15 min in ethidium bromide and viewed on a UV transilluminator. 

Bands corresponding to the 1 160 bp Neal-Pstl fragment of pCTl and the 1 895 bp 

HindIII fragment of pT7T3-X/B were excised from the gel and purified as described 

below. 

2.2.4.2.2 Isolation of DNA Fragments 

DNA fragments in the agarose gel slices were purified using the Genec1ean kit. 

6 M Nal 

NEW Wash 

Glassmilk 

The approximate volumes of the gel slices were determined (1 g <= 1 ml) and <= 

0.4 g gel slices were placed in 1.5 ml Eppendorf tubes. Three volumes of Nal was added 

to each tube (final concentration of Nal <= 4.5 M) and incubated in a water bath at 50°C 

until the agarose dissolved completely. Five)11 of glassmilk was added to the tubes and 

incubated on ice for 10 min. mixing every 1 - 2 min. During this incubation step. DNA 

fragments in the solution bind to the silica beads in the glassmilk. The silica matrix with 

the bound DNA was pelleted by centrifugation in a microcentrifuge for approximately 30 

sat 15 800 x g at 4°C. The supernatant was discarded and the pellet washed three times 

with 500 )11 of ice cold NEW wash to remove contaminants. The pellet was washed by 

repeated pipetting and 5 s centrifugation steps. After removing the supernatant from the 
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last wash, tubes were spun for a few seconds and the last drops of liquid removed with 

a fine tipped pipette to avoid diluting the eluate. DNA was eluted from the glassmilk by 

the addition of 12 .ul TE buffer and incubation at 55°C for 2 - 3 min. The mixture was 

centrifuged for 30 s and the supernatant containing the eluted DNA carefully removed and 

placed in an Eppendorf tube. This elution step removes <= 80% of the bound DNA. A 

second elution step using 8 .ul of TE buffer was carried out. Both eluates were combined 

and stored at -20°C. An aliquot of this DNA was run on a 0.8% agarose gel in order to 

estimate the concentration of the DNA fragments. 

2.2.4.3 Labelling of Probes 

XYL1 and XYL2 genes were labelled using the nonradioactive Dig DNA Labelling 

and Detection Kit (Boehringer Mannheim, Germany). Digoxigenin is a hapten which is 

bound via a spacer arm to uridine nucleotides. It becomes incorporated enzymatically into 

nucleic acid probes by random primed DNA labelling. 

Hexanucleotide mixture (1 0 ~ ) 

dNTP labellin~ mix (10 x ) 

Klenow enzyme (2 U /.un 

200 mM EDTA (pH 8.0) 

4 M LiCI 

1 mM dNTP (N = C, G, T, A) 

0.35 mM Dig-dUTP 
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DNA fragments were denatured in a boiling water bath for 10 min and immediately 

cooled on ice. A typical labelling reaction had the following components in a total volume 

of 20 .ul: 10 - 1 .ug freshly denatured DNA, 2 .ul hexanuc1eotide mixture, 2 .ul dNTP 

labelling mixture and 1 .ul Klenow enzyme. 

These components were added to an Eppendorf tube on ice, mixed well, 

centrifuged briefly and incubated for 20 h at 37°C. The labelling reaction was stopped 

by the addition of 2.u1 EDTA solution. Labelled DNA was precipitated with 2.5 .ul LiCI 

and 75 .ul cold 100% ethanol at -70°C for 30 min. Precipitated DNA was pelleted by 

centrifugation at 15 800 x g for 30 min, washed with 70% ethanol and vacuum dried. 

The labelled DNA was dissolved in 50 .ul TE buffer and stored at -20°C. 

2.2.4.4 Hybridisation 

Pre-hybridisation solution 5 x SSC 

1 % blocking reagent 

0.1 % N-Iauroylsarcosine (Na salt) 

0.02% SDS 

All volumes indicated are for 100 cm2 of membrane. Membranes were pre-

hybridised in sealed plastic bags with 20 ml of pre-hybridisation solution at 45°C for 4 h 

with gentle agitation. The pre-hybridisation solution was replaced with 2.5 ml of pre­

hybridisation solution containing ::::: 30 ng of freshly denatured labelled DNA and incubated 
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at 45°C with gentle agitation O/N. Following hybridisation, membranes were washed 

twice for 5 min at RT with 50 ml of 2 x SSC/0.1% SDS and twice for 15 min at 45°C 

with 0.1 x SSC/0.1 % SDS. Membranes were used immediately for the detection of 

hybrid DNA. 

2.2.4.5 Detection of Hybrid DNA 

After hybridisation to target nucleic acids, bound probes were detected by an 

enzyme-linked immunoassay using high affinity antibody Fab fragments coupled to alkaline 

phosphatase and visualisation using either the colour substrate nitroblue tetrazolium 

chloride (NBT) and 5-bromo-4-chloro-3-indoyl-phosphate (X-phosphate) or the 

chemiluminescent substrate Lumigen PPD followed by exposure to X-ray film. 

Buffer 1 

Buffer 2 

Buffer 3 (PH 9.5) 

Buffer 4 

100 mM maleic acid 

150 mM NaCl 

pH 7.5 

1 % blocking reagent in buffer 1 

100 mM Tris.HCI 

100 mM NaCI 

50 mM MgCl2 

TE (pH 8.0) 

Anti-digoxigenin alkaline phosphatase conjugate 

Colour solution 35,«1 NBT 



Lumicen solution 
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45 .ul X-phosphate 

10 ml buffer 3 

Lumigen PPD (10 mg/ml) 

10 ml buffer 3 

All volumes indicated are for 100 cm2 of membrane and all reactions occurred at 

RT. Membranes were washed briefly (1 min) in buffer 1 and incubated for 30 min with 

100 m1 of buffer 2. The anti-digoxigenin alkaline phosphatase conjugate was diluted to 

150 mUlml in buffer 2. Membranes were incubated with 20 ml of this diluted antibody 

conjugate for 30 min with gentle agitation. Unbound antibody conjugate was removed by 

washing twice for 15 min with 100 ml of buffer 1. Membranes were equilibrated for 2 

min in 20 ml buffer 3 and sealed in plastic bags with 10 ml of colour solution. The 

colour reaction was allowed to proceed OIN in the dark. Membranes were then washed 

for 5 min with 50 ml buffer 4 and stored in the same buffer solution. The procedure for 

chemiluminescent detection is the same up to the point before the addition of the colour 

solution. Membranes were incubated for 5 min in the substrate solution and the excess 

substrate solution blotted off on 3MM Whatman paper. Membranes were sealed in plastic 

bags, incubated at 37°C for 30 min to activate the alkaline phosphatase and exposed for 

30 min at RT to X-ray film. 

2.2.5 RESTRICTION FRAGMENT LENGTH POL YMORPHISMS 

In order to study restriction fragment length polymorphisms (RFLPs), chromosomal 
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DNA embedded in agarose plugs were cleaved with various restriction endonucleases and 

analysed by agarose gel electrophoresis. 

26 mg/ml bovine serum albumin (BSA) 

1 M dithiothreitol (DTT) 

Agarose plugs were prepared as previously described in section 2.2.3.1. Prior to 

electrophoresis, plugs were equilibrated, first in 2 x 500,u1 aliquots of sterile deionised 

water for 24 h, then for 5 h in 155 ,ul of 1 x restriction buffer. Chromosomal DNA in 

the plugs was cleaved for 20 h using the following restriction endonucleases: DraI, EcoRI, 

HindIII and Xbal. A typical restriction reaction contained the following components in 

a total volume of 155 ,ul: 1 x restriction buffer, 0.13 mg/ml BSA, 1.3 mM DTT and 15-

18 U of enzyme. 

DNA in the plugs was subjected to electrophoresis on 0.8% agarose gels in 0.5 x 

TBE buffer at 35 V for 20 h. The gel was stained in ethidium bromide, viewed on a UV 

transilluminator, vacuum blotted as in section 2.2.3.3 and hybridised as in section 2.2.4.4 

to the DIG-labelled probes described in section 2.2.4.3. 

2.2.6 SDS-POLYCARYLAMIDE GEL ELECTROPHORESIS 

The total soluble cell proteins of the fusants were electrophoresed on SDS-
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polyacrylamide gels and compared to the protein profiles of the parental strains. SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) was carried out using the Havana 

Screening Electrophoresis System (Desaga) in a discontinuous buffer system according to 

the procedure of Laemmli (1970). 

2.2.6.1 Preparation of Polyacrylamide Gels 

Acrylamide/bisacrylamide 30% 

Separation buffer (5 x ) 

Stacking buffer (10 x) 

Electrode buffer (10 x ) 

30 g acrylamide 

0.8 g N,N ' -methylenebisacrylamide 

H20 to 100 ml 

1.875 M Tris.Hel 

0.5% SDS 

pH 8.8 

1.25 M Tris.Hel 

1% SDS 

pH 6.8 

0.25 M Tris.Hel 

1.92 M glycine 

1% SDS 

pH 8.3 

1 % N,N,N' ,N ' -tetramethylenediamine (TEMED) 

8% (NHJ~208 
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Stainin& solution 0.25% Coomassie brilliant blue 

4.5 volumes methanol 

4.5 volumes H20 

1 volume glacial acetic acid 

A separation gel was prepared by mixing 10% acrylamide/bisacrylamide, 1 x 

separation buffer and 0.15% TEMED. After degassing the mixture for 30 s, (NH.J2S20 S 

.was added to a final concentration of 3%, mixed rapidly and poured into the gel mould 

with the aid of a glass syringe. Enough space was left at the top of the mould for a 1 cm 

stacking gel. To prevent O2 from diffusing into the gel and inhibiting polymerisation, a 

20% ethanol solution was used to overlay the gel which was left at RT for 1 h. The 

ethanol was poured off once polymerisation was complete and the gel rinsed thoroughly 

with deionised water to remove unpolymerised acrylamide. Residual drops of water were 

removed by blotting with paper towel. The stacking gel comprised 4% 

acrylamide/bisacrylamide, 1 x stacking buffer, 0.05% TEMED and 0.12% (NH,J2S20S 

and was prepared as the separation gel. The mixture was poured directly onto the 

separation gel, a comb was inserted into the stacking gel which was left to polymerise at 

RT for 1 h. The comb was removed after polymerisation was complete, the wells rinsed 

thoroughly with deionised water to remove unpolymerised acrylamide and the gel was 

mounted in the electrophoresis chamber. 



2.2.6.2 

SDS gel loading buffer 
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Preparation of Soluble Cell Proteins 

50 mM Tris.HCI, pH 6.8 

2%SDS 

0.1 % bromophenol blue 

100 mM DTT added just before use 

Cells were inoculated into 5 ml of CA medium and grown OIN at 30°C on an 

orbital shaker at 155 rpm. A 1.5 ml aliquot o( the DIN culture was centrifuged at 15 800 

. x g for 2 min. The pellet was washed once in distilled water and frozen in liquid 

nitrogen. The frozen pellets were ground using a mortar and pestle, with three cycles of 

freezing and grinding per pellet. The resulting cell paste was resuspended in 500 ,ul of 

1 x SDS gel loading buffer, boiled for 5 min in a water bath and centrifuged briefly at 

15 800 x g to pellet cell debris. The supernatant was decanted and used to load the gels 

with a Hamilton microsyringe. 

Electrophoresis was carried out at 75 mA O/N. Once the dye front reached the 

end of the gel, electrophoresis was stopped, gels removed from the mould and 

simultaneously fixed and stained for at least 4 h in staining solution. Gels were destained 

in the staining solution lacking Coomassie blue dye. This solution was replaced several 

times to speed up the destaining process. Gels were stored in 20% glycerol until 

photographed. 
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2.3 RFSULTS 

2.3.1 AGAROSE PLUG PREPARATION 

Agarose plugs contained chromosomal DNA of high molecular weight. Very little 

or no shearing occurred during the preparation (Lane 1 in Figs. 2.8 to 2.11) . 

2.3.2 ELECTROPHORETIC KARYOTYPING 

The electrophoretic banding patterns of chromosomal DNA were used to 

characterise parental and fusant strains. The three parental strains showed unique profiles. 

All fusant strains displayed an identical banding pattern to that of the P. stipitis parent. 

It was found that run conditions were extremely important to obtain optimal 

resolution of the chromosomes (Figs. 2.2 to 2.7). The run conditions of programme 1 

produced three bands for the P. stipitis parent and the fusant strains and two for both c. 

shehatae parental strains (Fig. 2.2). It is generally accepted that under optimal 

electrophoretic conditions bands represent individual chromosomes. Chromosomes are 

usually numbered from the lightest band upwards. The brightness of the band representing 

chromosome III indicated that it contained at least two co-migrating chromosomes that 

appeared unresolved under these run conditions. Programme 2, having a slightly longer 

run time and consisting of two more stages, effectively resolved this band into two 

chromosomes (Fig. 2.3). The bands representing the heavier chromosomes of both C. 
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shehatae parents in Fig 2.2 were also resolved to produce two and three bands for CsY 

492 met his and CsY 117 All cys met, respectively. The middle band for CsY 492 met 

his appeared to contain more than one chromosome. This was verified by subsequent 

electrophoretic separations. Chromosome sizes in P. stipitis were estimated, using the 

SW5000 Gel Documentation System (U.V.P. Inc., U.K.) and the chromosomes of S. 

cerevisiae as size markers, to be approximately 0.93 Mb, 1.00 Mb, 1.71 Mb and 1.86 

Mb; in C. shehatae CsY 117 All cys met 1.34 Mb, 1.52 Mb, 1.69 Mb and 1.85 Mb; and 

in C. shehatae 492 met his 1.38 Mb, 1.68 Mb, 1.72 Mb and 1.86 Mb. 

1 2 3 4 5 6 7 8 9 10 11 121314 

2.1Mb 

1.1 

to 

Fig. 2.2. TAPE gel showing the separation of whole chromosomes of P. stipitis. C. shehatae and 

their fusants using the run conditions of Progranune 1. Lane 1: P. stipitis 633 leu rys ala, lane 2: C. 

shehatae 117 All cys met, lane 3: C. shehatae 492 met his. lanes 4-8: pel-peS. lanes 9-13: peAl-peAS 

and lane 14: S. cerevisiae marker. 
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Fig. 2.3. TAPE gel of the chromosomes of P. stipitis, C. shehatae and their fusants using the run 

conditions of Programme 2. Lane 1: C. shehatae 492 met his, lane 2: C. shehatae 117 All eys met, lane 

3: P. stipitis 633 leu lys ala, lanes 4-8: pel-peS, lanes 9-13: peAl-peAS, lane 14: P. stipitis 633 leu lys 

ala, lane IS: C. albieans marker (overloaded) and lane 16: S. eerevisiae marker. 

The run conditions for the optimal separation of C. albicans and S. pombe 

standards were also used in an attempt to improve the resolution of the heavier 

chromosomes. The programme for the former organism did not provide a profile 

containing any additional bands compared to that previously obtained (Fig. 2.3) while the 

programme for the latter showed an int(~l."esting pattern of separation (Fig. 2.4). This 

programme is designed for optimal separation of chromosomes in the 3 - 6 Mb range. 

Therefore, the heavier chromosomes of P. stipitis and the fusant strains were resolved. 

However, the lighter chromosomes of the yeast strains in this study were not resolved. 
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123456789 10 11 12 13 14 

Fig. 2.4. TAFE gel showing the separation of whole chromosomes of P. stipitis, C. shehatae and 

their fusants using the run conditions of Programme 3. Lane 1: S. cerevisiae marker, lane 2: P. stipitis 633 

leu lys ala; lane 3: C. shehatae 117 All cys met, lane 4: C. shehatae 492 met his, lanes S-9: pel-peS, 

lanes 10-14: peAl-peAS. 

It is interesting to note that an apparent CLP exists between PCA3 and PsY (Fig. 2.4, 

lanes 12 and 2, respectively) compared to the rest of the fusants. The intensity and 

thickness of the third and fourth bands for P. stipitis and the fusant strains suggested that 

they comprised of more than one chromosome (lanes 2, and 5-13, Fig. 2.4) . The S. 

cerevisiae marker appeared as one very thick band as conditions were not optimal for the 

separation of these chromosomes. 

A combination of the electrophoretic parameters for programmes 3 and 5 was used 

to create programme 4. This programme effectively resolved the genome of P. stipitis and 

the fusant strains into five chromosomes (Fig. 2.5). However, separation of the heavier 
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Fig. 2.5 TAPE gel of the chromosomes of P. stipitis , C. shehatae and their fusants using the run conditions of 

Programme 4 (a) and hybridisatioD using the XYL 1 probe (b) . Lane 1: P. stipitis 633 leu lys ala, lane 2: C. shehatae 117 All 

cys met, lane 3: C. shehatae 492 met his, lanes 4-8: pel-peS, lanes 9-13: peAl-peAS and lane 14: S. cerevisiae marker . . 
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-2.1Mb 

1.1 
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Fig. 2.6. TAPE gel showing the separation of whole chromosomes of P. stipitis, C. shehatae and 

their fusants using the run conditions of Programme 4. Lane 1: C. shehatae 492 met his , lane 2: C. 

shehatae 117 Ail cys met, lane 3: P. stipitis 633 leu {ys ala , lanes 4-8: pel-peS, lanes 9-13: peAl-peAS 

and lane 14: S. cerevisiae marker. 

chromosomes was unsatisfactory, i.e., the bands were not distinct. The intensity of the 

band that migrated the furthest suggested that it contained at least two chromosomes that 

were not resolved. A similar programme to the above but with a longer run time (96 h) 

allowed the resolution of this band into two chromosomes (Fig. 2.6). Again, the heavier 

chromosomes were not distinct and in some cases the DNA appeared to be diffuse and the 

background very high. 
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Passoth et al. (1992) reported the presence of five to six chromosomes for P. 

stipitis using T AFE. When their run conditions were used, the genomes of P. stipitis and 

the fusant strains were resolved into six distinct chromosomes, while that of CsY 117 All 

a b 

1 2 3 4 5 6 7 8 9 10 11 121314151 2 3 4 5 6 7 8 9 1011 12 13 14 15 

-2.1Mb 

•• 
-1.5 

.. 

-1.1 

-1.0 

Fig. 2.7. TAPE gel of the chromosomes of P. stipitis, C. shehatae and their fusants using the run 

conditions of Programme 5 (a) and hybridisation using the XYL2 probe (b). Lane 1: P. stipitis 633 leu lys 

ala, lane 2: C. shehatae 117 All cys met, lane 3: C. shehatae 492 met his, lanes 4-8: pel-peS, lanes 9-13: 

peAl-peAS, lane 14: C. albicans marker and lane 15: S. cerevisiae marker. 
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cys met and CsY 492 met his were resolved into five distinct chromosomes (Fig. 2.7). 

The chromosome sizes were estimated to be approximately 2.15 Mb, 1.67 Mb, 1.21 Mb, 

1.15 Mb and 1.11 Mb for C. shehatae 117 All cys met; 1.87 Mb, 1.81 Mb, 1.20 Mb, 

1.16 Mb and 1.09 Mb for C. shehatae 492 met his and 1. 90 Mb, 1.58 Mb, 1.24 Mb, 1.20 

Mb, 0.93 Mb and 0.84 Mb for P. stipitis and the fusant strains. 

Colour detection of the TAPE gel, probed with the XYLI gene, indicated that this 

gene was located on chromosome II (Fig. 2.5) for the P. stipitis parent and the fusants . 

At this hybridisation and washing temperature of 68°C, a very faint signal was obtained 

for chromosome I for C. shehatae 492 met his and no signal was obtained for the C. 

shehatae 117 All cys met parent. Two faint signals evident in lanes 6 and 8 were most 

probably due to binding of the probe to fragments of sheared chromosomal DNA carrying 

the XYLI gene. A less stringent hybridisation and washing temperature of 45°C was 

employed for the XYL2 gene probe in an attempt to obtain signals for the C. shehatae 

strains, since they did not have the same degree of homology with the XYLI probe as P. 

stipitis and the fusants. A faint signal was obtained for the P. stipitis parent only (Fig. 

2.7). Signals were not obtained for either the fusants or the C. shehatae parental strains. 

These hybridisation conditions were repeated using the XYL2 gene probe against a blot of 

the gel in Fig. 2.6 and the same results were obtained, i.e., a faint signal for the P. stipitis 

parent only. 
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2.3.3 RFLP ANALYSIS OF CHROMOSOMAL DNA 

intact chromosomal DNA embedded in agarose plugs was cleaved with various 

restriction endonucleases and the resulting fragments separated on agarose gels. All of the 

enzymes used cleaved the chromosomal DNA to produce a smear of fragments smaller 

than 20 kb. However, interposed in this streak were a few high intensity bands. The 

general pattern that emerged was that all fusants and the P. stipitis parent possessed 

identical profiles. Both C. shehatae parental strains displayed almost identical profiles but 

differed from the fusants and P. stipitis. 

a b 

23456789 10 11 12 13141516 

-7.0 kb 

-4.4 

-3.0 

-2.3 

Fig. 2.8. RFLP profiles of EcoRI-digested chromosomal DNA of parental and fusant strains (a) and 

hybridisation with the XYLI probe (b). Lane 1: uncleaved DNA, lane 2: P. stipitis 633 leu lys ala, lane 3: 

C. shehatae 492 met his, lanes 4-8: pel-peS, lanes 9 and 16: Molecular Weight Marker II (Boehringer 

Mannheim) , lane 10: C. shehatae 117 All cys met and lanes 11-1S: peAl-peAS. 
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Cleavage with EcoRI produced seven discrete, high intensity bands for P. stipitis 

and the fusant strains (Fig. 2.8), as well as five bands for C. shehatae 117 All cys met 

and C. shehatae 492 met his. As expected, a smear of fragments ranging in size from 20 

kb to a few hundred base pairs was also evident. Restriction with Xbal also produced 

seven high intensity bands for P. stipitis and the fusants, but only four for both the 

Candida strains (Fig. 2.9). HindIII cleavage revealed a slight degree of polymorphism 

between the 

a 

2345678 91011121314 15 1 2345678 
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Fig. 2.9. RFLP profiles of XbaI-digested chromosomal DNA of parental and fusant strains (a) and 

hybrldisationusing the XYLI probe (b). Lane 1: uncleaved DNA, lane 2: P. stipitis 633 leu lys ala, lane 

3: C. shehatae 492 met his, lanes 4-8: PCl-PCS, lane 9: C. shehatae 117 Ail cys met, lanes 10-14: PCAl­

PCAs and lane 15: Molecular Weight Marker IT (Boehringer Mannheim) . 
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Candida parental strains (Fig. 2.10). With this restriction enzyme, C. shehatae 492 met 

his had a DNA profile that was more similar to P. stipitis and the fusants than to C. 

shehatae 117 N1 cys met. Again, seven high intensity bands were evident for P. stipitis 

and the fusants but only three were observed for the Candida parents. DraI cleavage of 

chromosomal DNA resulted in larger restriction fragments compared to fragments 

produced by the other three restriction endonucleases. Dra1 is considered to be a "rare-

cutting" enzyme and would thus produce fewer and therefore larger fragments. 

12345678 91011121314 

Fig. 2.10. RFLP profiles of HindIII-digested chromosomal DNA of parental and fusant strains. 

Lane 1: uncleaved DNA, lane 2: P. stipitis 633 leu /ys ala, lane 3: C. shehatae 492 met his, lanes 4-8: PCl­

PCS. lane 9: C. shehatae 117 All cys met and lanes 10-14: PCAI-PCAS. 
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Fig. 2.11. RFLP profiles of DraI-digested chromosomal DNA of parental and fusant strains (a) and 

hybridisation using the XYL1 (b) and XYL2 probes (c). Lane 1: uncleaved DNA. lane 2: P. stipitis 633 leu lys 

ala. lane 3: C. shehatae 492 met his. lanes 4-8: PC1-peS. lane 9: C. shehatae 117 All cys met. lanes 10-14: 

~CAI-PCAS and lane 15: Molecular Weight Marker IV (Boehringer Mannheirn). 



71 

The largest of the seven bright bands for P. stipitis and the fusants was approximately 

4 kb (Fig. 2.11), which was much smaller than the largest band obtained with the other 

enzymes. 

Hybridisation of cleaved chromosomal DNA with the XYL1gene probe resulted in 

an identi~al signal for the fusants and P. stipitis. Only one bright signal was evident for 

these strains for all of the DNA profiles generated. For the RFLP profile generated by 

EcoRI, a signal occurred at approximately 3 kb for P. stipitis and the fusants. Both the 

Candida parental strains produced several fainter signals at 7.0, 5.8 and 5.7 kb for C. 

shehatae 492 met his and 7, 6.6,5.8 and 5.7 for C. shehatae 117 All cys met (Fig. 2.8) . 

None of the signals corresponded to a high intensity band on the gel. The XhaI-cleaved 

chromosomal DNA profile produced a single signal for all strains. The signal obtained 

for P. stipitis and the fusants was very bright compared to that of the Candida strains 

indicating that the probe was more specific for the XYL1 gene of P. stipitis than that of 

C. shehatae. These signals corresponded to XhaI fragments of > 9.4 kb for C. shehatae 

117 All cys met and C. shehatae 492 met his and approximately 4 kb for the fusants and 

P. stipitis, respectively (Fig. 2.9) . Chemiluminescent signals obtained using the XYL1 

probe for DraI-cleaved (Fig. 2.11) and HindlII-cleaved (not shown) chromosomal DNA 

were very faint, even for P. stipitis and the fusants . This low level of signal intensity may 

be due to several successive stripping and re-probing steps performed when hybridisation 

conditions were being established. For both these blots, as well, only one signal was 

obtained for P. stipitis and the fusants as well as C. shehatae 492 met his. 

The XYL2 gene only hybridised to P. stipitis DNA (Fig. 2.11). Signals were not 
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obtained, either for the fusants or the C. shehatae strains. 

2.3.4 POLYACRYLAMIDE GEL ELECTROPHORESIS 

The electrophoretic profiles of the total soluble cell proteins of the fusant and 

parental strains produced a similar trend to that observed for th~ profiles generated by 

TAFE and RFLPs of chromosomal DNA, i.e. , the fusants and the P. stipitis strain 

displayed identical profiles, while the C. shehatae strains had similar profiles. P. stipitis 
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and the fusants differed from both C. shehatae strains at several points on the gel (Fig. 

2.12). 

a 

2 3 4 5 6 7 8 

b 

2 3 4 5 6 7 8 

232kDa 
140 

Fig. 2.12. SDS-PAGE profiles of total soluble cell proteins of P. stipitis , C. shehatae and their 

fusants. (a) Lane 1: High Molecular Weight Protein Standard (Pharmacia) , lane 2: P. stipitis 633 leu lys 

ala, lane 3: C. shehatae 492 met his, lanes 4-8: PCI-PCS; (b) Lane 1: P. stipitis 633 leu lys ala, lane 2: 

C. shehatae 117 All cys met, lanes 3-7: PCAI-PCA2 and lane 8: High Molecular Weight Protein Standard 

(Pharmacia) . 
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A large number of low molecular weight proteins with small size differences were 

evident at the bottom of the gel (dark, diffuse region), whereas fewer, discrete and 

relatively less abundant high molecular weight proteins were noticed at the top of the gel. 

Most of the protein bands were common to all strains. These bands were probably due 

to proteins common to yeast strains, whereas the bright band of approximately 70 Da was 

common to both C. shehatae strains and therefore appeared to be specific to these 

organisms. 

2.4 DISCUSSION 

Since the introduction of electrophoretic techniques for separating intact 

chromosomal molecules of lower eucaryotes by Schwartz and Cantor (1984), several 

refinements of this technique have enabled the electrophoretic karyotyping of a large 

number of fungi, trypanosomes, Plasmodium and Giarata. Based on the sizes of the S. 

cerevisiae chromosomes, the molecular weights of the chromosomes of both parental and 

fusant strains were established. P. stipitis possessed six chromosomes (Fig. 2.7) which 

corresponded to those reported by Passoth et al. (1992). The number and sizes of the 

chromosomes of the fusants was identical to those of P. stipitis. Analysis of T AFE gels 

allowed not only the differentiation of the P. stipitis and Candida parental strains, but also 

effectively resolved the Candida chromosomes to show differences between these two 

strains. Passoth et al. (1992) reported that a remarkable degree of polymorphism existed 

among the five strains of C. shehatae studied with regard to their electrophoretic 

karyotype. They reported the presence of five to six chromosomes for C. shehatae strains 
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ranging in size from 1.25 to 3.5 Mb. In this study, both Candida strains possessed five 

chromosomes whose sizes were estimated to be 2.15 Mb, 1.67 Mb, 1.21 Mb, 1.15 Mb 

and 1.11 Mb for C. shehatae 117 All cys met and 1.87 Mb, 1.81 Mb, 1.20 Mb, 1.16 Mb 

and 1.09 Mbfor C. shehatae 492 met his. For the larger chromosomes, a longer run time 

coupled with a lower voltage was effective for resolution of these molecules. 

Other workers (Miller et al., 1989; Viljoen et al., 1988) reported the separation 

of the P. stipitis genome into only three chromosomes, using shorter run times and higher 

voltages. During the course of this work, we have reported the presence of four 

chromosomes for P. stipitis using short run times and higher voltages (Selebano et al. , 

1993) . The increased resolution of the genome of P. stipitis into six chromosomes with 

the lengthening of run time and the decrease of voltage clearly demonstrated that these run 

conditions are required for the optimal resolution of large chromosomes. D'Souza et al. 

(1993) also attributed the superior resolution of large chromosomes with small size 

differences between them, to the use of longer run times but also suggested ramped pulse 

intervals instead of discrete switching times. 

Several reporters used electrophoretic karyotyping successfully to analyse genetic 

hybrids (van der Westhuizen and Pretorius, 1992) and fusion products (Hoffman et al., 

1987). Provided that the parental strains involved in either protoplast fusion or single 

spore matings possess different electrophoretic karyotypes, it should be possible to 

characterise fusants/hybrids regarding the origin of their chromosomes as well as changes 

in chromosome lengths as compared to those of the parental strains. In this study the 

parental strains involved in the fusion possessed different electrophoretic karyotypes. 
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However~ the fusants appeared to have inherited the chromosomes of P. stipitis. Nuclear 

DNA-DNA homology analysis of these fusants showed that they possessed 74% to 86% 

homology with the P. stipitis parent (Selebano et aI., 1993) and are therefore 

predominantly comprised of Pichia DNA. That the fusants should possess most of the 

chromosomes of the P. stipitis parent was therefore expected. However, TAFE revealed 

that the fusantsinherited their chromosomes entirely from the P. stipitis parent. In the 

fusion between Candida tropicalis and Saccharomyces fibuligera, Provost et al. (1978-

cited by Gupthar and Garnett, 1987) suggested that some genes of one parent can become 

associated with the genome of the other. It would therefore appear that in this study, 

fusion led to the integration of Candida genes into the chromosomes of P. stipitis . These 

fusants are assumed to be the result of recombinational events and not parental dissociates 

since mitotic and meiotic segregation experiments of the prototrophic fusants led to the 

isolation of recombinant phenotypes (Gupthar and Garnett, 1987) . The integration of a 

few genes, which would be in the order of <= 1 to 10 kb, is unlikely to drastically alter the 

migration of large chromosomes. Hence, in the case of partial hybrids, electrophoretic 

karyotyping is not sufficient to differentiate between fusant and parental strains. 

It was therefore decided to employ RFLP analysis of the entire genomic DNA to 

visualise differences due to gene insertion in the P. stipitis-like fusants . Chromosomal 

DNA embedded in agarose plugs was used in the RFLP analysis as it was considered more 

accurate to use intact DNA rather than genomic DNA that would have undergone some 

degree of shearing during the isolation procedure. Because of its large size, yeast 

chromosomal DNA possesses numerous sites for most of the restriction endonucleases, 

even those termed "rare-cutters". When chromosomal DNA is cleaved by restriction 
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endonucleases, a whole range of different sized fragments are generated, producing a 

smear on an agarose gel. In this study, all four restriction endonucleases produced a more 

or less uniform smear, except DraI, which produced a higher proportion of large 

fragments than smaller ones. This could have been the result of incomplete cleavage or 

that this enzyme did not have as many recognition sites on the chromosomal DNA as the 

other three restriction endonucleases employed. The latter conclusion is more likely since 

DraI is considered to be a "rare-cutter" . It was not possible, however, to distinguish 

between the fusants and the P. stipitis parental strain using RFLP analysis. The 

interpretation of electrophoretic banding patterns of chromosomal DNA restriction 

fragments is therefore complicated because discrete fragments are generally not apparent 

unless they are derived from repeated sequences (Meaden, 1990) . 

All restriction endonucleases employed, successfully cleaved the chromosomal 

DNA to produce a uniform smear with a few high intensity bands. These high intensity 

bands were due to fragments of the same size generated by the cleavage of repeated 

sequences, most likely to be ribosomal or mtDNA (Bostock et at., 1993). Therefore, it 

was not expected that the probes should hybridise to these high intensity bands since they 

represent repeated ribosomal sequences previously confirmed by hybridisation using 

ribosomal RNA gene probes. Differentiation between the fusants and the P. stipitis strain 

was not possible based on the RFLP profiles. Thus these results confirm the conclusion 

arrived at by Meaden (1990) that direct analysis of DNA restriction fragments was limited 

in the information which it could provide. RFLP analysis did, however, permit the 

differentiation between the genera Candida and Pichia. Morace et al. (1992) performed 

RFLP analysis on several Pichia isolates and showed that in most cases the profiles were 
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species-specific. Van der Westhuizen and Pretorius (1992) succeeded in fingerprinting 

wine strains as well as differentiating hybrid and parental S. cerevisiae strains using 

RFLPs of genomic DNA. 

Although Meaden (1990) concluded that any attempt to fingerprint yeast strains by 

DNA probing was best approached by using a variety of probes and restriction 

endonucleases until a combination that suited the investigator's needs was found, only two 

probes were used in this study. They were chosen on the basis of the amount of 

information such an exercise would yield with regard to gene copy number of the initial 

enzymes in the xylose metabolic pathway. These fusants were constructed in the hope of 

obtaining superior D-xylose-fermenters. The first two enzymes in the D-xylose metabolic 

pathway were thus chosen as probes. It was anticipated that probing with these genes 

would shed some light as to the ploidy of these fusants with regard to these genes. 

The hybridisation experiments demonstrated that the XYLI gene in the fusants was 

identical to that of the P. stipitis parent. Only this gene was present, with no apparent 

contribution from the Candida parental strains. The XYL1 gene probe not only hybridised 

to the same chromosome (Fig. 2.5), but a signal of approximately the same intensity and 

corresponding to a fragment of an identical size was apparent for all the fusants and the 

P. stipitis parent. For all the restriction profiles, the signal appeared at a different 

location for the Candida parents. However, the restriction profile generated by EcoRI 

produced three signals for both the Candida strains. This was probably due to the 

presence of EcoRI sites within the XYL1 gene and therefore three fragments were 

generated giving rise to three positive signals. It is also possible that the signal 
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corresponding to the heaviest fragment was due to incomplete cleavage of the DNA. 

The XYL2 probe hybridised to P. stipitis DNA only. Both probes were derived 

from a strain of P. stipitis (Kotter et al., 1990) and therefore hybridised to the P. stipitis 

DNA even under very stringent conditions. The XYL1 gene of C. shehatae only 

hybridised to the probe under low stringency conditions. The XYL2 gene probe produced 

no signal with either the C. shehatae or fusant DNA. The XYL2 gene of C. shehatae 

therefore has very little homology with the P. stipitis XYL2 gene. If the absence of a 

XYL2 signal was universal, then one could conclude that the sequence of the probe gene 

had very little homology with that of the strains under investigation. However, since a 

positive signal was obtained for P. stipitis only, it could be construed that the fusants 

possessed the XYL2 gene originating from the C. shehatae parental strains. This cannot 

be accepted as proof that this gene originated from the C. shehatae parent, since very 

weak signals were obtained for P. stipitis . The P. stipitis stain should have produced a 

stronger signal since the probe was obtained from a P. stipitis strain. 

Protein profiles generated by SDS-PAGE were not effective for differentiating the 

fusants from the P. stipitis parental strain, although they did prove useful in distinguishing 

between P. stipitis and C. shehatae. Van der Westhuizen and Pretorius (1992) 

successfully used SDS-PAGE to differentiate between hybrid and parental strains in a 

breeding programme for wine strains. This technique has proved to be effective in 

characterising true hybrid strains that possess a combination of the unique properties of 

either parental strain. Since both parental strains of the fusants in this study displayed 

very few differences, characterisation of the fusants was difficult using protein 
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electrophoretic profiles. Van Vuuren and van der Meer (1987) used electrophoretic 

profiles of total soluble cell proteins to fingerprint 29 S. cerevisiae strains and found this 

technique to be useful to group and identify closely related yeast 'strains. 

The· recent development of the random amplified polymorphic DNA (RAPD) 

technique has allowed rapid fingerprinting of bacterial, plant, animal and fungal species 

(Welsh and McClelland, 1990; Williams et aI., 1990). Williams et al. (1990) proposed 

that hybrid cell lines carrying deletions or additions of large chromosomal segments could 

be screened relative to appropriate controls to identify the region of the genome carrying . 

the deletions or additions. Similarly, this technique could be applied to identify DNA 

sequences in the fusants that originate from the C. shehatae parent. Bostock et al. (1993) 

performed a comparative study of fingerprinting techniques using RAPDs, PFGE and 

RFLPs to obtain a molecular typing system for C. albicans and concluded that RAPD was 

quick, reproducible, economical and provided a degree of discrimination approaching 

PFGE. This technique therefore would seem the technique of choice to characterise 

fusant/hybrid strains. 
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CHAPTER THREE 

CYTOPLASMIC INHERITANCE OF THE FUSANTS OF 

Pichia stipitis AND Candida shehatae 

3.1 INTRODUCTION 

mtDNA, because of its relatively small size can be studied in its entirety and is 

therefore an appealing molecule for evolutionary study. The mitochondrial genome of S. 

cerevisiae has been studied in great detail and the entire genome sequenced (Taylor, 

1986). 

Fungal mtDNAs are variable in size, ranging from 18.9 kb in Torulopsis glabrata 

(Clark-Walker and Sriprakash, 1981) to 176 kb in Agaricus bitorquis (Hinze etal., 1985) 

whereas animal mitochondrial genomes are consistently small (16-19 kb). Despite their 

size differences both animal and fungal mtDNAs carry nearly the same genes . However 

the size difference between animal and fungal mtDNAs and the variability among fungal 

mtDNAs is due to deletions and insertions (Taylor, 1986) . 

Over 95% of mitochondrial proteins are encoded by nuclear genes. More than 200 

complementation groups corresponding to as many nuclear genes necessary for 

mitochondrial function or biogenesis have been described (Bolotin-Fukuhara and Grivell, 

1992). mtDNA codes for enzymes or their subunits involved in electron transport and 
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phosphorylation to produce ATP (cytochrome C oxidase, apocytochrome b, oligomycin-

sensitive ATPase), RNAs and proteins required for protein synthesis (var-1 ribosomal 

protein, S-5 ribosomal protein, S and L- rRNA and at least 25 tRNA's) as well as a 

sizeable number of unidentified open reading frames (Taylor, 1986). 

Fungal mitochondrial genomes are usually circular. Linear exceptions include the 

slime mould Physarum polycephalum (Kawano et aI., 1982 - cited by Taylor, 1986) and 

Hansenula mrakii (Fukuhara, 1981 - cited by Taylor, 1986) . Recently Fukuhara et al. 

(1993) reported on the frequency, occurrence and general features of linear mtDNAs of 

yeasts, particularly in the genera Pichia and Williopsis. They found that the frequency of 

linear mtDNA was higher than that originally reported. Of 58 species studied they 

reported 13 that possess linear mtDNA. They used the technique of PFGE for preliminary 

identification of linear/circular mtDNA, later confirmed by restriction site mapping and 

electron microscopy. They found 16 presumed linear mtDNAs using PFGE of which 13 

were later confirmed to be linear after restriction site mapping. 

In animals, mtDNA is inherited maternally without recombination. In fungi 

uniparental mtDNA inheritance from the maternal parent has been demonstrated (Mitchell 

and Mitchell, 1952). This was later confirmed by other workers, notably Manella et al. 

(1979) who used mtDNA marked with different length mutations. In the interspecific 

cross between Allomyces macrogynus and A. arbusculus, Borkhardt and Olson (1983) used 

RFLPs to demonstrate that mtDNA is inherited paternally. Uniparental mitochondrial 

inheritance is however not the rule in fungi as it is in animals. The mitochondrial genome 

in S. cerevisiae has long been known to undergo recombination (Borst and Grivell, 1978 _ 
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cited by Taylor, 1986). Recombination of mtDNAs in forced heteroplasmons of two 

varieties of Aspergillus nidulans was demonstrated by Earl et al. (1981) using RFLP 

analysis. Similar results were reported by Baptista-Ferreira et al. (1983) for Coprinus 

cinereus where hyphal fusion precedes part of the mating. They also report that 

recombination is not random; certain features unique to each parental molecule (variable 

insertions in genes and regions flanking the genes) are nearly always present in the 

recombinant molecules. Finally, in 1985 (Silliker, 1985 - cited by Taylor, 1986) 

demonstrated biparental mtDNA inheritance in the plasmodial slime mould, Didymium 

iridis . 

The presence of mitochondrial plasmid DNAs have been reported by various 

researchers: In 1991, Meyer reported the presence of mitochondrial plasmids ranging in 

size from 2.0 - 4.4 kb in 8 of 12 Trichoderma viride isolates; in 1989, May and Taylor 

and in 1990, Collins and Saville reported their presence in Neurospora crassa isolates. 

The patterns of the plasmids in T. viride ranged from single bands to complex ladder-like 

patterns. Restriction endonuclease cleavage of these ladder-like patterns produced a single 

band, thus proving that the many bands represent different forms of a single molecule 

rather than many different plasmids. They also demonstated that different strains that have 

similar plasmids do not have similar mtDNA restriction patterns. This suggests that 

mtDNA and plasmids have evolved independently or that plasmids were transferred 

horizontally. The horizontal transfer of plasmids independent of the mtDNA has been 

reported to occur under laboratory conditions among Neurospora isolates (Collins and 

Saville, 1990; May and Taylor, 1989) . May and Taylor (1989) also reported that plasmids 

are inherited paternally but mtDNA is inherited maternally in N. crassa. 
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Most plasmids have no homology with mtDNA which implies that they are not 

derived from mtDNA. Preliminary data indicates that there is no homology with nuclear 

DNA. Scazzocchio (1987) speculates that such plasmids represent means by which gene 

sequences may transfer from one compartment to another within a species or even between 

species. In kali/o strains of N. intermedia the insertion of a 9 kb element that exists as 

a free plasmid in the nucleus into the mitochondrial genome is directly related to the onset 

of senescence in these strains (Bertrand et aI., 1985 - cited by Scazzocchio, 1987) . In 

Podospora anserina, the presence of a number of plasmids which originate from a limited 

number of regions of the mitochondrial genome is responsible for the onset of the 

senescence phenomenon (Wright et al. , 1982) . 

Our objectives in this study were to use the RFLP technique in order to generate 

profiles for both parental and fusant strains. A comparative study of these profiles would 

give an indication of the type of mitochondrial inheritance that occured during the 

protoplast fusion process. It would also enable us to determine whether transmission of 

the mitochondrial genome occurs with the absence or presence of recombinational events. 

3.2 MATERIALS AND METHODS 

3.2.1 ISOLATION OF MITOCHONDRIAL DNA 

Several methods for the isolation of mtDNA were attempted. The first method 

involved the mechanical disruption (grinding, sonication, French pressure cell) of yeast 
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cells followed by the isolation of mitochondria on a cesium chloride-bis-benzimide 

gradient. The second method involved the enzymatic hydrolysis of the cell wall, isolation 

of mitochondria by differential centrifugation followed by lysis of the mitochondrial 

membrane and isolation of mtDNA. The third method involved the enzymatic hydrolysis 

of the cell wall followed by isolation of mitochondria on a sucrose density gradient and 

lysis of the mitochondria and isolation of mtDNA. 

However, the following modified method was used to isolate mtDNA used in the 

restriction reactions. It is a combination of the methods of Defontaine et al. (1991) and 

Querol and Barrio (1990). 

Washing solution 1.2 M Sorbitol 

50 mM EDTA 

2% Mercaptoethanol (v/v) 

Solution A 0.5 M Sorbitol 

10 mM Tris-Hel (pH 7.5) 

Solution 1 20% Sucrose 

10 mM Tris-Hel (pH 7.5) 

0.1 mM EDTA (pH 7.5) 

Solution 2 60% Sucrose 

10 mM Tris-Hel (pH 7.5) 

0.1 mM EDTA (pH 7.5) 

Solution 3 50% Sucrose 

10 mM Tris-Hel (pH 7.5) 



Solution 4 

Solution 5 

Solution B 

5 M potassium acetate 
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44% Sucrose 

10 mM Tris-HCl (pH 7.5) 

10 mM Tris-HCl (pH 7.5) 

1mM EDTA 

50 mM NaCI (pH 7.5) 

100 mM NaCI (pH 7.5) 

1 % N-lauroyl sarcosine (w/v) 

50 mM Tris-HCl (pH 7.5) 

10 mM EDTA (pH 7.5) 

mtDNA from each of the parental and fusant strains was isolated from 11 of a 24 

h culture .grown in YMB at 30°C with vigorous agitation. Cells were harvested at 3 800 

x g for 10 min at 4°C. The pellet was washed twice in sterile distilled water, once in 

the washing solution, resuspended in solution A (5 ml solution A/ 0.3-0.4 g wet weight) 

containing 2% mercaptoethanol and 0.5 mg/ml Novozyme and incubated at 37°C for 45 

min with agitation (100 rpm) on an orbital shaker. Most of the formed sphaeroplasts were 

osmotically lysed at this step. The cellular lysate was centrifuged at 3800 x g for 20 min 

at 4°C to pellet cell debris and nuclei. The supernatant containing mitochondria was 

centrifuged at 15 000 x g for 15 min at 4°C and the crude mitochondrial pellet washed 

once with 5 ml of solution 1. After centrifugation as above the mitochondrial pellet was 

res.uspended in 2 ml of solution 2, transferred to polyallomer tubes, overlaid sequentially 

with 4 ml of solution 3 and 4 respectively and centrifuged for 90 min at 285 000 x g at 

4°C in a Beckman SW 41 rotor. Mitochondria formed a discrete band at the interface of 
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solutions 3 and 4. Mitochondria were collected by puncturing the tubes with a syringe, 

diluted in 4 ml of solution 5 and the suspension was centrifuged at 15 000 x g for 20 min 

at 4°C. The mitochondrial pellet was resuspended in 2 ml solution B, allowed to lyse at 

RT for 30 min followed by the addition of 0.5 ml potassium acetate, incubation at -20°C 

for 15 min and centrifugation at 17 000 x g at 4°C for 20 min. The supernatant was 

transferred to polypropylene centrifuge tubes (JA 20.1, Beckman, USA) and the mtDNA 

precipitated by the addition of 1 volume isopropanol. After incubation at RT for 10 min, 

the mtDNA was pelleted by centrifuging at 17 000 x g for 10 min at RT. The DNA was 

washed once in 70% ethanol, vacuum dried and dissolved in 200 ,ul TE and stored at 

-20°C. 

3.2.2 RESTRICTION OF MITOCHONDRIAL DNA 

mtDNA was cleaved with restriction endonucleases as described in section 

2.2.4.2.1 The following restriction endonucleases were used: EcoRI, Hindlll, EcoRV, 

BamHI , Pst!. 

3.2.3 AGAROSE GEL ELECTROPHORESIS 

Restriction digests were separated on a 0.7% agarose gel at 100 V for 5 - 6 h, 

stained in ethidium bromide, viewed on a UV transilluminator and photographed. 
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3.3 RESULTS 

3.3.1 AGAROSE GEL ELECTROPHORESIS 

Various methods of isolation of mtDNA were attempted. These include: (a) 

mechanical disruption (grinding, sonication, french pressure cell) of the yeast cells and the 

isolation of mtDNA on a cesium-chloride bis-benzimide density gradient; (b) enzymatic 

hydrolysis of the yeast cell wall and membrane, the isolation of mitochondria by differential 

centrifugation followed by the lysis of the mitochondrial membrane and the precipitation of 

mtDNA and (c) enzymatic hydrolysis of the cell wall and membrane followed by the isolation 

of mitochondria on a sucrose gradient and then lysis of the mitochondrial membrane and 

precipitation of mtDNA. The first two methods were found to be unsuitable. The first 

method (a) produced mtDNA with a high level of chromosomal DNA contamination and the 

second was too tedious because of the many centrifugation steps involved. The third method 

was finally employed and produced mtDNA with very little chromosomal contamination (Fig. 

3.1). In addition to the band corresponding to mtDNA, 2 other bands were present for the 

Pichia parent and all the fusant strains. These were presumed to be mitochondrial plasmid 

DNA. 

3.3.2 RFLP ANALYSIS 

Mitochondrial DNA was cleaved with several restriction endonucleases: EcoRI, 

EcoRV, HindIII, PstI, BamHI and the restriction digests separated by agarose gel 

electrophoresis. 
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2 3 4 5 6 
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Fig. 3.1. Agarose gel electrophoresis of restricted and unrestricted mtDNA of parental and fusant 

strains. Lane 1: P. stipitis 633 leu {)Is ala, unrestricted; lane 2: P. stipitis 633 leu {)Is ala restricted with 

PstI; lane 3: PCl, unrestricted; lane 4: PCl restricted with PstI; lane 5: PCAI, unrestricted; lane 6: PCAI, 

restricted with Pst!. 
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Fig. 3.2. RFLP profiles of mtDNA of parental and fusant strains generated by the restriction 

endonuclease EcoRI. Lane 1: Molecular Weight Marker II (Boehringer Mannheim) , Lane 2: P. stipitis 633 

leu {)Is ala, Lane 3: C. shehatae 117 All cys met, Lane 4: C. shehatae 492 met his, Lanes 5-9: PCI - PC5 

and Lanes 10-14: PCA1 - PCAS. 
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Restriction with EcoRI produced 4 identical bands for the P. stipitis parent and the 

fusant strains ranging in size from 5 to 13 kb. EcoRI cleavage of mtDNA from both C. 

shehatae parents produced a different profile consisting of only 2 bands (Fig 3.2). The 

sizes of these 2 bands are approximately 23.1 and 3.1 kb. P. stipitis apparently has two 

extra bands not common to the fusants. This is an artefact due to overloading (spilling 

over) from the well adjacent to it ~ After EcoRI cleavage of the mtDNA, mitochondrial 

plasmids were no longer observed, indicating that they were cleaved into smaller 

fragments. Cleavage with HindIII also produced an identical banding pattern for the P. 

9:4 

6.6 

4.4 

2.3 
2.0 

2 3 4 5 6 7 8 9 10 11 12 13 14 

Fig. 3.3. RFLP profiles of mtDNA of the parental and fusant strains restricted with HindIII. Lane 

1: Molecular Weight Marker II (Boehringer Mannheim), Lane 2: P. stipitis 633 leu lys ala, Lane 3: C. 

shehatae 117 All cys met, Lane 4: C. shehatae 492 met his, Lanes 5-9: pel - pes and Lanes 10-14: peAl 

- peAS. 
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stipitis parent and the fusants (Fig. 3.3). Eight bands ranging in size from 1 to 10 kb 

were observed. The mitochondrial plasmid DNA was cleaved by HindIII. Only 2 bands, 

both greater than 10 kb were present for the Candida parental strains. Double digests 

with EcoRIIPstI (Fig. 3.4) as well as with EcoRVlBamHI (not shown) revealed a similar 

pattern, viz., identical RFLP profiles for the Pichia parent and fusant strains. 

Mitochondrial plasmid DNA is not cleaved by these enzymes. The minor bands in lanes 

2, 10, 11 and 12 represent partially cleaved mtDNA. 

The C. shehatae strains showed differences in restriction profiles for some of the 

restriction endonucleases and also possessed fewer recognition sites than P. stipitis for the 

same enzymes. 

Based on comparisons of the number of fragments obtained with single and double 

digests we deduced that the mtDNA has a circular form . Single digests of P. stipitis 

mtDNA with EcoRV and PstI produced three and two bands, respectively. Double digests 

with these two enzymes produced five bands. If the mtDNA were linear, EcoRV must 

have two cleavage sites in order to produce three bands and PstI one recognition site in 

order to produce two bands. The total number of cleavage sites with these two enzymes 

would therefore be three. This would result in a mtDNA restriction profile containing 

only four bands for these two enzymes. However, the profile in Fig. 4 shows five bands , 

suggesting that the mtDNA is not linear. Circular mtDNA on the other hand must have 

one additional cleavage site in order to produce the same number of bands as linear DNA. 

The total number of cleavage sites and DNA fragments predicted for a circular molecule 

i.e., five , corresponds to the profile shown in Fig. 3.4. This suggests that the mtDNA 
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has a circular fonn. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

19.3 k b 

7.7 

5.5 

4.2 

1.4 

Fig. 3.4. RFLP profiles of mtDNA of parental and fusant strains generated by a double digestion 

with the restriction endonucleases EcoRV and Pst!. Lane 1: P. stipitis 633 leu lys ala, lane 2: C. shehatae 

117 All cys met, lane 3: C. shehatae 492 met his, lanes 4-8: pel - pes, lanes 9-13: peAl - peAS and lane 

14: Molecular Weight Marker IV (Boehringer Mannheim). 

3.4 DISCUSSION 

r ~ 

P. stipitis and the" fusant strains harbour circular DNA of approximately 35 kb as 

well as plasmids in their mitochondria. The mtDNA of C. shehatae strains is 

approximately 30 kb. Mitochondrial plasmids are not present in these strains. Compared 

to other fungi, P. stipitis and C. shehatae possess relatively small mtDNAs. mtDNA of 
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most Pichia species are circular with a size ranging from 32 to 55 kb, although three 

species have been reported to have linear mtDNA with sizes ranging from 24 to 50 kb 

(Fukuhara et al., 1993). Candida species have been found to have circular mtDNAs with 

sizes ranging from 19 kb for C. glabrata (O'Connor et al., 1976) to 52 kb for C. maltosa 

(Kunz et al., 1986). C. tropicalis has been reported to possess three different forms of 

mtDNA: linear, open circular and closed circular (Weng et al., 1985 - cited by Su and 

Meyer, 1991). The mitochondrial plasmids present in the Pichia and fusant strains 

appeared to be small circular molecules. Since they have not been further characterised 

in the present study, no conclusions can be made regarding the genes they carry or their 

function. Hybridisation of the plasmid DNA to mtDNA and nuclear DNA may provide 

information as to whether or not they are of mitochondrial or nuclear origin. 

Restriction profiles generated by various restriction endonucleases indicated firstly 

that P. stipitis and C. shehatae have unique restriction profiles. Mitochondrial 

fingerprinting is therefore a suitable technique for differentiating between these two 

species. This is in accordance with the results reported by Su and Meyer (1991). They 

studied seven Candida species as well as Lodderomyces elongisporus and found different 

patterns for each species. Vezinhet et al. (1990) have reported a remarkable 

polymorphism among 22 enological strains of S. cerevisiae. They found 17 different 

mtDNA profiles for 22 strains using the enzyme EcoRV. Querol et al. (1992) also 

reported a large number of mtDNA restriction profiles for enological strains of S. 

cerevisiae (41 and 35 different profiles for 50 strains in 2 different wineries). 

Secondly, comparision of the restriction profiles obtained in the present study lead 
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to the conclusion that all the fusants inherited their mitochondria from the Pichia parent. 

During the protoplast fusion process, the cytoplasms of both cells come into contact with 

each other and there is generally mixing of the organelles of both cytoplasms. The nuclei 

may interact with each other to produce hybrids but even in the case where no hybrids are 

formed and the heterokaryon destabilises to produce 2 cells with one nucleus, these cells 

possess a mixture of cytoplasmic characters and are known as cybrids (Fig. 1.2a). Collins 

and Saville (1990) report that during the unstable vegetative fusion in Neurospora, 

although the heterokaryons were unstable, the parents must have remained fused long 

enough for mixing of the mitochondrial and nuclear populations to occur. Their results 

show that stable heterokaryons are not a prerequisite for major changes in the 

mitochondrial genetic system. 

The fusants used in this study should contain mitochondria from both parental 

strains although they inherited their nuclei entirely from one parent with possibly a few 

gene exchanges. Most of the genes required for mitochondrial biogenesis are coded for 

by the nucleus. Since the genome of the fusants appears to be almost entirely Pichia­

inherited, it should therefore code only for Pichia mitochondrial proteins. The Cantlida 

mitochondria that could have been present at the time of the fusion may have been 

"diluted" out during cell divisions since none of their structural proteins (encoded by the 

nucleus) would be produced. These mitochondria would eventually disappear in the 

fusants. This appears to contradict the report by Collins and Saville (1990) who found 

that even extremely rare and unstable fusions may contribute to the horizontal transfer of 

mtDNA, plasmids and possibly other mobile elements under laboratory conditions. 

However, they worked with intrageneric fusions and one would expect a very similar 
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genetic constituent for the biogenesis of mitochondria for species within the same genus 

than for different genera as in the case with P. stipitis and C. shehatae. 

The Candida mitochondria were therefore lost from the cell lines before any 

recombination events occurred since the RFLP analyses indicate identical profiles for the 

Pichia parent and fusants. One cannot make any deductions about the mode of inheritance 

of mitochondria of these fusants because had they possessed a truly hybrid nature, Candida 

mitochondria could have been maintained by the Candida genes in the fusants. 
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CHAPTER FOUR 

CHARACTERISATION AND COMPARISON OF THE FERMENTATIVE 

ABILITIES OF Pichia stipitis, Candida shehatae AND THEIR FUSANTS 

4.1 INTRODUCTION 

Traditionally, glucose-based substrates such as maize and molasses are fermented 

commercially to ethanol by S. cerevisiae. However, this yeast is incapable of fermenting 

D-xylose to ethanol. Although many yeasts can utilise pentoses oxidatively, it was 

previously thought that none could ferment them (Barnett, 1978) . 

Since the discovery of the first yeast capable of D-xylose fermentation by 

Karczewska in 1959 (Jeffries, 1990), much progress has been made in identifying other 

yeast strains capable of fermenting D-xylose to ethanol and in establishing conditions for 

the optimal production of ethanol from this sugar. P. stipitis and C. shehatae have thus 

far been identified as the most efficient producers of ethanol from D-xylose. They have 

several advantages over the other D-xylose fermenting yeasts including: (a) higher 

volumetric rates of ethanol production; (b) higher ethanol yields; (c) higher ethanol 

tolerance; and (d) lower xylitol production. P. stipitis is superior to C. shehatae in that 

it has a much lower xylitol production and tolerates ethanol somewhat better than C. 

shehatae (Slininger et al. , 1985) . A number of different conditions influence the 

production of ethanol from xylose, including inoculum size and age, pH, temperature, 
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nitrogen source and aeration levels. The age of inocula used in flask experiments had a 

profound effect on initial volumetric fermentation rate with inocula grown for only 24 h 

outperforming that grown for 72 h. A critical dissolved oxygen tension has to be 

maintained in order to maximise ethanol yields in yeasts (du Preez et al., 1984). Under 

strictly anaerobic conditions, very little ethanol is produced. Sreenath et al. (1986) 

reported 25% more ethanol in one third the reaction time under aerobic fermentation as 

opposed to anaerobic fermentation for C. shehatae. 

The maximum ethanol concentration reported from D-xylose is 57 gIl produced by 

P. stipitis Y-7124 in ::= 13 days with a yield of 0.39 gIg. Although this is a high yield for 

a D-xylose fermenting yeast, typical industrial D-glucose fermentations by S. cerevisiae 

can achieve almost 80 -90 gIl ethanol with a yield of 0.5 gIg (Maiorella et al., 1984). 

A highly fermentative strain of C. shehatae, obtained by serial recycling in wood 

hydrolysates (Parekh et aI., 1986), fermented a: 70:30 D-glucose/D-xylose mixture to an 

ethanol concentration of 84 - 100 gIl (Wayman and Parekh, 1985). Jeffries (1990) 

postulated that these changes may be attributable to altered genome numbers or altered 

mitochondrial activity. Also, glucose feeding has been found to have a stimulatory effect 

and significantly reduced the time required for xylose fermentation. Wayman and Parekh 

(1985) found that C. shehatae fermented a mixture of D-glucose/D-xylose at a higher rate 

than either sugar alone, which suggests that some intermediary metabolite may be limiting 

the fermentation rate (Jeffries and Sreenath, 1988) . 

Most, if not all, strains of S. cerevisiae used in commercial fermentations are 

polyploid or aneuploid, suggesting that for one reason or another, this condition may be 
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beneficial (James and Zahab, 1983). With this in mind, the construction of strains with 

increased ploidy was undertaken by intrageneric fusions of C. shehatae (Johannsen et al. , 

1985), P. tannophilus (James and Zahab, 1983) and P. stipitis, as well as intergeneric 

fusions between C. shehatae and S. cerevisiae , P. stipitis and S. cerevisiae and P. stipitis 

and C. shehatae (Gupthar and Garnett, 1987). Very slight increases in ethanol production 

were reported for the C. shehatae and P. tannophilus intrageneric fusants . No 

improvement in ethanol production was apparent for C. shehatae-S. cerevisiae or P. 

stipitis-S. cerevisiae fusants. Preliminary analysis of P. stipitis-C. shehatae fusants 

indicated a slight improvement in ethanol production for one of the fusant strains. 

The objectives of this study were, therefore, to characterise the fermentative 

abilities of the P. stipitis and C. shehatae parental strains and fusant strains resulting from 

this intergeneric fusion, as well as to compare the fermentative ability of the fusants to that 

of the parental strains. Fermentation conditions already established by du Preez and Prior · 

(1985) for the wild type parental strains were used since the aim was not to optimise 

fermentation conditions for these strains but simply to compare their fermentation 

performance. 

4.2 MATERIAlS AND METHODS 

4.2.1 SHAKE FLASK FERMENTATIONS 

CA Medium 50 g D-xylose, 5 g cas amino acids, 7.5 g NH4CI, 2.5 g KH2P04, 0.5 
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g MgS04.7H20, 0.05 g CaCI2.2H20, 0.5 g citric acid, 35 mg FeS04.7H20, 7 mg 

MnS04.H20, 11 mg ZnS04.7H20, 1 mg CuS04.5H20, 2 mg CoCI2.6H20, 1.3 mg 

N~Mo04.2H20, 2 mg H3B03, 0.35 mg KI, 0.5 mg A12(SO.J3' 100 mg meso-inositol, 20 

mg calcium panthotenate, 5 mg thiamine-HCI, 5 mg pyridoxine-HCI, 5 mg nicotinic acid, 

1 mg p-amino benzoic acid and 0.1 mg d-biotin 

Fermentation conditions established by du Preez and Prior (1985) with two 

modifications were employed in this study. A preliminary fermentation in a smaller 

volume (100 ml) of CA medium was carried out using the conditions described below, in 

order to test the efficiency of the system. Modifications involved the use of a higher 

inoculum size since several reports suggested that higher inocula improve ethanol yield. 

A lower agitation speed (which is equivalent to lower aeration) was also used: 90 rpm as 

opposed to 150 rpm of du Preez and Prior (1985). 

Shake flask fermentations were carried out in 1 I Ehrlenmeyer flasks containing 

500 ml CA medium. Flasks were gently agitated (90 rpm) on an orbital shaker (Certomat 

U, Braun) at 30°C to prevent settling out of cells as well as to provide a very low level 

of aeration. Each flask was inoculated with 50 ml of a cell suspension having an optical 

density of 30 absorbance units at 600 nm which corresponded to a dry mass of 0.5 to 0.6 

gIl. Aliquots of 5 m1 were removed every 8 h and immediately centrifuged. Supernatants 

were stored at -20°C and the pellets used for dry cell mass determinations. 
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Preparation of Inocula 

Inocula were prepared in two stages. A loopful of culture was inoculated into 20 

ml of CA medium in a 250 ml Ehrleruneyer flask and incubated for 24 h at 30°C in an 

orbital shaker at 155 rpm. 5 ml of this culture was transferred to 100 ml of fresh CA 

medium in a 250 ml Ehrleruneyer flask and incubated as described above. After 24 h, the 

cells were pelleted by centrifugation at 8 000 x g for 10 min at 4°C. Pellets were 

resuspended in CA medium. 50 m1 of cell suspension with an optical density of 30 

absorbance units at 600 run was used to inoculate 500 ml of CA medium in a 1 I 

Ehrleruneyer flask. 

4.2.1.2 Fermentation and Sampling 

Shake flask fermentations were carried out at 30°C in an orbital shaker at 90 rpm. 

Aliquots of 5 ml were removed at 8 h intervals and centrifuged as described previously. 

Supernatants were stored at -20°C and used for quantitative determinations of xylose, 

xylitol and ethanol. Pellets were used for gravimetric dry cell mass determinations. 

4.2.1.3 Dry Cell Mass Determination 

Pellets were washed once in sterile distilled water, vacuum filtered onto pre­

weighed Millipore type HA filters (0.45 J.1m), dried in an oven at 105°C, allowed to cool 
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in a dessicator and their masses determined. 

4.2.1.4 HPLC Analyses 

Samples stored at -20°C were allow~ to thaw on ice, diluted and filtered through 

Millipore Millex HV filters (0.45 Jl.m) and analyzed using a Waters 410 Differential 

Refractometer (sensitivity = 8 x, temperature = 40°C), a Waters autosampler and a 

Waters Sugar-Pak 1 column maintained at 90°C with a flow rate of 0.5 ml/min. The 

mobile phase was 50 ppm calcium titriplex dihydrate maintained at 50°C. Injection 

volumes of 20 Jl.I were used and the run time was 25 min. Results were recorded by a 

Waters Maxima 820 Data Chromatography Workstation. 

4.2.1.5 Calculation of Fermentation Parameters 

The following fermentation parameters were determined: maximum specific 

growth rate (Jl.max), volumetric rate of product formation (<4>, specific rate of product 

formation (q), volumetric rate of substrate utilisation (Qs) , specific rate of substrate 

utilisation (qJ, volumetric rate of biomass production (Q), biomass yield coefficient with 

respect to substrate utilisation (Y xis), biomass yield coefficient with respect to product 

formation (Y xlJ and the product-substrate coefficient (Y plJ . The units for the volumetric 

rates were g/l/h, gl g/h were used for specific rates of production and yield coefficients 

were measured in gIg. 
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f.1.max was determined from the slope of the exponential phase of the natural log of 

biomass versus time curve. A range of Qp, Qs, and Qx values were estimated over the 

entire fermentation period. Time intervals of 8 h were used in calculations. ~max values 

were determined from the slope of the exponential phase of ethanol versus time curves. 

A range of q., values was also established and calculated by dividing the volumetric rates 

of ethanol production by the biomass value in the middle of each 8 h time interval. The 

qpffiax value was determined by dividing the Qpffiax value by the biomass value at the 

middle of the time interval. The Y xlsmax, Y xlpffiax and Y plsmax values were obtained by 

dividing the Qxmax value by the Qsmax value, the Qxmax value by the Qpffiax value and 

the Qpffiax value by the Qsffiax value, respectively. 

4.3 RESULTS 

The trial fermentation yielded the following ethanol concentrations for the different 

strains after 72 h: P. stipitis produced 20.2 gil, C. shehatae 117 All cys met 18.1 gil and 

C. shehatae 492 met his 14.7 gIl and the fusants had final ethanol concentrations that 

ranged between 18.0 - 19.6 gIl. Since these results were comparable to those obtained 

by other authors using similar fermentation conditions (du Preez et al., 1984, 1987, 1989; 

du Preez and Prior, 1985; du Preez and van der Walt, 1983) and also permitted 

differentiation between fusant and parental strains with regard to ethanol levels produced, 

the same conditions were considered suitable for subsequent fermentations. 
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4.3.1 BIOMASS. RESIDUAL XYLOSE. XYLITOL AND ETHANOL 

CONCENTRATIONS 

4.3.1.1 Biomass Determination 

A lag phase was not observed for any of the strains tested (Fig. 4.3a to 4.1Sa). 

This was because actively dividing logarithmic phase cells were used as inocula. The 

biomass tripled or quadrupled for most of the strains. A final biomass of 4 - 5 gil was 

obtained for all the strains, except C. shehatae 492 met his (2 gil), C. shehatae 117 All 

cys met (3.3 gil) and PCA1 (3.3 gil). 

4.3.1.2 Xylose Utilisation 

C. shehatae 117 All cys met utilised xylose more rapidly when compared to the 

other strains (Fig 4.4b). After 24 h only 20 gil xylose remained as opposed to the P. 

stipitis fermentation (Fig. 4.3b) which had 27 gil xylose after 24 h. Fusant strains PC1 

to pes (Fig. 4.6b-4.10b) followed the xylose utilisation trend of the P. stipitis parent, 

while PCA1 to PCAS (Fig. 4.11b-4.1Sb) possessed characteristics of the C. shehatae 

parent. The exponential phase of xylose utilisation of fusants PC1 to PCS occurred 

between 24 and 48 h whereas that of fusants PCA1 to PCAS was between 8/16 to 48 h. 

All fusant strains had no residual xylose after 48 h. After 56 h both P. stipitis and C. 

shehatae 117 All cys met had completely utilised the xylose. C. shehatae 492 met his 

utilised xylose very poorly - the residual xylose concentration after 72 h was 6.51 gil. 
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Ethanol Production 

Ethanol, the major product of the fermentation was detected in the first sample (8 

h) for all the strains. It was accumulated fairly rapidly by all strains. Maximum ethanol 

concentrations were reached around 48 h by P. stipitis (Fig. 4.3b) and the fusants PCl to 

PCS (Fig. 4.6b - 4.l0b). The Pichia parental strain produced the highest ethanol 

concentration of 29.9 gil. Most of the fusant strains produced comparable amounts of 

ethanol. The Candida parental strains produced significantly lower amounts of ethanol. 

C. shehatae 117 All cys met (Fig. 4.4b) was the better producer of the two with a 

maximum ethanol concentration of 25.98 gIl whereas C. shehatae 492 met his (Fig. 4.Sb) 

produced only 13.92 gIl. The exponential phase of ethanol production occurred at an 

earlier stage for the fusants PCl to PCS as opposed to PCAI to PCAS, viz., between 24 

to 40 h and 40 to 56 h, respectively. 

HPLC analysis of the unfermented medium yielded three chromatographic peaks 

(Fig. 4.1). The first peak corresponded to the inorganic elements in the medium. A 

major peak was recorded for xylose and a small peak was identified as arabinose. Trace 

amounts of arabinose were therefore present in the medium at the start of the 

fermentation. This level increased only marginally during the fermentation for all the 

strains. 

4.3.1.4 Xylitol Production 

Ethanol was not the sole product of the fermentation. Polyols were also produced, 
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of which xylitol was the major constituent. As expected, both the Candida parental strains 

produced high levels of xylitol: 3.43 gIl for C. shehatae 117 All cys met (Fig. 4.4b) and 

. 5.69 g/i for C. shehatae 492 met his (Fig. 4.5b). P. stipitis (Fig. 4.3b) produced 0.2 gil 

and the fusant strains (Fig. 4.6b-4.15b) between 0.04 and 0.34 gIl. In addition to ethanol 

and xylitol, both Candida parental strains produced significant levels of glycerol (Figs.4.2a 

and 4.2b). C. shehatae 492 met his produced three times the level of C. shehatae 117 All 

cys met. 
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{O} and xylitol production {<>} for shake-flask D-xylose fennentation by C. shehatae 492 met his. 



5.0 
a 4.5 

4.0 
........ 3.5 
"-en 3.0 ......., 

rn 2.5 Cil 
0 

E 2.0 
0 
m 1.5 

1.0 
0.5 
0.0 

b 55 

50 

45 

40 --.......... 35 QO -s:l 
0 

30 -~ 25 «I 

'"' ~ s:l 20 c» 
() 

J:l 15 
0 

c;) 

10 

5 

0 

-5 

109 

/ 
/ 

/ 
0 8 16 24 32 40 

Time (h) 

~ 
\ 

/ 

" o 

/ 

0" 
/ 

48 56 64 72 

,-0---0--0-

o 8 16 24 32 40 48 56 64 72 

Time (h) 

Fig. 4.6. Fennentation profiles of (a) biomass production and (b) xylose utilisation {t:.}. as well as ethanol 

{ O} and xylitol production {<>} for shake-flask D-xylose fennentation by PCI. 



110 

5.0 
a 4.5 

4.0 
r-... 

3.5 .:::::.. 
0'1 

3.0 / 
'-/ 

(f) 

2.5 (f) 
0 

E 2.0 
0 
m 1.5 / 1.0 

0.5 
0.0 

0 8 16 24 32 40 48 56 64 72 

Time (h) 

55~----------------------------~ 
b 

15 -

10 r-

-5 I I I I I I It ~ ~ 

o 8 16 24 32 40 48 56 64 72 

Time (h) 

Fig. 4.7. Fennentation profiles of (a) biomass production and (b) xylose utilisation {t.} , ethanol 

{ O} and xylitol production {<>} for shake-flask D-xylose fermentation by pe2. 



111 

5.0 a 
4.5 
4.0 ,..... 

~ 3.5 
CJl 

/ 
'-" 3.0 

(f) 
(f) 2.5 0 

E 2.0 0 m 1.5 

/ 1.0 
0.5 
0.0 

0 8 16 24 32 40 48 56 64 72 

Time (h) 

55 ------------------, 
b 

45 -

40 I-

35 I-

30 I-

25 -

20 I-

15 I-

10 I-

-5 I I I I I I I I I I 

o 8 16 24 32 40 48 56 64 72 

Time (h) 

Fig. 4.8. Fermentation profiles of (a) biomass production and (b) xylose utilisation {/d, ethanol 

{ O} and xylitol productipn { O} for shake-flask D-xylose fermentation by PC3. 
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Fig. 4.12. Fennentation profiles of (a) biomass production and (b) xylose utilisation {t.}, ethanol 

{ O} and xylitol production { O} for shake-flask D-xylose fennentation by PCA2. 
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Fig. 4.13. Fennentation profiles of (a) biomass production and (b) xylose utilisation {t.}, ethanol 
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4.3.2 CALCULATION OF FERMENTATION PARAMETERS 

The values for Qp' Qs and Qx were calculated by linear regression analysis of the 

exponential phase of the curves for ethanol production, substrate utilization and biomass 

production, respectively (Table 4.1). 

TABLE 4.1. Quantitative analysis of D-xylose fermentations of P. stipitis, C. 

shehatae and their fusants 

Strain ~ ~ Qx qp qs Yx/p Yx/s Yp/s 

PsY 633 LLA 0.75 1.34 0.08 0.24 0.43 0.06 0.11 0.56 

CsY 117 All CM 0.75 1.31 0.07 0.42 0.62 0.05 0.09 0.57 

CsY 492 MH 0.21 1.15 0.06 0.14 0.94 0.05 0.29 0.18 

PC1 . 0.84 1.45 0.10 0.28 0.48 0.07 0.12 0.58 

PC2 0.87 1.57 0.08 0.26 0.47 0.05 0.09 0.55 

PC3 0.75 1.40 0.06 0.24 0.44 0.04 0.08 0.54 

PC4 0.83 1.56 0.07 0.24 0.46 0.04 0.08 0.53 

PC5 0.84 1.58 0.06 0.23 0.43 0.04 0.07 0.53 

PCA1 0.84 1.22 0.10 0.31 0.81 0.08 0.12 0.69 

PCA2 0.69 1.23 0.10 0.15 0.83 0.08 0.14 0.56 

PCA3 0.80 1.34 0.09 0.22 0.50 0.07 0.11 0.60 

PCA4 0.69 1.09 0.09 0.15 0.41 0.08 0.13 0.63 

PCA5 0.89 1.43 0.07 0.34 0.74 0.05 0.08 0.62 

The units for Qp, Qs and Q. are gll/h, qp and q in glglh and Y",p' Y"'s and Ypls in gig. 
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P. stipitis and C. shehatae 117 All cys met both had a volumetric rate of ethanol 

production (QJ of 0.75 g/i/h. One of the fusant strains (PC3) also produced 0.75 gIl/h. 

The other fusant strains, with the exception of PCA2 and PCA4, showed higher Qp values 

ranging from 0.80 to 0.89 g/i/h. C. shehatae 492 met his had the lowest Qp value. In 

fact, an exponential phase of ethanol production was not observed (Fig. 4 .Sb). The ~ 

value for this strain was therefore calculated from the region of the ethanol versus time 

curve that showed the greatest increase in ethanol concentration in the smallest time 

interval. 

The volumetric rate of biomass production (Q) was generally low for all the 

strains: between 0.6 and 1.0 gIl/h. The three parental strains had Qx values of 0.08, 0.07 

and 0.06 glllh for P. stipitis, C. shehatae 117 All cys met and 492 met his, respectively. 

None of the fusant strains possessed lower Qx values than their parental strains. PC3 and 

PCS, fusants from the P. stipitis-C. shehatae 492 met his hybridisation, had the Qx value 

of the C. shehatae 492 met his parent. Fusants of the P. stipitis-C. shehatae 117 All cys 

met hybridisation showed slightly higher Qx values than the other set of fusants . The Qs 

values were generally high for all strains. Fusants PC1 to PCS, without exception, 

possessed higher Qs values than their parental strains. Fusants PCA1 to PCAS showed 

much lower Qs values, ranging from 1.09 to 1.43 gll/h, compared to 1.40 to 1.58 gll/h 

for the former set of fusants. However, this trend was reversed upon comparison of the 

specific rates of substrate utilisation. PCA fusants had qs values ranging from 0.41 to 0.83 

glglh, whereas, PC fusants showed qs values of 0.43 to 0.48 g/g/h. P. stipit~ showed 

a low qs value of 0.43 gl glh compared to 0.62 gl glh for C. shehatae 117 All cys met. 

P. stipitis also had a low qp value compared to that of C. shehatae 117 All cys met (0.24 
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and 0.42 glglh, respectively). PC fusants had qp values of aproximately 0.24 glglh, 

although PC1 and PC2 showed slightly higher values of 0.28 and 0.26 glglh, respectively. 

On the other hand, PCA fusants had a wide range of ~ values, from 0.15 to 0.34 g/g/h. 

Values for the yield coefficient for biomass, with respect to substrate utilisation 

(Y xis), was relatively low for all strains. P. stipitis had a Y xis value of 0.06 gIg and C. 

shehatae 117 All cys met had a value of 0.05 gIg. Again, a trend emerged where PC 

fusants showed lower Y xis values compared to PCA fusants . The Y xlp values also showed 

a similar trend. P. stipitis had a slightly higher value than C. shehatae 117 All cys met. 

Similar patterns for the fusants were observed for the product-substrate coefficient (Y pis). 

A relatively high Y pis value was observed for all strains. PC fusants displayed values less 

than or equal to that of the P. stipitis parent, whereas, the PCA fusants greater than or 

equal to either parent. 

The general trend for specific ethanol production during the course of the 

fermentation was similar for the P. stipitis (Fig. 4.16a) and C. shehatae 117 All cys met 

(Fig. 4.16b) parental strains as well as for most of the fusant strains (Fig. 17a, 17b, 17c, 

18a, 18b, 19b) . The qp value was highest at the begining of the fermentation and 

gradually tapered off to its lowest value towards the end of the fermentation. In the case 

of C. shehatae 492 met his (Fig. 4.16c) and a few of the fusant strains (Fig. 19a, 19c, 

20), a more ambiguous trend was noticed where the qp values fluctuated throughout the 

fermentation. 
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of (a) PC1 ; (b)PC2 and (c) PC3. 
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Fig. 4.18. Comparative time courses of specific ethanol production during shake-flask fermentations 

of (a) PC4; (b) PCS and (c) PCAI. 
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Fig. 4.19. Comparative time courses of specific ethanol production during shake-flask fermentations 

of (a) PCA2; (b) PCA3 and (c) PCA4. 
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Fig. 4.18. Comparative time courses of specific ethanol production during shake-flask fermentations 

of (a) PCAS. 

4.4 DISCUSSION 

Recent reports by several workers concurred that P. stipitis and C. shehatae are the most 

efficient fermentors of D-xylose. They also agreed that fermentation conditions greatly 

influenced the performance of these strains. In this study, conditions established 

previously by other workers were used to compare the fermentative abilities of the P. 

stipitis and C. shehatae parental strains and their fusants. The wild type strains of all 

three parental strains have been extensively studied by other workers (du Preez et al., 

1984, 1987, 1989; du Preez and Prior, 1985; du Preez and van der Walt 1983; Prior, et 

at., 1989). Different values for Qp' Clp and Y pis have been reported by these workers. 

These variations were due either to differing fermentation conditions such as aeration, 
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temperature, pH, inoculum size and age, nitrogen source as well as initial sugar 

concentration used, or because of strain differences. 

Maximum ethanol concentrations of 16.5, 26.2 and 18 gil for C. shehatae 492 

were reported by du Preez et al. (1984), du Preez and van der Walt (1983) and du Preez 

et al. (1989), respectively. In this study, a maximum ethanol concentration of 15 gIl was 

achieved by the mutant C. shehatae 492 met his . In accordance with the above-mentioned 

reports, high levels of xylitol and glycerol were also noted for this strain. In contrast to 

its very low specific rates of biomass and ethanol production, this strain displayed a 

relatively high rate of substrate utilisation. Even though substantial amounts of glycerol 

and xylitol were produced, the total amounts of biomass, ethanol, glycerol and xylitol 

produced cannot account for the substrate utilised. A probable explanation for this would 

be that the xylose was metabolised through the oxidative bypass of the Embden­

Meyerhoff-Pathway, with the production of CO2 at the expense of ethanol. The P. stipitis 

633 wild-type strain had a yield coefficient of 0.45 from 5% xylose. The Ypls value 

obtained for the mutant P. stipitis 633 leu lys ala was slightly higher, viz. , 0.56. 

According to the stoichiometry: 3 xylose ~ 5 ethanol + 5 CO2, which is based on xylose 

metabolism through the non-oxidative part of the hexose monophosphate pathway (HMP) 

and which does not take into account the possibility of the production of ethanol through 

the phosphoketolase pathway (Prior et at., 1989), this Y pis value would be equivalent to 

105% of the theoretical maximum. du Preez and Prior (1985) reported an ethanol yield · 

equivalent to 88% of the theoretical maximum. The very high yield obtained in this study 

would seem to indicate that the oxidative part of the HMP which is responsible for the 

recycling of NADPH plays a role in ethanol production. Ligthelm et al. (1988) reported 
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that no recycling of NADPH occurred during anaerobic fermentation whereas Prior et al. 

(1989) suggested that the carbon and nitrogen sources determined the amount of carbon 

recycyled oxidatively. If this part of the pathway was operational, an additional molecule 

of ethanol would be produced per three molecules of xylose. Therefore, the yield obtained 

would represent 90% of the theoretical maximum rather than the unrealistic 105%. du 

Preez and Prior (1985) also reported a Y pis of 0.42 for the wild type strain of C. shehatae 

117 All compared to 0.57 obtained in this study. In contrast, they obtained!1max values 

of 0.14, and 0.13 for the wild type P. stipitis 633 and C. shehatae 117 All respectively, 

compared to 0.08 and 0.07 obtained for the mutants . These differences in the 

fermentation parameters can be explained by the lower inocula and higher agitation levels 

used by dU Preez and Prior (1985). The use of a higher inoculum size resulted in a lower 

specific growth but a higher value for product yield, i.e., a more efficient transformation 

of xylose to ethanol with a comparatively lower accumulation of biomass. It is well 

documented that higher aeration levels promote biomass accumulation and xylitol 

production whereas limited aeration promotes ethanol production. The same growth 

conditions were ·used in both the fermentations except that du Preez and Prior (1985) used 

a rotary shaker speed of 150 rpm compared to the 90 rpm used in this study, which 

supports the above statement. 

The higher ethanol yields and final ethanol concentrations linked with lower 

specific growth rates obtained for all parental strains in this study can also be explained 

by the aeration rate - inoculum size differences in the two experiments. 

The P. stipitis parental strain produced the highest maximum ethanol concentration. 
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Most of the fusants produced slightly lower levels , although all produced higher levels 

than both the C. shehatae parental strains. In this respect it would therefore appear that 

they have inherited their fermentation characteristics from the P. stipitis parent. All of 

the fusants, except PCA2, displayed a higher volumetric rate of ethanol production than 

their parental strains. However, these strains also had a higher specific growth rate and 

the values for specific ethanol production reduced the differences between parental and 

fusant strains to ± 0.02 gIg. Three of the fusant strains still had a higher specific rate of 

ethanol production than the P. stipitis parent although none of them displayed a higher qp 

value than the C. shehatae 117 All cys met parent. 

From the values for the final ethanol concentration, ethanol yield and specific 

ethanol production rate, it was evident that the P. stipitis parent remained the most 

efficient fermentor of xylose when compared to both the C. shehatae parental strains as 

well as the fusants. Indeed, these values for most of the fusants are so similar to that of 

the P. stipitis parent, that the question arises as to whether the differences are significant 

or rather simply due to slight variations in inoculum size, aeration and medium 

composition. However, examination of the trends in xylose utilisation and ethanol 

production indicated a character more C. shehatae 117 All cys met-like for the fusants 

PCAI to PCAS. 
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CHAPTER FIVE 

GENERAL DISCUSSION 

Molecular characterisation of the ethanolic D-xylose fermenting parental and fusant 

strains used in this study involved electrophoretic karyotyping, RFLP analysis of 

chromosomal and mitochondrial DNA and electrophoretic analysis of proteins. All the 

above-mentioned techniques permitted a clear-cut distinction between the P. stipitis and 

C. shehatae parental strains. However, all fusants appeared to be identical to one another 

and the P. stipitis parent. Fermentation studies revealed that most of the fusant strains 

displayed P. stipitis-like fermentation parameters except for one set of fusants that 

resembled the C. shehatae 117 All cys met parent. 

TAPE profiles revealed six and five chromosomes for P. stipitis and C. shehatae, 

respectively, and also showed polymorphisms for the C. shehatae strains. The 

polymorphic nature of C. shehatae strains has also been reported by Passoth et al. (1990) . 

Run conditions were extremely important to obtain optimal separation of the 

chromosomes. Longer run times coupled with lower voltages, water quality and 

temperature were crucial. Deionised water with a conductivity of 10 to 2 x 10 mho/cm 

is ideal (Mary Morgenstern - Beckman Instruments, California, personal communication). 

If the conductivity of the water exceeds 4 x 10 mho/cm, then distorted, diffuse bands are 

produced. The preparation of agarose plugs is a relatively simple procedure. Once made, 

the plugs can be used for up to five months. However, finding a suitable programme for 

the optimal separation of the chromosomes is a time-consuming procedure. Once this has 
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been established, generating reproducible and well defined karyotypes becomes routine. 

TAPE produced an identical profile for all fusants and the P. stipitis parent, 

indicating that chromosomal inheritance in the fusants was apparently almost entirely from 

the P. stipitis parent. Three possible permutations could result from the protoplast fusion 

process, viz., a true hybrid possessing both nuclear and cytoplasmic characters of both 

cells involved in the fusion, cybrids with a mixed cytoplasm but intact nuclei of each cell, 

or "partial" hybrids having the chromosomes of one cell and a few characters of the other 

due to partial gene exchange (Provost et al. , 1978 - cited by Gupthar and Garnett, 1987). 

Protoplast fusion has apparently led to the production of fusants with the 

chromosomes of P. stipitis and a few genes from the C. shehatae parental strains 

integrated in the P. stipitis chromosomes. The relatively small increases in chromosome 

size incurred by gene insertion could not be detected by PFGE. This technique has been 

successfully applied to characterise hybrids produced by protoplast fusion, e.g., Hoffman 

et at. (1987) performed protoplast fusion with haploid strains of S. cerevisiae and S. 

diastaticus and used classical genetic techniques as well as OFAGE to characterise the 

fusants. Using OF AGE, they successfully identified the following fusants: a fusant having 

only S. diastaticus chromosomes which they identified as a cybrid, a fusant possessing all 

the chromosomes of both S. cerevisiae and S. diastaticus, and a fusant with twice the 

number of chromosomes of S. cerevisiae as well as the chromosomes of S. diastaticus 

which resulted from the fusion of two cells of S. cerevisiae with one of S. diastaticus. 

Smith et al. (1991) were able to detect chromosomal rearrangements in improved 
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cephalosporin C-producing strains of Acremonium chrysogenum using CHEF. Thus, when 

a more radical/drastic nuclear interaction than a few gene exchanges occurs, it can be 

detected using PFGE. Although PFGE has not proved successful in distinguishing fusants 

from the P. stipitis parent in this study, it has proved to be useful in the characterisation 

of fusant and parental strains as well as economically important strains of S. cerevisiae. 

Where PFGE failed, it was hoped that RFLP analysis would provide information 

as to which parts of the genome originated from the C. shehatae parent. Again, RFLP 

profiles allowed differentiation between the P. stipitis and C. shehatae parental strains, 

with all fusants displaying an identical profile to that of the P. stipitis parent. A smear 

of fragments against which a few high intensity bands were evident was obtained for all 

the restriction endonucleases. These high intensity bands were generated by the cleavage 

of ribosomal DNA sequences and probably mitochondrial DNA (Ausubel et aI., 1989; 

Bostock et al., 1993; Meaden, 1990). Insertion of single copy genes would be difficult 

to detect in the smear of fragments generated by restriction enzymes. The restriction 

endonucleases employed in this study all recognise six base pair sequences and therefore 

cleave DNA with lower frequency than those that have four base pair recognition sites. 

DraI is considered to be a "rare-cutter" and although it produced a higher proportion of 

larger fragments than the other restriction endonucleases, no discrete bands could be 

resolved. Since P. stipitis has a 43% G + C content, a "rare-cutting" enzyme, with an 

.eight base pair recognition site and which cleaves the DNA preferentially at GC sites may 

generate fewer fragments and thus produce a more distinct profile rather than a smear. 

In order to determine polmorphisms in single copy genes. fingerprinting using a 
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number of gene probes is required (Meaden, 1990). In this study, only two gene probes 

derived from a P. stipitis strain were used to probe the products obtained by RFLP 

analysis and .T AFE. These genes are involved in the initial steps of xylose metabolism 

and were considered important for the determination of gene copy number and linking this 

to ethanol production. Hybridisation of the XYL1 gene probe with the restriction 

endonuclease-generated profiles indicated that only one copy of the XYL1 gene was present 

in the fusants and that this gene originated from the P. stipitis parent. A high degree of 

homology existed between the probe and the XYL1 gene of the P. stipitis strain studied 

(strong signals were obtained under stringent hybridisation and washing conditions). Both 

C. shehatae strains possessed a lower degree of homology, as the signals were only 

obtained under low stringency conditions (45°C). The XYL2 gene probe, on the other 

hand, only hybridised to P. stipitis DNA. No signals were obtained under low stringency 

conditions, either for the fusants or C. shehatae strains, which could indicate that the 

XYL2 gene in the fusants originated from the C. shehatae parents. Considering the fact 

that the gene probe originated from a strain of P. stipitis, it would be expected to have a 

higher degree of homology than that which was evident in this study. Further tests need 

to be carried out using this probe before conclusions as to the origin of this gene in the 

fusants can be determined. Also, fingerprinting with other gene probes may reveal 

additional information on the contribution of C. shehatae genes to the fusants. 

mtDNA analysis also revealed the predominance of P. stipitis DNA in the fusants. 

Considering the fact that cybrids are formed even if no nuclear interaction occurs during 

hybridisation, it could be surprising to note the absence of C. shehatae mtDNA in the 

fusants. In retrospect, however, it appears logical that only P. stipitis mtDNA should be 



134 

predominant in the fusants. If no recombination occurred before dissociation of the 

heterokaryon, then P. stipitis mtDNA should be the sole mitochondrial species in the 

fusants . The reasoning behind this statement is that the majority (95%) of mitochondrial 

proteins are encoded by the nucleus. Since the nucleus in the fusants is comprised 

predominantly of P. stipitis chromosomes, it is to be expected that almost entirely only 

P. stipitis mitochondrial proteins are produced. Since the two parental strains belong to 

two distinct genera and their presumed taxonomic relationship, i.e., perfect-imperfect 

partners, has been proved otherwise by various workers, it is likely that the P. stipitis 

mitochondrial proteins were not compatible for the biogenesis of C. shehatae 

mitochondria. The existing C. shehatae mitochondria present in the fusants immediately 

after dissociation of the heterokaryon, would have been diluted out in the fusant strains 

as cell division proceeded, to be eventually lost altogether. 

It was interesting to note that P. stipitis possessed mitochondrial plasmids, whereas 

C. shehatae did not. The fusants inherited both the circular mtDNA and plasmids from 

the P. stipitis parent. Although the presence of mitochondrial plasmids is widespread 

among fungi (Collins and Saville, 1990; Meyer, 1991), their role in most cases is 

unknown. Scazzocchio (1987) speculated that such plasmids represent means by which 

sequences may transfer from one compartment to another or even between species. In the 

case of kalila strains of N. intermedia, a free nuclear element transposes into the mtDNA 

and triggers the onset of the senescence phenomenon (Wright et al., 1982). In strains of 

Padaspara, the excision of a part of the mtDNA signals the onset of senescence. Since 

the plasmids in P. stipitis and the fusants have not been characterised, their role, if any, 

is still unknown. It would be of interest to see whether they are derived from nuclear or 
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mitochondrial sequences and discover their possible role in this yeast. 

The collective data from the molecular characterisation studies indicate that the 

fusants are predominantly Pichia-like. Previous experiments also pointed out the 

resemblance between P. stipitis and the fusants. The fusants were found to resemble P. 

stipitis morphologically (Gupthar and Garnett, 1987) and DNA-DNAhybridisation analysis 

revealed a 74 to 86% homology with the Pichia parent (Selebano et al., 1993) . 

Based on these results, it was anticipated that the fermentative abilities of the 

fusants would also resemble that of the P. stipitis parent. This was found to be true in 

shake flask fermentations . The P. stipitis strain was the most efficient fermenter of xylose 

and produced the highest maximum ethanol concentration. The fusants produced slightly 

lower levels of ethanol but the fermentation parameters were similar for P. stipitis and 

most of the fusants. Slight differences noted may be due to differing fermentative abilities 

of the various strains but was more likely due to inoculum size or slight variations in the 

concentration of different components of the fermentation medium. Both C. shehatae 

strains produced lower maximum ethanol concentrations than either the fusants or the P. 

stipitis strain. All the fusants, except PCA2, displayed a higher volumetric rate of ethanol 

production than their parental strains. They also had a higher specific growth rate and 

the differences between them for the value for specific ethanol production was reduced to 

0.02 gIg. Although three of the fusants had a higher specific ethanol productivity than P. 

stipitis, none of them exceeded the CIs value obtained for C. shehatae 117 All cys met. 

These three fusants which resulted from the fusion between P. stipitis and C. shehatae 117 

All cys met, would seem to have inherited some metabolic properties of the C. shehatae 
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parental strain. 

The fusants PC1 to PCS, resulting from the fusion between P. stipitis and C. 

shehatae 492 met his have without doubt inherited their fermentation characteristics from 

the P. stipitis parent as indicated from the data for final maximum ethanol concentration, 

ethanol yield, specific ethanol production and substrate utilisation trends. The PCA 

fusants , on the other hand, exhibited a more ambiguous behaviour. PCA1 and PCAS 

displayed specific ethanol production rate values closer to that of the C. shehatae 117 All 

cys met, while PCA3 had a value similar to that of the P. stipitis parent and PCA2 and 

PCA4 fusants had values much lower than either parental strain. From the fermentation 

results it appeared that the PCA fusants possessed a greater hybrid nature than the PC 

fusants , although this was not supported by molecular evidence. However, the various 

techniques used for the molecular characterisation of the fusants could not differentiate 

among the fusants or distinguish them from the P. stipitis parent. The differences in the 

fermentative abilities of the two sets of fusants , therefore remains unexplained. It can be 

deduced from the results obtained that these fusants are indeed only partial hybrids, most 

probably resulting from very few gene exchanges in the heterokaryon before its 

dissociation. 

Further molecular characterisation of these fusants could be performed by RAPD 

fingerprinting. According to Williams et al. (1990), RAPDs can be used to identify 

hybrids that carry deletions and insertions of chromosomal segments, a description which 

fits the fusants in this study. RAPD fingerprinting of the fusants would, however, be a 

purely academic excercise because these fusants were constructed with the objective of 
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obtaining more efficient D-xylose fermenters . Fermentation tests indicated that the P. 

stipitis strain is more efficient than the fusants , therefore, future work should concentrate 

on finding another means of producing efficient ethanolic D-xylose fermenting strains. 

Both desirable and undesirable traits can be conferred on the hybrids by protoplast 

fusion. A more direct approach of obtaining more efficient xylose fermenters would be 

to clone genes coding for enzymes involved in D-xylose metabolism into P. stipitis , which 

is one of the most efficient fermenters. Cloning them into S. cerevisiae did not produce 

an efficient D-xylose fermenting S. cerevisiae strain. Recently, a system for the 

transformation of P. stipitis was developed (Ho et aI., 1991) . This technique may prove 

to be the solution to obtaining a commercially viable strain of ethanolic D- xylose 

fermenting yeast. 
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